
The weight model.layers.0.mlp.down_proj.weight_scale_inv in the DeepSeek-v3 model, and
similar weights found in some other transformer architectures, is related to a technique called
Scaled ReLU or SwiGLU activation functions.
Here's a breakdown of its usage and context:
Context: SwiGLU and Variants

●​ SwiGLU (Swish-Gated Linear Unit): This activation function is a popular alternative to
ReLU in transformer models. It often improves performance.

●​ GLU (Gated Linear Unit): GLUs involve a gating mechanism that controls the flow of
information through the activation.

●​ Scaled GLU: Some models introduce scaling factors to the GLU's linear projections.
These scaling factors help stabilize training and can improve convergence.

Usage of weight_scale_inv:
●​ Scaling Factor: weight_scale_inv is typically the inverse of a scaling factor applied to

the output of the "down projection" in the MLP (Multi-Layer Perceptron) layer.
●​ Normalization/Stabilization: The purpose of this scaling factor is often to normalize or

stabilize the activations within the MLP.
●​ Inverse Application: During inference, you would typically multiply the output of the

down_proj layer by the inverse of weight_scale_inv (i.e., 1 / weight_scale_inv).
Simplified Inference Example (Conceptual):

Python

import torch​
​
def mlp_forward(input_tensor, gate_proj_weight, up_proj_weight, down_proj_weight,
weight_scale_inv):​
 # Gate projection​
 gate_output = torch.matmul(input_tensor, gate_proj_weight.T)​
​
 # Up projection​
 up_output = torch.matmul(input_tensor, up_proj_weight.T)​
​
 # Apply SwiGLU-like activation​
 swiglu_output = gate_output * up_output​
​
 # Down projection​
 down_output = torch.matmul(swiglu_output, down_proj_weight.T)​
​
 # Apply scaling factor​
 scaled_down_output = down_output / weight_scale_inv​
​
 return scaled_down_output​

Key Points:

●​ Architectural Variation: The exact implementation of scaled GLUs can vary across
models.

●​ DeepSeek-v3 Specifics: You'll need to examine the DeepSeek-v3 model's architecture
closely to determine the precise usage of weight_scale_inv. Look for where the
down_proj output is used.

●​ Inference Code: During inference, you'll need to incorporate the scaling factor into the
MLP's forward pass.

●​ Conversion Scripts: The convert_hf_to_gguf.py script needs to correctly incorporate
this scaling factor into the GGUF representation of the model.

Why It's There:
●​ The scaling factor can help prevent activations from becoming too large or too small,

which can lead to numerical instability during training.
●​ It can also help improve the model's convergence and overall performance.

If you are working with the model in llama.cpp, you will need to make sure that the conversion
script, and the inference code in llama.cpp correctly handle this weight.

