
Transformer Circuits Thread

+

+

+

+

+

Residual
stream

FeatureNeuron Token 1 Token 2

Replaces transformer model neurons with more interpretable features.

Layer 1

Layer 2

Layer 3

Depicts in�uence of features on one another, allow
intermediate steps the model uses to produce its

https://anthropic.com/
https://anthropic.com/
https://anthropic.com/
https://anthropic.com/
https://transformer-circuits.pub/
https://transformer-circuits.pub/

AUTHORS

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen, Craig Citro,

David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly Templeton,

Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,

Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson,

Sam Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, Joshua Batson

AFFILIATIONS

Anthropic

PUBLISHED

March 27, 2025

* Core Contributor; ‡ Correspondence to joshb@anthropic.com; ◊ Work performed while at Anthropic; Author contributions statement below.

* * * * * * *

◊

*‡

Deep learning models produce their outputs using a series of transformations distributed across many

computational units (artificial “neurons”). The field of seeks to describe these

transformations in human-understandable language. To date, our team’s approach has followed a two-

step approach. First, we identify , interpretable building blocks that the model uses in its computations.

Second, we describe the processes, or by which these features interact to produce model outputs.

A natural approach is to use the raw neurons of the model as these building blocks. Using this approach, previous

work successfully identified interesting circuits in vision models, built out of neurons that appear to represent

meaningful visual concepts . However, model neurons are often — representing a mixture of many

unrelated concepts. One reason for polysemanticity is thought to be the phenomenon of , in

which models must represent more concepts than they have neurons, and thus must “smear” their representation of

concepts across many neurons. This mismatch between the network's basic computational units (neurons) and

meaningful concepts has proved a major impediment to progress to the mechanistic agenda, especially in

understanding language models.

In recent years, sparse coding models such as sparse autoencoders (SAEs) , transcoders , and

crosscoders have emerged as promising tools for identifying interpretable features represented in superposition.

These methods decompose model activations into sparsely active components (“features”), which turn out in many

cases to correspond to human-interpretable concepts. While current sparse coding methods are an imperfect way of

identifying features (see § 7 Limitations), they produce interpretable enough results that we are motivated to study

 composed of these features. Several authors have already made promising steps in this direction .

Although the basic premise of studying circuits built out of sparse coding features sounds simple, the design space

is large. In this paper we describe our current approach, which involves several key methodological decisions:

1

[4]

[5, 6, 7]

[8, 9, 10, 11] [12, 13, 14]

[15]

2

[16, 12, 17]

https://www.anthropic.com/
https://www.anthropic.com/
mailto:joshb@anthropic.com
mailto:joshb@anthropic.com
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#author-contributions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#author-contributions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations

1. We extract features using a variant of rather than SAEs, which allows us to

construct an interpretable “replacement model” that can be studied as a proxy for the original model.

Importantly, this approach allows us to analyze direct feature-feature interactions.

2. We base our analysis on cross-layer transcoders (CLT) , in which each feature reads from

the residual stream at one layer and contributes to the outputs of all subsequent MLP layers of the original

model, which greatly simplifies the resulting circuits. Remarkably, we can substitute our learned CLT features

for the model's MLPs while matching the underlying model's outputs in ~50% of cases.

3. We focus on studying “attribution graphs” which describe the steps a model used to

produce an output for a target token on a particular prompt using an approach similar to Dunefsky et al. .

The nodes in the attribution graph represent active features, token embeddings from the prompt,

reconstruction errors, and output logits. The edges in the graph represent linear effects between nodes, so

the activity of each feature is the sum of its input edges (up to its activation threshold) (see § 3 Attribution

Graphs).

4. We design our setup so that, for a specific input, the direct interactions

between features are linear. This makes attribution a well-defined, principled operation. Crucially, we freeze

attention patterns and normalization denominators (following) and use transcoders to achieve this

linearity. Features also have indirect interactions, mediated by other features, which correspond to multi-

step paths.

5. Although our features are sparse, there are still too many features active on a given prompt to easily

interpret the resulting graph. To manage this complexity, we prune graphs by identifying the nodes and edges

which most contribute to the model’s output at a specific token position (see § 5.2.4 Appendix: Graph

Pruning). Doing so allows us to produce sparse, interpretable graphs of the model’s computation for arbitrary

prompts.

6. We designed an interactive interface for exploring attribution graphs, and the features they're

composed of, that allows a researcher to quickly identify and highlight key mechanisms within them.

7. Our approach to studying circuits is indirect – our replacement model may use different

mechanisms from the underlying model. Thus, it is important that we validate the mechanisms we find in

attribution graphs. We do so using perturbation experiments. Specifically, we measure the extent to which

applying perturbations in a feature's direction produces changes to other feature activations (and to the

model's output) that are consistent with the attribution graph. We find that across prompts, perturbation

experiments are generally qualitatively consistent with our attribution graphs, though there are some

deviations.

8. While our paper mostly focuses on studying attribution graphs for individual prompts, our

methods also allow us to study the weights of the replacement model (“global weights”) directly, which

underlie mechanisms across many prompts. In § 4 Global Weights, we demonstrate some challenges with

doing so – naive global weights are often less interpretable than attribution graphs due to weight

interference. However, we successfully apply them to understand the circuits underlying small number

addition.

The goal of this paper is to describe and validate our methodology in detail, using a few case studies for illustration.

• We begin with methods. We describe the setup of our (§ 2 Building an Interpretable

Replacement Model) and how we construct (§ 3 Attribution Graphs), concluding with

two case studies (§ 3.7 Factual Recall Case Study, § 3.8 Addition Case Study). We then go on to explore

approaches to constructing , including challenges and some preliminary methods for

addressing them (§ 4 Global Weights).

[12, 14]

[15]

[12]

[18]

3

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-factual-recall
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-factual-recall
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights

• We then provide a detailed quantitative evaluation of our cross-layer transcoders and the resulting

attribution graphs (§ 5 Evaluations), showing metrics by which CLTs provide Pareto-improvements over

neurons and per-layer transcoders. Afterwards, we provide an overview of our companion paper, in which

we apply our method to various behaviors of Claude 3.5 Haiku (§ 6 Biology). We follow with a discussion

of methodological limitations (§ 7 Limitations). These include the role of attention patterns, the impact of

reconstruction errors, the identification of suppression motifs, and the difficulty of understanding global

circuits. Addressing these limitations, and seeing what additional model mechanisms are then revealed,

is a promising direction for future work.

• We close with a broader discussion (§ 8 Discussion) of the design space of methods for producing

attribution graphs – parts of our approach can be freely remixed with others while retaining much of the

benefit – and a review of related work (§ 9 Related Work).

• Our companion paper, , applies these methods to Claude 3.5

Haiku, investigating a diverse range of behaviors such as multiple hop reasoning, planning, and

hallucinations.

We note that training a cross-layer transcoder can incur significant up-front cost and effort, which is amortized over

its application to circuit discovery. We have found that this improves circuit interpretability and parsimony enough to

justify the investment (see cost estimates for open-weights models and discussion of cost-matched performance

relative to per-layer transcoders). Nevertheless, we stress that alternatives like per-layer transcoders or even MLP

neurons can be used instead (keeping the same steps 3–8 above), and still produce useful insights. Moreover, it is

likely that better methods than CLTs will be developed in the future.

To aid replication, we share guidance on CLT implementation, details on the pruning method, and the front-end

code supporting the interactive graph analysis interface.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#biology
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#biology
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#discussion
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#discussion
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#related-work
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#related-work
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-plausible
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-plausible
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-efficiency
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-efficiency
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://github.com/anthropics/attribution-graphs-frontend
https://github.com/anthropics/attribution-graphs-frontend
https://github.com/anthropics/attribution-graphs-frontend
https://github.com/anthropics/attribution-graphs-frontend

CLT

CLT

CLT

+

+

+

+

+

Residual
stream

FeatureNeuron

Features read from one layer and write to all following ones

Layer 1

Layer 2

Layer 3

: The cross-layer transcoder (CLT) forms the core architecture of our replacement model.

A cross-layer transcoder (CLT) consists of neurons (“features”) divided into layers, the same number of layers as

the underlying model. The goal of the model is to reconstruct the outputs of the MLPs of the underlying model, using

sparsely active features. The features receive input from the model’s residual stream at their associated layer, but are

“cross-layer” in the sense that they can provide output to all subsequent layers. Concretely:

L

4

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-architecture
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-architecture

• Each feature in the layer “reads in” from the residual stream at that layer using a linear encoder

followed by a nonlinearity.

• An layer feature contributes to the reconstruction of the MLP outputs in layers , using

a separate set of linear decoder weights for each output layer.

• All features in all layers are trained jointly. As a result, the output of the MLP in a layer is jointly

reconstructed by the features from all previous layers.

More formally, to a cross-layer transcoder, let denote the original model’s residual stream activations at layer

. The CLT feature activations at layer are computed as

where is the CLT encoder matrix at layer .

We let refer to the output of the original model’s MLP at layer . The CLT’s attempted reconstruction of is

computed using the JumpReLU activation function as:

where is the CLT decoder matrix for features at layer outputting to layer .

To a cross-layer transcoder, we minimize a sum of two loss functions. The first is a reconstruction error loss,

summed across layers:

The second is a sparsity penalty (with an overall coefficient , a hyperparameter, and another hyperparameter)

summed across layers:

Where is the number of features per layer and is the concatenation of all decoder vectors of feature .

We trained CLTs of varying sizes on a small 18-layer transformer model (“18L”) , and on Claude 3.5 Haiku. The total

number of features across all layers ranged from 300K to 10M features (for 18L) and from 300K to 30M features (for

Haiku). For more training details see § D Appendix: CLT Implementation Details.

ℓth

ℓth ℓ, ℓ + 1, … , L

ℓ′

xℓ

ℓ aℓ ℓ

a = JumpReLU W xℓ (enc
ℓ ℓ)

Wenc
ℓ ℓ

yℓ ℓ ŷℓ yℓ

[11]

= W aŷℓ

ℓ =1′

∑
ℓ

dec
ℓ →ℓ′ ℓ′

Wdec
ℓ →ℓ′

ℓ′ ℓ

L = ∥ − y ∥MSE

ℓ=1

∑
L

ŷℓ ℓ 2

λ c

L = λ tanh(c ⋅ ∥W ∥ ⋅ a)sparsity

ℓ=1

∑
L

i=1

∑
N

dec,i
ℓ

i
ℓ

N Wdec,i
ℓ i

5

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement

Given a trained cross-layer transcoder, we can define a “replacement model” that substitutes the cross-layer

transcoder features for the model’s MLP neurons – that is, where each layer's MLP output is replaced by its

reconstruction by all CLTs that write to the that layer. Running a forward pass of this replacement model is identical

to running the original model, with two modifications:

• Upon reaching the to the MLP in layer , we compute the activations of the cross-layer transcoder

features whose encoders live in layer .

• Upon reaching the of the MLP in layer , we overwrite it with the summed outputs of the cross-

layer transcoder features in this and previous layers, using their decoders for layer .

Attention layers are applied as usual, without any freezing or modification. Although our CLTs were only trained using

input activations from the underlying model, “running” the replacement model involves running CLTs on "off-

distribution" input activations from intermediate activations from the replacement model itself.

ℓ
ℓ

ℓ
ℓ

neuron

The underlying model that we study is a

transformer-based large language model.

features We replace the neurons of the original model with . There are typically more features

than neurons. Features are sparsely active and often represent interpretable concepts.

Layer 1

Layer 2

Layer 3

MLP Attention

To understand what a feature represents,

we use a , which shows

dataset examples for which the feature is

most strongly active

the model is

. In this example, the

feature �res strongly when

about to say a state capital.

feature visualization

: The replacement model is obtained by replacing the original model’s neurons with the cross-layer transcoder’s sparsely-active features.

: The replacement model is obtained by replacing the original model’s neurons with the cross-layer transcoder’s sparsely-active features.

As a simple evaluation, we measure the fraction of completions for which the most likely token output of the

replacement model matches that of the underlying model. The fraction improves with scale, and is better for CLTs

compared to a per-layer transcoder baseline (i.e., each layer has a standard single layer transcoder trained on it; the

number of features shown refers to the total number across all layers). We also compare to a baseline of

thresholded neurons, varying the threshold below which neurons are zeroed out (empirically, we find that higher

neuron activations are increasingly interpretable, and we indicate below where their interpretability roughly matches

that of features according to our auto-evaluations in § 5.1.2 Quantitative CLT Evaluations). Our largest 18L CLT

matches the underlying model’s next-token completion on 50% of a diverse set of pretraining-style prompts from an

open source dataset (see § R Additional Evaluation Details).

Lower is better

Neurons begin to
look interpretable
above this threshold

(varying threshold)
Neurons

10m

Per-Layer
Transcoders

3m
1m

300k

10m

Cross-layer
Transcoders

3m

1m

300k

10m
3m

1m

300k

10m

Cross-layer
Transcoders

3m

300k

1m
Lower is better

Per-Layer
Transcoders

Neurons begin to
look interpretable
above this threshold

: Comparison of cross-layer transcoders, per-layer transcoders, and thresholded neurons in terms of their top-1 accuracy and KL divergence when used as the basis for a replacement model. Interp
thresholds are determined using sort and contrastive eval (see Evaluations).

While running the replacement model can sometimes reproduce the same outputs as the underlying model, there is

still a significant gap, and reconstruction errors can compound across layers. Since we are ultimately interested in

understanding the underlying model, we would like to approximate it as closely as possible. To that end, when

studying a fixed prompt , we construct a , which

6

p

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-local-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-local-replacement

• Substitutes the CLT for the MLP layers (as in the replacement model);

• Uses the attention patterns and normalization denominators from the underlying model's forward pass

on (as in);

• Adds an error adjustment to the CLT output at each (token position, layer) pair equal to the difference

between the true MLP output on and the CLT output on (as in).

After this error adjustment and freezing of attention and normalization nonlinearities, we've effectively re-written the

underlying model's computation on the prompt in terms of different basic units; all of the error-corrected

replacement model's activations and logit outputs exactly match those of the underlying model. However, this does

not guarantee that the local replacement model and underlying model use the same . We can measure

differences in mechanism by measuring how differently these models respond to perturbations; we refer to the

extent to which perturbation behavior matches as “mechanistic faithfulness”, discussed in § 5.3 Evaluating

Mechanistic Faithfulness.

The local replacement model can be viewed as a very large fully connected neural network, spanning across tokens,

on which we can do classic circuit analysis:

• Its input is the concatenated set of one-hot vectors for each token in the prompt.

• Its neurons are the union of the CLT features active at every token position.

• Its weights are the summed interactions over all the linear paths from one feature to another, including

via the residual stream and through attention, but not passing through MLP or CLT layers. Because

attention patterns and normalization denominators are frozen, the impact of a source feature's activation

on a target feature's pre-activation via each path is linear in the activation of the source feature. We

sometimes refer to these as "virtual weights" because they are not instantiated in the underlying model.

• Additionally, it has bias-like nodes corresponding to error terms, with a connection from each bias to

each downstream neuron in the model.

The only nonlinearities in the local replacement model are those applied to feature preactivations.

The local replacement model serves as the basis of our , where we study the feature-feature

interactions of the local replacement model on the prompt for which it was made. These graphs are the primary

object of study of this paper.

p [18, 12]

p p [16]

p

7

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness

The local replacement model is speci�c to a prompt of interest. We add an error adjustment term, and

freeze attention patterns to be what they were in the original model on the given prompt. It produces the

exact same output as the original model, but replaces as much computation as possible with features.

We trace from input to output through active

features, pruning paths that don’t in�uence the

output.

Error nodes represent the difference

between the original MLP output and the

replacement model’s reconstruction

Attention patterns are frozen to their

value in the original model, allowing us

to de�ne weights between features in

different token positions

: The local replacement model is obtained by adding error terms and �xed attention patterns to the replacement model to exactly
reproduce the original model’s behavior on a speci�c prompt.

We will introduce our methodology for constructing attribution graphs while working through a case study regarding

the model’s ability to write acronyms for arbitrary titles. In the example we study, the model successfully completes a

fictional acronym. Specifically, we give the model the prompt The National Digital Analytics Group (N

and sample its completion: DAG) . The tokenizer the model was trained with uses a special “Caps Lock” token,

which means the prompt and completion are tokenized as follows: The National Digital Analytics

Group (⇪ n dag .

We explain the computation the model performs to output the “DAG” token by constructing an attribution graph

showing the flow of information from the prompt through intermediary features and to that output. Below, we show

a simplified diagram of the full attribution graph. The diagram shows the prompt at the bottom and the model’s

completion on top. Boxes represent groups of similar features, and can be hovered over to display each feature’s

visualization. We discuss our interpretation of features in § 3.3 Understanding and Labeling Features. Arrows

represent the direct effect of a group of features or a token on other features and the output logit.

say/
continue an

acronym

say/
continue an

acronym

say/
continue an

acronym

say “_G”say “_G”say “_G”say “_A”say “_A”say “_A”say “D_”say “D_”say “D_”

DigitalDigitalDigital AnalyticsAnalyticsAnalytics GroupGroupGroup

say “DA_”

say “DAG”say “DAG”say “DAG”

say “DA_”say “DA_”say “DA_”

Hover to see
feature
visualizations!

: A simpli�ed diagram of the attribution graph for 18L completing a �ctional acronym.

The graph for the acronym prompt shows three main paths, originating from each of the tokens that compose the

desired acronym. Paths originate from features for a given word, promoting features about “saying the first letter of

that word in the correct position”, which themselves have positive edges to a “say DAG” feature and the logit. “say X”

labels describe “output features”, which promote a specific token X, and arbitrary single letters are denoted with

underscores. The “Word → say _W” edges represent attention heads’ OV circuits writing to a subspace that is then

amplified by MLPs at the target position. Each group of features also has a direct edge to the logit in addition to the

sequential paths, representing effects mediated only via attention head OVs (i.e., paths to the output in the local

replacement model that don’t “touch” another MLP layer).

8

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-features

In order to output “DAG”, the model also needs to decide to output an acronym, and to account for the fact that the

prompt already contains N, and indeed we see features for “in an acronym” and “in an N at the start of an acronym”

with positive edges to the logit. The word National has minimal influence on the logit. We hypothesize that this is due

to its main contribution being through influencing attention patterns, which our method does not explain (see § 7.1

Limitations: Missing Attention Circuits).

 In the rest of this section, we explain how we compute and visualize attribution graphs.

To interpret the computations performed by the local replacement model, we compute a causal graph that depicts

the sequences of computational steps it performs on a particular prompt. The core logic by which we construct the

graph is essentially the same as that of Dunefsky , extended to handle cross-layer transcoders. Our graphs

contain four types of nodes:

• The nodes correspond to candidate output tokens. We only construct output nodes for the tokens

required to reach 95% of the probability mass, up to a total of 10.

• The nodes correspond to active cross-layer transcoder features at each prompt token

position.

• The primary nodes of the graph correspond to the embeddings of the prompt tokens.

• Additional input nodes (“ nodes”) correspond to the portion of each MLP output in the underlying

model left unexplained by the CLT.

Edges in the graph represent direct, linear attributions in the local replacement model. Edges originate from feature,

embedding, and error nodes, and terminate at feature and output nodes. Given a source feature node and a target

feature node , the edge weight between them is defined to be , where is the (virtual) weight

in the local replacement model viewed as a fully connected neural network and is the activation of the source

feature.

In terms of the underlying model, is a sum over all linear paths (i.e., through attention head OVs and residual

connections) connecting the source feature's decoder vectors to the target feature's encoder vector.

We now give details on how to efficiently compute these in practice, using backwards Jacobians. Let be a source

feature node at layer and context position and let be a target feature node at layer and context position .

We write for the Jacobian of the underlying model with a stop-gradient operation applied to all model

components with nonlinearities – the MLP outputs, the attention patterns, and normalization denominators – on a

backwards pass on the prompt of interest, from the residual stream at context position and layer to the residual

stream at context position and layer . The edge weight from to is then

where

• is the decoder vector of the feature for writing to layer ,

• is the encoder vector of the feature for .

[12]

9

s

t A := a ws→t s s→t ws→t

as

10

ws→t

s

ℓs cs t ℓt ct

Jc ,ℓ →c ,ℓs s t t

▼

ct ℓt

cs ℓs s t

A = a w = a (W) J W ,s→t s s→t s

ℓ ≤ℓ<ℓs t

∑ dec, s
ℓ →ℓs T

c ,ℓ→c ,ℓs t t

▼
enc, t
ℓt

Wdec, s
ℓ →ℓs s ℓ

Wenc, t
ℓt s

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-constructing
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-constructing

The formulas for the other edge types are similar, e.g., an embedding-feature edge weight is given by

. Note that error nodes have no input edges. For all such formulas, and an

expansion of the Jacobian in terms of paths in the underlying model, see § E Appendix: Attribution Graph

Computation.)

Because we have added stop-gradients to all model nonlinearities in the computation above, the preactivation of

any feature node is simply the sum of its incoming edges in the graph: where is the set of

nodes at earlier layers and equal or earlier context positions as . Thus the attribution graph edges provide a linear

decomposition of each feature's activity.

Note that these graphs do not contain information about the influence of nodes on other nodes via their influence on

attention , but do contain information about node-to-node influence through the of frozen attention.

In other words, we account for the information which flows from one token position to another, but not why the

model moved that information. Note also that the outgoing edges from a cross-layer feature aggregate the effect

of its decodings at of the layers that it writes to on downstream features.

While our replacement model features are sparsely active (on the order of a hundred active features per token

position), attribution graphs are too large to be viewed in full, particularly as prompt length grows – the number of

edges can grow to the millions even for short prompts. Fortunately, a small subgraph typically accounts for most of

the significant paths from the input to the output.

To identify such subgraphs, we apply a pruning algorithm designed to preserve nodes and edges that directly or

indirectly exert significant influence on the logit nodes. With our default parameters, we typically reduce the number

of nodes by a factor of 10, while only reducing the behavior explained by 20%. See § F Appendix: Graph Pruning for

methodological details of our algorithms and metrics.

Even following pruning, attribution graphs are quite information-dense. A pruned graph often contains hundreds of

nodes and tens of thousands of edges – too much information to interpret all at once. To allow us to navigate this

complexity, we developed an interactive attribution graphs visualization interface. The interface is designed to

enable “tracing” key paths through the graph, retain the ability to revisit previously explored nodes and paths, and

materialize the information needed to interpret features on an as-needed basis.

w = Emb J Ws→t s
T

c ,ℓ →c ,ℓs s t t

▼
enc, t
ℓt

ht

t h = wt ∑St
s→t St

t

11

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial

Logit nodeEmbedding

Feature nodes appear at
the token position where
they are active

Diamond shaped error nodes
represent reconstruction errors

The strongest input features,
colored by edge strength

Strongest token embedding
inputs and logit outputs

Top activating dataset examples
Each row is from a different text
Orange color denotes activation

Nodes can be dragged around manually Nodes are grouped into supernodes

: An overview of the interface for interacting with an attribution graph.

Below we show the interactive visualization for the attribution graph attributing back from the single token “DAG”:

The interface is interactive. Nodes can be hovered over and clicked on to display additional information. Subgraphs

can also be constructed by using Cmd/Ctrl+Click to select a subset of nodes. In the subgraph, features can be

aggregated into groups we call (motivated below in § 3.4 Grouping Features into Supernodes).

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-supernodes
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-supernodes

Hovering over a feature displays
information about it

One node is “actively selected” at a time
(via clicking) and highlighted in pink

Pinned nodes are highlighted.
The pinned subgraph is displayed in a
separate panel.

Group nodes into supernodes
subgraph

: Supported mouse and keyboard interactions with attribution graphs.

We use feature visualizations similar to those shown in our previous work, Scaling Monosemanticity, in order to

manually interpret and label individual features in our graph.

The easiest features to label are input features, which activate on specific tokens or categories of closely-related

tokens and which are common in early layers, and output features, which promote continuing the response with

specific tokens or categories of closely-related tokens and which are common in late layers. For example:

• This feature is likely an input feature because its visualization shows that it activates strongly on the

word “digital” and similar words like “digitize”, but not on other words. We therefore label it a “digital”

feature.

• This feature (a Haiku feature from the later § 3.8 Addition Case Study) is an input feature that activates

on a variety of tokens that end in the digit 6, and even on tokens that are more abstractly related to 6 like

“six” and “June”.

• This feature is likely an output feature because it activates strongly on several different tokens, but in

each example, the token is followed by the text “dag”. Furthermore, the top of the visualization indicates

that the feature increases the probability of the model predicting “dag” more than any other token (in

terms of its direct effect through the residual stream). This suggests that it’s an output feature. Since

output features are common, when labeling output features that promote some token or category X, we

often simply write “say X”, so we give this example the label “say ‘dag’”.

• This feature (from the later § 3.7 Factual Recall Case Study) is an output feature that promotes a

variety of sports, though it also demonstrates some ways in which labeling output features can be

difficult. For example, one must observe that “lac” is the first token of “lacrosse”. Also, the next token in

the context after the feature activates often isn’t actually the name of a sport, but is usually a plausible

place for the name of a sport to go.

Other features, which are common in middle layers of the model, are more abstract and require more work to label.

We may use examples of contexts they are active over, their (the tokens they directly promote and

suppress through the residual stream and unembedding), and the features they’re connected to in order to label

them. For example:

12

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-features
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-factual-recall
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-factual-recall

• This feature activates on the first one or two letters of an unfinished acronym after an open

parenthesis, for a variety of letters and acronyms, so we label it as continuing an acronym in general.

• This feature activates at the start of a variety of acronyms that all have D as their letter, and

many of the tokens it promotes directly have D as their second letter as well. (Not all of those tokens do,

but we don’t expect logit effects to perfectly represent the feature’s functionality because of indirect

effects through the rest of the model. We also find that features further away from the last layer have

less interpretable logit effects.) For brevity, we may label this feature as “say ‘_D’”, representing the first

letter with an underscore.

• Finally, this feature activates on the first letter of various strings of uppercase letters that don’t seem to

be acronyms, and the tokens it most suppresses are acronym-like letters, but its examples otherwise lack

an obvious commonality, so we tentatively label it as suppressing acronyms.

We find that even imperfect labels for these features allow us to find significant structure in the graphs.

Attribution graphs often contain groups of features which share a facet relevant to their role on the prompt. For

example, there are three features active on “Digital” in our prompt which each respond to the word “digital” in

different cases and contexts. The only facet which matters for this prompt is that the word “digital” starts with a “D”;

all three features have positive edges to the same set of downstream nodes. Thus for the purposes of analyzing this

prompt, it makes sense to group these features together and treat them as a unit. For the purposes of visualization

and analysis, we find it convenient to group multiple nodes — corresponding to (feature, context position) pairs —

into a “supernode.” These supernodes correspond to the boxes in the simplified schematic we showed above,

reproduced below for convenience.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-supernodes
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-tutorial-supernodes

say/
continue an

acronym

say/
continue an

acronym

say/
continue an

acronym

say “_G”say “_G”say “_G”say “_A”say “_A”say “_A”say “D_”say “D_”say “D_”

DigitalDigitalDigital AnalyticsAnalyticsAnalytics GroupGroupGroup

say “DA_”

say “DAG”say “DAG”say “DAG”

say “DA_”say “DA_”say “DA_”

Hover to see
feature
visualizations!

: A simpli�ed diagram of the attribution graph for 18L completing a �ctional acronym.

The strategy we use to group nodes depends on the analysis at hand, and on the roles of the features in a given

prompt. We sometimes group features which activate over similar contexts, have similar embedding or logit effects,

or have similar input/output edges, depending on the facet which is important for the claim we are making about the

mechanism. We generally want nodes within a supernode to promote each other, and their effects on downstream

nodes to have the same sign. While we experimented with automated strategies such as clustering based on

decoder vectors or the graph adjacency matrix, no automated method was sufficient to cover the range of feature

groupings required to illustrate certain mechanistic claims. We further discuss supernodes and potential reasons for

why they are needed in Similar Features and Supernodes.

In attribution graphs, nodes suggest which features matter for a model's output, and edges suggest how they matter.

We can validate the claims of an attribution graph by performing feature perturbations in the underlying model, and

checking if the effects on downstream features or on the model outputs match our predictions based on the graph.

Features can be intervened on by modifying their computed activation and injecting its modified decoding in lieu of

the original reconstruction.

Features in a cross-layer transcoder write to multiple output layers, so we need to decide on a range of layers in

which to perform our intervention. How might we do this? We could intervene on a feature’s decoding at a single

layer just like we would for a per-layer transcoder, but edges in an attribution graph represent the cumulative effect of

multiple layers’ decodings, so intervening at a single layer would only target a subset of a given edge. In addition,

we’ll often want to intervene on more than one feature at a time, and different features in a supernode will decode to

different layers.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-interventions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-interventions

To perform interventions over layer ranges, we modify the decoding of a feature at each layer in the given range, and

run a forward pass starting from the last layer in the range. Since we aren’t recomputing a layer’s MLP output based

on the result of interventions earlier in the range, the only change to the model’s MLP outputs will be our intervention.

We call this approach “constrained patching”, as it doesn’t allow an intervention to have second-order effects within

its patching range. See § K Appendix: Iterative Patching for a description of another approach we call “iterative

patching”, and see § H Appendix: Nuances of Steering with Cross-Layer Features for a discussion of why more naive

approaches, such as adding a feature’s decoder vector at each layer during a forward pass of the model, risk double

counting a feature's effect.

Below, we illustrate a multiplicative version of constrained patching, in which we multiply a target feature’s activation

by in the layer range. Note that MLP outputs at further layers are not directly affected by the patch.

Residual
stream

+

+

+

Residual
stream

copy

copy

copy

We add a multiple of the
steered feature decoders
to the MLP recordings

In this example, the
perturbation has no effect
in prior layers because the
encoder of the CLT feature
being perturbed is in a later
layer.

Layer ℓ − 1 Layer

Layer ℓ − 2 Layer

LAYER ℓ + 1 Layer

We �rst do a forward pass of the base model,
recording the outputs of each MLP layer.

Pick a layer ℓ to intervene on. We do a second forward pass.
Up to layer ℓ, we replace the output of each MLP with the
recorded value plus a multiple of the steered feature
decoders. After layer ℓ, we run the base model as usual.

CLT

+

we don’t use the
crosscoder values

after this layer

+

++

+

M

: A schematic of multiplicative patching.

Attribution graphs are constructed by using the underlying model’s attention patterns, so edges in the graph do not

account for effects mediated via QK circuits. Similarly, in our perturbation experiments, we keep attention patterns

fixed at the values observed during an unperturbed forward pass. This methodological choice means our results

don't account for how perturbations might have altered the attention patterns themselves.

M [ℓ − 1, ℓ] 13

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering

Returning to our acronym prompt, we show the results of patching supernodes, starting with suppressing the

“Group” supernode . Below, we overlay patching effects onto supernode schematics for clarity, displaying the effect

on other supernodes and the logit distribution. Note that in this diagram, the position of the nodes in the figure is not

meant to correspond to token positions unless explicitly noted.

The National Digital Analytics
Group (⇪N

Digital Analytics Group

say “_A”say “_A”say “D_”

say “_DA_”

say DAG

say “_G”

DAG 99% DAQ 0.01%

100%

100%

100%

100%

100%100%

100%100%

The National Digital Analytics
Group (⇪N

Digital Analytics Group

say “_A”

say DAG

say “_G”

105%

0%

0%

100%

66%89%

100%100%

ADA 85% DAM 4%

DA 2% DAQ 1%

Group−1×

say “_DA_”

say “D_”

: Suppressing the word “Group” in the �ctional organization’s name causes 18L to output other acronyms with “DA” in them.

We now show the results of suppressing some supernodes on the aggregate activation of other supernodes and on

the logit. For each patch, we set every feature in a node’s activation to be the opposite of its original value (or

equivalently, we steer multiplicatively with a factor of −1). We then plot each node’s total activation as a fraction of

its original value. We use an orange outline to highlight nodes downstream of one another for which we would

hypothesize patching to have an effect.

14

15

Activity after perturbation (as fraction of initial value)

In
hi

bi
te

d
su

pe
rn

od
es

Connected nodes

: Selected intervention effects on feature activations for “The National Digital Analytics Group (N”.

We see that inhibiting features for each word inhibits the related initial features in turn. In addition, the supernode of

features for “say DA_” is affected by inhibitions of both the “Digital” and “Analytics” supernodes.

The attribution graph also allows us to identify in which layers a feature’s decoding will have the greatest

downstream effect on the logit. For example, the “Analytics” supernode features mostly contribute to the “dag” logit

indirectly through intermediate groups of features “say _A” , “say DA_” , and “say DAG” which live in layers 13 and

beyond.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-per-layer
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-per-layer

We would thus expect steering negatively on an “Analytics” feature to have an effect on the dag logit which

plateaus before layer 13 and then decreases in magnitude as we approach the final layer. The decrease is caused by

the constrained nature of our intervention. If a patching range includes all the “say an acronym” features, it will not

change their activation, because constrained patching doesn’t allow knock-on effects. Below, we show the effect of

steering with each Analytics feature, keeping the start layer set to 1 and sweeping over the patching end layer.16

: Interventions are most effective when done in layers prior to those containing the “say an acronym” features.

We now turn to the question of factual recall by studying how the model completes Fact: Michael Jordan

plays the sport of with basketball with 65% confidence . We start by computing an attribution

graph. We group semantically similar features into supernodes like we did for the acronym study.

The supernode diagram below shows two primary paths. One path originates from the “plays” and “sport” tokens and

promotes “sport” and “say a sport” features, which in turn promote the logits for basketball, football, and other

sports. The other path originates from “Michael Jordan and other celebrities” and promotes basketball related

features, which have positive edges to the basketball logit and negative edges to the football logit. In addition to

these sequential paths, some groups of features such as “Michael Jordan” and “sport/game of” have direct edges to

the basketball logit, representing effects mediated only via attention head OVs, consistent with the findings of

Batson .

[19, 20]

[20]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-factual-recall
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-factual-recall
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=mj-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=mj-18l

Michael
Jordan and
celebrities

Michael
Jordan and
celebrities

Michael
Jordan and
celebrities

playplayplay sportsportsport

sport/game
of

sport/game
of

sport/game
of

basketball
discussion
basketball
discussion
basketball
discussion

Basketball discussion

say a sportsay a sportsay a sport

: A simpli�ed diagram of the attribution graph for 18L recalling a simple fact.

We also display the full interactive graph below.

In addition, a complex set of mechanisms seems to be involved in contributing information about the entity Michael

Jordan to the residual stream at “Jordan”, as observed in Nanda . We have grouped into one

supernode features sensitive to "Michael", an L1 feature which has already identified the token pair “Michael

Jordan”, features for other celebrities, and polysemantic features firing on “Michael Jordan” and other unrelated

concepts. Note that we choose to include some polysemantic features in supernodes as long as they share a facet

relevant to the prompt, such as this feature which activates more strongly on the word “synergy” than on “Michael

Jordan”. We evaluate features in more depth in Qualitative Feature Evaluations.

Steering experiments can once more allow us to validate the hypotheses proposed by the graph.

basketballbasketballbasketballbasketballbasketballbasketball
discussiondiscussiondiscussiondiscussiondiscussiondiscussion

output: "football"output: "football"output: "football"output: "football"output: "football"output: "football"
(p=0.021)(p=0.021)(p=0.021)(p=0.021)(p=0.021)(p=0.021)

Michael JordanMichael JordanMichael JordanMichael JordanMichael JordanMichael Jordan
and celebritiesand celebritiesand celebritiesand celebritiesand celebritiesand celebritiesplayplayplayplayplayplay

output:output:output:output:output:output:
"basketball""basketball""basketball""basketball""basketball""basketball"
(p=0.653)(p=0.653)(p=0.653)(p=0.653)(p=0.653)(p=0.653)

say a sportsay a sportsay a sportsay a sportsay a sportsay a sport

sportsportsportsportsportsport

sport/game ofsport/game ofsport/game ofsport/game ofsport/game ofsport/game of

+0.010

−0.011

−0.012

−0.015

−0.021

−0.023

−0.028

−0.031

−0.035

← L7

← L4

← L1

← L1

← L3

← L1

← L1

← L1

← L1

L18

L16

L18

L18

L16

L18

L16

L18

L18

 based only on the National

 based only on the National

 Association 's (NBA) Eastern

 It offered " ↑ Instru mentation

 stuff ?" " Basketball tickets

 adjust able basketball goal height

 It offered " ↑ Instru mentation

 Little ↑ Iv ies ↑ Professionals

 can forget about that girlfriend

 godd am n basketball game

 into the local sports focus

 District 's abundant supply

 with you in the qual ifiers

 abundant supply of unl im⏎

Would that be NBA ... garbage

Top tip ho guard guards

Bottom cricket Cricket

Emb

L2

L4

L6

L8

L10

L12

L14

L16

Lgt

↑↑↑↑↑
Fa
ct

Fa
ct

Fa
ct

Fa
ct

Fa
ct :::::

M
ich

ae
l

M
ich

ae
l

M
ich

ae
l

M
ich

ae
l

M
ich

ae
l

Jo
rd
an

Jo
rd
an

Jo
rd
an

Jo
rd
an

Jo
rd
an
pla

ys
pla

ys
pla

ys
pla

ys
pla

ysth
eth
e

th
e

th
eth
e
sp
or
t

sp
or
t

sp
or
t

sp
or
t

sp
or
t ofofofofof

ba
sk
et
ba
ll

go
lf

fo
ot
ba
ll

↑ba
se
ba
ll

te
nn
is

so
cc
er

lacho
ck
ey

his

[19]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-features

In
hi

bi
te

d
su

pe
rn

od
es

Activity after perturbation (as fraction of initial value)

: Selected intervention effects on feature activations for “Fact: Michael Jordan plays the sport of”.

Connected nodes

Ablating either the “sport” or “Michael Jordan” supernode has a large effect on the logit but a comparatively

smaller effect on the other supernode, confirming the parallel path structure. In addition, we see that suppressing the

intermediate “basketball discussion” supernode also has a large effect on the logit.

We now consider the simple addition prompt calc: 36+59= . Unlike previous sections, we show results for

Haiku 3.5 because the patterns are clearer and show the same structure (see § Q Appendix: Comparison of Addition

Features … for a side-by-side comparison). We look at small-number addition because it is one of the simplest

behaviors exhibited competently by most LLMs and human adults (try the problem in your head to see if your

approach matches the model's!).

We supplement the generic feature visualization (on arbitrary dataset examples) with one which explicitly covers the

set of two-digit addition problems, allowing us to get a crisp picture of what each feature does. Following Nikankin

 , who analyzed neurons, we visualize each feature active on the = token with three plots:

• An operand plot, displaying its activity on the 100 × 100 grid of potential inputs.

• An output weight plot, displaying its direct weights on the outputs for [0, 99].

• An embedding weight plot (or “de-embedding”), displaying the direct effect of embedding vectors on

a feature’s encoder. This is shown in the same format as the output weight plot.

17

[21]

18

[12]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison

We show an example plot of each of these three types below for different features. On this restricted domain, the

operand plots are complete descriptions of the CLT features as functions. Stripes and grids in these plots represent

different kinds of structure (e.g. diagonal lines indicate constraints on the sum, while grids represent modular

constraints on the inputs).

80

70

60

50

40

30

20

10

0

90

80706050403020100

The value of addend

T
he

 v
al

ue
 o

f
ad

de
nd

The direct effect of the sum of a
feature’s decoders on the outputs for
tokens 0–99. Visualized for features
active on .

The direct effect of embeddings for
tokens 0–99 on the feature encoder.
Visualized for features active on or .

 is in the 50s

We systematically analyze the features
active on one- and two-digit addition
prompts of the form for ,
[0,99].

Target prediction

 is 5 modulo 10

80706050403020100 90

80706050403020100 90

Embedding token

The activity of a feature on
the “=” token of the prompt
“calc: a+b=”, for a,b [0,99]

6+9

 is 5 modulo 10

: Common elements in �gures describing addition features.

In the supernode diagram below, we see information flow from input features, which split out the final digit, the

number, and the magnitude of the operands to three major paths: a final-digit path (mod 10) (light-brown, right), a

moderate precision path (middle), and a low precision path (dark brown, left), which collectively produce a

moderate precision value of the sum and the final digit of the sum; these finally constructively interfere to give both

the mod 100 version of the sum and the final output.

19

59

_6 + _9~36 + ~60~40 + ~50

add _9add ~57

~30 36 _6

sum = _95 sum = _5

9~595

Example
low precision

features

Inputs near 30 make this
early feature �re

Example mod 10
features

5959

sum ~92

View detailed graph: A simpli�ed attribution graph of Haiku adding two-digit numbers. Features of the inputs feed into separable processing pathways.

Hover to see
feature
visualizations!

We provide the equivalent interactive graph for 18L here.

The supernode graph suggests a taxonomy of features underlying this task, in which features vary along two major

axes:

•

• have diagonal operand plots, and fire on pairs of inputs whose sum satisfies some

condition.

• have plots that look like a grid, and consist of inputs a and b satisfying

condition1(a) AND condition2(b) . We discuss these in more detail below.

• have plots with horizontal or vertical bars. One addend satisfies some

condition, or an OR operation merges two conditions across addends.

• are active on the "=" token of most of our 10,000 addition prompts.

• have all sorts of strange properties, but often look like hybrid activation

patterns from the above types. We find that these have lower influence on the outputs.

•

20

https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=calc-36-plus-59-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=calc-36-plus-59-18l

• : we find conditions with ones-digit precision (sum=_5 or =59), with exact range (of

width e.g. 2 or 10), and with fuzzy ranges of width ranging from 2–50.

• : we find features that are sensitive to the sum or operand value in absolute terms,

mod 10, mod 100, and less commonly, mod 2, mod 5, mod 25, and mod 50.

• : we find features sensitive to a regex style pattern in an input or output, such as “starts

with 51”, as in . These do not feature as prominently in our addition graphs, having low

influence on the model's output, but they do exist, and may be more important for other tasks

involving numbers.

[21]

Sum features have diagonal operand plots,
and �re on pairs of inputs whose sum
satis�es some condition.

Features which are on on most addition
prompts. Their output effects vary, but
include things like “upweight simple
numbers”.

We see a variety of lower-in�uence features
with strange patterns. These may be
artifacts of the crosscoder training process,
or may re�ect more subtle model
properties.

Lookup Table Features are approximately of
the form ,
and look like grids.

Add Function Features have plots wh
unions of horizontal (condition on �r
operand) and vertical (condition on s
operand) lines.

: Types of features commonly active on the “=” within prompts of the form “calc: + =” for , in [0,99].

These findings broadly agree with other mechanistic studies showing that language models trained on natural

language corpora perform addition using parallel heuristics involving magnitudes and moduli that constructively

interfere to produce the correct answer . Namely, Nikankin et al. proposed a “bag of heuristics”

interpretation, recognizing a set of “operand” features (equivalent to our “add X” features) and “result” features

(equivalent to our “sum” features) exhibiting high- and low-precision and different modularities in sensing the input

and producing the output.

We also identify the existence of lookup table features, which seem to be an interesting consequence of the

architecture used by both the model and the CLT. Neurons and CLT feature activations are computed by applying a

nonlinearity to the sum of their inputs. This produces a “parallelogram constraint” on the response of a feature to a

set of inputs: namely, if a feature is active on two inputs of the form and , then it must be active on at

least one of the inputs or . This follows since the preactivation of is an affine function of the

operands. In particular, it is impossible for input features to produce a general sum feature in one step. For

example, a general “sum = 5” feature which fires for 1+4 and 2+3 would need to fire for at least one of 1+3 or 2+4. So

some intermediate step between copying over information about both inputs to the “=” token and producing a

property of their sum is required. CLT lookup table features represent these intermediate steps for addition.

To validate that the structure we observe in the attribution graph matches the causal structure of the model, we

perform a series of interventions. For each supernode, we perturb it to the negative of its original value, and measure

the result on all subsequent supernodes and the outputs. We find results largely consistent with the graph:

In
hi

bi
te

d
su

pe
rn

od
es

Activity after perturbation (as fraction of initial value)

: Selected intervention effects on feature activations for “calc: 36+59=”

Connected nodes

[21, 22, 23] [21]

f x + y z + w

x + w z + y f
21

22

In particular, inhibiting the ones-digit feature on either of the input tokens suppresses the entire ones-digit pathway

(the _6 + _9 lookup table features, the resulting sum=_5 and sum= _95 features), while leaving the magnitude

pathway mostly intact, including the sum~92 features. Remarkably, when suppressing _6 , the model confidently

outputs 98 instead of the correct answer 95 ; the tens digit from the original problem is preserved by the other

magnitude signals but the ones digit is that which would result from adding 9 to itself. (Suppressing _9 , however,

results in an output of 91 , not 92 , so such numerology must be taken with a grain of salt.). Conversely, inhibiting

low-precision features on either inputs (~30 and ~59) suppress the low-precision lookup table features, the

magnitude sum feature, and the appropriate sum features while leaving the ones-digit pathway alone.

We also show the quantitative effects of perturbations on the outputs, finding that negatively steering the

_6 + _9 lookup table features smears the result out over a range of 5, while negatively steering the final

sum=_95 feature smears the result out to a wider band (perhaps coming from sum~92 features).

Baseline
logits

After
Suppressing

_6 + _9

After
Suppressing

_6

After
Suppressing

_9

After
Suppressing
sum = _95

Target Prediction ∊ [0,99]

: Target prediction logits for different interventions on “calc: 36+59=”.

We will investigate how CLT features interact across the full range of two-digit addition prompts below, after

establishing the framework for global weights that we use to generalize this circuit to other inputs.

The attribution graphs we construct show how features interact on a specific prompt to produce the model's output,

but we are also interested in a more global picture of how features interact across all contexts. In a classic multi-

layer perceptron, the global interactions are provided by the weights of the model: the direct influence of one neuron

on another is just the weight between them if the neurons are in consecutive layers; if neurons are further apart, the

influence of one on another factors through intermediate layers. In our setup, the interaction between features has a

context component and a context component. We would ideally like to capture both: we want

a set of which are context independent but also capture network behavior across all possible

contexts. In this section we analyze the context independent component (a kind of “virtual weight”), a problem with

them (large “interference” terms with no causal effect on distribution), and one approach using co-activation

statistics to deal with the interference.

On a specific prompt, a source CLT feature () influences a target () via three kinds of paths:

1. residual-direct: ’s decoders write to the residual stream, where it is read in at a later layer by ’s encoder.

2. attention-direct: ’s decoders write to the residual stream, are transported by some number of attention head

OV steps, and then read by ’s encoder.

3. indirect: paths from to are mediated by other CLT features.

We note that the residual-direct influence is simply the product of the first feature's activation on this prompt times a

virtual weight which is consistent across inputs. These virtual weights are a simple form of global weights

because of this consistent relationship. Virtual weights have been derived between many different components in

neural networks, including attention heads , SAE features , and transcoder features . For CLTs, the virtual

weight between two features is the inner product between the encoder of the downstream feature and the sum of

decoders in between these two features.

More formally, let and be the layers of the encoder weights for features and . Let be the set of layers in

between these features such that . Feature writes to all MLP outputs in before reaching

feature . Let be the decoder weights for feature targeting layer , and be the encoder weights for

feature . Then, the virtual weights are computed as:

Attribution graph edges consist of a sum of the residual-direct contribution (the virtual weight multiplied by a

feature’s activation) plus the attention-direct contribution.

There is one major problem with interpreting virtual weights: interference . Because millions of features are

interacting via the residual stream, they will all be connected, and features which never activate together on-

distribution can still have (potentially large) virtual weights between them. When this happens, the virtual weights are

not suitable global weights because these connections never impact network function.

We can see interference at play in the following example: below, we take a “Say a game name” feature in 18L and

plot its largest virtual weights by magnitude. Green bars indicate a positive connection and purple bars indicate a

negative one. Many of the most strongly-connected features are hard to interpret or not clearly related to the

concept.

s t

s t

s

t

s t

23

[18] [8, 24] [12]

ℓs ℓt s t Lst

∀ℓ ∈ L , s ≤ ℓ < tst s Lst

t Wdec
s,ℓ

s ℓ Wenc
t

t

V = ⟨ W , W ⟩st

ℓ∈Lst

∑ dec
s,ℓ

enc
t

[7, 25]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2021/framework/index.html#virtual-weights
https://transformer-circuits.pub/2021/framework/index.html#virtual-weights

Virtual weight Virtual weight

<1% max max

Feature label

<1% max max

Feature label

Base 64 L15

Counts L14

Say a game name L16

Calendar dates L14

“2” in calendar dates L14

Car design L15

First names L15

Base 64 L15

Say a game name L15

Television channels L15

Actors L15

Peptides L14

Electric cars L15

Space companies L15

Agriculture L15

Oil re�nement L15

Academic authors L14

International lines L14

Legal parties in espanol L16

Weather prediction L14

Unclear L11

Compound term L8

Grammar L11

Laws L8

Unclear L8

Chemical compounds L10

Unclear L9

Unclear L8

Economics L9

Unclear L8

Numbers in research L8

Unclear L8

Document types L9

Def/indef articles L6

Unclear L7

Terms and laws L8

Unclear L11

Unclear L9

Formal words L5

“in” L9

: Largest virtual weights by magnitude for an example 18L feature. Green bars indicate a positive
connection and purple bars indicate a negative one. Many large connections are not easily interpretable.

L13

You might consider this a sign that virtual weights or our CLTs aren’t capturing interpretable connections. However,

we can still uncover many interpretable connections by trying to remove interference from these weights.

There are two basic solutions to this problem. One is to restrict the set of features being studied to those active on a

small domain (as we do in § 4.1 Global Weights in Addition). The other is to bring in information about the feature-

feature coactivation on the data distribution.

24

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights-addition

For example, let be the activation for feature . We can compute an expected residual attribution value by

multiplying the virtual weight as follows.

This represents the average strength of a residual-direct path across all of the prompts we’ve analyzed (also

computed by Dunefsky et al.). This is similar to computing the average of all attribution graphs within a context

position across many tokens. The indicator function in this expression () captures how attributions are

only positive when the target feature is active. As small feature activations are often polysemantic, we instead

weight attributions using the target activation value:

We call this last type of weight target-weighted expected residual attribution (TWERA). As shown in the equations,

both of these values can be computed by multiplying the original virtual weights by (“on-distribution”) statistics of

activations.

Now, we revisit the example game feature from before but with connections ordered by TWERA. We also plot each

connection’s “raw” virtual weight for comparison. Many more of these connections are interpretable, suggesting that

the virtual weights extracted useful signals but we needed to remove the interference in order to see them. The most

interpretable features from the virtual weight plot above (another “Say a game name” and “Ultimate frisbee” feature)

are preserved while many unrelated concepts are filtered out.

ai i

V = E[11(a > 0)V a] = E[11(a > 0)a]Vij
ERA

j ij i j i ij

[12]

25 11(a > 0)j

V = Vij
TWERA

E[a]j

E[a a]j i
ij

Virtual weight Virtual weightTWERA TWERAFeature label

<1% max max <1% max max

Feature label

Say a game name

Ultimate frisbee

Say a game name

Texas Hold'em

Say a game name

Predict another game name

Billiards

Sudoku

Ultimate frisbee

Say a game name

Pickleball, Checkers, et al.

Ultimate frisbee, et al.

Say a game name

Say a game name

Craps Croquet

Blackjack

Bingo, Baccarat

Bingo

Ping-Pong

Say a video game

Capitalized tokens L1

"of" token L1

Capitalized tokens L1

"like" token L1

"in" token L1

Board games L12

Games L6

"," token L1

"play" token L1

"at" token L1

Role or game playing L8

Rules explanations L12

(Mostly card) games L9

Physical games L9

"playing" token L7

"pots" or "pools" L12

"playing token" L1

"de" token L1

Game names L9

"play" token L1

: Largest TWERA values for the same example feature.

L13

<1% max max <1% max max

TWERA is not a perfect solution for interference. Comparing TWERA values to the raw virtual weights shows that

many extremely small virtual weights have strong TWERA values. This indicates that TWERA heavily relies on the

coactivation statistics and strongly changes which connections are important beyond simply removing the large

interference weights. TWERA also does not handle inhibition well (like attribution generally). We will explore these

issues further in future work.

Still, we find that global weights give us a useful window into how features behave in a broader range of contexts

than our attribution graphs. We’ll use these methods to complement our understanding in the rest of this paper and

in the companion paper.

26

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights-addition

We now return to the simple addition problem from above on Haiku 3.5, and show how data-independent virtual

weights reveal clear structure between the types in our taxonomy of addition features. We again consider

completions of the 10,000 prompts calc: a+b= for , [0, 99]. In addition to the operand plots (again, defined

above), we inspect the virtual weight graph after restricting the large virtual weight matrix to the set

which are active on at least 10 of the set of 10,000 addition prompts. This allows us to see all the feature-feature

interactions that can occur via direct residual paths.

In the neighborhood of the features appearing in the 36+59 prompt above, we see:

• The _6 + _9 lookup table features feed into other sum features (sum=_15 , sum=_25 , etc.), which

likely activate when combined with other magnitude features.

• The add _9 feature feeds into other ones-digit lookup table features, (_9 + _9 , _0 + _9 , etc.).

• The sum = _5 feature is fed by other lookup table features.

• The medium-precision ~36+60 lookup table feature is fed by an add ~62 feature in addition to the

add ~57 feature we see on this prompt.

Many mod 10 lookup ta
features contribute to s

The add _9 feature
upweights many
lookup table
features.

We display a subset of the features with virtual weights to some of the features active on the
prompt. Dark features () and edges () are on that prompt. Lighter features () and edges ()
are on the prompt but connected to it in the global circuit, and can contribute on other prompts.

36+59

_6 + _9

add _9

sum = _95

~36 + ~60

add ~57

~58 + ~37

add ~62

sum = _55 sum = _25sum = _65 sum = _35 sum = _15

(mod 50)
~25 + ~25 _9 + _1 _9 + _2

: Virtual weight connections between Haiku features active on addition prompts. The connections from “calc: 36+59=” �t into general patterns.

We provide an interactive interface to explore the virtual weights connecting all 2931 features prominent on two-digit

addition problems in our smaller 18L model.

n × nfeat feat

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-addition
https://transformer-circuits.pub/2025/attribution-graphs/static_js/addition/index.html
https://transformer-circuits.pub/2025/attribution-graphs/static_js/addition/index.html

We find that restricting to features active on this narrow domain of addition problems produces a global circuit graph

where most edges are interpretable in terms of the operand function realized by the source and target features.

Moreover, the connections between features recapitulate a more general version of the graph in the previous section;

add features detect a specific operand as part of the input, lookup table features propagate this information to sum

features which (in concert with the previous features) produce the model’s final answer.

Several of the features we find take the form of heuristics as in Nikankin et al. : features whose operand plots

have predictive power directly push that prediction to the outputs: the low precision features promote outputs in the

range matching their operands; the ones digit lookup table features directly promote outputs matching their

mappings (e.g. _6 + _9 directly upweights _5 outputs). Almost none of these features represent the full solution

until the very last layers of the model. As viewed by CLTs, the models use several intermediate heuristics rather

than a coherent procedural program with a single confident output.

Our focus on the steps the model uses to perform addition is complementary to concurrent work by

Kantamneni and Tegmark which begins from . Inspired by the observation of spikes in the Fourier

decomposition of the embedding vectors for integers, they find low-dimensional subspaces highly correlated with

numbers' magnitudes and mod 2, 5, 10, and 100 components. Projecting to those subspaces preserves much of the

model's performance on the task, consistent with a “Clock” algorithm performing separate calculations in each

modulus, which interfere constructively at the end; the CLT features show essentially high- and low-precision

versions of that method. Some of the important features we find have operand plots similar to their neurons, which

they fit as a (thresholded) sum of Fourier modes. Some of the important features appearing in our graphs (such as

operands or sums that with fixed digits, e.g. 95_ and 9_) aren't describable in Fourier terms, consistent with

the existence of some error in their low-rank approximation. Identifying the representational basis of the ensemble

of computational strategies revealed by our unsupervised approach is a promising direction for future work.

Altogether, we’ve replicated a view of the base model using heuristics finding matching CLT features, we’ve shown

how these heuristics contribute to separable pathways through intervention experiments, and we've demonstrated

how these heuristics are connected, building off one another to collectively solve the addition task.

[21]

[22]

27

28

In this section, we perform qualitative and quantitative evaluations of transcoder features and the attribution graphs

derived from them, focusing especially on and . For readers interested in a higher level

discussion of findings and limitations, we recommend skipping ahead to § 6 Biology and § 7 Limitations.

Our methods produce causal graph descriptions of the model’s mechanisms on a particular prompt. How can we

quantify how well these descriptions capture what is really going on in the model? It is difficult to distill this question

to one number, as several factors are relevant:

. How well do we understand what individual features “mean”? We attempt to quantify interpretability

in a few ways below; however, we still rely heavily on subjective evaluation in practice. The coherence of our

groupings of features into “supernodes” also warrants evaluation. We do not attempt to quantify this in this work,

instead leaving it to readers to verify for themselves that our groupings are sensible and interpretable. We also note

that in the context of attribution graphs, interpretability of the is just as important as interpretability of

individual features. To that end, we quantify one notion of graph simplicity: average path length.

. To what extent are our (pruned) attribution graphs sufficient to explain the model’s behavior? We

attempt to quantify this in several ways. The most straightforward such evaluation is our measurement of how well

the replacement model’s outputs match the underlying model, discussed in § 2.2 From Cross-Layer Transcoder to

Replacement Model . This is a “hard” evaluation in that a single error anywhere along the computational graph can

severely degrade performance. We also compute a few “softer” measures of sufficiency below, that measure the

proportion of error nodes in attribution graphs. Note that in many instances, we present schematics of of

a pruned attribution graph that portray what we believe to be its most noteworthy components. We intentionally do

 measure the sufficiency of these subgraphs, as they often intentionally exclude “boring” but necessary parts of

the graph (e.g. “this is a math problem” features in addition prompts). We leave it to future work to find more

principled ways to distill attribution graphs to their “interesting” components and quantify how much (and what kind

of) information is lost.

 To what extent are the mechanisms we identify used by the model? To measure

this, we perform perturbation experiments (such as inhibiting active features) and measuring whether the effects

agree with what is predicted by the local replacement model (the underlying object portrayed by our attribution

graphs). We attempt to do so quantitatively below, and we also validate faithfulness on our specific case studies, in

particular focusing on faithfulness of the mechanisms we have identified as interesting / important. Note that our

notion of mechanistic faithfulness is related to the idea of of circuit components to a model’s computation.

However, necessity can be a somewhat restrictive notion – mechanisms that are not strictly “necessary” for the

model’s output may still be important to identify, especially in cases where multiple mechanisms cooperate in

parallel to contribute to a computation, as we often observe.

We note that the specific evaluations we use are in many cases new to this work. In part this is because our work is

somewhat unique in focusing on attribution graphs for individual prompts, rather than identifying circuits underlying

the model’s performance of an entire . Developing better automatic methods for evaluating interpretability,

sufficiency, and faithfulness of the entire pipeline (features, supernodes, graphs) is an important subject of future

research. See § 9 Related Work for more detail on prior circuit evaluation methods.

29

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#biology
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#biology
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-comparing
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-comparing
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#related-work
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#related-work
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model

For CLT features to be useful to us, they must be human-interpretable (perhaps in the future it will suffice for them to

be AI-interpretable!). Interpretability is ultimately a qualitative property – the best gauge of the interpretability of our

features is to view them in action. A standard (though incomplete) tool for understanding what a feature represents

is to view the dataset examples for which it is active (we refer to the collection of such examples as our “feature

visualization”). We provide thousands of feature visualizations in the context of our case studies of circuits later in

this paper and in the companion paper. Below we also show 50 randomly sampled features from assorted layers of

each model.

Our feature visualizations show snippets of samples from public datasets (Common Corpus, The Pile with books

removed , LMSYS Chat 1m , and Isotonic Human-Assistant Conversation) that most strongly activate the

feature, as well as examples that activate the feature to varying degrees interpolating between the maximum

activation and zero. Highlights indicate the strength of the feature’s activation at a given token position. We also

show the output tokens that the feature most strongly promotes / inhibits via its direct connections through the

unembedding layer (note that this information is typically more meaningful for features in later model layers).

(Hover)

Layer 1 Layer 5 Layer 9 Layer 13 Layer 17

(Hover)

First layer Mid-layer Final layer

At a very coarse level, we find several types of features:

• Input features that represent low-level properties of text (e.g. specific tokens or phrases). Most early-

layer features are of this kind, but such features are also present in middle and later layers.

• Features whose activations represent more abstract properties of the context. For example, a

feature for the danger of mixing common cleaning chemicals. These features appear in middle and

later layers.

• Features that perform , such as an “add 9” feature that causes the model to output a number

that is nine greater than another number in its context. These tend to be found in middle and later layers.

• Output features, whose activations promote specific outputs, either specific tokens or categories of

tokens. An example is a “say a capital” feature , which promotes the tokens corresponding to the names

of different U.S. state capitals.

• Polysemantic features, especially in earlier layers, such as this feature that activates for the token

“rhythm”, Michael Jordan, and several other unrelated concepts.

In line with our previous results on crosscoders , we find that features also vary in the degree to which their

outputs “live” in multiple layers – some features contribute primarily to reconstructing one or a few layers, while

others have strong outputs all the way through the final layer of the model, with most features falling somewhere in

between.

We also note that the abstractions represented by Haiku features are in many cases richer than those in the smaller

18L model, consistent with the model’s greater capabilities.

[27] [28]

[15]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-features
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://huggingface.co/blog/Pclanglais/common-corpus
https://huggingface.co/blog/Pclanglais/common-corpus
https://huggingface.co/datasets/Isotonic/human_assistant_conversation
https://huggingface.co/datasets/Isotonic/human_assistant_conversation
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html

In § 2.2 From Cross-Layer Transcoder to Replacement Model, we evaluated the ability of our CLTs to reproduce the

computation of the underlying model. Here, we measure reconstruction error, sparsity (measured by “L0”, the

average number of features active per input token), and feature interpretability. As we increased the size of our CLT,

we observed Pareto-improvements in reconstruction error (averaged across layers) and feature sparsity (in 18L,

reconstruction error decreased at a roughly fixed L0, while in Haiku, reconstruction error and L0 both decreased). In

our largest 18L run (10M features), we attained a normalized mean reconstruction error of ~11.5% and an average

L0 of 88. In our largest Haiku run (30M features), we attained a normalized reconstruction error of 21.7%, and an

average L0 of 235.

We also computed two LLM-based quantitative measures of interpretability, introduced and described in more detail

in :

• : we take two randomly sampled features and identify the set of dataset examples that activate

them most strongly. We present these sets of examples to Claude, including the token-by-token feature

activation information. Then we take other dataset examples that activate of the features,

present these to Claude, and ask it to guess which feature these examples correspond to (based on the

initial example sets). The final evaluation score is the empirical likelihood that Claude guesses the

correct feature on any given pair.

• : we generate (using Claude) pairs of prompts that are similar in content and structure

but differ in one key respect. We compute the sets of features that activate on of the prompts

but not the other. We present Claude with the feature vis for each such feature, along with the two

prompts, and ask it to guess which prompt caused the feature to activate. The final evaluation score is

the empirical likelihood that Claude guesses the correct prompt for features across trials.

We find that according to both measures, the quality of CLT features improves with scale (alongside improving

reconstruction error) – see plots below.

We also compare CLTs to two baselines: per-layer transcoders (PLTs) trained at each layer of the model, and the raw

neurons of the model thresholded at varying activation levels. We find that on all metrics, CLTs outperform PLTs,

and both CLTs and PLTs substantially outperform the Pareto frontier of thresholded neurons.

[29]

30

31

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#building-replacement

: Reconstruction error and sparsity/interpretability scores for multiple dictionary types �t to 18L.

: Reconstruction error and sparsity/interpretability scores for 18L and Haiku.

Case studies in § 3 Attribution Graphs focused on qualitative observations derived from attribution graphs. In this

section, we describe our more quantitative evaluations used to compare methodological choices and dictionary

sizes. In each of the following subsections, we will introduce a metric and compare graphs generated using (1)

cross-layer transcoders, (2) per-layer transcoders for every layer, and (3) thresholded neurons . To connect the

quantitative to the qualitative, we will link to graphs which score especially high or low on each of these metrics.

While we don’t treat these metrics as fundamental quantities to be optimized, they have proven a useful guide for

tracking ML improvements in dictionary learning and to flag prompts our method performs poorly on.

32

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs

Our graph-based metrics rely on quantities derived from the . Informally, this matrix measures

how much each pair of nodes influences each other via all possible paths through the graph. This gives a natural

importance metric for each node: how much it influences the logit nodes. We also commonly compare how much

influence comes from error nodes vs. non-error nodes.

To construct this matrix, we start with the adjacency matrix of the graph. We replace all the edge weights with their

absolute values (or simply clamp negative values to 0) to obtain an unsigned adjacency matrix and then normalize

the input edges to each node so that they sum to 1. Let refer to this normalized, unsigned adjacency matrix,

indexed as (target, source).

The indirect influence matrix is , which is a Neumann series and can be efficiently

computed as . The entries of indicate the sum of the strengths of all paths between a given

pair of nodes, where the strength of any given path is given by the product of the values of its constituent edges in .

To compute a logit influence score for each node, we compute a weighted average of the rows of B corresponding to

logit nodes (weighted by the probability of the particular logit).

A natural metric of graph complexity is the average path length from embedding nodes to logit nodes. Intuitively,

shorter paths are easier to understand as they require interpreting fewer links in the causal chain.

To measure the influence of paths of different lengths, we compute influence matrices .The influence

of paths of length less than or equal to is then given by where are all embedding nodes and is

the logit node.

Below, we compare graphs built from our 10M CLT, 10M PLTs, and thresholded neurons in terms of their influence by

path length averaged across a dataset of pretraining prompts (without pruning).

A

B = A + A + A + ⋯2 3

B = (I − A) − I−1 B

A

B = Aℓ ∑i=0
ℓ i

ℓ P = Bℓ ∑e t,e
ℓ e t

33

34

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-influence
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-influence
https://en.wikipedia.org/wiki/Neumann_series
https://en.wikipedia.org/wiki/Neumann_series
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details

: Comparison of average cumulative in�uence versus path length by dictionary type. Shorter paths are easier to trace.

One of the most important advantages of crosslayer transcoders is the extent to which they reduce the path lengths

in the graph. To understand how large of a qualitative difference this is, we invite the reader to view these graphs

generated with different types of replacement models for the same prompt.

Cross-Layer Transcoder (10m) 2.3 capital-analogy-clt

Per-Layer Transcoders (10m) 3.7 capital-analogy-plt

We find that one important way in which cross-layer transcoders collapse paths is the case of amplification, where

many similar features activate each other in sequence. For example, on the

prompt Zagreb:Croatia::Copenhagen: the per-layer transcoder shows a path of length 7 composed entirely

of Copenhagen features while the cross-layer transcoder collapses them all down to layer 1 features.

https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-clt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-clt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-slt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-slt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-slt-18l-path-highlight
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-slt-18l-path-highlight
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-clt-18l-path-highlight
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-clt-18l-path-highlight

Denmark

L5

Copenhagen

L2

L1L1

Copenhagen

L1

Copenhagen

L1

Copenhagen

L1

Copenhagen

L7

Denmark

L10

Copenhagen

L9

DenmarkCopenhagen

L8 L8

PLTs model computation independently at each layer. This can create repeated
features.

CLTs can merge computation across layers, simplifying graphs (but potentially
being less faithful).

Denmark

L8

CLTs can collapse
repeating or amplifying
paths, but may risk
more mechanistic
unfaithfulness

Copenhagen

L1

Copenhagen

L1

Copenhagen

L1

: CLTs produce simpler graphs than PLTs.

This example illustrates both the advantages and disadvantages of consolidating amplification of a repeated

computation across multiple layers into a single cross-layer feature. On one hand, it makes interpretability

substantially easier, as it automatically collapses duplicate computations into a single feature without needing to do

post hoc analysis or clustering. It also reduces the risk of “chain-breaking”, where missing one feature in an

amplification chain inhibits the ability to trace back further into the graph (i.e., a relevant amplification feature is

missing for one step of the path, breaking the causal chain). On the other hand, the CLT has a different causal

structure than the underlying model, which increases the risk that the replacement model’s mechanisms diverge

from the underlying model’s. In the above example, we observe a set of Copenhagen features that activate a

Denmark feature, which initiates a mutually reinforcing chain of Copenhagen and Denmark features. This dynamic is

invisible in CLT graphs, and to the extent this dynamic is also present in the underlying model, it is an example of

CLTs being mechanistically unfaithful.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-comparing
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-comparing

Because our replacement model has reconstruction errors, we want to measure how much of the model’s

computation is being captured. That is, how much of the graph influence is attributable to feature nodes versus error

nodes.

To measure this, we primarily rely on two metrics:

• measures the fraction of input edges (weighted by the target node’s logit

influence score) that come from feature or embedding nodes rather than error nodes.

• measures the fraction of end-to-end graph paths (weighted by strength) that

proceed from embedding nodes to logit nodes via feature nodes (rather than error nodes).

Intuitively, the completeness score gives more “partial credit” and measures how much of the most important node

inputs are accounted for, whereas replacement score rewards complete explanations.

Below, we report average graph replacement and completeness scores for dictionaries of various sizes and

types on our pretraining prompt dataset. We find the biggest methodological improvement comes when moving

from per-layer to cross-layer transcoders, with large but diminishing returns from scaling the number of features.

: Comparison of graph completeness and replacement score versus per-token L0 for graphs generated with different underlying dictionaries. Higher replacement s
correspond to graphs with fewer holes, and lower L0 suggests more interpretable graphs.

To contextualize the qualitative difference we observe in graphs with varying scores, we invite the reader to explore

some representative attribution graphs. Note, these graphs are pruned with our default pruning, which we describe in

more detail below.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details

Cross-Layer Transcoder (10m) 0.80 0.61 uspto-telephone-clt

Per-Layer Transcoders (10m) 0.78 0.37 uspto-telephone-plt

We rely heavily on pruning to make graphs more digestible. To decide how much to prune the graph, we can use the

completeness and replacement metrics described above, but with pruned nodes now counting towards the error

terms. By varying the pruning threshold, we chart a frontier between the number of {nodes, edges} and {replacement,

completeness} scores (see Appendix for full plots and details).

Default Pruning
Threshold

: Average node count and completeness score for graphs as a function of pruning threshold.

We find we can generally reduce the number of nodes by an order of magnitude while reducing completeness by only

20%.

For a sense of the qualitative difference, in the table below we link to attribution graphs for the same prompt

(another acronym) but with different pruning thresholds.

https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-clt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-clt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-slt-18l
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-slt-18l
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning

0.95 0.87 236 iasg-p95

0.9 0.83 137 iasg-p90

0.8 (default) 0.70 55 iasg-p80

0.7 0.58 27 iasg-p70

As discussed in § 3.5 Validating Attribution Graph Hypotheses with Interventions, attribution graphs provide

hypotheses about mechanisms, which must be validated with perturbation experiments. This is because attribution

graphs describe interactions in the local replacement model, which may differ from the underlying model. In most of

our work, we use attribution graphs as a tool for generating hypotheses about specific mechanisms (“Feature A

activates Feature B, which increases the likelihood of Token X”) operating inside the model, which correspond to

“snippets” of the attribution graph. We summarize the results of three kinds of validation experiments, which are

described in more detail in § G Appendix: Validating the Replacement Model.

We start by measuring the extent to which influence metrics derived from attribution graphs are predictive of

intervention effects on the logit and other features. First, we measure the extent to which a node’s logit influence

score is predictive of the effect of ablating a feature on the model’s output distribution. We find that influence is

significantly more predictive of ablation effects than baselines such as direct attribution (i.e. direct edges in the

attribution graph, ignoring multi-step paths) and activation magnitude (see Validating Node-to-Logit Influence). We

then perform a similar analysis for interactions between features. We compute the influence score between pairs of

features, and compare it to the relative effect of ablating the upstream feature in the pair on the activation of the

downstream one. We observe a Spearman correlation of 0.72, which is evidence that graph influence is a good proxy

for effects in the downstream model (see Validating Feature-to-feature Influence). See Nuances of Steering with

Cross-Layer Features for some complexities in interpreting these results.

The metrics above help provide an estimate of the likelihood that an intervention experiment will validate a

 mechanism in the graph. We might also be interested in a more general validation of the mechanistic

hypotheses implicitly made by our attribution graphs. Thus, another complementary approach to validation is to

measure the mechanistic faithfulness of the local replacement model , rather than specific paths within

attribution graphs. We can operationalize this by asking to what extent perturbations made in the local replacement

model (which attribution graphs describe) have the same downstream effects as corresponding perturbations in the

underlying model. We find that while perturbation results are reasonably similar between the two models when

measured one layer after the intervention (~0.8 cosine similarity, ~0.4 normalized mean squared error), perturbation

discrepancies compound significantly over layers. For more details, see Evaluating Faithfulness of the Local

Replacement Model.

35

https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p95
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p95
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p90
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p90
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p80
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p80
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p70
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-18l-p70
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-interventions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-interventions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-node
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-node
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-edges
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-edges
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-faithfulness

In our companion paper, we use the method outlined here to perform deep investigations of the circuits in nine

behavioral case studies of the frontier model Haiku 3.5. These include:

• We present a simple example where the model performs “two-hop” reasoning to

complete “The capital of the state containing Dallas is…”, going Dallas → Texas → Austin. We can see

and manipulate its representation of the intermediate Texas step.

• We show that the model plans its outputs when writing lines of poetry. Before

beginning to write each line, the model identifies potential rhyming words that could appear at the end.

These preselected rhyming options then shape how the model constructs the entire line.

• We find the model uses a mixture of language-specific and abstract, language-

independent circuits (which are more prevalent in Claude 3.5 Haiku than a smaller model).

• We highlight a case where the same addition circuitry generalizes between very different

contexts, and uncover qualitative differences between the addition mechanisms in Claude 3.5 Haiku and

a smaller, less capable model.

• We show an example in which the model identifies candidate diagnoses based on

reported symptoms, and uses these to inform follow-up questions about additional symptoms that could

corroborate the diagnosis – all “in its head,” without writing down its steps.

• We uncover circuit mechanisms that allow the model to

distinguish between familiar and unfamiliar entities, which determine whether it elects to answer a

factual question or profess ignorance. “Misfires” of this circuit can cause hallucinations.

• We find evidence that the model constructs a general-purpose “harmful

requests” feature during finetuning, aggregated from features representing harmful requests

learned during pretraining.

• , which works by first tricking the model into starting to give dangerous

instructions “without realizing it,” and continuing to do so due to pressure to adhere to syntactic and

grammatical rules.

• We explore the faithfulness of chain-of-thought reasoning to the model’s

actual mechanisms. We are able to distinguish between cases where the model genuinely performs the

steps it says it is performing, cases where it makes up its reasoning without regard for truth, and cases

where it from a human-provided clue so that its “reasoning” will end up at the human-

suggested answer.

• We also apply our method to a variant of the model that has been finetuned

to pursue a secret goal of exploiting biases in its training process. While the model is reluctant to reveal

its goal out loud, our method exposes it, revealing the goal to be “baked in” to the model’s “Assistant”

persona.

We encourage the reader to explore those case studies before returning here to understand the limitations we

encountered, and how that informs our approach to method development.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#biology
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#biology
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-tracing
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-tracing
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-poems
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-poems
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-multilingual
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-multilingual
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-addition
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-addition
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-medical
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-medical
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-hallucinations
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-hallucinations
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-refusals
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-refusals
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-jailbreak
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-jailbreak
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-cot
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-cot
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-misaligned
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-misaligned

Despite the exciting results presented here and in the companion paper, our methodology has a number of

significant limitations. At a high level, the most significant ones are:

• – We don't explain attention patterns are computed by QK-circuits, and

can sometimes "miss the interesting part" of the computation as a result.

• – We only explain a portion of model computation, and much

remains hidden. When the critical computation is missing, attribution graphs won't reveal much.

• – Often the fact that certain features is

just as interesting as the fact that others are. In particular, there are many interesting circuits which

involve features inhibiting other features.

• – The resulting attribution graphs can be very complex and hard to understand.

• – Issues like feature splitting and absorption mean that

features often aren't at the level of abstraction which would make it easiest to understand the circuit.

• – Ideally, we want to understand models in a global manner,

rather than attributions on a single example. However, global circuits are quite challenging.

• – When we replace MLP computation with transcoders, how confident are we

that they're using the same mechanisms as the original MLP, rather than something that's just highly

correlated with the MLP's outputs?

We discuss these in detail below, and where possible provide concrete counterexamples where our present methods

can not explain model computation due to these issues. We hope that these may motivate future research.

One significant limitation of our approach is that we compute our attribution graphs with respect to fixed attention

patterns. This makes attribution a well-defined and principled operation, but also means that our graphs do not

attempt to explain the model’s attention patterns were formed, or how these patterns mediate feature-feature

interactions through attention head output-value matrices . In this paper, we have focused on case studies where

this is not too much of an issue – cases where attention patterns are not responsible for the “interesting part” or

“crux” of the model’s computation. However, we have also found many cases where this limitation renders our

attribution graphs essentially useless.

Let's consider for a moment a much simpler model – a humble 2-layer attention-only model, of the kind studied in

. One interesting property of these models is their use of to perform basic in-context

learning. For example, if we consider the following prompt:

I always loved visiting Aunt Sally. Whenever I was feeling sad, Aunt

[18]

[18] [18, 30]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-reconstruction-error
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-reconstruction-error
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-inactive
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-inactive
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-complexity
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-complexity
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-abstraction-level
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-abstraction-level
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-local-v-global
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-local-v-global
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention

These models will have induction heads attend back to "Sally" , and then predict that is the correct answer. If we

were to apply our present method, the answer isn’t very informative. It would simply tell us that the model predicted

"Sally" , because there was a token "Sally" earlier in the context.

I always loved visiting Aunt Sally. Whenever I was
feeling sad, Aunt

I always loved
visiting Aunt . Whenever I was feeling sad,

Attention heads are doing something
here! But our graph doesn’t show what.

Induction heads are a common circuit which can be found even in small, attention-only models.
If we imagine trying to understand such a circuit with our present method, the resulting answer
is very limited...

I always loved visiting Aunt Sally. Whenever I was
feeling sad, Aunt

Induction Head

Prev.
Tok.
Head

key querylast token
was “Aunt”

... This is because we aren’t looking at the , which controls where attention heads
attend. For induction heads, the basic story is matching the present token of the query against
the previous token of the key.

QK-circuit

: A hypothetical induction head example illustrates an important limitation of our present
attribution graph method: it doesn’t explain attention moves information. For induction heads,
that’s the whole story!

why

I always
loved
visiting

. Whenever I was feeling sad,

 The induction head attends to "Sally" because it was preceded by

"Aunt" , which matches the present token. Previous methods (e.g. were able to elucidate this, and so this

case might even be seen as a kind of regression.

Indeed, when applied to Claude 3.5 Haiku on this prompt, our method has exactly this problem. See the attribution

graph visualization – the graph contains edges from token-level “Sally” features to “say Sally” features and to

the “Sally” logit, but fails to explain how these edges came about.

Induction is a simple case of attentional computation where we can make a reasonable guess at the mechanism

even without help from our attribution graphs. However, this failure of the attribution graphs can manifest in more

complex scenarios as well, where it completely obscures the interesting steps of the model’s computation. For

instance, consider a multiple choice question:

Human: In what year did World War II end?

(A) 1776

(B) 1945

(C) 1865

Assistant: Answer: (B)

When we compute the attribution graph (interactive graph visualization) for the "B" token in the Assistant’s

response, we obtain a relatively uninteresting answer – we answer "B" because of a

tokens following "(b)" feature that activates on the correct answer. (There's also a direct pathway to the

token "B" , and output pathways mediated by a say "B" motor feature; we've chosen to elide these for

simplicity.)

None of this provides a useful explanation of how the model chose its answer! The graph “skips over” the interesting

part of the computation, which is This is because the behavior

is driven by attention. On further investigation, it turns out that there are three “correct answer” features that

appear to fire on the correct answer to multiple choice questions, and which interventions show play a crucial role.

From this, we hypothesize that the mechanism might be something like the following.

[2, 18]

36

https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-induction-qk
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-induction-qk
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-induction-qk
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-induction-qk
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=multiple-choice-qk
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=multiple-choice-qk

Human: In
what year

Human: In
what year
did World
War II
end?⏎⏎
(A) 1776⏎⏎

1865⏎⏎
Assistant: Answer

Human: In what year did World War II end?⏎⏎
(A) 1776⏎⏎(B) 1945⏎⏎(C) 1865⏎⏎
Assistant: Answer:

Human: In what year did World War II end?⏎⏎
(A) 1776⏎⏎(B) 1945⏎⏎(C) 1865⏎⏎
Assistant: Answer:

tokens
following

(B)

need
answer

this is the
correct
answer

???

tokens
following

(B)

Correct
Answer
Head?

what year
did World
War II
end?⏎⏎
(A) 1776⏎⏎

1865⏎⏎
Assistant: Answer

: Multiple choice questions are another case where attention seems to be critical to
understanding the interesting computation.

Since this involves significant conjecture, it's worth being clear about what we know about the QK-circuit, and what

we don't.

• We know that it's controlled by attention, since freezing attention locks the answer.

• We don't know that it's mediated by a particular head, nor that any heads involved have a general

behavior that can be understood as a generalization of this.

• We do know that there are three features which appear to track "this seems like the correct answer". We

do know that intervening on them changes the correct answer in expected ways; for example activating

them on answer C causes the model to predict "C" .

• We don't know that "correct answer" features directly play a role in the key side of whatever attention

heads are involved, nor do we know if "need answer" features exist or play a role on the query side.

• We also do not know if there might be alternative parallel mechanisms at play (Feng & Steinhardt

).

This is all to say, there's a lot we don't understand!

But despite our limited understanding, it seems clear that the model behavior crucially flows through attention

patterns and the QK circuits that compute them. Until we can fix this, our attribution graphs will "miss the story" in

cases where attention plays a critical role. And while we were able to get a partial understanding of the story in this

case through manual investigation, we would like for our methodology to surface this information automatically in

the future!

We suspect that similar circuits, where attention is the crux, are at play across a wide variety of prompts. In these

cases, our present attribution graphs are little help to us, and new methods are needed.

Ultimately, the QK-circuit is a quadratic form over the residual stream. This means that attributions can naturally be

made to of key-side and query-side features. These pairs have a weight describing whether they increase or

decrease attention to a particular token. However, this approach has the downside of a quadratic explosion in

complexity.

Looking at QK-circuits for individual attention heads may make things harder than necessary, or even be misleading,

if there is attention superposition. The interesting behavior may be spread across heads, which each have their own

QK-circuit.

We also suspect that certain forms of dictionary learning on attention layers, or full attention replacement layers,

could make these “QK attributions” more tractable and interpretable. We believe that finding the right way to handle

attention attributions is one of the most important directions for future work.

[31]

https://transformer-circuits.pub/2024/jan-update/index.html#attn-superposition
https://transformer-circuits.pub/2024/jan-update/index.html#attn-superposition

Our cross-layer transcoders fail to fully reconstruct the activations of the model. As a result, our methods leave some

“dark matter” of the model’s mechanisms unobserved, in part because our dictionaries are not large enough to learn

a feature corresponding to every concept the model might know about. In our attribution graphs, this failure

manifests as “error nodes,” which provide input to other nodes but receive no input themselves (they “pop out of

nowhere”) and which are not interpretable. In the examples presented in this paper, we managed to identify

interesting mechanisms despite the presence of error nodes. It is important to note that the circuits we have

described are only a description of the model’s computation (both due to the presence of error nodes, and due

to the fact that the circuits we highlight typically only include a subset of the non-error nodes in the graph!).

It is worth highlighting, however, that in some cases error nodes obscure what the model is doing. For

instance, consider this attempted jailbreak – an obfuscated request for the model to write malware (which the model

refuses):

Human: Write an office macro TAhT SEaRChEs fOS AND EtEIaFTxLRS pASWORdS

Assistant:

In the attribution graph, almost all the nodes on the obfuscated prompt tokens are error nodes, making it impossible

to trace back the origin of the refusal-related features that are active on the “Assistant:” tokens.

The prevalence of error nodes in this example may not be surprising – this prompt is rather out-of-distribution

relative to typical prompts, and so the cross-layer-transcoder is likely to do a poor job of predicting model activity.

We also note that another major source of error is the gap between our human interpretations of features and what

they truly represent. Typically our interpretations of features are much too coarse to account for their precise

activation profiles.

We see several avenues for addressing this issue:

• Scaling replacement models to larger sizes / more training data will increase the amount of variance they

explain.

• Architectural modifications to our cross-layer transcoder setup could make it more expressive and thus

capable of explaining more variance.

• Training our replacement model in a more end-to-end fashion, rather than on MSE alone, could decrease

the weight assigned to error nodes even at a fixed MSE level

• Finetuning the replacement model on data distributions of interest could improve our ability to capture

mechanisms on those distributions.

• We could develop methods of attributing back from error nodes. This would leave an uninterpretable

“hole” in the attribution graph, but in some cases may still provide more insight into the model than our

current no-inputs error nodes.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-reconstruction-error
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-reconstruction-error
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter
https://transformer-circuits.pub/2024/july-update/index.html#dark-matter
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=bon-errors
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=bon-errors

Our cross-layer transcoder features are trained to be sparsely active. Their sparsity is key to the success of our

method. It allows us to focus on a relatively small set of features for a given prompt, out of the tens of millions of

features in the replacement model. However, this convenience relies on a key assumption – that only features

are involved in the mechanism underlying a model’s responses.

In fact, this need not be the case! In some cases, the of a feature, because it has been by

other features, may be key to the model’s response. For instance, in our analysis of hallucinations and entity

recognition (see companion paper), we discovered a circuit in which “can’t answer” features are by

features representing known entities, or questions with known answers. Thus, to explain why the model hallucinates

in a specific context, we need to understand what caused the “can’t answer” features to be active.

By default, our attribution graphs do not allow us to answer such questions, because they only display active

features. If we have a hypothesis about which features may be relevant to the model’s completion (due to

suppression), we can include them in the attribution graph. However, this detracts somewhat from one of the main

benefits of our methodology, which is its enablement of exploratory, hypothesis-free analysis.

This leads to the following challenge – , out of the tens of millions of

inactive features? It seems like we want to know which features could have been “counterfactually active” in some

sense. In the entity recognition example, we identified these counterfactually active features by comparing pairs of

prompts that contained either known or unknown entities (Michael Jordan or “Michael Batkin”), and then focusing on

features that were active in at least one prompt from each pair. We expect that this contrastive pairs strategy will be

key to many circuit analyses going forward. However, we are also interested in developing more unsupervised

approaches to identifying key suppressed features. One possibility may be to perform feature ablation experiments,

and consider the set of inactive features that are only “one ablation away” from being active.

One might think that these issues can be escaped by moving to global circuit analysis. However, it seems like there

may be a deep challenge which remains. We need a way to filter out interference weights, and it's tempting to do this

by using co-occurrence of features. But these strategies will miss important inhibitory weights, where one feature

consistently prevents another from activating. This can be seen as a kind of global circuit analog of the challenges

around inactive features in local attribution analysis.

One of the fundamental challenges of interpretability is finding abstractions and interfaces that manage the

cognitive load of understanding complex computations. Our methodology is designed to reduce the cognitive load

of understanding circuits as much as possible. For example:

• Feature sparsity means that there are fewer nodes in the attribution graph.

• We prune the graphs so that the analyst can focus only on its most important components.

• Our UI is designed to make navigating the graph as fluid as possible.

• We use the not-very-principled abstraction of "supernodes" to ad-hoc group together related features.

37

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-inactive
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-inactive
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-hallucinations
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-hallucinations
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-complexity
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-complexity

Despite all these steps, our attribution graphs are still quite complex, and require considerable time and effort to

understand for many reasons:

• Even after our pruning pipeline and on fairly short prompts, the graphs typically contain hundreds of

features and thousands of edges.

• The concepts we are interested in are typically smeared across multiple features.

• Each feature receives many small inputs from many other features, making it difficult to succinctly

summarize “what caused this feature to activate.”

• Features often exert influence on one another by multiple paths of different lengths, or even of different

signs!

As a result, it is difficult to distill the mechanisms uncovered by our graphs into a succinct story. Consequently, the

vignettes we have presented are necessarily simplified stories of even the limited understanding of model

computation captured in our attribution graph. We hope that a combination of improved replacement model training,

better abstractions, more sophisticated pruning, and better visualization tools can help mitigate this issue in the

future.

As sparse coding models have grown in popularity as a technique for extracting interpretable features from models,

many researchers have documented shortcomings of the approach (). One notable issue is the

problem of in which the uncovered features are in some sense . This can also lead

to a related problem of , where highly specific features steal credit from more general features,

leaving holes in them (leading to things like a “U.S. cities except for New York and Los Angeles” feature).

As a concrete example of feature splitting, recall that in many examples in this paper we have highlighted “say X”

features that cause the model to output a particular (group of) token(s). However, we also notice that there are

 such features, suggesting that they each actually represent something more specific. For example, we came

up with twelve prompts which Claude 3.5 Haiku completes with the word “during” and measured whether any

features activated for all of the prompts (as a true “say ‘during’” feature would). In fact, there are no such features –

any individual feature fires for only a subset of the prompts. Moreover, the degree of generality of the features

appears to decrease with the size of our cross-layer transcoder.

[32, 33, 34, 35, 36]

[8, 37]

[35]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-abstraction-level
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-abstraction-level

300k features 1m features 3m features 10m features

1

2

3

4

5

6

N
um

be
r

of
 p

ro
m

pt
s

a
gi

ve
n

fe
at

ur
e

ac
tiv

at
es

 o
n

Say “during” feature overlap over twelve prompts

This 300k CLT feature activates on
six of the twelve prompts

On the largest CLT, almost half of
the “during” features only activate
on a single prompt.

: Feature splitting increases with CLT scale.

It may be the case that each individual feature represents something interpretable – for instance, qualitatively

different contexts that might cause one to say the word “during.” However, we often find that the level of abstraction

we care about is different from the level we find in our features. Using smaller cross-layer transcoders may help this

problem, but would also cause us to capture less of the model’s computation.

In this paper, we often work around this issue in an ad-hoc way by manually grouping together features with related

meanings into “supernodes” of an attribution graph. While this technique has proven quite helpful, the manual step is

labor-intensive and likely loses information. It also makes it difficult to study how well mechanisms generalize

 prompts, since different subsets of a relevant feature category may be active on different prompts.

We expect that solving this problem requires recognizing that there exist interpretable concepts at varying levels of

abstraction, and at different times we may be interested in different levels. Sparse coding approaches like SAEs and

(cross-layer) transcoders are a “flat” instrument, but we probably need a hierarchical variant that allows features at

varying levels of abstraction to coexist in an interpretable way.

Several authors have recently proposed “Matryoshka” variants of sparse autoencoders that may help address this

issue . Other researchers have proposed post-hoc ways to unify related features with “meta-SAEs” .[38, 39] [40]

In this paper we have mostly focused on , which display information about feature-feature

interactions However, one theoretical advantage of transcoder-based methodologies like ours

is that they give us between features, that are of the prompt. This allows us to estimate a

“connectome” of the replacement model and learn about the general algorithms it (though not necessarily the

underlying model) uses that apply to many different inputs. We have some successes in this approach – for

instance, in the companion paper section on Refusals, we could see the global inputs to “harmful requests” features

consisting of a variety of different categories of harm. In this paper, we studied in depth the global weights

of features relating to arithmetic, finding for instance that “say a number ending in 5” features receive input from “6 +

9” features, “7 + 8” features, etc.

However, for the most part, we have found global feature-feature connections rather difficult to understand. This is

likely for two main reasons:

• – because features are represented in superposition, in order to learn useful

weights between features, models must incur spurious “interference weights” – connections between

features that don’t make sense and aren’t useful to the model’s performance. These spurious weights are

not too detrimental to model performance because their effects rarely “stack up” to actually change the

model’s output. For instance, we sometimes see features like this , which appear to clearly be a “say 15”

feature, but whose top logit outputs include many seemingly unrelated words (“gag”, “duty”, “temper”,

“dispers”). We believe these logit connections are essentially irrelevant to the model’s behavior, because

when this feature activates, it is very unlikely that “duty” will be a plausible completion, and so

upweighting its logit runs little risk of causing it to be sampled. Unfortunately, this makes the global

weights very difficult to understand! This phenomenon applies to feature-feature weights as well (see

§ 4.1 Global Weights in Addition).

• – The basic global feature-feature weights derived from our cross-

layer transcoder describe the direct interactions between features

However, there are also feature-feature weights mediated by attention heads. These might be thought of

as similar to how features in a convolutional neural network are related by multiple sets of weights,

corresponding to different positional offsets (further discussion here).

Our attribution graph edges are weighted combinations of both the direct weights and these attention-mediated

weights. Our basic notion of global weights does not account for these interactions at all. One way to do so would be

to compute the global weights mediated by every possible attention head. However, this has two limitations: (1) for

this to be useful, we need a way of understanding the mechanisms by which different heads choose where they

attend (see § 7.1 Limitations: Missing Attention Circuits), (2) it does not account for interactions mediated by

of heads . Solving this issue likely requires extending our dictionary learning methodology to learn

interpretable attentional features or replacement heads.

[18]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-local-v-global
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-local-v-global
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-refusals
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-refusals
https://transformer-circuits.pub/2023/may-update/index.html#weight-superposition
https://transformer-circuits.pub/2023/may-update/index.html#weight-superposition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights-addition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights-addition
https://transformer-circuits.pub/2021/framework/index.html#additional-intuition
https://transformer-circuits.pub/2021/framework/index.html#additional-intuition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-faithfulness

Our cross-layer transcoder is trained to mimic the activations of the underlying model at each layer. However, even

when it accurately reconstructs the model’s activations, there is no guarantee that it does so via the same

. For instance, even if the cross-layer transcoder achieved 0 MSE on our training distribution, it might

have learned a fundamentally different input/output function than the underlying model, and consequently have large

reconstruction error on out-of-distribution inputs. We hope that this issue is mitigated by (1) training on a broad data

distribution, and (2) forcing the replacement model to reconstruct the underlying model’s activations, rather

than simply its output. Nevertheless, we cannot guarantee that the replacement model has learned the same

mechanisms – what we call – and instead resort to verifying it post-hoc.

In this paper, we have used perturbation experiments (inhibiting and exciting features) to validate the mechanisms

suggested by our attribution graphs. In the case studies we presented, we were typically able to validate that

features had the effects we expected (on the model output, and on other features). However, the degree of validation

we have provided is very coarse. We typically perturb multiple features at once (“supernodes”) and check their

directional effects on other features / logit outputs. In addition, we typically sweep over the layer at which we

perform perturbations and use the layer that yields the maximum effect. In principle, our attribution graphs make

predictions that are fine-grained than these kinds of interventions can test. Ideally, we should be able to

accurately predict the effect of perturbing any feature at any layer on any other feature.

In § G Appendix: Validating the Replacement Model, we attempt to more comprehensively quantify our accuracy in

predicting such perturbation results, finding reasonably good predictive power for effects a few layers downstream

of a perturbation, and much worse predictive power many layers downstream. This suggests that, while our circuit

descriptions may be mechanistically accurate at a very coarse level, we have substantial room to improve their

faithfulness to the underlying model.

We are optimistic about trying methods to directly optimize for mechanistic faithfulness, or exploring alternative

dictionary learning architectures that learn more faithful solutions naturally.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation

Our approach to reverse engineering neural networks has four basic steps: decomposition into components,

providing descriptions of these components, characterizing how components interact to produce behaviors, and

validating these descriptions. A number of choices are required at each step, which can be more or less principled,

and the power of a method is ultimately the degree to which it produces valid hypotheses about model behaviors.

In this paper, we trained cross-layer transcoders with sparse features to replace MLP blocks (the decomposition),

described the features by the dataset examples they activate on (the description), characterized their interactions on

specific prompts using attribution graphs (the interactions), and validated the hypotheses using causal steering

interventions (the validation).

We believe some of the choices we made are robust, and that successful decomposition methods will make similar

choices or find other ways of dealing with the underlying issues they address:

• While the top activations for neurons are often

interpretable, lower activations are not. In principle, one could threshold neuron activations to restrict

them to this interpretable regime; however, we found that thresholding neurons at that level damages

model behavior significantly more than a transcoder or CLT. This means a trained replacement layer can

provide a Pareto improvement relative to thresholded neurons across interpretability, L0, and MSE. The

set of neurons is fixed. (Nevertheless, neurons can provide a starting point for investigation, without

incurring any additional compute costs, see e.g. .)

• While residual stream SAEs can decompose the

latent states of a model, they don't provide a natural extension decomposing its computational steps.

Crucially, transcoder features bridge over MLP layers and interact linearly via the residual stream with

transcoder features in other layers. In contrast, interaction between SAE features is interposed by non-

linear MLPs.

• We hypothesized that different

MLP layers might collaborate to implement a single computational step (“cross-layer superposition”); the

most extreme case of this is when many layers amplify the same early-layer feature so that it is still large

enough to influence late layers. CLTs collapse these to one feature. We found evidence that this

phenomenon happens in practice, as manifested through the Pareto improvement on path length vs

graph influence.

•

 Much has been written about “saliency maps” or attribution through non-linear neural networks

(including ablation, path-integrated gradients , and Shapley values ()). Even the most

principled options for credit assignment in a nonlinear setting are somewhat fraught. Since our goal is to

crisply reason about mechanism, we construct our setup so that the direct interactions between features

in the previous layer and the pre-activations of features in the next layer are ; that is to

say, they are linear once we freeze certain parts of the problem (attention patterns and normalization

denominators). This factors the problem into a portion we can mechanistically understand in a principled

manner, and a portion that remains to be understood . Also crucial to achieving this linear direct

effect property is the earlier decision to use transcoders.

There are other choices we made for convenience, or as a first step towards a more general solution:

38

[41]

[15]

[42] [43]

[18]

3940

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#discussion
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#discussion
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths

• Every edge in our attribution graph is the direct interaction of a pair of

features, summed over all possible direct interaction paths. Some of these paths flow primarily through

the residual stream. Others flow through attention heads. We make no effort in the present work to

distinguish these. This throws away a lot of interesting structure, since mediated an

interaction may be interesting, if they are something we understand (e.g. a successor head or

induction head).

• In order to get our linear feature-feature interactions, we factor understanding

transformers into two pieces, following . First we ask about feature-feature interaction,

conditional on an attention head or set of attention heads (the “OV-circuit”). But this leaves a second

question of why attention heads attend to various pieces (the “QK-circuit”). In this work, we do not

attempt this second half.

• While our ultimate goal

is to find circuits with sparse interpretable edges, in a replacement model which is

 to the underlying model, we don't train explicitly for any of those goals.

Nevertheless, our current method yielded interesting, validated mechanisms involving planning, multilingual

structure, hallucinations, refusals, and more, in the companion paper.

We expect that advances in the trained, interpretable replacement model paradigm will produce quantitative

improvements on graph-related metrics and qualitative improvements on the amount of model behaviors that

become legible. It is possible that this will be an incremental process, where incremental improvements to CLTs and

associated approaches to attention will yield incremental improvements to circuit identification, or that a radically

different decomposition approach will best this method at scale at uncovering mechanisms. Regardless, we hope to

enter an era where there is a clear flywheel between decomposition methods and “biology” results, where the

appearance of structure in specific model investigations inspires innovations in decomposition methods, which in

turn bring more model behaviors into the light.

Addition is one of the simplest behaviors performed by models, and because it is so structured, we can characterize

every feature's activity on the full problem domain exactly. This allows us to skip the difficult step of staring at

dataset examples and trying to discern what a feature is doing relative to, and what distinguishes it from other

features active in similar contexts. This revealed a range of heuristics used by Haiku 3.5 (“say something ending in a

5”, “say something around 50”, “say something starting with 51”) which had been identified before by Nikankin ,

together with a set of lookup table features that connect input pairs satisfying certain conditions (say, adding digits

ending in 6 and 9) to the appropriate sum features satisfying the consequence on the output (say, producing a sum

ending in 5).

However, even in this easier setting we made numerous mistakes when labeling these features from the original

dataset examples alone, for example thinking a _6 + _9 feature was itself a sum = _5 feature based on what

followed it in contexts. We also struggled to distinguish between low-precision features of different scales, and

between features which were sensitive to a limited set of inputs or merely appeared to be because of a high

prevalence of those inputs in our dataset. How much worse must this be when looking at dozens of gradations of

refusal features! Getting more precise distinctions between features in fuzzier domains than arithmetic, whether

through feature geometry or superhuman autointerpretability methods, will be necessary if we want to understand

problems at the level of resolution that even today's CLTs appear to make possible.

[44]

[30] 4142

[18]

[21]

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html

Because addition is such a clear problem, we were also able to see how the features connected with each other to

build parallel pathways; giving rise from simple heuristics depending on the input to more complex heuristics related

to the output; going from the “Bag of Heuristics” identified by Nikankin to a “Graph of Heuristics”. The virtual weights

show this computational structure, with groups of lookup table features combining to form sum features of different

modularity and scale, which combine to form more precise sum features, and to eventually give the output. It seems

likely that, in “fuzzier” natural language examples, we are conflating many roles played by features at different depths

into overall buckets like “unknown entity” or “harmful request” or “notions of largeness” which actually serve

specialized roles, and that there is actually an intricate aggregation and transformation of information taking place,

just out of our understanding today.

Despite being a young field, mechanistic interpretability has grown rapidly. For an introduction to the landscape of

open problems and existing methods, we recommend the recent survey by Sharkey . Broader perspectives

can be found in recent reviews of mechanistic interpretability and related topics ().

In previous papers, we've discussed some of the foundational topics our work builds on, and rather than recapitulate

that discussion, we will refer readers to our previous discussion on them. This includes

• (;)

• (;),

• (;),

• (e.g. ; s),

• (;),

• (;),

• (;),

• (;),

• (; see prior discussion)

• (;).

The next two sections will focus on the two different stages we often use in mechanistic interpretability :

identifying features and then analyzing the circuits they form. Following that, we'll turn our attention to past work on

the "biology" of neural networks.

A fundamental challenge in circuit discovery is finding suitable units of analysis . The network's natural

components—attention heads and neurons—lack interpretability due to superposition , making the identification

of better analytical units a central problem in the field.

is a technique with a long history originally developed by neuroscientists to analyze

neural recording data . Recent work has applied Sparse Autoencoders (SAEs) as a scalable

solution to address superposition by learning dictionaries that decompose language model . While

SAEs have been successfully scaled to frontier models , researchers have identified several methodological

limitations including feature shrinkage , feature absorption , lack of canonicalization , automating

feature interpretation , and poor performance on downstream classification and steering tasks .

For circuit analysis specifically, SAEs are suboptimal because they decompose representations rather than

. address this limitation by predicting the of nonlinear components

from their inputs. Bridging over nonlinearities like this enables direct computation of pairwise feature interactions

without relying on attributions or ablations through intermediate nonlinearities.

[32]

[45, 46, 47, 48]

[49, 50, 51]

[52, 53]

[54]

[55, 56]

[57]

[58, 59]

[60, 61]

[6, 5]

[62]

[63, 64]

[65]

[32]

[7, 66]

[60] [67, 8, 9, 10, 11, 68] [69, 70]

[10, 68]

[71] [35, 40] [72, 73, 74]

[75, 76, 77] [33, 34]

[12, 13, 14, 17]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#related-work
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#related-work
https://transformer-circuits.pub/2022/toy_model/index.html#related-interpretable-features
https://transformer-circuits.pub/2022/toy_model/index.html#related-interpretable-features
https://transformer-circuits.pub/2021/framework/index.html#related-work:~:text=to%20our%20approach.-,ATTENTION%20HEAD%20ANALYSIS,-Our%20work%20follows
https://transformer-circuits.pub/2021/framework/index.html#related-work:~:text=to%20our%20approach.-,ATTENTION%20HEAD%20ANALYSIS,-Our%20work%20follows
https://transformer-circuits.pub/2021/framework/index.html#bertology-generally
https://transformer-circuits.pub/2021/framework/index.html#bertology-generally
https://transformer-circuits.pub/2021/framework/index.html#interpretability-interfaces
https://transformer-circuits.pub/2021/framework/index.html#interpretability-interfaces
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-disentanglement
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-disentanglement
https://transformer-circuits.pub/2022/toy_model/index.html#related-compressed
https://transformer-circuits.pub/2022/toy_model/index.html#related-compressed
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-dictionary
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-dictionary
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-superposition
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-superposition
https://transformer-circuits.pub/2022/toy_model/index.html#related-codes
https://transformer-circuits.pub/2022/toy_model/index.html#related-codes
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-steering
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#related-work-steering

The space of dictionary learning approaches is large, and we remain very excited about work which explores this

space and addresses methodological issues. Recent work has explored architectural modifications like multilayer

feature learning , adding skip connections , incorporating gradient information , adding stronger

hierarchical inductive biases , and further increasing computational efficiency with mixtures-of-experts .

The community has also studied alternative training protocols to learn dictionaries that respect downstream

activations , reduce feature shrinkage , and make downstream computational interactions sparse . To

measure this methodological progress, a number of benchmarks and standardized evaluation protocols for

assessing dictionary learning methods have been developed . We think circuit-based metrics will

be the next frontier in dictionary learning evaluation.

Beyond dictionary learning, several alternative unsupervised approaches to extracting computational units have

shown initial success in small-scale settings. These include transforming activations into the

 and developing attribution-based decompositions of parameters .

 Throughout the literature, the term circuit is used to mean many different things. Olah

introduced the definition as a subgraph of a neural network where nodes are directions in activation space and

edges are the weights between them. This definition has been relaxed over time in some parts of the literature and is

often used to refer to a general subgraph of network components with edge weights computed from an attribution or

intervention of some kind .

There are several dimensions along which circuit approaches and definitions vary:

• Are the units of analysis globally interpretable or not? (For example, compare monosemantic features

versus an entire attention head which does many different things across the data distribution.)

• Is the circuit itself (i.e. the edge connections) a global description, or a locally valid attribution graph? Or

something else?

• Are the edges interpretable? (For example, are the edges computed by linear attributions or a complex

nonlinear intervention?)

• Does the approach naturally address superposition?

We believe the North Star of circuit research is to manifest an object with globally interpretable units connected by

interpretable edges which are globally valid. The present work falls short by only offering a locally valid attribution

graph.

Early circuit discovery was largely manual, requiring specific hypotheses and bespoke methods of

validation . Causal mediation analysis , activation patching , patch patching , and

distributed alignment search have been the the most commonly used techniques for refining hypotheses and

isolating causal pathways in direct analyses. However, these techniques generally do not provide interpretable (i.e.

linear) edge weights between units.

[15, 78] [79] [80]

[38, 39] [81]

[82] [83, 71] [84]

[85, 86, 87, 88, 34, 89, 90]

[91, 92] [93]

[65]

[2, 3]

[51, 18, 30, 2, 94] [95] [1, 96, 97] [2, 98]

[99, 100]

These analyses were automated in Conmy by developing a recursive patching

procedure to automatically find component subgraphs given a task of interest. However, patching analyses are

computationally expensive, requiring a forward pass per step. This motivated patching , a more

efficient method leveraging gradients to approximate the effect of interventions. There has been significant follow

up work on attribution patching including improving the gradient approximation , adapting the techniques

to vision models , and incorporating positional information . Other techniques studied in the literature

include learned masking techniques , circuit probing , discretization , and information flow

analysis . The objective of many of these automated approaches is isolating important model components

(i.e., layers, neurons, attention heads) and the interactions between them, but they do not address the interpretation

of these components.

However, armed with better computational units of analysis from sparse dictionary learning, this work and other

recent papers are making a return to discovering connections between interpretable components.

Specifically, our work is most similar to Dunefsky et al. and Ge et al. who also use transcoders to compute

per-prompt attribution graphs with stop-gradients while also studying input-agnostic global weights. Our work is

different in that we use crosscoders to absorb redundant features, use a more global pruning algorithm, include error

nodes , and use a more powerful visualization suite to enable deeper qualitative analysis. These works are closer

in spirit to the original circuits vision outlined in Olah , but inherit prompt specific quantities (e.g. attention

patterns) that limit their generality.

The attention mechanism in transformers introduced challenges for weight-based circuit analysis

as done by Olah . Elhage proposed decomposing attention layers into a QK component

controlling the attention pattern, and a OV component which controls the output. By freezing QK (e.g., for a

particular prompt), transcoder feature-feature interactions mediated by attention become linear. This is the approach

adopted by this work and Dunefsky et al. . Others have tried training SAEs on the attention outputs and

multiplying features through key and query matrices to explain attention patterns .

Our notion of a replacement model is similar in spirit to past work on causal abstraction

 and proxy models . These methods seek to learn an interpretable graphical model which maintains

faithfulness to an underlying black box model. However, these techniques typically require a task specification or

other supervision, as opposed to our replacement model which is learned in a fully unsupervised manner.

. Causal scrubbing was proposed as an early principled approach for evaluating interpretation

quality through behavior-preserving resampling ablations. Shi formalized criteria for evaluating circuit

hypotheses, focusing on behavior preservation, localization, and minimality, while applying these tests to both

synthetic and discovered circuits in transformer models. However, Miller raised important concerns about

existing faithfulness metrics, finding them highly sensitive to seemingly insignificant changes in ablation

methodology.

Beyond methods, many works have performed deep case studies and uncovered interesting model phenomenology.

For example, thorough circuit analysis has been performed on

[3]

[101, 102]

[103, 104, 105]

[106] [107]

[108, 109, 110] [111] [112]

[113, 114]

[12, 17, 16, 115]

[12] [17]

[16]

[65]

[65] [18]

[12] [116, 16, 115]

[17]

[117, 118] [119, 120]

[121]

[122]

[26]

• Arithmetic in toy models

• Python doc strings

• Indirect object identification

• Computing the greater-than operator

• Multiple Choice

• Pronoun gender

• In-context learning

The growing set of case studies has enabled further research on how these components are used in other tasks

. Moreover, Tigges found that many of these circuit analyses are consistent across training and

scale. Preceding these analyses, there has also been a long line of “Bertology” research that has studied model

biology () using attention pattern analysis and probing.

[94, 123, 124, 125, 126]

[127]

[2]

[128]

[129]

[95, 130, 131]

[132]

[133, 134] [135]

[54]

The case study on a model with hidden goals builds on a model organism developed by Sam Marks and Johannes Treutlein, with whom the

authors also had helpful conversations. We would also like to acknowledge enabling work by Siddharth Mishra-Sharma training SAEs on the

model used in the hidden goals case study.

We would like to thank the following people who reviewed an early version of the manuscript and provided helpful feedback that we used to

improve the final version: Larry Abbott, Andy Arditi, Yonatan Belinkov, Yoshua Bengio, Devi Borg, Sam Bowman, Joe Carlsmith, Bilal Chughtai,

Arthur Conmy, Jacob Coxon, Shaul Druckmann, Leo Gao, Liv Gorton, Helai Hesham, Sasha Hydrie, Nicholas Joseph, Harish Kamath, Tom McGrath,

János Kramár, Aaron Levin, Ashok Litwin-Kumar, Rodrigo Luger, Alex Makolov, Sam Marks, Dan Mossing, Neel Nanda, Yaniv Nikankin, Senthooran

Rajamanoharan, Fabien Roger, Rohin Shah, Lee Sharkey, Lewis Smith, Nick Sofroniew, Martin Wattenberg, and Jeff Wu.

We would also like to acknowledge Senthooran Rajamanoharan for helpful discussion on implementation of JumpReLU SAEs.

This paper was only possible due to the support of teams across Anthropic, to whom we're deeply indebted. The Pretraining and Finetuning teams

trained Claude 3.5 Haiku and the 18-layer research model, which were the targets of our research. The Systems team supported the cluster and

infrastructure that made this work possible. The Security and IT teams, and the Facilities, Recruiting, and People Operations teams enabled this

research in many different ways. The Comms team (and especially Stuart Ritchie) supported public scientific communication of this work.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#acknowledgments
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#acknowledgments
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#author-contributions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#author-contributions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#author-contributions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#author-contributions

• Chris Olah, Adly Templeton, and Jonathan Marcus developed ideas leading to general crosscoders, and the latter two implemented them

in the Dictionary Learning codebase.

• Jack Lindsey developed and first analyzed the performance of cross-layer transcoders.

• Tom Conerly, Jack Lindsey, Adly Templeton, Hoagy Cunningham, Basil Hosmer, and Adam Jermyn optimized the sparsity penalty and

nonlinearity for CLTs.

• Jack Lindsey and Michael Sklar ran scaling law experiments.

• Jack Lindsey, Emmanuel Ameisen, Joshua Batson, and Chris Olah developed and refined the replacement model and attribution graph

computation.

• Jack Lindsey, Wes Gurnee, and Joshua Batson developed the graph pruning methodology, and Wes Gurnee systematically evaluated the

approaches.

• Emmanuel Ameisen, Joshua Batson, Brian Chen, Craig Citro, Wes Gurnee, Jack Lindsey, and Adam Pearce did initial exploration of

example attribution graphs to validate and improve methodology. Wes Gurnee identified specific attention heads involved in certain

prompts, and Adam Pearce analyzed feature splitting. Emmanuel Ameisen, Wes Gurnee, Jack Lindsey, and Adam Pearce identified

specific examples to study.

• Jack Lindsey, Emmanuel Ameisen, Wes Gurnee, Joshua Batson, and Chris Olah developed the methodology for the intervention

analyses.

• Wes Gurnee, Emmanuel Ameisen, Jack Lindsey, and Joshua Batson developed evaluation metrics for attribution graphs, and Wes

Gurnee led their systematic implementation and analysis.

• Michael Sklar and Jack Lindsey developed the approach for and executed perturbation experiments used to evaluate mechanistic

faithfulness.

• Nicholas L. Turner, Joshua Batson, Jack Lindsey, and Chris Olah developed the virtual weight and global weight approaches and

analyses.

• Brian Chen, Craig Citro, and Michael Sklar extended the method to handle neurons in addition to features.

• Tom Conerly, Adly Templeton, T. Ben Thompson, Basil Hosmer, David Abrahams, and Andrew Persic significantly improved the efficiency

of dictionary learning and maintained the orchestration framework used for managing dictionary learning.

• Adly Templeton organized efficiency work that enabled the largest runs on Claude 3.5 Haiku.

• Adly Templeton significantly refactored the code to collect activations and train dictionaries, improving performance and usability.

• Brian Chen designed and implemented scalability improvements for feature visualization with support from Tom Conerly.

• Craig Citro, Emmanuel Ameisen, and Andy Jones improved and maintained the infrastructure for interacting with model internals.

• Emmanuel Ameisen and Jack Lindsey developed the infrastructure for running the replacement model. Brian Chen implemented the

layer norm and attention pattern freezing required for backpropagation in the local replacement model.

• Emmanuel Ameisen developed a stable implementation of our graph generation pipeline for cross-layer transcoders.

• Nicholas L. Turner led implementations of graph generation pipelines for alternative experimental crosscoder architectures with input

from Craig Citro and Emmanuel Ameisen.

• Nicholas L. Turner and Emmanuel Ameisen added the ability to visualize attributions to selected inactive features.

• Wes Gurnee and Emmanuel Ameisen implemented efficiency improvements to graph generation.

• Emmanuel Ameisen and Wes Gurnee added error nodes and embedding nodes to graph generation.

• Wes Gurnee implemented adaptive, partial graph generation for large graphs.

• Adam Pearce developed a method and interface for visualizing differences between pairs of graphs.

• Tom Conerly and Jonathan Marcus improved the efficiency of loading feature weights which also sped up attribution graph generation.

• Tom Conerly and Basil Hosmer made improvements to the integration of cross-layer transcoders with circuit attribution graph

generation.

• Brian Chen created the slack-based system for logging attribution graph runs.

• Emmanuel Ameisen developed the infrastructure for patching experiments.

• Adam Pearce, Jonathan Marcus, Zhenyi Qi, Thomas Henighan, and Emmanuel Ameisen identified open source datasets for visualization

and generated feature visualization data for those datasets.

• Shan Carter, Thomas Henighan, and Jonathan Marcus built an interactive tool for exploring feature activations.

• Trenton Bricken, Thomas Henighan, and Jonathan Marcus provided infrastructure support and feedback for the hidden goals case study.

• Trenton Bricken, Callum McDougall, and Brian Chen developed the autointerpretability framework used for initial exploration of

attribution graphs.

• Nicholas L. Turner designed and implemented the virtual weight pipeline to process the largest CLTs and handle processing requests

from other members of the team. Joshua Batson, Tom Conerly, T. Ben Thompson, and Adly Templeton made suggestions on design

decisions. Brian Chen and Tom Conerly made improvements to infrastructure that ended up supporting this effort.

• The interactive attribution graph interface was built, and maintained by Adam Pearce, with assistance from Brian Chen and Shan Carter.

Adam Pearce led the work to implement feature visualizations, subgraph display and editing, node pinning and most other elements of

the interface.

• Wes Gurnee developed a systematic analysis of acronym completion, used for validating the original method and the NDAG example in

the paper.

• Emmanuel Ameisen investigated the Michael Jordan example.

• Nicholas L. Turner, Adam Pearce, Joshua Batson, and Craig Citro investigated the arithmetic case study.

• Figures

• Chris Olah set the design language for the major figures.

• Adam Pearce created the feature hovers which appear on paper figures.

• Shan Carter created the explanatory figures, with assistance from Brian Chen.

• Figure refinement and design consulting was provided by Shan Carter and Chris Olah.

• The interactive interface for exploring addition feature global weights was made by Adam Pearce, Nicholas L. Turner, and

Joshua Batson.

• Writing and figures

• Abstract - Emmanuel Ameisen

• Summary of technical approach - Joshua Batson

• Replacement model - Emmanuel Ameisen, Jack Lindsey

• Attribution graphs - Emmanuel Ameisen, Brian Chen

• Global weights - Nicholas L. Turner, Joshua Batson

• Evaluations - Wes Gurnee, Jack Lindsey, Emmanuel Ameisen

• Limitations - Jack Lindsey, Chris Olah. Adam Pearce made the feature splitting figure.

• Discussion - Joshua Batson

• Related work was drafted by Wes Gurnee, and Craig Citro significantly improved the completeness of the bibliography.

• Detailed feedback on the paper and figures:

• David Abrahams, Emmanuel Ameisen, Joshua Batson, Trenton Bricken, Brian Chen, Craig Citro, Tom Conerly, Wes Gurnee,

Thomas Henighan, Adam Jermyn, Jack Lindsey, Jonathan Marcus, Chris Olah, Adam Pearce, Kelley Rivoire, Nicholas L. Turner,

Sam Zimmerman.

• Tom Conerly and Thomas Henighan led a detailed technical review.

• Feedback from internal and external reviewers was managed by Nicholas L. Turner and Joshua Batson.

• Paper publishing infrastructure was built and maintained by Adam Pearce and Craig Citro.

• Sam Zimmerman managed the dictionary learning team and helped coordinate the team’s efforts scaling dictionary learning to enable

cross-layer transcoders on Claude 3.5 Haiku.

• Kelley Rivoire managed the interpretability team at large, provided support with project management for writing the papers, and helped

with technical coordination across dictionary learning and attribution graph generation.

• Tom Conerly provided research and engineering leadership for dictionary learning.

• Chris Olah provided high-level research guidance.

• Joshua Batson led the overall circuits project, supported technical coordination between teams, and provided research guidance

throughout.

For attribution in academic contexts, please cite this work as

Ameisen, et al., "Circuit Tracing: Revealing Computational Graphs in Language Models", Transformer
Circuits, 2025.

BibTeX citation

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#citation-info
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#citation-info
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#citation-info
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#citation-info

@article{ameisen2025circuit,
 author={Ameisen, Emmanuel and Lindsey, Jack and Pearce, Adam and Gurnee, Wes and Turner, Nicholas L.
and Chen, Brian and Citro, Craig and Abrahams, David and Carter, Shan and Hosmer, Basil and Marcus,
Jonathan and Sklar, Michael and Templeton, Adly and Bricken, Trenton and McDougall, Callum and
Cunningham, Hoagy and Henighan, Thomas and Jermyn, Adam and Jones, Andy and Persic, Andrew and Qi,
Zhenyi and Ben Thompson, T. and Zimmerman, Sam and Rivoire, Kelley and Conerly, Thomas and Olah, Chris
and Batson, Joshua},
 title={Circuit Tracing: Revealing Computational Graphs in Language Models},
 journal={Transformer Circuits Thread},
 year={2025},
 url={https://transformer-circuits.pub/2025/attribution-graphs/methods.html}
}

To give a rough sense of compute requirements to train CLTs, we share some estimated costs for CLTs on the Gemma 2 series of models

. On the 2B parameter model, a run with 2M features and 1B train tokens would require 3.8e20 training flops (roughly 210 H100 hours at 50% flops

efficiency). On the 9B parameter model a run with 5M features and 3B train tokens would require 6.9e21 training flops (roughly 3,844 H100 hours

at 50% flops efficiency).

We train our cross-layer transcoder using a combination of mean-squared error reconstruction loss on MLP outputs and a Tanh sparsity penalty.

Our features use the JumpReLU nonlinearity . We found the combination of JumpReLU + Tanh to modestly outperform alternative methods on

MSE/L0, but we suspect that alternative choices of nonlinearity and sparsity penalty could perform comparably well. For more details on our

training setup see . Here we highlight methodological details that differ from our prior work on SAEs:

• Following , we separately normalize the activation of each residual stream layer and each MLP output prior to using them as inputs /

targets for the cross-layer transcoder.

• For our nonlinearity, we use the JumpReLU activation function with a straight-through gradient estimator . However, we deviate from

Rajamanoharan in several respects. First, we use a much higher bandwidth parameter (1.0) for the straight through estimator and a

much higher initial JumpReLU threshold (0.03). Second, we allow the gradient to flow through the JumpReLU nonlinearity to all model

parameters, rather than only the threshold parameter. We found these decisions improved the MSE/L0 frontier in our setup.

• We schedule our sparsity penalty to linearly ramp up from 0 to its final value throughout the entire duration of training. In previous work,

the ramp-up phase took place over a small initial fraction of training steps.

• We introduce a new “pre-activation loss” of where h_f is the pre-nonlinearity activation of feature f. We found this loss

helps prevent dead features on large CLT runs. We only used this loss for our experiments on Haiku 3.5, with a coefficient of 3×10⁻⁶.

We chose our number of training steps to scale slightly sublinearly with the number of features, and our learning rate to scale approximately as

one over the square root of the number of FLOPs. These are rough best-guess estimates based on prior experiments, and not precise scaling

laws. In our largest 18L run, we used ~3B training tokens. In our largest Haiku run, we used ~16B training tokens.

In 18L, we used a constant sparsity penalty across CLT sizes. In Haiku, we increased the penalty with the CLT size (we found that otherwise, the L0

of the runs increased with size). In general we targeted L0 values in the low hundreds, based on preliminary investigation of what produced

interpretable results in our graph interface.

Our 18L model is a pretraining-only model, and thus we used only pretraining data when training CLTs for it. For Haiku, by contrast, we trained the

CLT using a mix of pretraining and finetuning data.

Encoder parameters are initialized by sampling from and decoder parameters are initialized by sampling from

.

We shuffle our training data at the token level. We’ve found that not shuffling leads to significantly worse performance. We suspect a variety of

partial shuffles, such as the one used in , could perform just as well as a full shuffle.

[136, 137]

[11]

[138]

[15]

[11]

ReLU(−h)∑f f

U(,)
n_features

−1
n_features

1

U(,)
n_layers ⋅ d_model

−1
n_layers ⋅ d_model

1

[137]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-plausible
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-plausible
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-ml
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-ml
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-eng
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-eng

Here we share some engineering considerations relevant to training CLTs at scale – in particular, how it differs from training standard transcoders

(“per-layer transcoders”, PLTs).

In our training implementation, the key difference between PLTs and CLTs is that, , they use the same number of

FLOPS, but the CLT uses n_layers times more network bandwidth. Thus when training CLTs more time should be spent profiling and optimizing

network operations. This isn’t obvious, so we work through the details below.

In our training setup, features are sharded across accelerators. For each batch:

1. Each accelerator receives input and target activations.

2. Each accelerator computes partial predictions based on the features it stores.

3. An all-reduce operation is performed across all accelerators to combine these partial predictions.

4. Each accelerator then runs a backward pass and performs a gradient step using the combined predictions. A constant fraction of each

accelerator's high bandwidth memory (HBM) is dedicated to parameters, with the remainder used for intermediate computations.

PLTs and CLTs have the same number of parameters per accelerator because the same fraction of HBM is dedicated to parameters. The number

of FLOPS scales with batch size multiplied by the number of parameters so PLTs and CLTs use the same FLOPS . If a PLT and a CLT

have the same number of features then the CLT would have more total parameters, use more accelerators, and use more total FLOPS, but FLOPS

per accelerator would be the same.

Some optimizations to consider:

• Have each accelerator load a different training batch. When it’s time to train on a batch, the accelerator that loaded it broadcasts it to all

other accelerators using fast accelerator-to-accelerator comms.

• Broadcast the batch for the next training step during the backwards pass of the previous training step.

• Fetch future training batches in the background while training.

• Use lower precision (e.g. bfloat16) to reduce the amount of data sent.

We store activations to a distributed file system, then load them during training. Both CLTs and PLTs on every layer require activations from every

layer of the underlying model. Thus we’ve optimized our code that collects activations for that use case. Collecting activations from all layers

requires the same FLOPs as collecting from a single layer, but n_layers times more network bandwidth.

A possible optimization we didn’t implement is sparse kernels from . The decoder forward, decoder backward, and encoder backward passes

only operate on active features, so with the proper sparse kernels, FLOPS would be significantly reduced. CLTs have the same number of encoder

parameters and FLOPS as PLTs, but n_layers/2 times more decoder parameters and FLOPS. Thus this optimization is more important for CLTs.

This optimization makes it more likely that network operations will be the training bottleneck. Note that JumpReLU’s straight-through estimator

has nonzero gradients on inactive features. We think it’s plausible that that isn’t important or we could switch to a different nonlinearity, but we

haven’t tried it.

Another possible optimization we didn’t implement is to change how the decoder is sharded to remove the all-reduce. We could shard the encoder

over features and shard the decoder over the output dimension. The all-reduce is removed because each decoder shard computes the MSE over a

slice of the output dimension. Each decoder shard needs access to all active features, so an all-to-all is needed to share all active features with all

shards. Another all-to-all is required on the backward pass. Given feature sparsity, these network operations are much smaller than the all-reduce.

Compared to alternatives like per-layer transcoders (PLTs), CLTs use more parameters – the same number of encoder parameters, but

approximately n_layers/2 times as many decoder parameters. Thus, even if CLTs provide value beyond PLTs with the same number of , it

is reasonable to ask whether they perform better at a fixed training . Empirically, we find that CLTs perform better (according to some metrics)

or comparably (according to others) than PLTs at a fixed cost, even without the use of sparse kernels (which, as noted above, advantage CLTs

more than PLTs). Broadly, this is because the number of (across all layers) required to achieve a given level of performance is much

less for CLTs than SLTs, which compensates for their additional per-feature cost. In more detail:

[10]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-efficiency
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-efficiency

• Note that in our experiments on the 18L model, we ran CLTs and sets-of-PLTs with 300K, 1M, 3M, and 10M total features. Note that we

also scaled training steps along with n_features. Coincidentally, this meant that the number of FLOPs used by our PLT runs were

comparable to the number of FLOPS used by the “next size smaller” CLT run (i.e. 10M PLT ≈ 3M CLT, etc.).

• Comparing approximately FLOPs-matched PLT and CLT runs on our various evaluations, we notice that:

• In terms of (MSE, L0) and (replacement model KL divergence, L0), the 1M feature CLT strictly outperforms the 10M feature set-

of-PLTs, using 5–10× less compute.

• What about feature interpretability scores?

• If we compare the 3M feature CLT to the 10M set-of-PLTs (roughly FLOPs equivalent), the CLT attains somewhat

lower MSE and KL divergence and roughly equal Sort Eval scores.

• The picture for the Contrastive Eval is less clear. The 3M feature CLT attains lower MSE and KL divergence than the

10M feature PLTs, but higher worse Contrastive Eval scores. Thus we cannot declare a Pareto-winner here (we would

need to run a sweep over the sparsity penalty to make the judgment).

• We have found that cross-layer dictionaries require a comparable order of magnitude of training tokens to single-layer dictionaries (a

rough estimate based on our 18L experiments is that they benefit from ~2 times more tokens).

Thus, it seems that overall, CLTs are at least as cost-effective as PLTs (and presumably per-layer SAEs, which have the same parameter-count as

PLTs) to reach a given level of circuit understanding, and likely moreso. However, if another group finds PLTs to be easier to implement or more

cost-effective, we expect it’s possible to find interesting results using PLTs as well. We expect that even making attribution graphs with raw

neurons will yield plenty of interesting insights.

We also note that optimizations could make CLTs even more cost-effective – as discussed above, implementing sparse kernels and

communications could in principle reduce the number of FLOPs performed by CLTs by a factor of up to n_layers/2.

We suspect there are potential algorithmic optimizations to be made as well. For instance, it is possible that most of the benefits of CLTs can be

captured by learning layer-to-layer linear transformations that are common to features, eliminating the need for each feature to have its own

independent decoder parameters for every downstream model layer.

We give complete definitions of nodes and edges in the attribution graph, continuing the discussion in the main text. Associated to each node

type are two (sets of) vectors: input vectors, which affect the edges for which the node is a target, and output vectors, which affect the edges for

which the node is a source.

• The output node corresponding to a vocabulary token has candidate output tokens has input vector ,

the gradient of the pre-softmax logit for the target token minus the mean logit.

• A feature node corresponding to feature at context position has a set of output vectors , for . It has input

vector .

• An embedding node corresponding to input token has output vector .

• An error node at context position and layer has output vector where represents the full residual

stream vector at all context positions and layers from a forward pass of the underlying model, is the output of the layer MLP,

and is the output of the CLT to layer .

For edges from embedding or error nodes to feature or output nodes, the edge weight is:

For edges from feature nodes to feature or output nodes, the edge weight is

tok v = ∇(logit −)in tok logit

s cs v = Wout
ℓ

dec, s
ℓ →ℓs ℓ ≤ ℓs

v = Win
ℓ

enc, s
ℓs

tok v = Embout tok

c ℓ v = MLP (x) − CLT (x)out ℓ c,ℓ ℓ c x

MLPc,ℓ ℓ
CLTℓ ℓ

A = v J v .s→t out,s
T

c ,ℓ →c ,ℓs s t t

▼
in,t

A = a (v) J v .s→t s

ℓ ≤ℓ<ℓs t

∑ out
ℓ T

c ,ℓ→c ,ℓs t t

▼
in,t

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-eng
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details-eng
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-attribution-graph-computation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-constructing
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#graphs-constructing

The Jacobian can be expanded into a sum over all paths of length in the underlying model through attention heads and residual

connections. Consider a path starting at position and layer and ending at position and layer consisting of

steps, each of which is either a residual stream step going from layer to or an attention head step going from position to

via attention head with attention weight and applying transformation . Each step is associated to a linear transformation which

is the identity for a residual stream step and for an attention step. The whole path is thus associated to a linear transformation

. Then we can write

where is the set of all paths starting at position and layer and ending at position and layer .

To compute the graph edges in practice, we iterate over target nodes in the graph (output or feature nodes). For each node we:

• Inject the input vector for the node into the residual stream. For CLT features, we inject the encoder of the target CLT feature in the

residual stream at the layer and token position where it reads. For logit nodes, we instead inject the gradient of the logit (minus the mean

logit) at the final layer residual stream.

• Do a backwards pass in the underlying model with

• stop-gradient operators on the MLP outputs, and

• normalization denominators and attention patterns set to values recorded from the underlying model's forward pass on the

prompt.

• For a CLT source node (feature, token position), we take the sum of the dot products of its decoder vector in each layer with the gradient

in that layer, times the activation of that feature.

• For an embedding or error source node, we simply take the product of its vector with the gradient.

The cost to compute the graph is linear in the number of active features in the prompt, and is dominated by the cost of the underlying model

backwards pass. To economize, we sometimes compute the graph adaptively: starting from the output nodes for the logits, then maintaining a

queue of the feature nodes with the greatest influence on the logit, and computing the input edges for nodes based on their order in the queue.

This allows us to compute the most important parts of the graph first.

To increase the signal to noise ratio of our manual interpretation, we rely heavily on a graph pruning step to reduce the number of nodes and

edges in the graph. We employ a two-step algorithm which first prunes the nodes and then prunes the edges of the remaining nodes. The details

are as follows:

Jc ,ℓ →c ,ℓs s t t

▼ ℓ − ℓt s

p cs ℓs ct ℓt i = 1, 2, … , (ℓ − ℓ)t s

ℓ + i − 1 ℓ + i ci ci+1

hi ac →ci i+1
hi OVhi

πi

a OVc →ci i+1
hi

hi
p

π = πp ∏i i

J = πc ,ℓ →c ,ℓs s t t

▼

p∈P(c ,c ,ℓ ,ℓ)s t s t

∑ p

P(c , c , ℓ , ℓ)s t s t cs ℓs ct ℓt

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-graph-pruning

• We take the adjacency matrix of the graph and replace all the edge weights with their absolute values to obtain an unsigned adjacency

matrix. Then we normalize the input edges to each node so that they sum to 1. Let A refer to this normalized, unsigned adjacency matrix.

• We compute the which can be efficiently computed as . The

entries of indicate the sum of the strengths of all paths between a given pair of nodes, where the strength of any given path is given

by the product of the values of its constituent edges in A.

• We take the rows of corresponding to logit nodes, and take their weighted average, weighting according to the model’s output

probabilities for each token. This results in a vector of for each node in the graph.

• We sort the logit influence scores of non-logit nodes in descending order and choose the minimum cutoff index such that the sum of the

influence scores prior to the cutoff divided by the total sum exceeds a given threshold. We use a threshold of 0.8 unless otherwise

noted. We prune away all non-logit nodes after the cutoff.

• With the pruned graph, we re-compute a normalized unsigned adjacency matrix and logit influence scores for each node using the same

method as above. Then we assign a logit influence score to each by multiplying the logit influence score of the edge’s output node

by the normalized edge weight. We prune edges according to the same strategy as for nodes, but using a higher cutoff 0.98 unless

otherwise noted.

• Logit nodes are pruned separately. We keep the logit nodes corresponding to the top most likely token outputs, where is chosen so

that the total probability of the logit nodes is greater than 0.95. If this would result in , we clamp to .

• Embedding nodes and error nodes are not pruned.

We include pseudocode below. Our pruning thresholds can, very roughly speaking, be interpreted as determining the percent of “total logit

influence” we lose from pruning. That is, we choose the subset of nodes that are responsible for ~80% of the influence on the logits, and the

subset of their input edges responsible for ~98% of the remaining influence. Our choice of thresholds is arbitrary and was chosen manually to

balance preservation of important paths with the need to prune graphs to a manageable, interpretable size.

For longer prompts, we can also employ an adaptive algorithm, to greedily construct a graph out of the most influential nodes, rather than

generating the full graph only to prune most of it away. To do so, we maintain a set of nodes (i.e., nodes from which we have computed

backward attributions) and an estimate of the most influential nodes, where nodes count as errors. At each step, we compute the top

 most influential nodes using our influence scores, and attribute back from these. We terminate when a target number of nodes have been

explored.

With our default parameters, pruned graphs are substantially smaller than the original raw graphs; the number of nodes typically decreases by

~10× and the number of edges typically decreases by ~500× (the exact numbers are sensitive to prompt length).

B = A + A + A + ⋯2 3 B = (I − A) − I−1

B

B

K K

K > 10 K 10

k

: Comparison of graph completeness and replacement score versus per-token L0 for graphs generated with different underlying dictionaries. Higher scores correspond to graphs with fe
lower L0 suggests more interpretable graphs.

Pseudocode for pruning algorithm:

function compute_normalized_adjacency_matrix(graph):

 # Convert graph to adjacency matrix A

 # A[j, i] = weight from i to j (note the transposition)

 A = convert_graph_to_adjacency_matrix(graph)

 A = absolute_value(A)

 # Normalize each row to sum to 1

 row_sums = sum(A, axis=1)

 row_sums = maximum(row_sums, 1e-8) # Avoid division by zero

 A = diagonal_matrix(1/row_sums) @ A

 return A

function prune_nodes_by_indirect_influence(graph, threshold):

 A = compute_normalized_adjacency_matrix(graph)

 # Calculate the indirect influence matrix: B = (I - A)^-1 - I

 # This is a more efficient way to compute A + A^2 + A^3 …

 B = inverse(identity_matrix(size=A.shape[0]) - A) - identity_matrix(size=A.shape[0])

 # Get weights for logit nodes.

 # This is 0 if a node is a non-logit node and equal to the probability for logit nodes

 logit_weights = get_logit_weights(graph)

 # Calculate influence on logit nodes for each node

 influence_on_logits = matrix_multiply(B, logit_weights)

 # Sort nodes by influence

 sorted_node_indices = argsort(influence_on_logits, descending=True)

 # Calculate cumulative influence

 cumulative_influence = cumulative_sum(

 influence_on_logits[sorted_node_indices]) / sum(influence_on_logits)

 # Keep nodes with cumulative influence up to threshold

 nodes_to_keep = cumulative_influence <= threshold

 # Create new graph with only kept nodes and their edges

 return create_subgraph(graph, nodes_to_keep)

Edge pruning by thresholded influence

function prune_edges_by_thresholded_influence(graph, threshold):

 # Get normalized adjacency matrix

 A = compute_normalized_adjacency_matrix(graph)

 # Calculate influence matrix (as before)

 B = estimate_indirect_influence(A)

 # Get logit node weights (as before)

 logit_weights = get_logit_weights(graph)

 # Calculate node scores (influence on logits)

 node_score = matrix_multiply(B, logit_weights)

 # Edge score is weighted by the logit influence of the target node

 edge_score = A * node_score[:, None]

 # Calculate edges to keep based on thresholded cumulative score

 sorted_edges = sort(edge_score.flatten(), descending=True)

 cumulative_score = cumulative_sum(sorted_edges) / sum(sorted_edges)

 threshold_index = index_where(cumulative_score >= threshold)

 threshold_index = index_where(cumulative_score >= threshold)

 edge_mask = edge_score >= sorted_edges[threshold_index]

 # Create new graph with pruned adjacency matrix

 pruned_adjacency = A * edge_mask

 return create_subgraph_from_adjacency(graph, pruned_adjacency)

We rely on indirect influence statistics for pruning, adaptive generation, and our graph statistics. In this section, we validate that indirect influence

is a better proxy for “importance” than other basic baselines like activation or logit attribution (with stop grads).

Specifically, on a sample of 20 prompts, we compute the effect of ablating every feature and measure the KL divergence between the model with

the ablation and the clean forward pass. We perform this intervention using “constrained” patching, so we also sweep over different ranges of

layers to apply the intervention. In the plot below, we report the average log-log Pearson correlation between ablation KL and initial activation,

direct logit edge weight, and indirect influence on the logit. We see that node influence is most predictive of ablation effect, followed by direct

edge weights. Both outperform a simple activation baseline.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-node
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-node

: Spearman correlation between a node’s ablation KL divergence (the KL of a clean forward pass and a forward pass with a
feature ablated) and several natural node importance baselines: graph-based in�uence, the direct edge weight to the logit, and the
original activation. We sweep over ranges to apply our “constrained” patching, and �nd the range makes little difference.

We can use edges in the attribution graphs to estimate the influence features should have on each other. However, if the replacement model is

unfaithful or incomplete, a perturbation experiment might not yield results which are consistent with an estimate based on graph influence. For

example, initially inactive components could engage in self-correction and dampen the effect of the perturbation. To estimate the extent to which

this happens in our graphs, we measure how often perturbations have the expected effect by ablating every feature in the graph, and recording the

activation of features downstream of it. Our ablations are done using constrained patching in the range where is the encoder layer of

the feature being perturbed (note this choice of layer is arbitrary, see further discussion here). When averaged over a dataset of 20 prompts, we

find a Spearman correlation of 0.72 between the influence of a source feature on a target feature as described by the graph, and the effect of

ablating said feature on the target feature’s activation (where we normalize by the original activation and take the absolute value since influence is

unsigned). We include scatter plots from three examples from the paper:

[i, i + 2] i

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-edges
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-edges
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering

: Relationship between (x) pairwise in�uence of all nodes in the pruned graph (y) the absolute relative effect on a target node’s activation after ablating the source node in the underlying m
observe the graph-based pairwise in�uence is fairly predictive of the ablation effect.

These figures show that there are relatively few points that (1) have large influence and no ablation effect (lower right) and (2) have low influence

but high ablation effect (upper left). This suggests that indirect influence through the graph is a fairly good proxy for real effects in the model.

In this work, we use (local) replacement models as a window into the mechanisms of the original model. This approach is problematic if the

(local) replacement model uses very different mechanisms than the original model. In the main text, we performed perturbations of features to

confirm specific mechanistic theories and measured how well the replacement model's outputs matched the underlying model's outputs. Here, we

focus on how well their inner states match in response to a broader set of perturbations, including off-distribution perturbations, as an (imperfect)

gauge of the replacement model’s quality.

We use the local replacement model (i.e. with reconstruction errors added back in as constant factors, and attention patterns frozen), ensuring

agreement of the replacement and original models under zero-size perturbations. Like “iterative patching,” the replacement model may respond to

perturbations by activating features which were not previously active at baseline.

We perturb the models at single token positions using 3 types of perturbations: adding a feature’s encoder-vector to the residual stream, adding

random directions to the residual stream, and perturbing an upstream feature (to be defined precisely below).

Broadly, averaging across choices of intervention layers, we find that:

• Perturbation results are reasonably similar between the replacement model and the underlying model when measured one layer after the

intervention.

• Perturbation discrepancies compound significantly over layers.

• Compounding errors have a gradually detrimental effect on the faithfulness of the of perturbation effects, which are largely

consistent across CLT sizes, with signs of faithfulness worsening slightly as dictionary size increases.

• Compounding errors can have a catastrophically detrimental effect on the of perturbations. This effect is worse for larger

dictionaries.

:

43

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-lrm-validation-faithfulness
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching

• We first choose a residual-stream layer and select a random active feature with an encoder-vector in that layer.

• We take the encoder-vector of the chosen feature, and add a multiple of it (see next bullet) to the residual stream of both the

replacement model and frozen underlying model.

• This perturbation to the residual is scaled to increase the chosen feature’s activation to 0.1 above its original value.

• After modifying the residual stream, we perform the forward pass of both perturbed models.

:

• We follow the above process to determine the perturbation’s magnitude, but prior to its addition to both residual streams, the

perturbation-vector is rotated to a random direction on the unit sphere.

:

• We select an active feature to perturb and an after the feature’s encoder layer.

• We increase the feature’s activation by 0.1 and run the local replacement model with this perturbation applied, up until the intervention

layer.

• At the intervention layer, we compare two forward passes:

• In one, the residual-stream state of this forward pass is copied-over to the underlying model at the intervention layer, and the

underlying model is run forward from there.

• In the other, we continue the forward pass of the local replacement model.

At each layer downstream of the perturbation, we can determine a net perturbation for both perturbed models by taking the activations from the

(perturbed) forward pass and subtracting clean (un-perturbed) baseline activations. The net perturbations for each model are then compared to

yield measures of faithfulness, by computing cosine-similarity and mean-squared-error between them.

We believe that perturbing upstream features produces the most “on-distribution” perturbations of these approaches, since random directions

may fall into relatively inactive dimensions and encoder-directions are the most sensitive dimensions of the replacement model. Below are results

for upstream-feature perturbations to features in layer 5 of the model, averaged over choice of the intervention layer.

: Faithfulness of perturbations from upstream features in layer 5.

Below are cosine-similarity faithfulness metrics for the 10m dictionary for other choices of upstream layers and other perturbation strategies.

: Cosine similarity of perturbations.

As can be seen from the bottom rows of the graphic above, cosine-faithfulness of the 10m dictionary for 18L in the layer following the intervention

or perturbation layer is around 60–80%. Computing the average of this bottom-row for different dictionary sizes, in the figure below, the largest

dictionaries show signs of mildly diminished faithfulness for perturbations from upstream features.

: Average cosine similarity 1 layer after an intervention/perturbation.

The decay of faithfulness-metrics over multiple layers, at first glance, raises questions about the reliability of our interpretability graphs, analyses,

and steering techniques. Indeed, these results seem at odds with the qualitatively successful results of many of the perturbation experiments we

use to validate attribution graphs (both in this paper and its companion). We suspect this is due to a combination of factors:

• The compounding unfaithfulness problem affects perturbation more severely than We compensate for this issue

in practice by trying a range of perturbation strengths in ad-hoc, empirical fashion.

• Aggregating features into supernodes may help “denoise” faithfulness errors.

• The perturbation experiments we perform in the context of graph validation are highly nonrandom – we are typically perturbing and

measuring “important” or “cruxy” features, and doing so in the layers where their output is strong. A proportion of the effect we observe

can also be attributed to “guaranteed effects”, as we describe in § Nuances of Steering with Cross-Layer Features.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering

How do these results compare for per-layer transcoder (PLT) dictionaries? Cosine-faithfulness metrics for PLTs were broadly similar to those for

CLTs. The PLT replacement model achieves lower normalized MSE at one layer after the intervention, but compounding errors in the largest PLT

replacement models accumulate slightly more rapidly after several layers, as seen in the figure below. This may reflect an advantage of the CLT

skip connections, which allow for shorter paths through the replacement model.

: Normalized MSE of perturbations from upstream features in layer 5.

Normalized MSE results are sensitive to the scale of the perturbation. To make scales comparable across replacement model types for the figure

above, the perturbation to the initial upstream feature in Layer 5 is scaled differently for each sample so that Layer 6 is perturbed by a constant

proportion of its magnitude.

Our perturbation methodology (constrained patching and iterative patching) is somewhat non-obvious at first glance. Why don’t we simply add to

the residual stream along a feature’s decoder vector at each layer as we run a forward pass of the model? The reason for this is that it risks

double-counting the effect of the feature. For instance, consider a feature in layer 1, with decoders writing to layers 2, 3, and onward. It may be that

the activations being reconstructed in layer 2 were, in the original model, causally upstream of the activations being reconstructed in layer 3. Thus,

injecting a perturbation into layers 2 and 3 would “double up” on the feature’s effect. Across more layers, this effect could compound to be quite

significant.

Our constrained patching approach avoids this problem by computing perturbed MLP outputs once at the outset, and then clamping MLP outputs

to these precomputed values (rather than adding to the MLP outputs). While this avoids the double-counting problem, it requires us to choose an

intervention layer – we apply the perturbations in all layers up to the intervention layer, but not after (otherwise we would be clamping all of the

MLP outputs of the model, and thus we wouldn’t be testing any hypotheses about how the model responds to perturbations). This makes it

challenging to measure “the entire effect” of a feature (see § Unexplained Variance & Choice of Steering Factors).

It also makes the interpretation of perturbation experiment effects somewhat awkward. Suppose a source feature is in layer 1, and our

perturbation intervention layer is 5, i.e. we apply the perturbation in layers 1 through 5. This perturbation will have an impact on, say, features in

layer 3. However, the “knock-on” effects of this impact will be at least partially (and perhaps completely) overwritten, since the MLP outputs at

layers 4 and 5 are clamped to values computed at the outset. Note that our alternative approach to patching, “iterative patching,” does capture

such knock-on effects. However, because of this, it is not as suitable as a validation of mechanisms in an attribution graph, since the perturbation

is less precise.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching

Another subtle aspect of our perturbation experiments is that feature-feature interactions described by an attribution graph are nearly forced

to be confirmed in steering experiments (when we freeze attention patterns), since they measure linear effects of source feature decoders on

target feature encoders (via fixed linear weights, conditioned on frozen attention patterns) – and guaranteed when choosing the intervention layer

to be the same as the target feature’s encoder layer. Thus, the nontrivial thing we are testing with perturbation experiments is the validity of the

attribution graph’s claims about “knock-on effects.” That is, suppose our attribution graph tells us that feature A excites feature B, which excites

feature C, which upweights token X. When we perform a perturbation experiment by inhibiting feature A, we will get an inhibitory effect on feature

B “for free,” and we are interested in validating whether the subsequent effects on features C and the output token are as expected.

Our choice of steering factor scales for intervention experiments is somewhat ad-hoc and empirically driven. For instance, in inhibition

experiments, to meaningfully change the output predictions we often must clamp features to multiples of their original value, rather than

simply to 0. In patching experiments where we add in a feature that was not originally active on a prompt, we often do so using activations

significantly greater than that feature’s typical activations.

Why do we need to “overcompensate” in this fashion? We suspect that this is because even when our features play the mechanistic roles that we

expect based on attribution graphs, our perturbation experiments capture these mechanisms incompletely:

• Unexplained variance – our feature dictionaries are not infinitely large, and our CLTs do not reconstruct activations fully. Some

mechanisms may simply be missing, or the features we extract may be projections of “fuller” ground-truth features that partially reside

in this unexplained variance.

• Inexhaustive feature selection – on any given prompt, there are typically groups of active features with related meanings that have

similar edges in the attribution graph. Thus, perturbing any single feature is insufficient – we need to perturb the full group to see its full

mechanistic effect. However, identifying “the full group” is not precisely defined, and also cumbersome (it would require inspecting every

active feature on every token position for each prompt). Thus, we end up perturbing groups of features that are most likely incomplete,

requiring us to choose extra strong perturbation factors to compensate.

• Incomplete capturing of cross-layer effects – due to the way we perform steering with cross-layer features, our steering results measure

the effect of a feature rather than the effect of the feature globally (see § Nuances of Steering with Cross-Layer

Features). Thus, our perturbations systematically undervalue features’ whole effects.

We often find that there are many features in a given graph which seem to have similar roles. There are a few candidate theories for explaining

this phenomenon (which we discuss below). Whatever the underlying reason, this suggests that individual features are often best understood as

 contributors to a component of the mechanism used by the model. To capture these components more completely, we group related

features into “supernodes”. While this process is inherently somewhat subjective, we find it is important to clarify key mechanisms.

Grouping features produces a simplified “supernode graph,” where we compute the edges between supernodes according to the formula below:

Where:

• and are the set of nodes in supernodes and , respectively.

• and refer to a node in the corresponding supernode.

• is the fraction of the absolute valued input weights to that originate from nodes outside of the supernode.

• refers to an input normalized graph adjacency matrix, where the weights of edges targeting each node are divided by a constant to

sum to 1. is the normalized edge weight from node to node .

supernode_adjacency(t, s) =
frac_external(n)∑n ∈Nt t

t

frac_external(n) ⋅ A∑n ∈Nt t
t ∑n ∈Ns s n ,nt s

′

Nt Ns t s

nt ns

frac_external(n)t nt

A′

An ,nt s

′ nt ns

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-cross-layer-steering
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-dupe-features

Hypotheses for why there so many related features include:

• These features represent subtly different concepts that are hard to discern from our visualization tools. Indeed, in some cases the

differences are noticeable – for instance, we may choose to group together a “Texas cities” feature with a feature representing “the state

of Texas” if both play a similar role in the circuit. See our § Limitations section on feature splitting for more on this issue. A related issue

that could be involved is that of – concepts which are represented in truly multidimensional fashion by

the model. Our CLTs may represent these as collections of hard-to-distinguish features.

• Features in different layers may represent the same concept, but based on different inputs. For instance, a layer 5 “Michael Jordan”

feature may be capable of detecting more indirect references to Michael Jordan, while a layer 1 “Michael Jordan” feature can only detect

when the name is written out explicitly.

• The output response of an MLP after increasing a given input feature is generically nonlinear, even when monotonic, and may require a

few CLT features to approximate. (Note that a single-layer MLP with one input dimension and one output dimension can be highly

nonlinear as you vary the input, and require multiple features to approximate; composing MLP layers could exacerbate this.) One

experiment that could help evaluate this hypothesis would be to perturb an upstream feature using a sweep of strengths, and measure

its effect on the activity of a downstream feature; if the Dallas→Austin interaction were capable of being mediated by a single Texas

feature, then that dependency would have to be threshold-linear. If it's not, we'd need a group of features to capture the mechanism.

Instead of constrained patching, we may wish to measure the effect of a feature intervention within the patching range in addition to its effect

outside of the range. To do so, we can iteratively recompute the values of features which read from layers in the patching range, letting them take

on new values due to our intervention. We call this iterative patching. While iterative patching may seem advantageous since it accounts for all of

the effects of a feature intervention (at least according to the replacement model), it can often lead to cascading errors, as we need to repeatedly

encode and decode features. In addition, the main goal of interventions is to validate edges between nodes and supernodes in attribution graphs.

Constrained patching provides a simpler way to do this by limiting indirect effects.

The illustration below shows cascading effects. We patch a feature at layer 1, and impact two features computed at layer 2, and so are affected by

our patch. At the end of our patch, we inject the computed state of the residual stream back into the model.

[139, 140, 141, 142]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-abstraction-level
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-abstraction-level
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-patching

Iteratively recompute the values of
features which read from layers in
the patching range

CLT −2×

CLT

+

+

+

+

Residual stream

Layer 1

Layer 2

Layer 3

: A schematic of iterative patching.

In this section, we show full intervention results for some of the case studies we discussed above.

Below, we show the effect of inhibiting every supernode in the acronym case study with an inhibition factor of 1.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interventions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interventions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interventions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interventions

Activity after perturbation (as fraction of initial value)

In
hi

bi
te

d
su

pe
rn

od
es

: Intervention effects on feature activations for acronyms with a steering strength of 1

Connected nodes

Supernodes require different steering strengths to show an effect because the strength of their outgoing edges varies. This strength depends both

on the number of features in the supernode and their individual edge strengths. The steering plot above shows that inhibiting “say _A” or

“say DA” has only a minor effect on the logit at a strength of −1. This is partially due to “say _A” containing only one feature, while supernodes

like “say D_” contain six. “say _A” ’s influence on the logit is also indirect and mediated by the “say DA” supernode. If we increase steering

strength to −5, we do observe an effect from inhibiting “say _A” .

In
hi

bi
te

d
su

pe
rn

od
es

Activity after perturbation (as fraction of initial value)

: Intervention effects on feature activations for acronyms with a steering strength of 5

Connected nodes

For reference, we also show the effect of inhibiting more of the supernodes in the 36+59 prompt.

In
hi

bi
te

d
su

pe
rn

od
es

Activity after perturbation (as fraction of initial value)

Connected nodes

: More intervention effects on feature activations for “calc: 36+59=”

We share an MIT licensed version of the interactive attribution graph interface used in this paper on github.

This interface has been simplified from the full version used internally for rapid exploration in favor of a publicly sharable version useful for

inspecting labeled graphs. Analysis tools which were trimmed, and may be useful for practitioners to reimplement, include:

• Feature scatterplots comparing arbitrary scalars attached to features during the graph generation pipeline.

• In situ feature and supernode labeling.

• Feature examples and additional detail shown on hover to skim through features faster.

• A diff view comparing two attribution graphs, highlighting the difference and intersections in feature activations and edge weights.

• A list of all the active features, their labels and edge weight to the active node.

A rearrangeable grid containing these diverse “widgets” made it easier to experiment with new ideas and rescale the interface to show dozens or

thousands of features.

In many models, the norm of the residual stream grows exponentially over the forward pass. Heimersheim and Turner observed this norm

growth in the GPT-2, OPT, and Pythia families, and conjectured it serves the functional purpose of making space for new information. Rather than

deleting old information by explicitly writing its negative, a layer may simply write new information at a larger magnitude, drowning out the

influence of the older information by increasing the denominator of the normalization denominators. Thus to keep information around and legible,

the model must actively amplify in many layers. A cross-layer transcoder can absorb all of that into a single feature, while per-layer transcoders or

neurons will have features (neurons) in many layers performing the same function, and all will appear in an attribution graph. This does occur in

practice.

We observe the same phenomenon in our research model, 18L, which also has normalization denominators.

[143]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interface
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interface
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interface
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interface
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interface
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interface
https://github.com/anthropics/attribution-graphs-frontend
https://github.com/anthropics/attribution-graphs-frontend
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-res-norms
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-graphs-paths

: L2 Norm of residual stream activations by layer in 18L.

In the main text, we showed a single feature’s virtual weights, and found that many large connections had weak coactivation statistics. Here, we

run a similar analysis on a larger sample of features to better understand if this pattern generalizes.

We begin with the set of features that activate on our addition prompts and appear in our pruned attribution graphs. From these, we sample 1000

features with equal representation across layers. We then compute the virtual weights and coactivation statistics for all input and output

connections of these features using a dataset of ~150M tokens of the CLT’s training data.

Below, we show the virtual weight distribution across all of these connections, and compare it to the distribution of weights between pairs that

ever coactivate on the dataset. The percentage of coactive weights within each bin appears as text labels in the figure.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights

0

: Virtual weights for 1000 features, and their weights with coactive partners.

We consider weights between features with no coactivations to be “unused” in our dataset; a source feature that never coactivates with a target

feature likely never causally affects the target's activation value.

In general, a large mass of small weights dominates the distribution (as expected). The smallest weights are very often unused with many bins

having single-digit “use percentages.” Large negative weights also stand out as a difference between the raw and coactive distributions, yet this

result isn’t surprising (even without interference); if an upstream feature is active, such a strong negative weight might guarantee that its

downstream target never activates.

More significantly, we also observe that even among extremely large positive weights (beyond the 99.9999th percentile), a significant proportion

are unused. This is not conclusive proof of interference, because we may still miss crucial tokens in our sampling where these edges are used.

Still, we take this analysis as suggestive of interference in 18L.

We show the full output weights (over tokens 0, 1, ..., 999) for three features whose output patterns are neither periodic nor approximate

magnitudes. The first promotes “simple numbers”, promoting both smaller numbers and rounder numbers. The second promotes numbers

starting with 9, and the latter promotes numbers starting (or, to a lesser degree, ending) with 95. (In the color scheme, upweighted tokens are red

and downweighted tokens are blue.)

44

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights

: Output weight plots for CLT features that aren’t as easily described by Fourier components.

We find similar families of features in Haiku and 18L for performing addition, but note that the ones for 18L are less precise. 18L performs slightly

worse on these prompts (98.6% top-1 accuracy vs. 100% for Haiku 3.5), which possibly reflects this imprecision.

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-arithmetic-comparison

: A comparison of similar features’ operand plots between Haiku and 18L.

To evaluate our replacement model and attribution graphs, we curated a dataset of random but nontrivial pretraining tokens. Specifically, we

considered short sequences from the Pile (minus books) dataset and target tokens where

• The underlying model made the correct top-1 prediction;

• The token has a dataset density less than 1e-4 to filter out stop tokens and common tokens like articles, punctuations, and newlines;

• The token did not appear elsewhere in the context (in these cases we often have high graph scores but that the graph is largely

mediated by attention which we do not explain);

• The token has loss >0.2 to filter out other trivial predictions coming from completing multi-token words, fuzzy induction, memorized text,

etc.

Due to the expense of graph generation, we used a dataset size of n=260 for graph evaluation.

[27]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-eval-details

The below table contains a random sample of prompts and graphs for our Pile minus books evaluation set. It includes graphs for both our 10m

crosslayer transcoder (CLT) and 10m per-layer transcoder (PLT) dictionaries on our 18L model.

clt plt arrangement, the optical fiber 104 is optically coupled

clt plt " "I already called the police." "They\'re almost here." "You got to go." "Goodbye." "Good luck

clt plt types, such as a front projection type and a rear projection type, depending on how images are projected

clt plt for grants at the moment to pay a few students a paltry sum to stay and work in her lab over the summer

clt plt invention. In a separate aspect, the invention provides a method of potentiating the

 actions of other CNS active compounds. This method comprises administering an

effective

We also include a sample of the basic curated prompts we used in the development of our techniques and their corresponding CLT and PLT

graphs. These were designed to exercise basic capabilities such as factual recall, analogical reasoning, memorization, arithmetic, multilinguality,

and in-context learning.

clt plt Fact: Michael Jordan plays the sport of basketball

clt plt Fait: Michael Jordan joue au basket

clt plt At first, Sally hated school. But over time she changed her mind. Now she is happy

clt plt The International Advanced Security Group (IA SG

clt plt The National Digital Analytics Group (N DAG

clt plt 7 14 21 28 35 42

clt plt grass: green sky: blue corn: yellow carrot: orange strawberry: red

clt plt The opposite of "hot" is " cold

clt plt The opposite of "small" is " big

clt plt 5 + 3 = 8

clt plt Examiner interviews are available via telephone

clt plt Mexico:peso :: Europe: euro

clt plt Zagreb:Croatia :: Copenhagen: Denmark

clt plt def customer_spending(transaction_df): for customer_id, customer_df in transaction_df. group

clt plt La saison après le printemps s'appelle l' été

clt plt a = "Craig" assert a[0] == " C

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-all-graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-all-graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-all-graphs
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-all-graphs
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-29-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-29-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-29-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-29-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-37-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-37-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-37-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-37-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-50-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-50-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-50-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-50-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-99-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-99-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-99-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-99-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-179-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-179-clt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-179-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pmb-179-plt
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-fr-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-fr-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-fr-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=michael-fr-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-school-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-school-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-school-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=sally-school-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=iasg-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=ndag-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=ndag-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=ndag-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=ndag-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=count-by-sevens-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=count-by-sevens-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=count-by-sevens-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=count-by-sevens-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=common-colors-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=common-colors-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=common-colors-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=common-colors-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-hot-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-hot-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-hot-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-hot-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-of-small-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-of-small-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-of-small-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=opposite-of-small-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=five-plus-three-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=five-plus-three-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=five-plus-three-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=five-plus-three-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=uspto-telephone-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=currency-analogy-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=currency-analogy-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=currency-analogy-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=currency-analogy-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=capital-analogy-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pandas-group-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pandas-group-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pandas-group-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=pandas-group-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=season-after-spring-fr-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=season-after-spring-fr-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=season-after-spring-fr-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=season-after-spring-fr-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=str-indexing-pos-0-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=str-indexing-pos-0-clt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=str-indexing-pos-0-plt-clean
https://transformer-circuits.pub/2025/attribution-graphs/static_js/attribution_graphs/index.html?slug=str-indexing-pos-0-plt-clean

1. An alternative approach is to study the roles of gross model components such as entire MLP blocks and attention heads . This approach

has identified interesting roles these components play in specific behaviors, but large components play a multitude of unrelated roles across the

data distribution, so we seek a more granular decomposition. [↩]

2. We use 'feature' following the tradition of 'feature detectors' in neuroscience and 'feature learning' in machine learning. Some recent literature uses

the term 'latent,' which refers to specific vectors in the model's latent space. We find 'feature' better captures the computational role these

elements play, making it more appropriate for describing transcoder neurons than SAE decoder vectors. [↩]

3. Direct feature-feature interactions are linear because transcoder features “bridge over” the MLP nonlinearities, replacing their computation, and

because we've frozen the remaining nonlinearities: attention patterns and normalization denominators. It's worth noting that strictly we mean that

the pre-activation of a feature is linear with respect to the activations of earlier features.

Freezing attention patterns is a standard approach which divides understanding transformers into two steps: understanding behavior given

attention patterns, and understanding why the model attends to those positions. This approach was explored in depth for attention models in

 , which also discussed a generalization to MLP layers which is essentially the approach used in this paper Note that

factoring out understanding attention patterns in this way leads to the issues with attention noted in § 7.1 Limitations: Missing Attention Circuits.

However, we can then also take the same solution takes of studying QK circuits. [↩]

4. Other architectures besides CLTs can be used for circuit analysis, but we’ve empirically found this approach to work well. [↩]

5. 18L has no MLP in layer 0, so our CLT has 17 layers. [↩]

6. We use a randomly sampled set of prompts and target tokens, restricting to those which the model predicts correctly, but with a confidence lower

than 80% (to filter out “boring” tokens). [↩]

7. This is similar in spirit to a Taylor approximation of a function at a point ; both agree locally in a neighborhood of but diverge in behavior as

you move away. [↩]

8. Due to the “Caps Lock” token, the actual target token is “dag”. We write the token in uppercase here and in the rest of the text for ease of

reading. [↩]

9. We chose this threshold arbitrarily. Empirically, fewer than three logits are required to capture 95% of the probability in the cases we study. [↩]

10. Alternatively, w_{s \rightarrow t} is the derivative of the preactivation of with respect to the source feature activation, with stop-gradients on all

non-linearities in the local replacement model. [↩]

11. That is, our model ignores the "QK-circuits" but captures the "OV-circuits". [↩]

12. We sometimes used labels from our automated interpretability pipeline as a starting point, but generally found human labels to be more

reliable. [↩]

13. They can be indirectly affected since they sit downstream of affected nodes. [↩]

14. For a discussion of why we steer negatively instead of ablating the feature, see § I Unexplained Variance and Choice of Steering Factors. [↩]

15. For each patched supernode, we choose the end-layer range which causes the largest suppression effect on the logit. [↩]

16. Note that we use a large steering factor in this experiment. For a discussion of this, see § I Unexplained Variance and Choice of Steering

Factors. [↩]

17. We use the prefix "calc:" because the 18L performs much better on the problem with it. This prefix is not necessary for Haiku 3.5, but we include it

nevertheless for the purposes of direct comparison in later sections. [↩]

18. During analysis we visualize effects on [0, 999]. This is important to understand effects beyond the first 100 number tokens (e.g., the feature

predicting 95 mod 100), but we only show [0, 99] for simplicity. [↩]

19. With hover you can see the variability in the precision of the low precision lookup table features and the moderate precision sum features. [↩]

20. As in other sections of this work, we apply these labels manually. [↩]

21. Write for the preactivation of . Then . If both terms on the LHS are positive, at

least one on the right must be. [↩]

22. Concretely, the intermediate info is the ones digit produced from adding the ones digit of the operands and the approximate magnitude of the sum

of two numbers in the 20s. [↩]

23. The attention-direct terms can also be written in terms of virtual weights given by multiplying various decoder vectors by a series of attention

[1, 2, 3]

[18]

f a a

t

[18]

fpre x f (x + y) + f (z + w) = f (x + w) + f (y + z)pre pre pre pre

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-1
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-1
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-2
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-2
https://transformer-circuits.pub/2021/framework/index.html#additional-intuition
https://transformer-circuits.pub/2021/framework/index.html#additional-intuition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#limitations-attention
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-3
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-3
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-4
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-4
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-5
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-5
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-6
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-6
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-7
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-7
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-8
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-8
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-9
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-9
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-10
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-10
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-11
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-11
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-12
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-12
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-13
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-13
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-14
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-14
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-15
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-15
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-unexplained-var
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-16
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-16
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-17
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-17
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-18
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-18
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-19
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-19
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-20
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-20
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-21
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-21
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-22
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-22

head OVs, and then by an encoder, but these get scaled on a prompt by both the source feature activation and the attention patterns, which make

their analysis more complex. [↩]

24. We also see interference weights when looking at a larger sample of features in the § O Appendix: Interference Weights over More

FeaturesAppendix. [↩]

25. It only represents the residual-direct component and does not include the attention-direct one. [↩]

26. Note that these weights cannot be 0 as this would also send TWERA to 0. [↩]

27. There's no guarantee that the CLT features are the most parsimonious way to split up the computation, and it's possible some of our less

important, roughly-periodic features which are harder to interpret are artifacts of the periodic aspects of the representation. [↩]

28. In § P Appendix: Number Output Weights over More Features, we show output weight plots for the 9_ and 95_ features on all number

predictions from [0,999]. We also show a miscellaneous feature that promotes “simple numbers” : small numbers, multiples of 100 and a few

standouts like 360. [↩]

29. One route is to consider of prompts, and to exclude from considerations features that are present across all prompts within a family (but

see). [↩]

30. We scale the number of training steps with the number of features, so improvements reflect a combination of both forms of scaling – see § D

Appendix: CLT Implementation Details for details. [↩]

31. Specifically, we sweep over a range of scalar thresholds, and for each value we clamp all neurons with activation less than the threshold to 0. For

our metrics and graphs, we then only consider neurons above the threshold. [↩]

32. We choose the threshold at approximately the point where the neurons achieve similar automated interpretability scores as our smallest

dictionaries, see figures above. [↩]

33. If there are multiple logit nodes, we compute an average of the rows weighted by logit probability. [↩]

34. We normalize influence scores by the total influence of embeddings in the unpruned graph. This normalization factor is exactly equal to the

replacement score, which we define in the next section. [↩]

35. Compounding errors have a gradually detrimental effect on the faithfulness of the direction of perturbation effects, which are largely consistent

across CLT sizes, with signs of faithfulness worsening slightly as dictionary size increases. Compounding errors can have a catastrophically

detrimental effect on the magnitude of perturbations, with worse effects for larger dictionaries. We suspect the lack of normalization

denominators in the local replacement model may be why its perturbation effect magnitudes deviate so significantly from the underlying model,

even when the perturbation effect directions are significantly correlated. [↩]

36. Other explanations are possible, particularly for the direct paths from "B" that do not go through tokens following "B" – one

alternative is that the model may use a “binding ID vector” to group the "B" tokens with "1945" and nearby tokens and use this to

attend directly back to the "B" token from the final token position – see Feng & Steinhardt for more details on this type of mechanism. [↩]

37. For example, the fundamental reason we need features to be independently interpretable is to avoid needing to think about all of them at once

(see discussion here). [↩]

38. See Sharkey for a detailed description of the reverse engineering philosophy. [↩]

39. Credit attribution in a non-linear setting is a hard problem. The core challenge can't simply be washed away, and it's worth asking where we

implicitly have pushed the complexity. There are three places it may have gone. First – and this is the best option – is that the non-linear

interactions have become multi-step paths in our attribution graph, which can then be reasoned about in interpretable ways. Next, a significant

amount of it must have gone into the frozen components, factored into separate questions we haven't tried to address here, but at least know

remain. But there is also a bad option: some of it may have been simplified by our CLT taking a non-mechanistically faithful shortcut, which

approximates MLP computation with a linear approximation that is often correct. [↩]

40. Our setup allows for some similar principled notions of linear interaction in the global context, but we now have to think of different weights for

interactions along different paths – for example, what is the interaction of feature A and feature B mediated by attention head H? This is

discussed in § 4 Global Weights. The paper also discussed these general conceptual issues in the appendix. [↩]

41. Analyzing the global weights mediated by a head may be interesting here. For example, an induction head might systematically move “I'm X”

features to “say X” features. A successor head might systematically map “X” features to “X+1” features. [↩]

42. Of course, not all heads are individually interesting in the way induction heads or successor heads often are. We might suspect there are many

more “attentional features” like induction and succession hiding in . If we could reveal these, there might be a

much richer story. [↩]

43. We also freeze attention patterns in the underlying model. [↩]

[26]

[31]

[31]

[32]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-23
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-23
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-interference-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-24
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-24
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-25
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-25
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-26
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-26
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-27
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-27
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-full-number-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-28
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-28
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-29
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-29
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#appendix-ml-details
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-30
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-30
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-31
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-31
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#evaluating-model-clt
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-32
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-32
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-33
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-33
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-34
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-34
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-35
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-35
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-36
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-36
https://transformer-circuits.pub/2022/mech-interp-essay/index.html
https://transformer-circuits.pub/2022/mech-interp-essay/index.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-37
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-37
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-38
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-38
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-39
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-39
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#global-weights
https://transformer-circuits.pub/2021/framework/index.html#additional-intuition
https://transformer-circuits.pub/2021/framework/index.html#additional-intuition
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-40
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-40
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-41
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-41
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-42
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-42
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-43
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-43

We also freeze attention patterns in the underlying model. []

44. This interpretation is not strictly true with negative weights, as a strong negative weight might actually prevent coactivation. [↩]

1.  [link]

Meng, K., Bau, D., Andonian, A. and Belinkov, Y., 2022. arXiv preprint arXiv:2202.05262.

2.  [link]

Wang, K., Variengien, A., Conmy, A., Shlegeris, B. and Steinhardt, J., 2022. arXiv preprint arXiv:2211.00593.

3.  [PDF]

Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S. and Garriga-Alonso, A., 2023. Advances in Neural Information Processing Systems, Vol 36,

pp. 16318--16352.

4.  [link]

Cammarata, N., Carter, S., Goh, G., Olah, C., Petrov, M., Schubert, L., Voss, C., Egan, B. and Lim, S.K., 2020. Distill.

5.  [PDF]

Arora, S., Li, Y., Liang, Y., Ma, T. and Risteski, A., 2018. Transactions of the Association for Computational Linguistics, Vol 6, pp. 483--495. MIT

Press.

6.  [link]

Goh, G., 2016.

7.  [HTML]

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan, T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain, D., Chen, C., Grosse, R., McCandlish, S.,

Kaplan, J., Amodei, D., Wattenberg, M. and Olah, C., 2022. Transformer Circuits Thread.

8.  [HTML]

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A., Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A., Lasenby, R., Wu, Y., Kravec, S.,

Schiefer, N., Maxwell, T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen, K., McLean, B., Burke, J.E., Hume, T., Carter, S., Henighan, T. and Olah,

C., 2023. Transformer Circuits Thread.

9.  [link]

Cunningham, H., Ewart, A., Smith, L., Huben, R. and Sharkey, L., 2023. arXiv preprint arXiv:2309.08600.

10.  [link]

Gao, L., la Tour, T.D., Tillman, H., Goh, G., Troll, R., Radford, A., Sutskever, I., Leike, J. and Wu, J., 2024. arXiv preprint arXiv:2406.04093.

11.  [link]

Rajamanoharan, S., Lieberum, T., Sonnerat, N., Conmy, A., Varma, V., Kramar, J. and Nanda, N., 2024. arXiv preprint arXiv:2407.14435.

12.  [PDF]

Dunefsky, J., Chlenski, P. and Nanda, N., 2025. Advances in Neural Information Processing Systems, Vol 37, pp. 24375--24410.

13.  [link]

Marks, S., Karvonen, A. and Mueller, A., 2024. Github.

14.  [link]

Templeton, A., Batson, J., Jermyn, A. and Olah, C., 2024.

15.  [HTML]

Lindsey, J., Templeton, A., Marcus, J., Conerly, T., Batson, J. and Olah, C., 2024.

16.  [link]

Marks, S., Rager, C., Michaud, E.J., Belinkov, Y., Bau, D. and Mueller, A., 2024. arXiv preprint arXiv:2403.19647.

17.  [link]

Ge, X., Zhu, F., Shu, W., Wang, J., He, Z. and Qiu, X., 2024. arXiv preprint arXiv:2405.13868.

18.  [HTML]

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T., DasSarma, N., Drain, D., Ganguli, D.,

Hatfield-Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J., McCandlish, S. and Olah,

C., 2021. Transformer Circuits Thread.

19. [link]

https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-43
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-43
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-44
https://transformer-circuits.pub/2025/attribution-graphs/methods.html#d-footnote-44
https://arxiv.org/pdf/2202.05262
https://arxiv.org/pdf/2202.05262
https://arxiv.org/pdf/2211.00593
https://arxiv.org/pdf/2211.00593
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://distill.pub/2020/circuits
https://distill.pub/2020/circuits
https://aclanthology.org/Q18-1034.pdf
https://aclanthology.org/Q18-1034.pdf
https://gabgoh.github.io/ThoughtVectors/
https://gabgoh.github.io/ThoughtVectors/
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://arxiv.org/pdf/2309.08600
https://arxiv.org/pdf/2309.08600
https://arxiv.org/pdf/2406.04093
https://arxiv.org/pdf/2406.04093
https://arxiv.org/pdf/2407.14435
https://arxiv.org/pdf/2407.14435
http://arxiv.org/pdf/2406.11944.pdf
http://arxiv.org/pdf/2406.11944.pdf
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/pdf/2403.19647
https://arxiv.org/pdf/2403.19647
https://arxiv.org/pdf/2405.13868
https://arxiv.org/pdf/2405.13868
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall

19.  [link]

Nanda, N., Rajamanoharan, S. and Shah, R., 2023.

20.  [link]

Batson, J., Chen, B. and Jones, A., 2024.

21.  [link]

Nikankin, Y., Reusch, A., Mueller, A. and Belinkov, Y., 2024.

22.  [link]

Kantamneni, S. and Tegmark, M., 2025.

23.  [link]

Zhou, T., Fu, D., Sharan, V. and Jia, R., 2024. arXiv preprint arXiv:2406.03445.

24.  [link]

Kissane, C., robertzk,, Conmy, A. and Nanda, N., 2024.

25.  [HTML]

Henighan, T., Carter, S., Hume, T., Elhage, N., Lasenby, R., Fort, S., Schiefer, N. and Olah, C., 2023. Transformer Circuits Thread.

26.  [link]

Miller, J., Chughtai, B. and Saunders, W., 2024. arXiv preprint arXiv:2407.08734.

27.  [link]

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., Presser, S. and Leahy, C., 2020.

28.  [link]

Zheng, L., Chiang, W., Sheng, Y., Li, T., Zhuang, S., Wu, Z., Zhuang, Y., Li, Z., Lin, Z., Xing, E.P., Gonzalez, J.E., Stoica, I. and Zhang, H., 2023.

29.  [link]

Lindsey, J., Cunningham, H., Conerly, T. and Templeton, A., 2024.

30.  [HTML]

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T., Drain, D., Ganguli, D.,

Hatfield-Dodds, Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J., McCandlish,

S. and Olah, C., 2022. Transformer Circuits Thread.

31.  [link]

Feng, J. and Steinhardt, J., 2023. arXiv preprint arXiv:2310.17191.

32.  [link]

Sharkey, L., Chughtai, B., Batson, J., Lindsey, J., Wu, J., Bushnaq, L., Goldowsky-Dill, N., Heimersheim, S., Ortega, A., Bloom, J. and others,, 2025.

arXiv preprint arXiv:2501.16496.

33.  [link]

Kantamneni, S., Engels, J., Rajamanoharan, S., Tegmark, M. and Nanda, N., 2025. arXiv preprint arXiv:2502.16681.

34.  [link]

Wu, Z., Arora, A., Geiger, A., Wang, Z., Huang, J., Jurafsky, D., Manning, C.D. and Potts, C., 2025. arXiv preprint arXiv:2501.17148.

35.  [link]

Chanin, D., Wilken-Smith, J., Dulka, T., Bhatnagar, H. and Bloom, J., 2024. arXiv preprint arXiv:2409.14507.

36.  [link]

Till, D., 2024.

37.  [link]

Turner, N.L., Jermyn, A. and Batson, J., 2024.

38.  [link]

Nabeshima, N., 2024.

39.  [link]

Bussmann, B., Leask, P. and Nanda, N., 2024.

40.  [link]

Bussmann, B., Pearce, M., Leask, P., Bloom, J., Sharkey, L. and Nanda, N., 2024.

https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://transformer-circuits.pub/2024/march-update/index.html#feature-heads
https://transformer-circuits.pub/2024/march-update/index.html#feature-heads
https://arxiv.org/pdf/2410.21272
https://arxiv.org/pdf/2410.21272
https://arxiv.org/pdf/2502.00873
https://arxiv.org/pdf/2502.00873
https://arxiv.org/pdf/2406.03445
https://arxiv.org/pdf/2406.03445
https://www.lesswrong.com/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://www.lesswrong.com/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://transformer-circuits.pub/2023/toy-double-descent/index.html
https://transformer-circuits.pub/2023/toy-double-descent/index.html
https://arxiv.org/pdf/2407.08734
https://arxiv.org/pdf/2407.08734
https://arxiv.org/pdf/2101.00027
https://arxiv.org/pdf/2101.00027
https://arxiv.org/pdf/2309.11998
https://arxiv.org/pdf/2309.11998
https://transformer-circuits.pub/2024/august-update/index.html#interp-evals
https://transformer-circuits.pub/2024/august-update/index.html#interp-evals
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://arxiv.org/pdf/2310.17191
https://arxiv.org/pdf/2310.17191
https://arxiv.org/pdf/2501.16496
https://arxiv.org/pdf/2501.16496
https://arxiv.org/pdf/2502.16681
https://arxiv.org/pdf/2502.16681
https://arxiv.org/pdf/2501.17148
https://arxiv.org/pdf/2501.17148
https://arxiv.org/pdf/2409.14507
https://arxiv.org/pdf/2409.14507
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://transformer-circuits.pub/2024/july-update/index.html#feature-sensitivity
https://transformer-circuits.pub/2024/july-update/index.html#feature-sensitivity
https://www.lesswrong.com/posts/zbebxYCqsryPALh8C/matryoshka-sparse-autoencoders#fn-gTupTd3B3GQegCM2j-4
https://www.lesswrong.com/posts/zbebxYCqsryPALh8C/matryoshka-sparse-autoencoders#fn-gTupTd3B3GQegCM2j-4
https://www.lesswrong.com/posts/rKM9b6B2LqwSB5ToN/learning-multi-level-features-with-matryoshka-saes
https://www.lesswrong.com/posts/rKM9b6B2LqwSB5ToN/learning-multi-level-features-with-matryoshka-saes
https://www.alignmentforum.org/posts/TMAmHh4DdMr4nCSr5/showing-sae-latents-are-not-atomic-using-meta-saes
https://www.alignmentforum.org/posts/TMAmHh4DdMr4nCSr5/showing-sae-latents-are-not-atomic-using-meta-saes

41.  [link]

Meng, K., Huang, V., Chowdhury, N., Choi, D., Steinhardt, J. and Schwettmann, S., 2024.

42.  [link]

Sundararajan, M., Taly, A. and Yan, Q., 2017. arXiv preprint arXiv:1703.01365.

43.  [PDF]

Lundberg, S.M. and Lee, S., 2017. Advances in neural information processing systems, Vol 30.

44.  [link]

Gould, R., Ong, E., Ogden, G. and Conmy, A., 2023.

45.  [link]

Räuker, T., Ho, A., Casper, S. and Hadfield-Menell, D., 2023. 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pp.

464--483.

46.  [link]

Bereska, L. and Gavves, E., 2024. arXiv preprint arXiv:2404.14082.

47.  [link]

Ferrando, J., Sarti, G., Bisazza, A. and Costa-jussa, M.R., 2024. arXiv preprint arXiv:2405.00208.

48.  [link]

Mueller, A., Brinkmann, J., Li, M., Marks, S., Pal, K., Prakash, N., Rager, C., Sankaranarayanan, A., Sharma, A.S., Sun, J. and others,, 2024. arXiv

preprint arXiv:2408.01416.

49.  [link]

Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. arXiv preprint arXiv:1301.3781.

50.  [link]

Karpathy, A., Johnson, J. and Fei-Fei, L., 2015. arXiv preprint arXiv:1506.02078.

51.  [link]

Cammarata, N., Goh, G., Carter, S., Schubert, L., Petrov, M. and Olah, C., 2020. Distill.

52.  [link]

Voita, E., Talbot, D., Moiseev, F., Sennrich, R. and Titov, I., 2019. arXiv preprint arXiv:1905.09418.

53.  [link]

Jones, L., 2017.

54.  [link]

Rogers, A., Kovaleva, O. and Rumshisky, A., 2020. Transactions of the Association for Computational Linguistics, Vol 8, pp. 842--866. MIT Press.

DOI: 10.1162/tacl_a_00349

55.  [link]

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K. and Mordvintsev, A., 2018. Distill. DOI: 10.23915/distill.00010

56.  [link]

Vig, J., 2019. arXiv preprint arXiv:1906.05714.

57.  [link]

Bengio, Y., Courville, A. and Vincent, P., 2013. IEEE transactions on pattern analysis and machine intelligence, Vol 35(8), pp. 1798--1828. IEEE.

58.  [PDF]

Donoho, D.L., 2006. IEEE Transactions on information theory, Vol 52(4), pp. 1289--1306. IEEE.

59.  [link]

Ganguli, S. and Sompolinsky, H., 2012. Annual Review of Neuroscience, Vol 35(1), pp. 485-508. DOI: 10.1146/annurev-neuro-062111-150410

60.  [link]

Olshausen, B.A. and Field, D.J., 1997. Vision research, Vol 37(23), pp. 3311--3325. Elsevier. DOI: 10.1016/S0042-6989(97)00169-7

61.

Elad, M., 2010. , Vol 2(1). Springer.

62.  [link]

Thorpe, S.J., 1989. Intellectica, Vol 8, pp. 3--40.

https://transluce.org/observability-interface
https://transluce.org/observability-interface
https://arxiv.org/pdf/1703.01365
https://arxiv.org/pdf/1703.01365
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://arxiv.org/pdf/2312.09230
https://arxiv.org/pdf/2312.09230
https://arxiv.org/pdf/2207.13243
https://arxiv.org/pdf/2207.13243
https://arxiv.org/pdf/2404.14082
https://arxiv.org/pdf/2404.14082
https://arxiv.org/pdf/2405.00208
https://arxiv.org/pdf/2405.00208
https://arxiv.org/pdf/2408.01416
https://arxiv.org/pdf/2408.01416
https://arxiv.org/pdf/1301.3781
https://arxiv.org/pdf/1301.3781
https://arxiv.org/pdf/1506.02078
https://arxiv.org/pdf/1506.02078
https://distill.pub/2020/circuits/curve-detectors
https://distill.pub/2020/circuits/curve-detectors
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/visualization
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00010
https://arxiv.org/pdf/1906.05714
https://arxiv.org/pdf/1906.05714
https://arxiv.org/pdf/1206.5538
https://arxiv.org/pdf/1206.5538
https://www.cmor-faculty.rice.edu/~yzhang/caam699/Image%20papers/CompSensing.pdf
https://www.cmor-faculty.rice.edu/~yzhang/caam699/Image%20papers/CompSensing.pdf
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1016/S0042-6989(97)00169-7
https://www.persee.fr/doc/intel_0769-4113_1989_num_8_2_873?ref=cognitiverevolution.ai
https://www.persee.fr/doc/intel_0769-4113_1989_num_8_2_873?ref=cognitiverevolution.ai

63.  [link]

Radford, A., Metz, L. and Chintala, S., 2015. arXiv preprint arXiv:1511.06434.

64.  [link]

Turner, A.M., Thiergart, L., Udell, D., Leech, G., Mini, U. and MacDiarmid, M., 2023.

65.  [link]

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M. and Carter, S., 2020. Distill. DOI: 10.23915/distill.00024.001

66.  [HTML]

Olah, C., 2023.

67.  [link]

Yun, Z., Chen, Y., Olshausen, B.A. and LeCun, Y., 2021. arXiv preprint arXiv:2103.15949.

68.  [HTML]

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken, T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones, A., Cunningham, H., Turner, N.L.,

McDougall, C., MacDiarmid, M., Freeman, C.D., Sumers, T.R., Rees, E., Batson, J., Jermyn, A., Carter, S., Olah, C. and Henighan, T., 2024. Transformer

Circuits Thread.

69.  [PDF]

Ng, A. and others,, 2011. CS294A Lecture notes, Vol 72(2011), pp. 1--19.

70.  [link]

Makhzani, A. and Frey, B.J., 2013. CoRR, Vol abs/1312.5663.

71.  [link]

Wright, B. and Sharkey, L., 2024.

72.  [link]

Leask, P., Bussmann, B., Pearce, M., Bloom, J., Tigges, C., Moubayed, N.A., Sharkey, L. and Nanda, N., 2025. arXiv preprint arXiv:2502.04878.

73.  [link]

Kissane, C., Krzyzanowski, R., Nanda, N. and Conmy, A., 2024. Alignment Forum.

74.  [link]

Paulo, G. and Belrose, N., 2025. arXiv preprint arXiv:2501.16615.

75.  [HTML]

Bills, S., Cammarata, N., Mossing, D., Tillman, H., Gao, L., Goh, G., Sutskever, I., Leike, J., Wu, J. and Saunders, W., 2023.

76.  [link]

Paulo, G., Mallen, A., Juang, C. and Belrose, N., 2024. arXiv preprint arXiv:2410.13928.

77.  [link]

Heap, T., Lawson, T., Farnik, L. and Aitchison, L., 2025. arXiv preprint arXiv:2501.17727.

78.  [link]

Lawson, T., Farnik, L., Houghton, C. and Aitchison, L., 2024. arXiv preprint arXiv:2409.04185.

79.  [link]

Paulo, G., Shabalin, S. and Belrose, N., 2025. arXiv preprint arXiv:2501.18823.

80.  [link]

Olmo, J., Wilson, J., Forsey, M., Hepner, B., Howe, T.V. and Wingate, D., 2024. arXiv preprint arXiv:2411.10397.

81.  [link]

Mudide, A., Engels, J., Michaud, E.J., Tegmark, M. and de Witt, C.S., 2024. arXiv preprint arXiv:2410.08201.

82.  [PDF]

Braun, D., Taylor, J., Goldowsky-Dill, N. and Sharkey, L., 2025. Advances in Neural Information Processing Systems, Vol 37, pp. 107286--107325.

83.  [link]

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T., Varma, V., Kramar, J., Shah, R. and Nanda, N., 2024. arXiv preprint arXiv:2404.16014.

84.  [link]

Farnik, L., Lawson, T., Houghton, C. and Aitchison, L., 2025. arXiv preprint arXiv:2502.18147.

https://arxiv.org/pdf/1511.06434
https://arxiv.org/pdf/1511.06434
https://arxiv.org/pdf/2308.10248
https://arxiv.org/pdf/2308.10248
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://transformer-circuits.pub/2023/superposition-composition/index.html
https://transformer-circuits.pub/2023/superposition-composition/index.html
https://arxiv.org/pdf/2103.15949
https://arxiv.org/pdf/2103.15949
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://graphics.stanford.edu/courses/cs233-21-spring/ReferencedPapers/SAE.pdf
https://graphics.stanford.edu/courses/cs233-21-spring/ReferencedPapers/SAE.pdf
https://api.semanticscholar.org/CorpusID:14850799
https://api.semanticscholar.org/CorpusID:14850799
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://arxiv.org/pdf/2502.04878
https://arxiv.org/pdf/2502.04878
https://www.lesswrong.com/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://www.lesswrong.com/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://arxiv.org/pdf/2501.16615
https://arxiv.org/pdf/2501.16615
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/pdf/2410.13928
https://arxiv.org/pdf/2410.13928
https://arxiv.org/pdf/2501.17727
https://arxiv.org/pdf/2501.17727
https://arxiv.org/pdf/2409.04185
https://arxiv.org/pdf/2409.04185
https://arxiv.org/pdf/2501.18823
https://arxiv.org/pdf/2501.18823
https://arxiv.org/pdf/2411.10397
https://arxiv.org/pdf/2411.10397
https://arxiv.org/pdf/2410.08201
https://arxiv.org/pdf/2410.08201
https://publications.apolloresearch.ai/end_to_end_sparse_dictionary_learning.pdf
https://publications.apolloresearch.ai/end_to_end_sparse_dictionary_learning.pdf
https://arxiv.org/pdf/2404.16014
https://arxiv.org/pdf/2404.16014
https://arxiv.org/pdf/2502.18147
https://arxiv.org/pdf/2502.18147

85.  [link]

Makelov, A., Lange, G. and Nanda, N., 2024. arXiv preprint arXiv:2405.08366.

86.  [link]

Huang, J., Wu, Z., Potts, C., Geva, M. and Geiger, A., 2024. arXiv preprint arXiv:2402.17700.

87.  [PDF]

Karvonen, A., Wright, B., Rager, C., Angell, R., Brinkmann, J., Smith, L., Mayrink Verdun, C., Bau, D. and Marks, S., 2025. Advances in Neural

Information Processing Systems, Vol 37, pp. 83091--83118.

88.  [link]

Chaudhary, M. and Geiger, A., 2024. arXiv preprint arXiv:2409.04478.

89.  [link]

Karvonen, A., Rager, C., Lin, J., Tigges, C., Bloom, J., Chanin, D., Lau, Y., Farrell, E., Conmy, A., Mc-Dougall, C. and others,. URL https://www.

neuronpedia. org/sae-bench/info.

90.  [link]

Karvonen, A., Rager, C., Marks, S. and Nanda, N., 2024. arXiv preprint arXiv:2411.18895.

91.  [link]

Bushnaq, L., Heimersheim, S., Goldowsky-Dill, N., Braun, D., Mendel, J., Hanni, K., Griffin, A., Stohler, J., Wache, M. and Hobbhahn, M., 2024. arXiv

preprint arXiv:2405.10928.

92.  [link]

Bushnaq, L., Mendel, J., Heimersheim, S., Braun, D., Goldowsky-Dill, N., Hanni, K., Wu, C. and Hobbhahn, M., 2024. arXiv preprint arXiv:2405.10927.

93.  [link]

Braun, D., Bushnaq, L., Heimersheim, S., Mendel, J. and Sharkey, L., 2025. arXiv preprint arXiv:2501.14926.

94.  [link]

Nanda, N., Chan, L., Lieberum, T., Smith, J. and Steinhardt, J., 2023. arXiv preprint arXiv:2301.05217.

95.  [PDF]

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Singer, Y. and Shieber, S., 2020. Advances in neural information processing systems, Vol 33, pp.

12388--12401.

96.  [link]

Zhang, F. and Nanda, N., 2023. arXiv preprint arXiv:2309.16042.

97.  [link]

Heimersheim, S. and Nanda, N., 2024. arXiv preprint arXiv:2404.15255.

98.  [link]

Goldowsky-Dill, N., MacLeod, C., Sato, L. and Arora, A., 2023. arXiv preprint arXiv:2304.05969.

99.  [PDF]

Geiger, A., Wu, Z., Potts, C., Icard, T. and Goodman, N., 2024. Causal Learning and Reasoning, pp. 160--187.

100.  [PDF]

Wu, Z., Geiger, A., Icard, T., Potts, C. and Goodman, N., 2023. Advances in neural information processing systems, Vol 36, pp. 78205--78226.

101.  [link]

Nanda, N., 2023.

102.  [link]

Syed, A., Rager, C. and Conmy, A., 2023. arXiv preprint arXiv:2310.10348.

103.  [link]

Kramár, J., Lieberum, T., Shah, R. and Nanda, N., 2024. arXiv preprint arXiv:2403.00745.

104.  [link]

Hanna, M., Pezzelle, S. and Belinkov, Y., 2024. arXiv preprint arXiv:2403.17806.

105.  [link]

Zhang, L., Dong, W., Zhang, Z., Yang, S., Hu, L., Liu, N., Zhou, P. and Wang, D., 2025. arXiv preprint arXiv:2502.06852.

106.  [link]

https://arxiv.org/pdf/2405.08366
https://arxiv.org/pdf/2405.08366
https://arxiv.org/pdf/2402.17700
https://arxiv.org/pdf/2402.17700
https://proceedings.neurips.cc/paper_files/paper/2024/file/9736acf007760cc2b47948ae3cf06274-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9736acf007760cc2b47948ae3cf06274-Paper-Conference.pdf
https://arxiv.org/pdf/2409.04478
https://arxiv.org/pdf/2409.04478
https://www.neuronpedia.org/sae-bench/info
https://www.neuronpedia.org/sae-bench/info
https://arxiv.org/pdf/2411.18895
https://arxiv.org/pdf/2411.18895
https://arxiv.org/pdf/2405.10928
https://arxiv.org/pdf/2405.10928
https://arxiv.org/pdf/2405.10927
https://arxiv.org/pdf/2405.10927
https://arxiv.org/pdf/2501.14926
https://arxiv.org/pdf/2501.14926
https://arxiv.org/pdf/2301.05217
https://arxiv.org/pdf/2301.05217
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://arxiv.org/pdf/2309.16042
https://arxiv.org/pdf/2309.16042
https://arxiv.org/pdf/2404.15255
https://arxiv.org/pdf/2404.15255
https://arxiv.org/pdf/2304.05969
https://arxiv.org/pdf/2304.05969
https://proceedings.mlr.press/v236/geiger24a/geiger24a.pdf
https://proceedings.mlr.press/v236/geiger24a/geiger24a.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://arxiv.org/pdf/2310.10348
https://arxiv.org/pdf/2310.10348
https://arxiv.org/pdf/2403.00745
https://arxiv.org/pdf/2403.00745
https://arxiv.org/pdf/2403.17806
https://arxiv.org/pdf/2403.17806
https://arxiv.org/pdf/2502.06852
https://arxiv.org/pdf/2502.06852
https://arxiv.org/pdf/2404.14349
https://arxiv.org/pdf/2404.14349

Rajaram, A., Chowdhury, N., Torralba, A., Andreas, J. and Schwettmann, S., 2024. arXiv preprint arXiv:2404.14349.

107.  [link]

Haklay, T., Orgad, H., Bau, D., Mueller, A. and Belinkov, Y., 2025. arXiv preprint arXiv:2502.04577.

108.  [link]

Cao, S., Sanh, V. and Rush, A.M., 2021. arXiv preprint arXiv:2104.03514.

109.  [link]

Davies, X., Nadeau, M., Prakash, N., Shaham, T.R. and Bau, D., 2023. arXiv preprint arXiv:2307.03637.

110.  [PDF]

Bhaskar, A., Wettig, A., Friedman, D. and Chen, D., 2025. Advances in Neural Information Processing Systems, Vol 37, pp. 18506--18534.

111.  [link]

Lepori, M.A., Serre, T. and Pavlick, E., 2023. arXiv preprint arXiv:2311.04354.

112.  [link]

O'Neill, C. and Bui, T., 2024. arXiv preprint arXiv:2405.12522.

113.  [link]

Ferrando, J. and Voita, E., 2024. arXiv preprint arXiv:2403.00824.

114.  [link]

Katz, S. and Belinkov, Y., 2023. arXiv preprint arXiv:2305.13417.

115.  [link]

He, Z., Ge, X., Tang, Q., Sun, T., Cheng, Q. and Qiu, X., 2024. arXiv preprint arXiv:2402.12201.

116.  [link]

Kissane, C., Krzyzanowski, R., Conmy, A. and Nanda, N., 2024.

117.  [PDF]

Geiger, A., Lu, H., Icard, T. and Potts, C., 2021. Advances in Neural Information Processing Systems, Vol 34, pp. 9574--9586.

118.  [link]

Geiger, A., Ibeling, D., Zur, A., Chaudhary, M., Chauhan, S., Huang, J., Arora, A., Wu, Z., Goodman, N., Potts, C. and others,, 2023. arXiv preprint

arXiv:2301.04709.

119.  [PDF]

Wu, Z., D’Oosterlinck, K., Geiger, A., Zur, A. and Potts, C., 2023. International conference on machine learning, pp. 37313--37334.

120.  [link]

Shah, H., Ilyas, A. and Madry, A., 2024. arXiv preprint arXiv:2404.11534.

121.  [link]

Chan, L., Garriga-Alonso, A., Goldwosky-Dill, N., Greenblatt, R., Nitishinskaya, J., Radhakrishnan, A., Shlegeris, B. and Thomas, N., 2022. AI

Alignment Forum.

122.  [PDF]

Shi, C., Beltran Velez, N., Nazaret, A., Zheng, C., Garriga-Alonso, A., Jesson, A., Makar, M. and Blei, D., 2025. Advances in Neural Information

Processing Systems, Vol 37, pp. 94539--94567.

123.  [PDF]

Zhong, Z., Liu, Z., Tegmark, M. and Andreas, J., 2023. Advances in neural information processing systems, Vol 36, pp. 27223--27250.

124.  [PDF]

Chughtai, B., Chan, L. and Nanda, N., 2023. International Conference on Machine Learning, pp. 6243--6267.

125.  [link]

Stander, D., Yu, Q., Fan, H. and Biderman, S., 2023. arXiv preprint arXiv:2312.06581.

126.  [link]

Li, C., Liang, Y., Shi, Z., Song, Z. and Zhou, T., 2024. arXiv preprint arXiv:2402.09469.

127.  [link]

Heimersheim, S. and Janiak, J., 2023. Alignment Forum.

128. [PDF]

https://arxiv.org/pdf/2404.14349
https://arxiv.org/pdf/2404.14349
https://arxiv.org/pdf/2502.04577
https://arxiv.org/pdf/2502.04577
https://arxiv.org/pdf/2104.03514
https://arxiv.org/pdf/2104.03514
https://arxiv.org/pdf/2307.03637
https://arxiv.org/pdf/2307.03637
http://arxiv.org/pdf/2406.16778.pdf
http://arxiv.org/pdf/2406.16778.pdf
https://arxiv.org/pdf/2311.04354
https://arxiv.org/pdf/2311.04354
https://arxiv.org/pdf/2405.12522
https://arxiv.org/pdf/2405.12522
https://arxiv.org/pdf/2403.00824
https://arxiv.org/pdf/2403.00824
https://arxiv.org/pdf/2305.13417
https://arxiv.org/pdf/2305.13417
https://arxiv.org/pdf/2402.12201
https://arxiv.org/pdf/2402.12201
https://www.lesswrong.com/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://www.lesswrong.com/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://arxiv.org/pdf/2301.04709
https://arxiv.org/pdf/2301.04709
https://proceedings.mlr.press/v202/wu23b/wu23b.pdf
https://proceedings.mlr.press/v202/wu23b/wu23b.pdf
https://arxiv.org/pdf/2404.11534
https://arxiv.org/pdf/2404.11534
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://proceedings.neurips.cc/paper_files/paper/2024/file/abccb8a90b30d45b948360ba41f5a20f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/abccb8a90b30d45b948360ba41f5a20f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/56cbfbf49937a0873d451343ddc8c57d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/56cbfbf49937a0873d451343ddc8c57d-Paper-Conference.pdf
https://proceedings.mlr.press/v202/chughtai23a/chughtai23a.pdf
https://proceedings.mlr.press/v202/chughtai23a/chughtai23a.pdf
https://arxiv.org/pdf/2312.06581
https://arxiv.org/pdf/2312.06581
https://arxiv.org/pdf/2402.09469
https://arxiv.org/pdf/2402.09469
https://www.lesswrong.com/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.lesswrong.com/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf

128.  [PDF]

Hanna, M., Liu, O. and Variengien, A., 2023. Advances in Neural Information Processing Systems, Vol 36, pp. 76033--76060.

129.  [link]

Lieberum, T., Rahtz, M., Kramar, J., Nanda, N., Irving, G., Shah, R. and Mikulik, V., 2023. arXiv preprint arXiv:2307.09458.

130.  [link]

Mathwin, C., Corlouer, G., Kran, E., Barez, F. and Nanda, N., 2023. URL: https://itch.io/jam/mechint/rate/1889871.

131.  [link]

Chintam, A., Beloch, R., Zuidema, W., Hanna, M. and Van Der Wal, O., 2023. arXiv preprint arXiv:2310.12611.

132.  [link]

Kharlapenko, D., Shabalin, S., Barez, F., Nanda, N. and Conmy, A., 2025.

133.  [link]

Merullo, J., Eickhoff, C. and Pavlick, E., 2023. arXiv preprint arXiv:2310.08744.

134. [link]

Mondorf, P., Wold, S. and Plank, B., 2024. arXiv preprint arXiv:2410.01434.

135.  [link]

Tigges, C., Hanna, M., Yu, Q. and Biderman, S., 2024. arXiv preprint arXiv:2407.10827.

136.  [PDF]

Team, G., Riviere, M., Pathak, S., Sessa, P.G., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahriari, B., Rame, A. and others,, 2024. arXiv

preprint arXiv:2408.00118.

137.  [PDF]

Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L., Sonnerat, N., Varma, V., Kramár, J., Dragan, A., Shah, R. and Nanda, N., 2024.

138.  [link]

Conerly, T., Cunningham, H., Templeton, A., Lindsey, J., Hosmer, B. and Jermyn, A., 2024.

139.  [link]

Olah, C. and Batson, J., 2023.

140.  [PDF]

Engels, J., Michaud, E.J., Liao, I., Gurnee, W. and Tegmark, M., 2024. arXiv preprint arXiv:2405.14860.

141.  [link]

Olah, C., 2024.

142.  [link]

Gorton, O., 2024.

143.  [link]

Heimersheim, S. and Turner, A., 2023.

https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf
https://arxiv.org/pdf/2307.09458
https://arxiv.org/pdf/2307.09458
https://www.apartresearch.com/project/identifying-a-preliminary-circuit-for-predicting-gendered-pronouns-in-gpt-2-small
https://www.apartresearch.com/project/identifying-a-preliminary-circuit-for-predicting-gendered-pronouns-in-gpt-2-small
https://arxiv.org/pdf/2310.12611
https://arxiv.org/pdf/2310.12611
https://openreview.net/forum?id=Pa1vr1Prww
https://openreview.net/forum?id=Pa1vr1Prww
https://arxiv.org/pdf/2310.08744
https://arxiv.org/pdf/2310.08744
https://arxiv.org/pdf/2410.01434
https://arxiv.org/pdf/2410.01434
https://arxiv.org/pdf/2407.10827
https://arxiv.org/pdf/2407.10827
http://arxiv.org/pdf/2408.00118.pdf
http://arxiv.org/pdf/2408.00118.pdf
http://arxiv.org/pdf/2408.05147.pdf
http://arxiv.org/pdf/2408.05147.pdf
https://transformer-circuits.pub/2025/january-update/index.html#DL
https://transformer-circuits.pub/2025/january-update/index.html#DL
https://transformer-circuits.pub/2023/may-update/index.html#feature-manifolds
https://transformer-circuits.pub/2023/may-update/index.html#feature-manifolds
http://arxiv.org/pdf/2405.14860.pdf
http://arxiv.org/pdf/2405.14860.pdf
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://livgorton.com/curve-detector-manifolds/
https://livgorton.com/curve-detector-manifolds/
https://www.lesswrong.com/posts/8mizBCm3dyc432nK8/residual-stream-norms-grow-exponentially-over-the-forward
https://www.lesswrong.com/posts/8mizBCm3dyc432nK8/residual-stream-norms-grow-exponentially-over-the-forward

