
TensorFlow: A system for large-scale machine learning

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

Google Brain

Abstract
TensorFlow is a machine learning system that operates at
large scale and in heterogeneous environments. Tensor-
Flow uses dataflow graphs to represent computation,
shared state, and the operations that mutate that state. It
maps the nodes of a dataflow graph across many machines
in a cluster, and within a machine across multiple com-
putational devices, including multicore CPUs, general-
purpose GPUs, and custom designed ASICs known as
Tensor Processing Units (TPUs). This architecture gives
flexibility to the application developer: whereas in previ-
ous “parameter server” designs the management of shared
state is built into the system, TensorFlow enables devel-
opers to experiment with novel optimizations and train-
ing algorithms. TensorFlow supports a variety of appli-
cations, with particularly strong support for training and
inference on deep neural networks. Several Google ser-
vices use TensorFlow in production, we have released it
as an open-source project, and it has become widely used
for machine learning research. In this paper, we describe
the TensorFlow dataflow model in contrast to existing sys-
tems, and demonstrate the compelling performance that
TensorFlow achieves for several real-world applications.

1 Introduction
In recent years, machine learning has driven advances in
many different fields [3, 5, 23, 24, 30, 27, 40, 45, 48,
50, 55, 68, 69, 73, 76]. We attribute this success to the
invention of more sophisticated machine learning mod-
els [42, 51], the availability of large datasets for tack-
ling problems in these fields [10, 65], and the devel-
opment of software platforms that enable the easy use
of large amounts of computational resources for training
such models on these large datasets [14, 21].

We introduce the TensorFlow system1 for experiment-
ing with new models, training them on large datasets, and
moving them into production. We have based TensorFlow
on years of experience with our first-generation system,
DistBelief [21], both simplifying and generalizing it to en-
able researchers to explore a wider variety of ideas with
relative ease. TensorFlow supports both large-scale train-
ing and inference: it efficiently uses hundreds of powerful
(GPU-enabled) servers for fast training, and it runs trained
models for inference in production on various platforms,
ranging from large distributed clusters in a datacenter,
down to performing inference locally on mobile devices.
At the same time, it is flexible and general enough to
support experimentation and research into new machine
learning models and system-level optimizations.

TensorFlow uses a unified dataflow graph to repre-
sent both the computation in an algorithm and the state
on which the algorithm operates. We draw inspiration
from the high-level programming models of dataflow sys-
tems [2, 22, 75], and the low-level efficiency of parame-
ter servers [14, 21, 46]. Unlike traditional dataflow sys-
tems, in which graph vertices represent functional compu-
tation on immutable data, TensorFlow allows vertices to
represent computations that own or update mutable state.
Edges carry tensors (multi-dimensional arrays) between
nodes, and TensorFlow transparently inserts the appropri-
ate communication between distributed subcomputations.
By unifying the computation and state management in a
single programming model, TensorFlow allows program-
mers to experiment with different parallelization schemes
that, for example, offload computation onto the servers
that hold the shared state to reduce the amount of network
traffic. We have also built various coordination protocols,
and achieved encouraging results with synchronous repli-
cation, echoing recent results [11, 19] that contradict the

1TensorFlow can be downloaded from https://github.com/
tensorflow/tensorflow.

ar
X

iv
:1

60
5.

08
69

5v
2

 [
cs

.D
C

]
 3

1
M

ay
 2

01
6

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow

commonly held belief that asynchronous replication is re-
quired for scalable learning [14, 21, 46].

Over the past year, more than 60 teams at Google have
used TensorFlow, and we have released the system as an
open-source project. Thanks to our large community of
users we have gained experience with many different ma-
chine learning applications. In this paper, we focus on
neural network training as a challenging systems problem,
and select two representative applications from this space:
image classification and language modeling. These ap-
plications stress computational throughput and aggregate
model size respectively, and we use them both to demon-
strate the extensibility of TensorFlow, and to evaluate the
efficiency and scalability of our present implementation.

2 Background & Motivation
To make the case for developing TensorFlow, we start
by outlining the requirements for a large-scale machine
learning system (§2.1), then consider how related work
meets or does not meet those requirements (§2.2).

2.1 Requirements
Distributed execution A cluster of powerful comput-
ers can solve many machine learning problems more effi-
ciently, using more data and larger models.

Machine learning algorithms generally perform bet-
ter with more training data. For example, recent break-
throughs in image classification models have benefited
from the public ImageNet dataset, which contains 136 gi-
gabytes of digital images [65]; and language modeling has
benefited from efforts like the One Billion Word Bench-
mark [10]. The scale of these datasets motivates a data-
parallel approach to training: a distributed file system
holds the data, and a set of workers processes different
subsets of data in parallel. Data-parallelism eliminates
the I/O bottleneck for input data, and any preprocessing
operations can be applied to input records independently.

Effective learned models for image recognition, lan-
guage modeling, document clustering, and many other
problems have a large number of parameters. For ex-
ample, the current state-of-the-art image classification
model, ResNet, uses 2.3 million floating-point parame-
ters to classify images into one of 1000 categories [26].
The One Billion Word Benchmark has a vocabulary of
800,000 words, and it has been used to train language
models with 1.04 billion parameters [39]. A distributed
system can shard the model across many processes, to in-
crease the available network bandwidth when many work-
ers are simultaneously reading and updating the model.

A distributed system for model training must use the
network efficiently. Many scalable algorithms train a
model using mini-batch gradient descent [21, 47], where a
worker reads the current version of the model and a small
batch of input examples, calculates an update to the model
that reduces a loss function on those examples, and ap-
plies the update to the model. Mini-batch methods are
most effective when each worker uses the most current
model as a starting point, which requires a large amount
of data to be transferred to the worker with low latency.

Accelerator support Machine learning algorithms of-
ten perform expensive computations, such as matrix mul-
tiplication and multi-dimensional convolution, which are
highly parallelizable, but have many data dependencies
that require a tightly coupled implementation. The re-
cent availability of general-purpose GPUs has provided a
large number of cores that can operate on fast local mem-
ory. For example, a single NVIDIA Titan X GPU card
has 6 TFLOPS peak performance [60]. In 2012, state-of-
the-art results for different image classification tasks were
achieved using 16,000 CPU cores for three days [45], and
using two GPUs for six days [42]. Since then, GPU ven-
dors have innovated in their support for machine learning:
NVIDIA’s cuDNN library [13] for GPU-based neural net-
work training accelerates several popular image models
by 2–4× when using version R4 in place of R2 [15].

In addition to general-purpose devices, many special-
purpose accelerators for deep learning have achieved
significant performance improvements and power sav-
ings. At Google, our colleagues have built the Tensor
Processing Unit (TPU) specifically for machine learn-
ing, and it achieves an order of magnitude improve-
ment in performance-per-watt compared to alternative
state-of-the-art technology [38]. The Movidius Deep
Learning Accelerator uses a low-power Myriad 2 pro-
cessor with custom vector processing units that accel-
erate many machine learning and computer vision algo-
rithms [53]. Ovtcharov et al. have achieved significant
performance improvements and power savings for some
convolutional models using field programmable gate ar-
rays (FPGAs) [58]. Since it is difficult to predict the next
popular architecture for executing machine learning algo-
rithms, we require that TensorFlow uses a portable pro-
gramming model that can target a generic device abstrac-
tion, and allows its operations to be specialized for new
architectures as they emerge.

Training & inference support In addition to training,
scalable and high-performance inference is a requirement
for using models in production [18]. Depending on the

2

nature of the application, the inference may be required
to produce results with very low latency in an interactive
service, or execute on a disconnected mobile device. If
the model is large, it might require multiple servers to
participate in each inference computation, and thus re-
quire distributed computation support. Developers benefit
when they can use the same code to define a model for
both training and inference. Training and inference de-
mand similar performance, so we prefer a common well-
optimized system for both computations. Since inference
can be computationally intensive (e.g., an image classi-
fication model might perform 5 billion FLOPS per im-
age [70]), it must be possible to accelerate it with GPUs.

Extensibility Single-machine machine learning frame-
works [36, 2, 17] have extensible programming models
that enable their users to advance the state of the art with
new approaches, such as adversarial learning [25] and
deep reinforcement learning [51]. We seek a system that
provides the same ability to experiment, and also allows
users to scale up the same code to run in production. The
system must support expressive control-flow and stateful
constructs, while also satisfying our other requirements.

2.2 Related work
Single-machine frameworks Many machine learning
researchers carry out their work on a single—often GPU-
equipped—computer [41, 42], and many flexible single-
machine frameworks have emerged to support this sce-
nario. Caffe [36] is a high-performance framework for
training declaratively specified convolutional neural net-
works that runs on multicore CPUs and GPUs. Theano [2]
allows programmers to express a model as a dataflow
graph, and generates efficient compiled code for train-
ing that model. Torch [17] has an imperative program-
ming model for scientific computation (including machine
learning) that supports fine-grained control over the order
of execution and memory utilization.

While these frameworks do not satisfy our require-
ment for distributed execution, TensorFlow’s program-
ming model is close to Theano’s dataflow representation
(§3).

Batch dataflow systems Starting with MapRe-
duce [22], batch dataflow systems have been applied
to a large number of machine learning algorithms [71],
and more recent systems have focused on increasing
expressivity and performance. DryadLINQ [74] adds a
high-level query language that supports more sophisti-
cated algorithms than MapReduce. Spark [75] extends

DryadLINQ with the ability to cache previously com-
puted datasets in memory, and is therefore better suited to
iterative machine learning algorithms (such as k-means
clustering and logistic regression) when the input data fit
in memory. Dandelion extends DryadLINQ to support
generating code for GPUs [63] and FPGAs [16].

The principal limitation of a batch dataflow system is
that it requires the input data to be immutable, and all
of the subcomputations to be deterministic, so that the
system can re-execute subcomputations when machines
in the cluster fail. This feature—which is beneficial for
many conventional workloads—makes updating a ma-
chine learning model a heavy operation. For example,
the SparkNet system for training deep neural networks on
Spark takes 20 seconds to broadcast weights and collect
updates from five workers [52]. As a result, these systems
must process larger batches in each model update step,
which slows convergence [9]. We show in Subsection 6.3
that TensorFlow can train larger models on larger clusters
with step times as short as 2 seconds.

While not a batch dataflow system, Naiad [54] aug-
ments a dataflow model with streaming execution, stateful
vertices, and structured timestamps (“timely dataflow”)
that enable it to handle incremental updates and iterative
algorithms in the same computation. Naiad represents it-
eration using cyclic dataflow graphs, which together with
mutable state make it possible to implement algorithms
that require millisecond-scale latencies for coordination.
Naiad is designed for computing on sparse, discrete data,
and does not support GPU (or any other form of) acceler-
ation, but we borrow aspects of timely dataflow iteration
in Subsection 3.4.

Parameter servers Inspired by work on distributed
key-value stores, a parameter server architecture uses a set
of servers to manage shared state that is updated by a set of
data-parallel workers. Unlike a standard key-value store,
the write operation in a parameter server is specialized for
parameter updates: it is typically an associative and com-
mutative combiner, like addition-assignment (+=), that is
applied to the current parameter value and the incoming
update to produce a new parameter value.

Parameter servers emerged as an architecture for scal-
able topic modeling [66], and our previous system DistBe-
lief [21] showed how a similar architecture could be ap-
plied to deep neural network training. Project Adam [14]
demonstrated an efficient parameter server architecture
for training convolutional neural networks, and Li et al.’s
“Parameter Server” [46] added innovations in consistency
models, fault tolerance, and elastic rescaling. Despite ear-
lier skepticism that parameter servers would be compati-

3

ble with GPU acceleration [14], Cui et al. have recently
shown that GeePS [19], a parameter server specialized
for use with GPUs, can achieve speedups on modest-sized
clusters.

MXNet [12] is a recent system that uses a parameter
server to scale training, supports GPU acceleration, and
includes a flexible programming model with interfaces
for many languages. While MXNet partially fulfills our
extensibility requirements, the parameter server is “priv-
ileged” code, which makes it difficult for researchers to
customize the handling of large models (§4.2).

The parameter server architecture meets most of our
requirements, and our DistBelief [21] uses parameter
servers with a Caffe-like model definition format [36] to
great effect. We found this architecture to be insufficiently
extensible, because adding a new optimization algorithm,
or experimenting with an unconventional model archi-
tecture would require our users to modify the parameter
server implementation, which uses C++ for performance.
While some of the practitioners who use that system are
comfortable with making these changes, the majority are
accustomed to writing models in high-level languages,
such as Python and Lua, and the complexity of the high-
performance parameter server implementation is a barrier
to entry. With TensorFlow we therefore sought a high-
level programming model that allows users to customize
the code that runs in all parts of the system (§3).

3 TensorFlow execution model
TensorFlow uses a single dataflow graph to represent
all computation and state in a machine learning algo-
rithm, including the individual mathematical operations,
the parameters and their update rules, and the input pre-
processing (Figure 1). Dataflow makes the communi-
cation between subcomputations explicit, and therefore
makes it easy to execute independent computations in par-
allel, and partition the computation across multiple dis-
tributed devices. Dataflow TensorFlow differs from batch
dataflow systems (§2.2) in two respects:

• The model supports multiple concurrent executions
on overlapping subgraphs of the overall graph.

• Individual vertices may have mutable state that can
be shared between different executions of the graph.

The key observation in the parameter server architec-
ture [21, 14, 46] is that mutable state is crucial when
training very large models, because it becomes possible to
make in-place updates to very large parameters, and prop-
agate those updates to parallel training steps as quickly

as possible. Dataflow with mutable state enables Tensor-
Flow to mimic the functionality of a parameter server,
but with additional flexibility, because it becomes pos-
sible to execute arbitrary dataflow subgraphs on the ma-
chines that host the shared model parameters. As a re-
sult, our users have been able to experiment with different
optimization algorithms, consistency schemes, and paral-
lelization strategies.

3.1 Dataflow graph elements

In a TensorFlow graph, each vertex represents an atomic
unit of computation, and each edge represents the out-
put from or input to a vertex. We refer to the compu-
tation at vertices as operations, and the values that flow
along edges as tensors, because TensorFlow is designed
for mathematical computation, and uses tensors (or multi-
dimensional arrays) to represent all data in those compu-
tations.

Tensors In TensorFlow, we model all data as tensors
(dense n-dimensional arrays) with each element having
one of a small number of primitive types, such as int32,
float32, or string. Tensors naturally represent the
inputs to and results of the common mathematical oper-
ations in many machine learning algorithms: for exam-
ple, a matrix multiplication takes two 2-D tensors and
produces a 2-D tensor; and a mini-batch 2-D convolution
takes two 4-D tensors and produces another 4-D tensor.

All tensors in TensorFlow are dense. This decision en-
sures that the lowest levels of the system can have sim-
ple implementations for memory allocation and serializa-
tion, which reduces the overhead imposed by the frame-
work. To represent sparse tensors, TensorFlow offers two
alternatives: either encode the data into variable-length
string elements of a dense tensor, or use a tuple of
dense tensors (e.g., an n-D sparse tensor with m non-zero
elements could be represented an m×n index matrix and
a length-m value vector). The size of a tensor can vary in
one or more dimensions, making it possible to represent
sparse tensors with differing numbers of elements, at the
cost of more sophisticated shape inference.

Operations An operation takes m ≥ 0 tensors as input,
and produces n ≥ 0 tensors as output. An operation has
a named “type” (such as Const, MatMul, or Assign)
and may have zero or more compile-time attributes that
determine its behavior. An operation can be generic and
variadic at compile-time: its attributes determine both the
expected types and arity of its inputs and outputs.

4

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input
data

Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic
checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations
Const Var MatMul Conv2D ReLU Queue ...

Figure 1: A schematic TensorFlow dataflow graph for a training pipeline contains subgraphs for reading input data,
preprocessing, training, and checkpointing state.

For example, the simplest operation Const has no in-
puts and a single output. Const has an attribute T that
determines the type of its output, and an attribute Value
that determines the value that it produces. AddN is vari-
adic: it has a type attribute T, and an integer attribute N
that defines how many inputs (of type T) it accepts.

Stateful operations: variables An operation can con-
tain mutable state that is read and/or written each time it
executes. A Variable operation owns a mutable buffer
that is used to store the shared parameters of a model as
it is trained. A Variable has no inputs, and produces
a reference handle, which acts as a typed capability for
reading and writing the buffer. A Read operation takes
a reference handle as input, and outputs the value of the
variable as a dense tensor. Several operations can modify
the underlying buffer: for example, AssignAdd takes
a reference handle r and a tensor value x, and when exe-
cuted performs the update State′[r]← State[r]+x. Sub-
sequent Read(r) operations produce the value State′[r].

Stateful operations: queues TensorFlow includes sev-
eral queue implementations, which support more ad-
vanced forms of coordination. The simplest queue is
FIFOQueue, which owns an internal queue of tensors,
and supports concurrent access. Like a Variable, the
FIFOQueue operation produces a reference handle that
can be consumed by one of the standard queue operations,
such as Enqueue and Dequeue. These operations re-
spectively push their input onto the tail of the queue, or
pop the head element and output it. Enqueue will block
if its given queue is full, and Dequeue will block if its
given queue is empty. When queues are used in an input
preprocessing pipeline, this blocking provides backpres-
sure; it also supports synchronization (§4.4).

3.2 Partial and concurrent execution
TensorFlow uses the dataflow graph to represent all pos-
sible computations in a particular application, and the

API for executing a graph allows the client to specify the
subgraph that should be executed. A subgraph is spec-
ified declaratively: the client selects zero or more edges
to feed input tensors into the dataflow, and one or more
edges to fetch output tensors from the dataflow; the run-
time then prunes the graph to contain the necessary set
of operations. Each invocation of the API is called a step,
and TensorFlow supports multiple concurrent steps on the
same graph, where stateful operations enable coordination
between the steps.

Figure 1 shows a typical training application, with mul-
tiple subgraphs that execute concurrently, and interact
through shared variables and queues. The core training
subgraph depends on a set of model parameters, and in-
put batches from a queue. Many concurrent steps of the
training subgraph update the model based on different in-
put batches, to implement data-parallel training. To fill
the input queue, concurrent preprocessing steps transform
individual input records (e.g., decoding images and apply-
ing random distortions), and a separate I/O subgraph reads
records from a distributed file system. A checkpointing
subgraph runs periodically for fault tolerance (§4.3).

Partial and concurrent execution is responsible for
much of TensorFlow’s flexibility. Adding mutable state
and coordination via queues makes it possible to specify
a wide variety of model architectures in “unprivileged”
code, which enables advanced users to experiment with-
out modifying the internals of the TensorFlow runtime.

3.3 Distributed execution
Dataflow simplifies distributed execution, because it
makes communication between subcomputations explicit.
In principle, the same TensorFlow program can be de-
ployed to a distributed cluster of GPUs for training, a
cluster of TPUs for serving, and a cellphone for mobile
inference.

Each operation resides on a particular device, such as a
CPU or GPU in a particular task. A device is responsible
for executing a kernel for each operation assigned to it.

5

TensorFlow allows multiple kernels to be registered for
a single operation, with specialized implementations for
a particular device or data type (see §5 for details). For
many operations, such as element-wise operators (Add,
Sub, etc.), we use a single kernel implementation that can
be compiled for CPU and GPU using different compilers.

The TensorFlow runtime places operations on devices,
subject to implicit or explicit device constraints in the
graph. The placement algorithm computes a feasible set
of devices for each operation, calculates the sets of op-
erations that must be colocated, and selects a satisfying
device for each colocation group. Stateful operations and
operations their state must be placed on the same device,
which leads to implicit colocation constraints. In addi-
tion, the user may specify partial device preferences such
as “any device in a particular task”, or “a GPU in any
task”, and the runtime will respect these constraints. A
typical training application will use client-side program-
ming constructs to add constraints such that, for example,
parameters are distributed among a set of “PS” tasks.

Once the operations in a graph have been placed, and
the partial subgraph has been computed for a step (§3.2),
TensorFlow partitions the operations into per-device sub-
graphs. A per-device subgraph for device d contains all
of the operations that were assigned to d, with additional
Send and Recv operations that replace edges across de-
vice boundaries. Send transmits its single input to a spec-
ified device as soon as the tensor is available, using a ren-
dezvous key to name the value. Recv has a single output,
and blocks until the value for a specified rendezvous key
is available locally, before producing that value. Send
and Recv have specialized implementations for several
device-type pairs; we describe some of these in Section 5.

We optimized TensorFlow for executing large sub-
graphs repeatedly with low latency. Once the graph for
a step has been pruned, placed, and partitioned, its sub-
graphs are cached in their respective devices. A client
session maintains the mapping from step definitions to
cached subgraphs, so that a distributed step on a large
graph can be initiated with one small message to each par-
ticipating task. This model favors static, reusable graphs,
but it can support dynamic computations using dynamic
control flow, as the next subsection describes.

3.4 Dynamic control flow

Most evaluation in TensorFlow is strict: all inputs to an
operation must be computed before the operation exe-
cutes. Advanced algorithms—such as efficiently training
a recurrent neural network [37]—require dynamic control
flow, which for efficiency requires non-strict evaluation.

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input
data

Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic
checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations
Const Var MatMul Conv2D ReLU Queue ...

Figure 2: A conditional graph using Switch and Merge

TensorFlow supports conditional control flow using
the primitive Switch and Merge operations, which are
based on Arvind and Culler’s original dynamic dataflow
architectures [4]. Switch acts like a demultiplexer: it
takes a data input and a control input, and uses the control
input to select which of its two outputs should produce a
value. The Switch output not taken receives a special
dead value, which propagates recursively through the rest
of the graph until it reaches a Merge operation. Merge
acts like a multiplexer: it forwards at most one non-dead
input to its output, or produces a dead output if both of its
inputs are dead. We use these primitives to build a non-
strict conditional subgraph (Figure 2) that executes one of
two branches, based on the runtime value of a tensor.
Switch and Merge also support iteration. The imple-

mentation of loops in TensorFlow is based on Switch
and Merge [4], with additional structural constraints
based on timely dataflow [54] to simplify the distributed
execution state. Like timely dataflow, TensorFlow sup-
ports multiple concurrent iterations and nested loops, but
simplifies memory management by restricting each oper-
ation to producing a single value per output per iteration.

4 Extensibility case studies

By choosing a unified dataflow graph to represent all com-
putation in TensorFlow, we have enabled users to experi-
ment with features that were built into the runtime of our
previous system [21]. In this section, we discuss four ex-
tensions to TensorFlow that we have built using simple
dataflow primitives and “user-level” code.

4.1 Differentiation and optimization

Many learning algorithms train a set of parameters using
some variant of stochastic gradient descent (SGD), which
entails computing the gradients of a cost function with re-
spect to those parameters, then updating the parameters
based on those gradients. We implement a user-level li-

6

brary for TensorFlow that automatically differentiates ex-
pressions. A user can, for example, define a neural net-
work as a composition of layers and a loss function, and
the library will derive the backpropagation [64].

The differentiation algorithm performs breadth-first
search to identify all of the backwards paths from the tar-
get operation (e.g., a loss function) to a set of parameters,
and sums the partial gradients that each path contributes.
Our users frequently specialize the gradients for some op-
erations, and they have implemented optimizations like
batch normalization [32] and gradient clipping [59] to ac-
celerate training and make it more robust. We have ex-
tended the algorithm to differentiate conditional and iter-
ative subcomputations (§3.4), and developed techniques
for managing GPU memory when iterating (and accumu-
lating intermediate values) over long sequences in the in-
put data (similar to GeePS [19]).

TensorFlow users can also experiment with a wide
range of optimization algorithms, which compute new
values for the parameters in each training step. SGD is
easy to implement in a parameter server: for each param-
eter W , gradient ∂L/∂W , and learning rate α, the update
rule is W ′ ←W − α× ∂L/∂W . A parameter server can
implement SGD by using -= as the write operation, and
writing α× ∂L/∂W to each W after a training step.

However, there are many more advanced optimization
schemes that are difficult to express as a single write op-
eration. For example, the Momentum algorithm accumu-
lates a “velocity” for each parameter based on its gradient
over multiple iterations, then computes the parameter up-
date from that accumulation; and many refinements to this
algorithm have been proposed [67]. To implement Mo-
mentum in DistBelief [21], we had to modify the C++
code of the parameter server to change the representa-
tion of parameter data, and execute arbitrary code in the
write operation; such modifications are beyond the ma-
jority of our users. Optimization algorithms are the topic
of active research, and our users have implemented sev-
eral on top of TensorFlow, including Momentum, Ada-
grad, Adadelta, RMSProp, Adam, and L-BFGS. These
can be built in TensorFlow using Variable operations
and primitive mathematical operations without needing to
modify the underlying system, which makes it easy to ex-
periment with new algorithms as they emerge.

4.2 Handling very large models

To train a model on high-dimensional data, such as words
in a corpus of text [7], it is common to use a distributed
representation, which embeds a training example as a
pattern of activity across several neurons, which can be

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input
data

Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic
checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations
Const Var MatMul Conv2D ReLU Queue ...

Figure 3: Schematic dataflow graph for a sparse embed-
ding layer containing a two-way sharded embedding ma-
trix.

learned by backpropagation [29]. For example, in a lan-
guage model, a training example might be a sparse vector
with non-zero entries corresponding to the IDs of words
in a vocabulary, and the distributed representation for each
word will be a lower-dimensional vector [6].

Inference proceeds by multiplying a batch of b sparse
vectors against an n×d embedding matrix, where n is the
number of words in the vocabulary, and d is the desired di-
mensionality, to produce a much smaller b× d dense ma-
trix representation; for training, most optimization algo-
rithms modify only the rows of the embedding matrix that
were read by the sparse multiplication. In many Tensor-
Flow models that process sparse data, n×d can amount to
gigabytes of parameters: e.g., a large language model may
use over 109 parameters with a vocabulary of 800,000
words [39], and we have experience with document mod-
els [20] where the parameters occupy several terabytes.
Such models are too large to copy to a worker on every
use, or even to store in RAM on a single host.

We implement sparse embedding layers in the Tensor-
Flow graph as a composition of primitive operations. Fig-
ure 3 shows a simplified graph for an embedding layer that
is split across two parameter server tasks. The core oper-
ation of this subgraph is Gather, which extracts a sparse
set of rows from a tensor, and TensorFlow colocates this
operation with the variable on which it operates. The dy-
namic partition (Part) operation divides the incoming
indices into variable-sized tensors that contain the indices
destined for each shard, and the dynamic static (Stitch)
operation reassembles the partial results from each shard
into a single result tensor. Each of these operations has
a corresponding gradient, so it supports automatic differ-
entiation (§4.1), and the result is a set of sparse update
operations that act on just the values that were originally
gathered from each of the shards.

While sparse reads and updates are possible in a pa-
rameter server [46], TensorFlow adds the flexibility to
offload arbitrary computation onto the devices that host

7

the shared parameters. For example, classification mod-
els typically use a softmax classifier that multiplies the
final output by a weight matrix with c columns, where c
is the number of possible classes; for a language model,
c is the size of the vocabulary, which can be large. Our
users have experimented with several schemes to accel-
erate the softmax calculation. The first is similar to an
optimization in Project Adam [14], whereby the weights
are sharded across several tasks, and the multiplication
and gradient calculation are colocated with the shards.
More efficient training is possible using a sampled soft-
max [35], which performs a sparse multiplication based
on the true class for an example and a set of randomly
sampled false classes. We compare the performance of
these two schemes in §6.4.

4.3 Fault tolerance

Training a model can take several hours or days, even us-
ing a large number of machines [21, 14]. It is desirable
to be able to train a model using non-dedicated resources,
for example using a cluster manager, like Mesos [28] or
Borg [72], that does not guarantee availability of the same
resources for the duration of the training process. There-
fore, a TensorFlow job is likely to experience failure dur-
ing the training process, and we require some form of
fault tolerance. However, failures are unlikely to be so
common that individual operations need fault tolerance,
so a mechanism like Spark’s RDDs [75] would impose
significant overhead for little benefit. There is no need
to make every write to the parameter state durable, be-
cause we can recompute any update from the input data,
and many learning algorithms do not require strong con-
sistency [62]. Although we do not use strong consistency
for the training state, we rely on a system like Chubby [8]
or ZooKeeper [31] to map task IDs to IP addresses.

We implement user-level checkpointing for fault tol-
erance in TensorFlow, using primitive operations in the
graph (Figure 1): Save writes one or more tensors to a
checkpoint file, and Restore reads one or more tensors
from a checkpoint file. Our typical configuration connects
each Variable in a task to the same Save operation,
with one Save per task, to maximize the I/O bandwidth
to a distributed file system. The Restore operations
read named tensors from a file, and a standard Assign
stores the restored value in its respective variable. During
training, a typical client runs all of the Save operations
periodically to produce a new checkpoint; when the client
starts up, it attempts to Restore the latest checkpoint.

TensorFlow includes a client library for constructing
the appropriate graph structure, and invoking Save and

Restore as necessary. This behavior is customizable:
the user can apply different policies to subsets of the vari-
ables in a model, or customize the checkpoint retention
scheme. For example, many users retain checkpoints with
the highest score in a custom evaluation metric. The im-
plementation is also reusable: it may be used for model
fine-tuning and unsupervised pre-training [43, 45], which
are forms of transfer learning, in which the parameters
of a model trained on one task (e.g. recognizing general
images) are used as the starting point for another task
(e.g. recognizing particular breeds of dog). Having check-
point and parameter management as programmable oper-
ations in the graph gives users the flexibility to implement
schemes like these and others that we have not anticipated.

The checkpointing library does not attempt to produce
consistent checkpoints: if training and checkpointing ex-
ecute concurrently, the checkpoint may include none, all,
or some of the updates from the training step. This is no
problem for models that we train by asynchronous gra-
dient descent [21]. Consistent checkpoints require addi-
tional synchronization to ensure that checkpointing does
not run concurrently with update operations. For exam-
ple, one can use the scheme in next subsection to take a
checkpoint after the synchronous update step.

4.4 Synchronous replica coordination

SGD is robust to asynchrony [62], and previous systems
train deep neural networks using asynchronous param-
eter updates [21, 14], which are believed scalable be-
cause they maintain high throughput in the presence of
stragglers. The increased throughput comes at the cost
of training steps using stale data. Some have recently
revisited the assumption that synchronous training does
not scale [11, 19]. Since GPUs enable training with
hundreds—rather than thousands [45]—of machines, it
may be possible to train a model synchronously in less
time than asynchronous training on the same machines.

Though we designed TensorFlow for asynchronous
training, we have begun experimenting with synchronous
methods. The TensorFlow graph enables users to change
how parameters are read and written when training a
model, and we implement three alternatives. In the asyn-
chronous case (Figure 4(a)), each worker reads the current
value when the step begins, and applies its gradient to the
different current value at the end: this ensures high utiliza-
tion, but the individual steps use stale information, mak-
ing each step less effective. The synchronous cases use
queues (§3.1) to coordinate execution: a blocking queue
acts as a barrier to ensure that all workers read the same
parameter version, and a second queue accumulates mul-

8

(a) Asynchronous replication (b) Synchronous replication (c) Synchronous w/ backup worker

PS

Worker 1

Worker 2

Worker 3

Figure 4: Three parameter synchronization schemes for a single parameter in data-parallel training (§4.4): (a) asyn-
chronous, (b) synchronous without backup workers, and (c) synchronous with backup workers.

Preprocessing

Parameters

Mod

Shard 0

Shard 1

SumPart Stitch

Gather

Gather

Input
data

Reader

Read params Apply grads

Training

Fwd Back
Dist. FS

Periodic
checkpoint

True branch

False branch

Switch Merge

True

Training libraries Inference libs

Python client C++ client

C API

Networking layer

RPC ...

Device layer

CPU ...GPURDMA

Distributed master Dataflow executor

...

Kernel implementations
Const Var MatMul Conv2D ReLU Queue ...

Figure 5: The layered TensorFlow architecture.

tiple gradient updates in order to apply them atomically.
The simple synchronous version (Figure 4(b)) accumu-
lates updates from all workers before applying them, but
slow workers limit overall throughput.

To mitigate stragglers, we implement backup work-
ers (Figure 4(c), [11]), which are similar to MapReduce
backup tasks [22]. Whereas MapReduce starts backup
tasks reactively—after detecting a straggler—our backup
workers run proactively, and the aggregation takes the first
m of n updates produced. We exploit the fact that SGD
samples training data randomly, so each worker processes
a different random batch. In Subsection 6.3 we show how
backup workers improve throughput by up to 15%.

5 Implementation

We implement TensorFlow as an extensible, cross-
platform library. Figure 5 illustrates the system archi-
tecture: a thin C API separates user-level in various lan-
guages from the core library. In this section, we discuss
the implementation of the various components.

The core TensorFlow library is implemented in C++ for

portability and performance: it runs on several operating
systems including Linux, Mac OS X, Android, and iOS;
the x86 and various ARM-based CPU architectures; and
NVIDIA’s Kepler, Maxwell, and Pascal GPU microar-
chitectures. The implementation is open-source, and we
have accepted several external contributions that enable
TensorFlow to run on other architectures.

The distributed master translates user requests into ex-
ecution across a set of tasks. Given a graph and a step def-
inition, it prunes (§3.2) and partitions (§3.3) the graph to
obtain subgraphs for each participating device, and caches
these subgraphs so that they may be re-used in subsequent
steps. Since the master sees the overall computation for a
step, it applies standard optimizations such as common
subexpression elimination and constant folding; pruning
is a form of dead code elimination. It then coordinates ex-
ecution of the optimized subgraphs across a set of tasks.

The dataflow executor in each task handles requests
from the master, and schedules the execution of the ker-
nels that comprise a local subgraph. We optimize the
dataflow executor for running large, fine-grained graphs
with low overhead; our current implementation dispatches
approximately 2,000,000 null operations per second. The
dataflow executor dispatches kernels to local devices and
runs kernels in parallel when possible: e.g., by using mul-
tiple cores in a CPU device, or multiple streams on a GPU.

The runtime contains over 200 standard operations, in-
cluding mathematical, array manipulation, control flow,
and state management operations. Many of the opera-
tion kernels are implemented using Eigen::Tensor [34],
which uses C++ templates to generate efficient parallel
code for multicore CPUs and GPUs; however, we lib-
erally use libraries like cuDNN [13] to implement ker-
nels where a more efficient specialization is possible. We
have also implemented support for quantization, which
enables faster inference in environments such as mobile
devices and high-throughput datacenter applications, and
use the gemmlowp low-precision matrix multiplication
library [33] to accelerate quantized computation.

9

We specialize Send and Recv operations for each
pair of source and destination device types. Trans-
fers between local CPU and GPU devices use the
cudaMemcpyAsync()API to overlap computation and
data transfer; transfers between two local GPUs use DMA
to relieve pressure on the host. For transfers between
tasks, TensorFlow supports multiple protocols, including
gRPC over TCP, and RDMA over Converged Ethernet.
We are also investigating optimizations for GPU-to-GPU
communication that use collective operations [57].

Section 4 describes features that we implement totally
above the C API, in user-level code. Typically, users
compose standard operations to build higher-level ab-
stractions, such as neural network layers, optimization
algorithms (§4.1), and sharded embedding computations
(§4.2). TensorFlow supports multiple client languages,
and we have prioritized support for Python and C++, be-
cause our internal users are most familiar with these lan-
guages. As features become more established, we typi-
cally port them to C++, so that users can access an opti-
mized implementation from all client languages.

If it is difficult or inefficient to represent a subcom-
putation as a composition of operations, users can reg-
ister additional kernels that provide an efficient imple-
mentation written in C++. We have found it profitable
to hand-implement fused kernels for some performance
critical operations, such as a the ReLU and Sigmoid ac-
tivation functions and their corresponding gradients. We
are currently investigating automatic kernel fusion using
Halide [61] and other compiler-based techniques.

In addition to the core runtime, our colleagues have
built several tools that aid users of TensorFlow. These in-
clude serving infrastructure for running inference in pro-
duction, a visualization dashboard that enables users to
follow the progress of a training run, a graph visualizer
that helps users to understand the connections in a model,
and a distributed profiler that traces the execution of a
computation across multiple devices and tasks. We de-
scribe these tools in an extended whitepaper [1], and they
can be downloaded from the project repository.

6 Evaluation
In this section, we evaluate the performance of Tensor-
Flow on several synthetic and realistic workloads. Unless
otherwise stated, we run all experiments on a shared pro-
duction cluster, and all figures plot median values with
error bars showing the 10th and 90th percentiles.

Here we focus on system performance metrics, rather
than learning objectives like time to accuracy. TensorFlow
is a system that allows machine learning practitioners and

researchers to experiment with new techniques, and this
evaluation demonstrates that the system (i) has little over-
head, and (ii) can employ large amounts of computation to
accelerate real-world applications. While techniques like
synchronous replication can enable some models to con-
verge in fewer steps overall, we defer the analysis of such
improvements to other papers.

6.1 Single-machine benchmarks

Although TensorFlow is a system for “large-scale” ma-
chine learning, it is imperative that scalability does not
mask poor performance at small scales [49]. Table 1
contains results from Chintala’s independent benchmark
of convolutional models on TensorFlow and three single-
machine frameworks [15]. All frameworks use a six-core
Intel Core i7-5930K CPU at 3.5 GHz and an NVIDIA Ti-
tan X GPU.

Training step time (ms)
Library AlexNet Overfeat OxfordNet GoogleNet

Caffe [36] 324 823 1068 1935
Neon [56] 87 211 320 270
Torch [17] 81 268 529 470

TensorFlow 81 279 540 445

Table 1: Step times for training four convolutional models
with different libraries, using one GPU. All results are for
training with 32-bit floats. The fastest library for each
model is shown in bold.

Table 1 shows that TensorFlow achieves shorter step
times than Caffe [36], and performance within 6% of the
latest version of Torch [17]. We attribute the similar per-
formance of TensorFlow and Torch to the fact that both
use the same version of the cuDNN library [13], which
implements the convolution and pooling operations on
the critical path for training; Caffe uses open-source im-
plementations for these operations that are simpler but
less efficient than cuDNN. The Neon library [56] outper-
forms TensorFlow on three of the models, by using hand-
optimized convolutional kernels [44] implemented in as-
sembly language; in principle, we could implement these
kernels in TensorFlow, but we have not yet done so.

6.2 Synchronous replica microbenchmark

The performance of our coordination implementation
(§4.4) is the main limiting factor for scaling with addi-
tional machines. Figure 6 shows that number of null train-
ing steps that TensorFlow performs per second for vary-
ing model sizes, and increasing numbers of synchronous
workers. In a null training step, a worker fetches the

10

1 2 5 10 25 50 100
Number of workers

1

10

100

1000

10000
Ba

tc
he

s
pe

r s
ec

on
d

Scalar
Sparse 1GB
Sparse 16GB
Dense 100M
Dense 1GB

Figure 6: Baseline throughput for synchronous replication
with a null model. Sparse accesses enable TensorFlow to
handle larger models, such as embedding matrices (§4.2).

shared model parameters from 16 PS tasks, performs a
trivial computation, and sends updates to the parameters.

The Scalar curve in Figure 6 shows the best perfor-
mance that we could expect for a synchronous training
step, because only a single 4-byte value is fetched from
each PS task. The median step time is 1.8 ms using a sin-
gle worker, growing to 8.8 ms with 100 workers. These
times measure the overhead of the synchronization mech-
anism, and capture some of the noise that we expect when
running on a shared cluster.

The Dense curves show the performance of a null step
when the worker fetches the entire model. We repeat the
experiment with models of size 100 MB and 1 GB, with
the parameters sharded equally over 16 PS tasks. The me-
dian step time for 100 MB increases from 147 ms with one
worker to 613 ms with 100 workers. For 1 GB, it increases
from 1.01 s with one worker to 7.16 s with 100 workers.

For large models, it is typical that a training step ac-
cesses only a subset of the parameters, and the Sparse
curves show the throughput of the embedding lookup op-
eration from Subsection 4.2. Each worker reads 32 ran-
domly selected entries from a large embedding matrix
containing 1 GB or 16 GB of data. As expected, the step
times do not vary with the size of the embedding, and
TensorFlow achieves step times ranging from 5 to 20 ms.

6.3 Image classification
Deep neural networks have achieved breakthrough per-
formance on computer vision tasks such as recognizing
objects in photographs [42], and these tasks are a key
application for TensorFlow at Google. Training a net-
work to high accuracy requires a large amount of com-
putation, and we use TensorFlow to scale out the compu-

tation across a cluster of GPU-enabled servers. In these
experiments, we focus on Google’s Inception-v3 model,
which achieves 78.8% accuracy the ILSVRC 2012 image
classification challenge [70]; the same techniques apply
to other deep convolutional models—such as Microsoft’s
ResNet [26]—that TensorFlow users have implemented.
We investigate the scalability of training the Inception-v3
model using multiple replicas. We configure a Tensor-
Flow job with 17 PS tasks, and vary the number of worker
tasks. Each worker task has one NVIDIA K40 GPU and
5 IvyBridge cores, and a PS task has 8 IvyBridge cores.
We investigate the effect of coordination (§4.4) on training
performance, using up to 200 workers to validate recent
promising results for synchronous training [11, 19]. In
particular, if synchronous training can be made efficient,
a model such as Inception-V3 will train in fewer steps,
and converge to a higher accuracy than with asynchronous
training [11].

Training throughput improves to 2,300 images per sec-
ond as we increase the number of workers to 200, but with
diminishing returns (Figure 7(a)). Figures 7(b) and (c) ex-
plain the limits to scaling: as we add more workers, the
step time increases, because there is more contention on
the PS tasks, both at the network interface and in the ag-
gregation of updates. As expected, for all configurations,
synchronous steps are longer than asynchronous steps,
because all workers must wait for the slowest worker to
catch up before starting the next step. While the median
synchronous step is approximately 10% longer than an
asynchronous step with the same workers, above the 90th
percentile the synchronous performance degrades sharply,
because stragglers disproportionately impact the tail.

To mitigate tail latency, we can add backup workers,
so that a step completes when the first m of n tasks pro-
duce gradients. Figure 8 shows the effect on step time of
adding backup workers to a 50-worker Inception training
job. Each additional backup worker up to and including
the fourth reduces the median step time, because the prob-
ability of a straggler affecting the step decreases. Adding
a fifth backup worker slightly degrades performance, be-
cause the 51st worker (i.e., the first whose result is dis-
carded) is more likely to be a non-straggler that generates
more incoming traffic for the PS tasks. Figure 8 also plots
the normalized speedup for each configuration, which we
define as t(b)/t(0)×50/(50+b) (where t(b) is the median
step time with b backup workers), and which discounts the
speedup by the fraction of additional resources consumed.
Although adding 4 backup workers achieves the shortest
overall step time (1.93 s), adding 3 achieves the highest
normalized speedup (9.5%), and hence trains the model
to the same quality using less aggregate GPU-time.

11

25 50 100 200
Number of workers

0

500

1000

1500

2000

2500

3000
Im

ag
es

/s
ec

on
d

(a) Training throughput
Asynchronous
Synchronous

0 1 2 3 4 5 6
Step time (secs)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fra
ct

io
n

of
 s

te
ps

(b) Asynchronous replication

25 workers
50 workers
100 workers
200 workers

0 1 2 3 4 5 6
Step time (secs)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fra
ct

io
n

of
 s

te
ps

(c) Synchronous replication

25 workers
50 workers
100 workers
200 workers

Figure 7: (a) Inception-v3 training throughput increases with up to 200 workers. However, adding more workers gets
diminishing returns because the step time increases for both (b) asynchronous and (c) synchronous replication.

0 1 2 3 4 5
Number of backup workers

1.9

2.0

2.1

2.2

2.3

2.4

2.5

St
ep

 ti
m

e
(s

ec
on

ds
)

Step time

1.00

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

 s
pe

ed
up

Speedup

Figure 8: Backup workers reduce the step time for 50-
worker Inception-v3 training. 4 backup workers give the
shortest overall step time, but 3 backup workers are most
efficient when we normalize for the total resources used.

6.4 Language modeling

Given a sequence of words, a language model predicts the
most probable next word [6]. Therefore, language mod-
els are integral to predictive text, speech recognition, and
translation applications. In this experiment, we investi-
gate how TensorFlow can train a recurrent neural network
(viz. LSTM-512-512 [39]) to model the text in the One
Billion Word Benchmark [10]. The vocabulary size |V |
limits the performance of training, because the final layer
must decode the output state into probabilities for each of
|V | classes [35]. The resulting parameters can be large
(|V | × d for output state dimension d) so we use the tech-
niques for handling large models from Subsection 4.2. We
use a restricted vocabulary of the most common 40,000
words—instead of the full 800,000 words [10]—in order
to experiment with smaller configurations.

Figure 9 shows the training throughput, measured in

1 2 4 8 16 32
Number of parameter servers

101

102

103

104

105

W
or

ds
 p

ro
ce

ss
ed

/s
ec

on
d

256 workers (sampled)
256 workers (full)
32 workers (sampled)
32 workers (full)
4 workers (sampled)
4 workers (full)

Figure 9: Increasing the number of PS tasks leads to in-
creased throughput for language model training, by par-
allelizing the softmax computation. Sampled softmax in-
creases throughput by performing less computation.

words per second, for varying numbers of PS and worker
tasks, and two softmax implementations. The full softmax
(dashed lines) multiplies each output by a 512 × 40, 000
weight matrix sharded across the PS tasks. Adding more
PS tasks increases the throughput, because TensorFlow
can exploit distributed model parallelism [21, 41] and per-
form the multiplication and gradient calculation on the PS
tasks, as in Project Adam [14]. Adding a second PS task
is more effective than increasing from 4 to 32, or 32 to
256 workers. Eventually the throughput saturates, as the
LSTM calculations dominate the training step.

The sampled softmax (solid lines) reduces the data
transferred and the computation performed at the PS
tasks [35]. Instead of a dense weight matrix, it multiplies
the output by a random sparse matrix containing weights
for the true class and a random sample of false classes.
We sample 512 classes for each batch, which reduces the
softmax data transfer and computation by a factor of 78.

12

7 Conclusions
We have described the TensorFlow system and its exten-
sible dataflow-based programming model. The core idea
of this paper is that TensorFlow’s dataflow representation
subsumes existing work on parameter server systems, and
offers a uniform programming model that allows users to
harness large-scale heterogeneous systems, both for pro-
duction tasks and for experimenting with new approaches.
We have shown several examples of how the TensorFlow
programming model supports experimentation (§4) and
demonstrated that the resulting implementations are per-
formant and scalable (§6).

Our initial experience with TensorFlow is encourag-
ing. A large number of groups at Google have deployed
TensorFlow in production, and TensorFlow is helping our
research colleagues to make new advances in machine
learning. Since we released TensorFlow as open-source
software, over 8,000 people have forked the source code
repository, the binary distribution has been downloaded
500,000 times, and our users have published dozens of
machine learning models that use TensorFlow.

TensorFlow is a work in progress. Its flexible dataflow
representation enables power users to achieve excellent
performance, but we have not yet determined default poli-
cies that work well for most users. Further research
on automatic optimization should bridge this gap. On
the system level, we are actively developing algorithms
for automatic placement, kernel fusion, memory manage-
ment, and scheduling. While the current implementations
of mutable state and fault tolerance suffice for applica-
tions with weak consistency requirements, we expect that
some TensorFlow applications will require stronger con-
sistency, and we are investigating how to build such poli-
cies at user-level. Finally, our users are demanding, and
some have begun to chafe at the limitations of a static
dataflow graph, especially for algorithms like deep rein-
forcement learning [51]. Therefore, we face the intriguing
problem of providing a system that transparently and effi-
ciently uses distributed resources, even when the structure
of the computation unfolds dynamically.

By sharing the implementation of TensorFlow and en-
gaging with the research community, we hope that this
work will spur further research in distributed systems and
machine learning.

Acknowledgments
We gratefully acknowledge contributions from our col-
leagues within Google, and from members of the wider
machine learning community. In particular, we appreciate

the feedback we have received both from the rest of the
Google Brain team and the hundreds of DistBelief and
TensorFlow users that has helped us improve the usability
of functionality of the system.

Many individuals have contributed to TensorFlow, in-
cluding: John Giannandrea (for creating a supportive
research environment); Irina Kofman, Amy McDon-
ald Sandjideh, and Phing Turner (project management);
Ashish Agarwal, Dave Andersen, Anelia Angelova, Eu-
gene Brevdo, Yaroslav Bulatov, Jerjou Cheng, Maciek
Chociej, Craig Citro, Greg Corrado, George Dahl, An-
drew Dai, Lucy Gao, mig Gerard, Ian Goodfellow,
Stephan Gouws, Gunhan Gulsoy, Steinar Gunderson, An-
drew Harp, Peter Hawkins, Yangqing Jia, Rafal Joze-
fowicz, Łukasz Kaiser, Naveen Kumar, Geoffrey Hinton,
Mrinal Kalakrishnan, Anjuli Kannan, Rasmus Larsen,
Yutaka Leon-Suematsu, Frank Li, Peter Liu, Xiaobing
Liu, Olivia Nordquist, Chris Olah, Nishant Patil, Saurabh
Saxena, Mike Schuster, Andrew Selle, Pierre Sermanet,
Noam Shazeer, Jonathon Shlens, Jascha Sohl-Dickstein,
Ilya Sutskever, Kunal Talwar, Philip Tucker, Vincent Van-
houcke, Oriol Vinyals, Chad Whipkey, Yonghui Wu, Ke
Yang, Zongheng Yang, and Yao Zhang (general contri-
butions to the project); Shan Carter, Doug Fritz, Patrick
Hurst, Dilip Krishnan, Dan Mané, Daniel Smilkov, Fer-
nanda Viégas, Martin Wattenberg, James Wexler, Jimbo
Wilson, Kanit Wongsuphasawat, Cassandra Xia, and the
Big Picture team (visualization); Chris Leary, Robert
Hundt, Robert Springer, Cliff Young, and the Stream Ex-
ecutor team (accelerator support); Norm Jouppi and the
team that created the Tensor Processing Unit; Kayur Pa-
tel, Michael Piatek, and the coLab team; and the grow-
ing community of open-source contributors and users who
have helped make TensorFlow better.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. G. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. A. Tucker, V. Vanhoucke, V. Vasudevan,
F. B. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
flow: Large-scale machine learning on heteroge-
neous distributed systems. CoRR, abs/1603.04467,
2016. arxiv.org/abs/1603.04467. Software available
from tensorflow.org.

13

http://arxiv.org/abs/1603.04467
http://tensorflow.org

[2] R. Al-Rfou, G. Alain, A. Almahairi, C. Anger-
mueller, D. Bahdanau, N. Ballas, F. Bastien,
J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio,
A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher
Snyder, N. Bouchard, N. Boulanger-Lewandowski,
X. Bouthillier, A. de Brébisson, O. Breuleux, P.-
L. Carrier, K. Cho, J. Chorowski, P. Christiano,
T. Cooijmans, M.-A. Côté, M. Côté, A. Courville,
Y. N. Dauphin, O. Delalleau, J. Demouth, G. Des-
jardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Du-
moulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan,
O. Firat, M. Germain, X. Glorot, I. Goodfellow,
M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet,
J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,
K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lam-
blin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois,
S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey,
C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol,
O. Mastropietro, R. T. McGibbon, R. Memise-
vic, B. van Merriënboer, V. Michalski, M. Mirza,
A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki,
C. Raffel, D. Renshaw, M. Rocklin, A. Romero,
M. Roth, P. Sadowski, J. Salvatier, F. Savard,
J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban,
D. Serdyuk, S. Shabanian, E. Simon, S. Spiecker-
mann, S. R. Subramanyam, J. Sygnowski, J. Tan-
guay, G. van Tulder, J. Turian, S. Urban, P. Vin-
cent, F. Visin, H. de Vries, D. Warde-Farley,
D. J. Webb, M. Willson, K. Xu, L. Xue, L. Yao,
S. Zhang, and Y. Zhang. Theano: A Python frame-
work for fast computation of mathematical expres-
sions. arXiv e-prints, abs/1605.02688, May 2016.
arxiv.org/abs/1605.02688.

[3] A. Angelova, A. Krizhevsky, and V. Vanhoucke.
Pedestrian detection with a large-field-of-view deep
network. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 704–711.
IEEE, 2015. CalTech PDF.

[4] Arvind and D. E. Culler. Annual review
of computer science vol. 1, 1986. chapter
Dataflow Architectures, pages 225–253. 1986.
www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&
doc=GetTRDoc.pdf&AD=ADA166235.

[5] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple ob-
ject recognition with visual attention. arXiv preprint
arXiv:1412.7755, 2014. arxiv.org/abs/1412.7755.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Jau-
vin. A neural probabilistic language model.

Journal of Machine Learning Research, 3:1137–
1155, 2003. www.iro.umontreal.ca/˜lisa/pointeurs/
BengioDucharmeVincentJauvin jmlr.pdf.

[7] T. Brants and A. Franz. Web 1T 5-gram version 1,
2006. catalog.ldc.upenn.edu/LDC2006T13.

[8] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of
the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 335–350,
Berkeley, CA, USA, 2006. USENIX Association.
www.usenix.org/legacy/event/osdi06/tech/full pa-
pers/burrows/burrows.pdf.

[9] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu.
Sample size selection in optimization methods for
machine learning. Mathematical Programming,
134(1):127–155, 2012. dx.doi.org/10.1007/s10107-
012-0572-5.

[10] C. Chelba, T. Mikolov, M. Schuster, Q. Ge,
T. Brants, and P. Koehn. One billion word bench-
mark for measuring progress in statistical lan-
guage modeling. CoRR, abs/1312.3005, 2013.
arxiv.org/abs/1312.3005.

[11] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz.
Revisiting distributed synchronous SGD. In Inter-
national Conference on Learning Representations
Workshop Track, 2016. arxiv.org/abs/1604.00981.

[12] T. Chen, M. Li, Y. Li, M. Lin, N. Wang,
M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous dis-
tributed systems. In Proceedings of the Workshop
on Machine Learning Systems at Neural Informa-
tion Processing Systems (LearningSys), Dec. 2015.
www.cs.cmu.edu/ muli/file/mxnet-learning-sys.pdf.

[13] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen,
J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN:
Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014. arxiv.org/abs/1410.0759.

[14] T. Chilimbi, Y. Suzue, J. Apacible, and
K. Kalyanaraman. Project Adam: Building
an efficient and scalable deep learning train-
ing system. In 11th USENIX Symposium
on Operating Systems Design and Imple-
mentation (OSDI 14), pages 571–582, 2014.
www.usenix.org/system/files/conference/osdi14/
osdi14-paper-chilimbi.pdf.

14

http://arxiv.org/abs/1605.02688
http://www.vision.caltech.edu/anelia/publications/Angelova15LFOV.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235
http://arxiv.org/abs/1412.7755
http://www.iro.umontreal.ca/~lisa/pointeurs/BengioDucharmeVincentJauvin_jmlr.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/BengioDucharmeVincentJauvin_jmlr.pdf
https://catalog.ldc.upenn.edu/LDC2006T13
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/burrows/burrows.pdf
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/burrows/burrows.pdf
http://dx.doi.org/10.1007/s10107-012-0572-5
http://dx.doi.org/10.1007/s10107-012-0572-5
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1604.00981
https://www.cs.cmu.edu/~muli/file/mxnet-learning-sys.pdf
https://arxiv.org/abs/1410.0759
https://www.usenix.org/system/files/conference/osdi14/\penalty \z@ osdi14-paper-chilimbi.pdf
https://www.usenix.org/system/files/conference/osdi14/\penalty \z@ osdi14-paper-chilimbi.pdf

[15] S. Chintala. convnet-benchmarks, 2016.
github.com/soumith/convnet-benchmarks.

[16] E. S. Chung, J. D. Davis, and J. Lee. LIN-
Qits: Big data on little clients. In Proceed-
ings of the 40th Annual International Sympo-
sium on Computer Architecture, ISCA ’13, pages
261–272, New York, NY, USA, 2013. ACM.
doi.acm.org/10.1145/2485922.2485945.

[17] R. Collobert, S. Bengio, and J. Mariéthoz.
Torch: A modular machine learning soft-
ware library. Technical report, IDIAP, 2002.
infoscience.epfl.ch/record/82802/files/rr02-46.pdf.

[18] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li,
Z. Zhang, M. J. Franklin, A. Ghodsi, and M. I.
Jordan. The missing piece in complex analytics:
Low latency, scalable model management and serv-
ing with Velox. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2015, Online Pro-
ceedings, 2015. arxiv.org/abs/1409.3809.

[19] H. Cui, H. Zhang, G. R. Ganger, P. B. Gib-
bons, and E. P. Xing. GeePS: Scalable deep
learning on distributed GPUs with a GPU-
specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems, EuroSys ’16, 2016. www.pdl.cmu.edu/PDL-
FTP/CloudComputing/GeePS-cui-eurosys16.pdf.

[20] A. Dai, C. Olah, and Q. V. Le. Document em-
bedding with paragraph vectors. arXiv preprint
arXiv:1507.07998, 2015. arxiv.org/abs/1507.07998.

[21] J. Dean, G. S. Corrado, R. Monga, K. Chen,
M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Se-
nior, P. Tucker, K. Yang, and A. Y. Ng. Large scale
distributed deep networks. In NIPS, 2012. Google
Research PDF.

[22] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings
of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation - Volume 6,
OSDI’04, Berkeley, CA, USA, 2004. USENIX As-
sociation. research.google.com/archive/mapreduce-
osdi04.pdf.

[23] A. Frome, G. S. Corrado, J. Shlens, S. Bengio,
J. Dean, T. Mikolov, et al. DeVISE: A deep visual-
semantic embedding model. In Advances in Neural
Information Processing Systems, pages 2121–2129,
2013. research.google.com/pubs/archive/41473.pdf.

[24] J. Gonzalez-Dominguez, I. Lopez-Moreno,
P. J. Moreno, and J. Gonzalez-Rodriguez.
Frame-by-frame language identification in
short utterances using deep neural networks.
Neural Networks, 64:49–58, 2015. re-
search.google.com/en//pubs/archive/42929.pdf.

[25] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza,
B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pages 2672–
2680, 2014. papers.nips.cc/paper/5423-generative-
adversarial-nets.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. CoRR,
abs/1512.03385, 2015. arxiv.org/abs/1512.03385.

[27] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen,
M. Ranzato, M. Devin, and J. Dean. Multilin-
gual acoustic models using distributed deep neural
networks. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Con-
ference on, pages 8619–8623. IEEE, 2013. re-
search.google.com/pubs/archive/40807.pdf.

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-
ica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the
8th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’11, pages 295–308,
Berkeley, CA, USA, 2011. USENIX Association.
www.cs.berkeley.edu/˜alig/papers/mesos.pdf.

[29] G. E. Hinton. Learning distributed representa-
tions of concepts. In Proceedings of the Eighth
Annual Conference of the Cognitive Science So-
ciety, pages 1–12. Hillsdale, NJ: Erlbaum, 1986.
www.cogsci.ucsd.edu/˜ajyu/Teaching/Cogs202 -
sp13/Readings/hinton86.pdf.

[30] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl,
A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep
neural networks for acoustic modeling in speech
recognition: The shared views of four research
groups. IEEE Signal Process. Mag., 29(6):82–
97, 2012. www.cs.toronto.edu/˜gdahl/papers/
deepSpeechReviewSPM2012.pdf.

15

https://github.com/soumith/convnet-benchmarks
http://doi.acm.org/10.1145/2485922.2485945
http://infoscience.epfl.ch/record/82802/files/rr02-46.pdf
http://arxiv.org/abs/1409.3809
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf
http://arxiv.org/abs/1507.07998
http://research.google.com/archive/large_deep_networks_nips2012.pdf
http://research.google.com/archive/large_deep_networks_nips2012.pdf
http://research.google.com/archive/mapreduce-osdi04.pdf
http://research.google.com/archive/mapreduce-osdi04.pdf
http://research.google.com/pubs/archive/41473.pdf
http://research.google.com/en//pubs/archive/42929.pdf
http://research.google.com/en//pubs/archive/42929.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1512.03385
https://research.google.com/pubs/archive/40807.pdf
https://research.google.com/pubs/archive/40807.pdf
https://www.cs.berkeley.edu/~alig/papers/mesos.pdf
http://www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_sp13/Readings/hinton86.pdf
http://www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_sp13/Readings/hinton86.pdf
http://www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf
http://www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-
scale systems. In Proceedings of the 2010
USENIX Conference on USENIX Annual Techni-
cal Conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Associa-
tion. www.usenix.org/legacy/event/atc10/tech/full -
papers/Hunt.pdf.

[32] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift. CoRR, abs/1502.03167, 2015.
arxiv.org/abs/1502.03167.

[33] B. Jacob et al. gemmlowp: a small self-
contained low-precision GEMM library, 2015.
github.com/google/gemmlowp.

[34] B. Jacob, G. Guennebaud, et al. Eigen library for
linear algebra. eigen.tuxfamily.org.

[35] S. Jean, K. Cho, R. Memisevic, and Y. Bengio.
On using very large target vocabulary for neural
machine translation. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1–10, Beijing, China,
July 2015. Association for Computational Linguis-
tics. www.aclweb.org/anthology/P15-1001.

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Dar-
rell. Caffe: Convolutional architecture for fast fea-
ture embedding. In Proceedings of the ACM Inter-
national Conference on Multimedia, pages 675–678.
ACM, 2014. arxiv.org/pdf/1408.5093.

[37] M. I. Jordan. Serial order: A parallel dis-
tributed processing approach. ICS report
8608, Institute for Cognitive Science, UCSD,
La Jolla, 1986. cseweb.ucsd.edu/˜gary/PAPER-
SUGGESTIONS/Jordan-TR-8604.pdf.

[38] N. Jouppi. Google supercharges machine
learning tasks with TPU custom chip, 2016.
cloudplatform.googleblog.com/2016/05/Google-
supercharges-machine-learning-tasks-with-custom-
chip.html.

[39] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer,
and Y. Wu. Exploring the limits of lan-
guage modeling. CoRR, abs/1602.02410, 2016.
arxiv.org/abs/1602.02410.

[40] A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In
Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 1725–1732. IEEE,
2014. research.google.com/pubs/archive/42455.pdf.

[41] A. Krizhevsky. One weird trick for paralleliz-
ing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014. arxiv.org/abs/1404.5997.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
geNet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems, 2012. papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-
neural-networks.pdf.

[43] H. Larochelle, Y. Bengio, J. Louradour, and
P. Lamblin. Exploring strategies for training deep
neural networks. Journal of Machine Learn-
ing Research, 10:1–40, Jan. 2009. deeplearn-
ing.cs.cmu.edu/pdfs/1111/jmlr10 larochelle.pdf.

[44] A. Lavin and S. Gray. Fast algorithms for convo-
lutional neural networks. CoRR, abs/1509.09308,
2015. arxiv.org/abs/1509.09308.

[45] Q. Le, M. Ranzato, R. Monga, M. Devin, G. Cor-
rado, K. Chen, J. Dean, and A. Ng. Building high-
level features using large scale unsupervised learn-
ing. In ICML’2012, 2012. Google Research PDF.

[46] M. Li, D. G. Andersen, J. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learn-
ing with the Parameter Server. In 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, 2014.
www.usenix.org/system/files/conference/osdi14/osdi14-
paper-chilimbi.pdf.

[47] M. Li, T. Zhang, Y. Chen, and A. J. Smola.
Efficient mini-batch training for stochastic opti-
mization. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages
661–670, New York, NY, USA, 2014. ACM.
www.cs.cmu.edu/˜muli/file/minibatch sgd.pdf.

[48] C. J. Maddison, A. Huang, I. Sutskever, and D. Sil-
ver. Move evaluation in Go using deep convolutional
neural networks. arXiv preprint arXiv:1412.6564,
2014. arxiv.org/abs/1412.6564.

16

https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
http://arxiv.org/abs/1502.03167
https://github.com/google/gemmlowp
http://eigen.tuxfamily.org
http://www.aclweb.org/anthology/P15-1001
http://arxiv.org/pdf/1408.5093
http://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/Jordan-TR-8604.pdf
http://cseweb.ucsd.edu/~gary/PAPER-SUGGESTIONS/Jordan-TR-8604.pdf
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
http://arxiv.org/abs/1602.02410
https://research.google.com/pubs/archive/42455.pdf
http://arxiv.org/abs/1404.5997
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://deeplearning.cs.cmu.edu/pdfs/1111/jmlr10_larochelle.pdf
http://deeplearning.cs.cmu.edu/pdfs/1111/jmlr10_larochelle.pdf
http://arxiv.org/abs/1509.09308
http://research.google.com/archive/unsupervised_icml2012.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf
https://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf
http://arxiv.org/abs/1412.6564

[49] F. McSherry, M. Isard, and D. G. Murray. Scal-
ability! But at what COST? In Proceedings
of the 15th USENIX Conference on Hot Top-
ics in Operating Systems, HOTOS’15, Berke-
ley, CA, USA, 2015. USENIX Association.
www.usenix.org/system/files/conference/hotos15/
hotos15-paper-mcsherry.pdf.

[50] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in
vector space. In International Conference on
Learning Representations: Workshops Track, 2013.
arxiv.org/abs/1301.3781.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Ku-
maran, D. Wierstra, S. Legg, and D. Hassabis.
Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 02 2015.
dx.doi.org/10.1038/nature14236.

[52] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jor-
dan. SparkNet: Training deep networks in Spark.
In International Conference on Learning Represen-
tations, 2016. arxiv.org/abs/1511.06051.

[53] Movidius Ltd. Movidius announces Deep Learning
Accelerator and Fathom software framework, 2016.
www.movidius.com/news/movidius-announces-
deep-learning-accelerator-and-fathom-software-
framework.

[54] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages
439–455. ACM, 2013. Microsoft Research PDF.

[55] A. Nair, P. Srinivasan, S. Blackwell, C. Alci-
cek, R. Fearon, A. De Maria, V. Panneershel-
vam, M. Suleyman, C. Beattie, S. Petersen, et al.
Massively parallel methods for deep reinforcement
learning. arXiv preprint arXiv:1507.04296, 2015.
arxiv.org/abs/1507.04296.

[56] Nervana Systems. neon, 2016.
github.com/NervanaSystems/neon.

[57] NVIDIA Corporation. NCCL: Optimized primi-
tives for collective multi-gpu communication, 2016.
github.com/NVIDIA/nccl.

[58] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers,
K. Strauss, and E. Chung. Toward acceler-
ating deep learning at scale using specialized
logic. In Hot Chips: A Symposium on High
Performance Chips. HOTCHIPS, August 2015. re-
search.microsoft.com/apps/pubs/default.aspx?id=246506.

[59] R. Pascanu, T. Mikolov, and Y. Bengio. On
the difficulty of training recurrent neural net-
works. In ICML (3), volume 28 of JMLR
Proceedings, pages 1310–1318. JMLR.org, 2013.
www.jmlr.org/proceedings/papers/v28/pascanu13.pdf.

[60] K. Powell. Nvidia devtech blog post.
blogs.nvidia.com/blog/2015/03/17/digits-devbox/.

[61] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe. Halide: A
language and compiler for optimizing parallelism,
locality, and recomputation in image processing
pipelines. ACM SIGPLAN Notices, 48(6):519–
530, 2013. people.csail.mit.edu/fredo/tmp/Halide-
5min.pdf.

[62] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild:
A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural In-
formation Processing Systems, pages 693–701,
2011. papers.nips.cc/paper/4390-hogwild-a-lock-
free-approach-to-parallelizing-stochastic-gradient-
descent.

[63] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and
D. Fetterly. Dandelion: a compiler and runtime
for heterogeneous systems. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 49–68. ACM, 2013.
research-srv.microsoft.com/pubs/201110/sosp13-
dandelion-final.pdf.

[64] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams. Learning representations by back-
propagating errors. Cognitive modeling, 5:3, 1988.
www.cs.toronto.edu/ hinton/absps/naturebp.pdf.

[65] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.
arxiv.org/abs/1409.0575.

[66] A. Smola and S. Narayanamurthy. An ar-
chitecture for parallel topic models. Proc.

17

https://www.usenix.org/system/files/conference/hotos15/\penalty \z@ hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/\penalty \z@ hotos15-paper-mcsherry.pdf
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1511.06051
http://www.movidius.com/news/movidius-announces-deep-learning-accelerator-and-fathom-software-framework
http://www.movidius.com/news/movidius-announces-deep-learning-accelerator-and-fathom-software-framework
http://www.movidius.com/news/movidius-announces-deep-learning-accelerator-and-fathom-software-framework
http://research.microsoft.com:8082/pubs/201100/naiad_sosp2013.pdf
arxiv.org/abs/1507.04296
https://github.com/NervanaSystems/neon
https://github.com/NVIDIA/nccl
http://research.microsoft.com/apps/pubs/default.aspx?id=246506
http://research.microsoft.com/apps/pubs/default.aspx?id=246506
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
https://blogs.nvidia.com/blog/2015/03/17/digits-devbox/
http://people.csail.mit.edu/fredo/tmp/Halide-5min.pdf
http://people.csail.mit.edu/fredo/tmp/Halide-5min.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
http://research-srv.microsoft.com/pubs/201110/sosp13-dandelion-final.pdf
http://research-srv.microsoft.com/pubs/201110/sosp13-dandelion-final.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://arxiv.org/abs/1409.0575

VLDB Endow., 3(1-2):703–710, Sept. 2010.
vldb.org/pvldb/vldb2010/papers/R63.pdf.

[67] I. Sutskever, J. Martens, G. E. Dahl, and G. E.
Hinton. On the importance of initialization and
momentum in deep learning. In Proceedings
of the 30th International Conference on Machine
Learning (ICML-13), pages 1139–1147. JMLR
Workshop and Conference Proceedings, 2013.
jmlr.org/proceedings/papers/v28/sutskever13.pdf.

[68] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence
to sequence learning with neural networks. In
NIPS, 2014. papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural.

[69] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich. Going deeper with convolutions. In
CVPR’2015, 2015. arxiv.org/abs/1409.4842.

[70] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. Rethinking the inception architecture
for computer vision. CoRR, abs/1512.00567, 2015.
arxiv.org/abs/1512.00567.

[71] C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski,
K. Olukotun, and A. Y. Ng. Map-reduce for ma-
chine learning on multicore. In B. Schölkopf, J. C.
Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 281–288.
MIT Press, 2007. papers.nips.cc/paper/3150-map-
reduce-for-machine-learning-on-multicore.pdf.

[72] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale clus-
ter management at Google with Borg. In Pro-
ceedings of the Tenth European Conference on
Computer Systems, page 18. ACM, 2015. re-
search.google.com/pubs/archive/43438.pdf.

[73] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton. Grammar as a foreign lan-
guage. Technical report, arXiv:1412.7449, 2014.
arxiv.org/abs/1412.7449.

[74] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ:
A system for general-purpose distributed data-
parallel computing using a high-level lan-
guage. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’08, pages 1–14, Berke-
ley, CA, USA, 2008. USENIX Association.

www.usenix.org/legacy/event/osdi08/tech/full pa-
pers/yu y/yu y.pdf.

[75] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation. USENIX Association, 2012.
www.usenix.org/system/files/conference/nsdi12/nsdi12-
final138.pdf.

[76] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao,
K. Yang, Q. Le, P. Nguyen, A. Senior, V. Van-
houcke, J. Dean, and G. E. Hinton. On rectified lin-
ear units for speech processing. In ICASSP, 2013.
research.google.com/pubs/archive/40811.pdf.

18

http://vldb.org/pvldb/vldb2010/papers/R63.pdf
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.00567
http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf
http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf
http://research.google.com/pubs/archive/43438.pdf
http://research.google.com/pubs/archive/43438.pdf
http://arxiv.org/abs/1412.7449
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://research.google.com/pubs/archive/40811.pdf

	1 Introduction
	2 Background & Motivation
	2.1 Requirements
	2.2 Related work

	3 TensorFlow execution model
	3.1 Dataflow graph elements
	3.2 Partial and concurrent execution
	3.3 Distributed execution
	3.4 Dynamic control flow

	4 Extensibility case studies
	4.1 Differentiation and optimization
	4.2 Handling very large models
	4.3 Fault tolerance
	4.4 Synchronous replica coordination

	5 Implementation
	6 Evaluation
	6.1 Single-machine benchmarks
	6.2 Synchronous replica microbenchmark
	6.3 Image classification
	6.4 Language modeling

	7 Conclusions

