/* Copyright 2017 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Grunt board-specific configuration */ #include "adc.h" #include "adc_chip.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_state_v2.h" #include "common.h" #include "compile_time_macros.h" #include "console.h" #include "driver/accel_kionix.h" #include "driver/accel_kx022.h" #include "driver/accelgyro_bmi160.h" #include "driver/bc12/bq24392.h" #include "driver/led/lm3630a.h" #include "driver/ppc/sn5s330.h" #include "driver/tcpm/anx74xx.h" #include "driver/tcpm/ps8xxx.h" #include "driver/temp_sensor/sb_tsi.h" #include "ec_commands.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "motion_sense.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "registers.h" #include "switch.h" #include "system.h" #include "task.h" #include "tcpci.h" #include "temp_sensor.h" #include "thermistor.h" #include "usb_mux.h" #include "usb_pd_tcpm.h" #include "usbc_ppc.h" #include "util.h" /* * These GPIOs change pins depending on board version. They are configured * in board_init. */ static enum gpio_signal gpio_usb_c1_oc_l = GPIO_USB_C1_OC_L_V2; static enum gpio_signal gpio_usb_c0_pd_rst_l = GPIO_USB_C0_PD_RST_L_V2; #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) static void tcpc_alert_event(enum gpio_signal signal) { if ((signal == GPIO_USB_C0_PD_INT_ODL) && !gpio_get_level(gpio_usb_c0_pd_rst_l)) return; if ((signal == GPIO_USB_C1_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; #ifdef HAS_TASK_PDCMD /* Exchange status with TCPCs */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); #endif } #ifdef CONFIG_USB_PD_TCPC_LOW_POWER static void anx74xx_cable_det_handler(void) { int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET); int reset_n = gpio_get_level(gpio_usb_c0_pd_rst_l); /* * A cable_det low->high transition was detected. If following the * debounce time, cable_det is high, and reset_n is low, then ANX3429 is * currently in standby mode and needs to be woken up. Set the * TCPC_RESET event which will bring the ANX3429 out of standby * mode. Setting this event is gated on reset_n being low because the * ANX3429 will always set cable_det when transitioning to normal mode * and if in normal mode, then there is no need to trigger a tcpc reset. */ if (cable_det && !reset_n) task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_cable_det_handler); void anx74xx_cable_det_interrupt(enum gpio_signal signal) { /* debounce for 2 msec */ hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC)); } #endif static void ppc_interrupt(enum gpio_signal signal) { int port = (signal == GPIO_USB_C0_SWCTL_INT_ODL) ? 0 : 1; sn5s330_interrupt(port); } #include "gpio_list.h" const enum gpio_signal hibernate_wake_pins[] = { GPIO_LID_OPEN, GPIO_AC_PRESENT, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); const struct adc_t adc_channels[] = { [ADC_TEMP_SENSOR_CHARGER] = { "CHARGER", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, [ADC_TEMP_SENSOR_SOC] = { "SOC", NPCX_ADC_CH1, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, [ADC_VBUS] = { "VBUS", NPCX_ADC_CH8, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0 }, [ADC_SKU_ID1] = { "SKU1", NPCX_ADC_CH9, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, [ADC_SKU_ID2] = { "SKU2", NPCX_ADC_CH4, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* Power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { {GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {GPIO_PCH_SLP_S5_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S5_DEASSERTED"}, {GPIO_S0_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "S0_PGOOD"}, {GPIO_S5_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "S5_PGOOD"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* I2C port map. */ const struct i2c_port_t i2c_ports[] = { {"power", I2C_PORT_POWER, 100, GPIO_I2C0_SCL, GPIO_I2C0_SDA}, {"tcpc0", I2C_PORT_TCPC0, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA}, {"tcpc1", I2C_PORT_TCPC1, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA}, {"thermal", I2C_PORT_THERMAL, 400, GPIO_I2C3_SCL, GPIO_I2C3_SDA}, {"kblight", I2C_PORT_KBLIGHT, 100, GPIO_I2C5_SCL, GPIO_I2C5_SDA}, {"sensor", I2C_PORT_SENSOR, 400, GPIO_I2C7_SCL, GPIO_I2C7_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); #define USB_PD_PORT_ANX74XX 0 #define USB_PD_PORT_PS8751 1 const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = { [USB_PD_PORT_ANX74XX] = { .i2c_host_port = I2C_PORT_TCPC0, .i2c_slave_addr = ANX74XX_I2C_ADDR1, .drv = &anx74xx_tcpm_drv, .pol = TCPC_ALERT_ACTIVE_LOW, }, [USB_PD_PORT_PS8751] = { .i2c_host_port = I2C_PORT_TCPC1, .i2c_slave_addr = PS8751_I2C_ADDR1, .drv = &ps8xxx_tcpm_drv, .pol = TCPC_ALERT_ACTIVE_LOW, }, }; uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(gpio_usb_c0_pd_rst_l)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = { [USB_PD_PORT_ANX74XX] = { .port_addr = USB_PD_PORT_ANX74XX, .driver = &anx74xx_tcpm_usb_mux_driver, .hpd_update = &anx74xx_tcpc_update_hpd_status, }, [USB_PD_PORT_PS8751] = { .port_addr = USB_PD_PORT_PS8751, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, /* TODO(ecgh): ps8751_tune_mux needed? */ } }; const struct ppc_config_t ppc_chips[] = { { .i2c_port = I2C_PORT_TCPC0, .i2c_addr = SN5S330_ADDR0, .drv = &sn5s330_drv }, { .i2c_port = I2C_PORT_TCPC1, .i2c_addr = SN5S330_ADDR0, .drv = &sn5s330_drv }, }; const unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips); /* BC 1.2 chip Configuration */ const struct bq24392_config_t bq24392_config[CONFIG_USB_PD_PORT_COUNT] = { [USB_PD_PORT_ANX74XX] = { .chip_enable_pin = GPIO_USB_C0_BC12_VBUS_ON_L_V2, .chg_det_pin = GPIO_USB_C0_BC12_CHG_DET, .flags = BQ24392_FLAGS_ENABLE_ACTIVE_LOW, }, [USB_PD_PORT_PS8751] = { .chip_enable_pin = GPIO_USB_C1_BC12_VBUS_ON_L, .chg_det_pin = GPIO_USB_C1_BC12_CHG_DET, .flags = BQ24392_FLAGS_ENABLE_ACTIVE_LOW, }, }; const int usb_port_enable[USB_PORT_COUNT] = { GPIO_EN_USB_A0_5V, GPIO_EN_USB_A1_5V, }; static void board_init(void) { if (system_get_board_version() < 2) { /* * These GPIOs change pins depending on board version. Change * them here from the V2 pin to the V0 pin. */ gpio_usb_c1_oc_l = GPIO_USB_C1_OC_L_V0; gpio_usb_c0_pd_rst_l = GPIO_USB_C0_PD_RST_L_V0; } else { /* Alternate functions for board version 2 only. */ gpio_set_alternate_function(GPIO_F, 0x02, 1); /* ADC8 */ gpio_set_alternate_function(GPIO_0, 0x10, 0); /* KSO_13 */ gpio_set_alternate_function(GPIO_8, 0x04, 0); /* KSO_14 */ } /* Now that we know which pin to use, set the correct output mode. */ gpio_set_flags(gpio_usb_c1_oc_l, GPIO_OUT_HIGH); gpio_set_flags(gpio_usb_c0_pd_rst_l, GPIO_OUT_HIGH); /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_6AXIS_INT_L); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); static void board_chipset_suspend(void) { /* * Turn off display backlight. This ensures that the backlight stays off * in S3, no matter what the AP has it set to. The AP also controls it. * This is here more for legacy reasons. */ gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 1); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); static void board_chipset_resume(void) { /* Allow display backlight to turn on. See above backlight comment */ gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 0); /* * Enable keyboard backlight. This needs to be done here because * the chip doesn't have power until PP3300_S0 comes up. */ gpio_set_level(GPIO_KB_BL_EN, 1); lm3630a_poweron(); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); static void board_chipset_startup(void) { /* * Enable sensor power (lid accel, gyro) in S3 for calculating the lid * angle (needed on convertibles to disable resume from keyboard in * tablet mode). */ gpio_set_level(GPIO_EN_PP1800_SENSOR, 1); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); static void board_chipset_shutdown(void) { /* Disable sensor power (lid accel, gyro) in S5. */ gpio_set_level(GPIO_EN_PP1800_SENSOR, 0); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); /** * Power on (or off) a single TCPC. * minimum on/off delays are included. * * @param port Port number of TCPC. * @param mode 0: power off, 1: power on. */ void board_set_tcpc_power_mode(int port, int mode) { if (port != USB_PD_PORT_ANX74XX) return; switch (mode) { case ANX74XX_NORMAL_MODE: gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 1); msleep(ANX74XX_PWR_H_RST_H_DELAY_MS); gpio_set_level(gpio_usb_c0_pd_rst_l, 1); break; case ANX74XX_STANDBY_MODE: gpio_set_level(gpio_usb_c0_pd_rst_l, 0); msleep(ANX74XX_RST_L_PWR_L_DELAY_MS); gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); break; default: break; } } void board_reset_pd_mcu(void) { /* Assert reset to TCPC1 (ps8751) */ gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); /* Assert reset to TCPC0 (anx3429) */ gpio_set_level(gpio_usb_c0_pd_rst_l, 0); /* TCPC1 (ps8751) requires 1ms reset down assertion */ msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS)); /* Deassert reset to TCPC1 */ gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); /* Disable TCPC0 power */ gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0); /* * anx3429 requires 10ms reset/power down assertion */ msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); board_set_tcpc_power_mode(USB_PD_PORT_ANX74XX, 1); } void board_tcpc_init(void) { int count = 0; int port; /* Wait for disconnected battery to wake up */ while (battery_hw_present() == BP_YES && battery_is_present() == BP_NO) { usleep(100 * MSEC); /* Give up waiting after 1 second */ if (++count > 10) break; } /* Only reset TCPC if not sysjump */ if (!system_jumped_to_this_image()) board_reset_pd_mcu(); /* Enable PPC interrupts. */ gpio_enable_interrupt(GPIO_USB_C0_SWCTL_INT_ODL); if (system_get_board_version() < 2) gpio_enable_interrupt(GPIO_USB_C1_SWCTL_INT_ODL_V0); else gpio_enable_interrupt(GPIO_USB_C1_SWCTL_INT_ODL_V2); /* Enable TCPC interrupts. */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); #ifdef CONFIG_USB_PD_TCPC_LOW_POWER /* Enable CABLE_DET interrupt for ANX3429 wake from standby */ gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET); #endif /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) { const struct usb_mux *mux = &usb_muxes[port]; mux->hpd_update(port, 0, 0); } } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C + 1); void board_overcurrent_event(int port) { enum gpio_signal signal = (port == 0) ? GPIO_USB_C0_OC_L : gpio_usb_c1_oc_l; gpio_set_level(signal, 0); CPRINTS("p%d: overcurrent!", port); } int board_set_active_charge_port(int port) { int i; CPRINTS("New chg p%d", port); if (port == CHARGE_PORT_NONE) { /* Disable all ports. */ for (i = 0; i < ppc_cnt; i++) { if (ppc_vbus_sink_enable(i, 0)) CPRINTS("p%d: sink disable failed.", i); } return EC_SUCCESS; } /* Check if the port is sourcing VBUS. */ if (ppc_is_sourcing_vbus(port)) { CPRINTF("Skip enable p%d", port); return EC_ERROR_INVAL; } /* * Turn off the other ports' sink path FETs, before enabling the * requested charge port. */ for (i = 0; i < ppc_cnt; i++) { if (i == port) continue; if (ppc_vbus_sink_enable(i, 0)) CPRINTS("p%d: sink disable failed.", i); } /* Enable requested charge port. */ if (ppc_vbus_sink_enable(port, 1)) { CPRINTS("p%d: sink enable failed."); return EC_ERROR_UNKNOWN; } return EC_SUCCESS; } void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } /* Keyboard scan setting */ struct keyboard_scan_config keyscan_config = { /* Extra delay when KSO2 is tied to Cr50. */ .output_settle_us = 60, .debounce_down_us = 6 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 1500, .min_post_scan_delay_us = 1000, .poll_timeout_us = SECOND, .actual_key_mask = { 0x3c, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */ }, }; /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { 5, 0, 100 }, [PWM_CH_LED1_AMBER] = { 0, PWM_CONFIG_OPEN_DRAIN | PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED2_BLUE] = { 2, PWM_CONFIG_OPEN_DRAIN | PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 100 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* * We use 11 as the scaling factor so that the maximum mV value below (2761) * can be compressed to fit in a uint8_t. */ #define THERMISTOR_SCALING_FACTOR 11 /* * Values are calculated from the "Resistance VS. Temperature" table on the * Murata page for part NCP15WB473F03RC. Vdd=3.3V, R=30.9Kohm. */ static const struct thermistor_data_pair thermistor_data[] = { { 2761 / THERMISTOR_SCALING_FACTOR, 0}, { 2492 / THERMISTOR_SCALING_FACTOR, 10}, { 2167 / THERMISTOR_SCALING_FACTOR, 20}, { 1812 / THERMISTOR_SCALING_FACTOR, 30}, { 1462 / THERMISTOR_SCALING_FACTOR, 40}, { 1146 / THERMISTOR_SCALING_FACTOR, 50}, { 878 / THERMISTOR_SCALING_FACTOR, 60}, { 665 / THERMISTOR_SCALING_FACTOR, 70}, { 500 / THERMISTOR_SCALING_FACTOR, 80}, { 434 / THERMISTOR_SCALING_FACTOR, 85}, { 376 / THERMISTOR_SCALING_FACTOR, 90}, { 326 / THERMISTOR_SCALING_FACTOR, 95}, { 283 / THERMISTOR_SCALING_FACTOR, 100} }; static const struct thermistor_info thermistor_info = { .scaling_factor = THERMISTOR_SCALING_FACTOR, .num_pairs = ARRAY_SIZE(thermistor_data), .data = thermistor_data, }; static int board_get_temp(int idx, int *temp_k) { /* idx is the sensor index set below in temp_sensors[] */ int mv = adc_read_channel( idx ? ADC_TEMP_SENSOR_SOC : ADC_TEMP_SENSOR_CHARGER); int temp_c; if (mv < 0) return -1; temp_c = thermistor_linear_interpolate(mv, &thermistor_info); *temp_k = C_TO_K(temp_c); return 0; } const struct temp_sensor_t temp_sensors[] = { {"Charger", TEMP_SENSOR_TYPE_BOARD, board_get_temp, 0, 1}, {"SOC", TEMP_SENSOR_TYPE_BOARD, board_get_temp, 1, 5}, {"CPU", TEMP_SENSOR_TYPE_CPU, sb_tsi_get_val, 0, 4}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* Motion sensors */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* * Matrix to rotate accelerator into standard reference frame * * TODO(teravest): Update this when we can physically test a Grunt. */ const matrix_3x3_t base_standard_ref = { { 0, FLOAT_TO_FP(-1), 0}, { FLOAT_TO_FP(1), 0, 0}, { 0, 0, FLOAT_TO_FP(1)} }; /* sensor private data */ static struct kionix_accel_data g_kx022_data; static struct bmi160_drv_data_t g_bmi160_data; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_SENSOR, .addr = KX022_ADDR1, .rot_standard_ref = NULL, /* Identity matrix. */ .default_range = 2, /* g, enough for laptop. */ .min_frequency = KX022_ACCEL_MIN_FREQ, .max_frequency = KX022_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .addr = BMI160_ADDR0, .default_range = 2, /* g, enough for laptop */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI160_ACCEL_MIN_FREQ, .max_frequency = BMI160_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .addr = BMI160_ADDR0, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI160_GYRO_MIN_FREQ, .max_frequency = BMI160_GYRO_MAX_FREQ, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); #ifndef TEST_BUILD void lid_angle_peripheral_enable(int enable) { keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE); } #endif static const int sku_thresh_mv[] = { /* Vin = 3.3V, Ideal voltage, R2 values listed below */ /* R1 = 51.1 kOhm */ 200, /* 124 mV, 2.0 Kohm */ 366, /* 278 mV, 4.7 Kohm */ 550, /* 456 mV, 8.2 Kohm */ 752, /* 644 mV, 12.4 Kohm */ 927, /* 860 mV, 18.0 Kohm */ 1073, /* 993 mV, 22.0 Kohm */ 1235, /* 1152 mV, 27.4 Kohm */ 1386, /* 1318 mV, 34.0 Kohm */ 1552, /* 1453 mV, 40.2 Kohm */ /* R1 = 10.0 kOhm */ 1739, /* 1650 mV, 10.0 Kohm */ 1976, /* 1827 mV, 12.4 Kohm */ 2197, /* 2121 mV, 18.0 Kohm */ 2344, /* 2269 mV, 22.0 Kohm */ 2484, /* 2418 mV, 27.4 Kohm */ 2636, /* 2550 mV, 34.0 Kohm */ 2823, /* 2721 mV, 47.0 Kohm */ }; static int board_read_sku_adc(enum adc_channel chan) { int mv; int i; mv = adc_read_channel(chan); if (mv == ADC_READ_ERROR) return -1; for (i = 0; i < ARRAY_SIZE(sku_thresh_mv); i++) if (mv < sku_thresh_mv[i]) return i; return -1; } uint32_t system_get_sku_id(void) { static uint32_t sku_id = -1; int sku_id1, sku_id2; if (sku_id != -1) return sku_id; sku_id1 = board_read_sku_adc(ADC_SKU_ID1); sku_id2 = board_read_sku_adc(ADC_SKU_ID2); if (sku_id1 < 0 || sku_id2 < 0) return 0; sku_id = (sku_id2 << 4) | sku_id1; return sku_id; }