/* * Copyright (C) 2006 Michael Brown . * * Based in part on pci.c from Etherboot 5.4, by Ken Yap and David * Munro, in turn based on the Linux kernel's PCI implementation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * You can also choose to distribute this program under the terms of * the Unmodified Binary Distribution Licence (as given in the file * COPYING.UBDL), provided that you have satisfied its requirements. */ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); #include #include #include #include #include #include #include #include /** @file * * PCI bus * */ static void pcibus_remove ( struct root_device *rootdev ); /** * Read PCI BAR * * @v pci PCI device * @v reg PCI register number * @ret bar Base address register * * Reads the specified PCI base address register, including the flags * portion. 64-bit BARs will be handled automatically. If the value * of the 64-bit BAR exceeds the size of an unsigned long (i.e. if the * high dword is non-zero on a 32-bit platform), then the value * returned will be zero plus the flags for a 64-bit BAR. Unreachable * 64-bit BARs are therefore returned as uninitialised 64-bit BARs. */ static unsigned long pci_bar ( struct pci_device *pci, unsigned int reg ) { uint32_t low; uint32_t high; pci_read_config_dword ( pci, reg, &low ); if ( ( low & (PCI_BASE_ADDRESS_SPACE_IO|PCI_BASE_ADDRESS_MEM_TYPE_MASK)) == PCI_BASE_ADDRESS_MEM_TYPE_64 ) { pci_read_config_dword ( pci, reg + 4, &high ); if ( high ) { if ( sizeof ( unsigned long ) > sizeof ( uint32_t ) ) { return ( ( ( uint64_t ) high << 32 ) | low ); } else { DBGC ( pci, PCI_FMT " unhandled 64-bit BAR " "%08x%08x\n", PCI_ARGS ( pci ), high, low ); return PCI_BASE_ADDRESS_MEM_TYPE_64; } } } return low; } /** * Find the start of a PCI BAR * * @v pci PCI device * @v reg PCI register number * @ret start BAR start address * * Reads the specified PCI base address register, and returns the * address portion of the BAR (i.e. without the flags). * * If the address exceeds the size of an unsigned long (i.e. if a * 64-bit BAR has a non-zero high dword on a 32-bit machine), the * return value will be zero. */ unsigned long pci_bar_start ( struct pci_device *pci, unsigned int reg ) { unsigned long bar; bar = pci_bar ( pci, reg ); if ( bar & PCI_BASE_ADDRESS_SPACE_IO ) { return ( bar & ~PCI_BASE_ADDRESS_IO_MASK ); } else { return ( bar & ~PCI_BASE_ADDRESS_MEM_MASK ); } } /** * Read membase and ioaddr for a PCI device * * @v pci PCI device * * This scans through all PCI BARs on the specified device. The first * valid memory BAR is recorded as pci_device::membase, and the first * valid IO BAR is recorded as pci_device::ioaddr. * * 64-bit BARs are handled automatically. On a 32-bit platform, if a * 64-bit BAR has a non-zero high dword, it will be regarded as * invalid. */ static void pci_read_bases ( struct pci_device *pci ) { unsigned long bar; int reg; for ( reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg += 4 ) { bar = pci_bar ( pci, reg ); if ( bar & PCI_BASE_ADDRESS_SPACE_IO ) { if ( ! pci->ioaddr ) pci->ioaddr = ( bar & ~PCI_BASE_ADDRESS_IO_MASK ); } else { if ( ! pci->membase ) pci->membase = ( bar & ~PCI_BASE_ADDRESS_MEM_MASK ); /* Skip next BAR if 64-bit */ if ( bar & PCI_BASE_ADDRESS_MEM_TYPE_64 ) reg += 4; } } } /** * Enable PCI device * * @v pci PCI device * * Set device to be a busmaster in case BIOS neglected to do so. Also * adjust PCI latency timer to a reasonable value, 32. */ void adjust_pci_device ( struct pci_device *pci ) { unsigned short new_command, pci_command; unsigned char pci_latency; pci_read_config_word ( pci, PCI_COMMAND, &pci_command ); new_command = ( pci_command | PCI_COMMAND_MASTER | PCI_COMMAND_MEM | PCI_COMMAND_IO ); if ( pci_command != new_command ) { DBGC ( pci, PCI_FMT " device not enabled by BIOS! Updating " "PCI command %04x->%04x\n", PCI_ARGS ( pci ), pci_command, new_command ); pci_write_config_word ( pci, PCI_COMMAND, new_command ); } pci_read_config_byte ( pci, PCI_LATENCY_TIMER, &pci_latency); if ( pci_latency < 32 ) { DBGC ( pci, PCI_FMT " latency timer is unreasonably low at " "%d. Setting to 32.\n", PCI_ARGS ( pci ), pci_latency ); pci_write_config_byte ( pci, PCI_LATENCY_TIMER, 32); } } /** * Read PCI device configuration * * @v pci PCI device * @ret rc Return status code */ int pci_read_config ( struct pci_device *pci ) { uint32_t busdevfn; uint8_t hdrtype; uint32_t tmp; /* Ignore all but the first function on non-multifunction devices */ if ( PCI_FUNC ( pci->busdevfn ) != 0 ) { busdevfn = pci->busdevfn; pci->busdevfn = PCI_FIRST_FUNC ( pci->busdevfn ); pci_read_config_byte ( pci, PCI_HEADER_TYPE, &hdrtype ); pci->busdevfn = busdevfn; if ( ! ( hdrtype & PCI_HEADER_TYPE_MULTI ) ) return -ENODEV; } /* Check for physical device presence */ pci_read_config_dword ( pci, PCI_VENDOR_ID, &tmp ); if ( ( tmp == 0xffffffff ) || ( tmp == 0 ) ) return -ENODEV; /* Populate struct pci_device */ pci->vendor = ( tmp & 0xffff ); pci->device = ( tmp >> 16 ); pci_read_config_dword ( pci, PCI_REVISION, &tmp ); pci->class = ( tmp >> 8 ); pci_read_config_byte ( pci, PCI_INTERRUPT_LINE, &pci->irq ); pci_read_bases ( pci ); /* Initialise generic device component */ snprintf ( pci->dev.name, sizeof ( pci->dev.name ), "%04x:%02x:%02x.%x", PCI_SEG ( pci->busdevfn ), PCI_BUS ( pci->busdevfn ), PCI_SLOT ( pci->busdevfn ), PCI_FUNC ( pci->busdevfn ) ); pci->dev.desc.bus_type = BUS_TYPE_PCI; pci->dev.desc.location = pci->busdevfn; pci->dev.desc.vendor = pci->vendor; pci->dev.desc.device = pci->device; pci->dev.desc.class = pci->class; pci->dev.desc.ioaddr = pci->ioaddr; pci->dev.desc.irq = pci->irq; INIT_LIST_HEAD ( &pci->dev.siblings ); INIT_LIST_HEAD ( &pci->dev.children ); return 0; } /** * Find next device on PCI bus * * @v pci PCI device to fill in * @v busdevfn Starting bus:dev.fn address * @ret busdevfn Bus:dev.fn address of next PCI device, or negative error */ int pci_find_next ( struct pci_device *pci, unsigned int busdevfn ) { static unsigned int end; int rc; /* Determine number of PCI buses */ if ( ! end ) end = PCI_BUSDEVFN ( 0, pci_num_bus(), 0, 0 ); /* Find next PCI device, if any */ for ( ; busdevfn < end ; busdevfn++ ) { memset ( pci, 0, sizeof ( *pci ) ); pci_init ( pci, busdevfn ); if ( ( rc = pci_read_config ( pci ) ) == 0 ) return busdevfn; } return -ENODEV; } /** * Find driver for PCI device * * @v pci PCI device * @ret rc Return status code */ int pci_find_driver ( struct pci_device *pci ) { struct pci_driver *driver; struct pci_device_id *id; unsigned int i; for_each_table_entry ( driver, PCI_DRIVERS ) { if ( ( driver->class.class ^ pci->class ) & driver->class.mask ) continue; for ( i = 0 ; i < driver->id_count ; i++ ) { id = &driver->ids[i]; if ( ( id->vendor != PCI_ANY_ID ) && ( id->vendor != pci->vendor ) ) continue; if ( ( id->device != PCI_ANY_ID ) && ( id->device != pci->device ) ) continue; pci_set_driver ( pci, driver, id ); return 0; } } return -ENOENT; } /** * Probe a PCI device * * @v pci PCI device * @ret rc Return status code * * Searches for a driver for the PCI device. If a driver is found, * its probe() routine is called. */ int pci_probe ( struct pci_device *pci ) { int rc; DBGC ( pci, PCI_FMT " (%04x:%04x) has driver \"%s\"\n", PCI_ARGS ( pci ), pci->vendor, pci->device, pci->id->name ); DBGC ( pci, PCI_FMT " has mem %lx io %lx irq %d\n", PCI_ARGS ( pci ), pci->membase, pci->ioaddr, pci->irq ); if ( ( rc = pci->driver->probe ( pci ) ) != 0 ) { DBGC ( pci, PCI_FMT " probe failed: %s\n", PCI_ARGS ( pci ), strerror ( rc ) ); return rc; } return 0; } /** * Remove a PCI device * * @v pci PCI device */ void pci_remove ( struct pci_device *pci ) { pci->driver->remove ( pci ); DBGC ( pci, PCI_FMT " removed\n", PCI_ARGS ( pci ) ); } /** * Probe PCI root bus * * @v rootdev PCI bus root device * * Scans the PCI bus for devices and registers all devices it can * find. */ static int pcibus_probe ( struct root_device *rootdev ) { struct pci_device *pci = NULL; int busdevfn = 0; int rc; for ( busdevfn = 0 ; 1 ; busdevfn++ ) { /* Allocate struct pci_device */ if ( ! pci ) pci = malloc ( sizeof ( *pci ) ); if ( ! pci ) { rc = -ENOMEM; goto err; } /* Find next PCI device, if any */ busdevfn = pci_find_next ( pci, busdevfn ); if ( busdevfn < 0 ) break; /* Look for a driver */ if ( ( rc = pci_find_driver ( pci ) ) != 0 ) { DBGC ( pci, PCI_FMT " (%04x:%04x class %06x) has no " "driver\n", PCI_ARGS ( pci ), pci->vendor, pci->device, pci->class ); continue; } /* Add to device hierarchy */ pci->dev.parent = &rootdev->dev; list_add ( &pci->dev.siblings, &rootdev->dev.children ); /* Look for a driver */ if ( ( rc = pci_probe ( pci ) ) == 0 ) { /* pcidev registered, we can drop our ref */ pci = NULL; } else { /* Not registered; re-use struct pci_device */ list_del ( &pci->dev.siblings ); } } free ( pci ); return 0; err: free ( pci ); pcibus_remove ( rootdev ); return rc; } /** * Remove PCI root bus * * @v rootdev PCI bus root device */ static void pcibus_remove ( struct root_device *rootdev ) { struct pci_device *pci; struct pci_device *tmp; list_for_each_entry_safe ( pci, tmp, &rootdev->dev.children, dev.siblings ) { pci_remove ( pci ); list_del ( &pci->dev.siblings ); free ( pci ); } } /** PCI bus root device driver */ static struct root_driver pci_root_driver = { .probe = pcibus_probe, .remove = pcibus_remove, }; /** PCI bus root device */ struct root_device pci_root_device __root_device = { .dev = { .name = "PCI" }, .driver = &pci_root_driver, };