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LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package
since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained
wide popularity in machine learning and many other areas. In this article, we present all implementation
details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass
classification probability estimates and parameter selection are discussed in detail.
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1. INTRODUCTION

Support Vector Machines (SVMs) are a popular machine learning method for clas-
sification, regression, and other learning tasks. Since the year 2000, we have been
developing the package LIBSVM as a library for support vector machines.1 LIBSVM is
currently one of the most widely used SVM software. In this article,2 we present all
implementation details of LIBSVM. However, this article does not intend to teach the
practical use of LIBSVM. For instructions of using LIBSVM, see the README file included
in the package, the LIBSVM FAQ,3 and the practical guide by Hsu et al. [2003].

LIBSVM supports the following learning tasks.

(1) SVC: support vector classification (twoclass and multiclass);
(2) SVR: support vector regression.
(3) One-class SVM.

1The Web address of the package is at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
2This LIBSVM implementation document was created in 2001 and has been maintained at
http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.pdf.
3LIBSVM FAQ: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/faq.html.
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27:2 C.-C. Chang and C.-J. Lin

Table I. Representative Works in Some Domains that have Successfully
Used LIBSVM.

Domain Representative works
Computer vision LIBPMK [Grauman and Darrell 2005]
Natural language processing Maltparser [Nivre et al. 2007]
Neuroimaging PyMVPA [Hanke et al. 2009]
Bioinformatics BDVal [Dorff et al. 2010]

A typical use of LIBSVM involves two steps: first, training a dataset to obtain a model
and second, using the model to predict information of a testing dataset. For SVC and
SVR, LIBSVM can also output probability estimates. Many extensions of LIBSVM are
available at libsvmtools.4

The LIBSVM package is structured as follows.

(1) Main directory: core C/C++ programs and sample data. In particular, the file
svm.cpp implements training and testing algorithms, where details are described
in this article.

(2) The tool subdirectory. This subdirectory includes tools for checking data format
and for selecting SVM parameters.

(3) Other subdirectories contain prebuilt binary files and interfaces to other lan-
guages/software.

LIBSVM has been widely used in many areas. From 2000 to 2010, there were more
than 250,000 downloads of the package. In this period, we answered more than 10,000
emails from users. Table I lists representative works in some domains that have suc-
cessfully used LIBSVM.

This article is organized as follows. In Section 2, we describe SVM formulations sup-
ported in LIBSVM: C-Support Vector Classification (C-SVC), ν-Support Vector Classifi-
cation (ν-SVC), distribution estimation (one-class SVM), ε-Support Vector Regression
(ε-SVR), and ν-Support Vector Regression (ν-SVR). Section 3 then discusses perfor-
mance measures, basic usage, and code organization. All SVM formulations supported
in LIBSVM are quadratic minimization problems. We discuss the optimization algo-
rithm in Section 4. Section 5 describes two implementation techniques to reduce the
running time for minimizing SVM quadratic problems: shrinking and caching. LIBSVM
provides some special settings for unbalanced data; details are in Section 6. Section 7
discusses our implementation for multiclass classification. Section 8 presents how to
transform SVM decision values into probability values. Parameter selection is impor-
tant for obtaining good SVM models. Section 9 presents a simple and useful parameter
selection tool in LIBSVM. Finally, Section 10 concludes this work.

2. SVM FORMULATIONS

LIBSVM supports various SVM formulations for classification, regression, and distribu-
tion estimation. In this section, we present these formulations and give corresponding
references. We also show performance measures used in LIBSVM.

2.1. C-Support Vector Classification

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and an indicator vector
y ∈ Rl such that yi ∈ {1,−1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves

4LIBSVM Tools: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools.
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the following primal optimization problem:

min
w,b,ξ

1
2

wT w + C
l∑

i=1

ξi (1)

subject to yi(wT φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l,

where φ(xi) maps xi into a higher-dimensional space and C > 0 is the regularization
parameter. Due to the possible high dimensionality of the vector variable w, usually
we solve the following dual problem:

min
α

1
2

αT Qα − eT α

subject to yT α = 0, (2)
0 ≤ αi ≤ C, i = 1, . . . , l,

where e = [1, . . . , 1]T is the vector of all ones, Q is an l by l positive semidefinite matrix,
Qij ≡ yi yj K(xi, x j), and K(xi, x j) ≡ φ(xi)T φ(x j) is the kernel function.

After problem (2) is solved, using the primal-dual relationship, the optimal w satisfies

w =
l∑

i=1

yiαiφ(xi) (3)

and the decision function is

sgn
(
wT φ(x) + b

) = sgn

(
l∑

i=1

yiαi K(xi, x) + b

)
.

We store yiαi ∀i, b, label names,5 support vectors, and other information such as kernel
parameters in the model for prediction.

2.2. ν-Support Vector Classification

The ν-support vector classification [Schölkopf et al. 2000] introduces a new parameter
ν ∈ (0, 1]. It is proved that ν an upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors.

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl such
that yi ∈ {1,−1}, the primal optimization problem is

min
w,b,ξ ,ρ

1
2

wT w − νρ + 1
l

l∑
i=1

ξi

subject to yi(wT φ(xi) + b) ≥ ρ − ξi, (4)
ξi ≥ 0, i = 1, . . . , l, ρ ≥ 0.

The dual problem is

min
α

1
2

αT Qα

subject to 0 ≤ αi ≤ 1/l, i = 1, . . . , l, (5)

eT α ≥ ν, yT α = 0,

5In LIBSVM, any integer can be a label name, so we map label names to ±1 by assigning the first training
instance to have y1 = +1.
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where Qij = yi yj K(xi, x j). Chang and Lin [2001] show that problem (5) is feasible if
and only if

ν ≤ 2 min(#yi = +1, #yi = −1)
l

≤ 1,

so the usable range of ν is smaller than (0, 1].
The decision function is

sgn

(
l∑

i=1

yiαi K(xi, x) + b

)
.

It is shown that eT α ≥ ν can be replaced by eT α = ν [Crisp and Burges 2000; Chang
and Lin 2001]. In LIBSVM, we solve a scaled version of problem (5) because numerically
αi may be too small due to the constraint αi ≤ 1/l.

min
ᾱ

1
2

ᾱT Qᾱ

subject to 0 ≤ ᾱi ≤ 1, i = 1, . . . , l, (6)

eT ᾱ = νl, yT ᾱ = 0

If α is optimal for the dual problem (5) and ρ is optimal for the primal problem (4),
Chang and Lin [2001] show that α/ρ is an optimal solution of C-SVM with C = 1/(ρl).
Thus, in LIBSVM, we output (α/ρ, b/ρ) in the model.6

2.3. Distribution Estimation (One-Class SVM)

One-class SVM was proposed by Schölkopf et al. [2001] for estimating the support of a
high-dimensional distribution. Given training vectors xi ∈ Rn, i = 1, . . . , l without any
class information, the primal problem of one-class SVM is

min
w,ξ ,ρ

1
2

wT w − ρ + 1
νl

l∑
i=1

ξi

subject to wT φ(xi) ≥ ρ − ξi,

ξi ≥ 0, i = 1, . . . , l.

The dual problem is

min
α

1
2

αT Qα

subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l, (7)

eT α = 1,

where Qij = K(xi, x j) = φ(xi)T φ(x j). The decision function is

sgn

(
l∑

i=1

αi K(xi, x) − ρ

)
.

6More precisely, solving (6) obtains ρ̄ = ρl. Because ᾱ = lα, we have α/ρ = ᾱ/ρ̄. Hence, in LIBSVM, we
calculate ᾱ/ρ̄.
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Similar to the case of ν-SVC, in LIBSVM, we solve a scaled version of (7).

min
α

1
2

αT Qα

subject to 0 ≤ αi ≤ 1, i = 1, . . . , l, (8)

eT α = νl

2.4. ε-Support Vector Regression (ε-SVR)

Consider a set of training points, {(x1, z1), . . . , (xl, zl)}, where xi ∈ Rn is a feature vector
and zi ∈ R1 is the target output. Under given parameters C > 0 and ε > 0, the standard
form of support vector regression [Vapnik 1998] is

min
w,b,ξ ,ξ∗

1
2

wT w + C
l∑

i=1

ξi + C
l∑

i=1

ξ ∗
i

subject to wT φ(xi) + b − zi ≤ ε + ξi,

zi − wT φ(xi) − b ≤ ε + ξ ∗
i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.

The dual problem is

min
α,α∗

1
2

(α − α∗)T Q(α − α∗) + ε

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

zi(αi − α∗
i )

subject to eT (α − α∗) = 0, (9)
0 ≤ αi, α

∗
i ≤ C, i = 1, . . . , l,

where Qij = K(xi, x j) ≡ φ(xi)T φ(x j).
After solving problem (9), the approximate function is

l∑
i=1

(−αi + α∗
i )K(xi, x) + b.

In LIBSVM, we output α∗ − α in the model.

2.5. ν-Support Vector Regression (ν-SVR)

Similar to ν-SVC, for regression, Schölkopf et al. [2000] use a parameter ν ∈ (0, 1] to
control the number of support vectors. The parameter ε in ε-SVR becomes a parameter
here. With (C, ν) as parameters, ν-SVR solves

min
w,b,ξ ,ξ∗,ε

1
2

wT w + C

(
νε + 1

l

l∑
i=1

(ξi + ξ ∗
i )

)

subject to (wT φ(xi) + b) − zi ≤ ε + ξi,

zi − (wT φ(xi) + b) ≤ ε + ξ ∗
i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l, ε ≥ 0.
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27:6 C.-C. Chang and C.-J. Lin

The dual problem is

min
α,α∗

1
2

(α − α∗)T Q(α − α∗) + zT (α − α∗)

subject to eT (α − α∗) = 0, eT (α + α∗) ≤ Cν, (10)
0 ≤ αi, α

∗
i ≤ C/l, i = 1, . . . , l.

The approximate function is
l∑

i=1

(−αi + α∗
i )K(xi, x) + b.

Similar to ν-SVC, Chang and Lin [2002] show that the inequality eT (α + α∗) ≤ Cν
can be replaced by an equality. Moreover, C/l may be too small because users often
choose C to be a small constant like one. Thus, in LIBSVM, we treat the user-specified
regularization parameter as C/l. That is, C̄ = C/l is what users specified and LIBSVM
solves the following problem.

min
α,α∗

1
2

(α − α∗)T Q(α − α∗) + zT (α − α∗)

subject to eT (α − α∗) = 0, eT (α + α∗) = C̄lν,

0 ≤ αi, α
∗
i ≤ C̄, i = 1, . . . , l

Chang and Lin [2002] prove that ε-SVR with parameters (C̄, ε) has the same solution
as ν-SVR with parameters (lC̄, ν).

3. PERFORMANCE MEASURES, BASIC USAGE, AND CODE ORGANIZATION

This section describes LIBSVM’s evaluation measures, shows some simple examples of
running LIBSVM, and presents the code structure.

3.1. Performance Measures

After solving optimization problems listed in previous sections, users can apply decision
functions to predict labels (target values) of testing data. Let x1, . . . , xl̄ be the testing
data and f (x1), . . . , f (xl̄) be decision values (target values for regression) predicted by
LIBSVM. If the true labels (true target values) of testing data are known and denoted
as yi, . . . , yl̄, we evaluate the prediction results by the following measures.

3.1.1. Classification.

Accuracy

= # correctly predicted data
# total testing data

× 100%

3.1.2. Regression. LIBSVM outputs MSE (mean squared error) and r2 (squared corre-
lation coefficient).

MSE = 1
l̄

l̄∑
i=1

(
f (xi) − yi

)2
,

r2 =
(
l̄
∑l̄

i=1 f (xi)yi − ∑l̄
i=1 f (xi)

∑l̄
i=1 yi

)2

(
l̄
∑l̄

i=1 f (xi)2 − (∑l̄
i=1 f (xi)

)2
) (

l̄
∑l̄

i=1 y2
i − (∑l̄

i=1 yi
)2

)
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Fig. 1. LIBSVM’s code organization for training. All subroutines are in svm.cpp.

3.2. A Simple Example of Running LIBSVM

While detailed instructions of using LIBSVM are available in the README file of the
package and the practical guide by Hsu et al. [2003], here we give a simple example.

LIBSVM includes a sample dataset heart scale of 270 instances. We split the data
to a training set heart scale.tr (170 instances) and a testing set heart scale.te.

$ python tools/subset.py heart_scale 170 heart_scale.tr heart_scale.te

The command svm-train solves an SVM optimization problem to produce a model.7

$ ./svm-train heart_scale.tr
*
optimization finished, #iter = 87
nu = 0.471645
obj = -67.299458, rho = 0.203495
nSV = 88, nBSV = 72
Total nSV = 88

Next, the command svm-predict uses the obtained model to classify the testing set.

$ ./svm-predict heart_scale.te heart_scale.tr.model output
Accuracy = 83% (83/100) (classification)

The file output contains predicted class labels.

3.3. Code Organization

All LIBSVM’s training and testing algorithms are implemented in the file svm.cpp. The
two main subroutines are svm train and svm predict. The training procedure is more
sophisticated, so we give the code organization in Figure 1.

From Figure 1, for classification, svm train decouples a multiclass problem to two-
class problems (see Section 7) and calls svm train one several times. For regression and
one-class SVM, it directly calls svm train one. The probability outputs for classification
and regression are also handled in svm train. Then, according to the SVM formulation,
svm train one calls a corresponding subroutine such as solve c svc for C-SVC and
solve nu svc for ν-SVC. All solve * subroutines call the solver Solve after preparing
suitable input values. The subroutine So, stoplve minimizes a general form of SVM

7The default solver is C-SVC using the RBF kernel (48) with C = 1 and γ = 1/n.
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27:8 C.-C. Chang and C.-J. Lin

optimization problems; see (11) and (22). Details of the subroutine Solve are described
in Sections 4 through 6.

4. SOLVING THE QUADRATIC PROBLEMS

This section discusses algorithms used in LIBSVM to solve dual quadratic problems
listed in Section 2. We split the discussion to two parts. The first part considers opti-
mization problems with one linear constraint, while the second part checks those with
two linear constraints.

4.1. Quadratic Problems with One Linear Constraint: C-SVC, ε-SVR, and One-Class SVM

We consider the following general form of C-SVC, ε-SVR, and one-class SVM:

min
α

f (α)

subject to yT α = 	, (11)
0 ≤ αt ≤ C, t = 1, . . . , l,

where

f (α) ≡ 1
2

αT Qα + pT α

and yt = ±1, t = 1, . . . , l. The constraint yT α = 0 is called a linear constraint. It can be
clearly seen that C-SVC and one-class SVM are already in the form of problem (11).
For ε-SVR, we use the following reformulation of Eq. (9).

min
α,α∗

1
2

[
(α∗)T ,αT

] [
Q −Q

−Q Q

] [
α∗
α

]
+ [

εeT − zT , εeT + zT
] [

α∗
α

]

subject to yT
[
α∗
α

]
= 0, 0 ≤ αt, α

∗
t ≤ C, t = 1, . . . , l,

where

y = [1, . . . , 1︸ ︷︷ ︸
l

,−1, . . . ,−1︸ ︷︷ ︸
l

]T

We do not assume that Q is Positive semidefinite (PSD) because sometimes non-PSD
kernel matrices are used.

4.1.1. Decomposition Method for Dual Problems. The main difficulty for solving problem
(11) is that Q is a dense matrix and may be too large to be stored. In LIBSVM, we consider
a decomposition method to conquer this difficulty. Some earlier works on decomposition
methods for SVM include, for example, Osuna et al. [1997b], Joachims [1998], Platt
[1998], Keerthi et al. [2001], Hsu and Lin [2002b]. Subsequent developments include,
for example, Fan et al. [2005], Palagi and Sciandrone [2005], Glasmachers and Igel
[2006]. A decomposition method modifies only a subset of α per iteration, so only
some columns of Q are needed. This subset of variables, denoted as the working set
B, leads to a smaller optimization subproblem. An extreme case of the decomposition
methods is the Sequential Minimal Optimization (SMO) [Platt 1998], which restricts
B to have only two elements. Then, at each iteration, we solve a simple two-variable
problem without needing any optimization software. LIBSVM considers an SMO-type
decomposition method proposed in Fan et al. [2005].

Note that B is updated at each iteration, but for simplicity, we use B instead of Bk.
If Q is PSD, then aij > 0. Thus subproblem (13) is used only to handle the situation
where Q is non-PSD.

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, Article 27, Publication date: April 2011.
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ALGORITHM 1: An SMO-type decomposition method in Fan et al. [2005]

(1) Find α1 as the initial feasible solution. Set k = 1.
(2) If αk is a stationary point of problem (2), stop. Otherwise, find a two-element working set

B = {i, j} by WSS 1 (described in Section 4.1.2). Define N ≡ {1, . . . , l}\B. Let αk
B and αk

N be
subvectors of αk corresponding to B and N, respectively.

(3) If aij ≡ Kii + Kjj − 2Kij > 0,8

Solve the following subproblem with the variable αB = [αi α j]T :

min
αi ,α j

1
2

[
αi α j

] [
Qii Qij
Qij Qjj

] [
αi
α j

]
+ ( pB + QBNαk

N)T
[
αi
α j

]
subject to 0 ≤ αi, α j ≤ C, (12)

yiαi + yjα j = 	 − yT
Nαk

N,

else

Let τ be a small positive constant and solve

min
αi ,α j

1
2

[
αi α j

] [
Qii Qij
Qij Qjj

] [
αi
α j

]
+ ( pB + QBNαk

N)T
[
αi
α j

]

+ τ − aij

4
((αi − αk

i )2 + (α j − αk
j )

2) (13)

subject to constraints of problem (12).

(4) Set αk+1
B to be the optimal solution of subproblem (12) or (13), and αk+1

N ≡ αk
N. Set

k ← k + 1 and go to step 2.

4.1.2. Stopping Criteria and Working Set Selection. The Karush-Kuhn-Tucker (KKT) opti-
mality condition of problem (11) implies that a feasible α is a stationary point of (11) if
and only if there exists a number b and two nonnegative vectors λ and ξ such that

∇ f (α) + by = λ − ξ ,

λiαi = 0, ξi(C − αi) = 0, λi ≥ 0, ξi ≥ 0, i = 1, . . . , l, (14)

where ∇ f (α) ≡ Qα + p is the gradient of f (α). Note that if Q is PSD, from the primal-
dual relationship, ξ , b, and w generated by Eq. (3) form an optimal solution of the
primal problem. The condition (14) can be rewritten as

∇i f (α) + byi

{≥ 0 if αi < C,

≤ 0 if αi > 0.
(15)

Since yi = ±1, condition (15) is equivalent to that there exists b such that

m(α) ≤ b ≤ M(α),

where

m(α) ≡ max
i∈Iup(α)

−yi∇i f (α) and M(α) ≡ min
i∈Ilow(α)

−yi∇i f (α),

and
Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and
Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.

That is, a feasible α is a stationary point of problem (11) if and only if

m(α) ≤ M(α). (16)

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, Article 27, Publication date: April 2011.



27:10 C.-C. Chang and C.-J. Lin

From (16), a suitable stopping condition is:

m(αk) − M(αk) ≤ ε, (17)

where ε is the tolerance.
For the selection of the working set B, we use the following procedure from Section

II of Fan et al. [2005].

WSS 1
(1) For all t, s, define

ats ≡ Ktt + Kss − 2Kts, bts ≡ −yt∇t f (αk) + ys∇s f (αk) > 0, (18)
and

āts ≡
{

ats if ats > 0,
τ otherwise.

Select
i ∈ arg max

t
{−yt∇t f (αk) | t ∈ Iup(αk)},

j ∈ arg min
t

{
−b2

it

āit
| t ∈ Ilow(αk),−yt∇t f (αk) < −yi∇i f (αk)

}
. (19)

(2) Return B = {i, j}.
The procedure selects a pair {i, j} approximately minimizing the function value; see
the term −b2

it/āit in Eq. (19).

4.1.3. Solving the Two-variable Subproblem. Details of solving the two-variable sub-
problem in Eqs. (12) and (13) are deferred to Section 6, where a more general sub-
problem is discussed.

4.1.4. Maintaining the Gradient. From the discussion in Sections 4.1.1 and 4.1.2, the main
operations per iteration are on finding QBNαk

N + pB for constructing the subproblem
(12), and calculating ∇ f (αk) for the working set selection and the stopping condition.
These two operations can be considered together because

QBNαk
N + pB = ∇B f (αk) − QBBαk

B (20)

and

∇ f (αk+1) = ∇ f (αk) + Q:,B
(
αk+1

B − αk
B

)
, (21)

where |B| � |N| and Q:,B is the submatrix of Q including columns in B. If at the
kth iteration we already have ∇ f (αk), then Eq. (20) can be used to construct the sub-
problem. After the subproblem is solved, Eq. (21) is employed to have the next ∇ f (αk+1).
Therefore, LIBSVM maintains the gradient throughout the decomposition method.

4.1.5. The Calculation of b or ρ. After the solution α of the dual optimization problem
is obtained, the variables b or ρ must be calculated as they are used in the decision
function.

Note that b of C-SVC and ε-SVR plays the same role as −ρ in one-class SVM, so
we define ρ = −b and discuss how to find ρ. If there exists αi such that 0 < αi < C,
then from the KKT condition (16), ρ = yi∇i f (α). In LIBSVM, for numerical stability, we
average all these values.

ρ =
∑

i:0<αi<C yi∇i f (α)

|{i | 0 < αi < C}|
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For the situation that no αi satisfying 0 < αi < C, the KKT condition (16) becomes

−M(α) = max{yi∇i f (α) | αi = 0, yi = −1 or αi = C, yi = 1}
≤ ρ

≤ −m(α) = min{yi∇i f (α) | αi = 0, yi = 1 or αi = C, yi = −1}.
We take ρ the midpoint of the preceding range.

4.1.6. Initial Values. Algorithm 1 requires an initial feasible α. For C-SVC and ε-SVR,
because the zero vector is feasible, we select it as the initial α.

For one-class SVM, the scaled form (8) requires that

0 ≤ αi ≤ 1, and
l∑

i=1

αi = νl.

We let the first �νl
 elements have αi = 1 and the (�νl
+1)st element have αi = νl−�νl
.

4.1.7. Convergence of the Decomposition Method. Fan et al. [2005, Section III] and Chen
et al. [2006] discuss the convergence of Algorithm 1 in detail. For the rate of linear
convergence, List and Simon [2009] prove a result without making the assumption
used in Chen et al. [2006].

4.2. Quadratic Problems with Two Linear Constraints: ν-SVC and ν-SVR

From problems (6) and (10), both ν-SVC and ν-SVR can be written as the following
general form:

min
α

1
2

αT Qα + pT α

subject to yT α = 	1, (22)

eT α = 	2,

0 ≤ αt ≤ C, t = 1, . . . , l.

The main difference between problems (11) and (22) is that (22) has two linear con-
straints yT α = 	1 and eT α = 	2. The optimization algorithm is very similar to that
for (11), so we describe only differences.

4.2.1. Stopping Criteria and Working Set Selection. Let f (α) be the objective function of
problem (22). By the same derivation in Section 4.1.2, The KKT condition of problem
(22) implies that there exist b and ρ such that

∇i f (α) − ρ + byi

{≥ 0 if αi < C,

≤ 0 if αi > 0.
(23)

Define

r1 ≡ ρ − b and r2 ≡ ρ + b. (24)

If yi = 1, (23) becomes

∇i f (α) − r1

{≥ 0 if αi < C,

≤ 0 if αi > 0.
(25)

if yi = −1, (23) becomes

∇i f (α) − r2

{≥ 0 if αi < C,

≤ 0 if αi > 0.
(26)
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Hence, given a tolerance ε > 0, the stopping condition is

max
(
mp(α) − Mp(α), mn(α) − Mn(α)

)
< ε, (27)

where

mp(α) ≡ max
i∈Iup(α),yi=1

−yi∇i f (α), Mp(α) ≡ min
i∈Ilow(α),yi=1

−yi∇i f (α), and

mn(α) ≡ max
i∈Iup(α),yi=−1

−yi∇i f (α), Mn(α) ≡ min
i∈Ilow(α),yi=−1

−yi∇i f (α).

The following working set selection is extended from WSS 1.

WSS 2 (Extension of WSS 1 for ν-SVM)
(1) Find

ip ∈ arg mp(αk),

jp ∈ arg min
t

{
−

b2
ipt

āipt
| yt = 1,αt ∈ Ilow(αk),−yt∇t f (αk) < −yip∇ip f (αk)

}
.

(2) Find
in ∈ arg mn(αk),

jn ∈ arg min
t

{
−b2

int

āint
| yt = −1,αt ∈ Ilow(αk),−yt∇t f (αk) < −yin∇in f (αk)

}
.

(3) Return {ip, jp} or {in, jn} depending on which one gives smaller −b2
i j/āi j .

4.2.2. The Calculation of b and ρ. We have shown that the KKT condition of problem (22)
implies Eqs. (25) and (26) according to yi = 1 and −1, respectively. Now we consider
the case of yi = 1. If there exists αi such that 0 < αi < C, then we obtain r1 = ∇i f (α).
In LIBSVM, for numerical stability, we average these values.

r1 =
∑

i:0<αi<C,yi=1 ∇i f (α)

|{i | 0 < αi < C, yi = 1}|
If there is no αi such that 0 < αi < C, then r1 satisfies

max
αi=C,yi=1

∇i f (α) ≤ r1 ≤ min
αi=0,yi=1

∇i f (α).

We take r1 the midpoint of the previous range.
For the case of yi = −1, we can calculate r2 in a similar way.
After r1 and r2 are obtained, from Eq. (24),

ρ = r1 + r2

2
and − b = r1 − r2

2
.

4.2.3. Initial Values. For ν-SVC, the scaled form (6) requires that

0 ≤ αi ≤ 1,
∑

i:yi=1

αi = νl
2

, and
∑

i:yi=−1

αi = νl
2

.

We let the first νl/2 elements of αi with yi = 1 to have the value one.9 The situation for
yi = −1 is similar. The same setting is applied to ν-SVR.

9Special care must be made as νl/2 may not be an integer. See also Section 4.1.6.
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5. SHRINKING AND CACHING

This section discusses two implementation tricks (shrinking and caching) for the de-
composition method and investigates the computational complexity of Algorithm 1.

5.1. Shrinking

An optimal solution α of the SVM dual problem may contain some bounded elements
(i.e., αi = 0 or C). These elements may have already been bounded in the middle of
the decomposition iterations. To save the training time, the shrinking technique tries
to identify and remove some bounded elements, so a smaller optimization problem is
solved [Joachims 1998]. The following theorem theoretically supports the shrinking
technique by showing that at the final iterations of Algorithm 1 in Section 4.1.2, only
a small set of variables is still changed.

Theorem 5.1 THEOREM IV IN FAN ET AL. [2005]. Consider problem (11) and assume Q is
positive semi-definite.

(1) The following set is independent of any optimal solution ᾱ.

I ≡ {i | −yi∇i f (ᾱ) > M(ᾱ) or − yi∇i f (ᾱ) < m(ᾱ)}
Further, for every i ∈ I, problem (11) has a unique and bounded optimal solution at
αi .

(2) Assume Algorithm 1 generates an infinite sequence {αk}. There exists k̄ such that
after k ≥ k̄, every αk

i , i ∈ I has reached the unique and bounded optimal solution.
That is, αk

i remains the same in all subsequent iterations. In addition, ∀k ≥ k̄:

i �∈ {t | M(αk) ≤ −yt∇t f (αk) ≤ m(αk)}.

If we denote A as the set containing elements not shrunk at the kth iteration, then
instead of solving problem (11), the decomposition method works on a smaller problem.

min
αA

1
2

αT
A QAAαA + ( pA + QANαk

N)T αA

subject to 0 ≤ αi ≤ C, ∀i ∈ A, (28)

yT
AαA = 	 − yT

Nαk
N,

where N = {1, . . . , l}\A is the set of shrunk variables. Note that in LIBSVM, we always
rearrange elements of α, y, and pto maintain that A = {1, . . . , |A|}. Details of the index
rearrangement are in Section 5.4.

After solving problem (28), we may find that some elements are wrongly shrunk.
When that happens, the original problem (11) is reoptimized from a starting point
α = [

αA
αN

]
, where αA is optimal for problem (28) and αN corresponds to shrunk bounded

variables.
In LIBSVM, we start the shrinking procedure in an early stage. The procedure is as

follows.

(1) After every min(l, 1000) iterations, we try to shrink some variables. Note that
throughout the iterative process, we have

m(αk) > M(αk) (29)
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because the condition (17) is not satisfied yet. Following Theorem 5.1, we conjecture
that variables in the following set can be shrunk.

{t | −yt∇t f (αk) > m(αk), t ∈ Ilow(αk), αk
t is bounded}∪

{t | −yt∇t f (αk) < M(αk), t ∈ Iup(αk), αk
t is bounded}

= {t | −yt∇t f (αk) > m(αk), αk
t = C, yt = 1 or αk

t = 0, yt = −1}∪
{t | −yt∇t f (αk) < M(αk), αk

t = 0, yt = 1 or αk
t = C, yt = −1}

(30)

Thus, the size of the set A is gradually reduced in every min(l, 1000) iterations. The
problem (28), and the way of calculating m(αk) and M(αk) are adjusted accordingly.

(2) The preceeding shrinking strategy is sometimes too aggressive. Hence, when the
decomposition method achieves the following condition for the first time:

m(αk) ≤ M(αk) + 10ε, (31)
where ε is the specified stopping tolerance, we reconstruct the gradient (details
in Section 5.3). Then, the shrinking procedure can be performed based on more
accurate information.

(3) Once the stopping condition
m(αk) ≤ M(αk) + ε (32)

of the smaller problem (28) is reached, we must check if the stopping condition of
the original problem (11) has been satisfied. If not, then we reactivate all variables
by setting A = {1, . . . , l} and start the same shrinking procedure on the problem
(28).

Note that in solving the shrunk problem (28), we only maintain its gradient
QAAαA+QANαN+ pA (see also Section 4.1.4). Hence, when we reactivate all variables
to reoptimize the problem (11), we must reconstruct the whole gradient ∇ f (α).
Details are discussed in Section 5.3.

For ν-SVC and ν-SVR, because the stopping condition (27) is different from (17),
variables being shrunk are different from those in (30). For yt = 1, we shrink elements
in the following set.

{t | −yt∇t f (αk) > mp(αk), αt = C, yt = 1}∪
{t | −yt∇t f (αk) < Mp(αk), αt = 0, yt = 1}

For yt = −1, we consider the following set.

{t | −yt∇t f (αk) > mn(αk), αt = 0, yt = −1}∪
{t | −yt∇t f (αk) < Mn(αk), αt = C, yt = −1}

5.2. Caching

Caching is an effective technique for reducing the computational time of the decompo-
sition method. Because Q may be too large to be stored in the computer memory, Qij
elements are calculated as needed. We can use available memory (called kernel cache)
to store some recently used Qij [Joachims 1998]. Then, some kernel elements may not
need to be recalculated. Theorem 5.1 also supports the use of caching because in final
iterations, only certain columns of the matrix Q are still needed. If the cache already
contains these columns, we can save kernel evaluations in final iterations.

In LIBSVM, we consider a simple least-recent-use caching strategy. We use a circular
list of structures, where each structure is defined as follows.

struct head_t
{
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head_t *prev, *next; // a circular list
Qfloat *data;
int len; // data[0,len) is cached in this entry

};

A structure stores the first len elements of a kernel column. Using pointers prev and
next, it is easy to insert or delete a column. The circular list is maintained so that
structures are ordered from the least-recent-used one to the most-recent-used one.

Because of shrinking, columns cached in the computer memory may be in different
length. Assume the ith column is needed and Q1:t,i have been cached. If t ≤ |A|, we
calculate Qt+1:|A|,i and store Q1:|A|,i in the cache. If t > |A|, the desired Q1:|A|,i are already
in the cache. In this situation, we do not change the cached contents of the ith column.

5.3. Reconstructing the Gradient

If condition (31) or (32) is satisfied, LIBSVM reconstructs the gradient. Because
∇i f (α), i = 1, . . . , |A| have been maintained in solving the smaller problem (28), what
we need is to calculate ∇i f (α), i = |A| + 1, . . . , l. To decrease the cost of this reconstruc-
tion, throughout iterations we maintain a vector Ḡ ∈ Rl.

Ḡi = C
∑

j:α j=C

Qij, i = 1, . . . , l (33)

Then, for i /∈ A,

∇i f (α) =
l∑

j=1

Qijα j + pi = Ḡi + pi +
∑
j: j∈A

0<α j<C

Qijα j . (34)

Note that we use the fact that if j /∈ A, then α j = 0 or C.
The calculation of ∇ f (α) via Eq. (34) involves a two-level loop over i and j. Using

i or j first may result in a very different number of Qij evaluations. We discuss the
differences next.

(1) i first: for |A| + 1 ≤ i ≤ l, calculate Qi,1:|A|. Although from Eq. (34). only {Qij | 0 <
α j < C, j ∈ A} are needed, our implementation obtains all Qi,1:|A| (i.e., {Qij | j ∈ A}).
Hence, this case needs at most

(l − |A|) · |A| (35)

kernel evaluations. Note that LIBSVM uses a column-based caching implementa-
tion. Due to the symmetry of Q, Qi,1:|A| is part of Q’s ith column and may have been
cached. Thus, Eq. (35) is only an upper bound.

(2) j first: let

F ≡ { j | 1 ≤ j ≤ |A| and 0 < α j < C}.
For each j ∈ F, calculate Q1:l, j . Though only Q|A|+1:l, j is needed in calculating
∇i f (α), i = |A| + 1, . . . , l, we must get the whole column because of our cache
implementation.10 Thus, this strategy needs no more than

l · |F| (36)
kernel evaluations. This is an upper bound because certain kernel columns (e.g.,
Q1:|A|, j, j ∈ A) may be already in the cache and do not need to be recalculated.

10We always store the first |A| elements of a column.
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We may choose a method by comparing (35) and (36). However, the decision depends
on whether Q’s elements have been cached. If the cache is large enough, then elements
of Q’s first |A| columns tend to be in the cache because they have been used recently.
In contrast, Qi,1:|A|, i /∈ A needed by method 1 may be less likely in the cache because
columns not in A are not used to solve problem (28). In such a situation, method 1
may require almost (l − |A|) · |A| kernel valuations, while method 2 needs much fewer
evaluations than l · |F|.

Because method 2 takes an advantage of the cache implementation, we slightly lower
the estimate in Eq. (36) and use the following rule to decide the method of calculating
Eq. (34).

If (l/2) · |F| > (l − |A|) · |A|
use method 1

Else
use method 2

This rule may not give the optimal choice because we do not take the cache contents
into account. However, we argue that in the worst scenario, the selected method by the
preceding rule is only slightly slower than the other method. This result can be proved
by making the following assumptions.

—A LIBSVM training procedure involves only two gradient reconstructions: The first is
performed when the 10ε tolerance is achieved; see Eq. (31). The second is in the end
of the training procedure.

—Our rule assigns the same method to perform the two gradient reconstructions.
Moreover, these two reconstructions cost a similar amount of time.

We refer to “total training time of method x” as the whole LIBSVM training time (where
method x is used for reconstructing gradients), and “reconstruction time of method x”
as the time of one single gradient reconstruction via method x. We then consider two
situations.

(1) Method 1 is chosen, but method 2 is better.
We have

Total time of method 1
≤ (Total time of method 2) + 2 · (Reconstruction time of method 1)
≤ 2 · (Total time of method 2). (37)

We explain the second inequality in detail. Method 2 for gradient reconstruction
requires l · |F| kernel elements; however, the number of kernel evaluations may be
smaller because some elements have been cached. Therefore,

l · |F| ≤ Total time of method 2. (38)

Because method 1 is chosen and Eq. (35) is an upper bound,

2 · (Reconstruction time of method 1) ≤ 2 · (l − |A|) · |A| < l · |F|. (39)

Combining inequalities (38) and (39) leads to (37).
(2) Method 2 is chosen, but method 1 is better.

We consider the worst situation where Q’s first |A| columns are not in the cache.
As |A| + 1, . . . , l are indices of shrunk variables, most likely the remaining l − |A|
columns of Q are not in the cache either and (l − |A|) · |A| kernel evaluations are
needed for method 1. Because l · |F| ≤ 2 · (l − |A|) · |A|,

(Reconstruction time of method 2) ≤ 2 · (Reconstruction time of method 1).
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Table II. A Comparison between Two Gradient Reconstruction Methods.

(a) a7a: C = 1, γ = 4, ε = 0.001.
l = 16, 100 Cache = 1,000 MB Cache = 10 MB

Reconstruction |F| |A| Method 1 Method 2 Method 1 Method 2
First 10,597 12,476 0 21,470,526 45,213,024 170,574,272
Second 10,630 12,476 0 0 45,213,024 171,118,048

Training time ⇒ 102s 108s 341s 422s
No shrinking: 111s No shrinking: 381s

(b) ijcnn1: C = 16, γ = 4, ε = 0.5.
l = 49, 900 Cache = 1,000 MB Cache = 10 MB

Reconstruction |F| |A| Method 1 Method 2 Method 1 Method 2
First 1,767 43,678 274,297,840 5,403,072 275,695,536 88,332,330
Second 2,308 6,023 263,843,538 28,274,195 264,813,241 115,346,805

Training time ⇒ 189s 46s 203s 116s
No shrinking: 42s No shrinking: 87s

The decomposition method reconstructs the gradient twice after satisfying conditions (31)
and (32). We show in each row the number of kernel evaluations of a reconstruction. We
check two cache sizes to reflect the situations with/without enough cache. The last two rows
give the total training time (gradient reconstructions and other operations) in seconds. We
use the RBF kernel K(xi, x j ) = exp(−γ ‖xi − x j‖2).

Therefore,

Total time of method 2
≤ (Total time of method 1) + 2 · (Reconstruction time of method 1)
≤ 2 · (Total time of method 1).

Table II compares the number of kernel evaluations in reconstructing the gradient.
We consider problems a7a and ijcnn1.11 Clearly, the proposed rule selects the better
method for both problems. We implement this technique after version 2.88 of LIBSVM.

5.4. Index Rearrangement

In solving the smaller problem (28), we need only indices in A (e.g., αi, yi, and xi, where
i ∈ A). Thus, a naive implementation does not access array contents in a continuous
manner. Alternatively, we can maintain A = {1, . . . , |A|} by rearranging array contents.
This approach allows a continuous access of array contents, but requires costs for
the rearrangement. We decide to rearrange elements in arrays because throughout
the discussion in Sections 5.2 through 5.3, we assume that a cached ith kernel column
contains elements from the first to the tth (i.e., Q1:t,i), where t ≤ l. If we do not rearrange
indices so that A = {1, . . . , |A|}, then the whole column Q1:l,i must be cached because l
may be an element in A.

We rearrange indices by sequentially swapping pairs of indices. If t1 is going to
be shrunk, we find an index t2 that should stay and then swap them. Swapping two
elements in a vector α or y is easy, but swapping kernel elements in the cache is
more expensive. That is, we must swap (Qt1,i, Qt2,i) for every cached kernel column i. To
make the number of swapping operations small, we use the following implementation:
Starting from the first and the last indices, we identify the smallest t1 that should
leave the largest t2 that should stay. Then, (t1, t2) are swapped and we continue the
same procedure to identify the next pair.

5.5. A Summary of the Shrinking Procedure

We summarize the shrinking procedure in Algorithm 2.

11Available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets.
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ALGORITHM 2: Extending Algorithm 1 to include the shrinking procedure
Initialization

(1) Let α1 be an initial feasible solution.
(2) Calculate the initial ∇ f (α1) and Ḡ in Eq. (33).
(3) Initialize a counter so shrinking is conducted every min(l, 1000) iterations
(4) Let A = {1, . . . , l}

For k = 1, 2, . . .
(1) Decrease the shrinking counter
(2) If the counter is zero, then shrinking is conducted:

(a) If condition (31) is satisfied for the first time, reconstruct the gradient
(b) Shrink A by removing elements in the set (30). The implementation described in

Section 5.4 ensures that A = {1, . . . , |A|}.
(c) Reset the shrinking counter

(3) If αk
A satisfies the stopping condition (32)

(a) Reconstruct the gradient
(b) If αk satisfies the stopping condition (32)

Return αk

Else
Reset A = {1, . . . , l} and set the counter to one12

(4) Find a two-element working set B = {i, j} by WSS 1
(5) Obtain Q1:|A|,i and Q1:|A|, j from cache or by calculation
(6) Solve sub-problem (12) or (13) by procedures in Section 6. Update αk to αk+1

(7) Update the gradient by Eq. (21) and update the vector Ḡ

5.6. Is Shrinking Always Better?

We found that if the number of iterations is large, then shrinking can shorten the
training time. However, if we loosely solve the optimization problem (e.g., by using
a large stopping tolerance ε), the code without using shrinking may be much faster.
In this situation, because of the small number of iterations, the time spent on all
decomposition iterations can be even less than one single gradient reconstruction.

Table II compares the total training time with/without shrinking. For a7a, we use
the default ε = 0.001. Under the parameters C = 1 and γ = 4, the number of iterations
is more than 30,000. Then shrinking is useful. However, for ijcnn1, we deliberately use
a loose tolerance ε = 0.5, so the number of iterations is only around 4,000. Because our
shrinking strategy is quite aggressive, before the first gradient reconstruction, only
QA,A is in the cache. Then, we need many kernel evaluations for reconstructing the
gradient, so the implementation with shrinking is slower.

If enough iterations have been run, most elements in A correspond to free αi (0 <
αi < C); that is, A ≈ F. In contrast, if the number of iterations is small (e.g., ijcnn1 in
Table II), many bounded elements have not been shrunk and |F| � |A|. Therefore,
we can check the relation between |F| and |A| to conjecture if shrinking is useful. In
LIBSVM, if shrinking is enabled and 2 · |F| < |A| in reconstructing the gradient, we
issue a warning message to indicate that the code may be faster without shrinking.

5.7. Computational Complexity

While Section 4.1.7 has discussed the asymptotic convergence and the local convergence
rate of the decomposition method, in this section, we investigate the computational
complexity.

12That is, shrinking is performed at the next iteration.
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From Section 4, two places consume most operations at each iteration: finding the
working set B by WSS 1 and calculating Q:,B(αk+1

B − αk
B) in Eq. (21).13 Each place

requires O(l) operations. However, if Q:,B is not available in the cache and assume each
kernel evaluation costs O(n), the cost becomes O(ln) for calculating a column of kernel
elements. Therefore, the complexity of Algorithm 1 is

(1) #Iterations × O(l) if most columns of Q are cached throughout iterations.
(2) #Iterations × O(nl) if columns of Q are not cached and each kernel evaluation costs

O(n).

Several works have studied the number of iterations of decomposition methods; see,
for example, List and Simon [2007]. However, algorithms studied in these works are
slightly different from LIBSVM, so there is no theoretical result yet on LIBSVM’s number
of iterations. Empirically, it is known that the number of iterations may be higher than
linear to the number of training data. Thus, LIBSVM may take considerable training
time for huge datasets. Many techniques, for example, Fine and Scheinberg [2001],
Lee and Mangasarian [2001], Keerthi et al. [2006], Segata and Blanzieri [2010], have
been developed to obtain an approximate model, but these are beyond the scope of
our discussion. In LIBSVM, we provide a simple subsampling tool, so users can quickly
train a small subset.

6. UNBALANCED DATA AND SOLVING THE TWO-VARIABLE SUBPROBLEM

For some classification problems, numbers of data in different classes are unbalanced.
Some researchers (e.g., Osuna et al. [1997a, Section 2.5]; Vapnik [1998, Chapter 10.9])
have proposed using different penalty parameters in the SVM formulation. For exam-
ple, the C-SVM problem becomes

min
w,b,ξ

1
2

wT w + C+ ∑
yi=1

ξi + C− ∑
yi=−1

ξi

subject to yi(wT φ(xi) + b) ≥ 1 − ξi, (40)
ξi ≥ 0, i = 1, . . . , l,

where C+ and C− are regularization parameters for positive and negative classes,
respectively. LIBSVM supports this setting, so users can choose weights for classes. The
dual problem of problem (40) is

min
α

1
2

αT Qα − eT α

subject to 0 ≤ αi ≤ C+, if yi = 1,

0 ≤ αi ≤ C−, if yi = −1,

yT α = 0.

A more general setting is to assign each instance xi a regularization parameter Ci. If C
is replaced by Ci, i = 1, . . . , l in problem (11), most results discussed in earlier sections
can be extended without problems.14 The major change of Algorithm 1 is on solving the

13Note that because |B| = 2, once the subproblem has been constructed, solving it takes only a constant
number of operations (see details in Section 6).
14This feature of using Ci,∀i is not included in LIBSVM, but is available as an extension at libsvmtools.

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, Article 27, Publication date: April 2011.



27:20 C.-C. Chang and C.-J. Lin

subproblem (12), which now becomes

min
αi ,α j

1
2

[
αi α j

] [
Qii Qij
Qji Qjj

] [
αi
α j

]
+ (Qi,NαN + pi)αi + (Qj,NαN + pj)α j

subject to yiαi + yjα j = 	 − yT
Nαk

N, (41)
0 ≤ αi ≤ Ci, 0 ≤ α j ≤ Cj .

Let αi = αk
i + di and α j = αk

j + dj . The subproblem (41) can be written as

min
di ,dj

1
2

[
di dj

] [
Qii Qij
Qij Qjj

] [
di
dj

]
+ [∇i f (αk) ∇ j f (αk)

] [
di
dj

]
subject to yidi + yjdj = 0,

−αk
i ≤ di ≤ Ci − αk

i ,−αk
j ≤ dj ≤ C j − αk

j .

Define aij and bij as in Eq. (18), and d̂i ≡ yidi, d̂j ≡ yjdj . Using d̂i = −d̂j , the objective
function can be written as

1
2

āi j d̂2
j + bij d̂j .

Minimizing the previous quadratic function leads to

αnew
i = αk

i + yibij/āi j,

αnew
j = αk

j − yjbij/āi j . (42)

These two values may need to be modified because of bound constraints. We first
consider the case of yi �= yj and rewrite Eq. (42) as

αnew
i = αk

i + (−∇i f (αk) − ∇ j f (αk))/āi j,

αnew
j = αk

j + (−∇i f (αk) − ∇ j f (αk))/āi j .

In the following figure, a box is generated according to bound constraints. An infeasible
(αnew

i , αnew
j ) must be in one of the four regions outside the box.

αi

αj αi − αj = Ci − Cj

αi − αj = 0

Ci

Cj

region Iregion IV

region II

region III NA

NA

Note that (αnew
i , αnew

j ) does not appear in the “NA” regions because (αk
i , α

k
j ) is in the box

and

αnew
i − αnew

j = αk
i − αk

j .

If (αnew
i , αnew

j ) is in region I, we set

αk+1
i = Ci and αk+1

j = Ci − (αk
i − αk

j ).
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Of course, we must identify the region that (αnew
i , αnew

j ) resides. For region I, we have

αk
i − αk

j > Ci − C j and αnew
i ≥ Ci.

Other cases are similar. We have the following pseudocode to identify which region
(αnew

i , αnew
j ) is in and modify (αnew

i , αnew
j ) to satisfy bound constraints.

if(y[i]!=y[j])
{

double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j];
if (quad_coef <= 0)

quad_coef = TAU;
double delta = (-G[i]-G[j])/quad_coef;
double diff = alpha[i] - alpha[j];
alpha[i] += delta;
alpha[j] += delta;

if(diff > 0)
{

if(alpha[j] < 0) // in region III
{

alpha[j] = 0;
alpha[i] = diff;

}
}
else
{

if(alpha[i] < 0) // in region IV
{

alpha[i] = 0;
alpha[j] = -diff;

}
}
if(diff > C_i - C_j)
{

if(alpha[i] > C_i) // in region I
{

alpha[i] = C_i;
alpha[j] = C_i - diff;

}
}
else
{

if(alpha[j] > C_j) // in region II
{

alpha[j] = C_j;
alpha[i] = C_j + diff;

}
}

}

If yi = yj , the derivation is the same.

7. MULTICLASS CLASSIFICATION

LIBSVM implements the “one-against-one” approach [Knerr et al. 1990] for multiclass
classification. Some early works of applying this strategy to SVM include, for example,
Kressel [1998]. If k is the number of classes, then k(k − 1)/2 classifiers are constructed
and each one trains data from two classes. For training data from the ith and the jth
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classes, we solve the following two-class classification problem.

min
wi j ,bij ,ξ i j

1
2

(wi j)T wi j + C
∑

t

(ξ i j)t

subject to (wi j)T φ(xt) + bij ≥ 1 − ξ
i j
t , if xt in the ith class,

(wi j)T φ(xt) + bij ≤ −1 + ξ
i j
t , if xt in the jth class,

ξ
i j
t ≥ 0.

In classification we use a voting strategy: each binary classification is considered to be
a voting where votes can be cast for all data points x – in the end a point is designated
to be in a class with the maximum number of votes.

In case that two classes have identical votes, though it may not be a good strategy,
now we simply choose the class appearing first in the array of storing class names.

Many other methods are available for multiclass SVM classification. Hsu and Lin
[2002a] give a detailed comparison and conclude that “one-against-one” is a competitive
approach.

8. PROBABILITY ESTIMATES

SVM predicts only class label (target value for regression) without probability infor-
mation. This section discusses the LIBSVM implementation for extending SVM to give
probability estimates. More details are in Wu et al. [2004] for classification and in Lin
and Weng [2004] for regression.

Given k classes of data, for any x, the goal is to estimate

pi = P(y = i | x), i = 1, . . . , k.

Following the setting of the one-against-one (i.e., pairwise) approach for multiclass
classification, we first estimate pairwise class probabilities

rij ≈ P(y = i | y = i or j, x)

using an improved implementation [Lin et al. 2007] of Platt [2000]: If f̂ is the decision
value at x, then we assume

rij ≈ 1

1 + eAf̂ +B
, (43)

where Aand B are estimated by minimizing the negative log likelihood of training data
(using their labels and decision values). It has been observed that decision values from
training may overfit the model (43), so we conduct fivefold cross-validation to obtain
decision values before minimizing the negative log likelihood.

After collecting all rij values, Wu et al. [2004] propose several approaches to obtain
pi,∀i. In LIBSVM, we consider their second approach and solve the following optimiza-
tion problem.

min
p

1
2

k∑
i=1

∑
j: j �=i

(rji pi − rij pj)2

subject to pi ≥ 0,∀i,
k∑

i=1

pi = 1 (44)

The objective function in problem (44) comes from the equality

P(y = j | y = i or j, x) · P(y = i | x) = P(y = i | y = i or j, x) · P(y = j | x)
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ALGORITHM 3:
(1) Start with an initial psatisfying pi ≥ 0,∀i and

∑k
i=1 pi = 1.

(2) Repeat (t = 1, . . . , k, 1, . . .)

pt ← 1
Qtt

[
−

∑
j: j �=t

Qtj pj + pT Qp
]

(47)

normalize p
until Eq. (45) is satisfied.

and can be reformulated as

min
p

1
2

pT Qp,

where

Qij =
{∑

s:s �=i r2
si if i = j,

−rjirij if i �= j.

Wu et al. [2004] prove that the nonnegativity constraints pi ≥ 0,∀i in problem (44)
are redundant. After removing these constraints, the optimality condition implies that
there exists a scalar b (the Lagrange multiplier of the equality constraint

∑k
i=1 pi = 1)

such that [
Q e
eT 0

] [
p
b

]
=

[
0
1

]
, (45)

where e is the k × 1 vector of all ones and 0 is the k × 1 vector of all zeros.
Instead of solving the linear system (45) by a direct method such as Gaussian elimi-

nation, Wu et al. [2004] derive a simple iterative method. Because

− pT Qp= − pT Q(−be) = bpT e = b,

the optimal solution psatisfies

(Qp)t − pT Qp= Qtt pt +
∑
j: j �=t

Qtj pj − pT Qp= 0, ∀t. (46)

Using Eq. (46), we consider Algorithm 3.
Eq. (47) can be simplified to

pt ← pt + 1
Qtt

[−(Qp)t + pT Qp].

Algorithm 3 guarantees to converge globally to the unique optimum of problem (44).
Using some tricks, we do not need to recalculate pT Qp at each iteration. More imple-
mentation details are in Appendix C of Wu et al. [2004]. We consider a relative stopping
condition for Algorithm 3.

‖Qp− pT Qpe‖∞ = max
t

|(Qp)t − pT Qp| < 0.005/k

When k (the number of classes) is large, some elements of p may be very close to zero.
Thus, we use a more strict stopping condition by decreasing the tolerance by a factor
of k.

Next, we discuss SVR probability inference. For a given set of training data D =
{(xi, yi) | xi ∈ Rn, yi ∈ R, i = 1, . . . , l}, we assume that the data are collected from the
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model.

yi = f (xi) + δi,

where f (x) is the underlying function and δi ’s are independent and identically dis-
tributed random noises. Given a test data x, the distribution of y given x and D,
P(y | x,D), allows us to draw probabilistic inferences about y; for example, we can
estimate the probability that y is in an interval such as [ f (x) − 	, f (x) + 	]. Denoting
f̂ as the estimated function based on D using SVR, then ζ = ζ (x) ≡ y − f̂ (x) is the
out-of-sample residual (or prediction error). We propose modeling the distribution of ζ
based on cross-validation residuals {ζi}l

i=1. The ζi ’s are generated by first conducting
a fivefold cross-validation to get f̂ j , j = 1, . . . , 5, and then setting ζi ≡ yi − f̂ j(xi) for
(xi, yi) in the jth fold. It is conceptually clear that the distribution of ζi ’s may resemble
that of the prediction error ζ .

Figure 2 illustrates ζi ’s from a dataset. Basically, a discretized distribution like his-
togram can be used to model the data; however, it is complex because all ζi ’s must be
retained. On the contrary, distributions like Gaussian and Laplace, commonly used as
noise models, require only location and scale parameters. In Figure 2, we plot the fitted
curves using these two families and the histogram of ζi ’s. The figure shows that the
distribution of ζi ’s seems symmetric about zero and that both Gaussian and Laplace
reasonably capture the shape of ζi ’s. Thus, we propose to model ζi by zero-mean Gaus-
sian and Laplace, or equivalently, model the conditional distribution of y given f̂ (x) by
Gaussian and Laplace with mean f̂ (x).

Lin and Weng [2004] discuss a method to judge whether a Laplace and Gaussian
distribution should be used. Moreover, they experimentally show that in all cases they
have tried, Laplace is better. Thus, in LIBSVM, we consider the zero-mean Laplace with
a density function.

p(z) = 1
2σ

e− |z|
σ

Assuming that ζi ’s are independent, we can estimate the scale parameter σ by maxi-
mizing the likelihood. For Laplace, the maximum likelihood estimate is

σ =
∑l

i=1 |ζi|
l

.

Lin and Weng [2004] point out that some “very extreme” ζi ’s may cause inaccurate
estimation of σ . Thus, they propose estimating the scale parameter by discarding ζi ’s
which exceed ±5 · (standard deviation of the Laplace distribution). For any new data
x, we consider that

y = f̂ (x) + z,

where z is a random variable following the Laplace distribution with parameter σ .
In theory, the distribution of ζ may depend on the input x, but here we assume that

it is free of x. Such an assumption works well in practice and leads to a simple model.

9. PARAMETER SELECTION

To train SVM problems, users must specify some parameters. LIBSVM provides a simple
tool to check a grid of parameters. For each parameter setting, LIBSVM obtains Cross-
Validation (CV) accuracy. Finally, the parameters with the highest CV accuracy are
returned. The parameter selection tool assumes that the RBF (Gaussian) kernel is
used although extensions to other kernels and SVR can be easily made. The RBF
kernel takes the form

K(xi, x j) = e−γ ‖xi−x j‖2
, (48)
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Fig. 2. Histogram of ζi ’s and the models via Laplace and Gaussian distributions. The x-axis is ζi using
fivefold cross-validation and the y-axis is the normalized number of data in each bin of width 1.

so (C, γ ) are parameters to be decided. Users can provide a possible interval of C (or γ )
with the grid space. Then, all grid points of (C, γ ) are tried to find the one giving the
highest CV accuracy. Users then use the best parameters to train the whole training
set and generate the final model.

We do not consider more advanced parameter selection methods because for only
two parameters (C and γ ), the number of grid points is not too large. Further, because
SVM problems under different (C, γ ) parameters are independent, LIBSVM provides
a simple tool so that jobs can be run in a parallel (multicore, shared memory, or
distributed) environment.

For multiclass classification, under a given (C, γ ), LIBSVM uses the one-against-one
method to obtain the CV accuracy. Hence, the parameter selection tool suggests the
same (C, γ ) for all k(k − 1)/2 decision functions. Chen et al. [2005, Section 8] discuss
issues of using the same or different parameters for the k(k − 1)/2 two-class problems.

LIBSVM outputs the contour plot of cross-validation accuracy. An example is in
Figure 3.

10. CONCLUSIONS

When we released the first version of LIBSVM in 2000, only two-class C-SVC was
supported. Gradually, we added other SVM variants, and supported functions such as
multiclass classification and probability estimates. Then, LIBSVM becomes a complete
SVM package. We add a function only if it is needed by enough users. By keeping the
system simple, we strive to ensure good system reliability.

In summary, this article gives implementation details of LIBSVM. We are still actively
updating and maintaining this package. We hope the community will benefit more from
our continuing development of LIBSVM.
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Fig. 3. Contour plot of running the parameter selection tool in LIBSVM. The dataset heart scale (included
in the package) is used. The x-axis is log2 C and the y-axis is log2 γ .
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