/* * This file is part of the coreboot project. * * Copyright (C) 2013 Google Inc. * Copyright (C) 2015-2016 Intel Corp. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define __SIMPLE_DEVICE__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" static uintptr_t read_pmc_mmio_bar(void) { return PMC_BAR0; } uintptr_t soc_read_pmc_base(void) { return read_pmc_mmio_bar(); } const char *const *soc_smi_sts_array(size_t *a) { static const char *const smi_sts_bits[] = { [BIOS_SMI_STS] = "BIOS", [LEGACY_USB_SMI_STS] = "LEGACY USB", [SLP_SMI_STS] = "SLP_SMI", [APM_SMI_STS] = "APM", [SWSMI_TMR_SMI_STS] = "SWSMI_TMR", [FAKE_PM1_SMI_STS] = "PM1", [GPIO_SMI_STS] = "GPIO_SMI", [GPIO_UNLOCK_SMI_STS] = "GPIO_UNLOCK_SSMI", [MC_SMI_STS] = "MCSMI", [TCO_SMI_STS] = "TCO", [PERIODIC_SMI_STS] = "PERIODIC", [SERIRQ_SMI_STS] = "SERIRQ", [SMBUS_SMI_STS] = "SMBUS_SMI", [XHCI_SMI_STS] = "XHCI", [HSMBUS_SMI_STS] = "HOST_SMBUS", [SCS_SMI_STS] = "SCS", [PCIE_SMI_STS] = "PCI_EXP_SMI", [SCC2_SMI_STS] = "SCC2", [SPI_SSMI_STS] = "SPI_SSMI", [SPI_SMI_STS] = "SPI", [PMC_OCP_SMI_STS] = "OCP_CSE", }; *a = ARRAY_SIZE(smi_sts_bits); return smi_sts_bits; } /* * For APL/GLK this check for power button status if nothing else * is indicating an SMI and SMIs aren't turned into SCIs. * Apparently, there is no PM1 status bit in the SMI status * register. That makes things difficult for * determining if the power button caused an SMI. */ uint32_t soc_get_smi_status(uint32_t generic_sts) { if (generic_sts == 0 && !(pmc_read_pm1_control() & SCI_EN)) { uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS); /* Fake PM1 status bit if power button pressed. */ if (pm1_sts & PWRBTN_STS) generic_sts |= (1 << FAKE_PM1_SMI_STS); } return generic_sts; } const char *const *soc_tco_sts_array(size_t *a) { static const char *const tco_sts_bits[] = { [3] = "TIMEOUT", [17] = "SECOND_TO", }; *a = ARRAY_SIZE(tco_sts_bits); return tco_sts_bits; } const char *const *soc_std_gpe_sts_array(size_t *a) { static const char *const gpe_sts_bits[] = { [0] = "PCIE_SCI", [2] = "SWGPE", [3] = "PCIE_WAKE0", [4] = "PUNIT", [6] = "PCIE_WAKE1", [7] = "PCIE_WAKE2", [8] = "PCIE_WAKE3", [9] = "PCI_EXP", [10] = "BATLOW", [11] = "CSE_PME", [12] = "XDCI_PME", [13] = "XHCI_PME", [14] = "AVS_PME", [15] = "GPIO_TIER1_SCI", [16] = "SMB_WAK", [17] = "SATA_PME", }; *a = ARRAY_SIZE(gpe_sts_bits); return gpe_sts_bits; } uint32_t soc_reset_tco_status(void) { uint32_t tco_sts = inl(ACPI_BASE_ADDRESS + TCO_STS); uint32_t tco_en = inl(ACPI_BASE_ADDRESS + TCO1_CNT); outl(tco_sts, ACPI_BASE_ADDRESS + TCO_STS); return tco_sts & tco_en; } void soc_clear_pm_registers(uintptr_t pmc_bar) { uint32_t gen_pmcon1; gen_pmcon1 = read32((void *)(pmc_bar + GEN_PMCON1)); /* Clear the status bits. The RPS field is cleared on a 0 write. */ write32((void *)(pmc_bar + GEN_PMCON1), gen_pmcon1 & ~RPS); } void soc_get_gpi_gpe_configs(uint8_t *dw0, uint8_t *dw1, uint8_t *dw2) { DEVTREE_CONST struct soc_intel_apollolake_config *config; /* Look up the device in devicetree */ DEVTREE_CONST struct device *dev = dev_find_slot(0, SA_DEVFN_ROOT); if (!dev || !dev->chip_info) { printk(BIOS_ERR, "BUG! Could not find SOC devicetree config\n"); return; } config = dev->chip_info; /* Assign to out variable */ *dw0 = config->gpe0_dw1; *dw1 = config->gpe0_dw2; *dw2 = config->gpe0_dw3; } void soc_fill_power_state(struct chipset_power_state *ps) { uintptr_t pmc_bar0 = read_pmc_mmio_bar(); ps->tco_sts = inl(ACPI_BASE_ADDRESS + TCO_STS); ps->prsts = read32((void *)(pmc_bar0 + PRSTS)); ps->gen_pmcon1 = read32((void *)(pmc_bar0 + GEN_PMCON1)); ps->gen_pmcon2 = read32((void *)(pmc_bar0 + GEN_PMCON2)); ps->gen_pmcon3 = read32((void *)(pmc_bar0 + GEN_PMCON3)); printk(BIOS_DEBUG, "prsts: %08x tco_sts: %08x\n", ps->prsts, ps->tco_sts); printk(BIOS_DEBUG, "gen_pmcon1: %08x gen_pmcon2: %08x gen_pmcon3: %08x\n", ps->gen_pmcon1, ps->gen_pmcon2, ps->gen_pmcon3); } /* Return 0, 3, or 5 to indicate the previous sleep state. */ int soc_prev_sleep_state(const struct chipset_power_state *ps, int prev_sleep_state) { /* WAK_STS bit will not be set when waking from G3 state */ if (!(ps->pm1_sts & WAK_STS) && (ps->gen_pmcon1 & COLD_BOOT_STS)) prev_sleep_state = ACPI_S5; return prev_sleep_state; } void enable_pm_timer_emulation(void) { /* ACPI PM timer emulation */ msr_t msr; /* * The derived frequency is calculated as follows: * (CTC_FREQ * msr[63:32]) >> 32 = target frequency. * Back solve the multiplier so the 3.579545MHz ACPI timer * frequency is used. */ msr.hi = (3579545ULL << 32) / CTC_FREQ; /* Set PM1 timer IO port and enable */ msr.lo = EMULATE_PM_TMR_EN | (ACPI_BASE_ADDRESS + R_ACPI_PM1_TMR); wrmsr(MSR_EMULATE_PM_TMR, msr); } static int rtc_failed(uint32_t gen_pmcon1) { return !!(gen_pmcon1 & RPS); } int soc_get_rtc_failed(void) { const struct chipset_power_state *ps = cbmem_find(CBMEM_ID_POWER_STATE); if (!ps) { printk(BIOS_ERR, "Could not find power state in cbmem, RTC init aborted\n"); return 1; } return rtc_failed(ps->gen_pmcon1); } int vbnv_cmos_failed(void) { uintptr_t pmc_bar = read_pmc_mmio_bar(); uint32_t gen_pmcon1 = read32((void *)(pmc_bar + GEN_PMCON1)); int rtc_failure = rtc_failed(gen_pmcon1); if (rtc_failure) { printk(BIOS_INFO, "RTC failed!\n"); /* We do not want to write 1 to clear-1 bits. Set them to 0. */ gen_pmcon1 &= ~GEN_PMCON1_CLR1_BITS; /* RPS is write 0 to clear. */ gen_pmcon1 &= ~RPS; write32((void *)(pmc_bar + GEN_PMCON1), gen_pmcon1); } return rtc_failure; }