/* Copyright 2018 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Atlas board-specific configuration */ #include "adc_chip.h" #include "bd99992gw.h" #include "board_config.h" #include "charge_manager.h" #include "charger.h" #include "charge_state.h" #include "chipset.h" #include "console.h" #include "driver/accelgyro_bmi160.h" #include "driver/als_opt3001.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "driver/temp_sensor/bd99992gw.h" #include "espi.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_8042_sharedlib.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "motion_sense.h" #include "power_button.h" #include "power.h" #include "pwm_chip.h" #include "pwm.h" #include "spi.h" #include "switch.h" #include "system.h" #include "task.h" #include "temp_sensor.h" #include "timer.h" #include "uart.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args) #define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ## args) static void tcpc_alert_event(enum gpio_signal signal) { if ((signal == GPIO_USB_C0_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C0_PD_RST_L)) return; else if ((signal == GPIO_USB_C1_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; #ifdef HAS_TASK_PDCMD /* Exchange status with TCPCs */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); #endif } #include "gpio_list.h" /* power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { {GPIO_SLP_S0_L, POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_DISABLE_AT_BOOT, "SLP_S0_DEASSERTED"}, {VW_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {VW_SLP_S4_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S4_DEASSERTED"}, {GPIO_PCH_SLP_SUS_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_SUS_DEASSERTED"}, {GPIO_RSMRST_L_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "RSMRST_L_PGOOD"}, {GPIO_PMIC_DPWROK, POWER_SIGNAL_ACTIVE_HIGH, "PMIC_DPWROK"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* Keyboard scan. Increase output_settle_us to 80us from default 50us. */ struct keyboard_scan_config keyscan_config = { .output_settle_us = 80, .debounce_down_us = 9 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 3 * MSEC, .min_post_scan_delay_us = 1000, .poll_timeout_us = 100 * MSEC, .actual_key_mask = { 0x3c, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */ }, }; /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { 3, 0, 10000 }, [PWM_CH_LED1] = { 0, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED2] = { 2, PWM_CONFIG_DSLEEP, 100 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* Hibernate wake configuration */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_AC_PRESENT, GPIO_LID_OPEN, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); const struct adc_t adc_channels[] = { /* * Adapter current output or battery charging/discharging current (uV) * 18x amplification on charger side. */ [ADC_AMON_BMON] = { "AMON_BMON", NPCX_ADC_CH2, ADC_MAX_VOLT*1000/18, ADC_READ_MAX+1, 0 }, /* * ISL9238 PSYS output is 1.44 uA/W over 12.4K resistor, to read * 0.8V @ 45 W, i.e. 56250 uW/mV. Using ADC_MAX_VOLT*56250 and * ADC_READ_MAX+1 as multiplier/divider leads to overflows, so we * only divide by 2 (enough to avoid precision issues). */ [ADC_PSYS] = { "PSYS", NPCX_ADC_CH3, ADC_MAX_VOLT*56250*2/(ADC_READ_MAX+1), 2, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { {"power", I2C_PORT_POWER, 100, GPIO_EC_I2C0_POWER_SCL, GPIO_EC_I2C0_POWER_SDA}, {"tcpc0", I2C_PORT_TCPC0, 400, GPIO_EC_I2C1_USB_C0_SCL, GPIO_EC_I2C1_USB_C0_SDA}, {"tcpc1", I2C_PORT_TCPC1, 400, GPIO_EC_I2C2_USB_C1_SCL, GPIO_EC_I2C2_USB_C1_SDA}, {"sensor", I2C_PORT_SENSOR, 100, GPIO_EC_I2C3_SENSOR_3V3_SCL, GPIO_EC_I2C3_SENSOR_3V3_SDA}, {"battery", I2C_PORT_BATTERY, 100, GPIO_EC_I2C4_BATTERY_SCL, GPIO_EC_I2C4_BATTERY_SDA}, {"gyro", I2C_PORT_GYRO, 100, GPIO_EC_I2C5_GYRO_SCL, GPIO_EC_I2C5_GYRO_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = { { .i2c_host_port = I2C_PORT_TCPC0, .i2c_slave_addr = I2C_ADDR_TCPC, .drv = &ps8xxx_tcpm_drv, .pol = TCPC_ALERT_ACTIVE_LOW }, { .i2c_host_port = I2C_PORT_TCPC1, .i2c_slave_addr = I2C_ADDR_TCPC, .drv = &ps8xxx_tcpm_drv, .pol = TCPC_ALERT_ACTIVE_LOW }, }; struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = { { .port_addr = 0, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, { .port_addr = 1, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, }; void board_reset_pd_mcu(void) { gpio_set_level(GPIO_USB_PD_RST_L, 0); msleep(PS8XXX_RST_L_RST_H_DELAY_MS); gpio_set_level(GPIO_USB_PD_RST_L, 1); } void board_tcpc_init(void) { int port; /* Only reset TCPC if not sysjump */ if (!system_jumped_to_this_image()) board_reset_pd_mcu(); gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) { const struct usb_mux *mux = &usb_muxes[port]; mux->hpd_update(port, 0, 0); } } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const struct temp_sensor_t temp_sensors[] = { {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4}, /* BD99992GW temp sensors are only readable in S0 */ {"systherm0", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM0, 4}, {"systherm1", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1, 4}, {"systherm2", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2, 4}, {"systherm3", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM3, 4}, {"gyro", TEMP_SENSOR_TYPE_BOARD, bmi160_get_sensor_temp, BASE_GYRO, 1}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * Check if PMIC fault registers indicate VR fault. If yes, print out fault * register info to console. Additionally, set panic reason so that the OS can * check for fault register info by looking at offset 0x14(PWRSTAT1) and * 0x15(PWRSTAT2) in cros ec panicinfo. */ static void board_report_pmic_fault(const char *str) { int vrfault, pwrstat1 = 0, pwrstat2 = 0; uint32_t info; /* RESETIRQ1 -- Bit 4: VRFAULT */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, &vrfault) != EC_SUCCESS) return; if (!(vrfault & (1 << 4))) return; /* VRFAULT has occurred, print VRFAULT status bits. */ /* PWRSTAT1 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, &pwrstat1); /* PWRSTAT2 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, &pwrstat2); CPRINTS("PMIC VRFAULT: %s", str); CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1, pwrstat2); /* Clear all faults -- Write 1 to clear. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, (1 << 4)); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, pwrstat1); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, pwrstat2); /* * Status of the fault registers can be checked in the OS by looking at * offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo. */ info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF); panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0); } static void board_pmic_disable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (00) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x3a); /* * V18ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x2a); /* * V100ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x1a); /* * V085ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 0.85V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x2a); } static void board_pmic_enable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (00) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x7a); /* * V18ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x6a); /* * V100ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x5a); /* * V085ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 0.85V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x6a); } void power_board_handle_host_sleep_event(enum host_sleep_event state) { if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND) board_pmic_enable_slp_s0_vr_decay(); else if (state == HOST_SLEEP_EVENT_S0IX_RESUME) board_pmic_disable_slp_s0_vr_decay(); } static void board_pmic_init(void) { board_report_pmic_fault("SYSJUMP"); /* Clear power source events */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x04, 0xff); /* Disable power button shutdown timer */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x14, 0x00); if (system_jumped_to_this_image()) return; /* DISCHGCNT2 - enable 100 ohm discharge on V3.3A and V1.8A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3d, 0x05); /* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3e, 0x04); /* * Set V085ACNT / V0.85A Control Register: * Nominal output = 0.85V. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x2a); /* VRMODECTRL - disable low-power mode for all rails */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3b, 0x1f); } DECLARE_HOOK(HOOK_INIT, board_pmic_init, HOOK_PRIO_DEFAULT); /* Initialize board. */ static void board_init(void) { /* Provide AC status to the PCH */ gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); /* Enable interrupts from BMI160 sensor. */ gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); static void board_extpower(void) { gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT); /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { /* charge port is a physical port */ int is_real_port = (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_COUNT); /* check if we are sourcing VBUS on the port */ int is_source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN : GPIO_USB_C1_5V_EN); if (is_real_port && is_source) { CPRINTF("No charging on source port p%d is ", charge_port); return EC_ERROR_INVAL; } CPRINTF("New chg p%d", charge_port); if (charge_port == CHARGE_PORT_NONE) { /* Disable both ports */ gpio_set_level(GPIO_EN_USB_C0_CHARGE_L, 1); gpio_set_level(GPIO_EN_USB_C1_CHARGE_L, 1); } else { /* Make sure non-charging port is disabled */ gpio_set_level(charge_port ? GPIO_EN_USB_C0_CHARGE_L : GPIO_EN_USB_C1_CHARGE_L, 1); /* Enable charging port */ gpio_set_level(charge_port ? GPIO_EN_USB_C1_CHARGE_L : GPIO_EN_USB_C0_CHARGE_L, 0); } return EC_SUCCESS; } /** * Set the charge limit based upon desired maximum. * * @param port Port number. * @param supplier Charge supplier type. * @param charge_ma Desired charge limit (mA). * @param charge_mv Negotiated charge voltage (mV). */ void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* * Limit the input current to 95% negotiated limit, * to account for the charger chip margin. */ charge_ma = (charge_ma * 95) / 100; charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } static void board_chipset_suspend(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); static void board_chipset_resume(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); static void board_chipset_reset(void) { board_report_pmic_fault("CHIPSET RESET"); } DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT); int board_get_version(void) { static int ver; if (!ver) { /* * Read the board EC ID on the tristate strappings * using ternary encoding: 0 = 0, 1 = 1, Hi-Z = 2 */ uint8_t id0, id1, id2; id0 = gpio_get_ternary(GPIO_BOARD_VERSION1); id1 = gpio_get_ternary(GPIO_BOARD_VERSION2); id2 = gpio_get_ternary(GPIO_BOARD_VERSION3); ver = (id2 * 9) + (id1 * 3) + id0; CPRINTS("Board ID = %d", ver); } return ver; } /* Base Sensor mutex */ static struct mutex g_base_mutex; static struct bmi160_drv_data_t g_bmi160_data; static struct opt3001_drv_data_t g_opt3001_data = { .scale = 1, .uscale = 0, .offset = 0, }; /* Matrix to rotate accelrator into standard reference frame */ const matrix_3x3_t base_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }; struct motion_sensor_t motion_sensors[] = { [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .addr = BMI160_ADDR0, .rot_standard_ref = &base_standard_ref, .default_range = 2, /* g, enough for laptop. */ .min_frequency = BMI160_ACCEL_MIN_FREQ, .max_frequency = BMI160_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .addr = BMI160_ADDR0, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI160_GYRO_MIN_FREQ, .max_frequency = BMI160_GYRO_MAX_FREQ, }, [LID_ALS] = { .name = "Light", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_OPT3001, .type = MOTIONSENSE_TYPE_LIGHT, .location = MOTIONSENSE_LOC_LID, .drv = &opt3001_drv, .drv_data = &g_opt3001_data, .port = I2C_PORT_SENSOR, .addr = OPT3001_I2C_ADDR, .rot_standard_ref = NULL, .default_range = 0x10000, /* scale = 1; uscale = 0 */ .min_frequency = OPT3001_LIGHT_MIN_FREQ, .max_frequency = OPT3001_LIGHT_MAX_FREQ, .config = { /* Sensor on in S0 */ [SENSOR_CONFIG_EC_S0] = { .odr = 1000, }, }, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* ALS instances when LPC mapping is needed. Each entry directs to a sensor. */ const struct motion_sensor_t *motion_als_sensors[] = { &motion_sensors[LID_ALS], }; BUILD_ASSERT(ARRAY_SIZE(motion_als_sensors) == ALS_COUNT);