/* * OpenEXR (.exr) image decoder * Copyright (c) 2009 Jimmy Christensen * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * OpenEXR decoder * @author Jimmy Christensen * * For more information on the OpenEXR format, visit: * http://openexr.com/ * * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger */ #include #include "avcodec.h" #include "bytestream.h" #include "mathops.h" #include "thread.h" #include "libavutil/imgutils.h" enum ExrCompr { EXR_RAW = 0, EXR_RLE = 1, EXR_ZIP1 = 2, EXR_ZIP16 = 3, EXR_PIZ = 4, EXR_B44 = 6, EXR_B44A = 7, }; typedef struct EXRContext { AVFrame picture; int compr; int bits_per_color_id; int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha uint8_t *uncompressed_data; int uncompressed_size; uint8_t *tmp; int tmp_size; } EXRContext; /** * Converts from 32-bit float as uint32_t to uint16_t * * @param v 32-bit float * @return normalized 16-bit unsigned int */ static inline uint16_t exr_flt2uint(uint32_t v) { unsigned int exp = v >> 23; // "HACK": negative values result in exp< 0, so clipping them to 0 // is also handled by this condition, avoids explicit check for sign bit. if (exp<= 127 + 7 - 24) // we would shift out all bits anyway return 0; if (exp >= 127) return 0xffff; v &= 0x007fffff; return (v + (1 << 23)) >> (127 + 7 - exp); } /** * Converts from 16-bit float as uint16_t to uint16_t * * @param v 16-bit float * @return normalized 16-bit unsigned int */ static inline uint16_t exr_halflt2uint(uint16_t v) { unsigned exp = 14 - (v >> 10); if (exp >= 14) { if (exp == 14) return (v >> 9) & 1; else return (v & 0x8000) ? 0 : 0xffff; } v <<= 6; return (v + (1 << 16)) >> (exp + 1); } /** * Gets the size of the header variable * * @param **buf the current pointer location in the header where * the variable data starts * @param *buf_end pointer location of the end of the buffer * @return size of variable data */ static unsigned int get_header_variable_length(const uint8_t **buf, const uint8_t *buf_end) { unsigned int variable_buffer_data_size = bytestream_get_le32(buf); if (variable_buffer_data_size >= buf_end - *buf) return 0; return variable_buffer_data_size; } /** * Checks if the variable name corresponds with it's data type * * @param *avctx the AVCodecContext * @param **buf the current pointer location in the header where * the variable name starts * @param *buf_end pointer location of the end of the buffer * @param *value_name name of the varible to check * @param *value_type type of the varible to check * @param minimum_length minimum length of the variable data * @param variable_buffer_data_size variable length read from the header * after it's checked * @return negative if variable is invalid */ static int check_header_variable(AVCodecContext *avctx, const uint8_t **buf, const uint8_t *buf_end, const char *value_name, const char *value_type, unsigned int minimum_length, unsigned int *variable_buffer_data_size) { if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) { *buf += strlen(value_name)+1; if (!strcmp(*buf, value_type)) { *buf += strlen(value_type)+1; *variable_buffer_data_size = get_header_variable_length(buf, buf_end); if (!*variable_buffer_data_size) av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); if (*variable_buffer_data_size > buf_end - *buf) return -1; return 1; } *buf -= strlen(value_name)+1; av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name); } return -1; } static void predictor(uint8_t *src, int size) { uint8_t *t = src + 1; uint8_t *stop = src + size; while (t < stop) { int d = (int)t[-1] + (int)t[0] - 128; t[0] = d; ++t; } } static void reorder_pixels(uint8_t *src, uint8_t *dst, int size) { const int8_t *t1 = src; const int8_t *t2 = src + (size + 1) / 2; int8_t *s = dst; int8_t *stop = s + size; while (1) { if (s < stop) *(s++) = *(t1++); else break; if (s < stop) *(s++) = *(t2++); else break; } } static int rle_uncompress(const uint8_t *src, int ssize, uint8_t *dst, int dsize) { int8_t *d = (int8_t *)dst; int8_t *s = (int8_t *)src; int8_t *dend = d + dsize; int count; while (ssize > 0) { count = *s++; if (count < 0) { count = -count; if ((dsize -= count ) < 0 || (ssize -= count + 1) < 0) return -1; while (count--) *d++ = *s++; } else { count++; if ((dsize -= count) < 0 || (ssize -= 2 ) < 0) return -1; while (count--) *d++ = *s; s++; } } return dend != d; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; unsigned int buf_size = avpkt->size; const uint8_t *buf_end = buf + buf_size; const AVPixFmtDescriptor *desc; EXRContext *const s = avctx->priv_data; AVFrame *picture = data; AVFrame *const p = &s->picture; uint8_t *ptr; int i, x, y, stride, magic_number, version_flag, ret; int w = 0; int h = 0; unsigned int xmin = ~0; unsigned int xmax = ~0; unsigned int ymin = ~0; unsigned int ymax = ~0; unsigned int xdelta = ~0; int out_line_size; int bxmin, axmax; int scan_lines_per_block; unsigned long scan_line_size; unsigned long uncompressed_size; unsigned int current_channel_offset = 0; s->channel_offsets[0] = -1; s->channel_offsets[1] = -1; s->channel_offsets[2] = -1; s->channel_offsets[3] = -1; s->bits_per_color_id = -1; if (buf_size < 10) { av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n"); return AVERROR_INVALIDDATA; } magic_number = bytestream_get_le32(&buf); if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number); return AVERROR_INVALIDDATA; } version_flag = bytestream_get_le32(&buf); if ((version_flag & 0x200) == 0x200) { av_log(avctx, AV_LOG_ERROR, "Tile based images are not supported\n"); return AVERROR_PATCHWELCOME; } // Parse the header while (buf < buf_end && buf[0]) { unsigned int variable_buffer_data_size; // Process the channel list if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) { const uint8_t *channel_list_end; if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; channel_list_end = buf + variable_buffer_data_size; while (channel_list_end - buf >= 19) { int current_bits_per_color_id = -1; int channel_index = -1; if (!strcmp(buf, "R")) channel_index = 0; else if (!strcmp(buf, "G")) channel_index = 1; else if (!strcmp(buf, "B")) channel_index = 2; else if (!strcmp(buf, "A")) channel_index = 3; else av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf); while (bytestream_get_byte(&buf) && buf < channel_list_end) continue; /* skip */ if (channel_list_end - * &buf < 4) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } current_bits_per_color_id = bytestream_get_le32(&buf); if (current_bits_per_color_id > 2) { av_log(avctx, AV_LOG_ERROR, "Unknown color format\n"); return AVERROR_INVALIDDATA; } if (channel_index >= 0) { if (s->bits_per_color_id != -1 && s->bits_per_color_id != current_bits_per_color_id) { av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n"); return AVERROR_INVALIDDATA; } s->bits_per_color_id = current_bits_per_color_id; s->channel_offsets[channel_index] = current_channel_offset; } current_channel_offset += 1 << current_bits_per_color_id; buf += 12; } /* Check if all channels are set with an offset or if the channels * are causing an overflow */ if (FFMIN3(s->channel_offsets[0], s->channel_offsets[1], s->channel_offsets[2]) < 0) { if (s->channel_offsets[0] < 0) av_log(avctx, AV_LOG_ERROR, "Missing red channel\n"); if (s->channel_offsets[1] < 0) av_log(avctx, AV_LOG_ERROR, "Missing green channel\n"); if (s->channel_offsets[2] < 0) av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n"); return AVERROR_INVALIDDATA; } buf = channel_list_end; continue; } // Process the dataWindow variable if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; xmin = AV_RL32(buf); ymin = AV_RL32(buf + 4); xmax = AV_RL32(buf + 8); ymax = AV_RL32(buf + 12); xdelta = (xmax-xmin) + 1; buf += variable_buffer_data_size; continue; } // Process the displayWindow variable if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; w = AV_RL32(buf + 8) + 1; h = AV_RL32(buf + 12) + 1; buf += variable_buffer_data_size; continue; } // Process the lineOrder variable if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; if (*buf) { av_log(avctx, AV_LOG_ERROR, "Doesn't support this line order : %d\n", *buf); return AVERROR_PATCHWELCOME; } buf += variable_buffer_data_size; continue; } // Process the pixelAspectRatio variable if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255); buf += variable_buffer_data_size; continue; } // Process the compression variable if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) { if (!variable_buffer_data_size) return AVERROR_INVALIDDATA; if (s->compr == -1) s->compr = *buf; else av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n"); buf += variable_buffer_data_size; continue; } // Check if there is enough bytes for a header if (buf_end - buf <= 9) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } // Process unknown variables for (i = 0; i < 2; i++) { // Skip variable name/type while (++buf < buf_end) if (buf[0] == 0x0) break; } buf++; // Skip variable length if (buf_end - buf >= 5) { variable_buffer_data_size = get_header_variable_length(&buf, buf_end); if (!variable_buffer_data_size) { av_log(avctx, AV_LOG_ERROR, "Incomplete header\n"); return AVERROR_INVALIDDATA; } buf += variable_buffer_data_size; } } if (s->compr == -1) { av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n"); return AVERROR_INVALIDDATA; } if (buf >= buf_end) { av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n"); return AVERROR_INVALIDDATA; } buf++; switch (s->bits_per_color_id) { case 2: // 32-bit case 1: // 16-bit if (s->channel_offsets[3] >= 0) avctx->pix_fmt = AV_PIX_FMT_RGBA64; else avctx->pix_fmt = AV_PIX_FMT_RGB48; break; // 8-bit case 0: av_log_missing_feature(avctx, "8-bit OpenEXR", 1); return AVERROR_PATCHWELCOME; default: av_log(avctx, AV_LOG_ERROR, "Unknown color format : %d\n", s->bits_per_color_id); return AVERROR_INVALIDDATA; } switch (s->compr) { case EXR_RAW: case EXR_RLE: case EXR_ZIP1: scan_lines_per_block = 1; break; case EXR_ZIP16: scan_lines_per_block = 16; break; default: av_log(avctx, AV_LOG_ERROR, "Compression type %d is not supported\n", s->compr); return AVERROR_PATCHWELCOME; } if (s->picture.data[0]) ff_thread_release_buffer(avctx, &s->picture); if (av_image_check_size(w, h, 0, avctx)) return AVERROR_INVALIDDATA; // Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size if (xmin > xmax || ymin > ymax || xdelta != xmax - xmin + 1 || xmax >= w || ymax >= h) { av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n"); return AVERROR_INVALIDDATA; } if (w != avctx->width || h != avctx->height) { avcodec_set_dimensions(avctx, w, h); } desc = av_pix_fmt_desc_get(avctx->pix_fmt); bxmin = xmin * 2 * desc->nb_components; axmax = (avctx->width - (xmax + 1)) * 2 * desc->nb_components; out_line_size = avctx->width * 2 * desc->nb_components; scan_line_size = xdelta * current_channel_offset; uncompressed_size = scan_line_size * scan_lines_per_block; if (s->compr != EXR_RAW) { av_fast_padded_malloc(&s->uncompressed_data, &s->uncompressed_size, uncompressed_size); av_fast_padded_malloc(&s->tmp, &s->tmp_size, uncompressed_size); if (!s->uncompressed_data || !s->tmp) return AVERROR(ENOMEM); } if ((ret = ff_thread_get_buffer(avctx, p)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } ptr = p->data[0]; stride = p->linesize[0]; // Zero out the start if ymin is not 0 for (y = 0; y < ymin; y++) { memset(ptr, 0, out_line_size); ptr += stride; } // Process the actual scan line blocks for (y = ymin; y <= ymax; y += scan_lines_per_block) { uint16_t *ptr_x = (uint16_t *)ptr; if (buf_end - buf > 8) { /* Read the lineoffset from the line offset table and add 8 bytes to skip the coordinates and data size fields */ const uint64_t line_offset = bytestream_get_le64(&buf) + 8; int32_t data_size; // Check if the buffer has the required bytes needed from the offset if ((line_offset > buf_size) || (s->compr == EXR_RAW && line_offset > avpkt->size - xdelta * current_channel_offset) || (s->compr != EXR_RAW && line_offset > buf_size - (data_size = AV_RL32(avpkt->data + line_offset - 4)))) { // Line offset is probably wrong and not inside the buffer av_log(avctx, AV_LOG_WARNING, "Line offset for line %d is out of reach setting it to black\n", y); for (i = 0; i < scan_lines_per_block && y + i <= ymax; i++, ptr += stride) { ptr_x = (uint16_t *)ptr; memset(ptr_x, 0, out_line_size); } } else { const uint8_t *red_channel_buffer, *green_channel_buffer, *blue_channel_buffer, *alpha_channel_buffer = 0; if (scan_lines_per_block > 1) uncompressed_size = scan_line_size * FFMIN(scan_lines_per_block, ymax - y + 1); if ((s->compr == EXR_ZIP1 || s->compr == EXR_ZIP16) && data_size < uncompressed_size) { unsigned long dest_len = uncompressed_size; if (uncompress(s->tmp, &dest_len, avpkt->data + line_offset, data_size) != Z_OK || dest_len != uncompressed_size) { av_log(avctx, AV_LOG_ERROR, "error during zlib decompression\n"); return AVERROR(EINVAL); } } else if (s->compr == EXR_RLE && data_size < uncompressed_size) { if (rle_uncompress(avpkt->data + line_offset, data_size, s->tmp, uncompressed_size)) { av_log(avctx, AV_LOG_ERROR, "error during rle decompression\n"); return AVERROR(EINVAL); } } if (s->compr != EXR_RAW && data_size < uncompressed_size) { predictor(s->tmp, uncompressed_size); reorder_pixels(s->tmp, s->uncompressed_data, uncompressed_size); red_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[0]; green_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[1]; blue_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[2]; if (s->channel_offsets[3] >= 0) alpha_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[3]; } else { red_channel_buffer = avpkt->data + line_offset + xdelta * s->channel_offsets[0]; green_channel_buffer = avpkt->data + line_offset + xdelta * s->channel_offsets[1]; blue_channel_buffer = avpkt->data + line_offset + xdelta * s->channel_offsets[2]; if (s->channel_offsets[3] >= 0) alpha_channel_buffer = avpkt->data + line_offset + xdelta * s->channel_offsets[3]; } for (i = 0; i < scan_lines_per_block && y + i <= ymax; i++, ptr += stride) { const uint8_t *r, *g, *b, *a; r = red_channel_buffer; g = green_channel_buffer; b = blue_channel_buffer; if (alpha_channel_buffer) a = alpha_channel_buffer; ptr_x = (uint16_t *)ptr; // Zero out the start if xmin is not 0 memset(ptr_x, 0, bxmin); ptr_x += xmin * desc->nb_components; if (s->bits_per_color_id == 2) { // 32-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = exr_flt2uint(bytestream_get_le32(&r)); *ptr_x++ = exr_flt2uint(bytestream_get_le32(&g)); *ptr_x++ = exr_flt2uint(bytestream_get_le32(&b)); if (alpha_channel_buffer) *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); } } else { // 16-bit for (x = 0; x < xdelta; x++) { *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r)); *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g)); *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b)); if (alpha_channel_buffer) *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a)); } } // Zero out the end if xmax+1 is not w memset(ptr_x, 0, axmax); red_channel_buffer += scan_line_size; green_channel_buffer += scan_line_size; blue_channel_buffer += scan_line_size; if (alpha_channel_buffer) alpha_channel_buffer += scan_line_size; } } } } // Zero out the end if ymax+1 is not h for (y = ymax + 1; y < avctx->height; y++) { memset(ptr, 0, out_line_size); ptr += stride; } *picture = s->picture; *data_size = sizeof(AVPicture); return buf_size; } static av_cold int decode_init(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; avcodec_get_frame_defaults(&s->picture); avctx->coded_frame = &s->picture; s->compr = -1; return 0; } static av_cold int decode_end(AVCodecContext *avctx) { EXRContext *s = avctx->priv_data; if (s->picture.data[0]) avctx->release_buffer(avctx, &s->picture); av_freep(&s->uncompressed_data); av_freep(&s->tmp); return 0; } AVCodec ff_exr_decoder = { .name = "exr", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_EXR, .priv_data_size = sizeof(EXRContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS, .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"), };