// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_ARM) #include "codegen.h" #include "macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) { switch (type) { case TranscendentalCache::SIN: return &sin; case TranscendentalCache::COS: return &cos; case TranscendentalCache::TAN: return &tan; case TranscendentalCache::LOG: return &log; default: UNIMPLEMENTED(); } return NULL; } UnaryMathFunction CreateSqrtFunction() { return &sqrt; } // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); ASSERT(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); ASSERT(masm->has_frame()); masm->set_has_frame(false); } // ------------------------------------------------------------------------- // Code generators void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : target map, scratch for subsequent call // -- r4 : scratch (elements) // ----------------------------------- // Set transitioned map. __ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); __ RecordWriteField(r2, HeapObject::kMapOffset, r3, r9, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void ElementsTransitionGenerator::GenerateSmiToDouble( MacroAssembler* masm, Label* fail) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : target map, scratch for subsequent call // -- r4 : scratch (elements) // ----------------------------------- Label loop, entry, convert_hole, gc_required, only_change_map, done; bool vfp2_supported = CpuFeatures::IsSupported(VFP2); // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ ldr(r4, FieldMemOperand(r2, JSObject::kElementsOffset)); __ CompareRoot(r4, Heap::kEmptyFixedArrayRootIndex); __ b(eq, &only_change_map); __ push(lr); __ ldr(r5, FieldMemOperand(r4, FixedArray::kLengthOffset)); // r4: source FixedArray // r5: number of elements (smi-tagged) // Allocate new FixedDoubleArray. // Use lr as a temporary register. __ mov(lr, Operand(r5, LSL, 2)); __ add(lr, lr, Operand(FixedDoubleArray::kHeaderSize + kPointerSize)); __ AllocateInNewSpace(lr, r6, r7, r9, &gc_required, NO_ALLOCATION_FLAGS); // r6: destination FixedDoubleArray, not tagged as heap object. // Align the array conveniently for doubles. // Store a filler value in the unused memory. Label aligned, aligned_done; __ tst(r6, Operand(kDoubleAlignmentMask)); __ mov(ip, Operand(masm->isolate()->factory()->one_pointer_filler_map())); __ b(eq, &aligned); // Store at the beginning of the allocated memory and update the base pointer. __ str(ip, MemOperand(r6, kPointerSize, PostIndex)); __ b(&aligned_done); __ bind(&aligned); // Store the filler at the end of the allocated memory. __ sub(lr, lr, Operand(kPointerSize)); __ str(ip, MemOperand(r6, lr)); __ bind(&aligned_done); // Set destination FixedDoubleArray's length and map. __ LoadRoot(r9, Heap::kFixedDoubleArrayMapRootIndex); __ str(r5, MemOperand(r6, FixedDoubleArray::kLengthOffset)); // Update receiver's map. __ str(r9, MemOperand(r6, HeapObject::kMapOffset)); __ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); __ RecordWriteField(r2, HeapObject::kMapOffset, r3, r9, kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Replace receiver's backing store with newly created FixedDoubleArray. __ add(r3, r6, Operand(kHeapObjectTag)); __ str(r3, FieldMemOperand(r2, JSObject::kElementsOffset)); __ RecordWriteField(r2, JSObject::kElementsOffset, r3, r9, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Prepare for conversion loop. __ add(r3, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r7, r6, Operand(FixedDoubleArray::kHeaderSize)); __ add(r6, r7, Operand(r5, LSL, 2)); __ mov(r4, Operand(kHoleNanLower32)); __ mov(r5, Operand(kHoleNanUpper32)); // r3: begin of source FixedArray element fields, not tagged // r4: kHoleNanLower32 // r5: kHoleNanUpper32 // r6: end of destination FixedDoubleArray, not tagged // r7: begin of FixedDoubleArray element fields, not tagged if (!vfp2_supported) __ Push(r1, r0); __ b(&entry); __ bind(&only_change_map); __ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); __ RecordWriteField(r2, HeapObject::kMapOffset, r3, r9, kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ b(&done); // Call into runtime if GC is required. __ bind(&gc_required); __ pop(lr); __ b(fail); // Convert and copy elements. __ bind(&loop); __ ldr(r9, MemOperand(r3, 4, PostIndex)); // r9: current element __ UntagAndJumpIfNotSmi(r9, r9, &convert_hole); // Normal smi, convert to double and store. if (vfp2_supported) { CpuFeatures::Scope scope(VFP2); __ vmov(s0, r9); __ vcvt_f64_s32(d0, s0); __ vstr(d0, r7, 0); __ add(r7, r7, Operand(8)); } else { FloatingPointHelper::ConvertIntToDouble(masm, r9, FloatingPointHelper::kCoreRegisters, d0, r0, r1, lr, s0); __ Strd(r0, r1, MemOperand(r7, 8, PostIndex)); } __ b(&entry); // Hole found, store the-hole NaN. __ bind(&convert_hole); if (FLAG_debug_code) { // Restore a "smi-untagged" heap object. __ SmiTag(r9); __ orr(r9, r9, Operand(1)); __ CompareRoot(r9, Heap::kTheHoleValueRootIndex); __ Assert(eq, "object found in smi-only array"); } __ Strd(r4, r5, MemOperand(r7, 8, PostIndex)); __ bind(&entry); __ cmp(r7, r6); __ b(lt, &loop); if (!vfp2_supported) __ Pop(r1, r0); __ pop(lr); __ bind(&done); } void ElementsTransitionGenerator::GenerateDoubleToObject( MacroAssembler* masm, Label* fail) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // -- r3 : target map, scratch for subsequent call // -- r4 : scratch (elements) // ----------------------------------- Label entry, loop, convert_hole, gc_required, only_change_map; // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ ldr(r4, FieldMemOperand(r2, JSObject::kElementsOffset)); __ CompareRoot(r4, Heap::kEmptyFixedArrayRootIndex); __ b(eq, &only_change_map); __ push(lr); __ Push(r3, r2, r1, r0); __ ldr(r5, FieldMemOperand(r4, FixedArray::kLengthOffset)); // r4: source FixedDoubleArray // r5: number of elements (smi-tagged) // Allocate new FixedArray. __ mov(r0, Operand(FixedDoubleArray::kHeaderSize)); __ add(r0, r0, Operand(r5, LSL, 1)); __ AllocateInNewSpace(r0, r6, r7, r9, &gc_required, NO_ALLOCATION_FLAGS); // r6: destination FixedArray, not tagged as heap object // Set destination FixedDoubleArray's length and map. __ LoadRoot(r9, Heap::kFixedArrayMapRootIndex); __ str(r5, MemOperand(r6, FixedDoubleArray::kLengthOffset)); __ str(r9, MemOperand(r6, HeapObject::kMapOffset)); // Prepare for conversion loop. __ add(r4, r4, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag + 4)); __ add(r3, r6, Operand(FixedArray::kHeaderSize)); __ add(r6, r6, Operand(kHeapObjectTag)); __ add(r5, r3, Operand(r5, LSL, 1)); __ LoadRoot(r7, Heap::kTheHoleValueRootIndex); __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); // Using offsetted addresses in r4 to fully take advantage of post-indexing. // r3: begin of destination FixedArray element fields, not tagged // r4: begin of source FixedDoubleArray element fields, not tagged, +4 // r5: end of destination FixedArray, not tagged // r6: destination FixedArray // r7: the-hole pointer // r9: heap number map __ b(&entry); // Call into runtime if GC is required. __ bind(&gc_required); __ Pop(r3, r2, r1, r0); __ pop(lr); __ b(fail); __ bind(&loop); __ ldr(r1, MemOperand(r4, 8, PostIndex)); // lr: current element's upper 32 bit // r4: address of next element's upper 32 bit __ cmp(r1, Operand(kHoleNanUpper32)); __ b(eq, &convert_hole); // Non-hole double, copy value into a heap number. __ AllocateHeapNumber(r2, r0, lr, r9, &gc_required); // r2: new heap number __ ldr(r0, MemOperand(r4, 12, NegOffset)); __ Strd(r0, r1, FieldMemOperand(r2, HeapNumber::kValueOffset)); __ mov(r0, r3); __ str(r2, MemOperand(r3, 4, PostIndex)); __ RecordWrite(r6, r0, r2, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ b(&entry); // Replace the-hole NaN with the-hole pointer. __ bind(&convert_hole); __ str(r7, MemOperand(r3, 4, PostIndex)); __ bind(&entry); __ cmp(r3, r5); __ b(lt, &loop); __ Pop(r3, r2, r1, r0); // Replace receiver's backing store with newly created and filled FixedArray. __ str(r6, FieldMemOperand(r2, JSObject::kElementsOffset)); __ RecordWriteField(r2, JSObject::kElementsOffset, r6, r9, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ pop(lr); __ bind(&only_change_map); // Update receiver's map. __ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); __ RecordWriteField(r2, HeapObject::kMapOffset, r3, r9, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, Register index, Register result, Label* call_runtime) { // Fetch the instance type of the receiver into result register. __ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset)); __ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ tst(result, Operand(kIsIndirectStringMask)); __ b(eq, &check_sequential); // Dispatch on the indirect string shape: slice or cons. Label cons_string; __ tst(result, Operand(kSlicedNotConsMask)); __ b(eq, &cons_string); // Handle slices. Label indirect_string_loaded; __ ldr(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); __ ldr(string, FieldMemOperand(string, SlicedString::kParentOffset)); __ add(index, index, Operand(result, ASR, kSmiTagSize)); __ jmp(&indirect_string_loaded); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ ldr(result, FieldMemOperand(string, ConsString::kSecondOffset)); __ CompareRoot(result, Heap::kEmptyStringRootIndex); __ b(ne, call_runtime); // Get the first of the two strings and load its instance type. __ ldr(string, FieldMemOperand(string, ConsString::kFirstOffset)); __ bind(&indirect_string_loaded); __ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset)); __ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label external_string, check_encoding; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ tst(result, Operand(kStringRepresentationMask)); __ b(ne, &external_string); // Prepare sequential strings STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ add(string, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ jmp(&check_encoding); // Handle external strings. __ bind(&external_string); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ tst(result, Operand(kIsIndirectStringMask)); __ Assert(eq, "external string expected, but not found"); } // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ tst(result, Operand(kShortExternalStringMask)); __ b(ne, call_runtime); __ ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset)); Label ascii, done; __ bind(&check_encoding); STATIC_ASSERT(kTwoByteStringTag == 0); __ tst(result, Operand(kStringEncodingMask)); __ b(ne, &ascii); // Two-byte string. __ ldrh(result, MemOperand(string, index, LSL, 1)); __ jmp(&done); __ bind(&ascii); // Ascii string. __ ldrb(result, MemOperand(string, index)); __ bind(&done); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM