
Introduction

A quick primer for those who prefer to use a command line debugger. Both gbd (Linux) and dbx (Unix)
are very similar. In addition, NuMega technologies produces a very powerful Ring 0 command line
debugger for Micro$oft Windows named SoftICE (retail $1000). SoftICE has the same 'feel' as gbd and
dbx. Skills learned in one should quickly port to the others.

The Program

The program used in this document is listed below. It prints the familiar "Hello World" from the nice
folks at Bell Labs. In addition, we'll snoop around while the target is under gdb to see if we can find any
goodies.

;;
;;
;; compile:
;;
;; nasm hello.asm -f elf -o hello.o -g
;;
;; -f: elf file format
;; -o: output file name
;; -g: debugging information
;;
;; gcc hello.o -o hello -g
;;
;; -o: output file name
;; -g: debugging information
;;
;;

GLOBAL main

EXTERN printf

;;
;;
;; defines
;;

LF equ 0xA ;; 10 decimal
CR equ 0xD ;; 13 decimal
TERM equ 0 ;; NULL

SYSTEM_EXIT equ 1 ;; exit to OS
SYSTEM_SVC equ 0x80 ;; int 80h

;;
;;
;; global read/write data
;;

SECTION .data
szHello db 'Hello World', LF, CR, TERM

;;
;;
;; code
;;

SECTION .text

main:

push dword szHello ;; push address of szHello
call printf ;; call c runtime
add esp, 4 ;; adjust stack

mov eax, SYSTEM_EXIT ;; prepare for exit
int SYSTEM_SVC ;; good bye

;;

Compile the Program

Compile and run the program as shown below.

Works as expected.

Lets see what's going on under the hood…

Fire up gdb. Execute 'gdb hello' as shown below:

At this point, gdb has our program loaded. Time to look at help:

The 'classes' of interest will be breakpoints, data, and stack.

To spare you the reading, here are some of the more useful commands:

Function Meaning
break 'function' Sets a break point at entry to 'function'
delete Deletes all break points
delete n Deletes break point n
disassemble Disassemble a specified section of memory.

Default is the function surrounding the pc of the selected frame.
With a single argument, the function surrounding that address is dumped.
Two arguments are taken as a range of memory to dump.

print Print value of expression EXP.
Variables accessible are those of the lexical environment of the selected stack
frame, plus all those whose scope is global or an entire file.

run Start debugged program. You may specify arguments to give it. Args may
include "*", or "[...]"; they are expanded using "sh". Input and output redirection
with ">", "<", or ">>" are also allowed.
With no arguments, uses arguments last specified (with "run" or "set args"). To
cancel previous arguments and run with no arguments, use "set args" without
arguments.

next step into a function (see also 'help next' for a complete explanation)
step step into a function (see also 'help step' for a complete explanation)
continue continue execution
where print the call stack (where you are in the program)
quit exit gdb
info info address -- Describe where symbol SYM is stored

info all-registers -- List of all registers and their contents
info args -- Argument variables of current stack frame
info breakpoints -- Status of user-settable breakpoints
info display -- Expressions to display when program stops
info float -- Print the status of the floating point unit
info frame -- All about selected stack frame
info functions -- All function names
info handle -- What debugger does when program gets various signals
info line -- Core addresses of the code for a source line
info locals -- Local variables of current stack frame
info program -- Execution status of the program
info registers -- List of integer registers and their contents
info scope -- List the variables local to a scope
info set -- Show all GDB settings
info signals -- What debugger does when program gets various signals
info source -- Information about the current source file
info stack -- Backtrace of the stack
info symbol -- Describe what symbol is at location ADDR
info tracepoints -- Status of tracepoints
info types -- All type names
info variables -- All global and static variable names
info watchpoints -- Synonym for "info breakpoints"

First thing is first. gdb's default assembly is AT&T (used by GAS, the GNU Assembler). Since we
write with Intel assembly, we'll set that:

Set a break point in main and printf, shown below:

Breakpoint 1 is at memory address 0x80483d0, and 2 is at 0x8048308. To delete these break points, we
could now issue 'delete' to remove all, 'delete 1' or 'delete 2' to remove a specific break point.

Finally, run the program. We'll run the program with an argument to see if we can find it later. Issue
'run argument':

Not much here. Now would be a good time to issue 'disassemble':

Seems we've lost much of our debug information. This is due to nasm. nasm has not left us much, but
its enough we can work with.

We know we passed a command line argument to the program. We'll try to find it. The stack should
look similar to below:

esp + C char* env[] pointer
esp + 8 char* argv[] pointer
esp + 4 argc integer
esp � ??? unknown

gdb and dbx have very powerful expression evaluators. We'll dig for argc. It should be 2:

It seems we found argc at esp + 4. Here's what we did:

• When printing a register, prefix the register name with a '$'
• esp + 4 is an address. This required a dereference '*'
• The argument was an integer. Cast it as such 'int'

So, the final expression was *(int)($esp+4)

Easy enough. Lets poke around and find the program name:

This was a little tougher. Basically, argv[] is a char**. At esp + 8, we found a pointer to the char**.
So, we needed to double dereference to get the char* (argv[0]). argv[1] will be found similarly with an
expression such as 'print *(* (char*) ((char**)($esp+8) + 4)'. Basically, you will add 4 (bump the
pointer) before the final dereference

Another way to find argv[] is to issue 'backtrace' while in main:

argv[0] is at 0xbffffbb4. argv[1] will be at 0xbffffbb8:

Enough fooling around with argc and argv[]. Set a breakpoint to stop after the call to printf . Issue
'break *0x80483da' (substitute the address as required).

Issue 'continue' to start execution. We hit the second break point in printf. Another useful commands at
this point is 'where' to get our call stack. We also get our format string since we are in printf.

Continue once again, and we break at address 0x80483da. We just returned from printf.

Issue 'info registers' to see what's in the registers:

Its interesting to see what is in eax and ecx. Could this be the CR (carriage return) that ended our string?
We have not cleaned the stack yet. esp should point to the string we just printed. Issue
'print *(char**)($esp)':

Other useful commands (that don't work due to nasm's lack of debug information) are 'next', 'step',
'xbreak', and 'whatis' which gives you type information. Also, note that you must use an '*' to specify a
break on an address:

And finally, issue 'quit' to exit the program:

Also note that you can code an 'int 3' directly in your source if you want to stop while under the
debugger. This way, you don't have to place a breakpoint on the command line.

