// Copyright 2012 the V8 project authors. All rights reserved. // // Copyright IBM Corp. 2012, 2013. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_PPC) #include "assembler-ppc.h" #include "code-stubs.h" #include "codegen.h" #include "disasm.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ cmpi(type, Operand(JS_GLOBAL_OBJECT_TYPE)); __ beq(global_object); __ cmpi(type, Operand(JS_BUILTINS_OBJECT_TYPE)); __ beq(global_object); __ cmpi(type, Operand(JS_GLOBAL_PROXY_TYPE)); __ beq(global_object); } // Generated code falls through if the receiver is a regular non-global // JS object with slow properties and no interceptors. static void GenerateStringDictionaryReceiverCheck(MacroAssembler* masm, Register receiver, Register elements, Register t0, Register t1, Label* miss) { // Register usage: // receiver: holds the receiver on entry and is unchanged. // elements: holds the property dictionary on fall through. // Scratch registers: // t0: used to holds the receiver map. // t1: used to holds the receiver instance type, receiver bit mask and // elements map. // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss); // Check that the receiver is a valid JS object. __ CompareObjectType(receiver, t0, t1, FIRST_SPEC_OBJECT_TYPE); __ blt(miss); // If this assert fails, we have to check upper bound too. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); GenerateGlobalInstanceTypeCheck(masm, t1, miss); // Check that the global object does not require access checks. __ lbz(t1, FieldMemOperand(t0, Map::kBitFieldOffset)); __ andi(r0, t1, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasNamedInterceptor))); __ bne(miss, cr0); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ LoadP(t1, FieldMemOperand(elements, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(t1, ip); __ bne(miss); } // Helper function used from LoadIC/CallIC GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // result: Register for the result. It is only updated if a jump to the miss // label is not done. Can be the same as elements or name clobbering // one of these in the case of not jumping to the miss label. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register name, Register result, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. StringDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry check that the value is a normal // property. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ mr(r0, scratch2); __ LoadSmiLiteral(scratch2, Smi::FromInt(PropertyDetails::TypeField::kMask)); __ and_(scratch2, scratch1, scratch2, SetRC); __ bne(miss, cr0); __ mr(scratch2, r0); // Get the value at the masked, scaled index and return. __ LoadP(result, FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used from StoreIC::GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // value: The value to store. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss, Register elements, Register name, Register value, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. StringDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry in the dictionary check that the value // is a normal property that is not read only. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; int kTypeAndReadOnlyMask = PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY); __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ mr(r0, scratch2); __ LoadSmiLiteral(scratch2, Smi::FromInt(kTypeAndReadOnlyMask)); __ and_(scratch2, scratch1, scratch2, SetRC); __ bne(miss, cr0); __ mr(scratch2, r0); // Store the value at the masked, scaled index and return. const int kValueOffset = kElementsStartOffset + kPointerSize; __ addi(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag)); __ StoreP(value, MemOperand(scratch2)); // Update the write barrier. Make sure not to clobber the value. __ mr(scratch1, value); __ RecordWrite( elements, scratch2, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs); } void LoadIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- r3 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; StubCompiler::GenerateLoadArrayLength(masm, r3, r6, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateStringLength(MacroAssembler* masm, bool support_wrappers) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- r3 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; StubCompiler::GenerateLoadStringLength(masm, r3, r4, r6, &miss, support_wrappers); // Cache miss: Jump to runtime. __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- r3 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; StubCompiler::GenerateLoadFunctionPrototype(masm, r3, r4, r6, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, Register scratch, int interceptor_bit, Label* slow) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Get the map of the receiver. __ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check bit field. __ lbz(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); ASSERT(((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)) < 0x8000); __ andi(r0, scratch, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ bne(slow, cr0); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ lbz(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmpi(scratch, Operand(JS_OBJECT_TYPE)); __ blt(slow); } // Loads an indexed element from a fast case array. // If not_fast_array is NULL, doesn't perform the elements map check. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch1, Register scratch2, Register result, Label* not_fast_array, Label* out_of_range) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // elements - holds the elements of the receiver on exit. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // scratch1 - used to hold elements map and elements length. // Holds the elements map if not_fast_array branch is taken. // // scratch2 - used to hold the loaded value. __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); if (not_fast_array != NULL) { // Check that the object is in fast mode and writable. __ LoadP(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); __ cmp(scratch1, ip); __ bne(not_fast_array); } else { __ AssertFastElements(elements); } // Check that the key (index) is within bounds. __ LoadP(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmpl(key, scratch1); __ bge(out_of_range); // Fast case: Do the load. __ addi(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // The key is a smi. __ SmiToPtrArrayOffset(scratch2, key); __ LoadPX(scratch2, MemOperand(scratch2, scratch1)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch2, ip); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ beq(out_of_range); __ mr(result, scratch2); } // Checks whether a key is an array index string or a symbol string. // Falls through if a key is a symbol. static void GenerateKeyStringCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_symbol) { // assumes that r8 is free for scratch use // The key is not a smi. // Is it a string? __ CompareObjectType(key, map, hash, FIRST_NONSTRING_TYPE); __ bge(not_symbol); // Is the string an array index, with cached numeric value? __ lwz(hash, FieldMemOperand(key, String::kHashFieldOffset)); __ mov(r8, Operand(String::kContainsCachedArrayIndexMask)); __ and_(r0, hash, r8, SetRC); __ beq(index_string, cr0); // Is the string a symbol? // map: key map __ lbz(hash, FieldMemOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSymbolTag != 0); __ andi(r0, hash, Operand(kIsSymbolMask)); __ beq(not_symbol, cr0); } // Defined in ic.cc. Object* CallIC_Miss(Arguments args); // The generated code does not accept smi keys. // The generated code falls through if both probes miss. void CallICBase::GenerateMonomorphicCacheProbe(MacroAssembler* masm, int argc, Code::Kind kind, Code::ExtraICState extra_state) { // ----------- S t a t e ------------- // -- r4 : receiver // -- r5 : name // ----------------------------------- Label number, non_number, non_string, boolean, probe, miss; // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(kind, MONOMORPHIC, extra_state, Code::NORMAL, argc); Isolate::Current()->stub_cache()->GenerateProbe( masm, flags, r4, r5, r6, r7, r8, r9); // If the stub cache probing failed, the receiver might be a value. // For value objects, we use the map of the prototype objects for // the corresponding JSValue for the cache and that is what we need // to probe. // // Check for number. __ JumpIfSmi(r4, &number); __ CompareObjectType(r4, r6, r6, HEAP_NUMBER_TYPE); __ bne(&non_number); __ bind(&number); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::NUMBER_FUNCTION_INDEX, r4); __ b(&probe); // Check for string. __ bind(&non_number); __ cmpli(r6, Operand(FIRST_NONSTRING_TYPE)); __ bge(&non_string); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::STRING_FUNCTION_INDEX, r4); __ b(&probe); // Check for boolean. __ bind(&non_string); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r4, ip); __ beq(&boolean); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ cmp(r4, ip); __ bne(&miss); __ bind(&boolean); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::BOOLEAN_FUNCTION_INDEX, r4); // Probe the stub cache for the value object. __ bind(&probe); Isolate::Current()->stub_cache()->GenerateProbe( masm, flags, r4, r5, r6, r7, r8, r9); __ bind(&miss); } static void GenerateFunctionTailCall(MacroAssembler* masm, int argc, Label* miss, Register scratch) { // r4: function // Check that the value isn't a smi. __ JumpIfSmi(r4, miss); // Check that the value is a JSFunction. __ CompareObjectType(r4, scratch, scratch, JS_FUNCTION_TYPE); __ bne(miss); // Invoke the function. ParameterCount actual(argc); __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } void CallICBase::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; // Get the receiver of the function from the stack into r4. __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); GenerateStringDictionaryReceiverCheck(masm, r4, r3, r6, r7, &miss); // r3: elements // Search the dictionary - put result in register r4. GenerateDictionaryLoad(masm, &miss, r3, r5, r4, r6, r7); GenerateFunctionTailCall(masm, argc, &miss, r7); __ bind(&miss); } void CallICBase::GenerateMiss(MacroAssembler* masm, int argc, IC::UtilityId id, Code::ExtraICState extra_state) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- Isolate* isolate = masm->isolate(); if (id == IC::kCallIC_Miss) { __ IncrementCounter(isolate->counters()->call_miss(), 1, r6, r7); } else { __ IncrementCounter(isolate->counters()->keyed_call_miss(), 1, r6, r7); } // Get the receiver of the function from the stack. __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); { FrameScope scope(masm, StackFrame::INTERNAL); // Push the receiver and the name of the function. __ Push(r6, r5); // Call the entry. __ li(r3, Operand(2)); __ mov(r4, Operand(ExternalReference(IC_Utility(id), isolate))); CEntryStub stub(1); __ CallStub(&stub); // Move result to r4 and leave the internal frame. __ mr(r4, r3); } // Check if the receiver is a global object of some sort. // This can happen only for regular CallIC but not KeyedCallIC. if (id == IC::kCallIC_Miss) { Label invoke, global; __ LoadP(r5, MemOperand(sp, argc * kPointerSize), r0); // receiver __ JumpIfSmi(r5, &invoke); __ CompareObjectType(r5, r6, r6, JS_GLOBAL_OBJECT_TYPE); __ beq(&global); __ cmpi(r6, Operand(JS_BUILTINS_OBJECT_TYPE)); __ bne(&invoke); // Patch the receiver on the stack. __ bind(&global); __ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalReceiverOffset)); __ StoreP(r5, MemOperand(sp, argc * kPointerSize), r0); __ bind(&invoke); } // Invoke the function. CallKind call_kind = CallICBase::Contextual::decode(extra_state) ? CALL_AS_FUNCTION : CALL_AS_METHOD; ParameterCount actual(argc); __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper(), call_kind); } void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc, Code::ExtraICState extra_ic_state) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- // Get the receiver of the function from the stack into r4. __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC, extra_ic_state); GenerateMiss(masm, argc, extra_ic_state); } void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- // Get the receiver of the function from the stack into r4. __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); Label do_call, slow_call, slow_load, slow_reload_receiver; Label check_number_dictionary, check_string, lookup_monomorphic_cache; Label index_smi, index_string; // Check that the key is a smi. __ JumpIfNotSmi(r5, &check_string); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck( masm, r4, r3, r6, Map::kHasIndexedInterceptor, &slow_call); GenerateFastArrayLoad( masm, r4, r5, r7, r6, r3, r4, &check_number_dictionary, &slow_load); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->keyed_call_generic_smi_fast(), 1, r3, r6); __ bind(&do_call); // receiver in r4 is not used after this point. // r5: key // r4: function GenerateFunctionTailCall(masm, argc, &slow_call, r3); __ bind(&check_number_dictionary); // r5: key // r6: elements map // r7: elements // Check whether the elements is a number dictionary. __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r6, ip); __ bne(&slow_load); __ SmiUntag(r3, r5); // r3: untagged index __ LoadFromNumberDictionary(&slow_load, r7, r5, r4, r3, r6, r8); __ IncrementCounter(counters->keyed_call_generic_smi_dict(), 1, r3, r6); __ b(&do_call); __ bind(&slow_load); // This branch is taken when calling KeyedCallIC_Miss is neither required // nor beneficial. __ IncrementCounter(counters->keyed_call_generic_slow_load(), 1, r3, r6); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(r5); // save the key __ Push(r4, r5); // pass the receiver and the key __ CallRuntime(Runtime::kKeyedGetProperty, 2); __ pop(r5); // restore the key } __ mr(r4, r3); __ b(&do_call); __ bind(&check_string); GenerateKeyStringCheck(masm, r5, r3, r6, &index_string, &slow_call); // The key is known to be a symbol. // If the receiver is a regular JS object with slow properties then do // a quick inline probe of the receiver's dictionary. // Otherwise do the monomorphic cache probe. GenerateKeyedLoadReceiverCheck( masm, r4, r3, r6, Map::kHasNamedInterceptor, &lookup_monomorphic_cache); __ LoadP(r3, FieldMemOperand(r4, JSObject::kPropertiesOffset)); __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r6, ip); __ bne(&lookup_monomorphic_cache); GenerateDictionaryLoad(masm, &slow_load, r3, r5, r4, r6, r7); __ IncrementCounter(counters->keyed_call_generic_lookup_dict(), 1, r3, r6); __ b(&do_call); __ bind(&lookup_monomorphic_cache); __ IncrementCounter(counters->keyed_call_generic_lookup_cache(), 1, r3, r6); GenerateMonomorphicCacheProbe(masm, argc, Code::KEYED_CALL_IC, Code::kNoExtraICState); // Fall through on miss. __ bind(&slow_call); // This branch is taken if: // - the receiver requires boxing or access check, // - the key is neither smi nor symbol, // - the value loaded is not a function, // - there is hope that the runtime will create a monomorphic call stub // that will get fetched next time. __ IncrementCounter(counters->keyed_call_generic_slow(), 1, r3, r6); GenerateMiss(masm, argc); __ bind(&index_string); __ IndexFromHash(r6, r5); // Now jump to the place where smi keys are handled. __ b(&index_smi); } void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- // Check if the name is a string. Label miss; __ JumpIfSmi(r5, &miss); __ IsObjectJSStringType(r5, r3, &miss); CallICBase::GenerateNormal(masm, argc); __ bind(&miss); GenerateMiss(masm, argc); } // Defined in ic.cc. Object* LoadIC_Miss(Arguments args); void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- r3 : receiver // -- sp[0] : receiver // ----------------------------------- // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, MONOMORPHIC); Isolate::Current()->stub_cache()->GenerateProbe( masm, flags, r3, r5, r6, r7, r8, r9); // Cache miss: Jump to runtime. GenerateMiss(masm); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- r3 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; GenerateStringDictionaryReceiverCheck(masm, r3, r4, r6, r7, &miss); // r4: elements GenerateDictionaryLoad(masm, &miss, r4, r5, r3, r6, r7); __ Ret(); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // -- r3 : receiver // -- sp[0] : receiver // ----------------------------------- Isolate* isolate = masm->isolate(); __ IncrementCounter(isolate->counters()->load_miss(), 1, r6, r7); __ Push(r3, r5); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate); __ TailCallExternalReference(ref, 2, 1); } static MemOperand GenerateMappedArgumentsLookup(MacroAssembler* masm, Register object, Register key, Register scratch1, Register scratch2, Register scratch3, Label* unmapped_case, Label* slow_case) { Heap* heap = masm->isolate()->heap(); // Check that the receiver is a JSObject. Because of the map check // later, we do not need to check for interceptors or whether it // requires access checks. __ JumpIfSmi(object, slow_case); // Check that the object is some kind of JSObject. __ CompareObjectType(object, scratch1, scratch2, FIRST_JS_RECEIVER_TYPE); __ blt(slow_case); // Check that the key is a positive smi. __ mov(scratch1, Operand(0x80000001)); __ and_(r0, key, scratch1, SetRC); __ bne(slow_case, cr0); // Load the elements into scratch1 and check its map. Handle arguments_map(heap->non_strict_arguments_elements_map()); __ LoadP(scratch1, FieldMemOperand(object, JSObject::kElementsOffset)); __ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK); // Check if element is in the range of mapped arguments. If not, jump // to the unmapped lookup with the parameter map in scratch1. __ LoadP(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); __ SubSmiLiteral(scratch2, scratch2, Smi::FromInt(2), r0); __ cmpl(key, scratch2); __ bge(unmapped_case); // Load element index and check whether it is the hole. const int kOffset = FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag; __ SmiToPtrArrayOffset(scratch3, key); __ addi(scratch3, scratch3, Operand(kOffset)); __ LoadPX(scratch2, MemOperand(scratch1, scratch3)); __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); __ cmp(scratch2, scratch3); __ beq(unmapped_case); // Load value from context and return it. We can reuse scratch1 because // we do not jump to the unmapped lookup (which requires the parameter // map in scratch1). __ LoadP(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); __ SmiToPtrArrayOffset(scratch3, scratch2); __ addi(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag)); __ add(scratch1, scratch1, scratch3); return MemOperand(scratch1); } static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm, Register key, Register parameter_map, Register scratch, Label* slow_case) { // Element is in arguments backing store, which is referenced by the // second element of the parameter_map. The parameter_map register // must be loaded with the parameter map of the arguments object and is // overwritten. const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize; Register backing_store = parameter_map; __ LoadP(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset)); Handle fixed_array_map(masm->isolate()->heap()->fixed_array_map()); __ CheckMap(backing_store, scratch, fixed_array_map, slow_case, DONT_DO_SMI_CHECK); __ LoadP(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset)); __ cmpl(key, scratch); __ bge(slow_case); __ SmiToPtrArrayOffset(scratch, key); __ addi(scratch, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(backing_store, backing_store, scratch); return MemOperand(backing_store); } void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label slow, notin; MemOperand mapped_location = GenerateMappedArgumentsLookup(masm, r4, r3, r5, r6, r7, ¬in, &slow); __ LoadP(r3, mapped_location); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in r5. MemOperand unmapped_location = GenerateUnmappedArgumentsLookup(masm, r3, r5, r6, &slow); __ LoadP(r5, unmapped_location); __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); __ cmp(r5, r6); __ beq(&slow); __ mr(r3, r5); __ Ret(); __ bind(&slow); GenerateMiss(masm, false); } void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- Label slow, notin; MemOperand mapped_location = GenerateMappedArgumentsLookup(masm, r5, r4, r6, r7, r8, ¬in, &slow); __ StoreP(r3, mapped_location); __ mr(r9, r6); // r6 is modified by GenerateMappedArgumentsLookup __ mr(r22, r3); __ RecordWrite(r6, r9, r22, kLRHasNotBeenSaved, kDontSaveFPRegs); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in r6. MemOperand unmapped_location = GenerateUnmappedArgumentsLookup(masm, r4, r6, r7, &slow); __ StoreP(r3, unmapped_location); __ mr(r9, r6); // r6 is modified by GenerateUnmappedArgumentsLookup __ mr(r22, r3); __ RecordWrite(r6, r9, r22, kLRHasNotBeenSaved, kDontSaveFPRegs); __ Ret(); __ bind(&slow); GenerateMiss(masm, false); } void KeyedCallIC::GenerateNonStrictArguments(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r5 : name // -- lr : return address // ----------------------------------- Label slow, notin; // Load receiver. __ LoadP(r4, MemOperand(sp, argc * kPointerSize), r0); MemOperand mapped_location = GenerateMappedArgumentsLookup(masm, r4, r5, r6, r7, r8, ¬in, &slow); __ LoadP(r4, mapped_location); GenerateFunctionTailCall(masm, argc, &slow, r6); __ bind(¬in); // The unmapped lookup expects that the parameter map is in r6. MemOperand unmapped_location = GenerateUnmappedArgumentsLookup(masm, r5, r6, r7, &slow); __ LoadP(r4, unmapped_location); __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); __ cmp(r4, r6); __ beq(&slow); GenerateFunctionTailCall(masm, argc, &slow, r3); __ bind(&slow); GenerateMiss(masm, argc); } Object* KeyedLoadIC_Miss(Arguments args); void KeyedLoadIC::GenerateMiss(MacroAssembler* masm, bool force_generic) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Isolate* isolate = masm->isolate(); __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, r6, r7); __ Push(r4, r3); // Perform tail call to the entry. ExternalReference ref = force_generic ? ExternalReference(IC_Utility(kKeyedLoadIC_MissForceGeneric), isolate) : ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate); __ TailCallExternalReference(ref, 2, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- __ Push(r4, r3); __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label slow, check_string, index_smi, index_string, property_array_property; Label probe_dictionary, check_number_dictionary; Register key = r3; Register receiver = r4; Isolate* isolate = masm->isolate(); // Check that the key is a smi. __ JumpIfNotSmi(key, &check_string); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck( masm, receiver, r5, r6, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(r5, r6, &check_number_dictionary); GenerateFastArrayLoad( masm, receiver, key, r7, r6, r5, r3, NULL, &slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, r5, r6); __ Ret(); __ bind(&check_number_dictionary); __ LoadP(r7, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ LoadP(r6, FieldMemOperand(r7, JSObject::kMapOffset)); // Check whether the elements is a number dictionary. // r3: key // r6: elements map // r7: elements __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r6, ip); __ bne(&slow); __ SmiUntag(r5, r3); __ LoadFromNumberDictionary(&slow, r7, r3, r3, r5, r6, r8); __ Ret(); // Slow case, key and receiver still in r3 and r4. __ bind(&slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, r5, r6); GenerateRuntimeGetProperty(masm); __ bind(&check_string); GenerateKeyStringCheck(masm, key, r5, r6, &index_string, &slow); GenerateKeyedLoadReceiverCheck( masm, receiver, r5, r6, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary. __ LoadP(r6, FieldMemOperand(r4, JSObject::kPropertiesOffset)); __ LoadP(r7, FieldMemOperand(r6, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r7, ip); __ beq(&probe_dictionary); // Load the map of the receiver, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the string hash. __ LoadP(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); __ srawi(r6, r5, KeyedLookupCache::kMapHashShift); __ lwz(r7, FieldMemOperand(r3, String::kHashFieldOffset)); __ srawi(r7, r7, String::kHashShift); __ xor_(r6, r6, r7); int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask; __ mov(r7, Operand(mask)); __ and_(r6, r6, r7, LeaveRC); // Load the key (consisting of map and symbol) from the cache and // check for match. Label load_in_object_property; static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket; Label hit_on_nth_entry[kEntriesPerBucket]; ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(isolate); __ mov(r7, Operand(cache_keys)); __ mr(r0, r5); __ ShiftLeftImm(r5, r6, Operand(kPointerSizeLog2 + 1)); __ add(r7, r7, r5); __ mr(r5, r0); for (int i = 0; i < kEntriesPerBucket - 1; i++) { Label try_next_entry; // Load map and move r7 to next entry. __ LoadP(r8, MemOperand(r7)); __ addi(r7, r7, Operand(kPointerSize * 2)); __ cmp(r5, r8); __ bne(&try_next_entry); __ LoadP(r8, MemOperand(r7, -kPointerSize)); // Load symbol __ cmp(r3, r8); __ beq(&hit_on_nth_entry[i]); __ bind(&try_next_entry); } // Last entry: Load map and move r7 to symbol. __ LoadP(r8, MemOperand(r7)); __ addi(r7, r7, Operand(kPointerSize)); __ cmp(r5, r8); __ bne(&slow); __ LoadP(r8, MemOperand(r7)); __ cmp(r3, r8); __ bne(&slow); // Get field offset. // r3 : key // r4 : receiver // r5 : receiver's map // r6 : lookup cache index ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(isolate); // Hit on nth entry. for (int i = kEntriesPerBucket - 1; i >= 0; i--) { __ bind(&hit_on_nth_entry[i]); __ mov(r7, Operand(cache_field_offsets)); if (i != 0) { __ addi(r6, r6, Operand(i)); } __ ShiftLeftImm(r8, r6, Operand(2)); __ lwzx(r8, MemOperand(r8, r7)); __ lbz(r9, FieldMemOperand(r5, Map::kInObjectPropertiesOffset)); __ sub(r8, r8, r9); __ cmpi(r8, Operand::Zero()); __ bge(&property_array_property); if (i != 0) { __ b(&load_in_object_property); } } // Load in-object property. __ bind(&load_in_object_property); __ lbz(r9, FieldMemOperand(r5, Map::kInstanceSizeOffset)); __ add(r9, r9, r8); // Index from start of object. __ subi(r4, r4, Operand(kHeapObjectTag)); // Remove the heap tag. __ ShiftLeftImm(r3, r9, Operand(kPointerSizeLog2)); __ LoadPX(r3, MemOperand(r3, r4)); __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1, r5, r6); __ Ret(); // Load property array property. __ bind(&property_array_property); __ LoadP(r4, FieldMemOperand(r4, JSObject::kPropertiesOffset)); __ addi(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ShiftLeftImm(r3, r8, Operand(kPointerSizeLog2)); __ LoadPX(r3, MemOperand(r3, r4)); __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1, r5, r6); __ Ret(); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // r4: receiver // r3: key // r6: elements __ LoadP(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); __ lbz(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, r5, &slow); // Load the property to r3. GenerateDictionaryLoad(masm, &slow, r6, r3, r3, r5, r7); __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, r5, r6); __ Ret(); __ bind(&index_string); __ IndexFromHash(r6, key); // Now jump to the place where smi keys are handled. __ b(&index_smi); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key (index) // -- r4 : receiver // ----------------------------------- Label miss; Register receiver = r4; Register index = r3; Register scratch = r6; Register result = r3; StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX); char_at_generator.GenerateFast(masm); __ Ret(); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&miss); GenerateMiss(masm, false); } void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r3 : key // -- r4 : receiver // ----------------------------------- Label slow; // Check that the receiver isn't a smi. __ JumpIfSmi(r4, &slow); // Check that the key is an array index, that is Uint32. __ TestIfPositiveSmi(r3, r0); __ bne(&slow, cr0); // Get the map of the receiver. __ LoadP(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); // Check that it has indexed interceptor and access checks // are not enabled for this object. __ lbz(r6, FieldMemOperand(r5, Map::kBitFieldOffset)); __ andi(r6, r6, Operand(kSlowCaseBitFieldMask)); __ cmpi(r6, Operand(1 << Map::kHasIndexedInterceptor)); __ bne(&slow); // Everything is fine, call runtime. __ Push(r4, r3); // Receiver, key. // Perform tail call to the entry. __ TailCallExternalReference( ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor), masm->isolate()), 2, 1); __ bind(&slow); GenerateMiss(masm, false); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm, bool force_generic) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- // Push receiver, key and value for runtime call. __ Push(r5, r4, r3); ExternalReference ref = force_generic ? ExternalReference(IC_Utility(kKeyedStoreIC_MissForceGeneric), masm->isolate()) : ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- // Push receiver, key and value for runtime call. __ Push(r5, r4, r3); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateTransitionElementsSmiToDouble(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r5 : receiver // -- r6 : target map // -- lr : return address // ----------------------------------- // Must return the modified receiver in r0. if (!FLAG_trace_elements_transitions) { Label fail; ElementsTransitionGenerator::GenerateSmiToDouble(masm, &fail); __ mr(r3, r5); __ Ret(); __ bind(&fail); } __ push(r5); __ TailCallRuntime(Runtime::kTransitionElementsSmiToDouble, 1, 1); } void KeyedStoreIC::GenerateTransitionElementsDoubleToObject( MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r5 : receiver // -- r6 : target map // -- lr : return address // ----------------------------------- // Must return the modified receiver in r3. if (!FLAG_trace_elements_transitions) { Label fail; ElementsTransitionGenerator::GenerateDoubleToObject(masm, &fail); __ mr(r3, r5); __ Ret(); __ bind(&fail); } __ push(r5); __ TailCallRuntime(Runtime::kTransitionElementsDoubleToObject, 1, 1); } void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- // Push receiver, key and value for runtime call. __ Push(r5, r4, r3); __ LoadSmiLiteral(r4, Smi::FromInt(NONE)); // PropertyAttributes __ LoadSmiLiteral(r3, Smi::FromInt(strict_mode)); // Strict mode. __ Push(r4, r3); __ TailCallRuntime(Runtime::kSetProperty, 5, 1); } static void KeyedStoreGenerateGenericHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length, Register value, Register key, Register receiver, Register receiver_map, Register elements_map, Register elements) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // Fast case: Do the store, could be either Object or double. __ bind(fast_object); Register scratch_value = r7; Register address = r8; if (check_map == kCheckMap) { __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ mov(scratch_value, Operand(masm->isolate()->factory()->fixed_array_map())); __ cmp(elements_map, scratch_value); __ bne(fast_double); } // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(value, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ AddSmiLiteral(scratch_value, key, Smi::FromInt(1), r0); __ StoreP(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); } // It's irrelevant whether array is smi-only or not when writing a smi. __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch_value, key); __ StorePX(value, MemOperand(address, scratch_value)); __ Ret(); __ bind(&non_smi_value); // Escape to elements kind transition case. __ CheckFastObjectElements(receiver_map, scratch_value, &transition_smi_elements); // Fast elements array, store the value to the elements backing store. __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ AddSmiLiteral(scratch_value, key, Smi::FromInt(1), r0); __ StoreP(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); } __ addi(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiToPtrArrayOffset(scratch_value, key); __ StorePUX(value, MemOperand(address, scratch_value)); // Update write barrier for the elements array address. __ mr(scratch_value, value); // Preserve the value which is returned. __ RecordWrite(elements, address, scratch_value, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. __ CompareRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex); __ bne(slow); } __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(value, key, receiver, elements, // Overwritten. r6, // Scratch regs... r7, r8, r9, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ AddSmiLiteral(scratch_value, key, Smi::FromInt(1), r0); __ StoreP(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset), r0); } __ Ret(); __ bind(&transition_smi_elements); // Transition the array appropriately depending on the value type. __ LoadP(r7, FieldMemOperand(value, HeapObject::kMapOffset)); __ CompareRoot(r7, Heap::kHeapNumberMapRootIndex); __ bne(&non_double_value); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, r7, slow); ASSERT(receiver_map.is(r6)); // Transition code expects map in r6 ElementsTransitionGenerator::GenerateSmiToDouble(masm, slow); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ b(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, receiver_map, r7, slow); ASSERT(receiver_map.is(r6)); // Transition code expects map in r6 ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ b(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, receiver_map, r7, slow); ASSERT(receiver_map.is(r6)); // Transition code expects map in r6 ElementsTransitionGenerator::GenerateDoubleToObject(masm, slow); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ b(&finish_object_store); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm, StrictModeFlag strict_mode) { // ---------- S t a t e -------------- // -- r3 : value // -- r4 : key // -- r5 : receiver // -- lr : return address // ----------------------------------- Label slow, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array; // Register usage. Register value = r3; Register key = r4; Register receiver = r5; Register receiver_map = r6; Register elements_map = r9; Register elements = r10; // Elements array of the receiver. // r7 and r8 are used as general scratch registers. // Check that the key is a smi. __ JumpIfNotSmi(key, &slow); // Check that the object isn't a smi. __ JumpIfSmi(receiver, &slow); // Get the map of the object. __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ lbz(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset)); __ andi(r0, ip, Operand(1 << Map::kIsAccessCheckNeeded)); __ bne(&slow, cr0); // Check if the object is a JS array or not. __ lbz(r7, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset)); __ cmpi(r7, Operand(JS_ARRAY_TYPE)); __ beq(&array); // Check that the object is some kind of JSObject. __ cmpi(r7, Operand(FIRST_JS_OBJECT_TYPE)); __ blt(&slow); // Object case: Check key against length in the elements array. __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check array bounds. Both the key and the length of FixedArray are smis. __ LoadP(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmpl(key, ip); __ blt(&fast_object); // Slow case, handle jump to runtime. __ bind(&slow); // Entry registers are intact. // r3: value. // r4: key. // r5: receiver. GenerateRuntimeSetProperty(masm, strict_mode); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // Condition code from comparing key and array length is still available. __ bne(&slow); // Only support writing to writing to array[array.length]. // Check for room in the elements backing store. // Both the key and the length of FixedArray are smis. __ LoadP(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmpl(key, ip); __ bge(&slow); __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ mov(ip, Operand(masm->isolate()->factory()->fixed_array_map())); __ cmp(elements_map, ip); // PPC - I think I can re-use ip here __ bne(&check_if_double_array); __ b(&fast_object_grow); __ bind(&check_if_double_array); __ mov(ip, Operand(masm->isolate()->factory()->fixed_double_array_map())); __ cmp(elements_map, ip); // PPC - another ip re-use __ bne(&slow); __ b(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check the key against the length in the array. __ LoadP(ip, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ cmpl(key, ip); __ bge(&extra); KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength, value, key, receiver, receiver_map, elements_map, elements); KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength, value, key, receiver, receiver_map, elements_map, elements); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, MONOMORPHIC, strict_mode); Isolate::Current()->stub_cache()->GenerateProbe( masm, flags, r4, r5, r6, r7, r8, r9); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- __ Push(r4, r5, r3); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- // // This accepts as a receiver anything JSArray::SetElementsLength accepts // (currently anything except for external arrays which means anything with // elements of FixedArray type). Value must be a number, but only smis are // accepted as the most common case. Label miss; Register receiver = r4; Register value = r3; Register scratch = r6; // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Check that the object is a JS array. __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); __ bne(&miss); // Check that elements are FixedArray. // We rely on StoreIC_ArrayLength below to deal with all types of // fast elements (including COW). __ LoadP(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset)); __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE); __ bne(&miss); // Check that the array has fast properties, otherwise the length // property might have been redefined. __ LoadP(scratch, FieldMemOperand(receiver, JSArray::kPropertiesOffset)); __ LoadP(scratch, FieldMemOperand(scratch, FixedArray::kMapOffset)); __ CompareRoot(scratch, Heap::kHashTableMapRootIndex); __ beq(&miss); // Check that value is a smi. __ JumpIfNotSmi(value, &miss); // Prepare tail call to StoreIC_ArrayLength. __ Push(receiver, value); ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength), masm->isolate()); __ TailCallExternalReference(ref, 2, 1); __ bind(&miss); GenerateMiss(masm); } void StoreIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- Label miss; GenerateStringDictionaryReceiverCheck(masm, r4, r6, r7, r8, &miss); GenerateDictionaryStore(masm, &miss, r6, r5, r3, r7, r8); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1, r7, r8); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1, r7, r8); GenerateMiss(masm); } void StoreIC::GenerateGlobalProxy(MacroAssembler* masm, StrictModeFlag strict_mode) { // ----------- S t a t e ------------- // -- r3 : value // -- r4 : receiver // -- r5 : name // -- lr : return address // ----------------------------------- __ Push(r4, r5, r3); __ LoadSmiLiteral(r4, Smi::FromInt(NONE)); // PropertyAttributes __ LoadSmiLiteral(r3, Smi::FromInt(strict_mode)); __ Push(r4, r3); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 5, 1); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void CompareIC::UpdateCaches(Handle x, Handle y) { HandleScope scope; Handle rewritten; State previous_state = GetState(); State state = TargetState(previous_state, false, x, y); if (state == GENERIC) { CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r4, r3); rewritten = stub.GetCode(); } else { ICCompareStub stub(op_, state); if (state == KNOWN_OBJECTS) { stub.set_known_map(Handle(Handle::cast(x)->map())); } rewritten = stub.GetCode(); } set_target(*rewritten); #ifdef DEBUG if (FLAG_trace_ic) { PrintF("[CompareIC (%s->%s)#%s]\n", GetStateName(previous_state), GetStateName(state), Token::Name(op_)); } #endif // Activate inlined smi code. if (previous_state == UNINITIALIZED) { PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); } } // // This code is paired with the JumpPatchSite class in full-codegen-ppc.cc // void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) { Address cmp_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a cmp rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(cmp_instruction_address); if (!Assembler::IsCmpImmediate(instr)) { return; } // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int delta = Assembler::GetCmpImmediateRawImmediate(instr); delta += Assembler::GetCmpImmediateRegister(instr).code() * kOff16Mask; // If the delta is 0 the instruction is cmp r0, #0 which also signals that // nothing was inlined. if (delta == 0) { return; } #ifdef DEBUG if (FLAG_trace_ic) { PrintF("[ patching ic at %p, cmp=%p, delta=%d\n", address, cmp_instruction_address, delta); } #endif Address patch_address = cmp_instruction_address - delta * Instruction::kInstrSize; Instr instr_at_patch = Assembler::instr_at(patch_address); Instr branch_instr = Assembler::instr_at(patch_address + Instruction::kInstrSize); // This is patching a conditional "jump if not smi/jump if smi" site. // Enabling by changing from // cmp cr0, rx, rx // to // rlwinm(r0, value, 0, 31, 31, SetRC); // bc(label, BT/BF, 2) // and vice-versa to be disabled again. CodePatcher patcher(patch_address, 2); Register reg = Assembler::GetRA(instr_at_patch); if (check == ENABLE_INLINED_SMI_CHECK) { ASSERT(Assembler::IsCmpRegister(instr_at_patch)); ASSERT_EQ(Assembler::GetRA(instr_at_patch).code(), Assembler::GetRB(instr_at_patch).code()); patcher.masm()->TestIfSmi(reg, r0); } else { ASSERT(check == DISABLE_INLINED_SMI_CHECK); #if V8_TARGET_ARCH_PPC64 ASSERT(Assembler::IsRldicl(instr_at_patch)); #else ASSERT(Assembler::IsRlwinm(instr_at_patch)); #endif patcher.masm()->cmp(reg, reg, cr0); } ASSERT(Assembler::IsBranch(branch_instr)); // Invert the logic of the branch if (Assembler::GetCondition(branch_instr) == eq) { patcher.EmitCondition(ne); } else { ASSERT(Assembler::GetCondition(branch_instr) == ne); patcher.EmitCondition(eq); } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_PPC