

Intel® Firmware Support Package
for 3rd Generation Intel® Core™
Processors with Mobile Intel®
HM76/QM77 Express Chipsets

Integration Guide

February 2014

Introduction

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
2

Introduction

Contents
1 Introduction ...6

1.1 Purpose ..6
1.2 Intelligent Systems and Embedded Ecosystem Overview6
1.3 Intended Audience ...6
1.4 Related Documents ...6
1.5 Conventions ..7
1.6 Acronyms and Terminology ..7

2 FSP Overview ...8
2.1 Design Philosophy ..8
2.2 Technical Overview ...8

3 FSP Integration ..9
3.1 Assumptions Used in this Document ..9

4 Boot Flow .. 10

5 FSP Binary Format .. 11
5.1 FSP Header ... 11

5.1.1 Finding the FSP Header .. 12
5.1.2 FSP Header Offset ... 13

6 FSP Interface (FSP API) ... 14
6.1 Entry-Point Calling Assumptions ... 14
6.2 Entry-Point Calling Convention ... 14
6.3 Exit Convention .. 15
6.4 TempRamInitEntry ... 15

6.4.1 Prototype ... 16
6.4.2 Parameters... 16
6.4.3 Related Definitions .. 16

6.4.3.1 Return Values .. 16
6.4.3.2 Sample Code .. 17

6.4.4 Description ... 19
6.5 FspInitEntry .. 19

6.5.1 Prototype ... 19
6.5.2 Parameters... 20
6.5.3 Related Definitions .. 20
6.5.4 Return Values ... 22
6.5.5 Sample Code .. 22
6.5.6 Enabling Fast Boot ... 24
6.5.7 Description ... 27

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 3

Introduction

7 FSP Output .. 28
7.1 Boot Loader Temporary Memory Data HOB .. 28
7.2 Non-Volatile Storage HOB .. 29
7.3 HOB Sample Code .. 29

7.3.1 Hob Infrastructure Sample Code .. 29
7.3.2 Hob Parsing Sample Code ... 29
7.3.3 GUID HOB Sample Code ... 31

8 FSP Configuration Firmware File .. 32

9 Tools ... 33

10 Other Host Boot Loader Concerns .. 34
10.1 Power Management .. 34
10.2 Bus Enumeration .. 34
10.3 Security .. 34
10.4 64-bit Long Mode ... 34
10.5 Pre-OS Graphics ... 34

Appendix A – HOB Parsing Sample Code ... 35

Appendix B – Sample Code to Find FSP Header .. 51

Appendix C – Data Structure for Memory Down ... 54
C.1 Sample Code ... 57

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
4

Introduction

Revision History

Date Revision Description

February 2014 1.0 Initial public release.

§

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 5

Introduction

1 Introduction

1.1 Purpose
The purpose of this document is to describe the steps required to integrate the FSP
into a boot loader solution.

1.2 Intelligent Systems and Embedded Ecosystem
Overview
Contrasting the PC ecosystem where hardware and software architecture are following
a set of industry standards, the Intelligent Systems (embedded) ecosystem often does
not adhere to the same industry standards. Design engineers for Intelligent Systems
and Embedded Systems frequently combine components from different vendors with a
set of very distinct functions in mind.

The criteria for picking the right boot loader are often based on boot speed and code
size. The boot loader also frequently has close ties with the OS from a functionality
perspective. To give freedom to customers to choose the best boot loader for their
applications, Intel provides the Firmware Support Package (FSP) to satisfy the needs
of design engineers.

1.3 Intended Audience
This document is targeted at all platform and system developers who need to
consume FSP binaries in their boot loader solutions. This includes, but is not limited
to: system BIOS developer, boot loader developer, system integrators, as well as end
users.

1.4 Related Documents
• Platform Initialization (PI) Specification located at

http://www.uefi.org/specifications/.

• Intel® Firmware Support Package: Introduction Guide – available at
www.intel.com/fsp

• Binary Configuration Tool for Intel® Firmware Support Package – available at
www.intel.com/fsp

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
6

http://www.uefi.org/specifications/
http://www.intel.com/fsp
http://www.intel.com/fsp

Introduction

1.5 Conventions
To illustrate some of the points better, the document will use code snippets. The code
snippets follow the GNU C Compiler and GNU Assembler syntax.

1.6 Acronyms and Terminology

BSP Boot Strap Processor

BWG BIOS Writer’s Guide

CRB Customer Reference Board

FSP Firmware Support Package

FSP API Firmware Support Package Interface

FWG Firmware Writer’s Guide

IVI In Vehicle Infotainment

NBSP Node BSP

RSM Resume to OS from SMM

SBSP System BSP

SMI System Management Interrupt

SMM System Management Mode

TSEG Memory Reserved at the Top of Memory to be used as SMRAM

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 7

FSP Overview

2 FSP Overview

2.1 Design Philosophy
Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. After Intel provides the key information, most experienced
firmware engineers can make the rest of the system work by studying specifications,
porting guides, and reference code.

2.2 Technical Overview
The Intel® Firmware Support Package (FSP) provides chipset and processor
initialization in a format that can easily be incorporated into many existing boot
loaders.

The FSP will perform all the necessary initialization steps as documented in the BWG
including initialization of the CPU, memory controller, chipset and certain bus
interfaces, if necessary.

FSP is not a stand-alone boot loader; therefore it needs to be integrated into a host
boot loader to carry out other boot loader functions, such as: initializing non-Intel
components, conducting bus enumeration, and discovering devices in the system and
all industry standard initialization.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
8

FSP Integration

3 FSP Integration
The FSP binary can be integrated easily into many different boot loaders, such as
Coreboot, etc. and also into embedded OS directly.

Below are some required steps for the integration:

• Customizing

The static FSP configuration parameters are part of the FSP binary and can be
customized by external tools that will be provided by Intel.

• Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be
rebased if it is placed at a location which is different from the preferred address
specified during building the FSP.

• Placing

Once the FSP binary is ready for integration, the boot loader build process needs
to be modified to place this FSP binary at the specific rebasing location identified
above.

• Interfacing

The boot loader needs to add code to setup the operating environment for the
FSP, call the FSP with the correct parameters and parse the FSP output to retrieve
the necessary information returned by the FSP.

3.1 Assumptions Used in this Document
Because the 3rd Generation Intel® Core™ Processors with Mobile Intel® HM76/QM77
Express Chipsets FSP is built with a preferred base address of 0xFFF80000, the FSP
binary is assumed to be placed at the same address as part of the boot loader build.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 9

Boot Flow

4 Boot Flow
The figure below shows the boot flow from the reset vector to the OS handoff for a
typical boot loader. The APIs are described in more detail in the following sections.

After PCI
Enumeration

Reset
Vector

Switch
to 32-bit

Mode

Load
Microcode

Temp Ram
Init

Mem Init

Remove
Temp RAM

CPU &
Companion

Chip init

Find FSP
Header

Parse Return
Data

Platform Init

Bus and Device
Init

Boot Device Init

Load OS
or other
payload

Intel® Firmware
Support Package
(Intel® FSP)

Param1 =
AfterPciEnumer
ation

Param2 =
ReadyToBoot

Call
FSPinit
Entry
Point

NotifyPhas
e

Ready to Boot

Param1

Param2

Jump to
TempRamIn

it Entry
Point

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
10

FSP Binary Format

5 FSP Binary Format
The FSP is distributed in binary format. The FSP binary contains an FSP specific
FSP_INFORMATION_HEADER structure, the initialization code/data needed by the
Intel Silicon supported by the FSP and a configuration region that allows the boot
loader developer to customize some of the settings through a tool provided by Intel.

5.1 FSP Header
The FSP header conveys the information required by the boot loader to interface with
the FSP binary such as providing the addresses for the entry points, configuration
region address, etc.

Byte

Offset
Size
in

Bytes

Field Description

 0 4 Signature ‘FSPH’. Signature for the FSP Information
Header.

4 4 HeaderLength Length of the header

8 3 Reserved Reserved

11 1 HeaderRevision Revision of the header.

12 4 ImageRevision Revision of the FSP Binary.
The ImageRevision can be decoded as follows
0..7 - Minor Version
8..15 - Major Version
16..31 - Reserved

16 8 Image Id 8-byte signature string that will help match the
FSP Binary to a supported hardware
configuration.

24 4 ImageSize Size of the entire FSP Binary.

28 4 ImageBase FSP binary preferred base address. If the FSP
binary will be located at the address different
from the preferred address, the rebasing tool is
required to relocate the base before the FSP
binary integration.
For the 3rd Generation Intel® Core™ Processors
with Mobile Intel® HM76/QM77 Express Chipsets
FSP, the default ImageBase is oxFFF80000.

32 4 ImageAttribute Attributes of the FSP binary. This field is not
currently used.

36 4 CfgRegionOffset Offset of the configuration region. This offset is
relative to the FSP binary base address.

40 4 CfgRegionSize Size of the configuration region.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 11

FSP Binary Format

Byte
Offset

Size
in

Bytes

Field Description

44 4 ApiEntryNum Number of API Entries this FSP supports. The
current design supports 3 APIs as given below.

48 4 TempRamInitEntryOffset The offset for the API to setup a temporary stack
till the memory is initialized.

52 4 FspInitEntryOffset The offset for the API to initialize the CPU and
the Chipset (SOC).

56 4 NotifyPhaseEntryOffset The offset for the API to inform the FSP about
the different stages in the boot process.

60 4 Reserved Reserved

5.1.1 Finding the FSP Header

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization
(PI) specification - Volume 3: Shared Architectural Elements specification and can be
downloaded from http://www.uefi.org/specifications/

FV is a way to organize/structure binary components and enables a standardized way
to parse the binary and handle the individual binary components that make up the FV.

The FSP_INFORMATION_HEADER is a firmware file and is placed as the first firmware
file within the firmware volume. All firmware files will have a GUID that can be used to
identify the files, including the FSP Header file. The FSP header firmware file GUID is
defined as 912740BE-2284-4734-B971-84B027353F0C.

The boot loader can find the offset of the FSP header within the FSP binary by the
following steps described below:

• Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip
the standard and extended FV header.

• The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID
is located at the 8-byte aligned offset following the FV header.

• The EFI_RAW_SECTION header follows the FFS File Header.

• Immediately following the EFI_RAW_SECTION header is the raw data. The
format of this data is defined in the FSP_INFORMATION_HEADER structure.

• Please refer to Appendix – B for a sample code snippet which does the above
steps in a stackless environment.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
12

http://www.uefi.org/specifications/

FSP Binary Format

5.1.2 FSP Header Offset

To simplify the integration of the FSP binary with a boot loader, the offset of the FSP
header will be provided with the FSP binary documentation. In this case, the boot
loader may choose to skip the generic algorithm to find the FSP header as described
above, but instead use the hardcoded value for the FSP header offset. This approach
is easier to implement from the boot loader side.

For the 3rd Generation Intel® Core™ Processors with Mobile Intel® HM76/QM77
Express Chipsets FSP, the FSP header is placed at an offset of 0x94. So, for example,
if the FSP binary is placed at 0xFFF80000 after the final build, the FSP header can be
located at 0xFFF80094. This implies that
1. The offset of the TempRamInitEntry can be found at 0xFFF800C4
2. The offset of the FspInitEntry can be found at 0xFFF800C8
3. The offset of the NotifyPhaseEntry can be found at 0xFFF800CC

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 13

FSP Interface (FSP API)

6 FSP Interface (FSP API)

6.1 Entry-Point Calling Assumptions
There are some requirements regarding the operating environment for FSP execution.
It is the responsibility of the boot loader to set up this operating environment before
calling the FSP API. These conditions have to be met before calling any entry point or
the behavior is not determined. These conditions include:

• System is in flat 32-bit mode.

• Both the code and data selectors should have full 4GB access range.

• Interrupts should be turned off.

• The FSP API should be called only by the System BSP, unless otherwise noted.

Other requirements needed by individual FSP API will be covered in their respective
sections.

6.2 Entry-Point Calling Convention
All FSP APIs defined in the FSP information header are 32-bit only. The FSP API
interface is similar to the default C _cdecl convention. Like the default C _cdecl
convention, with the FSP API interface:

• All parameters are pushed onto the stack in a right-to-left order before the API is
called.

• The calling function needs to clean the stack up after the API returns.

• The return value is returned in the EAX register. All the other registers are
preserved.

There are, however, a couple of notable exceptions with the FSP API interface
convention. Please refer to individual API descriptions for any special notes and these
exceptions.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
14

FSP Interface (FSP API)

6.3 Exit Convention
• The TempRamInit API will preserve all general purpose registers except EAX, ECX,

and EDX. Because this FSP API is executing in a stackless environment, the
floating point registers may be used by the FSP to save/return other general
purpose registers to the boot loader.

• The FspInit and the FspNotify interfaces will preserve all the general purpose
registers except “eax”. The return status will be passed back through the eax
register.

• The FSP reserves some memory for its internal use and the memory region that is
used by the FSP will be passed back though a HOB. The boot loader is expected to
not to use this memory except to parse the HOB output. The boot loader is also
expected to mark this memory as reserved when constructing the memory map
information to be passed to the OS.

6.4 TempRamInitEntry
This FSP API is called soon after coming out of reset and before memory and stack are
available. This FSP API will load the microcode update, enable code caching for the
region specified by the boot loader and also setup a temporary stack to be used till
main memory is initialized.

A hardcoded stack can be setup with the following values and the “esp” register
initialized to point to this hardcoded stack.
1. The return address where the FSP will return control after setting up a temporary

stack
2. A pointer to the input parameter structure

However, since stack is in ROM and not writeable, this FSP API cannot be called using
the “call” instruction, but needs to be jumped to. This API should be called only once
after the system comes out of the reset, and it must be called before any other FSP
APIs. The system needs to go through a reset cycle before this API can be called
again. Otherwise, unexpected results may occur.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 15

FSP Interface (FSP API)

6.4.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_TEMP_RAM_INIT) (

 IN FSP_TEMP_RAM_INIT_PARAMS *TempRamInitParamPtr

);

6.4.2 Parameters
TempRaminitParamPtr

Address pointer to the FSP_TEMP_RAM_INIT_PARAMS structure. The structure
definition is provided below under Related Definitions. The structure has a pointer
to the base of a code region and the size of it. The FSP enables code caching for
this region. Enabling code caching for this region should not take more than one
MTRR pair. The structure also has a pointer to a microcode region and its size. The
microcode region may have multiple microcodes packed together one after the
other and the FSP will try to load all the microcodes that it finds in the region that
are compatible with the silicon it is supporting.

This microcode region will be remembered by FSP so that it can be used to load
microcode for all APs later on during the FspInit API call.

6.4.3 Related Definitions
typedef struct {

 UINT32 MicrocodeRegionBase,

 UINT32 MicrocodeRegionLength,

 UINT32 CodeRegionBase,

 UINT32 CodeRegionLength

} FSP_TEMP_RAM_INIT_PARAMS;

6.4.3.1 Return Values

If this function is successful, the FSP initializes the ECX and EDX registers to point to a
temporary but writeable memory range available to the boot loader and returns with
FSP_SUCCESS in register EAX. Register ECX points to the start of this temporary
memory range and EDX points to the end of the range. Boot loader is free to use the
whole range described. Typically the boot loader can reload the ESP register to point
to the end of this returned range so that it can be used as a standard stack.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
16

FSP Interface (FSP API)

Note: This returned range is just a sub-region of the whole temporary memory initialized by
the processor. FSP maintains and consumes the remaining temporary memory. It is
important for the boot loader not to access the temporary memory beyond the
returned boundary.

FSP_SUCCESS Temp RAM was initialized successfully. ESP

register will be initialized as described below.

FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_NOT_FOUND No valid microcode was found in the microcode
region.

FSP_UNSUPPORTED The FSP calling conditions were not met.

6.4.3.2 Sample Code

.global basic_init
basic_init:
 .
 .
 .

 #
 # Parse the FV to find the FSP INFO Header
 #
 lea findFspHeaderStack, %esp
 jmp find_fsp_info_header
findFspHeaderDone:
 mov %eax, %ebp # save fsp header address in
ebp
 mov 0x30(%ebp), %eax # TempRamInit offset entry in
the header
 add 0x1c(%ebp), %eax # add the FSP base to get the
API address

 lea tempRamInitStack, %esp # initialize to a rom stack

 #
 # call FSP PEI to setup temporary Stack
 #
 jmp *%eax

temp_RamInit_done:
 addl $4, %esp

 cmp $0, %eax
 jz continue

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 17

FSP Interface (FSP API)

 #
 # TempRamInit failed, dead loop
 #
 jmp .

continue:
 #
 # Save FSP_INFO_HEADER in ebx
 #
 mov %ebp, %ebx

 #
 # setup bootloader stack
 # ecx: stack base
 # edx: stack top
 #
 lea -4(%edx), %esp

 #
 # call C based function to initialize meomry and chipset. Pass
 # the FSP INFO Header address as a parameter
 #
 push %ebx
 call early_init

 #
 # should never return here
 #
 jmp .

 .align 4
findFspHeaderStack:
 .long findFspHeaderDone

tempRamInitParams:
 .long _ucode_base # Microcode base address
 .long _ucode_size # Microcode size
 .long 0xfff80000 # Code Region Base
 .long 0x00040000 # Code Region Length

tempRamInitStack:
 .long temp_RamInit_done # return address
 .long tempRamInitParams # pointer to parameters

Note: early_init(FSP_INFO_HEADER *fsp_info) is described in section 6.5.5.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
18

FSP Interface (FSP API)

6.4.4 Description

The entry to this function is in a stackless/memoryless environment. After the boot
loader completes its initial steps, it finds the address of the FSP INFO HEADER and
then from the header finds the offset of the TempRamInit function. It then converts
the offset to an absolute address by adding the base of the FSP binary and calls the
TempRamInit function.

This temporary memory is intended to be primarily used by the boot loader as a stack.
After this stack is available, the boot loader can switch to using C functions. This
temporary stack should be used to do only the minimal initialization that needs to be
done before memory can be initialized by the next call into the FSP.

The FSP initializes the ECX and EDX registers to point to a temporary but writeable
memory range. Register ECX points to the start of this temporary memory range and
EDX points to the end of the range. The size of the temporary stack for the platform
can be calculated by taking the range between EDX and ECX.

6.5 FspInitEntry
This FSP API is called after TempRamInitEntry. This FSP API initializes the memory,
the CPU and the chipset to enable normal operation of these devices. This FSP API
accepts a pointer to a data structure that will be platform dependent and defined for
each FSP binary. This will be documented with each FSP release.

The boot loader provides a continuation function as a parameter when calling FspInit.
After FspInit completes its execution, it will not return to the boot loader from where it
was called, but instead will return control to the boot loader by calling the continuation
function.

6.5.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_FSP_INIT) (

 INOUT FSP_INIT_PARAMS *FspInitParamPtr);

)

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 19

FSP Interface (FSP API)

6.5.2 Parameters
FspInitParamPtr Address pointer to the FSP_INIT_PARAMS
 structure

6.5.3 Related Definitions
typedef struct {

 VOID *NvsBufferPtr;

 VOID *RtBufferPtr;

 CONTINUATION_PROC ContinuationFunc;

} FSP_INIT_PARAMS;

NvsBufferPtr Pointer to the non-volatile storage data buffer.

RtBufferPtr Pointer to the runtime data buffer.

ContinuationFunc Pointer to a continuation function provided by the
 boot loader.

typedef VOID (* CONTINUATION_PROC)(

 IN FSP_STATUS Status,

 IN VOID *HobListPtr

);

Status Status of the FSP Init API.

HobBufferPtr Pointer to the HOB data structure defined in the PI
 specification.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
20

FSP Interface (FSP API)

The FSP_INIT_RT_BUFFER for the 3rd Generation Intel® Core™ Processors with Mobile
Intel® HM76/QM77 Express Chipsets FSP is defined as below.

typedef struct {

 UINT32 *StackTop;

 UINT32 BootMode;

} FSP_INIT_RT_COMMON_BUFFER;

typedef struct {

 const MEM_CONFIG *MemoryConfig;

} FSP_INIT_RT_PLATFORM_BUFFER;

typedef struct {

 UINT8 HTEnable;

 UINT8 TurboEnable;

 UINT8 MemoryDownEnable;

 UINT8 FastBootEnable;

} PLATFORM_CONFIG;

typedef struct {

 const PLATFORM_CONFIG *PlatformConfig;

} FSP_INIT_RT_CONFIG_BUFFER;

typedef struct {

 FSP_INIT_RT_COMMON_BUFFER Common;

 FSP_INIT_RT_CONFIG_BUFFER PlatformConfiguration;

 FSP_INIT_RT_PLATFORM_BUFFER RtPlatform;

} FSP_INIT_RT_BUFFER;

MEM_CONFIG is the data structure for Memory Down.
Refer Appendix C for its structure definitions.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 21

FSP Interface (FSP API)

6.5.4 Return Values
FSP_SUCCESS FSP execution environment was initialized

successfully.

FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_UNSUPPORTED The FSP calling conditions were not meet.

FSP_DEVICE_ERROR FSP initialization failed

6.5.5 Sample Code

typedef VOID (* CONTINUATION_PROC)(EFI_STATUS Status, VOID
*HobListPtr);

const PLATFORM_CONFIG CpuConfigData = {0x01, 0x00, 0x00, 0x00};

typedef struct {

 void *NvsBufferPtr;

 void *RtBufferPtr;

 CONTINUATION_PROC ContinuationFunc;

} FSP_INIT_PARAMS;

#define FSPAPI __attribute__((cdecl))

typedef FSP_STATUS (FSPAPI *FSP_FSP_INIT) (FSP_INIT_PARAMS
*FspInitParamPtr);

#define BOOTLOADER_STACKTOP 0x98000 // Porting required

 void early_init (FSP_INFORMATION_HEADER *fsp_info)

{

 .

 .

 .

 uint32_t FspInitEntry;

 FSP_FSP_INIT FspInitApi;

 volatile FSP_INIT_PARAMS FspInitParams;

 volatile FSP_INIT_RT_BUFFER FspRtBuffer;

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
22

FSP Interface (FSP API)

 memset((void*)&FspRtBuffer, 0, sizeof(FSP_INIT_RT_BUFFER));

 FspRtBuffer.Common.StackTop = BOOTLOADER_STACKTOP;

 FspRtBuffer.RtPlatform.MemoryConfig =NULL;

 FspRtBuffer.PlatformConfiguration.PlatformConfig =
 &CpuConfigData;

 FspInitParams.NvsBufferPtr = 0;

 FspInitParams.RtBufferPtr = (FSP_INIT_RT_BUFFER *)&FspRtBuffer;

 FspInitParams.ContinuationFunc =
 (CONTINUATION_PROC)ContinuationFunc;

 FspInitApi = (FSP_FSP_INIT)(fsp_info->ImageBase + fsp_info
 ->FspInitEntry);

 FspInitApi(&FspInitParams);

 /* Should never return. Control will continue from
 ContinuationFunc */

 while (1);

}

void ContinuationFunc (EFI_STATUS Status, VOID *HobListPtr)

{

 /* Check status for -1, indicating that we need to do a reset */

 if (Status == 0xFFFFFFFF)

 {

 /* Trigger the reset */

 outb(0x0cf9, 0x06);

 /* Should never return */

 while (1);

 }

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 23

FSP Interface (FSP API)

 /* Update global variables */

 FspHobListPtr = HobListPtr;

/* Get the pointer to the FSP header the same way as in
 basic_init */

asm ("call find_fsp_info_header; movl %%eax, %0" : "=r"
(fsp_info_header) :);

 /* Continue the boot */

 advancedInit ();

 /* Should never return */

 while (1);

}

6.5.6 Enabling Fast Boot

The shaded lines in the sample code below highlight the things that need to be
changed to enable fast boot in the bootloader. First, the FastBootEnable field needs to
be set to TRUE in the PLATFORM_CONFIG structure:

// Platform Configuration
const PLATFORM_CONFIG PlatformConfig = {
 TRUE, // Hyperthreading
 FALSE, // Turbo Mode
 FALSE, // Memory Down
 TRUE, // Fast Boot
};

The boot loader should implement code to save and read back the HOB data to/from
non-volatile storage. The sample code below shows an example implementation for
passing the HOB data back to the FSP thru the NvsBufferPtr pointer. For the first boot,
the data buffer that this pointer points to should contain either all zeroes or all 0xFFs
so that the FSP can recognize it as being uninitialized. For subsequent boots, the data
buffer that this pointer points to should contain valid memory training data that was
generated by the FSP during the first boot and was saved by boot loader to the data
buffer in non-volatile storage.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
24

FSP Interface (FSP API)

void early_init (FSP_INFO_HEADER *fsp_info)
{
 FSP_FSP_INIT FspInitEntry;
 FSP_INIT_PARAMS FspInitParams;
 FSP_INIT_RT_BUFFER FspRtBuffer;
 VOID *NvsBufferPtr;

 ... // Some init code.

 // Get pointer to saved NVSTORAGE HOB data
 NvsBufferPtr = ... // Platform-specific

 memset((void*)&FspRtBuffer, 0, sizeof(FSP_INIT_RT_BUFFER));
 FspRtBuffer.Common.StackTop = &_stack_top;
 FspRtBuffer.PlatformConfiguration.PlatformConfig =
&PlatformConfig;
 FspRtBuffer.Platform.MemoryConfig = NULL;
 FspInitParams.NvsBufferPtr = NvsBufferPtr;
 FspInitParams.RtBufferPtr = (FSP_INIT_RT_BUFFER *)&FspRtBuffer;
 FspInitParams.ContinuationFunc =
(CONTINUATION_PROC)ContinuationFunc;
 FspInitEntry = (FSP_FSP_INIT)(fsp_info->ImageBase + fsp_info-
>FspInitEntry);
 FspInitEntry(&FspInitParams);

 /* Should never return. Control will continue from
ContinuationFunc */
 while (1);
}

After FspInitEntry is done, control is returned to the boot
loader via the ContinuationFunc function, which is passed a
pointer to the HOB list. The boot loader should save this pointer
for use later.

volatile void *FspHobListPtr;

void ContinuationFunc (EFI_STATUS Status, VOID *HobListPtr)
{
 ...

 /* Update global variables */
 FspHobListPtr = HobListPtr;

 ...

 /* Continue the boot */
 advancedInit ();

 /* Should never return */
 while (1);
}

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 25

FSP Interface (FSP API)

One of the HOBs in the HOB list contains the Non-Volatile Storage data, which
includes the memory training data required for fast boot. It’s the data from this HOB
that must be saved into non-volatile storage to be used in subsequent boots. This data
is extracted from the HOB list with the following function, which depends upon values
and functions that are defined in fsphob.h and are implemented fsphob.c, both of
which are included with the files that are packaged with the FSP.

#include "fsphob.h"

void GetFspHobDataForNVStorage(
 VOID **ppHobData,
 uint16_t *pHobDataSize
)
{
 EFI_GUID Guid =
FSP_NON_VOLATILE_STORAGE_HOB_GUID;
 uint8_t *Hob;
 EFI_HOB_GENERIC_HEADER *HobHdr;

 Hob = GetFirstGuidHob(&Guid);

 if (!Hob) {
 *ppHobData = NULL;
 *pHobDataSize = 0;
 } else {
 *ppHobData = (VOID *)GET_GUID_HOB_DATA(Hob);
 HobHdr = (EFI_HOB_GENERIC_HEADER *)Hob;
 *pHobDataSize = GET_GUID_HOB_DATA_SIZE(HobHdr);
 }
}

This function is called from the boot loader after everything else is successfully
initialized, right before calling FspNotifyPhase(EnumInitPhaseReadyToBoot), and the
HOB data is saved to non-volatile storage. Sample code below shows that this function
is called inside advancedInit.

void advancedInit()
{
 VOID *HobData;
 uint16_t HobDataSize;

 ...

 /* NVS data to save */
 GetFspHobDataForNVStorage(&HobData, &HobDataSize);

 /* Check result */
 if ((HobData != NULL) && (HobDataSize > 0))
 {
 /* Check if data will fit in available NV storage */
 if (HobDataSize <= NVRAM_SIZE) // Platform-specific
 {

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
26

FSP Interface (FSP API)

 /* Save NVSTORAGE HOB data
 ... // Platform-specific
 }
 }

 /* Notify FSP for ReadyToBoot */
 FspNotifyPhase(EnumInitPhaseReadyToBoot);

 ...

}

6.5.7 Description
One of the data that will be part of the FSP_INIT_PARAMS. RtBufferPtr will be the
“StackTop”. This will pass the address of the StackTop where the boot loader wants
to establish the stack once memory is initialized and available for use.
ContinuationFunc is a function entry point that will be jumped to at the end of the
FspInit() execution to transfer control back to the boot loader.
Please note the FspInit API will initialize the permanent memory and switch the stack
from temporary to permanent memory as specified by StackTop. Sometimes
switching stack in a function can cause some unexpected execution results because
the compiler is not aware of the stack change during runtime and the precompiled
code may still refer to the old stack for data and pointers. A stack switch will then
require assembly code to patch up the data for the new stack location, which may lead
to compatibility issues. To avoid such possible compatibility issues introduced by
different compilers and ease the integration of FSP with a boot loader, the API will use
the “ContinuationFunction” parameter to continue the boot loader execution flow
rather than return as a normal C function. Although this API will be called as a normal
C function, it will never return to one.

The FSP will need to get some parameters from the boot loader when it’s initializing
the silicon. These parameters are passed from the boot loader to the FSP through the
RtBuffer structure pointer.

The FSP may need to initialize memory under special circumstances, such as during an
S3 resume and fast boot mode. This set of parameters will be returned by the FSP to
the boot loader during a normal boot. The boot loader is expected to store these
parameters in a non-volatile memory, comparable to SPI flash, and return a pointer to
this structure (through NvsBufferPtr) when it is requesting the FSP to initialize the
silicon under these special circumstances.

During execution the FSP will build a series of data structures containing information
useful to the boot loader, such as information on system memory.

This API should be called only once after the TempRamInit API.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 27

FSP Output

7 FSP Output
The FSP builds a series of data structures called the Hand-Off-Blocks (HOBs) as it
progresses through initializing the silicon. These data structures conform to the HOB
format as described in the Platform Initialization (PI) specification - Volume 3: Shared
Architectural Elements specification and can be downloaded from
http://www.uefi.org/specifications/

The user of the FSP binary is strongly encouraged to go through the specification
mentioned above to understand the HOB design details and create a simple
infrastructure to parse the HOBs, because the same infrastructure can be reused with
different FSP across different platforms

It’s left to the boot loader developer to decide on how to consume the information
passed through the HOBs produced by the FSP. For example, even the specification
mentioned above describes about 9 different HOBs; most of this information may not
be relevant to a particular boot loader. For example, a boot loader design may be
interested only in knowing the amount of memory populated and may not care about
any other information.

The section below describes the GUID HOBs that are produced by the FSP. GUID HOB
structures are non-architectural in the sense that the structure of the HOB needs is
not defined in the HOB specifications. So the GUID and the data structure are
documented below to enable the boot loader to consume these HOB data.

Please refer to the specification for details about the HOBs described in the Platform
Initialization (PI) specification - Volume 3: Shared Architectural Elements
specification.

7.1 Boot Loader Temporary Memory Data HOB
As described in the FspInit API, the system memory is initialized and the whole
temporary memory is destroyed during this API call. However, the sub region of the
temporary memory returned in the TempRamInit API may still contain boot loader-
specific data, which might be useful for boot loader even after the FspInit call. So
before destroying the temporary memory, all contents in this sub region is migrated to
the permanent memory. FSP builds a boot loader temporary memory data HOB, which
the boot loader can to access the data saved in the temporary memory after FspInit
API if necessary. If the boot loader does not care about the previous data, this HOB
can be simply ignored.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_BOOTLOADER_TEMPORARY_MEMORY_HOB_GUID \

{ 0xbbcff46c, 0xc8d3, 0x4113, { 0x89, 0x85, 0xb9, 0xd4, 0xf3,
0xb3, 0xf6, 0x4e } };

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
28

http://www.uefi.org/specifications/

FSP Output

7.2 Non-Volatile Storage HOB
The NVS buffer that is used by FSP to initialize the silicon during S3 resume, fast boot
mode, etc., is passed through a GUID HOB with a GUID HOB defined as below. The
boot loader is expected to save the data in a non-volatile storage memory area and
initialize the FspInit parameter properly when requesting special initialization
sequences such as S3 resume, fast boot mode, etc.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_NON_VOLATILE_STORAGE_HOB_GUID \

{ 0x721acf02, 0x4d77, 0x4c2a, { 0xb3, 0xdc, 0x27, 0xb, 0x7b,
0xa9, 0xe4, 0xb0 } };

7.3 HOB Sample Code
An example function using the HOB infrastructure and getting the memory information
is provided below.

7.3.1 Hob Infrastructure Sample Code

Please refer to the Appendix - A for sample code.

7.3.2 Hob Parsing Sample Code

void
GetMemorySize (
 UINT32 *LowMemoryLength,
 void *HobBufferPtr
)
{
 EFI_PEI_HOB_POINTERS Hob;

 *LowMemoryLength = 0x100000;

 //
 // Get the HOB list for processing
 //
 Hob.Raw = HobBufferPtr;

 //
 // Collect memory ranges
 //
 while (!END_OF_HOB_LIST (Hob)) {
 if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR)
{
 if (Hob.ResourceDescriptor->ResourceType ==
EFI_RESOURCE_SYSTEM_MEMORY) {

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 29

FSP Output

 //
 // Need memory above 1MB to be collected here
 //
 if (Hob.ResourceDescriptor->PhysicalStart >= 0x100000 &&
 Hob.ResourceDescriptor->PhysicalStart <
(EFI_PHYSICAL_ADDRESS) 0x100000000) {
 *LowMemoryLength += (UINT32) (Hob.ResourceDescriptor-
>ResourceLength);
 }
 }
 }
 Hob.Raw = GET_NEXT_HOB (Hob);
 }

 return;
}

 void boot_loader_rom_stage_fn ()
{

 .
 .
 .

 /* call FSP PEI to setup MRC and other CS init */
 .
 .
 .

 /* Get the memory size by parsing the HOB returned from the FSP
*/
 GetMemorySize (&LowMemoryLength, FspInitParams.HobBufferPtr);
 .
 .
 .
}

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
30

FSP Output

7.3.3 GUID HOB Sample Code

void *
GetGuidHobData (
 CONST EFI_GUID *Guid
)
{
 VOID *GuidHob;

 GuidHob = GetFirstGuidHob (Guid);
 if (GuidHob == NULL) {
 return NULL;
 }
 return (void *)GET_GUID_HOB_DATA (GuidHob);
}

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 31

FSP Configuration Firmware File

8 FSP Configuration Firmware
File
The FSP binary contains a configurable data region which will be used by the FSP
during the initialization. Typically this is the default parameters used by the PEIMs in
the FSP. The parameters can be statically customized using a separate tool as
explained in the tools section. The tool will use a Binary Setting File (BSF) to
understand the layout of the configuration region within the FSP.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
32

Tools

9 Tools
A Binary Configuration Tool (BCT) will be provided with the FSP binary that can used
on the FSP binary to allow a user to modify certain well defined configuration values in
the FSP binary. The BCT will typically provide a graphical user interface (GUI). The
Binary Configuration Tool (BCT) will be provided with separate documentation that
explains the usage of the tool.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 33

Other Host Boot Loader Concerns

10 Other Host Boot Loader
Concerns

10.1 Power Management
Intel® FSP does not provide power management functions besides making power
management features available to the host boot loader. ACPI is an independent
component of the boot loader, and it will not be included in Intel® FSP.

10.2 Bus Enumeration
Intel® FSP will initialize the CPU and the companion chips to a state that all bus
topology can be discovered by the host boot loader.

10.3 Security
Intel® FSP does not provide security features besides making security features
available to the host boot loader.

10.4 64-bit Long Mode
Intel® FSP operates in 32-bit mode; it is the responsibility of the host boot loader to
transition to 64-bit Long Mode if desired.

10.5 Pre-OS Graphics
Intel® FSP does not include graphics initialization function. For pre-OS graphics
initialization solutions, please contact your Intel representative.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
34

Other Host Boot Loader Concerns

Appendix A – HOB Parsing Sample
Code

The sample code provided here was derived from the EDK2 source available for
download at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

///
/// 8-byte unsigned value.
///
typedef unsigned long long UINT64;
///
/// 8-byte signed value.
///
typedef long long INT64;
///
/// 4-byte unsigned value.
///
typedef unsigned int UINT32;
///
/// 4-byte signed value.
///
typedef int INT32;
///
/// 2-byte unsigned value.
///
typedef unsigned short UINT16;
///
/// 2-byte Character. Unless otherwise specified all strings are
/// stored in the UTF-16 encoding format as defined by Unicode
/// 2.1 and ISO/IEC 10646 standards.
///
typedef unsigned short CHAR16;
///
/// 2-byte signed value.
///
typedef short INT16;
///
/// Logical Boolean. 1-byte value containing 0 for FALSE or a 1
/// for TRUE. Other values are undefined.
///
typedef unsigned char BOOLEAN;
///
/// 1-byte unsigned value.
///

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 35

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

Other Host Boot Loader Concerns

typedef unsigned char UINT8;
///
/// 1-byte Character
///
typedef char CHAR8;
///
/// 1-byte signed value
///
typedef char INT8;

typedef void VOID;

typedef UINT64 EFI_PHYSICAL_ADDRESS;

typedef struct {
 UINT32 Data1;
 UINT16 Data2;
 UINT16 Data3;
 UINT8 Data4[8];
} EFI_GUID;

#define CONST const
#define STATIC static

#define TRUE ((BOOLEAN)(1==1))
#define FALSE ((BOOLEAN)(0==1))

static inline void DebugDeadLoop(void) {
 for (;;);
}

#define FSPAPI __attribute__((cdecl))
#define EFIAPI __attribute__((cdecl))

#define _ASSERT(Expression) DebugDeadLoop()
#define ASSERT(Expression) \
 do { \
 if (!(Expression)) { \
 _ASSERT (Expression); \
 } \
 } while (FALSE)

typedef UINT32 FSP_STATUS;
typedef UINT32 EFI_STATUS;

//
// HobType of EFI_HOB_GENERIC_HEADER.
//
#define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
#define EFI_HOB_TYPE_RESOURCE_DESCRIPTOR 0x0003
#define EFI_HOB_TYPE_GUID_EXTENSION 0x0004

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
36

Other Host Boot Loader Concerns

#define EFI_HOB_TYPE_UNUSED 0xFFFE
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xFFFF

///
/// Describes the format and size of the data inside the HOB.
/// All HOBs must contain this generic HOB header.
///
typedef struct {
 ///
 /// Identifies the HOB data structure type.
 ///
 UINT16 HobType;
 ///
 /// The length in bytes of the HOB.
 ///
 UINT16 HobLength;
 ///
 /// This field must always be set to zero.
 ///
 UINT32 Reserved;
} EFI_HOB_GENERIC_HEADER;

///
/// Enumeration of memory types introduced in UEFI.
///
typedef enum {
 ///
 /// Not used.
 ///
 EfiReservedMemoryType,
 ///
 /// The code portions of a loaded application.
 /// (Note that UEFI OS loaders are UEFI applications.)
 ///
 EfiLoaderCode,
 ///
 /// The data portions of a loaded application and the default
 /// data allocation type used by an application to allocate
 /// pool memory.
 ///
 EfiLoaderData,
 ///
 /// The code portions of a loaded Boot Services Driver.
 ///
 EfiBootServicesCode,
 ///
 /// The data portions of a loaded Boot Serves Driver, and the
 /// default data allocation type used by a Boot Services Driver
 /// to allocate pool memory.
 ///
 EfiBootServicesData,
 ///
 /// The code portions of a loaded Runtime Services Driver.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 37

Other Host Boot Loader Concerns

 ///
 EfiRuntimeServicesCode,
 ///
 /// The data portions of a loaded Runtime Services Driver and
 /// the default data allocation type used by a Runtime Services
 /// Driver to allocate pool memory.
 ///
 EfiRuntimeServicesData,
 ///
 /// Free (unallocated) memory.
 ///
 EfiConventionalMemory,
 ///
 /// Memory in which errors have been detected.
 ///
 EfiUnusableMemory,
 ///
 /// Memory that holds the ACPI tables.
 ///
 EfiACPIReclaimMemory,
 ///
 /// Address space reserved for use by the firmware.
 ///
 EfiACPIMemoryNVS,
 ///
 /// Used by system firmware to request that a memory-mapped IO
 /// region be mapped by the OS to a virtual address so it can
 /// be accessed by EFI runtime services.
 ///
 EfiMemoryMappedIO,
 ///
 /// System memory-mapped IO region that is used to translate
 /// memory cycles to IO cycles by the processor.
 ///
 EfiMemoryMappedIOPortSpace,
 ///
 /// Address space reserved by the firmware for code that is
 /// part of the processor.
 ///
 EfiPalCode,
 EfiMaxMemoryType
} EFI_MEMORY_TYPE;

///
/// EFI_HOB_MEMORY_ALLOCATION_HEADER describes the
/// various attributes of the logical memory allocation. The type
/// field will be used for subsequent inclusion in the UEFI
/// memory map.
///

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
38

Other Host Boot Loader Concerns

typedef struct {
 ///
 /// A GUID that defines the memory allocation region's type and
 /// purpose, as well as other fields within the memory
 /// allocation HOB. This GUID is used to define the additional
 /// data within the HOB that may be present for the memory
 /// allocation HOB. Type EFI_GUID is defined in
 /// InstallProtocolInterface() in the UEFI 2.0 specification.
 ///
 EFI_GUID Name;

 ///
 /// The base address of memory allocated by this HOB. Type
 /// EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the
 /// UEFI 2.0specification.
 ///
 EFI_PHYSICAL_ADDRESS MemoryBaseAddress;

 ///
 /// The length in bytes of memory allocated by this HOB.
 ///
 UINT64 MemoryLength;

 ///
 /// Defines the type of memory allocated by this HOB. The
 /// memory type definition follows the EFI_MEMORY_TYPE
 /// definition. Type EFI_MEMORY_TYPE is defined in
 /// AllocatePages()in the UEFI 2.0 specification.
 ///
 EFI_MEMORY_TYPE MemoryType;

 ///
 /// Padding for Itanium processor family
 ///
 UINT8 Reserved[4];
} EFI_HOB_MEMORY_ALLOCATION_HEADER;

///
/// Describes all memory ranges used during the HOB producer
/// phase that exist outside the HOB list. This HOB type
/// describes how memory is used, not the physical attributes of
/// memory.
///
typedef struct {
 ///
 /// The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.
 ///
 EFI_HOB_GENERIC_HEADER Header;
 ///
 /// An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that
 /// describes the various attributes of the logical memory
 /// allocation.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 39

Other Host Boot Loader Concerns

 ///
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
 //
 // Additional data pertaining to the "Name" Guid memory
 // may go here.
 //
} EFI_HOB_MEMORY_ALLOCATION;

///
/// The resource type.
///
typedef UINT32 EFI_RESOURCE_TYPE;

//
// Value of ResourceType in EFI_HOB_RESOURCE_DESCRIPTOR.
//
#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY_MAPPED_IO 0x00000001
#define EFI_RESOURCE_IO 0x00000002
#define EFI_RESOURCE_FIRMWARE_DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY_MAPPED_IO_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EFI_RESOURCE_IO_RESERVED 0x00000006
#define EFI_RESOURCE_MAX_MEMORY_TYPE 0x00000007

///
/// A type of recount attribute type.
///
typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

//
// These types can be ORed together as needed.
//
// The first three enumerations describe settings
//
#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EFI_RESOURCE_ATTRIBUTE_TESTED 0x00000004
//
// The rest of the settings describe capabilities
//
#define EFI_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC
0x00000008
#define EFI_RESOURCE_ATTRIBUTE_MULTIPLE_BIT_ECC
0x00000010
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_1
0x00000020
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_2
0x00000040
#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED
0x00000080
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED
0x00000100

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
40

Other Host Boot Loader Concerns

#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
0x00000200
#define EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE
0x00000400
#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE
0x00000800
#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE
0x00001000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
0x00002000
#define EFI_RESOURCE_ATTRIBUTE_16_BIT_IO
0x00004000
#define EFI_RESOURCE_ATTRIBUTE_32_BIT_IO
0x00008000
#define EFI_RESOURCE_ATTRIBUTE_64_BIT_IO
0x00010000
#define EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED
0x00020000

///
/// Describes the resource properties of all fixed,
/// nonrelocatable resource ranges found on the processor
/// host bus during the HOB producer phase.
///
typedef struct {
 ///
 /// The HOB generic header. Header.HobType =
 /// EFI_HOB_TYPE_RESOURCE_DESCRIPTOR.
 ///
 EFI_HOB_GENERIC_HEADER Header;
 ///
 /// A GUID representing the owner of the resource. This GUID is
 /// used by HOB consumer phase components to correlate device
 /// ownership of a resource.
 ///
 EFI_GUID Owner;
 ///
 /// The resource type enumeration as defined by
 /// EFI_RESOURCE_TYPE.
 ///
 EFI_RESOURCE_TYPE ResourceType;
 ///
 /// Resource attributes as defined by
 /// EFI_RESOURCE_ATTRIBUTE_TYPE.
 ///
 EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
 ///
 /// The physical start address of the resource region.
 ///
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 ///
 /// The number of bytes of the resource region.
 ///

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 41

Other Host Boot Loader Concerns

 UINT64 ResourceLength;
} EFI_HOB_RESOURCE_DESCRIPTOR;

///
/// Allows writers of executable content in the HOB producer
/// phase to maintain and manage HOBs with specific GUID.
///
typedef struct {
 ///
 /// The HOB generic header. Header.HobType =
 /// EFI_HOB_TYPE_GUID_EXTENSION.
 ///
 EFI_HOB_GENERIC_HEADER Header;
 ///
 /// A GUID that defines the contents of this HOB.
 ///
 EFI_GUID Name;
 //
 // Guid specific data goes here
 //
} EFI_HOB_GUID_TYPE;

///
/// Union of all the possible HOB Types.
///
typedef union {
 EFI_HOB_GENERIC_HEADER *Header;
 EFI_HOB_MEMORY_ALLOCATION *MemoryAllocation;
 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceDescriptor;
 EFI_HOB_GUID_TYPE *Guid;
 UINT8 *Raw;
} EFI_PEI_HOB_POINTERS;

/**
 Returns the type of a HOB.

 This macro returns the HobType field from the HOB header for
 the HOB specified by HobStart.

 @param HobStart A pointer to a HOB.

 @return HobType.

**/
#define GET_HOB_TYPE(HobStart) \
 ((*(EFI_HOB_GENERIC_HEADER **)&(HobStart))->HobType)

/**
 Returns the length, in bytes, of a HOB.

 This macro returns the HobLength field from the HOB header for
 the HOB specified by HobStart.

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
42

Other Host Boot Loader Concerns

 @param HobStart A pointer to a HOB.

 @return HobLength.

**/
#define GET_HOB_LENGTH(HobStart) \
 ((*(EFI_HOB_GENERIC_HEADER **)&(HobStart))->HobLength)

/**
 Returns a pointer to the next HOB in the HOB list.

 This macro returns a pointer to HOB that follows the
 HOB specified by HobStart in the HOB List.

 @param HobStart A pointer to a HOB.

 @return A pointer to the next HOB in the HOB list.

**/
#define GET_NEXT_HOB(HobStart) \
 (VOID *)(*(UINT8 **)&(HobStart) + GET_HOB_LENGTH (HobStart))

/**
 Determines if a HOB is the last HOB in the HOB list.

 This macro determine if the HOB specified by HobStart is the
 last HOB in the HOB list. If HobStart is last HOB in the HOB
 list, then TRUE is returned. Otherwise, FALSE is returned.

 @param HobStart A pointer to a HOB.

 @retval TRUE The HOB specified by HobStart is the last
 HOB in the HOB list.
 @retval FALSE The HOB specified by HobStart is not the
 last HOB in the HOB list.

**/
#define END_OF_HOB_LIST(HobStart) (GET_HOB_TYPE (HobStart) ==
(UINT16)EFI_HOB_TYPE_END_OF_HOB_LIST)

/**
 Returns a pointer to data buffer from a HOB of type
 EFI_HOB_TYPE_GUID_EXTENSION.

 This macro returns a pointer to the data buffer in a HOB
 specified by HobStart.

 HobStart is assumed to be a HOB of type
 EFI_HOB_TYPE_GUID_EXTENSION.

 @param GuidHob A pointer to a HOB.

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 43

Other Host Boot Loader Concerns

 @return A pointer to the data buffer in a HOB.

**/
#define GET_GUID_HOB_DATA(HobStart) \
 (VOID *)(*(UINT8 **)&(HobStart) + sizeof (EFI_HOB_GUID_TYPE))

/**
 Returns the size of the data buffer from a HOB of type
 EFI_HOB_TYPE_GUID_EXTENSION.

 This macro returns the size, in bytes, of the data buffer in a
 HOB specified by HobStart.
 HobStart is assumed to be a HOB of type
 EFI_HOB_TYPE_GUID_EXTENSION.

 @param GuidHob A pointer to a HOB.

 @return The size of the data buffer.
**/
#define GET_GUID_HOB_DATA_SIZE(HobStart) \
 (UINT16)(GET_HOB_LENGTH (HobStart) - sizeof
(EFI_HOB_GUID_TYPE))

/**
 Returns the pointer to the HOB list.

 This function returns the pointer to first HOB in the list.

 If the pointer to the HOB list is NULL, then ASSERT().

 @return The pointer to the HOB list.

**/
VOID *
EFIAPI
GetHobList (
 VOID
);

/**
 Returns the next instance of a HOB type from the starting HOB.

 This function searches the first instance of a HOB type from
 the starting HOB pointer.
 If there does not exist such HOB type from the starting HOB
 pointer, it will return NULL.
 In contrast with macro GET_NEXT_HOB(), this function does not
 skip the starting HOB pointer unconditionally: it returns
 HobStart back if HobStart itself meets the requirement;
 caller is required to use GET_NEXT_HOB() if it wishes to skip
 current HobStart.

 If HobStart is NULL, then ASSERT().

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
44

Other Host Boot Loader Concerns

 @param Type The HOB type to return.
 @param HobStart The starting HOB pointer to search from.

 @return The next instance of a HOB type from the starting HOB.

**/
VOID *
EFIAPI
GetNextHob (
 UINT16 Type,
 CONST VOID *HobStart
);

/**
 Returns the first instance of a HOB type among the whole HOB
 list.

 This function searches the first instance of a HOB type among
 the whole HOB list.
 If there does not exist such HOB type in the HOB list, it will
 return NULL.

 If the pointer to the HOB list is NULL, then ASSERT().

 @param Type The HOB type to return.

 @return The next instance of a HOB type from the starting HOB.

**/
VOID *
EFIAPI
GetFirstHob (
 UINT16 Type
);

/**
 Returns the next instance of the matched GUID HOB from the
 starting HOB.

 This function searches the first instance of a HOB from the
 starting HOB pointer.
 Such HOB should satisfy two conditions:
 its HOB type is EFI_HOB_TYPE_GUID_EXTENSION and its GUID Name
 equals to the input Guid.
 If there does not exist such HOB from the starting HOB pointer,
 it will return NULL.
 Caller is required to apply GET_GUID_HOB_DATA () and
 GET_GUID_HOB_DATA_SIZE ()
 to extract the data section and its size info respectively.
 In contrast with macro GET_NEXT_HOB(), this function does not
 skip the starting HOB pointer unconditionally: it returns
 HobStart back if HobStart itself meets the requirement;

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 45

Other Host Boot Loader Concerns

 caller is required to use GET_NEXT_HOB() if it wishes to skip
 current HobStart.

 If Guid is NULL, then ASSERT().
 If HobStart is NULL, then ASSERT().

 @param Guid The GUID to match with in the HOB list.
 @param HobStart A pointer to a Guid.

 @return The next instance of the matched GUID HOB from the
 starting HOB.

**/
VOID *
EFIAPI
GetNextGuidHob (
 CONST EFI_GUID *Guid,
 CONST VOID *HobStart
);

/**
 Returns the first instance of the matched GUID HOB among the
 whole HOB list.

 This function searches the first instance of a HOB among the
 whole HOB list.
 Such HOB should satisfy two conditions:
 its HOB type is EFI_HOB_TYPE_GUID_EXTENSION and its GUID Name
 equals the input Guid.
 If there does not exist such HOB from the starting HOB pointer,
 it will return NULL.
 Caller is required to apply GET_GUID_HOB_DATA () and
 GET_GUID_HOB_DATA_SIZE ()
 to extract the data section and its size info respectively.

 If the pointer to the HOB list is NULL, then ASSERT().
 If Guid is NULL, then ASSERT().

 @param Guid The GUID to match with in the HOB list.

 @return The first instance of the matched GUID HOB among the
 whole HOB list.

**/
VOID *
EFIAPI
GetFirstGuidHob (
 CONST EFI_GUID *Guid
);

//

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
46

Other Host Boot Loader Concerns

// Pointer to the HOB should be initialized with the output of
 FSP INIT PARAMS
//
extern volatile void *FspHobListPtr;

/**
 Reads a 64-bit value from memory that may be unaligned.

 This function returns the 64-bit value pointed to by Buffer.
 The function guarantees that the read operation does not
 produce an alignment fault.

 If the Buffer is NULL, then ASSERT().

 @param Buffer Pointer to a 64-bit value that may be
 unaligned.

 @return The 64-bit value read from Buffer.

**/
UINT64
EFIAPI
ReadUnaligned64 (
 CONST UINT64 *Buffer
)
{
 ASSERT (Buffer != NULL);

 return *Buffer;
}

/**
 Compares two GUIDs.

 This function compares Guid1 to Guid2. If the GUIDs are
 identical then TRUE is returned.
 If there are any bit differences in the two GUIDs, then FALSE
 is returned.

 If Guid1 is NULL, then ASSERT().
 If Guid2 is NULL, then ASSERT().

 @param Guid1 A pointer to a 128 bit GUID.
 @param Guid2 A pointer to a 128 bit GUID.

 @retval TRUE Guid1 and Guid2 are identical.
 @retval FALSE Guid1 and Guid2 are not identical.

**/
BOOLEAN
EFIAPI
CompareGuid (
 CONST EFI_GUID *Guid1,

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 47

Other Host Boot Loader Concerns

 CONST EFI_GUID *Guid2
)
{
 UINT64 LowPartOfGuid1;
 UINT64 LowPartOfGuid2;
 UINT64 HighPartOfGuid1;
 UINT64 HighPartOfGuid2;

 LowPartOfGuid1 = ReadUnaligned64 ((CONST UINT64*) Guid1);
 LowPartOfGuid2 = ReadUnaligned64 ((CONST UINT64*) Guid2);
 HighPartOfGuid1 = ReadUnaligned64 ((CONST UINT64*) Guid1 + 1);
 HighPartOfGuid2 = ReadUnaligned64 ((CONST UINT64*) Guid2 + 1);

 return (BOOLEAN) (LowPartOfGuid1 == LowPartOfGuid2 &&
HighPartOfGuid1 == HighPartOfGuid2);
}

/**
 Returns the pointer to the HOB list.
**/
VOID *
EFIAPI
GetHobList (
 VOID
)
{
 ASSERT (FspHobListPtr != NULL);
 return ((VOID *)FspHobListPtr);
}

/**
 Returns the next instance of a HOB type from the starting HOB.
**/
VOID *
EFIAPI
GetNextHob (
 UINT16 Type,
 CONST VOID *HobStart
)
{
 EFI_PEI_HOB_POINTERS Hob;

 ASSERT (HobStart != NULL);

 Hob.Raw = (UINT8 *) HobStart;
 //
 // Parse the HOB list until end of list or matching type is
 found.
 //

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
48

Other Host Boot Loader Concerns

 while (!END_OF_HOB_LIST (Hob)) {
 if (Hob.Header->HobType == Type) {
 return Hob.Raw;
 }
 Hob.Raw = GET_NEXT_HOB (Hob);
 }
 return NULL;
}

/**
 Returns the first instance of a HOB type among the whole HOB
 list.
**/
VOID *
EFIAPI
GetFirstHob (
 UINT16 Type
)
{
 VOID *HobList;

 HobList = GetHobList ();
 return GetNextHob (Type, HobList);
}

/**
 Returns the next instance of the matched GUID HOB from the
 starting HOB.
**/
VOID *
EFIAPI
GetNextGuidHob (
 CONST EFI_GUID *Guid,
 CONST VOID *HobStart
)
{
 EFI_PEI_HOB_POINTERS GuidHob;

 GuidHob.Raw = (UINT8 *) HobStart;
 while ((GuidHob.Raw = GetNextHob (EFI_HOB_TYPE_GUID_EXTENSION,
GuidHob.Raw)) != NULL) {
 if (CompareGuid (Guid, &GuidHob.Guid->Name)) {
 break;
 }
 GuidHob.Raw = GET_NEXT_HOB (GuidHob);
 }
 return GuidHob.Raw;
}

/**
 Returns the first instance of the matched GUID HOB among the
 whole HOB list.
**/

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 49

Other Host Boot Loader Concerns

VOID *
EFIAPI
GetFirstGuidHob (
 CONST EFI_GUID *Guid
)
{
 VOID *HobList;

 HobList = GetHobList ();
 return GetNextGuidHob (Guid, HobList);
}

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
50

Other Host Boot Loader Concerns

Appendix B – Sample Code to Find
FSP Header

The sample code provided below parses the FSP binary and finds the address of the
FSP Header within it.

As the FV parsing has to be done before stack is available, a mix of assembly
language code and C code is used. The C code is used to parse the data structures
and find the FSP INFO Header. However, since the compiler will add prolog or epilog
code to the C function, inline assembly is used to bypass those portions of the C code.

The sample code provided here uses header files derived from the EDK2 source
available for download at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

#include "PiFirmwareVolume.h"
#include "PiFirmwareFile.h"

void __attribute__((optimize("O0"))) find_fsp_header ()
{
 volatile register UINT8 *ptr asm ("eax");

 __asm__ __volatile__ (
 ".global find_fsp_info_header \n\t"
 "find_fsp_info_header:\n\t"
);

 //
 // Start at the FSP / FV Header base
 //
 ptr = (UINT8 *)0xFFF80000;

 //
 // Validate FV signature _FVH
 //
 if (((EFI_FIRMWARE_VOLUME_HEADER *)ptr)-> Signature !=
0x4856465F) {
 ptr = 0;
 goto NotFound;
 }

 //
 // Add the Ext Header size to the Ext Header base to go to
 // the end of FV header
 //
 ptr += ((EFI_FIRMWARE_VOLUME_HEADER *)ptr)->ExtHeaderOffset;
 ptr += ((EFI_FIRMWARE_VOLUME_EXT_HEADER *)ptr)-
>ExtHeaderSize;

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 51

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

Other Host Boot Loader Concerns

 //
 // Align the pointer to 8 bytes and it will point to FFS
 // header
 //
 ptr = (UINT8 *)(((UINTN)ptr + 7) & 0xFFFFFFF8);

 //
 // Now ptr is pointing to thr FFS Header. Verify if the GUID
 // matches the FSP_INFORMATION_HEADER GUID
 //
 if ((((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[0] !=
0x912740BE) || (((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)-
>Name))[1] != 0x47342284) || (((UINT32
*)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[2] != 0xB08471B9) ||
(((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[3] !=
0x0C3F3527)) {
 ptr = 0;
 goto NotFound;
 }

 //
 // Add the FFS Header size to the base to find the Raw
 // section Header
 //
 ptr += sizeof(EFI_FFS_FILE_HEADER);
 if (((EFI_RAW_SECTION *)ptr)->Type != EFI_SECTION_RAW) {
 ptr = 0;
 goto NotFound;
 }

 //
 // Add the Raw Header size to the base to find the FSP INFO
 // Header
 //
 ptr += sizeof(EFI_RAW_SECTION);

NotFound:
 __asm__ __volatile__ ("ret");

}

Now, call this function using a temporary ROM stack containing the return address and
bypass the prolog or epilog code of the C function like below.

 lea findFspHeaderStack, %esp
 jmp find_fsp_entry

 findFspHeaderStack:
 .align 4
 .long findFspHeaderDone

 findFspHeaderDone:

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
52

Other Host Boot Loader Concerns

A pictorial representation of the data structures that we parse in the above code is
given below.

Intel® FSP Binary

F V

Firmware Volume
Extended Header

Firm
w
are File system

Firmware File 1

Firmware File 2

More Firmware Files

Firmware Volume
Header

8 Byte Alignment

Firmware File
Header

Firmware File
Section

(Type RAW)

RAW
Section
Header

RAW Data
has the

FSP INFO
Header

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 53

Other Host Boot Loader Concerns

Appendix C – Data Structure for
Memory Down

The data structures provided below are defined for Memory Down and need to be
passed to FSP when the Memory Down feature is enabled:

#define NUM_IVB_MEM_CLK_FREQUENCIES 13

typedef struct {
 // 0 Number of Serial PD Bytes Written / SPD Device Size /

CRC Coverage 1, 2
 u8 SPDGeneral;
 // 1 SPD Revision
 u8 SPDRevision;
 // 2 DRAM Device Type
 u8 DRAMDeviceType;
 // 3 Module Type
 u8 ModuleType;
 // 4 SDRAM Density and Banks
 u8 SDRAMDensityAndBanks;
 // 5 SDRAM Addressing
 u8 SDRAMAddressing;
 // 6 Module Nominal Voltage
 u8 VDD;
 // 7 Module Organization
 u8 ModuleOrganization;
 // 8 Module Memory Bus Width
 u8 ModuleMemoryBusWidth;
 // 9 Fine Timebase (FTB) Dividend / Divisor
 u8 FineTimebase;
 // 10 Medium Timebase (MTB) Dividend
 u8 TimebaseDividend;
 // 11 Medium Timebase (MTB) Divisor
 u8 TimebaseDivisor;
 // 12 SDRAM Minimum Cycle Time (tCKmin)
 u8 SDRAMMinimumCycleTime;
 // 13 Reserved0
 u8 Reserved0;
 // 14 CAS Latencies Supported, Least Significant Byte
 u8 CASLatenciesLSB;
 // 15 CAS Latencies Supported, Most Significant Byte
 u8 CASLatenciesMSB;
 // 16 Minimum CAS Latency Time (tAAmin)
 u8 MinimumCASLatencyTime;
 // 17 Minimum Write Recovery Time (tWRmin)
 u8 MinimumWriteRecoveryTime;

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
54

Other Host Boot Loader Concerns

 // 18 Minimum RAS# to CAS# Delay Time (tRCDmin)
 u8 MinimumRASToCASDelayTime;
 // 19 Minimum Row Active to Row Active Delay Time (tRRDmin)
 u8 MinimumRowToRowDelayTime;
 // 20 Minimum Row Precharge Delay Time (tRPmin)
 u8 MinimumRowPrechargeDelayTime;
 // 21 Upper Nibbles for tRAS and tRC
 u8 UpperNibblesFortRASAndtRC;
 // 22 Minimum Active to Precharge Delay Time (tRASmin), Least

Significant Byte
 u8 tRASmin;
 // 23 Minimum Active to Active/Refresh Delay Time (tRCmin),

Least Significant Byte
 u8 tRCmin;
 // 24 Minimum Refresh Recovery Delay Time (tRFCmin), Least

Significant Byte
 u8 tRFCminLeastSignificantByte;
 // 25 Minimum Refresh Recovery Delay Time (tRFCmin), Most

Significant Byte
 u8 tRFCminMostSignificantByte;
 // 26 Minimum Internal Write to Read Command Delay Time

(tWTRmin)
 u8 tWTRmin;
 // 27 Minimum Internal Read to Precharge Command Delay Time

(tRTPmin)
 u8 tRTPmin;
 // 28 Upper Nibble for tFAW
 u8 UpperNibbleFortFAW;
 // 29 Minimum Four Activate Window Delay Time (tFAWmin)
 u8 tFAWmin;
 // 30 SDRAM Optional Features
 u8 SDRAMOptionalFeatures;
 // 31 SDRAMThermalAndRefreshOptions
 u8 SDRAMThermalAndRefreshOptions;
 // 32 ModuleThermalSensor
 u8 ModuleThermalSensor;
 // 33 SDRAM Device Type
 u8 SDRAMDeviceType;
 // 34 Fine Offset for SDRAM Minimum Cycle Time (tCKmin)
 s8 tCKminFine;
 // 35 Fine Offset for Minimum CAS Latency Time (tAAmin)
 s8 tAAminFine;
 // 36 Fine Offset for Minimum RAS# to CAS# Delay Time

(tRCDmin)
 s8 tRCDminFine;
 // 37 Fine Offset for Minimum Row Precharge Delay Time

(tRPmin)
 s8 tRPminFine;
 // 38 Fine Offset for Minimum Active to Active/Refresh Delay

Time (tRCmin)
 s8 tRCminFine;
 // 62 Reference Raw Card Used
 u8 ReferenceRawCardUsed;

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 55

Other Host Boot Loader Concerns

 // 63 Address Mapping from Edge Connector to DRAM
 u8 AddressMappingEdgeConnector;
 // 64 ThermalHeatSpreaderSolution
 u8 ThermalHeatSpreaderSolution;
 // 117 Module Manufacturer ID Code, Least Significant Byte
 u8 ModuleManufacturerIdCodeLsb;
 // 118 Module Manufacturer ID Code, Most Significant Byte
 u8 ModuleManufacturerIdCodeMsb;
 // 119 Module Manufacturing Location
 u8 ModuleManufacturingLocation;
 // 120 Module Manufacturing Date Year
 u8 ModuleManufacturingDateYear;
 // 121 Module Manufacturing Date creation work week
 u8 ModuleManufacturingDateWW;
 // 122 Module Serial Number A
 u8 ModuleSerialNumberA;
 // 123 Module Serial Number B
 u8 ModuleSerialNumberB;
 // 124 Module Serial Number C
 u8 ModuleSerialNumberC;
 // 125 Module Serial Number D
 u8 ModuleSerialNumberD;
 // 126 CRC A
 u8 CRCA;
 // 127 CRC B
 u8 CRCB;
} DDR3_SPD;

typedef struct {
 u32 Exists;
 DDR3_SPD SpdData;
 u8 InitClkPiValue[NUM_IVB_MEM_CLK_FREQUENCIES];
} MEM_BANK_CONFIG;

typedef struct {
 MEM_BANK_CONFIG ChannelABank0;
 MEM_BANK_CONFIG ChannelABank1;
 MEM_BANK_CONFIG ChannelBBank0;
 MEM_BANK_CONFIG ChannelBBank1;
} MEM_CONFIG;

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
56

Other Host Boot Loader Concerns

C.1 Sample Code
Memory Down support is required when the hardware design does not use standard
DIMMs or SO-DIMMs, but instead has the memory soldered down to the board, and
the serial presence detect (SPD) data is not stored in a standard SPD EEPROM such as
is found on a standard DIMM or SO-DIMM. In this situation, the boot loader must
provide a means to pass the SPD data to the FSP.

The shaded lines in the sample code below highlight the things that need to be
changed to support memory down.

To enable memory down, the MemoryDownEnable field needs to be set to TRUE in
the PLATFORM_CONFIG structure:

// Platform Configuration
const PLATFORM_CONFIG PlatformConfig = {
 TRUE, // Hyperthreading
 FALSE, // Turbo Mode
 TRUE, // Memory Down
 FALSE, // Fast Boot
};

The boot loader must provide a board-specific means of reading the SPD data from
where it is stored on the hardware using a function with a prototype similar to this:

void ReadSpdData(unsigned char Channel,

 unsigned char Bank,
 DDR3_DATA* SpdData);

The following sample code shows how to provide the SPD data to the FSP for a
hardware design that implements memory on Channel A Bank 0 and Channel B Bank
0.

void early_init (FSP_INFO_HEADER *fsp_info)
{
 FSP_FSP_INIT FspInitEntry;
 FSP_INIT_PARAMS FspInitParams;
 FSP_INIT_RT_BUFFER FspRtBuffer;
 MEM_CONFIG MemoryConfig;

 ... // Some init code.

// Initialize the memory config
 memset(&MemoryConfig, 0, sizeof(MemoryConfig));

 // Channel A Bank 0 and Channel B Bank 0 exist
 MemoryConfig.ChannelABank0.Exists = 1;
 MemoryConfig.ChannelBBank0.Exists = 1;

 FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
February 2014 Integration Guide
 57

Other Host Boot Loader Concerns

 // Read the SPD data from the hardware
 ReadSpdData(0, 0, &MemoryConfig.ChannelABank0.SpdData); //
Platform-specific
 ReadSpdData(1, 0, &MemoryConfig.ChannelBBank0.SpdData); //
Platform-specific

 memset((void*)&FspRtBuffer, 0, sizeof(FSP_INIT_RT_BUFFER));
 FspRtBuffer.Common.StackTop = &_stack_top;
 FspRtBuffer.PlatformConfiguration.PlatformConfig =
&PlatformConfig;
 FspRtBuffer.Platform.MemoryConfig = &MemoryConfig;
 FspInitParams.RtBufferPtr = (FSP_INIT_RT_BUFFER
*)&FspRtBuffer;
 FspInitParams.ContinuationFunc =
(CONTINUATION_PROC)ContinuationFunc;
 FspInitEntry = (FSP_FSP_INIT)(fsp_info->ImageBase + fsp_info-
>FspInitEntry);
 FspInitEntry(&FspInitParams);

 /* Should never return. Control will continue from
ContinuationFunc */
 while (1);
}

§

FSP for 3rd Gen Intel® Core™ Processors with Mobile Intel® HM76/QM77 Express Chipsets
Integration Guide February 2014
58

	1 Introduction
	1.1 Purpose
	1.2 Intelligent Systems and Embedded Ecosystem Overview
	1.3 Intended Audience
	1.4 Related Documents
	1.5 Conventions
	1.6 Acronyms and Terminology

	2 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview

	3 FSP Integration
	3.1 Assumptions Used in this Document

	4 Boot Flow
	5 FSP Binary Format
	5.1 FSP Header
	5.1.1 Finding the FSP Header
	5.1.2 FSP Header Offset

	6 FSP Interface (FSP API)
	6.1 Entry-Point Calling Assumptions
	6.2 Entry-Point Calling Convention
	6.3 Exit Convention
	6.4 TempRamInitEntry
	6.4.1 Prototype
	6.4.2 Parameters
	6.4.3 Related Definitions
	6.4.3.1 Return Values
	6.4.3.2 Sample Code

	6.4.4 Description

	6.5 FspInitEntry
	6.5.1 Prototype
	6.5.2 Parameters
	6.5.3 Related Definitions
	6.5.4 Return Values
	6.5.5 Sample Code
	6.5.6 Enabling Fast Boot
	6.5.7 Description

	7 FSP Output
	7.1 Boot Loader Temporary Memory Data HOB
	7.2 Non-Volatile Storage HOB
	7.3 HOB Sample Code
	7.3.1 Hob Infrastructure Sample Code
	7.3.2 Hob Parsing Sample Code
	7.3.3 GUID HOB Sample Code

	8 FSP Configuration Firmware File
	9 Tools
	10 Other Host Boot Loader Concerns
	10.1 Power Management
	10.2 Bus Enumeration
	10.3 Security
	10.4 64-bit Long Mode
	10.5 Pre-OS Graphics

	Appendix A – HOB Parsing Sample Code
	Appendix B – Sample Code to Find FSP Header
	Appendix C – Data Structure for Memory Down
	C.1 Sample Code

