Concordia University - Summer 2004

COMP353 /1 AA

DATABASES

MAIN PROJECT

Design and Implementation of an Automobile Repair Shop:

QAR
TEAM_ID:
zdc353_1
Team Members:

Qinzhe HUANG

5037735

Insoo KIM

4960920

Jean-Luc ORGIAZZI

4586727
Vincent THERIAULT
4921844

Eric VALLEE

4899571
Table of Content

31
INTRODUCTION

31.1
Project Description

41.2
Objectives and Requirements

41.2.1
List of other requirements:

51.2.2
Queries and forms implemented:

51.3
Tools used

62
DESIGN

62.1
E/R Diagram and Assumptions

62.1.1
E/R Diagram

72.1.2
Assumptions

82.2
Relational Schema

82.3
Relational Model

92.4
Functional Dependencies

92.4.1
List of all functional dependencies:

102.4.2
Justify all relational schemas are at least in 3NF

113
IMPLEMENTATION DETAILS

113.1
Database implementation details

123.2
Data integrity and database consistency

123.2.1
Triggers

143.2.2
Random Generator

143.3
Interface level implementation and testing

154
LIMITATIONS AND FUTURE IMPROVEMENT

155
CONCLUSION

156
MEMBER CONTRIBUTION

1 INTRODUCTION

1.1 Project Description

The goal of this project is to design and implement a relational database management system for a chain of auto repair shops in Quebec, QAR shop (Quebec Auto Repair).
Some specifications are given to us from which we drew a list a requirements and specifications for the design and implementation of our database system, more assumptions will be described in the design part of this report:

· Each QAR shop has two basic types of employees, blue-collar workers and office people including a manager.
· Manager is only responsible to manage the shop and plan daily schedule for the blue-collar workers.
· Blue-collar workers are divided into apprentices and senior workers.
· Each QAR shop offers four types of car services: oil change, tire rotation and mounting, brake service, and replacement of mufflers.
· Junior apprentices are only allowed to change oil. After their graduation to senior apprentices they are also allowed to do tire rotation and mounting.
· The senior workers can provide any of the four car services.
· Each car service takes exactly one hour and is offered for a fixed price (excluding applicable taxes). However, the prices for the service types are different and increase in the following order: oil change, tire rotation and mounting, brake service, replacement of mufflers.
· Each employee works 8 hours a day.
· Each repair is performed by one blue-collar worker and must be completed on the same day.
· The blue-collar workers get paid weekly; the others get paid biweekly.
· The blue-collar workers have a fixed salary and also get a 1.5% commission for each service.
· The auto parts are stored in a remote warehouse and delivered to the shop within a day.

· Only the parts necessary for one day’s work can be stored in the shop.
· Each customer receives a confirmation listing the ordered services and price quote.
· When customers pick up their car, they receive a bill listing all services and their price.
· Customers have to pay their bill immediately. They can use cash, debit cards, or credit cards. In case of paying with cash or debit cards they receive a 3% discount off the total bill.
1.2 Objectives and Requirements
Our objectives, considering the limited amount of time provided (less than three weeks) and the very limited work force are to implement a robust and efficient database with a simple user interface (but not simplistic) to answer to the different queries as stated below. Many features could be added on this versatile design to add friendlier user interfaces, security and automation.

We emphasized our work on the robustness and efficiency of the database at a low level using many triggers to protect the data and avoid inconsistencies. The triggers ensure the data integrity and avoid problems that could arise from the PHP level.

1.2.1 List of other requirements:

· Model one QAR shop that has 1 boss, 2 office people, 2 junior and 2 senior apprentices, and 2 senior workers.
· The QAR shop has an average of 40 orders per day. These can be roughly divided into ~55% oil changes, ~15% tire rotation and mounting, ~20% break service, and ~10% muffler replacements. On each day customers pay with cash (~25%), debit (~35%), and credit cards (~40%).
· QAR shop starts on May 01, 2004. It is open from Monday to Friday from 08:00 until 17:00 with a launch break from 12:00 to 13:00. The database should include data until June 10, 2004.
· 1 junior apprentice quits her/his job after the first week and 1 new senior apprentice is immediately hired as replacement.
· Use HTML and PHP to build interfaces supporting the following queries and transactions.

1.2.2 Queries and forms implemented:

1. Create forms for manipulating (entity) tables: insertion, deletion and update of tuples.

2. Give a list of all workers who made an oil change on any day of the week and where the customer paid with cash.

3. Compute the schedule of the next day for workers. List the percentage of unallocated work time.

4. Compute pay-checks (salaries) for workers at each Friday.

5. Report on the car services planned for the next day.

6. Produce an order for supplies needed for the next day by considering what is currently in stock and what will be needed for the next day. Make sure the local store will have 20% more in stock than required for the next day.

7. Create an HTML form for new customers without an appointment. The form should ask for the required services and return the next 2 available time slots (name of worker, status). The customer has the option to sign up one of the time slots.

8. Create an HTML form for registered customers with an appointment. The form should identify the customer and return the car services planned for this customer. Customers have the option to cancel their appointment(s).

9. Generate a detailed report for all services provided for a given car during a specified period of time.

1.3 Tools used
We worked in an Oracle9i environment with Sqlplus to develop the tables, the triggers and the SQL queries.
The interface was developed in HTM and PHP for which we used common text editor and Dreamweaver web development tools.

Also two pieces of software were designed and implemented in C++ to randomly fill our tables and another one to generate the 3NF repartition of our design from a canonical cover definition. The software created is called “FD Optimizer Deluxe 1.0”is a freeware under a GNU license and the code has been attached in the source code CD.
2 DESIGN
2.1 E/R Diagram and Assumptions

2.1.1 [image: image22.emf]EMPLOYEES

name

address

phone

hire date

sin

CUSTOMERSCARS

OIL CHANGE

PAYMENT

METHODS

payment_method

discount

service dateservice time

SERVICE

ORDERS

SCHEDULE

id

PAYMENTS

is of type

id

amount

payment

for

issue

issue date

due date

status

owns

performs

OFFICE

WORKERS

BLUE COLLARS

SENIOR

APPRENTICE

NORMAL

OFFICE

WORKER

JUNIOR

APPRENTICE

SENIOR

WORKER

isaisa

isaisa

isa

MUFFLER

CHANGE

TIRE

ROTATION

BRAKE

SERVICE

EMPLOYEE

TYPES

isa

difficulty level

wage

commission

frequency paid

SERVICE

TYPES

isaisaisaisa

is of type

name

Employee_type

difficulty level

can

perform

MANAGER

isa

serves

price

date

time

PART

CASHCREDITDEBIT

isaisaisa

id

name

CURRENT

STOCKS

consists of

quantity

determines

issued quantity

PART ORDERS

licence

name

phone

address

model

plate number

service_type

involves

schedules

to be

repaired

is of type

quit date

Required_part_quantity

requires

E/R Diagram

2.1.2 Assumptions

1. This database system is only implemented for a single QAR.

2. Workers, employees or boss do not work on weekends.

3. A service order can have multiple services for one or more cars and can be paid in different payment methods but at the same time.
4. The stock provider always sends the ordered amount of parts the following day before 8:00am.

5. Employees can NEVER be sick and will always be present at work, even with a notice from the doctor.

6. For any employee in a particular date-time, he can only do one type of service, for a specific car, under a specific order.

For any particular car at any particular date-time, it must be under a specific order, if it is repaired by one or more employee.

7. For any car which is under a specific order for a specific type of service, it must be done by a specific employee at a specific date-time.
8. A customer can have many cars and there can be no cars without a customer.

9. When someone quits, the replacements worker hired has at least the same difficulty level.

10. No worker will be hired if no one quits.

11. We assume that our schedule is always fulfilled unless it is cancelled by customer.
12. We assume that when an employee is deleted, it means all data related with him is no long needed. They will all be removed by "foreign key" constraint at "on delete cascade".
13. We assume that when an employee quits, all his job after his quit date will be removed and this is done by a trigger. It will delete only those schedules after his quit date.
14. We assume that when searching for two earliest available time slots, the earliest two available time slots may be at same time, but with different employee. so, customer may choose the time slots according to worker's employee type class.
15. We assume that when searching for two earliest available time slots, the searching will only trace the current day and two following days.
16. We assume that any employee can quit at any working day and the salary must be calculated immediately. The working salary is calculated on working days. The wage for white collar employee is for two weeks and for blue collars is for one week.
17. We assume that customer can split his payment and the payment method for each spitted part should be different.
18. We assume that when order_id and payment_id is not specified, the system will automatically assign a maximum number for inserted order or payment.
19. We assume that when payment_amount is not specified, the customer intends to pay full order amount. It is done by a trigger.
20. We assume that when customer license in service order is updated, this implies that user are trying to correct a mistake in customer license. We update both customer and car table. A new customer is inserted into customer table and old one is deleted. The customer license in car table is modified accordingly. This is done by a trigger.
21. For all function dependency, we try to implement it by either constraint or triggers. For example, in table schedule there are three distinct un-reducible dependencies:

a) For each employee, at any certain date and time, he can only work on a certain car which is under a certain order.

employee_sin, service_date, service_time -> service_type, car_plate_number

b) For any service type scheduled on any car which is under a certain order will always be carried by a certain worker at a certain date, and time. service_type, car_plate_number, order_id -> employee_sin, service_date, service_time.

c) For any car at any certain date and time under repairing, it must be under a specific order, though may be under repairing by many workers on different problem at same time.

car_plate_number, service_date, service_time -> order_id.

Observing: a) and b) are both keys. One of them, say a, is implemented as a primary key. And b is constraint by unique constraint. For c) there is no obvious way except trigger. And c) is a violation of BCNF format, but it follows 3nf: The LHS is not key and RHK is part of key.
22. The payment amount in table payment is the face value of tuition.

2.2 Relational Schema

employee_type(employee_type ,employee_type_name , difficulty_level ,frequency_paid ,wage ,commission)
payment_method(payment_method ,discount)
schedule(employee_sin ,car_plate_number ,service_type , service_time ,service_date,order_id)
service_order(order_id ,customer_licence ,order_issue_date, order_due_date, order_status,payment_date)
payment(payment_id ,payment_method ,order_id ,payment_amount)
part(part_id ,part_name,stock_quantity)
part_required(service_type,part_id, required_part_quantity)
part_order(part_order_date, part_id, part_order_quantity)
employee(employee_sin,employee_name,employee_address, employee_phone, employee_hire_date , employee_type , quit_date)
customer(customer_licence,customer_name ,customer_address , customer_phone)
car(car_plate_number,customer_licence, modal)
service_type(service_type ,service_name ,difficulty_level , service_price)
2.3 Relational Model

[image: image1.emf]EMPLOYEE

employee_name

employee_adress

employee_phone

employee_hire_date

employee_sin

employee_type

CUSTOMER

customer_namecustomer_adress

customer_phonecustomer_licence

EMPLOYEE_TYPE

commissionfrequency_paidwagedifficulty_level

employee _type

PAYMENT_METHOD

discountpayment_method

employee _type_name

quit_date

[image: image2.emf]CAR

modal

car_plate_number

SERVICE_TYPE

difficulty_levelservice_priceservice_name

service_typeSCHEDULE

car_plate_numberemployee_SINservice_timeservice_date

order_IDservice_type

SERVICE_ORDER

customer_licenceorder_statuspayment_dateiorder_issue_date

order_id

BILL

amountorder_ID

payment_date

PAYMENT

payment_methodpayment_id

payment_amount

PART

part_namepart_id

stock_quantity

PART_REQUIRED

required_part_quantity

service_type

part_ID

PARTS_ORDER

part_order_datepart_id

part_order_quantity

order_id

customer_licence

2.4 Functional Dependencies
2.4.1 List of all functional dependencies:
We used the software created to analyze our set of functional dependencies. Following is the list of dependencies used to describe our database and represent all the data inputted in the software.
QAR(employee_sin, employee_name, employee_address, employee_phone, employee_hire_date, employee_type, customer_licence,customer_name, customer_address, customer_phone, car_plate_number, modal, service_type, service_description,difficulty_level, service_price, service_name, frequency_paid, wage, employee_type, commission,
payment_method, discount, service_time, service_date, order_id, order_issue_date, order_due_date,order_status, payment_date, payment_id, payment_amount, part_order_quantity, part_order_date,required_part_quantity, part_id, part_name, stock_quantity, quit_date);

employee_sin service_date service_time -> order_id car_plate_number service_type;

car_plate_number service_date service_time -> order_id;

car_plate_number service_type order_id -> employee_sin service_time service_date;

employee_type -> commission difficulty_level wage frequency_paid;

payment_method -> discount;
order_id -> order_issue_date order_due_date order_status payment_date customer_licence;

payment_id -> payment_method payment_amount discount order_id payment_date;

part_id -> part_name stock_quantity;

part_id service_type -> required_part_quantity;

part_id part_order_date -> part_order_quantity;

employee_sin -> employee_name employee_address employee_phone employee_type employee_hire_date wage frequency_paid difficulty_level commission quit_date;

customer_licence -> customer_name customer_address customer_phone;

car_plate_number -> modal customer_licence;

service_type -> service_description service_price difficulty_level service_name;
Running the software gave the following decompositions after a step of optimization and removal of some redoundancies. The final display shows the 3NF decompostion of our design.

before decomposition

employee_sin service_time service_date -> car_plate_number service_type ;

car_plate_number service_time service_date -> order_id ;

car_plate_number service_type order_id -> employee_sin service_time service_date ;

employee_type -> difficulty_level frequency_paid wage commission ;

payment_method -> discount ;

order_id -> customer_licence order_issue_date order_due_date order_status payment_date ;

payment_id -> payment_method order_id payment_amount ;

part_id -> part_name stock_quantity ;

service_type part_id -> required_part_quantity ;

part_order_date part_id -> part_order_quantity ;

employee_sin -> employee_name employee_address employee_phone employee_hire_date employee_type quit_date ;

customer_licence -> customer_name customer_address customer_phone ;

car_plate_number -> customer_licence modal ;

service_type -> service_description difficulty_level service_price service_name ;

decomposition #1:{employee_sin,car_plate_number,service_type,service_time,service_date}

dependency is:

employee_sin service_time service_date -> car_plate_number service_type ;

decomposition #2:{car_plate_number,service_time,service_date,order_id}

dependency is:

car_plate_number service_time service_date -> order_id ;

decomposition #3:{employee_sin,car_plate_number,service_type,service_time,service_date,order_id}

dependency is:

employee_sin service_time service_date -> car_plate_number service_type ;

car_plate_number service_time service_date -> order_id ;

car_plate_number service_type order_id -> employee_sin service_time service_date ;

decomposition #4:{employee_type,difficulty_level,frequency_paid,wage,commission}

dependency is:

employee_type -> difficulty_level frequency_paid wage commission ;

decomposition #5:{payment_method,discount}

dependency is:

payment_method -> discount ;

decomposition #6:{customer_licence,order_id,order_issue_date,order_due_date,order_status,payment_dat

e}

dependency is:

order_id -> customer_licence order_issue_date order_due_date order_status payment_date ;

decomposition #7:{payment_method,order_id,payment_id,payment_amount}

dependency is:

payment_id -> payment_method order_id payment_amount ;

decomposition #8:{part_id,part_name,stock_quantity}

dependency is:

part_id -> part_name stock_quantity ;

decomposition #9:{service_type,required_part_quantity,part_id}

dependency is:

service_type part_id -> required_part_quantity ;

decomposition #10:{part_order_quantity,part_order_date,part_id}

dependency is:

part_order_date part_id -> part_order_quantity ;

decomposition #11:{employee_sin,employee_name,employee_address,employee_phone,employee_hire_date,emp

loyee_type,quit_date}

dependency is:

employee_sin -> employee_name employee_address employee_phone employee_hire_date employee_type quit

_date ;

decomposition #12:{customer_licence,customer_name,customer_address,customer_phone}

dependency is:

customer_licence -> customer_name customer_address customer_phone ;

decomposition #13:{customer_licence,car_plate_number,modal}

dependency is:

car_plate_number -> customer_licence modal ;

decomposition #14:{service_type,service_description,difficulty_level,service_price,service_name}

dependency is:

service_type -> service_description difficulty_level service_price service_name ;

decomposition #15:{car_plate_number,service_type,employee_type,payment_id,part_order_date,part_id}

the key has no particular dependency

 employee_sin employee_name employee_address employee_phone employee_hire_date

employee_type customer_licence customer_name customer_address customer_phone car_

plate_number modal service_type service_description difficulty_level service_pric

e service_name frequency_paid wage employee_type commission payment_method disc

ount service_time service_date order_id order_issue_date order_due_date orde

r_status payment_date payment_id payment_amount part_order_quantity part_order_d

ate required_part_quantity part_id part_name stock_quantity quit_date

employee_sin service_time service_date -> car_plate_number service_type ;

 111111111111111111101001111111000000001

car_plate_number service_time service_date -> order_id ;

 000000111111000000000001111111000000000

car_plate_number service_type order_id -> employee_sin service_time service_date ;

 111111111111111111101001111111000000001

employee_type -> difficulty_level frequency_paid wage commission ;

 000001000000001001101000000000000000000

payment_method -> discount ;

 000000000000000000000110000000000000000

order_id -> customer_licence order_issue_date order_due_date order_status payment_date ;

 000000111100000000000000011111000000000

payment_id -> payment_method order_id payment_amount ;

 000000111100000000000110011111110000000

part_id -> part_name stock_quantity ;

 000000000000000000000000000000000001110

service_type part_id -> required_part_quantity ;

 000000000000111110000000000000000011110

part_order_date part_id -> part_order_quantity ;

 000000000000000000000000000000001101110

employee_sin -> employee_name employee_address employee_phone employee_hire_date employee_type quit

_date ;

 111111000000001001101000000000000000001

customer_licence -> customer_name customer_address customer_phone ;

 000000111100000000000000000000000000000

car_plate_number -> customer_licence modal ;

 000000111111000000000000000000000000000

service_type -> service_description difficulty_level service_price service_name ;

 000000000000111110000000000000000000000

service_type -> service_name ;

 111111111111111111111111111111111111111

final display

employee_sin service_time service_date -> car_plate_number service_type ;

car_plate_number service_time service_date -> order_id ;

car_plate_number service_type order_id -> employee_sin service_time service_date ;

employee_type -> difficulty_level frequency_paid wage commission ;

payment_method -> discount ;

order_id -> customer_licence order_issue_date order_due_date order_status payment_date ;

payment_id -> payment_method order_id payment_amount ;

part_id -> part_name stock_quantity ;

service_type part_id -> required_part_quantity ;

part_order_date part_id -> part_order_quantity ;

employee_sin -> employee_name employee_address employee_phone employee_hire_date employee_type quit

_date ;

customer_licence -> customer_name customer_address customer_phone ;

car_plate_number -> customer_licence modal ;

service_type -> service_description difficulty_level service_price service_name ;
The long string of ones present in the ouput shows that the join of the different elements of the decomposition is lossless.
2.4.2 Justification of the 3NF requirement
Most of the relational schemas are in BCNF and it appeared that the functional dependencies of schedule where violating this rule and were only in 3NF, as explained below:

1. The schedule conceptually involved following 5 abstract objects:
employee, car, order, servicetype, date&time.
2. It can be observed that date and time is rather one object because we
never use them separately and service type in short is "type".
3. The following is our assertions:
a) For any employee in a particular datetime, he can only do one type of service, for a specific car, under a specific order.That is :employee+datetime -> car, order, type;
b) For any particular car at any particular datetime, it must be under a specific order, if it is repaired by one or more employee.That is: car+ datetime -> order;
c) For any car which is under a specific order for a specific type of service, it must be done by a specific employee at a specific datetime. That is:
car + type + order -> employee, datetime;

decomposition #1:
{employee_sin,car_plate_number,service_type,service_time,service_date}
dependency is:
employee_sin service_time service_date -> car_plate_number
service_type ;

decomposition #2:
{car_plate_number,service_time,service_date,order_id}
dependency is:
car_plate_number service_time service_date -> order_id ;

decomposition #3:
{employee_sin,car_plate_number,service_type,service_time,service_date
,order_id}
dependency is:
employee_sin service_time service_date -> car_plate_number
service_type ;
car_plate_number service_time service_date -> order_id ;
car_plate_number service_type order_id -> employee_sin service_time
service_date ;
"car_plate_number service_time service_date ->order_id ;" is BCNF violation but it fits 3NF because our candidate key which is {employee_sin service_time service_date} and
{car_plate_number service_type order_id}. The LHS of 2nd dependency "car_plate_number service_time service_date" is not a superkey, but the RHS "order_id" is prime member of key.

3 IMPLEMENTATION DETAILS
3.1 Database implementation details

We use various script files to implement our database and following is a list of the main ones.

a) createtable.sql //these are bulk table structure with minimum constraint like primary key
b) constraint.sql //these are the foreign key constraint

c) check.sql //these are "check" constraint other than foreign key

d) trigger1.sql , trigger2.sql,...trigger4.sql … //these are triggers to maintain some insert or update integrity

e) scripts to insert data in static tables
f) result.sql //this is the random-generated sql script for all dynamic data

Also we have some scripts to ease the manipulation of the data:

g) delete.sql //delete all datas of dynamic-input data, may need to run twice
h) count.sql //show record count of all dynamic data
Example of running the script count.sql after inserting all the datas with the result.sql script:
ORDER NUMBERS

----- ----------

order 1000

CAR NUMBERS

--- ----------

car 2000

CUSTOMER NUMBERS

-------- ----------

customer 1000

SCHEDULE NUMBERS

-------- ----------

schedule 1100

PAYMENT NUMBERS

------- ----------

payment 4000

3.2 Data integrity and database consistency

3.2.1 Triggers
We use in our design a certain number of triggers to automate some functionality and protect the integrity of the data inputted and manipulated. Following is a description of the nature and function of each of them:
a) trigger1.sql:

-checks if the employee difficulty_level is up to that of service_type he is assigned.

-checks if boss wants employee to work on weekend.

-checks if old finished records are to be removed.

b) trigger2.sql:

-checks if the inserted car plate number is consistant with the one in customer table. Preventing our employee from giving wrong car to wrong customer.

c) trigger3.sql:

-checks if the inserted order schedule has a valid order or not

-checks if the car is registered or not
-checks if the customer is the correct owner

d) trigger4.sql

-checks if the inserted payment amount exceed total amount of current order, including other paid amount.

-if input amount is null, it will automatically assume that customer is going to make full payment. So, it will insert full amount.

e) trigger5.sql

-suppose you hire a new worker and you want him to be immediately scheduled to work, this is the place. It will search through schedule table and update all those null employee_sin field that is after its hire date. It won't check the difficulty level.

f) trigger6.sql

-when an employee quits, we will delete all those schedules that is after his quit date.

g) trigger7.sql

-auto generated new order id for inserted order.

h) trigger8.sql

- auto generated new payment id for inserted payment.

i) trigger9.sql

- when order is updated, I mean the customer license is modified, the trigger will do the cascade update because Oracle does support this update cascade function.

j) trigger10.sql

- payment method within the same order should logically be unique. Since the customer split payment and pay both of them by cash is really meaningless.

Example of the action of a trigger when an employee quits:
insert into employee values (678912345, 'nick', 'monk', '514-762-9189', '05-may-04', 2,'31-may-04');

 insert into schedule

 values(678912345,'62KH88',2,0,'13-may-04',992);

 select * from schedule where employee_sin=678912345 and

 service_date='13-may-04';

 --delete from employee where employee_sin=678912345;

 update employee set quit_date='10-may-04' wheren employee_sin=678912345;

 select * from employee where employee_sin=678912345;

 select * from schedule where employee_sin=678912345 and

 service_date='13-may-04';

++

a) inserting a new employee to test.

b) insert a new schedule record into schedule.

c) update his quit date to BEFORE the schedule date.

d) You can observe that schedule record is gone after quit_date is modified.

e) The following is the running result:

+++

SQL> @test

1 row created.

1 row created.

EMPLOYEE_SIN CAR_PL SERVICE_TYPE SERVICE_TIME SERVICE_D ORDER_ID

------------ ------ ------------ ------------ --------- ----------

 678912345 62KH88 2 0 13-MAY-04 992

1 row updated.

EMPLOYEE_SIN EMPLOYEE_NAME EMPLOYEE_ADDRESS EMPLOYEE_PHO EMPLOYEE_ E

------------ --------------- -------------------- ------------ --------- -

QUIT_DATE

 678912345 nick monk 514-762-9189 05-MAY-04 2

10-MAY-04

no rows selected

SQL>

++

3.2.2 Random Generator

A random generator was implemented to ease the insertion of tuples in the dynamic tables and work in accordance with the triggers that will reject some inconsistent results created by it. The generator will create tuples in accordance with the project problem.
The triggers and constraints will reject the tuples generated for Saturdays or Sunday for example, and also when a service is associated with an employee that doesn’t have the qualification. The generator will take care of applying the rules of percentage as required.
The generator also filters some inconsistent data before sending it.
3.3 Interface level implementation and testing

Query 1
The first query allows the corrector to both display the content of the whole and to edit the content of relevant tables
[image: image3.png]
[image: image4.png]
Query 2

This query displays the name of the workers who did an oil change on any day of the week, and where the customer has done at least a part of the payment by cash.
[image: image5.png]
[image: image6.png]
Query 3
Given the current day, query 3, while computing the schedule for the following day, computes the percentage of unallocated work time

[image: image7.png]
[image: image8.png]
Query 4
According to the inputted date, the pay check is computed for the following Friday.
[image: image9.png]
[image: image10.png]
Query 5

Query 5 displays all car services planned for the day following the provided date.
[image: image11.png]
[image: image12.png]
Query 6

Query 6 provides a list of part to order for the day following the provided date, including a 20% of overstock.
[image: image13.png]
[image: image14.png]
Query 7

Query 7 allows the manager to enter the necessary data for adding a service to the order of a drop-in customer.
[image: image15.png]
[image: image16.png]
Query 8

This query allows a customer to remove services from an order. This transaction is allowed only up to the day before the current day (as provided).
[image: image17.png]
[image: image18.png]
Query 9

Query 9 generates a report including all services provided on a car between the two provided dates.
[image: image19.png]
[image: image20.png]
4 LIMITATIONS AND FUTURE IMPROVEMENT

Time was the main constraint all along the development of this project that lacks a user friendly interface with different interfaces for administrator manager and customer.Security could also have been included with more time. The following E/R diagram shows add-on feature we would have wanted to implement:

[image: image21.emf]EMPLOYEES

name

address

phone

hire datesin

CUSTOMERS

CARS

OIL CHANGE

PAYMENT

METHODS

name

discount

scheduled

date

scheduled

time

SERVICE

ORDERS

SCHEDULES

id

PAYMENTS

is of type

id

amount

payment

for

issue

issue datedue date

status

owns

performs

OFFICE

WORKERS

BLUE COLLARS

SENIOR

APPRENTICE

NORMAL

OFFICE

WORKER

JUNIOR

APPRENTICE

SENIOR

WORKER

isaisa

isaisa

isa

MUFFLER

CHANGE

TIRE

ROTATION

BRAKE

SERVICE

EMPLOYEE

TYPES

isa

ability

level

wage

commis-

sion

frequency

paid

SERVICE

TYPES

isa

isa

isaisa

is of type

name

name

difficulty

level

can

perform

QARS

id

adress

phone

web site

e-mailworks at

MANAGER

isa

manages

serves

price

datetime

performed

date

performed

time

PART TYPES

requires

CASHCREDITDEBIT

isaisaisa

id

name

CURRENT

STOCKS

consists of

belongs to

quantity

triggers

issued

quantity

PART ORDERS

order to

issue date

arrival

date

received

quantity

status

DAYS OFF

take a day

off

date

reason

licence

name

phone

address

model

plate

number

type

description

involves

schedules

to be

repaired

is of type

5 CONCLUSION

-a lot was learned but the 3 weeks duration we had for the project didn’t allow us to learn as much as we would have wanted for the implementation part of this course.

- group management/communication was eased by the use a yahoo forum dedicated for this project with sharing capabilities of messages, files, calendar,, all centralized in one forum

6 MEMBER CONTRIBUTION
Qinzhe HUANG’s log:

· Design of E-R diagram: 10 Hours

· Function-Dependency-Check-Tool-Program: 30 Hours

· Random-Data-Generator-Program: 10Hours

· SQL statement for Query2…Query9: 50Hours

· HTML, PHP file for some of Query2…Query9: 15Hours

Insoo KIM’s log :
· Assignment #3, SQL and RA queries with Vincent(10 hours)

· Edited insert/update/ delete SQL queries, php and web pages (10 hours)

· Help Jean-Luc to finish the report(2 hours)

· Discussion of E/R diagram (6 hours)

· Testing Queries(4 hours)
Jean-Luc ORGIAZZI’s log:
· Assignment #1, design E/R diagram (6 hours)

· Warm-up project: sql tables and queries, E/R diagram (6 hours)

· Helped to define the E/R model and Schema for the database of Main project (10 hours)
· Created insert/update/ delete SQL queries, php and web pages for tables (20 hours)

· Debugged and coded with Nick the queries and some triggers (10 hours)

· Redaction, review, diagrams of the entire report for the project with the help of Insoo and Vincent (15 hours)

Vincent THERIAULT’s log:
· Assignment 1 involvement (7 hours)

· Warm-up project involvement (group effort) (6 hours)

· Design phase (10 hours)

· Implementation, discussion and revision of E/R model (18 hours)

· Assignment 3 direction/implementation in collaboration with Insoo (11 hours)

· Interface design/coding in collaboration with Eric (23 hours)

· Report redaction in collaboration with Insoo and Jean-Luc (5 hours)

Eric VALLEE
’s log:

· Helped to define the E/R model and Schema for the database (10 hours)

· Help Vincent (who did the interface for the main query) with the JavaScript/PHP (2 hours)

· Finished the interface for the main queries (2 hours)

· Did the 4rth query (but Nick’s version was the one that was implemented) (3 hours)

· Did the 8nth query and generated a form and another query from the result (10 hours)

· Did the 9nth query (6 hours)

· Tested some of the queries (1 hour)

· Helped determine the insertion/deletion strategy for tuples (query 1) (2 hours)
� EMBED Visio.Drawing.6 ���

[image: image23.emf]EMPLOYEES

name

address

phone

hire date

sin

CUSTOMERSCARS

OIL CHANGE

PAYMENT

METHODS

payment_method

discount

service dateservice time

SERVICE

ORDERS

SCHEDULE

id

PAYMENTS

is of type

id

amount

payment

for

issue

issue date

due date

status

owns

performs

OFFICE

WORKERS

BLUE COLLARS

SENIOR

APPRENTICE

NORMAL

OFFICE

WORKER

JUNIOR

APPRENTICE

SENIOR

WORKER

isaisa

isaisa

isa

MUFFLER

CHANGE

TIRE

ROTATION

BRAKE

SERVICE

EMPLOYEE

TYPES

isa

difficulty level

wage

commission

frequency paid

SERVICE

TYPES

isaisaisaisa

is of type

name

Employee_type

difficulty level

can

perform

MANAGER

isa

serves

price

date

time

PART

CASHCREDITDEBIT

isaisaisa

id

name

CURRENT

STOCKS

consists of

quantity

determines

issued quantity

PART ORDERS

licence

name

phone

address

model

plate number

service_type

involves

schedules

to be

repaired

is of type

quit date

Required_part_quantity

requires

_1148869880.vsd
CAR�

modal�

SERVICE_TYPE�

difficulty_level�

service_price�

service_name�

car_plate_number�

service_type�

SCHEDULE�

car_plate_number�

employee_SIN�

service_time�

service_date�

order_ID�

service_type�

�

SERVICE_ORDER�

customer_licence�

order_status�

payment_date�

iorder_issue_date�

order_id�

BILL�

amount�

order_ID�

payment_date�

PAYMENT�

payment_method�

payment_id�

payment_amount�

customer_licence�

PART�

part_name�

part_id�

stock_quantity�

PART_REQUIRED�

required_part_quantity�

service_type�

part_ID�

PARTS_ORDER�

part_order_date�

part_id�

part_order_quantity�

order_id�

_1148884679.vsd

isa�

EMPLOYEES�

name�

address�

phone�

hire date�

sin�

CUSTOMERS�

CARS�

OIL CHANGE�

QARS�

SENIOR APPRENTICE�

NORMAL OFFICE WORKER�

JUNIOR APPRENTICE�

SENIOR WORKER�

PAYMENT METHODS�

name�

discount�

scheduled date�

scheduled time�

SERVICE ORDERS�

schedules�

SCHEDULES�

id�

PAYMENTS�

is of type�

id�

amount�

payment for�

issue�

issue date�

due date�

status�

adress�

phone�

web site�

owns�

performs�

OFFICE WORKERS�

BLUE COLLARS�

name�

MUFFLER CHANGE�

e-mail�

id�

TIRE ROTATION�

BRAKE SERVICE�

EMPLOYEE TYPES�

ability level�

wage�

commis-sion�

frequency paid�

SERVICE TYPES�

is of type�

name�

difficulty level�

can perform�

involves�

works at�

MANAGER�

manages�

serves�

price�

date�

time�

performed date�

performed time�

PART TYPES�

requires�

CASH�

CREDIT�

DEBIT�

belongs to�

id�

name�

CURRENT STOCKS�

consists of�

quantity�

PART ORDERS�

triggers�

issued quantity�

order to�

issue date�

arrival date�

received quantity�

status�

DAYS OFF�

take a day off�

date�

reason�

licence�

name�

phone�

address�

model�

plate number�

type�

description�

to be repaired�

is of type�

_1148869844.vsd
EMPLOYEE�

employee_name�

employee_adress�

employee_phone�

employee_hire_date�

employee_sin�

employee_type�

CUSTOMER�

customer_name�

customer_adress�

customer_phone�

customer_licence�

EMPLOYEE_TYPE�

commission�

frequency_paid�

wage�

difficulty_level�

employee _type�

PAYMENT_METHOD�

discount�

payment_method�

quit_date�

employee _type_name�

�

_1148858825.vsd

isa�

EMPLOYEES�

name�

address�

phone�

hire date�

sin�

CUSTOMERS�

CARS�

OIL CHANGE�

quit date�

SENIOR APPRENTICE�

NORMAL OFFICE WORKER�

JUNIOR APPRENTICE�

SENIOR WORKER�

PAYMENT METHODS�

payment_method�

discount�

service date�

service time�

SERVICE ORDERS�

schedules�

SCHEDULE�

id�

PAYMENTS�

is of type�

id�

amount�

payment for�

issue�

issue date�

due date�

status�

Required_part_quantity�

owns�

performs�

OFFICE WORKERS�

BLUE COLLARS�

name�

MUFFLER CHANGE�

requires�

TIRE ROTATION�

BRAKE SERVICE�

EMPLOYEE TYPES�

difficulty level�

wage�

commission�

frequency paid�

SERVICE TYPES�

is of type�

Employee_type�

difficulty level�

can perform�

involves�

MANAGER�

serves�

price�

date�

time�

PART�

CASH�

CREDIT�

DEBIT�

id�

name�

CURRENT STOCKS�

consists of�

quantity�

PART ORDERS�

determines�

issued quantity�

licence�

name�

phone�

address�

model�

plate number�

service_type�

to be repaired�

is of type�

