// Copyright 2012 the V8 project authors. All rights reserved. // // Copyright IBM Corp. 2012, 2013. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_PPC) #include "ic-inl.h" #include "codegen.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(Isolate* isolate, MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register receiver, Register name, // Number of the cache entry, not scaled. Register offset, Register scratch, Register scratch2, Register offset_scratch) { ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); ExternalReference map_offset(isolate->stub_cache()->map_reference(table)); uintptr_t key_off_addr = reinterpret_cast(key_offset.address()); uintptr_t value_off_addr = reinterpret_cast(value_offset.address()); uintptr_t map_off_addr = reinterpret_cast(map_offset.address()); // Check the relative positions of the address fields. ASSERT(value_off_addr > key_off_addr); ASSERT((value_off_addr - key_off_addr) % 4 == 0); ASSERT((value_off_addr - key_off_addr) < (256 * 4)); ASSERT(map_off_addr > key_off_addr); ASSERT((map_off_addr - key_off_addr) % 4 == 0); ASSERT((map_off_addr - key_off_addr) < (256 * 4)); Label miss; Register base_addr = scratch; scratch = no_reg; // Multiply by 3 because there are 3 fields per entry (name, code, map). __ ShiftLeftImm(offset_scratch, offset, Operand(1)); __ add(offset_scratch, offset, offset_scratch); // Calculate the base address of the entry. __ mov(base_addr, Operand(key_offset)); __ ShiftLeftImm(scratch2, offset_scratch, Operand(kPointerSizeLog2)); __ add(base_addr, base_addr, scratch2); // Check that the key in the entry matches the name. __ LoadP(ip, MemOperand(base_addr, 0)); __ cmp(name, ip); __ bne(&miss); // Check the map matches. __ LoadP(ip, MemOperand(base_addr, map_off_addr - key_off_addr)); __ LoadP(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ cmp(ip, scratch2); __ bne(&miss); // Get the code entry from the cache. Register code = scratch2; scratch2 = no_reg; __ LoadP(code, MemOperand(base_addr, value_off_addr - key_off_addr)); // Check that the flags match what we're looking for. Register flags_reg = base_addr; base_addr = no_reg; __ lwz(flags_reg, FieldMemOperand(code, Code::kFlagsOffset)); ASSERT(!r0.is(flags_reg)); __ li(r0, Operand(Code::kFlagsNotUsedInLookup)); __ andc(flags_reg, flags_reg, r0); __ mov(r0, Operand(flags)); __ cmpl(flags_reg, r0); __ bne(&miss); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { __ b(&miss); } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { __ b(&miss); } #endif // Jump to the first instruction in the code stub. __ addi(r0, code, Operand(Code::kHeaderSize - kHeapObjectTag)); __ mtctr(r0); __ bcr(); // Miss: fall through. __ bind(&miss); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a symbol and receiver must be a heap object. static void GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, Handle name, Register scratch0, Register scratch1) { ASSERT(name->IsSymbol()); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1); __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); Label done; const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. Register map = scratch1; __ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ lbz(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); __ andi(r0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask)); __ bne(miss_label, cr0); // Check that receiver is a JSObject. __ lbz(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmpi(scratch0, Operand(FIRST_SPEC_OBJECT_TYPE)); __ blt(miss_label); // Load properties array. Register properties = scratch0; __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ LoadP(map, FieldMemOperand(properties, HeapObject::kMapOffset)); Register tmp = properties; __ LoadRoot(tmp, Heap::kHashTableMapRootIndex); __ cmp(map, tmp); __ bne(miss_label); // Restore the temporarily used register. __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); StringDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, receiver, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra, Register extra2, Register extra3) { Isolate* isolate = masm->isolate(); Label miss; #if V8_TARGET_ARCH_PPC64 // Make sure that code is valid. The multiplying code relies on the // entry size being 24. ASSERT(sizeof(Entry) == 24); #else // Make sure that code is valid. The multiplying code relies on the // entry size being 12. ASSERT(sizeof(Entry) == 12); #endif // Make sure the flags does not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Make sure that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); ASSERT(!extra.is(receiver)); ASSERT(!extra.is(name)); ASSERT(!extra.is(scratch)); ASSERT(!extra2.is(receiver)); ASSERT(!extra2.is(name)); ASSERT(!extra2.is(scratch)); ASSERT(!extra2.is(extra)); // Check scratch, extra and extra2 registers are valid. ASSERT(!scratch.is(no_reg)); ASSERT(!extra.is(no_reg)); ASSERT(!extra2.is(no_reg)); ASSERT(!extra3.is(no_reg)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1, extra2, extra3); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Get the map of the receiver and compute the hash. __ lwz(scratch, FieldMemOperand(name, String::kHashFieldOffset)); __ LoadP(ip, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ add(scratch, scratch, ip); #if V8_TARGET_ARCH_PPC64 // Use only the low 32 bits of the map pointer. __ rldicl(scratch, scratch, 0, 32); #endif uint32_t mask = kPrimaryTableSize - 1; // We shift out the last two bits because they are not part of the hash and // they are always 01 for maps. __ ShiftRightImm(scratch, scratch, Operand(kHeapObjectTagSize)); // Mask down the eor argument to the minimum to keep the immediate // encodable. __ xori(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask)); // Prefer and_ to ubfx here because ubfx takes 2 cycles. __ andi(scratch, scratch, Operand(mask)); // Probe the primary table. ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch, extra, extra2, extra3); // Primary miss: Compute hash for secondary probe. __ ShiftRightImm(extra, name, Operand(kHeapObjectTagSize)); __ sub(scratch, scratch, extra); uint32_t mask2 = kSecondaryTableSize - 1; __ addi(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask2)); __ andi(scratch, scratch, Operand(mask2)); // Probe the secondary table. ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch, extra, extra2, extra3); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1, extra2, extra3); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { // Load the global or builtins object from the current context. __ LoadP(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); // Load the native context from the global or builtins object. __ LoadP(prototype, FieldMemOperand(prototype, GlobalObject::kNativeContextOffset)); // Load the function from the native context. __ LoadP(prototype, MemOperand(prototype, Context::SlotOffset(index)), r0); // Load the initial map. The global functions all have initial maps. __ LoadP(prototype, FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ LoadP(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { Isolate* isolate = masm->isolate(); // Check we're still in the same context. __ LoadP(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ Move(ip, isolate->global_object()); __ cmp(prototype, ip); __ bne(miss); // Get the global function with the given index. Handle function( JSFunction::cast(isolate->native_context()->get(index))); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Handle(function->initial_map())); // Load the prototype from the initial map. __ LoadP(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } // Load a fast property out of a holder object (src). In-object properties // are loaded directly otherwise the property is loaded from the properties // fixed array. void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, Handle holder, int index) { // Adjust for the number of properties stored in the holder. index -= holder->map()->inobject_properties(); if (index < 0) { // Get the property straight out of the holder. int offset = holder->map()->instance_size() + (index * kPointerSize); __ LoadP(dst, FieldMemOperand(src, offset), r0); } else { // Calculate the offset into the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; __ LoadP(dst, FieldMemOperand(src, JSObject::kPropertiesOffset)); __ LoadP(dst, FieldMemOperand(dst, offset), r0); } } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss_label); // Check that the object is a JS array. __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); __ bne(miss_label); // Load length directly from the JS array. __ LoadP(r3, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Ret(); } // Generate code to check if an object is a string. If the object is a // heap object, its map's instance type is left in the scratch1 register. // If this is not needed, scratch1 and scratch2 may be the same register. static void GenerateStringCheck(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* smi, Label* non_string_object) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, smi); // Check that the object is a string. __ LoadP(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ andi(scratch2, scratch1, Operand(kIsNotStringMask)); // The cast is to resolve the overload for the argument of 0x0. __ cmpi(scratch2, Operand(static_cast(kStringTag))); __ bne(non_string_object); } // Generate code to load the length from a string object and return the length. // If the receiver object is not a string or a wrapped string object the // execution continues at the miss label. The register containing the // receiver is potentially clobbered. void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss, bool support_wrappers) { Label check_wrapper; // Check if the object is a string leaving the instance type in the // scratch1 register. GenerateStringCheck(masm, receiver, scratch1, scratch2, miss, support_wrappers ? &check_wrapper : miss); // Load length directly from the string. __ LoadP(r3, FieldMemOperand(receiver, String::kLengthOffset)); __ Ret(); if (support_wrappers) { // Check if the object is a JSValue wrapper. __ bind(&check_wrapper); __ cmpi(scratch1, Operand(JS_VALUE_TYPE)); __ bne(miss); // Unwrap the value and check if the wrapped value is a string. __ LoadP(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset)); GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss); __ LoadP(r3, FieldMemOperand(scratch1, String::kLengthOffset)); __ Ret(); } } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mr(r3, scratch1); __ Ret(); } // Generate StoreField code, value is passed in r3 register. // When leaving generated code after success, the receiver_reg and name_reg // may be clobbered. Upon branch to miss_label, the receiver and name // registers have their original values. void StubCompiler::GenerateStoreField(MacroAssembler* masm, Handle object, int index, Handle transition, Handle name, Register receiver_reg, Register name_reg, Register scratch1, Register scratch2, Label* miss_label) { // r3 : value Label exit; LookupResult lookup(masm->isolate()); object->Lookup(*name, &lookup); if (lookup.IsFound() && (lookup.IsReadOnly() || !lookup.IsCacheable())) { // In sloppy mode, we could just return the value and be done. However, we // might be in strict mode, where we have to throw. Since we cannot tell, // go into slow case unconditionally. __ b(miss_label); return; } // Check that the map of the object hasn't changed. CompareMapMode mode = transition.is_null() ? ALLOW_ELEMENT_TRANSITION_MAPS : REQUIRE_EXACT_MAP; __ CheckMap(receiver_reg, scratch1, Handle(object->map()), miss_label, DO_SMI_CHECK, mode); // Perform global security token check if needed. if (object->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(receiver_reg, scratch1, miss_label); } // Check that we are allowed to write this. if (!transition.is_null() && object->GetPrototype()->IsJSObject()) { JSObject* holder; if (lookup.IsFound()) { holder = lookup.holder(); } else { // Find the top object. holder = *object; do { holder = JSObject::cast(holder->GetPrototype()); } while (holder->GetPrototype()->IsJSObject()); } // We need an extra register, push __ push(name_reg); Label miss_pop, done_check; CheckPrototypes(object, receiver_reg, Handle(holder), name_reg, scratch1, scratch2, name, &miss_pop); __ b(&done_check); __ bind(&miss_pop); __ pop(name_reg); __ b(miss_label); __ bind(&done_check); __ pop(name_reg); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ push(receiver_reg); __ mov(r5, Operand(transition)); __ Push(r5, r3); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), masm->isolate()), 3, 1); return; } if (!transition.is_null()) { // Update the map of the object. __ mov(scratch1, Operand(transition)); __ StoreP(scratch1, FieldMemOperand(receiver_reg, HeapObject::kMapOffset), r0); // Update the write barrier for the map field and pass the now unused // name_reg as scratch register. __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, name_reg, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); __ StoreP(r3, FieldMemOperand(receiver_reg, offset), r0); // Skip updating write barrier if storing a smi. __ JumpIfSmi(r3, &exit); // Update the write barrier for the array address. // Pass the now unused name_reg as a scratch register. __ mr(name_reg, r3); __ RecordWriteField(receiver_reg, offset, name_reg, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs); } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array __ LoadP(scratch1, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset)); __ StoreP(r3, FieldMemOperand(scratch1, offset), r0); // Skip updating write barrier if storing a smi. __ JumpIfSmi(r3, &exit); // Update the write barrier for the array address. // Ok to clobber receiver_reg and name_reg, since we return. __ mr(name_reg, r3); __ RecordWriteField(scratch1, offset, name_reg, receiver_reg, kLRHasNotBeenSaved, kDontSaveFPRegs); } // Return the value (register r3). __ bind(&exit); __ Ret(); } void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) { ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC); Handle code = (kind == Code::LOAD_IC) ? masm->isolate()->builtins()->LoadIC_Miss() : masm->isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(code, RelocInfo::CODE_TARGET); } static void GenerateCallFunction(MacroAssembler* masm, Handle object, const ParameterCount& arguments, Label* miss, Code::ExtraICState extra_ic_state) { // ----------- S t a t e ------------- // -- r3: receiver // -- r4: function to call // ----------------------------------- // Check that the function really is a function. __ JumpIfSmi(r4, miss); __ CompareObjectType(r4, r6, r6, JS_FUNCTION_TYPE); __ bne(miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ LoadP(r6, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset)); __ StoreP(r6, MemOperand(sp, arguments.immediate() * kPointerSize), r0); } // Invoke the function. CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(r4, arguments, JUMP_FUNCTION, NullCallWrapper(), call_kind); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { __ push(name); Handle interceptor(holder_obj->GetNamedInterceptor()); ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor)); Register scratch = name; __ mov(scratch, Operand(interceptor)); __ push(scratch); __ push(receiver); __ push(holder); __ LoadP(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset)); __ push(scratch); __ mov(scratch, Operand(ExternalReference::isolate_address())); __ push(scratch); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly), masm->isolate()); __ li(r3, Operand(6)); __ mov(r4, Operand(ref)); CEntryStub stub(1); __ CallStub(&stub); } static const int kFastApiCallArguments = 4; // Reserves space for the extra arguments to API function in the // caller's frame. // // These arguments are set by CheckPrototypes and GenerateFastApiDirectCall. static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) { __ LoadSmiLiteral(scratch, Smi::FromInt(0)); for (int i = 0; i < kFastApiCallArguments; i++) { __ push(scratch); } } // Undoes the effects of ReserveSpaceForFastApiCall. static void FreeSpaceForFastApiCall(MacroAssembler* masm) { __ Drop(kFastApiCallArguments); } static void GenerateFastApiDirectCall(MacroAssembler* masm, const CallOptimization& optimization, int argc) { // ----------- S t a t e ------------- // -- sp[0] : holder (set by CheckPrototypes) // -- sp[4] : callee JS function // -- sp[8] : call data // -- sp[12] : isolate // -- sp[16] : last JS argument // -- ... // -- sp[(argc + 3) * 4] : first JS argument // -- sp[(argc + 4) * 4] : receiver // ----------------------------------- // Get the function and setup the context. Handle function = optimization.constant_function(); __ LoadHeapObject(r8, function); __ LoadP(cp, FieldMemOperand(r8, JSFunction::kContextOffset)); // Pass the additional arguments. Handle api_call_info = optimization.api_call_info(); Handle call_data(api_call_info->data()); if (masm->isolate()->heap()->InNewSpace(*call_data)) { __ Move(r3, api_call_info); __ LoadP(r9, FieldMemOperand(r3, CallHandlerInfo::kDataOffset)); } else { __ Move(r9, call_data); } __ mov(r10, Operand(ExternalReference::isolate_address())); // Store JS function, call data and isolate. __ StoreP(r8, MemOperand(sp, 1 * kPointerSize)); __ StoreP(r9, MemOperand(sp, 2 * kPointerSize)); __ StoreP(r10, MemOperand(sp, 3 * kPointerSize)); // Prepare arguments. __ addi(r5, sp, Operand(3 * kPointerSize)); #if !ABI_RETURNS_HANDLES_IN_REGS bool alloc_return_buf = true; #else bool alloc_return_buf = false; #endif // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // PPC LINUX ABI: // // Create 5 or 6 extra slots on stack (depending on alloc_return_buf): // [0] space for DirectCEntryStub's LR save // [1] space for pointer-sized non-scalar return value (r3) // [2-5] v8:Arguments // // If alloc_return buf, we shift the arguments over a register // (e.g. r3 -> r4) to allow for the return value buffer in implicit // first arg. CallApiFunctionAndReturn will setup r3. int kApiStackSpace = 5 + (alloc_return_buf ? 1 : 0); Register arg0 = alloc_return_buf ? r4 : r3; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // scalar and return // arg0 = v8::Arguments& // Arguments is after the return address. __ addi(arg0, sp, Operand((kStackFrameExtraParamSlot + (alloc_return_buf ? 2 : 1)) * kPointerSize)); // v8::Arguments::implicit_args_ __ StoreP(r5, MemOperand(arg0, 0 * kPointerSize)); // v8::Arguments::values_ __ addi(ip, r5, Operand(argc * kPointerSize)); __ StoreP(ip, MemOperand(arg0, 1 * kPointerSize)); // v8::Arguments::length_ = argc __ li(ip, Operand(argc)); __ stw(ip, MemOperand(arg0, 2 * kPointerSize)); // v8::Arguments::is_construct_call = 0 __ li(ip, Operand::Zero()); __ StoreP(ip, MemOperand(arg0, 3 * kPointerSize)); const int kStackUnwindSpace = argc + kFastApiCallArguments + 1; Address function_address = v8::ToCData
(api_call_info->callback()); ApiFunction fun(function_address); ExternalReference ref = ExternalReference(&fun, ExternalReference::DIRECT_API_CALL, masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); __ CallApiFunctionAndReturn(ref, kStackUnwindSpace); } class CallInterceptorCompiler BASE_EMBEDDED { public: CallInterceptorCompiler(StubCompiler* stub_compiler, const ParameterCount& arguments, Register name, Code::ExtraICState extra_ic_state) : stub_compiler_(stub_compiler), arguments_(arguments), name_(name), extra_ic_state_(extra_ic_state) {} void Compile(MacroAssembler* masm, Handle object, Handle holder, Handle name, LookupResult* lookup, Register receiver, Register scratch1, Register scratch2, Register scratch3, Label* miss) { ASSERT(holder->HasNamedInterceptor()); ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); CallOptimization optimization(lookup); if (optimization.is_constant_call()) { CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3, holder, lookup, name, optimization, miss); } else { CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3, name, holder, miss); } } private: void CompileCacheable(MacroAssembler* masm, Handle object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle interceptor_holder, LookupResult* lookup, Handle name, const CallOptimization& optimization, Label* miss_label) { ASSERT(optimization.is_constant_call()); ASSERT(!lookup->holder()->IsGlobalObject()); Counters* counters = masm->isolate()->counters(); int depth1 = kInvalidProtoDepth; int depth2 = kInvalidProtoDepth; bool can_do_fast_api_call = false; if (optimization.is_simple_api_call() && !lookup->holder()->IsGlobalObject()) { depth1 = optimization.GetPrototypeDepthOfExpectedType( object, interceptor_holder); if (depth1 == kInvalidProtoDepth) { depth2 = optimization.GetPrototypeDepthOfExpectedType( interceptor_holder, Handle(lookup->holder())); } can_do_fast_api_call = depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth; } __ IncrementCounter(counters->call_const_interceptor(), 1, scratch1, scratch2); if (can_do_fast_api_call) { __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1, scratch1, scratch2); ReserveSpaceForFastApiCall(masm, scratch1); } // Check that the maps from receiver to interceptor's holder // haven't changed and thus we can invoke interceptor. Label miss_cleanup; Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, depth1, miss); // Invoke an interceptor and if it provides a value, // branch to |regular_invoke|. Label regular_invoke; LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2, ®ular_invoke); // Interceptor returned nothing for this property. Try to use cached // constant function. // Check that the maps from interceptor's holder to constant function's // holder haven't changed and thus we can use cached constant function. if (*interceptor_holder != lookup->holder()) { stub_compiler_->CheckPrototypes(interceptor_holder, receiver, Handle(lookup->holder()), scratch1, scratch2, scratch3, name, depth2, miss); } else { // CheckPrototypes has a side effect of fetching a 'holder' // for API (object which is instanceof for the signature). It's // safe to omit it here, as if present, it should be fetched // by the previous CheckPrototypes. ASSERT(depth2 == kInvalidProtoDepth); } // Invoke function. if (can_do_fast_api_call) { GenerateFastApiDirectCall(masm, optimization, arguments_.immediate()); } else { CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction(optimization.constant_function(), arguments_, JUMP_FUNCTION, NullCallWrapper(), call_kind); } // Deferred code for fast API call case---clean preallocated space. if (can_do_fast_api_call) { __ bind(&miss_cleanup); FreeSpaceForFastApiCall(masm); __ b(miss_label); } // Invoke a regular function. __ bind(®ular_invoke); if (can_do_fast_api_call) { FreeSpaceForFastApiCall(masm); } } void CompileRegular(MacroAssembler* masm, Handle object, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle name, Handle interceptor_holder, Label* miss_label) { Register holder = stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss_label); // Call a runtime function to load the interceptor property. FrameScope scope(masm, StackFrame::INTERNAL); // Save the name_ register across the call. __ push(name_); PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder); __ CallExternalReference( ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall), masm->isolate()), 6); // Restore the name_ register. __ pop(name_); // Leave the internal frame. } void LoadWithInterceptor(MacroAssembler* masm, Register receiver, Register holder, Handle holder_obj, Register scratch, Label* interceptor_succeeded) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(holder, name_); CompileCallLoadPropertyWithInterceptor(masm, receiver, holder, name_, holder_obj); __ pop(name_); // Restore the name. __ pop(receiver); // Restore the holder. } // If interceptor returns no-result sentinel, call the constant function. __ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r3, scratch); __ bne(interceptor_succeeded); } StubCompiler* stub_compiler_; const ParameterCount& arguments_; Register name_; Code::ExtraICState extra_ic_state_; }; // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. static void GenerateCheckPropertyCell(MacroAssembler* masm, Handle global, Handle name, Register scratch, Label* miss) { Handle cell = GlobalObject::EnsurePropertyCell(global, name); ASSERT(cell->value()->IsTheHole()); __ mov(scratch, Operand(cell)); __ LoadP(scratch, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch, ip); __ bne(miss); } // Calls GenerateCheckPropertyCell for each global object in the prototype chain // from object to (but not including) holder. static void GenerateCheckPropertyCells(MacroAssembler* masm, Handle object, Handle holder, Handle name, Register scratch, Label* miss) { Handle current = object; while (!current.is_identical_to(holder)) { if (current->IsGlobalObject()) { GenerateCheckPropertyCell(masm, Handle::cast(current), name, scratch, miss); } current = Handle(JSObject::cast(current->GetPrototype())); } } #undef __ #define __ ACCESS_MASM(masm()) Register StubCompiler::CheckPrototypes(Handle object, Register object_reg, Handle holder, Register holder_reg, Register scratch1, Register scratch2, Handle name, int save_at_depth, Label* miss) { // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; if (save_at_depth == depth) { __ StoreP(reg, MemOperand(sp)); } // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. Handle current = object; while (!current.is_identical_to(holder)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); Handle prototype(JSObject::cast(current->GetPrototype())); if (!current->HasFastProperties() && !current->IsJSGlobalObject() && !current->IsJSGlobalProxy()) { if (!name->IsSymbol()) { name = factory()->LookupSymbol(name); } ASSERT(current->property_dictionary()->FindEntry(*name) == StringDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ LoadP(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ LoadP(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { Handle current_map(current->map()); __ CheckMap(reg, scratch1, current_map, miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. if (current->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch2, miss); } reg = holder_reg; // From now on the object will be in holder_reg. if (heap()->InNewSpace(*prototype)) { // The prototype is in new space; we cannot store a reference to it // in the code. Load it from the map. __ LoadP(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. __ mov(reg, Operand(prototype)); } } if (save_at_depth == depth) { __ StoreP(reg, MemOperand(sp)); } // Go to the next object in the prototype chain. current = prototype; } // Log the check depth. LOG(masm()->isolate(), IntEvent("check-maps-depth", depth + 1)); // Check the holder map. __ CheckMap(reg, scratch1, Handle(current->map()), miss, DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform security check for access to the global object. ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded()); if (holder->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // If we've skipped any global objects, it's not enough to verify that // their maps haven't changed. We also need to check that the property // cell for the property is still empty. GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss); // Return the register containing the holder. return reg; } void StubCompiler::GenerateLoadField(Handle object, Handle holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, int index, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes( object, receiver, holder, scratch1, scratch2, scratch3, name, miss); GenerateFastPropertyLoad(masm(), r3, reg, holder, index); __ Ret(); } void StubCompiler::GenerateLoadConstant(Handle object, Handle holder, Register receiver, Register scratch1, Register scratch2, Register scratch3, Handle value, Handle name, Label* miss) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. CheckPrototypes( object, receiver, holder, scratch1, scratch2, scratch3, name, miss); // Return the constant value. __ LoadHeapObject(r3, value); __ Ret(); } void StubCompiler::GenerateDictionaryLoadCallback(Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Handle callback, Handle name, Label* miss) { ASSERT(!receiver.is(scratch1)); ASSERT(!receiver.is(scratch2)); ASSERT(!receiver.is(scratch3)); // Load the properties dictionary. Register dictionary = scratch1; __ LoadP(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Probe the dictionary. Label probe_done; StringDictionaryLookupStub::GeneratePositiveLookup(masm(), miss, &probe_done, dictionary, name_reg, scratch2, scratch3); __ bind(&probe_done); // If probing finds an entry in the dictionary, scratch3 contains the // pointer into the dictionary. Check that the value is the callback. Register pointer = scratch3; const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; const int kValueOffset = kElementsStartOffset + kPointerSize; __ LoadP(scratch2, FieldMemOperand(pointer, kValueOffset)); __ mov(scratch3, Operand(callback)); __ cmp(scratch2, scratch3); __ bne(miss); } void StubCompiler::GenerateLoadCallback(Handle object, Handle holder, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Handle callback, Handle name, Label* miss) { #if !ABI_RETURNS_HANDLES_IN_REGS bool alloc_return_buf = true; #else bool alloc_return_buf = false; #endif // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the maps haven't changed. Register reg = CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name, miss); if (!holder->HasFastProperties() && !holder->IsJSGlobalObject()) { GenerateDictionaryLoadCallback( reg, name_reg, scratch2, scratch3, scratch4, callback, name, miss); } // Build AccessorInfo::args_ list on the stack and push property name below // the exit frame to make GC aware of them and store pointers to them. __ push(receiver); __ mr(scratch2, sp); // ip = AccessorInfo::args_ if (heap()->InNewSpace(callback->data())) { __ Move(scratch3, callback); __ LoadP(scratch3, FieldMemOperand(scratch3, AccessorInfo::kDataOffset)); } else { __ Move(scratch3, Handle(callback->data())); } __ Push(reg, scratch3); __ mov(scratch3, Operand(ExternalReference::isolate_address())); __ Push(scratch3, name_reg); // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 or 3 extra slots on stack (depending on alloc_return_buf): // [0] space for DirectCEntryStub's LR save // [1] space for pointer-sized non-scalar return value (r3) // [2] AccessorInfo // // Otherwise: // // Create 3 or 4 extra slots on stack (depending on alloc_return_buf): // [0] space for DirectCEntryStub's LR save // [1] (optional) space for pointer-sized non-scalar return value (r3) // [2] copy of Handle (first arg) // [3] AccessorInfo // // If alloc_return_buf, we shift the arguments over a register // (e.g. r3 -> r4) to allow for the return value buffer in implicit // first arg. CallApiFunctionAndReturn will setup r3. #if ABI_PASSES_HANDLES_IN_REGS const int kAccessorInfoSlot = kStackFrameExtraParamSlot + (alloc_return_buf ? 2 : 1); #else const int kAccessorInfoSlot = kStackFrameExtraParamSlot + (alloc_return_buf ? 3 : 2); int kArg0Slot = kStackFrameExtraParamSlot + (alloc_return_buf ? 2 : 1); #endif const int kApiStackSpace = (alloc_return_buf ? 4 : 3); Register arg0 = (alloc_return_buf ? r4 : r3); Register arg1 = (alloc_return_buf ? r5 : r4); __ mr(arg1, scratch2); // Saved in case scratch2 == arg0. __ mr(arg0, sp); // arg0 = Handle FrameScope frame_scope(masm(), StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); #if !ABI_PASSES_HANDLES_IN_REGS // pass 1st arg by reference __ StoreP(arg0, MemOperand(sp, kArg0Slot * kPointerSize)); __ addi(arg0, sp, Operand(kArg0Slot * kPointerSize)); #endif // Create AccessorInfo instance on the stack above the exit frame with // ip (internal::Object** args_) as the data. __ StoreP(arg1, MemOperand(sp, kAccessorInfoSlot * kPointerSize)); // arg1 = AccessorInfo& __ addi(arg1, sp, Operand(kAccessorInfoSlot * kPointerSize)); const int kStackUnwindSpace = 5; Address getter_address = v8::ToCData
(callback->getter()); ApiFunction fun(getter_address); ExternalReference ref = ExternalReference(&fun, ExternalReference::DIRECT_GETTER_CALL, masm()->isolate()); __ CallApiFunctionAndReturn(ref, kStackUnwindSpace); } void StubCompiler::GenerateLoadInterceptor(Handle object, Handle interceptor_holder, LookupResult* lookup, Register receiver, Register name_reg, Register scratch1, Register scratch2, Register scratch3, Handle name, Label* miss) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsFound() && lookup->IsCacheable()) { if (lookup->IsField()) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsAccessorInfo()) { AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); compile_followup_inline = callback->getter() != NULL && callback->IsCompatibleReceiver(*object); } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1)); // Preserve the receiver register explicitly whenever it is different from // the holder and it is needed should the interceptor return without any // result. The CALLBACKS case needs the receiver to be passed into C++ code, // the FIELD case might cause a miss during the prototype check. bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder(); bool must_preserve_receiver_reg = !receiver.is(holder_reg) && (lookup->type() == CALLBACKS || must_perfrom_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver, holder_reg, name_reg); } else { __ Push(holder_reg, name_reg); } // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor(masm(), receiver, holder_reg, name_reg, interceptor_holder); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r3, scratch1); __ beq(&interceptor_failed); frame_scope.GenerateLeaveFrame(); __ Ret(); __ bind(&interceptor_failed); __ pop(name_reg); __ pop(holder_reg); if (must_preserve_receiver_reg) { __ pop(receiver); } // Leave the internal frame. } // Check that the maps from interceptor's holder to lookup's holder // haven't changed. And load lookup's holder into |holder| register. if (must_perfrom_prototype_check) { holder_reg = CheckPrototypes(interceptor_holder, holder_reg, Handle(lookup->holder()), scratch1, scratch2, scratch3, name, miss); } if (lookup->IsField()) { // We found FIELD property in prototype chain of interceptor's holder. // Retrieve a field from field's holder. GenerateFastPropertyLoad(masm(), r3, holder_reg, Handle(lookup->holder()), lookup->GetFieldIndex()); __ Ret(); } else { // We found CALLBACKS property in prototype chain of interceptor's // holder. ASSERT(lookup->type() == CALLBACKS); Handle callback( AccessorInfo::cast(lookup->GetCallbackObject())); ASSERT(callback->getter() != NULL); // Tail call to runtime. // Important invariant in CALLBACKS case: the code above must be // structured to never clobber |receiver| register. __ Move(scratch2, callback); // holder_reg is either receiver or scratch1. if (!receiver.is(holder_reg)) { ASSERT(scratch1.is(holder_reg)); __ Push(receiver, holder_reg); } else { __ push(receiver); __ push(holder_reg); } __ LoadP(scratch3, FieldMemOperand(scratch2, AccessorInfo::kDataOffset)); __ mov(scratch1, Operand(ExternalReference::isolate_address())); __ Push(scratch3, scratch1, scratch2, name_reg); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadCallbackProperty), masm()->isolate()); __ TailCallExternalReference(ref, 6, 1); } } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, scratch1, scratch2, scratch3, name, miss); PushInterceptorArguments(masm(), receiver, holder_reg, name_reg, interceptor_holder); ExternalReference ref = ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), masm()->isolate()); __ TailCallExternalReference(ref, 6, 1); } } void CallStubCompiler::GenerateNameCheck(Handle name, Label* miss) { if (kind_ == Code::KEYED_CALL_IC) { __ Cmpi(r5, Operand(name), r0); __ bne(miss); } } void CallStubCompiler::GenerateGlobalReceiverCheck(Handle object, Handle holder, Handle name, Label* miss) { ASSERT(holder->IsGlobalObject()); // Get the number of arguments. const int argc = arguments().immediate(); // Get the receiver from the stack. __ LoadP(r3, MemOperand(sp, argc * kPointerSize), r0); // Check that the maps haven't changed. __ JumpIfSmi(r3, miss); CheckPrototypes(object, r3, holder, r6, r4, r7, name, miss); } void CallStubCompiler::GenerateLoadFunctionFromCell( Handle cell, Handle function, Label* miss) { // Get the value from the cell. __ mov(r6, Operand(cell)); __ LoadP(r4, FieldMemOperand(r6, JSGlobalPropertyCell::kValueOffset)); // Check that the cell contains the same function. if (heap()->InNewSpace(*function)) { // We can't embed a pointer to a function in new space so we have // to verify that the shared function info is unchanged. This has // the nice side effect that multiple closures based on the same // function can all use this call IC. Before we load through the // function, we have to verify that it still is a function. __ JumpIfSmi(r4, miss); __ CompareObjectType(r4, r6, r6, JS_FUNCTION_TYPE); __ bne(miss); // Check the shared function info. Make sure it hasn't changed. __ Move(r6, Handle(function->shared())); __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ cmp(r7, r6); } else { __ mov(r6, Operand(function)); __ cmp(r4, r6); } __ bne(miss); } void CallStubCompiler::GenerateMissBranch() { Handle code = isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(), kind_, extra_state_); __ Jump(code, RelocInfo::CODE_TARGET); } Handle CallStubCompiler::CompileCallField(Handle object, Handle holder, int index, Handle name) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); const int argc = arguments().immediate(); // Get the receiver of the function from the stack into r3. __ LoadP(r3, MemOperand(sp, argc * kPointerSize), r0); // Check that the receiver isn't a smi. __ JumpIfSmi(r3, &miss); // Do the right check and compute the holder register. Register reg = CheckPrototypes(object, r3, holder, r4, r6, r7, name, &miss); GenerateFastPropertyLoad(masm(), r4, reg, holder, index); GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(Code::FIELD, name); } Handle CallStubCompiler::CompileArrayPushCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || !cell.is_null()) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); Register receiver = r4; // Get the receiver from the stack const int argc = arguments().immediate(); __ LoadP(receiver, MemOperand(sp, argc * kPointerSize), r0); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), receiver, holder, r6, r3, r7, name, &miss); if (argc == 0) { // Nothing to do, just return the length. __ LoadP(r3, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Drop(argc + 1); __ Ret(); } else { Label call_builtin; if (argc == 1) { // Otherwise fall through to call the builtin. Label attempt_to_grow_elements; Register elements = r9; Register end_elements = r8; // Get the elements array of the object. __ LoadP(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ CheckMap(elements, r3, Heap::kFixedArrayMapRootIndex, &call_builtin, DONT_DO_SMI_CHECK); // Get the array's length into r3 and calculate new length. __ LoadP(r3, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ AddSmiLiteral(r3, r3, Smi::FromInt(argc), r0); // Get the elements' length. __ LoadP(r7, FieldMemOperand(elements, FixedArray::kLengthOffset)); // Check if we could survive without allocation. __ cmp(r3, r7); __ bgt(&attempt_to_grow_elements); // Check if value is a smi. Label with_write_barrier; __ LoadP(r7, MemOperand(sp, (argc - 1) * kPointerSize), r0); __ JumpIfNotSmi(r7, &with_write_barrier); // Save new length. __ StoreP(r3, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); // Store the value. // We may need a register containing the address end_elements below, // so write back the value in end_elements. __ SmiToPtrArrayOffset(end_elements, r3); __ add(end_elements, elements, end_elements); const int kEndElementsOffset = FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; __ Add(end_elements, end_elements, kEndElementsOffset, r0); __ StoreP(r7, MemOperand(end_elements)); // Check for a smi. __ Drop(argc + 1); __ Ret(); __ bind(&with_write_barrier); __ LoadP(r6, FieldMemOperand(receiver, HeapObject::kMapOffset)); if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) { Label fast_object, not_fast_object; __ CheckFastObjectElements(r6, r10, ¬_fast_object); __ b(&fast_object); // In case of fast smi-only, convert to fast object, otherwise bail out. __ bind(¬_fast_object); __ CheckFastSmiElements(r6, r10, &call_builtin); // r4: receiver // r6: map Label try_holey_map; __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, r6, r10, &try_holey_map); __ mr(r5, receiver); ElementsTransitionGenerator:: GenerateMapChangeElementsTransition(masm()); __ b(&fast_object); __ bind(&try_holey_map); __ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS, FAST_HOLEY_ELEMENTS, r6, r10, &call_builtin); __ mr(r5, receiver); ElementsTransitionGenerator:: GenerateMapChangeElementsTransition(masm()); __ bind(&fast_object); } else { __ CheckFastObjectElements(r6, r6, &call_builtin); } // Save new length. __ StoreP(r3, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); // Store the value. // We may need a register containing the address end_elements below, // so write back the value in end_elements. __ SmiToPtrArrayOffset(end_elements, r3); __ add(end_elements, elements, end_elements); __ Add(end_elements, end_elements, kEndElementsOffset, r0); __ StoreP(r7, MemOperand(end_elements)); __ RecordWrite(elements, end_elements, r7, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Drop(argc + 1); __ Ret(); __ bind(&attempt_to_grow_elements); // r3: array's length + 1. // r7: elements' length. if (!FLAG_inline_new) { __ b(&call_builtin); } __ LoadP(r5, MemOperand(sp, (argc - 1) * kPointerSize), r0); // Growing elements that are SMI-only requires special handling in case // the new element is non-Smi. For now, delegate to the builtin. Label no_fast_elements_check; __ JumpIfSmi(r5, &no_fast_elements_check); __ LoadP(r10, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ CheckFastObjectElements(r10, r10, &call_builtin); __ bind(&no_fast_elements_check); Isolate* isolate = masm()->isolate(); ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate); const int kAllocationDelta = 4; // Load top and check if it is the end of elements. __ SmiToPtrArrayOffset(end_elements, r3); __ add(end_elements, elements, end_elements); __ Add(end_elements, end_elements, kEndElementsOffset, r0); __ mov(r10, Operand(new_space_allocation_top)); __ LoadP(r6, MemOperand(r10)); __ cmp(end_elements, r6); __ bne(&call_builtin); __ mov(r22, Operand(new_space_allocation_limit)); __ LoadP(r22, MemOperand(r22)); __ addi(r6, r6, Operand(kAllocationDelta * kPointerSize)); __ cmpl(r6, r22); __ bgt(&call_builtin); // We fit and could grow elements. // Update new_space_allocation_top. __ StoreP(r6, MemOperand(r10)); // Push the argument. __ StoreP(r5, MemOperand(end_elements)); // Fill the rest with holes. __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); for (int i = 1; i < kAllocationDelta; i++) { __ StoreP(r6, MemOperand(end_elements, i * kPointerSize), r0); } // Update elements' and array's sizes. __ StoreP(r3, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); __ AddSmiLiteral(r7, r7, Smi::FromInt(kAllocationDelta), r0); __ StoreP(r7, FieldMemOperand(elements, FixedArray::kLengthOffset), r0); // Elements are in new space, so write barrier is not required. __ Drop(argc + 1); __ Ret(); } __ bind(&call_builtin); __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush, masm()->isolate()), argc + 1, 1); } // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileArrayPopCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not an array, bail out to regular call. if (!object->IsJSArray() || !cell.is_null()) return Handle::null(); Label miss, return_undefined, call_builtin; Register receiver = r4; Register elements = r6; GenerateNameCheck(name, &miss); // Get the receiver from the stack const int argc = arguments().immediate(); __ LoadP(receiver, MemOperand(sp, argc * kPointerSize), r0); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), receiver, holder, elements, r7, r3, name, &miss); // Get the elements array of the object. __ LoadP(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); // Check that the elements are in fast mode and writable. __ CheckMap(elements, r3, Heap::kFixedArrayMapRootIndex, &call_builtin, DONT_DO_SMI_CHECK); // Get the array's length into r7 and calculate new length. __ LoadP(r7, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ SubSmiLiteral(r7, r7, Smi::FromInt(1), r0); __ cmpi(r7, Operand::Zero()); __ blt(&return_undefined); // Get the last element. __ LoadRoot(r9, Heap::kTheHoleValueRootIndex); // We can't address the last element in one operation. Compute the more // expensive shift first, and use an offset later on. __ SmiToPtrArrayOffset(r3, r7); __ add(elements, elements, r3); __ LoadP(r3, FieldMemOperand(elements, FixedArray::kHeaderSize)); __ cmp(r3, r9); __ beq(&call_builtin); // Set the array's length. __ StoreP(r7, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); // Fill with the hole. __ StoreP(r9, FieldMemOperand(elements, FixedArray::kHeaderSize), r0); __ Drop(argc + 1); __ Ret(); __ bind(&return_undefined); __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); __ Drop(argc + 1); __ Ret(); __ bind(&call_builtin); __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop, masm()->isolate()), argc + 1, 1); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringCharCodeAtCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) return Handle::null(); const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state_) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, r3, &miss); ASSERT(!object.is_identical_to(holder)); CheckPrototypes(Handle(JSObject::cast(object->GetPrototype())), r3, holder, r4, r6, r7, name, &miss); Register receiver = r4; Register index = r7; Register result = r3; __ LoadP(receiver, MemOperand(sp, argc * kPointerSize), r0); if (argc > 0) { __ LoadP(index, MemOperand(sp, (argc - 1) * kPointerSize), r0); } else { __ LoadRoot(index, Heap::kUndefinedValueRootIndex); } StringCharCodeAtGenerator generator(receiver, index, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ Drop(argc + 1); __ Ret(); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ LoadRoot(r3, Heap::kNanValueRootIndex); __ Drop(argc + 1); __ Ret(); } __ bind(&miss); // Restore function name in r5. __ Move(r5, name); __ bind(&name_miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringCharAtCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- // If object is not a string, bail out to regular call. if (!object->IsString() || !cell.is_null()) return Handle::null(); const int argc = arguments().immediate(); Label miss; Label name_miss; Label index_out_of_range; Label* index_out_of_range_label = &index_out_of_range; if (kind_ == Code::CALL_IC && (CallICBase::StringStubState::decode(extra_state_) == DEFAULT_STRING_STUB)) { index_out_of_range_label = &miss; } GenerateNameCheck(name, &name_miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype(masm(), Context::STRING_FUNCTION_INDEX, r3, &miss); ASSERT(!object.is_identical_to(holder)); CheckPrototypes(Handle(JSObject::cast(object->GetPrototype())), r3, holder, r4, r6, r7, name, &miss); Register receiver = r3; Register index = r7; Register scratch = r6; Register result = r3; __ LoadP(receiver, MemOperand(sp, argc * kPointerSize), r0); if (argc > 0) { __ LoadP(index, MemOperand(sp, (argc - 1) * kPointerSize), r0); } else { __ LoadRoot(index, Heap::kUndefinedValueRootIndex); } StringCharAtGenerator generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. index_out_of_range_label, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm()); __ Drop(argc + 1); __ Ret(); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); if (index_out_of_range.is_linked()) { __ bind(&index_out_of_range); __ LoadRoot(r3, Heap::kEmptyStringRootIndex); __ Drop(argc + 1); __ Ret(); } __ bind(&miss); // Restore function name in r5. __ Move(r5, name); __ bind(&name_miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileStringFromCharCodeCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ LoadP(r4, MemOperand(sp, 1 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r4, &miss); CheckPrototypes(Handle::cast(object), r4, holder, r3, r6, r7, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the char code argument. Register code = r4; __ LoadP(code, MemOperand(sp, 0 * kPointerSize)); // Check the code is a smi. Label slow; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(code, &slow); // Convert the smi code to uint16. __ LoadSmiLiteral(r0, Smi::FromInt(0xffff)); __ and_(code, code, r0); StringCharFromCodeGenerator generator(code, r3); generator.GenerateFast(masm()); __ Drop(argc + 1); __ Ret(); StubRuntimeCallHelper call_helper; generator.GenerateSlow(masm(), call_helper); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&miss); // r5: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(Code::NORMAL, name); } Handle CallStubCompiler::CompileMathFloorCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss, slow, not_smi, positive, drop_arg_return; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ LoadP(r4, MemOperand(sp, 1 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r4, &miss); CheckPrototypes(Handle::cast(object), r4, holder, r3, r6, r7, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into r3. __ LoadP(r3, MemOperand(sp, 0 * kPointerSize)); // If the argument is a smi, just return. STATIC_ASSERT(kSmiTag == 0); __ andi(r0, r3, Operand(kSmiTagMask)); __ bne(¬_smi, cr0); __ Drop(argc + 1); __ Ret(); __ bind(¬_smi); __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK); // Load the HeapNumber value. __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset)); // Round to integer minus if (CpuFeatures::IsSupported(FPU)) { // The frim instruction is only supported on POWER5 // and higher __ frim(d1, d1); #if V8_TARGET_ARCH_PPC64 __ fctidz(d1, d1); #else __ fctiwz(d1, d1); #endif } else { // This sequence is more portable (avoids frim) // This should be evaluated to determine if frim provides any // perf benefit or if we can simply use the compatible sequence // always __ SetRoundingMode(kRoundToMinusInf); #if V8_TARGET_ARCH_PPC64 __ fctid(d1, d1); #else __ fctiw(d1, d1); #endif __ ResetRoundingMode(); } // Convert the argument to an integer. __ stfdu(d1, MemOperand(sp, -8)); #if V8_TARGET_ARCH_PPC64 __ ld(r3, MemOperand(sp, 0)); #else #if __FLOAT_WORD_ORDER == __LITTLE_ENDIAN __ lwz(r3, MemOperand(sp, 0)); #else __ lwz(r3, MemOperand(sp, 4)); #endif #endif __ addi(sp, sp, Operand(8)); // if resulting conversion is negative, invert for bit tests __ TestSignBit(r3, r0); __ mr(r0, r3); __ beq(&positive, cr0); __ neg(r0, r3); __ bind(&positive); // if any of the high bits are set, fail to generic __ JumpIfNotUnsignedSmiCandidate(r0, r0, &slow); // Tag the result. STATIC_ASSERT(kSmiTag == 0); __ SmiTag(r3); // Check for -0 __ cmpi(r3, Operand::Zero()); __ bne(&drop_arg_return); __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); __ lwz(r4, FieldMemOperand(r4, HeapNumber::kExponentOffset)); __ TestSignBit32(r4, r0); __ beq(&drop_arg_return, cr0); // If our HeapNumber is negative it was -0, so load its address and return. __ LoadP(r3, MemOperand(sp)); __ bind(&drop_arg_return); __ Drop(argc + 1); __ Ret(); __ bind(&slow); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&miss); // r5: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(Code::NORMAL, name); } Handle CallStubCompiler::CompileMathAbsCall( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : function name // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) // -- ... // -- sp[argc * 4] : receiver // ----------------------------------- const int argc = arguments().immediate(); // If the object is not a JSObject or we got an unexpected number of // arguments, bail out to the regular call. if (!object->IsJSObject() || argc != 1) return Handle::null(); Label miss; GenerateNameCheck(name, &miss); if (cell.is_null()) { __ LoadP(r4, MemOperand(sp, 1 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(r4, &miss); CheckPrototypes(Handle::cast(object), r4, holder, r3, r6, r7, name, &miss); } else { ASSERT(cell->value() == *function); GenerateGlobalReceiverCheck(Handle::cast(object), holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); } // Load the (only) argument into r3. __ LoadP(r3, MemOperand(sp, 0 * kPointerSize)); // Check if the argument is a smi. Label not_smi; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(r3, ¬_smi); // Do bitwise not or do nothing depending on the sign of the // argument. __ ShiftRightArithImm(r0, r3, kBitsPerPointer - 1); __ xor_(r4, r3, r0); // Add 1 or do nothing depending on the sign of the argument. __ sub(r3, r4, r0, LeaveOE, SetRC); // If the result is still negative, go to the slow case. // This only happens for the most negative smi. Label slow; __ blt(&slow, cr0); // Smi case done. __ Drop(argc + 1); __ Ret(); // Check if the argument is a heap number and load its exponent and // sign. __ bind(¬_smi); __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK); __ lwz(r4, FieldMemOperand(r3, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, // just return it. Label negative_sign; __ andis(r0, r4, Operand(HeapNumber::kSignMask >> 16)); __ bne(&negative_sign, cr0); __ Drop(argc + 1); __ Ret(); // If the argument is negative, clear the sign, and return a new // number. __ bind(&negative_sign); STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); __ xoris(r4, r4, Operand(HeapNumber::kSignMask >> 16)); __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r3, r7, r8, r9, &slow); __ stw(r4, FieldMemOperand(r3, HeapNumber::kExponentOffset)); __ stw(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); __ Drop(argc + 1); __ Ret(); // Tail call the full function. We do not have to patch the receiver // because the function makes no use of it. __ bind(&slow); __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&miss); // r5: function name. GenerateMissBranch(); // Return the generated code. return cell.is_null() ? GetCode(function) : GetCode(Code::NORMAL, name); } Handle CallStubCompiler::CompileFastApiCall( const CallOptimization& optimization, Handle object, Handle holder, Handle cell, Handle function, Handle name) { Counters* counters = isolate()->counters(); ASSERT(optimization.is_simple_api_call()); // Bail out if object is a global object as we don't want to // repatch it to global receiver. if (object->IsGlobalObject()) return Handle::null(); if (!cell.is_null()) return Handle::null(); if (!object->IsJSObject()) return Handle::null(); int depth = optimization.GetPrototypeDepthOfExpectedType( Handle::cast(object), holder); if (depth == kInvalidProtoDepth) return Handle::null(); Label miss, miss_before_stack_reserved; GenerateNameCheck(name, &miss_before_stack_reserved); // Get the receiver from the stack. const int argc = arguments().immediate(); __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); // Check that the receiver isn't a smi. __ JumpIfSmi(r4, &miss_before_stack_reserved); __ IncrementCounter(counters->call_const(), 1, r3, r6); __ IncrementCounter(counters->call_const_fast_api(), 1, r3, r6); ReserveSpaceForFastApiCall(masm(), r3); // Check that the maps haven't changed and find a Holder as a side effect. CheckPrototypes(Handle::cast(object), r4, holder, r3, r6, r7, name, depth, &miss); GenerateFastApiDirectCall(masm(), optimization, argc); __ bind(&miss); FreeSpaceForFastApiCall(masm()); __ bind(&miss_before_stack_reserved); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileCallConstant(Handle object, Handle holder, Handle function, Handle name, CheckType check) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- if (HasCustomCallGenerator(function)) { Handle code = CompileCustomCall(object, holder, Handle::null(), function, name); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; GenerateNameCheck(name, &miss); // Get the receiver from the stack const int argc = arguments().immediate(); __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); // Check that the receiver isn't a smi. if (check != NUMBER_CHECK) { __ JumpIfSmi(r4, &miss); } // Make sure that it's okay not to patch the on stack receiver // unless we're doing a receiver map check. ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); switch (check) { case RECEIVER_MAP_CHECK: __ IncrementCounter(masm()->isolate()->counters()->call_const(), 1, r3, r6); // Check that the maps haven't changed. CheckPrototypes(Handle::cast(object), r4, holder, r3, r6, r7, name, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ LoadP(r6, FieldMemOperand(r4, GlobalObject::kGlobalReceiverOffset)); __ StoreP(r6, MemOperand(sp, argc * kPointerSize)); } break; case STRING_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { // Check that the object is a two-byte string or a symbol. __ CompareObjectType(r4, r6, r6, FIRST_NONSTRING_TYPE); __ bge(&miss); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::STRING_FUNCTION_INDEX, r3, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), r3, holder, r6, r4, r7, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ b(&miss); } break; case NUMBER_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { Label fast; // Check that the object is a smi or a heap number. __ JumpIfSmi(r4, &fast); __ CompareObjectType(r4, r3, r3, HEAP_NUMBER_TYPE); __ bne(&miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::NUMBER_FUNCTION_INDEX, r3, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), r3, holder, r6, r4, r7, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ b(&miss); } break; case BOOLEAN_CHECK: if (function->IsBuiltin() || !function->shared()->is_classic_mode()) { Label fast; // Check that the object is a boolean. __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r4, ip); __ beq(&fast); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ cmp(r4, ip); __ bne(&miss); __ bind(&fast); // Check that the maps starting from the prototype haven't changed. GenerateDirectLoadGlobalFunctionPrototype( masm(), Context::BOOLEAN_FUNCTION_INDEX, r3, &miss); CheckPrototypes( Handle(JSObject::cast(object->GetPrototype())), r3, holder, r6, r4, r7, name, &miss); } else { // Calling non-strict non-builtins with a value as the receiver // requires boxing. __ b(&miss); } break; } CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; __ InvokeFunction( function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(function); } Handle CallStubCompiler::CompileCallInterceptor(Handle object, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); // Get the receiver from the stack. __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); CallInterceptorCompiler compiler(this, arguments(), r5, extra_state_); compiler.Compile(masm(), object, holder, name, &lookup, r4, r6, r7, r3, &miss); // Move returned value, the function to call, to r4. __ mr(r4, r3); // Restore receiver. __ LoadP(r3, MemOperand(sp, argc * kPointerSize), r0); GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_); // Handle call cache miss. __ bind(&miss); GenerateMissBranch(); // Return the generated code. return GetCode(Code::INTERCEPTOR, name); } Handle CallStubCompiler::CompileCallGlobal( Handle object, Handle holder, Handle cell, Handle function, Handle name) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- if (HasCustomCallGenerator(function)) { Handle code = CompileCustomCall(object, holder, cell, function, name); // A null handle means bail out to the regular compiler code below. if (!code.is_null()) return code; } Label miss; GenerateNameCheck(name, &miss); // Get the number of arguments. const int argc = arguments().immediate(); GenerateGlobalReceiverCheck(object, holder, name, &miss); GenerateLoadFunctionFromCell(cell, function, &miss); // Patch the receiver on the stack with the global proxy if // necessary. if (object->IsGlobalObject()) { __ LoadP(r6, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset)); __ StoreP(r6, MemOperand(sp, argc * kPointerSize), r0); } // Set up the context (function already in r4). __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); // Jump to the cached code (tail call). Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->call_global_inline(), 1, r6, r7); ParameterCount expected(function->shared()->formal_parameter_count()); CallKind call_kind = CallICBase::Contextual::decode(extra_state_) ? CALL_AS_FUNCTION : CALL_AS_METHOD; // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. __ LoadP(r6, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); __ InvokeCode(r6, expected, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind); // Handle call cache miss. __ bind(&miss); __ IncrementCounter(counters->call_global_inline_miss(), 1, r4, r6); GenerateMissBranch(); // Return the generated code. return GetCode(Code::NORMAL, name); } Handle StoreStubCompiler::CompileStoreField(Handle object, int index, Handle transition, Handle name) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateStoreField(masm(), object, index, transition, name, r4, r5, r6, r7, &miss); __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition.is_null() ? Code::FIELD : Code::MAP_TRANSITION, name); } Handle StoreStubCompiler::CompileStoreCallback( Handle name, Handle receiver, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the maps haven't changed. __ JumpIfSmi(r4, &miss); CheckPrototypes(receiver, r4, holder, r6, r7, r8, name, &miss); // Stub never generated for non-global objects that require access checks. ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded()); __ push(r4); // receiver __ mov(ip, Operand(callback)); // callback info __ Push(ip, r5, r3); // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), masm()->isolate()); __ TailCallExternalReference(store_callback_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(Code::CALLBACKS, name); } #undef __ #define __ ACCESS_MASM(masm) void StoreStubCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle setter) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save value register, so we can restore it later. __ push(r3); if (!setter.is_null()) { // Call the JavaScript setter with receiver and value on the stack. __ Push(r4, r3); ParameterCount actual(1); __ InvokeFunction(setter, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ pop(r3); // Restore context register. __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } __ Ret(); } #undef __ #define __ ACCESS_MASM(masm()) Handle StoreStubCompiler::CompileStoreViaSetter( Handle name, Handle receiver, Handle holder, Handle setter) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the maps haven't changed. __ JumpIfSmi(r4, &miss); CheckPrototypes(receiver, r4, holder, r6, r7, r8, name, &miss); GenerateStoreViaSetter(masm(), setter); __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(Code::CALLBACKS, name); } Handle StoreStubCompiler::CompileStoreInterceptor( Handle receiver, Handle name) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the object hasn't changed. __ CheckMap(r4, r6, Handle(receiver->map()), &miss, DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS); // Perform global security token check if needed. if (receiver->IsJSGlobalProxy()) { __ CheckAccessGlobalProxy(r4, r6, &miss); } // Stub is never generated for non-global objects that require access // checks. ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded()); __ Push(r4, r5, r3); // Receiver, name, value. __ LoadSmiLiteral(r3, Smi::FromInt(strict_mode_)); __ push(r3); // strict mode // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), masm()->isolate()); __ TailCallExternalReference(store_ic_property, 4, 1); // Handle store cache miss. __ bind(&miss); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(Code::INTERCEPTOR, name); } Handle StoreStubCompiler::CompileStoreGlobal( Handle object, Handle cell, Handle name) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset)); __ mov(r7, Operand(Handle(object->map()))); __ cmp(r6, r7); __ bne(&miss); // Check that the value in the cell is not the hole. If it is, this // cell could have been deleted and reintroducing the global needs // to update the property details in the property dictionary of the // global object. We bail out to the runtime system to do that. __ mov(r7, Operand(cell)); __ LoadRoot(r8, Heap::kTheHoleValueRootIndex); __ LoadP(r9, FieldMemOperand(r7, JSGlobalPropertyCell::kValueOffset)); __ cmp(r8, r9); __ beq(&miss); // Store the value in the cell. __ StoreP(r3, FieldMemOperand(r7, JSGlobalPropertyCell::kValueOffset), r0); // Cells are always rescanned, so no write barrier here. Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->named_store_global_inline(), 1, r7, r6); __ Ret(); // Handle store cache miss. __ bind(&miss); __ IncrementCounter(counters->named_store_global_inline_miss(), 1, r7, r6); Handle ic = masm()->isolate()->builtins()->StoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(Code::NORMAL, name); } Handle LoadStubCompiler::CompileLoadNonexistent(Handle name, Handle object, Handle last) { // ----------- S t a t e ------------- // -- r3 : receiver // -- lr : return address // ----------------------------------- Label miss; // Check that receiver is not a smi. __ JumpIfSmi(r3, &miss); // Check the maps of the full prototype chain. CheckPrototypes(object, r3, last, r6, r4, r7, name, &miss); // If the last object in the prototype chain is a global object, // check that the global property cell is empty. if (last->IsGlobalObject()) { GenerateCheckPropertyCell( masm(), Handle::cast(last), name, r4, &miss); } // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); __ Ret(); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::NONEXISTENT, factory()->empty_string()); } Handle LoadStubCompiler::CompileLoadField(Handle object, Handle holder, int index, Handle name) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadField(object, holder, r3, r6, r4, r7, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::FIELD, name); } Handle LoadStubCompiler::CompileLoadCallback( Handle name, Handle object, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadCallback(object, holder, r3, r5, r6, r4, r7, r8, callback, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::CALLBACKS, name); } #undef __ #define __ ACCESS_MASM(masm) void LoadStubCompiler::GenerateLoadViaGetter(MacroAssembler* masm, Handle getter) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); if (!getter.is_null()) { // Call the JavaScript getter with the receiver on the stack. __ push(r3); ParameterCount actual(0); __ InvokeFunction(getter, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } __ Ret(); } #undef __ #define __ ACCESS_MASM(masm()) Handle LoadStubCompiler::CompileLoadViaGetter( Handle name, Handle receiver, Handle holder, Handle getter) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the maps haven't changed. __ JumpIfSmi(r3, &miss); CheckPrototypes(receiver, r3, holder, r6, r7, r4, name, &miss); GenerateLoadViaGetter(masm(), getter); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::CALLBACKS, name); } Handle LoadStubCompiler::CompileLoadConstant(Handle object, Handle holder, Handle value, Handle name) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateLoadConstant(object, holder, r3, r6, r4, r7, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::CONSTANT_FUNCTION, name); } Handle LoadStubCompiler::CompileLoadInterceptor(Handle object, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(object, holder, &lookup, r3, r5, r6, r4, r7, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::INTERCEPTOR, name); } Handle LoadStubCompiler::CompileLoadGlobal( Handle object, Handle holder, Handle cell, Handle name, bool is_dont_delete) { // ----------- S t a t e ------------- // -- r3 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Check that the map of the global has not changed. __ JumpIfSmi(r3, &miss); CheckPrototypes(object, r3, holder, r6, r7, r4, name, &miss); // Get the value from the cell. __ mov(r6, Operand(cell)); __ LoadP(r7, FieldMemOperand(r6, JSGlobalPropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r7, ip); __ beq(&miss); } __ mr(r3, r7); Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1, r4, r6); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->named_load_global_stub_miss(), 1, r4, r6); GenerateLoadMiss(masm(), Code::LOAD_IC); // Return the generated code. return GetCode(Code::NORMAL, name); } Handle KeyedLoadStubCompiler::CompileLoadField(Handle name, Handle receiver, Handle holder, int index) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ Cmpi(r3, Operand(name), r0); __ bne(&miss); GenerateLoadField(receiver, holder, r4, r5, r6, r7, index, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(Code::FIELD, name); } Handle KeyedLoadStubCompiler::CompileLoadCallback( Handle name, Handle receiver, Handle holder, Handle callback) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ Cmpi(r3, Operand(name), r0); __ bne(&miss); GenerateLoadCallback(receiver, holder, r4, r3, r5, r6, r7, r8, callback, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(Code::CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadConstant( Handle name, Handle receiver, Handle holder, Handle value) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ mov(r5, Operand(name)); __ cmp(r3, r5); __ bne(&miss); GenerateLoadConstant(receiver, holder, r4, r5, r6, r7, value, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); // Return the generated code. return GetCode(Code::CONSTANT_FUNCTION, name); } Handle KeyedLoadStubCompiler::CompileLoadInterceptor( Handle receiver, Handle holder, Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ Cmpi(r3, Operand(name), r0); __ bne(&miss); LookupResult lookup(isolate()); LookupPostInterceptor(holder, name, &lookup); GenerateLoadInterceptor(receiver, holder, &lookup, r4, r3, r5, r6, r7, name, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(Code::INTERCEPTOR, name); } Handle KeyedLoadStubCompiler::CompileLoadArrayLength( Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; // Check the key is the cached one. __ Cmpi(r3, Operand(name), r0); __ bne(&miss); GenerateLoadArrayLength(masm(), r4, r5, &miss); __ bind(&miss); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(Code::CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadStringLength( Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->keyed_load_string_length(), 1, r5, r6); // Check the key is the cached one. __ Cmpi(r3, Operand(name), r0); __ bne(&miss); GenerateLoadStringLength(masm(), r4, r5, r6, &miss, true); __ bind(&miss); __ DecrementCounter(counters->keyed_load_string_length(), 1, r5, r6); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(Code::CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadFunctionPrototype( Handle name) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->keyed_load_function_prototype(), 1, r5, r6); // Check the name hasn't changed. __ Cmpi(r3, Operand(name), r0); __ bne(&miss); GenerateLoadFunctionPrototype(masm(), r4, r5, r6, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_load_function_prototype(), 1, r5, r6); GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); return GetCode(Code::CALLBACKS, name); } Handle KeyedLoadStubCompiler::CompileLoadElement( Handle receiver_map) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- ElementsKind elements_kind = receiver_map->elements_kind(); Handle stub = KeyedLoadElementStub(elements_kind).GetCode(); __ DispatchMap(r4, r5, receiver_map, stub, DO_SMI_CHECK); Handle ic = isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(Code::NORMAL, factory()->empty_string()); } Handle KeyedLoadStubCompiler::CompileLoadPolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_ics) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss; __ JumpIfSmi(r4, &miss); int receiver_count = receiver_maps->length(); __ LoadP(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); for (int current = 0; current < receiver_count; ++current) { Label no_match; __ mov(ip, Operand(receiver_maps->at(current))); __ cmp(r5, ip); __ bne(&no_match); __ Jump(handler_ics->at(current), RelocInfo::CODE_TARGET, al); __ bind(&no_match); } __ bind(&miss); Handle miss_ic = isolate()->builtins()->KeyedLoadIC_Miss(); __ Jump(miss_ic, RelocInfo::CODE_TARGET, al); // Return the generated code. return GetCode(Code::NORMAL, factory()->empty_string(), MEGAMORPHIC); } Handle KeyedStoreStubCompiler::CompileStoreField(Handle object, int index, Handle transition, Handle name) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : name // -- r5 : receiver // -- lr : return address // ----------------------------------- Label miss; Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->keyed_store_field(), 1, r6, r7); // Check that the name has not changed. __ Cmpi(r4, Operand(name), r0); __ bne(&miss); // r6 is used as scratch register. r4 and r5 keep their values if a jump to // the miss label is generated. GenerateStoreField(masm(), object, index, transition, name, r5, r4, r6, r7, &miss); __ bind(&miss); __ DecrementCounter(counters->keyed_store_field(), 1, r6, r7); Handle ic = masm()->isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(transition.is_null() ? Code::FIELD : Code::MAP_TRANSITION, name); } Handle KeyedStoreStubCompiler::CompileStoreElement( Handle receiver_map) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // -- r6 : scratch // ----------------------------------- ElementsKind elements_kind = receiver_map->elements_kind(); bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; Handle stub = KeyedStoreElementStub(is_js_array, elements_kind, grow_mode_).GetCode(); __ DispatchMap(r5, r6, receiver_map, stub, DO_SMI_CHECK); Handle ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(Code::NORMAL, factory()->empty_string()); } Handle KeyedStoreStubCompiler::CompileStorePolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_stubs, MapHandleList* transitioned_maps) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // -- r6 : scratch // ----------------------------------- Label miss; __ JumpIfSmi(r5, &miss); int receiver_count = receiver_maps->length(); __ LoadP(r6, FieldMemOperand(r5, HeapObject::kMapOffset)); for (int i = 0; i < receiver_count; ++i) { __ mov(ip, Operand(receiver_maps->at(i))); __ cmp(r6, ip); if (transitioned_maps->at(i).is_null()) { Label skip; __ bne(&skip); __ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET); __ bind(&skip); } else { Label next_map; __ bne(&next_map); __ mov(r6, Operand(transitioned_maps->at(i))); __ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET, al); __ bind(&next_map); } } __ bind(&miss); Handle miss_ic = isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(miss_ic, RelocInfo::CODE_TARGET, al); // Return the generated code. return GetCode(Code::NORMAL, factory()->empty_string(), MEGAMORPHIC); } Handle ConstructStubCompiler::CompileConstructStub( Handle function) { // ----------- S t a t e ------------- // -- r3 : argc // -- r4 : constructor // -- lr : return address // -- [sp] : last argument // ----------------------------------- Label generic_stub_call; // Use r10 for holding undefined which is used in several places below. __ LoadRoot(r10, Heap::kUndefinedValueRootIndex); #ifdef ENABLE_DEBUGGER_SUPPORT // Check to see whether there are any break points in the function code. If // there are jump to the generic constructor stub which calls the actual // code for the function thereby hitting the break points. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kDebugInfoOffset)); __ cmp(r5, r10); __ bne(&generic_stub_call); #endif // Load the initial map and verify that it is in fact a map. // r4: constructor function // r10: undefined __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r5, &generic_stub_call); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ bne(&generic_stub_call); #ifdef DEBUG // Cannot construct functions this way. // r3: argc // r4: constructor function // r5: initial map // r10: undefined __ CompareInstanceType(r5, r6, JS_FUNCTION_TYPE); __ Check(ne, "Function constructed by construct stub."); #endif // Now allocate the JSObject in new space. // r3: argc // r4: constructor function // r5: initial map // r10: undefined ASSERT(function->has_initial_map()); __ lbz(r6, FieldMemOperand(r5, Map::kInstanceSizeOffset)); #ifdef DEBUG int instance_size = function->initial_map()->instance_size(); __ cmpi(r6, Operand(instance_size >> kPointerSizeLog2)); __ Check(eq, "Instance size of initial map changed."); #endif __ AllocateInNewSpace(r6, r7, r8, r9, &generic_stub_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to initial // map and properties and elements are set to empty fixed array. // r3: argc // r4: constructor function // r5: initial map // r6: object size (in words) // r7: JSObject (not tagged) // r10: undefined __ LoadRoot(r9, Heap::kEmptyFixedArrayRootIndex); __ mr(r8, r7); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); __ StoreP(r5, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); __ StoreP(r9, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); __ StoreP(r9, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); // Calculate the location of the first argument. The stack contains only the // argc arguments. __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); __ add(r4, sp, r4); // Fill all the in-object properties with undefined. // r3: argc // r4: first argument // r6: object size (in words) // r7: JSObject (not tagged) // r8: First in-object property of JSObject (not tagged) // r10: undefined // Fill the initialized properties with a constant value or a passed argument // depending on the this.x = ...; assignment in the function. Handle shared(function->shared()); for (int i = 0; i < shared->this_property_assignments_count(); i++) { if (shared->IsThisPropertyAssignmentArgument(i)) { Label not_passed, next; // Check if the argument assigned to the property is actually passed. int arg_number = shared->GetThisPropertyAssignmentArgument(i); __ cmpi(r3, Operand(arg_number)); __ ble(¬_passed); // Argument passed - find it on the stack. __ LoadP(r5, MemOperand(r4, (arg_number + 1) * -kPointerSize), r0); __ StoreP(r5, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); __ b(&next); __ bind(¬_passed); // Set the property to undefined. __ StoreP(r10, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); __ bind(&next); } else { // Set the property to the constant value. Handle constant(shared->GetThisPropertyAssignmentConstant(i)); __ mov(r5, Operand(constant)); __ StoreP(r5, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); } } // Fill the unused in-object property fields with undefined. ASSERT(function->has_initial_map()); for (int i = shared->this_property_assignments_count(); i < function->initial_map()->inobject_properties(); i++) { __ StoreP(r10, MemOperand(r8)); __ addi(r8, r8, Operand(kPointerSize)); } // r3: argc // r7: JSObject (not tagged) // Move argc to r4 and the JSObject to return to r3 and tag it. __ mr(r4, r3); __ mr(r3, r7); __ ori(r3, r3, Operand(kHeapObjectTag)); // r3: JSObject // r4: argc // Remove caller arguments and receiver from the stack and return. __ ShiftLeftImm(r4, r4, Operand(kPointerSizeLog2)); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); Counters* counters = masm()->isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1, r4, r5); __ IncrementCounter(counters->constructed_objects_stub(), 1, r4, r5); __ blr(); // Jump to the generic stub in case the specialized code cannot handle the // construction. __ bind(&generic_stub_call); Handle code = masm()->isolate()->builtins()->JSConstructStubGeneric(); __ Jump(code, RelocInfo::CODE_TARGET); // Return the generated code. return GetCode(); } #undef __ #define __ ACCESS_MASM(masm) void KeyedLoadStubCompiler::GenerateLoadDictionaryElement( MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label slow, miss_force_generic; Register key = r3; Register receiver = r4; __ JumpIfNotSmi(key, &miss_force_generic); __ SmiUntag(r5, key); __ LoadP(r7, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ LoadFromNumberDictionary(&slow, r7, key, r3, r5, r6, r8); __ Ret(); __ bind(&slow); __ IncrementCounter( masm->isolate()->counters()->keyed_load_external_array_slow(), 1, r5, r6); // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Handle slow_ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ Jump(slow_ic, RelocInfo::CODE_TARGET); // Miss case, call the runtime. __ bind(&miss_force_generic); // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(miss_ic, RelocInfo::CODE_TARGET); } static void GenerateSmiKeyCheck(MacroAssembler* masm, Register key, Register scratch0, Register scratch1, DwVfpRegister double_scratch0, DwVfpRegister double_scratch1, Label* fail) { Label key_ok; // Check for smi or a smi inside a heap number. We convert the heap // number and check if the conversion is exact and fits into the smi // range. __ JumpIfSmi(key, &key_ok); __ CheckMap(key, scratch0, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); __ lfd(double_scratch0, FieldMemOperand(key, HeapNumber::kValueOffset)); __ EmitVFPTruncate(kRoundToZero, scratch0, double_scratch0, scratch1, double_scratch1, kCheckForInexactConversion); __ bne(fail); #if V8_TARGET_ARCH_PPC64 __ SmiTag(key, scratch0); #else __ SmiTagCheckOverflow(scratch1, scratch0, r0); __ BranchOnOverflow(fail); __ mr(key, scratch1); #endif __ bind(&key_ok); } void KeyedLoadStubCompiler::GenerateLoadExternalArray( MacroAssembler* masm, ElementsKind elements_kind) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss_force_generic, slow, failed_allocation; Register key = r3; Register receiver = r4; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi or a heap number convertible to a smi. GenerateSmiKeyCheck(masm, key, r7, r8, d1, d2, &miss_force_generic); __ LoadP(r6, FieldMemOperand(receiver, JSObject::kElementsOffset)); // r6: elements array // Check that the index is in range. __ LoadP(ip, FieldMemOperand(r6, ExternalArray::kLengthOffset)); __ cmpl(key, ip); // Unsigned comparison catches both negative and too-large values. __ bge(&miss_force_generic); __ LoadP(r6, FieldMemOperand(r6, ExternalArray::kExternalPointerOffset)); // r6: base pointer of external storage // We are not untagging smi key since an additional shift operation // may be required to compute the array element's offset. Register value = r5; switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ SmiToByteArrayOffset(value, key); __ lbzx(value, MemOperand(r6, value)); __ extsb(value, value); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ SmiToByteArrayOffset(value, key); __ lbzx(value, MemOperand(r6, value)); break; case EXTERNAL_SHORT_ELEMENTS: __ SmiToShortArrayOffset(value, key); __ lhzx(value, MemOperand(r6, value)); __ extsh(value, value); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ SmiToShortArrayOffset(value, key); __ lhzx(value, MemOperand(r6, value)); break; case EXTERNAL_INT_ELEMENTS: __ SmiToIntArrayOffset(value, key); __ lwzx(value, MemOperand(r6, value)); #if V8_TARGET_ARCH_PPC64 __ extsw(value, value); #endif break; case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ SmiToIntArrayOffset(value, key); __ lwzx(value, MemOperand(r6, value)); break; case EXTERNAL_FLOAT_ELEMENTS: __ SmiToFloatArrayOffset(value, key); __ lfsx(d0, MemOperand(r6, value)); break; case EXTERNAL_DOUBLE_ELEMENTS: __ SmiToDoubleArrayOffset(value, key); __ lfdx(d0, MemOperand(r6, value)); break; case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } // For integer array types: // r5: value // For float array type: // d0: single value // For double array type: // d0: double value if (elements_kind == EXTERNAL_INT_ELEMENTS) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. #if !V8_TARGET_ARCH_PPC64 Label box_int; // Check that the value fits in a smi. __ JumpIfNotSmiCandidate(value, r0, &box_int); #endif // Tag integer as smi and return it. __ SmiTag(r3, value); __ Ret(); #if !V8_TARGET_ARCH_PPC64 __ bind(&box_int); // Allocate a HeapNumber for the result and perform int-to-double // conversion. Don't touch r3 or r4 as they are needed if allocation // fails. __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r8, r6, r7, r9, &slow); // Now we can use r3 for the result as key is not needed any more. __ mr(r3, r8); FloatingPointHelper::ConvertIntToDouble( masm, value, d0); __ stfd(d0, FieldMemOperand(r3, HeapNumber::kValueOffset)); __ Ret(); #endif } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { // The test is different for unsigned int values. Since we need // the value to be in the range of a positive smi, we can't // handle any of the high bits being set in the value. Label box_int; __ JumpIfNotUnsignedSmiCandidate(value, r0, &box_int); // Tag integer as smi and return it. __ SmiTag(r3, value); __ Ret(); __ bind(&box_int); // Allocate a HeapNumber for the result and perform int-to-double // conversion. Don't use r3 and r4 as AllocateHeapNumber clobbers all // registers - also when jumping due to exhausted young space. __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r8, r6, r7, r9, &slow); __ mr(r3, r8); FloatingPointHelper::ConvertUnsignedIntToDouble( masm, value, d0); __ stfd(d0, FieldMemOperand(r3, HeapNumber::kValueOffset)); __ Ret(); } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { // For the floating-point array type, we need to always allocate a // HeapNumber. // Allocate a HeapNumber for the result. Don't use r3 and r4 as // AllocateHeapNumber clobbers all registers - also when jumping due to // exhausted young space. __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r5, r6, r7, r9, &slow); __ stfd(d0, FieldMemOperand(r5, HeapNumber::kValueOffset)); __ mr(r3, r5); __ Ret(); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { // Allocate a HeapNumber for the result. Don't use r3 and r4 as // AllocateHeapNumber clobbers all registers - also when jumping due to // exhausted young space. __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(r5, r6, r7, r9, &slow); __ stfd(d0, FieldMemOperand(r5, HeapNumber::kValueOffset)); __ mr(r3, r5); __ Ret(); } else { // Tag integer as smi and return it. __ SmiTag(r3, value); __ Ret(); } // Slow case, key and receiver still in r3 and r4. __ bind(&slow); __ IncrementCounter( masm->isolate()->counters()->keyed_load_external_array_slow(), 1, r5, r6); // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- __ Push(r4, r3); __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); __ bind(&miss_force_generic); Handle stub = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(stub, RelocInfo::CODE_TARGET); } void KeyedStoreStubCompiler::GenerateStoreExternalArray( MacroAssembler* masm, ElementsKind elements_kind) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- Label slow, check_heap_number, miss_force_generic; // Register usage. Register value = r3; Register key = r4; Register receiver = r5; // r6 mostly holds the elements array or the destination external array. // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi or a heap number convertible to a smi. GenerateSmiKeyCheck(masm, key, r7, r8, d1, d2, &miss_force_generic); __ LoadP(r6, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check that the index is in range __ LoadP(ip, FieldMemOperand(r6, ExternalArray::kLengthOffset)); __ cmpl(key, ip); // Unsigned comparison catches both negative and too-large values. __ bge(&miss_force_generic); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // r6: external array. if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) { // Double to pixel conversion is only implemented in the runtime for now. __ JumpIfNotSmi(value, &slow); } else { __ JumpIfNotSmi(value, &check_heap_number); } __ SmiUntag(r8, value); __ LoadP(r6, FieldMemOperand(r6, ExternalArray::kExternalPointerOffset)); // r6: base pointer of external storage. // r8: value (integer). // r10: scratch register switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: // Clamp the value to [0..255]. __ ClampUint8(r8, r8); __ SmiToByteArrayOffset(r10, key); __ stbx(r8, MemOperand(r6, r10)); break; case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ SmiToByteArrayOffset(r10, key); __ stbx(r8, MemOperand(r6, r10)); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ SmiToShortArrayOffset(r10, key); __ sthx(r8, MemOperand(r6, r10)); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ SmiToIntArrayOffset(r10, key); __ stwx(r8, MemOperand(r6, r10)); break; case EXTERNAL_FLOAT_ELEMENTS: // Perform int-to-float conversion and store to memory. __ SmiToFloatArrayOffset(r10, key); // r10: efective address of the float element FloatingPointHelper::ConvertIntToFloat(masm, d0, r8, r9); __ stfsx(d0, MemOperand(r6, r10)); break; case EXTERNAL_DOUBLE_ELEMENTS: __ SmiToDoubleArrayOffset(r10, key); // __ add(r6, r6, r10); // r6: effective address of the double element FloatingPointHelper::ConvertIntToDouble( masm, r8, d0); __ stfdx(d0, MemOperand(r6, r10)); break; case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } // Entry registers are intact, r3 holds the value which is the return value. __ Ret(); if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) { // r6: external array. __ bind(&check_heap_number); __ CompareObjectType(value, r8, r9, HEAP_NUMBER_TYPE); __ bne(&slow); __ LoadP(r6, FieldMemOperand(r6, ExternalArray::kExternalPointerOffset)); // r6: base pointer of external storage. // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ lfd(d0, FieldMemOperand(r3, HeapNumber::kValueOffset)); __ SmiToFloatArrayOffset(r8, key); __ frsp(d0, d0); __ stfsx(d0, MemOperand(r6, r8)); } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { __ lfd(d0, FieldMemOperand(r3, HeapNumber::kValueOffset)); __ SmiToDoubleArrayOffset(r8, key); __ stfdx(d0, MemOperand(r6, r8)); } else { // Hoisted load. __ mr(r8, value); __ lfd(d0, FieldMemOperand(r8, HeapNumber::kValueOffset)); __ EmitECMATruncate(r8, d0, d1, r10, r7, r9); switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ SmiToByteArrayOffset(r10, key); __ stbx(r8, MemOperand(r6, r10)); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ SmiToShortArrayOffset(r10, key); __ sthx(r8, MemOperand(r6, r10)); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ SmiToIntArrayOffset(r10, key); __ stwx(r8, MemOperand(r6, r10)); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } // Entry registers are intact, r3 holds the value which is the return // value. __ Ret(); } // Slow case, key and receiver still in r3 and r4. __ bind(&slow); __ IncrementCounter( masm->isolate()->counters()->keyed_load_external_array_slow(), 1, r5, r6); // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Handle slow_ic = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ Jump(slow_ic, RelocInfo::CODE_TARGET); // Miss case, call the runtime. __ bind(&miss_force_generic); // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Handle miss_ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ Jump(miss_ic, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss_force_generic; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi or a heap number convertible to a smi. GenerateSmiKeyCheck(masm, r3, r7, r8, d1, d2, &miss_force_generic); // Get the elements array. __ LoadP(r5, FieldMemOperand(r4, JSObject::kElementsOffset)); __ AssertFastElements(r5); // Check that the key is within bounds. __ LoadP(r6, FieldMemOperand(r5, FixedArray::kLengthOffset)); __ cmpl(r3, r6); __ bge(&miss_force_generic); // Load the result and make sure it's not the hole. __ addi(r6, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(r7, r3); __ LoadPX(r7, MemOperand(r7, r6)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r7, ip); __ beq(&miss_force_generic); __ mr(r3, r7); __ Ret(); __ bind(&miss_force_generic); Handle stub = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(stub, RelocInfo::CODE_TARGET); } void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label miss_force_generic, slow_allocate_heapnumber; Register key_reg = r3; Register receiver_reg = r4; Register elements_reg = r5; Register heap_number_reg = r5; Register indexed_double_offset = r6; Register scratch = r7; Register scratch2 = r8; Register scratch3 = r9; Register heap_number_map = r10; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi or a heap number convertible to a smi. GenerateSmiKeyCheck(masm, key_reg, r7, r8, d1, d2, &miss_force_generic); // Get the elements array. __ LoadP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); // Check that the key is within bounds. __ LoadP(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); __ cmpl(key_reg, scratch); __ bge(&miss_force_generic); // Load the upper word of the double in the fixed array and test for NaN. __ SmiToDoubleArrayOffset(indexed_double_offset, key_reg); __ add(indexed_double_offset, elements_reg, indexed_double_offset); #if __FLOAT_WORD_ORDER == __LITTLE_ENDIAN uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32); #else uint32_t upper_32_offset = FixedArray::kHeaderSize; #endif __ lwz(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset)); __ Cmpi(scratch, Operand(kHoleNanUpper32), r0); __ beq(&miss_force_generic); // Non-NaN. Allocate a new heap number and copy the double value into it. __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3, heap_number_map, &slow_allocate_heapnumber); // Don't need to reload the upper 32 bits of the double, it's already in // scratch. __ stw(scratch, FieldMemOperand(heap_number_reg, HeapNumber::kExponentOffset)); #if __FLOAT_WORD_ORDER == __LITTLE_ENDIAN __ lwz(scratch, FieldMemOperand(indexed_double_offset, FixedArray::kHeaderSize)); #else __ lwz(scratch, FieldMemOperand(indexed_double_offset, FixedArray::kHeaderSize+4)); #endif __ stw(scratch, FieldMemOperand(heap_number_reg, HeapNumber::kMantissaOffset)); __ mr(r3, heap_number_reg); __ Ret(); __ bind(&slow_allocate_heapnumber); Handle slow_ic = masm->isolate()->builtins()->KeyedLoadIC_Slow(); __ Jump(slow_ic, RelocInfo::CODE_TARGET); __ bind(&miss_force_generic); Handle miss_ic = masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); __ Jump(miss_ic, RelocInfo::CODE_TARGET); } void KeyedStoreStubCompiler::GenerateStoreFastElement( MacroAssembler* masm, bool is_js_array, ElementsKind elements_kind, KeyedAccessGrowMode grow_mode) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // -- r6 : scratch // -- r7 : scratch (elements) // ----------------------------------- Label miss_force_generic, transition_elements_kind, grow, slow; Label finish_store, check_capacity; Register value_reg = r3; Register key_reg = r4; Register receiver_reg = r5; Register scratch = r7; Register elements_reg = r6; Register length_reg = r8; Register scratch2 = r9; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi or a heap number convertible to a smi. GenerateSmiKeyCheck(masm, key_reg, r7, r8, d1, d2, &miss_force_generic); if (IsFastSmiElementsKind(elements_kind)) { __ JumpIfNotSmi(value_reg, &transition_elements_kind); } // Check that the key is within bounds. __ LoadP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); if (is_js_array) { __ LoadP(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); } else { __ LoadP(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); } // Compare smis. __ cmpl(key_reg, scratch); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { __ bge(&grow); } else { __ bge(&miss_force_generic); } // Make sure elements is a fast element array, not 'cow'. __ CheckMap(elements_reg, scratch, Heap::kFixedArrayMapRootIndex, &miss_force_generic, DONT_DO_SMI_CHECK); __ bind(&finish_store); if (IsFastSmiElementsKind(elements_kind)) { __ addi(scratch, elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch2, key_reg); __ StorePX(value_reg, MemOperand(scratch, scratch2)); } else { ASSERT(IsFastObjectElementsKind(elements_kind)); __ addi(scratch, elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch2, key_reg); __ StorePUX(value_reg, MemOperand(scratch, scratch2)); __ mr(receiver_reg, value_reg); __ RecordWrite(elements_reg, // Object. scratch, // Address. receiver_reg, // Value. kLRHasNotBeenSaved, kDontSaveFPRegs); } // value_reg (r3) is preserved. // Done. __ Ret(); __ bind(&miss_force_generic); Handle ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ Jump(ic, RelocInfo::CODE_TARGET); __ bind(&transition_elements_kind); Handle ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic_miss, RelocInfo::CODE_TARGET); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { // Grow the array by a single element if possible. __ bind(&grow); // Make sure the array is only growing by a single element, anything else // must be handled by the runtime. Flags already set by previous compare. __ bne(&miss_force_generic); // Check for the empty array, and preallocate a small backing store if // possible. __ LoadP(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ LoadP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ CompareRoot(elements_reg, Heap::kEmptyFixedArrayRootIndex); __ bne(&check_capacity); int size = FixedArray::SizeFor(JSArray::kPreallocatedArrayElements); __ AllocateInNewSpace(size, elements_reg, scratch, scratch2, &slow, TAG_OBJECT); __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); __ StoreP(scratch, FieldMemOperand(elements_reg, JSObject::kMapOffset), r0); __ LoadSmiLiteral(scratch, Smi::FromInt(JSArray::kPreallocatedArrayElements)); __ StoreP(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset), r0); __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); for (int i = 1; i < JSArray::kPreallocatedArrayElements; ++i) { __ StoreP(scratch, FieldMemOperand(elements_reg, FixedArray::SizeFor(i)), r0); } // Store the element at index zero. __ StoreP(value_reg, FieldMemOperand(elements_reg, FixedArray::SizeFor(0)), r0); // Install the new backing store in the JSArray. __ StoreP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset), r0); __ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg, scratch, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Increment the length of the array. __ LoadSmiLiteral(length_reg, Smi::FromInt(1)); __ StoreP(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset), r0); __ Ret(); __ bind(&check_capacity); // Check for cow elements, in general they are not handled by this stub __ CheckMap(elements_reg, scratch, Heap::kFixedCOWArrayMapRootIndex, &miss_force_generic, DONT_DO_SMI_CHECK); __ LoadP(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); __ cmpl(length_reg, scratch); __ bge(&slow); // Grow the array and finish the store. __ AddSmiLiteral(length_reg, length_reg, Smi::FromInt(1), r0); __ StoreP(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset), r0); __ b(&finish_store); __ bind(&slow); Handle ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ Jump(ic_slow, RelocInfo::CODE_TARGET); } } void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement( MacroAssembler* masm, bool is_js_array, KeyedAccessGrowMode grow_mode) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // -- r6 : scratch // -- r7 : scratch // -- r8 : scratch // ----------------------------------- Label miss_force_generic, transition_elements_kind, grow, slow; Label finish_store, check_capacity; Register value_reg = r3; Register key_reg = r4; Register receiver_reg = r5; Register elements_reg = r6; Register scratch1 = r7; Register scratch2 = r8; Register scratch3 = r9; Register scratch4 = r10; Register length_reg = r10; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. // Check that the key is a smi or a heap number convertible to a smi. GenerateSmiKeyCheck(masm, key_reg, r7, r8, d1, d2, &miss_force_generic); __ LoadP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); // Check that the key is within bounds. if (is_js_array) { __ LoadP(scratch1, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); } else { __ LoadP(scratch1, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); } // Compare smis, unsigned compare catches both negative and out-of-bound // indexes. __ cmpl(key_reg, scratch1); if (grow_mode == ALLOW_JSARRAY_GROWTH) { __ bge(&grow); } else { __ bge(&miss_force_generic); } __ bind(&finish_store); __ StoreNumberToDoubleElements(value_reg, key_reg, receiver_reg, // All registers after this are overwritten. elements_reg, scratch1, scratch2, scratch3, scratch4, &transition_elements_kind); __ Ret(); // Handle store cache miss, replacing the ic with the generic stub. __ bind(&miss_force_generic); Handle ic = masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); __ Jump(ic, RelocInfo::CODE_TARGET); __ bind(&transition_elements_kind); Handle ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss(); __ Jump(ic_miss, RelocInfo::CODE_TARGET); if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) { // Grow the array by a single element if possible. __ bind(&grow); // Make sure the array is only growing by a single element, anything else // must be handled by the runtime. Flags already set by previous compare. __ bne(&miss_force_generic); // Transition on values that can't be stored in a FixedDoubleArray. Label value_is_smi; __ JumpIfSmi(value_reg, &value_is_smi); __ LoadP(scratch1, FieldMemOperand(value_reg, HeapObject::kMapOffset)); __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex); __ bne(&transition_elements_kind); __ bind(&value_is_smi); // Check for the empty array, and preallocate a small backing store if // possible. __ LoadP(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); __ LoadP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ CompareRoot(elements_reg, Heap::kEmptyFixedArrayRootIndex); __ bne(&check_capacity); int size = FixedDoubleArray::SizeFor(JSArray::kPreallocatedArrayElements); __ AllocateInNewSpace(size, elements_reg, scratch1, scratch2, &slow, TAG_OBJECT); // Initialize the new FixedDoubleArray. Leave elements unitialized for // efficiency, they are guaranteed to be initialized before use. __ LoadRoot(scratch1, Heap::kFixedDoubleArrayMapRootIndex); __ StoreP(scratch1, FieldMemOperand(elements_reg, JSObject::kMapOffset), r0); __ LoadSmiLiteral(scratch1, Smi::FromInt(JSArray::kPreallocatedArrayElements)); __ StoreP(scratch1, FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset), r0); // Install the new backing store in the JSArray. __ StoreP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset), r0); __ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Increment the length of the array. __ LoadSmiLiteral(length_reg, Smi::FromInt(1)); __ StoreP(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset), r0); __ LoadP(elements_reg, FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); __ b(&finish_store); __ bind(&check_capacity); // Make sure that the backing store can hold additional elements. __ LoadP(scratch1, FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset)); __ cmpl(length_reg, scratch1); __ bge(&slow); // Grow the array and finish the store. __ AddSmiLiteral(length_reg, length_reg, Smi::FromInt(1), r0); __ StoreP(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset), r0); __ b(&finish_store); __ bind(&slow); Handle ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow(); __ Jump(ic_slow, RelocInfo::CODE_TARGET); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_PPC