Introduction

A quick primer for those who prefer to use a command line debugger. Both gbd (Linux) and dbx (Unix)
are very similar. In addition, NuMega technologies produces a very powerful Ring 0 command line
debugger for Micro$oft Windows named SoftICE (retail $1000). SoftICE has the same ‘feel' as gbd and
dbx. Skills learned in one should quickly port to the others.

The Program

The program used in this document is listed below. It prints the familiar "Hello World" from the nice
folks at Bell Labs. In addition, we'll snoop around while the target is under gdb to see if we can find any
goodies.

conpi l e:
;; nasm hello.asm-f elf -o hello.o -g
-f: elf file format
-0: output file name
-g: debuggi ng i nformation

;7 gcc hello.o -0 hello -g

-0: output file name
-g: debuggi ng i nformation

G.OBAL main

EXTERN printf

def i nes
LF equ OxA ;; 10 deci mal
CR equ 0xD 7, 13 deci mal
TERM equ 0 7 NULL
SYSTEM EXI T equ 1 ;; exit to GS
SYSTEM SVC equ 0x80 ;; int 80h

;; global read/wite data

SECTI ON . dat a
szHel l o db "Hello World', LF, CR TERM

SECTI ON . t ext

mai n
push dword szHell o ;; push address of szHello
call printf ;; call ¢ runtine
add esp, 4 ;; adj ust stack
nmov eax, SYSTEM EXIT ;; prepare for exit
int SYSTEM SVC ;7 good bye

Compile the Program

Compile and run the program as shown below.

ommand - telnet 63.71.103.169

[jeffRlocalhost testl% nasm hello.asm —F elf —o hello.o —g
[jeff@localhost testl% gce hello.o —o hello —g
[jeffRlocalhost testl% hello

Hello World

[jeffRlocalhost testld _

Works as expected.

Lets see what's going on under the hood...

Fire up gdb. Execute 'gdb hello' as shown below:

[#]Command - telnet 63.71.103.169

[jeffRlocalhost testl% nasm hello.asm —F elf —o hello.o —g
[jeff@localhost testl% gce hello.o —o hello —g
[jeffRlocalhost testl% hello
Hello World
[jeffRlocalhost testlf gdb hello
GHU gdb 4.18
Copuyright 1998 Free Software Foundation, Inc.
GDB iz free szoftware. covered by the GHU General Public License,. and voun are
welcome to change it andsor distribute copies of it under certain conditions.
Type “'show copwing' to see the conditions.
There iz absolutely no warranty for GDB. Type "show warranty' for details.
Eh&i)GDB was configured as "id386—redhat—linux"...
H

At this point, gdb has our program loaded. Time to look at help:

[Command - telnet 63.71.103.169

GDB iz free zoftware. covered by the GHU General Public License,. and voun are Il
welcome to change it andsor distribute copies of it under certain conditions.

Type “'show copwing' to see the conditions.

There iz absolutely no warranty for GDB. Type "show warranty' for details.

Thiszs GDB was configured as “il386—redhat—linux'...

Cgdbh» help

Lizt of classzes of commands:

aliazeszs —— HAliases of other commands

breakpoints — Making program stop at certain points
data — Examining data

filezs — Specifying and examining files

internals — Maintenance commands

ohzcure —— Obscure features

running — Running the program

stack —— Examining the stack

status — Status inguiries

support — Support facilities

tracepoints — Tracing of program execution without stopping the program
unzer—defined — User—defined commands

Tupe "help' followed by a class name for a list of commands in that class.
Tupe “help' followed by command name for full documentation.
Command name abbreviations are allowed if uwnambiguowus.

Cgdh

The ‘classes’ of interest will be breakpoints, data, and stack.

To spare you the reading, here are some of the more useful commands:

Function Meaning

break 'function’ Sets a break point at entry to ‘function’
delete Deletes all break points

delete n Deletes break point n

disassemble Disassemble a specified section of memory.

Default is the function surrounding the pc of the selected frame.
With a single argument, the function surrounding that address is dumped.
Two arguments are taken as a range of memory to dump.

print Print value of expression EXP.
Variables accessible are those of the lexical environment of the selected stack
frame, plus all those whose scope is global or an entire file.

run Start debugged program. You may specify arguments to give it. Args may
include "*", or "[...]"; they are expanded using "sh". Input and output redirection
with ">", "<" or ">>" are also allowed.

With no arguments, uses arguments last specified (with "run" or "set args™). To
cancel previous arguments and run with no arguments, use "set args" without

arguments.
next step into a function (see also 'help next' for a complete explanation)
step step into a function (see also 'help step' for a complete explanation)
continue continue execution
where print the call stack (where you are in the program)
quit exit gdb
info info address -- Describe where symbol SYM is stored

info all-registers -- List of all registers and their contents
info args -- Argument variables of current stack frame
info breakpoints -- Status of user-settable breakpoints

info display -- Expressions to display when program stops
info float -- Print the status of the floating point unit

info frame -- All about selected stack frame

info functions -- All function names

info handle -- What debugger does when program gets various signals
info line -- Core addresses of the code for a source line
info locals -- Local variables of current stack frame

info program -- Execution status of the program

info registers -- List of integer registers and their contents
info scope -- List the variables local to a scope

info set -- Show all GDB settings

info signals -- What debugger does when program gets various signals
info source -- Information about the current source file
info stack -- Backtrace of the stack

info symbol -- Describe what symbol is at location ADDR
info tracepoints -- Status of tracepoints

info types -- All type names

info variables -- All global and static variable names

info watchpoints -- Synonym for "info breakpoints"

First thing is first. gdb's default assembly is AT&T (used by GAS, the GNU Assembler). Since we
write with Intel assembly, we'll set that:

[#]Command - telnet 63.71.103.169

[jeffRlocalhost testl% gdb hello

GHU gdb 4.18

Copuyright 1998 Free Software Foundation, Inc.

GDB iz free software. covered by the GHU General Public License,. and voun are
welcome to change it andsor distribute copies of it under certain conditions.
Type “'show copwing' to see the conditions.

There iz absolutely no warranty for GDB. Type "show warranty' for details.
Thiszs GDB was configured as "il386—redhat—linux'"...

Cgdbh» set disassembly—flavor intel

Cgdhb2>

Set a break point in main and printf, shown below:

[Command - telnet 63.71.103.169

[jeff@localhost test1% gdb hello

GHU gdb 4.18

Copyright 1998 Free Software Foundation,. Inc.

GDE iz free software. covered by the GHU General Public License. and you are
welcome to change it andsor distribute copies of it under certain conditions.
Tupe “"show copying' to see the conditions.

There is abzolutely no warranty for GDB. Type “show warranty' for details.
Thiz GDB was configured as "i386-—redhat—linux"...

Cgdh>» set dizassembly—flavor intel

Cgdbh» break main

Breakpoint 1 at Bx80483d6

Cgdbh» break printf

Breakpoint 2 at Bx8048368
Cgdh)

Breakpoint 1 is at memory address 0x80483d0, and 2 is at 0x8048308. To delete these break points, we
could now issue 'delete’ to remove all, 'delete 1' or 'delete 2' to remove a specific break point.

Finally, run the program. We'll run the program with an argument to see if we can find it later. Issue
'run argument’:

[Command - telnet 63.71.103.169

[jeff@localhost test1% gdb hello

GHU gdb 4.18

Copyright 1998 Free Software Foundation,. Inc.

GDE iz free software. covered by the GHU General Public License. and you are
welcome to change it andsor distribute copies of it under certain conditions.
Tupe “"show copying' to see the conditions.

There is abzolutely no warranty for GDB. Type “show warranty' for details.
Thiz GDB was configured as "i386-—redhat—linux"...

Cgdh>» set dizassembly—flavor intel

Cgdbh» break main

Breakpoint 1 at Bx80483d6

Cgdbh» break printf

Breakpoint 2 at Bx8048368

Cgdbh} run argument

Starting program: shomesjeffcmpedlB test-hello argument
Breakpoint 2 at Ox40068f5c: file printf.c,. line 38.

Breakpoint 1. Bx80483d8 in main <)
Cgdbh> _

Not much here. Now would be a good time to issue 'disassemble’:

[#]Command - telnet 63.71.103.169

Cgdbh» break printf

Breakpoint 2 at Bx8048368

Cgdbh} run argument

Starting program: shomesjeffcmpedliB test-hello argument
Breakpoint 2 at Ox40068f5c: file printf.c,. line 38.

Breakpoint 1. Bx80483d8 in main <)
Cgdh>» disasszemhle
Dump of assembler code for function main:
BxB8A483dB {main>: push Ax8A4744c
Bx8A483d5 <main+h>: call Bx8A048308 <printf>
AxB8A483da <main+1@>: add wesp,.Bxd
Bx80483eld <maint+lb>: mou weax, Bxl
Bx80483e5 <main+21>: int Bx8a
Bx80483e? <main+23>: nop
AxBA483e8 <{main+24>: nop
Bx80483e? <main+25>: nop
AxB8A483ea <{main+2b>: nop
Bx80483eb <main+2%>: nop
AxB8A483ec <{main+28>: nop
Bx80483ed <main+29>: nop

tmain+3@x: nop

{main+31>: nop
End of assembhler dump.
Cgdh)

Seems we've lost much of our debug information. This is due to nasm. nasm has not left us much, but
its enough we can work with.

We know we passed a command line argument to the program. We'll try to find it. The stack should
look similar to below:

esp+C | char*env[] | pointer
esp +8 | char*argv[] | pointer
esp +4 argc integer
esp 2> ?77? unknown

gdb and dbx have very powerful expression evaluators. We'll dig for argc. It should be 2:

Command - telnet 63.71.103.169

[jeff@localhost test1% gdb hello

GHU gdb 4.18

Copyright 1998 Free Software Foundation,. Inc.

GDE iz free software. covered by the GHU General Public License. and you are
welcome to change it andsor distribute copies of it under certain conditions.
Tupe “"show copying' to see the conditions.

There is abzolutely no warranty for GDB. Type “show warranty' for details.
Thiz GDB was configured as "i386-—redhat—linux"...

Cgdh>» set dizassembly—flavor intel

Cgdbh» break main

Breakpoint 1 at Bx80483d6

Cgdbh» break printf

Breakpoint 2 at Bx8048368

Cgdbh} run argument

Starting program: shomesjeffcmpedlB test-hello argument

Breakpoint 2 at Ox40068f5c: file printf.c,. line 38.

Breakpoint 1. Ox80483d8 in main >
Cgdbh? print ={int>{Sesp)

%1 = 1873955387

égdh)zprint #={int»{Sesp+dd

Cgdh

It seems we found argc at esp + 4. Here's what we did:
» When printing a register, prefix the register name with a '$'
e esp+4isanaddress. This required a dereference "*'
* The argument was an integer. Cast it as such ‘int’

So, the final expression was *(int)($esp+4)

Easy enough. Lets poke around and find the program name:

[#]Command - telnet 63.71.103.169

[jeffRlocalhost testl% gdb hello

GHU gdb 4.18

Copuyright 1998 Free Software Foundation, Inc.

GDB iz free software. covered by the GHU General Public License,. and voun are
welcome to change it andsor distribute copies of it under certain conditions.
Type “'show copwing' to see the conditions.

There iz absolutely no warranty for GDB. Type "show warranty' for details.
Thiszs GDB was configured as "il386—redhat—linux'"...

Cgdbh» set disassembly—flavor intel

Cgdh>» break main

Breakpoint 1 at Bx88483d48

Cgdbh>» break printf

Breakpoint 2 at Ox8043308

Cgdbh>» » argument

Starting program: <home~jeff cmpeldlB- test helle argument

Breakpoint 2 at Bx4BB68f5c:- file printf.c. line 38.

Breakpoint 1. BxB8A483dBA in main <>

Cgdb» print ={int>»{Sesp)

51 = 18739553@7

Cgdb» print ={int>{Sesp+d)

2 =2

Cgdb» print =={char=x=){Sesp+B>

%3d;)ﬂthfffch1 “shomesjeff-cmpediB-test hello’

This was a little tougher. Basically, argv[] is a char**. Atesp + 8, we found a pointer to the char**.
So, we needed to double dereference to get the char* (argv[0]). argv[1] will be found similarly with an
expression such as 'print *(* (char*) ((char**)($esp+8) + 4)". Basically, you will add 4 (bump the
pointer) before the final dereference

Another way to find argv[] is to issue 'backtrace’' while in main:

[Command - telnet 63.71.103.169

At any time gdb identifies one frame as the "selected" frame.

Jariable lookups are done with respect to the selected frame.

lhen the program being debugged stops,. gdb selects the innermost frame.

The commandz bhelow can be used to szelect other frames by number or address.

List of commands:

backtrace —— Print backtrace of all stack frames

bt — Print backtrace of all stack frames

down — Select and print stack frame called by this one

frame — Select and print a stack frame

return —— Make selected stack frame return to its caller
zelect—frame — Select a stack frame without printing anything
up — Select and print stack frame that called this one

Tuype “help' followed by command name for full documentation.

Command name abbreviations are allowed if uwnambiguows.

Cgdh>» backtrace

i Bx80483d0 in madin <>

#1 Bx488341eb in _ libc_start_main (main=0x80483d8 <{main*>,. argc=2.
argu=Bxbf fffhbh4, init=Bx8848298 <{_dinit»>, fini=-Ax8B484ic <{_findi>.
rtld_fini=fx4000a618 <_dl_fini>, stack_end=Bxbhffffbac>
at ._.-szysdepssgeneric-libc—start.c:78

Cgdh)

argv[0] is at Oxbffffbb4. argv[1] will be at Oxbffffbb8:

[#]Command - telnet 63.71.103.169

The commands below can be used to select other frames by number or address. Il

List of commands:

backtrace —— Print backtrace of all stack frames

bt — Print backtrace of all stack frames

down — Select and print stack frame called by thisz one

frame — Select and print a stack frame

return —— Make selected stack frame return to its caller
sglect—frame — Select a stack frame without printing anything
up — Select and print stack frame that called this one

Tupe "help' followed by command name for full documentation.

Command name abbreviations are allowed if wnambiguouws.

Cgdbh» backtrace

i Bx80483d0 in main <>

#t1i Bx488341eb in __libc_start_main (main=-Bx88483d0 <mainX. argc=2.
argu=Axbf fffhh4, init=0x8848298 <_dinit»>,. fini=Ax804841c <_findiX.
rtld_fini=Bx480da6l18 <_dl1_fini*, stack_end=Bxbffffbac
at .. sysdeps-sgenericslibc—start.c:-?78

Cgdbh? print ={chapr==)Bxbffffbb4

? = Bxbhffffchl “"<homersjeff-cmpediB- test- hello’

Cgdbh» print ={chapr=*=)dxbffffhhi

%1gh; Bxhffffcef “argument'

Enough fooling around with argc and argv[]. Set a breakpoint to stop after the call to printf . Issue
'break *0x80483da’ (substitute the address as required).

[#]Command - telnet 63.71.103.169

Cgdh>» »
Starting program: <homesjeff cmpellB- test- hello
Breakpoint 2 at Bx48B68f5c:- file printf.c. line 38.

Breakpoint 1. BxBA483dBA in main <>
Cgdbh» dizasszemble
Dump of assemhler code for function main:
Bx80483d8 <mainX: push SAx8H4944c
Ax8A483d5 <main+h>: call Bx8A48308 <printf>
Bx80483da <main+1@>: add SBxd, zesp
Bx80483el <maintlb>: int $8x3
Bx80483e2 <main+18>: mou SBxl xeax
Bx80483e? <main+23>: int SAx88
Bx80483e? <main+25>: nop
AxB8A483ea <{main+2b>: nop
Bx80483eb <main+2%>: nop
AxB8A483ec <{main+28>: nop
Bx80483ed <main+29>: nop

tmain+3@x: nop

{main+31>: nop
End of assembhler dump.
Cgdbh» break =Hx80483da
?Psﬂgpuint 3 at BxEB0483da

Issue ‘continue’ to start execution. We hit the second break point in printf. Another useful commands at
this point is 'where' to get our call stack. We also get our format string since we are in printf.

[Command - telnet 63.71.103.169

Cgdbh» where full
#8 printf <format=Ax884944c "Hello Worldwn>f'>» at printf.c:-38
done = 1@74828952
#t1 Bx8B483da in main 2>
Mo zymbol table info available.
Cgdh>» disasszemhle
Dump of assembler code
Bx4dd68f 4c <printf »:
Bx4A068F 4d <printf+1>:
Bx4AB6EFf4f <printf+3>:
Bx4AB6EF5A <printf+4>:
Bx4AR6EF55 <printf +9>:
Bx4A068F56 <printf+183>
Bx4AB68f5¢c <printf+i6>
Bx4A868F5f <printf+19>
Ax4AB6Ef6A <printf+283>
Bx40068Ff63 <printf+23>
Ax4AA6EFf6? <printf+29>
Bx4A068f6h <printf+31>
>
>
>

for function printf:

push »ehp

mou »ebp,.xesp

push wehx

call Bx4A868F55 <printf+9>

pop wehx

add webx Bxal53?

lea weax,. [xebpt+l2]

push Heax

push DWORD PTR [xebp+81

mou weax, DUWORD PTR [xebx+20441]
push DWORD PTR [xeax]

call Bx48833dde <objects+128768>
mov #»ehx . DUWORD PTR [xebp—41
leave

ret

Bx40068f 780 {printf+36
Bx40068f 7?3 <printf+39
Bx40068f 74 <{printf+48
End of assembler dump.
Cgdbh)

Continue once again, and we break at address 0x80483da. We just returned from printf.

[#]command - telnet 63.71.103.169

reakpoint 2, printf <{format=-0x8084944c "Helle World-n~f"> at printf.c:30@
printf.c: Ho such file or directory.

Continuing.
Hello World

Breakpoint 3. Bx808483da in main <2
Cgdh» disaszemhle
Dump of assembler code for function main:

BxEB483d8
BxEB483d45
BxEB483da
BxEB483eB
BxBB483e2
BxEB483e?
BxBB483e?
Bx8H0483ea
BxBB483eh
Bx8H483ec
BxBB483ed
Bx8H483ee
BxBB483ef

End of assembler dump.

Cgdhl

{main>:

‘main+h>:
{main+183
<main+16>
{main+18>
<main+23>
{main+25%
<main+26 >
{main+27>
<main+28>
{main+29>
‘main+3@>:
{main+31>:

push
call
add
int
mnow
int
nop
nop
nop
nop
nop
nop
nop

S8x8B4944c
8048308 <{printf>

$Bx4 . xesp
EHx3
$Bx1 . xeax
LHAx80H

Issue 'info registers' to see what's in the registers:

[#]Command - telnet 63.71.103.169

tmain+26 3z
tmain+27>:
tmain+28 >z
tmain+29>:
tmain+3@>:
tmain+31>:

nop
nop
nop
nop
nop
nop

End of assembler dump.
Cgdh>» info registers

Bed
Bed

13
13

Bx481i88c68
Bx4d1 Bad8c

Bxhf £ ££D'78
Axhffffh7?8
Hx488Bab10A
Axhffffhc4

Hx88483da

Ax246 582
23
Bx2h
Bx2h

a5
43
43

Bx2h
BxA
BxA

43
A
5]

1874826336
1874832524
Bxhf £ ££D'78
Axhffffh78
1873784336
—1@73742708
H:x88483da

Its interesting to see what is in eax and ecx. Could this be the CR (carriage return) that ended our string?
We have not cleaned the stack yet. esp should point to the string we just printed. Issue
'print *(char**)($esp)":

[Command - telnet 63.71.103.169

Bx80483ec <maint+28>:
Bx80483ed <main+29>:
Bx80483ee <main+3@>:
Bx8A483ef <main+31>:
End of assembhler dump.
Cgdbh}» info registers

nop
nop
nop
nop

Bed
Bed

13
13

Bx48188c68
Bx4d1 Bad8c
Bxhff£EL7E
BxhfEfEEFLPE
Bx4BBda618
BxhfffFfhc4d
Bx8B483da

Bx246
Bx23
Bx2h
Bx2h
Bx2h
BxA
BxA

L2
35
43
43
43
5]
A

o=
Cgdh>» print =(c

= Bx80A4944c

52
Cgdh

hap==}{Sespl
"Hello Worddsnsf*'

1874826336
1874832524
Bxhff£fh'/8
Bxhf £ £h78
1873784336
—16873742208
Bx88483da

Other useful commands (that don't work due to nasm's lack of debug information) are 'next’, 'step’,
'xbreak’, and ‘whatis’ which gives you type information. Also, note that you must use an *' to specify a
break on an address:

[#]Command - telnet 63.71.103.169

Breakpoint 1. Ox80483d8 in main <)
Cgdh>» disasszemhle
Dump of assembler code for function main:

Ax8B483d48
Bx8048345
Ax80483da
Bx8B483eB
Bx80483e5
Bx8BA483e?
Bx80483ed
Bx80A483e9
AxB8A483ea
Bx8B483eh
AxB8A483ec
Bx8B483ed

tmain»:

tmain+h}:
tmain+i@3x:
tmain+lb >z
tmain+21>:
tmain+23 >z
tmain+24>:
tmain+25k:
tmain+26>:
tmain+27>:
tmain+28>:

push
call

add
mow
int
nop
nop
nop
nop
nop
nop

$Ax8A4944c
Bx8048388 <printf>
$Bx4.xesp
Byl . eax

$BxB8@

{main+29>: nop
tmain+3@x: nop
{main+31>: nop

End of assembhler dump.

Cgdbh» whatiz sz=Hello

type = <data variahle, no debuy infox*
Cgdbh» break main+i@

Junk at end of arguments.

Cgdbh» break Bx88483da

Eugﬁgiun "Ax8@483da" not defined.

And finally, issue 'quit’ to exit the program:

[Command - telnet 63.71.103.169

tmain+25>: nop
fmain+26>: nop
tmain+27>: nop
{main+28>: nop
tmain+29>: nop
Cmain+3@>: nop
tmain+31>: nop

End of assembler dump.

Cgdh>» whatis szHello

type = <data variable. no debug infoX

Cgdbh>» break main+lf@

Junk at end of arguments.

Cgdh>» break BxB8A483da

Function "“"Bx88483da' not defined.

Cgdh>» ¢

Continuing.

Breakpoint 2. printf {(format=8x884%?44c "Hello World-n~f'> at printf.c:38
38 printf.c: Mo such file or directory.

Cgdh) c

Continuing.

Hello Uorld

Program exited with code 8214,
Cgdb) guit

Also note that you can code an 'int 3' directly in your source if you want to stop while under the
debugger. This way, you don't have to place a breakpoint on the command line.

