In this assignment, I use the Apache Tomcat as the servlet container to provide services to users. In this section, I’ll introduce the Apache SOAP and Axis project and the service deployment in detail.

The Apache SOAP Project is an open source Java implementation of the Simple Object Access Protocol (SOAP) v1.1. SOAP is a wire protocol that leverages HTTP or SMTP as its transport layer and XML as its data layer, to execute remote methods, known as SOAP services. The Apache implementation of SOAP provides two methods for invoking SOAP services: a Remote Procedure Call (RPC) model and a message-based model. The RPC method, which I used in this assignment, is a synchronous technique using a client-server model to execute remote SOAP services. The message-based model uses SMTP to transport SOAP documents to and from the appropriate SOAP server. The Apache SOAP Project is based on, and supersedes, the IBM SOAP4J implementation. Its follow-on project, i.e. Apache Axis Project is not just a rewrite of Apache SOAP, but a complete re-architecture. Axis is essentially Apache SOAP 3.0.
Axis will [1]: 

1. Support SOAP 1.1, just as Apache SOAP 2.2 does. 

2. Likely prove much faster and more resource efficient than Apache SOAP, since it uses SAX (Simple API for XML) instead of DOM (Document Object Model). SAX allows lazy parsing of XML documents, which in many cases is more efficient -- especially when the entire XML document does not need to be parsed or kept in memory for long time periods. 

3. Have a clean and simple abstraction for designing transports. 

4. Automatically generate WSDL (Web Services Description Language) from deployed services. The Axis alpha 2 version also comes with the wsdl2java tool for building Java proxies and skeletons from WSDL documents.
5. Support EJB (Enterprise JavaBeans) deployment as services. 

6. Feature improved deployment support and the ability to drop Java files into a deployment directory and expose the classes as services. 

7. Better interoperate with Microsoft's SOAP implementation and .Net services.
Due to the limited time, I didn’t deployed and implemented the assignment by using Apache Axis technology successfully. So, in this assignment, I turned to the some unfashionable Apache SOAP. Whatever, Apache SOAP is successful in the past few years and can fulfill this assignment’s requirements.

Steps to deploy services:

1. Install the latest version of Apache Tomcat 5.5.17.

2. Integrating Apache SOAP into Tomcat 5.5.17

2.1 Download SOAP v2.3.1 (soap-bin-2.3.1.zip), mail.jar, activation.jar, xerces.jar files from www.apache.org

2.2 Extract the SOAP archive (soap-bin-2.3.1.zip) to a local directory.

2.3 Copy all the *.jar files and soap.jar file which is extracted form soap-bin-2.3.1.zip file (soap-bin-2.3.1.zip\soap-2_3_1\lib\soap.jar) to <TOMCAT_HOME>/common/lib/ directory. 
2.4 Add each of the previously mentioned .jar files to our classpath, including soap.jar
3. Extract the soap.war file (soap-bin-2.3.1.zip\soap-2_3_1\webapps\soap.war) and copy it to <TOMCAT_HOME>/webapps/ directory.

4. Restart Tomcat and access the SOAP Web application by opening the Web browser to http://localhost:8080/soap/. Fig. 2.1 shows the page you should see.

[image: image1.png]
Fig.2.1 Apache SOAP page

5. Click the Run link in Fig.2.1 to use the SOAP admin tool to list the current services, deploy new services, and remove previously-deployed services.
6. For demonstration purpose, I deployed two services whose names are WSStock and WSStock2 respectively by filling the Service Deployment Descriptor Template (Fig.2.2) or using command line to integrate the service description file with the core of all SOAP, i.e. a servlet named rpcrouter. Each service runs a stock broker with different broker ID. The deployment descriptor of WSStock (the same as WSStock2 except the ID) and the list of current services are shown in Fig.2.3 and Fig.2.4.

7. Writing an RPC-based SOAP service, i.e. the implement of the defined interface (seven methods) and copy the complied classes files into <TOMCAT_HOME>/webapps/ soap/WEB-INF/classes/ directory.
8. Writing the client program to execute the deployed services.

The above steps show the detail of service description, deployment. In the next section I will introduce the service design and implementation.
[image: image2.png]
Fig.2.2 Service Deployment Descriptor Template
[image: image3.png]
Fig.2.3 Deployment descriptor for WSStock

[image: image4.png]
Fig.2.4 Current services listing

