// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "x64/lithium-codegen-x64.h" #include "code-stubs.h" #include "stub-cache.h" namespace v8 { namespace internal { // When invoking builtins, we need to record the safepoint in the middle of // the invoke instruction sequence generated by the macro assembler. class SafepointGenerator : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) const { codegen_->EnsureSpaceForLazyDeopt(Deoptimizer::patch_size() - call_size); } virtual void AfterCall() const { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { HPhase phase("Z_Code generation", chunk()); ASSERT(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::MANUAL); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle code) { ASSERT(is_done()); code->set_stack_slots(GetStackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); } void LChunkBuilder::Abort(const char* reason) { info()->set_bailout_reason(reason); status_ = ABORTED; } void LCodeGen::Comment(const char* format, ...) { if (!FLAG_code_comments) return; char buffer[4 * KB]; StringBuilder builder(buffer, ARRAY_SIZE(buffer)); va_list arguments; va_start(arguments, format); builder.AddFormattedList(format, arguments); va_end(arguments); // Copy the string before recording it in the assembler to avoid // issues when the stack allocated buffer goes out of scope. int length = builder.position(); Vector copy = Vector::New(length + 1); memcpy(copy.start(), builder.Finalize(), copy.length()); masm()->RecordComment(copy.start()); } bool LCodeGen::GeneratePrologue() { ASSERT(is_generating()); ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif // Strict mode functions need to replace the receiver with undefined // when called as functions (without an explicit receiver // object). rcx is zero for method calls and non-zero for function // calls. if (!info_->is_classic_mode() || info_->is_native()) { Label ok; __ testq(rcx, rcx); __ j(zero, &ok, Label::kNear); // +1 for return address. int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ movq(Operand(rsp, receiver_offset), kScratchRegister); __ bind(&ok); } __ push(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ push(rsi); // Callee's context. __ push(rdi); // Callee's JS function. // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ Set(rax, slots); __ movq(kScratchRegister, kSlotsZapValue, RelocInfo::NONE); Label loop; __ bind(&loop); __ push(kScratchRegister); __ decl(rax); __ j(not_zero, &loop); } else { __ subq(rsp, Immediate(slots * kPointerSize)); #ifdef _MSC_VER // On windows, you may not access the stack more than one page below // the most recently mapped page. To make the allocated area randomly // accessible, we write to each page in turn (the value is irrelevant). const int kPageSize = 4 * KB; for (int offset = slots * kPointerSize - kPageSize; offset > 0; offset -= kPageSize) { __ movq(Operand(rsp, offset), rax); } #endif } } // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); // Argument to NewContext is the function, which is still in rdi. __ push(rdi); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewFunctionContext, 1); } RecordSafepoint(Safepoint::kNoLazyDeopt); // Context is returned in both rax and rsi. It replaces the context // passed to us. It's saved in the stack and kept live in rsi. __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movq(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ movq(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers rax and rbx. __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs); } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } return !is_aborted(); } bool LCodeGen::GenerateBody() { ASSERT(is_generating()); bool emit_instructions = true; for (current_instruction_ = 0; !is_aborted() && current_instruction_ < instructions_->length(); current_instruction_++) { LInstruction* instr = instructions_->at(current_instruction_); if (instr->IsLabel()) { LLabel* label = LLabel::cast(instr); emit_instructions = !label->HasReplacement(); } if (emit_instructions) { Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); instr->CompileToNative(this); } } EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); return !is_aborted(); } bool LCodeGen::GenerateJumpTable() { for (int i = 0; i < jump_table_.length(); i++) { __ bind(&jump_table_[i].label); __ Jump(jump_table_[i].address, RelocInfo::RUNTIME_ENTRY); } return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { ASSERT(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; __ bind(code->entry()); Comment(";;; Deferred code @%d: %s.", code->instruction_index(), code->instr()->Mnemonic()); code->Generate(); __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { ASSERT(is_done()); safepoints_.Emit(masm(), GetStackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } XMMRegister LCodeGen::ToDoubleRegister(int index) const { return XMMRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { ASSERT(op->IsRegister()); return ToRegister(op->index()); } XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { ASSERT(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { return op->IsConstantOperand() && chunk_->LookupLiteralRepresentation(op).IsInteger32(); } bool LCodeGen::IsTaggedConstant(LConstantOperand* op) const { return op->IsConstantOperand() && chunk_->LookupLiteralRepresentation(op).IsTagged(); } int LCodeGen::ToInteger32(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); ASSERT(constant->HasInteger32Value()); return constant->Integer32Value(); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); ASSERT(constant->HasDoubleValue()); return constant->DoubleValue(); } Handle LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged()); return constant->handle(); } Operand LCodeGen::ToOperand(LOperand* op) const { // Does not handle registers. In X64 assembler, plain registers are not // representable as an Operand. ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, and // context in the fixed part of the frame. return Operand(rbp, -(index + 3) * kPointerSize); } else { // Incoming parameter. Skip the return address. return Operand(rbp, -(index - 1) * kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation, int* arguments_index, int* arguments_count) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->values()->length(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); // Function parameters are arguments to the outermost environment. The // arguments index points to the first element of a sequence of tagged // values on the stack that represent the arguments. This needs to be // kept in sync with the LArgumentsElements implementation. *arguments_index = -environment->parameter_count(); *arguments_count = environment->parameter_count(); WriteTranslation(environment->outer(), translation, arguments_index, arguments_count); int closure_id = *info()->closure() != *environment->closure() ? DefineDeoptimizationLiteral(environment->closure()) : Translation::kSelfLiteralId; switch (environment->frame_type()) { case JS_FUNCTION: translation->BeginJSFrame(environment->ast_id(), closure_id, height); break; case JS_CONSTRUCT: translation->BeginConstructStubFrame(closure_id, translation_size); break; case JS_GETTER: ASSERT(translation_size == 1); ASSERT(height == 0); translation->BeginGetterStubFrame(closure_id); break; case JS_SETTER: ASSERT(translation_size == 2); ASSERT(height == 0); translation->BeginSetterStubFrame(closure_id); break; case ARGUMENTS_ADAPTOR: translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); break; } // Inlined frames which push their arguments cause the index to be // bumped and a new stack area to be used for materialization. if (environment->entry() != NULL && environment->entry()->arguments_pushed()) { *arguments_index = *arguments_index < 0 ? GetStackSlotCount() : *arguments_index + *arguments_count; *arguments_count = environment->entry()->arguments_count() + 1; } for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); // spilled_registers_ and spilled_double_registers_ are either // both NULL or both set. if (environment->spilled_registers() != NULL && value != NULL) { if (value->IsRegister() && environment->spilled_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation(translation, environment->spilled_registers()[value->index()], environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), *arguments_index, *arguments_count); } else if ( value->IsDoubleRegister() && environment->spilled_double_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation( translation, environment->spilled_double_registers()[value->index()], false, false, *arguments_index, *arguments_count); } } AddToTranslation(translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), *arguments_index, *arguments_count); } } void LCodeGen::AddToTranslation(Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int arguments_index, int arguments_count) { if (op == NULL) { // TODO(twuerthinger): Introduce marker operands to indicate that this value // is not present and must be reconstructed from the deoptimizer. Currently // this is only used for the arguments object. translation->StoreArgumentsObject(arguments_index, arguments_count); } else if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else if (is_uint32) { translation->StoreUint32StackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsArgument()) { ASSERT(is_tagged); int src_index = GetStackSlotCount() + op->index(); translation->StoreStackSlot(src_index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { XMMRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle()); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode, int argc) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size() - masm()->CallSize(code)); ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr) { ASSERT(instr != NULL); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ CallRuntime(function, num_arguments); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr) { __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; int args_index = 0; int args_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation, &args_index, &args_count); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, environment->zone()); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); if (entry == NULL) { Abort("bailout was not prepared"); return; } if (cc == no_condition) { __ Jump(entry, RelocInfo::RUNTIME_ENTRY); } else { // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (jump_table_.is_empty() || jump_table_.last().address != entry) { jump_table_.Add(JumpTableEntry(entry), zone()); } __ j(cc, &jump_table_.last().label); } } void LCodeGen::PopulateDeoptimizationData(Handle code) { int length = deoptimizations_.length(); if (length == 0) return; Handle data = factory()->NewDeoptimizationInputData(length, TENURED); Handle translations = translations_.CreateByteArray(); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); Handle literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, env->ast_id()); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); data->SetPc(i, Smi::FromInt(env->pc_offset())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal, zone()); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { ASSERT(deoptimization_literals_.length() == 0); const ZoneList >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode, int argc) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { ASSERT(kind == expected_safepoint_kind_); const ZoneList* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } if (kind & Safepoint::kWithRegisters) { // Register rsi always contains a pointer to the context. safepoint.DefinePointerRegister(rsi, zone()); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(RelocInfo::kNoPosition, zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } void LCodeGen::RecordPosition(int position) { if (position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); } void LCodeGen::DoLabel(LLabel* label) { if (label->is_loop_header()) { Comment(";;; B%d - LOOP entry", label->block_id()); } else { Comment(";;; B%d", label->block_id()); } __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { ASSERT(ToRegister(instr->result()).is(rax)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpConstructResult: { RegExpConstructResultStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::RegExpExec: { RegExpExecStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::NumberToString: { NumberToStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringAdd: { StringAddStub stub(NO_STRING_ADD_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::TranscendentalCache: { TranscendentalCacheStub stub(instr->transcendental_type(), TranscendentalCacheStub::TAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { // Nothing to do. } void LCodeGen::DoModI(LModI* instr) { if (instr->hydrogen()->HasPowerOf2Divisor()) { Register dividend = ToRegister(instr->left()); int32_t divisor = HConstant::cast(instr->hydrogen()->right())->Integer32Value(); if (divisor < 0) divisor = -divisor; Label positive_dividend, done; __ testl(dividend, dividend); __ j(not_sign, &positive_dividend, Label::kNear); __ negl(dividend); __ andl(dividend, Immediate(divisor - 1)); __ negl(dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ j(not_zero, &done, Label::kNear); DeoptimizeIf(no_condition, instr->environment()); } else { __ jmp(&done, Label::kNear); } __ bind(&positive_dividend); __ andl(dividend, Immediate(divisor - 1)); __ bind(&done); } else { Label done, remainder_eq_dividend, slow, do_subtraction, both_positive; Register left_reg = ToRegister(instr->left()); Register right_reg = ToRegister(instr->right()); Register result_reg = ToRegister(instr->result()); ASSERT(left_reg.is(rax)); ASSERT(result_reg.is(rdx)); ASSERT(!right_reg.is(rax)); ASSERT(!right_reg.is(rdx)); // Check for x % 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(right_reg, right_reg); DeoptimizeIf(zero, instr->environment()); } __ testl(left_reg, left_reg); __ j(zero, &remainder_eq_dividend, Label::kNear); __ j(sign, &slow, Label::kNear); __ testl(right_reg, right_reg); __ j(not_sign, &both_positive, Label::kNear); // The sign of the divisor doesn't matter. __ neg(right_reg); __ bind(&both_positive); // If the dividend is smaller than the nonnegative // divisor, the dividend is the result. __ cmpl(left_reg, right_reg); __ j(less, &remainder_eq_dividend, Label::kNear); // Check if the divisor is a PowerOfTwo integer. Register scratch = ToRegister(instr->temp()); __ movl(scratch, right_reg); __ subl(scratch, Immediate(1)); __ testl(scratch, right_reg); __ j(not_zero, &do_subtraction, Label::kNear); __ andl(left_reg, scratch); __ jmp(&remainder_eq_dividend, Label::kNear); __ bind(&do_subtraction); const int kUnfolds = 3; // Try a few subtractions of the dividend. __ movl(scratch, left_reg); for (int i = 0; i < kUnfolds; i++) { // Reduce the dividend by the divisor. __ subl(left_reg, right_reg); // Check if the dividend is less than the divisor. __ cmpl(left_reg, right_reg); __ j(less, &remainder_eq_dividend, Label::kNear); } __ movl(left_reg, scratch); // Slow case, using idiv instruction. __ bind(&slow); // Sign extend eax to edx. // (We are using only the low 32 bits of the values.) __ cdq(); // Check for (0 % -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label positive_left; Label done; __ testl(left_reg, left_reg); __ j(not_sign, &positive_left, Label::kNear); __ idivl(right_reg); // Test the remainder for 0, because then the result would be -0. __ testl(result_reg, result_reg); __ j(not_zero, &done, Label::kNear); DeoptimizeIf(no_condition, instr->environment()); __ bind(&positive_left); __ idivl(right_reg); __ bind(&done); } else { __ idivl(right_reg); } __ jmp(&done, Label::kNear); __ bind(&remainder_eq_dividend); __ movl(result_reg, left_reg); __ bind(&done); } } void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) { ASSERT(instr->right()->IsConstantOperand()); const Register dividend = ToRegister(instr->left()); int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right())); const Register result = ToRegister(instr->result()); switch (divisor) { case 0: DeoptimizeIf(no_condition, instr->environment()); return; case 1: if (!result.is(dividend)) { __ movl(result, dividend); } return; case -1: if (!result.is(dividend)) { __ movl(result, dividend); } __ negl(result); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(zero, instr->environment()); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } return; } uint32_t divisor_abs = abs(divisor); if (IsPowerOf2(divisor_abs)) { int32_t power = WhichPowerOf2(divisor_abs); if (divisor < 0) { __ movsxlq(result, dividend); __ neg(result); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(zero, instr->environment()); } __ sar(result, Immediate(power)); } else { if (!result.is(dividend)) { __ movl(result, dividend); } __ sarl(result, Immediate(power)); } } else { Register reg1 = ToRegister(instr->temp()); Register reg2 = ToRegister(instr->result()); // Find b which: 2^b < divisor_abs < 2^(b+1). unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs); unsigned shift = 32 + b; // Precision +1bit (effectively). double multiplier_f = static_cast(static_cast(1) << shift) / divisor_abs; int64_t multiplier; if (multiplier_f - floor(multiplier_f) < 0.5) { multiplier = static_cast(floor(multiplier_f)); } else { multiplier = static_cast(floor(multiplier_f)) + 1; } // The multiplier is a uint32. ASSERT(multiplier > 0 && multiplier < (static_cast(1) << 32)); // The multiply is int64, so sign-extend to r64. __ movsxlq(reg1, dividend); if (divisor < 0 && instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ neg(reg1); DeoptimizeIf(zero, instr->environment()); } __ movq(reg2, multiplier, RelocInfo::NONE); // Result just fit in r64, because it's int32 * uint32. __ imul(reg2, reg1); __ addq(reg2, Immediate(1 << 30)); __ sar(reg2, Immediate(shift)); } } void LCodeGen::DoDivI(LDivI* instr) { LOperand* right = instr->right(); ASSERT(ToRegister(instr->result()).is(rax)); ASSERT(ToRegister(instr->left()).is(rax)); ASSERT(!ToRegister(instr->right()).is(rax)); ASSERT(!ToRegister(instr->right()).is(rdx)); Register left_reg = rax; // Check for x / 0. Register right_reg = ToRegister(right); if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(right_reg, right_reg); DeoptimizeIf(zero, instr->environment()); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ testl(left_reg, left_reg); __ j(not_zero, &left_not_zero, Label::kNear); __ testl(right_reg, right_reg); DeoptimizeIf(sign, instr->environment()); __ bind(&left_not_zero); } // Check for (-kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ cmpl(left_reg, Immediate(kMinInt)); __ j(not_zero, &left_not_min_int, Label::kNear); __ cmpl(right_reg, Immediate(-1)); DeoptimizeIf(zero, instr->environment()); __ bind(&left_not_min_int); } // Sign extend to rdx. __ cdq(); __ idivl(right_reg); // Deoptimize if remainder is not 0. __ testl(rdx, rdx); DeoptimizeIf(not_zero, instr->environment()); } void LCodeGen::DoMulI(LMulI* instr) { Register left = ToRegister(instr->left()); LOperand* right = instr->right(); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ movl(kScratchRegister, left); } bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right->IsConstantOperand()) { int right_value = ToInteger32(LConstantOperand::cast(right)); if (right_value == -1) { __ negl(left); } else if (right_value == 0) { __ xorl(left, left); } else if (right_value == 2) { __ addl(left, left); } else if (!can_overflow) { // If the multiplication is known to not overflow, we // can use operations that don't set the overflow flag // correctly. switch (right_value) { case 1: // Do nothing. break; case 3: __ leal(left, Operand(left, left, times_2, 0)); break; case 4: __ shll(left, Immediate(2)); break; case 5: __ leal(left, Operand(left, left, times_4, 0)); break; case 8: __ shll(left, Immediate(3)); break; case 9: __ leal(left, Operand(left, left, times_8, 0)); break; case 16: __ shll(left, Immediate(4)); break; default: __ imull(left, left, Immediate(right_value)); break; } } else { __ imull(left, left, Immediate(right_value)); } } else if (right->IsStackSlot()) { __ imull(left, ToOperand(right)); } else { __ imull(left, ToRegister(right)); } if (can_overflow) { DeoptimizeIf(overflow, instr->environment()); } if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bail out if the result is supposed to be negative zero. Label done; __ testl(left, left); __ j(not_zero, &done, Label::kNear); if (right->IsConstantOperand()) { if (ToInteger32(LConstantOperand::cast(right)) < 0) { DeoptimizeIf(no_condition, instr->environment()); } else if (ToInteger32(LConstantOperand::cast(right)) == 0) { __ cmpl(kScratchRegister, Immediate(0)); DeoptimizeIf(less, instr->environment()); } } else if (right->IsStackSlot()) { __ orl(kScratchRegister, ToOperand(right)); DeoptimizeIf(sign, instr->environment()); } else { // Test the non-zero operand for negative sign. __ orl(kScratchRegister, ToRegister(right)); DeoptimizeIf(sign, instr->environment()); } __ bind(&done); } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); if (right->IsConstantOperand()) { int right_operand = ToInteger32(LConstantOperand::cast(right)); switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), Immediate(right_operand)); break; case Token::BIT_OR: __ orl(ToRegister(left), Immediate(right_operand)); break; case Token::BIT_XOR: __ xorl(ToRegister(left), Immediate(right_operand)); break; default: UNREACHABLE(); break; } } else if (right->IsStackSlot()) { switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), ToOperand(right)); break; case Token::BIT_OR: __ orl(ToRegister(left), ToOperand(right)); break; case Token::BIT_XOR: __ xorl(ToRegister(left), ToOperand(right)); break; default: UNREACHABLE(); break; } } else { ASSERT(right->IsRegister()); switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), ToRegister(right)); break; case Token::BIT_OR: __ orl(ToRegister(left), ToRegister(right)); break; case Token::BIT_XOR: __ xorl(ToRegister(left), ToRegister(right)); break; default: UNREACHABLE(); break; } } } void LCodeGen::DoShiftI(LShiftI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); if (right->IsRegister()) { ASSERT(ToRegister(right).is(rcx)); switch (instr->op()) { case Token::SAR: __ sarl_cl(ToRegister(left)); break; case Token::SHR: __ shrl_cl(ToRegister(left)); if (instr->can_deopt()) { __ testl(ToRegister(left), ToRegister(left)); DeoptimizeIf(negative, instr->environment()); } break; case Token::SHL: __ shll_cl(ToRegister(left)); break; default: UNREACHABLE(); break; } } else { int value = ToInteger32(LConstantOperand::cast(right)); uint8_t shift_count = static_cast(value & 0x1F); switch (instr->op()) { case Token::SAR: if (shift_count != 0) { __ sarl(ToRegister(left), Immediate(shift_count)); } break; case Token::SHR: if (shift_count == 0 && instr->can_deopt()) { __ testl(ToRegister(left), ToRegister(left)); DeoptimizeIf(negative, instr->environment()); } else { __ shrl(ToRegister(left), Immediate(shift_count)); } break; case Token::SHL: if (shift_count != 0) { __ shll(ToRegister(left), Immediate(shift_count)); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); ASSERT(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ subl(ToRegister(left), Immediate(ToInteger32(LConstantOperand::cast(right)))); } else if (right->IsRegister()) { __ subl(ToRegister(left), ToRegister(right)); } else { __ subl(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } } void LCodeGen::DoConstantI(LConstantI* instr) { ASSERT(instr->result()->IsRegister()); __ Set(ToRegister(instr->result()), instr->value()); } void LCodeGen::DoConstantD(LConstantD* instr) { ASSERT(instr->result()->IsDoubleRegister()); XMMRegister res = ToDoubleRegister(instr->result()); double v = instr->value(); uint64_t int_val = BitCast(v); // Use xor to produce +0.0 in a fast and compact way, but avoid to // do so if the constant is -0.0. if (int_val == 0) { __ xorps(res, res); } else { Register tmp = ToRegister(instr->temp()); __ Set(tmp, int_val); __ movq(res, tmp); } } void LCodeGen::DoConstantT(LConstantT* instr) { Handle value = instr->value(); if (value->IsSmi()) { __ Move(ToRegister(instr->result()), value); } else { __ LoadHeapObject(ToRegister(instr->result()), Handle::cast(value)); } } void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->value()); __ movq(result, FieldOperand(array, JSArray::kLengthOffset)); } void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->value()); __ movq(result, FieldOperand(array, FixedArrayBase::kLengthOffset)); } void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { Register result = ToRegister(instr->result()); Register map = ToRegister(instr->value()); __ EnumLength(result, map); } void LCodeGen::DoElementsKind(LElementsKind* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->value()); // Load map into |result|. __ movq(result, FieldOperand(input, HeapObject::kMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte. __ movzxbq(result, FieldOperand(result, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ and_(result, Immediate(Map::kElementsKindMask)); __ shr(result, Immediate(Map::kElementsKindShift)); } void LCodeGen::DoValueOf(LValueOf* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); ASSERT(input.is(result)); Label done; // If the object is a smi return the object. __ JumpIfSmi(input, &done, Label::kNear); // If the object is not a value type, return the object. __ CmpObjectType(input, JS_VALUE_TYPE, kScratchRegister); __ j(not_equal, &done, Label::kNear); __ movq(result, FieldOperand(input, JSValue::kValueOffset)); __ bind(&done); } void LCodeGen::DoDateField(LDateField* instr) { Register object = ToRegister(instr->date()); Register result = ToRegister(instr->result()); Smi* index = instr->index(); Label runtime, done, not_date_object; ASSERT(object.is(result)); ASSERT(object.is(rax)); Condition cc = masm()->CheckSmi(object); DeoptimizeIf(cc, instr->environment()); __ CmpObjectType(object, JS_DATE_TYPE, kScratchRegister); DeoptimizeIf(not_equal, instr->environment()); if (index->value() == 0) { __ movq(result, FieldOperand(object, JSDate::kValueOffset)); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ movq(kScratchRegister, stamp); __ cmpq(kScratchRegister, FieldOperand(object, JSDate::kCacheStampOffset)); __ j(not_equal, &runtime, Label::kNear); __ movq(result, FieldOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2); #ifdef _WIN64 __ movq(rcx, object); __ movq(rdx, index, RelocInfo::NONE); #else __ movq(rdi, object); __ movq(rsi, index, RelocInfo::NONE); #endif __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&done); } } void LCodeGen::DoBitNotI(LBitNotI* instr) { LOperand* input = instr->value(); ASSERT(input->Equals(instr->result())); __ not_(ToRegister(input)); } void LCodeGen::DoThrow(LThrow* instr) { __ push(ToRegister(instr->value())); CallRuntime(Runtime::kThrow, 1, instr); if (FLAG_debug_code) { Comment("Unreachable code."); __ int3(); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); ASSERT(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ addl(ToRegister(left), Immediate(ToInteger32(LConstantOperand::cast(right)))); } else if (right->IsRegister()) { __ addl(ToRegister(left), ToRegister(right)); } else { __ addl(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); ASSERT(left->Equals(instr->result())); HMathMinMax::Operation operation = instr->hydrogen()->operation(); if (instr->hydrogen()->representation().IsInteger32()) { Label return_left; Condition condition = (operation == HMathMinMax::kMathMin) ? less_equal : greater_equal; Register left_reg = ToRegister(left); if (right->IsConstantOperand()) { Immediate right_imm = Immediate(ToInteger32(LConstantOperand::cast(right))); __ cmpq(left_reg, right_imm); __ j(condition, &return_left, Label::kNear); __ movq(left_reg, right_imm); } else if (right->IsRegister()) { Register right_reg = ToRegister(right); __ cmpq(left_reg, right_reg); __ j(condition, &return_left, Label::kNear); __ movq(left_reg, right_reg); } else { Operand right_op = ToOperand(right); __ cmpq(left_reg, right_op); __ j(condition, &return_left, Label::kNear); __ movq(left_reg, right_op); } __ bind(&return_left); } else { ASSERT(instr->hydrogen()->representation().IsDouble()); Label check_nan_left, check_zero, return_left, return_right; Condition condition = (operation == HMathMinMax::kMathMin) ? below : above; XMMRegister left_reg = ToDoubleRegister(left); XMMRegister right_reg = ToDoubleRegister(right); __ ucomisd(left_reg, right_reg); __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN. __ j(equal, &check_zero, Label::kNear); // left == right. __ j(condition, &return_left, Label::kNear); __ jmp(&return_right, Label::kNear); __ bind(&check_zero); XMMRegister xmm_scratch = xmm0; __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(left_reg, xmm_scratch); __ j(not_equal, &return_left, Label::kNear); // left == right != 0. // At this point, both left and right are either 0 or -0. if (operation == HMathMinMax::kMathMin) { __ orpd(left_reg, right_reg); } else { // Since we operate on +0 and/or -0, addsd and andsd have the same effect. __ addsd(left_reg, right_reg); } __ jmp(&return_left, Label::kNear); __ bind(&check_nan_left); __ ucomisd(left_reg, left_reg); // NaN check. __ j(parity_even, &return_left, Label::kNear); __ bind(&return_right); __ movsd(left_reg, right_reg); __ bind(&return_left); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { XMMRegister left = ToDoubleRegister(instr->left()); XMMRegister right = ToDoubleRegister(instr->right()); XMMRegister result = ToDoubleRegister(instr->result()); // All operations except MOD are computed in-place. ASSERT(instr->op() == Token::MOD || left.is(result)); switch (instr->op()) { case Token::ADD: __ addsd(left, right); break; case Token::SUB: __ subsd(left, right); break; case Token::MUL: __ mulsd(left, right); break; case Token::DIV: __ divsd(left, right); break; case Token::MOD: __ PrepareCallCFunction(2); __ movaps(xmm0, left); ASSERT(right.is(xmm1)); __ CallCFunction( ExternalReference::double_fp_operation(Token::MOD, isolate()), 2); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ movaps(result, xmm0); break; default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { ASSERT(ToRegister(instr->left()).is(rdx)); ASSERT(ToRegister(instr->right()).is(rax)); ASSERT(ToRegister(instr->result()).is(rax)); BinaryOpStub stub(instr->op(), NO_OVERWRITE); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ nop(); // Signals no inlined code. } int LCodeGen::GetNextEmittedBlock(int block) { for (int i = block + 1; i < graph()->blocks()->length(); ++i) { LLabel* label = chunk_->GetLabel(i); if (!label->HasReplacement()) return i; } return -1; } void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) { int next_block = GetNextEmittedBlock(current_block_); right_block = chunk_->LookupDestination(right_block); left_block = chunk_->LookupDestination(left_block); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ j(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(left_block)); if (cc != always) { __ jmp(chunk_->GetAssemblyLabel(right_block)); } } } void LCodeGen::DoBranch(LBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32()) { Register reg = ToRegister(instr->value()); __ testl(reg, reg); EmitBranch(true_block, false_block, not_zero); } else if (r.IsDouble()) { XMMRegister reg = ToDoubleRegister(instr->value()); __ xorps(xmm0, xmm0); __ ucomisd(reg, xmm0); EmitBranch(true_block, false_block, not_equal); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { __ CompareRoot(reg, Heap::kTrueValueRootIndex); EmitBranch(true_block, false_block, equal); } else if (type.IsSmi()) { __ SmiCompare(reg, Smi::FromInt(0)); EmitBranch(true_block, false_block, not_equal); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); if (expected.Contains(ToBooleanStub::UNDEFINED)) { // undefined -> false. __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ j(equal, false_label); } if (expected.Contains(ToBooleanStub::BOOLEAN)) { // true -> true. __ CompareRoot(reg, Heap::kTrueValueRootIndex); __ j(equal, true_label); // false -> false. __ CompareRoot(reg, Heap::kFalseValueRootIndex); __ j(equal, false_label); } if (expected.Contains(ToBooleanStub::NULL_TYPE)) { // 'null' -> false. __ CompareRoot(reg, Heap::kNullValueRootIndex); __ j(equal, false_label); } if (expected.Contains(ToBooleanStub::SMI)) { // Smis: 0 -> false, all other -> true. __ Cmp(reg, Smi::FromInt(0)); __ j(equal, false_label); __ JumpIfSmi(reg, true_label); } else if (expected.NeedsMap()) { // If we need a map later and have a Smi -> deopt. __ testb(reg, Immediate(kSmiTagMask)); DeoptimizeIf(zero, instr->environment()); } const Register map = kScratchRegister; if (expected.NeedsMap()) { __ movq(map, FieldOperand(reg, HeapObject::kMapOffset)); if (expected.CanBeUndetectable()) { // Undetectable -> false. __ testb(FieldOperand(map, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, false_label); } } if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { // spec object -> true. __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); __ j(above_equal, true_label); } if (expected.Contains(ToBooleanStub::STRING)) { // String value -> false iff empty. Label not_string; __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string, Label::kNear); __ cmpq(FieldOperand(reg, String::kLengthOffset), Immediate(0)); __ j(not_zero, true_label); __ jmp(false_label); __ bind(¬_string); } if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); __ j(not_equal, ¬_heap_number, Label::kNear); __ xorps(xmm0, xmm0); __ ucomisd(xmm0, FieldOperand(reg, HeapNumber::kValueOffset)); __ j(zero, false_label); __ jmp(true_label); __ bind(¬_heap_number); } // We've seen something for the first time -> deopt. DeoptimizeIf(no_condition, instr->environment()); } } } void LCodeGen::EmitGoto(int block) { block = chunk_->LookupDestination(block); int next_block = GetNextEmittedBlock(current_block_); if (block != next_block) { __ jmp(chunk_->GetAssemblyLabel(block)); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = no_condition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = equal; break; case Token::LT: cond = is_unsigned ? below : less; break; case Token::GT: cond = is_unsigned ? above : greater; break; case Token::LTE: cond = is_unsigned ? below_equal : less_equal; break; case Token::GTE: cond = is_unsigned ? above_equal : greater_equal; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); Condition cc = TokenToCondition(instr->op(), instr->is_double()); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = EvalComparison(instr->op(), left_val, right_val) ? true_block : false_block; EmitGoto(next_block); } else { if (instr->is_double()) { // Don't base result on EFLAGS when a NaN is involved. Instead // jump to the false block. __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); __ j(parity_even, chunk_->GetAssemblyLabel(false_block)); } else { int32_t value; if (right->IsConstantOperand()) { value = ToInteger32(LConstantOperand::cast(right)); __ cmpl(ToRegister(left), Immediate(value)); } else if (left->IsConstantOperand()) { value = ToInteger32(LConstantOperand::cast(left)); if (right->IsRegister()) { __ cmpl(ToRegister(right), Immediate(value)); } else { __ cmpl(ToOperand(right), Immediate(value)); } // We transposed the operands. Reverse the condition. cc = ReverseCondition(cc); } else { if (right->IsRegister()) { __ cmpl(ToRegister(left), ToRegister(right)); } else { __ cmpl(ToRegister(left), ToOperand(right)); } } } EmitBranch(true_block, false_block, cc); } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); __ cmpq(left, right); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { Register left = ToRegister(instr->left()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ cmpq(left, Immediate(instr->hydrogen()->right())); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) { Register reg = ToRegister(instr->value()); int false_block = chunk_->LookupDestination(instr->false_block_id()); // If the expression is known to be untagged or a smi, then it's definitely // not null, and it can't be a an undetectable object. if (instr->hydrogen()->representation().IsSpecialization() || instr->hydrogen()->type().IsSmi()) { EmitGoto(false_block); return; } int true_block = chunk_->LookupDestination(instr->true_block_id()); Heap::RootListIndex nil_value = instr->nil() == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ CompareRoot(reg, nil_value); if (instr->kind() == kStrictEquality) { EmitBranch(true_block, false_block, equal); } else { Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ? Heap::kUndefinedValueRootIndex : Heap::kNullValueRootIndex; Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ j(equal, true_label); __ CompareRoot(reg, other_nil_value); __ j(equal, true_label); __ JumpIfSmi(reg, false_label); // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. Register scratch = ToRegister(instr->temp()); __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); __ testb(FieldOperand(scratch, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, not_zero); } } Condition LCodeGen::EmitIsObject(Register input, Label* is_not_object, Label* is_object) { ASSERT(!input.is(kScratchRegister)); __ JumpIfSmi(input, is_not_object); __ CompareRoot(input, Heap::kNullValueRootIndex); __ j(equal, is_object); __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, is_not_object); __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); __ cmpb(kScratchRegister, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ j(below, is_not_object); __ cmpb(kScratchRegister, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); return below_equal; } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->value()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsObject(reg, false_label, true_label); EmitBranch(true_block, false_block, true_cond); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string) { __ JumpIfSmi(input, is_not_string); Condition cond = masm_->IsObjectStringType(input, temp1, temp1); return cond; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsString(reg, temp, false_label); EmitBranch(true_block, false_block, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Condition is_smi; if (instr->value()->IsRegister()) { Register input = ToRegister(instr->value()); is_smi = masm()->CheckSmi(input); } else { Operand input = ToOperand(instr->value()); is_smi = masm()->CheckSmi(input); } EmitBranch(true_block, false_block, is_smi); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); __ movq(temp, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(temp, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, not_zero); } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { Token::Value op = instr->op(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Handle ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = TokenToCondition(op, false); __ testq(rax, rax); EmitBranch(true_block, false_block, condition); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; ASSERT(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return equal; if (to == LAST_TYPE) return above_equal; if (from == FIRST_TYPE) return below_equal; UNREACHABLE(); return equal; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register input = ToRegister(instr->value()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ JumpIfSmi(input, false_label); __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister); EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen())); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ AssertString(input); __ movl(result, FieldOperand(input, String::kHashFieldOffset)); ASSERT(String::kHashShift >= kSmiTagSize); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->value()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ testl(FieldOperand(input, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); EmitBranch(true_block, false_block, equal); } // Branches to a label or falls through with the answer in the z flag. // Trashes the temp register. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle class_name, Register input, Register temp, Register temp2) { ASSERT(!input.is(temp)); ASSERT(!input.is(temp2)); ASSERT(!temp.is(temp2)); __ JumpIfSmi(input, is_false); if (class_name->IsEqualTo(CStrVector("Function"))) { // Assuming the following assertions, we can use the same compares to test // for both being a function type and being in the object type range. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp); __ j(below, is_false); __ j(equal, is_true); __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE); __ j(equal, is_true); } else { // Faster code path to avoid two compares: subtract lower bound from the // actual type and do a signed compare with the width of the type range. __ movq(temp, FieldOperand(input, HeapObject::kMapOffset)); __ movzxbl(temp2, FieldOperand(temp, Map::kInstanceTypeOffset)); __ subq(temp2, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ cmpq(temp2, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ j(above, is_false); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. __ movq(temp, FieldOperand(temp, Map::kConstructorOffset)); // Objects with a non-function constructor have class 'Object'. __ CmpObjectType(temp, JS_FUNCTION_TYPE, kScratchRegister); if (class_name->IsEqualTo(CStrVector("Object"))) { __ j(not_equal, is_true); } else { __ j(not_equal, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ movq(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ movq(temp, FieldOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is a symbol because it's a literal. // The name in the constructor is a symbol because of the way the context is // booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are symbols it is sufficient to use an identity // comparison. ASSERT(class_name->IsSymbol()); __ Cmp(temp, class_name); // End with the answer in the z flag. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); Handle class_name = instr->hydrogen()->class_name(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); int true_block = instr->true_block_id(); int false_block = instr->false_block_id(); __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { InstanceofStub stub(InstanceofStub::kNoFlags); __ push(ToRegister(instr->left())); __ push(ToRegister(instr->right())); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); Label true_value, done; __ testq(rax, rax); __ j(zero, &true_value, Label::kNear); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal: public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); } virtual LInstruction* instr() { return instr_; } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->value()); // A Smi is not an instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; // Use a temp register to avoid memory operands with variable lengths. Register map = ToRegister(instr->temp()); __ movq(map, FieldOperand(object, HeapObject::kMapOffset)); __ bind(deferred->map_check()); // Label for calculating code patching. Handle cache_cell = factory()->NewJSGlobalPropertyCell(factory()->the_hole_value()); __ movq(kScratchRegister, cache_cell, RelocInfo::GLOBAL_PROPERTY_CELL); __ cmpq(map, Operand(kScratchRegister, 0)); __ j(not_equal, &cache_miss, Label::kNear); // Patched to load either true or false. __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex); #ifdef DEBUG // Check that the code size between patch label and patch sites is invariant. Label end_of_patched_code; __ bind(&end_of_patched_code); ASSERT(true); #endif __ jmp(&done); // The inlined call site cache did not match. Check for null and string // before calling the deferred code. __ bind(&cache_miss); // Null is not an instance of anything. __ CompareRoot(object, Heap::kNullValueRootIndex); __ j(equal, &false_result, Label::kNear); // String values are not instances of anything. __ JumpIfNotString(object, kScratchRegister, deferred->entry()); __ bind(&false_result); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { { PushSafepointRegistersScope scope(this); InstanceofStub::Flags flags = static_cast( InstanceofStub::kNoFlags | InstanceofStub::kCallSiteInlineCheck); InstanceofStub stub(flags); __ push(ToRegister(instr->value())); __ PushHeapObject(instr->function()); static const int kAdditionalDelta = 10; int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta; ASSERT(delta >= 0); __ push_imm32(delta); // We are pushing three values on the stack but recording a // safepoint with two arguments because stub is going to // remove the third argument from the stack before jumping // to instanceof builtin on the slow path. CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS, 2); ASSERT(delta == masm_->SizeOfCodeGeneratedSince(map_check)); LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); // Move result to a register that survives the end of the // PushSafepointRegisterScope. __ movq(kScratchRegister, rax); } __ testq(kScratchRegister, kScratchRegister); Label load_false; Label done; __ j(not_zero, &load_false); __ LoadRoot(rax, Heap::kTrueValueRootIndex); __ jmp(&done); __ bind(&load_false); __ LoadRoot(rax, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = TokenToCondition(op, false); Label true_value, done; __ testq(rax, rax); __ j(condition, &true_value, Label::kNear); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace) { // Preserve the return value on the stack and rely on the runtime // call to return the value in the same register. __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } __ movq(rsp, rbp); __ pop(rbp); __ Ret((GetParameterCount() + 1) * kPointerSize, rcx); } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); __ LoadGlobalCell(result, instr->hydrogen()->cell()); if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); } } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(rax)); ASSERT(ToRegister(instr->result()).is(rax)); __ Move(rcx, instr->name()); RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, mode, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register value = ToRegister(instr->value()); Handle cell_handle = instr->hydrogen()->cell(); // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. We deoptimize in that case. if (instr->hydrogen()->RequiresHoleCheck()) { // We have a temp because CompareRoot might clobber kScratchRegister. Register cell = ToRegister(instr->temp()); ASSERT(!value.is(cell)); __ movq(cell, cell_handle, RelocInfo::GLOBAL_PROPERTY_CELL); __ CompareRoot(Operand(cell, 0), Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); // Store the value. __ movq(Operand(cell, 0), value); } else { // Store the value. __ movq(kScratchRegister, cell_handle, RelocInfo::GLOBAL_PROPERTY_CELL); __ movq(Operand(kScratchRegister, 0), value); } // Cells are always rescanned, so no write barrier here. } void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(rdx)); ASSERT(ToRegister(instr->value()).is(rax)); __ Move(rcx, instr->name()); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ movq(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr->environment()); } else { Label is_not_hole; __ j(not_equal, &is_not_hole, Label::kNear); __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Operand target = ContextOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(target, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr->environment()); } else { __ j(not_equal, &skip_assignment); } } __ movq(target, value); if (instr->hydrogen()->NeedsWriteBarrier()) { HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; int offset = Context::SlotOffset(instr->slot_index()); Register scratch = ToRegister(instr->temp()); __ RecordWriteContextSlot(context, offset, value, scratch, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); if (instr->hydrogen()->is_in_object()) { __ movq(result, FieldOperand(object, instr->hydrogen()->offset())); } else { __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset)); __ movq(result, FieldOperand(result, instr->hydrogen()->offset())); } } void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, Register object, Handle type, Handle name, LEnvironment* env) { LookupResult lookup(isolate()); type->LookupDescriptor(NULL, *name, &lookup); ASSERT(lookup.IsFound() || lookup.IsCacheable()); if (lookup.IsField()) { int index = lookup.GetLocalFieldIndexFromMap(*type); int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. __ movq(result, FieldOperand(object, offset + type->instance_size())); } else { // Non-negative property indices are in the properties array. __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset)); __ movq(result, FieldOperand(result, offset + FixedArray::kHeaderSize)); } } else if (lookup.IsConstantFunction()) { Handle function(lookup.GetConstantFunctionFromMap(*type)); __ LoadHeapObject(result, function); } else { // Negative lookup. // Check prototypes. Handle current(HeapObject::cast((*type)->prototype())); Heap* heap = type->GetHeap(); while (*current != heap->null_value()) { __ LoadHeapObject(result, current); __ Cmp(FieldOperand(result, HeapObject::kMapOffset), Handle(current->map())); DeoptimizeIf(not_equal, env); current = Handle(HeapObject::cast(current->map()->prototype())); } __ LoadRoot(result, Heap::kUndefinedValueRootIndex); } } // Check for cases where EmitLoadFieldOrConstantFunction needs to walk the // prototype chain, which causes unbounded code generation. static bool CompactEmit(SmallMapList* list, Handle name, int i, Isolate* isolate) { Handle map = list->at(i); // If the map has ElementsKind transitions, we will generate map checks // for each kind in __ CompareMap(..., ALLOW_ELEMENTS_TRANSITION_MAPS). if (map->HasElementsTransition()) return false; LookupResult lookup(isolate); map->LookupDescriptor(NULL, *name, &lookup); return lookup.IsField() || lookup.IsConstantFunction(); } void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); int map_count = instr->hydrogen()->types()->length(); bool need_generic = instr->hydrogen()->need_generic(); if (map_count == 0 && !need_generic) { DeoptimizeIf(no_condition, instr->environment()); return; } Handle name = instr->hydrogen()->name(); Label done; bool all_are_compact = true; for (int i = 0; i < map_count; ++i) { if (!CompactEmit(instr->hydrogen()->types(), name, i, isolate())) { all_are_compact = false; break; } } for (int i = 0; i < map_count; ++i) { bool last = (i == map_count - 1); Handle map = instr->hydrogen()->types()->at(i); Label check_passed; __ CompareMap(object, map, &check_passed, ALLOW_ELEMENT_TRANSITION_MAPS); if (last && !need_generic) { DeoptimizeIf(not_equal, instr->environment()); __ bind(&check_passed); EmitLoadFieldOrConstantFunction( result, object, map, name, instr->environment()); } else { Label next; bool compact = all_are_compact ? true : CompactEmit(instr->hydrogen()->types(), name, i, isolate()); __ j(not_equal, &next, compact ? Label::kNear : Label::kFar); __ bind(&check_passed); EmitLoadFieldOrConstantFunction( result, object, map, name, instr->environment()); __ jmp(&done, all_are_compact ? Label::kNear : Label::kFar); __ bind(&next); } } if (need_generic) { __ Move(rcx, name); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } __ bind(&done); } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rax)); ASSERT(ToRegister(instr->result()).is(rax)); __ Move(rcx, instr->name()); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Check that the function really is a function. __ CmpObjectType(function, JS_FUNCTION_TYPE, result); DeoptimizeIf(not_equal, instr->environment()); // Check whether the function has an instance prototype. Label non_instance; __ testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kHasNonInstancePrototype)); __ j(not_zero, &non_instance, Label::kNear); // Get the prototype or initial map from the function. __ movq(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); // If the function does not have an initial map, we're done. Label done; __ CmpObjectType(result, MAP_TYPE, kScratchRegister); __ j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. __ movq(result, FieldOperand(result, Map::kPrototypeOffset)); __ jmp(&done, Label::kNear); // Non-instance prototype: Fetch prototype from constructor field // in the function's map. __ bind(&non_instance); __ movq(result, FieldOperand(result, Map::kConstructorOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadElements(LLoadElements* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->object()); __ movq(result, FieldOperand(input, JSObject::kElementsOffset)); if (FLAG_debug_code) { Label done, ok, fail; __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(equal, &done, Label::kNear); __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); __ j(equal, &done, Label::kNear); Register temp((result.is(rax)) ? rbx : rax); __ push(temp); __ movq(temp, FieldOperand(result, HeapObject::kMapOffset)); __ movzxbq(temp, FieldOperand(temp, Map::kBitField2Offset)); __ and_(temp, Immediate(Map::kElementsKindMask)); __ shr(temp, Immediate(Map::kElementsKindShift)); __ cmpl(temp, Immediate(GetInitialFastElementsKind())); __ j(less, &fail, Label::kNear); __ cmpl(temp, Immediate(TERMINAL_FAST_ELEMENTS_KIND)); __ j(less_equal, &ok, Label::kNear); __ cmpl(temp, Immediate(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND)); __ j(less, &fail, Label::kNear); __ cmpl(temp, Immediate(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND)); __ j(less_equal, &ok, Label::kNear); __ bind(&fail); __ Abort("Check for fast or external elements failed"); __ bind(&ok); __ pop(temp); __ bind(&done); } } void LCodeGen::DoLoadExternalArrayPointer( LLoadExternalArrayPointer* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->object()); __ movq(result, FieldOperand(input, ExternalPixelArray::kExternalPointerOffset)); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register length = ToRegister(instr->length()); Register result = ToRegister(instr->result()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. if (instr->index()->IsRegister()) { __ subl(length, ToRegister(instr->index())); } else { __ subl(length, ToOperand(instr->index())); } __ movq(result, Operand(arguments, length, times_pointer_size, kPointerSize)); } void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { Register result = ToRegister(instr->result()); LOperand* key = instr->key(); if (!key->IsConstantOperand()) { Register key_reg = ToRegister(key); // Even though the HLoad/StoreKeyedFastElement instructions force the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsTagged()) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } // Load the result. __ movq(result, BuildFastArrayOperand(instr->elements(), key, FAST_ELEMENTS, FixedArray::kHeaderSize - kHeapObjectTag, instr->additional_index())); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { Condition smi = __ CheckSmi(result); DeoptimizeIf(NegateCondition(smi), instr->environment()); } else { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); } } } void LCodeGen::DoLoadKeyedFastDoubleElement( LLoadKeyedFastDoubleElement* instr) { XMMRegister result(ToDoubleRegister(instr->result())); LOperand* key = instr->key(); if (!key->IsConstantOperand()) { Register key_reg = ToRegister(key); // Even though the HLoad/StoreKeyedFastElement instructions force the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsTagged()) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } if (instr->hydrogen()->RequiresHoleCheck()) { int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag + sizeof(kHoleNanLower32); Operand hole_check_operand = BuildFastArrayOperand( instr->elements(), key, FAST_DOUBLE_ELEMENTS, offset, instr->additional_index()); __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32)); DeoptimizeIf(equal, instr->environment()); } Operand double_load_operand = BuildFastArrayOperand( instr->elements(), key, FAST_DOUBLE_ELEMENTS, FixedDoubleArray::kHeaderSize - kHeapObjectTag, instr->additional_index()); __ movsd(result, double_load_operand); } Operand LCodeGen::BuildFastArrayOperand( LOperand* elements_pointer, LOperand* key, ElementsKind elements_kind, uint32_t offset, uint32_t additional_index) { Register elements_pointer_reg = ToRegister(elements_pointer); int shift_size = ElementsKindToShiftSize(elements_kind); if (key->IsConstantOperand()) { int constant_value = ToInteger32(LConstantOperand::cast(key)); if (constant_value & 0xF0000000) { Abort("array index constant value too big"); } return Operand(elements_pointer_reg, ((constant_value + additional_index) << shift_size) + offset); } else { ScaleFactor scale_factor = static_cast(shift_size); return Operand(elements_pointer_reg, ToRegister(key), scale_factor, offset + (additional_index << shift_size)); } } void LCodeGen::DoLoadKeyedSpecializedArrayElement( LLoadKeyedSpecializedArrayElement* instr) { ElementsKind elements_kind = instr->elements_kind(); LOperand* key = instr->key(); if (!key->IsConstantOperand()) { Register key_reg = ToRegister(key); // Even though the HLoad/StoreKeyedFastElement instructions force the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsTagged()) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } Operand operand(BuildFastArrayOperand( instr->external_pointer(), key, elements_kind, 0, instr->additional_index())); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { XMMRegister result(ToDoubleRegister(instr->result())); __ movss(result, operand); __ cvtss2sd(result, result); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ movsd(ToDoubleRegister(instr->result()), operand); } else { Register result(ToRegister(instr->result())); switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ movsxbq(result, operand); break; case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_PIXEL_ELEMENTS: __ movzxbq(result, operand); break; case EXTERNAL_SHORT_ELEMENTS: __ movsxwq(result, operand); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ movzxwq(result, operand); break; case EXTERNAL_INT_ELEMENTS: __ movsxlq(result, operand); break; case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ movl(result, operand); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { __ testl(result, result); DeoptimizeIf(negative, instr->environment()); } break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rdx)); ASSERT(ToRegister(instr->key()).is(rax)); Handle ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ lea(result, Operand(rsp, -2 * kPointerSize)); } else { // Check for arguments adapter frame. Label done, adapted; __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(result, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adapted, Label::kNear); // No arguments adaptor frame. __ movq(result, rbp); __ jmp(&done, Label::kNear); // Arguments adaptor frame present. __ bind(&adapted); __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ bind(&done); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. if (instr->elements()->IsRegister()) { __ cmpq(rbp, ToRegister(instr->elements())); } else { __ cmpq(rbp, ToOperand(instr->elements())); } __ movl(result, Immediate(scope()->num_parameters())); __ j(equal, &done, Label::kNear); // Arguments adaptor frame present. Get argument length from there. __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiToInteger32(result, Operand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, receiver_ok; // Do not transform the receiver to object for strict mode // functions. __ movq(kScratchRegister, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(kScratchRegister, SharedFunctionInfo::kStrictModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_equal, &receiver_ok, Label::kNear); // Do not transform the receiver to object for builtins. __ testb(FieldOperand(kScratchRegister, SharedFunctionInfo::kNativeByteOffset), Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ j(not_equal, &receiver_ok, Label::kNear); // Normal function. Replace undefined or null with global receiver. __ CompareRoot(receiver, Heap::kNullValueRootIndex); __ j(equal, &global_object, Label::kNear); __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex); __ j(equal, &global_object, Label::kNear); // The receiver should be a JS object. Condition is_smi = __ CheckSmi(receiver); DeoptimizeIf(is_smi, instr->environment()); __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, kScratchRegister); DeoptimizeIf(below, instr->environment()); __ jmp(&receiver_ok, Label::kNear); __ bind(&global_object); // TODO(kmillikin): We have a hydrogen value for the global object. See // if it's better to use it than to explicitly fetch it from the context // here. __ movq(receiver, ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX)); __ movq(receiver, FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); __ bind(&receiver_ok); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); ASSERT(receiver.is(rax)); // Used for parameter count. ASSERT(function.is(rdi)); // Required by InvokeFunction. ASSERT(ToRegister(instr->result()).is(rax)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmpq(length, Immediate(kArgumentsLimit)); DeoptimizeIf(above, instr->environment()); __ push(receiver); __ movq(receiver, length); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ testl(length, length); __ j(zero, &invoke, Label::kNear); __ bind(&loop); __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize)); __ decl(length); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(rax); __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator, CALL_AS_METHOD); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); EmitPushTaggedOperand(argument); } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ movq(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); __ movq(result, rsi); } void LCodeGen::DoOuterContext(LOuterContext* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ movq(result, Operand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { __ push(rsi); // The context is the first argument. __ PushHeapObject(instr->hydrogen()->pairs()); __ Push(Smi::FromInt(instr->hydrogen()->flags())); CallRuntime(Runtime::kDeclareGlobals, 3, instr); } void LCodeGen::DoGlobalObject(LGlobalObject* instr) { Register result = ToRegister(instr->result()); __ movq(result, GlobalObjectOperand()); } void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { Register global = ToRegister(instr->global()); Register result = ToRegister(instr->result()); __ movq(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset)); } void LCodeGen::CallKnownFunction(Handle function, int arity, LInstruction* instr, CallKind call_kind, RDIState rdi_state) { bool can_invoke_directly = !function->NeedsArgumentsAdaption() || function->shared()->formal_parameter_count() == arity; LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); if (can_invoke_directly) { if (rdi_state == RDI_UNINITIALIZED) { __ LoadHeapObject(rdi, function); } // Change context. __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Set rax to arguments count if adaption is not needed. Assumes that rax // is available to write to at this point. if (!function->NeedsArgumentsAdaption()) { __ Set(rax, arity); } // Invoke function. __ SetCallKind(rcx, call_kind); if (*function == *info()->closure()) { __ CallSelf(); } else { __ call(FieldOperand(rdi, JSFunction::kCodeEntryOffset)); } // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); } else { // We need to adapt arguments. SafepointGenerator generator( this, pointers, Safepoint::kLazyDeopt); ParameterCount count(arity); __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind); } // Restore context. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { ASSERT(ToRegister(instr->result()).is(rax)); CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD, RDI_UNINITIALIZED); } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { Register input_reg = ToRegister(instr->value()); __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); DeoptimizeIf(not_equal, instr->environment()); Label done; Register tmp = input_reg.is(rax) ? rcx : rax; Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx; // Preserve the value of all registers. PushSafepointRegistersScope scope(this); Label negative; __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. We do not need to patch the stack since |input| and // |result| are the same register and |input| will be restored // unchanged by popping safepoint registers. __ testl(tmp, Immediate(HeapNumber::kSignMask)); __ j(not_zero, &negative); __ jmp(&done); __ bind(&negative); Label allocated, slow; __ AllocateHeapNumber(tmp, tmp2, &slow); __ jmp(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Set the pointer to the new heap number in tmp. if (!tmp.is(rax)) { __ movq(tmp, rax); } // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input_reg, input_reg); __ bind(&allocated); __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ shl(tmp2, Immediate(1)); __ shr(tmp2, Immediate(1)); __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2); __ StoreToSafepointRegisterSlot(input_reg, tmp); __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { Register input_reg = ToRegister(instr->value()); __ testl(input_reg, input_reg); Label is_positive; __ j(not_sign, &is_positive); __ negl(input_reg); // Sets flags. DeoptimizeIf(negative, instr->environment()); __ bind(&is_positive); } void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LUnaryMathOperation* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } virtual LInstruction* instr() { return instr_; } private: LUnaryMathOperation* instr_; }; ASSERT(instr->value()->Equals(instr->result())); Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { XMMRegister scratch = xmm0; XMMRegister input_reg = ToDoubleRegister(instr->value()); __ xorps(scratch, scratch); __ subsd(scratch, input_reg); __ andpd(input_reg, scratch); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else { // Tagged case. DeferredMathAbsTaggedHeapNumber* deferred = new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input_reg = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input_reg, deferred->entry()); __ SmiToInteger32(input_reg, input_reg); EmitIntegerMathAbs(instr); __ Integer32ToSmi(input_reg, input_reg); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { XMMRegister xmm_scratch = xmm0; Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatures::Scope scope(SSE4_1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Deoptimize if minus zero. __ movq(output_reg, input_reg); __ subq(output_reg, Immediate(1)); DeoptimizeIf(overflow, instr->environment()); } __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown); __ cvttsd2si(output_reg, xmm_scratch); __ cmpl(output_reg, Immediate(0x80000000)); DeoptimizeIf(equal, instr->environment()); } else { Label negative_sign, done; // Deoptimize on negative inputs. __ xorps(xmm_scratch, xmm_scratch); // Zero the register. __ ucomisd(input_reg, xmm_scratch); DeoptimizeIf(parity_even, instr->environment()); __ j(below, &negative_sign, Label::kNear); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Check for negative zero. Label positive_sign; __ j(above, &positive_sign, Label::kNear); __ movmskpd(output_reg, input_reg); __ testq(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); __ Set(output_reg, 0); __ jmp(&done); __ bind(&positive_sign); } // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, input_reg); // Overflow is signalled with minint. __ cmpl(output_reg, Immediate(0x80000000)); DeoptimizeIf(equal, instr->environment()); __ jmp(&done, Label::kNear); // Non-zero negative reaches here. __ bind(&negative_sign); // Truncate, then compare and compensate. __ cvttsd2si(output_reg, input_reg); __ cvtlsi2sd(xmm_scratch, output_reg); __ ucomisd(input_reg, xmm_scratch); __ j(equal, &done, Label::kNear); __ subl(output_reg, Immediate(1)); DeoptimizeIf(overflow, instr->environment()); __ bind(&done); } } void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { const XMMRegister xmm_scratch = xmm0; Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); Label done; // xmm_scratch = 0.5 __ movq(kScratchRegister, V8_INT64_C(0x3FE0000000000000), RelocInfo::NONE); __ movq(xmm_scratch, kScratchRegister); Label below_half; __ ucomisd(xmm_scratch, input_reg); // If input_reg is NaN, this doesn't jump. __ j(above, &below_half, Label::kNear); // input = input + 0.5 // This addition might give a result that isn't the correct for // rounding, due to loss of precision, but only for a number that's // so big that the conversion below will overflow anyway. __ addsd(xmm_scratch, input_reg); // Compute Math.floor(input). // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, xmm_scratch); // Overflow is signalled with minint. __ cmpl(output_reg, Immediate(0x80000000)); DeoptimizeIf(equal, instr->environment()); __ jmp(&done); __ bind(&below_half); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bailout if negative (including -0). __ movq(output_reg, input_reg); __ testq(output_reg, output_reg); DeoptimizeIf(negative, instr->environment()); } else { // Bailout if below -0.5, otherwise round to (positive) zero, even // if negative. // xmm_scrach = -0.5 __ movq(kScratchRegister, V8_INT64_C(0xBFE0000000000000), RelocInfo::NONE); __ movq(xmm_scratch, kScratchRegister); __ ucomisd(input_reg, xmm_scratch); DeoptimizeIf(below, instr->environment()); } __ xorl(output_reg, output_reg); __ bind(&done); } void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { XMMRegister input_reg = ToDoubleRegister(instr->value()); ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); __ sqrtsd(input_reg, input_reg); } void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { XMMRegister xmm_scratch = xmm0; XMMRegister input_reg = ToDoubleRegister(instr->value()); ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done, sqrt; // Check base for -Infinity. According to IEEE-754, double-precision // -Infinity has the highest 12 bits set and the lowest 52 bits cleared. __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000), RelocInfo::NONE); __ movq(xmm_scratch, kScratchRegister); __ ucomisd(xmm_scratch, input_reg); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &sqrt, Label::kNear); __ j(carry, &sqrt, Label::kNear); // If input is -Infinity, return Infinity. __ xorps(input_reg, input_reg); __ subsd(input_reg, xmm_scratch); __ jmp(&done, Label::kNear); // Square root. __ bind(&sqrt); __ xorps(xmm_scratch, xmm_scratch); __ addsd(input_reg, xmm_scratch); // Convert -0 to +0. __ sqrtsd(input_reg, input_reg); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. // Choose register conforming to calling convention (when bailing out). #ifdef _WIN64 Register exponent = rdx; #else Register exponent = rdi; #endif ASSERT(!instr->right()->IsRegister() || ToRegister(instr->right()).is(exponent)); ASSERT(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(xmm1)); ASSERT(ToDoubleRegister(instr->left()).is(xmm2)); ASSERT(ToDoubleRegister(instr->result()).is(xmm3)); if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(exponent, &no_deopt); __ CmpObjectType(exponent, HEAP_NUMBER_TYPE, rcx); DeoptimizeIf(not_equal, instr->environment()); __ bind(&no_deopt); MathPowStub stub(MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(MathPowStub::INTEGER); __ CallStub(&stub); } else { ASSERT(exponent_type.IsDouble()); MathPowStub stub(MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoRandom(LRandom* instr) { class DeferredDoRandom: public LDeferredCode { public: DeferredDoRandom(LCodeGen* codegen, LRandom* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredRandom(instr_); } virtual LInstruction* instr() { return instr_; } private: LRandom* instr_; }; DeferredDoRandom* deferred = new(zone()) DeferredDoRandom(this, instr); // Having marked this instruction as a call we can use any // registers. ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); // Choose the right register for the first argument depending on // calling convention. #ifdef _WIN64 ASSERT(ToRegister(instr->global_object()).is(rcx)); Register global_object = rcx; #else ASSERT(ToRegister(instr->global_object()).is(rdi)); Register global_object = rdi; #endif static const int kSeedSize = sizeof(uint32_t); STATIC_ASSERT(kPointerSize == 2 * kSeedSize); __ movq(global_object, FieldOperand(global_object, GlobalObject::kNativeContextOffset)); static const int kRandomSeedOffset = FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize; __ movq(rbx, FieldOperand(global_object, kRandomSeedOffset)); // rbx: FixedArray of the native context's random seeds // Load state[0]. __ movl(rax, FieldOperand(rbx, ByteArray::kHeaderSize)); // If state[0] == 0, call runtime to initialize seeds. __ testl(rax, rax); __ j(zero, deferred->entry()); // Load state[1]. __ movl(rcx, FieldOperand(rbx, ByteArray::kHeaderSize + kSeedSize)); // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16) // Only operate on the lower 32 bit of rax. __ movl(rdx, rax); __ andl(rdx, Immediate(0xFFFF)); __ imull(rdx, rdx, Immediate(18273)); __ shrl(rax, Immediate(16)); __ addl(rax, rdx); // Save state[0]. __ movl(FieldOperand(rbx, ByteArray::kHeaderSize), rax); // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16) __ movl(rdx, rcx); __ andl(rdx, Immediate(0xFFFF)); __ imull(rdx, rdx, Immediate(36969)); __ shrl(rcx, Immediate(16)); __ addl(rcx, rdx); // Save state[1]. __ movl(FieldOperand(rbx, ByteArray::kHeaderSize + kSeedSize), rcx); // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF) __ shll(rax, Immediate(14)); __ andl(rcx, Immediate(0x3FFFF)); __ addl(rax, rcx); __ bind(deferred->exit()); // Convert 32 random bits in rax to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). __ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single. __ movd(xmm2, rcx); __ movd(xmm1, rax); __ cvtss2sd(xmm2, xmm2); __ xorps(xmm1, xmm2); __ subsd(xmm1, xmm2); } void LCodeGen::DoDeferredRandom(LRandom* instr) { __ PrepareCallCFunction(1); __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Return value is in rax. } void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathTan(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::TAN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { switch (instr->op()) { case kMathAbs: DoMathAbs(instr); break; case kMathFloor: DoMathFloor(instr); break; case kMathRound: DoMathRound(instr); break; case kMathSqrt: DoMathSqrt(instr); break; case kMathPowHalf: DoMathPowHalf(instr); break; case kMathCos: DoMathCos(instr); break; case kMathSin: DoMathSin(instr); break; case kMathTan: DoMathTan(instr); break; case kMathLog: DoMathLog(instr); break; default: UNREACHABLE(); } } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { ASSERT(ToRegister(instr->function()).is(rdi)); ASSERT(instr->HasPointerMap()); if (instr->known_function().is_null()) { LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(instr->arity()); __ InvokeFunction(rdi, count, CALL_FUNCTION, generator, CALL_AS_METHOD); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } else { CallKnownFunction(instr->known_function(), instr->arity(), instr, CALL_AS_METHOD, RDI_CONTAINS_TARGET); } } void LCodeGen::DoCallKeyed(LCallKeyed* instr) { ASSERT(ToRegister(instr->key()).is(rcx)); ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); Handle ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); CallCode(ic, RelocInfo::CODE_TARGET, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallNamed(LCallNamed* instr) { ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ Move(rcx, instr->name()); CallCode(ic, mode, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallFunction(LCallFunction* instr) { ASSERT(ToRegister(instr->function()).is(rdi)); ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallGlobal(LCallGlobal* instr) { ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ Move(rcx, instr->name()); CallCode(ic, mode, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { ASSERT(ToRegister(instr->result()).is(rax)); CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION, RDI_UNINITIALIZED); } void LCodeGen::DoCallNew(LCallNew* instr) { ASSERT(ToRegister(instr->constructor()).is(rdi)); ASSERT(ToRegister(instr->result()).is(rax)); CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); __ Set(rax, instr->arity()); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Register object = ToRegister(instr->object()); Register value = ToRegister(instr->value()); int offset = instr->offset(); if (!instr->transition().is_null()) { if (!instr->hydrogen()->NeedsWriteBarrierForMap()) { __ Move(FieldOperand(object, HeapObject::kMapOffset), instr->transition()); } else { Register temp = ToRegister(instr->temp()); __ Move(kScratchRegister, instr->transition()); __ movq(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister); // Update the write barrier for the map field. __ RecordWriteField(object, HeapObject::kMapOffset, kScratchRegister, temp, kSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } } // Do the store. HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; if (instr->is_in_object()) { __ movq(FieldOperand(object, offset), value); if (instr->hydrogen()->NeedsWriteBarrier()) { Register temp = ToRegister(instr->temp()); // Update the write barrier for the object for in-object properties. __ RecordWriteField(object, offset, value, temp, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } else { Register temp = ToRegister(instr->temp()); __ movq(temp, FieldOperand(object, JSObject::kPropertiesOffset)); __ movq(FieldOperand(temp, offset), value); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWriteField(temp, offset, value, object, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rdx)); ASSERT(ToRegister(instr->value()).is(rax)); __ Move(rcx, instr->hydrogen()->name()); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStoreKeyedSpecializedArrayElement( LStoreKeyedSpecializedArrayElement* instr) { ElementsKind elements_kind = instr->elements_kind(); LOperand* key = instr->key(); if (!key->IsConstantOperand()) { Register key_reg = ToRegister(key); // Even though the HLoad/StoreKeyedFastElement instructions force the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsTagged()) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } Operand operand(BuildFastArrayOperand( instr->external_pointer(), key, elements_kind, 0, instr->additional_index())); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { XMMRegister value(ToDoubleRegister(instr->value())); __ cvtsd2ss(value, value); __ movss(operand, value); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ movsd(operand, ToDoubleRegister(instr->value())); } else { Register value(ToRegister(instr->value())); switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ movb(operand, value); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ movw(operand, value); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ movl(operand, value); break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DeoptIfTaggedButNotSmi(LEnvironment* environment, HValue* value, LOperand* operand) { if (value->representation().IsTagged() && !value->type().IsSmi()) { Condition cc; if (operand->IsRegister()) { cc = masm()->CheckSmi(ToRegister(operand)); } else { cc = masm()->CheckSmi(ToOperand(operand)); } DeoptimizeIf(NegateCondition(cc), environment); } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { DeoptIfTaggedButNotSmi(instr->environment(), instr->hydrogen()->length(), instr->length()); DeoptIfTaggedButNotSmi(instr->environment(), instr->hydrogen()->index(), instr->index()); if (instr->length()->IsRegister()) { Register reg = ToRegister(instr->length()); if (!instr->hydrogen()->length()->representation().IsTagged()) { __ AssertZeroExtended(reg); } if (instr->index()->IsConstantOperand()) { int constant_index = ToInteger32(LConstantOperand::cast(instr->index())); if (instr->hydrogen()->length()->representation().IsTagged()) { __ Cmp(reg, Smi::FromInt(constant_index)); } else { __ cmpq(reg, Immediate(constant_index)); } } else { Register reg2 = ToRegister(instr->index()); if (!instr->hydrogen()->index()->representation().IsTagged()) { __ AssertZeroExtended(reg2); } __ cmpq(reg, reg2); } } else { Operand length = ToOperand(instr->length()); if (instr->index()->IsConstantOperand()) { int constant_index = ToInteger32(LConstantOperand::cast(instr->index())); if (instr->hydrogen()->length()->representation().IsTagged()) { __ Cmp(length, Smi::FromInt(constant_index)); } else { __ cmpq(length, Immediate(constant_index)); } } else { __ cmpq(length, ToRegister(instr->index())); } } DeoptimizeIf(below_equal, instr->environment()); } void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->object()); LOperand* key = instr->key(); if (!key->IsConstantOperand()) { Register key_reg = ToRegister(key); // Even though the HLoad/StoreKeyedFastElement instructions force the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsTagged()) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } Operand operand = BuildFastArrayOperand(instr->object(), key, FAST_ELEMENTS, FixedArray::kHeaderSize - kHeapObjectTag, instr->additional_index()); if (instr->hydrogen()->NeedsWriteBarrier()) { ASSERT(!instr->key()->IsConstantOperand()); HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. Register key_reg(ToRegister(key)); __ lea(key_reg, operand); __ movq(Operand(key_reg, 0), value); __ RecordWrite(elements, key_reg, value, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } else { __ movq(operand, value); } } void LCodeGen::DoStoreKeyedFastDoubleElement( LStoreKeyedFastDoubleElement* instr) { XMMRegister value = ToDoubleRegister(instr->value()); LOperand* key = instr->key(); if (!key->IsConstantOperand()) { Register key_reg = ToRegister(key); // Even though the HLoad/StoreKeyedFastElement instructions force the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsTagged()) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } if (instr->NeedsCanonicalization()) { Label have_value; __ ucomisd(value, value); __ j(parity_odd, &have_value); // NaN. __ Set(kScratchRegister, BitCast( FixedDoubleArray::canonical_not_the_hole_nan_as_double())); __ movq(value, kScratchRegister); __ bind(&have_value); } Operand double_store_operand = BuildFastArrayOperand( instr->elements(), key, FAST_DOUBLE_ELEMENTS, FixedDoubleArray::kHeaderSize - kHeapObjectTag, instr->additional_index()); __ movsd(double_store_operand, value); } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rdx)); ASSERT(ToRegister(instr->key()).is(rcx)); ASSERT(ToRegister(instr->value()).is(rax)); Handle ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() : isolate()->builtins()->KeyedStoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register new_map_reg = ToRegister(instr->new_map_temp()); Handle from_map = instr->original_map(); Handle to_map = instr->transitioned_map(); ElementsKind from_kind = from_map->elements_kind(); ElementsKind to_kind = to_map->elements_kind(); Label not_applicable; __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map); __ j(not_equal, ¬_applicable); __ movq(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT); if (IsSimpleMapChangeTransition(from_kind, to_kind)) { __ movq(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg); // Write barrier. ASSERT_NE(instr->temp(), NULL); __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, ToRegister(instr->temp()), kDontSaveFPRegs); } else if (IsFastSmiElementsKind(from_kind) && IsFastDoubleElementsKind(to_kind)) { Register fixed_object_reg = ToRegister(instr->temp()); ASSERT(fixed_object_reg.is(rdx)); ASSERT(new_map_reg.is(rbx)); __ movq(fixed_object_reg, object_reg); CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(), RelocInfo::CODE_TARGET, instr); } else if (IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind)) { Register fixed_object_reg = ToRegister(instr->temp()); ASSERT(fixed_object_reg.is(rdx)); ASSERT(new_map_reg.is(rbx)); __ movq(fixed_object_reg, object_reg); CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(), RelocInfo::CODE_TARGET, instr); } else { UNREACHABLE(); } __ bind(¬_applicable); } void LCodeGen::DoStringAdd(LStringAdd* instr) { EmitPushTaggedOperand(instr->left()); EmitPushTaggedOperand(instr->right()); StringAddStub stub(NO_STRING_CHECK_IN_STUB); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ Push(Smi::FromInt(const_index)); } else { Register index = ToRegister(instr->index()); __ Integer32ToSmi(index, index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); __ AssertSmi(rax); __ SmiToInteger32(rax, rax); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); ASSERT(!char_code.is(result)); __ cmpl(char_code, Immediate(String::kMaxAsciiCharCode)); __ j(above, deferred->entry()); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ movq(result, FieldOperand(result, char_code, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(result, Heap::kUndefinedValueRootIndex); __ j(equal, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ Integer32ToSmi(char_code, char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoStringLength(LStringLength* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); __ movq(result, FieldOperand(string, String::kLengthOffset)); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); ASSERT(output->IsDoubleRegister()); if (input->IsRegister()) { __ cvtlsi2sd(ToDoubleRegister(output), ToRegister(input)); } else { __ cvtlsi2sd(ToDoubleRegister(output), ToOperand(input)); } } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); LOperand* temp = instr->temp(); __ LoadUint32(ToDoubleRegister(output), ToRegister(input), ToDoubleRegister(temp)); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); __ Integer32ToSmi(reg, reg); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU: public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagU(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagU* instr_; }; LOperand* input = instr->value(); ASSERT(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ cmpl(reg, Immediate(Smi::kMaxValue)); __ j(above, deferred->entry()); __ Integer32ToSmi(reg, reg); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagU(LNumberTagU* instr) { Label slow; Register reg = ToRegister(instr->value()); Register tmp = reg.is(rax) ? rcx : rax; // Preserve the value of all registers. PushSafepointRegistersScope scope(this); Label done; // Load value into xmm1 which will be preserved across potential call to // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable // XMM registers on x64). __ LoadUint32(xmm1, reg, xmm0); if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, &slow); __ jmp(&done, Label::kNear); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); // Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains an // integer value. __ StoreToSafepointRegisterSlot(reg, Immediate(0)); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); if (!reg.is(rax)) __ movq(reg, rax); // Done. Put the value in xmm1 into the value of the allocated heap // number. __ bind(&done); __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), xmm1); __ StoreToSafepointRegisterSlot(reg, reg); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagD* instr_; }; XMMRegister input_reg = ToDoubleRegister(instr->value()); Register reg = ToRegister(instr->result()); Register tmp = ToRegister(instr->temp()); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, deferred->entry()); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ Move(reg, Smi::FromInt(0)); { PushSafepointRegistersScope scope(this); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Ensure that value in rax survives popping registers. __ movq(kScratchRegister, rax); } __ movq(reg, kScratchRegister); } void LCodeGen::DoSmiTag(LSmiTag* instr) { ASSERT(instr->value()->Equals(instr->result())); Register input = ToRegister(instr->value()); ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); __ Integer32ToSmi(input, input); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { ASSERT(instr->value()->Equals(instr->result())); Register input = ToRegister(instr->value()); if (instr->needs_check()) { Condition is_smi = __ CheckSmi(input); DeoptimizeIf(NegateCondition(is_smi), instr->environment()); } else { __ AssertSmi(input); } __ SmiToInteger32(input, input); } void LCodeGen::EmitNumberUntagD(Register input_reg, XMMRegister result_reg, bool deoptimize_on_undefined, bool deoptimize_on_minus_zero, LEnvironment* env) { Label load_smi, done; // Smi check. __ JumpIfSmi(input_reg, &load_smi, Label::kNear); // Heap number map check. __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); if (deoptimize_on_undefined) { DeoptimizeIf(not_equal, env); } else { Label heap_number; __ j(equal, &heap_number, Label::kNear); __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); DeoptimizeIf(not_equal, env); // Convert undefined to NaN. Compute NaN as 0/0. __ xorps(result_reg, result_reg); __ divsd(result_reg, result_reg); __ jmp(&done, Label::kNear); __ bind(&heap_number); } // Heap number to XMM conversion. __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); if (deoptimize_on_minus_zero) { XMMRegister xmm_scratch = xmm0; __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(xmm_scratch, result_reg); __ j(not_equal, &done, Label::kNear); __ movmskpd(kScratchRegister, result_reg); __ testq(kScratchRegister, Immediate(1)); DeoptimizeIf(not_zero, env); } __ jmp(&done, Label::kNear); // Smi to XMM conversion __ bind(&load_smi); __ SmiToInteger32(kScratchRegister, input_reg); __ cvtlsi2sd(result_reg, kScratchRegister); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Label done, heap_number; Register input_reg = ToRegister(instr->value()); // Heap number map check. __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); if (instr->truncating()) { __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for truncating // conversions. __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); DeoptimizeIf(not_equal, instr->environment()); __ Set(input_reg, 0); __ jmp(&done, Label::kNear); __ bind(&heap_number); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2siq(input_reg, xmm0); __ Set(kScratchRegister, V8_UINT64_C(0x8000000000000000)); __ cmpq(input_reg, kScratchRegister); DeoptimizeIf(equal, instr->environment()); } else { // Deoptimize if we don't have a heap number. DeoptimizeIf(not_equal, instr->environment()); XMMRegister xmm_temp = ToDoubleRegister(instr->temp()); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2si(input_reg, xmm0); __ cvtlsi2sd(xmm_temp, input_reg); __ ucomisd(xmm0, xmm_temp); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ testl(input_reg, input_reg); __ j(not_zero, &done); __ movmskpd(input_reg, xmm0); __ andl(input_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } virtual LInstruction* instr() { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); ASSERT(input->IsRegister()); ASSERT(input->Equals(instr->result())); Register input_reg = ToRegister(input); DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); __ JumpIfNotSmi(input_reg, deferred->entry()); __ SmiToInteger32(input_reg, input_reg); __ bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister()); LOperand* result = instr->result(); ASSERT(result->IsDoubleRegister()); Register input_reg = ToRegister(input); XMMRegister result_reg = ToDoubleRegister(result); EmitNumberUntagD(input_reg, result_reg, instr->hydrogen()->deoptimize_on_undefined(), instr->hydrogen()->deoptimize_on_minus_zero(), instr->environment()); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { LOperand* input = instr->value(); ASSERT(input->IsDoubleRegister()); LOperand* result = instr->result(); ASSERT(result->IsRegister()); XMMRegister input_reg = ToDoubleRegister(input); Register result_reg = ToRegister(result); if (instr->truncating()) { // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. __ cvttsd2siq(result_reg, input_reg); __ movq(kScratchRegister, V8_INT64_C(0x8000000000000000), RelocInfo::NONE); __ cmpq(result_reg, kScratchRegister); DeoptimizeIf(equal, instr->environment()); } else { __ cvttsd2si(result_reg, input_reg); __ cvtlsi2sd(xmm0, result_reg); __ ucomisd(xmm0, input_reg); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; // The integer converted back is equal to the original. We // only have to test if we got -0 as an input. __ testl(result_reg, result_reg); __ j(not_zero, &done, Label::kNear); __ movmskpd(result_reg, input_reg); // Bit 0 contains the sign of the double in input_reg. // If input was positive, we are ok and return 0, otherwise // deoptimize. __ andl(result_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); __ bind(&done); } } } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); Condition cc = masm()->CheckSmi(ToRegister(input)); DeoptimizeIf(NegateCondition(cc), instr->environment()); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { LOperand* input = instr->value(); Condition cc = masm()->CheckSmi(ToRegister(input)); DeoptimizeIf(cc, instr->environment()); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(static_cast(first))); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(not_equal, instr->environment()); } else { DeoptimizeIf(below, instr->environment()); // Omit check for the last type. if (last != LAST_TYPE) { __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(static_cast(last))); DeoptimizeIf(above, instr->environment()); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (IsPowerOf2(mask)) { ASSERT(tag == 0 || IsPowerOf2(tag)); __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(mask)); DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment()); } else { __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); __ andb(kScratchRegister, Immediate(mask)); __ cmpb(kScratchRegister, Immediate(tag)); DeoptimizeIf(not_equal, instr->environment()); } } } void LCodeGen::DoCheckFunction(LCheckFunction* instr) { Register reg = ToRegister(instr->value()); Handle target = instr->hydrogen()->target(); if (isolate()->heap()->InNewSpace(*target)) { Handle cell = isolate()->factory()->NewJSGlobalPropertyCell(target); __ movq(kScratchRegister, cell, RelocInfo::GLOBAL_PROPERTY_CELL); __ cmpq(reg, Operand(kScratchRegister, 0)); } else { __ Cmp(reg, target); } DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoCheckMapCommon(Register reg, Handle map, CompareMapMode mode, LEnvironment* env) { Label success; __ CompareMap(reg, map, &success, mode); DeoptimizeIf(not_equal, env); __ bind(&success); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { LOperand* input = instr->value(); ASSERT(input->IsRegister()); Register reg = ToRegister(input); Label success; SmallMapList* map_set = instr->hydrogen()->map_set(); for (int i = 0; i < map_set->length() - 1; i++) { Handle map = map_set->at(i); __ CompareMap(reg, map, &success, REQUIRE_EXACT_MAP); __ j(equal, &success); } Handle map = map_set->last(); DoCheckMapCommon(reg, map, REQUIRE_EXACT_MAP, instr->environment()); __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampDoubleToUint8(value_reg, xmm0, result_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { ASSERT(instr->unclamped()->Equals(instr->result())); Register value_reg = ToRegister(instr->result()); __ ClampUint8(value_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { ASSERT(instr->unclamped()->Equals(instr->result())); Register input_reg = ToRegister(instr->unclamped()); XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm()); Label is_smi, done, heap_number; __ JumpIfSmi(input_reg, &is_smi); // Check for heap number __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ Cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr->environment()); __ movq(input_reg, Immediate(0)); __ jmp(&done, Label::kNear); // Heap number __ bind(&heap_number); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(xmm0, temp_xmm_reg, input_reg); __ jmp(&done, Label::kNear); // smi __ bind(&is_smi); __ SmiToInteger32(input_reg, input_reg); __ ClampUint8(input_reg); __ bind(&done); } void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { Register reg = ToRegister(instr->temp()); Handle holder = instr->holder(); Handle current_prototype = instr->prototype(); // Load prototype object. __ LoadHeapObject(reg, current_prototype); // Check prototype maps up to the holder. while (!current_prototype.is_identical_to(holder)) { DoCheckMapCommon(reg, Handle(current_prototype->map()), ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); current_prototype = Handle(JSObject::cast(current_prototype->GetPrototype())); // Load next prototype object. __ LoadHeapObject(reg, current_prototype); } // Check the holder map. DoCheckMapCommon(reg, Handle(current_prototype->map()), ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); } void LCodeGen::DoAllocateObject(LAllocateObject* instr) { class DeferredAllocateObject: public LDeferredCode { public: DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); } virtual LInstruction* instr() { return instr_; } private: LAllocateObject* instr_; }; DeferredAllocateObject* deferred = new(zone()) DeferredAllocateObject(this, instr); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp()); Handle constructor = instr->hydrogen()->constructor(); Handle initial_map(constructor->initial_map()); int instance_size = initial_map->instance_size(); ASSERT(initial_map->pre_allocated_property_fields() + initial_map->unused_property_fields() - initial_map->inobject_properties() == 0); // Allocate memory for the object. The initial map might change when // the constructor's prototype changes, but instance size and property // counts remain unchanged (if slack tracking finished). ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress()); __ AllocateInNewSpace(instance_size, result, no_reg, scratch, deferred->entry(), TAG_OBJECT); __ bind(deferred->exit()); if (FLAG_debug_code) { Label is_in_new_space; __ JumpIfInNewSpace(result, scratch, &is_in_new_space); __ Abort("Allocated object is not in new-space"); __ bind(&is_in_new_space); } // Load the initial map. Register map = scratch; __ LoadHeapObject(scratch, constructor); __ movq(map, FieldOperand(scratch, JSFunction::kPrototypeOrInitialMapOffset)); if (FLAG_debug_code) { __ AssertNotSmi(map); __ cmpb(FieldOperand(map, Map::kInstanceSizeOffset), Immediate(instance_size >> kPointerSizeLog2)); __ Assert(equal, "Unexpected instance size"); __ cmpb(FieldOperand(map, Map::kPreAllocatedPropertyFieldsOffset), Immediate(initial_map->pre_allocated_property_fields())); __ Assert(equal, "Unexpected pre-allocated property fields count"); __ cmpb(FieldOperand(map, Map::kUnusedPropertyFieldsOffset), Immediate(initial_map->unused_property_fields())); __ Assert(equal, "Unexpected unused property fields count"); __ cmpb(FieldOperand(map, Map::kInObjectPropertiesOffset), Immediate(initial_map->inobject_properties())); __ Assert(equal, "Unexpected in-object property fields count"); } // Initialize map and fields of the newly allocated object. ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE); __ movq(FieldOperand(result, JSObject::kMapOffset), map); __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex); __ movq(FieldOperand(result, JSObject::kElementsOffset), scratch); __ movq(FieldOperand(result, JSObject::kPropertiesOffset), scratch); if (initial_map->inobject_properties() != 0) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); for (int i = 0; i < initial_map->inobject_properties(); i++) { int property_offset = JSObject::kHeaderSize + i * kPointerSize; __ movq(FieldOperand(result, property_offset), scratch); } } } void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) { Register result = ToRegister(instr->result()); Handle constructor = instr->hydrogen()->constructor(); Handle initial_map(constructor->initial_map()); int instance_size = initial_map->instance_size(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ Push(Smi::FromInt(instance_size)); CallRuntimeFromDeferred(Runtime::kAllocateInNewSpace, 1, instr); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { Handle literals(instr->environment()->closure()->literals()); ElementsKind boilerplate_elements_kind = instr->hydrogen()->boilerplate_elements_kind(); // Deopt if the array literal boilerplate ElementsKind is of a type different // than the expected one. The check isn't necessary if the boilerplate has // already been converted to TERMINAL_FAST_ELEMENTS_KIND. if (CanTransitionToMoreGeneralFastElementsKind( boilerplate_elements_kind, true)) { __ LoadHeapObject(rax, instr->hydrogen()->boilerplate_object()); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); // Load the map's "bit field 2". __ movb(rbx, FieldOperand(rbx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ and_(rbx, Immediate(Map::kElementsKindMask)); __ cmpb(rbx, Immediate(boilerplate_elements_kind << Map::kElementsKindShift)); DeoptimizeIf(not_equal, instr->environment()); } // Set up the parameters to the stub/runtime call. __ PushHeapObject(literals); __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); // Boilerplate already exists, constant elements are never accessed. // Pass an empty fixed array. __ Push(isolate()->factory()->empty_fixed_array()); // Pick the right runtime function or stub to call. int length = instr->hydrogen()->length(); if (instr->hydrogen()->IsCopyOnWrite()) { ASSERT(instr->hydrogen()->depth() == 1); FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); } else { FastCloneShallowArrayStub::Mode mode = boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS : FastCloneShallowArrayStub::CLONE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::EmitDeepCopy(Handle object, Register result, Register source, int* offset) { ASSERT(!source.is(rcx)); ASSERT(!result.is(rcx)); // Only elements backing stores for non-COW arrays need to be copied. Handle elements(object->elements()); bool has_elements = elements->length() > 0 && elements->map() != isolate()->heap()->fixed_cow_array_map(); // Increase the offset so that subsequent objects end up right after // this object and its backing store. int object_offset = *offset; int object_size = object->map()->instance_size(); int elements_offset = *offset + object_size; int elements_size = has_elements ? elements->Size() : 0; *offset += object_size + elements_size; // Copy object header. ASSERT(object->properties()->length() == 0); int inobject_properties = object->map()->inobject_properties(); int header_size = object_size - inobject_properties * kPointerSize; for (int i = 0; i < header_size; i += kPointerSize) { if (has_elements && i == JSObject::kElementsOffset) { __ lea(rcx, Operand(result, elements_offset)); } else { __ movq(rcx, FieldOperand(source, i)); } __ movq(FieldOperand(result, object_offset + i), rcx); } // Copy in-object properties. for (int i = 0; i < inobject_properties; i++) { int total_offset = object_offset + object->GetInObjectPropertyOffset(i); Handle value = Handle(object->InObjectPropertyAt(i)); if (value->IsJSObject()) { Handle value_object = Handle::cast(value); __ lea(rcx, Operand(result, *offset)); __ movq(FieldOperand(result, total_offset), rcx); __ LoadHeapObject(source, value_object); EmitDeepCopy(value_object, result, source, offset); } else if (value->IsHeapObject()) { __ LoadHeapObject(rcx, Handle::cast(value)); __ movq(FieldOperand(result, total_offset), rcx); } else { __ movq(rcx, value, RelocInfo::NONE); __ movq(FieldOperand(result, total_offset), rcx); } } if (has_elements) { // Copy elements backing store header. __ LoadHeapObject(source, elements); for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) { __ movq(rcx, FieldOperand(source, i)); __ movq(FieldOperand(result, elements_offset + i), rcx); } // Copy elements backing store content. int elements_length = elements->length(); if (elements->IsFixedDoubleArray()) { Handle double_array = Handle::cast(elements); for (int i = 0; i < elements_length; i++) { int64_t value = double_array->get_representation(i); int total_offset = elements_offset + FixedDoubleArray::OffsetOfElementAt(i); __ movq(rcx, value, RelocInfo::NONE); __ movq(FieldOperand(result, total_offset), rcx); } } else if (elements->IsFixedArray()) { Handle fast_elements = Handle::cast(elements); for (int i = 0; i < elements_length; i++) { int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i); Handle value(fast_elements->get(i)); if (value->IsJSObject()) { Handle value_object = Handle::cast(value); __ lea(rcx, Operand(result, *offset)); __ movq(FieldOperand(result, total_offset), rcx); __ LoadHeapObject(source, value_object); EmitDeepCopy(value_object, result, source, offset); } else if (value->IsHeapObject()) { __ LoadHeapObject(rcx, Handle::cast(value)); __ movq(FieldOperand(result, total_offset), rcx); } else { __ movq(rcx, value, RelocInfo::NONE); __ movq(FieldOperand(result, total_offset), rcx); } } } else { UNREACHABLE(); } } } void LCodeGen::DoFastLiteral(LFastLiteral* instr) { int size = instr->hydrogen()->total_size(); ElementsKind boilerplate_elements_kind = instr->hydrogen()->boilerplate()->GetElementsKind(); // Deopt if the array literal boilerplate ElementsKind is of a type different // than the expected one. The check isn't necessary if the boilerplate has // already been converted to TERMINAL_FAST_ELEMENTS_KIND. if (CanTransitionToMoreGeneralFastElementsKind( boilerplate_elements_kind, true)) { __ LoadHeapObject(rbx, instr->hydrogen()->boilerplate()); __ movq(rcx, FieldOperand(rbx, HeapObject::kMapOffset)); // Load the map's "bit field 2". __ movb(rcx, FieldOperand(rcx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ and_(rcx, Immediate(Map::kElementsKindMask)); __ cmpb(rcx, Immediate(boilerplate_elements_kind << Map::kElementsKindShift)); DeoptimizeIf(not_equal, instr->environment()); } // Allocate all objects that are part of the literal in one big // allocation. This avoids multiple limit checks. Label allocated, runtime_allocate; __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ Push(Smi::FromInt(size)); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ bind(&allocated); int offset = 0; __ LoadHeapObject(rbx, instr->hydrogen()->boilerplate()); EmitDeepCopy(instr->hydrogen()->boilerplate(), rax, rbx, &offset); ASSERT_EQ(size, offset); } void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { Handle literals(instr->environment()->closure()->literals()); Handle constant_properties = instr->hydrogen()->constant_properties(); // Set up the parameters to the stub/runtime call. __ PushHeapObject(literals); __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); __ Push(constant_properties); int flags = instr->hydrogen()->fast_elements() ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags; flags |= instr->hydrogen()->has_function() ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags; __ Push(Smi::FromInt(flags)); // Pick the right runtime function or stub to call. int properties_count = constant_properties->length() / 2; if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); } else if (flags != ObjectLiteral::kFastElements || properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); } else { FastCloneShallowObjectStub stub(properties_count); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { ASSERT(ToRegister(instr->value()).is(rax)); __ push(rax); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { Label materialized; // Registers will be used as follows: // rcx = literals array. // rbx = regexp literal. // rax = regexp literal clone. int literal_offset = FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); __ LoadHeapObject(rcx, instr->hydrogen()->literals()); __ movq(rbx, FieldOperand(rcx, literal_offset)); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &materialized, Label::kNear); // Create regexp literal using runtime function // Result will be in rax. __ push(rcx); __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); __ Push(instr->hydrogen()->pattern()); __ Push(instr->hydrogen()->flags()); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ movq(rbx, rax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(rbx); __ Push(Smi::FromInt(size)); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(rbx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ movq(rdx, FieldOperand(rbx, i)); __ movq(rcx, FieldOperand(rbx, i + kPointerSize)); __ movq(FieldOperand(rax, i), rdx); __ movq(FieldOperand(rax, i + kPointerSize), rcx); } if ((size % (2 * kPointerSize)) != 0) { __ movq(rdx, FieldOperand(rbx, size - kPointerSize)); __ movq(FieldOperand(rax, size - kPointerSize), rdx); } } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. Handle shared_info = instr->shared_info(); bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && shared_info->num_literals() == 0) { FastNewClosureStub stub(shared_info->language_mode()); __ Push(shared_info); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else { __ push(rsi); __ Push(shared_info); __ PushRoot(pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { LOperand* input = instr->value(); EmitPushTaggedOperand(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { ASSERT(!operand->IsDoubleRegister()); if (operand->IsConstantOperand()) { Handle object = ToHandle(LConstantOperand::cast(operand)); if (object->IsSmi()) { __ Push(Handle::cast(object)); } else { __ PushHeapObject(Handle::cast(object)); } } else if (operand->IsRegister()) { __ push(ToRegister(operand)); } else { __ push(ToOperand(operand)); } } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition final_branch_condition = EmitTypeofIs(true_label, false_label, input, instr->type_literal()); if (final_branch_condition != no_condition) { EmitBranch(true_block, false_block, final_branch_condition); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle type_name) { Condition final_branch_condition = no_condition; if (type_name->Equals(heap()->number_symbol())) { __ JumpIfSmi(input, true_label); __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); final_branch_condition = equal; } else if (type_name->Equals(heap()->string_symbol())) { __ JumpIfSmi(input, false_label); __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); __ j(above_equal, false_label); __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = zero; } else if (type_name->Equals(heap()->boolean_symbol())) { __ CompareRoot(input, Heap::kTrueValueRootIndex); __ j(equal, true_label); __ CompareRoot(input, Heap::kFalseValueRootIndex); final_branch_condition = equal; } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { __ CompareRoot(input, Heap::kNullValueRootIndex); final_branch_condition = equal; } else if (type_name->Equals(heap()->undefined_symbol())) { __ CompareRoot(input, Heap::kUndefinedValueRootIndex); __ j(equal, true_label); __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ movq(input, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = not_zero; } else if (type_name->Equals(heap()->function_symbol())) { STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ JumpIfSmi(input, false_label); __ CmpObjectType(input, JS_FUNCTION_TYPE, input); __ j(equal, true_label); __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE); final_branch_condition = equal; } else if (type_name->Equals(heap()->object_symbol())) { __ JumpIfSmi(input, false_label); if (!FLAG_harmony_typeof) { __ CompareRoot(input, Heap::kNullValueRootIndex); __ j(equal, true_label); } __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input); __ j(below, false_label); __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); __ j(above, false_label); // Check for undetectable objects => false. __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = zero; } else { __ jmp(false_label); } return final_branch_condition; } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp = ToRegister(instr->temp()); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); EmitIsConstructCall(temp); EmitBranch(true_block, false_block, equal); } void LCodeGen::EmitIsConstructCall(Register temp) { // Get the frame pointer for the calling frame. __ movq(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ Cmp(Operand(temp, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker, Label::kNear); __ movq(temp, Operand(rax, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; __ Nop(padding_size); } } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); last_lazy_deopt_pc_ = masm()->pc_offset(); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { DeoptimizeIf(no_condition, instr->environment()); } void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { LOperand* obj = instr->object(); LOperand* key = instr->key(); EmitPushTaggedOperand(obj); EmitPushTaggedOperand(key); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); // Create safepoint generator that will also ensure enough space in the // reloc info for patching in deoptimization (since this is invoking a // builtin) SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); __ Push(Smi::FromInt(strict_mode_flag())); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoIn(LIn* instr) { LOperand* obj = instr->object(); LOperand* key = instr->key(); EmitPushTaggedOperand(key); EmitPushTaggedOperand(obj); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } virtual LInstruction* instr() { return instr_; } private: LStackCheck* instr_; }; ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &done, Label::kNear); StackCheckStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); last_lazy_deopt_pc_ = masm()->pc_offset(); __ bind(&done); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } else { ASSERT(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(below, deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); last_lazy_deopt_pc_ = masm()->pc_offset(); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); environment->SetSpilledRegisters(instr->SpilledRegisterArray(), instr->SpilledDoubleRegisterArray()); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. ASSERT(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(osr_pc_offset_ == -1); osr_pc_offset_ = masm()->pc_offset(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); DeoptimizeIf(equal, instr->environment()); Register null_value = rdi; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ cmpq(rax, null_value); DeoptimizeIf(equal, instr->environment()); Condition cc = masm()->CheckSmi(rax); DeoptimizeIf(cc, instr->environment()); STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx); DeoptimizeIf(below_equal, instr->environment()); Label use_cache, call_runtime; __ CheckEnumCache(null_value, &call_runtime); __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(rax); CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kMetaMapRootIndex); DeoptimizeIf(not_equal, instr->environment()); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ Cmp(result, Smi::FromInt(0)); __ j(not_equal, &load_cache); __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex); __ jmp(&done); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ movq(result, FieldOperand(result, DescriptorArray::kEnumCacheOffset)); __ movq(result, FieldOperand(result, FixedArray::SizeFor(instr->idx()))); __ bind(&done); Condition cc = masm()->CheckSmi(result); DeoptimizeIf(cc, instr->environment()); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); __ cmpq(ToRegister(instr->map()), FieldOperand(object, HeapObject::kMapOffset)); DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Label out_of_object, done; __ SmiToInteger32(index, index); __ cmpl(index, Immediate(0)); __ j(less, &out_of_object); __ movq(object, FieldOperand(object, index, times_pointer_size, JSObject::kHeaderSize)); __ jmp(&done, Label::kNear); __ bind(&out_of_object); __ movq(object, FieldOperand(object, JSObject::kPropertiesOffset)); __ negl(index); // Index is now equal to out of object property index plus 1. __ movq(object, FieldOperand(object, index, times_pointer_size, FixedArray::kHeaderSize - kPointerSize)); __ bind(&done); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64