CONCORDIA UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE
COMP 442/2, 6421 /2 COMPILER DESIGN FALL 2003

The MOON Processor and Assembly Language
Peter Grogono

January 1995

1 The MOON Processor

The MOON is an imaginary processor based on recent RISC architectures.! The architecture
is similar to, but simpler than, the DLX architecture described by John Hennessy and David
Patterson in their textbook.? This document describes the architecture, instruction set, and
assembly language of the MOON processor.

1.1 Architecture

The MOON is a RISC (Reduced Instruction Set Computer). The number of different instruc-
tions is small, and individual instructions are simple. All instructions occupy one word and
require one memory cycle to execute (additional time may be required for data access).

1.1.1 Processor

The processor has a few instructions that access memory and many instructions that perform
operations on the contents of registers. Since register access is much faster than memory
access, it is important to make good use of registers to use the MOON efficiently.

There are sixteen registers, R0, R1,...,R15. R0 always contains zero. There is a 32-bit
program counter that contains the address of the next instruction to be executed.

1.1.2 Memory

A memory address is a value in the range 0, 1,...,23? — 1. The amount of memory actually
available is typically less than this.

Each address identifies one 8-bit byte. The addresses 0,4,...,4N are word addresses. The
processor can load and store bytes and words.

LA MOON is similar to a SUN, but not as bright.
2 Computer Architecture: a Quantitative Approach, John Hennessy and David Patterson, Morgan
Kaufmann, 1990.

1.2 Terminology and Notation

A word has 32 bits. The bits are numbered from 0 (the most significant) to 31 (the least
significant).

An integer is a 32-bit quantity that can be stored in a word. An integer value N satisfies
the inequality 273! < N < 23!, Bit 0 is the sign bit. Integers are stored in two’s-complement
form.

An address has 32 bits. Address calculations may involve signed numbers, but the result is
interpreted as an unsigned, 32-bit quantity.

A byte has 8 bits. The bits are numbered from 0 (the most significant) to 7 (the least
significant). Up to four bytes may be stored in a word.

The name of the memory is M. The expression Mg[K] denotes the byte stored at address
K. The expression M3y[K]| denotes the word stored at addresses K, K +1, K +2, and K + 3.

An address is legal if the addressed byte exists. Legal addresses form a contiguous sequence
0,1,..., N, where N depends on the processor or simulator.

An address is aligned if it is a multiple of 4. The aligned addresses are therefore 0,4, 8,...,4N.

The names RO, R1,..., R15 denote registers. Each register can store a 32-bit word. We
write R(7) to denote the contents of register Ri and R, ;(i) to denote the contents of bits
a,a+1,...,b of register Ri. At all times, R(0) = 0.

The name PC denotes the program counter. The program counter stores the 32-bit address
of the current instruction.

The symbol «— stands for data transfer, or assignment. A numeric superscript indicates the

number of bits transferred. For example, Ro4. 31(3) S M;s[1000] means that 8 bits (one
byte) is transferred from memory location 1000 to the least significant byte of R3.

1.3 Instruction Set

1.3.1 Instruction Formats

Each instruction occupies one word (32 bits) of memory. There are two instruction formats,
A and B, shown in Figure 1. Both formats contain a 6-bit operation code. Format A con-
tains three register operands and Format B contains two register operands and a 16-bit data
operand. Formats are not mentioned further in this document because they are not relevant
to assembly language programming. In general, however, an instruction is Format B if and
only if it contains a K operand.

Instructions are divided into three classes: data access, arithmetic, and control. The following
subsections describe the effects of each instruction. Unless otherwise stated, PC'is incremented

by 4 during the execution of an instruction. That is, the operation PC & pC+4is performed
implicitly.

MOON Processor & Assembly Language 2 4-Nov-2003, 3:30 am

Format A | opcode Ri Ry Rk

Format B| opcode Ri Ry K

Figure 1: Instruction Formats

1.3.2 Data Access Instructions

See Figure 2. The effective address produced by the operand K(Rj) is R(j)+ K. The effective
address must be legal; otherwise the processor halts with an error condition. The data field
K is interpreted as a signed, 16-bit quantity: —16384 < K < 16384.

The effective address of a load word (Iw) or store word (sw) instruction must be aligned;
otherwise the processor halts with an error condition.

A b instruction affects only the 8 low-order bits of the register; the 24 high-order bits are
unaffected.

‘ Function ‘ Operation ‘ Effect ‘
Load word | Iw K(Rj) | R(i) & /\/l32[(j) + K]
Load byte | Ib Rj) | Rog.31(7) S MS[() + K|

K(
Store word | sw (Rj), Ri | M3[R(j) + K] < R(i)
Store byte | sb K(Rj), Ri | Ms|R(j) + K] <— Ry (i)

Figure 2: Data Access Instructions

1.3.3 Arithmetic Instructions

Most of the arithmetic instructions have three operands. The first two operands are registers
and the third is either a register (Figure 3) or an immediate operand (Figure 4) whose value
is stored in the instruction. The first operand receives the result of the operation; the other
operands are not affected by the operation.

The operands need not be distinct. For example, the instruction sub R2, R2, R2 could be used
to set register 2 to zero.

The MOON processor does not detect carry or overflow in arithmetic instructions.

The “logical” operations, and, or, and not, operate on each bit of the word, with the usual
interpretations.

The comparison instructions (c___) are similar to the other binary operators except that the
value they store in the result register is either 1 (if the comparison yields true), or 0 (if the
comparison yields false).

MOON Processor & Assembly Language 3 4-Nov-2003, 3:30 am

‘ Function ‘ Operation ‘ Effect ‘
Add add Ri, Rj, Rk | R(i) <= R(j) + R(k)
Subtract sub Ri, Rj, Rk | R(i) «— &2 R(j) — R(k)
Multiply mul Ri,Rj, Rk | R(i) <= R(j) x R(k)
Divide div Ri,Rj, Rk | R(i) <= R(j) = R(k)
Modulus mod Ri, Rj, Rk | R(i) <= R(j) mod R(k)
And and Ri, Rj, Rk | R(i) <= R(j) A R(k)
Or or Ri,Rj,Rk | R(i) <= R(j) V R(k)
Not not Ri, Rj R(i) <= =R (j)

Equal ceq Ri,Rj, Rk | R(i) <= R(j) = R(k)
Not equal cne Ri, Rj, Rk | R(i) <= R(j) # R(k)
Less ct Ri,Rj, Rk | R(i) <= R(j) < R(k)
Less or equal cle Ri,Rj,Rk | R(i) <= R(j) < R(k)
Greater cgt Ri,Rj, Rk | R(i) <= R(j) > R(k)
Greater or equal | cge Ri, Rj, Rk | R(1) & R(j) > R(k)

Figure 3: Arithmetic Instructions with Register Operands

Function ‘ Operation ‘ Effect ‘
Add immediate addi Ri,Rj, K | R(i) <= R(j) + K
Subtract immediate subi Ri,Rj, K | R(i) <= R(j) — K
Multiply immediate muli Ri,Rj, K | R(i) <= R(j) x K
Divide immediate divi Ri,Rj, K | R(1) & R()+ K
Modulus immediate modi Ri, Rj, K | R(i) <= R(j) mod K
And immediate andi Ri,Rj,K | R(i) &= RGIAK
Or immediate ori Ri, Rj, K | R(7) h R(j) Vv K
Equal immediate ceqi Ri,Rj, K | R(7) 22 R(j)=K
Not equal immediate cnei Ri,Rj, K | R(7) 2 R(j) # K
Less immediate clti Ri,Rj, K | R(1) R R(j) < K
Less or equal immediate clei Ri,Rj, K | R(3) 22 R(j) <K
Greater immediate cgti Ri,Rj, K | R(7) 2 R(j) > K
Greater or equal immediate | cgei Ri, Rj, K | R(7) R R(j) > K
Shift left s| Ri, K R(i) <= R(i) < K
Shift right st Ri,K R(i) <= RG) > K

Figure 4: Arithmetic Instructions with an Immediate Operand

MOON Processor & Assembly Language

4-Nov-2003, 3:30 am

In instructions with immediate operands (__.i), the operand K is a signed, 16-bit quantity.
Negative numbers are sign-extended. For example, the operand —1 is interpreted as —1g. 31,
not as 65535 (its 16-bit value).

The shift instructions (s_) are useful if 0 < K < 31; their effect is undefined otherwise. The
operators < and > have the same effect as << and >> in C.

1.3.4 Input and Output Instructions

See Figure 5. The instruction getc reads one byte from stdin, the standard input stream.
Similarly, putc writes to stdout, the standard output stream.

‘ Function ‘ Operation ‘ Effect ‘

Get character | getc Ri | Raq.31(4) % Stdin
Put character | putc Ri Stdout&”RM“gl(i)

Figure 5: Input and Output Instructions

1.3.5 Control Instructions
See Figure 6. The target of a branch instruction (that is, the value assigned to PC' if the
branch is taken) must be a legal address; otherwise the processor halts with an error condition.

The jump-and-link instructions are used to call subroutines; they store the return address in
the specified register and then jump to the given location.

‘ Function ‘ Operation ‘ Effect ‘
Branch if zero bz Ri,K |if R(i) =0 then PC < PC + K
Branch if non-zero bnz Ri,K | if R(i) # 0 then PC <~ PC + K
Jump i K PC <% PO+ K
Jump (register) jr Ri PC & R(7)

Jump and link i Ri,K | R(i) <= PC+4:PC <~ PC+ K
Jump and link (register) | jir Ri, Rj | R(i) <= PC + 4; PC <> R(j)
No-op nop Do nothing

Halt hlt Halt the processor

Figure 6: Control Instructions

1.4 Timing
The time required to run a program is measured in clock cycles and dominated by memory
access. There are two paths to the memory; one is used to read instructions and the other is

used to read and write data.

MOON Processor & Assembly Language 5 4-Nov-2003, 3:30 am

Before each instruction is executed, the processor must load a 32-bit word containing the
instruction. This requires 10 clock cycles.

For data, the processor uses a memory address register (MAR) and a 32-bit memory data
register (MDR). The processor loads an address into MAR and issues a read or write directive
to the memory controller. The memory controller either obtains a word of data from the
memory and stores it in MDR (read) or copies the contents of MDR to the memory.

A read or write operation requires 10 clock cycles. If the data required for a read operation
is already in the MDR, the read operation requires only 1 clock cycle. For example, loading
the four bytes of a word using |b instructions requires 10 clock cycles for the first byte and
1 clock cycle for each of the other three bytes, provided that no other data access intervenes.

2 MOON Assembly Language

Programs for the MOON processor are written in its assembly language. We use the following
typographical conventions to describe the grammar of the assembly language. Figure 7 shows
the grammar.

e Non-terminal symbols are written in slanted type and have an initial upper case letter.
Examples: Program, Instr.

e Terminal symbols are written in a sans serif font. Punctuation symbols are quoted.

o

Examples: eol, “,”.

e The following symbols are metasymbols of the grammar:

— separates the defined symbol from the defining expression;
| indicates alternatives;
[...] enclose an optional item (zero or one occurrences);
{...} enclose a repeated item (zero or more occurrences).

Program — { Line } eof

Line —— [Symbol | [Instr | Directive | [Comment | eol
Directive — DirCode | Operand { “,” Operand } |

Instr — Opcode [Operand { “,” Operand }]
Operand — Register | Constant | “(” Register “)” | | String
Register — (“r” | “R”) Digit | Digit]
Constant —— Number | Symbol
Number — [“+” | “=” | Digit { Digit }

String — “"” { Char } “"”
Symbol — Letter { Letter | Digit }

Figure 7: Assembly Language Grammar

The symbols eof and eol denote “end of file” and “end of line”, respectively.

MOON Processor & Assembly Language 6 4-Nov-2003, 3:30 am

A Symbol is a string consisting of the following characters: letters, digits, and _. The first
character of a symbol must not be a digit. Directives and instruction codes must not be
used as symbols. Strings of the form “R{ Digit }” and “r{ Digit }” are not legal symbols
(cf. register syntax below).

A Comment starts with the character “%” and continues to the end of the current line.
A Constant is a signed, decimal number.
The registers are “R0” through “R15”. The letter “R” may be either upper or lower case.

The predefined symbol topaddr has M + 1 as its value, where M is the highest legal address.
This symbol can be used to check for addressing errors or to initialize a stack or frame pointer.
For example, the following instruction could be used to initialize the frame pointer:

addi r14,r0,topaddr

The syntax of Directive depends on the particular directive, as shown in Figure 8.

‘ Directive ‘ Effect
entry The following instruction will be the first to execute
align The next address will be aligned
org K The next address will be K
dw K, K, ... | Store words in memory
db Ky, Ky, ... | Store bytes in memory
res K Reserve K bytes of memory

Figure 8: Directives

The operands of a dw directive are either symbols or integers.

The operands of a db directive are bytes (unsigned numbers in the range 0,1,...,255) or
strings enclosed in quotes (" ... "). The characters in the string must be ASCII graphic
characters (codes 32 through 126) only. The MOON simulator does not recognize escape
characters in strings.

The operand of a res directive is a positive integer, K. The assembler requires K < 23!, but
in practice the maximum value of K will be limited by the amount of memory available.

Figure 9 shows a listing that might be generated by the assembler for a simple program. The
addresses in the left column would not be included in the input file generated by a programmer
or compiler.

The program begins with a directive, org, specifying that the data labelled “message” will be
stored at address 103. Since the message is a byte string, it is in fact stored at that address,
without alignment.

The processor and assembly language do not require any particular format for strings. The
convention used in this program is that strings are null-terminated, as in C. An alternative
would be to prefix a string with a number giving its length, as Pascal does. The bytes 13 and
10 are RETURN and LINEFEED, respectively.

The directive org 217 sets the current address to 217. The align directive changes the cur-
rent address to the next word boundary, 220. The directive entry immediately before this

MOON Processor & Assembly Language 7 4-Nov-2003, 3:30 am

1 0 org 103

2 103 message db "Hello, world!'", 13, 10, O

3 119 org 217

4 217 align

5 220 entry % Start here

6 220 add r2,r0,r0

7 224 pri 1b r3,message(r2) % Get next char

8 228 ceqi r4,r3,0

9 232 bnz r4,pr2 % Finished if zero
10 236 putc r3

11 240 addi r2,r2,1

12 244 j pri % Go for next char
13 248 pr2 addi r2,r0,name % Go and get reply
14 252 jl r15,getname

15 256 hlt % All done!

16 260

17 260 % Subroutine to read a string

18 260 name res 59 % Name buffer

19 319 align
20 320 getname getc r3 % Read from keyboard
21 324 ceqi rd4d,r3,10
22 328 bnz r4,endget % Finished if CR
23 332 sb 0(r2),r3 % Store char in buffer
24 336 addi r2,r2,1
25 340 J getname
26 344 endget sb 0(r2),r0 % Store terminator
27 348 jr rlb % Return
28 3562
29 352 data dw 1000, -35
30 360 dw 99, getname

Figure 9: An Assembly Language Program

MOON Processor & Assembly Language 8 4-Nov-2003, 3:30 am

instruction indicates that it is the first instruction to be executed.

The directive res 59 at address 260 reserves 59 bytes of memory. The following directive, align,
ensures that the next instruction will be aligned on a word boundary.

3 The MOON Simulator

The assembler/simulator is a program that assembles a MOON program and simulates its
execution. The name of the program is moon. In more detail, moon performs the following
actions.

e Read the assembly language files indicated on the command line and store them in the
simulated memory. There will typically be two files, a program with subroutines and a
subroutine library. The loader checks for syntax errors; if any are found, moon reports
the errors and returns without further processing.

e By default, start executing the program at the entry point and continue simulating until
a hlt instruction has been executed. If the user selects the trace option, the simulator
enters trace mode.

The simulator is invoked by a command of the form
moon a, . .., a,

in which aq,as, ... are command-line arguments. The arguments may appear in any order;
Figure 10 describes the permitted values and effect of each argument. The default values of
arguments are indicated by bullets between the argument and its description.

The p directive may be used to generate listings of selected files. For example, the command
moon +p main —p lib

would generate a listing of main but not of lib. The listing will be written to moon.prn unless
a file name is provided with a +o argument. There must not be any blanks between the o
directive and the file name.

(filename) Read assembly language from the file (filename), assemble it, and store
it in memory. If the filename has no extension, MOON adds .m.

+p Generate a listing.

—p e Do not generate a listing.

+s Display values of symbols.

—s e Do not display values of symbols.

—t e Execute the program in normal mode.

+t Execute the program in trace mode.

—X Do not execute the program.

+X e [Execute the program.

+o(filename) Write listings to (filename).prn.

Figure 10: Command-line Arguments

MOON Processor & Assembly Language 9 4-Nov-2003, 3:30 am

If moon is started in trace mode, it responds interactively to the commands described in
Figure 11. Command letters may be entered in upper or lower case. The operand of a trace
command, shown as (m), may be given as a number or a symbol. For example, if we were
tracing the program of Figure 9, either of the commands

b320
bgetname

would set a breakpoint at address 320. The case of letters in symbol names is significant.

RETURN Execute k instructions, where £ is 10 by default but can be changed by
the k command.

Show all breakpoints.

Set a breakpoint at memory location m.
Clear all breakpoints.

Clear the breakpoint at memory location m.
Dump memory locations PC + 20.

Dump memory locations m + 20.

Set PC' to entry point.

Set PC' to m.

Display a help screen.

Set k to its default value of 10.

Set k to m.

Quit the simulator.

Display register values.

Display symbol values.

Run until next breakpoint.

Run until PC' = m.

B

T o 0 o0 T o
Py o~
3 S
- ~

B

X v -~ 0 x X o
s
2

x

—
3

S

Figure 11: Interactive Commands for Trace Mode

In trace mode, moon initializes the value of PC to the entry point and maintains it in accor-
dance with instructions executed thereafter. As each instruction is executed, the interpreter
displays the instruction and the values of changed registers or memory locations. The com-
mand i sets the value of PC' to the given value, or to the entry point if no value is given.

The command d displays values of memory words and the command r displays values of
registers. Each value is displayed as a hexadecimal number, as a string of four characters, and
as a 32-bit signed integer. In the character display, non-graphic characters are shown as dots.

3.1 Programming Conventions

The MOON architecture does not restrict programmers to any particular pattern of use. The
addressing mode K (Ri) is suitable for addressing a stack, with Ri as the stack pointer and
K as an offset computed by the compiler. Any register can be used as the link for subroutine
calls. Arguments can be passed either in registers or on the stack.

MOON Processor & Assembly Language 10 4-Nov-2003, 3:30 am

3.2 Defects of the Current Simulator (moon.c)

The precise behaviour of the MOON simulator depends on the architecture of the processor
on which it is running and also on the C compiler used to compile it.

e The order in which bytes are stored in a word is inherited from the host processor. This
does not affect the execution of MOON instructions but does affect the order in which
characters are displayed during tracing.

e The shift instructions (sl and sr) of the MOON processor are simulated using the C
operators << and >>. The effect of >> is undefined when the most significant bit of the
left operand is set. Right-shifting a negative number may yield either a positive or a
negative number.

e The effect of the putc and getc instructions depends on whether the simulator is running
in normal or trace mode. In normal mode, getc reads a string from the keyboard and
yields one character of the string each time it is executed. In trace mode, you should
enter characters one at a time, as getc asks for them.

MOON Processor & Assembly Language 11 4-Nov-2003, 3:30 am

