/* * Copyright(c) 2007 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * Modified for iPXE, October 2009 by Joshua Oreman . * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ FILE_LICENCE ( GPL2_OR_LATER ); #include "atl1e.h" /* User-tweakable parameters: */ #define TX_DESC_COUNT 32 /* TX descriptors, minimum 32 */ #define RX_MEM_SIZE 8192 /* RX area size, minimum 8kb */ #define MAX_FRAME_SIZE 1500 /* Maximum MTU supported, minimum 1500 */ /* Arcane parameters: */ #define PREAMBLE_LEN 7 #define RX_JUMBO_THRESH ((MAX_FRAME_SIZE + ETH_HLEN + \ VLAN_HLEN + ETH_FCS_LEN + 7) >> 3) #define IMT_VAL 100 /* interrupt moderator timer, us */ #define ICT_VAL 50000 /* interrupt clear timer, us */ #define SMB_TIMER 200000 #define RRD_THRESH 1 /* packets to queue before interrupt */ #define TPD_BURST 5 #define TPD_THRESH (TX_DESC_COUNT / 2) #define RX_COUNT_DOWN 4 #define TX_COUNT_DOWN (IMT_VAL * 4 / 3) #define DMAR_DLY_CNT 15 #define DMAW_DLY_CNT 4 #define PCI_DEVICE_ID_ATTANSIC_L1E 0x1026 /* * atl1e_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static struct pci_device_id atl1e_pci_tbl[] = { PCI_ROM(0x1969, 0x1026, "atl1e_26", "Attansic L1E 0x1026", 0), PCI_ROM(0x1969, 0x1066, "atl1e_66", "Attansic L1E 0x1066", 0), }; static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter); static const u16 atl1e_rx_page_vld_regs[AT_PAGE_NUM_PER_QUEUE] = { REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD }; static const u16 atl1e_rx_page_lo_addr_regs[AT_PAGE_NUM_PER_QUEUE] = { REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO }; static const u16 atl1e_rx_page_write_offset_regs[AT_PAGE_NUM_PER_QUEUE] = { REG_HOST_RXF0_MB0_LO, REG_HOST_RXF0_MB1_LO }; static const u16 atl1e_pay_load_size[] = { 128, 256, 512, 1024, 2048, 4096, }; /* * atl1e_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static inline void atl1e_irq_enable(struct atl1e_adapter *adapter) { AT_WRITE_REG(&adapter->hw, REG_ISR, 0); AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK); AT_WRITE_FLUSH(&adapter->hw); } /* * atl1e_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static inline void atl1e_irq_disable(struct atl1e_adapter *adapter) { AT_WRITE_REG(&adapter->hw, REG_IMR, 0); AT_WRITE_FLUSH(&adapter->hw); } /* * atl1e_irq_reset - reset interrupt confiure on the NIC * @adapter: board private structure */ static inline void atl1e_irq_reset(struct atl1e_adapter *adapter) { AT_WRITE_REG(&adapter->hw, REG_ISR, 0); AT_WRITE_REG(&adapter->hw, REG_IMR, 0); AT_WRITE_FLUSH(&adapter->hw); } static void atl1e_reset(struct atl1e_adapter *adapter) { atl1e_down(adapter); atl1e_up(adapter); } static int atl1e_check_link(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; int err = 0; u16 speed, duplex, phy_data; /* MII_BMSR must read twise */ atl1e_read_phy_reg(hw, MII_BMSR, &phy_data); atl1e_read_phy_reg(hw, MII_BMSR, &phy_data); if ((phy_data & BMSR_LSTATUS) == 0) { /* link down */ if (netdev_link_ok(netdev)) { /* old link state: Up */ u32 value; /* disable rx */ value = AT_READ_REG(hw, REG_MAC_CTRL); value &= ~MAC_CTRL_RX_EN; AT_WRITE_REG(hw, REG_MAC_CTRL, value); adapter->link_speed = SPEED_0; DBG("atl1e: %s link is down\n", netdev->name); netdev_link_down(netdev); } } else { /* Link Up */ err = atl1e_get_speed_and_duplex(hw, &speed, &duplex); if (err) return err; /* link result is our setting */ if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1e_setup_mac_ctrl(adapter); DBG("atl1e: %s link is up, %d Mbps, %s duplex\n", netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "full" : "half"); netdev_link_up(netdev); } } return 0; } static int atl1e_mdio_read(struct net_device *netdev, int phy_id __unused, int reg_num) { struct atl1e_adapter *adapter = netdev_priv(netdev); u16 result; atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result); return result; } static void atl1e_mdio_write(struct net_device *netdev, int phy_id __unused, int reg_num, int val) { struct atl1e_adapter *adapter = netdev_priv(netdev); atl1e_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val); } static void atl1e_setup_pcicmd(struct pci_device *pdev) { u16 cmd; pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd |= (PCI_COMMAND_MEM | PCI_COMMAND_MASTER); pci_write_config_word(pdev, PCI_COMMAND, cmd); /* * some motherboards BIOS(PXE/EFI) driver may set PME * while they transfer control to OS (Windows/Linux) * so we should clear this bit before NIC work normally */ pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0); mdelay(1); } /* * atl1e_sw_init - Initialize general software structures (struct atl1e_adapter) * @adapter: board private structure to initialize * * atl1e_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int atl1e_sw_init(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; struct pci_device *pdev = adapter->pdev; u32 phy_status_data = 0; u8 rev_id = 0; adapter->link_speed = SPEED_0; /* hardware init */ adapter->link_duplex = FULL_DUPLEX; /* PCI config space info */ pci_read_config_byte(pdev, PCI_REVISION, &rev_id); phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS); /* nic type */ if (rev_id >= 0xF0) { hw->nic_type = athr_l2e_revB; } else { if (phy_status_data & PHY_STATUS_100M) hw->nic_type = athr_l1e; else hw->nic_type = athr_l2e_revA; } phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS); hw->emi_ca = !!(phy_status_data & PHY_STATUS_EMI_CA); hw->phy_configured = 0; /* need confirm */ hw->dmar_block = atl1e_dma_req_1024; hw->dmaw_block = atl1e_dma_req_1024; return 0; } /* * atl1e_clean_tx_ring - free all Tx buffers for device close * @adapter: board private structure */ static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *) &adapter->tx_ring; struct atl1e_tx_buffer *tx_buffer = NULL; u16 index, ring_count = tx_ring->count; if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL) return; for (index = 0; index < ring_count; index++) { tx_buffer = &tx_ring->tx_buffer[index]; if (tx_buffer->iob) { netdev_tx_complete(adapter->netdev, tx_buffer->iob); tx_buffer->dma = 0; tx_buffer->iob = NULL; } } /* Zero out Tx-buffers */ memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) * ring_count); memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) * ring_count); } /* * atl1e_clean_rx_ring - Free rx-reservation iobs * @adapter: board private structure */ static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter) { struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)&adapter->rx_ring; struct atl1e_rx_page_desc *rx_page_desc = &rx_ring->rx_page_desc; u16 j; if (adapter->ring_vir_addr == NULL) return; /* Zero out the descriptor ring */ for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { if (rx_page_desc->rx_page[j].addr != NULL) { memset(rx_page_desc->rx_page[j].addr, 0, rx_ring->real_page_size); } } } static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size) { *ring_size = ((u32)(adapter->tx_ring.count * sizeof(struct atl1e_tpd_desc) + 7 /* tx ring, qword align */ + adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE + 31 /* rx ring, 32 bytes align */ + (1 + AT_PAGE_NUM_PER_QUEUE) * sizeof(u32) + 3)); /* tx, rx cmd, dword align */ } static void atl1e_init_ring_resources(struct atl1e_adapter *adapter) { struct atl1e_rx_ring *rx_ring = &adapter->rx_ring; rx_ring->real_page_size = adapter->rx_ring.page_size + MAX_FRAME_SIZE + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN; rx_ring->real_page_size = (rx_ring->real_page_size + 31) & ~31; atl1e_cal_ring_size(adapter, &adapter->ring_size); adapter->ring_vir_addr = NULL; adapter->rx_ring.desc = NULL; return; } /* * Read / Write Ptr Initialize: */ static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = NULL; struct atl1e_rx_ring *rx_ring = NULL; struct atl1e_rx_page_desc *rx_page_desc = NULL; int j; tx_ring = &adapter->tx_ring; rx_ring = &adapter->rx_ring; rx_page_desc = &rx_ring->rx_page_desc; tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; rx_page_desc->rx_using = 0; rx_page_desc->rx_nxseq = 0; for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { *rx_page_desc->rx_page[j].write_offset_addr = 0; rx_page_desc->rx_page[j].read_offset = 0; } } /* * atl1e_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ static void atl1e_free_ring_resources(struct atl1e_adapter *adapter) { atl1e_clean_tx_ring(adapter); atl1e_clean_rx_ring(adapter); if (adapter->ring_vir_addr) { free_dma(adapter->ring_vir_addr, adapter->ring_size); adapter->ring_vir_addr = NULL; adapter->ring_dma = 0; } if (adapter->tx_ring.tx_buffer) { free(adapter->tx_ring.tx_buffer); adapter->tx_ring.tx_buffer = NULL; } } /* * atl1e_setup_mem_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring; struct atl1e_rx_ring *rx_ring; struct atl1e_rx_page_desc *rx_page_desc; int size, j; u32 offset = 0; int err = 0; if (adapter->ring_vir_addr != NULL) return 0; /* alloced already */ tx_ring = &adapter->tx_ring; rx_ring = &adapter->rx_ring; /* real ring DMA buffer */ size = adapter->ring_size; adapter->ring_vir_addr = malloc_dma(adapter->ring_size, 32); if (adapter->ring_vir_addr == NULL) { DBG("atl1e: out of memory allocating %d bytes for %s ring\n", adapter->ring_size, adapter->netdev->name); return -ENOMEM; } adapter->ring_dma = virt_to_bus(adapter->ring_vir_addr); memset(adapter->ring_vir_addr, 0, adapter->ring_size); rx_page_desc = &rx_ring->rx_page_desc; /* Init TPD Ring */ tx_ring->dma = (adapter->ring_dma + 7) & ~7; offset = tx_ring->dma - adapter->ring_dma; tx_ring->desc = (struct atl1e_tpd_desc *) (adapter->ring_vir_addr + offset); size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count); tx_ring->tx_buffer = zalloc(size); if (tx_ring->tx_buffer == NULL) { DBG("atl1e: out of memory allocating %d bytes for %s txbuf\n", size, adapter->netdev->name); err = -ENOMEM; goto failed; } /* Init RXF-Pages */ offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count); offset = (offset + 31) & ~31; for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { rx_page_desc->rx_page[j].dma = adapter->ring_dma + offset; rx_page_desc->rx_page[j].addr = adapter->ring_vir_addr + offset; offset += rx_ring->real_page_size; } /* Init CMB dma address */ tx_ring->cmb_dma = adapter->ring_dma + offset; tx_ring->cmb = (u32 *)(adapter->ring_vir_addr + offset); offset += sizeof(u32); for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { rx_page_desc->rx_page[j].write_offset_dma = adapter->ring_dma + offset; rx_page_desc->rx_page[j].write_offset_addr = adapter->ring_vir_addr + offset; offset += sizeof(u32); } if (offset > adapter->ring_size) { DBG("atl1e: ring miscalculation! need %d > %d bytes\n", offset, adapter->ring_size); err = -EINVAL; goto failed; } return 0; failed: atl1e_free_ring_resources(adapter); return err; } static inline void atl1e_configure_des_ring(const struct atl1e_adapter *adapter) { struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw; struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)&adapter->rx_ring; struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)&adapter->tx_ring; struct atl1e_rx_page_desc *rx_page_desc = NULL; int j; AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, 0); AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO, tx_ring->dma); AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count)); AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO, tx_ring->cmb_dma); rx_page_desc = &rx_ring->rx_page_desc; /* RXF Page Physical address / Page Length */ AT_WRITE_REG(hw, REG_RXF0_BASE_ADDR_HI, 0); for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { u32 page_phy_addr; u32 offset_phy_addr; page_phy_addr = rx_page_desc->rx_page[j].dma; offset_phy_addr = rx_page_desc->rx_page[j].write_offset_dma; AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[j], page_phy_addr); AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[j], offset_phy_addr); AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[j], 1); } /* Page Length */ AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size); /* Load all of base address above */ AT_WRITE_REG(hw, REG_LOAD_PTR, 1); return; } static inline void atl1e_configure_tx(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw; u32 dev_ctrl_data = 0; u32 max_pay_load = 0; u32 jumbo_thresh = 0; u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */ /* configure TXQ param */ if (hw->nic_type != athr_l2e_revB) { extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN; jumbo_thresh = MAX_FRAME_SIZE + extra_size; AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3); } dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL); max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) & DEVICE_CTRL_MAX_PAYLOAD_MASK; if (max_pay_load < hw->dmaw_block) hw->dmaw_block = max_pay_load; max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) & DEVICE_CTRL_MAX_RREQ_SZ_MASK; if (max_pay_load < hw->dmar_block) hw->dmar_block = max_pay_load; if (hw->nic_type != athr_l2e_revB) AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2, atl1e_pay_load_size[hw->dmar_block]); /* enable TXQ */ AT_WRITE_REGW(hw, REG_TXQ_CTRL, ((TPD_BURST & TXQ_CTRL_NUM_TPD_BURST_MASK) << TXQ_CTRL_NUM_TPD_BURST_SHIFT) | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN); return; } static inline void atl1e_configure_rx(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw; u32 rxf_len = 0; u32 rxf_low = 0; u32 rxf_high = 0; u32 rxf_thresh_data = 0; u32 rxq_ctrl_data = 0; if (hw->nic_type != athr_l2e_revB) { AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM, (u16)((RX_JUMBO_THRESH & RXQ_JMBOSZ_TH_MASK) << RXQ_JMBOSZ_TH_SHIFT | (1 & RXQ_JMBO_LKAH_MASK) << RXQ_JMBO_LKAH_SHIFT)); rxf_len = AT_READ_REG(hw, REG_SRAM_RXF_LEN); rxf_high = rxf_len * 4 / 5; rxf_low = rxf_len / 5; rxf_thresh_data = ((rxf_high & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | ((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data); } /* RRS */ AT_WRITE_REG(hw, REG_IDT_TABLE, 0); AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, 0); rxq_ctrl_data |= RXQ_CTRL_PBA_ALIGN_32 | RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN; AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data); return; } static inline void atl1e_configure_dma(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; u32 dma_ctrl_data = 0; dma_ctrl_data = DMA_CTRL_RXCMB_EN; dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) << DMA_CTRL_DMAR_BURST_LEN_SHIFT; dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) << DMA_CTRL_DMAW_BURST_LEN_SHIFT; dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER; dma_ctrl_data |= (DMAR_DLY_CNT & DMA_CTRL_DMAR_DLY_CNT_MASK) << DMA_CTRL_DMAR_DLY_CNT_SHIFT; dma_ctrl_data |= (DMAW_DLY_CNT & DMA_CTRL_DMAW_DLY_CNT_MASK) << DMA_CTRL_DMAW_DLY_CNT_SHIFT; AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data); return; } static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter) { u32 value; struct atl1e_hw *hw = &adapter->hw; /* Config MAC CTRL Register */ value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN ; if (FULL_DUPLEX == adapter->link_duplex) value |= MAC_CTRL_DUPLX; value |= ((u32)((SPEED_1000 == adapter->link_speed) ? MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); value |= ((PREAMBLE_LEN & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); value |= MAC_CTRL_BC_EN; value |= MAC_CTRL_MC_ALL_EN; AT_WRITE_REG(hw, REG_MAC_CTRL, value); } /* * atl1e_configure - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static int atl1e_configure(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; u32 intr_status_data = 0; /* clear interrupt status */ AT_WRITE_REG(hw, REG_ISR, ~0); /* 1. set MAC Address */ atl1e_hw_set_mac_addr(hw); /* 2. Init the Multicast HASH table (clear) */ AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); /* 3. Clear any WOL status */ AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr * TPD Ring/SMB/RXF0 Page CMBs, they use the same * High 32bits memory */ atl1e_configure_des_ring(adapter); /* 5. set Interrupt Moderator Timer */ AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, IMT_VAL); AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, IMT_VAL); AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE | MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN); /* 6. rx/tx threshold to trig interrupt */ AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, RRD_THRESH); AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, TPD_THRESH); AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, RX_COUNT_DOWN); AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, TX_COUNT_DOWN); /* 7. set Interrupt Clear Timer */ AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, ICT_VAL); /* 8. set MTU */ AT_WRITE_REG(hw, REG_MTU, MAX_FRAME_SIZE + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); /* 9. config TXQ early tx threshold */ atl1e_configure_tx(adapter); /* 10. config RXQ */ atl1e_configure_rx(adapter); /* 11. config DMA Engine */ atl1e_configure_dma(adapter); /* 12. smb timer to trig interrupt */ AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, SMB_TIMER); intr_status_data = AT_READ_REG(hw, REG_ISR); if ((intr_status_data & ISR_PHY_LINKDOWN) != 0) { DBG("atl1e: configure failed, PCIE phy link down\n"); return -1; } AT_WRITE_REG(hw, REG_ISR, 0x7fffffff); return 0; } static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter) { u16 phy_data; atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data); } static int atl1e_clean_tx_irq(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *) &adapter->tx_ring; struct atl1e_tx_buffer *tx_buffer = NULL; u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX); u16 next_to_clean = tx_ring->next_to_clean; while (next_to_clean != hw_next_to_clean) { tx_buffer = &tx_ring->tx_buffer[next_to_clean]; tx_buffer->dma = 0; if (tx_buffer->iob) { netdev_tx_complete(adapter->netdev, tx_buffer->iob); tx_buffer->iob = NULL; } if (++next_to_clean == tx_ring->count) next_to_clean = 0; } tx_ring->next_to_clean = next_to_clean; return 1; } static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter) { struct atl1e_rx_page_desc *rx_page_desc = (struct atl1e_rx_page_desc *) &adapter->rx_ring.rx_page_desc; u8 rx_using = rx_page_desc->rx_using; return (struct atl1e_rx_page *)&(rx_page_desc->rx_page[rx_using]); } static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *) &adapter->rx_ring; struct atl1e_rx_page_desc *rx_page_desc = (struct atl1e_rx_page_desc *) &rx_ring->rx_page_desc; struct io_buffer *iob = NULL; struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter); u32 packet_size, write_offset; struct atl1e_recv_ret_status *prrs; write_offset = *(rx_page->write_offset_addr); if (rx_page->read_offset >= write_offset) return; do { /* get new packet's rrs */ prrs = (struct atl1e_recv_ret_status *) (rx_page->addr + rx_page->read_offset); /* check sequence number */ if (prrs->seq_num != rx_page_desc->rx_nxseq) { DBG("atl1e %s: RX sequence number error (%d != %d)\n", netdev->name, prrs->seq_num, rx_page_desc->rx_nxseq); rx_page_desc->rx_nxseq++; goto fatal_err; } rx_page_desc->rx_nxseq++; /* error packet */ if (prrs->pkt_flag & RRS_IS_ERR_FRAME) { if (prrs->err_flag & (RRS_ERR_BAD_CRC | RRS_ERR_DRIBBLE | RRS_ERR_CODE | RRS_ERR_TRUNC)) { /* hardware error, discard this packet */ netdev_rx_err(netdev, NULL, EIO); goto skip_pkt; } } packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) & RRS_PKT_SIZE_MASK) - ETH_FCS_LEN; iob = alloc_iob(packet_size + NET_IP_ALIGN); if (iob == NULL) { DBG("atl1e %s: dropping packet under memory pressure\n", netdev->name); goto skip_pkt; } iob_reserve(iob, NET_IP_ALIGN); memcpy(iob->data, (u8 *)(prrs + 1), packet_size); iob_put(iob, packet_size); netdev_rx(netdev, iob); skip_pkt: /* skip current packet whether it's ok or not. */ rx_page->read_offset += (((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) & RRS_PKT_SIZE_MASK) + sizeof(struct atl1e_recv_ret_status) + 31) & 0xFFFFFFE0); if (rx_page->read_offset >= rx_ring->page_size) { /* mark this page clean */ u16 reg_addr; u8 rx_using; rx_page->read_offset = *(rx_page->write_offset_addr) = 0; rx_using = rx_page_desc->rx_using; reg_addr = atl1e_rx_page_vld_regs[rx_using]; AT_WRITE_REGB(&adapter->hw, reg_addr, 1); rx_page_desc->rx_using ^= 1; rx_page = atl1e_get_rx_page(adapter); } write_offset = *(rx_page->write_offset_addr); } while (rx_page->read_offset < write_offset); return; fatal_err: if (!netdev_link_ok(adapter->netdev)) atl1e_reset(adapter); } /* * atl1e_poll - poll for completed transmissions and received packets * @netdev: network device */ static void atl1e_poll(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); struct atl1e_hw *hw = &adapter->hw; int max_ints = 64; u32 status; do { status = AT_READ_REG(hw, REG_ISR); if ((status & IMR_NORMAL_MASK) == 0) break; /* link event */ if (status & ISR_GPHY) atl1e_clear_phy_int(adapter); /* Ack ISR */ AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); /* check if PCIE PHY Link down */ if (status & ISR_PHY_LINKDOWN) { DBG("atl1e: PCI-E PHY link down: %x\n", status); if (netdev_link_ok(adapter->netdev)) { /* reset MAC */ atl1e_irq_reset(adapter); atl1e_reset(adapter); break; } } /* check if DMA read/write error */ if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { DBG("atl1e: PCI-E DMA RW error: %x\n", status); atl1e_irq_reset(adapter); atl1e_reset(adapter); break; } /* link event */ if (status & (ISR_GPHY | ISR_MANUAL)) { atl1e_check_link(adapter); break; } /* transmit event */ if (status & ISR_TX_EVENT) atl1e_clean_tx_irq(adapter); if (status & ISR_RX_EVENT) atl1e_clean_rx_irq(adapter); } while (--max_ints > 0); /* re-enable Interrupt*/ AT_WRITE_REG(&adapter->hw, REG_ISR, 0); return; } static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; u16 next_to_use = 0; u16 next_to_clean = 0; next_to_clean = tx_ring->next_to_clean; next_to_use = tx_ring->next_to_use; return (u16)(next_to_clean > next_to_use) ? (next_to_clean - next_to_use - 1) : (tx_ring->count + next_to_clean - next_to_use - 1); } /* * get next usable tpd * Note: should call atl1e_tdp_avail to make sure * there is enough tpd to use */ static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; u16 next_to_use = 0; next_to_use = tx_ring->next_to_use; if (++tx_ring->next_to_use == tx_ring->count) tx_ring->next_to_use = 0; memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc)); return (struct atl1e_tpd_desc *)&tx_ring->desc[next_to_use]; } static struct atl1e_tx_buffer * atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; return &tx_ring->tx_buffer[tpd - tx_ring->desc]; } static void atl1e_tx_map(struct atl1e_adapter *adapter, struct io_buffer *iob, struct atl1e_tpd_desc *tpd) { struct atl1e_tx_buffer *tx_buffer = NULL; u16 buf_len = iob_len(iob); tx_buffer = atl1e_get_tx_buffer(adapter, tpd); tx_buffer->iob = iob; tx_buffer->length = buf_len; tx_buffer->dma = virt_to_bus(iob->data); tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); tpd->word2 = ((tpd->word2 & ~TPD_BUFLEN_MASK) | ((cpu_to_le32(buf_len) & TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT)); tpd->word3 |= 1 << TPD_EOP_SHIFT; } static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count __unused, struct atl1e_tpd_desc *tpd __unused) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; wmb(); AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use); } static int atl1e_xmit_frame(struct net_device *netdev, struct io_buffer *iob) { struct atl1e_adapter *adapter = netdev_priv(netdev); u16 tpd_req = 1; struct atl1e_tpd_desc *tpd; if (!netdev_link_ok(netdev)) { return -EINVAL; } if (atl1e_tpd_avail(adapter) < tpd_req) { return -EBUSY; } tpd = atl1e_get_tpd(adapter); atl1e_tx_map(adapter, iob, tpd); atl1e_tx_queue(adapter, tpd_req, tpd); return 0; } int atl1e_up(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err = 0; u32 val; /* hardware has been reset, we need to reload some things */ err = atl1e_init_hw(&adapter->hw); if (err) { return -EIO; } atl1e_init_ring_ptrs(adapter); memcpy(adapter->hw.mac_addr, netdev->ll_addr, ETH_ALEN); if (atl1e_configure(adapter) != 0) { return -EIO; } atl1e_irq_disable(adapter); val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL); AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val | MASTER_CTRL_MANUAL_INT); return err; } void atl1e_irq(struct net_device *netdev, int enable) { struct atl1e_adapter *adapter = netdev_priv(netdev); if (enable) atl1e_irq_enable(adapter); else atl1e_irq_disable(adapter); } void atl1e_down(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; /* reset MAC to disable all RX/TX */ atl1e_reset_hw(&adapter->hw); mdelay(1); netdev_link_down(netdev); adapter->link_speed = SPEED_0; adapter->link_duplex = -1; atl1e_clean_tx_ring(adapter); atl1e_clean_rx_ring(adapter); } /* * atl1e_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl1e_open(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); int err; /* allocate rx/tx dma buffer & descriptors */ atl1e_init_ring_resources(adapter); err = atl1e_setup_ring_resources(adapter); if (err) return err; err = atl1e_up(adapter); if (err) goto err_up; return 0; err_up: atl1e_free_ring_resources(adapter); atl1e_reset_hw(&adapter->hw); return err; } /* * atl1e_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static void atl1e_close(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); atl1e_down(adapter); atl1e_free_ring_resources(adapter); } static struct net_device_operations atl1e_netdev_ops = { .open = atl1e_open, .close = atl1e_close, .transmit = atl1e_xmit_frame, .poll = atl1e_poll, .irq = atl1e_irq, }; static void atl1e_init_netdev(struct net_device *netdev, struct pci_device *pdev) { netdev_init(netdev, &atl1e_netdev_ops); netdev->dev = &pdev->dev; pci_set_drvdata(pdev, netdev); } /* * atl1e_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl1e_pci_tbl * * Returns 0 on success, negative on failure * * atl1e_probe initializes an adapter identified by a pci_device structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int atl1e_probe(struct pci_device *pdev) { struct net_device *netdev; struct atl1e_adapter *adapter = NULL; static int cards_found; int err = 0; adjust_pci_device(pdev); netdev = alloc_etherdev(sizeof(struct atl1e_adapter)); if (netdev == NULL) { err = -ENOMEM; DBG("atl1e: out of memory allocating net_device\n"); goto err; } atl1e_init_netdev(netdev, pdev); adapter = netdev_priv(netdev); adapter->bd_number = cards_found; adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.adapter = adapter; if (!pdev->membase) { err = -EIO; DBG("atl1e: cannot map device registers\n"); goto err_free_netdev; } adapter->hw.hw_addr = bus_to_virt(pdev->membase); /* init mii data */ adapter->mii.dev = netdev; adapter->mii.mdio_read = atl1e_mdio_read; adapter->mii.mdio_write = atl1e_mdio_write; adapter->mii.phy_id_mask = 0x1f; adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK; /* get user settings */ adapter->tx_ring.count = TX_DESC_COUNT; adapter->rx_ring.page_size = RX_MEM_SIZE; atl1e_setup_pcicmd(pdev); /* setup the private structure */ err = atl1e_sw_init(adapter); if (err) { DBG("atl1e: private data init failed\n"); goto err_free_netdev; } /* Init GPHY as early as possible due to power saving issue */ atl1e_phy_init(&adapter->hw); /* reset the controller to * put the device in a known good starting state */ err = atl1e_reset_hw(&adapter->hw); if (err) { err = -EIO; goto err_free_netdev; } /* This may have been run by a zero-wait timer around now... unclear. */ atl1e_restart_autoneg(&adapter->hw); if (atl1e_read_mac_addr(&adapter->hw) != 0) { DBG("atl1e: cannot read MAC address from EEPROM\n"); err = -EIO; goto err_free_netdev; } memcpy(netdev->hw_addr, adapter->hw.perm_mac_addr, ETH_ALEN); memcpy(netdev->ll_addr, adapter->hw.mac_addr, ETH_ALEN); DBG("atl1e: Attansic L1E Ethernet controller on %s, " "%02x:%02x:%02x:%02x:%02x:%02x\n", adapter->netdev->name, adapter->hw.mac_addr[0], adapter->hw.mac_addr[1], adapter->hw.mac_addr[2], adapter->hw.mac_addr[3], adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]); err = register_netdev(netdev); if (err) { DBG("atl1e: cannot register network device\n"); goto err_free_netdev; } cards_found++; return 0; err_free_netdev: netdev_nullify(netdev); netdev_put(netdev); err: return err; } /* * atl1e_remove - Device Removal Routine * @pdev: PCI device information struct * * atl1e_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void atl1e_remove(struct pci_device *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); unregister_netdev(netdev); atl1e_free_ring_resources(adapter); atl1e_force_ps(&adapter->hw); netdev_nullify(netdev); netdev_put(netdev); } struct pci_driver atl1e_driver __pci_driver = { .ids = atl1e_pci_tbl, .id_count = (sizeof(atl1e_pci_tbl) / sizeof(atl1e_pci_tbl[0])), .probe = atl1e_probe, .remove = atl1e_remove, }; /********** Hardware-level functions: **********/ /* * check_eeprom_exist * return 0 if eeprom exist */ int atl1e_check_eeprom_exist(struct atl1e_hw *hw) { u32 value; value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL); if (value & SPI_FLASH_CTRL_EN_VPD) { value &= ~SPI_FLASH_CTRL_EN_VPD; AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); } value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST); return ((value & 0xFF00) == 0x6C00) ? 0 : 1; } void atl1e_hw_set_mac_addr(struct atl1e_hw *hw) { u32 value; /* * 00-0B-6A-F6-00-DC * 0: 6AF600DC 1: 000B * low dword */ value = (((u32)hw->mac_addr[2]) << 24) | (((u32)hw->mac_addr[3]) << 16) | (((u32)hw->mac_addr[4]) << 8) | (((u32)hw->mac_addr[5])) ; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); /* hight dword */ value = (((u32)hw->mac_addr[0]) << 8) | (((u32)hw->mac_addr[1])) ; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); } /* * atl1e_get_permanent_address * return 0 if get valid mac address, */ static int atl1e_get_permanent_address(struct atl1e_hw *hw) { union { u32 dword[2]; u8 byte[8]; } hw_addr; u32 i; u32 twsi_ctrl_data; u8 eth_addr[ETH_ALEN]; if (!atl1e_check_eeprom_exist(hw)) { /* eeprom exist */ twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { mdelay(10); twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) break; } if (i >= AT_TWSI_EEPROM_TIMEOUT) return AT_ERR_TIMEOUT; } /* maybe MAC-address is from BIOS */ hw_addr.dword[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR); hw_addr.dword[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4); for (i = 0; i < ETH_ALEN; i++) { eth_addr[ETH_ALEN - i - 1] = hw_addr.byte[i]; } memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); return 0; } void atl1e_force_ps(struct atl1e_hw *hw) { AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); } /* * Reads the adapter's MAC address from the EEPROM * * hw - Struct containing variables accessed by shared code */ int atl1e_read_mac_addr(struct atl1e_hw *hw) { int err = 0; err = atl1e_get_permanent_address(hw); if (err) return AT_ERR_EEPROM; memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); return 0; } /* * Reads the value from a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read */ int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data) { u32 val; int i; val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); wmb(); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = AT_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; wmb(); } if (!(val & (MDIO_START | MDIO_BUSY))) { *phy_data = (u16)val; return 0; } return AT_ERR_PHY; } /* * Writes a value to a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY */ int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data) { int i; u32 val; val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | MDIO_SUP_PREAMBLE | MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); wmb(); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = AT_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; wmb(); } if (!(val & (MDIO_START | MDIO_BUSY))) return 0; return AT_ERR_PHY; } /* * atl1e_init_pcie - init PCIE module */ static void atl1e_init_pcie(struct atl1e_hw *hw) { u32 value; /* comment 2lines below to save more power when sususpend value = LTSSM_TEST_MODE_DEF; AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); */ /* pcie flow control mode change */ value = AT_READ_REG(hw, 0x1008); value |= 0x8000; AT_WRITE_REG(hw, 0x1008, value); } /* * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code */ static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw) { s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg; if (0 != hw->mii_autoneg_adv_reg) return 0; /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */ mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK; /* * First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T control Register (Address 9). */ mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK; /* Assume auto-detect media type */ mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | MII_AR_10T_FD_CAPS | MII_AR_100TX_HD_CAPS | MII_AR_100TX_FD_CAPS); if (hw->nic_type == athr_l1e) { mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS; } /* flow control fixed to enable all */ mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); if (ret_val) return ret_val; if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR, mii_1000t_ctrl_reg); if (ret_val) return ret_val; } return 0; } /* * Resets the PHY and make all config validate * * hw - Struct containing variables accessed by shared code * * Sets bit 15 and 12 of the MII control regiser (for F001 bug) */ int atl1e_phy_commit(struct atl1e_hw *hw) { int ret_val; u16 phy_data; phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG; ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data); if (ret_val) { u32 val; int i; /************************************** * pcie serdes link may be down ! **************************************/ for (i = 0; i < 25; i++) { mdelay(1); val = AT_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (0 != (val & (MDIO_START | MDIO_BUSY))) { DBG("atl1e: PCI-E link down for at least 25ms\n"); return ret_val; } DBG("atl1e: PCI-E link up after %d ms\n", i); } return 0; } int atl1e_phy_init(struct atl1e_hw *hw) { s32 ret_val; u16 phy_val; if (hw->phy_configured) { if (hw->re_autoneg) { hw->re_autoneg = 0; return atl1e_restart_autoneg(hw); } return 0; } /* RESET GPHY Core */ AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT); mdelay(2); AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT | GPHY_CTRL_EXT_RESET); mdelay(2); /* patches */ /* p1. eable hibernation mode */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00); if (ret_val) return ret_val; /* p2. set Class A/B for all modes */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0); if (ret_val) return ret_val; phy_val = 0x02ef; /* remove Class AB */ /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val); if (ret_val) return ret_val; /* p3. 10B ??? */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04); if (ret_val) return ret_val; /* p4. 1000T power */ ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5); if (ret_val) return ret_val; ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46); if (ret_val) return ret_val; mdelay(1); /*Enable PHY LinkChange Interrupt */ ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00); if (ret_val) { DBG("atl1e: Error enable PHY linkChange Interrupt\n"); return ret_val; } /* setup AutoNeg parameters */ ret_val = atl1e_phy_setup_autoneg_adv(hw); if (ret_val) { DBG("atl1e: Error Setting up Auto-Negotiation\n"); return ret_val; } /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/ DBG("atl1e: Restarting Auto-Neg"); ret_val = atl1e_phy_commit(hw); if (ret_val) { DBG("atl1e: Error Resetting the phy"); return ret_val; } hw->phy_configured = 1; return 0; } /* * Reset the transmit and receive units; mask and clear all interrupts. * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ int atl1e_reset_hw(struct atl1e_hw *hw) { struct atl1e_adapter *adapter = hw->adapter; struct pci_device *pdev = adapter->pdev; int timeout = 0; u32 idle_status_data = 0; u16 pci_cfg_cmd_word = 0; /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ pci_read_config_word(pdev, PCI_COMMAND, &pci_cfg_cmd_word); if ((pci_cfg_cmd_word & (PCI_COMMAND_IO | PCI_COMMAND_MEM | PCI_COMMAND_MASTER)) != (PCI_COMMAND_IO | PCI_COMMAND_MEM | PCI_COMMAND_MASTER)) { pci_cfg_cmd_word |= (PCI_COMMAND_IO | PCI_COMMAND_MEM | PCI_COMMAND_MASTER); pci_write_config_word(pdev, PCI_COMMAND, pci_cfg_cmd_word); } /* * Issue Soft Reset to the MAC. This will reset the chip's * transmit, receive, DMA. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST); wmb(); mdelay(1); /* Wait at least 10ms for All module to be Idle */ for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS); if (idle_status_data == 0) break; mdelay(1); } if (timeout >= AT_HW_MAX_IDLE_DELAY) { DBG("atl1e: MAC reset timeout\n"); return AT_ERR_TIMEOUT; } return 0; } /* * Performs basic configuration of the adapter. * * hw - Struct containing variables accessed by shared code * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes multicast table, * and Calls routines to setup link * Leaves the transmit and receive units disabled and uninitialized. */ int atl1e_init_hw(struct atl1e_hw *hw) { s32 ret_val = 0; atl1e_init_pcie(hw); /* Zero out the Multicast HASH table */ /* clear the old settings from the multicast hash table */ AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); ret_val = atl1e_phy_init(hw); return ret_val; } /* * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection */ int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex) { int err; u16 phy_data; /* Read PHY Specific Status Register (17) */ err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data); if (err) return err; if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED)) return AT_ERR_PHY_RES; switch (phy_data & MII_AT001_PSSR_SPEED) { case MII_AT001_PSSR_1000MBS: *speed = SPEED_1000; break; case MII_AT001_PSSR_100MBS: *speed = SPEED_100; break; case MII_AT001_PSSR_10MBS: *speed = SPEED_10; break; default: return AT_ERR_PHY_SPEED; break; } if (phy_data & MII_AT001_PSSR_DPLX) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return 0; } int atl1e_restart_autoneg(struct atl1e_hw *hw) { int err = 0; err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); if (err) return err; if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { err = atl1e_write_phy_reg(hw, MII_AT001_CR, hw->mii_1000t_ctrl_reg); if (err) return err; } err = atl1e_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); return err; }