
VxWorks

DEVICE DRIVER DEVELOPER'S GUIDE
Volume 3: Legacy Drivers and Migration

®

6.6

VxWorks Device Driver Developer's Guide, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Device Driver Developer's Guide, Volume 3: Legacy Drivers and Migration, 6.6

6 Nov 07
Part #: DOC-16146-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Introduction .. 1

1.1 Legacy Driver Overview ... 1

1.2 Before You Begin .. 2

1.3 About This Documentation ... 2

Navigating this Documentation Set .. 2

2 Adding an Existing Driver to Your BSP .. 3

2.1 Introduction ... 3

2.2 BSP Support for Legacy (Non-VxBus) Device Drivers 4

2.3 Project Facility ... 4

2.4 Component Descriptor Files .. 5

3 END Ethernet Drivers ... 7

3.1 Introduction ... 7

3.2 END Driver Overview ... 8

VxWorks
Device Driver Developer's Guide, 6.6

iv

3.2.1 Driver Environment ... 8

The MUX .. 8
Network Interface Drivers and Protocols ... 9
The MUX, Protocol, and Driver API .. 10
Driver Components ... 12
Protocols That Use the MUX API ... 13
Interactions With the MUX API ... 17
Network Layer to Data Link Layer Address Resolution 23

3.2.2 VxWorks OS Interface .. 24

Understanding How VxWorks Launches and Uses Your Driver 24
Executing Calls Waiting In the Network Job Queue 28
Adding Your Network Interface Driver to VxWorks 29
Allocating, Initializing, and Utilizing Memory Resources 31
Handling Packet Reception .. 39
Handling Packet Transmission ... 52
Implementing Checksum Offloading .. 58
Implementing Required Entry Points and Structures 58

3.3 The END Driver Development Process ... 81

3.3.1 Driver Development Overview .. 81

Writing a New Driver .. 81
Porting an Existing Driver From Another OS 83
Additional Development Issues ... 83

3.3.2 Error Conditions .. 84

3.3.3 Generic MIB Interface Initialization .. 86

4 SCSI Drivers ... 93

4.1 Introduction ... 93

4.2 SCSI Overview .. 94

4.2.1 Layout of SCSI Modules .. 95

4.2.2 The VxWorks OS Interface .. 98

Libraries ... 98
Driver Programming Interface ... 101

4.3 SCSI BSP Interface ... 132

 Contents

v

4.4 The SCSI Driver Development Process ... 135

4.5 Common SCSI Driver Development Issues ... 135

4.5.1 Troubleshooting and Debugging ... 135

4.5.2 Test Suites .. 136

scsiDiskThruputTest() ... 137
scsiDiskTest() ... 137
scsiSpeedTest() ... 139
tapeFsTest() .. 139

5 Timestamp Drivers ... 141

5.1 Introduction ... 141

5.2 Timestamp Driver Overview ... 142

5.2.1 Hardware Environment .. 142

5.2.2 VxWorks OS Interface .. 146

Working with the Wind River System Viewer 147
Timestamp Driver Components ... 148
Sample Drivers ... 148

5.3 Timestamp Driver Configuration and BSP Interface 163

sysTimestampConnect() ... 163
sysTimestampEnable() .. 164
sysTimestampDisable() .. 164
sysTimestampPeriod() .. 164
sysTimestampFreq() .. 165
sysTimestamp() .. 165
sysTimestampLock() ... 165

5.4 The Timestamp Driver Development Process .. 166

5.4.1 Timers that Can Be Read While Enabled .. 166

Timer Period .. 166
Interrupt Level .. 167
Interrupt Locking ... 167

VxWorks
Device Driver Developer's Guide, 6.6

vi

5.4.2 Working Around Deficiencies In Hardware Timers 167

Timer Re-Synchronization ... 167
Timer Period .. 168
Down Counter .. 168
Counter Preloading .. 168
Adjustment for Time Skew ... 168
Counter Read Optimization ... 169

5.4.3 Using the VxWorks System Clock Timer .. 169

Timer Rollover Interrupt ... 169
Timer Counter Not Reset .. 169
Timer Period .. 170

5.5 Common Timestamp Driver Development Issues .. 170

6 Additional Drivers .. 171

6.1 Introduction ... 171

6.2 ATAPI Drivers ... 172

6.3 Interrupt Controller Drivers ... 172

BSP Interface ... 172
Non-Vectored Interrupt Sources .. 173

6.4 Memory Drivers .. 174

6.4.1 Hardware Mismatches ... 174

6.4.2 Complex Modern Memory Controllers .. 174

6.5 Multi-Mode (SIO) Serial Drivers .. 176

6.5.1 SIO_CHAN and SIO_DRV_FUNCS .. 176

6.5.2 Polled Mode, WDB, and Kernel Initialization 179

6.5.3 Serial Ports, WDB, and Interrupts .. 179

7 Migrating to VxBus .. 181

7.1 Overview .. 181

 Contents

vii

7.2 Porting an Existing VxWorks Driver to VxBus ... 181

7.2.1 Verifying Your Hardware and Driver Code ... 182

7.2.2 Creating the VxBus Infrastructure .. 182

Driver Source File .. 183
Driver Header Files (Optional) ... 183
Driver Component Description File ... 183
Driver Configuration Stub Files .. 184
Modifying the BSP (Optional) ... 185
Verifying the infrastructure .. 186

7.2.3 Moving Existing Code into the New Source File 187

7.2.4 Removing Driver Code from the BSP .. 188

7.2.5 Adding Debug Code ... 188

7.2.6 Changing Initialization to VxBus .. 189

7.2.7 Adding VxBus Driver Methods .. 190

7.2.8 Updating Names within the Source File .. 190

7.2.9 Removing BSP Dependencies .. 191

7.2.10 Converting Register Access in Existing Code 192

7.2.11 Removing Global Variables ... 193

Index .. 195

VxWorks
Device Driver Developer's Guide, 6.6

viii

1

 1
Introduction

1.1 Legacy Driver Overview 1

1.2 Before You Begin 2

1.3 About This Documentation 2

1.1 Legacy Driver Overview

The term legacy driver is used to describe pre-VxBus device drivers as implemented
in early VxWorks 6.x and in VxWorks 5.x releases. Unlike VxBus model device
drivers, legacy drivers do not share a common interface to the operating system or
hardware.

Legacy drivers continue to be supported in this release (for uniprocessor systems
only). However, many drivers and BSPs distributed for this release have been
updated to take advantage of the VxBus infrastructure. (For information on VxBus,
see VxWorks Device Driver Developer’s Guide, Volume 1: Fundamentals of Writing
Device Drivers).

NOTE: Legacy device driver implementations are valid for uniprocessor (UP)
systems only. If you intend to use VxWorks in symmetric multiprocessor (SMP)
mode, you must implement VxBus model device drivers for your system. (For
information on SMP, see the VxWorks Kernel Programmer’s Guide: VxWorks SMP).

VxWorks
Device Driver Developer's Guide, 6.6

2

1.2 Before You Begin

Wind River strongly recommends that you develop new VxWorks device drivers
according to the VxBus model whenever possible. Before beginning your device
driver development, consider which device driver model you will implement. Be
sure to read and understand the information provided in this chapter and
7. Migrating to VxBus. Also be sure to read and understand the information
provided in the early chapters of the VxWorks Device Driver Developer’s Guide,
Volume 1: Fundamentals of Writing Device Drivers. This information can help you
make an educated decision about which driver model you need to implement for
your development. It can also help you to successfully navigate and understand
this documentation set.

1.3 About This Documentation

The information in this document does not apply to new development. The legacy
driver information provided in this chapter is for the purpose of maintaining
existing legacy device driver code. The driver-specific chapters of this document
may not provide sufficient information for developing new drivers according to
the legacy device driver model. In particular, the networking information
provided in these sections may be insufficient for new driver development. If you
require more information on the Wind River Network Stack, see the Wind River
Network Stack documentation provided with this release.

In addition to the legacy information provided for maintenance purposes, this
volume provides information on migrating an existing legacy model driver to the
VxBus model. Wind River recommends that you migrate your legacy driver code
to the VxBus device driver model when possible. For more information, see
7. Migrating to VxBus.

Navigating this Documentation Set

For information on navigating this documentation set, documentation
conventions, and other available documentation resources, see VxWorks Device
Driver Developer’s Guide (Vol. 1): Getting Started with Device Driver Development.

3

 2
Adding an Existing Driver

to Your BSP

2.1 Introduction 3

2.2 BSP Support for Legacy (Non-VxBus) Device Drivers 4

2.3 Project Facility 4

2.4 Component Descriptor Files 5

2.1 Introduction

A driver is considered properly integrated into the VxWorks code base when it can
be included in a system configuration either by defining a macro in the BSP
config.h file or by including a component in a project. Integration requires more
than just placing the driver in the appropriate directory. It also entails:

■ Providing BSP support.

■ Integrating the driver with the appropriate configuration facilities (GUI and
command line).

■ Providing appropriate component description file (CDF) entries. (For
information on CDF files, see the VxWorks Kernel Programmer’s Guide: Kernel.)

VxWorks
Device Driver Developer's Guide, 6.6

4

2.2 BSP Support for Legacy (Non-VxBus) Device Drivers

Drivers are included in BSPs in several ways. For typical legacy drivers, it is
expected that the driver itself resides in a file in
installDir/vxworks-6.x/target/src/drv/type. For example, the driver for 16550 serial
ports is in installDir/vxworks-6.x/target/src/drv/sio/ns16550Sio.c.

Each BSP must provide an access layer that allows the driver to be used regardless
of the location of the device registers. This code is kept in a sysDev.c file in the BSP
directory. For example, to use the ns16550Sio.c file, the BSP contains a file named
sysNs16550Sio.c. In some cases, the entire driver is contained in the sysDev.c file.

For some devices, certain parts of the initialization code must be put into sysLib.c.
The BSP routine sysHwInit() is responsible for setting all devices to a quiescent
state. That is, the device does not generate interrupts when interrupts are enabled.
For many devices, the power-on behavior is such that the device is initialized to a
quiescent state. If this is not the case, sysHwInit() needs to either quiesce the
device itself or call a routine (contained in sysDev.c) to quiesce the device.

Typically, the device-driver file is included in sysLib.c by file inclusion based on
preprocessor macros. For example, in the wrPpmc7400 BSP, support for the 16550
serial device is contained in the sysSerial.c file. The sysSerial.c file is included
from sysLib.c, and the ns16550Sio.c file is included in sysSerial.c. This two-step
method allows support for serial devices to be separated from generic board code
in sysLib.c, but also allows the driver object code to be included in sysLib.o.

2.3 Project Facility

For VxWorks 6.x, information about integrating device drivers into the project
facility can be found in the VxWorks Kernel Programmer’s Guide.

NOTE: You can also include the translation layer directly in sysLib.c, although this
is not the preferred method. In general, you should keep all device-specific code
out of sysLib.c.

2 Adding an Existing Driver to Your BSP
2.4 Component Descriptor Files

5

2

2.4 Component Descriptor Files

For the driver to be selectable in the Wind River development suite environment
(Workbench), there must be an entry for it in a CDF file and this entry must be
brought into the project facility folder hierarchy. CDF files reside in
installDir/vxworks-6.x/target/config/comps/vxWorks and are parsed by the
project facility in alphabetical order. The files are written in component description
language (CDL) which is described in the VxWorks Kernel Programmer’s Guide:
Kernel.

VxWorks
Device Driver Developer's Guide, 6.6

6

7

 3
END Ethernet Drivers

3.1 Introduction 7

3.2 END Driver Overview 8

3.3 The END Driver Development Process 81

3.1 Introduction

A network interface driver written especially for use with the network stack is
known as an enhanced network driver (or END driver). This chapter describes
how to write an END driver. It also provides information on how END drivers
interact with VxWorks and certain networking protocols.

This chapter assumes that you are a software developer familiar with general
networking principles, including protocol layering. Familiarity with 4.4 BSD
networking internals is also helpful. This chapter is not a tutorial on writing
network interface drivers. Instead, you should use this chapter as a guide for
writing a network interface driver that runs under VxWorks.

NOTE: The information in the chapter is provided for reference purposes only. You
should use this information to maintain existing END Ethernet driver code. If you
want to develop a new network driver, see VxWorks Device Driver Developers Guide,
Volume 1 and VxWorks Device Driver Developer’s Guide (Vol. 2): Network Drivers.

VxWorks
Device Driver Developer's Guide, 6.6

8

3.2 END Driver Overview

This section discusses how an END driver interfaces with VxWorks and how it
differs from other network drivers. The section also includes a discussion of the
components that make up an END driver.

3.2.1 Driver Environment

This section discusses the various elements of the END driver environment,
including the MUX and MUX layers, and END driver components.

The MUX

The multiplexor (usually known as the MUX, and referred to as the MUX in this
document) is an interface that joins the data link and protocol layers. An END
driver does not directly interface with the data link layer, but rather interfaces with
the MUX, which is an abstraction layer that is intended to de-couple the END
driver from any particular protocol. This API multiplexes access to the networking
hardware for multiple network protocols. Figure 3-1 shows the MUX in
relationship to the protocol and data link layers.

At the protocol layer, VxWorks typically uses IP, although other network protocols
can be ported to VxWorks. At the data link layer, VxWorks typically uses Ethernet,
although it does support other physical media for data transmission. For example,
VxWorks supports the use of serial lines for long-distance connections. In more
closely coupled environments, VxWorks internet protocols can also use the shared
memory on a common backplane as the physical medium. However, whatever the

NOTE: The installDir/vxworks-6.x/target/src/drv/end directory contains a
templateEnd.c file.

NOTE: The networking information provided in this chapter is also legacy
information. For current information on the Wind River Network Stack, see the
Wind River Network Stack for VxWorks 6 Programmer’s Guide volumes.

3 END Ethernet Drivers
3.2 END Driver Overview

9

3

medium, the network interface drivers all use the MUX to communicate with the
protocol layer.

Network Interface Drivers and Protocols

Using the BSD 4.3 model, VxWorks network drivers and protocols are tightly
coupled. Both the protocol and the network driver depend on an intimate
knowledge of each other’s data structures. Under the MUX-based model, network
drivers and protocols have no knowledge of each other’s internals. Network
interface drivers and protocols interact only indirectly, through the MUX.

For example, after receiving a packet, the network interface driver does not
directly access any structure within the protocol. Instead, when the driver is ready
to pass data up to the protocol, the driver calls a MUX-supplied routine. This
routine then handles the details of passing the data up to the protocol.

The purpose of the MUX is to de-couple the network driver from the network
protocols, thus making the network driver and network protocols nearly
independent from each other. This independence makes it much easier to add new

Figure 3-1 The MUX Interface Between Data Link and Protocol Layers

Ethernet CSLIPBackplane

MUX

IP + ICMP

(other)

Protocol Layer:

Data Link Layer:

(custom
protocol)

NOTE: The data link layer is an abstraction. A network interface driver is code that
implements the functionality described by that abstraction. Likewise, the protocol
layer is an abstraction. The code that implements the functionality of the protocol
layer could be called a protocol interface driver. However, this document refers to
such code simply as “the protocol.”

VxWorks
Device Driver Developer's Guide, 6.6

10

drivers or protocols. For example, if you add a new END driver, all existing
MUX-based protocols can use the new driver. Likewise, if you add a new
MUX-based protocol, any existing END driver can use the MUX to access the new
protocol.

The MUX, Protocol, and Driver API

Figure 3-1 shows a protocol, the MUX, and a network interface driver. The protocol
implements the following entry points:

■ stackShutdownRtn()
■ stackError()
■ stackRcvRtn()
■ stackTxRestartRtn()

The MUX calls these entry points when it needs to interact with a protocol. To port
a protocol to use the MUX, you must implement some or all of the entry points
listed above (some protocols may omit certain entry points).

The MUX implements the entry points muxBind(), muxUnbind(),
muxDevLoad(), and so forth. Both the protocol and the driver call the MUX entry
points as needed. Because the MUX is already implemented, it requires no
additional coding work from the developer.

The network interface driver implements the entry points endLoad(),
endUnload(), endSend(), and so forth. The MUX uses these entry points to interact
with the network interface driver. When writing or porting a network interface
driver to use the MUX, you must implement all of the entry points listed in
Table 3-2 in Required Driver Entry Points, p.65.

3 END Ethernet Drivers
3.2 END Driver Overview

11

3

In Figure 3-2, the arrows indicate calls to an entry point. For example, the top-most
arrow tells you that the protocol calls muxBind(), a routine implemented in the
MUX. If the MUX-based API specifies both ends of the call, the figure specifies a
routine name at each end of an arrow. For example, muxSend() calls endSend().
Note that although the protocol started the send by calling muxSend(), the figure
does not name the protocol routine that called muxSend(). That routine is outside
the standardized API.

Figure 3-2 The MUX Interface

muxReceive()stackRcvRtn()

endSend()

muxIoctl() endIoctl()

muxBind()

muxSend()

endLoad()

endMCastAddrAdd()

endPollSend()

endPollReceive()

endMCastAddrDel()

endMCastAddrGet()

muxMCastAddrAdd()

muxMCastAddrDel()

muxMCastAddrGet()

endUnload()

stackShutdownRtn() muxUnbind()

muxDevLoad()

endStart()

endStop()

muxDevUnload()

muxPollSend()

muxPollReceive()

Protocol MUX END

muxError()stackError()

stackTxRestartRtn() muxTxRestartRtn() endTxRestartRtn()

muxDevStart()

muxDevStop()

VxWorks
Device Driver Developer's Guide, 6.6

12

Driver Components

An END driver's basic components include:

■ a receiver
■ a transmitter
■ a command and control module

The receiver is composed of the routines that execute an algorithm to:

■ accept incoming frames from a DMA (direct memory access) engine
■ pass the incoming frames to the MUX
■ provide the DMA engine with a continuous supply of DMA buffers

The transmitter is composed of the routines that execute an algorithm to:

■ accept packets from the MUX and transfer them to the device's transmit DMA
engine

■ reclaim the resources associated with a transmitted packet

The command and control module provides configuration, initialization, and
control interfaces for the device.

An END driver receiver is stimulated by a device-generated interrupt. The driver
does not directly service incoming frames in the interrupt's context but defers the
work to a routine run in a task context.

Each instance of an END driver has a private buffer pool into which incoming
DMAs are directed. An END driver loans individual buffers from its pool to the
stack. There is no guarantee that the network stack returns the loaned buffers to the
END driver.

The larger the END driver operating bandwidth, the greater its memory
requirements. Occasionally, an END driver does not have sufficient memory
resources to accommodate the data inflow. This can be due to system constraints,
buffer loaning, or CPU starvation. When a driver gets into an insufficient resource
condition, it continues to provide the DMA engine buffers into which inflowing
data is transferred but the driver does not pass these buffers up to the stack.

NOTE: The prevalent model of network interface devices available today is the
direct memory access (DMA) engine. This document assumes the use of devices
that are DMA engines. If you are developing a driver for a device that uses
programmed I/O or some other proprietary shared memory technique, the
DMA-specific portions of this text may not be directly applicable to your driver.

3 END Ethernet Drivers
3.2 END Driver Overview

13

3

A protocol requests that an END driver transmit a frame by calling the muxSend()
routine, which in turn calls the driver’s registered send routine. Sends can occur at
any time, and may occur before previous sends have completed.

Resource reclamation of DMA buffers and control structures is generally
stimulated by a device-generated transmit-packet-complete interrupt. This
interrupt announces that the device has sent a complete frame and that the driver
can now return the memory resources back to the pool. In many cases, this
interrupt occurs excessively. Therefore, in order to improve performance, you
must reduce the frequency of packet-complete interrupts. However, take care to
ensure that you reliably return memory resources to the pool. If a device does not
provide a packet-complete interrupt, then the driver must use its own means to
ensure resource reclamation.

A stall condition occurs when the device determines that it has momentarily
exhausted its resources. The stall can occur in either the receiver or the transmitter.
When a stall occurs, the device halts operations in the module in which it detected
the stall. To resume operation, sufficient resources must be reclaimed and made
available. Often a device register must also be cleared.

The END driver command and control module is the part of the driver that parses
the driver configuration parameters, quiesces the device, and configures the device
in the prescribed mode. It incorporates the driver’s load, unload, start, stop, and
ioctl() routines, as well as routines for querying and modifying the multicast filter.
In essence, the driver’s command and control provides the driver's external
interface, with the exception of send and receive. This includes the driver interrupt
service routine, which should be considered a part of the driver command and
control module.

Interrupts alert the driver to packets received, packet transmit DMA completion,
and stall, error, or link state change conditions.

Protocols That Use the MUX API

This section describes how to port protocols to the MUX-based model. As shown
in Figure 3-1, MUX-based protocols bind themselves to the MUX from above and
network interface drivers (END drivers) bind themselves to the MUX from below.
Thus, a protocol is layered on top of the MUX, which is layered on top of a network
interface driver. The responsibilities of each are summarized below.

VxWorks
Device Driver Developer's Guide, 6.6

14

Protocol:

■ Interface to the transport layer, and through it, to the application
programs.

■ Usually, acts as a source of transmit packets and a sink of received packets.

■ Returns buffer resources from received packets to the driver pools.

MUX:

■ Calls driver load, unload, start, stop, and other control routines.

■ Binds and unbinds protocols.

■ Delivers packets received by an END driver to the appropriate bound
protocols.

■ Calls protocol transmit restart routines when requested by the END driver.

Network interface driver:

■ Deals with hardware.

■ Loads (allocates and initializes) the driver’s END interface objects and
buffer pools.

■ Unloads (terminates and frees) the driver’s END interface objects and
buffer pools.

■ Delivers received packets to the MUX.

■ Transmits packets and frees associated buffer resources.

A protocol writer has to deal only with calls to the MUX. Everything
device-specific is handled in the drivers of the data link layer—the layer below the
MUX.

Protocol Startup

Each protocol that wants to receive packets must first attach to a network interface.
To do this, the protocol calls muxBind(). The returned routine value is a cookie
that identifies the END device to which the MUX has bound the protocol. The
protocol must save this cookie for use in subsequent calls to the MUX.

As input to muxBind(), you must specify the base name and unit number of a
network device (for example, ln and 0, ln and 1, ei and 0, and so on), as well as the
appropriate receive, transmit restart, and shutdown routines for the protocol; a
protocol type, and a name for the attaching protocol.

3 END Ethernet Drivers
3.2 END Driver Overview

15

3

There are three special protocol type values, as well as the normal network-layer
protocol type values from RFC 1700, corresponding to the Ethernet header type
field. The three special type values are MUX_PROTO_OUTPUT,
MUX_PROTO_SNARF, and MUX_PROTO_PROMISC. MUX_PROTO_OUTPUT is
used for output protocols—which are passed packets in the send path, but not the
receive path. There may be no more than one output protocol for a given interface.
(Output protocols are discussed further below). MUX_PROTO_SNARF protocols,
normal “typed” protocols, and MUX_PROTO_PROMISC protocols attached to an
END interface may be delivered packets received on that interface.

When the END driver passes a received packet to the MUX, it includes a pointer to
the END_OBJ structure representing the interface. This structure contains pointers
to an array of (non-output) protocols bound to the interface. Snarf protocols, those
with type MUX_PROTO_SNARF, are placed first in the array and are passed every
received packet that is not consumed by an earlier snarf protocol. (The WDB agent
using the WDB_COMM_END communication strategy, and the Berkeley Packet
Filter (BPF), are examples of snarf protocols.) After the snarf protocols, the array
lists normal “typed” protocols such as IPv4 (0x0800), ARP (0x0806), and IPv6
(0x86dd). There may be only one such protocol of a given type bound to a given
interface. The MUX delivers a packet to one of these protocols only if it is not
consumed by a snarf protocol, and the packet's type matches the protocol's type.
Promiscuous protocols, those that specify the type MUX_PROTO_PROMISC, occur
last in the array and are delivered any packets not consumed by a snarf protocol, a
normal typed protocol, or an earlier promiscuous protocol.

A protocol consumes a packet by returning TRUE (or any non-zero value) from its
receive routine; it is responsible for freeing the packet. A protocol that does not
consume a packet passed to its receive routine should not modify or free the
packet.

Output Protocols

A single protocol can be bound to each device for the filtering of output packets.
This functionality is provided for applications that want to look at every packet
that is output on a particular device. The type MUX_PROTO_OUTPUT is passed
into muxBind() when this protocol is registered. Only the stackRcvRtn()
parameter is valid with this type.

NOTE: The presence of snarf protocols can decrease the receive performance for all
typed protocols. Also, among normal typed protocols, those whose packets are
most common on the network (or most performance-critical in a particular system)
should be bound first (if possible) to ensure the best performance.

VxWorks
Device Driver Developer's Guide, 6.6

16

Sending Data

To put the appropriate address header information into the buffer, the protocol
calls muxAddressForm(). Finally, to send the packet, the protocol calls
muxSend(), passing in the cookie returned from the muxBind() as well as the
mBlk that contains the packet it wants to send. The MUX then hands the packet to
the driver.

Receiving Data

In response to an interrupt from the network device, VxWorks executes the
device’s previously registered interrupt service routine. This routine gets the
packet off the device and queues it for processing the task level, where the driver
prepares the packet for hand-off to the MUX. For a more detailed description of
this process, see Handling Packet Reception, p.39.

To hand the packet off to the MUX, the driver calls muxReceive(). The
muxReceive() routine determines the protocol type of the packet (0x800 for IP,
0x806 for ARP, and so on) and then searches its protocol list to see if any have
registered using this protocol type.

If there is a protocol that can handle this packet, the MUX passes the packet into
the stackRcvRtn() specified in the protocol’s muxBind() call. Before passing the
packet to a numbered protocol (that is, a protocol that is neither a
MUX_PROTO_SNARF nor a MUX_PROTO_PROMISC protocol) muxReceive() calls
the muxPacketDataGet() routine and passes two mBlks into the protocol.

The first mBlk contains all the link-level information. The second mBlk contains
all of the information that comes just after the link-level header. This partitioning
of the data lets the protocol skip over the header information (it also breaks the
BSD 4.3 model at the do_protocol_with_type() interface). The protocol then takes
over processing the packet.

This new method of multiplexing received packets eliminates the method based on
the etherInputHook() and etherOutputHook() routines. If a protocol wants to
see all of the undeliverable packets received on an interface, it specifies its type as
MUX_PROTO_PROMISC.

If a protocol needs to modify data received from the network, it should copy that
data first. Because other protocols might also want to see the raw data, the data
should not be modified in place (that is, in the received buffer).

3 END Ethernet Drivers
3.2 END Driver Overview

17

3

Protocol Transmission Restart

The muxTkSend() routine may return an error, END_ERR_BLOCK, indicating that
the network driver has insufficient resources to transmit data. The network service
sublayer can use this feedback to establish a flow control mechanism by holding
off on making any further calls to muxTkSend() until the device is ready to restart
transmission. At that time, the MUX calls the stackRestartRtn() that you registered
for the interface at bind time.

Protocol Shutdown

When a protocol is finished using an interface, or for some reason wants to shut
itself down, it calls the muxUnbind() routine. This routine tells the MUX to
deallocate the NET_PROTOCOL and other memory allocated specifically for the
protocol.

Interactions With the MUX API

This section presents the routines and data structures that the protocol uses to
interact with the MUX. Most of the work is handled by the MUX routines (listed in
Table 3-1). Unlike the driver entry points described earlier, you do not implement
the MUX routines. These routines are utilities that you can call from within your
protocol. For specific information on these MUX routines, see the appropriate API
reference entry.

These MUX routines do not comprise the entire MUX/protocol interface. In
addition, a protocol must implement a set of standardized routines that handle
things such as shutting down the protocol, restarting the protocol, passing data up
to the protocol, and passing error messages up to the protocol.

NOTE: Such a flow control mechanism must be implemented in the network
service sublayer. It is not provided by the MUX implementation.

Table 3-1 MUX Interface Routines

MUX Routine Purpose

muxDevLoad() Loads a device into the MUX.

muxDevStart() Starts a device from the MUX.

muxBind() Hooks a protocol to the MUX.

VxWorks
Device Driver Developer's Guide, 6.6

18

muxSend() Accepts a packet from the protocol and passes it to
the device.

muxDataPacketGet() Gets an mBlk containing packet data only. The
link-level header information is omitted.

muxAddressForm() Forms an address into an outgoing packet.

muxIoctl() Accesses control routines.

muxMCastAddrAdd() Adds a multicast address to the list maintained for a
device.

muxMCastAddrDel() Deletes a multicast address from the list maintained
for a device.

muxMCastAddrGet() Gets the multicast address table maintained for a
device.

muxUnbind() Disconnects a protocol from the MUX.

muxDevStop() Stops a device.

muxDevUnload() Unloads a device.

muxPacketDataGet() Extracts the packet data (omitting the link-level data)
from a submitted mBlk and writes it to a fresh mBlk.

muxPacketAddrGet() Extracts source and destination address data
(omitting the packet data) from a submitted mBlk
and writes each address to its own mBlk. If the local
source/destination addresses differ from the end
source/destination addresses, this routine writes to
as many as four mBlks.

muxTxRestart() If a device unblocks transmission after having
blocked it, this routine calls the stackTxRestartRtn()
routine associated with each interested protocol.

muxReceive() Sends a packet up to the MUX from the device.

muxShutdown() Shuts down all protocols above this device.

Table 3-1 MUX Interface Routines (cont’d)

MUX Routine Purpose

3 END Ethernet Drivers
3.2 END Driver Overview

19

3

The Protocol Data Structure NET_PROTOCOL

For each protocol that binds to a device, the MUX allocates a NET_PROTOCOL
structure. The MUX uses this structure to store information relevant to the
protocol, such as the protocol’s type, its receive routine, and its shutdown routine.
These are chained in a linked list whose head rests in the protocols member of the
END_OBJ structure the MUX uses to manage a device. The NET_PROTOCOL
structure is defined in end.h as follows:

typedef struct net_protocol
{
NODE node; /* How we stay in a list. */
char name[32]; /* String name for this protocol. */
long type; /* Protocol type from RFC 1700 */
int flags; /* Is protocol in a promiscuous mode? */
BOOL (*stackRcvRtn) (void *, long, M_BLK_ID, M_BLK_ID, void*);

/* The routine to call when we get */
/* a packet. */

STATUS (*stackShutdownRtn) (void*, void*);
/* The routine to call to shutdown */
/* the protocol stack. */

STATUS (*stackTxRestartRtn) (void*, void*);
/* Callback for restarting on blocked tx. */

void (*stackErrorRtn) (END_OBJ*, END_ERR*, void*);
/* Callback for device errors. */

void* pSpare; /* Spare pointer that can be passed to */
/* the protocol. */

} NET_PROTOCOL;

Passing a Packet Up to the Protocol: stackRcvRtn()

Each protocol must provide the MUX with a routine that the MUX can use to pass
packets up to the protocol. This routine must take the following form:

muxAddrResFuncAdd() Adds an address resolution function to the address
resolution function list.

muxAddrResFuncGet() Gets a particular address resolution function from
the list.

muxAddrResFuncDel() Deletes a particular address resolution function from
the list.

Table 3-1 MUX Interface Routines (cont’d)

MUX Routine Purpose

VxWorks
Device Driver Developer's Guide, 6.6

20

void stackRcvRtn
(
void* pCookie, /* returned by muxBind() call */
long type, /* protocol type from RFC 1700 */
M_BLK_ID pNetBuff, /* packet with link level info */
LL_HDR_INFO* pLinkHdr, /* link-level header info structure */
void* pSpare /* a void* the protocol can use to get info */

/* on receive. This was passed to muxBind().*/
)

Your protocol must declare its stackRcvRtn() as void. Thus, this routine returns no
value.

The parameters are:

pCookie
Expects the pointer returned from the muxBind() call. This pointer identifies
the device to which the MUX has bound this protocol.

type
Expects the protocol type from RFC 1700 or the SAP.

pNetBuff
Expects a pointer to an mBlk structure that contains the packet data and the
link-level information.

pLinkHdr
Returns an LL_HDR_INFO structure containing header information that is
dependent upon the particular data-link layer that the END driver
implements. For more information, see Tracking Link-Level Information:
LL_HDR_INFO, p.63.

pSpare
Expects a pointer to the spare information (if any) that was passed down to the
MUX using the pSpare parameter of the muxBind() call. This information is
passed back up to the protocol by each receiveRtn() call. The use of this
information is optional and protocol-specific.

Passing Error Messages Up to the Protocol: stackError()

The MUX uses the stackError() routine to pass error messages from the device to
the protocol. Your code for this routine must have an appropriate response for all
possible error messages. The prototype for the stackError() routine is as follows:

void stackError
(
END_OBJ* pEnd, /* pointer to END_OBJ */
END_ERR* pError, /* pointer to END_ERR */
void* pSpare /* pointer to protocol private data passed in muxBind */
)

3 END Ethernet Drivers
3.2 END Driver Overview

21

3

You must declare your stackShutdownRtn() as returning void. Thus, there is no
returned function value for this routine. The parameters are:

pEnd
Expects the pointer returned as the function value of the muxBind() for this
protocol. This pointer identifies the device to which the MUX has bound this
protocol.

pError
Expects a pointer to an END_ERR structure, which end.h defines as follows:

typedef struct end_err
{
INT32 errCode; /* error code, see above */
char* pMesg; /* NULL-terminated error message, can be NULL */
void* pSpare; /* pointer to user defined data, can be NULL */
} END_ERR;

Within your code for the stackError() routine, you must have appropriate
responses to the flags stored in the errCode member. Wind River reserves the
lower 16 bits of errCode for its own error messages, which are as follows:

END_ERR_INFO
This error is information only.

END_ERR_WARN
A non-fatal error has occurred.

END_ERR_RESET
An error occurred that forced the device to reset itself, but the device
has recovered.

END_ERR_DOWN
A fatal error occurred that forced the device to go down. The device
can no longer send or receive packets.

END_ERR_UP
The device was down but is now up again and can receive and send
packets.

The upper 16 bits of the errCode member are available to user applications.
Use these bits to encode whatever error messages you need to pass between
drivers and protocols.

pSpare
Expects a pointer to protocol-specific data. Originally, the protocol passed this
data to the MUX when it called muxBind(). This data is optional and
protocol-specific.

VxWorks
Device Driver Developer's Guide, 6.6

22

Shutting Down a Protocol: stackShutdownRtn()

The MUX uses stackShutdownRtn() to shut down a protocol. Within this routine,
you must do everything necessary to shut down your protocol in an orderly
manner. Your stackShutdownRtn() must take the following form:

void stackShutdownRtn
(
void* pCookie /* Returned by muxBind() call. */
void* pSpare /* a void* that can be used by the protocol to get */

/* info on receive. This was passed to muxBind().*/
)

You must declare your stackShutdownRtn() as returning void. Thus, there is no
returned function value for this routine.

The parameters are:

pCookie
Expects the pointer returned as the function value of the muxBind() for this
protocol. This pointer identifies the device to which the MUX has bound this
protocol.

pSpare
Expects the pointer passed into muxBind() as pSpare.

Restarting Protocols: stackTxRestartRtn()

The MUX uses the stackTxRestartRtn() to restart protocols that had to stop
transmitting because the device was out of resources. In high-traffic situations, a
muxSend() can return END_ERR_BLOCK. This error return indicates that the
device is out of resources for transmitting more packets and that the protocol
should wait before trying to transmit any more packets.

When the device has determined that it has enough resources to start transmitting
again, it can call the muxTxRestart() routine, which, in turn, calls the protocol’s
stackTxRestartRtn().

Your stackTxRestartRtn() must take the following form:

void muxTxRestart
(
void* pCookie /* Returned by muxBind() call. */
)

3 END Ethernet Drivers
3.2 END Driver Overview

23

3

The parameters are:

pCookie
Expects the pointer returned as the function value of the muxBind() for this
protocol. This pointer identifies the device to which the MUX has bound this
protocol.

Network Layer to Data Link Layer Address Resolution

The MUX provides several routines for adding network layer to data link layer
address resolution functions. Resolving a network layer address into a data link
layer address is usually carried out by a separate protocol. In most IP over Ethernet
environments this is carried out by ARP (the address resolution protocol).

Using the MUX, any protocol/data link can register its own address resolution
function. The functions are added and deleted by the following pair of routines:

STATUS muxAddrResFuncAdd
(
long ifType, /* Media interface type from m2Lib.h */
long protocol, /* Protocol type from RFC 1700 */
FUNCPTR addrResFunc /* Function to call. */
)

STATUS muxAddrResFuncDel
(
long ifType, /* Media interface type from m2Lib.h */
long protocol /* Protocol type from RFC 1700 */
)

These routines add and delete address resolution routines. The protocol writer is
expected to ascertain the exact arguments to that routine. Currently, the only
address resolution routine provided by Wind River is arpresolve().

To find out what address resolution routine to use for a particular
network/datalink pair, call the following routine:

FUNCPTR muxAddrResFuncGet
(
long ifType, /* ifType from m2Lib.h */
long protocol /* protocol from RFC 1700 */
)

This routine returns a pointer to a routine that you can call to resolve data link
addresses for the network protocol specified as the second argument.

VxWorks
Device Driver Developer's Guide, 6.6

24

3.2.2 VxWorks OS Interface

This section discusses how END drivers interface with VxWorks including
information on how VxWorks launches your driver, how to add your driver to
VxWorks, and how to deal with memory resources. It also includes information on
sending and receiving packets.

Understanding How VxWorks Launches and Uses Your Driver

The primary focus of this section is on the MUX utilities and the standard END
driver entry points. However, when designing or debugging your driver’s entry
points, you need to know the context in which the entry point executes. Thus, you
need to know the following:

■ The task that makes the calls that actually load and start your driver.

■ The task that typically registers the interrupt handler for your driver.

■ The task that uses your driver to do most of the processing on a packet.

Launching Your Driver

At system startup, VxWorks spawns the task tUsrRoot to handle the following:

■ Initializing the network task’s job queue.

■ Spawning tNetTask to process items on the network task’s job queue.

■ Calling muxDevLoad() to load your network driver.

■ Calling muxDevStart() to start your driver.

Loading Your Driver into the MUX

To load your network driver, tUsrRoot calls muxDevLoad(). As input to the call,
tUsrRoot specifies your driver’s endLoad() entry point. Internally, the
muxDevLoad() call executes the specified endLoad() entry point.

The endLoad() routine handles any device-specific initialization and returns an
END_OBJ structure. Your endLoad() routine must populate most of this structure
(see Providing Network Device Abstraction: END_OBJ, p.58). This includes providing

NOTE: This section discusses use of the task, tNetTask. In VxWorks 6.6, this task is
replaced by tNet0.

3 END Ethernet Drivers
3.2 END Driver Overview

25

3

a pointer to a NET_FUNCS structure populated with function pointers to your
driver’s entry points for handling sends, receives, and so forth.

The endLoad() routine handles parameter parsing, configuration, and
initialization. A list of the driver parameters is passed to the endLoad() routine.
The routine first allocates memory for the driver control structure and passes a
pointer to the driver control structure. It then passes the driver parameters to a
parser that breaks the parameters down into discrete values and loads them into
the driver control structure.

endLoad() configures the device's registers either as the default configuration or as
prescribed by the driver parameters. endLoad() calls a memory initialization
routine that allocates a contiguous amount of memory for DMA descriptors, the
amount allocated is determined by the number of descriptors specified in the
parameters or a default amount defined in the driver. The memory initialization
routine also calls netPoolCreate() in netBufLib causing it to create a memory pool
sufficient for the driver's needs.

The memory initialization routine initializes the driver DMA descriptors. It
accesses each discrete descriptor and fills the descriptor fields according to the
device expectations and the driver parameter directions. In the case of receive
descriptors, it also obtains a tuple from the netPool it created, writes the tuple
cluster pointer into the descriptor, and stores the tuple mBlk pointer in a
convenient location from which it can later be correlated back to the descriptor
DMA buffer.

After control returns from endLoad() to muxDevLoad(), the MUX completes the
END_OBJ structure (by giving it a pointer to a routine your driver can use to pass
packets up to the MUX). The MUX then adds the returned END_OBJ to a linked list
of END_OBJ structures. This list maintains the state of all currently active network
devices on the system. After control returns from muxDevLoad(), your driver is
loaded and ready to use.

Registering Your Driver’s Interrupt Routine

To register your driver’s interrupt handler, you must call sysIntConnect(). The
most typical place to make this call is in your driver’s endStart() entry point.
When muxDevLoad() loads your driver, it calls muxDevStart(), which then calls
your driver’s endStart() entry point.

NOTE: A tuple is a construct used by the VxWorks stack and drivers to access and
manage data buffers. A detailed description of a tuple is provided in Receive and
Transmit Descriptors, p.32.

VxWorks
Device Driver Developer's Guide, 6.6

26

Using tNetTask

When working with END drivers, it is necessary to understand the use of
tNetTask, how it operates, and why to use it.

Many desktop and mainframe operating systems use network drivers that
dispatch incoming packets directly to the application that receives the packets.
This operation is done in the lower half of the OS, from within interrupt context.
Therefore, much of the network stack is executed from within interrupt service
routines (ISRs).

Because VxWorks is intended for real-time applications, ISRs must be kept short.
Wind River does not recommend use of long ISRs for network packet processing.
For this reason, most of the network stack processing for incoming packets—
processing that would typically be done from within an ISR—is pushed to a task
context in VxWorks. tNetTask is the task that handles this network processing.

Interrupt Handlers

Upon arrival of an interrupt on the network device, VxWorks invokes your
driver’s previously registered interrupt service routine. Your interrupt service
routine should do the minimum amount of work necessary to get the packet off the
local hardware. To minimize interrupt lock-out time, your interrupt service routine
should handle only those tasks that require minimal execution time, such as error
or status change. Your ISR should queue all time-consuming work for processing
at the task level.

Aside from the general practice of limiting the amount of work done in an ISR, in
VxWorks, it is not possible to directly call the MUX receive entry point from an ISR.
Instead, it must be called from a task context.

To queue packet-reception work for processing at the task level, your ISR must call
netJobAdd(). As input, this routine accepts a function pointer and up to five
additional arguments (parameters to the routine referenced by the function
pointer).

STATUS netJobAdd
(
FUNCPTR routine, /* routine to add to netTask work queue */
int param1, /* first arg to added routine */
int param2, /* second arg to added routine */
int param3, /* third arg to added routine */
int param4, /* fourth arg to added routine */
int param5 /* fifth arg to added routine */
)

In your call to netJobAdd(), you should specify your driver’s entry point for
processing packets at the task level. The netJobAdd() routine then puts the

3 END Ethernet Drivers
3.2 END Driver Overview

27

3

function call (and arguments) on the tNetTask work queue. VxWorks uses
tNetTask to handle task-level network processing.

There are several limitations on network interrupts in VxWorks. These limitations
impact the way drivers are written.

The interrupt handler generally serves three functions. These functions include:

■ handling receive interrupts
■ returning resources to the pool after a transmitted packet
■ handling error conditions

Network devices typically provide a single interrupt line for all types of interrupts.
When an interrupt service routine is called, the ISR must check a register to see
what type of action is required. The ISR reads the device register and invokes the
appropriate routines to handle each type of exception that has occurred. This
invocation is typically accomplished by using calls to netJobAdd() for transmit
interrupts, receive interrupts, and to handle error conditions. This means that the
interrupt handler itself is short, because most of the work is done in the task-level
handlers.

The task-level routines for each type of interrupt should process all the work that
is available for that particular type. If all the work of a given type is processed, no
subsequent interrupts of that type are required until the service routine is finished.
For performance reasons, interrupts for each type of service should be disabled
before dispatching a routine with netJobAdd().

At the time that a driver is started, the physical interface should be activated and
the initialized state should be enabled for all interrupts the driver services.
Interrupts for specific types of actions should be disabled until the task-level
handler has determined that all work of the type associated with that interrupt is
complete. When the task-level handler is finished all work for a specific type of
interrupt, the interrupt should be re-enabled.

netJobRing has a limited amount of space. Because of this, it is critical that the
driver make efforts to conserve space on the netJobRing. If the ring is allowed to
overflow, the network stack can become corrupt and the system may require a

NOTE: You can use netJobAdd() to queue up work other than processing for
received packets.

! CAUTION: Use netJobAdd() sparingly. The netJobRing is a finite resource that is
also used by the network stack. If it overflows, this implies that the network stack
is corrupted.

VxWorks
Device Driver Developer's Guide, 6.6

28

reboot. To safeguard against overflow, the driver must limit the number of jobs that
it simultaneously places on the ring. This limit can be imposed through the use of
queuing indicators. These indicators communicate to the driver if a particular
interrupt handler is already queued on the ring. If the handler is already queued,
it is not practical to queue it again before it has run. The indicators are fields in the
driver control structure. There should be one indicator for the receive handler and
another for the packet-complete interrupt. These indicators are discussed further
in Receive Handler Interlocking Flag, p.44 and Transmit-Packet-Complete Handler
Interlocking Flag, p.52, respectively.

■ Interrupt Masking

For maximum performance, a task-level interrupt handler should be written in
such a way as to continue to handle its work until there is no more work
outstanding. The ISR should only be executed if the task-level handler is not active.
Continuing to execute the ISR while the task-level handler is running hinders
performance by interrupting the system for work that is already scheduled. After
the first interrupt schedules a task-level handler, the incident interrupt is masked
by its ISR and is unmasked just before its task-level handler exits.

Executing Calls Waiting In the Network Job Queue

The tNetTask task sleeps on an incoming work queue. In response to an incoming
packet, your ISR calls netJobAdd(). As parameters to netJobAdd(), your
interrupt service routine specifies your driver’s entry point for handling task-level
packet reception. The netJobAdd() call adds this entry point to tNetTask’s work
queue. The netJobAdd() call also automatically gives the appropriate semaphore
for awakening tNetTask.

Unless there is a high priority task running, tNetTask runs immediately after the
ISR completes. Upon awakening, tNetTask de-queues function calls and
associated arguments from its work queue. It then executes these functions in its
context. The tNetTask task runs as long as there is work on its queue. When the
queue is empty and all packets have been successfully handed off to the MUX,
tNetTask goes back to sleep on the queue. In this way, processing of incoming
packets in VxWorks is handled in the context of tNetTask. This prevents network
processing from severely interfering with high priority tasks, especially real-time
tasks.

It is possible to design a driver that starves the network stack and other drivers.
When a driver uses taskDelay(), or any other delay mechanism, in code executed
in the context of tNetTask, the delay prevents processing of packets from other
interfaces. For this reason, you must carefully consider the use of delays in the

3 END Ethernet Drivers
3.2 END Driver Overview

29

3

driver. Consider rescheduling the job with another netJobAdd() call instead of
delaying with taskDelay(). This allows other interfaces, as well as the network
stack, to perform other work while the driver is waiting.

Because interrupts are relatively costly in terms of overall system performance,
one recommended goal of network device drivers is to process as many packets as
possible before exiting. However, to avoid starvation of other interfaces, there
should be a cap on the number of packets processed at any one time. If additional
packets are available when the cap is reached, the driver can re-schedule the
receive routine with another call to netJobAdd().

Adding Your Network Interface Driver to VxWorks

Adding your driver to the target VxWorks system is much like adding any other
application. The first step is to compile and include the driver code in the VxWorks
image. For a description of the general procedures, see the Wind River Workbench
User’s Guide, as well as the VxWorks Kernel Programmer’s Guide. These documents
provide information on how to compile source code to produce target-suitable
object code.

In addition to including the object module in the VxWorks image, you must do
some additional work to initialize the END driver and get the MUX to recognize it.

All Wind River VxWorks 6.x BSPs support an END driver. However, if the BSP you
are using does not already include END driver support, you need to create a table
of configuration information for END drivers, called endDevTbl[]. Once this is
accomplished, you must populate the table with information about your driver
and make sure your BSP calls the appropriate initialization routines. This is usually
done in the file configNet.h in the BSP directory.

It is also necessary to create definitions containing the configuration information.
This is typically done with #define statements, grouped together in one location in
configNet.h. You can get a sample of this table from a reference or template BSP.

Initialization is done from within the routine usrNetInit() in the default system
initialization code. By default, usrNetInit() is called based on whether the macros
INCLUDE_NETWORK and INCLUDE_NET_INIT are defined. The BSP needs to
have these defined in order for the driver to be included and initialized. These
macros are usually defined in config.h.

If the BSP already supports an END driver, the BSP should already contain the
endDevTbl[] and appropriate macros. In this case, the endDevTbl[] table must
be modified to include the new driver and you must create definitions containing

VxWorks
Device Driver Developer's Guide, 6.6

30

the configuration information (this is typically done with #define statements,
grouped together in one location in configNet.h).

In addition, VxWorks drivers are typically written to be independent of the bus
and processor configuration. This means that the methods used to access device
registers are provided by the BSP and not by the driver. For each supported driver,
there is typically a sysDev.c file containing the definitions and routines necessary
for the driver to get access to the device registers, interrupt connection code, and
other resources. When adding a new driver to a BSP, this file must be provided.

For example, if you want VxWorks to create two network devices, one that
supports buffer loaning and one that does not, you would first edit configNet.h to
include the following statements:

/* Parameters for loading the driver supporting buffer loaning. */
#define LOAD_FUNC_0 ln7990EndLoad
#define LOAD_STRING_0 "0xfffffe0:0xffffffe2:0:1:1"
#define BSP_0 NULL

/* Parameters for loading the driver NOT supporting buffer loaning. */
#define LOAD_FUNC_1 LOAD_FUNC_0
#define LOAD_STRING_1 "0xffffee0:0xfffffee2:4:1:1"
#define BSP_1 NULL

To set appropriate values for these constants, consider the following:

END_LOAD_FUNC
Specifies the name of your driver’s endLoad() entry point. For example, if
your driver’s endLoad() entry point is fei82557EndLoad(), you must edit
config.h to include the line:

#define END_LOAD_FUNC fei82557EndLoad

END_LOAD_STRING
Specifies the initialization string passed into muxDevLoad() as the initString
parameter.

You must also edit the definition of the endTbl (a table in configNet.h that
specifies the END drivers included in the image) to include the following:

! CAUTION: Each END driver defines the parameters contained in
END_LOAD_STRING differently. Check the driver carefully to determine what
parameters are contained in the load string, and in what order they are
expected.

3 END Ethernet Drivers
3.2 END Driver Overview

31

3

END_TBL_ENTRY endTbl
{
{ 0, LOAD_FUNC_0, LOAD_STRING_0, BSP_0, FALSE},
{ 1, LOAD_FUNC_1, LOAD_STRING_1, BSP_1, FALSE},
{ 0, END_TBL_END, 0, NULL},
};

The number at the beginning of each line specifies the unit number for the device.
The first line specifies a unit number of 0. Thus, the device it loads is deviceName0.
The FALSE at the end of each entry indicates that the entry has not been processed.
After the system has successfully loaded a driver, it changes this value to TRUE in
the run-time version of this table. If you want to prevent the system from
automatically loading your driver, set this value to TRUE.

Finally, you must edit the BSP config.h file to define INCLUDE_END.1 This tells the
build process to include the END/MUX interface. A this point, you are ready to
rebuild VxWorks to include your new drivers. When you boot this rebuilt image,
it calls muxDevLoad() for each device specified in the table in the order listed.

Allocating, Initializing, and Utilizing Memory Resources

There are five types of memory allocation associated with an END driver. The
considerations and requirements differ for each type of memory, depending on
several factors. The types of memory allocation include:

■ memory allocated for the driver control structure
■ memory allocated for receive and transmit descriptors
■ memory allocated for the association list
■ memory used for mBlks and clBlks
■ memory used for cluster buffers

Driver Control Structure

Because a device driver must be able to control multiple instances of a device
within the same system, it cannot use global variables that pertain to a specific
instance of a device. To cope with this limitation, END drivers collect their instance
variables into a driver control structure. The driver allocates and initializes a
unique structure for each instance of a device under control. Memory allocation for
the driver's control structure has no restrictions other than it must be zeroed before
any fields are initialized and it should always be cached.

1. By default, the config.h file for BSPs that support END drivers undefine INCLUDE_END.

VxWorks
Device Driver Developer's Guide, 6.6

32

Receive and Transmit Descriptors

The control constructs shared by the device and driver are the descriptors that
compose the receive ring and the transmit queue.

The device uses the descriptors to:

■ locate DMA buffers
■ pass filled buffers to or from the device
■ communicate DMA status between the device and the driver software

A descriptor includes a pointer to a DMA buffer. The device DMA engine reads the
buffer address from the descriptor and then reads or writes data into or out of the
DMA buffer.

A DMA engine always uses a physical address while the software uses a virtual
address. It is the driver's responsibility to convert a buffer's virtual address to a
physical address. The conversion of a virtual to physical address is, in most cases,
a simple process. However, the conversion of a physical address back to a virtual
address is more difficult. The driver must store the buffer’s original virtual address
in a way that can be readily correlated back to the physical address. Therefore, the
driver needs to maintain both physical and virtual addresses. This can be
especially difficult due to the large number of buffers and their transitory
association with descriptors.

The solution to this virtual and physical address storage issue is provided by the
tuple. The tuple is a construct that consists of an mBlk structure, a clBlk structure,
and a cluster buffer. The mBlk is similar in nature to the mbuf used in the BSD
network stack. The mBlk has a pClBlk field, which is a pointer to the clBlk. The
clBlk in turn holds a pointer to the cluster buffer. The cluster buffer is the DMA
buffer. The mBlk also has a pointer to the cluster buffer but this pointer can be
modified by software to add or subtract offsets. The cluster buffer pointer in the
clBlk always points to the base of the cluster buffer. This provides a convenient
place for the driver to store a DMA buffer's virtual address. This scheme depends
on the permanence of the tuple constructs. The access path to a cluster buffer in a
tuple is pMblk->pClBlk->clNode.pClBuf.

Receive and transmit descriptors must not be cached unless there is special
snooping provided by the hardware device. If the device requires any alignment
restrictions, the descriptors must conform to them.

It is desirable to combine the allocations of receive and transmit descriptors into
one allocation. Performance is improved by combining descriptor allocations into
one memory block because it reduces the number of TLB misses.

3 END Ethernet Drivers
3.2 END Driver Overview

33

3

Initializing and Utilizing Transmit and Receive Descriptors

The exact organization and properties of a driver's transmit and receive
descriptors are determined by the device's specification.

Transmit descriptors are typically organized as a pair of lists—a free list and a
transmit queue. All transmit descriptors are initially on the free list. When a
descriptor is used to send data through the device, it is transferred to the transmit
queue. When its data has been sent, the descriptor is returned to the free list. When
a descriptor is first initialized or returned to the free list, it has no associated data
and its fields are set to indicate it is available for use. When a descriptor is to be
used, it is associated with data to be sent, its fields are set to indicate it has data to
be sent, and it is transferred to the transmit queue.

Receive descriptors are typically organized as a ring. Both the device and the
driver follow this ring and use or service the ring's descriptors, respectively. The
driver follows the device's access, servicing the descriptors the device uses. When
the device uses a descriptor, it sets the descriptor’s fields to indicate that its
associated buffer has received DMA data. When the driver services the descriptor,
it removes the filled buffer and replaces it with an empty one. The driver obtains
the replacement buffer from its pool. It then clears the descriptor to indicate to the
device that the descriptor is again ready for use. When the ring is first initialized,
all descriptors have empty buffers and are ready for use.

NOTE: Because it appears to create more readable source code, driver developers
are often tempted to write the driver in such a way that it forces a structure onto
the descriptor instead of using offsets. However, if your driver is expected to
operate with multiple architectures, accessing the descriptors through a structure
is problematic. When accessing a descriptor, the device always accesses the
descriptor fields by using offsets from the base address of the descriptor. A driver
must access the same exact locations (relative to the descriptor's base address) as
the device. Because compilers are allowed to manipulate the size, placement, and
even order of different fields in a structure, it is not easy to determine the exact
location required. It is not possible to guarantee the behavior of all compilers with
regard to structure layout. Therefore, it is impossible to guarantee that a structure
will layout exactly the same way across multiple architectures. For this reason,
using a structure to access descriptor fields or device registers is not recommended
for drivers that are intended to port across architectures. Instead use offsets to
access descriptor fields. For more information, see Wind River Coding Conventions.

VxWorks
Device Driver Developer's Guide, 6.6

34

Association List

DMA descriptors only store the cluster buffer pointer. Because the buffer has no
pointer to either the clBlk or the mBlk, it is the responsibility of the driver to
maintain the correlation between the cluster buffer and its tuple.

The tuple association problem is solved by an association list. This technique is
enabled by the fact that the receive DMA descriptors are allocated in contiguous
memory. This means that no matter how the device accesses the descriptors, either
as an array or a linked list, the driver can always access them as an array. The driver
keeps an index that increments through the set of descriptors and rolls over
between the last and first items. For example:

index = (++index % numRxDesc);

This allows the driver to use the descriptor index to cross-reference another array
that holds the tuples' associated mBlk pointers. The driver passes the mBlk
pointer from the association buffer to the stack. The driver places the mBlk pointer
from the new tuple into the association list before it increments the index.

The association list should be allocated from cached memory and must be zeroed
before initialization.

Setting Up and Using Memory for Receive and Transmit Buffers

This section describes how mBlk, clBlk, and cluster buffer elements (collectively
known as a tuple) are used in END drivers. The section also provides guidelines
for setting up a memory pool.

mBlks, clBlks, and Cluster Buffers

Included with the network stack is netBufLib, a library that you can use to set up
and manage a memory pool specialized to the buffering needs of networking

NOTE: A complication to buffer replacement is that some architectures only read
data on a four-byte boundary. An Ethernet header is 14 bytes long. If a DMA buffer
is four-byte aligned, then the IP header is two-byte aligned. This results in an
alignment mismatch. To compensate for this issue, the driver can offset the DMA
buffer pointer in the descriptor by two bytes in order to put the IP header, and
subsequent data, at four-byte boundaries. There is a further complication in that
this solution requires the device to restrict DMA to a two byte address alignment.
Not all devices support DMA using a two byte alignment. Therefore, a device that
cannot perform a DMA write to a two-byte boundary cannot work with an
architecture that cannot read from a two-byte boundary without copying the data
to a new buffer to adjust the packet alignment.

3 END Ethernet Drivers
3.2 END Driver Overview

35

3

applications such as END drivers and network protocols. To support buffer
loaning and other features, netBufLib routines deal with data in terms of mBlks,
clBlks, and clusters.

The netBufLib routines use the mBlk and clBlk structures to track information
necessary to manage the data in the clusters. The clusters contain the data
described by the mBlk and clBlk structures. These elements—mBlks, clBlks, and
cluster buffers—constitute a tuple. The mBlk structure is the primary vehicle
through which you access or pass the data that resides in a tuple. Because an mBlk
merely references the data, this lets network layers communicate data without
actually having to copy the data. Another mBlk feature is chaining. This lets you
pass an arbitrarily large amount of data by passing the mBlk at the head of an
mBlk chain. See Figure 3-3.

The netBufLib library provides two means of creating a network memory pool—
the routines netPoolInit() and netPoolCreate(). The routines differ in that

Figure 3-3 Presentation of Two Packets to the TCP Layer

Cluster
64 bytes

Cluster
512
bytes

mBlkmBlk mBlk null

P
acket 1

mBlk mBlk null

P
acket 2

Cluster
2048
bytes

clBlk clBlk clBlk

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

VxWorks
Device Driver Developer's Guide, 6.6

36

netPoolInit() requires the user to allocate the memory used for the tuples.
netPoolCreate() takes as arguments, attributes describing the characteristics of the
pool's memory and allocates and manages the memory on behalf of the user. This
is a great advantage because it provides the driver with properly aligned and
cacheable cluster buffers. Wind River highly recommends that you use
netPoolCreate() instead of netPoolInit().

When you use the netPoolCreate() routine to create a net pool, you have the
option to use a default set of underlying routines or to use an alternate set of
underlying routines. With the default routine set, the netPoolCreate() routine
constructs the tuples each time they are needed and de-constructs them each time
they are reclaimed. This default behavior is retained for backward compatibility
with netPoolInit(). However, Wind River now provides an alternate routine set,
_pLinkPoolFuncTbl, that implements atomic tuples. That is, that the base tuples
are permanently constructed and maintained as an indivisible—or atomic—
construct. This reduces unnecessary overhead.

If your device does not allow you to use the provided memory-management
utilities, you can write replacements. However, your replacements must conform
to the netBufLib API for these routines.

Setting Up a Memory Pool

Each END driver unit requires its own memory pool. How you configure a
memory pool differs slightly depending on whether you intend the memory pool
to be used by a network protocol, such as IPv4, or an END driver.

All memory pools are organized around pools of tuples. However, because a
network protocol typically requires clusters of several different sizes, its memory
pool must contain several tuple pools (one tuple pool for each cluster size). In
addition, each cluster size must be a power of two. Common cluster sizes for this
style of memory pool are 64, 128, 256, 512, 1024, and 2048 bytes. See Figure 3-4.

3 END Ethernet Drivers
3.2 END Driver Overview

37

3

By contrast, a memory pool intended for an END driver typically uses only one
cluster size and the cluster size is not limited to a power of two. Thus, you are free
to choose whatever cluster size is most convenient, which is typically something
close to the maximum transmission unit (MTU) of the network. A network’s MTU
is typically 1500 bytes.

For more information on memory pools, see the reference entry for netBufLib.

Establishing a Network Driver Pool

The following steps illustrate how to use netPoolCreate() with
_pLinkPoolFuncTbl to establish a network driver pool:

1. Allocate memory for a network buffer configuration structure and add enough
space to also hold 8 additional bytes for the pDrvCtrl->pNetBufCfg->pName
field.

if (pDrvCtrl->pNetBufCfg = (NETBUF_CFG *) memalign (sizeof(long),
(sizeof(NETBUF_CFG) +
END_NAME_MAX)) == NULL)

return (ERROR);

bzero(pDrvCtrl->pNetBufCfg,sizeof(NETBUF_CFG));

Figure 3-4 A Protocol Memory Pool

Pool of mBlks
mBlk

 Memory Pool for a Protocol Stack

mBlk mBlk

mBlk mBlk mBlk

mBlk mBlk mBlk

mBlk mBlk ...

Pool of clBlks
clBlk clBlk clBlk

clBlk clBlk clBlk

clBlk clBlk clBlk

clBlk clBlk ...

Pool of Clusters
64 64 64

64 64 64

64 64 64

64 64 ...

Pool of Clusters
128 128 128

128 128 128

128 128 128

128 128 ...

Pool of Clusters
...

VxWorks
Device Driver Developer's Guide, 6.6

38

2. Initialize the pName field.

pDrvCtrl->pNetBufCfg->pName = (char *)((int)pDrvCtrl->pNetBufCfg +
sizeof(NETBUF_CFG));

sprintf(pDrvCtrl->pNetBufCfg->pName,"%s%d","fei", pDrvCtrl->unit);

3. Set the attributes to be cached, cache-aligned, sharable, and ISR safe.

pDrvCtrl->pNetBufCfg->attributes = ATTR_AC_SH_ISR;

4. Use a NULL value to set pDomain to kernel. This instructs netPoolCreate() to
allocate memory accessible in the kernel domain.

pDrvCtrl->pNetBufCfg->pDomain = NULL;

5. Set the ratio of mBlks to clusters.

pDrvCtrl->pNetBufCfg->ctrlNumber = pDrvCtrl->nClusters * 10;

6. Use a NULL value to set the memory partition of mBlks to kernel.

pDrvCtrl->pNetBufCfg->ctrlPartId = NULL;

7. For now, set extra memory size to zero.

pDrvCtrl->pNetBufCfg->bMemExtraSize = 0;

8. Set the cluster memory partition to kernel, use NULL.

pDrvCtrl->pNetBufCfg->bMemPartId = NULL;

9. Allocate memory for the network cluster descriptor.

pDrvCtrl->pNetBufCfg->pClDescTbl =(NETBUF_CL_DESC *)memalign
(sizeof(long), sizeof(NETBUF_CL_DESC));

10. Initialize the cluster descriptor.

pDrvCtrl->pNetBufCfg->pClDescTbl->clSize = CLUSTER_SIZE;
pDrvCtrl->pNetBufCfg->pClDescTbl->clNum = pDrvCtrl->nClusters * 10;
pDrvCtrl->pNetBufCfg->clDescTblNumEnt = 1;

11. Call netPoolCreate() with the link pool function table.

if ((pDrvCtrl->endObj.pNetPool =
netPoolCreate ((NETBUF_CFG *)pDrvCtrl->pNetBufCfg,

_pLinkPoolFuncTbl)) == NULL)
return (ERROR);

12. Free the pDrvCtrl->pNetBufCfg and pDrvCtrl->pNetBufCfg->pCIDescTbl.

free (pDrvCtrl->pNetBufCfg->pClDescTbl);
free (pDrvCtrl->pNetBufCfg);

3 END Ethernet Drivers
3.2 END Driver Overview

39

3

Handling Packet Reception

The list of END driver entry points (see Table 3-2) makes no mention of an
endReceive() entry point. That is because an END driver does not require one. Of
course, your driver must include code that handles packet reception, but the MUX
never calls this code directly. Thus, the specifics of the code for packet reception are
left to you.

However, even if the MUX API does not require an endReceive() entry point, you
need to consider the VxWorks system when designing your driver’s packet
reception code. For example, your network interface driver must include an entry
point that acts as your device’s interrupt service routine. In addition, your driver
also needs a different entry point for completing packet reception at the task level.

Internally, your task-level packet-reception entry point should do whatever is
necessary to prepare the packet for handing off to the MUX, such as ensuring data
coherency. Likewise, this entry point might use a level of indirection in order to
check for and avoid race conditions before it attempts to do any processing on the
received data. When all is ready, your driver should pass the packet up to the
MUX. To do this, it calls the routine referenced in the receiveRtn member of the
END_OBJ structure (see Providing Network Device Abstraction: END_OBJ, p.58).

Although your driver’s endLoad() entry point allocated this END_OBJ structure
and set the values of most of its members, it did not and could not set the value of
the receiveRtn member. The MUX does this for you upon completion of the
muxDevLoad() call that loads your driver. However, there is a very brief interval
between the time the driver becomes active and the completion of muxDevLoad().
During that time, receiveRtn is not set. Thus, it is always good practice to check
receiveRtn for NULL before you try to execute the routine referenced there.

Receive Handler

A network device is initialized with the base pointer to a ring of descriptors. The
device uses these descriptors to:

■ locate a buffer into which it can write incoming data
■ communicate status to the device driver

The device cycles through the descriptor ring. When the device receives an
incoming Ethernet frame, it receives it into its FIFO. The device then writes the
frame into the buffer which it locates through the currently accessed descriptor.
The prevalent method used for a device to write data into both the descriptors and
the buffers, is direct memory access (DMA).

VxWorks
Device Driver Developer's Guide, 6.6

40

As the network device indexes around the descriptor ring, it tests each entry for
availability. When the device receives a frame and finds an available descriptor, its
DMA engine fills the associated buffer and sets a status flag in the descriptor
indicating that the buffer is full.

If a device encounters a used descriptor or an end-of-ring marker, the device halts
and enters a stalled state. The stalled state means that the device has lapped the
device driver's ring servicing. Minimally, the device driver must then clear the next
descriptor the device has on its list. Some devices may require the driver software
to move the end-of-ring marker and possibly restart the receiver.

A driver's receive handler is responsible for navigating the device's descriptor
ring, determining which descriptors are filled, and then passing the buffers up to
the network stack. After the receive handler has given a descriptor's filled buffer to
the stack, it clears the descriptor and replenishes it with a new buffer. To be
efficient, the receive handler must continue to handle descriptors as long as it
detects that completed DMA transfers have occurred. However, there is no
guarantee that the handler will ever become idle. When writing a device driver,
you must assume that the rest of the operating system requires time for its own
tasks, and that other END drivers using the tNetTask context require CPU time to
function. So, care must be taken to prevent a single driver from monopolizing
either the CPU or tNetTask.

The example receive handler described in this document has the following
features:

■ A Receive Loop—A while loop predicated on testing successive descriptors
arranged in a ring. This loop continues to run as long as the descriptors
indicate there is additional work available.

■ Fair Access Bounding—A limit to how long a receive handler continuously
services its descriptors before relinquishing the operation so another device
can service its descriptors.

■ Receive Handler Interlocking Flag—A lightweight semaphore to protect
against redundant scheduling of a receive handler.

■ Receiver Stall Handling—An action to restart a device’s receiver if it has
suffered a stall. The action is only necessary if the device halts on a receive stall
and requires a register state to be cleared.

■ Interrupt Re-Enabling—Setup for resumption of operation at an
undetermined future time.

■ Two-Tiered Polling—A rescheduling scheme that allows for a reduction in
interrupt load.

3 END Ethernet Drivers
3.2 END Driver Overview

41

3

Receive Loop

An efficient receive loop is vital to a high performance END driver. It is imperative
to do only what is absolutely necessary in the loop itself. Any extraneous code
within this loop has a negative performance impact. Great care must be taken to
stage as much as is possible outside the loop. If a decision or calculation can
possibly be made during initialization, every effort should be expended to do so.
Complexity of initialization is a one time cost, whereas any work done in the loop
is repeated an enormous number of times.

The receive-loop's function is to service the receiver’s DMA ring. This entails:

■ Determining which descriptors have buffers that hold completed DMA
transfers

■ Determining whether incoming frames are to be handled or discarded
■ Retrieving and replacing DMA buffers
■ Ensuring cache coherency of DMA buffers
■ Passing properly configured tuples up the stack
■ Returning used descriptors to an available state
■ Bounding, to avoid monopolizing the CPU or network stack

Efficient Receive Loop

The receive-loop traverses the receive-ring and reads the status of each descriptor
it encounters. An efficient receive-loop should make use of the fact that the
memory for the descriptors is allocated in a single contiguous block. This allows
the descriptor ring to be accessed as an array regardless of the method the device
uses to traverse the ring. Arrays are much faster than linked lists. Because an array
is always a block of contiguous memory, a compiler can optimize array accesses for
certain considerations, such as caching and fetching. For example, the compiler
knows that if the base address of an array is cached, the remainder of the array is
cached as well (for smaller arrays). On the contrary, if the first address in a linked
list is cached, the compiler cannot assume that the next address in the linked list is
also cached. When the compiler accesses a new item in the array, it must only add
an offset to find the new item. If code is traversing a linked list, then the compiler
must fetch the base address for each node in the linked list. Because fetches are
generally slower than the arithmetic of adding an offset, the array—which replaces
fetches with the offset addition—runs much faster.

while((rbdStatus)

Obtaining a New Tuple

Within the while-loop, it must be determined whether incoming frames can be
handled or must be discarded. The receive-loop can only handle those frames for

VxWorks
Device Driver Developer's Guide, 6.6

42

which it can obtain resources. These resources are obtained from the net pool with
netTupleGet(). If netTupleGet() returns a NULL, meaning that there are no
resources available, the receive-loop must discard that frame. The receive handler
has the option to break out of the loop and return later, when resources may again
be available, or to continue traversing the ring, discarding outstanding frames.

if ((pNewMblk = netTupleGet(pDrvCtrl>endObj.pNetPool, CLUSTER_SIZE,
M_DONTWAIT, MT_DATA,0)) == NULL)

{
endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_IN_ERROR);
endM2Packet (&pDrvCtrl->endObj, NULL, M@_PACKET_IN_DISCARD);

return (ERROR);
}

Retrieving and Replacing DMA Buffers

To receive and replace DMA buffers, you use the following code sequence:

1. Retrieve the used tuple as follows:

pMblk = pDrvCtrl->pMblkList[pDrvCtrl->index];

2. Place a new tuple on the association list:

pDrvCtrl->pMblkList[pDrvCtrl->index] = pNewMblk;

If the device supports DMA to a 2 byte offset, move the mBlk data pointer by
2 bytes:

pNewMblk->mBlkHdr.mData = pNewMblk->pClBlk->clNode.pClBuf +
pDrvCtrl->offset;

3. Ensure cache coherency of the DMA buffers as follows:

DRV_CACHE_INVALIDATE (pNewMblk->pClBlk->clNode.pClBuf,
CLUSTER_SIZE);

4. Convert the buffer virtual address to a physical address:

pBuffer = VIRT_TO_PHYS ((UINT32) pNewMblk->mBlkHdr.mData;

5. Update the receive descriptor:

xxxDescBufWrite ((&pDrvCtrl->pRxDescBase[pDrvCtrl->index], pBuffer,
BUFFER_OFFSET);

6. Copy DMA length to mBlk:

pMblk->mBlkHdr.mLen =
(xxxDescRead (&pDrvCtrl>pRxDescBase[pDrvCtrl>index]) & ~0xc000);

3 END Ethernet Drivers
3.2 END Driver Overview

43

3

Clearing the Descriptor Status

You can clear the descriptor status by using the following code:

xxxDescStatusClear (&pDrvCtrl->pRxDescBase[pDrvCtrl->index])

Incrementing the index

Next, increment the index:

pDrvCtrl->index = (++pDrvCtrl->index % pDrvCtrl->rbdNum);

Sending a Received Frame to the Stack:

To pass a buffer up to the MUX, a driver calls muxReceive(), which in turn calls
the protocol's stackRcvRtn() routine (see Passing a Packet Up to the Protocol:
stackRcvRtn(), p.19). When control returns from muxReceive(), the driver can
consider the data delivered and can forget about the buffers it handed up to the
MUX. When the upper layers are done with the data, they free the buffers back to
the driver's memory pool. The macro, END_RCV_RTN_CALL, which is provided by
Wind River, calls muxReceive().

END_RCV_RTN_CALL (&pDrvCtrl->endObj, pRbdTag->pMblk);

endM2Packet (&pDrvCtrl->endObj, pRbdTag->pMblk, M2_PACKET_IN);

Fair Access Bounding

In a polling architecture, it is possible for a single device to be receiving a
continuous stream of frames. In this case, the device’s device driver receive
handler could possibly starve other device’s drivers, or even the whole system, for
CPU cycles. Therefore, it is necessary to employ fair access bounding to avoid a
single device’s receive handler monopolizing the CPU.

The technique for fair access bounding is to simply set a policy of how many
frames a receive handler is allowed to service before relinquishing operation.
Then, when the receive handler has serviced that number of frames, the receive
handlers’ current execution is terminated and rescheduled, if necessary. The
determination of whether the receive handler needs to be rescheduled is based on
whether or not there were additional received frames outstanding. This is
determined by testing the next descriptor to be serviced. If the descriptor indicates
a received frame (full descriptor), the receive handler must be rescheduled. If the
descriptor indicates that there are no outstanding frames (empty descriptors) then
the receive handler re-enables the receive interrupt and exits.

int loopcounter = pDrvCtrl->maxRxFrames; /* local variable */
/* in receive handler */

VxWorks
Device Driver Developer's Guide, 6.6

44

while ((rbdStatus != RBD_STATUS_FREE) && (--loopcounter > 0))
{
/* Receive Loop */
}

if (rbdStatus != RBD_STATUS_FREE)
{
/* Put this job back on the netJobRing and leave */

if ((netJobAdd ((FUNCPTR) xxxRecvHandler, (int) pDrvCtrl,
0,0,0,0)) == ERROR)

{
/* Very bad!! The stack is now probably corrupt. */
logMsg("The netJobRing is full. 2\n",0,0,0,0,0,0);
return;
}

}
else

{
pDrvCtrl->rxJobQued = FALSE;
}

Receive Handler Interlocking Flag

VxWorks limits the work that can be done in an ISR. Because of this limitation,
much of the work related to servicing interrupt conditions must be deferred
outside of an ISR to other code executing in a task level context. Any program, such
as a device driver, that deals with hardware interrupts must inevitably defer to a
substantial amount of work that arises from servicing ISRs. To accommodate
deferring work from ISRs, Wind River’s network stack provides the scheduling
utility netJobAdd(), which operates in the tNetTask context. netJobAdd() uses a
facility called the netJobRing. The netJobRing is used by both the device driver
and by the network stack. This facility is a limited resource so you must take great
care when writing your device driver to safeguard against overflowing this ring. If
the ring is allowed to overflow, the state of the network stack can be corrupted.

The limitations imposed on interrupts by VxWorks are primarily due to the
systemic impact that interrupts impose. Although there is no expectation of
determinism associated with END drivers, or with the network stack, there is also
a mandate that they not interfere with the ability of other programs operating in
the same environment to archive determinism. In addition, interrupts impose
context switch overhead and have a tendency to reduce efficiency for many
architectures. Because interrupts are relatively costly in terms of overall system
performance, one goal of an END driver is to prevent interrupts to be generated.

The work most often done by an interrupt’s task-level service routine involves
servicing a queue. It is efficient to continue to service this queue for as long as work
is available. Because service routines continue to execute as long as there is work

3 END Ethernet Drivers
3.2 END Driver Overview

45

3

to do, scheduling another instance of a service routine while one is already running
is unnecessary and redundant. Because of this, you should try to coalesce
interrupts. This can be accomplished in software by masking an incident interrupt
in its ISR and leaving that interrupt masked while the service routine is running.
Then, before exiting the service routine, re-enable the interrupt.

Because of the complexities associated with the physical arrangement and logical
handling of interrupts, simply masking interrupts is an inadequate solution. It is
often the case where several discrete devices share the same physical interrupt line.
The logical organization is that the ISRs for each discrete device on that same
interrupt line are daisy chained in a linked list. When one of the devices on the
interrupt line generates an interrupt, the system interrupt logic walks down the
daisy chain calling each ISR in turn. Besides wasting CPU cycles, this procedure
also has a dangerous side effect. As discussed previously, END drivers mask a
particular interrupt when its ISR is executed. Unfortunately, this does not mean
that the interrupt bit in a device’s status register fails to be set for subsequent
occurrences of the same kind of event. It only guarantees that the device will not
generate another interrupt of the same type as the one that is masked. If another
device on the same interrupt line generates an interrupt, the ISR for the network
device executes and tests the device’s status register. If another event of a given
type has occurred since the interrupt for that type of event was masked, the ISR
still detects that the device has an interrupt bit set. If this occurs, the ISR
erroneously schedules a task-level service routine on the netJobRing, even though
it masked the device’s interrupt to prevent this from happening. This phenomenon
occurs in some systems with enormous frequency and with catastrophic effect due
to overflow of the netJobRing.

To safeguard against redundant scheduling of task level service routines, you must
employ additional means of protection for netJobRing. The mechanism to do this
appears to be a semaphore. However, a semaphore may be too heavy for this
particular application because it has more overhead than is justified by the
problem and it would need to execute in a particularly performance sensitive
location. A lighter means of providing protection is a simple boolean flag. A receive
handler interlocking flag is a device instance-specific flag that is kept in the driver’s
DRV_CTRL structure. The END driver’s ISR checks this flag before scheduling the
associated service routine on netJobRing. If the flag is not set, the ISR schedules
the service routine and sets the flag. If the flag is already set, the ISR skips
scheduling the routine. The flag is cleared in the service routine after it completes
execution. Using a flag in this manner introduces the possibility of a race condition.
However, the risk associated with the race condition is insignificant. If an
occasional case of redundant scheduling occurs, it is unlikely to cause any
problem. It is also true that if, on occasion, a service routine is slightly delayed from

VxWorks
Device Driver Developer's Guide, 6.6

46

getting scheduled on the netJobRing, any subsequent delay in receiving a small
number of packets is easily tolerated by the network stack.

Implementing Receive Handler Interlocking Flag

1. Add the receive handler interlock flag to the DRV_CTRL structure as follows:

BOOL rxJobQued; /* fei82557RecvHandler() queuing flag */

2. In the device driver’s receive ISR, test the receive handler interlock flag prior
to calling netJobAdd() and schedule the receive handler service routine:

/* Test if fei82557RecvHandler() is on netJobRing. */

if(!pDrvCtrl->rxJobQued)
{
/* fei82557RecvHandler() is not on netJobRing so put it on. */

if ((netJobAdd ((FUNCPTR) fei82557RecvHandler, (int) pDrvCtrl,
0, 0, 0, 0)) != ERROR)

{
pDrvCtrl->rxJobQued = TRUE;
}

else
{
logMsg("The netJobRing is full. 1\n",0,0,0,0,0,0);

I82557_INT_ENABLE(SCB_C_M);
return;
}

}

3. At the end of the receive handler service routine, after it is certain that the
routine has completed execution and reschedules itself, clear the receive
handler interlock flag by setting it to FALSE.

pDrvCtrl->rxJobQued = FALSE;

Receiver Stall Handling

As discussed previously, a stall condition occurs when a device driver allows a
device to temporarily exhaust its available resources. In the case of a receive stall,
the device has lapped the receive descriptor ring and has no available buffers into
which it can direct DMAs. Devices typically behave in one of two ways when this
occurs:

■ Some devices simply require that the next descriptor in the sequence be
cleared. That is, the descriptor’s status must be set to free or available. In this
case, the device automatically detects that the stall is cleared and resumes
operation without any action on the part of the driver.

3 END Ethernet Drivers
3.2 END Driver Overview

47

3

■ Other devices place their receiver into a halted state by setting a bit in a control
register. For this type of device, it is often required that, in addition to freeing
the next descriptor, the driver must clear the control register bit before
operation resumes.

Interrupt Re-Enabling

END drivers mask interrupts in the ISR before scheduling a service routine. The
nature of the work done by these service routines is to repetitively service one item
after another from a queue. The service routine continues to service items as long
as it determines there is more work to be done. It is unnecessary and detrimental
to performance to allow additional interrupts to schedule service routines for work
that is already being done by a previously scheduled run of the service routine.
Hence, it is general practice to mask interrupts in ISRs. In the case of the receive
interrupt, the scheduled service routine is the device driver’s receive handler.

As discussed previously, masking an interrupt in a device does not guarantee that
the device will not record the event in a status register. It only implies that the
device does not actually generate the interrupt. In addition to recording events in
a status register while an interrupt remains masked, some devices immediately
generate an interrupt when the mask is cleared if events occurred while the
interrupt was masked. In the case of an END driver, and in the receive handler in
particular, the events that caused the status bit to be set would have already been
serviced by the service routine. The device driver writer should note if the device
for which the driver is being written exhibits this characteristic. If so, care should
be taken to clear the event before unmasking the receive interrupt mask.

In all cases, as with the receive handler interlocking flag, the receive interrupt
should only be unmasked when it is certain that the receive handler has completed
execution.

Two-Tiered Polling

The technique previously used for scheduling a receive handler in END drivers
involved a single tier polling method, referred to as interrupt stimulated polling.
Using the interrupt stimulated polling method, the device would receive an
incoming packet into its DMA ring and generate an interrupt. The interrupt
handler would then disable the device’s interrupt and schedule a receive handler
to run tNetTask. This receive handler then polled all descriptors on the DMA ring
for the original packet that caused the interrupt and any additional DMAs that
occurred since that initial DMA. When the receive handler finished servicing all of
the completed DMAs, it would re-enable the device’s interrupt and exit.

VxWorks
Device Driver Developer's Guide, 6.6

48

The intention of this method was to service the maximum number of packets
possible for each interrupt. This method attempted to relieve the system of the
overhead implicit with frequent interrupts. However, interrupt stimulated polling
resulted in an interrupt occurring for almost all received packets. This imposed
considerable overhead on the system when servicing the large number of
interrupts associated with high traffic loads.

The interrupt stimulated polling method fails because devices do not update
descriptors until after DMAs are complete. Therefore, there is a race condition
between the service of the previous packet and the ongoing reception and DMA of
the next. If the service of the first packet completes before the next packet’s DMA
completes, the check of the next packet’s descriptor does not indicate an ongoing
DMA. When this occurs, the receive handler terminates the polling, re-enables the
device’s interrupt, and exits. The receive handler then misses an additional
incoming packet whose DMA is not yet complete.

The outcome of this is that the next received packet also generates an interrupt. The
timing is such that if the CPU executes a single pass of the receive handler in less
time than a subsequent reception and DMA, which is a fixed time depending on
the network bit rate, the network interface generates a large quantity of interrupts.
This gives the appearance of an interrupt driven mechanism when it is in fact
interrupt stimulated polling.

This problem is currently prevalent with 100 Mb networks. However, as CPU
speeds increase and network bit rates are fixed at specific stops, it is only a matter
of time before this phenomenon becomes prevalent with faster bit rates as well.

Explanation of the Two Tiered Polling Method With Fair Access Bounding.

Two-tiered polling is a polling method consisting of an inner and an outer loop of
polling. The two-tiered polling method is initiated, like the interrupt stimulated
method, by an initial packet causing the device to generate an interrupt. However,
the two-tiered polling method continues to poll for additional incoming packets
for a specified number of times.

At the heart of two-tiered polling are the controlling variables:

pollDone
A flag indicating whether the outer loop continues polling.

pollCnt
A counter tracking successive times a receive handler encountered a
descriptor indicating it does not need to be serviced (an empty descriptor).

pollLoops
The maximum times the outer loop can increment before terminating.

3 END Ethernet Drivers
3.2 END Driver Overview

49

3

Operation Details

After a receive handler that has been scheduled to run by the receive interrupt
handler begins execution:

1. The Receive Handler obtains and tests the next descriptor to be serviced

a. If the next descriptor indicates it needs service (full), the receive handler
enters the receive loop and the counter, pollCnt, is cleared

b. If the next descriptor is empty, the receive handler exits without changing
the status, counters, the index, or pointers.

2. When the receive handler enters the receive loop, the receive loop continues to
service its descriptors, until it encounters one of two conditions:

■ It encounters an empty descriptor.

■ It reaches the maximum packet boundary set by the fair access limit.

3. After exiting the receive loop, the receive handler tests if either of two
conditions exist:

■ The counter, pollCnt, is less than the value of pollLoops.

■ The next descriptor indicates it needs to be serviced (full).

If either condition is true, the receive handler’s behavior depends on the status
of the next descriptor to be serviced.

a. If the next descriptor to be serviced is empty, the while loop must have
terminated because it encountered an empty descriptor. The following
actions are taken:

i. The receive handler increments pollCnt.

ii. The receive handler places itself back on the netJobRing to be
executed again.

iii. The receive handler sets the pollDone flag to FALSE indicating a
continuation of the outer loop of polling.

b. If the status of the next descriptor is full, the receive loop must have
terminated because it reached the maximum number of descriptors to be
serviced before relinquishing operation. The following actions are taken:

i. The receive handler clears pollCnt.

ii. The receive handler then places itself back on the netJobRing to be
executed again.

VxWorks
Device Driver Developer's Guide, 6.6

50

iii. The receive handler sets the pollDone flag to FALSE indicating that it
will continue the outer tier of polling.

If neither of the conditions are true, the receive handler terminates the outer
loop of polling and the following actions are taken:

i. The receive handler clears the receive handler interlock flag.

ii. The receive handler clears pollCnt.

iii. The receive handler sets pollDone to TRUE.

4. Before it exits, the receive handler tests pollDone. If pollDone is TRUE, the
receive handler re-enables the device’s receive interrupt.

5. The receive handler exits.

How to Implement Two-Tiered Polling With Fair Access Bounding

1. Add two-tiered polling fields to the DRV_CTRL structure.

BOOL pollDone; /* Flag indicating outer loop exit */
UINT32 pollCnt; /* polling counter */
UINT32 pollLoops; /* polling limit */

2. Add the fair access limitation field to the DRV_CTRL structure.

UINT maxRxFrames; /* max frames to Receive in one job */

3. In the driver's endLoad() routine, specify the addition of the maxRxFrames
parameter to the END_LOAD_STRING.

/*
 * The <maxRxFrames> parameter limits the number of frames the
 * receive handler services in one pass. It is intended to
 * prevent the tNetTask from monopolizing the CPU and starving
 * applications. This parameter is optional, the default value
 * is nRFDs * 2.
 */

4. In the driver's parsing routine, add an optional parse for the maxRxFrames
parameter.

/* passing maxRxFrames is optional. The default is 128 */

pDrvCtrl->maxRxFrames = pDrvCtrl->nRFDs * 2;
tok = strtok_r (NULL, ":", &holder);

if ((tok != NULL) && (tok != (char *)-1))
pDrvCtrl->maxRxFrames = strtoul (tok, NULL, 16);

5. In the driver's start routine, initialize the two-tiered polling fields in the
DRV_CTRL structure.

3 END Ethernet Drivers
3.2 END Driver Overview

51

3

pDrvCtrl->pollCnt = 0;
pDrvCtrl->pollLoops = 1;
pDrvCtrl->pollDone = FALSE;

6. In the task-level receive handler, add a local variable to use as a loop counter.
This is used to bound the maximum number of packets that can be serviced for
a single pass through the handler.

int loopCounter = pDrvCtrl->maxRxFrames;

7. In the receive handler, terminate the receive loop while loop by decrementing
the local variable loopCounter.

while((rbdStatus != RBD_STATUS_FREE) && (--loopCounter > 0))

8. In the receive handler, immediately after the end of the receive loop, add the
two-tiered polling code.

if ((pDrvCtrl->pollCnt < pDrvCtrl->pollLoops) ||
(rbdStatus != RBD_STATUS_FREE))
{
if (rbdStatus == RBD_STATUS_FREE)

pDrvCtrl->pollCnt++;
else

pDrvCtrl->pollCnt = 0;

pDrvCtrl->pollDone = FALSE;

/* Put this job back on the netJobRing and leave */

if ((netJobAdd ((FUNCPTR) fei82557RecvHandler, (int) pDrvCtrl,
0,0,0,0)) == ERROR)

{
/* Very bad!! The stack is now probably corrupt. */

logMsg("The netJobRing is full. 2\n",0,0,0,0,0,0);

I82557_INT_ENABLE(SCB_C_M);
return;
}

}
else

{
pDrvCtrl->pollCnt = 0;
pDrvCtrl->pollDone = TRUE;
pDrvCtrl->rxJobQued = FALSE;
}

9. Immediately before leaving the task level receive handler, re-enable the
device's receive interrupt (only if polling is done).

if (pDrvCtrl->pollDone)
{
I82557_INT_ENABLE(SCB_C_M);
}

VxWorks
Device Driver Developer's Guide, 6.6

52

Handling Packet Transmission

Unlike the receive handler, the driver's endSend() routine is called from multiple
contexts—network applications or tNetTask—which may supersede each other.
The send routine also manipulates linked lists which must be protected from
corruption. Care must be taken to safeguard the send routine from concurrent
access. Therefore, the endSend() routine must always take the transmit semaphore
stored in END_OBJ, by calling END_TX_SEM_TAKE().

Transmit-Packet-Complete Handler Interlocking Flag

Transmit-packet-complete interrupts are typically used to allow the driver to
return resources to the pool after a packet is transmitted. The frequency of these
interrupts can be very high. Because of the high frequency at which these
interrupts are generated, transmit-packet-complete interrupts can degrade system
performance and overflow netJobRing. Transmit Descriptor Clean-up, p.54 includes
a discussion of how to reduce the frequency of this interrupt. This section deals
with how to prevent the transmit-packet-complete interrupt from causing a
netJobRing overflow. The method used is essentially the same as that used for the
receive handler interlocking flag (see Receive Handler Interlocking Flag, p.44).

A transmit-packet-complete handler interlocking flag is a device instance-specific
flag that is kept in the driver’s DRV_CTRL structure. The END driver’s ISR checks
this flag before scheduling the associated service routine on netJobRing. If the flag
is not set, the ISR schedules the service routine and sets the flag. If the flag is
already set, the ISR does not schedule the routine. The flag is cleared in the service
routine after it completes execution.

Supporting Scatter-Gather

Scatter-gather is a DMA technique that allows for a single large block of data to be
distributed—or scattered—among multiple buffers. The data can then be gathered
together later and transferred in a single DMA transaction, as if it were stored in a
contiguous buffer. This capability is desirable because the network stack is often
unable to find a single cluster buffer that is large enough to hold a large packet.
That is, when the network is unable to find a buffer of sufficient size, it must obtain
multiple tuples with cluster buffers that, cumulatively, have sufficient space to
hold the packet. The stack then fragments the packet among multiple tuples. For
transmit, the fragmented packet is sent as an mBlk chain to the driver’s send
routine to be transmitted.

3 END Ethernet Drivers
3.2 END Driver Overview

53

3

When scatter-gather is not supported by the device and the driver is sent a
fragmented packet, the driver must obtain a single buffer from its pool and must
then copy the packet fragments into a single buffer. This is possible because the
driver pool, unlike the network stack pool, typically has only a single buffer size
that is sufficient to hold the largest packet the maximum transfer unit (MTU)
allows. This means that in most cases, the driver can find a buffer that is large
enough to accommodate any packet. However, the overhead of requiring the
driver to obtain a buffer and copy the packet fragments into the buffer is a
substantial drag on overall system performance.

When a device supports scatter-gather, it can continue DMA across multiple
fragments by following a list of fragment buffer pointer and size pairs. A driver
written for such a device walks the mBlk chain, extracts the cluster buffer pointers
and the fragment sizes, and then forms a gather list according to the device’s
specification.

Devices typically use one of two common mechanisms for creating gather lists. The
first method requires the device to read the buffer pointer and size pairs out of a
list contained in a single transmit descriptor. The second mechanism requires the
device to follow a list of descriptors that are tied together, reading in turn the
successive buffer pointer and size pairs from each descriptor in the list.

The driver’s send routine is responsible for determining if the driver has sufficient
resources to handle an outgoing packet. Once the send routine has made this
determination, the routine is responsible for taking the appropriate action.

To determine whether or not there are sufficient resources available to hold the
packet data, a send routine must count the number of fragments in the mBlk chain,
and compare that number with the amount of resources the driver currently has
available. Determining the amount of resources available depends on the device’s
gather mechanism. As described previously, devices typically employ one of two
common gather mechanisms. (There is also a hybrid method that uses multiple
pairs across multiple descriptors, but this type is rarely used and it is usually the
case that if a descriptor holds multiple pointer and size pairs, the entire packet
must be held by a single descriptor’s pair list.) In all of these methods, the problem
for the driver is to determine the number of fragment pairs that can be held by the
descriptors that are currently free.

NOTE: In END drivers, scatter-gather is not a concern for packet reception. This is
because the driver’s buffers are all of a single size and are sufficient to hold the
maximum incoming frame (MTU). Therefore, END drivers do not fragment
incoming frames.

VxWorks
Device Driver Developer's Guide, 6.6

54

If the number of available descriptors is insufficient to hold the packet data, the
send routine attempts to free enough descriptors to handle the packet. If the send
routine fails to free a sufficient number of descriptors, it must then either coalesce
the packet into a single buffer—the same practice that is used if scatter-gather is
not supported—or it must throw the packet away.

If the send routine determines that it does have sufficient resources to handle the
outgoing packet, the driver must then walk the mBlk chain. For each tuple in the
chain, the driver must write the cluster buffer pointer into a free descriptor’s buffer
pointer field or list, and then attach the free descriptors it is using together into a
list to be placed on the transmit queue. While the fragment pointers are being
transferred to the descriptor(s), the descriptor fields should be updated to reflect
that they hold buffer pointers that are ready for transmit. If the device specifies that
fragments be distributed over a list of descriptors, the device also specifies that the
first and last descriptors in the list be marked accordingly. After the fragment
pointers and sizes for the packet’s entire mBlk chain have been transferred to the
descriptor list and the descriptor fields are set up in the manner expected by the
device, the assembled list is placed at the end of the transmit queue.

Transmit Descriptor Clean-up

The driver’s send routine is also responsible for storing the mBlk pointer to the
mBlk chain holding the packet in such a way that it can be later correlated to the
associated descriptor or descriptors on the transmit queue.

After a packet is successfully transmitted, most devices generate a
packet-complete interrupt. The ISR for this interrupt causes the driver’s
transmit-packet-complete handler to be scheduled, which in turn calls the driver’s
transmit descriptor clean routine to free the packet descriptor or descriptors and the
associated mBlk chain. As described in Transmit-Packet-Complete Handler
Interlocking Flag, p.52, numerous packet-complete interrupts are a detriment to
performance.

The driver’s send routine may also directly call the transmit descriptor clean
routine. This can be a highly effective method for initiating transmit descriptor
cleanup. However, there are two issues that should be considered:

■ When the send routine calls the transmit descriptor clean routine, the device
may not have actually transmitted the packet and there may be little or
nothing to clean. Therefore, the descriptor cleanup often depends on
subsequent calls to the send routine to clean up previously used descriptors.

■ Calling the transmit descriptor clean routine for every packet sent imposes
substantial overhead.

3 END Ethernet Drivers
3.2 END Driver Overview

55

3

In some circumstances, the first consideration can result in a transmit stall or even
deadlock. The solution to this transmit stall is to continue to allow the
packet-complete interrupt to occur but control the frequency at which it is
generated. This gives a backup to the send routine’s cleanup attempts.

To control the frequency of the packet-complete interrupt, keep it masked, and
only unmask it when a call to the transmit descriptor clean routine fails to free
sufficient descriptors.

To determine if sufficient descriptors have been freed:

■ Establish a threshold of some percentage of the transmit descriptors

■ If the send routine’s call to the transmit descriptor clean routine does not
increase the free count to greater than the threshold amount, unmask the
packet-complete interrupt

The solution to the transmit descriptor clean overhead is to once again track the
free transmit descriptor count and to only call the transmit descriptor clean routine
when the free count falls below a certain threshold.

Now put these two mitigators together:

■ Only call the transmit descriptor clean routine when the free transmit
descriptor count falls below a certain threshold.

■ If the send routine’s call to the transmit descriptor clean routine does not
increase the free count to a value greater than the given threshold, unmask the
packet-complete interrupt.

Transmit Descriptor Indexing

The memory for the driver’s transmit descriptors should be contiguously
allocated. This allows the driver’s send routine to access the descriptors with an
index from the base pointer returned by the allocation. This is similar to the
indexing scheme used by the receive handler routine. Like the receive handler
routine, the driver’s send routine should treat the transmit descriptors as a circular
array, or a transmit descriptor ring.

One of the issues that the driver’s send routine must address is that it must track
the transmit descriptors on two different queues, the free queue and the used queue.
These queues are defined as follows:

free queue
Lists descriptors currently available for use.

used queue
Lists descriptors currently on the transmit queue.

VxWorks
Device Driver Developer's Guide, 6.6

56

These queues are actually different dynamic parts of the same list of descriptors.
Setting up and efficiently managing these queues is a critical part of a send
routine’s design. To manage these queues the driver establishes two indices, one
for each queue.

The index for the free queue—the free index—references the next available
descriptor available for use by the driver’s send routine. The send routine should
follow the free index around the transmit descriptor ring. When the send routine
places a descriptor on the device’s transmit queue, it increments the free index. In
order to track how many descriptors are currently free, the send routine also
decrements a free counter. The initial state for the free counter is the total number of
transmit-descriptors allocated to the driver.

The index for the used queue references the descriptor that has been on the
device’s transmit queue for the longest period of time. The used queue is also the
next-to-clean queue. The index for the next-to-clean queue is the clean index, this
references the next transmit descriptor to be cleaned.

Transmit Packet Association List

As stated previously, it is the responsibility of the driver’s send to store a
transmitted packet’s mBlk chain pointer in such a way that it can be later
correlated to the associated descriptor or descriptors on the transmit queue. The
mechanism to do this is a transmit packet association list.

This list is an array of mBlk pointers that is of equal length to the total number of
transmit descriptors allocated by the driver. This list is accessed using the same
indices that the driver uses to reference the descriptors. When the send routine
places a descriptor on the device transmit queue, it uses the free index to correlate
the transmit packet association list to the transmit descriptor ring. As the send
routine moves around the transmit descriptor ring, for each fragment buffer
pointer it puts into a descriptor, it determines if that fragment is the last fragment
for the packet it is transmitting. If it is the last fragment for the packet, the send
routine puts the pointer to the packet’s mBlk chain into the transmit packet
association list at the same index as the descriptor that holds the packet’s last
fragment. If the fragment is not the last fragment of packet, the send routine sets
the correlating transmit packet association list entry to NULL.

Transmit-Packet-Complete Handler

The transmit-packet-complete handler is a task-level routine that is scheduled by
the transmit-packet-complete interrupt’s ISR. This interrupt occurs when the
device has completed transmitting a packet. It is used to indicate to the driver that
it can now clean the transmit descriptors used for the transmission of that packet.

3 END Ethernet Drivers
3.2 END Driver Overview

57

3

When the transmit-packet-complete interrupt’s ISR executes, it masks the
transmit-packet-complete interrupt.

The transmit-packet-complete handler must guarantee that the driver’s transmit
descriptor clean routine is called in a safe manner. This is a requirement because
the transmit descriptor clean routine manipulates the device’s transmit queue.
Because the device’s transmit queue is asynchronously accessed by multiple
contexts, it must be protected by a mutual exclusion semaphore. Therefore, the
transmit-packet-complete handler must take the driver’s transmit semaphore
before calling the transmit descriptor clean routine. It must also immediately give
the semaphore after the transmit descriptor clean routine returns.

The transmit-packet-complete handler must guarantee that a minimum amount of
transmit descriptors are freed before it stops. To this goal, it tests that the call to
transmit descriptor clean increases the free count to the required threshold.

■ If the free count is less than the threshold, the transmit-packet-complete
handler reschedules itself, and leaves the transmit-packet-complete interrupt
masked and the transmit-packet-complete handler interlock flag set.

■ If the free count is increased to greater than or equal to the threshold, the
transmit-packet-complete handler clears the transmit-packet-complete
interrupt mask, clears the transmit-packet-complete handler interlock flag,
and exits.

Transmit Descriptor Clean

The transmit descriptor clean routine is responsible for returning transmit
descriptors back to a usable state, and freeing the associated mBlk chains. The
transmit descriptor clean routine uses the clean index to rotate through the driver’s
transmit descriptors. As the transmit descriptor clean routine moves around the
ring, it determines if the descriptor currently referenced by the clean index has
been released from the device transmit queue. If the indexed descriptor has been
released from the device transmit queue, the transmit descriptor clean routine does
whatever is necessary to put the descriptor back into a free state, and increments
the free counter. The routine continues to traverse the ring until it encounters a
descriptor that has not been released from the device transmit queue or until the
free counter equals the number of transmit descriptors created by the device.

When the transmit descriptor clean routine determines that a descriptor has been
released from the device transmit queue, it uses the clean index to reference the
transmit packet association list. If the routine finds that the referenced transmit
packet association list entry holds an mBlk pointer, it frees the mBlk chain with
netMblkClChainFree().

VxWorks
Device Driver Developer's Guide, 6.6

58

Implementing Checksum Offloading

Checksum offloading for legacy END drivers is handled in a manner similar to that
of VxBus network interface drivers. For a complete discussion of checksum
offloading, see VxWorks Device Driver Developer’s Guide (Vol. 2): Network Drivers.

Implementing Required Entry Points and Structures

This section describes the API for an END driver. It describes the structures that
are essential to such a driver and the entry points you must implement in the
driver.

Required Structures for a Driver

Within your driver, you must allocate and initialize an END_OBJ. Your driver also
needs to allocate and initialize the structures referenced in END_OBJ structures,
such as DEV_OBJ, NET_FUNCS, and M2_INTERFACETBL. To pass packets up to the
MUX, use an mBlk structure.

Providing Network Device Abstraction: END_OBJ

Your endLoad() entry point must allocate, initialize, and return an END_OBJ
structure. The MUX uses this END_OBJ structure as a place to store the tools it
needs to manipulate the stack and the device driver. These tools include data as
well as pointers to routines. The END_OBJ structure is defined in end.h as follows:

typedef struct end_object
{
NODE node; /* root of the device hierarchy */
DEV_OBJ devObject; /* accesses your device’s ctrl struct */
FUNCPTR receiveRtn; /* routine to call on reception */
BOOL attached; /* indicates unit is attached */
SEM_ID txSem; /* transmitter semaphore */

NOTE: Prior to VxWorks 6.5, support for checksum offloading is included in the
network stack by default. In later releases, this feature must be enabled in the
Wind River Network Stack. For more information, see the Wind River
Network Stack documentation and your Platform release notes.

NOTE: The organization of an END driver does not follow the model for a standard
VxWorks I/O driver. The driver is not accessible through the open() routine or
other file I/O routines. The driver is organized to communicate with the MUX. The
MUX then handles communication with the network protocols.

3 END Ethernet Drivers
3.2 END Driver Overview

59

3

long flags; /* various flags */
struct net_funcs *pFuncTable; /* function table */
M2_INTERFACETBL mib2Tbl; /* MIBII counters */
struct ETHER_MULTI *pAddrList; /* head of the multicast address list */
int nMulti; /* number of elements in the list */
LIST protocols; /* protocol node list */
BOOL snarfProto; /* is someone snarfing us? */
void* pMemPool; /* memory cookie used by MUX bufr mgr. */
M2_ID* pMib2Tbl; /* RFC 2233 MIB objects */
} END_OBJ;

Your driver must set and manage some of these members. Other members are
MUX-managed. To know which are which, read the following member
descriptions:

node
The root of the device hierarchy. The MUX sets the value of this member. Your
driver should treat it as opaque.

devObject
The DEV_OBJ structure for this device. Your driver must set this value at load
time. See Tracking Your Device’s Control Structure: DEV_OBJ, p.61.

receiveRtn
A function pointer that references a muxReceive() routine. The MUX supplies
this pointer by the completion of the muxDevLoad() call that loads this driver.
Your driver uses this function pointer to pass data up to the protocol.

attached
A BOOL indicating whether or not the device is attached. The MUX sets and
manages this value.

txSem
A semaphore that controls access to this device’s transmission facilities. The
MUX sets and manages this value.

flags
A value constructed from ORing in IFF_* flag constants. Except for IFF_LOAN
and IFF_SCAT, these constants are the same IFF_* flags associated with the
TCP/IP stack.

IFF_UP
The interface driver is up.

IFF_BROADCAST
The broadcast address is valid.

IFF_DEBUG
Debugging is on.

VxWorks
Device Driver Developer's Guide, 6.6

60

IFF_LOOPBACK
This is a loopback net.

IFF_POINTOPOINT
The interface is a point-to-point link.

IFF_NOTRAILERS
The device must avoid using trailers.

IFF_RUNNING
The device has successfully allocated needed resources.

IFF_NOARP
There is no address resolution protocol.

IFF_PROMISC
This device receives all packets.

IFF_ALLMULTI
This device receives all multicast packets.

IFF_OACTIVE
Transmission in progress.

IFF_SIMPLEX
The device cannot hear its own transmissions.

IFF_LINK0, IFF_LINK1, IFF_LINK2
Per link layer defined bits.

IFF_MULTICAST
The device supports multicast.

IFF_LOAN
The device supports buffer loaning.

IFF_SCAT
The device supports scatter-gather.

pFuncTable
A pointer to a NET_FUNCS structure. This structure contains function pointers
to your driver’s entry points for handling standard requests such as unload or
send. Your driver must allocate and initialize this structure when the device is
loaded. See Identifying the Entry Points into Your Network Driver: NET_FUNCS,
p.63.

3 END Ethernet Drivers
3.2 END Driver Overview

61

3

mib2Tbl
An M2_INTERFACETBL structure for tracking the MIB-II variables used in
your driver. Your driver must initialize the structure referenced here, although
both your driver and the MUX later adjusts the values stored in the table.

pAddrList
A pointer to the head of a list of multicast addresses. The MUX sets and
manages this list, but it uses your driver’s endMCastAddrAdd(),
endMCastAddrDel(), and endMCastAddrGet() entry points to do so.

nMulti
A value indicating the number of addresses on the list referenced in the
multiList member. The MUX sets this value using the information returned by
your driver’s endMCastAddrGet().

protocols
The head of the list of protocols that have bound themselves to this network
driver. The MUX manages this list.

snarfProto
A BOOL indicating whether a packet-snarfing protocol has bound itself to this
driver. Such a protocol can prevent the packet from passing on to lower
priority protocols (see Protocol Startup, p.14). The MUX sets and manages this
value.

pMemPool
A pointer to a netBufLib-managed memory pool. The MUX sets the value of
this member. Your driver should treat it as opaque.

pMib2Tbl
The interface table for RFC 2233 compliance.

Tracking Your Device’s Control Structure: DEV_OBJ

Your driver uses the DEV_OBJ structure to tell the MUX the name of your device
and to hand the MUX a pointer to your device’s control structure. This control
structure is a device-specific structure that you define according to your needs.
Your driver uses this control structure to track things such as flags, memory pool
addresses, and so on. The information stored in the control structure is typically

NOTE: The mib2Tbl field is retained for backwards compatibility with RFC 1213.
Wind River does not recommended this field for new drivers. For new drivers, use
the RFC 2233 interface.

VxWorks
Device Driver Developer's Guide, 6.6

62

essential to just about every driver entry point. The DEV_OBJ structure is defined
in end.h as follows:

typedef struct dev_obj
{
char name[END_NAME_MAX]; /* device name */
int unit; /* to support multiple units */
char description[END_DESC_MAX]; /* text description */
void* pDevice; /* pointer back to the device data. */
} DEV_OBJ;

name
A pointer to a string of up to eight characters. This string specifies the name for
this network device.

pDevice
A pointer to your driver’s internal control structure. This field was originally
intended as a back pointer to the driver control structure. The driver used this
field to dereference itself from the pCookie passed from MUX calls. However,
in a properly initialized END driver, this field is NULL. This is because an END
driver should pass the END_OBJ_INIT macro NULL as the pDevice argument.
The reason for this is that passing the device’s control structure pointer results
in the MUX freeing the structure when the device is unloaded from the MUX.
Because the driver stores other ancillary pointers in its control structure (which
it cannot free until after it has been unloaded from the MUX), it must preserve
this pointer. The pointer is preserved by passing the NULL as pDevice in
END_OBJ_INIT. Therefore, this field is deprecated and should not be used
unless a driver allocates END_OBJ separately from its control structure (this
practice is not recommended).

unit
This is the unit number for the particular named device. Unit numbers start at
0 and increase for every device controlled by the same driver. For example, if
a system has two Lance Ethernet devices (named ln) then the first one is ln0
and the second is ln1. If the same system also has a DEC 21x40 Ethernet, that
device (whose name is dc) is dc0.

description
This is a text description of the device driver. For example, the fei82557End
driver puts the string, “Intel 82557 Ethernet Enhanced Network Driver” into
this location. This string is displayed if muxShow() is called.

3 END Ethernet Drivers
3.2 END Driver Overview

63

3

Identifying the Entry Points into Your Network Driver: NET_FUNCS

The MUX uses the NET_FUNCS structure to maintain a table of entry points into
your END driver. The NET_FUNCS structure is defined as follows:

typedef struct net_funcs
{
STATUS (*start) (void*); /* driver’s start func */
STATUS (*stop) (void*); /* driver’s stop func */
STATUS (*unload) (void*); /* driver’s unload func */
int (*ioctl) (void*, int, caddr_t); /* driver’s ioctl func */
STATUS (*send) (void* , M_BLK_ID); /* driver’s send func */
STATUS (*mCastAddrAdd) (void*, char*); /* driver’s mcast add func */
STATUS (*mCastAddrDel) (void*, char*); /* driver’s mcast delete func */
STATUS (*mCastAddrGet) (void*, MULTI_TABLE*);

/* driver’s mcast get func */
STATUS (*pollSend) (void*, M_BLK_ID); /* driver’s poll send func */
STATUS (*pollRcv) (void*, M_BLK_ID); /* driver’s poll receive func */
STATUS (*addressForm) (M_BLK_ID, M_BLK_ID, M_BLK_ID);

/* driver’s addr formation func */
STATUS (*packetDataGet) (M_BLK_ID, M_BLK_ID);

/* driver’s pkt data get func */
STATUS (*addrGet) (M_BLK_ID, M_BLK_ID, M_BLK_ID, M_BLK_ID, M_BLK_ID);

/* driver’s pkt addr get func */
} NET_FUNCS;

Within your endLoad() routine, initialize these members to point to the
appropriate driver entry points. Thus, start should contain a pointer to your
endStart(), stop to your endStop(), unload to your endUnload(), and so on.

Tracking Link-Level Information: LL_HDR_INFO

The MUX uses LL_HDR_INFO structures to keep track of link-level header
information associated with packets passed from an END driver to the MUX and
from there up to a protocol. An LL_HDR_INFO structure is passed as an argument
to all stack receive routines (see, Passing a Packet Up to the Protocol: stackRcvRtn(),
p.19).

typedef struct llHdrInfo
{
int destAddrOffset; /* destination addr offset in mBlk */
int destSize; /* destination address size */
int srcAddrOffset; /* source address offset in mBlk */
int srcSize; /* source address size */
int ctrlAddrOffset; /* control info offset in mBlk */
int ctrlSize; /* control info size */
int pktType; /* type of the packet */
int dataOffset; /* data offset in the mBlk */
} LL_HDR_INFO;

destAddrOffset
Offset into mBlk structure at which the destination address starts.

VxWorks
Device Driver Developer's Guide, 6.6

64

destSize
Size of destination address.

srcAddrOffset
Offset into mBlk structure at which the source address starts.

srcSize
Size of source address.

ctrlAddrOffset
Reserved for future use.

ctrlSize
Reserved for future use.

pktType
Type of packet. For a list of valid packet types, see RFC 1700.

dataOffset
Offset into mBlk structure at which the packet data starts.

Tracking Data That Passes Between the Driver and the Protocol: mBlk

Use mBlk structures as a vehicle for passing packets between the driver and
protocol layers. The mBlk structure is defined in netBufLib.h as follows:

typedef struct mBlk
{
M_BLK_HDR mBlkHdr; /* header */
M_PKT_HDR mBlkPktHdr; /* pkthdr */
CL_BLK * pClBlk; /* pointer to cluster blk */
} M_BLK;

mBlkHdr
Contains a pointer to an mHdr structure. For the most part, you should have
no need to access or set this member directly and can treat it as opaque. The
only exception is when you must chain this mBlk to another. In that case, you
need to set the value of mBlk.mHdr.mNext or mBlk.mBlkHdr.mNextPkt or
both. Use mBlk.mBlkHdr.mNext to point to the next mBlk in a chain of
mBlks. Use mBlk.mHdr.mNextPkt to point to an mBlk that contains the head
of the next packet.

mBlkPktHdr
Contains a pointer to a pktHdr structure. You should have no need to access
or set this member directly and can treat it as opaque.

pClBlk
Contains a pointer to a clBlk structure. You should have no need to access or
set this member directly and can treat it as opaque. However, if you are not

3 END Ethernet Drivers
3.2 END Driver Overview

65

3

using netBufLib to manage the driver’s memory pool, you must provide your
own memory free routine for its associated cluster. To do this, you must update
mBlk.pClBlk.pClFreeRtn to point to your customized free routine. This
routine must use the same API as the netBufLib free routine. This means that
the mBlk.pClBlk.pFreeArg1, mBlk.pClBlk.pFreeArg2, and
mBlk.pClBlk.pFreeArg3 members must also be updated.

Setting appropriate values for the members listed above (and the members of all
the referenced structures) is just a matter of calling the appropriate netBufLib
routines for the creation of an mBlk/clBlk/cluster construct (or tuple). For more
information, see Setting Up and Using Memory for Receive and Transmit Buffers, p.34.

Required Driver Entry Points

The names of all entry points described in this section begin with the prefix end.
This indicates that they are generic driver entry points. Within your particular
network driver, the specific entry points should use a prefix that indicates the
driver of which they are a part. For example, you would use an ln prefix in the
entry points associated with the AMD Lance driver. Thus, your network interface
driver would define the entry points lnLoad(), lnUnload(), lnReceive(), and so
on.

This naming convention for driver entry points is a matter of good coding practice.
Because VxWorks references these entry points using the function pointers you
load into a NET_FUNCS structure, you are free to follow other conventions for
assigning names to entry points.

Table 3-2 Required Driver Entry Points

Routine Purpose

endLoad() Initialize the driver and load it into the MUX.

endUnload() Free driver resources.

endStart() Start the driver.

endStop() Stop the driver.

endSend() Send a packet out on the hardware.

endIoctl() Access driver control routines.

endMCastAddrAdd() Add an address to the device’s multicast address list.

VxWorks
Device Driver Developer's Guide, 6.6

66

External Interface

Loading the Device: endLoad()

The routine endLoad() handles parameter parsing, configuration, and
initialization. endLoad() is the initial entry point into every network interface
driver. The tUserRoot task specifies your endLoad() as an input parameter when
it calls muxDevLoad() to load your driver.

endMCastAddrDel() Delete an address from the device’s multicast address
list.

endMCastAddrGet() Get the list of multicast addresses maintained for this
device.

endPollSend() Do a polling send.

endPollReceive() Do a polling receive.

endAddressForm() Add the appropriate link-level information into an
mBlk in preparation for transmission. This routine is
provided by the network stack and not typically
defined by the driver.

endPacketDataGet() Extract packet data (omitting link-level information)
from one mBlk and write it to another. This routine is
provided by the network stack and not typically
defined by the driver.

endPacketAddrGet() Extract address information (omitting packet data)
from one mBlk and write out each source and
destination address to its own mBlk. For an Ethernet
packet, this requires two output mBlks. However, for
some non-Ethernet packets, this could require as many
as four output mBlks because the local source and
destination addresses can differ from the ultimate
source and destination addresses. This routine is
provided by the network stack and not typically
defined by the driver.

Table 3-2 Required Driver Entry Points (cont’d)

Routine Purpose

3 END Ethernet Drivers
3.2 END Driver Overview

67

3

Your endLoad() routine must take the following form:

END_OBJ* endLoad
(
char* initString /* a string encoded for the device to use for its */

/* initialization arguments. */
)

Within the endLoad() routine, you must handle any device-specific initialization.
You should also set values for most of the members of the END_OBJ structure. Of
particular interest are the END_OBJ members receiveRtn, pFuncTable, and
devObject. For more information on these members, see the member descriptions
provided in Providing Network Device Abstraction: END_OBJ, p.58.

endLoad() should return a pointer to an initialized END_OBJ structure. If an error
occurs, return ERROR.

The argument is:

initString
Passes in any initialization parameters needed.

The endLoad() initString argument is a pointer to a tokenized string of driver
configuration parameters. Each parameter is delineated by a colon (:). The
endLoad() routine parses the initString argument and stores it in its driver control
structure. The routine first allocates memory for the driver control structure and
then passes a pointer to the driver control structure along with the pointer to
initString, to a parser that breaks the parameters down into discrete values and
loads them into the driver control structure.

During system initialization, the operating system calls this routine two times for
every matching interface configured into the system. In the first call, the OS passes
a pointer to a null string to the driver, and the driver is responsible for filling the
string with the device name. The second call is when actual device and driver
initialization takes place.

Near the beginning of the endLoad() routine, there is usually code similar to the
following:

END_OBJ * templateEndLoad
(
char *initString /* parameter string */
)
{
DRV_CTRL * pDrvCtrl; /* pointer to DRV_CTRL structure */
...
if (initString == NULL)

return (NULL);

VxWorks
Device Driver Developer's Guide, 6.6

68

if (initString[0] == 0)
{
bcopy ((char *)DEV_NAME, (void *)initString, DEV_NAME_LEN);
return (0);
}

}

endLoad() configures the device's registers to either the default values or as
prescribed by the driver parameters.

endLoad() calls a memory initialization routine that allocates a contiguous amount
of memory for DMA descriptors, the amount allocated is determined by the
number of descriptors specified in the parameters, or a default value defined in the
driver. The memory initialization routine also calls netPoolCreate() in netBufLib,
this routine creates a tuple pool sufficient for the driver's needs.

The memory initialization routine initializes the driver's DMA descriptors. It
organizes the descriptors as indicated by the device's specification. The routine
accesses each discrete descriptor and fills the descriptor fields according to the
device's expectations and the driver’s parameter instructions. In the case of receive
descriptors, it also obtains a tuple from the netPool it created, writes the tuple's
cluster buffer pointer into the descriptor, and stores the tuple's mBlk pointer in the
driver's association list. This is a convenient location from which it can later be
correlated back to the descriptor's DMA buffer.

Additional routines are necessary for network stack operations. Entry points to
these routines are provided by the NET_FUNCS structure, which is pointed to by
an entry in the END_OBJ structure. Normally, these routines are declared local to
the driver and are only accessed through the NET_FUNCS structure. For a
description of the driver routines, see Table 3-2.

Unloading the Device: endUnload()

Your endUnload() entry point should handle everything needed to remove this
network driver from the system. Within your endUnload() routine, you should
handle things such as cleanup for all of the local data structures. Your endUnload()
routine does not need to worry about notifying protocols about unloading the
device. Before calling endUnload(), the MUX sends a shutdown notice to each
protocol attached to the device. However, you must be sure to delete any
semaphores that are created in the driver.

endUnload() must take the following form:

void endUnload
(
void* pCookie /* pointer to device-identifying END_OBJ */
)

3 END Ethernet Drivers
3.2 END Driver Overview

69

3

This routine is declared as void and thus should return no function value.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad(). You should
probably free the associated memory from this routine in your endUnload()
routine.

■ Unloading an END Driver

The unload routine in an END driver can only be called through muxUnload().
Before the muxUnload() routine calls the driver's unload routine, it must unbind
the device driver from any protocols to which it was previously bound. The
driver's unload routine must then complete the unload by:

■ disabling the device
■ freeing its associated memory

The unload must complete these steps in an order that prevents a memory access
to already freed memory as well as prevents the loss of any pointers. This means:

■ the DMA engine must be stopped and interrupts disabled before the receive
ring is dismantled

■ the driver must be unbound from the MUX before the transmit queue and its
semaphore are dismantled or freed

■ all memory loaned from the driver's pool must be returned before it is freed

■ because the driver's control structure stores all the pointers for these regions,
it must be the last resource to be freed

All END drivers cause four instances of memory allocation. These instances are as
follows:

■ the driver control structure stored in pDrvCtrl

■ the transmit semaphore stored in pDrvCtrl->endObj.txSem

■ the transmit and receive descriptors

■ tuples (clusters, mBlks, and clBlks)

NOTE: This example assumes a VxWorks 6.x environment and the use of
netPoolCreate() to establish the driver’s buffer pool. Also, to use these
instructions, an END driver must pass a NULL as the second argument to
END_OBJ_INIT.

VxWorks
Device Driver Developer's Guide, 6.6

70

Each of these instances of memory can only be freed after:

■ there is no possibility of the memory being inadvertently accessed

■ the memory is not holding the only copy of a pointer to allocated memory

These conditions impose a specific sequence of events for freeing the memory
areas:

1. To ensure that there are no more interrupts generated by the device, stop the
device’s DMA engine and disable all of the device interrupts.

2. Call wdDelete() for any watchdog timers associated with the driver.

3. Ensure that all transmit descriptors are cleaned and the associated tuples are
freed.

4. Free the transmit semaphore.

5. Ensure that the driver has relinquished all tuples and individual clusters,
mBlks, and clBlks back to the pool. That is, ensure that:

■ all receive descriptors have had their associated tuples freed back to the
driver's pool

■ any buffers or tuples used for polling mode are also freed back to the
driver's pool

6. Free transmit and receive descriptors.

7. Call the netPoolRelease() routine to ensure that the netBufLib frees the
driver's pool memory back to the heap when all clusters, mBlks, and clBlks
are returned to the pool.

8. Free the driver's control structure.

9. Exit the unload routine.

NOTE: It is also possible that some END drivers employ one or more watchdog
timers. These timers must also be deleted.

NOTE: If an END driver allocates any additional memory, it is the responsibility
of the END driver to free that memory when it is unloaded.

NOTE: The macro call to END_OBJ_INIT must have a NULL as its second
argument. Otherwise, the MUX attempts to free the driver's control structure
resulting in a double free error.

3 END Ethernet Drivers
3.2 END Driver Overview

71

3

Providing an Opaque Control Interface to Your Driver: endIoctl()

Your endIoctl() entry point should handle all requests for changes to the state of
the device, such as bringing it up, shutting it down, turning on promiscuous mode,
and so on. You can also use your endIoctl() routine to provide access to MIB-II
interface statistics.

Your endIoctl() must take the following form:

STATUS endIoctl
(
void* pCookie, /* pointer to device-identifying END_OBJ */
int cmd, /* value identifying command */
caddr_t data /* data needed to complete command */
)

If there are no errors, this routine should return OK. If errors occur, one of the
following values should be returned:

EINVAL
The ioctl() command is not supported or an argument is not valid.

ENOTSUP
The device is not capable of supporting the requested command, or has been
configured not to support the requested command. This happens with the
EIOCGMEDIALIST, for example, when the media list is empty.

ENOSPC
The driver cannot perform the requested command due to lack of an available
buffer, lack of space in a ring buffer, full list, or other lack of a required
resource.

For some commands, this routine may return the return value of some utility
routine, such as the return value from endM2Ioctl() for the EIOCGMIB2233 and
EIOCGMIB2 commands.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad().

cmd
Can pass any of the values shown in the command column of Table 3-3. Your
endIoctl() must have an appropriate response to each command.

data
Passes the data, or a pointer to the data, that your endIoctl() needs to carry out
the command specified in cmd.

VxWorks
Device Driver Developer's Guide, 6.6

72

Sending Data Out on the Device: endSend()

The MUX calls your endSend() entry point when it has data to send out on the
device. Your endSend() routine must take the following form:

STATUS endSend
(
void* pCookie, /* device structure */
M_BLK_ID pMblk, /* data to send */
)

This routine should return OK, ERROR, or END_ERR_BLOCK.

Table 3-3 ioctl() Commands and Data Types

Command Function Data Type

EIOCSFLAGS Set device flags. int; see description of
END_OBJ.flags

EIOCGFLAGS Get device flags. int

EIOCSADDR Set device address. char*

EIOCGADDR Get device address. char*

EIOCMULTIADD Add multicast address. char*

EIOCMULTIDEL Delete multicast address. char*

EIOCMULTIGET Get multicast list. MULTI_TABLE*

EIOCPOLLSTART Set device into polling mode. NULL

EIOCPOLLSTOP Set device into interrupt mode. NULL

EIOCGPOLLCONF Configure a data location from
which the network stack can read
statistics

END_IFDRVCONF*

EIOCGPOLLSTATS Return network statistics to the
caller

END_IFCOUNTERS*

EIOCGFBUF Get minimum first buffer for
chaining.

int

EIOCGMIB2 Get the MIB-II counters from the
driver.

M2_INTERFACETBL*

3 END Ethernet Drivers
3.2 END Driver Overview

73

3

The value END_ERROR_BLOCK should be returned if the packet cannot be
transmitted at this time because it is in polling mode, or because of a lack of
resources. In either case, the packet is not freed from the mBlk chain.

The value OK is returned upon successful acceptance of the data packet. If an error
occurs, ERROR is returned and errno should be set. In these cases, the data packet
is freed from the mBlk chain.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad(). Because the
first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

pMblk
Passes a pointer to an mBlk structure containing the data you want to send.
For more information on how to setup an mBlk, see Setting Up and Using
Memory for Receive and Transmit Buffers, p.34.

In most cases, a transmit-done interrupt routine schedules a task-level routine
to free the mBlk after the packet is sent.

Starting a Stopped but Loaded Driver: endStart()

Your endStart() entry point should do whatever is necessary to make the driver
active. For example, it should register your device driver’s interrupt service
routine.Your endStart() routine must take the following form:

Status endStart
(
void* pCookie /* pointer to device-identifying END_OBJ structure */
)

This routine should return OK or ERROR. If an error occurs, the routine should set
errno.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad(). Because the
first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

However, your endStart() should probably include this pointer as a parameter
to the sysIntConnect() routine that it uses to register the ISR. The ISR may not

VxWorks
Device Driver Developer's Guide, 6.6

74

have any direct use for the END_OBJ pointer, but it should pass the pointer into
the driver entry point that handles task-level processing for packet reception.

When it comes time to pass the packet up to the MUX, your driver must call
the MUX-supplied routine referenced in pCookie.receiveRtn. See Providing
Network Device Abstraction: END_OBJ, p.58.

Stopping the Driver Without Unloading It: endStop()

Your endStop() entry point can assume that the driver is already loaded and that
endLoad() has already been called. Within your endStop() routine, you should do
whatever is necessary to make the driver inactive without actually unloading the
driver. endStop() must take the following form:

STATUS endStop
(
void* pCookie /* pointer to a device-identifying END_OBJ structure */
)

This routine should return OK or ERROR. If an error occurs, the routine should set
errno.

The parameters are:

pCookie
Passes in a pointer to the END_OBJ structure returned by endLoad(). Because
the first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

Handling a Polled Send: endPollSend()

The endPollSend() routine is intended for use by the debug agent during system
mode—that is, when the kernel is stopped. Because the kernel is unavailable in
system mode, this entry point cannot make any system calls. Likewise, this entry
point should not block because it could result in a system failure or hang.

endPollSend() must take the following form:

STATUS endPollSend
(
void* pCookie, /* pointer to device-identifying END_OBJ structure */
M_BLK_ID pMblk, /* data to send */
)

Within your endPollSend() routine, check that the device is set to polled mode (by
a previous endIoctl() call). Wind River recommends that your endPollSend()
routine keep a transmit tuple, allocated from the driver’s pool, permanently

3 END Ethernet Drivers
3.2 END Driver Overview

75

3

available for its use. The pointer to this tuple should be stored in driver’s
DRV_CTRL structure.

if ((pDrvCtrl->pTxPollMblk = netTupleGet (pDrvCtrl->endObj.pNetPool,
ETHERMTU + /* max data portion */
16 + /* size of enet header */
4, /* FCS */
M_DONTWAIT, MT_DATA, FALSE)) == NULL)

{
pDrvCtrl->lastError.errCode = END_ERR_NO_BUF;
muxError(&pDrvCtrl->endObj, &pDrvCtrl->lastError);

return ERROR;
}

Then, keep a pointer to the transmit tuple’s cluster buffer as follows:

pDrvCtrl->pTxPollBuf = (UCHAR *)pDrvCtrl->pTxPollMblk->mBlkHdr.mData;

The endPollSend() routine should use the netMblkToBufCopy() utility to copy
pMblk to its polling buffer. The endPollSend() routine should then put the
pTxPollMblk onto the next available descriptor on the device’s output queue.

len = netMblkToBufCopy (pMblk, (char *) pDrvCtrl->pTxPollBuf, NULL);

The endPollSend() routine and the endSend() routine share the same transmit
descriptors and the same transmit queue. Therefore, endPollSend() should treat
the transmit queue and descriptors in the same manner as the endSend() routine.

This routine should return OK or ERROR. If an error occurs, the routine should set
errno.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad(). Because the
first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

pMblk
Passes a pointer to an mBlk structure containing the data you want to send.
For information on setting up an mBlk, see Setting Up and Using Memory for
Receive and Transmit Buffers, p.34.

Handling a Polled Receive: endPollReceive()

The endPollReceive() routine is intended for use by the debug agent during system
mode—that is, when the kernel is stopped. Because the kernel is unavailable in

VxWorks
Device Driver Developer's Guide, 6.6

76

system mode, this entry point cannot make any system calls. Likewise, this entry
point should not block because it could result in a system failure or hang.

endPollReceive() must take the following form:

int endPollReceive
(
void* pCookie, /* device structure */
M_BLK_ID pMblk /* place to return the data */
)

Your endPollReceive() routine should check that the device is set to polled mode
(by a previous endIoctl() call). Your endPollReceive() should then get a packet
directly from the network and copy it to the mBlk passed in by the pMblk
parameter.

Your endPollReceive() entry point should return OK or an appropriate error value.
One likely error return value is EAGAIN. Your routine should return EAGAIN if the
submitted mBlk is not big enough to contain the received packet, or if no packet is
available.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad(). Because the
first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

pMblk
Passes in a pointer to an mBlk structure. This parameter is an output
parameter. Your endPollReceive() routine must copy the data from the stack
to the mBlk structure referenced here.

Adding a Multicast Address: endMCastAddrAdd()

Your endMCastAddAddr() entry point must add an address to the multicast table
that is maintained by the device. endMCastAddAddr() must take the following
form:

STATUS endMCastAddAddr
(
void* pCookie, /* pointer to a device-identifying END_OBJ structure */
char* pAddress /* pointer to address to add */
)

To help you manage a list of multicast addresses, VxWorks provides the library
etherMultiLib.

3 END Ethernet Drivers
3.2 END Driver Overview

77

3

This routine should return OK or ERROR. If an error occurs, the routine should set
errno.

The parameters are:

pCookie
Passes in a pointer to the END_OBJ structure returned by endLoad(). Because
the first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

pAddress
Passes in a pointer to the address you want to add to the list. To help you
manage a list of multicast addresses, VxWorks includes the library,
etherMultiLib.

Within your endMCastAddrAdd() routine, you must reconfigure the interface
in a hardware-specific way. This reconfiguration should allow the driver to
receive frames from the specified address and then pass those frames up to the
higher layer.

Deleting a Multicast Address: endMCastAddrDel()

Your endMCastAddrDel() entry point must delete an address from the multicast
table maintained by the device. endMCastAddrDel() must take the following
form:

STATUS endMCastAddrDel
(
void* pCookie, /* pointer to a device-identifying END_OBJ structure */
char* pAddress /* pointer to address to delete */
)

This routine should return OK or ERROR. If an error occurred, the routine should
set errno.

The parameters are:

pCookie
Passes a pointer to the END_OBJ structure returned by endLoad(). Because the
first field in the driver’s control structure (DRV_CTRL) is always END_OBJ,
most drivers expect pDrvCtrl. This is allowed because pCookie and pDrvCtrl
are interchangeable.

pAddress
Passes a pointer to the address you must delete. To help you manage a list of
multicast addresses, VxWorks includes the library, etherMultiLib.

VxWorks
Device Driver Developer's Guide, 6.6

78

Your endMCastAddrDel() must also reconfigure the driver (in a
hardware-specific way) so that the driver no longer receives frames with the
specified address.

Getting the Multicast Address Table: endMCastAddrGet()

Your endMCastAddrGet() routine must get a table of multicast addresses and
return it in the buffer referenced in the pMultiTable parameter. These addresses
are the list of multicast addresses which the interface is currently monitoring. Your
endMCastAddrGet() must take the following form:

STATUS endMCastAddrGet
(
void* pCookie,
MULTI_TABLE* pMultiTable
)

To get the list of multicast address, use the routines provided in etherMultiLib.

This routine should return OK or ERROR. If an error occurs, the routine should set
errno.

The parameters are:

pCookie
Passes in a pointer to the END_OBJ structure you returned from endLoad().
Because the first field in the driver’s control structure (DRV_CTRL) is always
END_OBJ, most drivers expect pDrvCtrl. This is allowed because pCookie and
pDrvCtrl are interchangeable.

pMultiTable
Passes in a pointer to a buffer. This is an output parameter. Your
endMCastAddrGet() routine must write a MULTI_TABLE structure into the
referenced buffer. end.h defines MULTI_TABLE as follows:

typedef struct
{
long len; /* length of table in bytes */
char *pTable; /* pointer to entries */
} MULTI_TABLE;

Modify the len member of the MULTI_TABLE to indicate just how many
addresses you are returning. Write the addresses to the buffer referenced in the
pTable member of the MULTI_TABLE.

Forming an Address for Packet Transmission: endAddressForm()

The endAddressForm() routine must take a source address and a destination
address and copy the information into the data portion of the mBlk structure in a

3 END Ethernet Drivers
3.2 END Driver Overview

79

3

fashion appropriate to the link level. Implementing this functionality is the
responsibility of the driver writer. However, a simple implementation of this
routine is provided in endLib, you can use this routine as provided and are not
required to provide your own. After adding the addresses to mBlk, your
endAddressForm() routine should adjust the mBlk.mBlkHdr.mLen and
mBlk.mBlkHdr.mData members accordingly. This routine must take the
following form:

M_BLK_ID endAddressForm
(
M_BLK_ID pMblk, /* packet data */
M_BLK_ID pSrcAddress, /* source address */
M_BLK_ID pDstAddress /* destination address */
)

This routine returns an M_BLK_ID, which is potentially the head of a chain of mBlk
structures.

If the cluster referenced by pMblk does not have enough room to contain both the
header and the packet data, this routine must reserve an additional tuple
(mBlk/clBlk/cluster construct) to contain the header. This routine must then
chain the mBlk in pMblk onto the just-reserved header mBlk and return a pointer
to the header mBlk as the function value.

The parameters are:

pMblk
The mBlk that contains the packet to be transmitted.

pSrcAddress
The mBlk that contains the link-level address of the source.

pDstAddress
The mBlk that contains the link-level address of the destination.

Getting a Data-Only mBlk: endPacketDataGet()

The endPacketDataGet() routine must provide a duplicate mBlk that contains the
packet data in the original but skips the header information. Some common cases
are provided for in endLib. This routine should return OK or ERROR and set errno
if an error occurs.

The routine is of the following form:

STATUS endPacketDataGet
(
M_BLK_ID pBuff, /* packet data and address information */
LL_HDR_INFO* pLinkHdrInfo /* structure to hold link-level info. */
)

VxWorks
Device Driver Developer's Guide, 6.6

80

The parameters are:

pBuff
Expects a pointer to the mBlk that contains both header and packet data.

pLinkHdrInfo
Returns an LL_HDR_INFO structure containing header information that is
dependent upon the particular data-link layer that the END driver
implements. For more information, see Tracking Link-Level Information:
LL_HDR_INFO, p.63.

Return Addressing Information: endEtherPacketAddrGet()

The endEtherPacketAddrGet() routine locates the addresses in a packet. This
routine takes an M_BLK_ID, locates the address information, and adjusts the
M_BLK_ID structures referenced in pSrc, pDst, pESrc, and pEDst so that their
pData members point to the addressing information in the packet. The addressing
information is not copied. All mBlk structures share the same cluster.

STATUS endEtherPacketAddrGet
(
M_BLK_ID pMblk, /* pointer to packet */
M_BLK_ID pSrc, /* pointer to source address */
M_BLK_ID pDst, /* pointer to destination address */
M_BLK_ID pESrc, /* pointer to source address (if any) */
M_BLK_ID pEDst /* pointer to destination address (if any) */
)

pSrc
Expects NULL or a pointer to the mBlk structure into which to write the
extracted source address of the packet.

pDst
Expects NULL or a pointer to the mBlk structure into which to write the
extracted destination address of the packet.

pESrc
Expects NULL or a pointer to the mBlk structure into which to write the
extracted source of the packet.

pEDst
Expects NULL or a pointer to the mBlk structure into which to write the
extracted destination address of the packet.

3 END Ethernet Drivers
3.3 The END Driver Development Process

81

3

3.3 The END Driver Development Process

This section provides an overview of the END driver development process. At a
high level, it provides the steps you should take when developing an END driver
for use with VxWorks.

3.3.1 Driver Development Overview

This section provides a high-level overview of the steps required to write or port
an END driver for VxWorks.

Writing a New Driver

The first step in creating a new driver is to define the structure associated with each
interface of the device. This structure must begin with an END_OBJ structure. This
allows the driver to share its END_OBJ structure with the network stack by using
a single pointer which points to both objects.

This structure should also contain a pointer to each register that the device
contains, along with flags, data pointers, and other information specific to the
interface. This structure may need to be modified during driver development to
add fields for unforeseen requirements. For example:

typedef struct drv_ctrl
{
END_OBJ endObj; /* base class */
int unit; /* unit number */
... /* other per-interface variables */
} DRV_CTRL;

When writing a new driver, you should first focus on initialization code. Where
appropriate, the low level device manipulation routines discussed in earlier
sections can be used during initialization. Stubs for routines in the NET_FUNCS
structure should be created, and the NET_FUNCS structure itself should be filled.
The initialization code should disable interrupts and set the device to a quiescent
state. That is, it must place the hardware in a state where it does not generate
interrupts that the processor is unable to handle at this point in the system
initialization process.

NOTE: Wind River does not recommend using the legacy driver model for new
development. For more information, see 1. Introduction.

VxWorks
Device Driver Developer's Guide, 6.6

82

Buffer allocation is done during initialization. It is strongly recommended that
netPoolCreate() be used as described in Setting Up a Memory Pool, p.36. Buffer
allocation creates clusters, clBlks, and mBlks for transferring packets between the
driver and the network stack. Both clBlks and mBlks are used by the driver and
the network stack, but they are not handled by the device. Clusters are used by the
network stack, the driver, and the device. For this reason, caching is an important
concern.

At the time the buffers are allocated, you should also decide what structures will
be used by the device. The device can usually be configured to manipulate a list or
ring of buffers. If possible, a ring is preferred. In addition, the code to manipulate
clusters, clBlks, and mBlks should be tested at this time. You should take a great
deal of care when creating the buffer manipulation code, as well as when designing
the device structures.

If you are not working with an existing driver, you must now create the low level
device manipulation code. If you are porting an existing driver, this step should
already be done. In many cases, the low level device manipulation functionality
should be implemented as macros.

The low-level code should include code to configure the device by reading and
writing device registers. This includes items such as enabling and disabling
interrupts, starting the device, resetting the device, disabling the device, setting
addresses, and so forth. The low level code should also include code to manipulate
the send and receive rings. Remember to use the routines sysInByte(),
sysInWord(), sysInLong(), sysOutByte(), sysOutWord(), and sysOutLong() to
manipulate the device registers. These should be set to macros in the header file so
that the actual routines can be easily overridden when necessary. For example:

#ifndef TEMPLATE_BYTE_RD
#define TEMPLATE_BYTE_RD(addr, value) (value = sysInByte ((ULONG) addr))
#endif

Additional low level code is used to manipulate the device structures. For more
information on structures, see Implementing Required Entry Points and Structures,
p.58.

Next, write the polled mode input and output routines. This does not allow normal
network traffic, but it can be used for system mode debugging as well as to test the
functionality of the code used to manipulate the device. Remember that the polled
receive routine must return immediately, whether a packet is available or not.

The interrupt code is developed after testing the polled mode routines. At this
point, you know that you can manipulate the device correctly to send and receive
packets, put buffers in the transmit ring, remove buffers from the receive ring, as
well as start and stop the device.

3 END Ethernet Drivers
3.3 The END Driver Development Process

83

3

Porting an Existing Driver From Another OS

In general, device drivers provide code for manipulation of a device, and provide
the interface between the driver and the OS. If you have a working, well-written
driver from another OS, the device manipulation routines should be relatively easy
to port.

It is vital to test the device on the original OS before beginning the porting effort.
This insures that the driver is working correctly. Often, there are problems with the
driver on the original OS. If these problems can be isolated before the porting
effort, time is not wasted trying to debug the OS for an existing problem in the
driver. If problems are found, you must decide to correct any problems on the
original OS before the porting effort begins or begin the porting effort with the
knowledge that you have a flawed driver. Correcting problems before the port
makes the porting effort easier, but may delay partial availability of the driver on
VxWorks. In either case, creating a list of existing problems should be considered
a requirement before the porting effort begins.

In the best case, the low-level device manipulation routines can simply be copied
from the existing driver into the new one. If the low-level device manipulation
routines are not small, portable functions, it is probably worthwhile to extract the
different areas of device-related functionality from the existing driver and create
small modules for specific purposes. In many cases, the low-level device
manipulation functionality should be implemented as macros. It may also be
relatively straightforward to port the routines which manipulate the device
structures.

Because of the unique interface between the driver and VxWorks, the remainder of
the END driver port may be similar to writing a driver from scratch. Specifically,
the initialization code, the receive routine, and the interrupt handlers require
modification.

Additional Development Issues

This sections highlights some additional development concerns that you may wish
to consider before starting your driver development.

Backwards Compatibility

When writing a new driver for an initial revision of hardware, you can assume that
this is not the only write of the driver. For this reason, care should be taken to
accommodate future driver revisions. Often, a driver is upgraded to support a new
revision of the hardware. In this case, care should be taken to ensure that the driver

VxWorks
Device Driver Developer's Guide, 6.6

84

is backwards compatible to both the older revisions of the driver and to existing
BSPs that already use the driver.

Performance

A driver should minimize the use of intLock(). The intLock() routine has a
negative performance impact on the entire system, and the impact can be
significant. Normally, interrupts for the device are masked or interrupts for the
given device are disabled. This is sufficient for most critical sections of code in a
driver. By calling intLock(), you are locking all interrupts and not just the Ethernet
device interrupts.

Another performance concern is buffer copying. Buffer copying seriously impairs
the performance of your driver and is typically unnecessary.

Common Problems

As with most driver development, care must be taken to ensure that structures are
protected against corruption caused by concurrent access. This includes access
from multiple VxWorks tasks as well as asynchronous access by the device.

3.3.2 Error Conditions

Sometimes an END driver encounters errors or other events that are of interest to
the protocols using that END driver. For example, the device could go down, or the
device can go down and then come back online. When such situations arise, the
END driver should call muxError(). This routine passes error information up to
the MUX, which in turn passes the information on to all protocols that have
registered a routine to receive the information. The muxError() routine is declared
as follows:

void muxError
(
void* pCookie, /* pointer to END_OBJ */
END_ERR* pError /* pointer to END_ERR structure */
)

Among its input, this routine expects a pointer to an end_err structure, which is
declared in end.h as follows:

typedef struct end_err
{
INT32 errCode; /* error code, see above */
char* pMesg; /* NULL-terminated error message, can be NULL */
void* pSpare; /* pointer to user defined data, can be NULL */
} END_ERR;

3 END Ethernet Drivers
3.3 The END Driver Development Process

85

3

The error-receive routine that the protocol registers with the MUX must be of the
following prototype:

void xxError
(
END_OBJ* pEnd, /* pointer to END_OBJ */
END_ERR* pError, /* pointer to END_ERR */
void* pSpare /* pointer to protocol private data passed in muxBind */
)

The errCode member of an end_err structure is 32 bits long. Wind River reserves
the lower 16 bits of errCode for its own error messages. However, the upper 16 bits
are available to user applications. Use these bits to encode whatever error
messages you need to pass between drivers and protocols. The currently defined
error codes are as follows:

#define END_ERR_INFO 1 /* information only */
#define END_ERR_WARN 2 /* warning */
#define END_ERR_RESET 3 /* device has reset */
#define END_ERR_DOWN 4 /* device has gone down */
#define END_ERR_UP 5 /* device has come back on line */
#define END_ERR_FLAGS 6 /* device flags have changed */
#define END_ERR_NO_BUF 7 /* device’s cluster pool is exhausted */

These error codes have the following meaning:

END_ERR_INFO
This error is information only.

END_ERR_WARN
A non-fatal error has occurred.

END_ERR_RESET
An error occurred that forced the device to reset itself, but the device has
recovered.

END_ERR_DOWN
A fatal error occurred that forced the device to go down. The device can no
longer send or receive packets.

END_ERR_UP
The device was down but is now up again and can receive and send packets.

END_ERR_BLOCK
The device is busy, the transaction should be tried again later.

END_ERR_FLAGS
The device flags have changed.

END_ERR_NO_BUF
The device’s cluster pool is exhausted.

VxWorks
Device Driver Developer's Guide, 6.6

86

3.3.3 Generic MIB Interface Initialization

The generic MIB interface used with VxWorks 6.x is an abstraction layer that
supports either RFC 1213 or RFC 2233. This flexibility is required because the
preprocessor cannot absolutely determine which type of MIB is in use. This
uncertainty exists because components of the RFC 2233 MIB can be removed
through the project facility and, because END drivers are precompiled and
statically linked to the VxWorks image, they cannot use RFC 2233 MIB components
which cannot be guaranteed to be present. This is problematic because the two
interfaces employ different APIs. Therefore, because the drivers cannot reliably
predict which API is present, the API must be abstracted.

The instructions in this section are intended for initially implementing the generic
MIB interface, for converting an END driver that uses RFC 1213 to use the generic
MIB interface, or for the RFC 2233 pulled method.

The pushed method of implementing RFC 2233 requires the device driver to call
an API for every received frame or transmitted packet. This method has proven
inappropriate for gigabit drivers because it includes substantial overhead that
degrades performance. In most cases, it is also unnecessary because many gigabit
devices capture most, if not all, the required information themselves. For these
reasons, the pulled method was developed. In the pulled method, the driver
provides the network stack with an API through which it can demand the current
values in the hardware registers. Rather than the driver calling a MIB interface for
each frame or transmitted packet, the stack periodically calls a driver API that
provides statistical data captured on-demand in the hardware registers.

The pulled method can only be implemented on devices that provide hardware
statistical capture registers. This feature is available for most gigabit devices.
However, it is not guaranteed for all gigabit devices and is even more unlikely for
10/100 devices. Therefore, the pushed method must still be available as an option.
However, if the pulled method is available, it should be used.

This document provides instructions for implementing both methods.

Pushed Method

This describes a generic facility capable of working transparently with RFC 1213
or RFC 2233.

The following generic API routines have been added to endLib.c. As a result the
endMibIfInit(), mib2Init(), and mib2ErrorAdd() routines are marked as
obsolete.

3 END Ethernet Drivers
3.3 The END Driver Development Process

87

3

endM2Init()
Drivers should call endM2Init() with the proper arguments in their
endLoad() routine.

The endM2Init() routine determines if RFC 2233 is available or not, and sets
a global flag accordingly. This needs to be done only once, but does not cause
problems if done repeatedly.

The routine stores the physical address in the appropriate place (RFC 1213 or
RFC 2233), initializes any required data structures, and does the equivalent
work of END_OBJ_READY.

endM2Init(&pDrvCtrl->endObj, M2_ifType_ethernet_csmacd,
(u_char *) &enetAddr[0], 6, ETHERMTU, speed,
IFF_NOTRAILERS | IFF_MULTICAST | IFF_BROADCAST);

endM2Ioctl()
If a driver's ioctl() is called with a EIOCGMIB2 or EIOCGMIB2233, it must call
endM2Ioctl().

endM2Packet()
When a driver receives or sends a packet, encounters an error, or discards a
packet, it must call endM2Packet().

endM2Packet(pEnd, pMBlk, counter)

Where counter is one of the following:

■ M2_PACKET_IN
■ M2_PACKET_OUT
■ M2_PACKET_IN_ERROR
■ M2_PACKET_IN_DISCARD
■ M2_PACKET_OUT_ERROR
■ M2_PACKET_OUT_DISCARD

In the M2_PACKET_IN_ERROR case, the pMblk can be NULL, in other cases, it
is a valid pointer. The routine inspects the mblk to determine which counters
to update.

It is vital that all endM2Packet() calls be located in such a place that their
validity is guaranteed. That is, do not log a successful receipt or send of a
packet until it is absolutely certain that the packet has been successfully

NOTE: endM2Packet() can pass a NULL for pMblk when it fails to obtain a
tuple from netBufLib. In this case, it specifies that the M2_PACKET_IN_ERROR
counter should be updated.

VxWorks
Device Driver Developer's Guide, 6.6

88

received or sent. Special care should be taken to ensure that all failure
conditions are properly logged.

endM2Free()
A driver must call endM2Free() in its unload routine. This routine frees the
appropriate structures (that is, any allocated by endM2Init()).

Implementing the Generic MIB Pushed Method

The following instructions document the process of implementing the generic MIB
pushed method. With these instructions, you can convert an old RFC 1213 MIB
interface to use the generic MIB or, you can use these instructions to implement the
generic MIB in a driver that does not have the RFC 1213 MIB interface already
implemented. If the original driver does not already support RFC 1213, ignore the
instructions to remove the RFC 1213 interface API.

1. In the driver endLoad() routine, call endM2Init()

Initialize MIB-II entries (for RFC 2233 ifXTable)

For example:

endM2Init(&pDrvCtrl->endObj, M2_ifType_ethernet_csmacd,
(u_char *) &enetAddr[0], FEI_ADDR_LEN, ETHERMTU, speed,
IFF_NOTRAILERS | IFF_MULTICAST | IFF_BROADCAST);

2. In the driver endUnload() routine, call endM2Free().

endM2Free (pDrvCtrl);

3. Add the EIOCGMIB2233 case in the ioctl() routine.

If the driver's ioctl() is called with a EIOCGMIB2 or EIOCGMIB2233, call
endM2Ioctl().

For example:

/* New RFC 2233 mib2 interface */

case EIOCGMIB2233:
case EIOCGMIB2:

endM2Ioctl (pDrvCtrl, cmd, datal);

break;

4. Replace the old RFC 1213 interface API with the generic MIB interface API,
then delete the old RFC 1213 interface API.

3 END Ethernet Drivers
3.3 The END Driver Development Process

89

3

RFC 1213 Interface API:

The old RFC 1213 interface used the END_ERR_ADD macro for both updating
packet counts and for counting error conditions.

a. Replace all instances of END_ERR_ADD calls. After an END_ERR_ADD
instance is replaced, it can be deleted.

For example:

END_ERR_ADD (&pDrvCtrl->endObj, MIB2_IN_UCAST, +1);

b. Replace the deleted RFC 1213 Interface.

i. In the send and polling send routines, add the generic mib2 counter
update for outgoing packets.

Send routine:

endM2Packet(pDrvCtrl, pMBlk, M2_PACKET_OUT);

Polling send routine:

endM2Packet(pDrvCtrl, pMBlk, M2_PACKET_OUT);

ii. In the receive and polling receive routines add the generic mib2
counter update for incoming packets.

Receive routine:

endM2Packet(pDrvCtrl, pMBlk, M2_PACKET_IN);

Polling receive routine:

endM2Packet(pDrvCtrl, pMBlk, M2_PACKET_IN);

5. Log failure and error conditions.

Special care should be used to ensure that all failure conditions are properly
logged.

All failure conditions are considered errors. However, there are two general classes
of failure conditions. These can be either an error status returned by the device due
to failure to accomplish a requested action, or the driver's inability to handle a
packet due the lack of available resources.

In the case of device failure conditions, the conditions can be broken down further
into errors only and errors with discards. This is determined by whether a failure
causes packets to be dropped or not dropped. In the case where no packets are
dropped, it is only an error. In the case where data is dropped, it is both an error
and a discard. In almost all cases, it turns out that device errors are both an error
and a discard.

VxWorks
Device Driver Developer's Guide, 6.6

90

If the driver received a packet that was corrupted at receipt then that would be
regarded as only an error. However, in the case of the driver's inability to handle a
perfectly good packet due to the lack of available resources, this is always both an
error and a discard.

Example:

endM2Packet(pDrvCtrl, pMBlk, M2_PACKET_IN_ERROR);
endM2Packet(pDrvCtrl, pMBlk, M2_PACKET_IN_DISCARD);

Pulled Method

The following instructions detail the implementation of the generic MIB pulled
method. It is not anticipated that these instructions will be used with drivers that
have already implemented the RFC 1213 MIB interface.

1. Add END_IFDRVCONF and END_IFCOUNTERS structures to the driver's
control structure as follows:

END_IFDRVCONF endStatsConf;
END_IFCOUNTERS endStatsCounters;
} DRV_CTRL;

2. Declare a status dump routine.

LOCAL STATUS gei82543EndStatsDump (END_DEVICE *);

3. Modify the END driver load routine.

endM2Init(&pDrvCtrl->endObj, M2_ifType_ethernet_csmacd,
(u_char *) &enetAddr[0], 6, ETHERMTU, speed,
IFF_NOTRAILERS | IFF_MULTICAST | IFF_BROADCAST);

bzero ((char *)&pDrvCtrl->endStatsCounters, sizeof(END_IFCOUNTERS));

pDrvCtrl->endStatsConf.ifPollInterval = sysClkRateGet();
pDrvCtrl->endStatsConf.ifEndObj = &pDrvCtrl->end;
pDrvCtrl->endStatsConf.ifWatchdog = NULL;
pDrvCtrl->endStatsConf.ifValidCounters = (END_IFINUCASTPKTS_VALID |

END_IFINMULTICASTPKTS_VALID |
END_IFINBROADCASTPKTS_VALID |
END_IFINOCTETS_VALID |
END_IFOUTOCTETS_VALID |
END_IFOUTUCASTPKTS_VALID |
END_IFOUTMULTICASTPKTS_VALID |
END_IFOUTBROADCASTPKTS_VALID);

4. Modify the ioctl() routine.

case EIOCGMIB2233:
case EIOCGMIB2:

endM2Ioctl (pDrvCtrl, cmd, datal);

3 END Ethernet Drivers
3.3 The END Driver Development Process

91

3

break;

case EIOCGPOLLCONF:
if ((data == NULL))

error = EINVAL;
else

*((END_IFDRVCONF **)data) = &pDrvCtrl->endStatsConf;
break;

case EIOCGPOLLSTATS:
if ((data == NULL))

error = EINVAL;
else

{
error = gei82543EndStatsDump(pDrvCtrl);
if (error == OK)

*((END_IFCOUNTERS **)data) = &pDrvCtrl->endStatsCounters;
}

break;

5. Define an xxxEndStatsDump() routine.

This routine dumps the register contents in the format expected by the MIB.
The register set in a particular device may not exactly match the data set
expected by the MIB. When this is the case, the xxxEndStatsDump() routine,
if possible, performs what arithmetic is necessary to modify the device's
registered data set to the MIB’s expectations.

In the following example, the device counts multicast and broadcast packets and
all incoming packets but does not specifically count unicast packets. The
xxxEndStatsDump() routine calculates the unicast value by subtracting the
multicast and broadcast values from the count of all incoming packets.

Example:

/***
*
* gei82543EndStatsDump - Dump statistic registers for MIB2 (RFC 2233)
*
* This routine dumps statistic registers for MIB2 update
*
* RETURNS: OK
*/

LOCAL STATUS gei82543EndStatsDump
(
END_DEVICE * pDrvCtrl /* device receiving command */
)
{
END_IFCOUNTERS * pEndStatsCounters;
UINT32 tmp;

pEndStatsCounters = &pDrvCtrl->endStatsCounters;

VxWorks
Device Driver Developer's Guide, 6.6

92

/*
* Get number of RX'ed octets
* Note: the octet counts are 64-bit quantities saved in two
* 32-bit registers. Reading the high word clears the count,
* so we have to read the low word first.
*/

GEI_READ_REG(INTEL_82543GC_GORL, tmp);
pEndStatsCounters->ifInOctets = tmp;
GEI_READ_REG(INTEL_82543GC_GORH, tmp);
pEndStatsCounters->ifInOctets |= (unsigned long long)tmp << 32;

/* Get number of TX'ed octets */

GEI_READ_REG(INTEL_82543GC_GOTL, tmp);
pEndStatsCounters->ifOutOctets = tmp;
GEI_READ_REG(INTEL_82543GC_GOTH, tmp);
pEndStatsCounters->ifOutOctets |= (unsigned long long)tmp << 32;

/* Get RX'ed unicasts, broadcasts, multicasts */

GEI_READ_REG(INTEL_82543GC_GPRC, tmp);
pEndStatsCounters->ifInUcastPkts = tmp;
GEI_READ_REG(INTEL_82543GC_BPRC, tmp);
pEndStatsCounters->ifInBroadcastPkts = tmp;
GEI_READ_REG(INTEL_82543GC_MPRC, tmp);
pEndStatsCounters->ifInMulticastPkts = tmp;
pEndStatsCounters->ifInUcastPkts -=

(pEndStatsCounters->ifInMulticastPkts +
pEndStatsCounters->ifInBroadcastPkts);

/* Get TX'ed unicasts, broadcasts, multicasts */

GEI_READ_REG(INTEL_82543GC_GPTC, tmp);
pEndStatsCounters->ifOutUcastPkts = tmp;
GEI_READ_REG(INTEL_82543GC_BPTC, tmp);
pEndStatsCounters->ifOutBroadcastPkts = tmp;
GEI_READ_REG(INTEL_82543GC_MPTC, tmp);
pEndStatsCounters->ifOutMulticastPkts = tmp;
pEndStatsCounters->ifOutUcastPkts -=

(pEndStatsCounters->ifOutMulticastPkts +
pEndStatsCounters->ifOutBroadcastPkts);

return (OK);
}

6. Modify the unload routine.

/* Free MIB-II entries */
endM2Free(DRV_CTRL*);

93

 4
SCSI Drivers

4.1 Introduction 93

4.2 SCSI Overview 94

4.3 SCSI BSP Interface 132

4.4 The SCSI Driver Development Process 135

4.5 Common SCSI Driver Development Issues 135

4.1 Introduction

The VxWorks SCSI-2 subsystem consists of the following components:

■ SCSI libraries, an architecture-independent component

■ SCSI controller driver, an architecture-specific component

■ SCSI-2 subsystem initialization code, a board-specific component

You must first understand the basic functionality of each of these components
before you can extend the functionality of the SCSI libraries or add new SCSI

NOTE: The information in the chapter is provided for reference purposes only. You
should use this information to maintain existing SCSI driver code. If you want to
develop a new driver, see VxWorks Device Driver Developers Guide, Volume 1.

VxWorks
Device Driver Developer's Guide, 6.6

94

controller drivers. To help you gain that understanding, this chapter describes the
general layout of the various SCSI modules, discusses the internals of the SCSI
libraries (and their programming interface with the SCSI controller drivers), and
describes the process of developing a controller-specific SCSI driver.

When a VxWorks task requests SCSI service by invoking a SCSI library routine
such as scsiInquiry(). Since we are assuming a SCSI-2 configuration, first the
scsi2Inquiry() routine is invoked which in turn invokes scsiTransact() (see
Forming SCSI Commands, p.97). scsiTransact() invokes scsiCommand(), the
routine that allocates a SCSI thread, executes the thread, and then deletes it.

The execution of the thread via scsiThreadExecute() causes the SCSI manager to
be informed of a new thread to execute, and subsequent blocking of that VxWorks
task on a message queue until a response has been received. This is the boundary
where a VxWorks task is blocked and the SCSI manager is awakened to start the
execution of a new thread as well as management of any other threads that it may
be dealing with.

After the SCSI thread has executed and has received a response, the calling
VxWorks task is unblocked and eventually the SCSI thread associated with that
task is deleted.

For information on the interface between the I/O system and the SCSI libraries,
including configuring SCSI peripheral devices within VxWorks, see the VxWorks
Kernel Programmer’s Guide: I/O System.

4.2 SCSI Overview

This section describes the relationships between various SCSI modules, introduces
the different SCSI objects and data structures, and tells you how to form SCSI
commands.

NOTE: In this chapter, the term SCSI refers to SCSI-2 in all cases. The SCSI library
interfaces and SCSI controller drivers described in this chapter refer to SCSI-2 only.
VxWorks offers only limited support for SCSI-1. Eventually, Wind River will
eliminate all SCSI-1 support from VxWorks.

4 SCSI Drivers
4.2 SCSI Overview

95

4

4.2.1 Layout of SCSI Modules

Figure 4-1 shows all the SCSI library modules and the relationship between them
and several typical drivers. The SCSI libraries contain a variety of data structures.
The important data structures and their relationships are described in the
following subsections. The general design of the data structures is object-oriented;
data structures represent real and abstract SCSI objects such as peripheral devices,
controllers, and block devices.

SCSI Objects and Data Structures

Figure 4-2 illustrates the relationship between the various physical and logical
SCSI objects and the corresponding data structures.

Figure 4-1 Layout of SCSI Modules

direct access file system

(example: dosFs)

sequential access file system

(example: tapeFs)

scsiCommonLibscsiDirectLib scsiSeqLib

scsiLib

scsi2Libscsi1Lib

scsiMgrLib

ncr810Lib scsiCtrlLibwd33c93Lib1 ncr710Lib1

ncr810init wd33c93Lib2ncr710init

VxWorks
Device Driver Developer's Guide, 6.6

96

Figure 4-3 illustrates the contents of these data structures and their relationships in
more detail.

SCSI_CTRL
This structure contains a list of all physical devices and all allocated SCSI
threads.

SCSI_THREAD
Each thread is represented by a dynamic data structure, which is manipulated
at various levels in scsi2Lib, scsiMgrLib, and the device drivers. It contains a
SCSI_TRANSACTION and the rest of the thread-state information.

SCSI_TRANSACTION
Each SCSI command from the I/O system is translated into one of these
structures, which consists of a SCSI command descriptor block plus all the
required pointer addresses.

SCSI_PHYS_DEV
This structure contains information about available logical devices plus
information about the various threads.

Figure 4-2 Relationship of SCSI Devices and Data Structures

disk drive

tape drive

SCSI controller

CPU

DRAM

BLK_DEV

SEQ_DEV

SCSI_PHYS_DEV

SCSI_CTRL

SCSI_PHYS_DEV

data structures
representing
SCSI logical

data structures
representing
SCSI physical
devices

devices

data structure
representing
SCSI controller

hardware

SCSI_BVS

4 SCSI Drivers
4.2 SCSI Overview

97

4

SEQ_DEV
This structure represents a sequential logical device such as a tape drive.

BLK_DEV
This structure represents a block device such as a disk drive.

Forming SCSI Commands

Within the SCSI libraries, the SCSI commands all work in a similar fashion. All
information needed by the command is delivered by passing in appropriate
parameters. The command first builds a SCSI command descriptor block with
pointers to all required data and stores the block in a SCSI_TRANSACTION
structure. The command then calls the scsiTransact() routine, passing it the
structures SCSI_TRANSACTION and SCSI_PHYS_DEV.

The scsiTransact() routine is the general routine in scsi2Lib that handles
processing of all SCSI commands originating in scsiDirectLib, scsiCommonLib,

Figure 4-3 Controller- and Driver-Specific Data Structures

LIST
UINT
RING_ID
RING_ID
RING_ID
RING_ID
SCSI_PHYS_DEV *
{virtual function pointers}

.

.
{other state information}

.

.

freeThreads
nThreads
requestQ
replyQ
eventQ
timeoutQ
physDevArr[]

{device information from INQUIRY}
LIST
SEQ_DEV
LIST
LIST
{other state information}

.

.

blkDevList
*pScsiSeqDev
waitingThreads
activeThreads

SCSI_CTRL
SCSI_PHYS_DEV
MSG_Q_ID
WDOG_ID
UINT
{thread state information}
{replication of

SCSI_TRANSACTION
information}
.
.

*pScsiCtrl
*pScsiPhysDev
replyQ
wdog
tagNumber

SCSI_CTRL

SCSI_THREAD

SCSI_PHYS_DEV

.

.

.

BLK_DEV

.

.

.

SEQ_DEV

{command description block}
UINT8
UINT8

...

*dataAddress
*cmdAddress

SCSI_TRANSACTION

VxWorks
Device Driver Developer's Guide, 6.6

98

and scsiSeqLib. This paradigm should be used to extend SCSI library support to
other device classes (scsiXXXLib).

STATUS scsiXxxCmd
(
char * buf
SCSI_PHYS_DEV * pScsiPhysDev
)

4.2.2 The VxWorks OS Interface

This section discusses how SCSI drivers interface with the VxWorks operating
system.

Libraries

This section describes the following libraries:

■ The SCSI Manager (scsiMgrLib)

■ SCSI Controller Library (scsiCtrlLib)

■ SCSI Direct Access Library (scsiDirectLib)

■ SCSI Sequential Access Library (scsiSeqLib)

■ SCSI Common Access Library (scsiCommonLib)

This section ends with a brief discussion of how VxWorks typically handles the
execution of a SCSI command.

SCSI Manager (scsiMgrLib)

The SCSI manager functions as a task within VxWorks. There is one SCSI manager
per SCSI controller, and it is responsible for managing all SCSI interaction between
VxWorks tasks and the SCSI controller. Any number of VxWorks tasks can request
services from SCSI peripheral devices. The SCSI bus is a shared critical resource
which requires multitasking support and synchronization.

For the sake of performance and efficiency, the SCSI manager controls all the SCSI
traffic within the operating system. SCSI traffic includes requests for SCSI services
by VxWorks tasks. These requests are asynchronous events from the SCSI bus and
include SCSI reconnects, SCSI connection time-outs, and SCSI responses to
requests by VxWorks tasks. This work flow is managed by SCSI threads, which are

4 SCSI Drivers
4.2 SCSI Overview

99

4

SCSI-library-specific abstractions. A SCSI thread is assigned to each unit of SCSI
work. In other words, one SCSI thread is assigned per SCSI request.

Each SCSI thread is created in the context of the calling VxWorks task. The thread
is managed by the SCSI manager, while the calling VxWorks task remains blocked.
When the SCSI thread completes, the VxWorks task is unblocked and the SCSI
thread is deleted.

A SCSI thread has its own context or state variables, which are manipulated by the
SCSI libraries and the controller driver. A maximum of one SCSI thread can be
executing at any one time. In addition to managing the SCSI-thread state
information, the SCSI manager is responsible for scheduling these SCSI threads.

When there are multiple threads in existence, the different threads can be in
various states representing different requirements. A SCSI thread can represent a
new request for service, a connection time-out, a completion of service, or an event
from the SCSI bus. As requests for service are submitted to the SCSI manager by
VxWorks tasks, the associated threads must be processed based on priority or on a
first-come-first-serves basis if their priority is the same.

When multiple threads are eligible for activation, the SCSI manager follows a strict
hierarchy of processing. Asynchronous bus events have the highest priority and
are processed before any other type of SCSI thread. The order of processing is:
events, time-outs, requests, and finally responses. The SCSI manager handles any
race condition that develops between activation of a request and the asynchronous
occurrence of an event from the SCSI bus.

Once an appropriate SCSI thread is selected for execution, the SCSI manager
dispatches that thread and actual execution is handled by the controller-specific
driver.

Limitations

The SCSI manager uses standard VxWorks ring buffers to manage SCSI requests.
Using ring buffers is fast and efficient. The amount of SCSI work that can be
queued depends upon the size of the allocated ring buffers. The SCSI manager also
has some limitations. For example:

■ the maximum number of threads allowed (scsiMaxNumThreads)
■ the maximum number of SCSI requests from VxWorks tasks that can be put on

the SCSI manager’s request queue (scsiMgrRequestQSize)
■ the maximum number of SCSI bus events that can be put on the SCSI

manager’s event queue (scsiMgrEventQSize)
■ the maximum number of replies that can be put on the reply queue

(scsiMgrReplyQSize)

VxWorks
Device Driver Developer's Guide, 6.6

100

■ the maximum number of time-outs that can be put on the time-out queue
(scsiMgrTimeoutQSize)

■ time-out values.

Configuration

It is possible to tune the size of the ring buffers and the number of SCSI threads to
optimize a specific environment. In most cases, however, the default values are
sufficient. These parameters—scsiMaxNumThreads, scsiMgrRequestQSize,
scsiMgrReplyQSize, scsiMgrEventQSize, scsiMgrTimeoutQSize—are defined
as global variables within the SCSI library and are assigned default values defined
in scsiLib.h. These values can be reassigned in the BSP routine sysScsiInit() prior
to the invocation of the driver’s xxxCtrlInit() routine. Then when scsiCtrlInit()is
invoked by the driver’s xxxCtrlInit()routine, the new parameters are used for data
structure allocation.

The name, priority, and stack size of the scsiMgr task can also be customized from
the controller driver’s xxxCtrlCreate() routine. Defaults are provided in scsiLib.h.
For example, the default task name SCSI_DEF_TASK_NAME is tScsiTask, the
default priority, SCSI_DEF_TASK_PRIORITY, is 5, and the default stack size,
SCSI_DEF_TASK_STACK_SIZE, is 4000.

SCSI Controller Library (scsiCtrlLib)

The SCSI controller library is designed for the older generation of SCSI-2
controllers that require the protocol state machine (and transitions) to be handled
by a higher level of software.These basic SCSI controller drivers (those that need to
use the SCSI state machine provided by the SCSI library) use the SCSI controller
library. More advanced SCSI controllers allow such protocol state machines to be
implemented at the SCSI controller level. This significantly reduces the number of
SCSI interrupts to the CPU per I/O process which improves performance.

There is a well defined interface between the SCSI libraries and the controller
driver of such drivers, and this interface is defined in Driver Programming Interface,
p.101.

SCSI Direct Access Library (scsiDirectLib)

The SCSI direct access library scsiDirectLib encapsulates all the routines that
implement the SCSI direct access commands as defined in the SCSI ANSI

NOTE: The larger the number of expected VxWorks SCSI tasks, the larger the stack
space required. Thought should be given to the stack size parameter when
customizing the SCSI manager.

4 SCSI Drivers
4.2 SCSI Overview

101

4

Specification I. In addition to all the direct access commands, scsiDirectLib
provides the routines that supply the BLK_DEV abstraction for SCSI direct access
peripheral devices.

SCSI Sequential Access Library (scsiSeqLib)

The SCSI sequential access library scsiSeqLib provides all the routines that
implement the mandatory SCSI sequential access commands as defined in the
SCSI ANSI Specification I. Some optional features are also implemented. Routines
that manipulate the SEQ_DEV abstraction are also supplied in this library.

SCSI Common Access Library (scsiCommonLib)

SCSI commands that are common to all SCSI peripheral device types are provided
in the common access library. These commands are described in the SCSI ANSI
Specification I. The programming interface to such commands can be found in the
relevant reference entries or by looking at the header file scsi2Lib.h.

Driver Programming Interface

To better explain the interface between the controller driver and the SCSI libraries
for the two types of SCSI controllers (basic and advanced), this section discusses
each type of driver separately. A skeletal driver is provided along with the
programming interface between the SCSI libraries and the controller driver. The
controller driver routines provide all the hardware register accesses and
controller-specific functionality. For the sake of simplicity, such accesses and
controller-specific information have not been shown. It is the purpose of the
template drivers to show the overall structure and programming interface
between the driver, the SCSI libraries, and the BSP.

Basic SCSI Controller Driver

This section presents the basic programming interface SCSI controller and the SCSI
libraries. Following that description, this section presents a template you should
use when writing your own SCSI controller driver.

VxWorks
Device Driver Developer's Guide, 6.6

102

The Programming Interface

A well-defined programming interface exists between the controller driver of any
basic SCSI controller and the SCSI libraries. Every basic controller driver must
provide the following routines to the SCSI libraries:

xxxDevSelect()
This routine selects a SCSI peripheral device with the attention (ATN) signal
asserted.

xxxInfoXfer()
All information transfer phases are handled by this routine, including the
DATA_IN, DATA_OUT, MSG_IN, MSG_OUT, and STATUS phases.

xxxXferParamsQuery()
This routine updates the synchronous data transfer parameters to match the
capabilities of the driver and returns the optimal synchronous offset and
period.

xxxXferParamsSet()
This routine sets the synchronous data transfer parameters on the SCSI
controller.

xxxBusControl()
This routine controls some of the SCSI bus lines from the controller. This
routine must reset the SCSI bus, assert ATN, or negate ACK.

Similarly, the controller driver invokes the following routines in order to get SCSI
library services:

scsiCtrlInit()
This routine initializes the SCSI library data structures. It is called only once
per SCSI controller.

scsiMgrEventNotify()
This routine notifies the SCSI manager of a SCSI event that has occurred.
Events are defined in scsi2Lib.h. However, more events can be defined by the
controller driver, and events can also be bundled by the driver. In this case, the
SCSI_CTRL field scsiEventProc must be set to this driver-specific routine
during driver initialization.

4 SCSI Drivers
4.2 SCSI Overview

103

4

A Template Driver

The following example shows a template for a basic SCSI controller driver, without
any specific hardware constraints. The basic structure of the driver is like any other
VxWorks driver. The main routines consist of the following:

■ A xxxCtrlCreate() routine, that is invoked from the BSP routine sysScsiInit()
located in the BSP file sysScsi.c.

■ An ISR called xxxIntr() that handles all the interrupts, deciphers what SCSI
event has occurred, and passes that event information to the SCSI manager via
the scsiMgrEventNotify() routine.

The SCSI libraries instruct the driver via the xxxDevSelect() and xxxInfoXfer()
routines, and the controller driver communicates back to the libraries by means of
the scsiMgrEventNotify() routine.

Example 4-1 Basic SCSI Controller Driver

/* xxxLib.c - XXX SCSI-Bus Interface Controller library (SCSI-2) */

/* Copyright 1989-1996 Wind River Systems, Inc. */
#include "copyright_wrs.h"

/*
modification history

01a,12sep96,dds written
*/

/*
DESCRIPTION
This library contains part of the I/O driver for the XXX family of SCSI-2
Bus Interface Controllers (SBIC). It is designed to work with scsi2Lib.
The driver routines in this library depend on the SCSI-2 ANSI specification;
for general driver routines and for overall SBIC documentation, see xxxLib.

INCLUDE FILES
xxx.h

SEE ALSO: scsiLib, scsi2Lib,
the VxWorks programmer’s guides
*/

#include "vxWorks.h"
#include "drv/scsi/xxx.h"

typedef XXX_SCSI_CTRL SBIC; /* SBIC: SCSI Bus Interface Controller struct */

VxWorks
Device Driver Developer's Guide, 6.6

104

/* globals */

int xxxXferDoneSemOptions = SEM_Q_PRIORITY;
char *xxxScsiTaskName = SCSI_DEF_TASK_NAME;

IMPORT SCSI_CTRL *pSysScsiCtrl;

/***
* xxxCtrlCreate - create and partially initialize a SCSI controller structure
*
* This routine creates a SCSI controller data structure and must be called
* before using a SCSI controller chip. It should be called once and only
* once for a specified SCSI controller. Since it allocates memory for a
* structure needed by all routines in xxxLib, it must be called before
* any other routines in the library.
* After calling this routine, at least one call to xxxCtrlInit() should
* be made before any SCSI transaction is initiated using the SCSI controller.
*
* RETURNS: A pointer to the SCSI controller structure, or NULL if memory is
* insufficient or parameters are invalid.
*/

XXX_SCSI_CTRL *xxxCtrlCreate
(
FAST UINT8 *sbicBaseAdrs, /* base address of the SBIC */
int regOffset, /* address offset between SBIC registers */
UINT clkPeriod, /* period of the SBIC clock (nsec) */
FUNCPTR sysScsiBusReset, /* function to reset SCSI bus */
int sysScsiResetArg, /* argument to pass to above function */
UINT sysScsiDmaMaxBytes, /* maximum byte count using DMA */
FUNCPTR sysScsiDmaStart, /* function to start SCSI DMA transfer */
FUNCPTR sysScsiDmaAbort, /* function to abort SCSI DMA transfer */
int sysScsiDmaArg /* argument to pass to above functions */
)
{
FAST SBIC *pSbic; /* ptr to SBIC info */

/* calloc the controller info structure; return NULL if unable */
pSbic = (SBIC *) calloc (1, sizeof (SBIC))

/*
* Set up sizes of event and thread structures. Must be done before
* calling "scsiCtrlInit()".
*/

/* fill in driver-specific routines for scsiLib interface */

pSbic->scsiCtrl.scsiDevSelect = xxxDevSelect;
pSbic->scsiCtrl.scsiInfoXfer = xxxInfoXfer;
pSbic->scsiCtrl.scsiXferParamsQuery = xxxXferParamsQuery;
pSbic->scsiCtrl.scsiXferParamsSet = (FUNCPTR)xxxXferParamsSet;

/* Fill in driver specific variables for scsiLib interface */

pSbic->scsiCtrl.maxBytesPerXfer = sysScsiDmaMaxBytes;

4 SCSI Drivers
4.2 SCSI Overview

105

4

/* fill in generic SCSI info for this controller */

xxxCtrlInit (&pSbic->scsiCtrl);

/* initialize SBIC info transfer synchronization semaphore */

if (semBInit (&pSbic->xferDoneSem, xxxXferDoneSemOptions, SEM_EMPTY)
 == ERROR)

{
(void) free ((char *) pSbic);
return ((XXX_SCSI_CTRL *) NULL);
}

/* initialize state variables */

/* fill in board-specific SCSI bus reset and DMA xfer routines */

/* spawn SCSI manager - use generic code from "scsiLib.c" */

pSbic->scsiCtrl.scsiMgrId = taskSpawn (xxxTaskName,
xxxTaskPriority,
xxxTaskOptions,
xxxTaskStackSize,
(FUNCPTR) scsiMgr,
(int) pSbic,
0, 0, 0, 0, 0, 0, 0, 0, 0);

return (pSbic);
}

/***
* xxxCtrlInit - initialize a SCSI controller structure
*
* After a SCSI controller structure is created with xxxCtrlCreate, but
* before using the SCSI controller, it must be initialized by calling this
* routine.
* It may be called more than once if desired. However, it should only be
* called while there is no activity on the SCSI interface.
*
* RETURNS: OK, or ERROR if out-of-range parameter(s).
*/

LOCAL STATUS xxxCtrlInit
(
FAST SBIC *pSbic, /* ptr to SBIC info */
FAST int scsiCtrlBusId, /* SCSI bus ID of this SBIC */
FAST UINT defaultSelTimeOut /* default dev. select timeout (microsec) */
)
{
pSbic->scsiCtrl.scsiCtrlBusId = scsiCtrlBusId;

VxWorks
Device Driver Developer's Guide, 6.6

106

/* initialize the SBIC hardware */

xxxHwInit (pSbic);

return (OK);
}

/***
* xxxHwInit - initialize the SCSI controller to a known state
*
* This routine puts the SCSI controller into a known quiescent state. It
* does not reset the SCSI bus (and any other devices thereon).
*/

LOCAL void xxxHwInit
(
SBIC *pSbic /* ptr to an SBIC structure */
)
{
/*
 * Initialize the SCSI controller hardware registers and place the
 * chip in a known quiescent state
 */
}

/***
* xxxDevSelect - attempt to select a SCSI device
*
* RETURNS: OK (no error conditions)
*/

LOCAL STATUS xxxDevSelect
(
SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
int devBusId, /* SCSI bus ID of device to select */
UINT selTimeOut, /* select t-o period (usec) */
UINT8 *msgBuf, /* ptr to identification message */
UINT msgLen /* maximum number of message bytes */
)
{
int lockKey; /* saved interrupt lock key */

lockKey = intLock ();

/* Select device */

intUnlock (lockKey);
}

/***
* xxxXferParamsQuery - get (synchronous) transfer parameters
*
* Updates the synchronous transfer parameters suggested in the call to match
* the SCSI controller's capabilities. Transfer period is in SCSI units
* (multiples of 4 ns).
*

4 SCSI Drivers
4.2 SCSI Overview

107

4

* RETURNS: OK
*/

LOCAL STATUS xxxXferParamsQuery
(
SCSI_CTRL *pScsiCtrl, /* ptr to SBIC info */
UINT8 *pOffset, /* max REQ/ACK offset [in/out] */
UINT8 *pPeriod /* min transfer period [in/out] */
)
{
/* read offset and period values */

return (OK);
}

/***
*
* xxxXferParamsSet - set transfer parameters
*
* Programs the SCSI controller to use the specified transfer parameters. An
* offset of zero specifies asynchronous transfer (period is then irrelevant).
*
* RETURNS: OK if transfer parameters are OK, else ERROR.
*/

LOCAL STATUS xxxXferParamsSet
(
SCSI_CTRL *pScsiCtrl, /* ptr to SBIC info */
UINT8 offset, /* max REQ/ACK offset */
UINT8 period /* min transfer period */
)
{
/* set the appropriate SCSI controller registers */

return (OK);
}

/***
* xxxInfoXfer - transfer information bytes to/from target via SCSI bus
*
* Executes a "Transfer Info" command to read (write) bytes from (to) the
* SCSI bus. If the transfer phase is DATA IN or DATA OUT and there is a
* DMA routine available, DMA is used - otherwise it's a tight programmed
* i/o loop.
*
* RETURNS: Number of bytes transferred across SCSI bus, or ERROR.
*/

LOCAL int xxxInfoXfer
(
FAST SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
int phase, /* SCSI phase being transferred */
FAST UINT8 *pBuf, /* ptr to byte buffer for i/o */
UINT bufLength /* number of bytes to be transferred */
)
{

VxWorks
Device Driver Developer's Guide, 6.6

108

pSbic = (SBIC *) pScsiCtrl;

/* Handle phase changes */

/* Start DMA, if used, or programmed i/o loop to transfer data */

/* Wait for transfer to complete: find out how many bytes transferred */

semTake (&pSbic->xferDoneSem, WAIT_FOREVER);

/*
 * If there are bytes left to be transferred return ERROR
 * If DMA is used for transfer do a SCSI DMA Abort
 */

xxxXferCountGet (pSbic, &bytesLeft);

return (bufLength - bytesLeft);
}

/***
* xxxXferCountSet - load the SCSI controller transfer counter with count.
*
* RETURNS: OK if count is in range 0 - 0xffffff, otherwise ERROR.
*
*/

LOCAL STATUS xxxXferCountSet
(
FAST SBIC *pSbic, /* ptr to SBIC info */
FAST UINT count /* count value to load */
)
{
/* set the appropriate SCSI controller registers */
}

/***
* xxxXferCountGet - fetch the SCSI controller transfer count
*
* The value of the transfer counter is copied to *pCount.
*
*/

LOCAL void xxxXferCountGet
(
FAST SBIC *pSbic, /* ptr to SBIC info */
FAST UINT *pCount /* ptr to returned value */
)
{
/* read the appropriate SCSI controller registers */
}

/***
* xxxCommand - write a command code to the SCSI controller Command Register
*
*/

4 SCSI Drivers
4.2 SCSI Overview

109

4

LOCAL void xxxCommand
(
SBIC *pSbic, /* ptr to SBIC info */
UINT8 cmdCode /* new command code */
)
{
/* set the appropriate SCSI controller registers */
}

/***
* xxxIntr - interrupt service routine for the SCSI controller
*
*/
LOCAL void xxxIntr

(
SBIC *pSbic /* ptr to SBIC info */
)
{
SCSI_EVENT event;

/* Check the SCSI status. Handle state transitions */

switch (scsiStatus)
{
...

/* the list of event types is defined is scsi2Lib.h */

case ...

event.type = SCSI_EVENT_XFER_REQUEST;
event.phase = busPhase;
break;

case ...
}

/* Synchronize with task-level code */

semGive (&pSbic->xferDoneSem);

/* Post event to SCSI manager for further processing */
scsiMgrEventNotify ((SCSI_CTRL *)pSbic, &event, sizeof (event));
}

/***
* xxxRegRead - Get the contents of a specified SCSI controller register
*/

LOCAL void xxxRegRead
(
SBIC *pSbic, /* ptr to an SBIC structure */
UINT8 regAdrs, /* address of register to read */
int *pDatum /* buffer for return value */

VxWorks
Device Driver Developer's Guide, 6.6

110

)
{
/* read the appropriate SCSI controller registers */
}

/***
* xxxRegWrite - write a value to a specified SCSI controller register
*
*/

LOCAL void xxxRegWrite
(
SBIC *pSbic, /* ptr to an SBIC structure */
UINT8 regAdrs, /* address of register to write */
UINT8 datum /* value to be written */
)
{
/* write the appropriate SCSI controller registers */
}

Advanced SCSI Controller Driver

The advanced SCSI controller incorporates all the low-level state machine routines
within the driver. This functionality replaces that provided by scsiCtrlLib. Most
advanced SCSI controllers have their own SCSI I/O processor which enhances
performance by managing all the low-level activities on the SCSI bus, such as
phase changes and DMA data transfers. Usually the instructions to the I/O
processor are machine language instructions which are written in a higher level
assembly language and compiled into machine instructions. These machine
instructions reside in the main DRAM area and are fetched by the I/O processor
from DRAM by using a SCSI program counter and some form of indirect
addressing.

In the case of advanced SCSI controllers, there is usually additional event
information described in a driver-specific structure such as XXX_EVENT (where
XXX refers to the SCSI driver module prefix). Many thread management routines
are part of the controller driver, which is not true of the basic SCSI controller
drivers.

The Programming Interface

The programming interface between the advanced SCSI controller driver and the
SCSI libraries consists of routines that must be supplied by the driver and library
routines which are invoked by the driver. The driver routines are not required to
conform to the naming convention used here, because the routines are accessed by
means of function pointers which are set in the xxxCtrlCreate() routine. However,

4 SCSI Drivers
4.2 SCSI Overview

111

4

this naming convention is recommended. The routines (or equivalents) that the
driver must supply are:

xxxEventProc()1
This routine is invoked by the SCSI manager to parse events and take
appropriate action.

xxxThreadInit()
This routine initializes the SCSI thread structures and adds any driver-specific
initialization required beyond what is provided by scsiThreadInit().

xxxThreadActivate()
This routine activates a SCSI connection, setting the appropriate thread context
in the SCSI_THREAD data structure and setting all the controller registers with
the appropriate values. It may call other driver routines as well as SCSI library
routines.

xxxThreadAbort()
If the thread is not actually connected, this routine does nothing. If the thread
is connected, it sends an ABORT TAG message which causes the SCSI target to
disconnect.

xxxBusControl()
This routine controls some of the SCSI bus lines from the controller. This
routine must reset the SCSI bus, assert ATN, or negate ACK.

xxxXferParamsQuery()
This routine updates the synchronous data transfer parameters to match the
capabilities of the driver and returns the optimal synchronous offset and
period.

xxxXferParamsSet()
This routine sets the synchronous data transfer parameters on the SCSI
controller.

xxxWideXferParamsQuery()
This routine updates the wide data transfer parameters in the call to match
those of the SCSI controller.

xxxWideXferParamsSet()
This routine sets the wide data transfer parameters on the SCSI controller.

The advanced controller driver also uses many of the facilities provided by the
SCSI libraries. All the routines invoked by the SCSI controller library can also be

1. The xxx in the routine name is just a place holder for whatever prefix you assign to your
SCSI driver module.

VxWorks
Device Driver Developer's Guide, 6.6

112

invoked by the driver. Examining the SCSI controller library and the header file
scsi2Lib.h shows all the routines available for the controller driver. The following
list is a typical but not exhaustive list of routines that can be invoked by the driver:

scsiCtrlInit()
This routine initializes the SCSI library data structures. It is called only once
per SCSI controller.

scsiMgrEventNotify()
This routine notifies the SCSI manager of an event that occurred on the SCSI
bus.

scsiWideXferNegotiate()
This routine initiates or continues wide data transfer negotiation. See the
relevant reference entries and scsi2Lib.h for more details. It is typically
invoked from the xxxThreadActivate() routine.

scsiSyncXferNegotiate()
This routine initiates or continues synchronous data transfer negotiations. See
the relevant reference entries and scsi2Lib.h for more details. It is typically
invoked from the xxxThreadActivate() routine.

scsiMgrCtrlEvent()
This routine sends an event to the SCSI controller state machine. It is usually
called by the driver xxxEventProc() routine after a selection, re-selection, or
disconnection.

scsiMgrBusReset()
This routine resets all physical devices in the SCSI library upon a bus-initiated
reset. It is typically invoked from xxxEventProc().

scsiMgrThreadEvent()
This routine sends an event to the thread state machine. It is called by the
thread management routines within the driver; the entry point to the thread
routines is by way of xxxEventProc(). In general, xxxEventProc() is the
general routine which calls other driver-specific thread-management routines.
For a better understanding, look at the advanced SCSI controller driver
template and also examine an actual driver.

scsiMsgOutComplete()
This routine performs post-processing after a SCSI message out has been sent.
It is also invoked from the driver thread management routines.

scsiMsgInComplete()
This routine performs post-processing after a SCSI message in is received. It is
invoked from the driver thread management routines.

4 SCSI Drivers
4.2 SCSI Overview

113

4

scsiMsgOutReject()
This routine performs post-processing when an outgoing message has been
rejected.

scsiIdentMsgParse()
This routine parses an incoming identify message when VxWorks has been
selected or reselected.

scsiIdentMsgBuild()
This routine builds an identify message in the caller’s buffer.

scsiCacheSnoopEnable()
This routine informs the library that hardware cache snooping is enabled and
that it is unnecessary to call cache-specific routines.

scsiCacheSnoopDisable()
This routine informs the library that hardware snooping has been disabled or
does not exist and that the library must perform cache coherency.

scsiCacheSynchronize()
This routine is called by the driver for all cache-coherency needs.

scsiThreadInit()
This routine performs general thread initialization; it is invoked by the driver
xxxThreadInit() routine.

Example 4-2 provides an advanced SCSI controller driver template and
Example 4-3 shows a SCSI I/O processor assembly language template. These
examples show how such drivers may be structured. Many details are not included
in the templates; these templates simply serve to provide a high-level picture of
what is involved. Once the basic structure of the template is understood,
examining an actual advanced controller driver clarifies the issues involved,
especially thread management.

Example 4-2 Advanced Controller Driver Example

/* xxxLib.c - XXX SCSI I/O Processor (SIOP) library */

/* Copyright 1989-1996 Wind River Systems, Inc. */
#include "copyright_wrs.h"

/*
modification history

01g,19aug96,dds written
*/

VxWorks
Device Driver Developer's Guide, 6.6

114

/*
DESCRIPTION
This is the I/O driver for the XXX SCSI I/O Processor (SIOP).
It is designed to work with scsiLib and scsi2Lib. This driver
runs in conjunction with a script program for the XXX controller.
These scripts use DMA transfers for all data, messages and status.
This driver supports cache functions through scsi2Lib.

USER-CALLABLE ROUTINES
Most of the routines in this driver are accessible only through the I/O
system. The following routines must be called directly: xxxCtrlCreate()
to create a controller structure, and xxxCtrlInit() to initialize it.
The XXX SCSI Controller's hardware registers need to be configured according
to the hardware implementation. If the default configuration is not proper,
the routine xxxSetHwRegister() should be used to properly configure
the registers.

\INTERNAL
This driver supports multiple initiators, disconnect/reconnect, tagged
command queueing, synchronous data transfer and wide data transfer protocols.
In general, the SCSI system and this driver automatically choose the
best combination of these features to suit the target devices used.
However, the default choices may be over-ridden by using the function
"scsiTargetOptionsSet()" (see scsi2Lib).

There are debug variables to trace events in the driver.
<scsiDebug> scsiLib debug variable, trace event in scsiLib, xxxScsiPhase(),
and xxxTransact().
<scsiIntsDebug> prints interrupt information.

INCLUDE FILES
xxx.h, xxxScript.h and scsiLib.h
*/

#define INCLUDE_SCSI2
#include "vxWorks.h"
#include "memLib.h"
#include "ctype.h"
#include "stdlib.h"
#include "string.h"
#include "stdio.h"
#include "logLib.h"
#include "semLib.h"
#include "intLib.h"
#include "errnoLib.h"
#include "cacheLib.h"
#include "taskLib.h"
#include "drv/scsi/xxx.h"
#include "drv/scsi/xxxScript.h"

/* defines */

typedef XXX_SCSI_CTRL SIOP;

4 SCSI Drivers
4.2 SCSI Overview

115

4

/* Configurable options */

int xxxSingleStepSemOptions = SEM_Q_PRIORITY;
char *xxxScsiTaskName = SCSI_DEF_TASK_NAME;
int xxxScsiTaskOptions = SCSI_DEF_TASK_OPTIONS;
int xxxScsiTaskPriority = SCSI_DEF_TASK_PRIORITY;
int xxxScsiTaskStackSize = SCSI_DEF_TASK_STACK_SIZE;

/***
*
* xxxCtrlCreate - create a control structure for the XXX SCSI controller
*
* This routine creates a SCSI controller data structure and must be called
* before using a SCSI controller chip. It should be called once and only
* once for a specified SCSI controller. Since it allocates memory
* for a structure needed by all routines in xxxLib, it must be called before
* any other routines in the library. After calling this routine,
* xxxCtrlInit() should be called at least once before any SCSI transactions
* are initiated using the SCSI controller.
*
* RETURNS: A pointer to XXX_SCSI_CTRL structure, or NULL if memory
* is unavailable or there are invalid parameters.
*/
XXX_SCSI_CTRL *xxxCtrlCreate

(
UINT8 *baseAdrs, /* base address of the SCSI controller */
UINT clkPeriod, /* clock controller period (nsec*100) */
UINT16 devType /* XXX SCSI device type */
)

{
FAST SIOP *pSiop; /* ptr to SCSI controller info */

/* check that dma buffers are cache-coherent */

/* cacheDmaMalloc the controller structure and other driver structures */

pScsiCtrl = (SCSI_CTRL *) pSiop;

/* inform the SCSI libraries about the size of an XXX event and thread */

pScsiCtrl->eventSize = sizeof (XXX_EVENT);
pScsiCtrl->threadSize = sizeof (XXX_THREAD);

pScsiCtrl->scsiTransact = (FUNCPTR) scsiTransact;
pScsiCtrl->scsiEventProc = (VOIDFUNCPTR) xxxEvent;
pScsiCtrl->scsiThreadInit = (FUNCPTR) xxxThreadInit;
pScsiCtrl->scsiThreadActivate = (FUNCPTR) xxxThreadActivate;
pScsiCtrl->scsiThreadAbort = (FUNCPTR) xxxThreadAbort;
pScsiCtrl->scsiBusControl = (FUNCPTR) xxxScsiBusControl;
pScsiCtrl->scsiXferParamsQuery = (FUNCPTR) xxxXferParamsQuery;
pScsiCtrl->scsiXferParamsSet = (FUNCPTR) xxxXferParamsSet;
pScsiCtrl->scsiWideXferParamsQuery = (FUNCPTR) xxxWideXferParamsQuery;
pScsiCtrl->scsiWideXferParamsSet = (FUNCPTR) xxxWideXferParamsSet;

VxWorks
Device Driver Developer's Guide, 6.6

116

/* the following virtual functions are not used with this driver */

pScsiCtrl->scsiDevSelect = NULL;
pScsiCtrl->scsiInfoXfer = NULL;

/* fill in generic SCSI info for this controller */

scsiCtrlInit (&pSiop->scsiCtrl);

/* fill in SCSI controller specific data for this controller */

/* initialize controller state variables */

/*
 * Initialize fixed fields in client shared data area. This "shared"
 * area of memory is shared between this driver and the scripts I/O
 * processor. Fields like data pointers, data size, message pointer,
 * message size, status pointer and size, etc. are typically the
 * pieces of information shared. These fields are updated and managed
 * before and after an I/O process.
 */

xxxSharedMemInit (pSiop, pSiop->pClientShMem);

/* spawn SCSI manager - use generic code from "scsiLib.c" */

pScsiCtrl->scsiMgrId = taskSpawn (xxxScsiTaskName,
xxxScsiTaskPriority,
xxxScsiTaskOptions,
xxxScsiTaskStackSize,
(FUNCPTR) scsiMgr,
(int) pSiop, 0, 0, 0, 0, 0, 0, 0, 0,0);

return (pSiop);
}

/***
*
* xxxCtrlInit - initialize a XXX SCSI controller structure
*
* This routine initializes an SCSI controller structure, after the structure
* is created with xxxCtrlCreate(). This structure must be initialized before
* the SCSI controller can be used. It may be called more than once if
* needed;however,it should only be called while there is no activity on the
* SCSI interface. A detailed description of the input parameters follows:
*
* RETURNS: OK, or ERROR if parameters are out of range.
*/

STATUS xxxCtrlInit
(
FAST XXX_SCSI_CTRL *pSiop, /* ptr to SCSI controller struct */
int scsiCtrlBusId /* SCSI bus ID of this SCSI controller */
)

4 SCSI Drivers
4.2 SCSI Overview

117

4

{
SCSI_CTRL * pScsiCtrl = (SCSI_CTRL *) pSiop;

/* initialize the SCSI controller */

xxxHwInit (pSiop);

/*
 * Put the scripts I/O processor in a state whereby it is ready for
 * selections or reselection from the SCSI bus. Such a state continues
 * until either a selection or selection occurs or the driver interrupts
 * the scripts processor and resets its program counter to begin
 * execution elsewhere.
 */

xxxScriptStart (pSiop, (XXX_THREAD *) pScsiCtrl->pIdentThread,
XXX_SCRIPT_WAIT);

return (OK);
}

/***
*
* xxxHwInit - initialize the SCSI controller chip to a known state
*
* RETURNS: N/A
*/

LOCAL void xxxHwInit
(
FAST SIOP *pSiop /* ptr to a SCSI controller info structure */
)
{
/* initialize hardware independent registers */
}

/***
*
* xxxScsiBusReset - assert the RST line on the SCSI bus
*
* Issue a SCSI Bus Reset command to the XXX SCSI controller. This should put
* all devices on the SCSI bus in an initial quiescent state.
*
* RETURNS: N/A
*/

LOCAL void xxxScsiBusReset
(
FAST SIOP *pSiop /* ptr to SCSI controller info */
)
{
/* set appropriate register values in order to reset the SCSI bus */
}

VxWorks
Device Driver Developer's Guide, 6.6

118

/***
*
* xxxIntr - interrupt service routine for the SCSI controller
*
* Find the event type corresponding to this interrupt, and carry out any
* actions which must be done before the SCSI controller is re-started.
* Determine whether or not the SCSI controller is connected to the bus
* (depending on the event type - see note below). If not, start a client
* script if possible or else just make the SCSI controller wait for something
* else to happen.
*
* Notify the SCSI manager of a controller event.
*
* RETURNS: N/A
*/

void xxxIntr
(
SIOP *pSiop
)
{
XXX_EVENT event;
SCSI_EVENT pScsiEvent = (SCSI_EVENT *) &event;

BOOL connected = FALSE;
BOOL notify = TRUE;
int oldState = (int) pSiop->state;

/* Save (partial) SCSI controller register context in current thread */

/* Get event type */

pScsiEvent-type = xxxEventTypeGet (pSiop);

/* fill in event information based upon the nature of the event */

/* controller is now idle: if possible, make it run a script. */

xxxScriptStart (pSiop, (XXX_THREAD *) pScsiCtrl->pIdentThread,
XXX_SCRIPT_WAIT);

/* Send the event to the SCSI manager to be processed. */

scsiMgrEventNotify ((SCSI_CTRL *) pSiop, pScsiEvent, sizeof (event));
}

/***
*
* xxxEventTypeGet - parse SCSI and DMA status registers at interrupt time
*
* RETURNS: an interrupt (event) type code
*/
LOCAL int xxxEventTypeGet

(
SIOP * pSiop
)

4 SCSI Drivers
4.2 SCSI Overview

119

4

{
/* Read interrupt status registers */

key = intLock ();

/* Check for fatal errors first */

/* No fatal errors; try the rest (order of tests is important) */

return (INTERRUPT_TYPE);
}

/***
*
* xxxThreadActivate - activate a SCSI connection for an initiator thread
*
* Set whatever thread/controller state variables need to be set. Ensure that
* all buffers used by the thread are coherent with the contents of the
* system caches (if any).
*
* Set transfer parameters for the thread based on what its target device
* last negotiated.
*
* Update the thread context (including shared memory area) and note that
* there is a new client script to be activated (see "xxxActivate()").
*
* Set the thread's state to ESTABLISHED.
* Do not wait for the script to be activated. Completion of the script is
* signalled by an event which is handled by "xxxEvent()".
*
* RETURNS: OK or ERROR
*/
LOCAL STATUS xxxThreadActivate

(
SIOP * pSiop, /* ptr to controller info */
XXX_THREAD * pThread /* ptr to thread info */
)
{
scsiCacheSynchronize (pScsiThread, SCSI_CACHE_PRE_COMMAND);

scsiWideXferNegotiate (pScsiCtrl, pScsiTarget, WIDE_XFER_NEW_THREAD);
scsiSyncXferNegotiate (pScsiCtrl, pScsiTarget, SYNC_XFER_NEW_THREAD);

if (xxxThreadParamsSet (pThread, pScsiTarget->xferOffset,
pScsiTarget->xferPeriod) != OK)

return (ERROR);

/* Update thread context; activate the thread */

xxxThreadUpdate (pThread);

if (xxxActivate (pSiop, pThread) != OK)
return (ERROR);

pScsiCtrl->pThread = pScsiThread;

VxWorks
Device Driver Developer's Guide, 6.6

120

xxxThreadStateSet (pThread, SCSI_THREAD_ESTABLISHED);

return (OK);
}

/***
*
* xxxThreadAbort - abort a thread
*
* If the thread is not currently connected, do nothing and return FALSE to
* indicate that the SCSI manager should abort the thread.
*
* RETURNS: TRUE if the thread is being aborted by this driver (i.e. it is
* currently active on the controller, else FALSE.
*/
LOCAL BOOL xxxThreadAbort

(
SIOP * pSiop, /* ptr to controller info */
XXX_THREAD * pThread /* ptr to thread info */
)
{
xxxAbort (pSiop);
xxxThreadStateSet (pThread, SCSI_THREAD_ABORTING);

return (TRUE);
}

/***
*
* xxxEvent - XXX SCSI controller event processing routine
*
* Parse the event type and act accordingly. Controller-level events are
* handled within this function, and the event is then passed to the current
* thread (if any) for thread-level processing.
*
* RETURNS: N/A
*/
LOCAL void xxxEvent

(
SIOP * pSiop,
XXX_EVENT * pEvent
)
{
SCSI_CTRL * pScsiCtrl = (SCSI_CTRL *) pSiop;
SCSI_EVENT * pScsiEvent = (SCSI_EVENT *) pEvent;
XXX_THREAD * pThread = (XXX_THREAD *) pScsiCtrl->pThread;

/* Do controller-level event processing */

/* If there's a thread on the controller, forward the event to it */
if (pThread != 0)

xxxThreadEvent (pThread, pEvent);
}

4 SCSI Drivers
4.2 SCSI Overview

121

4

/***
*
* xxxThreadEvent - SCSI controller thread event processing routine
*
* Forward the event to the proper handler for the thread's current role.
*
* If the thread is still active, update the thread context (including
* shared memory area) and resume the thread.
*
* RETURNS: N/A
*/
LOCAL void xxxThreadEvent

(
XXX_THREAD * pThread,
XXX_EVENT * pEvent
)
{
SCSI_EVENT * pScsiEvent = (SCSI_EVENT *) pEvent;
SCSI_THREAD * pScsiThread = (SCSI_THREAD *) pThread;
SIOP * pSiop = (SIOP *) pScsiThread->pScsiCtrl;
XXX_SCRIPT_ENTRY entryPt;

switch (pScsiThread->role)
{
case SCSI_ROLE_INITIATOR:

xxxInitEvent (pThread, pEvent);

entryPt = XXX_SCRIPT_INIT_CONTINUE;
break;

case SCSI_ROLE_IDENT_INIT:
xxxInitIdentEvent (pThread, pEvent);

entryPt = XXX_SCRIPT_INIT_CONTINUE;
break;

case SCSI_ROLE_IDENT_TARG:
xxxTargIdentEvent (pThread, pEvent);

entryPt = XXX_SCRIPT_TGT_DISCONNECT;
break;

case SCSI_ROLE_TARGET:
default:

logMsg ("xxxThreadEvent: thread 0x%08x: invalid role (%d)\n",
(int) pThread, pScsiThread->role, 0, 0, 0, 0);

entryPt = XXX_SCRIPT_TGT_DISCONNECT;
break;

}

/* Resume thread if it is still connected */

xxxResume (pSiop, pThread, entryPt);
}

VxWorks
Device Driver Developer's Guide, 6.6

122

/***
*
* xxxResume - resume a script corresponding to a suspended thread
*
* NOTE: the script can only be resumed if the controller is currently idle.
* To avoid races, interrupts must be locked while this is checked and the
* script re-started.
*
* Reasons why the controller might not be idle include SCSI bus reset and
* unexpected disconnection, both of which might occur in practice. Hence
* this is not considered to be a major software error.
*
* RETURNS: OK, or ERROR if the controller is in an invalid state (this
* should not be treated as a major software failure).
*/

LOCAL STATUS xxxResume
(
SIOP * pSiop, /* ptr to controller info */
XXX_THREAD * pThread, /* ptr to thread info */
XXX_SCRIPT_ENTRY entryId /* entry point of script to resume */
)
{
STATUS status;
int key;

/*
 * Check validity of connection and start script if OK
 */
key = intLock ();

xxxScriptStart (pSiop, pThread, entryId);

pSiop->state = NCR810_STATE_ACTIVE;
status = OK;

intUnlock (key);
return (status);
}

/***
*
* xxxInitEvent - XXX SCSI controller initiator thread event processing route
*
* Parse the event type and handle it accordingly. This may result in state
* changes for the thread, state variables being updated, etc.
*
* RETURNS: N/A
*/
LOCAL void xxxInitEvent

(
XXX_THREAD * pThread,
XXX_EVENT * pEvent
)
{
}

4 SCSI Drivers
4.2 SCSI Overview

123

4

/***
*
* xxxSharedMemInit - initialize the fields in a shared memory area
*
* Initialize pointers and counts for all message transfers. These are
* always directed to buffers provided by the SCSI_CTRL structure.
*
* RETURNS: N/A
*/
LOCAL void xxxSharedMemInit

(
SIOP * pSiop,
XXX_SHARED * pShMem
)
{
}

/***
*
* xxxThreadInit - initialize a client thread structure
*
* Initialize the fixed data for a thread (i.e., independent of the command).
* Called once when a thread structure is first created.
*
* RETURNS: OK, or ERROR if an error occurs
*/

LOCAL STATUS xxxThreadInit
(
SIOP * pSiop,
XXX_THREAD * pThread
)
{
scsiThreadInit (&pThread->scsiThread);
return (OK);
}

/***
*
* xxxActivate - activate a script corresponding to a new thread
*
* Request activation of (the script for) a new thread, if possible; do not
* wait for the script to complete (or even start) executing. Activation
* is requested by signaling the controller, which causes an interrupt.
* The script is started by the ISR in response to this event.
*
* NOTE: Interrupt locking is required to ensure that the correct action
* is taken once the controller state has been checked.
*
* RETURNS: OK, or ERROR if the controller is in an invalid state (this
* indicates a major software failure).
*/
LOCAL STATUS xxxActivate

(
SIOP * pSiop,

VxWorks
Device Driver Developer's Guide, 6.6

124

XXX_THREAD * pThread
)
{
key = intLock ();

/* Activate controller for the current thread */

intUnlock (key);

return (status);
}

/**
*
* xxxAbort - abort the active script corresponding to the current thread
*
* Check that there is currently an active script running. If so, set the
* SCSI controller Abort flag which halts the script and causes an
* interrupt.
*
* RETURNS: N/A
*/

LOCAL void xxxAbort
(
SIOP * pSiop /* ptr to controller info */
)
{
STATUS status;
int key;

key = intLock ();

/* Abort the active script corresponding to the current thread */

intUnlock (key);
}

/***
*
* xxxScriptStart - start the SCSI controller executing a script
*
* Restore the SCSI controller register context, including the shared memory
* area, from the thread context. Put the address of the script entry point
* into the DSP register. If not in single-step mode, start the script.
*
* NOTE: should always be called with SCSI controller's interrupts locked.
*
* RETURNS: N/A
*/

LOCAL void xxxScriptStart
(
SIOP *pSiop, /* pointer to SCSI controller info */
XXX_THREAD *pThread, /* ncr thread info */
XXX_SCRIPT_ENTRY entryId /* routine address entry point */

4 SCSI Drivers
4.2 SCSI Overview

125

4

)
{
static ULONG * xxxScriptEntry [] =

{
xxxWait, /* wait for re-select or host cmd */
xxxInitStart, /* start an initiator thread */
xxxInitContinue, /* continue an initiator thread */
xxxTgtDisconnect, /* disconnect a target thread */
};

/* Restore the SCSI controller register context for this thread. */
/*
 * Set the shared data address, load the script start address,
 * then start the SCSI controller.
 */

}

/***
*
* xxxXferParamsQuery - get (synchronous) transfer parameters
*
* Updates the synchronous transfer parameters suggested in the call to match
* the XXX SCSI controller's capabilities. Transfer period is in SCSI units
* (multiples * of 4 ns).
*
* RETURNS: OK
*/

LOCAL STATUS xxxXferParamsQuery
(
SCSI_CTRL *pScsiCtrl, /* ptr to controller info */
UINT8 *pOffset, /* max REQ/ACK offset [in/out] */
UINT8 *pPeriod /* min transfer period [in/out] */
)
{
return (OK);
}

/**
*
* xxxWideXferParamsQuery - get wide data transfer parameters
*
* Updates the wide data transfer parameters suggested in the call to match
* the XXX SCSI controller's capabilities. Transfer width is in the units
* of the WIDE DATA TRANSFER message's transfer width exponent field. This is
* an 8 bit field where 0 represents a narrow transfer of 8 bits, 1 represents
* a wide transfer of 16 bits and 2 represents a wide transfer of 32 bits.
*
* RETURNS: OK
*/

VxWorks
Device Driver Developer's Guide, 6.6

126

LOCAL STATUS xxxWideXferParamsQuery
(
SCSI_CTRL *pScsiCtrl, /* ptr to controller info */
UINT8 *xferWidth /* suggested transfer width */
)
{
}

/***
*
* xxxXferParamsSet - set transfer parameters
*
* Validate the requested parameters, convert to the XXX SCSI controller's
* native format and save in the current thread for later use (the chip's
* registers are not actually set until the next script activation for this
* thread).
*
* Transfer period is specified in SCSI units (multiples of 4 ns). An offset
* of zero specifies asynchronous transfer.
*
* RETURNS: OK if transfer parameters are OK, else ERROR.
*/

LOCAL STATUS xxxXferParamsSet
(
SCSI_CTRL *pScsiCtrl, /* ptr to controller info */
UINT8 offset, /* max REQ/ACK offset */
UINT8 period /* min transfer period */
)
{
}

/***
*
* xxxWideXferParamsSet - set wide transfer parameters
*
* Assume valid parameters and set the XXX's thread parameters to the
* appropriate values. The actual registers are not written yet, but will
* be written from the thread values when it is activated.
*
* Transfer width is specified in SCSI transfer width exponent units.
*
* RETURNS: OK
*/

LOCAL STATUS xxxWideXferParamsSet
(
SCSI_CTRL *pScsiCtrl, /* ptr to controller info */
UINT8 xferWidth /* wide data transfer width */
)
{
}

4 SCSI Drivers
4.2 SCSI Overview

127

4

Example 4-3 Advanced I/O Processor Driver Example

; xxxInit.n Script I/O processor assembly code for xxxLib Driver
;
; Copyright 1989-1996 Wind River Systems, Inc.
;
;/*
;Modification history
;--------------------
;01a,28jun95,jds Created. Adapted from ncr710init.n
;
;
;INTERNAL
;This file contains the assembly level SCSI scripts instructions which are
;used in conjunction with a higher level controller driver. To operate in
;SCSI SCRIPTS mode the SCSI I/O Processor requires only a SCRIPTS start
;address and a signal to begin operation. At that point, the processor
;begins fetching instructions from external memory and then executes them.
;The start address is written to the DMA SCRIPTS Pointer (DSP) register,
;which acts like a typical program counter. All SCRIPT instructions are
;fetched from external memory. The SCSI I/O Processor fetches and executes
;its own instructions by becoming a bus master on the host bus. Instructions
;are executed until a SCSI SCRIPTS interrupt instruction is encountered or
;until an unexpected interrupt causes an interrupt to the external
;processor. Once an interrupt is generated, the SCSI I/O Processor halts all
;operations until the interrupt is serviced. The further execution of
;SCRIPTS is then controlled by the SCSI controller driver which decides
;at which entry point should the SCRIPT processor start executing.
;
;There are four SCRIPT entry points which could be used by the controller
;driver. Execution thereafter is a function of the logic flow within the
;SCRIPTS and cannot be controlled by the driver. Thus, control is
;transferred to the SCRIPTS processor by the controller driver at well known
;entry points and this control is returned to the controller driver by the
;SCRIPTS by generating a SCRIPTS interrupt. The four SCRIPTS entry points
;are described below:
;
;1) xxxWait
; If the SCSI controller is not connected to the bus, this entry point is
; used. The SCRIPTS processor waits for selection or re-selection by a SCSI
; target device (which acts as an initiator during selection), or can be
; interrupted by a new command from the host. This is done by signaling
; the processor via register bits. Thus this entry point puts the SCRIPTS
; processor into a passive mode.
;
;2) xxxInitStart
; This entry point is used to start a new initiator thread or I/O process
; (in SCSI parlance), selecting a target, sending the identify message and
; thus establishing the ITL nexus, and then continuing to follow the SCSI
; protocol as dictated by the SCSI target, which drives the bus; thus,
; transferring the command, data, messages and status. This processing is
; actually done, within the code of the xxxInitContinue entry point. i.e
; if no stopping condition is encountered, execution continues on into the
; next logical entry point.
;

VxWorks
Device Driver Developer's Guide, 6.6

128

;3) xxxInitContinue
; This entry point resumes a suspended SCSI thread. SCSI threads are
; when further processing is required by the controller driver and an int
; instruction is executed. However, when the higher level management has
; been worked out, control comes back to a suspended thread and the process
; of cycling through all the SCSI information tranfer phases continues. In
; essence, this entry point is the "meat" of an I/O process. The following
; phases are managed by this entry point.
; DATA_OUT
; DATA_IN
; COMMAND
; STATUS
; MSG_OUT
; MSG_IN
; XXX_ILLEGAL_PHASE
;
;4) xxxTgtDisconnect
; Disconnects a target from the SCSI bus. It is the last entry point in
; an I/O process.
;
;The description level of the code is close to assembly language and is
;in fact the language of the SCRIPTS processor. The assembly code is compiled
;using an NCR compiler which generates opcodes in the form of a static C
;language structure, which is then compiled and loaded into memory.
;
;The opcode is a pair of 32-bit words, that allow operations and offsets for
;the SCRIPTS processor. A detailed discussion can be found in the chip's
;programmer's guide. Some of the important instructions and their formats
;are listed below.
;
;block move instruction.
; move from <offset> when PHASE_NAME
;
;I/O instructions
; set target
; wait DISCONNECT
; wait RESELECT
; select from <offset>,@jump
;
;read/write register instructions
; move REG_NAME to SFBR
;SFBR acts like an accumulator allowing branch instructions based on its
;value
;
;
;control transfer instructions
; jump <Label>
; int <value> when PHASE_NAME
;
;
;INTERRUPT SOURCES
;The SCSI I/O Processor has three main kind of interrupt, scsi, dma interrupt
;and script interrupt. The int instruction allows the controller driver to
;be interrupted with an interrupt value which is stored in the DSPS register.
;*/

4 SCSI Drivers
4.2 SCSI Overview

129

4

#define NCR_COMPILE
#include "xxxScript.h"

;/**
;*
;* xxxWait - wait for re-selection by target, selection by initiator, or
;* new command from host
;*/

PROC xxxWait:

;setup instructions here

wait reselect REL(checkNewCmd)

;
; have been re-selected by a SCSI target
;
reselected:

; handle reselects, insert the reselect logic

int XXX_RESELECTED ; all seems OK so far

;
; May have a new host command to handle
;
checkNewCmd:

; insert logic for checking if the processor is connected to the bus

int XXX_READY ; processor is ready for a new thread

;/**
;*
;* xxxInitStart - start new initiator thread, selecting target and
;* continuing to transfer command, data, messages as requested.
;*
;* At this point the script requires some data in the scratch registers.
;* This is the threads context information.
;*
;* When the script finishes, these registers are updated with the new context
;* information
;*/

PROC xxxInitStart:

; If required to identify, select w. ATN and try to transfer IDENTIFY message
; (if this fails, continue silently). Otherwise, select without ATN.
;
select atn from OFFSET_DEVICE, REL(checkNewCmd)

; add code to test various processor states and conditions interrupt driver
; if necessary.

jump REL(nextPhase)

VxWorks
Device Driver Developer's Guide, 6.6

130

;/**
;*
;* xxxInitContinue - resume an initiator thread
;*
;* At this point the script requires the threads context information in
;* scratch registers
;*
;* When the script finishes, these scratch registers are updated with the
;* the latest context information
;*/

PROC xxxInitContinue:

; some setup code...

nextPhase:

; Normal info transfer request processing
;
phaseSwitch:
jump REL(doDataOut), when DATA_OUT
jump REL(doDataIn) if DATA_IN
jump REL(doCommand) if COMMAND
jump REL(doStatus) if STATUS
jump REL(doMsgOut) if MSG_OUT
jump REL(doMsgIn) if MSG_IN
int XXX_ILLEGAL_PHASE

;/**
;*
;* doDataOut - handle DATA OUT phase
;*/
doDataOut:

;...

jump REL(nextPhase)

;/**
;*
;* doDataIn - handle DATA IN phase
;*/
doDataIn:

;...

jump REL(nextPhase)

;/**
;*
;* doCommand - handle COMMAND phase
;*/
doCommand:

;...

4 SCSI Drivers
4.2 SCSI Overview

131

4

jump REL(nextPhase)

;/**
;*
;* doStatus - handle STATUS phase
;*/
doStatus:

;...

jump REL(nextPhase)

;*
;* doMsgOut - handle MSG OUT phase
;*/
doMsgOut:

;...

jump REL(nextPhase)

;/**
;*
;* doMsgIn - handle MSG IN phase
;*
;* Note: there is little point in having the '810 parse the message type
;* unless it can save the host some work by doing so; DISCONNECT and
;* COMMAND COMPLETE are really the only cases in point. Multi-byte messages
;* are handled specially - see the comments below.
;*/
doMsgIn:

;...

int XXX_MESSAGE_IN_RECVD ; driver handles all others

;
; Have received a DISCONNECT message
;
disconn:

;...

int XXX_DISCONNECTED

;
; Have received a COMMAND COMPLETE message
;
complete:

;...

int XXX_CMD_COMPLETE

extended:

VxWorks
Device Driver Developer's Guide, 6.6

132

int XXX_EXT_MESSAGE_SIZE

contExtMsg:

int XXX_MESSAGE_IN_RECVD ; at last !

/**
* xxxTgtDisconnect - disconnect from SCSI bus
*
*/
PROC xxxTgtDisconnect:

;...

disconnect

int XXX_DISCONNECTED

4.3 SCSI BSP Interface

The BSP provides the board information to the driver in its invocations of the
initialization routines. The main tasks of the BSP sysScsiInit() routine, which is
located in a file named sysScsi.c (included from the standard sysLib.c), are as
follows:

■ Address all preliminary board-specific hardware initialization.

■ Create a controller driver object by invoking the driver’s xxxCtrlCreate()
routine and supplying the board-specific hardware information such as the
base address to the SCSI controller registers.

■ Connect the SCSI controller’s interrupt vector to the driver’s interrupt service
routine (ISR).

■ Perform additional driver initialization by invoking the xxxCtrlInit() routine
and optionally the driver’s xxxHwInit() routine supplying board-specific
information such as the SCSI initiator bus ID, and specific hardware register
values.

■ Supply any DMA routines if an external DMA controller is being used and is
not part of the SCSI controller driver.

4 SCSI Drivers
4.3 SCSI BSP Interface

133

4

Any other board-specific configurations to initialize SCSI peripheral devices such
as hard disks and tapes or block/sequential devices and file systems must also be
accomplished by sysScsi.c. Such configuration initialization shall be located in
sysScsiConfig().

The following subsection introduces a template sysScsiInit() routine located in
sysScsi.c.

Example 4-4 Template for SCSI Initialization in the BSP (sysScsi.c)

/* sysScsi.c - XXX BSP SCSI-2 initialization for sysLib.c */

/* Copyright 1984-1996 Wind River Systems, Inc. */
#include "copyright_wrs.h"

/*
modification history

01a,29nov95,jds written
*/

/*
Description

This file contains the sysScsiInit() and related routines necessary for
initializing the SCSI subsystem for this BSP.
*/

#ifdef INCLUDE_SCSI

/* external inclusions */

#include "drv/scsi/xxx.h"
#include "tapeFsLib.h"

/**
* sysScsiInit - initialize XXX SCSI chip
*
* This routine creates and initializes an SIOP structure, enabling use of the
* on-board SCSI port. It also connects the proper interrupt service routine
* to the desired vector, and enables the interrupt at the desired level.
*
* RETURNS: OK, or ERROR if the control structure is not created or the
* interrupt service routine cannot be connected to the interrupt.
*/

STATUS sysScsiInit ()
{

/* perform preliminary board specific hardware initializations */

/* Create the SCSI controller */

VxWorks
Device Driver Developer's Guide, 6.6

134

if ((pSysScsiCtrl = (SCSI_CTRL *) xxxCtrlCreate
(
(UINT8 *) SCSI_BASE_ADRS,
(UINT) XXX_40MHZ,

devType
)) == NULL)

{
return (ERROR);
}

/* connect the SCSI controller's interrupt service routine */

if (intConnect (INUM_TO_IVEC (SCSI_INT_VEC),
xxxIntr, (int) pSysScsiCtrl) == ERROR)

{
return (ERROR);
}

/* Enable SCSI interrupts */

intEnable (SCSI_INT_LVL);

/* initialize SCSI controller with default parameters (user tuneable) */

if (xxxCtrlInit ((XXX_SCSI_CTRL *)pSysScsiCtrl,
SCSI_DEF_CTRL_BUS_ID) == ERROR)

return (ERROR);

#if (USER_D_CACHE_MODE & CACHE_SNOOP_ENABLE)

scsiCacheSnoopEnable ((SCSI_CTRL *) pSysScsiCtrl);

#else

scsiCacheSnoopDisable ((SCSI_CTRL *) pSysScsiCtrl);

#endif

/* Set the appropriate board specific hardware registers for the SIOP */

if (xxxSetHwRegister ((XXX_SCSI_CTRL *)pSysScsiCtrl, &hwRegs)
== ERROR)
return(ERROR);

/* Include tape support if configured in config.h */

#ifdef INCLUDE_TAPEFS
tapeFsInit (); /* initialize tapeFs */

#endif /* INCLUDE_TAPEFS */

return (OK);

}

4 SCSI Drivers
4.4 The SCSI Driver Development Process

135

4

4.4 The SCSI Driver Development Process

This following are useful tips on how to develop a new SCSI controller. Breaking
the project up into small easily managed steps is generally the best approach.

1. Understand the template drivers and the interfaces with the SCSI libraries.

2. Copy the template driver into your new driver directory. Replace the variable
routine and macro names with your chosen driver name (for example,
xxxShow() might become myDriverShow()).

3. Make sure that the interrupt mechanism is working correctly so that upon
getting a SCSI interrupt, the driver’s ISR is invoked. A good method to ensure
that the ISR is invoked is to write to a well known location in memory or
NVRAM so that upon re-initialization of the board the developer can tell that
the ISR was entered. Getting the ISR to work is a major milestone.

4. Get the driver to select a SCSI peripheral device. A SCSI bus analyzer can
clarify what is really happening on the bus, and a xxxShow() routine is also
extremely helpful. Selecting a device is the next major milestone.

5. Refine the driver using a standard programming step-wise process until the
desired result is achieved.

6. Run the standard Wind River SCSI tests in order to test various aspects of the
SCSI bus, including multiple threads, multiple initiators, and multiple
peripheral devices working concurrently as well as the performance and
throughput of the driver.

4.5 Common SCSI Driver Development Issues

This sections discusses common issues and concerns encountered during SCSI
driver development.

4.5.1 Troubleshooting and Debugging

This section provides several suggestions for troubleshooting techniques and
debugging shortcuts.

VxWorks
Device Driver Developer's Guide, 6.6

136

SCSI Cables and Termination

A poor cable connection or poor SCSI termination is one of the most common
sources of erratic behavior, of the VxWorks target hanging during SCSI execution,
and even of unknown interrupts. The SCSI bus must be terminated at both ends,
but make sure that no device in the middle of the daisy chain has pull-up
terminator resistors or some other form of termination.

SCSI Library Configuration

Check to see that the test does not exceed the memory constraints within the
library, such as the permitted number of SCSI threads, the size of the ring buffers,
and the stack size of the SCSI manager. In most cases, the default values are
appropriate.

Data Coherency Problems

Data coherency problems usually occur in hardware environments where the CPU
supports data caching. First disable the data caches and verify that data corruption
is occurring. If the problem disappears with the caches disabled, then the
coherency problem is related to caches. (Caches can usually be turned off in the
BSP by #undef USER_D_CACHE_ENABLE.) In order to further troubleshoot the
data cache coherency problem, use cacheDmaMalloc() in the driver for all
memory allocations. However, if hardware snooping is enabled then the problem
may lie elsewhere.

Data Address in Virtual Memory Environments

If the CPU board has a Memory Management Unit (MMU), then you must be
careful when setting data address pointers during Direct Memory Access (DMA)
transfers. When DMA is used in this environment, the physical memory address
must be used instead of the virtual memory address. This is because during DMA
transfers from the SCSI bus, the SCSI or DMA controller is the bus master and
therefore the MMU on the CPU cannot translate the virtual address to the physical
address. Instead, the macro CACHE_DMA_VIRT_TO_PHYS must be used when
providing the data address to the DMA controller.

4.5.2 Test Suites

The following sections list and describe the tests provided by Wind River. The
source code for these test routines is located in the directory installDir/
vxworks-6.x/target/src/test/scsi.

4 SCSI Drivers
4.5 Common SCSI Driver Development Issues

137

4

scsiDiskThruputTest()

This test partitions a 16MB block device into blocks of sizes 4,096, 65,536, or
1,048,576 bytes. Sectors consist of blocks of 512 bytes. This test writes and reads the
block size to the disk drive and calculates the time taken, thus computing the
throughput.

Invoke this test as follows:

scsiDiskThruputTest "scsiBusId devLun numBlocks blkOffset"

The individual parameters must fit the guidelines described below:

scsBusId
Target device ID

devLun
Device logical unit ID

numBlocks
Number of blocks in block device

blkOffset
Address of first block in volume

For example:

scsiDiskThruputTest "4 0 0x0000 0x0000"

scsiDiskTest()

This test performs any or all of the tests described below. The invocation for
scsiDiskTest() is as follows:

scsiDiskTest "test scsiBusId devLun Iterations numBlocks blkOffset"

The individual parameters must fit the guidelines described below:

test
One of the following:

#1: runs only commonCmdsTest()
#2: runs only directRwTest()
#3: runs only directCmdsTest()
-[a]: runs all disk tests

scsBusId
Target device ID

VxWorks
Device Driver Developer's Guide, 6.6

138

devLun
Device logical unit ID

Iterations
Number of times to execute read/write tests

numBlocks
Number of blocks in block device

blkOffset
Address of first block in volume

For example, the following invocation exercises all disk tests, repeating the
read/write exercise 10 times:

scsiDiskTest "-a 4 0 10 0x0000 0x0000"

The default test mode is to execute all of the following three tests.

commonCmdsTest()
This test exercises all mandatory SCSI common-access commands for SCSI
peripheral devices. These common access commands are:

– TEST UNIT READY
– REQUEST SENSE
– INQUIRY

directRwTest()
This test exercises write, read, and check data pattern for:

– 6-byte SCSI commands
– 10-byte SCSI commands

directCmdsTest()
This test exercises all of the direct-access commands listed below. Optionally,
the FORMAT command can be tested by specifying a value of TRUE for the
parameter doFormat.

– MODE SENSE
– MODE SELECT
– RESERVE
– RELEASE
– READ CAPACITY
– READ
– WRITE
– START STOP UNIT
– FORMAT (optional)

4 SCSI Drivers
4.5 Common SCSI Driver Development Issues

139

4

scsiSpeedTest()

This test initializes a block device for use with a dosFs file system. The test uses a
large buffer to read and write from and to contiguous files with both buffered and
non-buffered I/O.

scsiSpeedTest() runs a number of laps, and uses timex to time the write and read
operations. The speed test should be run on only one drive at a time to obtain
maximum throughput.

Invoke this test as follows:

scsiSpeedTest "scsiBusId devLun numBlocks blkOffset"

The individual parameters must fit the guidelines described below:

scsBusId
Target device ID

devLun
Device logical unit ID

numBlocks
Number of blocks in block device

blkOffset
Address of first block in volume

For example:

scsiSpeedTest "4 0 0x0000 0x0000"

tapeFsTest()

This test creates a tape file system and issues various commands to test the tape
device. You can choose to test fixed-block-size tape devices, variable-block-size
tape devices, or both. Fixed-block tests assume 512-byte blocks.

The invocation for tapeFsTest() is as follows:

tapeFsTest "test scsiBusId devLun"

VxWorks
Device Driver Developer's Guide, 6.6

140

The individual parameters must fit the guidelines described below:

test
One of the following:

-f runs only the fixed-block-size test
-v runs only the variable-block-size test
-a runs both tests

scsBusId
Target device ID

devLun
Device logical unit ID

For example, the following invocation exercises both tests:

tapeFsTest "-a 1 0"

141

 5
Timestamp Drivers

5.1 Introduction 141

5.2 Timestamp Driver Overview 142

5.3 Timestamp Driver Configuration and BSP Interface 163

5.4 The Timestamp Driver Development Process 166

5.5 Common Timestamp Driver Development Issues 170

5.1 Introduction

Detailed monitoring of real-time application performance requires timing
information based on high-resolution timers. You can extend the range of
information available from VxWorks kernel instrumentation by supplying a
timestamp driver. For example, if a timestamp driver is available, a precise
chronology can be displayed by the Wind River System Viewer, a graphical
analysis tool for real-time and embedded systems based on VxWorks.

NOTE: The information in the chapter is provided for reference purposes only. You
should use this information to maintain existing timer driver code. If you want to
develop a new timer driver, see VxWorks Device Driver Developers Guide, Volume 1
and VxWorks Device Driver Developer’s Guide (Vol. 2): Timer Drivers.

VxWorks
Device Driver Developer's Guide, 6.6

142

The timer is a hardware facility; a timestamp driver is a software interface to that
facility. This document describes the standard interfaces for a VxWorks timestamp
driver, and discusses the requirements for a hardware timer to be used with
VxWorks kernel instrumentation. It is not a step-by-step tutorial on the process of
writing a timestamp driver.

This chapter is meant for the following readers:

■ VxWorks users who need to add a timestamp driver to an existing BSP.

■ VxWorks users who wish to use an existing VxWorks timestamp driver in their
own applications.

This chapter assumes that the reader has a working knowledge of the target board
hardware. No knowledge of the VxWorks kernel or of the System Viewer is
assumed, although experience writing device drivers is helpful.

5.2 Timestamp Driver Overview

This section provides an overview of the timestamp driver environment. It
includes information on hardware characteristics as well as information on the
VxWorks interface.

5.2.1 Hardware Environment

This section discusses typical hardware timer modes of operation and
characteristics. This section also defines the VxWorks requirements for timestamp
drivers.

Modes of Operation

Most target boards have multiple hardware timers available for operating system
and application use. The characteristics of timers vary widely due to evolving
hardware technology. However, many different types of timers are suitable for use
with VxWorks.

In its most basic form, a timer is simply a timing source (that is, a clock) used as
input to a counter. The counter counts up or down as the associated clock
transitions.

5 Timestamp Drivers
5.2 Timestamp Driver Overview

143

5There are three common modes in which timers operate: periodic, one-shot, and
timestamp. Many newer timers are versatile and can be used in any one of these
modes, depending on how they are configured. The characteristics of each mode
are as follows:

Periodic Interrupt Timer
The timer counts up or down to a programmed value (called the terminal
count), at which point it generates a hardware interrupt. The counter is reset
(either by hardware or software), and begins to count up or down again
towards the terminal count. The interrupt is the sole output of a periodic
interrupt timer. After acknowledging the interrupt, an interrupt service
routine (ISR) usually calls an operating system facility to log the interrupt as a
clock tick. In some cases, the ISR calls an application-specific routine instead.

The terminal count may be adjusted so that an interrupt is generated at a
specified time interval. For example, if the terminal count is set such that an
interrupt occurs every 10 msec, 100 ticks per second are generated (100Hz).

The VxWorks system and auxiliary clocks use the underlying hardware timers
in periodic interrupt mode.

One-Shot Timer
The timer counts up or down to a programmed terminal count, at which point
it generates a hardware interrupt. The counter is then disabled (either by
hardware or software). An ISR acknowledges the interrupt, and then calls a
user-specified routine.

Currently, VxWorks does not support a one-shot timer facility in hardware,
although this type of timer can be simulated by having a periodic interrupt
timer disable the counter in the ISR. One-shot functionality is provided by the
watchdog software module.

Timestamp Timer
The timer counts up or down to its maximum count (typically, 0 or MAX_INIT)
at which point it generates a hardware interrupt. The counter rolls over and
begins to count again towards the maximum value. After acknowledging the
interrupt, an ISR calls an operating system facility or application-specific
routine to log the counter rollover. At any time, the operating system or

Figure 5-1 Basic Form of Timer

CLOCK COUNTER

VxWorks
Device Driver Developer's Guide, 6.6

144

application may read the counter value to obtain high-resolution timing
information in timestamp tick units.

This mode of operation differs from a periodic interrupt timer in that the
counter is usually allowed to count to its maximum value. Additionally, the
counter value is the primary output of the timestamp timer, and the interrupt
is only used to announce a counter rollover. Timestamp timer components are
typically similar to Figure 5-2.

The remainder of this chapter deals only with timers operating in timestamp
mode.

Characteristics of Hardware Timers

Several factors determine how suitable a particular hardware timer may be for a
timestamp driver. This information may help you to choose an appropriate timer,
if several are available.

Read While Enabled

The most important characteristic of a good timestamp timer is the ability to read
the counter’s value without having to stop the timer from counting. If the timer
must be disabled to read the timestamp value accurately, the time spent without
the timer running is not recorded, although the system is actually doing work and
other timers are continuing to run (the system clock, for instance). This situation is
commonly called time skew. As time skew accumulates, the timestamp values
become more and more removed from the absolute time of the system, as kept by
the system clock. Additionally, interrupts must be locked out while the timer is
stopped. Both of these effects are detrimental to real-time systems.

Figure 5-2 Components of a Timestamp Timer

CLOCK (optional)
PRESCALER

INTERRUPT
(rollover event)

READ
(timestampCOUNTER

ticks)

5 Timestamp Drivers
5.2 Timestamp Driver Overview

145

5

Prescaler Counter

The input clock is often passed through a prescaler counter to divide the input
clock frequency, thereby producing a lower frequency input for the timestamp
counter. Although a prescaler is not always present, it can be a useful way of
tuning timer devices that have an unusually high input clock frequency. Using a
timer frequency significantly greater than your application demands can hamper
real-time performance by increasing the number of cycles spent servicing the timer
interrupt.

Counter Width

The timer’s counter should be at least 16 bits wide, although a 24- or 32-bit counter
is preferable. The wider a counter, the less often it must roll over, and therefore the
less system overhead its ISR incurs. The input frequency can also be higher with a
wide counter, which yields more accurate timing information.

Preload After Disable

Some timers require that the counter be preloaded with a value before counting
resumes. This is an issue only for timers that cannot be read while enabled. This
characteristic adds to the time spent with the timer disabled, thereby increasing
time-skew problems. The preload mechanism itself provides a way to correct skew,
but determining the amount of the correction is difficult; see the discussion of
counter preloading in 5.4.2 Working Around Deficiencies In Hardware Timers, p.167.

Cache Coherency

As with all hardware devices, the locations of timer device registers must be cache
coherent. This ensures that reads and writes to timer registers are actually
accessing the register locations themselves, and not CPU data cache locations. If
data cache memory exists, and there is no hardware mechanism (such as an MMU)
to guarantee data cache coherency for register locations, the timestamp timer
driver must make explicit calls to flush and invalidate the CPU’s data cache. This
adds to the overhead of reading the timestamp tick value.

VxWorks Requirements for Timestamp Timers

The VxWorks kernel instrumentation uses a timestamp timer, when available, to
log timing information for selected operating system events—for example,
semaphore gives and takes, task spawns and deletions, system clock ticks, and
interrupts.

VxWorks
Device Driver Developer's Guide, 6.6

146

VxWorks requires that timestamp timers provide the following features:

Rollover Interrupt
The timestamp timer must be able to generate a hardware interrupt once the
maximum (or terminal) count is reached. An interrupt is needed to avoid
aliasing, by announcing the rollover event. Without the interrupt, timestamps
are ambiguous, since there is no way to distinguish two timestamps separated
by the timer’s terminal period.

Fine Resolution
The timestamp tick resolution is calculated as follows:

To be effective, the resolution should be 10 μsec or less (that is, a timestamp tick
frequency of at least 100 kHz). Although this is not a strict requirement, it is
consistent with timing limitations within the VxWorks kernel. If the timestamp
timer output is slower than 100 kHz, some instrumented kernel events may
not have distinguishable timing information.

Sizable Period
The time between timestamp rollovers is the timestamp timer’s period. The
period is defined as the product of the timer resolution and the timer’s
maximum count:

To be effective, the period should be at least 10 msec. If rollovers are more
frequent, the overhead of servicing the rollover interrupt may be too intrusive.
The greater the period, the better.

5.2.2 VxWorks OS Interface

This section discusses how your timestamp driver should interface with the
VxWorks operating system.

resolution = =
1

timestamp tick frequency

prescaler

iuput clock frequency

period = (maximum count) x resolution

5 Timestamp Drivers
5.2 Timestamp Driver Overview

147

5

Working with the Wind River System Viewer

Although the timestamp timer is meant to be a general facility, some specific
information is needed to use it with the kernel instrumentation support for the
System Viewer. This section describes the configuration and attachment of the
timestamp driver to the VxWorks kernel instrumentation.

Attaching the Timestamp Driver to VxWorks

Define INCLUDE_TIMESTAMP in
installDir/vxworks-6.x/target/config/bspname/config.h to make the timestamp
timer routines available to instrumentation logging routines with
wvTmrRegister().1 This enables the code in usrRoot() (in
installDir/vxworks-6.x/target/config/all/usrConfig.c) that connects the timestamp
driver to the VxWorks kernel instrumentation package.

If you use the standard routine names (described in 5.3 Timestamp Driver
Configuration and BSP Interface, p.163), no other changes are necessary. However,
you can also create routines with custom names. This is necessary if a VxWorks
timestamp driver is already available for a particular target board, and an alternate
driver is to be connected. If this is the case, define INCLUDE_USER_TIMESTAMP as
well as INCLUDE_TIMESTAMP (place the definition in
installDir/vxworks-6.x/target/config/bspname/config.h), to connect the routines
named by the USER_TIMExxx macros instead of the default timestamp routines.
This does not change the functionality required for any of the routines. It merely
provides the ability to connect routines with different names. The connected
routines must still adhere to the requirements and functionality specified in
5.3 Timestamp Driver Configuration and BSP Interface, p.163.

Using the System Clock

The kernel instrumentation expects each rollover event to trigger a call to the
timestamp callback routine (saved in the variable sysTimestampRoutine(). As
described in section 5.4.3 Using the VxWorks System Clock Timer, p.169, the
timestamp driver may use the VxWorks system clock facility. If
sysTimestampConnect() returns ERROR, the VxWorks kernel instrumentation
assumes the system clock is used, and relies on the system clock tick to signal a
timestamp timer rollover event.

1. For more information, see the wvTmrRegister() reference entry.

VxWorks
Device Driver Developer's Guide, 6.6

148

Timestamp Driver Components

The component concept has been applied to all timer drivers. Driver components
are added to domain and bootable application projects in the same way as any
other software component.

The generic TIMESTAMP component is used to describe and define the common
API for all timestamp drivers. However, it does not actually add the code to the
build system. One timer driver with timestamp capabilities should be added to the
system build in order to provide the timestamp API entry points. Consult the
documentation on the particular driver to make sure that it provides timestamp
support. Some timer drivers do not provide timestamp support.

Sample Drivers

The following sections contain skeleton code for three different types of timestamp
driver:

■ for a hardware timer that can be read while enabled

■ for a hardware timer that cannot be read while enabled

■ for systems that have no suitable spare timers, thus requiring that timestamps
be derived from the VxWorks system clock timer

For a description of each of these driver types, see 5.4 The Timestamp Driver
Development Process, p.166. For a template driver that you can use as the basis of
your own timestamp driver, see
installDir/vxworks-6.x/target/src/drv/templateTimer.c.

Example 5-1 Timestamp Drivers for Timers that Can Be Read while Enabled

This example presents a skeleton timestamp device driver for a hardware timer
that can be read while enabled. This type of timer is the simplest to configure for
timestamp mode. See 5.4.1 Timers that Can Be Read While Enabled, p.166, for a
discussion of the most important details involved in writing this kind of driver.

/* sampleATimer.c - sample A timer library */

/* Copyright 1994 Wind River Systems, Inc. */
#include "copyright_wrs.h"

/*
modification history

01a,23mar94,dzb written.
*/

5 Timestamp Drivers
5.2 Timestamp Driver Overview

149

5

/*
DESCRIPTION
This library contains sample routines to manipulate the timer functions on
the sample A chip with a board-independent interface. This library handles
the timestamp timer facility.

To include the timestamp timer facility, the macro INCLUDE_TIMESTAMP must be
defined.

NOTE: This module provides an example of a VxWorks timestamp timer driver
for a timer that can be read while enabled. It illustrates the structures
and routines discussed in the documentation "Creating a VxWorks Timestamp
Driver." This module is only a template. In its current form,
it does not compile.
*/

#ifdef INCLUDE_TIMESTAMP

#include "drv/timer/timestampDev.h"
#include "drv/timer/sampleATimer.h"

/* Locals */

LOCAL BOOL sysTimestampRunning = FALSE; /* running flag */
LOCAL FUNCPTR sysTimestampRoutine = NULL; /* user rollover routine */
LOCAL int sysTimestampArg = NULL; /* arg to user routine */

/***
*
* sysTimestampInt - timestamp timer interrupt handler
*
* This routine handles the timestamp timer interrupt. A user routine is
* called, if one was connected by sysTimestampConnect().
*
* RETURNS: N/A
*
* SEE ALSO: sysTimestampConnect()
*/

LOCAL void sysTimestampInt (void)
{
/* acknowledge the timer rollover interrupt here */

if (sysTimestampRoutine != NULL) /* call user-connected routine */
(*sysTimestampRoutine) (sysTimestampArg);

}

/***
*
* sysTimestampConnect - connect a user rtn to the timestamp timer interrupt
*
* This routine specifies the user interrupt routine to be called at each
* timestamp timer interrupt. It does not enable the timestamp timer itself.
*

VxWorks
Device Driver Developer's Guide, 6.6

150

* RETURNS: OK, or ERROR if sysTimestampInt() interrupt handler is not used.
*/

STATUS sysTimestampConnect
(
FUNCPTR routine, /* routine called at each timestamp timer interrupt */
int arg /* argument with which to call routine */
)
{
sysTimestampRoutine = routine;
sysTimestampArg = arg;
return (OK);
}

/**
*
* sysTimestampEnable - initialize and enable the timestamp timer
*
* This routine connects the timestamp timer interrupt and initializes the
* counter registers. If the timestamp timer is already running, this routine
* merely resets the timer counter. \
*
* Set the rate of the timestamp timer input clock explicitly within the
* BSP, in the sysHwInit() routine. This routine does not initialize
* the timer clock rate.
*
* RETURNS: OK, or ERROR if the timestamp timer cannot be enabled.
*/

STATUS sysTimestampEnable (void)
{
if (sysTimestampRunning)

{
/* clear the timer counter here */

return (OK);
}

/* connect interrupt handler for the timestamp timer */

(void) intConnect (INUM_TO_IVEC (XXX), sysTimestampInt, NULL);

sysTimestampRunning = TRUE;

/* set the timestamp timer’s interrupt vector to XXX (if necessary) */
/* reset & enable the timestamp timer interrupt */

/* set the period of timestamp timer (see sysTimestampPeriod()) */

/* clear the timer counter here */
/* enable the timestamp timer here */

return (OK);
}

5 Timestamp Drivers
5.2 Timestamp Driver Overview

151

5

/***
*
* sysTimestampDisable - disable the timestamp timer
*
* This routine disables the timestamp timer. Interrupts are not disabled.
* However, the tick counter will not increment after the timestamp timer
* is disabled, ensuring that interrupts are no longer generated.
*
* RETURNS: OK, or ERROR if the timestamp timer cannot be disabled.
*/

STATUS sysTimestampDisable (void)
{
if (sysTimestampRunning)

{
/* disable the timestamp timer here */

sysTimestampRunning = FALSE;
}

return (OK);
}

/***
*
* sysTimestampPeriod - get the timestamp timer period
*
* This routine returns the period of the timer in timestamp ticks.
* The period, or terminal count, is the number of ticks to which the
* timestamp timer counts before rolling over and restarting the counting
* process.
*
* RETURNS: The period of the timer in timestamp ticks.
*/

UINT32 sysTimestampPeriod (void)
{
/*
* Return the timestamp timer period here.
* The highest period (maximum terminal count) should be used so
* that rollover interrupts are kept to a minimum.
*/
}

/**
*
* sysTimestampFreq - get the timestamp timer clock frequency
*
* This routine returns the frequency of the timer clock, in ticks per second.
* The rate of the timestamp timer should be set explicitly in the BSP,
* in the sysHwInit() routine.
*
* RETURNS: The timestamp timer clock frequency, in ticks per second.
*/

UINT32 sysTimestampFreq (void)

VxWorks
Device Driver Developer's Guide, 6.6

152

{
UINT32 timerFreq;

/*
* Return the timestamp tick output frequency here.
* This value can be determined from the following equation:
* timerFreq = clock input frequency / prescaler
*
* When possible, read the clock input frequency and prescaler values
* directly from chip registers.
*/

return (timerFreq);
}

/***
*
* sysTimestamp - get the timestamp timer tick count
*
* This routine returns the current value of the timestamp timer tick counter.
* The tick count can be converted to seconds by dividing by the return of
* sysTimestampFreq().
*
* Call this routine with interrupts locked. If interrupts are
* not already locked, use sysTimestampLock() instead.
*
* RETURNS: The current timestamp timer tick count.
* SEE ALSO: sysTimestampLock()
*/

UINT32 sysTimestamp (void)
{
/* return the timestamp timer tick count here */
}

/***
*
* sysTimestampLock - get the timestamp timer tick count
*
* This routine returns the current value of the timestamp timer tick counter.
* The tick count can be converted to seconds by dividing by the return of
* sysTimestampFreq().
*
* This routine locks interrupts for cases in which it is necessary to stop
* the tick counter before reading it, or when two independent counters must
* be read. If interrupts are already locked, use sysTimestamp() instead.
*
* RETURNS: The current timestamp timer tick count.
*
* SEE ALSO: sysTimestamp()
*/

UINT32 sysTimestampLock (void)
{
/*
* Return the timestamp timer tick count here.
* Interrupts do *not* need to be locked in this routine if

5 Timestamp Drivers
5.2 Timestamp Driver Overview

153

5

* the counter need not be stopped before reading.
*/
}

#endif /* INCLUDE_TIMESTAMP */

Example 5-2 Timestamp Drivers for Deficient Timers

This example presents a skeleton timestamp device driver for a hardware timer
that cannot be read while enabled, requires preloading, and counts down. See
5.4.2 Working Around Deficiencies In Hardware Timers, p.167, for a discussion of the
most important details involved in writing this kind of driver.

/* sampleBTimer.c - sample B timer library */

/* Copyright 1984-1994 Wind River Systems, Inc. */
#include "copyright_wrs.h"

/*
modification history

01a,23mar94,dzb written.
*/

/*
DESCRIPTION
This library contains sample routines to manipulate the timer functions on
the sample B chip with a board-independent interface. This library handles
the timestamp timer facility.

To include the timestamp timer facility, the macro INCLUDE_TIMESTAMP must be
defined.

To support the timestamp timer facility, two timers are used: a counting
timer, and a correction timer. The counting timer is used as the timestamp
counter, but must be stopped to be read, thereby introducing time skew. The
correction timer periodically resets the counting timer in an effort to
alleviate cumulative time skew. In addition, the correction timer interrupt
is used for one other purpose: to alert the user to a counting timer reset
(analogous to a timestamp rollover event).

The TS_CORRECTION_PERIOD macro defines the period of the correction timer,
which translates to the period of the counting timer reset (analogous to a
timestamp rollover event). The TS_SKEW macro can be used to compensate for
time skew incurred when the counting timer is stopped in sysTimestamp() and
sysTimestampLock(). The value of TS_SKEW is subtracted from the stopped
timestamp counter in an attempt to make up for "lost" time. The correct
value to adjust the timestamp counter is not only board-dependent, it is
influenced by CPU speed, cache mode, memory speed, and so on.

NOTE: This module provides an example of a VxWorks timestamp timer driver
for a timer that cannot be read while enabled, requires preloading, and
counts down. It illustrates the structures and routines discussed in the
document "Creating a VxWorks Timestamp Driver." This module

VxWorks
Device Driver Developer's Guide, 6.6

154

is only a template. In its current form, it does not compile.
*/

/* includes */

#include "drv/timer/timestampDev.h"
#include "drv/timer/sampleBTimer.h"

#ifdef INCLUDE_TIMESTAMP

/* defines */

#ifndef TS_CORRECTION_PERIOD
#define TS_CORRECTION_PERIOD 0xXXX... /* timestamp skew correction pd. */
#endif /* TS_CORRECTION_PERIOD */ /* see sysTimestampPeriod() */

#ifndef TS_SKEW
#define TS_SKEW 0 /* timestamp skew correction time */
#endif /* TS_SKEW */

/* locals */

LOCAL BOOL sysTimestampRunning = FALSE; /* running flag */
LOCAL FUNCPTR sysTimestampRoutine = NULL; /* user rollover routine */
LOCAL int sysTimestampArg = NULL; /* arg to user routine */

/***
*
* sysTimestampInt - correction timer interrupt handler
*
* This routine handles the correction timer interrupt. A user routine is
* called, if one was connected by sysTimestampConnect().
*
* RETURNS: N/A
*
* SEE ALSO: sysTimestampConnect()
*/

LOCAL void sysTimestampInt (void)
{
/* acknowledge the correction timer interrupt here */

sysTimestampEnable ();

if (sysTimestampRoutine != NULL) /* call user-connected routine */
(*sysTimestampRoutine) (sysTimestampArg);

}

/**
*
* sysTimestampConnect - connect a user routine to the timestamp timer
* interrupt
*
* This routine specifies the user interrupt routine to be called at each
* timestamp timer interrupt. It does not enable the timestamp timer itself.
*

5 Timestamp Drivers
5.2 Timestamp Driver Overview

155

5

* RETURNS: OK, or ERROR if sysTimestampInt() interrupt handler is not used.
*/

STATUS sysTimestampConnect
(
FUNCPTR routine, /* routine called at each timestamp timer interrupt */
int arg /* argument with which to call routine */
)
{
sysTimestampRoutine = routine;
sysTimestampArg = arg;

return (OK);
}

/***
*
* sysTimestampEnable - initialize and enable the timestamp timer
*
* This routine connects the timestamp timer interrupt and initializes the
* counter registers. If the timestamp timer is already running, this routine
* merely resets the timer counter.
*
* Set the rate of the timestamp timer input clock explicitly within the
* BSP, in the sysHwInit() routine. This routine does not initialize
* the timer clock rate.
*
* RETURNS: OK, or ERROR if the timestamp timer cannot be enabled.
*/

STATUS sysTimestampEnable (void)
{
int lockKey;

if (sysTimestampRunning)
{
lockKey = intLock (); /* LOCK INTERRUPTS */

/* disable the counting timer here */

/* preload the reset count here */

/* enable the counting timer here */

/* wait for preload to take effect here */

intUnlock (lockKey); /* UNLOCK INTERRUPTS */

return (OK);
}

/* connect interrupt handler for the correction timer */

(void) intConnect (INUM_TO_IVEC (XXX), sysTimestampInt, NULL);

/* set the correction timer’s interrupt vector to XXX (if necessary) */

VxWorks
Device Driver Developer's Guide, 6.6

156

sysTimestampRunning = TRUE;

/* set the period of the correction timer (see sysTimestampPeriod()) */
/* set the period of the counting timer = reset count */

/* enable the counting timer here */
/* enable the correction timer here */

/* wait for preload to take effect on both timers here */

return (OK);
}

/***
*
* sysTimestampDisable - disable the timestamp timer
*
* This routine disables the timestamp timer. Interrupts are not disabled.
* However, the tick counter will not decrement after the timestamp timer
* is disabled, ensuring that interrupts are no longer generated.
*
* RETURNS: OK, or ERROR if the timestamp timer cannot be disabled.
*/

STATUS sysTimestampDisable (void)
{
if (sysTimestampRunning)

{
sysTimestampRunning = FALSE;

/* disable the correction timer here */
/* disable the counting timer here */
}

return (OK);
}

/***
*
* sysTimestampPeriod - get the timestamp timer period
*
* This routine returns the period of the timer in timestamp ticks.
* The period, or terminal count, is the number of ticks to which the
* timestamp timer counts before rolling over and restarting the counting
* process.
*
* RETURNS: The period of the timer in timestamp ticks.
*/

UINT32 sysTimestampPeriod (void)
{
/*
* Return the correction timer period here.
* A reasonable correction period should be chosen. A short period
* causes increased CPU overhead due to correction timer interrupts.

5 Timestamp Drivers
5.2 Timestamp Driver Overview

157

5

* A long period allows for a large accumulation of time skew
* due to sysTimestamp() calls stopping the counting timer.
*/

return (TS_CORRECTION_PERIOD);
}

/***
*
* sysTimestampFreq - get the timestamp timer clock frequency
*
* This routine returns the frequency of the timer clock, in ticks per second.
* The rate of the timestamp timer should be set explicitly in the BSP,
* in the sysHwInit() routine.
*
* RETURNS: The timestamp timer clock frequency, in ticks per second.
*/

UINT32 sysTimestampFreq (void)
{
UINT32 timerFreq;

/*
* Return the timestamp tick output frequency here.
* This value can be determined from the following equation:
* timerFreq = clock input frequency / prescaler
*
* When possible, read the clock input frequency and prescaler values
* directly from chip registers.
*/

return (timerFreq);
}

/***
*
* sysTimestamp - get the timestamp timer tick count
*
* This routine returns the current value of the timestamp timer tick counter.
* The tick count can be converted to seconds by dividing by the return of
* sysTimestampFreq().
*
* Call this routine with interrupts locked. If interrupts are
* not already locked, use sysTimestampLock() instead.
*
* RETURNS: The current timestamp timer tick count.
*
* SEE ALSO: sysTimestampLock()
*/

UINT32 sysTimestamp (void)
{
UINT32 tick = 0;
register UINT32 * pTick;
register UINT32 * pPreload;

VxWorks
Device Driver Developer's Guide, 6.6

158

if (sysTimestampRunning)
{
/* pTick = counter read register location */
/* pPreload = counter preload register location */

/* disable counting timer here */

tick = *pTick; /* read counter value */
pPreload = tick - TS_SKEW; / set preload value

(with time-skew adjustment) */

/* enable counting timer here */

tick -= (0xfff...); /* adjust to incrementing value */
}

return (tick);
}

/***
*
* sysTimestampLock - get the timestamp timer tick count
*
* This routine returns the current value of the timestamp timer tick counter.
* The tick count can be converted to seconds by dividing by the return of
* sysTimestampFreq().
*
* This routine locks interrupts for cases in which it is necessary to stop
* the tick counter before reading it, or when two independent counters must
* be read. If interrupts are already locked, use sysTimestamp() instead.
*
* RETURNS: The current timestamp timer tick count.
* SEE ALSO: sysTimestamp()
*/

UINT32 sysTimestampLock (void)
{
UINT32 tick = 0;
register UINT32 * pTick;
register UINT32 * pPreload;
int lockKey;

if (sysTimestampRunning)
{
lockKey = intLock (); /* LOCK INTERRUPTS */

/* pTick = counter read register location */
/* pPreload = counter preload register location */

/* disable counting timer here */

tick = *pTick; /* read counter value */
pPreload = tick - TS_SKEW; / set preload value

(with time-skew adjustment) */

5 Timestamp Drivers
5.2 Timestamp Driver Overview

159

5

/* enable counting timer here */

intUnlock (lockKey); /* UNLOCK INTERRUPTS */

tick -= (0xfff...); /* adjust to incrementing value */
}

return (tick);
}

#endif /* INCLUDE_TIMESTAMP */

Example 5-3 Timestamp Drivers for the VxWorks System Clock Timer

This example presents a skeleton timestamp driver for systems that have no
suitable spare timers, so that timestamps must be derived from the VxWorks
system clock timer. See 5.4.3 Using the VxWorks System Clock Timer, p.169, for a
discussion of the most important details involved in writing this kind of driver.

/* sampleCTimer.c - sample C timer library */

/* Copyright 1994 Wind River Systems, Inc. */
#include "copyright_wrs.h"

/*
modification history

01a,23mar94,dzb written.
*/

/*
DESCRIPTION
This library contains sample routines to manipulate the timer functions on
the sample C chip with a board-independent interface. This library handles
the timestamp timer facility.

To include the timestamp timer facility, the macro INCLUDE_TIMESTAMP must be
defined.

NOTE: This module provides an example of a VxWorks timestamp timer driver
implemented by reading the system clock timer counter. It illustrates the
structures and routines discussed in the document "Creating a
VxWorks Timestamp Driver." This module is only a template.
In its current form, it does not compile.
*/

#ifdef INCLUDE_TIMESTAMP

#include "drv/timer/timestampDev.h"
#include "drv/timer/sampleCTimer.h"

/* Locals */

LOCAL BOOL sysTimestampRunning = FALSE; /* running flag */

VxWorks
Device Driver Developer's Guide, 6.6

160

/**
*
* sysTimestampConnect - connect a user routine to the timestamp timer
* interrupt
*
* This routine specifies the user interrupt routine to be called at each
* timestamp timer interrupt. It does not enable the timestamp timer itself.
*
* RETURNS: OK, or ERROR if sysTimestampInt() interrupt handler is not used.
*/

STATUS sysTimestampConnect
(
FUNCPTR routine, /* routine called at each timestamp timer interrupt */
int arg /* argument with which to call routine */
)
{
/* ERROR indicates that the system clock tick specifies a
* rollover event */

return (ERROR);
}

/***
*
* sysTimestampEnable - initialize and enable the timestamp timer
*
* This routine connects the timestamp timer interrupt and initializes the
* counter registers. If the timestamp timer is already running, this routine
* merely resets the timer counter.
*
* Set the rate of the timestamp timer input clock explicitly within the
* BSP, in the sysHwInit() routine. This routine does not initialize
* the timer clock rate.
*
* RETURNS: OK, or ERROR if the timestamp timer cannot be enabled.
*/

STATUS sysTimestampEnable (void)
{
if (sysTimestampRunning)

return (OK);

sysTimestampRunning = TRUE;

sysClkEnable (); /* ensure the system clock is running */

return (OK);
}

/***
*
* sysTimestampDisable - disable the timestamp timer
*
* This routine disables the timestamp timer. Interrupts are not disabled.

5 Timestamp Drivers
5.2 Timestamp Driver Overview

161

5

* However, the tick counter does not increment after the timestamp timer
* is disabled, ensuring that interrupts are no longer generated.
*
* RETURNS: OK, or ERROR if the timestamp timer cannot be disabled.
*/

STATUS sysTimestampDisable (void)
{
sysTimestampRunning = FALSE;
return (ERROR);
}

/***
*
* sysTimestampPeriod - get the timestamp timer period
*
* This routine returns the period of the timer in timestamp ticks.
* The period, or terminal count, is the number of ticks to which the
* timestamp timer counts before rolling over and restarting the counting
* process.
*
* RETURNS: The period of the timer in timestamp ticks.
*/

UINT32 sysTimestampPeriod (void)
{
/* return the system clock period in timestamp ticks */

return (sysTimestampFreq ()/sysClkRateGet ())
}

/**
*
* sysTimestampFreq - get the timestamp timer clock frequency
*
* This routine returns the frequency of the timer clock, in ticks per second.
* The rate of the timestamp timer should be set explicitly in the BSP,
* in the sysHwInit() routine.
*
* RETURNS: The timestamp timer clock frequency, in ticks per second.
*/

UINT32 sysTimestampFreq (void)
{
UINT32 timerFreq;

/*
 * Return the timestamp tick output frequency here.
 * This value can be determined from the following equation:
 * timerFreq = clock input frequency / prescaler
 * When possible, read the clock input frequency and prescaler values
 * directly from chip registers.
 */

return (timerFreq);
}

VxWorks
Device Driver Developer's Guide, 6.6

162

/***
*
* sysTimestamp - get the timestamp timer tick count
*
* This routine returns the current value of the timestamp timer tick counter.
* The tick count can be converted to seconds by dividing by the return of
* sysTimestampFreq().
*
* Call this routine with interrupts locked. If interrupts are
* not already locked, use sysTimestampLock() instead.
*
* RETURNS: The current timestamp timer tick count.
* SEE ALSO: sysTimestampLock()
*/

UINT32 sysTimestamp (void)
{
/* return the system clock timer tick count here */
}

/**
*
* sysTimestampLock - get the timestamp timer tick count
*
* This routine returns the current value of the timestamp timer tick counter.
* The tick count can be converted to seconds by dividing by the return of
* sysTimestampFreq().
*
* This routine locks interrupts for cases in which it is necessary to stop
* the tick counter before reading it, or when two independent counters must
* be read. If interrupts are already locked, use sysTimestamp() instead.
*
* RETURNS: The current timestamp timer tick count.
*
* SEE ALSO: sysTimestamp()
*/

UINT32 sysTimestampLock (void)
{
/*
 * Return the system clock timer tick count here.
 * Interrupts do *not* need to be locked in this routine if
 * the counter does not need to be stopped to be read.
 */
}

#endif /* INCLUDE_TIMESTAMP */

5 Timestamp Drivers
5.3 Timestamp Driver Configuration and BSP Interface

163

5

5.3 Timestamp Driver Configuration and BSP Interface

The timestamp timer interface is non-standard; it does not utilize the VxWorks I/O
system. Although the interface was developed for use with VxWorks kernel
instrumentation, it is also useful as a general BSP facility. The timestamp driver’s
external interface may change when a more generic, abstracted timer facility is
adopted.

The following sections describe each procedure and its external interface. The
descriptions apply to a standard timestamp driver. Although the external
functionality must remain as described here, procedure content may differ for a
particular driver implementation.

sysTimestampConnect()

This routine specifies the timestamp callback routine, a routine to be run each time
the timestamp counter rolls over. If this facility is available,
sysTimestampConnect() must store the function pointer in the global variable
sysTimestampRoutine and return OK, to indicate success.

If the callback cannot be provided, sysTimestampConnect() returns ERROR to
indicate that no callback routine is connected. In this situation, the VxWorks kernel
instrumentation does not use the interrupt handler sysTimestampInt() as part of
its timestamp timer implementation, but relies instead on the system clock tick to
signal a timestamp reset event (see 5.4.3 Using the VxWorks System Clock Timer,
p.169). To use the timestamp driver in other applications, you must make similar
provisions for an ERROR result.

The sysTimestampConnect() routine does not enable the timestamp timer itself.

STATUS sysTimestampConnect
(
FUNCPTR routine,
int arg
)

NOTE: Remember that each routine must return the appropriate value, as
described in the following sections. For example, sysTimestampEnable() must
return OK if successful, or ERROR if not successful. (OK and ERROR are defined in
the VxWorks header file installDir/vxworks-6.x/target/h/vxWorks.h.)

VxWorks
Device Driver Developer's Guide, 6.6

164

The arguments for this routine are the following:

routine
Pointer to the routine called at each timer rollover interrupt.

arg
Argument for the routine referenced in the routine parameter.

The result must be OK or ERROR.

sysTimestampEnable()

If the timer is not already enabled, this routine performs all the necessary
initialization for the timer (for example, connecting the interrupt vector, resetting
registers, configuring for timestamp mode, and so on), and then enables the
timestamp timer. If the timer is already enabled, this routine simply resets the
timer counter value.

STATUS sysTimestampEnable (void)

This routine takes no arguments.

The result must be OK or ERROR.

sysTimestampDisable()

This routine disables the timestamp timer. Interrupts are not disabled. However,
the tick counter does not count after the timestamp timer is disabled; thus, rollover
interrupts are no longer generated.

STATUS sysTimestampDisable (void)

This routine takes no arguments.

The result must be OK or ERROR.

sysTimestampPeriod()

This routine returns the period of the timer in timestamp ticks. The period is the
number of ticks the timestamp timer counts before rolling over (or resetting) and
restarting the counting process.

UINT32 sysTimestampPeriod (void)

This routine takes no arguments.

5 Timestamp Drivers
5.3 Timestamp Driver Configuration and BSP Interface

165

5

The result must be the period of the timer in timestamp ticks.

sysTimestampFreq()

This routine returns the output frequency of the timer, in timestamp ticks per
second. When possible, the frequency should be derived from actual hardware
register values.

If the timer input clock is programmable, do not set its clock rate in
sysTimestampFreq(). Setting the timer input clock rate should be part of the
initialization performed by sysHwInit() in sysLib.c.

UINT32 sysTimestampFreq (void)

This routine takes no arguments.

The result must be the timestamp timer frequency, in ticks per second.

sysTimestamp()

This routine returns the current value of the timestamp counter, when interrupts
are already locked. To convert this tick count to seconds, divide by the result of
sysTimestampFreq(). The result must increase; that is, the timestamp values must
count up. If you are working with a timer that actually counts down, see
5.4.2 Working Around Deficiencies In Hardware Timers, p.167.

If interrupts are not already locked, call sysTimestampLock() instead.

UINT32 sysTimestamp (void)

This routine takes no arguments.

The result must be the current tick count of the timestamp timer.

sysTimestampLock()

This routine returns the current value of the timestamp counter. To convert the
result to seconds, divide the tick count by the result of sysTimestampFreq(). The
result must increase monotonically; that is, the timestamp values must count up. If
you are working with a timer that actually counts down, see 5.4.2 Working Around
Deficiencies In Hardware Timers, p.167.

VxWorks
Device Driver Developer's Guide, 6.6

166

This routine locks interrupts for cases in which it is necessary to stop the tick
counter in order to read it, or when two independent counters must be read. If
interrupts are already locked, call sysTimestamp() instead.

UINT32 sysTimestampLock (void)

This routine takes no arguments.

The result must be the current tick count of the timestamp timer.

5.4 The Timestamp Driver Development Process

This section discusses the three cases of timestamp device drivers and how each is
developed. These descriptions correspond to the sample code provided in Sample
Drivers, p.148.

5.4.1 Timers that Can Be Read While Enabled

Example 5-1 shows a sample device driver for hardware timers that can be read
while enabled. This type of timer is the simplest to configure for timestamp mode,
and the device driver code is straightforward.

Timer Period

The timer should be configured for the highest possible period by setting the
terminal count to its maximum value (usually 0xfff… when counting up, and 0
when counting down).

NOTE: Because Wind River System Viewer uses the timestamp driver to log
system calls and other basic operating system events, the sysTimestamp() and
sysTimestampLock() routines must not make calls that generate these events. For
a complete discussion of event logging and examples of operating system facilities
that generate System Viewer events, see the Wind River System Viewer User’s Guide.

5 Timestamp Drivers
5.4 The Timestamp Driver Development Process

167

5

Interrupt Level

If programmable, a high-priority interrupt level should be chosen for boards with
a low timer period. This ensures that frequent rollover interrupts are serviced
without delay, and that the rollover event is registered in a timely manner with the
timestamp callback routine (sysTimestampRoutine()).

Interrupt Locking

Timers that can be read while enabled do not need to lock interrupts in the
sysTimestampLock() routine.

5.4.2 Working Around Deficiencies In Hardware Timers

The sample device driver in Example 5-2 illustrates techniques for using a
hardware timer that cannot be read while enabled, requires preloading, and counts
down. This combination of timer attributes presents several problems for the
device driver.

Timer Re-Synchronization

If a timestamp timer cannot be read while enabled, a second correction timer can
compensate: use the correction timer to reset the timestamp timer periodically. In
this scenario, the second timer runs as a periodic interrupt timer. On each interrupt
it resets the first (counting) timer. The counting timer is stopped and read for
timestamp values, but never generates an interrupt because it is always reset
before reaching its terminal count. However, the correction timer does generate
interrupts; because it is not read for timestamp values, it never has time-skew
problems. The correction timer ISR resets the counting timer, and then calls the
timestamp callback routine (sysTimestampRoutine).

This approach clears the time skew that accumulates in the counting timer
between resets. Although a discernible time skew may be present towards the end
of the timer period, it is flushed by the reset operation.

VxWorks
Device Driver Developer's Guide, 6.6

168

Timer Period

Because the counting timer is always reset by the correction timer, the timestamp
timer period is really the correction timer period. In the Example 5-2 sample code,
this period is set by the TS_CORRECTION_PERIOD macro. The value must balance
a short period’s increased interrupt service rate with a long period’s noticeable
time skew accumulation.

The chosen period should be based on the amount of time skew that can
accumulate, which is related to how often the timestamp facility is called and to
the sensitivity of the application using the facility. Wind River’s experience is that
a correction period of 100 to 150 msec sufficiently satisfies both requirements for
most applications.

Down Counter

The timestamp values must increase. If the timer in use actually counts down, the
tick count must be converted to an incrementing value. This is easily done by
subtracting the counter value from the reset value (usually 0xfff… for a down
counter).

Counter Preloading

If the counter value must be preloaded before the timer can resume counting, three
subroutines must perform this action: sysTimestamp(), sysTimestampLock(),
and sysTimestampEnable(). The preload operation adds to the time spent with
the timer disabled, exacerbating time-skew problems.

After the sysTimestampEnable() routine enables the counting timer, it may need
to delay until the preload value is physically loaded into the counter. This is an
issue for timers that synchronize the preloading with a prescaler output transition.
If a delay is not inserted, it may be possible for a fast target board to execute the
timer preload, return from sysTimestampEnable(), and call sysTimestamp(),
which stops the timer and specifies a different preload value. This would nullify
the sysTimestampEnable() reset operation.

Adjustment for Time Skew

Counters that are writeable or that have a preload mechanism can compensate for
time skew. While the counter is stopped for a read operation, the counter value or

5 Timestamp Drivers
5.4 The Timestamp Driver Development Process

169

5

the preload value may be adjusted by adding (for an up counter) or subtracting
(for a down counter) the number of ticks spent with the timer disabled. The
Example 5-2 sample code subtracts the TS_SKEW macro (0, by default) from the
stopped timestamp counter in an attempt to make up for lost time. Note that the
adjustment value is not only board-dependent, it is influenced by CPU speed,
cache mode, memory speed, and so on. In the default case (TS_SKEW = 0), compiler
optimization eliminates the TS_SKEW adjustment.

Counter Read Optimization

Write the sysTimestamp() and sysTimestampLock() routines so that the counter
and preload register locations are set before the timer is stopped, in order to reduce
the time spent with the counter disabled. This minor change causes a significant
reduction in time skew.

5.4.3 Using the VxWorks System Clock Timer

Example 5-3 presents a sample device driver that reads the VxWorks system clock
timer to obtain the timestamp tick count. This approach is useful if there are no
other timers available, and if the system clock timer’s counter can be read while
enabled.

Timer Rollover Interrupt

When the system clock timer is used as the timestamp timer, the usual
sysTimestampInt() routine cannot be used to service the timer interrupt. This is
because the system clock timer already has an ISR. Thus, the system clock tick can
be monitored to provide timestamp rollover information. The
sysTimestampConnect() routine always returns ERROR because the
sysTimestampRoutine callback routine is not used.

Timer Counter Not Reset

Because the system clock is independent of the timestamp facility, the timestamp
driver must not disrupt the system clock in any way. Thus,
sysTimestampEnable() does not reset the timer counter for the system clock. This
causes inaccurate timestamp values until the first system clock tick ISR resets the

VxWorks
Device Driver Developer's Guide, 6.6

170

timer counter. For similar reasons, sysTimestampDisable() does not physically
disable the system clock.

Timer Period

The period of the system clock timer is under the control of the system clock
facility, not under the control of the timestamp driver. Thus, the system and the
application should not call sysClkRateSet() to change the system clock rate once
sysTimestampPeriod() has been called to determine the timestamp timer period.

5.5 Common Timestamp Driver Development Issues

This sections discusses common issues and concerns encountered during
timestamp driver development.

Expect significant changes to the API for all types of timer drivers in the future.
Wind River is in the process of developing a new API with an object-oriented
interface. This new API corrects the design problem that exists when each driver
module provides exactly the same entry points.

171

 6
Additional Drivers

6.1 Introduction 171

6.2 ATAPI Drivers 172

6.3 Interrupt Controller Drivers 172

6.4 Memory Drivers 174

6.5 Multi-Mode (SIO) Serial Drivers 176

6.1 Introduction

This chapter covers a variety of drivers for different purposes.

NOTE: The information in the chapter is provided for reference purposes only. If
you want to develop a new driver, see VxWorks Device Driver Developers Guide,
Volume 1.

VxWorks
Device Driver Developer's Guide, 6.6

172

6.2 ATAPI Drivers

For most situations, the general purpose ATA/ATAPI driver included with
VxWorks (installDir/vxworks-6.x/target/src/drv/hdisk/ataDrv.c) works without
modification. The driver uses configurable data access macros which allow the
proper BSP routines to be called when the driver interacts with hardware. ataDrv.c
is monolithic, meaning that its routines perform functions that would otherwise be
done in a generic library, as well as performing the actual interaction with
hardware. Writing a new driver for ATAPI at this time would involve either
altering ataDrv.c or extracting its generic functionality, and is not recommended.

6.3 Interrupt Controller Drivers

For VxWorks 6.x and later, interrupt controllers are incorporated into the processor
abstraction layer (PAL), guidelines for writing these drivers are not available at the
time of this printing. For more information, see the Wind River Online Support
Web site.

BSP Interface

This section describes a common organization for interrupt controller driver
usage, along with some guidelines on specific details of what to avoid and what to
make sure is incorporated. Because the design of interrupt controllers varies
widely, this can only be an approximate guide. For more information, refer to the
template interrupt controller driver in
installDir/vxworks-6.x/target/src/drv/intrCtl/templateIntrCtl.c and the interrupt
controller driver in your reference BSP.

Typical interrupt controller drivers use two initialization routines. Often, they
must provide an interrupt service routine and a connect routine.

NOTE: If you want to develop a new interrupt controller driver, see VxWorks Device
Driver Developers Guide, Volume 1 and VxWorks Device Driver Developer’s Guide (Vol.
2): Interrupt Controller Drivers.

6 Additional Drivers
6.3 Interrupt Controller Drivers

173

6

Interrupt controllers should be initialized early in sysHwInit(). They must be
initialized before any device generates an interrupt. Early in processor
initialization, the processor's interrupts are masked, so any interrupts which do
occur should not cause problems. Although interrupt controller initialization can
occur earlier than this, the best design usually does interrupt controller
initialization as the first call from sysHwInit().

Usually, the architecture specific version of intConnect() is called to connect the
interrupt controller interrupt source to the architecture specific processor interrupt
system. However, intConnect() requires the memory system to be available in
order to allocate memory for a dynamically allocated interrupt stub, which calls
the actual Interrupt Service Routine (ISR).

For this reason, the external interrupt controller cannot be connected to the
architecture specific processor interrupt system until after sysHwInit() is
complete and the root task is running. So the appropriate place to put the
intConnect() call is at the beginning of sysHwInit2(). Usually, the interrupt
controller must be first in sysHwInit2(), because it must be before other interrupts
are connected.

Non-Vectored Interrupt Sources

In an ideal world, all interrupt sources provide a vector to use for fast interrupt
dispatching. In this case, the hardware provides a vector which is used to dispatch
the appropriate ISR without the need to handle the interrupt controller directly at
interrupt time. Drivers for interrupt controllers with this property may require
nothing more than the sysHwInit() and sysHwInit2() initialization routines
mentioned above.

However, vectored interrupt sources may not always be available. The interrupt
controller's output pin is connected to some interrupt input pin on some other
interrupt controller, possibly directly to a processor interrupt, and possibly on
some other interrupt controller elsewhere on the board. Because no vector is
available, the architecture specific interrupt system does not know what device
generated the interrupt. So the interrupt controller driver must query the
controller to see which pin generated the interrupt, and dispatch the appropriate
ISR. How to do this depends on which processor architecture is being used. Refer
to the source code in the installDir/vxworks-6.x/target/src/arch/ARCH directory,
the template interrupt controller driver, and any interrupt controller driver in the
reference BSP.

VxWorks
Device Driver Developer's Guide, 6.6

174

6.4 Memory Drivers

Memory controllers are not related to any of the normal device driver interfaces to
the OS. The memory controller is typically configured by boot code early in the
boot process when the processor's initial power-on initialization is performed, and
not modified afterward.

Memory controllers are often quite simple. The drivers are typically written in
assembly and put in the BSP romInit.s file. For example, the assembly source for
one PowerPC processor's on-chip memory controller is about 60 lines long,
including comments and blank lines, and just 34 assembly instructions when
comments and blank lines are removed. Some memory controller initialization
sequences are even shorter.

Many times, the assembly source for memory controller initialization is provided
by the memory controller vendor. This code can often be used with little or no
modification. When additional work is required, it usually takes one of several
forms, described in the following sections.

6.4.1 Hardware Mismatches

The code provided by the controller vendor may not match the type of memory
which is being used in your hardware. In this case, modifications may need to be
made to handle bank size, bank count, memory speed and divisors, ECC
characteristics, and other aspects of memory configuration. If this is the case, you
need to work with the memory controller vendor or memory vendor to determine
the appropriate settings. Sometimes, it may be better to re-design the hardware to
use memory types that are already supported.

6.4.2 Complex Modern Memory Controllers

Memory controllers included on-chip on some modern processors have become
complex. In this case, it may be better to write the memory controller in C instead
of maintaining hundreds, or even thousands, of lines of assembly source code.

There are a couple of potential problems with this, but solutions may be available.

NOTE: The information in the chapter is provided for reference purposes only. If
you want to develop a new driver, see VxWorks Device Driver Developers Guide,
Volume 1.

6 Additional Drivers
6.4 Memory Drivers

175

6

First, in order to use C, a stack must be available for subroutine call overhead. This
means some RAM must be available to contain the stack data before the memory
controller is configured. If the chip provides a small bank of static RAM, it can
sometimes be configured to be available for use by the memory controller driver.
If the chip does not already include any on-chip static RAM or if it is not available
for other reasons, it may be possible to include a small bank of on-board static
RAM for this purpose.

The second problem with using C source code is related to the make subsystem,
source code, and the way the bootable image is created. For the purposes of a
memory controller driver, the boot ROM image consists of three modules:
romInit.o, bootInit.o, and an object file containing a RAM resident image which is
copied to RAM early in the boot process. A more complete description of the
process of creating the boot ROM image or standalone VxWorks image is described
in the VxWorks BSP Developer’s Guide. Also, you can find details by examining the
output of the make bootrom command.

The memory controller must be linked into the image along with romInit.o and
bootInit.o, before the RAM resident image is loaded into RAM. The RAM resident
image cannot use it, since the RAM must have already been initialized before this
image is run.

The build system includes a mechanism for including object modules in the
RAM-resident image, but it does not include a specific mechanism to include
additional object modules in the ROM-resident image.

There is an indirect mechanism to provide object modules which are included in
the base bootrom image. Although you cannot include an object module directly,
you can include a library in the LIB_EXTRA macro in Makefile. The full makefile
additions might look something like the following, extracted from makefile in the
wrPpmc440gp BSP:

LIB_EXTRA = romExtras.a

Additional objects used by romInit

EXTRA_OBJS = romI2cDrv.o romSdramInit.o

romExtras.a: $(EXTRA_OBJS)
$(AR) crus $@ $(EXTRA_OBJS)

For additional information, download the wrPpmc440gp BSP to see exactly what
is being done and how this situation is handled.

VxWorks
Device Driver Developer's Guide, 6.6

176

6.5 Multi-Mode (SIO) Serial Drivers

The generic multi-mode serial (SIO) drivers are provided in the
installDir/vxworks-6.x/target/src/drv/sio directory. These drivers are called SIO
drivers to distinguish them from the older serial drivers that have only a single
interrupt mode of operation.

SIO drivers provide an interface for setting hardware options, such as the number
of stop bits, data bits, parity, and so on. In addition, these drivers provide an
interface for polled communication that can provide external mode debugging
(such as ROM-monitor style debugging) over a serial line. Currently only
asynchronous-mode SIO drivers are supported.

6.5.1 SIO_CHAN and SIO_DRV_FUNCS

Every SIO device is controlled by an SIO_CHAN structure. This structure contains
a single member, a pointer to an SIO_DRV_FUNCS structure. These structures are
defined in installDir/vxworks-6.x/target/h/sioLib.h as:

typedef struct sio_chan /* a serial channel */
{
SIO_DRV_FUNCS * pDrvFuncs;
/* device data */
} SIO_CHAN;

typedef struct sio_drv_funcs SIO_DRV_FUNCS;

struct sio_drv_funcs /* driver functions */
{
int (*ioctl)

(
SIO_CHAN * pSioChan,
int cmd,
void * arg
);

int (*txStartup)
(
SIO_CHAN * pSioChan
);

NOTE: The information in the chapter is provided for reference purposes only. You
should use this information to maintain existing serial driver code. If you want to
develop a new serial driver, see VxWorks Device Driver Developers Guide, Volume 1
and VxWorks Device Driver Developer’s Guide (Vol. 2): Serial Drivers.

6 Additional Drivers
6.5 Multi-Mode (SIO) Serial Drivers

177

6

int (*callbackInstall)
(
SIO_CHAN * pSioChan,
int callbackType,
STATUS (*callback)(),
void * callbackArg
);

int (*pollInput)
(
SIO_CHAN * pSioChan,
char * inChar
);

int (*pollOutput)
(
SIO_CHAN * pSioChan,
char outChar
);

};

The members of the SIO_DRV_FUNCS structure function as follows:

ioctl()
Points to the standard I/O control interface routine for the driver. This routine
provides the primary control interface for any driver. To access the I/O control
services for a standard SIO device, use the following symbolic constants:

SIO_BAUD_SET, SIO_BAUD_GET
Sets and retrieves the port baud rate.

SIO_HW_OPTS_SET, SIO_HW_OPTS_GET
Sets and retrieves the port hardware options. The available options are:
CLOCAL, HUPCL, CREAD, CSIZE, PARENB, and PARODD.

For more information on these options, see
installDir/vxworks-6.x/target/h/sioLibCommon.h.

SIO_MODE_SET, SIO_MODE_GET, SIO_AVAIL_MODES_GET
Sets and retrieves the port mode to switch between polled mode and
interrupt driven mode, and find which modes are available. Polled mode
is specified as SIO_MODE_POLL and interrupt driven mode is specified
with SIO_MODE_INT. When SIO_AVAIL_MODES_GET is used, the values
of SIO_MODE_POLL and SIO_MODE_INT are logically or-d together as
follows:

*(int *)arg = SIO_MODE_INT | SIO_MODE_POLL;

VxWorks
Device Driver Developer's Guide, 6.6

178

SIO_OPEN
Sets modem control lines (RTS and DTR) to TRUE if not already set, and
initializes the device for user operation. Only valid if SIO_HUP is
supported.

SIO_HUP
Resets RTS and DTR signals.

Other ioctl() commands can be supported as well. For a more complete list of
ioctl() commands that can be supported by serial drivers (such as keyboard
modes and keyboard LED states), see
installDir/vxworks-6.x/target/h/sioLibCommon.h.

txStartup()
Provides a pointer to the routine that the system calls when new data is
available for transmission. Typically, this routine is called only from the
ttyDrv.o module. This module provides a level of functionality that allows a
raw serial channel to behave with line control and canonical character
processing.

callbackInstall()
Provides the driver with pointers to callback routines that the driver can call
asynchronously to handle character puts and gets. The driver is responsible for
saving the callback routines and arguments that it receives from the
callbackInstall() routine. The available callbacks are
SIO_CALLBACK_GET_TX_CHAR and SIO_CALLBACK_PUT_RCV_CHAR.

■ Define SIO_CALLBACK_GET_TX_CHAR to point to a routine that fetches a
new character for output. The driver calls this callback routine with the
supplied argument and an additional argument that is the address to
receive the new output character (if any). The called routine returns OK to
indicate that a character was delivered, or ERROR to indicate that no more
characters are available.

■ Define SIO_CALLBACK_PUT_RCV_CHAR to point to a routine the driver
can use to pass characters to the system. For each incoming character, the
callback routine is called with the supplied argument, and the new
character as a second argument. Drivers normally do not care about the
return value from this call. In most cases, there is nothing that a driver can
do but drop a character if the I/O system is not able to receive it.

pollInput() and pollOutput()
Provide an interface to polled mode operations of the driver. These routines
are not called unless the device has already been placed into polled mode by
an SIO_MODE_SET operation.

6 Additional Drivers
6.5 Multi-Mode (SIO) Serial Drivers

179

6

See installDir/vxworks-6.x/target/src/drv/sio/templateSio.c for more information
on the internal workings of a typical SIO device driver.

6.5.2 Polled Mode, WDB, and Kernel Initialization

When WDB is used over a serial channel, it puts the SIO driver into polled mode.
This mode disables interrupts and performs I/O operations. Eventually, WDB
returns the driver to normal interrupt mode operation.

During BSP development, it is possible to use WDB in polled mode before the
kernel is available (see the VxWorks BSP Developer’s Guide: Porting a BSP to Custom
Hardware). In this case, the WDB target agent calls the driver xxxModeSet()
routine to set the driver into polled mode. Later, the agent puts the driver back into
normal interrupt mode. For more information, see the VxWorks Kernel
Programmer’s Guide: Kernel.

Your driver must be able to handle this situation. The WDB agent starts the polled
mode session by issuing an ioctl() with the SIO_MODE_SET command, which
calls the driver xxxModeSet() routine. This routine, as well as the polled mode
input and output routines, must be able to function without any previous
initialization having been performed.

6.5.3 Serial Ports, WDB, and Interrupts

SIO driver developers must be aware of two issues related to the use of serial ports
for a WDB connection in addition to kernel initialization. These issues are related
to interrupts and the order of system initialization.

When using a serial port for a WDB connection, WDB switches the port between
polled mode and normal operation, depending on what WDB is doing at any given
time. During system mode debugging, which is the only debug mode available
during system bringup, WDB puts the serial port into polled mode. But at other
times, WDB puts the serial port into normal operation, which usually implies an
interrupt-driven mode.

Stray interrupts cause the most serious problem. Connecting an interrupt requires
that the system memory pool be available. However, during early parts of system
initialization, the system memory pool is not yet available. The driver must wait

VxWorks
Device Driver Developer's Guide, 6.6

180

until after usrRoot() begins before it can successfully connect an ISR to the device
interrupt. The normal calling sequence is:

usrRoot() => sysClkConnect() => sysHwInit2() => the driver's interrupt
initialization routine => intConnect().

If the driver attempts to connect an ISR before usrRoot() runs, the attempt fails.
Any subsequent interrupts are stray interrupts, which cause problems during
system initialization.

Another problem is related to the behavior of the actual driver if it attempts to
connect interrupts before the system has started. In this case, the SIO driver may
not function in interrupt mode thereafter, though it should continue to work in
polled mode. As mentioned above, interrupts cannot be connected before the
system has started.

One possible workaround for both these problems is to write the SIO driver in such
a way that it allows the BSP to signal that interrupts cannot be connected. The
generic way to do this is to create a global variable in the driver, indicating whether
interrupts can be connected. The value should be initialized to TRUE. In the BSP,
set the value to FALSE early in sysHwInit(), or in the SYS_HW_INIT_0(I) macro, if
that macro is defined. Then, at the beginning of sysHwInit2(), restore the value to
TRUE. Using this mechanism, the driver does not need to be modified to run both
on a BSP under development and a standard BSP.

181

 7
Migrating to VxBus

7.1 Overview 181

7.2 Porting an Existing VxWorks Driver to VxBus 181

7.1 Overview

Porting a legacy VxWorks driver to be VxBus compliant involves several simple
changes. An overview of the porting process is provided in the steps below. (For
more information on VxBus, see VxWorks Device Driver Developer’s Guide, Volume 1:
Writing Device Drivers.)

7.2 Porting an Existing VxWorks Driver to VxBus

Porting an existing VxWorks device driver to VxBus generally includes the
following steps, briefly mentioned here and discussed in more detail later in the
chapter:

1. Verify that the hardware and driver work correctly.

2. Create the VxBus infrastructure required for your driver.

VxWorks
Device Driver Developer's Guide, 6.6

182

3. Move existing code into the new source file.

4. Remove driver code from the BSP.

5. Add debug code based on conditional compilation.

6. Change the driver initialization over to VxBus.

7. Add the VxBus driver methods required by your driver class.

8. Update names in the source file as necessary.

9. Remove any BSP dependencies.

10. Convert register access in the existing code.

11. Remove all global variables.

7.2.1 Verifying Your Hardware and Driver Code

The first step to porting a driver is to ensure that the driver works correctly without
VxBus. Starting with a working driver reduces the scope of debugging by limiting
errors to the porting process and avoiding problems stemming from the
functioning of the original driver.

When you are satisfied that the original driver works correctly, make a backup
copy of the driver and your BSP. You can refer back to this copy during the porting
process.

7.2.2 Creating the VxBus Infrastructure

There are several elements required by every VxBus device driver. Start by adding
the empty driver framework that interacts with VxBus. The required parts of this
framework include the driver source file itself, one or more optional header files, a
CDF file (to allow the driver to be visible to Workbench and the vxprj
command-line facility), and configuration stub files so that the driver can be
included in BSP command-line builds (for more information on these builds, see
the VxWorks Command-Line Tool’s User’s Guide).

Once all of the elements of the driver are present in the correct places, configure the
BSP for the development effort.

Wind River drivers must be put in the appropriate class-specific directory under
installDir/vxworks-6.x/target/src/hwif. Drivers provided by other vendors must be

7 Migrating to VxBus
7.2 Porting an Existing VxWorks Driver to VxBus

183

7

put in the driver-specific directory under installDir/vxworks-6.x/
target/3rdparty/vendor/driver.

Driver Source File

To create the driver source file, start with a template file or an existing driver from
the same driver class. Templates, if available, are kept in the same directory as
other drivers of the same class.

Driver Header Files (Optional)

Many VxBus device drivers have all source code located in a single source file, with
no external header file. However, if your driver includes a number of
device-specific macros or other driver-specific information, you can put this
information in an optional header file.

When porting an existing driver, you may want to include two header files, one
that contains the contents of the existing driver's header file and one that includes
the existing driver's BSP-specific stub header file. For example, the pre-VxBus FEI
driver used a header file named fei82557End.h and a second BSP-specific header
file sysFei82557End.h. During the VxBus porting process, keep these two files as
separate header files. Once the driver nears completion, the files should be
consolidated into the existing header file.

Driver Component Description File

The component description file (CDF) for your driver allows the driver to be
configured and included in a project using standard Wind River tools (Workbench
and the vxprj command-line utility).

Wind River driver CDF files are located in installDir/vxworks-6.x/
target/config/comps/vxWorks and in the architecture-specific directories under
this directory. Third-party driver CDF files are located in installDir/
vxworks-6.x/target/3rdparty/vendor/driver. By convention, driver files use the
prefix 40, for example 40g64120a.cdf.

NOTE: This section provides an overview of the component description file
requirements for adding a driver. For detailed information on CDFs and the
component description language, see VxWorks Kernel Programmer’s Guide: Kernel.

VxWorks
Device Driver Developer's Guide, 6.6

184

In most cases, the CDF file for a driver is simple. You must supply a value for
Component. Also, the _INIT_ORDER value must be set to
hardWareInterFaceBusInit.

For example:

Component DRV_CLASS_NAME {
NAME DriverName
SYNOPSIS Description Of Driver
_CHILDREN FOLDER_DRIVERS
REQUIRES INCLUDE_VXBUS \

INCLUDE_PLB_BUS \
other requirements

INIT_RTN sampleDriverRegister();
INIT_AFTER INCLUDE_PLB_BUS
_INIT_ORDER hardWareInterFaceBusInit
_CHILDREN FOLDER_DRIVERS

}

Note that by default, the driver is specified as a child of the FOLDER_DRIVERS
folder. This is done by specifying the _CHILDREN option as shown in the example:

_CHILDREN FOLDER_DRIVERS

Many drivers have configuration options. Configuration options that are specified
as parameters should be configurable from within Workbench. To do this, provide
Parameter entries for each parameter and link the parameters to your Component
with the CFG_PARAMS keyword.

For more information on how the driver manages configuration options internally,
see VxWorks Device Driver Developer’s Guide, Volume 1.

Driver Configuration Stub Files

Configuration stub files provide similar functionality to the CDF file, but are used
when building the VxWorks image from the BSP directory using the make
command (this is known as the bspDir/config.h build method).

NOTE: Be sure to include the leading underscore on the keywords of the CDF file
(where shown in the example above). The underscore reverses the meaning. For
example, a _CHILDREN entry indicates that this component (in this case, your
driver) is a child of the specified folder. If the underscore is not present, the folder
(FOLDER_DRIVERS) is configured as a child of your driver, which is not correct.

7 Migrating to VxBus
7.2 Porting an Existing VxWorks Driver to VxBus

185

7

In most cases, each driver requires two stub files. The stub files are named
according to the convention for your driver, with the extensions .dc and .dr.

The driverName.dc file usually contains a forward reference to the driver
registration routine, and nothing else. Use the Wind River macro IMPORT to
declare this routine. (Note that all registration routines return a void value.)

The following is a sample driver .dc file:

IMPORT void sampleDriverRegister(void);

The .dr file contains a call to the driver registration routine. This call must be
surrounded by #ifdef and #endif. The macro used on the #ifdef line must match
the component name used in the CDF file (see Driver Component Description File,
p.183).

The last line must be terminated with a newline (be sure that your editor does not
strip it off).

The following is a sample driver .dr file:

#ifdef DRV_CLASS_NAME
 sampleDriverRegister();
#endif /* DRV_CLASS_NAME */

Wind River driver .dc and .dr files are located in installDir/vxworks-6.x/
target/config/comps/src/hwif. Third-party driver .dc and .dr files are located in
installDir/vxworks-6.x/target/3rdparty/vendor/driver.

Modifying the BSP (Optional)

This step is optional because your BSP may already be VxBus-compliant or,
depending on the device, there may be no explicit BSP support required (for
example, when working with PCI devices).

NOTE: In general, you should build your project files using Workbench or the
vxprj command-line utility. However, the BSP build method described in this
section is required in certain development scenarios including early BSP and
driver development. For more information on this build method, see the VxWorks
Command-Line Tools User’s Guide.

NOTE: Before you start working on your VxBus-enabled driver, you must make
sure that your BSP is also VxBus compliant. If your BSP is not enabled for use with
VxBus, see the VxWorks BSP Developer’s Guide.

VxWorks
Device Driver Developer's Guide, 6.6

186

Depending on the bus type, VxBus may be able to discover your device
automatically. For example, when the device is on a PCI bus or variant of PCI,
information about the device is available from PCI configuration space. VxBus
reads this information and compares it against PCI configuration information
provided by a driver for a PCI device. If the information matches, the driver is
paired with the device.

However, with the PLB bus type, devices are not discovered automatically. In this
case, you must add an entry for your device in the hcfDeviceList[] array in the
BSP hwconf.c file.

For easier debugging, configure your BSP so that the show routines are included.
Be sure to include the VxBus show routines in addition to the standard show
routines. For example, add the following lines in the BSP config.h file:

#define INCLUDE_SHOW_ROUTINES
#define INCLUDE_VXBUS_SHOW

Also include your own driver in config.h as follows:

#define DRV_CLASS_NAME

Verifying the infrastructure

Once you have created your driver, compiled it, added it to a library, and
configured your BSP, verify that what you have done so far is correct.

To do this, first build the VxWorks image from the BSP directory. Verify that the
driver file is included by using the nmarch command and searching for the
registration routine.

Next, verify that the CDF file is correct by starting Workbench and configuring the
VxWorks image. If everything is correct, your driver should be available in the
drivers folder (not greyed out).

Finally, boot the image and run vxBusShow(). Your driver should show up in the
list of drivers and the target device should show up in the list of devices.

One common problem—frequently encountered when creating drivers for PLB
devices—is that the name of the driver does not match the name you provided in
the hcfDeviceList[] table. When this happens, the output of vxBusShow()
displays the entry as an orphan rather than a device. If this happens, you must get
the names of the driver and device to match up before proceeding.

VxBus uses the name to match a driver to the hardware. The name is compared
using strcmp(). Therefore, the name must be identical (the comparison is case

7 Migrating to VxBus
7.2 Porting an Existing VxWorks Driver to VxBus

187

7

sensitive). Check that the driver name and the name listed in the hcfDeviceList[]
table in hwconf.c are identical and correct as necessary.

The second most common problem at this stage is related to the device's register
base address. For PLB devices, the first register base address must be non-null. You
can verify this by running vxBusShow(2).

This displays the full set of pRegBase[] entries for each device (instance and
orphan) known by VxBus. If the pRegBase[0] entry for your device is zero, correct
the problem by supplying the correct base address.

Before moving on to the next step, be sure that your device and driver are
connected to each other. To do this, lock at the output from vxBusShow(). If the
device appears as an orphan, the pairing was not successful.

7.2.3 Moving Existing Code into the New Source File

The goal of this phase is to consolidate your existing, working code into the VxBus
driver source file.

When the infrastructure for your driver is in place, the next step in porting is to
copy the existing driver code into the VxBus driver source file. Note that this
includes both the driver proper, and the BSP-specific stub file that you started with.

For this phase, you should modify the CDF file and the .dc stub file so that they
include the driver source file in the BSP or project compilation. You must do this
because many non-VxBus drivers have dependencies on macros that are provided
by a BSP file.

NOTE: In some cases, you may not want to supply the register base address in
hwconf.c. If this is the case for your driver, use a non-null value like ERROR or
TRUE as the register base address value, both of which are non-null. If you choose
this option, your driver must not attempt to read or write registers using the VxBus
register access mechanism.

NOTE: Usually, the driver proper and the BSP-specific stub file can go in the same
file without trouble. However, you should verify that there are no LOCAL routines
or LOCAL data variables with the same name in the two files. If there are, make
whatever modifications are necessary and re-verify the non-VxBus driver.

VxWorks
Device Driver Developer's Guide, 6.6

188

7.2.4 Removing Driver Code from the BSP

Now, remove all the code relevant to your driver from the BSP. At this point, this
code has been copied into the VxBus driver's source file and is no longer required
by the BSP.

Once all the driver code is included in the VxBus driver source file and is removed
from the BSP, build the BSP with the new driver included. The image should build
and boot correctly and the device should work as it did previously. You have now
consolidated all of the code to manage the device into a single file. However, you
are still using the old driver.

7.2.5 Adding Debug Code

After the old driver source code is consolidated into a VxBus driver file, you can
add additional debug code. For example, adding debug code is often useful when
the driver provides a way to show contents of the driver-specific data area, often
referred to as pDrvCtrl.

Most drivers benefit by having debug and other diagnostic information available
based on a compile-time macro. If the macro is defined, and a flag is set to the
desired debug level, debug code is available at runtime.

For example, the following code is a modified version of that done for the
vxbNs16550Sio driver:

#ifdef NS16550_DEBUG_ON
int ns16550vxbDebugLevel = 0;

#ifndef NS16550_DBG_MSG
#define NS16550_DBG_MSG(level,fmt,a,b,c,d,e,f) \

if (ns16550vxbDebugLevel >= level) \
logMsg(fmt,a,b,c,d,e,f)

#endif /* NS16550_DBG_MSG */

#else /* NS16550_DEBUG_ON */

#define NS16550_DBG_MSG(level,fmt,a,b,c,d,e,f)

#endif /* NS16550_DEBUG_ON */

Within the driver, there are many calls to the NS16550_DBG_MSG() macro, such as:

NS16550_DBG_MSG(5, "ns16550vxbDevProbe(): INVALID ns16550vxb "
"device @ 0x%08x regIndex %d IIR=0x%02x\n",
(int)pDev, regBaseIndex, regVal, 4,5,6);

7 Migrating to VxBus
7.2 Porting an Existing VxWorks Driver to VxBus

189

7

This code allows debugging to be disabled entirely by not defining the macro
NS16550_DEBUG_ON at compile time. In this case, the debug message code—such
as the line shown above—is not included in the driver's object module. However,
if the macro is defined, the code is included, but not enabled by default. Therefore,
to enable the debug messages requires a two-step process. First, compile the driver
with ADDED_CFLAGS=-DNS16550_DEBUG_ON. Second, after VxWorks has
booted, set the ns16550vxbDebugLevel variable to a non-zero value to enable all
debug messages with a lower debug level value. For example, to enable the debug
message shown above, ns16550vxbDebugLevel is set to 5 or a greater value.

In addition, it can be helpful to surround diagnostic routines with #ifdef
NS16550_DEBUG_ON and #endif /* NS16550_DBG_MSG */.

The type of debug information that can be added to a driver is discussed in
VxWorks Device Driver Developer’s Guide (Vol. 1): Development Strategies.

7.2.6 Changing Initialization to VxBus

Until this point, the driver is a non-VxBus driver in all important aspects. The first
part of the conversion to VxBus is to convert the driver to initialize during VxBus
initialization.

These changes are not limited to the driver, but also affect the BSP. Because of the
VxBus initialization, the BSP calls to initialize the device are no longer required
and should be removed from the BSP.

The driver previously included initialization code that the BSP called directly. The
simplest way to convert is to leave the old initialization routine intact, and include
a call to it in the InstInit1() or InstInit2() routine referred to by the VxBus
registration structure. However, in some cases, moving the code from the old
routine into the VxBus initialization routine is cleaner than using a function call.

NOTE: When releasing a driver, much of the debug information used during
development continues to be valuable. Therefore, leaving the code in the source
file can be beneficial in the future, as long as it can be omitted from the object file.
For more information on releasing a driver, see VxWorks Device Driver Developer’s
Guide (Vol. 1): Driver Release Procedure.

VxWorks
Device Driver Developer's Guide, 6.6

190

7.2.7 Adding VxBus Driver Methods

Once the VxBus initialization is in place, you can convert the external interface.
Usually, this involves finding the VxBus driver methods used by the driver class,
searching for routines in the existing driver that provide the required functionality,
and creating shim routines that allow the method interface to be used when they
are called but resolve to the routines provided by the old driver. Later in the
development process, the original code should be copied into what is, at first, a
shim layer. When the original code is no longer referenced, delete it. So that the
consolidation is not forgotten, make a note in the shim layer that the original code
should be consolidated with this layer.

When the functionality used by the required driver methods is available, you can
add the methods to the table of methods in your driver and make sure the table is
published in the pMethods field of VXB_DEVICE_ID.

Now test the driver to be sure that it works. After testing the driver by registering
with VxBus manually, modify the registration routine so that the driver registers
at boot time.

It is not uncommon for device drivers to behave unexpectedly when they are
added to the boot process of VxWorks, instead of being started manually. If this
occurs, you should inspect the driver's initialization code to make sure that only
authorized services are being used at each state of the driver's initialization. For
example, malloc() cannot be used until VxBus initialization phase 2, and
interrupts cannot be connected until initialization phase 3.

7.2.8 Updating Names within the Source File

At this point in the development process, the driver is mostly VxBus compliant,
but there are still a few cleanup tasks to complete. The first of these tasks is to
update the names of the driver routines. The only required externally-visible
symbol is the registration routine. In general, you can change all other routines to
LOCAL.

Although it is not required, you may wish to change the names of routines and
data variables so that they do not clash with the old driver. In certain situations,
this step can provide a large advantage. For example, when converting a BSP with
a ns16550-compatible console to VxBus, the BSP provides some mechanism to use
the console. One conversion strategy is to include both the VxBus
vxbNs16550Sio.c driver and the BSP code. Then, get a PCI card with an ns16550
port, and set that to the console. Finally, with the PCI card as the console, you can
convert the on-board serial devices to use VxBus.

7 Migrating to VxBus
7.2 Porting an Existing VxWorks Driver to VxBus

191

7

7.2.9 Removing BSP Dependencies

Once the source code has been moved into a VxBus driver file, debug information
is available, and the driver has an API to be used by the VxBus driver class, it is
time to remove BSP dependencies from the driver.

If, as described in 7.2.3 Moving Existing Code into the New Source File, p.187, you
have a modified version of the driver driverName.dc file that causes the source file
to be compiled in the context of the BSP, you must change the driverName.dc file so
that it does not include the source file in the VxWorks image build.

In order to accomplish this, first compile the driver outside of the BSP, making sure
that the driver does not include any BSP header file. By doing this, you can find
places in the driver that make use of macros provided by the BSP. These macros
need to be resolved by some other method, usually a resource entry or a parameter.
When you execute the compile, the BSP-provided macros show up as compile-time
warnings of undefined references. Change each of the symbols flagged as
undefined references to an entry in the pDrvCtrl structure. You also need to fill in
the values from a resource or parameter provided by the BSP in hwconf.c.

Typically, you should represent the unresolved values as either a resource or as a
parameter. Resources are values that are hardware specific. Parameters are values
that can be set by the application. You can determine the difference between
parameters and resources by testing whether or not the driver continues to run on
the same board when the value changes.

If you change the value and the driver continues to function properly, the value is
most likely a parameter. If the driver fails to function properly after the change, the
value is a resource. You should make this determination for each value. Another
test is whether there is a valid default value that works in almost all cases. If so, the
value probably represents a parameter.

For example, a prototypical parameter type is the number of transmit buffers in a
network interface. A prototypical resource is the frequency of an external timer
connected to the device.

Your driver must set each value properly.

For resources, the proper value can be obtained during one of the driver's VxBus
initialization routines, which are part of the registration structure. For more
information on the registration structure, see VxWorks Device Driver Developer’s
Guide (Vol. 1): Device Driver Fundamentals. Make a call to devResourceGet() to
obtain the value, and set the global variable according to the value obtained.

For parameters, create a parameter list for the driver, fill in the default values, and
put a pointer to the list in the appropriate field of the VxBus registration structure.

VxWorks
Device Driver Developer's Guide, 6.6

192

Before the first use of this parameter, call either vxbInstParamByNameGet() or
vxbInstParamByIndexGet() to retrieve the value.

In addition to fixing undefined macro values, you also need to check external
references. Once the file compiles, find undefined symbols using nmarch, review
the undefined references, and determine which routines and data are part of the
driver. If appropriate, move those routines and variables into the driver and set the
value of any data variables using the same methodology described for macro
values.

In some cases, it is not appropriate to put certain parts of device management code
into the driver. When this happens use one of the following methods:

■ When the driver requires certain information that is board-specific, the driver
can allow the BSP to provide a routine to fetch that information. The routine is
provided to the driver as a resource, of type HCF_RES_ADDR. This is treated
as a function pointer, and the driver calls that routine to obtain the required
information.

An example of this is when you need to determine the frequency of an external
oscillator, and the frequency is not known at compile time. In this case, the BSP
must provide a resource—by convention named clkFreq and of type
HCF_RES_ADDR—that is a function pointer that returns the frequency of the
external oscillator.

■ When the driver requires access to a processor register not available from C,
the driver may require that either the architecture code or the BSP provide a
routine to access the register, and either call the routine directly or require that
a pointer to the routine be provided as an HCF_RES_ADDR resource (as
described previously).

■ When some sections of the driver need to be written in assembly language, the
driver may contain inline assembly code, or it may require the BSP provide an
HCF_RES_ADDR resource (as described previously).

7.2.10 Converting Register Access in Existing Code

Many device drivers make direct access to device registers. This can limit the
driver to a specific hardware configuration or a specific CPU byte-order.

NOTE: Due to the complexities of supporting different assembler syntax for
different assemblers, and the difficulty of supporting multiple architectures, Wind
River does not recommend using inline assembly for general-purpose drivers.

7 Migrating to VxBus
7.2 Porting an Existing VxWorks Driver to VxBus

193

7

VxBus provides a register access mechanism that handles byte-order, translation
and certain other common register manipulation issues. The routines are described
in hardware access section of the VxWorks Device Driver Developer’s Guide (Vol. 3):
Device Driver Fundamentals.

Use of these routines is required in order for your driver to be portable across
multiple boards or CPU types.

7.2.11 Removing Global Variables

One of the important goals of a generic driver is that it support multiple devices of
the same type. Earlier in the development process, you may have chosen to create
global variables specific to an instance (that is, a given device and driver paired
together). Also, the existing driver you based your development on may have used
global variables, perhaps in an array in order to support several devices. These
global variables should be removed.

In VxBus, the main identification of a device is the VXB_DEVICE_ID. The structure
that the VXB_DEVICE_ID points to contains a field for pDrvCtrl. pDrvCtrl is
owned by the driver and can be used for any purpose. Most drivers define a
structure that contains all instance-specific information.

During initialization, this structure is allocated using hwMemAlloc(), filled in
with the data, and a pointer to the structure is saved in the pDrvCtrl field. Later,
when the driver is called for any reason, the VXB_DEVICE_ID is passed as a
parameter, from which the driver can extract the pDrvCtrl field to get access to the
instance-specific data.

In many cases, it is necessary to rewrite the prototype of some routines to pass
pDrvCtrl or VXB_DEVICE_ID as a parameter. This allows each routine within the
driver to have access to the information about an instance so that the routines do
not need to rely on global variables.

VxWorks
Device Driver Developer's Guide, 6.6

194

195

Index

Symbols
_CHILDREN 184
_INIT_ORDER 184
_pLinkPoolFuncTbl 36, 37

A
address resolution, arpresolve() 23
APIs, protocol to MUX 17
arpresolve() 23
association list 34
ataDrv.c 172
ATAPI drivers 172

B
BSD 4.3 driver model 9
BSPs

adding drivers
required BSP support 4

config.h 31
routines

sysScsiInit() 132

C
CDF 3, 5, 183

CFG_PARAMS 184
keywords

_CHILDREN 184
_INIT_ORDER 184
Component 184
Parameter 184

CDL 5
CFG_PARAMS 184
clkFreq 192
commands

nmarch 186, 192
commonCmdsTest() 138
Component 184
component description file

see CDF
component description language

see CDL
config.h 31
configNet.h 29
configuration stub files 184

D
DEV_OBJ 61
devResourceGet() 191

VxWorks
Device Driver Developer's Guide, 6.6

196

directCmdsTest() 138
directRwTest() 138
do_protocol_with_type() 16
documentation

about 2

E
EAGAIN 76
EINVAL 71
EIOCGADDR 72
EIOCGFBUF 72
EIOCGFLAGS 72
EIOCGMIB2 72
EIOCGPOLLCONF 72
EIOCGPOLLSTATS 72
EIOCMULTIADD 72
EIOCMULTIDEL 72
EIOCMULTIGET 72
EIOCPOLLSTART 72
EIOCPOLLSTOP 72
EIOCSADDR 72
EIOCSFLAGS 72
END driver 7

adding a multicast address 76
adding drivers to VxWorks 29
association list 34
backwards compatibility 83
control structure 31
deleting a multicast address 77
driver responsibilities 14
entry points 10
error conditions 84
fair access bounding 40, 43
forming an address for packet transmission 78
getting a data-only mBlk 79
getting the multicast address table 78
handling a polled receive 75
handling a polled send 74
implementing the generic MIB interface 86
interface to VxWorks 24
interrupt handlers 26
interrupt masking 28
interrupt re-enabling 40, 47

launching your driver 24
loading a device 66
mBlk structure 64
memory resources 31
MUX responsibilities 14
network layer to data link layer address

resolution 23
performance 84
protocol responsibilities 14
providing a control interface 71
receive and transmit descriptors 32
receive handler interlocking flag 40, 44
receive loop 40, 41
receiver stall handling 40, 46
required entry points 65
required structures 58
returning addressing information 80
sending data out on the device 72
setting up a memory pool 36
starting a loaded driver 73
status dump routines 91
stopping a loaded driver 74
support for scatter-gather 52
transmit descriptor clean routine 54
transmit-packet-complete handler interlocking

flag 52
two-tiered polling 40, 47
unloading a device 68

END driver components 12
END_ERR_BLOCK 85
END_ERR_DOWN 21, 85
END_ERR_FLAGS 85
END_ERR_INFO 21, 85
END_ERR_NO_BUF 85
END_ERR_RESET 21, 85
END_ERR_UP 21, 85
END_ERR_WARN 21, 85
END_IFCOUNTERS 90
END_IFDRVCONF 90
END_LOAD_FUNC 30
END_LOAD_STRING 30
END_OBJ 58
END_OBJ_INIT 62
END_RCV_RTN_CALL 43
endAddressForm() 66, 78

 Index

197

Index

endDevTbl[] 29
endEtherPacketAddrGet() 80
endIoctl() 65, 71
endLoad() 24, 30, 50, 58, 63, 65, 66
endM2Free() 88
endM2Init() 87
endM2Ioctl() 87
endM2Packet() 87
endMCastAddrAdd() 61, 65, 76
endMCastAddrDel() 61, 66, 77
endMCastAddrGet() 61, 66, 78
endPacketAddrGet() 66
endPacketDataGet() 66, 79
endPollReceive() 66, 75
endPollSend() 66, 74
endReceive() 39
endSend() 65, 72
endStart() 65, 73
endStop() 65, 74
endTbl 30
endUnload() 65, 68
enhanced network driver

see END driver
ENOSPC 71
ENOTSUP 71
etherInputHook() 16
etherMultiLib 76
Ethernet driver 7

see also END driver
etherOutputHook() 16

F
files

hwconf.c 186
FOLDER_DRIVERS 184

H
hardware timers, characteristics 144
hardWareInterFaceBusInit 184

HCF_RES_ADDR 192
hwconf.c 186

I
IFF_ALLMULTI 60
IFF_BROADCAST 59
IFF_DEBUG 59
IFF_LINK0 60
IFF_LINK1 60
IFF_LINK2 60
IFF_LOAN 60
IFF_LOOPBACK 60
IFF_MULTICAST 60
IFF_NOARP 60
IFF_NOTRAILERS 60
IFF_OACTIVE 60
IFF_POINTOPOINT 60
IFF_PROMISC 60
IFF_RUNNING 60
IFF_SCAT 60
IFF_SIMPLEX 60
IFF_UP 59
INCLUDE_END 31
INCLUDE_NET_INIT 29
INCLUDE_NETWORK 29
INCLUDE_TIMESTAMP 147
INCLUDE_USER_TIMESTAMP 147
initialization

VxBus 189
interrupt handlers 26
interrupt masking 28

L
legacy driver 1
libraries

etherMultiLib 76
netBufLib 25, 35
SCSI 98
scsi2Lib 97
scsiCommonLib 97, 101

VxWorks
Device Driver Developer's Guide, 6.6

198

scsiCtrlLib 100
scsiDirectLib 97, 100
scsiMgrLib 98
scsiSeqLib 98, 101

LL_HDR_INFO 63

M
macros

END_OBJ_INIT 62
END_RCV_RTN_CALL 43
INCLUDE_NET_INIT 29
INCLUDE_NETWORK 29

mBlk 64
memory drivers 174
migrating

adding debug code 188
adding VxBus driver methods 190
CDF 183
converting register access 192
creating VxBus infrastructure 182
header files 183
LOCAL routines and data variables 187
modifying the BSP 185
moving existing code into a new source file

187
removing

BSP dependencies 191
driver code from the BSP 188
global variables 193

to VxBus 181
updating names in the source file 190
verifying

driver code 182
VxBus infrastructure 186

VxBus initialization 189
MULTI_TABLE 78
multi-mode serial drivers 176

see also SIO drivers
multiplexer

see MUX
MUX

defined 8
entry points 10

MUX API, interactions with 17
MUX_PROTO_OUTPUT 15
MUX_PROTO_PROMISC 15, 16
MUX_PROTO_SNARF 15
muxAddressForm() 16, 18
muxAddrResFuncAdd() 19
muxAddrResFuncDel() 19
muxAddrResFuncGet() 19
muxBind() 10, 14, 17
muxDataPacketGet() 18
muxDevLoad() 10, 17, 24, 30, 39
muxDevStart() 17, 24
muxDevStop() 18
muxDevUnload() 18
muxError() 84
muxIoctl() 18
muxMCastAddrAdd() 18
muxMCastAddrDel() 18
muxMCastAddrGet() 18
muxPacketAddrGet() 18
muxPacketDataGet() 16, 18
muxReceive() 16, 18, 43
muxSend() 16, 18
muxShutdown() 18
muxTxRestart() 18
muxUnbind() 10, 17, 18

N
NET_FUNCS 63, 65
NET_PROTOCOL 17, 19
netBufLib 25, 35
netJobAdd() 26, 28, 44
netJobRing 27, 44, 52
netMblkToBufCopy() 75
netPoolCreate() 25, 35, 37
netPoolInit() 35
netPoolRelease() 70
netTupleGet() 42
nmarch 186, 192

 Index

199

Index

O
one-shot timer 143

P
packets, handling

reception 39
transmission 52

Parameter 184
pDrvCtrl 188
periodic interrupt timer 143
pMethods 190
porting

a legacy driver to the VxBus model 181
an END driver from another OS 83

project facility
CDF entries 5
CDL 5

protocol data structure 19

Q
quiescent state 4

R
receive handler interlocking flag 40, 44
return value

EINVAL 71
ENOSPC 71
ENOTSUP 71

RFC 1213 86
RFC2233 86
routines

arpresolve() 23
devResourceGet() 191
endM2Free() 88
endM2Init() 87
endM2Ioctl() 87

endM2Packet() 87
etherInputHook() 16
etherOutputHook() 16
muxAddressForm() 16, 18
muxAddrResFuncAdd() 19
muxAddrResFuncDel() 19
muxAddrResFuncGet() 19
muxBind() 10, 14, 17
muxDataPacketGet() 18
muxDevLoad() 10, 17, 24, 30, 39
muxDevStart() 17, 24
muxDevStop() 18
muxDevUnload() 18
muxError() 84
muxIoctl() 18
muxMCastAddrAdd() 18
muxMCastAddrDel() 18
muxMCastAddrGet() 18
muxPacketAddrGet() 18
muxPacketDataGet() 16, 18
muxReceive() 16, 18, 43
muxSend() 16, 18
muxShutdown() 18
muxTxRestart() 18
muxUnbind() 10, 17, 18
netJobAdd() 26, 28, 44
netPoolCreate() 25, 35, 37
netPoolInit() 35
netPoolRelease() 70
netTupleGet() 42
scsiCacheSnoopDisable() 113
scsiCacheSnoopEnable() 113
scsiCacheSynchronize() 113
scsiCtrlInit() 102, 112
scsiDiskTest() 137
scsiDiskThruputTest() 137
scsiIdentMsgBuild() 113
scsiIdentMsgParse() 113
scsiMgrBusReset() 112
scsiMgrCtrlEvent() 112
scsiMgrEventNotify() 102, 112
scsiMgrThreadEvent() 112
scsiMsgInComplete() 112
scsiMsgOutComplete() 112
scsiMsgOutReject() 113

VxWorks
Device Driver Developer's Guide, 6.6

200

scsiSpeedTest() 139
scsiSyncXferNegotiate() 112
scsiThreadInit() 113
scsiTransact() 97
scsiWideXferNegotiate() 112
stackError() 20
stackRcvRtn() 10, 19
stackShutdownRtn() 10, 21, 22
stackTxRestartRtn() 10, 22
sysHwInit() 4
sysInByte() 82
sysInLong() 82
sysInWord() 82
sysOutByte() 82
sysOutLong() 82
sysOutWord() 82
sysScsiInit() 132
sysTimestamp() 165, 166
sysTimestampConnect() 163
sysTimestampDisable() 164
sysTimestampEnable() 164
sysTimestampFreq() 165
sysTimestampLock() 166, 167
sysTimestampPeriod() 164
sysTimestampRoutine() 167
tapeFsTest() 139
usrNetInit() 29
vxbInstParamByIndexGet() 192
vxbInstParamByNameGet() 192
vxBusShow() 186
wdDelete() 70
wvTmrRegister() 147

S
scatter-gather 52
SCSI

commands 97
common access library 101
controller libraries 100
direct access library 100
module layout 95
objects and data structures 95
sequential access library 101

SCSI drivers 93
advanced controller driver example 113
advanced I/O processor example 127
basic controller example 103
BSP interface 132
data coherency problems 136
development 135
programming interface 101
sysScsi.c template 133
template 103
test suites 136
VxWorks interface 98

SCSI manager 98
SCSI_PHYS_DEV 97
SCSI_TRANSACTION 97
scsi2Lib 97
scsi2Lib.h 112
scsiCacheSnoopDisable() 113
scsiCacheSnoopEnable() 113
scsiCacheSynchronize() 113
scsiCommonLib 97, 101
scsiCtrlInit() 102, 112
scsiCtrlLib 100
scsiDirectLib 97, 100
scsiDiskTest() 137
scsiDiskThruputTest() 137
scsiIdentMsgBuild() 113
scsiIdentMsgParse() 113
scsiMgrBusReset() 112
scsiMgrCtrlEvent() 112
scsiMgrEventNotify() 102, 112
scsiMgrLib 98
scsiMgrThreadEvent() 112
scsiMsgInComplete() 112
scsiMsgOutComplete() 112
scsiMsgOutReject() 113
scsiSeqLib 98, 101
scsiSpeedTest() 139
scsiSyncXferNegotiate() 112
scsiThreadInit() 113
scsiTransact() 97
scsiWideXferNegotiate() 112
show routines

VxBus 186

 Index

201

Index

SIO drivers 176
see also multi-mode serial drivers
polled mode 179

SIO_CHAN 176
SIO_DRV_FUNCS 176
sioLib.h 176
stackError() 10, 20
stackRcvRtn() 10, 19
stackShutdownRtn() 10, 21, 22
stackTxRestartRtn() 10, 22
sysDev.c 4
sysHwInit() 4
sysInByte() 82
sysInLong() 82
sysInWord() 82
sysLib.c 4
sysOutByte() 82
sysOutLong() 82
sysOutWord() 82
sysScsi.c

sysScsiInit() 132
template 133

sysScsiInit() 132
sysSerial.c 4
System Viewer 166
sysTimestamp() 165, 166
sysTimestampConnect() 163
sysTimestampDisable() 164
sysTimestampEnable() 164
sysTimestampFreq() 165
sysTimestampLock() 166, 167
sysTimestampPeriod() 164
sysTimestampRoutine() 167

T
tapeFsTest() 139
tasks

tNet0 24
tNetTask 24, 26, 28
tUsrRoot 24

templateSio.c 179
timers, hardware, characteristics of 144

timestamp drivers 141
BSP interface 163
components 148
configuration 163
sample drivers 148
VxWorks interface 146
VxWorks requirements 145
working with the System Viewer 147

timestamp timer 143
tNet0 24
tNetTask 24, 26, 28

see also tNet0
transmit-packet-complete handler interlocking

flag 52
TS_SKEW 169
tuple defined 25
tuple, memory pool 34
tUsrRoot 24

U
unloading

an END driver 69
usrNetInit() 29

V
VXB_DEVICE_ID 190
vxbInstParamByIndexGet() 192
vxbInstParamByNameGet() 192
VxBus 2

configuration stub files 184
creating VxBus infrastructure 182
driver source file 183
header files 183
porting a legacy driver to 181

vxBusShow() 186
VxWorks

components 183

VxWorks
Device Driver Developer's Guide, 6.6

202

W
WDB agent 15
WDB_COMM_END 15
wdDelete() 70
Wind River System Viewer 141, 166
writing

a new END driver 81
wvTmrRegister() 147

	VxWorks Device Driver Developer's Guide, 6.6
	Contents
	1 Introduction
	1.1 Legacy Driver Overview
	1.2 Before You Begin
	1.3 About This Documentation
	Navigating this Documentation Set

	2 Adding an Existing Driver to Your BSP
	2.1 Introduction
	2.2 BSP Support for Legacy (Non-VxBus) Device Drivers
	2.3 Project Facility
	2.4 Component Descriptor Files

	3 END Ethernet Drivers
	3.1 Introduction
	3.2 END Driver Overview
	3.2.1 Driver Environment
	The MUX
	Network Interface Drivers and Protocols
	The MUX, Protocol, and Driver API
	Driver Components
	Protocols That Use the MUX API
	Interactions With the MUX API
	Network Layer to Data Link Layer Address Resolution

	3.2.2 VxWorks OS Interface
	Understanding How VxWorks Launches and Uses Your Driver
	Executing Calls Waiting In the Network Job Queue
	Adding Your Network Interface Driver to VxWorks
	Allocating, Initializing, and Utilizing Memory Resources
	Handling Packet Reception
	Handling Packet Transmission
	Implementing Checksum Offloading
	Implementing Required Entry Points and Structures

	3.3 The END Driver Development Process
	3.3.1 Driver Development Overview
	Writing a New Driver
	Porting an Existing Driver From Another OS
	Additional Development Issues

	3.3.2 Error Conditions
	3.3.3 Generic MIB Interface Initialization

	4 SCSI Drivers
	4.1 Introduction
	4.2 SCSI Overview
	4.2.1 Layout of SCSI Modules
	4.2.2 The VxWorks OS Interface
	Libraries
	Driver Programming Interface

	4.3 SCSI BSP Interface
	4.4 The SCSI Driver Development Process
	4.5 Common SCSI Driver Development Issues
	4.5.1 Troubleshooting and Debugging
	4.5.2 Test Suites
	scsiDiskThruputTest()
	scsiDiskTest()
	scsiSpeedTest()
	tapeFsTest()

	5 Timestamp Drivers
	5.1 Introduction
	5.2 Timestamp Driver Overview
	5.2.1 Hardware Environment
	5.2.2 VxWorks OS Interface
	Working with the Wind River System Viewer
	Timestamp Driver Components
	Sample Drivers

	5.3 Timestamp Driver Configuration and BSP Interface
	sysTimestampConnect()
	sysTimestampEnable()
	sysTimestampDisable()
	sysTimestampPeriod()
	sysTimestampFreq()
	sysTimestamp()
	sysTimestampLock()

	5.4 The Timestamp Driver Development Process
	5.4.1 Timers that Can Be Read While Enabled
	Timer Period
	Interrupt Level
	Interrupt Locking

	5.4.2 Working Around Deficiencies In Hardware Timers
	Timer Re-Synchronization
	Timer Period
	Down Counter
	Counter Preloading
	Adjustment for Time Skew
	Counter Read Optimization

	5.4.3 Using the VxWorks System Clock Timer
	Timer Rollover Interrupt
	Timer Counter Not Reset
	Timer Period

	5.5 Common Timestamp Driver Development Issues

	6 Additional Drivers
	6.1 Introduction
	6.2 ATAPI Drivers
	6.3 Interrupt Controller Drivers
	BSP Interface
	Non-Vectored Interrupt Sources

	6.4 Memory Drivers
	6.4.1 Hardware Mismatches
	6.4.2 Complex Modern Memory Controllers

	6.5 Multi-Mode (SIO) Serial Drivers
	6.5.1 SIO_CHAN and SIO_DRV_FUNCS
	6.5.2 Polled Mode, WDB, and Kernel Initialization
	6.5.3 Serial Ports, WDB, and Interrupts

	7 Migrating to VxBus
	7.1 Overview
	7.2 Porting an Existing VxWorks Driver to VxBus
	7.2.1 Verifying Your Hardware and Driver Code
	7.2.2 Creating the VxBus Infrastructure
	Driver Source File
	Driver Header Files (Optional)
	Driver Component Description File
	Driver Configuration Stub Files
	Modifying the BSP (Optional)
	Verifying the infrastructure

	7.2.3 Moving Existing Code into the New Source File
	7.2.4 Removing Driver Code from the BSP
	7.2.5 Adding Debug Code
	7.2.6 Changing Initialization to VxBus
	7.2.7 Adding VxBus Driver Methods
	7.2.8 Updating Names within the Source File
	7.2.9 Removing BSP Dependencies
	7.2.10 Converting Register Access in Existing Code
	7.2.11 Removing Global Variables

	Index

