| Subclause | Header | ||
| Algorithms requirements | |||
| Parallel algorithms | |||
| Algorithm result types | <algorithm> | ||
| Non-modifying sequence operations | |||
| Mutating sequence operations | |||
| Sorting and related operations | |||
| Generalized numeric operations | <numeric> | ||
| Specialized <memory> algorithms | <memory> | ||
| C library algorithms | <cstdlib> | 
template<class InputIterator, class Predicate>
  constexpr bool all_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  bool all_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
              Predicate pred);
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr bool ranges::all_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr bool ranges::all_of(R&& r, Pred pred, Proj proj = {});
template<class InputIterator, class Predicate>
  constexpr bool any_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  bool any_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
              Predicate pred);
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr bool ranges::any_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr bool ranges::any_of(R&& r, Pred pred, Proj proj = {});
template<class InputIterator, class Predicate>
  constexpr bool none_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  bool none_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
               Predicate pred);
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr bool ranges::none_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr bool ranges::none_of(R&& r, Pred pred, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
  constexpr bool ranges::contains(I first, S last, const T& value, Proj proj = {});
template<input_range R, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
  constexpr bool ranges::contains(R&& r, const T& value, Proj proj = {});
template<forward_iterator I1, sentinel_for<I1> S1,
         forward_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr bool ranges::contains_subrange(I1 first1, S1 last1, I2 first2, S2 last2,
                                           Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr bool ranges::contains_subrange(R1&& r1, R2&& r2, Pred pred = {},
                                           Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator, class Function>
  constexpr Function for_each(InputIterator first, InputIterator last, Function f);
template<class ExecutionPolicy, class ForwardIterator, class Function>
  void for_each(ExecutionPolicy&& exec,
                ForwardIterator first, ForwardIterator last,
                Function f);
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirectly_unary_invocable<projected<I, Proj>> Fun>
  constexpr ranges::for_each_result<I, Fun>
    ranges::for_each(I first, S last, Fun f, Proj proj = {});
template<input_range R, class Proj = identity,
         indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun>
  constexpr ranges::for_each_result<borrowed_iterator_t<R>, Fun>
    ranges::for_each(R&& r, Fun f, Proj proj = {});
template<class InputIterator, class Size, class Function>
  constexpr InputIterator for_each_n(InputIterator first, Size n, Function f);
template<class ExecutionPolicy, class ForwardIterator, class Size, class Function>
  ForwardIterator for_each_n(ExecutionPolicy&& exec, ForwardIterator first, Size n,
                             Function f);
template<input_iterator I, class Proj = identity,
         indirectly_unary_invocable<projected<I, Proj>> Fun>
  constexpr ranges::for_each_n_result<I, Fun>
    ranges::for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});
template<class InputIterator, class T>
  constexpr InputIterator find(InputIterator first, InputIterator last,
                               const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
  ForwardIterator find(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
                       const T& value);
template<class InputIterator, class Predicate>
  constexpr InputIterator find_if(InputIterator first, InputIterator last,
                                  Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  ForwardIterator find_if(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
                          Predicate pred);
template<class InputIterator, class Predicate>
  constexpr InputIterator find_if_not(InputIterator first, InputIterator last,
                                      Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  ForwardIterator find_if_not(ExecutionPolicy&& exec,
                              ForwardIterator first, ForwardIterator last,
                              Predicate pred);
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
  constexpr I ranges::find(I first, S last, const T& value, Proj proj = {});
template<input_range R, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
  constexpr borrowed_iterator_t<R>
    ranges::find(R&& r, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr I ranges::find_if(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr borrowed_iterator_t<R>
    ranges::find_if(R&& r, Pred pred, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr I ranges::find_if_not(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr borrowed_iterator_t<R>
    ranges::find_if_not(R&& r, Pred pred, Proj proj = {});
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
  constexpr subrange<I> ranges::find_last(I first, S last, const T& value, Proj proj = {});
template<forward_range R, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
  constexpr borrowed_subrange_t<R> ranges::find_last(R&& r, const T& value, Proj proj = {});
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr subrange<I> ranges::find_last_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr borrowed_subrange_t<R> ranges::find_last_if(R&& r, Pred pred, Proj proj = {});
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr subrange<I> ranges::find_last_if_not(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr borrowed_subrange_t<R> ranges::find_last_if_not(R&& r, Pred pred, Proj proj = {});
template<class ForwardIterator1, class ForwardIterator2>
  constexpr ForwardIterator1
    find_end(ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator1
    find_end(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  constexpr ForwardIterator1
    find_end(ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2,
             BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  ForwardIterator1
    find_end(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2,
             BinaryPredicate pred);
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr subrange<I1>
    ranges::find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr borrowed_subrange_t<R1>
    ranges::find_end(R1&& r1, R2&& r2, Pred pred = {},
                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator, class ForwardIterator>
  constexpr InputIterator
    find_first_of(InputIterator first1, InputIterator last1,
                  ForwardIterator first2, ForwardIterator last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator1
    find_first_of(ExecutionPolicy&& exec,
                  ForwardIterator1 first1, ForwardIterator1 last1,
                  ForwardIterator2 first2, ForwardIterator2 last2);
template<class InputIterator, class ForwardIterator,
         class BinaryPredicate>
  constexpr InputIterator
    find_first_of(InputIterator first1, InputIterator last1,
                  ForwardIterator first2, ForwardIterator last2,
                  BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  ForwardIterator1
    find_first_of(ExecutionPolicy&& exec,
                  ForwardIterator1 first1, ForwardIterator1 last1,
                  ForwardIterator2 first2, ForwardIterator2 last2,
                  BinaryPredicate pred);
template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr I1 ranges::find_first_of(I1 first1, S1 last1, I2 first2, S2 last2,
                                     Pred pred = {},
                                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, forward_range R2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr borrowed_iterator_t<R1>
    ranges::find_first_of(R1&& r1, R2&& r2,
                          Pred pred = {},
                          Proj1 proj1 = {}, Proj2 proj2 = {});
template<class ForwardIterator>
  constexpr ForwardIterator
    adjacent_find(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator
    adjacent_find(ExecutionPolicy&& exec,
                  ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
  constexpr ForwardIterator
    adjacent_find(ForwardIterator first, ForwardIterator last,
                  BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>
  ForwardIterator
    adjacent_find(ExecutionPolicy&& exec,
                  ForwardIterator first, ForwardIterator last,
                  BinaryPredicate pred);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_binary_predicate<projected<I, Proj>,
                                   projected<I, Proj>> Pred = ranges::equal_to>
  constexpr I ranges::adjacent_find(I first, S last, Pred pred = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_binary_predicate<projected<iterator_t<R>, Proj>,
                                   projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
  constexpr borrowed_iterator_t<R> ranges::adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
template<class InputIterator, class T>
  constexpr typename iterator_traits<InputIterator>::difference_type
    count(InputIterator first, InputIterator last, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
  typename iterator_traits<ForwardIterator>::difference_type
    count(ExecutionPolicy&& exec,
          ForwardIterator first, ForwardIterator last, const T& value);
template<class InputIterator, class Predicate>
  constexpr typename iterator_traits<InputIterator>::difference_type
    count_if(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  typename iterator_traits<ForwardIterator>::difference_type
    count_if(ExecutionPolicy&& exec,
             ForwardIterator first, ForwardIterator last, Predicate pred);
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
  constexpr iter_difference_t<I>
    ranges::count(I first, S last, const T& value, Proj proj = {});
template<input_range R, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
  constexpr range_difference_t<R>
    ranges::count(R&& r, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr iter_difference_t<I>
    ranges::count_if(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr range_difference_t<R>
    ranges::count_if(R&& r, Pred pred, Proj proj = {});
template<class InputIterator1, class InputIterator2>
  constexpr pair<InputIterator1, InputIterator2>
    mismatch(InputIterator1 first1, InputIterator1 last1,
             InputIterator2 first2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  pair<ForwardIterator1, ForwardIterator2>
    mismatch(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2);
template<class InputIterator1, class InputIterator2,
         class BinaryPredicate>
  constexpr pair<InputIterator1, InputIterator2>
    mismatch(InputIterator1 first1, InputIterator1 last1,
             InputIterator2 first2, BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  pair<ForwardIterator1, ForwardIterator2>
    mismatch(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>
  constexpr pair<InputIterator1, InputIterator2>
    mismatch(InputIterator1 first1, InputIterator1 last1,
             InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  pair<ForwardIterator1, ForwardIterator2>
    mismatch(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2);
template<class InputIterator1, class InputIterator2,
         class BinaryPredicate>
  constexpr pair<InputIterator1, InputIterator2>
    mismatch(InputIterator1 first1, InputIterator1 last1,
             InputIterator2 first2, InputIterator2 last2,
             BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  pair<ForwardIterator1, ForwardIterator2>
    mismatch(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2,
             BinaryPredicate pred);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr ranges::mismatch_result<I1, I2>
    ranges::mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr ranges::mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
    ranges::mismatch(R1&& r1, R2&& r2, Pred pred = {},
                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator1, class InputIterator2>
  constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
                       InputIterator2 first2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  bool equal(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2);
template<class InputIterator1, class InputIterator2,
         class BinaryPredicate>
  constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
                       InputIterator2 first2, BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  bool equal(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>
  constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
                       InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  bool equal(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2);
template<class InputIterator1, class InputIterator2,
         class BinaryPredicate>
  constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
                       InputIterator2 first2, InputIterator2 last2,
                       BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  bool equal(ExecutionPolicy&& exec,
             ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2,
             BinaryPredicate pred);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr bool ranges::equal(I1 first1, S1 last1, I2 first2, S2 last2,
                               Pred pred = {},
                               Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to,
         class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr bool ranges::equal(R1&& r1, R2&& r2, Pred pred = {},
                               Proj1 proj1 = {}, Proj2 proj2 = {});
template<class ForwardIterator1, class ForwardIterator2>
  constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
                                ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
                                ForwardIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>
  constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
                                ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
                                ForwardIterator2 first2, ForwardIterator2 last2,
                                BinaryPredicate pred);
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
         sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
         indirect_equivalence_relation<projected<I1, Proj1>,
                                       projected<I2, Proj2>> Pred = ranges::equal_to>
  constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
                                        Pred pred = {},
                                        Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2,
         class Proj1 = identity, class Proj2 = identity,
         indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,
                                       projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
  constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {},
                                        Proj1 proj1 = {}, Proj2 proj2 = {});
template<class ForwardIterator1, class ForwardIterator2>
  constexpr ForwardIterator1
    search(ForwardIterator1 first1, ForwardIterator1 last1,
           ForwardIterator2 first2, ForwardIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator1
    search(ExecutionPolicy&& exec,
           ForwardIterator1 first1, ForwardIterator1 last1,
           ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  constexpr ForwardIterator1
    search(ForwardIterator1 first1, ForwardIterator1 last1,
           ForwardIterator2 first2, ForwardIterator2 last2,
           BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  ForwardIterator1
    search(ExecutionPolicy&& exec,
           ForwardIterator1 first1, ForwardIterator1 last1,
           ForwardIterator2 first2, ForwardIterator2 last2,
           BinaryPredicate pred);
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
         sentinel_for<I2> S2, class Pred = ranges::equal_to,
         class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr subrange<I1>
    ranges::search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                   Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,
         class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr borrowed_subrange_t<R1>
    ranges::search(R1&& r1, R2&& r2, Pred pred = {},
                   Proj1 proj1 = {}, Proj2 proj2 = {});
template<class ForwardIterator, class Size, class T>
  constexpr ForwardIterator
    search_n(ForwardIterator first, ForwardIterator last,
             Size count, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
  ForwardIterator
    search_n(ExecutionPolicy&& exec,
             ForwardIterator first, ForwardIterator last,
             Size count, const T& value);
template<class ForwardIterator, class Size, class T,
         class BinaryPredicate>
  constexpr ForwardIterator
    search_n(ForwardIterator first, ForwardIterator last,
             Size count, const T& value,
             BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Size, class T,
         class BinaryPredicate>
  ForwardIterator
    search_n(ExecutionPolicy&& exec,
             ForwardIterator first, ForwardIterator last,
             Size count, const T& value,
             BinaryPredicate pred);
template<forward_iterator I, sentinel_for<I> S, class T,
         class Pred = ranges::equal_to, class Proj = identity>
  requires indirectly_comparable<I, const T*, Pred, Proj>
  constexpr subrange<I>
    ranges::search_n(I first, S last, iter_difference_t<I> count,
                     const T& value, Pred pred = {}, Proj proj = {});
template<forward_range R, class T, class Pred = ranges::equal_to,
         class Proj = identity>
  requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj>
  constexpr borrowed_subrange_t<R>
    ranges::search_n(R&& r, range_difference_t<R> count,
                     const T& value, Pred pred = {}, Proj proj = {});
template<class ForwardIterator, class Searcher>
  constexpr ForwardIterator
    search(ForwardIterator first, ForwardIterator last, const Searcher& searcher);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr bool ranges::starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity,
         class Proj2 = identity>
  requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr bool ranges::starts_with(R1&& r1, R2&& r2, Pred pred = {},
                                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
  requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) &&
           (forward_iterator<I2> || sized_sentinel_for<S2, I2>) &&
           indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
  constexpr bool ranges::ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                                   Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity,
         class Proj2 = identity>
  requires (forward_range<R1> || sized_range<R1>) &&
           (forward_range<R2> || sized_range<R2>) &&
           indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
  constexpr bool ranges::ends_with(R1&& r1, R2&& r2, Pred pred = {},
                                   Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_iterator I, sentinel_for<I> S, class T, indirectly-binary-left-foldable<T, I> F>
  constexpr auto ranges::fold_left(I first, S last, T init, F f);
template<input_range R, class T, indirectly-binary-left-foldable<T, iterator_t<R>> F>
  constexpr auto ranges::fold_left(R&& r, T init, F f);
template<input_iterator I, sentinel_for<I> S,
         indirectly-binary-left-foldable<iter_value_t<I>, I> F>
  requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
  constexpr auto ranges::fold_left_first(I first, S last, F f);
template<input_range R, indirectly-binary-left-foldable<range_value_t<R>, iterator_t<R>> F>
  requires constructible_from<range_value_t<R>, range_reference_t<R>>
  constexpr auto ranges::fold_left_first(R&& r, F f);
template<bidirectional_iterator I, sentinel_for<I> S, class T,
         indirectly-binary-right-foldable<T, I> F>
  constexpr auto ranges::fold_right(I first, S last, T init, F f);
template<bidirectional_range R, class T,
         indirectly-binary-right-foldable<T, iterator_t<R>> F>
  constexpr auto ranges::fold_right(R&& r, T init, F f);
template<bidirectional_iterator I, sentinel_for<I> S,
         indirectly-binary-right-foldable<iter_value_t<I>, I> F>
  requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
  constexpr auto ranges::fold_right_last(I first, S last, F f);
template<bidirectional_range R,
         indirectly-binary-right-foldable<range_value_t<R>, iterator_t<R>> F>
  requires constructible_from<range_value_t<R>, range_reference_t<R>>
  constexpr auto ranges::fold_right_last(R&& r, F f);
template<input_iterator I, sentinel_for<I> S, class T,
         indirectly-binary-left-foldable<T, I> F>
  constexpr see below ranges::fold_left_with_iter(I first, S last, T init, F f);
template<input_range R, class T, indirectly-binary-left-foldable<T, iterator_t<R>> F>
  constexpr see below ranges::fold_left_with_iter(R&& r, T init, F f);
template<input_iterator I, sentinel_for<I> S,
         indirectly-binary-left-foldable<iter_value_t<I>, I> F>
  requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
  constexpr see below ranges::fold_left_first_with_iter(I first, S last, F f);
template<input_range R, indirectly-binary-left-foldable<range_value_t<R>, iterator_t<R>> F>
  requires constructible_from<range_value_t<R>, range_reference_t<R>>
  constexpr see below ranges::fold_left_first_with_iter(R&& r, F f);
template<class InputIterator, class OutputIterator>
  constexpr OutputIterator copy(InputIterator first, InputIterator last,
                                OutputIterator result);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
  requires indirectly_copyable<I, O>
  constexpr ranges::copy_result<I, O> ranges::copy(I first, S last, O result);
template<input_range R, weakly_incrementable O>
  requires indirectly_copyable<iterator_t<R>, O>
  constexpr ranges::copy_result<borrowed_iterator_t<R>, O> ranges::copy(R&& r, O result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2 copy(ExecutionPolicy&& policy,
                        ForwardIterator1 first, ForwardIterator1 last,
                        ForwardIterator2 result);
template<class InputIterator, class Size, class OutputIterator>
  constexpr OutputIterator copy_n(InputIterator first, Size n,
                                  OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class Size, class ForwardIterator2>
  ForwardIterator2 copy_n(ExecutionPolicy&& exec,
                          ForwardIterator1 first, Size n,
                          ForwardIterator2 result);
template<input_iterator I, weakly_incrementable O>
  requires indirectly_copyable<I, O>
  constexpr ranges::copy_n_result<I, O>
    ranges::copy_n(I first, iter_difference_t<I> n, O result);
template<class InputIterator, class OutputIterator, class Predicate>
  constexpr OutputIterator copy_if(InputIterator first, InputIterator last,
                                   OutputIterator result, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class Predicate>
  ForwardIterator2 copy_if(ExecutionPolicy&& exec,
                           ForwardIterator1 first, ForwardIterator1 last,
                           ForwardIterator2 result, Predicate pred);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  requires indirectly_copyable<I, O>
  constexpr ranges::copy_if_result<I, O>
    ranges::copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires indirectly_copyable<iterator_t<R>, O>
  constexpr ranges::copy_if_result<borrowed_iterator_t<R>, O>
    ranges::copy_if(R&& r, O result, Pred pred, Proj proj = {});
template<class BidirectionalIterator1, class BidirectionalIterator2>
  constexpr BidirectionalIterator2
    copy_backward(BidirectionalIterator1 first,
                  BidirectionalIterator1 last,
                  BidirectionalIterator2 result);
template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
  requires indirectly_copyable<I1, I2>
  constexpr ranges::copy_backward_result<I1, I2>
    ranges::copy_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>
  requires indirectly_copyable<iterator_t<R>, I>
  constexpr ranges::copy_backward_result<borrowed_iterator_t<R>, I>
    ranges::copy_backward(R&& r, I result);
template<class InputIterator, class OutputIterator>
  constexpr OutputIterator move(InputIterator first, InputIterator last,
                                OutputIterator result);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
  requires indirectly_movable<I, O>
  constexpr ranges::move_result<I, O>
    ranges::move(I first, S last, O result);
template<input_range R, weakly_incrementable O>
  requires indirectly_movable<iterator_t<R>, O>
  constexpr ranges::move_result<borrowed_iterator_t<R>, O>
    ranges::move(R&& r, O result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2 move(ExecutionPolicy&& policy,
                        ForwardIterator1 first, ForwardIterator1 last,
                        ForwardIterator2 result);
template<class BidirectionalIterator1, class BidirectionalIterator2>
  constexpr BidirectionalIterator2
    move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
                  BidirectionalIterator2 result);
template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
  requires indirectly_movable<I1, I2>
  constexpr ranges::move_backward_result<I1, I2>
    ranges::move_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>
  requires indirectly_movable<iterator_t<R>, I>
  constexpr ranges::move_backward_result<borrowed_iterator_t<R>, I>
    ranges::move_backward(R&& r, I result);
template<class ForwardIterator1, class ForwardIterator2>
  constexpr ForwardIterator2
    swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
                ForwardIterator2 first2);                               // freestanding
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2
    swap_ranges(ExecutionPolicy&& exec,
                ForwardIterator1 first1, ForwardIterator1 last1,
                ForwardIterator2 first2);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2>
  requires indirectly_swappable<I1, I2>
  constexpr ranges::swap_ranges_result<I1, I2>
    ranges::swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);
template<input_range R1, input_range R2>
  requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>>
  constexpr ranges::swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
    ranges::swap_ranges(R1&& r1, R2&& r2);
template<class ForwardIterator1, class ForwardIterator2>
  constexpr void iter_swap(ForwardIterator1 a, ForwardIterator2 b);
template<class InputIterator, class OutputIterator,
         class UnaryOperation>
  constexpr OutputIterator
    transform(InputIterator first1, InputIterator last1,
              OutputIterator result, UnaryOperation op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class UnaryOperation>
  ForwardIterator2
    transform(ExecutionPolicy&& exec,
              ForwardIterator1 first1, ForwardIterator1 last1,
              ForwardIterator2 result, UnaryOperation op);
template<class InputIterator1, class InputIterator2,
         class OutputIterator, class BinaryOperation>
  constexpr OutputIterator
    transform(InputIterator1 first1, InputIterator1 last1,
              InputIterator2 first2, OutputIterator result,
              BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator, class BinaryOperation>
  ForwardIterator
    transform(ExecutionPolicy&& exec,
              ForwardIterator1 first1, ForwardIterator1 last1,
              ForwardIterator2 first2, ForwardIterator result,
              BinaryOperation binary_op);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
         copy_constructible F, class Proj = identity>
  requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>>
  constexpr ranges::unary_transform_result<I, O>
    ranges::transform(I first1, S last1, O result, F op, Proj proj = {});
template<input_range R, weakly_incrementable O, copy_constructible F,
         class Proj = identity>
  requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
  constexpr ranges::unary_transform_result<borrowed_iterator_t<R>, O>
    ranges::transform(R&& r, O result, F op, Proj proj = {});
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         weakly_incrementable O, copy_constructible F, class Proj1 = identity,
         class Proj2 = identity>
  requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>,
                                         projected<I2, Proj2>>>
  constexpr ranges::binary_transform_result<I1, I2, O>
    ranges::transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                      F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,
         copy_constructible F, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>,
                                         projected<iterator_t<R2>, Proj2>>>
  constexpr ranges::binary_transform_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
    ranges::transform(R1&& r1, R2&& r2, O result,
                      F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<class ForwardIterator, class T>
  constexpr void replace(ForwardIterator first, ForwardIterator last,
                         const T& old_value, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class T>
  void replace(ExecutionPolicy&& exec,
               ForwardIterator first, ForwardIterator last,
               const T& old_value, const T& new_value);
template<class ForwardIterator, class Predicate, class T>
  constexpr void replace_if(ForwardIterator first, ForwardIterator last,
                            Predicate pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class Predicate, class T>
  void replace_if(ExecutionPolicy&& exec,
                  ForwardIterator first, ForwardIterator last,
                  Predicate pred, const T& new_value);
template<input_iterator I, sentinel_for<I> S, class T1, class T2, class Proj = identity>
  requires indirectly_writable<I, const T2&> &&
           indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>
  constexpr I
    ranges::replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {});
template<input_range R, class T1, class T2, class Proj = identity>
  requires indirectly_writable<iterator_t<R>, const T2&> &&
           indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*>
  constexpr borrowed_iterator_t<R>
    ranges::replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  requires indirectly_writable<I, const T&>
  constexpr I ranges::replace_if(I first, S last, Pred pred, const T& new_value, Proj proj = {});
template<input_range R, class T, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires indirectly_writable<iterator_t<R>, const T&>
  constexpr borrowed_iterator_t<R>
    ranges::replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {});
template<class InputIterator, class OutputIterator, class T>
  constexpr OutputIterator
    replace_copy(InputIterator first, InputIterator last,
                 OutputIterator result,
                 const T& old_value, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
  ForwardIterator2
    replace_copy(ExecutionPolicy&& exec,
                 ForwardIterator1 first, ForwardIterator1 last,
                 ForwardIterator2 result,
                 const T& old_value, const T& new_value);
template<class InputIterator, class OutputIterator, class Predicate, class T>
  constexpr OutputIterator
    replace_copy_if(InputIterator first, InputIterator last,
                    OutputIterator result,
                    Predicate pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class Predicate, class T>
  ForwardIterator2
    replace_copy_if(ExecutionPolicy&& exec,
                    ForwardIterator1 first, ForwardIterator1 last,
                    ForwardIterator2 result,
                    Predicate pred, const T& new_value);
template<input_iterator I, sentinel_for<I> S, class T1, class T2, output_iterator<const T2&> O,
         class Proj = identity>
  requires indirectly_copyable<I, O> &&
           indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>
  constexpr ranges::replace_copy_result<I, O>
    ranges::replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value,
                         Proj proj = {});
template<input_range R, class T1, class T2, output_iterator<const T2&> O,
         class Proj = identity>
  requires indirectly_copyable<iterator_t<R>, O> &&
           indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*>
  constexpr ranges::replace_copy_result<borrowed_iterator_t<R>, O>
    ranges::replace_copy(R&& r, O result, const T1& old_value, const T2& new_value,
                         Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class T, output_iterator<const T&> O,
         class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
  requires indirectly_copyable<I, O>
  constexpr ranges::replace_copy_if_result<I, O>
    ranges::replace_copy_if(I first, S last, O result, Pred pred, const T& new_value,
                            Proj proj = {});
template<input_range R, class T, output_iterator<const T&> O, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires indirectly_copyable<iterator_t<R>, O>
  constexpr ranges::replace_copy_if_result<borrowed_iterator_t<R>, O>
    ranges::replace_copy_if(R&& r, O result, Pred pred, const T& new_value,
                            Proj proj = {});
template<class ForwardIterator, class T>
  constexpr void fill(ForwardIterator first, ForwardIterator last, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
  void fill(ExecutionPolicy&& exec,
            ForwardIterator first, ForwardIterator last, const T& value);
template<class OutputIterator, class Size, class T>
  constexpr OutputIterator fill_n(OutputIterator first, Size n, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
  ForwardIterator fill_n(ExecutionPolicy&& exec,
                         ForwardIterator first, Size n, const T& value);
template<class T, output_iterator<const T&> O, sentinel_for<O> S>
  constexpr O ranges::fill(O first, S last, const T& value);
template<class T, output_range<const T&> R>
  constexpr borrowed_iterator_t<R> ranges::fill(R&& r, const T& value);
template<class T, output_iterator<const T&> O>
  constexpr O ranges::fill_n(O first, iter_difference_t<O> n, const T& value);
template<class ForwardIterator, class Generator>
  constexpr void generate(ForwardIterator first, ForwardIterator last,
                          Generator gen);
template<class ExecutionPolicy, class ForwardIterator, class Generator>
  void generate(ExecutionPolicy&& exec,
                ForwardIterator first, ForwardIterator last,
                Generator gen);
template<class OutputIterator, class Size, class Generator>
  constexpr OutputIterator generate_n(OutputIterator first, Size n, Generator gen);
template<class ExecutionPolicy, class ForwardIterator, class Size, class Generator>
  ForwardIterator generate_n(ExecutionPolicy&& exec,
                             ForwardIterator first, Size n, Generator gen);
template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F>
  requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
  constexpr O ranges::generate(O first, S last, F gen);
template<class R, copy_constructible F>
  requires invocable<F&> && output_range<R, invoke_result_t<F&>>
  constexpr borrowed_iterator_t<R> ranges::generate(R&& r, F gen);
template<input_or_output_iterator O, copy_constructible F>
  requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
  constexpr O ranges::generate_n(O first, iter_difference_t<O> n, F gen);
template<class ForwardIterator, class T>
  constexpr ForwardIterator remove(ForwardIterator first, ForwardIterator last,
                                   const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>
  ForwardIterator remove(ExecutionPolicy&& exec,
                         ForwardIterator first, ForwardIterator last,
                         const T& value);
template<class ForwardIterator, class Predicate>
  constexpr ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
                                      Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  ForwardIterator remove_if(ExecutionPolicy&& exec,
                            ForwardIterator first, ForwardIterator last,
                            Predicate pred);
template<permutable I, sentinel_for<I> S, class T, class Proj = identity>
  requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
  constexpr subrange<I> ranges::remove(I first, S last, const T& value, Proj proj = {});
template<forward_range R, class T, class Proj = identity>
  requires permutable<iterator_t<R>> &&
           indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
  constexpr borrowed_subrange_t<R>
    ranges::remove(R&& r, const T& value, Proj proj = {});
template<permutable I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr subrange<I> ranges::remove_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R>
    ranges::remove_if(R&& r, Pred pred, Proj proj = {});
template<class InputIterator, class OutputIterator, class T>
  constexpr OutputIterator
    remove_copy(InputIterator first, InputIterator last,
                OutputIterator result, const T& value);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class T>
  ForwardIterator2
    remove_copy(ExecutionPolicy&& exec,
                ForwardIterator1 first, ForwardIterator1 last,
                ForwardIterator2 result, const T& value);
template<class InputIterator, class OutputIterator, class Predicate>
  constexpr OutputIterator
    remove_copy_if(InputIterator first, InputIterator last,
                   OutputIterator result, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class Predicate>
  ForwardIterator2
    remove_copy_if(ExecutionPolicy&& exec,
                   ForwardIterator1 first, ForwardIterator1 last,
                   ForwardIterator2 result, Predicate pred);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class T,
         class Proj = identity>
  requires indirectly_copyable<I, O> &&
           indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
  constexpr ranges::remove_copy_result<I, O>
    ranges::remove_copy(I first, S last, O result, const T& value, Proj proj = {});
template<input_range R, weakly_incrementable O, class T, class Proj = identity>
  requires indirectly_copyable<iterator_t<R>, O> &&
           indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
  constexpr ranges::remove_copy_result<borrowed_iterator_t<R>, O>
    ranges::remove_copy(R&& r, O result, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
         class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
  requires indirectly_copyable<I, O>
  constexpr ranges::remove_copy_if_result<I, O>
    ranges::remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires indirectly_copyable<iterator_t<R>, O>
  constexpr ranges::remove_copy_if_result<borrowed_iterator_t<R>, O>
    ranges::remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});
template<class ForwardIterator>
  constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator unique(ExecutionPolicy&& exec,
                         ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
  constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last,
                                   BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>
  ForwardIterator unique(ExecutionPolicy&& exec,
                         ForwardIterator first, ForwardIterator last,
                         BinaryPredicate pred);
template<permutable I, sentinel_for<I> S, class Proj = identity,
         indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>
  constexpr subrange<I> ranges::unique(I first, S last, C comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R>
    ranges::unique(R&& r, C comp = {}, Proj proj = {});
template<class InputIterator, class OutputIterator>
  constexpr OutputIterator
    unique_copy(InputIterator first, InputIterator last,
                OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2
    unique_copy(ExecutionPolicy&& exec,
                ForwardIterator1 first, ForwardIterator1 last,
                ForwardIterator2 result);
template<class InputIterator, class OutputIterator,
         class BinaryPredicate>
  constexpr OutputIterator
    unique_copy(InputIterator first, InputIterator last,
                OutputIterator result, BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryPredicate>
  ForwardIterator2
    unique_copy(ExecutionPolicy&& exec,
                ForwardIterator1 first, ForwardIterator1 last,
                ForwardIterator2 result, BinaryPredicate pred);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
         indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>
  requires indirectly_copyable<I, O> &&
           (forward_iterator<I> ||
            (input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) ||
            indirectly_copyable_storable<I, O>)
  constexpr ranges::unique_copy_result<I, O>
    ranges::unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,
         indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>
  requires indirectly_copyable<iterator_t<R>, O> &&
           (forward_iterator<iterator_t<R>> ||
            (input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) ||
            indirectly_copyable_storable<iterator_t<R>, O>)
  constexpr ranges::unique_copy_result<borrowed_iterator_t<R>, O>
    ranges::unique_copy(R&& r, O result, C comp = {}, Proj proj = {});
template<class BidirectionalIterator>
  constexpr void reverse(BidirectionalIterator first, BidirectionalIterator last);
template<class ExecutionPolicy, class BidirectionalIterator>
  void reverse(ExecutionPolicy&& exec,
               BidirectionalIterator first, BidirectionalIterator last);
template<bidirectional_iterator I, sentinel_for<I> S>
  requires permutable<I>
  constexpr I ranges::reverse(I first, S last);
template<bidirectional_range R>
  requires permutable<iterator_t<R>>
  constexpr borrowed_iterator_t<R> ranges::reverse(R&& r);
template<class BidirectionalIterator, class OutputIterator>
  constexpr OutputIterator
    reverse_copy(BidirectionalIterator first, BidirectionalIterator last,
                 OutputIterator result);
template<class ExecutionPolicy, class BidirectionalIterator, class ForwardIterator>
  ForwardIterator
    reverse_copy(ExecutionPolicy&& exec,
                 BidirectionalIterator first, BidirectionalIterator last,
                 ForwardIterator result);
template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O>
  requires indirectly_copyable<I, O>
  constexpr ranges::reverse_copy_result<I, O>
    ranges::reverse_copy(I first, S last, O result);
template<bidirectional_range R, weakly_incrementable O>
  requires indirectly_copyable<iterator_t<R>, O>
  constexpr ranges::reverse_copy_result<borrowed_iterator_t<R>, O>
    ranges::reverse_copy(R&& r, O result);
template<class ForwardIterator>
  constexpr ForwardIterator
    rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator
    rotate(ExecutionPolicy&& exec,
           ForwardIterator first, ForwardIterator middle, ForwardIterator last);
template<permutable I, sentinel_for<I> S>
  constexpr subrange<I> ranges::rotate(I first, I middle, S last);
template<forward_range R>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R> ranges::rotate(R&& r, iterator_t<R> middle);
template<class ForwardIterator, class OutputIterator>
  constexpr OutputIterator
    rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last,
                OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2
    rotate_copy(ExecutionPolicy&& exec,
                ForwardIterator1 first, ForwardIterator1 middle, ForwardIterator1 last,
                ForwardIterator2 result);
  template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O>
    requires indirectly_copyable<I, O>
    constexpr ranges::rotate_copy_result<I, O>
      ranges::rotate_copy(I first, I middle, S last, O result);
template<forward_range R, weakly_incrementable O>
  requires indirectly_copyable<iterator_t<R>, O>
  constexpr ranges::rotate_copy_result<borrowed_iterator_t<R>, O>
    ranges::rotate_copy(R&& r, iterator_t<R> middle, O result);
template<class PopulationIterator, class SampleIterator,
         class Distance, class UniformRandomBitGenerator>
  SampleIterator sample(PopulationIterator first, PopulationIterator last,
                        SampleIterator out, Distance n,
                        UniformRandomBitGenerator&& g);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Gen>
  requires (forward_iterator<I> || random_access_iterator<O>) &&
           indirectly_copyable<I, O> &&
           uniform_random_bit_generator<remove_reference_t<Gen>>
  O ranges::sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g);
template<input_range R, weakly_incrementable O, class Gen>
  requires (forward_range<R> || random_access_iterator<O>) &&
           indirectly_copyable<iterator_t<R>, O> &&
           uniform_random_bit_generator<remove_reference_t<Gen>>
  O ranges::sample(R&& r, O out, range_difference_t<R> n, Gen&& g);
template<class RandomAccessIterator, class UniformRandomBitGenerator>
  void shuffle(RandomAccessIterator first,
               RandomAccessIterator last,
               UniformRandomBitGenerator&& g);
template<random_access_iterator I, sentinel_for<I> S, class Gen>
  requires permutable<I> &&
           uniform_random_bit_generator<remove_reference_t<Gen>>
  I ranges::shuffle(I first, S last, Gen&& g);
template<random_access_range R, class Gen>
  requires permutable<iterator_t<R>> &&
           uniform_random_bit_generator<remove_reference_t<Gen>>
  borrowed_iterator_t<R> ranges::shuffle(R&& r, Gen&& g);
template<class ForwardIterator>
  constexpr ForwardIterator
    shift_left(ForwardIterator first, ForwardIterator last,
               typename iterator_traits<ForwardIterator>::difference_type n);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator
    shift_left(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
               typename iterator_traits<ForwardIterator>::difference_type n);
template<permutable I, sentinel_for<I> S>
  constexpr subrange<I> ranges::shift_left(I first, S last, iter_difference_t<I> n);
template<forward_range R>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R> ranges::shift_left(R&& r, range_difference_t<R> n)
template<class ForwardIterator>
  constexpr ForwardIterator
    shift_right(ForwardIterator first, ForwardIterator last,
                typename iterator_traits<ForwardIterator>::difference_type n);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator
    shift_right(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
                typename iterator_traits<ForwardIterator>::difference_type n);
template<permutable I, sentinel_for<I> S>
  constexpr subrange<I> ranges::shift_right(I first, S last, iter_difference_t<I> n);
template<forward_range R>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R> ranges::shift_right(R&& r, range_difference_t<R> n);
template<class RandomAccessIterator>
  constexpr void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>
  void sort(ExecutionPolicy&& exec,
            RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void sort(RandomAccessIterator first, RandomAccessIterator last,
                      Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
  void sort(ExecutionPolicy&& exec,
            RandomAccessIterator first, RandomAccessIterator last,
            Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::sort(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::sort(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr void stable_sort(RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>
  void stable_sort(ExecutionPolicy&& exec,
                   RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
                             Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
  void stable_sort(ExecutionPolicy&& exec,
                   RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I ranges::stable_sort(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::stable_sort(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr void partial_sort(RandomAccessIterator first,
                              RandomAccessIterator middle,
                              RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>
  void partial_sort(ExecutionPolicy&& exec,
                    RandomAccessIterator first,
                    RandomAccessIterator middle,
                    RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void partial_sort(RandomAccessIterator first,
                              RandomAccessIterator middle,
                              RandomAccessIterator last,
                              Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
  void partial_sort(ExecutionPolicy&& exec,
                    RandomAccessIterator first,
                    RandomAccessIterator middle,
                    RandomAccessIterator last,
                    Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::partial_sort(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});
template<class InputIterator, class RandomAccessIterator>
  constexpr RandomAccessIterator
    partial_sort_copy(InputIterator first, InputIterator last,
                      RandomAccessIterator result_first,
                      RandomAccessIterator result_last);
template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator>
  RandomAccessIterator
    partial_sort_copy(ExecutionPolicy&& exec,
                      ForwardIterator first, ForwardIterator last,
                      RandomAccessIterator result_first,
                      RandomAccessIterator result_last);
template<class InputIterator, class RandomAccessIterator,
         class Compare>
  constexpr RandomAccessIterator
    partial_sort_copy(InputIterator first, InputIterator last,
                      RandomAccessIterator result_first,
                      RandomAccessIterator result_last,
                      Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator,
         class Compare>
  RandomAccessIterator
    partial_sort_copy(ExecutionPolicy&& exec,
                      ForwardIterator first, ForwardIterator last,
                      RandomAccessIterator result_first,
                      RandomAccessIterator result_last,
                      Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, random_access_iterator I2, sentinel_for<I2> S2,
         class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
  requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> &&
           indirect_strict_weak_order<Comp, projected<I1, Proj1>, projected<I2, Proj2>>
  constexpr ranges::partial_sort_copy_result<I1, I2>
    ranges::partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,
                              Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, random_access_range R2, class Comp = ranges::less,
         class Proj1 = identity, class Proj2 = identity>
  requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> &&
           sortable<iterator_t<R2>, Comp, Proj2> &&
           indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>,
                                      projected<iterator_t<R2>, Proj2>>
  constexpr ranges::partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
    ranges::partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},
                              Proj1 proj1 = {}, Proj2 proj2 = {});
template<class ForwardIterator>
  constexpr bool is_sorted(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  bool is_sorted(ExecutionPolicy&& exec,
                 ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
  constexpr bool is_sorted(ForwardIterator first, ForwardIterator last,
                           Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
  bool is_sorted(ExecutionPolicy&& exec,
                 ForwardIterator first, ForwardIterator last,
                 Compare comp);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr bool ranges::is_sorted(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr bool ranges::is_sorted(R&& r, Comp comp = {}, Proj proj = {});
template<class ForwardIterator>
  constexpr ForwardIterator
    is_sorted_until(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator
    is_sorted_until(ExecutionPolicy&& exec,
                    ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
  constexpr ForwardIterator
    is_sorted_until(ForwardIterator first, ForwardIterator last,
                    Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
  ForwardIterator
    is_sorted_until(ExecutionPolicy&& exec,
                    ForwardIterator first, ForwardIterator last,
                    Compare comp);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr I ranges::is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr borrowed_iterator_t<R>
    ranges::is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                             RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>
  void nth_element(ExecutionPolicy&& exec,
                   RandomAccessIterator first, RandomAccessIterator nth,
                   RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                             RandomAccessIterator last,  Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
  void nth_element(ExecutionPolicy&& exec,
                   RandomAccessIterator first, RandomAccessIterator nth,
                   RandomAccessIterator last, Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});
template<class ForwardIterator, class T>
  constexpr ForwardIterator
    lower_bound(ForwardIterator first, ForwardIterator last,
                const T& value);
template<class ForwardIterator, class T, class Compare>
  constexpr ForwardIterator
    lower_bound(ForwardIterator first, ForwardIterator last,
                const T& value, Compare comp);
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
  constexpr I ranges::lower_bound(I first, S last, const T& value, Comp comp = {},
                                  Proj proj = {});
template<forward_range R, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
           ranges::less>
  constexpr borrowed_iterator_t<R>
    ranges::lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
template<class ForwardIterator, class T>
  constexpr ForwardIterator
    upper_bound(ForwardIterator first, ForwardIterator last,
                const T& value);
template<class ForwardIterator, class T, class Compare>
  constexpr ForwardIterator
    upper_bound(ForwardIterator first, ForwardIterator last,
                const T& value, Compare comp);
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
  constexpr I ranges::upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<forward_range R, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
           ranges::less>
  constexpr borrowed_iterator_t<R>
    ranges::upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
template<class ForwardIterator, class T>
  constexpr pair<ForwardIterator, ForwardIterator>
    equal_range(ForwardIterator first,
                ForwardIterator last, const T& value);
template<class ForwardIterator, class T, class Compare>
  constexpr pair<ForwardIterator, ForwardIterator>
    equal_range(ForwardIterator first,
                ForwardIterator last, const T& value,
                Compare comp);
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
  constexpr subrange<I>
    ranges::equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<forward_range R, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
           ranges::less>
  constexpr borrowed_subrange_t<R>
    ranges::equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});
template<class ForwardIterator, class T>
  constexpr bool
    binary_search(ForwardIterator first, ForwardIterator last,
                  const T& value);
template<class ForwardIterator, class T, class Compare>
  constexpr bool
    binary_search(ForwardIterator first, ForwardIterator last,
                  const T& value, Compare comp);
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
  constexpr bool ranges::binary_search(I first, S last, const T& value, Comp comp = {},
                                       Proj proj = {});
template<forward_range R, class T, class Proj = identity,
         indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
           ranges::less>
  constexpr bool ranges::binary_search(R&& r, const T& value, Comp comp = {},
                                       Proj proj = {});
template<class InputIterator, class Predicate>
  constexpr bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  bool is_partitioned(ExecutionPolicy&& exec,
                      ForwardIterator first, ForwardIterator last, Predicate pred);
template<input_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr bool ranges::is_partitioned(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr bool ranges::is_partitioned(R&& r, Pred pred, Proj proj = {});
template<class ForwardIterator, class Predicate>
  constexpr ForwardIterator
    partition(ForwardIterator first, ForwardIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>
  ForwardIterator
    partition(ExecutionPolicy&& exec,
              ForwardIterator first, ForwardIterator last, Predicate pred);
template<permutable I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr subrange<I>
    ranges::partition(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R>
    ranges::partition(R&& r, Pred pred, Proj proj = {});
template<class BidirectionalIterator, class Predicate>
  BidirectionalIterator
    constexpr stable_partition(BidirectionalIterator first, BidirectionalIterator last,
                               Predicate pred);
template<class ExecutionPolicy, class BidirectionalIterator, class Predicate>
  BidirectionalIterator
    stable_partition(ExecutionPolicy&& exec,
                     BidirectionalIterator first, BidirectionalIterator last, Predicate pred);
template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  requires permutable<I>
  constexpr subrange<I> ranges::stable_partition(I first, S last, Pred pred, Proj proj = {});
template<bidirectional_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires permutable<iterator_t<R>>
  constexpr borrowed_subrange_t<R> ranges::stable_partition(R&& r, Pred pred, Proj proj = {});
template<class InputIterator, class OutputIterator1, class OutputIterator2, class Predicate>
  constexpr pair<OutputIterator1, OutputIterator2>
    partition_copy(InputIterator first, InputIterator last,
                   OutputIterator1 out_true, OutputIterator2 out_false, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class ForwardIterator1,
         class ForwardIterator2, class Predicate>
  pair<ForwardIterator1, ForwardIterator2>
    partition_copy(ExecutionPolicy&& exec,
                   ForwardIterator first, ForwardIterator last,
                   ForwardIterator1 out_true, ForwardIterator2 out_false, Predicate pred);
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O1, weakly_incrementable O2,
         class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
  requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2>
  constexpr ranges::partition_copy_result<I, O1, O2>
    ranges::partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred,
                           Proj proj = {});
template<input_range R, weakly_incrementable O1, weakly_incrementable O2,
         class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  requires indirectly_copyable<iterator_t<R>, O1> &&
           indirectly_copyable<iterator_t<R>, O2>
  constexpr ranges::partition_copy_result<borrowed_iterator_t<R>, O1, O2>
    ranges::partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});
template<class ForwardIterator, class Predicate>
  constexpr ForwardIterator
    partition_point(ForwardIterator first, ForwardIterator last, Predicate pred);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_unary_predicate<projected<I, Proj>> Pred>
  constexpr I ranges::partition_point(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
  constexpr borrowed_iterator_t<R>
    ranges::partition_point(R&& r, Pred pred, Proj proj = {});
template<class InputIterator1, class InputIterator2,
         class OutputIterator>
  constexpr OutputIterator
    merge(InputIterator1 first1, InputIterator1 last1,
          InputIterator2 first2, InputIterator2 last2,
          OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator>
  ForwardIterator
    merge(ExecutionPolicy&& exec,
          ForwardIterator1 first1, ForwardIterator1 last1,
          ForwardIterator2 first2, ForwardIterator2 last2,
          ForwardIterator result);
template<class InputIterator1, class InputIterator2,
         class OutputIterator, class Compare>
  constexpr OutputIterator
    merge(InputIterator1 first1, InputIterator1 last1,
          InputIterator2 first2, InputIterator2 last2,
          OutputIterator result, Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator, class Compare>
  ForwardIterator
    merge(ExecutionPolicy&& exec,
          ForwardIterator1 first1, ForwardIterator1 last1,
          ForwardIterator2 first2, ForwardIterator2 last2,
          ForwardIterator result, Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity,
         class Proj2 = identity>
  requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
  constexpr ranges::merge_result<I1, I2, O>
    ranges::merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                  Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less,
         class Proj1 = identity, class Proj2 = identity>
  requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
  constexpr ranges::merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
    ranges::merge(R1&& r1, R2&& r2, O result,
                  Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<class BidirectionalIterator>
  constexpr void inplace_merge(BidirectionalIterator first,
                               BidirectionalIterator middle,
                               BidirectionalIterator last);
template<class ExecutionPolicy, class BidirectionalIterator>
  void inplace_merge(ExecutionPolicy&& exec,
                     BidirectionalIterator first,
                     BidirectionalIterator middle,
                     BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
  constexpr void inplace_merge(BidirectionalIterator first,
                               BidirectionalIterator middle,
                               BidirectionalIterator last, Compare comp);
template<class ExecutionPolicy, class BidirectionalIterator, class Compare>
  void inplace_merge(ExecutionPolicy&& exec,
                     BidirectionalIterator first,
                     BidirectionalIterator middle,
                     BidirectionalIterator last, Compare comp);
template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I ranges::inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});
template<class InputIterator1, class InputIterator2>
  constexpr bool includes(InputIterator1 first1, InputIterator1 last1,
                          InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  bool includes(ExecutionPolicy&& exec,
                ForwardIterator1 first1, ForwardIterator1 last1,
                ForwardIterator2 first2, ForwardIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
  constexpr bool includes(InputIterator1 first1, InputIterator1 last1,
                          InputIterator2 first2, InputIterator2 last2,
                          Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class Compare>
  bool includes(ExecutionPolicy&& exec,
                ForwardIterator1 first1, ForwardIterator1 last1,
                ForwardIterator2 first2, ForwardIterator2 last2,
                Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         class Proj1 = identity, class Proj2 = identity,
         indirect_strict_weak_order<projected<I1, Proj1>,
                                    projected<I2, Proj2>> Comp = ranges::less>
  constexpr bool ranges::includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},
                                  Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Proj1 = identity,
         class Proj2 = identity,
         indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,
                                    projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
  constexpr bool ranges::includes(R1&& r1, R2&& r2, Comp comp = {},
                                  Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator1, class InputIterator2, class OutputIterator>
  constexpr OutputIterator
    set_union(InputIterator1 first1, InputIterator1 last1,
              InputIterator2 first2, InputIterator2 last2,
              OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator>
  ForwardIterator
    set_union(ExecutionPolicy&& exec,
              ForwardIterator1 first1, ForwardIterator1 last1,
              ForwardIterator2 first2, ForwardIterator2 last2,
              ForwardIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
  constexpr OutputIterator
    set_union(InputIterator1 first1, InputIterator1 last1,
              InputIterator2 first2, InputIterator2 last2,
              OutputIterator result, Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator, class Compare>
  ForwardIterator
    set_union(ExecutionPolicy&& exec,
              ForwardIterator1 first1, ForwardIterator1 last1,
              ForwardIterator2 first2, ForwardIterator2 last2,
              ForwardIterator result, Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         weakly_incrementable O, class Comp = ranges::less,
         class Proj1 = identity, class Proj2 = identity>
  requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
  constexpr ranges::set_union_result<I1, I2, O>
    ranges::set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},
                      Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,
         class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
  requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
  constexpr ranges::set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
    ranges::set_union(R1&& r1, R2&& r2, O result, Comp comp = {},
                      Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator1, class InputIterator2,
         class OutputIterator>
  constexpr OutputIterator
    set_intersection(InputIterator1 first1, InputIterator1 last1,
                     InputIterator2 first2, InputIterator2 last2,
                     OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator>
  ForwardIterator
    set_intersection(ExecutionPolicy&& exec,
                     ForwardIterator1 first1, ForwardIterator1 last1,
                     ForwardIterator2 first2, ForwardIterator2 last2,
                     ForwardIterator result);
template<class InputIterator1, class InputIterator2,
         class OutputIterator, class Compare>
  constexpr OutputIterator
    set_intersection(InputIterator1 first1, InputIterator1 last1,
                     InputIterator2 first2, InputIterator2 last2,
                     OutputIterator result, Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator, class Compare>
  ForwardIterator
    set_intersection(ExecutionPolicy&& exec,
                     ForwardIterator1 first1, ForwardIterator1 last1,
                     ForwardIterator2 first2, ForwardIterator2 last2,
                     ForwardIterator result, Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         weakly_incrementable O, class Comp = ranges::less,
         class Proj1 = identity, class Proj2 = identity>
  requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
  constexpr ranges::set_intersection_result<I1, I2, O>
    ranges::set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                             Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,
         class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
  requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
  constexpr ranges::set_intersection_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
    ranges::set_intersection(R1&& r1, R2&& r2, O result,
                             Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator1, class InputIterator2,
         class OutputIterator>
  constexpr OutputIterator
    set_difference(InputIterator1 first1, InputIterator1 last1,
                   InputIterator2 first2, InputIterator2 last2,
                   OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator>
  ForwardIterator
    set_difference(ExecutionPolicy&& exec,
                   ForwardIterator1 first1, ForwardIterator1 last1,
                   ForwardIterator2 first2, ForwardIterator2 last2,
                   ForwardIterator result);
template<class InputIterator1, class InputIterator2,
         class OutputIterator, class Compare>
  constexpr OutputIterator
    set_difference(InputIterator1 first1, InputIterator1 last1,
                   InputIterator2 first2, InputIterator2 last2,
                   OutputIterator result, Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator, class Compare>
  ForwardIterator
    set_difference(ExecutionPolicy&& exec,
                   ForwardIterator1 first1, ForwardIterator1 last1,
                   ForwardIterator2 first2, ForwardIterator2 last2,
                   ForwardIterator result, Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         weakly_incrementable O, class Comp = ranges::less,
         class Proj1 = identity, class Proj2 = identity>
  requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
  constexpr ranges::set_difference_result<I1, O>
    ranges::set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                           Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,
         class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
  requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
  constexpr ranges::set_difference_result<borrowed_iterator_t<R1>, O>
    ranges::set_difference(R1&& r1, R2&& r2, O result,
                           Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator1, class InputIterator2,
         class OutputIterator>
  constexpr OutputIterator
    set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
                             InputIterator2 first2, InputIterator2 last2,
                             OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator>
  ForwardIterator
    set_symmetric_difference(ExecutionPolicy&& exec,
                             ForwardIterator1 first1, ForwardIterator1 last1,
                             ForwardIterator2 first2, ForwardIterator2 last2,
                             ForwardIterator result);
template<class InputIterator1, class InputIterator2,
         class OutputIterator, class Compare>
  constexpr OutputIterator
    set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
                             InputIterator2 first2, InputIterator2 last2,
                             OutputIterator result, Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class ForwardIterator, class Compare>
  ForwardIterator
    set_symmetric_difference(ExecutionPolicy&& exec,
                             ForwardIterator1 first1, ForwardIterator1 last1,
                             ForwardIterator2 first2, ForwardIterator2 last2,
                             ForwardIterator result, Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         weakly_incrementable O, class Comp = ranges::less,
         class Proj1 = identity, class Proj2 = identity>
  requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
  constexpr ranges::set_symmetric_difference_result<I1, I2, O>
    ranges::set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                                     Comp comp = {}, Proj1 proj1 = {},
                                     Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,
         class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
  requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
  constexpr ranges::set_symmetric_difference_result<borrowed_iterator_t<R1>,
                                                    borrowed_iterator_t<R2>, O>
    ranges::set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},
                                     Proj1 proj1 = {}, Proj2 proj2 = {});
template<class RandomAccessIterator>
  constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last,
                           Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::push_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::push_heap(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
                          Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::pop_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::pop_heap(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last,
                           Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::make_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::make_heap(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
                           Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr I
    ranges::sort_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr borrowed_iterator_t<R>
    ranges::sort_heap(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>
  bool is_heap(ExecutionPolicy&& exec,
               RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last,
                         Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
  bool is_heap(ExecutionPolicy&& exec,
               RandomAccessIterator first, RandomAccessIterator last,
               Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr bool ranges::is_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr bool ranges::is_heap(R&& r, Comp comp = {}, Proj proj = {});
template<class RandomAccessIterator>
  constexpr RandomAccessIterator
    is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>
  RandomAccessIterator
    is_heap_until(ExecutionPolicy&& exec,
                  RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
  constexpr RandomAccessIterator
    is_heap_until(RandomAccessIterator first, RandomAccessIterator last,
                  Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
  RandomAccessIterator
    is_heap_until(ExecutionPolicy&& exec,
                  RandomAccessIterator first, RandomAccessIterator last,
                  Compare comp);
template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr I ranges::is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr borrowed_iterator_t<R>
    ranges::is_heap_until(R&& r, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr const T& min(const T& a, const T& b);
template<class T, class Compare>
  constexpr const T& min(const T& a, const T& b, Compare comp);
template<class T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr const T& ranges::min(const T& a, const T& b, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr T min(initializer_list<T> r);
template<class T, class Compare>
  constexpr T min(initializer_list<T> r, Compare comp);
template<copyable T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr T ranges::min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
  constexpr range_value_t<R>
    ranges::min(R&& r, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr const T& max(const T& a, const T& b);
template<class T, class Compare>
  constexpr const T& max(const T& a, const T& b, Compare comp);
template<class T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr const T& ranges::max(const T& a, const T& b, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr T max(initializer_list<T> r);
template<class T, class Compare>
  constexpr T max(initializer_list<T> r, Compare comp);
template<copyable T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr T ranges::max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
  constexpr range_value_t<R>
    ranges::max(R&& r, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T, class Compare>
  constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
template<class T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr ranges::minmax_result<const T&>
    ranges::minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr pair<T, T> minmax(initializer_list<T> t);
template<class T, class Compare>
  constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);
template<copyable T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr ranges::minmax_result<T>
    ranges::minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
  constexpr ranges::minmax_result<range_value_t<R>>
    ranges::minmax(R&& r, Comp comp = {}, Proj proj = {});
template<class ForwardIterator>
  constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator min_element(ExecutionPolicy&& exec,
                              ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
  constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
                                        Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
  ForwardIterator min_element(ExecutionPolicy&& exec,
                              ForwardIterator first, ForwardIterator last, Compare comp);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr I ranges::min_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr borrowed_iterator_t<R>
    ranges::min_element(R&& r, Comp comp = {}, Proj proj = {});
template<class ForwardIterator>
  constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  ForwardIterator max_element(ExecutionPolicy&& exec,
                              ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
  constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
                                        Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
  ForwardIterator max_element(ExecutionPolicy&& exec,
                              ForwardIterator first, ForwardIterator last,
                              Compare comp);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr I ranges::max_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr borrowed_iterator_t<R>
    ranges::max_element(R&& r, Comp comp = {}, Proj proj = {});
template<class ForwardIterator>
  constexpr pair<ForwardIterator, ForwardIterator>
    minmax_element(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  pair<ForwardIterator, ForwardIterator>
    minmax_element(ExecutionPolicy&& exec,
                   ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
  constexpr pair<ForwardIterator, ForwardIterator>
    minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>
  pair<ForwardIterator, ForwardIterator>
    minmax_element(ExecutionPolicy&& exec,
                   ForwardIterator first, ForwardIterator last, Compare comp);
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
         indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
  constexpr ranges::minmax_element_result<I>
    ranges::minmax_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,
         indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr ranges::minmax_element_result<borrowed_iterator_t<R>>
    ranges::minmax_element(R&& r, Comp comp = {}, Proj proj = {});
template<class T>
  constexpr const T& clamp(const T& v, const T& lo, const T& hi);
template<class T, class Compare>
  constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);
template<class T, class Proj = identity,
         indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
  constexpr const T&
    ranges::clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {});
template<class InputIterator1, class InputIterator2>
  constexpr bool
    lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                            InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  bool
    lexicographical_compare(ExecutionPolicy&& exec,
                            ForwardIterator1 first1, ForwardIterator1 last1,
                            ForwardIterator2 first2, ForwardIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
  constexpr bool
    lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                            InputIterator2 first2, InputIterator2 last2,
                            Compare comp);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class Compare>
  bool
    lexicographical_compare(ExecutionPolicy&& exec,
                            ForwardIterator1 first1, ForwardIterator1 last1,
                            ForwardIterator2 first2, ForwardIterator2 last2,
                            Compare comp);
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
         class Proj1 = identity, class Proj2 = identity,
         indirect_strict_weak_order<projected<I1, Proj1>,
                                    projected<I2, Proj2>> Comp = ranges::less>
  constexpr bool
    ranges::lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,
                                    Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Proj1 = identity,
         class Proj2 = identity,
         indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,
                                    projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
  constexpr bool
    ranges::lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},
                                    Proj1 proj1 = {}, Proj2 proj2 = {});
template<class InputIterator1, class InputIterator2, class Cmp>
  constexpr auto
    lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,
                                      InputIterator2 b2, InputIterator2 e2,
                                      Cmp comp)
      -> decltype(comp(*b1, *b2));
template<class InputIterator1, class InputIterator2>
  constexpr auto
    lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,
                                      InputIterator2 b2, InputIterator2 e2);
template<class BidirectionalIterator>
  constexpr bool next_permutation(BidirectionalIterator first,
                                  BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
  constexpr bool next_permutation(BidirectionalIterator first,
                                  BidirectionalIterator last, Compare comp);
template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr ranges::next_permutation_result<I>
    ranges::next_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr ranges::next_permutation_result<borrowed_iterator_t<R>>
    ranges::next_permutation(R&& r, Comp comp = {}, Proj proj = {});
template<class BidirectionalIterator>
  constexpr bool prev_permutation(BidirectionalIterator first,
                                  BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
  constexpr bool prev_permutation(BidirectionalIterator first,
                                  BidirectionalIterator last, Compare comp);
template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<I, Comp, Proj>
  constexpr ranges::prev_permutation_result<I>
    ranges::prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,
         class Proj = identity>
  requires sortable<iterator_t<R>, Comp, Proj>
  constexpr ranges::prev_permutation_result<borrowed_iterator_t<R>>
    ranges::prev_permutation(R&& r, Comp comp = {}, Proj proj = {});
template<class InputIterator, class T>
  constexpr T accumulate(InputIterator first, InputIterator last, T init);
template<class InputIterator, class T, class BinaryOperation>
  constexpr T accumulate(InputIterator first, InputIterator last, T init,
                         BinaryOperation binary_op);
template<class InputIterator>
  constexpr typename iterator_traits<InputIterator>::value_type
    reduce(InputIterator first, InputIterator last);
template<class ExecutionPolicy, class ForwardIterator>
  typename iterator_traits<ForwardIterator>::value_type
    reduce(ExecutionPolicy&& exec,
           ForwardIterator first, ForwardIterator last);
template<class InputIterator, class T>
  constexpr T reduce(InputIterator first, InputIterator last, T init);
template<class ExecutionPolicy, class ForwardIterator, class T>
  T reduce(ExecutionPolicy&& exec,
           ForwardIterator first, ForwardIterator last, T init);
template<class InputIterator, class T, class BinaryOperation>
  constexpr T reduce(InputIterator first, InputIterator last, T init,
                     BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation>
  T reduce(ExecutionPolicy&& exec,
           ForwardIterator first, ForwardIterator last, T init,
           BinaryOperation binary_op);
template<class InputIterator1, class InputIterator2, class T>
  constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,
                            InputIterator2 first2, T init);
template<class InputIterator1, class InputIterator2, class T,
         class BinaryOperation1, class BinaryOperation2>
  constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,
                            InputIterator2 first2, T init,
                            BinaryOperation1 binary_op1,
                            BinaryOperation2 binary_op2);
template<class InputIterator1, class InputIterator2, class T>
  constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2,
                               T init);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2, class T>
  T transform_reduce(ExecutionPolicy&& exec,
                     ForwardIterator1 first1, ForwardIterator1 last1,
                     ForwardIterator2 first2,
                     T init);
template<class InputIterator1, class InputIterator2, class T,
         class BinaryOperation1, class BinaryOperation2>
  constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2,
                               T init,
                               BinaryOperation1 binary_op1,
                               BinaryOperation2 binary_op2);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2, class T,
         class BinaryOperation1, class BinaryOperation2>
  T transform_reduce(ExecutionPolicy&& exec,
                     ForwardIterator1 first1, ForwardIterator1 last1,
                     ForwardIterator2 first2,
                     T init,
                     BinaryOperation1 binary_op1,
                     BinaryOperation2 binary_op2);
template<class InputIterator, class T,
         class BinaryOperation, class UnaryOperation>
  constexpr T transform_reduce(InputIterator first, InputIterator last, T init,
                               BinaryOperation binary_op, UnaryOperation unary_op);
template<class ExecutionPolicy,
         class ForwardIterator, class T,
         class BinaryOperation, class UnaryOperation>
  T transform_reduce(ExecutionPolicy&& exec,
                     ForwardIterator first, ForwardIterator last,
                     T init, BinaryOperation binary_op, UnaryOperation unary_op);
template<class InputIterator, class OutputIterator>
  constexpr OutputIterator
    partial_sum(InputIterator first, InputIterator last,
                OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>
  constexpr OutputIterator
    partial_sum(InputIterator first, InputIterator last,
                OutputIterator result, BinaryOperation binary_op);
template<class InputIterator, class OutputIterator, class T>
  constexpr OutputIterator
    exclusive_scan(InputIterator first, InputIterator last,
                   OutputIterator result, T init);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
  ForwardIterator2
    exclusive_scan(ExecutionPolicy&& exec,
                   ForwardIterator1 first, ForwardIterator1 last,
                   ForwardIterator2 result, T init);
template<class InputIterator, class OutputIterator, class T, class BinaryOperation>
  constexpr OutputIterator
    exclusive_scan(InputIterator first, InputIterator last,
                   OutputIterator result, T init, BinaryOperation binary_op);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation>
  ForwardIterator2
    exclusive_scan(ExecutionPolicy&& exec,
                   ForwardIterator1 first, ForwardIterator1 last,
                   ForwardIterator2 result, T init, BinaryOperation binary_op);
template<class InputIterator, class OutputIterator>
  constexpr OutputIterator
    inclusive_scan(InputIterator first, InputIterator last,
                   OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2
    inclusive_scan(ExecutionPolicy&& exec,
                   ForwardIterator1 first, ForwardIterator1 last,
                   ForwardIterator2 result);
template<class InputIterator, class OutputIterator, class BinaryOperation>
  constexpr OutputIterator
    inclusive_scan(InputIterator first, InputIterator last,
                   OutputIterator result, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryOperation>
  ForwardIterator2
    inclusive_scan(ExecutionPolicy&& exec,
                   ForwardIterator1 first, ForwardIterator1 last,
                   ForwardIterator2 result, BinaryOperation binary_op);
template<class InputIterator, class OutputIterator, class BinaryOperation, class T>
  constexpr OutputIterator
    inclusive_scan(InputIterator first, InputIterator last,
                   OutputIterator result, BinaryOperation binary_op, T init);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class T>
  ForwardIterator2
    inclusive_scan(ExecutionPolicy&& exec,
                   ForwardIterator1 first, ForwardIterator1 last,
                   ForwardIterator2 result, BinaryOperation binary_op, T init);
template<class InputIterator, class OutputIterator, class T,
         class BinaryOperation, class UnaryOperation>
  constexpr OutputIterator
    transform_exclusive_scan(InputIterator first, InputIterator last,
                             OutputIterator result, T init,
                             BinaryOperation binary_op, UnaryOperation unary_op);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2, class T,
         class BinaryOperation, class UnaryOperation>
  ForwardIterator2
    transform_exclusive_scan(ExecutionPolicy&& exec,
                             ForwardIterator1 first, ForwardIterator1 last,
                             ForwardIterator2 result, T init,
                             BinaryOperation binary_op, UnaryOperation unary_op);
template<class InputIterator, class OutputIterator,
         class BinaryOperation, class UnaryOperation>
  constexpr OutputIterator
    transform_inclusive_scan(InputIterator first, InputIterator last,
                             OutputIterator result,
                             BinaryOperation binary_op, UnaryOperation unary_op);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2,
         class BinaryOperation, class UnaryOperation>
  ForwardIterator2
    transform_inclusive_scan(ExecutionPolicy&& exec,
                             ForwardIterator1 first, ForwardIterator1 last,
                             ForwardIterator2 result,
                             BinaryOperation binary_op, UnaryOperation unary_op);
template<class InputIterator, class OutputIterator,
         class BinaryOperation, class UnaryOperation, class T>
  constexpr OutputIterator
    transform_inclusive_scan(InputIterator first, InputIterator last,
                             OutputIterator result,
                             BinaryOperation binary_op, UnaryOperation unary_op,
                             T init);
template<class ExecutionPolicy,
         class ForwardIterator1, class ForwardIterator2,
         class BinaryOperation, class UnaryOperation, class T>
  ForwardIterator2
    transform_inclusive_scan(ExecutionPolicy&& exec,
                             ForwardIterator1 first, ForwardIterator1 last,
                             ForwardIterator2 result,
                             BinaryOperation binary_op, UnaryOperation unary_op,
                             T init);
template<class InputIterator, class OutputIterator>
  constexpr OutputIterator
    adjacent_difference(InputIterator first, InputIterator last,
                        OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
  ForwardIterator2
    adjacent_difference(ExecutionPolicy&& exec,
                        ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result);
template<class InputIterator, class OutputIterator, class BinaryOperation>
  constexpr OutputIterator
    adjacent_difference(InputIterator first, InputIterator last,
                        OutputIterator result, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
         class BinaryOperation>
  ForwardIterator2
    adjacent_difference(ExecutionPolicy&& exec,
                        ForwardIterator1 first, ForwardIterator1 last,
                        ForwardIterator2 result, BinaryOperation binary_op);
template<class ForwardIterator, class T>
  constexpr void iota(ForwardIterator first, ForwardIterator last, T value);
template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T>
  requires indirectly_writable<O, const T&>
  constexpr ranges::iota_result<O, T> ranges::iota(O first, S last, T value);
template<weakly_incrementable T, output_range<const T&> R>
  constexpr ranges::iota_result<borrowed_iterator_t<R>, T> ranges::iota(R&& r, T value);
template<class M, class N>
  constexpr common_type_t<M, N> gcd(M m, N n);
template<class M, class N>
  constexpr common_type_t<M, N> lcm(M m, N n);
template<class T>
  constexpr T midpoint(T a, T b) noexcept;
template<class T>
  constexpr T* midpoint(T* a, T* b);
template<class T>
  constexpr T add_sat(T x, T y) noexcept;
template<class T>
  constexpr T sub_sat(T x, T y) noexcept;
template<class T>
  constexpr T mul_sat(T x, T y) noexcept;
template<class T>
  constexpr T div_sat(T x, T y) noexcept;
template<class R, class T>
  constexpr R saturate_cast(T x) noexcept;
template<class I>
concept nothrow-input-iterator = // exposition only
  input_iterator<I> &&
  is_lvalue_reference_v<iter_reference_t<I>> &&
  same_as<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>;
template<class S, class I>
concept nothrow-sentinel-for = sentinel_for<S, I>; // exposition only
template<class R>
concept nothrow-input-range = // exposition only
  range<R> &&
  nothrow-input-iterator<iterator_t<R>> &&
  nothrow-sentinel-for<sentinel_t<R>, iterator_t<R>>;
template<class I>
concept nothrow-forward-iterator = // exposition only
  nothrow-input-iterator<I> &&
  forward_iterator<I> &&
  nothrow-sentinel-for<I, I>;
template<class R>
concept nothrow-forward-range = // exposition only
  nothrow-input-range<R> &&
  nothrow-forward-iterator<iterator_t<R>>;
template<class NoThrowForwardIterator>
  void uninitialized_default_construct(NoThrowForwardIterator first, NoThrowForwardIterator last);
namespace ranges {
  template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S>
    requires default_initializable<iter_value_t<I>>
    I uninitialized_default_construct(I first, S last);
  template<nothrow-forward-range R>
    requires default_initializable<range_value_t<R>>
    borrowed_iterator_t<R> uninitialized_default_construct(R&& r);
}
template<class NoThrowForwardIterator, class Size>
  NoThrowForwardIterator uninitialized_default_construct_n(NoThrowForwardIterator first, Size n);
namespace ranges {
  template<nothrow-forward-iterator I>
    requires default_initializable<iter_value_t<I>>
    I uninitialized_default_construct_n(I first, iter_difference_t<I> n);
}
template<class NoThrowForwardIterator>
  void uninitialized_value_construct(NoThrowForwardIterator first, NoThrowForwardIterator last);
namespace ranges {
  template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S>
    requires default_initializable<iter_value_t<I>>
    I uninitialized_value_construct(I first, S last);
  template<nothrow-forward-range R>
    requires default_initializable<range_value_t<R>>
    borrowed_iterator_t<R> uninitialized_value_construct(R&& r);
}
template<class NoThrowForwardIterator, class Size>
  NoThrowForwardIterator uninitialized_value_construct_n(NoThrowForwardIterator first, Size n);
namespace ranges {
  template<nothrow-forward-iterator I>
    requires default_initializable<iter_value_t<I>>
    I uninitialized_value_construct_n(I first, iter_difference_t<I> n);
}
template<class InputIterator, class NoThrowForwardIterator>
  NoThrowForwardIterator uninitialized_copy(InputIterator first, InputIterator last,
                                            NoThrowForwardIterator result);
namespace ranges {
  template<input_iterator I, sentinel_for<I> S1,
           nothrow-forward-iterator O, nothrow-sentinel-for<O> S2>
    requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
    uninitialized_copy_result<I, O>
      uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast);
  template<input_range IR, nothrow-forward-range OR>
    requires constructible_from<range_value_t<OR>, range_reference_t<IR>>
    uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
      uninitialized_copy(IR&& in_range, OR&& out_range);
}
template<class InputIterator, class Size, class NoThrowForwardIterator>
  NoThrowForwardIterator uninitialized_copy_n(InputIterator first, Size n,
                                              NoThrowForwardIterator result);
namespace ranges {
  template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for<O> S>
    requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
    uninitialized_copy_n_result<I, O>
      uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}
template<class InputIterator, class NoThrowForwardIterator>
  NoThrowForwardIterator uninitialized_move(InputIterator first, InputIterator last,
                                            NoThrowForwardIterator result);
namespace ranges {
  template<input_iterator I, sentinel_for<I> S1,
           nothrow-forward-iterator O, nothrow-sentinel-for<O> S2>
    requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
    uninitialized_move_result<I, O>
      uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast);
  template<input_range IR, nothrow-forward-range OR>
    requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
    uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
      uninitialized_move(IR&& in_range, OR&& out_range);
}
template<class InputIterator, class Size, class NoThrowForwardIterator>
  pair<InputIterator, NoThrowForwardIterator>
    uninitialized_move_n(InputIterator first, Size n, NoThrowForwardIterator result);
namespace ranges {
  template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for<O> S>
    requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
    uninitialized_move_n_result<I, O>
      uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}
template<class NoThrowForwardIterator, class T>
  void uninitialized_fill(NoThrowForwardIterator first, NoThrowForwardIterator last, const T& x);
namespace ranges {
  template<nothrow-forward-iterator I, nothrow-sentinel-for<I> S, class T>
    requires constructible_from<iter_value_t<I>, const T&>
    I uninitialized_fill(I first, S last, const T& x);
  template<nothrow-forward-range R, class T>
    requires constructible_from<range_value_t<R>, const T&>
    borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x);
}
template<class NoThrowForwardIterator, class Size, class T>
  NoThrowForwardIterator uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x);
namespace ranges {
  template<nothrow-forward-iterator I, class T>
    requires constructible_from<iter_value_t<I>, const T&>
    I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x);
}
template<class T, class... Args>
  constexpr T* construct_at(T* location, Args&&... args);
namespace ranges {
  template<class T, class... Args>
    constexpr T* construct_at(T* location, Args&&... args);
}
template<class T>
  constexpr void destroy_at(T* location);
namespace ranges {
  template<destructible T>
    constexpr void destroy_at(T* location) noexcept;
}
template<class NoThrowForwardIterator>
  constexpr void destroy(NoThrowForwardIterator first, NoThrowForwardIterator last);
namespace ranges {
  template<nothrow-input-iterator I, nothrow-sentinel-for<I> S>
    requires destructible<iter_value_t<I>>
    constexpr I destroy(I first, S last) noexcept;
  template<nothrow-input-range R>
    requires destructible<range_value_t<R>>
    constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept;
}
template<class NoThrowForwardIterator, class Size>
  constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, Size n);
namespace ranges {
  template<nothrow-input-iterator I>
    requires destructible<iter_value_t<I>>
    constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept;
}
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,
              c-compare-pred* compar);
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,
              compare-pred* compar);
void qsort(void* base, size_t nmemb, size_t size, c-compare-pred* compar);
void qsort(void* base, size_t nmemb, size_t size, compare-pred* compar);