// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for Cygwin goes here. For the POSIX comaptible parts // the implementation is in platform-posix.cc. #include #include #include #include #include // index #include #include // mmap & munmap #include // sysconf #undef MAP_TYPE #include "v8.h" #include "platform-posix.h" #include "platform.h" #include "v8threads.h" #include "vm-state-inl.h" #include "win32-headers.h" namespace v8 { namespace internal { // 0 is never a valid thread id static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { return ceil(x); } static Mutex* limit_mutex = NULL; void OS::PostSetUp() { POSIXPostSetUp(); } uint64_t OS::CpuFeaturesImpliedByPlatform() { return 0; // Nothing special about Cygwin. } int OS::ActivationFrameAlignment() { // With gcc 4.4 the tree vectorization optimizer can generate code // that requires 16 byte alignment such as movdqa on x86. return 16; } void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { __asm__ __volatile__("" : : : "memory"); // An x86 store acts as a release barrier. *ptr = value; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return tzname[0]; // The location of the timezone string on Cygwin. } double OS::LocalTimeOffset() { // On Cygwin, struct tm does not contain a tm_gmtoff field. time_t utc = time(NULL); ASSERT(utc != -1); struct tm* loc = localtime(&utc); ASSERT(loc != NULL); // time - localtime includes any daylight savings offset, so subtract it. return static_cast((mktime(loc) - utc) * msPerSecond - (loc->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, i.e., not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast(-1); static void* highest_ever_allocated = reinterpret_cast(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { ASSERT(limit_mutex != NULL); ScopedLock lock(limit_mutex); lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast(reinterpret_cast(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return sysconf(_SC_PAGESIZE); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE)); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (mbase == MAP_FAILED) { LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } void OS::ProtectCode(void* address, const size_t size) { DWORD old_protect; VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); } void OS::Guard(void* address, const size_t size) { DWORD oldprotect; VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect); } void OS::Sleep(int milliseconds) { unsigned int ms = static_cast(milliseconds); usleep(1000 * ms); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination. abort(); } void OS::DebugBreak() { asm("int $3"); } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) munmap(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { // This function assumes that the layout of the file is as follows: // hex_start_addr-hex_end_addr rwxp [binary_file_name] // If we encounter an unexpected situation we abort scanning further entries. FILE* fp = fopen("/proc/self/maps", "r"); if (fp == NULL) return; // Allocate enough room to be able to store a full file name. const int kLibNameLen = FILENAME_MAX + 1; char* lib_name = reinterpret_cast(malloc(kLibNameLen)); i::Isolate* isolate = ISOLATE; // This loop will terminate once the scanning hits an EOF. while (true) { uintptr_t start, end; char attr_r, attr_w, attr_x, attr_p; // Parse the addresses and permission bits at the beginning of the line. if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; int c; if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') { // Found a read-only executable entry. Skip characters until we reach // the beginning of the filename or the end of the line. do { c = getc(fp); } while ((c != EOF) && (c != '\n') && (c != '/')); if (c == EOF) break; // EOF: Was unexpected, just exit. // Process the filename if found. if (c == '/') { ungetc(c, fp); // Push the '/' back into the stream to be read below. // Read to the end of the line. Exit if the read fails. if (fgets(lib_name, kLibNameLen, fp) == NULL) break; // Drop the newline character read by fgets. We do not need to check // for a zero-length string because we know that we at least read the // '/' character. lib_name[strlen(lib_name) - 1] = '\0'; } else { // No library name found, just record the raw address range. snprintf(lib_name, kLibNameLen, "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); } LOG(isolate, SharedLibraryEvent(lib_name, start, end)); } else { // Entry not describing executable data. Skip to end of line to set up // reading the next entry. do { c = getc(fp); } while ((c != EOF) && (c != '\n')); if (c == EOF) break; } } free(lib_name); fclose(fp); } void OS::SignalCodeMovingGC() { // Nothing to do on Cygwin. } int OS::StackWalk(Vector frames) { // Not supported on Cygwin. return 0; } // The VirtualMemory implementation is taken from platform-win32.cc. // The mmap-based virtual memory implementation as it is used on most posix // platforms does not work well because Cygwin does not support MAP_FIXED. // This causes VirtualMemory::Commit to not always commit the memory region // specified. bool VirtualMemory::IsReserved() { return address_ != NULL; } VirtualMemory::VirtualMemory(size_t size) { address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); size_ = size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL; } } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) { return false; } UpdateAllocatedSpaceLimits(address, static_cast(size)); return true; } bool VirtualMemory::Uncommit(void* address, size_t size) { ASSERT(IsReserved()); return VirtualFree(address, size, MEM_DECOMMIT) != false; } bool VirtualMemory::Guard(void* address) { if (NULL == VirtualAlloc(address, OS::CommitPageSize(), MEM_COMMIT, PAGE_READONLY | PAGE_GUARD)) { return false; } return true; } class Thread::PlatformData : public Malloced { public: PlatformData() : thread_(kNoThread) {} pthread_t thread_; // Thread handle for pthread. }; Thread::Thread(const Options& options) : data_(new PlatformData()), stack_size_(options.stack_size()) { set_name(options.name()); } Thread::~Thread() { delete data_; } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->data()->thread_ = pthread_self(); ASSERT(thread->data()->thread_ != kNoThread); thread->Run(); return NULL; } void Thread::set_name(const char* name) { strncpy(name_, name, sizeof(name_)); name_[sizeof(name_) - 1] = '\0'; } void Thread::Start() { pthread_attr_t* attr_ptr = NULL; pthread_attr_t attr; if (stack_size_ > 0) { pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, static_cast(stack_size_)); attr_ptr = &attr; } pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this); ASSERT(data_->thread_ != kNoThread); } void Thread::Join() { pthread_join(data_->thread_, NULL); } static inline Thread::LocalStorageKey PthreadKeyToLocalKey( pthread_key_t pthread_key) { // We need to cast pthread_key_t to Thread::LocalStorageKey in two steps // because pthread_key_t is a pointer type on Cygwin. This will probably not // work on 64-bit platforms, but Cygwin doesn't support 64-bit anyway. STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t)); intptr_t ptr_key = reinterpret_cast(pthread_key); return static_cast(ptr_key); } static inline pthread_key_t LocalKeyToPthreadKey( Thread::LocalStorageKey local_key) { STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t)); intptr_t ptr_key = static_cast(local_key); return reinterpret_cast(ptr_key); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return PthreadKeyToLocalKey(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = LocalKeyToPthreadKey(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = LocalKeyToPthreadKey(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = LocalKeyToPthreadKey(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class CygwinMutex : public Mutex { public: CygwinMutex() { pthread_mutexattr_t attrs; memset(&attrs, 0, sizeof(attrs)); int result = pthread_mutexattr_init(&attrs); ASSERT(result == 0); result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); ASSERT(result == 0); result = pthread_mutex_init(&mutex_, &attrs); ASSERT(result == 0); } virtual ~CygwinMutex() { pthread_mutex_destroy(&mutex_); } virtual int Lock() { int result = pthread_mutex_lock(&mutex_); return result; } virtual int Unlock() { int result = pthread_mutex_unlock(&mutex_); return result; } virtual bool TryLock() { int result = pthread_mutex_trylock(&mutex_); // Return false if the lock is busy and locking failed. if (result == EBUSY) { return false; } ASSERT(result == 0); // Verify no other errors. return true; } private: pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms. }; Mutex* OS::CreateMutex() { return new CygwinMutex(); } class CygwinSemaphore : public Semaphore { public: explicit CygwinSemaphore(int count) { sem_init(&sem_, 0, count); } virtual ~CygwinSemaphore() { sem_destroy(&sem_); } virtual void Wait(); virtual bool Wait(int timeout); virtual void Signal() { sem_post(&sem_); } private: sem_t sem_; }; void CygwinSemaphore::Wait() { while (true) { int result = sem_wait(&sem_); if (result == 0) return; // Successfully got semaphore. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } #ifndef TIMEVAL_TO_TIMESPEC #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ (ts)->tv_sec = (tv)->tv_sec; \ (ts)->tv_nsec = (tv)->tv_usec * 1000; \ } while (false) #endif bool CygwinSemaphore::Wait(int timeout) { const long kOneSecondMicros = 1000000; // NOLINT // Split timeout into second and nanosecond parts. struct timeval delta; delta.tv_usec = timeout % kOneSecondMicros; delta.tv_sec = timeout / kOneSecondMicros; struct timeval current_time; // Get the current time. if (gettimeofday(¤t_time, NULL) == -1) { return false; } // Calculate time for end of timeout. struct timeval end_time; timeradd(¤t_time, &delta, &end_time); struct timespec ts; TIMEVAL_TO_TIMESPEC(&end_time, &ts); // Wait for semaphore signalled or timeout. while (true) { int result = sem_timedwait(&sem_, &ts); if (result == 0) return true; // Successfully got semaphore. if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } Semaphore* OS::CreateSemaphore(int count) { return new CygwinSemaphore(count); } // ---------------------------------------------------------------------------- // Cygwin profiler support. // // On Cygwin we use the same sampler implementation as on win32. class Sampler::PlatformData : public Malloced { public: // Get a handle to the calling thread. This is the thread that we are // going to profile. We need to make a copy of the handle because we are // going to use it in the sampler thread. Using GetThreadHandle() will // not work in this case. We're using OpenThread because DuplicateHandle // for some reason doesn't work in Chrome's sandbox. PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_QUERY_INFORMATION, false, GetCurrentThreadId())) {} ~PlatformData() { if (profiled_thread_ != NULL) { CloseHandle(profiled_thread_); profiled_thread_ = NULL; } } HANDLE profiled_thread() { return profiled_thread_; } private: HANDLE profiled_thread_; }; class SamplerThread : public Thread { public: static const int kSamplerThreadStackSize = 64 * KB; explicit SamplerThread(int interval) : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)), interval_(interval) {} static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); } static void TearDown() { delete mutex_; } static void AddActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_); SamplerRegistry::AddActiveSampler(sampler); if (instance_ == NULL) { instance_ = new SamplerThread(sampler->interval()); instance_->Start(); } else { ASSERT(instance_->interval_ == sampler->interval()); } } static void RemoveActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_); SamplerRegistry::RemoveActiveSampler(sampler); if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); delete instance_; instance_ = NULL; } } // Implement Thread::Run(). virtual void Run() { SamplerRegistry::State state; while ((state = SamplerRegistry::GetState()) != SamplerRegistry::HAS_NO_SAMPLERS) { bool cpu_profiling_enabled = (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); // When CPU profiling is enabled both JavaScript and C++ code is // profiled. We must not suspend. if (!cpu_profiling_enabled) { if (rate_limiter_.SuspendIfNecessary()) continue; } if (cpu_profiling_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } } if (runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } } OS::Sleep(interval_); } } static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) { if (!sampler->isolate()->IsInitialized()) return; if (!sampler->IsProfiling()) return; SamplerThread* sampler_thread = reinterpret_cast(raw_sampler_thread); sampler_thread->SampleContext(sampler); } static void DoRuntimeProfile(Sampler* sampler, void* ignored) { if (!sampler->isolate()->IsInitialized()) return; sampler->isolate()->runtime_profiler()->NotifyTick(); } void SampleContext(Sampler* sampler) { HANDLE profiled_thread = sampler->platform_data()->profiled_thread(); if (profiled_thread == NULL) return; // Context used for sampling the register state of the profiled thread. CONTEXT context; memset(&context, 0, sizeof(context)); TickSample sample_obj; TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate()); if (sample == NULL) sample = &sample_obj; static const DWORD kSuspendFailed = static_cast(-1); if (SuspendThread(profiled_thread) == kSuspendFailed) return; sample->state = sampler->isolate()->current_vm_state(); context.ContextFlags = CONTEXT_FULL; if (GetThreadContext(profiled_thread, &context) != 0) { #if V8_HOST_ARCH_X64 sample->pc = reinterpret_cast
(context.Rip); sample->sp = reinterpret_cast
(context.Rsp); sample->fp = reinterpret_cast
(context.Rbp); #else sample->pc = reinterpret_cast
(context.Eip); sample->sp = reinterpret_cast
(context.Esp); sample->fp = reinterpret_cast
(context.Ebp); #endif sampler->SampleStack(sample); sampler->Tick(sample); } ResumeThread(profiled_thread); } const int interval_; RuntimeProfilerRateLimiter rate_limiter_; // Protects the process wide state below. static Mutex* mutex_; static SamplerThread* instance_; private: DISALLOW_COPY_AND_ASSIGN(SamplerThread); }; Mutex* SamplerThread::mutex_ = NULL; SamplerThread* SamplerThread::instance_ = NULL; void OS::SetUp() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly can cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast(TimeCurrentMillis()); srandom(static_cast(seed)); limit_mutex = CreateMutex(); SamplerThread::SetUp(); } void OS::TearDown() { SamplerThread::TearDown(); delete limit_mutex; } Sampler::Sampler(Isolate* isolate, int interval) : isolate_(isolate), interval_(interval), profiling_(false), active_(false), samples_taken_(0) { data_ = new PlatformData; } Sampler::~Sampler() { ASSERT(!IsActive()); delete data_; } void Sampler::Start() { ASSERT(!IsActive()); SetActive(true); SamplerThread::AddActiveSampler(this); } void Sampler::Stop() { ASSERT(IsActive()); SamplerThread::RemoveActiveSampler(this); SetActive(false); } } } // namespace v8::internal