

Mauerer ffirs.tex V2 - 08/26/2008 3:23am Page iii

Professional

Linux® Kernel Architecture

Wolfgang Mauerer

Wiley Publishing, Inc.

Mauerer ffirs.tex V2 - 08/26/2008 3:23am Page i

Professional Linux® Kernel Architecture

Introduction . xxvii
Chapter 1: Introduction and Overview . 1
Chapter 2: Process Management and Scheduling . 35
Chapter 3: Memory Management . 133
Chapter 4: Virtual Process Memory . 289
Chapter 5: Locking and Interprocess Communication . 347
Chapter 6: Device Drivers . 391
Chapter 7: Modules . 473
Chapter 8: The Virtual Filesystem. 519
Chapter 9: The Extended Filesystem Family . 583
Chapter 10: Filesystems without Persistent Storage . 643
Chapter 11: Extended Attributes and Access Control Lists 707
Chapter 12: Networks . 733
Chapter 13: System Calls . 819
Chapter 14: Kernel Activities . 847
Chapter 15: Time management . 893
Chapter 16: Page and Buffer Cache . 949
Chapter 17: Data Synchronization . 989
Chapter 18: Page Reclaim and Swapping . 1023
Chapter 19: Auditing . 1097
Appendix A: Architecture Specifics . 1117
Appendix B: Working with the Source Code . 1141
Appendix C: Notes on C . 1175
Appendix D: System Startup . 1223
Appendix E: The ELF Binary Format . 1241
Appendix F: The Kernel Development Process . 1267
Bibliography . 1289
Index . 1293

Mauerer ffirs.tex V2 - 08/26/2008 3:23am Page ii

Mauerer ffirs.tex V2 - 08/26/2008 3:23am Page iii

Professional

Linux® Kernel Architecture

Wolfgang Mauerer

Wiley Publishing, Inc.

Mauerer ffirs.tex V2 - 08/26/2008 3:23am Page iv

Professional Linux® Kernel Architecture
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wolfgang Mauerer
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-34343-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:
Mauerer, Wolfgang, 1978-

Professional Linux kernel architecture / Wolfgang Mauerer.
p. cm.

Includes index.
ISBN 978-0-470-34343-2 (pbk.)

1. Linux. 2. Computer architecture. 3. Application software. I. Title.
QA76.9.A73M38 2008
005.4’32--dc22

2008028067

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

Mauerer fauth.tex V2 - 08/22/2008 4:52am Page v

About the Author
Wolfgang Mauerer is a quantum physicist whose professional interests are centered around quantum
cryptography, quantum electrodynamics, and compilers for — you guessed it — quantum architectures.
With the confirmed capacity of being the worst experimentalist in the known universe, he sticks to the
theoretical side of his profession, which is especially reassuring considering his constant fear of acci-
dentally destroying the universe. Outside his research work, he is fascinated by operating systems, and
for more than a decade — starting with an article series about the kernel in 1997 — he has found great
pleasure in documenting and explaining Linux kernel internals. He is also the author of a book about
typesetting with LaTeX and has written numerous articles that have been translated into seven languages
in total.

When he’s not submerged in vast Hilbert spaces or large quantities of source code, he tries to take the
opposite direction, namely, upward — be this with model planes, a paraglider, or on foot with an ice axe
in his hands: Mountains especially have the power to outrival even the Linux kernel. Consequently, he
considers planning and accomplishing a first-ascent expedition to the vast arctic glaciers of east Green-
land to be the really unique achievement in his life.

Being interested in everything that is fundamental, he is also the author of the first compiler for
Plankalkül, the world’s earliest high-level language devised in 1942–1946 by Konrad Zuse, the father of
the computer. As an avid reader, he is proud that despite the two-digit number of computers present in
his living room, the volume required for books still occupies a larger share.

Mauerer fauth.tex V2 - 08/22/2008 4:52am Page vi

Mauerer fcredit.tex V2 - 08/22/2008 4:53am Page vii

Credits
Executive Editor
Carol Long

Senior Development Editor
Tom Dinse

Production Editor
Debra Banninger

Copy Editors
Cate Caffrey
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Publication Services, Inc.

Indexer
Jack Lewis

Mauerer fcredit.tex V2 - 08/22/2008 4:53am Page viii

Mauerer fack.tex V4 - 09/04/2008 3:36pm Page ix

Acknowledgments

First and foremost, I have to thank the thousands of programmers who have created the Linux kernel
over the years — most of them commercially based, but some also just for their own private or academic
joy. Without them, there would be no kernel, and I would have had nothing to write about. Please accept
my apologies that I cannot list all several hundred names here, but in true UNIX style, you can easily
generate the list by:

for file in $ALL_FILES_COVERED_IN_THIS_BOOK; do

git log --pretty="format:%an" $file; done |

sort -u -k 2,2

It goes without saying that I admire your work very much — you are all the true heroes in this story!

What you are reading right now is the result of an evolution over more than seven years: After two years
of writing, the first edition was published in German by Carl Hanser Verlag in 2003. It then described
kernel 2.6.0. The text was used as a basis for the low-level design documentation for the EAL4+ security
evaluation of Red Hat Enterprise Linux 5, requiring to update it to kernel 2.6.18 (if the EAL acronym
does not mean anything to you, then Wikipedia is once more your friend). Hewlett-Packard sponsored
the translation into English and has, thankfully, granted the rights to publish the result. Updates to kernel
2.6.24 were then performed specifically for this book.

Several people were involved in this evolution, and my appreciation goes to all of them: Leslie Mackay-
Poulton, with support from David Jacobs, did a tremendous job at translating a huge pile of text into
English. I’m also indebted to Sal La Pietra of atsec information security for pulling the strings to get the
translation project rolling, and especially to Stephan Müller for close cooperation during the evaluation.
My cordial thanks also go to all other HP and Red Hat people involved in this evaluation, and also to
Claudio Kopper and Hans Löhr for our very enjoyable cooperation during this project. Many thanks also
go to the people at Wiley — both visible and invisible to me — who helped to shape the book into its
current form.

The German edition was well received by readers and reviewers, but nevertheless comments about
inaccuracies and suggestions for improvements were provided. I’m glad for all of them, and would also
like to mention the instructors who answered the publisher’s survey for the original edition. Some of their
suggestions were very valuable for improving the current publication. The same goes for the referees for
this edition, especially to Dr. Xiaodong Zhang for providing numerous suggestions for Appendix F.4.

Furthermore, I express my gratitude to Dr. Christine Silberhorn for granting me the opportunity to
suspend my regular research work at the Max Planck Research Group for four weeks to work on this
project. I hope you enjoyed the peace during this time when nobody was trying to install Linux on your
MacBook!

As with every book, I owe my deepest gratitude to my family for supporting me in every aspect of
life — I more than appreciate this indispensable aid. Finally, I have to thank Hariet Fabritius for infinite

Mauerer fack.tex V4 - 09/04/2008 3:36pm Page x

Acknowledgments

patience with an author whose work cycle not only perfectly matched the most alarming forms of sleep
dyssomnias, but who was always right on the brink of confusing his native tongue with ‘‘C,’’ and whom
she consequently had to rescue from numerous situations where he seemingly had lost his mind (see
below. . .). Now that I have more free time again, I’m not only looking forward to our well-deserved
holiday, but can finally embark upon the project of giving your laptop all joys of a proper operating
system! (Writing these acknowledgments, I all of a sudden realize why people always hasten to lock
away their laptops when they see me approaching. . . .)

x

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xi

Contents

Introduction xxvii

Chapter 1: Introduction and Overview 1

Tasks of the Kernel 2
Implementation Strategies 3
Elements of the Kernel 3

Processes, Task Switching, and Scheduling 4
Unix Processes 4
Address Spaces and Privilege Levels 7
Page Tables 11
Allocation of Physical Memory 13
Timing 16
System Calls 17
Device Drivers, Block and Character Devices 17
Networks 18
Filesystems 18
Modules and Hotplugging 18
Caching 20
List Handling 20
Object Management and Reference Counting 22
Data Types 25
. . . and Beyond the Infinite 27

Why the Kernel Is Special 28
Some Notes on Presentation 29
Summary 33

Chapter 2: Process Management and Scheduling 35

Process Priorities 36
Process Life Cycle 38

Preemptive Multitasking 40
Process Representation 41

Process Types 47
Namespaces 47

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xii

Contents

Process Identification Numbers 54
Task Relationships 62

Process Management System Calls 63
Process Duplication 63
Kernel Threads 77
Starting New Programs 79
Exiting Processes 83

Implementation of the Scheduler 83
Overview 84
Data Structures 86
Dealing with Priorities 93
Core Scheduler 99

The Completely Fair Scheduling Class 106
Data Structures 106
CFS Operations 107
Queue Manipulation 112
Selecting the Next Task 113
Handling the Periodic Tick 114
Wake-up Preemption 115
Handling New Tasks 116

The Real-Time Scheduling Class 117
Properties 118
Data Structures 118
Scheduler Operations 119

Scheduler Enhancements 121
SMP Scheduling 121
Scheduling Domains and Control Groups 126
Kernel Preemption and Low Latency Efforts 127

Summary 132

Chapter 3: Memory Management 133

Overview 133
Organization in the (N)UMA Model 136

Overview 136
Data Structures 138

Page Tables 153
Data Structures 154
Creating and Manipulating Entries 161

Initialization of Memory Management 161
Data Structure Setup 162
Architecture-Specific Setup 169
Memory Management during the Boot Process 191

xii

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xiii

Contents

Management of Physical Memory 199
Structure of the Buddy System 199
Avoiding Fragmentation 201
Initializing the Zone and Node Data Structures 209
Allocator API 215
Reserving Pages 222
Freeing Pages 240
Allocation of Discontiguous Pages in the Kernel 244
Kernel Mappings 251

The Slab Allocator 256
Alternative Allocators 258
Memory Management in the Kernel 259
The Principle of Slab Allocation 261
Implementation 265
General Caches 283

Processor Cache and TLB Control 285
Summary 287

Chapter 4: Virtual Process Memory 289

Introduction 289
Virtual Process Address Space 290

Layout of the Process Address Space 290
Creating the Layout 294

Principle of Memory Mappings 297
Data Structures 298

Trees and Lists 299
Representation of Regions 300
The Priority Search Tree 302

Operations on Regions 306
Associating Virtual Addresses with a Region 306
Merging Regions 308
Inserting Regions 309
Creating Regions 310

Address Spaces 312
Memory Mappings 314

Creating Mappings 314
Removing Mappings 317
Nonlinear Mappings 319

Reverse Mapping 322
Data Structures 323
Creating a Reverse Mapping 324
Using Reverse Mapping 325

xiii

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xiv

Contents

Managing the Heap 327
Handling of Page Faults 330
Correction of Userspace Page Faults 336

Demand Allocation/Paging 337
Anonymous Pages 339
Copy on Write 340
Getting Nonlinear Mappings 341

Kernel Page Faults 341
Copying Data between Kernel and Userspace 344
Summary 345

Chapter 5: Locking and Interprocess Communication 347

Control Mechanisms 348
Race Conditions 348
Critical Sections 349

Kernel Locking Mechanisms 351
Atomic Operations on Integers 352
Spinlocks 354
Semaphores 355
The Read-Copy-Update Mechanism 357
Memory and Optimization Barriers 359
Reader/Writer Locks 361
The Big Kernel Lock 361
Mutexes 362
Approximate Per-CPU Counters 364
Lock Contention and Fine-Grained Locking 365

System V Interprocess Communication 366
System V Mechanisms 366
Semaphores 367
Message Queues 376
Shared Memory 380

Other IPC Mechanisms 381
Signals 381
Pipes and Sockets 389

Summary 390

Chapter 6: Device Drivers 391

I/O Architecture 391
Expansion Hardware 392

Access to Devices 397
Device Files 397
Character, Block, and Other Devices 397

xiv

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xv

Contents

Device Addressing Using Ioctls 400
Representation of Major and Minor Numbers 401
Registration 403

Association with the Filesystem 406
Device File Elements in Inodes 406
Standard File Operations 407
Standard Operations for Character Devices 407
Standard Operations for Block Devices 408

Character Device Operations 409
Representing Character Devices 409
Opening Device Files 409
Reading and Writing 412

Block Device Operations 412
Representation of Block Devices 413
Data Structures 415
Adding Disks and Partitions to the System 423
Opening Block Device Files 425
Request Structure 427
BIOs 430
Submitting Requests 432
I/O Scheduling 438
Implementation of Ioctls 441

Resource Reservation 442
Resource Management 442
I/O Memory 445
I/O Ports 446

Bus Systems 448
The Generic Driver Model 449
The PCI Bus 454
USB 463

Summary 471

Chapter 7: Modules 473

Overview 473
Using Modules 474

Adding and Removing 474
Dependencies 477
Querying Module Information 478
Automatic Loading 480

Inserting and Deleting Modules 483
Module Representation 483
Dependencies and References 488

xv

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xvi

Contents

Binary Structure of Modules 491
Inserting Modules 496
Removing Modules 505

Automation and Hotplugging 506
Automatic Loading with kmod 507
Hotplugging 508

Version Control 511
Checksum Methods 512
Version Control Functions 515

Summary 517

Chapter 8: The Virtual Filesystem 519

Filesystem Types 520
The Common File Model 521

Inodes 522
Links 522
Programming Interface 523
Files as a Universal Interface 524

Structure of the VFS 525
Structural Overview 525
Inodes 527
Process-Specific Information 532
File Operations 537
Directory Entry Cache 542

Working with VFS Objects 547
Filesystem Operations 548
File Operations 565

Standard Functions 572
Generic Read Routine 573
The fault Mechanism 576
Permission-Checking 578

Summary 581

Chapter 9: The Extended Filesystem Family 583

Introduction 583
Second Extended Filesystem 584

Physical Structure 585
Data Structures 592

xvi

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xvii

Contents

Creating a Filesystem 608
Filesystem Actions 610

Third Extended Filesystem 637
Concepts 638
Data Structures 639

Summary 642

Chapter 10: Filesystems without Persistent Storage 643

The proc Filesystem 644
Contents of /proc 644
Data Structures 652
Initialization 655
Mounting the Filesystem 657
Managing /proc Entries 660
Reading and Writing Information 664
Task-Related Information 666
System Control Mechanism 671

Simple Filesystems 680
Sequential Files 680
Writing Filesystems with Libfs 684
The Debug Filesystem 687
Pseudo Filesystems 689

Sysfs 689
Overview 690
Data Structures 690
Mounting the Filesystem 695
File and Directory Operations 697
Populating Sysfs 704

Summary 706

Chapter 11: Extended Attributes and Access Control Lists 707

Extended Attributes 707
Interface to the Virtual Filesystem 708
Implementation in Ext3 714
Implementation in Ext2 721

Access Control Lists 722
Generic Implementation 722
Implementation in Ext3 726
Implementation in Ext2 732

Summary 732

xvii

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xviii

Contents

Chapter 12: Networks 733

Linked Computers 734
ISO/OSI and TCP/IP Reference Model 734
Communication via Sockets 738

Creating a Socket 738
Using Sockets 740
Datagram Sockets 744

The Layer Model of Network Implementation 745
Networking Namespaces 747
Socket Buffers 749

Data Management Using Socket Buffers 750
Management Data of Socket Buffers 753

Network Access Layer 754
Representation of Network Devices 755
Receiving Packets 760
Sending Packets 768

Network Layer 768
IPv4 769
Receiving Packets 771
Local Delivery to the Transport Layer 772
Packet Forwarding 774
Sending Packets 775
Netfilter 778
IPv6 783

Transport Layer 785
UDP 785
TCP 787

Application Layer 799
Socket Data Structures 799
Sockets and Files 803
The socketcall System Call 804
Creating Sockets 805
Receiving Data 807
Sending Data 808

Networking from within the Kernel 808
Communication Functions 808
The Netlink Mechanism 810

Summary 817

xviii

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xix

Contents

Chapter 13: System Calls 819

Basics of System Programming 820
Tracing System Calls 820
Supported Standards 823
Restarting System Calls 824

Available System Calls 826
Implementation of System Calls 830

Structure of System Calls 830
Access to Userspace 837
System Call Tracing 838

Summary 846

Chapter 14: Kernel Activities 847

Interrupts 848
Interrupt Types 848
Hardware IRQs 849
Processing Interrupts 850
Data Structures 853
Interrupt Flow Handling 860
Initializing and Reserving IRQs 864
Servicing IRQs 866

Software Interrupts 875
Starting SoftIRQ Processing 877
The SoftIRQ Daemon 878

Tasklets 879
Generating Tasklets 880
Registering Tasklets 880
Executing Tasklets 881

Wait Queues and Completions 882
Wait Queues 882
Completions 887
Work Queues 889

Summary 891

Chapter 15: Time Management 893

Overview 893
Types of Timers 893
Configuration Options 896

xix

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xx

Contents

Implementation of Low-Resolution Timers 897
Timer Activation and Process Accounting 897
Working with Jiffies 900
Data Structures 900
Dynamic Timers 902

Generic Time Subsystem 907
Overview 908
Configuration Options 909
Time Representation 910
Objects for Time Management 911

High-Resolution Timers 920
Data Structures 921
Setting Timers 925
Implementation 926
Periodic Tick Emulation 931
Switching to High-Resolution Timers 932

Dynamic Ticks 933
Data Structures 934
Dynamic Ticks for Low-Resolution Systems 935
Dynamic Ticks for High-Resolution Systems 938
Stopping and Starting Periodic Ticks 939

Broadcast Mode 943
Implementing Timer-Related System Calls 944

Time Bases 944
The alarm and setitimer System Calls 945
Getting the Current Time 947

Managing Process Times 947
Summary 948

Chapter 16: Page and Buffer Cache 949

Structure of the Page Cache 950
Managing and Finding Cached Pages 951
Writing Back Modified Data 952

Structure of the Buffer Cache 954
Address Spaces 955

Data Structures 956
Page Trees 958
Operations on Address Spaces 961

Implementation of the Page Cache 966
Allocating Pages 966
Finding Pages 967

xx

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xxi

Contents

Waiting on Pages 968
Operations with Whole Pages 969
Page Cache Readahead 970

Implementation of the Buffer Cache 974
Data Structures 975
Operations 976
Interaction of Page and Buffer Cache 977
Independent Buffers 982

Summary 988

Chapter 17: Data Synchronization 989

Overview 989
The pdflush Mechanism 991
Starting a New Thread 993
Thread Initialization 994
Performing Actual Work 995
Periodic Flushing 996
Associated Data Structures 996

Page Status 996
Writeback Control 998
Adjustable Parameters 1000

Central Control 1000
Superblock Synchronization 1002
Inode Synchronization 1003

Walking the Superblocks 1003
Examining Superblock Inodes 1003
Writing Back Single Inodes 1006

Congestion 1009
Data Structures 1009
Thresholds 1010
Setting and Clearing the Congested State 1011
Waiting on Congested Queues 1012

Forced Writeback 1013
Laptop Mode 1015
System Calls for Synchronization Control 1016
Full Synchronization 1016

Synchronization of Inodes 1018
Synchronization of Individual Files 1019
Synchronization of Memory Mappings 1021

Summary 1022

xxi

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xxii

Contents

Chapter 18: Page Reclaim and Swapping 1023

Overview 1023
Swappable Pages 1024
Page Thrashing 1025
Page-Swapping Algorithms 1026

Page Reclaim and Swapping in the Linux Kernel 1027
Organization of the Swap Area 1028
Checking Memory Utilization 1029
Selecting Pages to Be Swapped Out 1029
Handling Page Faults 1029
Shrinking Kernel Caches 1030

Managing Swap Areas 1030
Data Structures 1030
Creating a Swap Area 1035
Activating a Swap Area 1036

The Swap Cache 1039
Identifying Swapped-Out Pages 1041
Structure of the Cache 1044
Adding New Pages 1045
Searching for a Page 1050

Writing Data Back 1051
Page Reclaim 1052

Overview 1053
Data Structures 1055
Determining Page Activity 1057
Shrinking Zones 1062
Isolating LRU Pages and Lumpy Reclaim 1065
Shrinking the List of Active Pages 1068
Reclaiming Inactive Pages 1072

The Swap Token 1079
Handling Swap-Page Faults 1082

Swapping Pages in 1083
Reading the Data 1084
Swap Readahead 1085

Initiating Memory Reclaim 1086
Periodic Reclaim with kswapd 1087
Swap-out in the Event of Acute Memory Shortage 1090

Shrinking Other Caches 1092
Data Structures 1092
Registering and Removing Shrinkers 1093
Shrinking Caches 1093

Summary 1095

xxii

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xxiii

Contents

Chapter 19: Auditing 1097

Overview 1097
Audit Rules 1099
Implementation 1100

Data Structures 1100
Initialization 1106
Processing Requests 1107
Logging Events 1108
System Call Auditing 1110

Summary 1116

Appendix A: Architecture Specifics 1117

Overview 1117
Data Types 1118
Alignment 1119
Memory Pages 1119
System Calls 1120
String Processing 1120
Thread Representation 1122

IA-32 1122
IA-64 1124
ARM 1126
Sparc64 1128
Alpha 1129
Mips 1131
PowerPC 1132
AMD64 1134

Bit Operations and Endianness 1135
Manipulation of Bit Chains 1135
Conversion between Byte Orders 1136

Page Tables 1137
Miscellaneous 1137

Checksum Calculation 1137
Context Switch 1137
Finding the Current Process 1138

Summary 1139

Appendix B: Working with the Source Code 1141

Organization of the Kernel Sources 1141
Configuration with Kconfig 1144

A Sample Configuration File 1144

xxiii

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xxiv

Contents

Language Elements of Kconfig 1147
Processing Configuration Information 1152

Compiling the Kernel with Kbuild 1154
Using the Kbuild System 1154
Structure of the Makefiles 1156

Useful Tools 1160
LXR 1161
Patch and Diff 1163
Git 1165

Debugging and Analyzing the Kernel 1169
GDB and DDD 1170
Local Kernel 1171
KGDB 1172

User-Mode Linux 1173
Summary 1174

Appendix C: Notes on C 1175

How the GNU C Compiler Works 1175
From Source Code to Machine Program 1176
Assembly and Linking 1180
Procedure Calls 1180
Optimization 1185
Inline Functions 1192
Attributes 1192
Inline Assembler 1194
__builtin Functions 1198
Pointer Arithmetic 1200

Standard Data Structures and Techniques of the Kernel 1200
Reference Counters 1200
Pointer Type Conversions 1201
Alignment Issues 1202
Bit Arithmetic 1203
Pre-Processor Tricks 1206
Miscellaneous 1207
Doubly Linked Lists 1209
Hash Lists 1214
Red-Black Trees 1214
Radix Trees 1216

Summary 1221

xxiv

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xxv

Contents

Appendix D: System Startup 1223

Architecture-Specific Setup on IA-32 Systems 1224
High-Level Initialization 1225

Subsystem Initialization 1225
Summary 1239

Appendix E: The ELF Binary Format 1241

Layout and Structure 1241
ELF Header 1243
Program Header Table 1244
Sections 1246
Symbol Table 1248
String Tables 1249

Data Structures in the Kernel 1250
Data Types 1250
Headers 1251
String Tables 1257
Symbol Tables 1257
Relocation Entries 1259
Dynamic Linking 1263

Summary 1265

Appendix F: The Kernel Development Process 1267

Introduction 1267
Kernel Trees and the Structure of Development 1268

The Command Chain 1269
The Development Cycle 1269
Online Resources 1272

The Structure of Patches 1273
Technical Issues 1273
Submission and Review 1277

Linux and Academia 1281
Some Examples 1282
Adopting Research 1284

Summary 1287

References 1289

Index 1293

xxv

Mauerer ftoc.tex V4 - 09/03/2008 11:13pm Page xxvi

Mauerer flast.tex V2 - 09/05/2008 12:08pm Page xxvii

Introduction

Unix is simple and coherent, but it takes a genius
(or at any rate a programmer) to understand

and appreciate the simplicity.
— Dennis Ritchie

Note from the authors: Yes, we have lost our minds.
Be forewarned: You will lose yours too.

— Benny Goodheart & James Cox

Unix is distinguished by a simple, coherent, and elegant design — truly remarkable features that have
enabled the system to influence the world for more than a quarter of a century. And especially thanks
to the growing presence of Linux, the idea is still picking up momentum, with no end of the growth
in sight.

Unix and Linux carry a certain fascination, and the two quotations above hopefully capture the spirit of
this attraction. Consider Dennis Ritchie’s quote: Is the coinventor of Unix at Bell Labs completely right
in saying that only a genius can appreciate the simplicity of Unix? Luckily not, because he puts himself
into perspective immediately by adding that programmers also qualify to value the essence of Unix.

Understanding the meagerly documented, demanding, and complex sources of Unix as well as of Linux
is not always an easy task. But once one has started to experience the rich insights that can be gained from
the kernel sources, it is hard to escape the fascination of Linux. It seems fair to warn you that it’s easy
to get addicted to the joy of the operating system kernel once starting to dive into it. This was already
noted by Benny Goodheart and James Cox, whose preface to their book The Magic Garden Explained
(second quotation above) explained the internals of Unix System V. And Linux is definitely also capable
of helping you to lose your mind!

This book acts as a guide and companion that takes you through the kernel sources and sharpens your
awareness of the beauty, elegance, and — last but not least — esthetics of their concepts. There are, how-
ever, some prerequisites to foster an understanding of the kernel. C should not just be a letter; neither
should it be a foreign language. Operating systems are supposed to be more than just a ‘‘Start” button, and
a small amount of algorithmics can also do no harm. Finally, it is preferable if computer architecture is not
just about how to build the most fancy case. From an academic point of view, this comes closest to the
lectures ‘‘Systems Programming,” ‘‘Algorithmics,” and ‘‘Fundamentals of Operating Systems.” The pre-
vious edition of this book has been used to teach the fundamentals of Linux to advanced undergraduate
students in several universities, and I hope that the current edition will serve the same purpose.

Discussing all aforementioned topics in detail is outside the scope of this book, and when you consider
the mass of paper you are holding in your hands right now (or maybe you are not holding it, for this
very reason), you’ll surely agree that this would not be a good idea. When a topic not directly related to

Mauerer flast.tex V2 - 09/05/2008 12:08pm Page xxviii

Introduction

the kernel, but required to understand what the kernel does, is encountered in this book, I will briefly
introduce you to it. To gain a more thorough understanding, however, consult the books on computing
fundamentals that I recommend. Naturally, there is a large selection of texts, but some books that I found
particularly insightful and illuminating include C Programming Language, by Brian W. Kernighan and
Denis M. Ritchie [KR88]; Modern Operating Systems, by Andrew S. Tanenbaum [Tan07] on the basics of
operating systems in general; Operating Systems: Design and Implementation, by Andrew S. Tanenbaum and
Albert S. Woodhull [TW06] on Unix (Minix) in particular; Advanced Programming in the Unix Environment,
by W. Richard Stevens and Stephen A. Rago [SR05] on userspace programming; and the two volumes
Computer Architecture and Computer Organization and Design, on the foundations of computer architecture
by John L. Hennessy and David A. Patterson [HP06, PH07]. All have established themselves as classics
in the literature.

Additionally, Appendix C contains some information about extensions of the GNU C compiler that are
used by the kernel, but do not necessarily find widespread use in general programming.

When the first edition of this book was written, a schedule for kernel releases was more or less nonexis-
tent. This has changed drastically during the development of kernel 2.6, and as I discuss in Appendix F,
kernel developers have become pretty good at issuing new releases at periodic, predictable intervals. I
have focused on kernel 2.6.24, but have also included some references to 2.6.25 and 2.6.26, which were
released after this book was written but before all technical publishing steps had been completed. Since a
number of comprehensive changes to the whole kernel have been merged into 2.6.24, picking this release
as the target seems a good choice. While a detail here or there will have changed in more recent kernel
versions as compared to the code discussed in this book, the big picture will remain the same for quite
some time.

In the discussion of the various components and subsystems of the kernel, I have tried to avoid over-
loading the text with unimportant details. Likewise, I have tried not to lose track of the connection with
source code. It is a very fortunate situation that, thanks to Linux, we are able to inspect the source of a
real, working, production operating system, and it would be sad to neglect this essential aspect of the
kernel. To keep the book’s volume below the space of a whole bookshelf, I have selected only the most
crucial parts of the sources. Appendix F introduces some techniques that ease reading of and working
with the real source, an indispensable step toward understanding the structure and implementation of
the Linux kernel.

One particularly interesting observation about Linux (and Unix in general) is that it is well suited to
evoke emotions. Flame wars on the Internet and heated technical debates about operating systems may be
one thing, but for which other operating system does there exist a handbook (The Unix-Haters Handbook,
edited by Simson Garfinkel et al. [GWS94]) on how best to hate it? When I wrote the preface to the first
edition, I noted that it is not a bad sign for the future that a certain international software company
responds to Linux with a mixture of abstruse accusations and polemics. Five years later, the situation
has improved, and the aforementioned vendor has more or less officially accepted the fact that Linux has
become a serious competitor in the operating system world. And things are certainly going to improve
even more during the next five years. . . .

Naturally (and not astonishingly), I admit that I am definitely fascinated by Linux (and, sometimes, am
also sure that I have lost my mind because of this), and if this book helps to carry this excitement to the
reader, the long hours (and especially nights) spent writing it were worth every minute!

Suggestions for improvements and constrictive critique can be passed to wm@linux-kernel.net, or via
www.wrox.com. Naturally, I’m also happy if you tell me that you liked the book!

xxviii

Mauerer flast.tex V2 - 09/05/2008 12:08pm Page xxix

Introduction

What This Book Covers

This book discusses the concepts, structure, and implementation of the Linux kernel. In particular, the
individual chapters cover the following topics:

❑ Chapter 1 provides an overview of the Linux kernel and describes the big picture that is investi-
gated more closely in the following chapters.

❑ Chapter 2 talks about the basics of multitasking, scheduling, and process management, and
investigates how these fundamental techniques and abstractions are implemented.

❑ Chapter 3 discusses how physical memory is managed. Both the interaction with hardware and
the in-kernel distribution of RAM via the buddy system and the slab allocator are covered.

❑ Chapter 4 proceeds to describe how userland processes experience virtual memory, and the
comprehensive data structures and actions required from the kernel to implement this view.

❑ Chapter 5 introduces the mechanisms required to ensure proper operation of the kernel on
multiprocessor systems. Additionally, it covers the related question of how processes can com-
municate with each other.

❑ Chapter 6 walks you through the means for writing device drivers that are required to add sup-
port for new hardware to the kernel.

❑ Chapter 7 explains how modules allow for dynamically adding new functionality to the kernel.

❑ Chapter 8 discusses the virtual filesystem, a generic layer of the kernel that allows for supporting
a wide range of different filesystems, both physical and virtual.

❑ Chapter 9 describes the extended filesystem family, that is, the Ext2 and Ext3 filesystems that are
the standard workhorses of many Linux installations.

❑ Chapter 10 goes on to discuss procfs and sysfs, two filesystems that are not designed to store
information, but to present meta-information about the kernel to userland. Additionally, a num-
ber of means to ease writing filesystems are presented.

❑ Chapter 11 shows how extended attributes and access control lists that can help to improve sys-
tem security are implemented.

❑ Chapter 12 discusses the networking implementation of the kernel, with a specific focus on IPv4,
TCP, UDP, and netfilter.

❑ Chapter 13 introduces how systems calls that are the standard way to request a kernel action
from userland are implemented.

❑ Chapter 14 analyzes how kernel activities are triggered with interrupts, and presents means of
deferring work to a later point in time.

❑ Chapter 15 shows how the kernel handles all time-related requirements, both with low and high
resolution.

❑ Chapter 16 talks about speeding up kernel operations with the help of the page and buffer
caches.

❑ Chapter 17 discusses how cached data in memory are synchronized with their sources on persis-
tent storage devices.

❑ Chapter 18 introduces how page reclaim and swapping work.

xxix

Mauerer flast.tex V2 - 09/05/2008 12:08pm Page xxx

Introduction

❑ Chapter 19 gives an introduction to the audit implementation, which allows for observing in
detail what the kernel is doing.

❑ Appendix A discusses peculiarities of various architectures supported by the kernel.

❑ Appendix B walks through various tools and means of working efficiently with the kernel
sources.

❑ Appendix C provides some technical notes about the programming language C, and also
discusses how the GNU C compiler is structured.

❑ Appendix D describes how the kernel is booted.

❑ Appendix E gives an introduction to the ELF binary format.

❑ Appendix F discusses numerous social aspects of kernel development and the Linux kernel
community.

xxx

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 1

Introduction and Overview

Operating systems are not only regarded as a fascinating part of information technology, but are
also the subject of controversial discussion among a wide public.1 Linux has played a major role
in this development. Whereas just 10 years ago a strict distinction was made between relatively
simple academic systems available in source code and commercial variants with varying perfor-
mance capabilities whose sources were a well-guarded secret, nowadays anybody can download
the sources of Linux (or of any other free systems) from the Internet in order to study them.

Linux is now installed on millions of systems and is used by home users and professionals alike
for a wide range of tasks. From miniature embedded systems in wristwatches to massively parallel
mainframes, there are countless ways of exploiting Linux productively. And this makes the sources
so interesting. A sound, well-established concept (Unix) melded with powerful innovations and a
strong penchant for dealing with problems that do not arise in academic teaching systems — this is
what makes Linux so fascinating.

This book describes the central functions of the kernel, explains its underlying structures, and exam-
ines its implementation. Because complex subjects are discussed, I assume that the reader already
has some experience in operating systems and systems programming in C (it goes without saying
that I assume some familiarity with using Linux systems). I touch briefly on several general concepts
relevant to common operating system problems, but my prime focus is on the implementation of the
Linux kernel. Readers unfamiliar with a particular topic will find explanations on relevant basics in
one of the many general texts on operating systems; for example, in Tanenbaum’s outstanding

1It is not the intention of this book to participate in ideological discussions such as whether Linux can be regarded as a
full operating system, although it is, in fact, just a kernel that cannot function productively without relying on other com-
ponents. When I speak of Linux as an operating system without explicitly mentioning the acronyms of similar projects
(primarily the GNU project, which despite strong initial resistance regarding the kernel reacts extremely sensitively when
Linux is used instead of GNU/Linux), this should not be taken to mean that I do not appreciate the importance of the
work done by this project. Our reasons are simple and pragmatic. Where do we draw the line when citing those involved
without generating such lengthy constructs as GNU/IBM/RedHat/HP/KDE/Linux? If this footnote makes little sense, refer to
www.gnu.org/gnu/linux-and-gnu.html, where you will find a summary of the positions of the GNU project.
After all ideological questions have been settled, I promise to refrain from using half-page footnotes in the rest of this book.

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 2

Chapter 1: Introduction and Overview

introductions ([TW06] and [Tan07]). A solid foundation of C programming is required. Because the
kernel makes use of many advanced techniques of C and, above all, of many special features of the GNU
C compiler, Appendix C discusses the finer points of C with which even good programmers may not
be familiar. A basic knowledge of computer structures will be useful as Linux necessarily interacts very
directly with system hardware — particularly with the CPU. There are also a large number of introduc-
tory works dealing with this subject; some are listed in the reference section. When I deal with CPUs
in greater depth (in most cases I take the IA-32 or AMD64 architecture as an example because Linux is
used predominantly on these system architectures), I explain the relevant hardware details. When I dis-
cuss mechanisms that are not ubiquitous in daily live, I will explain the general concept behind them,
but expect that readers will also consult the quoted manual pages for more advice on how a particular
feature is used from userspace.

The present chapter is designed to provide an overview of the various areas of the kernel and to illustrate
their fundamental relationships before moving on to lengthier descriptions of the subsystems in the
following chapters.

Since the kernel evolves quickly, one question that naturally comes to mind is which version is cov-
ered in this book. I have chosen kernel 2.6.24, which was released at the end of January 2008. The
dynamic nature of kernel development implies that a new kernel version will be available by the time
you read this, and naturally, some details will have changed — this is unavoidable. If it were not the
case, Linux would be a dead and boring system, and chances are that you would not want to read
the book. While some of the details will have changed, concepts will not have varied essentially. This is
particularly true because 2.6.24 has seen some very fundamental changes as compared to earlier versions.
Developers do not rip out such things overnight, naturally.

1.1 Tasks of the Kernel
On a purely technical level, the kernel is an intermediary layer between the hardware and the software.
Its purpose is to pass application requests to the hardware and to act as a low-level driver to address
the devices and components of the system. Nevertheless, there are other interesting ways of viewing the
kernel.

❑ The kernel can be regarded as an enhanced machine that, in the view of the application, abstracts
the computer on a high level. For example, when the kernel addresses a hard disk, it must decide
which path to use to copy data from disk to memory, where the data reside, which commands
must be sent to the disk via which path, and so on. Applications, on the other hand, need only
issue the command that data are to be transferred. How this is done is irrelevant to the appli-
cation — the details are abstracted by the kernel. Application programs have no contact with
the hardware itself,2 only with the kernel, which, for them, represents the lowest level in the
hierarchy they know — and is therefore an enhanced machine.

❑ Viewing the kernel as a resource manager is justified when several programs are run concurrently
on a system. In this case, the kernel is an instance that shares available resources — CPU time,
disk space, network connections, and so on — between the various system processes while at the
same time ensuring system integrity.

2The CPU is an exception since it is obviously unavoidable that programs access it. Nevertheless, the full range of possible instruc-
tions is not available for applications.

2

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 3

Chapter 1: Introduction and Overview

❑ Another view of the kernel is as a library providing a range of system-oriented commands. As is
generally known, system calls are used to send requests to the computer; with the help of the C
standard library, these appear to the application programs as normal functions that are invoked
in the same way as any other function.

1.2 Implementation Strategies
Currently, there are two main paradigms on which the implementation of operating systems is based:

1. Microkernels — In these, only the most elementary functions are implemented directly
in a central kernel — the microkernel. All other functions are delegated to autonomous
processes that communicate with the central kernel via clearly defined communication
interfaces — for example, various filesystems, memory management, and so on. (Of
course, the most elementary level of memory management that controls communication
with the system itself is in the microkernel. However, handling on the system call level is
implemented in external servers.) Theoretically, this is a very elegant approach because
the individual parts are clearly segregated from each other, and this forces programmers
to use ‘‘clean‘‘ programming techniques. Other benefits of this approach are dynamic
extensibility and the ability to swap important components at run time. However, owing
to the additional CPU time needed to support complex communication between the
components, microkernels have not really established themselves in practice although they
have been the subject of active and varied research for some time now.

2. Monolithic Kernels — They are the alternative, traditional concept. Here, the entire code
of the kernel — including all its subsystems such as memory management, filesystems, or
device drivers — is packed into a single file. Each function has access to all other parts of
the kernel; this can result in elaborately nested source code if programming is not done with
great care.

Because, at the moment, the performance of monolithic kernels is still greater than that of microkernels,
Linux was and still is implemented according to this paradigm. However, one major innovation has been
introduced. Modules with kernel code that can be inserted or removed while the system is up-and-running
support the dynamic addition of a whole range of functions to the kernel, thus compensating for some of
the disadvantages of monolithic kernels. This is assisted by elaborate means of communication between
the kernel and userland that allows for implementing hotplugging and dynamic loading of modules.

1.3 Elements of the Kernel
This section provides a brief overview of the various elements of the kernel and outlines the areas we will
examine in more detail in the following chapters. Despite its monolithic approach, Linux is surprisingly
well structured. Nevertheless, it is inevitable that its individual elements interact with each other; they
share data structures, and (for performance reasons) cooperate with each other via more functions than
would be necessary in a strictly segregated system. In the following chapters, I am obliged to make
frequent reference to the other elements of the kernel and therefore to other chapters, although I have
tried to keep the number of forward references to a minimum. For this reason, I introduce the individual
elements briefly here so that you can form an impression of their role and their place in the overall

3

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 4

Chapter 1: Introduction and Overview

concept. Figure 1-1 provides a rough initial overview about the layers that comprise a complete Linux
system, and also about some important subsystems of the kernel as such. Notice, however, that the
individual subsystems will interact in a variety of additional ways in practice that are not shown in the
figure.

Applications

Userspace

C Library

Kernel space

Hardware

Device
driversCore kernel

System Calls

Networking Device Drivers

FilesystemsVFS

Memory mgmt

Architecture specific code

Process mgmt

Figure 1-1: High-level overview of the structure of the Linux kernel and the
layers in a complete Linux system.

1.3.1 Processes, Task Switching, and Scheduling
Applications, servers, and other programs running under Unix are traditionally referred to as processes.
Each process is assigned address space in the virtual memory of the CPU. The address spaces of the indi-
vidual processes are totally independent so that the processes are unaware of each other — as far as each
process is concerned, it has the impression of being the only process in the system. If processes want to
communicate to exchange data, for example, then special kernel mechanisms must be used.

Because Linux is a multitasking system, it supports what appears to be concurrent execution of several
processes. Since only as many processes as there are CPUs in the system can really run at the same
time, the kernel switches (unnoticed by users) between the processes at short intervals to give them the
impression of simultaneous processing. Here, there are two problem areas:

1. The kernel, with the help of the CPU, is responsible for the technical details of task switch-
ing. Each individual process must be given the illusion that the CPU is always available. This
is achieved by saving all state-dependent elements of the process before CPU resources are
withdrawn and the process is placed in an idle state. When the process is reactivated, the
exact saved state is restored. Switching between processes is known as task switching.

2. The kernel must also decide how CPU time is shared between the existing processes. Impor-
tant processes are given a larger share of CPU time, less important processes a smaller share.
The decision as to which process runs for how long is known as scheduling.

1.3.2 UNIX Processes
Linux employs a hierarchical scheme in which each process depends on a parent process. The kernel
starts the init program as the first process that is responsible for further system initialization actions
and display of the login prompt or (in more widespread use today) display of a graphical login interface.
init is therefore the root from which all processes originate, more or less directly, as shown graphically

4

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 5

Chapter 1: Introduction and Overview

by the pstree program. init is the top of a tree structure whose branches spread further and further
down.

wolfgang@meitner> pstree
init-+-acpid

|-bonobo-activati
|-cron
|-cupsd
|-2*[dbus-daemon]
|-dbus-launch
|-dcopserver
|-dhcpcd
|-esd
|-eth1
|-events/0
|-gam_server
|-gconfd-2
|-gdm---gdm-+-X
| ‘-startkde-+-kwrapper
| ‘-ssh-agent
|-gnome-vfs-daemo
|-gpg-agent
|-hald-addon-acpi
|-kaccess
|-kded
|-kdeinit-+-amarokapp---2*[amarokapp]
| |-evolution-alarm
| |-kinternet
| |-kio_file
| |-klauncher
| |-konqueror
| |-konsole---bash-+-pstree
| | ‘-xemacs
| |-kwin
| |-nautilus
| ‘-netapplet
|-kdesktop
|-kgpg
|-khelper
|-kicker
|-klogd
|-kmix
|-knotify
|-kpowersave
|-kscd
|-ksmserver
|-ksoftirqd/0
|-kswapd0
|-kthread-+-aio/0
| |-ata/0
| |-kacpid
| |-kblockd/0
| |-kgameportd
| |-khubd

5

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 6

Chapter 1: Introduction and Overview

| |-kseriod
| |-2*[pdflush]
| ‘-reiserfs/0

...

How this tree structure spreads is closely connected with how new processes are generated. For this
purpose, Unix uses two mechanisms called fork and exec.

1. fork — Generates an exact copy of the current process that differs from the parent process
only in its PID (process identification). After the system call has been executed, there are two
processes in the system, both performing the same actions. The memory contents of the ini-
tial process are duplicated — at least in the view of the program. Linux uses a well-known
technique known as copy on write that allows it to make the operation much more efficient
by deferring the copy operations until either parent or child writes to a page — read-only
accessed can be satisfied from the same page for both.

A possible scenario for using fork is, for example, when a user opens a second browser win-
dow. If the corresponding option is selected, the browser executes a fork to duplicate its
code and then starts the appropriate actions to build a new window in the child process.

2. exec — Loads a new program into an existing content and then executes it. The memory
pages reserved by the old program are flushed, and their contents are replaced with new
data. The new program then starts executing.

Threads
Processes are not the only form of program execution supported by the kernel. In addition to heavy-weight
processes — another name for classical Unix processes — there are also threads, sometimes referred to as
light-weight processes. They have also been around for some time, and essentially, a process may consist of
several threads that all share the same data and resources but take different paths through the program
code. The thread concept is fully integrated into many modern languages — Java, for instance. In simple
terms, a process can be seen as an executing program, whereas a thread is a program function or routine
running in parallel to the main program. This is useful, for example, when Web browsers need to load
several images in parallel. Usually, the browser would have to execute several fork and exec calls to
generate parallel instances; these would then be responsible for loading the images and making data
received available to the main program using some kind of communication mechanisms. Threads make
this situation easier to handle. The browser defines a routine to load images, and the routine is started
as a thread with multiple strands (each with different arguments). Because the threads and the main
program share the same address space, data received automatically reside in the main program. There is
therefore no need for any communication effort whatsoever, except to prevent the threads from stepping
onto their feet mutually by accessing identical memory locations, for instance. Figure 1-2 illustrates the
difference between a program with and without threads.

W/O Threads With Threads

Address Space

Control Flow

Figure 1-2: Processes with and without threads.

6

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 7

Chapter 1: Introduction and Overview

Linux provides the clone method to generate threads. This works in a similar way to fork but enables a
precise check to be made of which resources are shared with the parent process and which are generated
independently for the thread. This fine-grained distribution of resources extends the classical thread
concept and allows for a more or less continuous transition between thread and processes.

Namespaces
During the development of kernel 2.6, support for namespaces was integrated into numerous subsystems.
This allows different processes to have different views of the system. Traditionally, Linux (and Unix in
general) use numerous global quantities, for instance, process identifiers: Every process in the system is
equipped with a unique identifier (ID), and this ID can be employed by users (or other processes) to refer
to the process — by sending it a signal, for instance. With namespaces, formerly global resources are
grouped differently: Every namespace can contain a specific set of PIDs, or can provide different views
of the filesystem, where mounts in one namespace do not propagate into different namespaces.

Namespaces are useful; for example, they are beneficial for hosting providers: Instead of setting up
one physical machine per customer, they can instead use containers implemented with namespaces to
create multiple views of the system where each seems to be a complete Linux installation from within
the container and does not interact with other containers: They are separated and segregated from each
other. Every instance looks like a single machine running Linux, but in fact, many such instances can
operate simultaneously on a physical machine. This helps use resources more effectively. In contrast to
full virtualization solutions like KVM, only a single kernel needs to run on the machine and is responsible
to manage all containers.

Not all parts of the kernel are yet fully aware of namespaces, and I will discuss to what extent support is
available when we analyze the various subsystems.

1.3.3 Address Spaces and Privilege Levels
Before we start to discuss virtual address spaces, there are some notational conventions to fix. Through-
out this book I use the abbreviations KiB, MiB, and GiB as units of size. The conventional units KB, MB,
and GB are not really suitable in information technology because they represent decimal powers

(
103 ,

106, and 109
)

although the binary system is the basis ubiquitous in computing. Accordingly KiB stands
for 210, MiB for 220, and GiB for 230 bytes.

Because memory areas are addressed by means of pointers, the word length of the CPU determines the
maximum size of the address space that can be managed. On 32-bit systems such as IA-32, PPC, and
m68k, these are 232 = 4 GiB, whereas on more modern 64-bit processors such as Alpha, Sparc64, IA-64,
and AMD64, 264 bytes can be managed.

The maximal size of the address space is not related to how much physical RAM is actually available,
and therefore it is known as the virtual address space. One more reason for this terminology is that every
process in the system has the impression that it would solely live in this address space, and other pro-
cesses are not present from their point of view. Applications do not need to care about other applications
and can work as if they would run as the only process on the computer.

Linux divides virtual address space into two parts known as kernel space and userspace as illustrated in
Figure 1-3.

7

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 8

Chapter 1: Introduction and Overview

0

TASK_SIZE

232 respectively 264

Userspace

Kernel-
space

Figure 1-3: Division of virtual
address space.

Every user process in the system has its own virtual address range that extends from 0 to TASK_SIZE.
The area above (from TASK_SIZE to 232 or 264) is reserved exclusively for the kernel — and may not be
accessed by user processes. TASK_SIZE is an architecture-specific constant that divides the address space
in a given ratio — in IA-32 systems, for instance, the address space is divided at 3 GiB so that the virtual
address space for each process is 3 GiB; 1 GiB is available to the kernel because the total size of the virtual
address space is 4 GiB. Although actual figures differ according to architecture, the general concepts do
not. I therefore use these sample values in our further discussions.

This division does not depend on how much RAM is available. As a result of address space virtualization,
each user process thinks it has 3 GiB of memory. The userspaces of the individual system processes are
totally separate from each other. The kernel space at the top end of the virtual address space is always
the same, regardless of the process currently executing.

Notice that the picture can be more complicated on 64-bit machines because these tend to use less than
64 bits to actually manage their huge principal virtual address space. Instead of 64 bits, they employ
a smaller number, for instance, 42 or 47 bits. Because of this, the effectively addressable portion of the
address space is smaller than the principal size. However, it is still larger than the amount of RAM that
will ever be present in the machine, and is therefore completely sufficient. As an advantage, the CPU can
save some effort because less bits are required to manage the effective address space than are required
to address the complete virtual address space. The virtual address space will contain holes that are not
addressable in principle in such cases, so the simple situation depicted in Figure 1-3 is not fully valid. We
will come back to this topic in more detail in Chapter 4.

Privilege Levels
The kernel divides the virtual address space into two parts so that it is able to protect the individual
system processes from each other. All modern CPUs offer several privilege levels in which processes can
reside. There are various prohibitions in each level including, for example, execution of certain assembly
language instructions or access to specific parts of virtual address space. The IA-32 architecture uses a
system of four privilege levels that can be visualized as rings. The inner rings are able to access more
functions, the outer rings less, as shown in Figure 1-4.

Whereas the Intel variant distinguishes four different levels, Linux uses only two different modes —
kernel mode and user mode. The key difference between the two is that access to the memory area above
TASK_SIZE — that is, kernel space — is forbidden in user mode. User processes are not able to manipulate
or read the data in kernel space. Neither can they execute code stored there. This is the sole domain

8

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 9

Chapter 1: Introduction and Overview

of the kernel. This mechanism prevents processes from interfering with each other by unintentionally
influencing each other’s data.

1

0

2
3

Kernel-
mode

User-
mode

Less
Privileges

IA-32 Linux

Figure 1-4: Ring system of privilege levels.

The switch from user to kernel mode is made by means of special transitions known as system calls; these
are executed differently depending on the system. If a normal process wants to carry out any kind of
action affecting the entire system (e.g., manipulating I/O devices), it can do this only by issuing a request
to the kernel with the help of a system call. The kernel first checks whether the process is permitted to
perform the desired action and then performs the action on its behalf. A return is then made to user mode.

Besides executing code on behalf of a user program, the kernel can also be activated by asynchronous
hardware interrupts, and is then said to run in interrupt context. The main difference to running in process
context is that the userspace portion of the virtual address space must not be accessed. Because interrupts
occur at random times, a random userland process is active when an interrupt occurs, and since the
interrupt will most likely be unconnected with the cause of the interrupt, the kernel has no business
with the contents of the current userspace. When operating in interrupt context, the kernel must be more
cautious than normal; for instance, it must not go to sleep. This requires extra care when writing interrupt
handlers and is discussed in detail in Chapter 2. An overview of the different execution contexts is given
in Figure 1-5.

Besides normal processes, there can also be kernel threads running on the system. Kernel threads are also
not associated with any particular userspace process, so they also have no business dealing with the
user portion of the address space. In many other respects, kernel threads behave much more like regular
userland applications, though: In contrast to a kernel operating in interrupt context, they may go to sleep,
and they are also tracked by the scheduler like every regular process in the system. The kernel uses them
for various purposes that range from data synchronization of RAM and block devices to helping the
scheduler distribute processes among CPUs, and we will frequently encounter them in the course of this
book.

Notice that kernel threads can be easily identified in the output of ps because their names are placed
inside brackets:

wolfgang@meitner> ps fax
PID TTY STAT TIME COMMAND
2 ? S< 0:00 [kthreadd]
3 ? S< 0:00 _ [migration/0]
4 ? S< 0:00 _ [ksoftirqd/0]

9

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 10

Chapter 1: Introduction and Overview

5 ? S< 0:00 _ [migration/1]
6 ? S< 0:00 _ [ksoftirqd/1]
7 ? S< 0:00 _ [migration/2]
8 ? S< 0:00 _ [ksoftirqd/2]
9 ? S< 0:00 _ [migration/3]

10 ? S< 0:00 _ [ksoftirqd/3]
11 ? S< 0:00 _ [events/0]
12 ? S< 0:00 _ [events/1]
13 ? S< 0:00 _ [events/2]
14 ? S< 0:00 _ [events/3]
15 ? S< 0:00 _ [khelper]

...
15162 ? S< 0:00 _ [jfsCommit]
15163 ? S< 0:00 _ [jfsSync]

System call Return from
system call

Must not be
accessedUser

Kernel

Interrupt Arrows indicate that
CPU executes here()

Figure 1-5: Execution in kernel and user mode. Most of the time, the CPU executes
code in userspace. When the application performs a system call, a switch to kernel
mode is employed, and the kernel fulfills the request. During this, it may access the
user portion of the virtual address space. After the system call completes, the CPU
switches back to user mode. A hardware interrupt also triggers a switch to kernel
mode, but this time, the userspace portion must not be accessed by the kernel.

On multiprocessor systems, many threads are started on a per-CPU basis and are restricted to run on
only one specific processor. This is represented by a slash and the number of the CPU that are appended
to the name of the kernel thread.

Virtual and Physical Address Spaces
In most cases, a single virtual address space is bigger than the physical RAM available to the system. And
the situation does not improve when each process has its own virtual address space. The kernel and CPU
must therefore consider how the physical memory actually available can be mapped onto virtual address
areas.

The preferred method is to use page tables to allocate virtual addresses to physical addresses. Whereas
virtual addresses relate to the combined user and kernel space of a process, physical addresses are used
to address the RAM actually available. This principle is illustrated in Figure 1-6.

The virtual address spaces of both processes shown in the figure are divided into portions of equal size
by the kernel. These portions are known as pages. Physical memory is also divided into pages of the
same size.

10

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 11

Chapter 1: Introduction and Overview

Process A

RAM

Process B

Page Frame

Figure 1-6: Virtual and physical addresses.

The arrows in Figure 1-6 indicate how the pages in the virtual address spaces are distributed across the
physical pages. For example, virtual page 1 of process A is mapped to physical page 4, while virtual
page 1 of process B is mapped to the fifth physical page. This shows that virtual addresses change their
meaning from process to process.

Physical pages are often called page frames. In contrast, the term page is reserved for pages in virtual
address space.

Mapping between virtual address spaces and physical memory also enables the otherwise strict sep-
aration between processes to be lifted. Our example includes a page frame explicitly shared by both
processes. Page 5 of A and page 1 of B both point to the physical page frame 5. This is possible because
entries in both virtual address spaces (albeit at different positions) point to the same page. Since the ker-
nel is responsible for mapping virtual address space to physical address space, it is able to decide which
memory areas are to be shared between processes and which are not.

The figure also shows that not all pages of the virtual address spaces are linked with a page frame. This
may be because either the pages are not used or because data have not been loaded into memory because
they are not yet needed. It may also be that the page has been swapped out onto hard disk and will be
swapped back in when needed.

Finally, notice that there are two equivalent terms to address the applications that run on behalf of the
user. One of them is userland, and this is the nomenclature typically preferred by the BSD community for
all things that do not belong to the kernel. The alternative is to say that an application runs in userspace. It
should be noted that the term userland will always mean applications as such, whereas the term userspace
can additionally not only denote applications, but also the portion of the virtual address space in which
they are executed, in contrast to kernel space.

1.3.4 Page Tables
Data structures known as page tables are used to map virtual address space to physical address space. The
easiest way of implementing the association between both would be to use an array containing an entry
for each page in virtual address space. This entry would point to the associated page frame. But there is
a problem. IA-32 architecture uses, for example, 4 KiB pages — given a virtual address space of 4 GiB,
this would produce an array with a million entries. On 64-bit architectures, the situation is much worse.
Because each process needs its own page tables, this approach is impractical because the entire RAM of
the system would be needed to hold the page tables.

11

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 12

Chapter 1: Introduction and Overview

As most areas of virtual address spaces are not used and are therefore not associated with page frames, a
far less memory-intensive model that fulfills the same purpose can be used: multilevel paging.

To reduce the size of page tables and to allow unneeded areas to be ignored, the architectures split each
virtual address into multiple parts, as shown in Figure 1-7 (the bit positions at which the address is split
differ according to architecture, but this is of no relevance here). In the example, I use a split of the virtual
address into four components, and this leads to a three-level page table. This is what most architectures
offer. However, some employ four-level page tables, and Linux also adopts four levels of indirection. To
simplify the picture, I stick to a three-level variant here.

PGD PTEPMD Offset

Global Page
Table

+

Middle Page
Table

Page Table

Virtual
Address

+

+

Page Frame

+

Figure 1-7: Splitting a virtual address.

The first part of the virtual address is referred to as a page global directory or PGD. It is used as an index
in an array that exists exactly once for each process. Its entries are pointers to the start of further arrays
called page middle directories or PMD.

Once the corresponding array has been found by reference to the PGD and its contents, the PMD is used
as an index for the array. The page middle directory likewise consists of pointers to further arrays known
as page tables or page directories.

The PTE (or page table entry) part of the virtual address is used as an index to the page table. Mapping
between virtual pages and page frames is achieved because the page table entries point to page frames.

The last part of the virtual address is known as an offset. It is used to specify a byte position within the
page; after all, each address points to a uniquely defined byte in address space.

A particular feature of page tables is that no page middle tables or page tables need be created for areas of
virtual address space that are not needed. This saves a great deal of RAM as compared to the single-array
method.

Of course, this method also has a downside. Each time memory is accessed, it is necessary to run through
the entire chain to obtain the physical address from the virtual address. CPUs try to speed up this process
in two ways:

1. A special part of the CPU known as a memory management unit (MMU) is optimized to per-
form referencing operations.

12

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 13

Chapter 1: Introduction and Overview

2. The addresses that occur most frequently in address translation are held in a fast CPU cache
called a Translation Lookaside Buffer (TLB). Translation is accelerated because the address data
in the cache are immediately available without needing to access the page tables and there-
fore the RAM.

While caches are operated transparently on many architectures, some require special
attention from the kernel, which especially implies that their contents must be invalidated
whenever the contents of the page tables have been changed. Corresponding calls must be
present in every part of the kernel that manipulates page tables. If the kernel is compiled for
an architecture that does not require such operations, it automatically ensures that the calls
are represented by do-nothing operations.

Interaction with the CPU
The IA-32 architecture uses a two-level-only method to map virtual addresses to physical addresses.
The size of the address space in 64-bit architectures (Alpha, Sparc64, IA-64, etc.) mandates a three-level
or four-level method, and the architecture-independent part of the kernel always assumes a four-level
page table.

The architecture-dependent code of the kernel for two- and three-level CPUs must therefore emulate the
missing levels by dummy page tables. Consequently, the remaining memory management code can be
implemented independently of the CPU used.

Memory Mappings
Memory mappings are an important means of abstraction. They are used at many points in the kernel and
are also available to user applications. Mapping is the method by which data from an arbitrary source
are transferred into the virtual address space of a process. The address space areas in which mapping
takes place can be processed using normal methods in the same way as regular memory. However, any
changes made are transferred automatically to the original data source. This makes it possible to use
identical functions to process totally different things. For example, the contents of a file can be mapped
into memory. A process then need only read the contents of memory to access the contents of the file,
or write changes to memory in order to modify the contents of the file. The kernel automatically ensures
that any changes made are implemented in the file.

Mappings are also used directly in the kernel when implementing device drivers. The input and output
areas of peripheral devices can be mapped into virtual address space; reads and writes to these areas are
then redirected to the devices by the system, thus greatly simplifying driver implementation.

1.3.5 Allocation of Physical Memory
When it allocates RAM, the kernel must keep track of which pages have already been allocated and which
are still free in order to prevent two processes from using the same areas in RAM. Because memory
allocation and release are very frequent tasks, the kernel must also ensure that they are completed as
quickly as possible. The kernel can allocate only whole page frames. Dividing memory into smaller
portions is delegated to the standard library in userspace. This library splits the page frames received
from the kernel into smaller areas and allocates memory to the processes.

13

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 14

Chapter 1: Introduction and Overview

The Buddy System
Numerous allocation requests in the kernel must be fulfilled by a continuous range of pages. To quickly
detect where in memory such ranges are still available, the kernel employs an old, but proven technique:
The buddy system.

Free memory blocks in the system are always grouped as two buddies. The buddies can be allocated
independently of each other; if, however, both remain unused at the same time, the kernel merges them
into a larger pair that serves as a buddy on the next level. Figure 1-8 demonstrates this using an example
of a buddy pair consisting initially of two blocks of 8 pages.

24

20

23

22

21

24

20

23

22

21

24

20

23

22

21

Allocated

Allocated

Figure 1-8: The buddy system.

All buddies of the same size (1, 2, 4, 8, 16, . . . pages) are managed by the kernel in a special list. The
buddy pair with two times 8 (16) pages is also in this list.

If the system now requires 8 page frames, it splits the block consisting of 16 page frames into two buddies.
While one of the blocks is passed to the application that requested memory, the remaining 8 page frames
are placed in the list for 8-page memory blocks.

If the next request requires only 2 contiguous page frames, the block consisting of 8 blocks is split into
2 buddies, each comprising 4 page frames. One of the blocks is put back into the buddy lists, while the
other is again split into 2 buddies consisting of 2 blocks of two pages. One is returned to the buddy
system, while the other is passed to the application.

14

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 15

Chapter 1: Introduction and Overview

When memory is returned by the application, the kernel can easily see by reference to the addresses
whether a buddy pair is reunited and can then merge it into a larger unit that is put back into the buddy
list — exactly the reverse of the splitting process. This increases the likelihood that larger memory blocks
are available.

When systems run for longer periods — it is not unusual for servers to run for several weeks or even
months, and many desktop systems also tend to reach long uptime — a memory management problem
known as fragmentation occurs. The frequent allocation and release of page frames may lead to a situation
in which several page frames are free in the system but they are scattered throughout physical address
space — in other words, there are no larger contiguous blocks of page frames, as would be desirable for
performance reasons. This effect is reduced to some extent by the buddy system but not completely
eliminated. Single reserved pages that sit in the middle of an otherwise large continuous free range can
eliminate coalescing of this range very effectively. During the development of kernel 2.6.24, some effec-
tive measures were added to prevent memory fragmentation, and I discuss the underlying mechanisms
in more detail in Chapter 3.

The Slab Cache
Often the kernel itself needs memory blocks much smaller than a whole page frame. Because it cannot use
the functions of the standard library, it must define its own, additional layer of memory management that
builds on the buddy system and divides the pages supplied by the buddy system into smaller portions.
The method used not only performs allocation but also implements a generic cache for frequently used
small objects; this cache is known as a slab cache. It can be used to allocate memory in two ways:

1. For frequently used objects, the kernel defines its own cache that contains only instances of
the desired type. Each time one of the objects is required, it can be quickly removed from the
cache (and returned there after use); the slab cache automatically takes care of interaction
with the buddy system and requests new page frames when the existing caches are full.

2. For the general allocation of smaller memory blocks, the kernel defines a set of slab caches
for various object sizes that it can access using the same functions with which we are familiar
from userspace programming; a prefixed k indicates that these functions are associated with
the kernel: kmalloc and kfree.

While the slab allocator provides good performance across a wide range of workloads, some scalability
problems with it have arisen on really large supercomputers. On the other hand of the scale, the overhead
of the slab allocator may be too much for really tiny embedded systems. The kernel comes with two drop-
in replacements for the slab allocator that provide better performance in these use cases, but offer the
same interface to the rest of the kernel such that it need not be concerned with which low-level allocator
is actually compiled in. Since slab allocation is still the standard methods of the kernel, I will, however,
not discuss these alternatives in detail. Figure 1-9 summarizes the connections between buddy system,
slab allocator, and the rest of the kernel.

Swapping and Page Reclaim
Swapping enables available RAM to be enlarged virtually by using disk space as extended memory.
Infrequently used pages can be written to hard disk when the kernel requires more RAM. Once the data

15

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 16

Chapter 1: Introduction and Overview

are actually needed, the kernel swaps them back into memory. The concept of page faults is used to make
this operation transparent to applications. Swapped-out pages are identified by a special entry in the
page table. When a process attempts to access a page of this kind, the CPU initiates a page fault that is
intercepted by the kernel. The kernel then has the opportunity to swap the data on disk into RAM. The
user process then resumes. Because it is unaware of the page fault, swapping in and out of the page is
totally invisible to the process.

Generic kernel
code

Buddy allocator Small boxes indicate
page frames

Slab allocator

Figure 1-9: Page frame allocation is performed
by the buddy system, while the slab allocator
is responsible for small-sized allocations and
generic kernel caches.

Page reclaim is used to synchronize modified mappings with underlying block devices — for this reason,
it is sometimes referred to simply as writing back data. Once data have been flushed, the page frame
can be used by the kernel for other purposes (as with swapping). After all, the kernel data structures
contain all the information needed to find the corresponding data on the hard disk when they are again
required.

1.3.6 Timing
The kernel must be capable of measuring time and time differences at various points — when scheduling
processes, for example. Jiffies are one possible time base. A global variable named jiffies_64 and its
32-bit counterpart jiffies are incremented periodically at constant time intervals. The various timer
mechanisms of the underlying architectures are used to perform these updates — each computer archi-
tecture provides some means of executing periodic actions, usually in the form of timer interrupts.

Depending on architecture, jiffies is incremented with a frequency determined by the central constant
HZ of the kernel. This is usually on the range between 1,000 and 100; in other words, the value of jiffies
is incremented between 1,000 and 100 times per second.

Timing based on jiffies is relatively coarse-grained because 1,000 Hz is not an excessively large fre-
quency nowadays. With high-resolution timers, the kernel provides additional means that allows for
keeping time in the regime of nanosecond precision and resolution, depending on the capabilities of
the underlying hardware.

It is possible to make the periodic tick dynamic. When there is little to do and no need for frequent periodic
actions, it does not make sense to periodically generate timer interrupts that prevent the processor from
powering down into deep sleep states. This is helpful in systems where power is scarce, for instance,
laptops and embedded systems.

16

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 17

Chapter 1: Introduction and Overview

1.3.7 System Calls
System calls are the classical method of enabling user processes to interact with the kernel. The POSIX
standard defines a number of system calls and their effect as implemented on all POSIX-compliant sys-
tems including Linux. Traditional system calls are grouped into various categories:

❑ Process Management — Creating new tasks, querying information, debugging

❑ Signals — Sending signals, timers, handling mechanisms

❑ Files — Creating, opening, and closing files, reading from and writing to files, querying infor-
mation and status

❑ Directories and Filesystem — Creating, deleting, and renaming directories, querying informa-
tion, links, changing directories

❑ Protection Mechanisms — Reading and changing UIDs/GIDs, and namespace handling

❑ Timer Functions — Timer functions and statistical information

Demands are placed on the kernel in all these functions. They cannot be implemented in a normal user
library because special protection mechanisms are needed to ensure that system stability and/or security
are not endangered. In addition, many calls are reliant on kernel-internal structures or functions to yield
desired data or results — this also dictates against implementation in userspace. When a system call is
issued, the processor must change the privilege level and switch from user mode to system mode. There
is no standardized way of doing this in Linux as each hardware platform offers specific mechanisms.
In some cases, different approaches are implemented on the same architecture but depend on processor
type. Whereas Linux uses a special software interrupt to execute system calls on IA-32 processors, the
software emulation (iBCS emulator) of other Unix systems on IA-32 employs a different method to
execute binary programs (for assembly language aficionados: the lcall7 or lcall27 gate). Modern
variants of IA-32 also have their own assembly language statement for executing system calls; this was
not available on old systems and cannot therefore be used on all machines. What all variants have in
common is that system calls are the only way of enabling user processes to switch in their own incentive
from user mode to kernel mode in order to delegate system-critical tasks.

1.3.8 Device Drivers, Block and Character Devices
The role of device drivers is to communicate with I/O devices attached to the system; for example, hard
disks, floppies, interfaces, sound cards, and so on. In accordance with the classical Unix maxim that
‘‘everything is a file,’’ access is performed using device files that usually reside in the /dev directory and
can be processed by programs in the same way as regular files. The task of a device driver is to support
application communication via device files; in other words, to enable data to be read from and written to
a device in a suitable way.

Peripheral devices belong to one of the following two groups:

1. Character Devices — Deliver a continuous stream of data that applications read sequen-
tially; generally, random access is not possible. Instead, such devices allow data to be read
and written byte-by-byte or character-by-character. Modems are classical examples of char-
acter devices.

17

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 18

Chapter 1: Introduction and Overview

2. Block Devices — Allow applications to address their data randomly and to freely select the
position at which they want to read data. Typical block devices are hard disks because appli-
cations can address any position on the disk from which to read data. Also, data can be read
or written only in multiples of block units (usually 512 bytes); character-based addressing, as
in character devices, is not possible.

Programming drivers for block devices is much more complicated than for character devices
because extensive caching mechanisms are used to boost system performance.

1.3.9 Networks
Network cards are also controlled by device drivers but assume a special status in the kernel because
they cannot be addressed using device files. This is because data are packed into various protocol layers
during network communication. When data are received, the layers must be disassembled and analyzed
by the kernel before the payload data are passed to the application. When data are sent, the kernel must
first pack the data into the various protocol layers prior to dispatch.

However, to support work with network connections via the file interface (in the view of applications),
Linux uses sockets from the BSD world; these act as agents between the application, file interface, and
network implementation of the kernel.

1.3.10 Filesystems
Linux systems are made up of many thousands or even millions of files whose data are stored on hard
disks or other block devices (e.g., ZIP drives, floppies, CD-ROMs, etc.). Hierarchical filesystems are used;
these allow stored data to be organized into directory structures and also have the job of linking other
meta-information (owners, access rights, etc.) with the actual data. Many different filesystem approaches
are supported by Linux — the standard filesystems Ext2 and Ext3, ReiserFS, XFS, VFAT (for reasons of
compatibility with DOS), and countless more. The concepts on which they build differ drastically in part.
Ext2 is based on inodes, that is, it makes a separate management structure known as an inode available
on disk for each file. The inode contains not only all meta-information but also pointers to the associated
data blocks. Hierarchical structures are set up by representing directories as regular files whose data
section includes pointers to the inodes of all files contained in the directory. In contrast, ReiserFS makes
extensive use of tree structures to deliver the same functionality.

The kernel must provide an additional software layer to abstract the special features of the various low-
level filesystems from the application layer (and also from the kernel itself). This layer is referred to as
the VFS (virtual filesystem or virtual filesystem switch). It acts as an interface downward (this interface must
be implemented by all filesystems) and upward (for system calls via which user processes are ultimately
able to access filesystem functions). This is illustrated in Figure 1-10.

1.3.11 Modules and Hotplugging
Modules are used to dynamically add functionality to the kernel at run time — device drivers, filesys-
tems, network protocols, practically any subsystem3 of the kernel can be modularized. This removes
one of the significant disadvantages of monolithic kernels as compared with microkernel variants.

3With the exception of basic functions, such as memory management, which are always needed.

18

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 19

Chapter 1: Introduction and Overview

Modules can also be unloaded from the kernel at run time, a useful aspect when developing new kernel
components.

Virtual file system

System calls

ExtN

Block layer Device drivers

XFS ProcFS

Page cache Buffer cache

Applications and Libc

Various subsystems

Hard disks

Figure 1-10: Overview of how the virtual filesystem layer,
filesystem implementations, and the block layer
interoperate.

Basically, modules are simply normal programs that execute in kernel space rather than in userspace.
They must also provide certain sections that are executed when the module is initialized (and terminated)
in order to register and de-register the module functions with the kernel. Otherwise, module code has
the same rights (and obligations) as normal kernel code and can access all the same functions and data as
code that is permanently compiled into the kernel.

Modules are an essential requisite to support for hotplugging. Some buses (e.g., USB and FireWire) allow
devices to be connected while the system is running without requiring a system reboot. When the sys-
tem detects a new device, the requisite driver can be automatically added to the kernel by loading the
corresponding module.

Modules also enable kernels to be built to support all kinds of devices that the kernel can address without
unnecessarily bloating kernel size. Once attached hardware has been detected, only the requisite modules
are loaded, and the kernel remains free of superfluous drivers.

A long-standing issue in the kernel community revolves around the support of binary-only modules,
that is, modules for which no source code is available. While binary-only modules are omnipresent
on most proprietary operating systems, many kernel developers see them (at least!) as an incarnation
of the devil: Since the kernel is developed as open-source software, they believe that modules should
also be published as open source, for a variety of both legal and technical reasons. There are, indeed,
strong arguments to support this reasoning (and besides, I also follow these), but they are not shared by
some commercial companies that tend to think that opening up their driver sources would weaken their
business position.

It is currently possible to load binary-only modules into the kernel, although numerous restrictions apply
for them. Most importantly, they may not access any functions that are explicitly only made available to
GPL-licensed code. Loading a binary-only module taints the kernel, and whenever something bad occurs,
the fault is naturally attributed to the tainting module. If a kernel is tainted, this will be marked on crash
dumps, for instance, and kernel developers will be very unsupportive in solving the issue that led to
the crash — since the binary module could have given every part of the kernel a good shaking, it cannot

19

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 20

Chapter 1: Introduction and Overview

be assumed that the kernel still works as intended, and support is better left to the manufacturer of the
offending module.

Loading binary-only modules is not the only possibility for tainting a kernel. This happens also when,
for instance, the machine has experienced certain bad exceptions, when a SMP system is built with CPUs
that do not officially support multiprocessing by their specification, and other similar reasons.

1.3.12 Caching
The kernel uses caches to improve system performance. Data read from slow block devices are held
in RAM for a while, even if they are no longer needed at the time. When an application next accesses
the data, they can be read from fast RAM, thus bypassing the slow block device. Because the kernel
implements access to block devices by means of page memory mappings, caches are also organized into
pages, that is, whole pages are cached, thus giving rise to the name page cache.

The far less important buffer cache is used to cache data that are not organized into pages. On traditional
Unix systems, the buffer cache serves as the main system cache, and the same approach was used by
Linux a long, long time ago. By now, the buffer cache has mostly been superseded by the page cache.

1.3.13 List Handling
A recurring task in C programs is the handling of doubly linked lists. The kernel too is required to handle
such lists. Consequently, I will make frequent mention of the standard list implementation of the kernel
in the following chapters. At this point, I give a brief introduction to the list handling API.

Standard lists as provided by the kernel can be used to link data structures of any type with each other.
It is explicitly not type-safe. The data structures to be listed must contain an element of the list_head
type; this accommodates the forward and back pointers. If a data structure is to be organized in several
lists — and this is not unusual — several list_head elements are needed.

<list.h>
struct list_head {

struct list_head *next, *prev;
};

This element could be placed in a data structure as follows:

struct task_struct {
...

struct list_head run_list;
...
};

The starting point for linked lists is again an instance of list_head that is usually declared and initial-
ized by the LIST_HEAD(list_name) macro. In this way, the kernel produces a cyclic list, as shown in
Figure 1-11. It permits access to the first and last element of a list in O(1), that is, in always the same,
constant time regardless of the list size.

20

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 21

Chapter 1: Introduction and Overview

next
prev

next

prev

next

prev

next

prev

Figure 1-11: Doubly linked standard list.

struct list_head is called a list element when it is held in a data structure. An element that serves as the
starting point for a list is called a list head.

Pointers that connect head and tail elements of a list tend to clutter up images and
often obstruct the principal intention of a figure, namely, to briefly summarize the
connections of various kernel data structures. I thus usually omit the connection
between list head and list tail in figures. The above list is in the remainder of this
book therefore represented as shown in Figure 1-12. This allows for concentrating
on the essential details without having to waste space for irrelevant list pointers.

Figure 1-12: Simplified illustration of a doubly
linked list. Notice that the connection between
list head and list tail is not displayed, although
it is present in kernel memory.

There are several standard functions for handling and processing lists. We will come across them again
and again in the following chapters (the data type of their arguments is struct list_head).

❑ list_add(new, head) inserts new right after the existing head element.

❑ list_add_tail(new, head) inserts new right before the element specified by head. If the list head
is specified for head, this causes the new element to be inserted at the end of the list because of
the cyclic nature of the list (this gives the function its name).

❑ list_del(entry) deletes an entry from a list.

❑ list_empty(head) checks if a list is empty, that is, if it does not contain any elements.

❑ list_splice(list, head) combines two lists by inserting the list in list after the head element
of an existing list.

❑ list_entry must be used to find a list element; at first glance, its call syntax appears to be quite
complicated: list_entry(ptr, type, member). ptr is a pointer to the list_head instance of the

21

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 22

Chapter 1: Introduction and Overview

data structure, type is its type, and member is the element name used for the list element. The
following sample call would be needed to find a task_struct instance of a list:

struct task_struct = list_entry(ptr, struct task_struct, run_list)

Explicit type specification is required because list implementation is not type-safe. The list ele-
ment must be specified to find the correct element if there are data structures that are included
in several lists.4

❑ list_for_each(pos, head) must be used to iterate through all elements of a list. pos indicates
the current position in the list, while head specifies the list head.

struct list_head *p;

list_for_each(p, &list)
if (condition)

return list_entry(p, struct task_struct, run_list);
return NULL;

1.3.14 Object Management and Reference Counting
All over the kernel, the need to keep track of instances of C structures arises. Despite the fact that these
objects will be used in the most varying forms, some operations are very similar across subsystems — just
consider reference counting. This leads to code duplication. Since this is a bad thing, the kernel has
adopted generic methods to manage kernel objects during the development of 2.5. The framework is,
however, not just required to prevent code duplication. It also allows for providing a coherent view on
objects managed by different parts of the kernel, and this information can be brought to good use in
many parts of the kernel, for instance, for power management.

The generic kernel object mechanism can be used to perform the following operations on objects:

❑ Reference counting

❑ Management of lists (sets) of objects

❑ Locking of sets

❑ Exporting object properties into userspace (via the sysfs filesystem)

Generic Kernel Objects
The following data structure that is embedded in other data structures is used as a basis.

<kobject.h>
struct kobject {

const char * k_name;
struct kref kref;
struct list_head entry;
struct kobject * parent;
struct kset * kset;
struct kobj_type * ktype;
struct sysfs_dirent * sd;

};

4Even if there is only one list element in the structure, this entry is used to find the correct start address of the instance by means of
pointer arithmetic; the address is translated into the required data type by means of type conversion. I deal with this in more detail
in the appendix on C programming.

22

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 23

Chapter 1: Introduction and Overview

It is essential that kobjects are not linked with other data structures by means of
pointers but are directly embedded. Managing the kernel object itself amounts to
managing the whole containing object this way. Since struct kobject is embedded
into many data structures of the kernel, the developers take care to keep it small.
Adding a single new element to this data structure results in a size increase of many
other data structures. Embedded kernel objects look as follows:

struct sample {
...

struct kobject kobj;
...
};

The meanings of the individual elements of struct kobject are as follows:

❑ k_name is a text name exported to userspace using sysfs. Sysfs is a virtual filesystem that allows
for exporting various properties of the system into userspace. Likewise sd supports this connec-
tion, and I will come back to this in Chapter 10.

❑ kref holds the general type struct kref designed to simplify reference management. I discuss
this below.

❑ entry is a standard list element used to group several kobjects in a list (known as a set in this
case).

❑ kset is required when an object is grouped with other objects in a set.

❑ parent is a pointer to the parent element and enables a hierarchical structure to be established
between kobjects.

❑ ktype provides more detailed information on the data structure in which a kobject is
embedded. Of greatest importance is the destructor function that returns the resources of the
embedding data structure.

The similarity between the name kobject and the object concept of, well, object-oriented languages
like C++ or Java is by no means coincidental: The kobject abstraction indeed allows for using object-
oriented techniques in the kernel, but without requiring all the extra mechanics (and bloat, and overhead)
of C++.

Table 1-1 lists the standard operations provided by the kernel to manipulate kobject instances, and
therefore effectively act on the embedding structure.

The layout of the kref structure used to manage references is as follows:

<kref.h>
struct kref {

atomic_t refcount;
};

refcount is an atomic data type to specify the number of positions in the kernel at which an object is
currently being used. When the counter reaches 0, the object is no longer needed and can therefore be
removed from memory.

23

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 24

Chapter 1: Introduction and Overview

Table 1-1: Standard Methods for Processing kobjects

Function Meaning

kobject_get, kobject_put Increments or decrements the reference counter of a kobject

kobject_(un)register Registers or removes obj from a hierarchy (the object is added to the
existing set (if any) of the parent element; a corresponding entry is cre-
ated in the sysfs filesystem).

kobject_init Initializes a kobject; that is, it sets the reference counter to its initial
value and initializes the list elements of the object.

kobect_add Initializes a kernel object and makes it visible in sysfs

kobject_cleanup Releases the allocated resources when a kobject (and therefore the
embedding object) is no longer needed

Encapsulation of the single value in a structure was chosen to prevent direct manipulation of the value.
kref_init must always be used for initialization. If an object is in use, kref_get must be invoked
beforehand to increment the reference counter. kref_put decrements the counter when the object is no
longer used.

Sets of Objects
In many cases, it is necessary to group different kernel objects into a set — for instance, the set of all
character devices or the set of all PCI-based devices. The data structure provided for this purpose is
defined as follows:

<kobject.h>
struct kset {

struct kobj_type * ktype;
struct list_head list;

...
struct kobject kobj;
struct kset_uevent_ops * uevent_ops;

};

Interestingly, the kset serves as the first example for the use of kernel objects. Since the management
structure for sets is nothing other than a kernel object, it can be managed via the previously discussed
struct kobj. Indeed, an instance is embedded via kobj. It has nothing to do with the kobjects collected
in the set, but only serves to manage the properties of the kset object itself.

The other members have the following meaning:

❑ ktype points to a further object that generalizes the behavior of the kset.

❑ list is used to build a list of all kernel objects that are a member of the set.

❑ uevent_ops provides several function pointers to methods that relay information about the state
of the set to userland. This mechanism is used by the core of the driver model, for instance, to
format messages that inform about the addition of new devices.

24

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 25

Chapter 1: Introduction and Overview

Another structure is provided to group common features of kernel objects. It is defined as follows:

<kobject.h>
struct kobj_type {
...

struct sysfs_ops * sysfs_ops;
struct attribute ** default_attrs;

};

Note that a kobj_type is not used to collect various kernel objects — this is already managed by ksets.
Instead, it provides an interface to the sysfs filesystem (discussed in Section 10.3). If multiple objects
export similar information via the filesystem, then this can be simplified by using a single ktype to pro-
vide the required methods.

Reference Counting
Reference counting is used to detect from how many places in the kernel an object is used. Whenever one
part of the kernel needs information contained in one object, it increments the reference count, and when
it does not need the information anymore, the count is decremented. Once the count has dropped to 0,
the kernel knows that the object is not required anymore, and that it is safe to release it from memory.
The kernel provides the following data structure to handle reference counting:

<kref.h>
struct kref {

atomic_t refcount;
};

The data structure is really simple in that it only provides a generic, atomic reference count. ‘‘Atomic’’
means in this context that incrementing and decrementing the variable is also safe on multiprocessor
systems, where more than one code path can access an object at the same time. Chapter 5 discusses the
need for this in more detail.

The auxiliary methods kref_init, kref_get, and kref_put are provided to initialize, increment, or
decrement the reference counter. This might seem trivial at a first glance. Nevertheless, it helps to avoid
excessive code duplication because such reference counts together with the aforementioned operations
are used all over the kernel.

Although manipulating the reference counter this way is safe against concurrency
issues, this does not imply that the surrounding data structure is safe against
concurrent access! Kernel code needs to employ further means to ensure that access
to data structures does not cause any problems when this can happen from multiple
processors simultaneously, and I discuss these issues in Chapter 5.

Finally, notice that the kernel contains some documentation related to kernel objects in Documentation/
kobject.txt.

1.3.15 Data Types
Some issues related to data types are handled differently in the kernel in comparison to userland
programs.

25

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 26

Chapter 1: Introduction and Overview

Type Definitions
The kernel uses typedef to define various data types in order to make itself independent of architecture-
specific features because of the different bit lengths for standard data types on individual processors.
The definitions have names such as sector_t (to specify a sector number on a block device), pid_t (to
indicate a process identifier), and so on, and are defined by the kernel in architecture-specific code in such
a way as to ensure that they represent the applicable value range. Because it is not usually important to
know on which fundamental data types the definitions are based, and for simplicity’s sake, I do not
always discuss the exact definitions of data types in the following chapters. Instead, I use them without
further explanation — after all, they are simply non-compound standard data types under a different
name.

typedef’d variables must not be accessed directly, but only via auxiliary functions
that I introduce when we encounter the type. This ensures that they are properly
manipulated, although the type definition is transparent to the user.

At certain points, the kernel must make use of variables with an exact, clearly defined number of bits —
for example, when data structures need to be stored on hard disk. To allow data to be exchanged between
various systems (e.g., on USB sticks), the same external format must always be used, regardless of how
data are represented internally in the computer.

To this end, the kernel defines several integer data types that not only indicate explicitly whether they
are signed or unsigned, but also specify the exact number of bits they comprise. __s8 and __u8 are, for
example, 8-bit integers that are either signed (__s8) or unsigned (__u8). __u16 and __s16, __u32 and
__s32, and __u64 and __s64 are defined in the same way.

Byte Order
To represent numbers, modern computers use either the big endian or little endian format. The format
indicates how multibyte data types are stored. With big endian ordering, the most significant byte is
stored at the lowest address and the significance of the bytes decreases as the addresses increase. With
little endian ordering, the least significant byte is stored at the lowest address and the significance of
the bytes increases as the addresses increase (some architectures such as MIPS support both variants).
Figure 1-13 illustrates the issue.

0–7

0–7

0–7 8–15

8–15

16–23 24–31

Little
endian

char

short

int

char

short

int

Byte 0 1 2 3

0–7

8–15

24–31 16–23

0–7

8–15 0–7

Big
endian

Figure 1-13: Composition of elementary data
types depending on the endianness of the
underlying architecture.

26

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 27

Chapter 1: Introduction and Overview

The kernel provides various functions and macros to convert between the format used by the CPU and
specific representations: cpu_to_le64 converts a 64-bit data type to little endian format, and le64_to_cpu
does the reverse (if the architecture works with little endian format, the routines are, of course, no-ops;
otherwise, the byte positions must be exchanged accordingly). Conversion routines are available for all
combinations of 64, 32, and 16 bits for big and little endian.

Per-CPU Variables
A particularity that does not occur in normal userspace programming is per-CPU variables. They are
declared with DEFINE_PER_CPU(name, type), where name is the variable name and type is the data type
(e.g., int[3], struct hash, etc.). On single-processor systems, this is not different from regular variable
declaration. On SMP systems with several CPUs, an instance of the variable is created for each CPU. The
instance for a particular CPU is selected with get_cpu(name, cpu), where smp_processor_id(), which
returns the identifier of the active processor, is usually used as the argument for cpu.

Employing per-CPU variables has the advantage that the data required are more likely to be present
in the cache of a processor and can therefore be accessed faster. This concept also skirts round several
communication problems that would arise when using variables that can be accessed by all CPUs of a
multiprocessor system.

Access to Userspace
At many points in the source code there are pointers labeled __user; these are also unknown in userspace
programming. The kernel uses them to identify pointers to areas in user address space that may not be
de-referenced without further precautions. This is because memory is mapped via page tables into the
userspace portion of the virtual address space and not directly mapped by physical memory. Therefore
the kernel needs to ensure that the page frame in RAM that backs the destination is actually present — I
discuss this in further detail in Chapter 2. Explicit labeling supports the use of an automatic checker tool
(sparse) to ensure that this requirement is observed in practice.

1.3.16 . . . and Beyond the Infinite
Although a wide range of topics are covered in this book, they inevitably just represent a portion of
what Linux is capable of: It is simply impossible to discuss all aspects of the kernel in detail. I have
tried to choose topics that are likely to be most interesting for a general audience and also present a
representative cross-section of the whole kernel ecosystem.

Besides going through many important parts of the kernel, one of my concerns is also to equip you
with the general idea of why the kernel is designed as it is, and how design decisions are made by
interacting developers. Besides a discussion of numerous fields that are not directly related to the
kernel (e.g., how the GNU C compiler works), but that support kernel development as such, I have
also included a discussion about some nontechnical but social aspects of kernel development in
Appendix F.

Finally, please note Figure 1-14, which shows the growth of the kernel sources during the last couple
of years.

Kernel development is a highly dynamical process, and the speed at which the kernel acquires new
features and continues to improve is sometimes nothing short of miraculous. As a study by the Linux
Foundation has shown [KHCM], roughly 10,000 patches go into each kernel release, and this massive

27

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 28

Chapter 1: Introduction and Overview

amount of code is created by nearly 1,000 developers per release. On average, 2.83 changes are integrated
every hour, 24 hours a day, and 7 days a week! This can only be handled with mature means of source
code management and communication between developers; I come back to these issues in Appendices B
and F.

120

140

160

180

200

220

240

260

280

2.5.0 2.5.12 2.5.50 2.6.0 2.6.7 2.6.10 2.6.14 2.6.17 2.6.19 2.6.22 2.6.25

01-Jan-02 01-Jan-03 01-Jan-04 01-Jan-05 01-Jan-06 01-Jan-07 01-Jan-08

Un
co

m
pr

es
se

d
Tr

ee
 S

ize
 [M

iB
]

Kernel Release

Figure 1-14: Evolution of the core kernel distribution’s size during the last years.

1.4 Why the Kernel Is Special
The kernel is an amazing place — but after all, it is just a big C program with some assembler portions
(and a drop or two of black magic added sometimes). So what makes the kernel so fascinating? Several
factors contribute to this. First and foremost, the kernel is written by the best programmers in the world,
and this shows in the code. It is well structured, written with meticulous attention for detail, and contains
clever solutions all over the place. In one word: It is code as it ought to be. This, however, does not mean
that the kernel is the product of a textbook-style programming methodology: While it employs cleanly
designed abstractions to keep the code modular and manageable, it’s the mix with the other face of the
kernel that makes the code so interesting and unique: If it need be, the kernel does not back off from
reusing bit positions in a context-dependent manner, overloading structure elements multiple times,
squeezing yet another storage bit out of the aligned portion of pointers, using gotos freely, and numer-
ous other things that would make any structured programmer scream miserably in agony and pain.

28

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 29

Chapter 1: Introduction and Overview

Techniques that would be unthinkable in many textbook solutions can not only be good, but are simply
required for a proper real-world working kernel. It’s the small path that keeps the balance between these
totally opposite faces of the kernel that makes the whole thing so interesting, challenging, and fun!

Having praised the kernel sources, there are a number of more sober issues distinct from userland
programs:

❑ Debugging the kernel is usually harder than debugging userland programs. While for the latter
a multitude of debuggers exist, this is much harder to realize for the kernel. There are various
mechanisms to employ debuggers in kernel development as discussed in Appendix B, but these
require more effort than their userland counterparts.

❑ The kernel provides numerous auxiliary functions that resemble the standard C library found in
userspace, but things are much more frugal in the kernel domain.

❑ Errors in userland applications lead to a segmentation fault or a core dump, but kernel errors
will take the whole system down. Or, what is even worse: They will keep the kernel happily
running, but manifest themselves in a weird system crash hours after the error occurred. Because
debugging in kernel space is harder than for userland applications as mentioned above, it is
essential that kernel code receives more thought and judicious consideration than userland code
before it is brought into use.

❑ It must be taken into account that many architectures on which the kernel runs do not support
unaligned memory access without further ado. This also affects portability of data structures
across architectures because of padding that is inserted by the compiler. This issue is discussed
further in Appendix C.

❑ All kernel code must be protected against concurrency. Owing to the support of multiprocessor
machines, Linux kernel code must be both reentrant and thread-safe. That is, routines must allow
being executed simultaneously, and data must be protected against parallel access.

❑ Kernel code must work both on machines with little and big endianness.

❑ Most architectures do not allow performing floating-point calculations in the kernel without
further ado, so you need to find a way to do your calculations with integer types.

You will see how to deal with these issues in the further course of this book.

1.5 Some Notes on Presentation
Before we start to dive right into the kernel, I need to make some remarks on how I present the material,
and why I have chosen my particular approach.

Notice that this book is specifically about understanding the kernel. Examples of how to write code have
intentionally and explicitly been left out, considering that this book is already very comprehensive and
voluminous. The works by Corbet et al. [CRKH05], Venkateswaran [Ven08], and Quade/Kunst [QK06]
fill in this gap and discuss how to create new code, especially for drivers, by countless practical examples.
While I discuss how the kernel build system, which is responsible to create a kernel that precisely suits
your needs works, I won’t discuss the plethora of configuration options in detail, especially because they
are mostly concerned with driver configuration. However, the book by Kroah-Hartman [KH07] can be
a valuable aid here.

29

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 30

Chapter 1: Introduction and Overview

Usually I start my discussion with a general overview about the concepts of the topic that I am going
to present, and then go down to data structures and their interrelation in the kernel. Code is usually
discussed last, because this requires the highest level of detail. I have chosen this top-down approach
because it is in our opinion the most accessible and easiest way to understand the kernel. Notice that it
would also be possible to discuss things from the bottom up, that is, start deep down in the kernel and
then work slowly up to the C library and userspace level. Notice, however, that presenting something
in inverse order does not automatically make it better. In my experience, more forward references are
required for a bottom-up than for a top-down strategy, so I stick to the latter throughout this book.

When I directly present C source code, I sometimes take the liberty to rewrite it slightly to highlight more
important elements and remove less important ‘‘due diligence’’ work. For example, it is very important
for the kernel to check the return value of every memory allocation. While allocations will succeed in
nearly almost all cases, it is essential to take care of cases in which not enough memory is available for a
particular task. The kernel has to deal with this situation somehow, usually by returning an error return
code to userspace if a task is performed as a response to a request by an application, or by omitting a
warning message to the system log. However, details of this kind will in general obstruct the view of
what is really important. Consider the following code, which sets up namespaces for a process:

kernel/nsproxy.c
static struct nsproxy *create_new_namespaces(unsigned long flags,

struct task_struct *tsk, struct fs_struct *new_fs)
{

struct nsproxy *new_nsp;
int err;

new_nsp = clone_nsproxy(tsk->nsproxy);
if (!new_nsp)

return ERR_PTR(-ENOMEM);

new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, new_fs);
if (IS_ERR(new_nsp->mnt_ns)) {

err = PTR_ERR(new_nsp->mnt_ns);
goto out_ns;

}

new_nsp->uts_ns = copy_utsname(flags, tsk->nsproxy->uts_ns);
if (IS_ERR(new_nsp->uts_ns)) {

err = PTR_ERR(new_nsp->uts_ns);
goto out_uts;

}

new_nsp->ipc_ns = copy_ipcs(flags, tsk->nsproxy->ipc_ns);
if (IS_ERR(new_nsp->ipc_ns)) {

err = PTR_ERR(new_nsp->ipc_ns);
goto out_ipc;

}
...

return new_nsp;
out_ipc:

if (new_nsp->uts_ns)
put_uts_ns(new_nsp->uts_ns);

out_uts:
if (new_nsp->mnt_ns)

30

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 31

Chapter 1: Introduction and Overview

put_mnt_ns(new_nsp->mnt_ns);
out_ns:

kmem_cache_free(nsproxy_cachep, new_nsp);
return ERR_PTR(err);

}

What the code does in detail is irrelevant right now; I come back to this in the following chapter. What
is essential is that the routine tries to clone various parts of the namespace depending on some flags that
control the cloning operation. Each type of namespace is handled in a separate function, for instance, in
copy_mnt_ns for the filesystem namespace.

Each time the kernel copies a namespace, errors can occur, and these must be detected and passed
on to the calling function. Either the error is detected directly by the return code of a function, as for
clone_nsproxy, or the error is encoded in a pointer return value, which can be detected using the
ERR_PTR macro, which allows for decoding the error value (I also discuss this mechanism below). In many
cases, it is not sufficient to just detect an error and return this information to the caller. It is also essen-
tial that previously allocated resources that are not required anymore because of the error are released
again. The standard technique of the kernel to handle this situation is as follows: Jump to a special label
and free all previously allocated resources, or put down references to objects by decrementing the refer-
ence count. Handling such cases as this is one of the valid applications for the goto statement. There are
various possibilities to describe what is going on in the function:

❑ Talk the reader directly through the code in huge step-by-step lists:

1. create_new_namespace calls clone_nsproxy. If this fails, return -ENOMEM; otherwise,
continue.

2. create_new_namespace then calls copy_mnt_ns. If this fails, obtain the error value encoded
in the return value of copy_mnt_ns and jump to the label out_ns; otherwise, proceed.

3. create_new_namespace then calls copy_utsname. If this fails, obtain the error value
encoded in the return value of copy_utsname and jump to the label out_ns; otherwise,
proceed.

4. . . .

While this approach is favored by a number of kernel texts, it conveys only little information
in addition to what is directly visible from the source code anyway. It is appropriate to discuss
some of the most complicated low-level parts of the kernel this way, but this will foster an under-
standing of neither the big picture in general nor the code snippet involved in particular.

❑ Summarize what the function does with words, for instance, by remarking that ‘‘create_new_
namespaces is responsible to create copies or clones of the parent namespaces.’’ We use this
approach for less important tasks of the kernel that need to be done somehow, but do not pro-
vide any specific insights or use particularly interesting tricks.

❑ Use a flow diagram to illustrate what is going on in a function. With more than 150 code flow
diagrams in this book, this is one of my preferred ways of dealing with code. It is important to
note that these diagrams are not supposed to be a completely faithful representation of the opera-
tion. This would hardly simplify matters. Consider Figure 1-15, which illustrates how a faithful
representation of copy_namespaces could look. It is not at all simpler to read than the source
itself, so there is not much purpose in providing it.

31

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 32

Chapter 1: Introduction and Overview

create_new_namespace

clone_nsproxy

copy_mnt_ns

put_uts_ns

put_mnt_ns

copy_utsname

Error?

Error?

Return error

NO

NO

YES

YES

YES

NO

new_ns->put_ns
not NULL?

new_ns->
mnt_ns not

NULL?

copy_utsname

return result

return-ENOMEM

kmem_cache_free

Error?

Error?

1

1

Figure 1-15: Example of a faithful, but unclear and convoluted code flow diagram.

Instead I employ code flow diagrams that illustrate the essential tasks performed by a function.
Figure 1-16 shows the code flow diagram that I would have employed instead of Figure 1-15.

copy_namespaces

clone_nsproxy

copy_mnt_ns

copy_utsname

copy_ipcs

Figure 1-16: Example of the style
of code flow diagrams used in
this book. They allow
immediately catching all
essential actions without being
distracted by nonessential
standard tasks.

The diagram omits several things, but this is on purpose, and also essential. By looking at the
figure, you will not see every detail of the function implementation, but you will instead imme-
diately realize that the kernel uses a specific routine to create a clone of each namespace, and
the function names provide a sufficient hint of which namespace is copied. This is much more
important!

32

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 33

Chapter 1: Introduction and Overview

Handling error return codes is something that we assume goes without saying, and so we will
not pay particular attention to it. This does not imply that it is not an important thing to do, and
in fact it is: Linux would be a lousy kernel if it did not handle this issue properly. But handling
errors also obfuscates most operations without introducing any new insights, and does not make
it easier to understand the general principles of the kernel, so it’s usually better to sacrifice some
thoroughness for clarity. The kernel sources are always available for all the gory details!

❑ It is also often important to discuss kernel code directly if it is packed with important deci-
sions, and I do so when I deem it necessary. However, I often take the liberty of omitting less
interesting or purely mechanical parts, so don’t be astonished if the code presented in the book
sometimes differs slightly from the code seen in the kernel.

With respect to the source code, this book is self-contained, but it certainly helps if it is not read on a
desolate island, but next to a computer where the Linux source code is available and can be inspected.
Besides that, being on a desolate island is not much fun anyway.

Since I base many machine-specific examples on IA-32 and AMD64, some words about these terms
are in order. ‘‘IA-32‘‘ includes all Intel-compatible CPUs such as Pentium, Athlon, and so on. AMD64
also includes the Intel variant EM64T. For the sake of simplicity, I use only the abbreviations IA-32 and
AMD64 in this book. Since Intel undoubtedly invented IA-32 and AMD came up first with the 64-bit
extensions, this seems a fair compromise. It is also interesting to note that starting with kernel 2.6.23,
both architectures are unified to the generic x86 architecture within the Linux kernel. This makes the
code easier to maintain for the developers because many elements can be shared between both variants,
but nevertheless still distinguishes between 32- and 64-bit capabilities of the processors.

1.6 Summary
The Linux kernel is one of the most interesting and fascinating pieces of software ever written, and I hope
this chapter has succeeded in whetting your appetite for the things to come in the following chapters,
where I discuss many subsystems in detail. For now, I have provided a bird’s eye view of the kernel to
present the big picture of how responsibilities are distributed, which part of the kernel has to deal with
which problems, and how the components interact with each other.

Since the kernel is a huge system, there are some issues related to the presentation of the complex mate-
rial, and I have introduced you to the particular approach chosen for this book.

33

Mauerer runc01.tex V2 - 09/04/2008 4:13pm Page 34

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 35

Process Management
and Scheduling

All modern operating systems are able to run several processes at the same time — at least, this
is the impression users get. If a system has only one processor, only one program can run on it at
a given time. In multiprocessor systems, the number of processes that can truly run in parallel is
determined by the number of physical CPUs.

The kernel and the processor create the illusion of multitasking — the ability to perform several
operations in parallel — by switching repeatedly between the different applications running on the
system at very rapid intervals. Because the switching intervals are so short, users do not notice the
intervening brief periods of inactivity and gain the impression that the computer is actually doing
several things at once.

This kind of system management gives rise to several issues that the kernel must resolve, the most
important of which are listed below.

❑ Applications must not interfere with each other unless this is expressly desired. For
example, an error in application A must not be propagated to application B. Because Linux
is a multiuser system, it must also be ensured that programs are not able to read or modify
the memory contents of other programs — otherwise, it would be extremely easy to access
the private data of other users.

❑ CPU time must be shared as fairly as possible between the various applications, whereby
some programs are regarded as more important than others.

I deal with the first requirement — memory protection — in Chapter 3. In the present chapter,
I focus my attention on the methods employed by the kernel to share CPU time and to switch
between processes. This twofold task is split into two parts that are performed relatively indepen-
dently of each other.

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 36

Chapter 2: Process Management and Scheduling

❑ The kernel must decide how much time to devote to each process and when to switch to the next
process. This begs the question as to which process is actually the next. Decisions of this kind are
not platform-dependent.

❑ When the kernel switches from process A to process B, it must ensure that the execution envi-
ronment of B is exactly the same as when it last withdrew processor resources. For example, the
contents of the processor registers and the structure of virtual address space must be identical.

This latter task is extremely dependent on processor type. It cannot be implemented with C only,
but requires help by pure assembler portions.

Both tasks are the responsibility of a kernel subsystem referred to as the scheduler. How CPU time is allo-
cated is determined by the scheduler policy, which is totally separate from the task switching mechanism
needed to switch between processes.

2.1 Process Priorities
Not all processes are of equal importance. In addition to process priority, with which most readers will
be familiar, there are different criticality classes to satisfy differing demands. In a first coarse distinction,
processes can be split into real-time processes and non-real-time processes.

❑ Hard real-time processes are subject to strict time limits during which certain tasks must be com-
pleted. If the flight control commands of an aircraft are processed by computer, they must be
forwarded as quickly as possible — within a guaranteed period of time. For example, if an air-
craft is on its landing approach and the pilot wants to pull up the nose, it serves little purpose
if the computer forwards the command a few seconds later. By this time, the aircraft may well
be buried — nose first — in the ground. The key characteristic of hard real-time processes is that
they must be processed within a guaranteed time frame. Note that this does not imply that the
time frame is particularly short. Instead, the system must guarantee that a certain time frame is
never exceeded, even when unlikely or adverse conditions prevail.

Linux does not support hard real-time processing, at least not in the vanilla kernel. There are,
however, modified versions such as RTLinux, Xenomai, or RATI that offer this feature. The
Linux kernel runs as a separate ‘‘process’’ in these approaches and handles less important soft-
ware, while real-time work is done outside the kernel. The kernel may run only if no real-time
critical actions are performed.

Since Linux is optimized for throughput and tries to handle common cases as fast as possible,
guaranteed response times are only very hard to achieve. Nevertheless quite a bit of progress
has been made during the last years to decrease the overall kernel latency, that is, the time
that elapses between making a request and its fulfillment. The efforts include the preemptible
kernel mechanism, real-time mutexes, and the new completely fair scheduler discussed in
this book.

❑ Soft real-time processes are a softer form of hard real-time processes. Although quick results are
still required, it is not the end of the world if they are a little late in arriving. An example of a
soft real-time process is a write operation to a CD. Data must be received by the CD writer at a
certain rate because data are written to the medium in a continuous stream. If system loading is
too high, the data stream may be interrupted briefly, and this may result in an unusable CD, far
less drastic than a plane crash. Nevertheless, the write process should always be granted CPU
time when needed — before all other normal processes.

36

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 37

Chapter 2: Process Management and Scheduling

❑ Most processes are normal processes that have no specific time constraints but can still be classified
as more important or less important by assigning priorities to them.

For example, a long compiler run or numerical calculations need only very low priority because
it is of little consequence if computation is interrupted occasionally for a second or two — users
are unlikely to notice. In contrast, interactive applications should respond as quickly as possible
to user commands because users are notoriously impatient.

The allocation of CPU time can be portrayed in much simplified form as in Figure 2-1. Processes are
spread over a time slice, and the share of the slice allocated to them corresponds to their relative impor-
tance. The time flow in the system corresponds to the turning of the circle, and the CPU is represented by
a ‘‘scanner‘‘ at the circumference of the circle. The net effect is that important processes are granted more
CPU time than less important processes, although all eventually have their turn.

CPU

A

B

C

D

Figure 2-1: Allocation of CPU time by means of
time slices.

In this scheme, known as preemptive multitasking, each process is allocated a certain time period during
which it may execute. Once this period has expired, the kernel withdraws control from the process and
lets a different process run — regardless of the last task performed by the previous process. Its runtime
environment — essentially, the contents of all CPU registers and the page tables — is, of course, saved
so that results are not lost and the process environment is fully reinstated when its turn comes around
again. The length of the time slice varies depending on the importance of the process (and therefore
on the priority assigned to it). Figure 2-1 illustrates this by allocating segments of different sizes to the
individual processes.

This simplified model does not take into account several important issues. For example, processes may
not be ready to execute at certain times because they have nothing to do. Because it is essential to use
CPU time as profitably as possible, such processes must be prevented from executing. This is not evident
in Figure 2-1 because it is assumed that all processes are always ready to run. Also ignored is the fact
that Linux supports different scheduling classes (completely fair scheduling between processes, and real-
time scheduling), and these must also be taken into consideration during scheduling. Neither is there an
option to replace the current process with an important process that has become ready to run.

Note that process scheduling causes very fervid and excited discussion among kernel developers, espe-
cially when it comes to picking the best possible algorithm. Finding a quantitative measure for the quality
of a scheduler is a very hard — if not impossible — task. It is also a very challenging task for a sched-
uler to fulfill the requirements imposed by the many different workloads that Linux systems have to
face: Small embedded systems for automated control usually have very different requirements than large

37

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 38

Chapter 2: Process Management and Scheduling

number crunchers, while these in turn differ considerably from multimedia systems. In fact, the scheduler
code has seen two complete rewrites in recent years:

1. During the development series 2.5, a so-called O(1) scheduler replaced the previous sched-
uler. One particular property of this scheduler was that it could perform its work in constant
time independent of the number of processes that were running on a system. The design
broke quite radically with the previously employed scheduling architecture.

2. The completely fair scheduler was merged during the development of kernel 2.6.23. The new
code again marked a complete departure from previous principles by abandoning, for
instance, many heuristics that were required in previous schedulers to ensure that
interactive tasks would respond quickly. The key feature of this scheduler is that it tries
to resemble ideal fair scheduling as close as possible. Besides, it cannot only schedule
individual tasks, but works with more general scheduling entities. This allows, for instance,
for distribution the available time between all processes of different users, and then among
the processes of each user.

I discuss the implementation of this scheduler below in detail.

Before we concern ourselves with how scheduling is implemented in the kernel, it is useful to discuss the
states that a process may have.

2.2 Process Life Cycle
A process is not always ready to run. Occasionally, it has to wait for events from external sources
beyond its control — for keyboard input in a text editor, for example. Until the event occurs, the process
cannot run.

The scheduler must know the status of every process in the system when switching between tasks; it
obviously doesn’t make sense to assign CPU time to processes that have nothing to do. Of equal impor-
tance are the transitions between individual process states. For example, if a process is waiting for data
from a peripheral device, it is the responsibility of the scheduler to change the state of the process from
waiting to runnable once the data have arrived.

A process may have one of the following states:

❑ Running — The process is executing at the moment.

❑ Waiting — The process is able to run but is not allowed to because the CPU is allocated to
another process. The scheduler can select the process, if it wants to, at the next task switch.

❑ Sleeping — The process is sleeping and cannot run because it is waiting for an external event.
The scheduler cannot select the process at the next task switch.

The system saves all processes in a process table — regardless of whether they are running, sleeping, or
waiting. However, sleeping processes are specially ‘‘marked‘‘ so that the scheduler knows they are not
ready to run (see how this is implemented in Section 2.3). There are also a number of queues that group
sleeping processes so that they can be woken at a suitable time — when, for example, an external event
that the process has been waiting for takes place.

38

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 39

Chapter 2: Process Management and Scheduling

Figure 2-2 shows several process states and transitions.

Running

Stopped

Waiting Sleeping

5

4

2

1

3

Figure 2-2: Transitions between process states.

Let’s start our examination of the various transitions with a queued runnable process; the process is
ready to run but is not allowed to because the CPU is allocated to a different process (its state is therefore
‘‘waiting‘‘). It remains in this state until the scheduler grants it CPU time. Once this happens, its state
changes to ‘‘running‘‘ (path 4).

When the scheduler decides to withdraw CPU resources from the process — I deal with the possible rea-
sons why shortly — the process state changes from ‘‘running‘‘ to ‘‘waiting‘‘ (path 2), and the cycle starts
anew. There are, in fact, two ‘‘sleeping‘‘ states that differ according to whether they can be interrupted
by signals or not. At the moment, this difference is not important, but it is of relevance when we examine
implementation more closely.

If the process has to wait for an event, its state changes (path 1) from ‘‘running‘‘ to ‘‘sleeping.’’ However,
it cannot change directly from ‘‘sleeping‘‘ to ‘‘running‘‘; once the event it was waiting for has taken place,
the process changes back to the ‘‘waiting‘‘ state (path 3) and then rejoins the normal cycle.

Once program execution terminates (e.g., the user closes the the application), the process state changes
from ‘‘running‘‘ to ‘‘stopped‘‘ (path 5).

A special process state not listed above is the ‘‘zombie‘‘state. As the name suggests, such processes are
defunct but are somehow still alive. In reality, they are dead because their resources (RAM, connections
to peripherals, etc.) have already been released so that they cannot and never will run again. However,
they are still alive because there are still entries for them in the process table.

How do zombies come about? The reason lies in the process creation and destruction structure under
Unix. A program terminates when two events occur — first, the program must be killed by another
process or by a user (this is usually done by sending a SIGTERM or SIGKILL signal, which is equivalent
to terminating the process regularly); second, the parent process from which the process originates must
invoke or have already invoked the wait4 (read: wait for) system call when the child process terminates.
This confirms to the kernel that the parent process has acknowledged the death of the child. The system
call enables the kernel to free resources reserved by the child process.

A zombie occurs when only the first condition (the program is terminated) applies but not the second
(wait4). A process always switches briefly to the zombie state between termination and removal of its
data from the process table. In some cases (if, e.g., the parent process is badly programmed and does
not issue a wait call), a zombie can firmly lodge itself in the process table and remain there until the next

39

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 40

Chapter 2: Process Management and Scheduling

reboot. This can be seen by reading the output of process tools such as ps or top. This is hardly a problem
as the residual data take up little space in the kernel.

2.2.1 Preemptive Multitasking
The structure of Linux process management requires two further process state options — user mode and
kernel mode. These reflect the fact that all modern CPUs have (at least) two different execution modes,
one of which has unlimited rights while the other is subject to various restrictions — for example, access
to certain memory areas can be prohibited. This distinction is an important prerequisite for creating
locked ‘‘cages,’’ which hold existing processes and prevent them from interfering with other parts of the
system.

Normally the kernel is in user mode in which it may access only its own data and cannot therefore inter-
fere with other applications in the system — it usually doesn’t even notice that there are other programs
besides itself.

If a process wants to access system data or functions (the latter manage the resources shared between all
processes, e.g., filesystem space), it must switch to kernel mode. Obviously, this is possible only under
control — otherwise all established protection mechanisms would be superfluous — and via clearly
defined paths. Chapter 1 mentioned briefly that ‘‘system calls‘‘ are one way to switch between modes.
Chapter 13 discusses the implementation of such calls in depth.

A second way of switching from user mode to kernel mode is by means of interrupts — switching is
then triggered automatically. Unlike system calls, which are invoked intentionally by user applications,
interrupts occur more or less arbitrarily. Generally, the actions needed to handle interrupts have nothing
to do with the process executing when the interrupt occurred. For example, an interrupt is raised when
an external block device has transferred data to RAM, although these data may be intended for any
process running on the system. Similarly, incoming network packages are announced by means of an
interrupt. Again, it is unlikely that the inbound package is intended for the process currently running.
For this reason, Linux performs these actions in such a way that the running process is totally unaware
of them.

The preemptive scheduling model of the kernel establishes a hierarchy that determines which process
states may be interrupted by which other states.

❑ Normal processes may always be interrupted — even by other processes. When an important
process becomes runnable — for example, an editor receives long-awaited keyboard input — the
scheduler can decide whether to execute the process immediately, even if the current process is
still happily running. This kind of preemption makes an important contribution to good interac-
tive behavior and low system latency.

❑ If the system is in kernel mode and is processing a system call, no other process in the system
is able to cause withdrawal of CPU time. The scheduler is forced to wait until execution of the
system call has terminated before it can select another process. However, the system call can be
suspended by an interrupt.1

❑ Interrupts can suspend processes in user mode and in kernel mode. They have the highest prior-
ity because it is essential to handle them as soon as possible after they are issued.

1It is possible to disable almost all interrupts for important kernel actions.

40

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 41

Chapter 2: Process Management and Scheduling

One option known as kernel preemption was added to the kernel during the development of kernel 2.5.
This option supports switches to another process, if this is urgently required, even during the execution
of system calls in kernel mode (but not during interrupts). Although the kernel attempts to execute
system calls as quickly as possible, the time needed may be too long for some applications that are reliant
on constant data streams. Kernel preemption can reduce such wait times and thus ensure ‘‘smoother‘‘
program execution. However, this is at the expense of increased kernel complexity because many data
structures then need to be protected against concurrent access even on single-processor systems. This
technique is discussed in Section 2.8.3.

2.3 Process Representation
All algorithms of the Linux kernel concerned with processes and programs are built around a data struc-
ture named task_struct and defined in include/sched.h. This is one of the central structures in the
system. Before we move on to deal with the implementation of the scheduler, it is essential to examine
how Linux manages processes.

The task structure includes a large number of elements that link the process with the kernel subsystems
which I discuss below. I therefore make frequent reference to later chapters because it is difficult to
explain the significance of some elements without detailed knowledge of them.

The task structure is defined as follows — in simplified form:

<sched.h>
struct task_struct {

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned long flags; /* per process flags, defined below */
unsigned long ptrace;
int lock_depth; /* BKL lock depth */

int prio, static_prio, normal_prio;
struct list_head run_list;
const struct sched_class *sched_class;
struct sched_entity se;

unsigned short ioprio;

unsigned long policy;
cpumask_t cpus_allowed;
unsigned int time_slice;

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info sched_info;

#endif

struct list_head tasks;
/*
* ptrace_list/ptrace_children forms the list of my children
* that were stolen by a ptracer.
*/
struct list_head ptrace_children;

41

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 42

Chapter 2: Process Management and Scheduling

struct list_head ptrace_list;

struct mm_struct *mm, *active_mm;

/* task state */
struct linux_binfmt *binfmt;
long exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */

unsigned int personality;
unsigned did_exec:1;
pid_t pid;
pid_t tgid;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->parent->pid)
*/
struct task_struct *real_parent; /* real parent process (when being debugged) */
struct task_struct *parent; /* parent process */
/*
* children/sibling forms the list of my children plus the
* tasks I’m ptracing.
*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent’s children list */
struct task_struct *group_leader; /* threadgroup leader */

/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;

struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */

unsigned long rt_priority;
cputime_t utime, stime, utimescaled, stimescaled;;
unsigned long nvcsw, nivcsw; /* context switch counts */
struct timespec start_time; /* monotonic time */
struct timespec real_start_time; /* boot based time */
/* mm fault and swap info: this can arguably be seen as either

mm-specific or thread-specific */
unsigned long min_flt, maj_flt;

cputime_t it_prof_expires, it_virt_expires;
unsigned long long it_sched_expires;
struct list_head cpu_timers[3];

/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
struct group_info *group_info;
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;

42

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 43

Chapter 2: Process Management and Scheduling

unsigned keep_capabilities:1;
struct user_struct *user;

char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())

- initialized normally by flush_old_exec */
/* file system info */

int link_count, total_link_count;
/* ipc stuff */

struct sysv_sem sysvsem;
/* CPU-specific state of this task */

struct thread_struct thread;
/* filesystem information */

struct fs_struct *fs;
/* open file information */

struct files_struct *files;
/* namespace */

struct nsproxy *nsproxy;
/* signal handlers */

struct signal_struct *signal;
struct sighand_struct *sighand;

sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
struct sigpending pending;

unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;

#ifdef CONFIG_SECURITY
void *security;

#endif

/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;

/* journalling filesystem info */
void *journal_info;

/* VM state */
struct reclaim_state *reclaim_state;

struct backing_dev_info *backing_dev_info;

struct io_context *io_context;

unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */

...
};

43

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 44

Chapter 2: Process Management and Scheduling

Admittedly, it is difficult to digest the amount of information in this structure. However, the structure
contents can be broken down into sections, each of which represents a specific aspect of the process:

❑ State and execution information such as pending signals, binary format used (and any emulation
information for binary formats of other systems), process identification number (pid), pointers to
parents and other related processes, priorities, and time information on program execution (e.g.,
CPU time).

❑ Information on allocated virtual memory.

❑ Process credentials such as user and group ID, capabilities,2 and so on. System calls can be used
to query (or modify) these data; I deal with these in greater detail when describing the specific
subsystems.

❑ Files used: Not only the binary file with the program code but also filesystem information on all
files handled by the process must be saved.

❑ Thread information, which records the CPU-specific runtime data of the process (the remaining
fields in the structure are not dependent on the hardware used).

❑ Information on interprocess communication required when working with other applications.

❑ Signal handlers used by the process to respond to incoming signals.

Many members of the task structure are not simple variables but pointers to other data structures
examined and discussed in the following chapters. In the present chapter, I consider some elements
of task_struct that are of particular significance in process management implementation.

state specifies the current state of a process and accepts the following values (these are pre-processor
constants defined in <sched.h>):

❑ TASK_RUNNING means that a task is in a runnable state. It does not mean that a CPU is actually
allocated. The task can wait until it is selected by the scheduler. This state guarantees that the
process really is ready to run and is not waiting for an external event.

❑ TASK_INTERRUPTIBLE is set for a sleeping process that is waiting for some event or other. When
the kernel signals to the process that the event has occurred, it is placed in the TASK_RUNNING
state and may resume execution as soon as it is selected by the scheduler.

❑ TASK_UNINTERRUPTIBLE is used for sleeping processes disabled on the instructions of the kernel.
They may not be woken by external signals, only by the kernel itself.

❑ TASK_STOPPED indicates that the process was stopped on purpose — by a debugger, for example.

❑ TASK_TRACED is not a process state per se — it is used to distinguish stopped tasks that are cur-
rently being traced (using the ptrace mechanism) from regular stopped tasks.

The following constants can be used both in the task state field of struct task_struct, but also in the
field exit_state, which is specifically for exiting processes.

❑ EXIT_ZOMBIE is the zombie state described above.

❑ EXIT_DEAD is the state after an appropriate wait system call has been issued and before the task
is completely removed from the system. This state is only of importance if multiple threads issue
wait calls for the same task.

2Capabilities are special permissions that can be granted to a process. They allow the process to perform certain operations that nor-
mally may be performed only by root processes.

44

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 45

Chapter 2: Process Management and Scheduling

Linux provides the resource limit (rlimit) mechanism to impose certain system resource usage limits on
processes. The mechanism makes use of the rlim array in task_struct, whose elements are of the struct
rlimit type.

<resource.h>
struct rlimit {

unsigned long rlim_cur;
unsigned long rlim_max;

}

The definition is purposely kept very general so that it can accept many different resource types.

❑ rlim_cur is the current resource limit for the process. It is also referred to as the soft limit.

❑ rlim_max is the maximum allowed value for the limit. It is therefore also referred to as the
hard limit.

The setrlimit system call is used to increase or decrease the current limit. However, the value specified
in rlim_max may not be exceeded. getrlimits is used to check the current limit.

The limitable resources are identified by reference to their position in the rlim array, which is why the
kernel defines pre-processor constants to associate resource and position. Table 2-1 lists the possible
constants and their meanings. Textbooks on system programming provide detailed explanations on
best use of the various limits in practice, and the manual page setrlimit(2) contains more detailed
descriptions of all limits.

The numeric values differ between architectures because Linux tries to establish
binary compatibility with the specific native Unix systems.

Because the limits relate to very different parts of the kernel, the kernel must check that the limits are
observed in the corresponding subsystems. This is why we encounter rlimit time and time again in later
chapters of this book.

If a resource type may be used without limits (the default setting for almost all resources), RLIM_INFINITY
is used as the value for rlim_max. Exceptions are, among others:

❑ The number of open files (RLIMIT_NOFILE, limited to 1,024 by default).

❑ The maximum number of processes per user (RLIMIT_NPROC), defined as max_threads/2.
max_threads is a global variable whose value specifies how many threads may be generated so
that an eighth of available RAM is used only for management of thread information, given a
minimum possible memory usage of 20 threads.

The boot-time limits for the init task are defined in INIT_RLIMITS in include/asm-generic-resource.h.

Notice that kernel 2.6.25, which was still under development when this book was written, will contain
one file per process in the proc filesystem, which allows for inspecting the current rlimit values:

wolfgang@meitner> cat /proc/self/limits
Limit Soft Limit Hard Limit Units

45

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 46

Chapter 2: Process Management and Scheduling

Max cpu time unlimited unlimited ms
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8388608 unlimited bytes
Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes unlimited unlimited processes
Max open files 1024 1024 files
Max locked memory unlimited unlimited bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals unlimited unlimited signals
Max msgqueue size unlimited unlimited bytes
Max nice priority 0 0
Max realtime priority 0 0
Max realtime timeout unlimited unlimited us

Table 2-1: Process-Specific Resource Limits.

Constant Meaning

RLIMIT_CPU Maximum CPU time in milliseconds.

RLIMIT_FSIZE Maximum file size allowed.

RLIMIT_DATA Maximum size of the data segment.

RLIMIT_STACK Maximum size of the (user mode) stack.

RLIMIT_CORE Maximum size for core dump files.

RLIMIT_RSS Maximum size of the resident size set; in other words, the maximum number of
page frames that a process uses. Not used at the moment.

RLIMIT_NPROC Maximum number of processes that the user associated with the real UID of a
process may own.

RLIMIT_NOFILE Maximum number of open files.

RLIMIT_MEMLOCK Maximum number of non-swappable pages.

RLIMIT_AS Maximum size of virtual address space that may be occupied by a process.

RLIMIT_LOCKS Maximum number of file locks.

RLIMIT_SIGPENDING Maximum number of pending signals.

RLIMIT_MSGQUEUE Maximum number of message queues.

RLIMIT_NICE Maximum nice level for non-real-time processes.

RLIMIT_RTPRIO Maximum real-time priority.

46

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 47

Chapter 2: Process Management and Scheduling

Most of the code to generate the information is already present in kernel 2.6.24, but the final connection
with /proc will only be made in the following kernel release.

2.3.1 Process Types
A classical Unix process is an application that consists of binary code, a chronological thread (the com-
puter follows a single path through the code, no other paths run at the same time), and a set of resources
allocated to the application — for example, memory, files, and so on. New processes are generated using
the fork and exec system calls:

❑ fork generates an identical copy of the current process; this copy is known as a child process. All
resources of the original process are copied in a suitable way so that after the system call there
are two independent instances of the original process. These instances are not linked in any way
but have, for example, the same set of open files, the same working directory, the same data in
memory (each with its own copy of the data), and so on.3

❑ exec replaces a running process with another application loaded from an executable binary file.
In other words, a new program is loaded. Because exec does not create a new process, an old
program must first be duplicated using fork, and then exec must be called to generate an addi-
tional application on the system.

Linux also provides the clone system call in addition to the two calls above that are available in all Unix
flavors and date back to very early days. In principle, clone works in the same way as fork, but the new
process is not independent of its parent process and can share some resources with it. It is possible to
specify which resources are to be shared and which are to be copied — for example, data in memory,
open files, or the installed signal handlers of the parent process.

clone is used to implement threads. However, the system call alone is not enough to do this. Libraries are
also needed in userspace to complete implementation. Examples of such libraries are Linuxthreads and
Next Generation Posix Threads.

2.3.2 Namespaces
Namespaces provide a lightweight form of virtualization by allowing us to view the global properties of
a running system under different aspects. The mechanism is similar to zones in Solaris or the jail mech-
anism in FreeBSD. After a general overview of the concept, I discuss the infrastructure provided by the
namespace framework.

Concept
Traditionally, many resources are managed globally in Linux as well as other Unix derivatives. For
instance, all processes in the system are conventionally identified by their PID, which implies that a
global list of PIDs must be managed by the kernel. Likewise, the information about the system returned
by the uname system call (which includes the system name and some information about the kernel) is the
same for all callers. User IDs are managed in a similar fashion: Each user is identified by a UID number
that is globally unique.

3In Section 2.4.1, you will see that Linux does use the copy-on-write mechanism to not copy memory pages of the forked process
until the new process performs a write access to the pages — this is more efficient than blindly copying all memory pages immedi-
ately on execution of fork. The link between the memory pages of the parent and child process needed to do this is visible to the
kernel only and is transparent to the applications.

47

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 48

Chapter 2: Process Management and Scheduling

Global identifiers allow the kernel to selectively grant or deny certain privileges. While the root user
with UID 0 is essentially allowed to do anything, higher user IDs are more confined. A user with PID n
may, for instance, not kill processes that belong to user m �= n. However, this does not prevent users from
seeing each other: User n can see that another user m is also active on the machine. This is no problem: As
long as users can only fiddle with their own processes, there is no reason why they should not be allowed
to observe that other users have processes as well.

There are cases, though, where this can be undesired. Consider that a web provider wants to give full
access to Linux machines to customers, including root access. Traditionally, this would require setting
up one machine per customer, which is a costly business. Using virtualized environments as provided
by KVM or VMWare is one way to solve the problem, but does not distribute resources very well: One
separate kernel is required for each customer on the machine, and also one complete installation of the
surrounding userland.

A different solution that is less demanding on resources is provided by namespaces. Instead of using
virtualized systems such that one physical machine can run multiple kernels — which may well be from
different operating systems — in parallel, a single kernel operates on a physical machine, and all previ-
ously global resources are abstracted in namespaces. This allows for putting a group of processes into a
container, and one container is separated from other containers. The separation can be such that members
of one container have no connection whatsoever with other containers. Is is, however, also possible to
loosen the separation of containers by allowing them to share certain aspects of their life. For instance,
containers could be set up to use their own set of PIDs, but still share portions of filesystems with each
other.

Namespaces essentially create different views of the system. Every formerly global resource must be
wrapped up in a container data structure, and only tuples of the resource and the containing namespace
are globally unique. While the resource alone is enough inside a given container, it does not provide a
unique identity outside the container. An overview of the situation is given in Figure 2-3.

Consider a case in which three different namespaces are present on the system. Namespaces can be
hierarchically related, and I consider this case here. One namespace is the parent namespace, which has
spawned two child namespaces. Assume that the containers are used in a hosting setup where each
container must look like a single Linux machine. Each of them therefore has its own init task with PID
0, and the PIDs of other tasks are assigned in increasing order. Both child namespaces have an init task
with PID 0, and two processes with PIDs 2 and 3, respectively. Since PIDs with identical values appear
multiple times on the system, the numbers are not globally unique.

While none of the child containers has any notion about other containers in the system, the parent is
well informed about the children, and consequently sees all processes they execute. They are mapped
to the PID range 4 to 9 in the parent process. Although there are 9 processes on the system, 15 PIDs are
required to represent them because one process can be associated with more than one PID. The ‘‘right’’
one depends on the context in which the process is observed.

Namespaces can also be non-hierarchical if they wrap simpler quantities, for instance, like the UTS
namespace discussed below. In this case, there is no connection between parent and child namespaces.

Notice that support for namespaces in a simple form has been available in Linux for quite a long time
in the form of the chroot system call. This method allows for restricting processes to a certain part of

48

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 49

Chapter 2: Process Management and Scheduling

4 5 6 7 8 9

1 2 3

1

2 3

1

2 3

pa
re

nt parent

Parent
namespace

Child
namespaces

Figure 2-3: Namespaces can be related in a hierarchical order.
Each namespace has a parent from which it originates, and a
parent can have multiple children.

the filesystem and is thus a simple namespace mechanism. True namespaces do, however, allow for
controlling much more than just the view on the filesystem.

New namespaces can be established in two ways:

1. When a new process is created with the fork or clone system call, specific options control if
namespaces will be shared with the parent process, or if new namespaces are created.

2. The unshare system call dissociates parts of a process from the parent, and this also includes
namespaces. See the manual page unshare(2) for more information.

Once a process has been disconnected from the parent namespace using any of the two mechanisms
above, changing a — from its point of view — global property will not propagate into the parent names-
pace, and neither will a change on the parent side propagate into the child, at least for simple quantities.
The situation is more involved for filesystems where the sharing mechanisms are very powerful and
allow a plethora of possibilities, as discussed in Chapter 8.

Namespaces are currently still marked as experimental in the standard kernel, and development to make
all parts of the kernel fully namespace-aware are still going on. As of kernel 2.6.24, the basic framework is,
however, set up and in place.4 The file Documentation/namespaces/compatibility-list.txt provides
information about some problems that are still present in the current state of the implementation.

4This, however, does not imply that the approach was only recently developed. In fact, the methods have been used in production
systems over many years, but were only available as external kernel patches.

49

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 50

Chapter 2: Process Management and Scheduling

Implementation
The implementation of namespaces requires two components: per-subsystem namespace structures that
wrap all formerly global components on a per-namespace basis, and a mechanism that associates a given
process with the individual namespaces to which it belongs. Figure 2-4 illustrates the situation.

struct task_struct

struct nsproxy

struct nsproxy

uts_namespc
user_namespc
mnt_namespc

uts_namespc
user_namespc
mnt_namespc

UTS Namespace

User Namespace

0

0

1

Tasks

struct task_struct

struct task_struct

Figure 2-4: Connection between processes and namespaces.

Formerly global properties of subsystems are wrapped up in namespaces, and each process is associated
with a particular selection of namespaces. Each kernel subsystem that is aware of namespaces must
provide a data structure that collects all objects that must be available on a per-namespace basis. struct
nsproxy is used to collect pointers to the subsystem-specific namespace wrappers:

<nsproxy.h>
struct nsproxy {

atomic_t count;
struct uts_namespace *uts_ns;
struct ipc_namespace *ipc_ns;
struct mnt_namespace *mnt_ns;
struct pid_namespace *pid_ns;
struct user_namespace *user_ns;
struct net *net_ns;

};

Currently the following areas of the kernel are aware of namespaces:

❑ The UTS namespace contains the name of the running kernel, and its version, the underlying
architecture type, and so on. UTS is a shorthand for Unix Timesharing System.

❑ All information related to inter-process communication (IPC) is stored in struct
ipc_namespace.

50

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 51

Chapter 2: Process Management and Scheduling

❑ The view on the mounted filesystem is given in struct mnt_namespace.

❑ struct pid_namespace provides information about process identifiers.

❑ struct user_namespace is required to hold per-user information that allows for limiting
resource usage for individual users.

❑ struct net_ns contains all networking-related namespace parameters. There is, however, still
quite a lot of effort required to make this area fully aware of namespaces as you will see in
Chapter 12.

I introduce the contents of the individual namespace containers when I discuss the respective subsystem.
In this chapter, we will be concerned about UTS and user namespaces. Since fork can be instructed to
open a new namespace when a new task is created, appropriate flags to control the behavior must be
provided. One flag is available for each individual namespace:

<sched.h>
#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
#define CLONE_NEWIPC 0x08000000 /* New ipcs */
#define CLONE_NEWUSER 0x10000000 /* New user namespace */
#define CLONE_NEWPID 0x20000000 /* New pid namespace */
#define CLONE_NEWNET 0x40000000 /* New network namespace */

Each task is associated with his own view of the namespaces:

<sched.h>
struct task_struct {
...
/* namespaces */

struct nsproxy *nsproxy;
...
}

Because a pointer is used, a collection of sub-namespaces can be shared among multiple processes. This
way, changes in a given namespace will be visible in all processes that belong to this namespace.

Notice that support for namespaces must be enabled at compile time on a per-namespace basis. Generic
support for namespaces is, however, always compiled in. This allows the kernel to avoid using different
code for systems with and without namespaces. By providing a default namespace that is associated with
every process unless specified differently, the namespace-aware code can always be used, but the results
will be identical to a situation in which all properties are global and not wrapped up in namespaces if no
active support for namespaces is compiled in.

The initial global namespace is defined by init_nsproxy, which keeps pointers to the initial objects of
the per-subsystem namespaces:

<kernel/nsproxy.c>
struct nsproxy init_nsproxy = INIT_NSPROXY(init_nsproxy);

<init_task.h>
#define INIT_NSPROXY(nsproxy) { \

.pid_ns = &init_pid_ns, \

.count = ATOMIC_INIT(1), \

51

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 52

Chapter 2: Process Management and Scheduling

.uts_ns = &init_uts_ns, \

.mnt_ns = NULL, \
INIT_NET_NS(net_ns) \
INIT_IPC_NS(ipc_ns) \
.user_ns = &init_user_ns, \

}

The UTS Namespace
The UTS namespace can be handled with particularly little effort because it only has to manage simple
quantities and does not require a hierarchical organization. All relevant information is collected in an
instance of the following structure:

<utsname.h>
struct uts_namespace {

struct kref kref;
struct new_utsname name;

};

kref is an embedded reference counter that can be used to track from how many places in the kernel
an instance of struct uts_namespace is used (recall that Chapter 1 provides more information about
the generic framework to handle reference counting). The information proper is contained in struct
new_utsname:

<utsname.h>
struct new_utsname {

char sysname[65];
char nodename[65];
char release[65];
char version[65];
char machine[65];
char domainname[65];

};

The individual strings store the name of the system (Linux...), the kernel release, the machine
name, and so on. The current values can be determined using the uname tool, but are also visible in
/proc/sys/kernel/:

wolfgang@meitner> cat /proc/sys/kernel/ostype
Linux
wolfgang@meitner> cat /proc/sys/kernel/osrelease
2.6.24

The initial settings are stored in init_uts_ns:

init/version.c
struct uts_namespace init_uts_ns = {
...

.name = {
.sysname = UTS_SYSNAME,
.nodename = UTS_NODENAME,
.release = UTS_RELEASE,
.version = UTS_VERSION,

52

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 53

Chapter 2: Process Management and Scheduling

.machine = UTS_MACHINE,

.domainname = UTS_DOMAINNAME,
},

};

The pre-processor constants are defined on various places across the kernel. UTS_RELEASE is, for instance,
set in <utsrelease.h>, which is dynamically generated at build time by the top-level Makefile.

Notice that some parts of the UTS structure cannot be changed. For instance, it would not make sense to
exchange sysname by anything else than Linux. It is, however, possible to change the machine name, for
example.

How does the kernel go about creating a new UTS namespace? This falls under the responsibility of
the function copy_utsname. The function is called when a process is forked and the flag CLONE_NEWUTS
specifies that a new UTS namespace is to be established. In this case, a copy of the previous instance
of uts_namespace is generated, and a corresponding pointer is installed into the nsproxy instance of the
current task. Nothing more is required! Since the kernel makes sure to always operate on the task-specific
uts_namespace instance whenever a UTS value is read or set, changes for the current process will not be
reflected in the parent, and changes in the parent will also not propagate toward the children.

The User Namespace
The user namespace is handled similarly in terms of data structure management: When a new user
namespace is requested, a copy of the current user namespace is generated and associated with the
nsproxy instance of the current task. However, the representation of a user namespace itself is slightly
more complex:

<user_namespace.h>
struct user_namespace {

struct kref kref;
struct hlist_head uidhash_table[UIDHASH_SZ];
struct user_struct *root_user;

};

As before, kref is a reference counter that tracks in how many places a user_namespace instance is
required. For each user in the namespace, an instance of struct user_struct keeps track of the individ-
ual resource consumption, and the individual instances are accessible via the hash table uidhash_table.

The exact definition of user_struct is not interesting for our purposes. It suffices to know that some sta-
tistical elements like the number of open files or processes a user has are kept in there. What is much more
interesting is that each user namespace accounts resource usage for its users completely detached from
other namespaces — including accounting for the root user. This is possible because a new user_struct
both for the current user and the root is created when a user namespace is cloned:

kernel/user_namespace.c
static struct user_namespace *clone_user_ns(struct user_namespace *old_ns)
{

struct user_namespace *ns;
struct user_struct *new_user;

...
ns = kmalloc(sizeof(struct user_namespace), GFP_KERNEL);

...

53

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 54

Chapter 2: Process Management and Scheduling

ns->root_user = alloc_uid(ns, 0);

/* Reset current->user with a new one */
new_user = alloc_uid(ns, current->uid);

switch_uid(new_user);
return ns;

}

alloc_uid is a helper function that allocates an instance of user_struct for a user with a given UID in
the current namespace if none exists yet. Once an instance has been set up for both root and the current
user, switch_uid ensures that the new user_struct will be used to account resources from now on. This
essentially works by setting the user element of struct task_struct to the new user_struct instance.

Notice that if support for user namespaces is not compiled in, cloning a user namespace is a null opera-
tion: The default namespace is always used.

2.3.3 Process Identification Numbers
Unix processes are always assigned a number to uniquely identify them in their namespace. This number
is called the process identification number or PID for short. Each process generated with fork or clone is
automatically assigned a new unique PID value by the kernel.

Process Identifiers
Each process is, however, not only characterized by its PID but also by other identifiers. Several types are
possible:

❑ All processes in a thread group (i.e., different execution contexts of a process created by call-
ing clone with CLONE_THREAD as we will see below) have a uniform thread group id (TGID). If a
process does not use threads, its PID and TGID are identical.

The main process in a thread group is called the group leader. The group_leader element of the
task structures of all cloned threads points to the task_struct instance of the group leader.

❑ Otherwise, independent processes can be combined into a process group (using the setpgrp sys-
tem call). The pgrp elements of their task structures all have the same value, namely, the PID of
the process group leader. Process groups facilitate the sending of signals to all members of the
group, which is helpful for various system programming applications (see the literature on sys-
tem programming, e.g., [SR05]). Notice that processes connected with pipes are contained in a
process group.

❑ Several process groups can be combined in a session. All processes in a session have the same
session ID which is held in the session element of the task structure. The SID can be set using
the setsid system call. It is used in terminal programming but is of no particular relevance to us
here.

Namespaces add some additional complexity to how PIDs are managed. Recall that PID namespaces are
organized in a hierarchy. When a new namespace is created, all PIDs that are used in this namespace
are visible to the parent namespace, but the child namespace does not see PIDs of the parent name-
space. However this implies that some tasks are equipped with more than one PID, namely, one per

54

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 55

Chapter 2: Process Management and Scheduling

namespace they are visible in. This must be reflected in the data structures. We have to distinguish
between local and global IDs:

❑ Global IDs are identification numbers that are valid within the kernel itself and in the initial
namespace to which the init tasks started during boot belongs. For each ID type, a given global
identifier is guaranteed to be unique in the whole system.

❑ Local IDs belong to a specific namespace and are not globally valid. For each ID type, they are
valid within the namespace to which they belong, but identifiers of identical type may appear
with the same ID number in a different namespace.

The global PID and TGID are directly stored in the task struct, namely, in the elements pid and tgid:

<sched.h>
struct task_struct {
...

pid_t pid;
pid_t tgid;

...
}

Both are of type pid_t, which resolves to the type __kernel_pid_t; this, in turn, has to be defined by
each architecture. Usually an int is used, which means that 232 different IDs can be used simultaneously.

The session and process group IDs are not directly contained in the task structure itself, but in the struc-
ture used for signal handling. task_struct->signal->__session denotes the global SID, while the
global PGID is stored in task_struct->signal->__pgrp. The auxiliary functions set_task_session and
set_task_pgrp are provided to modify the values.

Managing PIDs
In addition to these two fields, the kernel needs to find a way to manage all local per-namespace quanti-
ties, as well as the other identifiers like TID and SID. This requires several interconnected data structures
and numerous auxiliary functions that are discussed in the following.

Data Structures
Below I use the term ID to refer to any process identifier. I specify the identifier type explicitly (e.g., TGID
for ‘‘thread group identifier’’) where this is necessary.

A small subsystem known as a pid allocator is available to speed up the allocation of new IDs. Besides,
the kernel needs to provide auxiliary functions that allow for finding the task structure of a process by
reference to an ID and its type, and functions that convert between the in-kernel representation of IDs
and the numerical values visible to userspace.

Before I introduce the data structures required to represent IDs themselves, I need to discuss how PID
namespaces are represented. The elements required for our purposes are as follows:

<pid_namespace.h>
struct pid_namespace {
...

struct task_struct *child_reaper;

55

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 56

Chapter 2: Process Management and Scheduling

...
int level;
struct pid_namespace *parent;

};

In reality, the structure also contains elements that are needed by the PID allocator to produce a stream
of unique IDs, but these do not concern us now. What is interesting are the following elements:

❑ Every PID namespace is equipped with a task that assumes the role taken by init in the global
picture. One of the purposes of init is to call wait4 for orphaned tasks, and this must likewise
be done by the namespace-specific init variant. A pointer to the task structure of this task is
stored in child_reaper.

❑ parent is a pointer to the parent namespace, and level denotes the depth in the namespace hier-
archy. The initial namespace has level 0, any children of this namespace are in level 1, children
of children are in level 2, and so on. Counting the levels is important because IDs in higher levels
must be visible in lower levels. From a given level setting, the kernel can infer how many IDs
must be associated with a task.

Recall from Figure 2-3 that namespaces are hierarchically related. This clarifies the above definitions.

PID management is centered around two data structures: struct pid is the kernel-internal representation
of a PID, and struct upid represents the information that is visible in a specific namespace. The definition
of both structures is as follows:

<pid.h>
struct upid {

int nr;
struct pid_namespace *ns;
struct hlist_node pid_chain;

};

struct pid
{

atomic_t count;
/* lists of tasks that use this pid */
struct hlist_head tasks[PIDTYPE_MAX];
int level;
struct upid numbers[1];

};

Since these and some other data structures are comprehensively interconnected, Figure 2-5 provides an
overview about the situation before I discuss the individual components.

As for struct upid, nr represents the numerical value of an ID, and ns is a pointer to the namespace to
which the value belongs. All upid instances are kept on a hash table to which we will come in a moment,
and pid_chain allows for implementing hash overflow lists with standard methods of the kernel.

The definition of struct pid is headed by a reference counter count. tasks is an array with a hash
list head for every ID type. This is necessary because an ID can be used for several processes. All
task_struct instances that share a given ID are linked on this list. PIDTYPE_MAX denotes the number of
ID types:

56

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 57

Chapter 2: Process Management and Scheduling

<pid.h>
enum pid_type
{

PIDTYPE_PID,
PIDTYPE_PGID,
PIDTYPE_SID,
PIDTYPE_MAX

};

level 0

level 1

level 2

1 PID_TYPE_PID

2 PID_TYPE_PGID

3

3

2

1
PID_TYPE_SID tasks

struct task_struct

task_structtask_struct

struct pid

pids [1]

pid

pid

pid

mode

mode

mode

pid
mode

pid
mode

pids [2]

pids [3]

parent

PID namespace

pid_ hask struct upid

numbers[level]
struct upid

Hashed by pid and namespace

le
ve

l n
 +

1
en

tri
es

struct pid_namespace

Figure 2-5: Overview of data structures used to implement a namespace-aware representation of IDs.

Notice that thread group IDs are not contained in this collection! This is because the thread group ID is
simply given by the PID of the thread group leader, so a separate entry is not necessary.

A process can be visible in multiple namespaces, and the local ID in each namespace will be different.
level denotes in how many namespaces the process is visible (in other words, this is the depth of the
containing namespace in the namespace hierarchy), and numbers contains an instance of upid for each
level. Note that the array consists formally of one element, and this is true if a process is contained only
in the global namespace. Since the element is at the end of the structure, additional entries can be added
to the array by simply allocating more space.

57

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 58

Chapter 2: Process Management and Scheduling

Since all task structures that share an identifier are kept on a list headed by tasks, a list element is
required in struct task_struct:

<sched.h>
struct task_struct {
...

/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];

...
};

The auxiliary data structure pid_link permits linking of task structures on the lists headed from
struct pid:

<pid.h>
struct pid_link
{

struct hlist_node node;
struct pid *pid;

};

pid points to a pid instance to which the task belongs, and node is used as list element.

A hash table is used to find the pid instance that belongs to a numeric PID value in a given
namespace:

kernel/pid.c
static struct hlist_head *pid_hash;

hlist_head is a kernel standard data element used to create doubly linked hash lists (Appendix C
describes the structure of such lists and introduces several auxiliary functions for processing them).

pid_hash is used as an array of hlist_heads. The number of elements is determined by the RAM con-
figuration of the machine and lies between 24 = 16 and 212 = 4, 096. pidhash_init computes the apt size
and allocates the required storage.

Suppose that a new instance of struct pid has been allocated and set up for a given ID type type. It is
attached to a task structure as follows:

kernel/pid.c
int fastcall attach_pid(struct task_struct *task, enum pid_type type,

struct pid *pid)
{

struct pid_link *link;

link = &task->pids[type];
link->pid = pid;
hlist_add_head_rcu(&link->node, &pid->tasks[type]);

return 0;
}

A connection is made in both directions: The task structure can access the pid instance via
task_struct->pids[type]->pid. Starting from the pid instance, the task can be found by iterating over

58

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 59

Chapter 2: Process Management and Scheduling

the tasks[type] list. hlist_add_head_rcu is a standard function to traverse a list that additionally
ensures as per the RCU mechanism (see Chapter 5) that the iteration is safe against race conditions that
could arise when other kernel components manipulate the list concurrently.

Functions
The kernel provides a number of auxiliary functions to manipulate and scan the data structures described
above. Essentially the kernel must be able to fulfill two different tasks:

1. Given a local numerical ID and the corresponding namespace, find the task structure that is
described by this tuple.

2. Given a task structure, an ID type, and a namespace, obtain the local numerical ID.

Let us first concentrate on the case in which a task_struct instance must be converted into a numerical
ID. This is a two-step process:

1. Obtain the pid instance associated with the task structure. The auxiliary functions task_pid,
task_tgid, task_pgrp, and task_session are provided for the different types of IDs. This is
simple for PIDs:

<sched.h>
static inline struct pid *task_pid(struct task_struct *task)
{

return task->pids[PIDTYPE_PID].pid;
}

Obtaining a TGID works similarly because it is nothing other than the PID of the tread group
leader. The element to grab is task->group_leader->pids[PIDTYPE_PID].pid.

Finding out a process group ID requires using PIDTYPE_PGID as array index. However, it
must again be taken from the pid instance of the process group leader:

<sched.h>
static inline struct pid *task_pgrp(struct task_struct *task)
{

return task->group_leader->pids[PIDTYPE_PGID].pid;
}

2. Once the pid instance is available, the numerical ID can be read off from the uid information
available in the numbers array in struct pid:

kernel/pid.c
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{

struct upid *upid;
pid_t nr = 0;

if (pid && ns->level <= pid->level) {
upid = &pid->numbers[ns->level];
if (upid->ns == ns)

nr = upid->nr;
}
return nr;

}

59

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 60

Chapter 2: Process Management and Scheduling

Because a parent namespace sees PIDs in child namespaces, but not vice versa, the kernel
has to ensure that the current namespace level is less than or equal to the level in which the
local PID was generated.

It is also important to note that the kernel need only worry about generating global PIDs:
All other ID types in the global namespace will be mapped to PIDs, so there is no need to
generate, for instance, global TGIDs or SIDs.

Instead of using pid_nr_ns in the second step, the kernel could also employ one of these auxiliary
functions:

❑ pid_vnr returns the local PID seen from the namespace to which the ID belongs.

❑ pid_nr obtains the global PID as seen from the init process.

Both rely on pid_nr_ns and automatically select the proper level: 0 for the global PID, and pid->level
for the local one.

The kernel provides several helper functions that combine the described steps:

kernel/pid.c
pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)

Their meaning is obvious from the function names, so we need not add anything further.

Now let us turn our attention to how the kernel can convert a numerical PID together with the namespace
into a pid instance. Again two steps are required:

1. To determine the pid instance (the in-kernel representation of a PID) given the local numer-
ical PID of a process and the associated namespace (the userspace representation of a PID),
the kernel must employ a standard hashing scheme: First, the array index in pid_hash is
computed from the PID and namespace pointers,5 and then the hash list is traversed until
the desired element has been found. This is handled by the auxiliary function find_pid_ns:

kernel/pid.c
struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)

Instances of struct upid are kept on the hash, but since these are directly contained in
struct pid, the kernel can infer the desired information using the container_of mechanism
(see Appendix C).

2. pid_task extracts the first task_struct instance that is queued on the list
pid->tasks[type].

These two steps are performed by the auxiliary function find_task_by_pid)_type_ns:

kernel/pid.c
struct task_struct *find_task_by_pid_type_ns(int type, int nr,

struct pid_namespace *ns)

5For this purpose, the kernel uses multiplicative hashing with a prime number that is in a golden ratio to the largest number that
can be represented in a machine word. For details, refer to [Knu97].

60

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 61

Chapter 2: Process Management and Scheduling

{
return pid_task(find_pid_ns(nr, ns), type);

}

Some simpler auxiliary functions build on the most general find_task_by_pid_type_ns:

❑ find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) finds a task_struct instance
given a numerical PID and the namespace of the task.

❑ find_task_by_vpid(pid_t vnr) finds a task by its local numerical PID.

❑ find_task_by_pid(pid_t nr) finds a task by its global numerical PID.

find_task_by_pid is required at many points in the kernel sources because a large number of process-
specific operations (e.g., sending a signal using kill) identify their target process by means of its PID.

Generating Unique PIDs
In addition to managing PIDs, the kernel is also responsible for providing a mechanism to generate
unique PIDs that have not yet been assigned. In this case, the differences between the various PID
types can be ignored because unique numbers need only be generated for PIDs in the classical Unix
sense. All other identifiers can be derived from the PID, as we will see when discussing fork and clone
below. In the sections that follow, the term PID once again refers to the classical Unix process identifier
(PIDTYPE_PID).

To keep track of which PIDs have been allocated and which are still free, the kernel uses a large bitmap
in which each PID is identified by a bit. The value of the PID is obtained from the position of the bit in
the bitmap.

Allocating a free PID is then restricted essentially to looking for the first bit in the bitmap whose value is
0; this bit is then set to 1. Conversely, freeing a PID can be implemented by ‘‘toggling‘‘ the corresponding
bit from 1 to 0. These operations are implemented using

kernel/pid.c
static int alloc_pidmap(struct pid_namespace *pid_ns)

to reserve a PID, and

kernel/pid.c
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)

to free a PID. How they are implemented does not concern us here, but naturally, they must work on a
per-namespace basis.

When a new process is created, it may be visible in multiple namespaces. For each of them a local PID
must be generated. This is handled in alloc_pid:

kernel/pid.c
struct pid *alloc_pid(struct pid_namespace *ns)
{

struct pid *pid;
enum pid_type type;
int i, nr;

61

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 62

Chapter 2: Process Management and Scheduling

struct pid_namespace *tmp;
struct upid *upid;

...
tmp = ns;
for (i = ns->level; i >= 0; i--) {

nr = alloc_pidmap(tmp);
...

pid->numbers[i].nr = nr;
pid->numbers[i].ns = tmp;
tmp = tmp->parent;

}
pid->level = ns->level;

...

Starting at the level of the namespace in which the process is created, the kernel goes down to the initial,
global namespace and creates a local PID for each. All upids that are contained in struct pid are filled
with the newly generated PIDs. Each upid instance must be placed on the PID hash:

kernel/pid.c
for (i = ns->level; i >= 0; i--) {

upid = &pid->numbers[i];
hlist_add_head_rcu(&upid->pid_chain,

&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
}

...
return pid;

}

2.3.4 Task Relationships
In addition to the relationships resulting from ID links, the kernel is also responsible for managing the
‘‘family relationships‘‘ established on the basis of the Unix model of process creation. The following
terminology is used in this context:

❑ If process A forks to generate process B, A is known as the parent process and B as the child
process.6

If process B forks again to create a further process C, the relationship between A and C is
sometimes referred to as a grandparent and grandchild relationship.

❑ If process A forks several times therefore generating several child processes B1, B2, . . . , Bn, the
relationship between the Bi processes is known as a siblings relationship.

Figure 2-6 illustrates the possible family relationships graphically.

The task_struct task data structure provides two list heads to help implement these relationships:

<sched.h>
struct task_struct {
...

struct list_head children; /* list of my children */

6Unlike natural families, a process has only one parent.

62

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 63

Chapter 2: Process Management and Scheduling

struct list_head sibling; /* linkage in my parent’s children list */
...
}

❑ children is the list head for the list of all child elements of the process.

❑ siblings is used to link siblings with each other.

Parent prcess

Child prcess

Children

sibling sibling sibling

Figure 2-6: Family relationships between processes.

New children are placed at the start of the siblings list, meaning that the chronological sequence of
forks can be reconstructed.7

2.4 Process Management System Calls
In this section, I discuss the implementation of the fork and exec system call families. Normally, these
calls are not issued directly by applications but are invoked via an intermediate layer — the C standard
library — that is responsible for communication with the kernel.

The methods used to switch from user mode to kernel mode differ from architecture to architecture.
In Appendix A, I describe at length the mechanisms used to switch between these two modes and also
explain how parameters are exchanged between userspace and kernel space. For the time being, it is
sufficient to regard the kernel as a ‘‘program library‘‘ used by the C standard library as mentioned briefly
in Chapter 1.

2.4.1 Process Duplication
The traditional Unix system call to duplicate a process is fork. However, it is not the only call imple-
mented by Linux for this purpose — in fact, there are three:

7Kernel versions before 2.6.21 had three helper functions: younger_sibling, older_sibling, and eldest_child, which
gave some aid in accessing the described lists and their elements. They were used to produce debugging output, which had, how-
ever, not proved very useful, so it was removed. Patch author Ingo Molnar noticed that the corresponding code was among the
oldest elements of the kernel and noted this accordingly. This led another well-known developer to sign off the patch as Linus
’snif’ Torvalds . . .

63

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 64

Chapter 2: Process Management and Scheduling

1. fork is the heavy-weight call because it creates a full copy of the parent process that then
executes as a child process. To reduce the effort associated with this call, Linux uses the copy-
on-write technique, discussed below.

2. vfork is similar to fork but does not create a copy of the data of the parent process. Instead,
it shares the data between the parent and child process. This saves a great deal of CPU time
(and if one of the processes were to manipulate the shared data, the other would notice auto-
matically).

vfork is designed for the situation in which a child process just generated immediately exe-
cutes an execve system call to load a new program. The kernel also guarantees that the
parent process is blocked until the child process exits or starts a new program.

Quoting the manual page vfork(2), it is ‘‘rather unfortunate that Linux revived this specter
from the past.’’ Since fork uses copy-on-write, the speed argument for vfork does not really
count anymore, and its use should therefore be avoided.

3. clone generates threads and enables a decision to be made as to exactly which elements are
to be shared between the parent and the child process and which are to be copied.

Copy on Write
The kernel uses the copy-on-write technique (COW) to prevent all data of the parent process from being
copied when fork is executed. This technique exploits the fact that processes normally use only a fraction
of their pages in memory.8 When fork is called, the kernel would usually create an identical copy of each
memory page of the parent process for the child process. This has two very negative effects:

1. A large amount of RAM, a scarce resource, is used.

2. The copy operation takes a long time.

The negative impact is even greater if the application loads a new program using exec immediately after
process duplication. This means, in effect, that the preceding copy operation was totally superfluous as
the process address space is reinitialized and the data copied are no longer needed.

The kernel can get around this problem by using a trick. Not the entire address space of the process but
only its page tables are copied. These establish the link between virtual address space and physical pages
as described briefly in Chapter 1 and at length in Chapters 3 and 4. The address spaces of parent and
child processes then point to the same physical pages.

Of course, parent and child processes must not be allowed to modify each other’s pages,9 which is why
the page tables of both processes indicate that only read access is allowed to the pages — even though
they could be written to in normal circumstances.

Providing that both processes have only read access to their pages in memory, data sharing between the
two is not a problem because no changes can be made.

As soon as one of the processes attempts to write to the copied pages, the processor reports an access error
to the kernel (errors of this kind are called page faults). The kernel then references additional memory
management data structures (see Chapter 4) to check whether the page can be accessed in Read and
Write mode or in Read mode only — if the latter is true, a segmentation fault must be reported to the

8The pages most frequently accessed by the process are called the working set.
9With the exception of pages explicitly shared by both processes.

64

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 65

Chapter 2: Process Management and Scheduling

process. As you see in Chapter 4, the actual implementation of the page fault handler is more complicated
because other aspects, such as swapped-out pages, must also be taken into account.

The condition in which a page table entry indicates that a page is ‘‘Read Only’’ although normally it
would be writable allows the kernel to recognize that the page is, in fact, a COW page. It therefore creates
a copy of the page that is assigned exclusively to the process — and may therefore also be used for write
operations. How the copy operation is implemented is not discussed until Chapter 4 because extensive
background knowledge of memory management is required.

The COW mechanism enables the kernel to delay copying of memory pages for as long as possible
and — more importantly — to make copying unnecessary in many cases. This saves a great deal of time.

Executing System Calls
The entry points for the fork, vfork, and clone system calls are the sys_fork, sys_vfork, and sys_clone
functions. Their definitions are architecture-dependent because the way in which parameters are passed
between userspace and kernel space differs on the various architectures (see Chapter 13 for further infor-
mation). The task of the above functions is to extract the information supplied by userspace from the
registers of the processors and then to invoke the architecture-independent do_fork function responsible
for process duplication. The prototype of the function is as follows.

kernel/fork.c
long do_fork(unsigned long clone_flags,

unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)

The function requires the following arguments:

❑ A flag set (clone_flags) to specify duplication properties. The low byte specifies the signal num-
ber to be sent to the parent process when the child process terminates. The higher bytes hold
various constants discussed below.

❑ The start address of the user mode stack (start_stack) to be used.

❑ A pointer to the register set holding the call parameters in raw form (regs). The data type used
is the architecture-specific struct pt_regs structure, which holds all registers in the order in
which they are saved on the kernel stack when a system call is executed (more information is
provided in Appendix A).

❑ The size of the user mode stack (stack_size). This parameter is usually unnecessary and
set to 0.

❑ Two pointers to addresses in userspace (parent_tidptr and child_tidptr) that hold the TIDs
of the parent and child processes. They are needed for the thread implementation of the NPTL
(Native Posix Threads Lilbrary) library. I discuss their meaning below.

The different fork variants are distinguished primarily by means of the flag set. On most architectures,10

the classical fork call is implemented in the same way as on IA-32 processors.

10Exception: Sparc(64) systems that access do_fork via sparc_do_fork. IA-64 kernels only provide a single system call,
sys_clone2, which is used to implement fork, vfork, and clone in userspace. Both sys_clone2 and sparc_do_fork
eventually rely on do_fork.

65

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 66

Chapter 2: Process Management and Scheduling

arch/x86/kernel/process_32.c
asmlinkage int sys_fork(struct pt_regs regs)
{

return do_fork(SIGCHLD, regs.esp, ®s, 0, NULL, NULL);
}

The only flag used is SIGCHLD. This means that the SIGCHLD signal informs the parent process once the
child process has terminated. Initially, the same stack (whose start address is held in the esp register on
IA-32 systems) is used for the parent and child processes. However, the COW mechanism creates a copy
of the stack for each process if it is manipulated and therefore written to.

If do_fork was successful, the PID of the newly created task is returned as the result of the system call.
Otherwise the (negative) error code is returned.

The implementation of sys_vfork differs only slightly from that of sys_fork in that additional flags are
used (CLONE_VFORK and CLONE_VM whose meaning is discussed below).

sys_clone is also implemented in a similar way to the above calls with the difference that do_fork is
invoked as follows:

arch/x86/kernel/process_32.c
asmlinkage int sys_clone(struct pt_regs regs)
{

unsigned long clone_flags;
unsigned long newsp;
int __user *parent_tidptr, *child_tidptr;

clone_flags = regs.ebx;
newsp = regs.ecx;
parent_tidptr = (int __user *)regs.edx;
child_tidptr = (int __user *)regs.edi;
if (!newsp)

newsp = regs.esp;
return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr);

}

The clone flags are no longer permanently set but can be passed to the system call as parameters in
various registers. Thus, the first part of the function deals with extracting these parameters. Also, the
stack of the parent process is not copied; instead, a new address (newsp) can be specified for it. (This is
required to generate threads that share the address space with the parent process but use their own stack
in this address space.) Two pointers (parent_tidptr and child_tidptr) in userspace are also specified
for purposes of communication with thread libraries. Their meaning is discussed in Section 2.4.1.

Implementation of do_fork
All three fork mechanisms end up in do_fork in kernel/fork.c (an architecture-independent function),
whose code flow diagram is shown in Figure 2-7.

do_fork begins with an invocation of copy_process, which performs the actual work of generating a
new process and reusing the parent process data specified by the flags. Once the child process has been
generated, the kernel must carry out the following concluding operations:

66

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 67

Chapter 2: Process Management and Scheduling

Determine PID

do_fork

copy_process

Initialize vfork completion handler (only with CLONE_VFORK) and ptrace flags

wake_up_new_task

CLONE_VFORK set? wait_for_completion

Figure 2-7: Code flow diagram for do_fork.

❑ Since fork returns the PID of the new task, it must be obtained. This is complicated because the
fork operation could have opened a new PID namespace if the flag CLONE_NEWPID was set. If
this is the case, then task_pid_nr_ns is required to obtain the PID that was selected for the new
process in the parent namespace, that is, the namespace of the process that issued fork.

If the PID namespace remains unchanged, calling task_pid_vnr is enough to obtain the local
PID because old and new processes will live in the same namespace.

kernel/fork.c
nr = (clone_flags & CLONE_NEWPID) ?

task_pid_nr_ns(p, current->nsproxy->pid_ns) :
task_pid_vnr(p);

❑ If the new process is to be monitored with Ptrace (see Chapter 13), the SIGSTOP signal is sent to
the process immediately after generation to allow an attached debugger to examine its data.

❑ The child process is woken using wake_up_new_task; in other words, the task structure is added
to the scheduler queue. The scheduler also gets a chance to specifically handle newly started
tasks, which, for instance, allows for implementing a policy that gives new tasks a good chance
to run soon, but also prevents processes that fork over and over again to consume all CPU time.

If a child process begins to run before the parent process, this can greatly reduce copying effort,
especially if the child process issues an exec call after fork. However, keep in mind that enqueu-
ing a process in the scheduler data structures does not mean that the child process begins to
execute immediately but rather that it is available for selection by the scheduler.

❑ If the vfork mechanism was used (the kernel recognizes this by the fact that the CLONE_VFORK
flag is set), the completions mechanism of the child process must be enabled. The vfork_done
element of the child process task structure is used for this purpose. With the help of the
wait_for_completion function, the parent process goes to sleep on this variable until the child
process exits. When a process terminates (or a new application is started with execve), the
kernel automatically invokes complete(vfork_done). This wakes all processes sleeping on it. In
Chapter 14, I discuss the implementation of completions in greater detail.

By adopting this approach, the kernel ensures that the parent process of a child process gener-
ated using vfork remains inactive until either the child process exits or a new process is exe-
cuted. The temporary inactivity of the parent process also ensures that both processes do not
interfere with each other or manipulate each other’s address space.

67

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 68

Chapter 2: Process Management and Scheduling

Copying Processes
In do_fork the bulk of the work is done by the copy_process function, whose code flow diagram is
shown in Figure 2-8. Notice that the function has to handle the main work for the three system calls fork,
vfork, and clone.

Check resource limits

Check flags

copy_process

dup_task_struct

sched_fork

copy_semundo

copy_files

copy_fs

copy_sighand

copy_signal

copy_mm

copy_namespaces

copy_thread

Initialize task structure

Copy/share process components

Set IDs, task relationships, etc.

Figure 2-8: Code flow diagram for copy_process.

Because the kernel has to deal with a large number of special and very specific situations, let’s restrict our
description to a slightly simplified version of the function so as not to lose sight of the most important
aspects in a myriad of details.

Quite a number of flags control the behavior of process duplication. They are all well documented in
the clone(2) man page, and instead of repeating them here, I advise you to just take a look into it — or,
for that matter, any good text on Linux systems programming. More interesting is that there are some
flag combinations that do not make sense, and the kernel has to catch these. For instance, it does not
make sense to request creation of a new namespace (CLONE_NEWNS), on the one hand, but also express the

68

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 69

Chapter 2: Process Management and Scheduling

desire to share all filesystem information with the parent (CLONE_FS). It’s not complicated to catch this
combination and return an error code:

kernel/fork.c
static struct task_struct *copy_process(unsigned long clone_flags,

unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid)

{
int retval;
struct task_struct *p;
int cgroup_callbacks_done = 0;

if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);

...

This is also a good place to recall from the introduction that Linux sometimes has to return a pointer if
an operation succeeds, and an error code if something fails. Unfortunately, the C language only allows
a single direct return value per function, so any information about possible errors has to be encoded
into the pointer. While pointers can in general point to arbitrary locations in memory, each architecture
supported by Linux has a region in virtual address space that starts from virtual address 0 and goes at
least 4 KiB far where no senseful information can live. The kernel can thus reuse this pointer range to
encode error codes: If the return value of fork points to an address within the aforementioned range,
then the call has failed, and the reason can be determined by the numerical value of the pointer. ERR_PTR
is a helper macro to perform the encoding of the numerical constant -EINVAL (invalid operation) into a
pointer.

Some further flag checks are required:

❑ When a thread is created with CLONE_THREAD, signal sharing must be activated with
CLONE_SIGHAND. Individual threads in a thread group cannot be addressed by a signal.

❑ Shared signal handlers can only be provided if the virtual address space is shared between par-
ent and child (CLONE_VM). Transitive thinking reveals that threads, therefore, also have to share
the address space with the parent.

Once the kernel has established that the flag set does not contradict itself, dup_task_struct is used to
create an identical copy of the task structure of the parent process. The new task_struct instance for the
child can be allocated at any point in kernel memory that happens to be free (see Chapter 3, in which the
allocation mechanisms used for this purpose are described).

The task structures for parent and child differ only in one element: A new kernel mode stack is allocated
for the new process. A pointer to it is stored in task_struct->stack. Usually the stack is stored in a
union with thread_info, which holds all required processor-specific low-level information about the
thread.

<sched.h>
union thread_union {

struct thread_info thread_info;
unsigned long stack[THREAD_SIZE/sizeof(long)];

};

69

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 70

Chapter 2: Process Management and Scheduling

In principle, individual architectures are, however, free to store whatever they like in the stack pointer
if they signal this to the kernel by setting the pre-processor constant __HAVE_THREAD_FUNCTIONS. In this
case, they must provide their own implementations of task_thread_info and task_stack_page, which
allows for obtaining the thread information and the kernel mode stack for a given task_struct instance.
Additionally, they must implement the function setup_thread_stack that is called in dup_task_struct
to create a destination for stack. Currently, only IA-64 and m68k do not rely on the default methods of
the kernel.

On most architectures, one or two memory pages are used to hold an instance of thread_union. On
IA-32, two pages are the default setting, and thus the available kernel stack size is slightly less than
8 KiB because part is occupied by the thread_info instance. Note, though, that the configuration option
4KSTACKS decreases the stack size to 4 KiB and thus to one page. This is advantageous if a large number
of processes is running on the system because one page per process is saved. On the other hand, it can
lead to problems with external drivers that often tend to be ‘‘stack hogs,’’ for example, use too much
stack space. All central parts of the kernel that are part of the standard distribution have been designed
to operate smoothly also with a stack size of 4 KiB, but problems can arise (and unfortunately have in the
past) if binary-only drivers are required, which often have a tendency to clutter up the available stack
space.

thread_info holds process data that needs to be accessed by the architecture-specific assembly language
code. Although the structure is defined differently from processor to processor, its contents are similar to
the following on most systems.

<asm-arch/thread_info.h>
struct thread_info {

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
unsigned long flags; /* low level flags */
unsigned long status; /* thread-synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable, <0 => BUG */

mm_segment_t addr_limit; /* thread address space */
struct restart_block restart_block;

}

❑ task is a pointer to the task_struct instance of the process.

❑ exec_domain is used to implement execution domains with which different ABIs (Application
Binary Interfaces) can be implemented on a machine type (e.g., to run 32-bit applications on an
AMD64 system in 64-bit mode).

❑ flags can hold various process-specific flags, two of which are of particular interest to us:

❑ TIF_SIGPENDING is set if the process has pending signals.

❑ TIF_NEED_RESCHED indicates that the process should be or would like to be replaced with
another process by the scheduler.

Other possible constants — some hardware-specific — which are, however, hardly ever used,
are available in <asm-arch/thread_info.h>.

❑ cpu specifies the number of the CPU on which a process is just executing (important on multi-
processor systems — very easy to determine on single-processor systems).

70

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 71

Chapter 2: Process Management and Scheduling

❑ preempt_count is a counter needed to implement kernel preemption, discussed in Section 2.8.3.

❑ addr_limit specifies up to which address in virtual address space a process may use. As already
noted, there is a limit for normal processes, but kernel threads may access the entire virtual
address space, including the kernel-only portions. (This does not represent any kind of restric-
tion on how much RAM a process may allocate.) Recall that I have touched on the separation
between user and kernel address space in the Introduction, and will come back to the details in
Section 4.

❑ restart_block is needed to implement the signal mechanism (see Chapter 5).

Figure 2-9 shows the relationship between task_struct, thread_info and the kernel stack. When a
particular component of the kernel uses too much stack space, the kernel stack will crash into the thread
information, and this will most likely lead to severe failures. Besides, this can also lead to wrong informa-
tion when an emergency stack trace is printed, so the kernel provides the function kstack_end to decide
if a given address is within the valid portion of the stack or not.

Kernel stack

thread_info

task_struct

thread_info->task

task_struct->stack

I
N
I
T
_
T
H
R
E
A
D
_
S
I
Z
E

Figure 2-9: Relationship between task_struct, thread_info, and the
kernel stack of a process.

dup_task_struct copies the contents of task_struct and thread_info instances of the parent process,
but the stack pointer is set to the new thread_info instance. This means that the task structures of
parent and child processes are absolutely identical at this point except for the stack pointer. The child
will, however, be modified in the course of copy_process.

There are also two symbols named current and current_thread_info that are defined as macros or
functions by all architectures. Their meanings are as follows:

❑ current_thread_info delivers a pointer to the thread_info instance of the process currently
executing. The address can be determined from the kernel stack pointer because the instance is
always located at the top of the stack.11Because a separate kernel stack is used for each process,
the process to stack assignment is unique.

❑ current specifies the address of the task_struct instance of the current process. This function
appears very frequently in the sources. The address can be determined using get_thread_info:
current = current_thread_info()->task.

11The pointer to the kernel stack is usually held in a specially reserved register. Some architectures, especially IA-32 and AMD64,
use a different solution discussed in Section A.10.3.

71

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 72

Chapter 2: Process Management and Scheduling

Let us return to copy_process. After dup_task_struct has succeeded, the kernel checks if the maximam
number of processes allowed for a particular user are exceeded with the creation of the new task:

kernel/fork.c
if (atomic_read(&p->user->processes) >=

p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&

p->user != current->nsproxy->user_ns->root_user)
goto bad_fork_free;

}
...

The per-user resource counters for the user owning the current process are kept in an instance of
user_struct that is accessible via task_struct->user, and the number of processes currently held
by a particular user is stored in user_struct->processes. If this value exceeds the limit set by rlimit,
task creation is aborted — unless the current user is assigned special capabilities (CAP_SYS_ADMIN or
CAP_SYS_RESOURCE) or is the root user. Checking for the root user is interesting: Recall from above that
each PID namespace has its own root user. This must now be taken into account in the above check.

If resource limits do not prevent process creation, the interface function sched_fork is called to give
the scheduler a chance to set up things for the new task. Before the introduction of the CFQ scheduler
in kernel 2.6.23, this was more complicated because the remaining time slice of the parent had to be
distributed between parent and child. Since the new scheduler does not require time slices anymore,
things are a lot simpler now. Essentially, the routines initialize statistical fields and on multi-processor
systems probably re-balance the available processes between the CPUs if this is necessary. Besides, the
task state is set to TASK_RUNNING — which is not really true since the new process is, in fact, not yet
running. However, this prevents any other part of the kernel from trying to change the process state from
non-running to running and scheduling the new process before its setup has been completely finished.

A large number of copy_xyz routines are then invoked to copy or share the resources of specific kernel
subsystems. The task structure contains pointers to instances of data structures that describe a sharable or
cloneable resource. Because the task structure of the child starts out as an exact copy of the parent’s task
structure, both point to the same resource-specific instances initially. This is illustrated in Figure 2-10.

Suppose we have two resources: res_abc and res_def. Initially the corresponding pointers in the task
structure of the parent and child process point to the same instance of the resource-specific data structure
in memory.

If CLONE_ABC is set, then both processes will share res_abc. This is already the case, but it is additionally
necessary to increment the reference counter of the instance to prevent the associated memory space from
being freed too soon — memory may be relinquished to memory management only when it is no longer
being used by a process. If either parent or child modifies the shared resource, the change will be visible
in both processes.

If CLONE_ABC is not set, then a copy of res_abc is created for the child process, and the resource counter
of the new copy is initialized to 1. Consequently, if parent or child modifies the resource, then changes
will not propagate to the other process in this case.

As a general rule, the fewer the number of CLONE flags set, the less work there is to do. However, this
gives parent and child processes more opportunities to mutually manipulate their data structures — and
this must be taken into consideration when programming applications.

72

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 73

Chapter 2: Process Management and Scheduling

res_abc

res_def

count = m

count = m

task_struct(parent) task_struct(child)

!CLONE_ABCCLONE_ABC

count = 1

count = n count = n+1

Figure 2-10: When a new thread is created, resources of the parent can either be shared or copied.

Deciding if a resource can be cloned or must be copied is done through numerous helper routines — one
for each resource. It is not my intention here to discuss the (rather uninteresting) implementations of the
various copy_xyz functions, but I summarize their effects below. I will introduce the data structures asso-
ciated with every process component when I discuss the respective subsystem in detail in the following
chapters.

❑ copy_semundo uses the System V semaphores of the parent process if COPY_SYSVSEM is set (see
Chapter 5).

❑ copy_files uses the file descriptors of the parent process if CLONE_FILES is set. Otherwise, a new
files structure is generated (see Chapter 8) that contains the same information as the parent
process. This information can be modified independently of the original structure.

❑ copy_fs uses the filesystem context (task_struct->fs) of the parent process if CLONE_FS is set.
This is an fs_struct type structure that holds, for example, the root directory and the current
working directory of the process (see Chapter 8 for detailed information).

❑ copy_sighand uses the signal handlers of the parent process (task_struct->sighand) if
CLONE_SIGHAND or CLONE_THREAD is set. Chapter 5 discusses the struct sighand_struct
structure used in more detail.

❑ copy_signal uses the non-handler-specific part of signal handling (task_struct->signal, see
Chapter 5) together with the parent process if CLONE_THREAD is set.

❑ copy_mm causes the parent process and child process to share the same address space if COPY_MM
is set. In this case, both processes use the same instance of mm_struct (see Chapter 4) to which
task_struct->mm points.

If copy_mm is not set, it does not mean that the entire address space of the parent process is
copied. The kernel does, in fact, create a copy of the page tables but does not copy the actual
contents of the pages. This is done using the COW mechanism only if one of the two processes
writes to one of the pages.

❑ copy_namespaces has special call semantics. It is used to set up namespaces for the child
process. Recall that several CLONE_NEWxyz flags control which namespaces are shared with the

73

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 74

Chapter 2: Process Management and Scheduling

parent. However, the semantics are opposite to all other flags: If CLONE_NEWxyz is not specified,
then the specific namespace is shared with the parent. Otherwise, a new namespace is generated.
copy_namespace is a dispatcher that executes a copy routine for each possible namespace. The
individual copy routines, however, are not too interesting because they essentially copy data or
make already existing instances shared by means of reference counter management, so I will not
discuss their implementation in detail.

❑ copy_thread is — in contrast to all other copy operations discussed here — an architecture-
specific function that copies the thread-specific data of a process.

Thread-specific in this context does not refer to any of the CLONE flags or to the fact
that the operation is performed for threads only and not for full processes. It simply
means that all data that contribute to the architecture-specific execution context are
copied (the term thread is used with more than one meaning in the kernel).

What is important is to fill the elements of task_struct->thread. This is a structure of the
thread_struct type whose definition is architecture-dependent. It holds all registers (plus other
information) needed by the kernel to save and restore process contents during low-level switch-
ing between tasks.

Intimate knowledge of the various CPUs is needed to understand the layout of the individual
thread_struct structures. A full discussion of these structures is beyond the scope of this book.
However, Appendix A includes some information relating to the contents of the structures on
several systems.

Back in copy_process, the kernel must fill in various elements of the task structure that differ between
parent and child. These include the following:

❑ The various list elements contained in task_struct, for instance, sibling and children.

❑ The interval timer elements cpu_timers (see Chapter 15).

❑ The list of pending signals (pending) discussed in Chapter 5.

After allocating a new pid instance for the task with the mechanisms described before, they are stored in
the task structure. For threads, the thread group ID is the same as that of the forking process:

kernel/fork.c
p->pid = pid_nr(pid);
p->tgid = p->pid;
if (clone_flags & CLONE_THREAD)

p->tgid = current->tgid;
...

Recall that pid_nr computes the global numerical PID for a given pid instance.

For regular processes, the parent process is the forking process. This is different for threads: Since they
are seen as the second (or third, or fourth,...) line of execution within the generating process, their parent
is the parent’s parent. This is easier to express in code than in words:

kernel/fork.c
if (clone_flags & (CLONE_PARENT|CLONE_THREAD))

p->real_parent = current->real_parent;
else

74

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 75

Chapter 2: Process Management and Scheduling

p->real_parent = current;
p->parent = p->real_parent;

Regular processes that are not threads can trigger the same behavior by setting CLONE_PARENT. Another
correction is required for threads: The thread group leader of a regular process is the process itself. For a
thread, the group leader is the group leader of the current process:

kernel/fork.c
p->group_leader = p;

if (clone_flags & CLONE_THREAD) {
p->group_leader = current->group_leader;
list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);

...
}

The new process must then be linked with its parent process by means of the children list. This is
handled by the auxiliary macro add_parent. Besides, the new process must be included in the ID data
structure network as described in Section 2.3.3.

kernel/fork.c
add_parent(p);

if (thread_group_leader(p)) {
if (clone_flags & CLONE_NEWPID)

p->nsproxy->pid_ns->child_reaper = p;

set_task_pgrp(p, task_pgrp_nr(current));
set_task_session(p, task_session_nr(current));
attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
attach_pid(p, PIDTYPE_SID, task_session(current));

}

attach_pid(p, PIDTYPE_PID, pid);
...

return p;
}

thread_group_leader checks only whether pid and tgid of the new process are identical. If so, the
process is the leader of a thread group. In this case, some more work is necessary:

❑ Recall that processes in a process namespace that is not the global namespace have their own
init task. If a new PID namespace was opened by setting CLONE_NEWPID, this role must be
assumed by the task that called clone.

❑ The new process must be added to the current task group and session. This allows for bringing
some of the functions discussed above to good use.

Finally, the PID itself is added to the ID network. This concludes the creation of a new process!

Special Points When Generating Threads
Userspace thread libraries use the clone system call to generate new threads. This call supports flags
(other than those discussed above) that produce certain special effects in the copy_process (and in the

75

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 76

Chapter 2: Process Management and Scheduling

associated invoked functions). For the sake of simplicity, I omitted these flags above. However, it should
be remembered that the differences between a classical process and a thread in the Linux kernel are
relatively fluid and both terms are often used as synonyms (thread is also frequently used to mean the
architecture-dependent part of a process as mentioned above). In this section, I concentrate on the flags
used by user thread libraries (above all, NPTL) to implement multithreading capabilities.

❑ CLONE_PARENT_SETTID copies the PID of the generated thread to a point in userspace specified in
the clone call (parent_tidptr, the pointer is passed to clone)12:

kernel/fork.c
if (clone_flags & CLONE_PARENT_SETTID)

put_user(nr, parent_tidptr);

The copy operation is performed in do_fork before the task structure of the new thread is initial-
ized and before its data are created with the copy operations.

❑ CLONE_CHILD_SETTID first causes a further userspace pointer (child_tidptr) passed to clone to
be stored in the task structure of the new process.

kernel/fork.c
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;

The schedule_tail function invoked when the new process is executed for the first time copies
the current PID to this address.

kernel/schedule.c
asmlinkage void schedule_tail(struct task_struct *prev)
{
...

if (current->set_child_tid)
put_user(task_pid_vnr(current), current->set_child_tid);

...
}

❑ CLONE_CHILD_CLEARTID has the initial effect in copy_process that the userspace pointer
child_tidptr is stored in the task structure — but this time in a different element.

kernel/fork.c
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;

When the process terminates,13 0 is written to the address defined in clear_child_tid.14

kernel/fork.c
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{

if (tsk->clear_child_tid
&& atomic_read(&mm->mm_users) > 1) {

u32 __user * tidptr = tsk->clear_child_tid;
tsk->clear_child_tid = NULL;

put_user(0, tidptr);

12put_user is used to copy data between kernel address space and user address space as discussed in Chapter 4.
13Or, more accurately, when it automatically frees its memory management data structures using mm_release at process
termination.
14The condition mm->mm_users > 1 means that the memory management data structure must be used by at least one other process
in the system. The current process is therefore a thread in the classical sense — it takes its address space from another process and
has just one control flow.

76

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 77

Chapter 2: Process Management and Scheduling

sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
}

...
}

In addition, sys_futex, a fast userspace mutex, is used to wake processes waiting for this event,
namely, the end of the thread.

The above flags can be used from within userspace to check when threads are generated and destroyed
in the kernel. CLONE_CHILD_SETTID and CLONE_PARENT_SETTID are used to check when a thread is gen-
erated; CLONE_CHILD_CLEARTID is used to pass information on the death of a thread from the kernel to
userspace. These checks can genuinely be performed in parallel on multiprocessor systems.

2.4.2 Kernel Threads
Kernel threads are processes started directly by the kernel itself. They delegate a kernel function to a
separate process and execute it there in ‘‘parallel‘‘ to the other processes in the system (and, in fact, in
parallel to execution of the kernel itself).15 Kernel threads are often referred to as (kernel) daemons. They
are used to perform, for example, the following tasks:

❑ To periodically synchronize modified memory pages with the block device from which the pages
originate (e.g., files mapped using mmap).

❑ To write memory pages into the swap area if they are seldom used.

❑ To manage deferred actions.

❑ To implement transaction journals for filesystems.

Basically, there are two types of kernel thread:

❑ Type 1 — The thread is started and waits until requested by the kernel to perform a specific
action.

❑ Type 2 — Once started, the thread runs at periodic intervals, checks the utilization of a specific
resource, and takes action when utilization exceeds or falls below a set limit value. The kernel
uses this type of thread for continuous monitoring tasks.

The kernel_thread function is invoked to start a kernel thread. Its definition is architecture-specific, but
it always uses the same prototype.

<asm-arch/processor.h>
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)

The function passed with the fn pointer is executed in the generated thread, and the argument specified
in arg is automatically passed to the function.16 CLONE flags can be specified in flags.

The first task of kernel_thread is to construct a pt_regs instance in which the registers are supplied
with suitable values, as would be the case with a regular fork system call. Then the familiar do_fork
function is invoked.

p = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);

15On multiprocessor systems, the processes genuinely execute in parallel; on single-processor systems, the scheduler simulates par-
allel execution.
16Arguments allow the function to be used for different purposes by indicating what needs to be done.

77

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 78

Chapter 2: Process Management and Scheduling

Because kernel threads are generated by the kernel itself, two special points should be noted:

1. They execute in the supervisor mode of the CPU, not in the user mode (see Chapter 1).

2. They may access only the kernel part of virtual address space (all addresses above
TASK_SIZE) but not the virtual user area.

Recall from above that the two pointers to mm_structs are contained in the task structure:

<sched.h>
struct task_struct {
...

struct mm_struct *mm, *active_mm;
...
}

The total virtual address space of a system is separated into two parts on most machines: The lower
portion is accessible by userland programs, and the upper part is reserved for the kernel. When the kernel
is running on behalf of a userland program to serve a system call, for instance, the userspace portion of
the virtual address space is described by the mm_struct instance pointed to by mm (the exact content of this
structure is irrelevant for now, but is discussed in Chapter 4). Every time the kernel performs a context
switch, the userland portion of the virtual address space must be replaced to match the then-running
process.

This provides some room for optimization, which goes by the name lazy TLB handling: Since kernel
threads are not associated with any particular userland process, the kernel does not need to rearrange
the userland portion of the virtual address space and can just leave the old setting in place. Since any
userland process can have been running before a kernel thread, the contents of the userspace part are
essentially random, and the kernel thread must not modify it. To signalize that the userspace portion
must not be accessed, mm is set to a NULL pointer. However, since the kernel must know what is currently
contained in the userspace, a pointer to the mm_struct describing it is preserved in active_mm.

Why are processes without an mm pointer called lazy TLB processes? Suppose that the process that runs
after a kernel thread is the same process that has run before. In this case, the kernel does not need to
modify the userspace address tables, and the information in the translation lookaside buffers is still
valid. A switch (and a corresponding clearance of TLB data) is only required when a different userland
process from before executes after the kernel thread.

Notice that when the kernel is operating in process context, mm and active_mm have identical values.

A kernel thread can be implemented in one of two ways. The older variant — which is still in use in some
places in the kernel — is to pass a function directly to kernel_thread. The function is then responsible to
assist the kernel in the transformation into a daemon by invoking daemonize. This results in the following
actions:

1. The function frees all resources (e.g., memory context, file descriptors, etc.) of the user pro-
cess as whose child the kernel thread was started because otherwise these would be pinned
until the end of the thread — this is not desirable because daemons usually run until the sys-
tem is shut down. As each daemon operates only in the address area of the kernel, it does
not even need these resources.

78

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 79

Chapter 2: Process Management and Scheduling

2. daemonize blocks the receipt of signals.

3. init is used as the parent process of the daemon.

The more modern possibility to create a kernel thread is the auxiliary function kthread_create.

kernel/kthread.c
struct task_struct *kthread_create(int (*threadfn)(void *data),

void *data,
const char namefmt[],
...)

The function creates a new kernel thread with its name given by namefmt. Initially, the thread will be
stopped. To start it, wake_up_process needs to be used. After this, the thread function given in threadfn
will be called with data as argument.

As an alternative, the macro kthread_run (which uses the same arguments as kthread_create) will call
kthread_create to create the new thread, but will wake it up immediately. A kernel thread can also be
bound to a particular CPU by using kthread_create_cpu instead of kthread_create.

Kernel threads appear in the system process list but are enclosed in square brackets in the output of ps
to differentiate them from normal processes.

wolfgang@meitner> ps fax
PID TTY STAT TIME COMMAND
2 ? S< 0:00 [kthreadd]
3 ? S< 0:00 _ [migration/0]
4 ? S< 0:00 _ [ksoftirqd/0]
5 ? S< 0:00 _ [migration/1]
6 ? S< 0:00 _ [ksoftirqd/1]

...
52 ? S< 0:00 _ [kblockd/3]
55 ? S< 0:00 _ [kacpid]
56 ? S< 0:00 _ [kacpi_notify]

...

If a kernel thread is bound to a particular CPU, the CPU’s number is noted after the slash.

2.4.3 Starting New Programs
New programs are started by replacing an existing program with new code. Linux provides the execve
system call for this purpose.17

Implementation of execve
The entry point of the system call is the architecture-dependent sys_execve function. This function
quickly delegates its work to the system-independent do_execve routine.

kernel/exec.c
int do_execve(char * filename,

char __user *__user *argv,

17There are other exec variants with different names in the C standard library, but ultimately all are based on execve. As in the
above sections, exec is often used to refer to any of these variants.

79

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 80

Chapter 2: Process Management and Scheduling

char __user *__user *envp,
struct pt_regs * regs)

Not only the register set with the arguments and the name of the executable file (filename) but also
pointers to the arguments and the environment of the program are passed as in system programming.18

The notation is slightly clumsy because argv and envp are arrays of pointers, and both the pointer to
the array itself as well as all pointers in the array are located in the userspace portion of the virtual
address space. Recall from the Introduction that some precautions are required when userspace memory
is accessed from the kernel, and that the __user annotations allow automated tools to check if everything
is handled properly.

Figure 2-11 shows the code flow diagram for do_execve.

Copy environment and arguments

Open executable file

do_execve

bprm_init

mm_alloc

init_new_context

_ _bprm_mm_init

prepare_binprm

search_binary_handler

Figure 2-11: Code flow diagram for
do_execve.

First, the file to be executed is opened; in other words — as described in Chapter 8 — the kernel finds the
associated inode and generates a file descriptor that is used to address the file.

bprm_init then handles several administrative tasks: mm_alloc generates a new instance of mm_struct to
manage the process address space (see Chapter 4). init_new_context is an architecture-specific function
that initializes the instance, and __bprm_mm_init sets up an initial stack.

Various parameters of the new process (e.g., euid, egid, argument list, environment, filename, etc.) that
are subsequently passed to other functions are, for the sake of simplicity, combined into a structure of
type linux_binprm. prepare_binprm is used to supply a number of parent process values (above all, the
effective UID and GID); the remaining data — the argument list — are then copied manually into the
structure. Note that prepare_binprm also takes care of handling the SUID and SGID bits:

18argv includes all arguments passed to the program in the command line (for ls -l /usr/bin these are, e.g., -l and
/usr/bin). The environment encompasses all environment variables defined at program execution time. In most shells, a list of
these variables can be output using set.

80

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 81

Chapter 2: Process Management and Scheduling

fs/exec.c
int prepare_binprm(struct linux_binprm *bprm)
{
...

bprm->e_uid = current->euid;
bprm->e_gid = current->egid;

if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
/* Set-uid? */
if (mode & S_ISUID) {

bprm->e_uid = inode->i_uid;
}

/* Set-gid? */
/*
* If setgid is set but no group execute bit then this
* is a candidate for mandatory locking, not a setgid
* executable.
*/

if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
bprm->e_gid = inode->i_gid;

}
}

...
}

After making sure that MNT_NOSUID is not set for the mount from which the file originates, the kernel
checks if the SUID or SGID bit is set. The first case is simple to handle: If S_ISUID is set, then the effective
UID gets the same value as the inode (otherwise, the process’s effective UID is used). The SGID case is
similar, but the kernel must additionally make sure that the execute bit is also set for the group.

Linux supports various organization formats for executable files. The standard format is ELF (Executable
and Linkable Format), which I discuss at length in Appendix E. Other alternatives are the variants shown
in Table 2-2 (which lists the names of the corresponding linux_binfmt instances in the kernel).

Even though many binary formats can be used on different architectures (ELF was designed explicitly to
be as system-independent as possible), this does not mean that programs in a specific binary format are
able to run on multiple architectures. The assembler statements used still differ greatly from processor to
processor and the binary format only indicates how the different parts of a program — data, code, and
so on — are organized in the executable file and in memory.

search_binary_handler is used at the end of do_execve to find a suitable binary format for the particular
file. Searching is possible because each format can be recognized by reference to special characteristics
(usually a ‘‘magic number‘‘ at the beginning of the file). The binary format handler is responsible for
loading the data of the new program into the old address space. Appendix E describes the steps needed
to do this when the ELF format is used. Generally, a binary format handler performs the following
actions:

❑ It releases all resources used by the old process.

❑ It maps the application into virtual address space. The following segments must be taken into
account (the variables specified are elements of the task structure and are set to the correct values
by the binary format handler):

81

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 82

Chapter 2: Process Management and Scheduling

❑ The text segment contains the executable code of the program. start_code and end_code
specify the area in address space where the segment resides.

❑ The pre-initialized data (variables supplied with a specific value at compilation time) are
located between start_data and end_data and are mapped from the corresponding seg-
ment of the executable file.

❑ The heap used for dynamic memory allocation is placed in virtual address space; start_brk
and brk specify its boundaries.

❑ The position of the stack is defined by start_stack; the stack grows downward automati-
cally on nearly all machines. The only exception is currently PA-Risc. The inverse direction
of stack growth must be noted by the architecture by setting the configuration symbol
STACK_GROWSUP.

❑ The program arguments and the environment are mapped into the virtual address space
and are located between arg_start and arg_end and env_start and env_end, respec-
tively.

❑ The instruction pointer of the process and some other architecture-specific registers are set so
that the main function of the program is executed when the scheduler selects the process.

How the ELF format populates the virtual address space will be discussed in more detail in Section 4.2.1.

Table 2-2: Binary Formats Supported by Linux.

Name Meaning

flat_format The flat format is used on embedded CPUs without a memory manage-
ment unit (MMU). To save space, the data in the executable can also be
compressed (if zlib support is available in the kernel).

script_format This is a dummy format used to run scripts using the she-bang mechanism.
By looking at the first line of the file, the kernel knows which interpreter to
use and starts the appropriate application (e.g., Perl for #! /usr/bin/perl).

misc_format This is also a dummy format used to start applications requiring an external
interpreter. In contrast to the #! mechanism, the interpreter need not be
specified explicitly but is determined by reference to special file identifiers
(suffix, header, etc.). This format is used, for example, to execute Java byte
code or to run Windows programs with Wine.

elf_format This is a machine- and architecture-independent format for 32 and 64 bits.
It is the standard format under Linux.

elf_fdpic_format ELF format with special features for systems without an MMU.

irix_format ELF format with Irix-specific features.

som_format HP-UX-specific format used on PA-Risc machines.

aout_format a.out is the former standard format for Linux used before ELF was intro-
duced. It is rarely used today because it is too inflexible.

82

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 83

Chapter 2: Process Management and Scheduling

Interpreting Binary Formats
Each binary format is represented in the Linux kernel by an instance of the following (simplified) data
structure:

<binfmts.h>
struct linux_binfmt {

struct linux_binfmt * next;
struct module *module;
int (*load_binary)(struct linux_binprm *, struct pt_regs * regs);
int (*load_shlib)(struct file *);
int (*core_dump)(long signr, struct pt_regs * regs, struct file * file);
unsigned long min_coredump; /* minimal dump size */

};

Each binary format must provide three functions:

1. load_binary to load normal programs.

2. load_shlib to load a shared library, that is, a dynamic library.

3. core_dump to write a core dump if there is a program error. This dump can subsequently be
analyzed using a debugger (e.g., gdb) for troubleshooting purposes. min_coredump is a lower
bound on the core file size from which a coredump will be generated (usually, this is the size
of a single memory page).

Each binary format must first be registered in the kernel using register_binfmt. The purpose of this
function is to add a new binary format to a linked list whose list head is represented by the formats
global variable from fs/exec.c. The linux_binfmt instances are linked with each other by means of
their next element.

2.4.4 Exiting Processes
Processes must terminate with the exit system call. This gives the kernel the opportunity to free the
resources used by the processes to the system.19 The entry point for this call is the sys_exit function
that requires an error code as its parameter in order to exit the process. Its definition is architecture-
independent and is held in kernel/exit.c. Its implementation is not particularly interesting because it
immediately delegates its work to do_exit.

Suffice it to say that the implementation of this function consists essentially of decrementing reference
counters and returning memory areas to memory management once the reference counter has reverted
to 0 and the corresponding structure is no longer being used by any process in the system.

2.5 Implementation of the Scheduler
A unique description of each process is held in memory and is linked with other processes by means of
several structures. This is the situation facing the scheduler, whose task is to share CPU time between
the programs to create the illusion of concurrent execution. As discussed above, this task is split into two
different parts — one relating to the scheduling policy and the other to context switching.

19exit can be called explicitly by the programmer. However, the compiler automatically adds a corresponding call to the end of
the main function (or to the main function used by the particular language).

83

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 84

Chapter 2: Process Management and Scheduling

2.5.1 Overview
The kernel must provide a method of sharing CPU time as fairly as possible between the individual
processes while at the same time taking into account differing task priorities. There are many ways of
doing this, and all have their pros and cons, which we need not discuss here (see [Tan07] for an overview
of potential approaches). Our focus is on the solution adopted in the Linux kernel.

The schedule function is the starting point to an understanding of scheduling operations. It is defined in
kernel/sched.c and is one of the most frequently invoked functions in the kernel code. The implemen-
tation of the scheduler is obscured a little by several factors:

❑ On multiprocessor systems, several details (some very subtle) must be noted so that the sched-
uler doesn’t get under its own feet.

❑ Not only priority scheduling but also two other soft real-time policies required by the Posix stan-
dard are implemented.

❑ gotos are used to generate optimal assembly language code. These jump backward and forward
in the C code and run counter to all principles of structured programming. However, this feature
can be beneficial if it is used with great care, and the scheduler is one example where gotos make
sense.

In the following overview, I consider the completely fair scheduler and neglect real-time tasks for now.
I come back to them later. An outstanding feature of the Linux scheduler is that it does not require the
concept of time slices, at least not in the traditional way. Classical schedulers compute time slices for
each process in the system and allow them to run until their time slice is used up. When all time slices of
all processes have been used up, they need to be recalculated again. The current scheduler, in contrast,
considers only the wait time of a process — that is, how long it has been sitting around in the run-queue
and was ready to be executed. The task with the gravest need for CPU time is scheduled.

The general principle of the scheduler is to provide maximum fairness to each task in the system in terms
of the computational power it is given. Or, put differently, it tries to ensure that no task is treated unfairly.
Now this clearly sounds good, but what do fair and unfair with respect to CPU time mean? Consider an
ideal computer that can run an arbitrary number of tasks in parallel: If N processes are present on the
system, then each one gets 1

N of the total computational power, and all tasks really execute physically
parallel. Suppose that a task requires 10 minutes to complete its work. If 5 such tasks are simultaneously
present on a perfect CPU, each will get 20 percent of the computational power, which means that it will
be running for 50 instead of 10 minutes. However, all 5 tasks will finish their job after exactly this time
span, and none of them will have ever been inactive!

This is clearly not achievable on real hardware: If a system has only a single CPU, at most one process can
be run simultaneously. Multitasking is only achieved by switching back and forth between the tasks with
high frequency. For users, who think considerably more slowly than the switching frequency, this creates
the illusion of parallel executing, but in reality, it is not. While more CPUs in the system improve the
situation and allow perfect parallel execution of a small number of tasks, there will always be situations
in which fewer CPUs than processes that are to be run are available, and the problem starts anew.

If multitasking is simulated by running one process after another, then the process that is currently
running is favored over those waiting to be picked by the scheduler — the poor waiting processes are
being treated unfairly. The unfairness is directly proportional to the waiting time.

84

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 85

Chapter 2: Process Management and Scheduling

Every time the scheduler is called, it picks the task with the highest waiting time and gives the CPU to
it. If this happens often enough, no large unfairness will accumulate for tasks, and the unfairness will be
evenly distributed among all tasks in the system.

Figure 2-12 illustrates how the scheduler keeps track of which process has been waiting for how long.
Since runnable processes are queued, the structure is known as the run queue.

Real clock Virtual clock

task
picked
to run

Time ordered
Red-black tree

Run queue

decreasing
wait time

CPU

Figure 2-12: The scheduler keeps track of the
waiting time of the available processes by sorting
them in a red-black tree.

All runnable tasks are time-ordered in a red-black tree, essentially with respect to their waiting time. The
task that has been waiting for the CPU for the largest amount of time is the leftmost entry and will be
considered next by the scheduler. Tasks that have been waiting less long are sorted on the tree from left
to right.

If you are not familiar with red-black trees, suffice it to know here that this data structure allows for
efficient management of the entries it contains, and that the time required for lookup, insertion, and dele-
tion operations will only moderately rise with the number of processes present in the tree.20 Red-black
trees are available as a standard data structure of the kernel, and Appendix C provides more information
about them. Besides, a discussion of such trees can be found in every textbook on data structures.

Besides the red-black tree, a run queue is also equipped with a virtual clock.21 Time passes slower on
this clock than in real time, and the exact speed depends on the number of processes that are currently
waiting to be picked by the scheduler. Suppose that four processes are on the queue: Then the virtual
clock will run at one-quarter of the speed of a real clock. This is the basis to determine how much CPU
time a waiting process would have gotten if computational power could be shared in a completely fair
manner. Sitting on the run queue for 20 seconds in real time amounts to 5 seconds in virtual time. Four
tasks executing for 5 seconds each would keep the CPU occupied for 20 seconds in real time.

20To be precise: Time complexity is O(log n), where n is the number of elements in the tree. This is worse than for the old scheduler,
which was famous for being an O(1) scheduler, that is, its run time was independent of the number of processes it had to deal with.
However, the slow-down caused by the linear-logarithmic dependency of the new scheduler is negligible unless a huge number of
processes is simultaneously runnable. In practice, such a situation does not occur.
21Notice that the kernel really used the concept of a virtual clock for the scheduling mechanism in kernel 2.6.23, but currently com-
putes the virtual time a little differently. Since the method is easier to understand with virtual clocks, I will stick to this now and
discuss how the virtual clock is emulated when I discuss the scheduler implementation.

85

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 86

Chapter 2: Process Management and Scheduling

Suppose that the virtual time of the run queue is given by fair_clock, while the waiting time of a process
is stored in wait_runtime. To sort tasks on the red-black tree, the kernel uses the difference fair_clock -
wait_runtime. While fair_clock is a measure for the CPU time a task would have gotten if scheduling
were completely fair, wait_runtime is a direct measure for the unfairness caused by the imperfection of
real systems.

When a task is allowed to run, the interval during which it has been running is subtracted from
wait_runtime. This way, it will move rightward in the time-ordered tree at some point, and another
process will be the leftmost one — and is consequently selected to run. Notice, however, that the virtual
clock in fair_clock will increase when the task is running. This effectively means that the share of
CPU time that the task would have received in a perfectly fair system is deducted from the time spent
executing on the real CPU. This slows degradation of unfairness: Decrementing wait_runtime is
equivalent to lowering the amount of unfairness received by the task, but the kernel must not forget
that some portion of the time used to lower the unfairness would have belonged to the process in a
completely fair world anyway. Suppose again that four processes sit on the run queue, and that a process
has been waiting for 20 real seconds. Now it is allowed to run for 10 seconds: wait_runtime is afterward
10, but since the process would have gotten 10/4 = 2 seconds of this time span anyway, effectively only
8 time units account for the potentially new position on the run queue.

Unfortunately, this strategy is complicated by a number of real-world issues:

❑ Different priority levels for tasks (i.e., nice values) must be taken into account, and more impor-
tant processes must get a higher share of CPU time than less important ones.

❑ Tasks must not be switched too often because a context switch, that is, changing from one task to
another, has a certain overhead. When switching happens too often, too much time is spent with
exchanging tasks that is not available for effective work anymore.

On the other hand, the time that goes by between task switches must not be too long because
large unfairness values could accumulate in this case. Letting tasks run for too long can also lead
to larger latencies than desired for multimedia systems.

We will see how the scheduler tackles these problems in the following discussion.

A good way to understand scheduling decisions is to activate scheduler statistics at compile time. This
will generate the file /proc/sched_debug, which contains information on all aspects of the current state
of the scheduler.

Finally, note that the Documentation/ directory contains some files that relate to various aspects of the
scheduler. Keep in mind, however, that some of them still relate to the old O(1) scheduler and are there-
fore outdated!

2.5.2 Data Structures
The scheduler uses a series of data structures to sort and manage the processes in the system. How the
scheduler works is closely linked with the design of these structures. Several components interact with
each other in many ways, and Figure 2-13 provides a first overview of the connections.

Scheduling can be activated in two ways: either directly if a task goes to sleep or wants to yield the
CPU for other reasons, or by a periodic mechanism that is run with constant frequency and that checks
from time to time if switching tasks is necessary. I denote these two components generic scheduler or core

86

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 87

Chapter 2: Process Management and Scheduling

scheduler in the following. Essentially, the generic scheduler is a dispatcher that interacts with two other
components:

1. Scheduling classes are used to decide which task runs next. The kernel supports different
scheduling policies (completely fair scheduling, real-time scheduling, and scheduling of the
idle task when there is nothing to do), and scheduling classes allow for implementing these
policies in a modular way: Code from one class does not need to interact with code from
other classes.

When the scheduler is invoked, it queries the scheduler classes which task is supposed to
run next.

2. After a task has been selected to run, a low-level task switch must be performed. This requires
close interaction with the underlying CPU.

Main
scheduler

Periodic
scheduler CPU

Select task

switch
Context

Tasks

Scheduler
classes

Figure 2-13: Overview of the components of the
scheduling subsystem.

Every task belongs to exactly one of the scheduling classes, and each scheduling class is responsible to
manage their tasks. The generic scheduler itself is not involved in managing tasks at all; this is completely
delegated to the scheduler classes.

Elements in the Task Structure
There are several scheduling-relevant elements in the task structure of each process.

<sched.h>
struct task_struct {
...

int prio, static_prio, normal_prio;
unsigned int rt_priority;

struct list_head run_list;
const struct sched_class *sched_class;
struct sched_entity se;

unsigned int policy;
cpumask_t cpus_allowed;
unsigned int time_slice;

...
}

87

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 88

Chapter 2: Process Management and Scheduling

❑ Not all processes on a system are equally important: Less urgent tasks should receive less atten-
tion, while important work should be done as quickly as possible. To determine the importance
of a particular task, it is equipped with a relative priority.

However, the task structure employs three elements to denote the priority of a process: prio
and normal_prio indicate the dynamic priorities, static_prio the static priority of a process.
The static priority is the priority assigned to the process when it was started. It can be modified
with the nice and sched_setscheduler system calls, but remains otherwise constant during the
process’ run time.

normal_priority denotes a priority that is computed based on the static priority and the
scheduling policy of the process. Identical static priorities will therefore result in different
normal priorities depending on whether a process is a regular or a real-time process. When a
process forks, the child process will inherit the normal priority.

However, the priority considered by the scheduler is kept in prio. A third element is required
because situations can arise in which the kernel needs to temporarily boost the priority of a pro-
cess. Since these changes are not permanent, the static and normal priorities are unaffected by
this. How the three priorities depend on each other is slightly subtle, and I discuss this in detail
below.

❑ rt_priority denotes the priority of a real-time process. Note that this does not replace the pre-
viously discussed values! The lowest real-time priority has value 0, whereas the highest priority
is 99. Higher values correspond to higher priorities. The convention used here is different from
the convention used for nice values.

❑ sched_class denotes the scheduler class the process is in.

❑ The scheduler is not limited to schedule processes, but can also work with larger entities. This
allows for implementing group scheduling: This way, the available CPU time can first be dis-
tributed between general process groups (e.g., all processes can be grouped according to their
owner), and the assigned time is then again distributed within the group.

This generality requires that the scheduler does not directly operate on processes but works with
schedulable entities. An entity is represented by an instance of sched_entity.

In the simplest case, scheduling is performed on a per-process level, and this is the case we con-
centrate on initially. Since the scheduler is designed to work on schedulable entities, each process
must look to it like such an entity. se therefore embeds an instance of sched_entity on which
the scheduler operates in each task struct (notice that se is not a pointer because the entity is
embedded in the task!).

❑ policy holds the scheduling policy applied to the process. Linux supports five possible values:

❑ SCHED_NORMAL is used for normal processes on which our description focuses. They are
handled by the completely fair scheduler. SCHED_BATCH and SCHED_IDLE are also handled
by the completely fair scheduler but can be used for less important tasks. SCHED_BATCH
is for CPU-intensive batch processes that are not interactive. Tasks of this type are disfa-
vored in scheduling decisions: They will never preempt another process handled by the
CF scheduler and will therefore not disturb interactive tasks. The class is well suited for
situations in which the static priority of a task is not desired to be decreased with nice, but
when the task should nevertheless not influence the interactivity of a system.

SCHED_IDLE tasks will also be of low importance in the scheduling decisions, but this time
because their relative weight is always minimal (this will become clear when I discuss how
the kernel computes task weights that reflect their priority).

88

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 89

Chapter 2: Process Management and Scheduling

Note that SCHED_IDLE is, despite its name, not responsible to schedule the idle task. The
kernel provides a separate mechanism for this purpose.

❑ SCHED_RR and SCHED_FIFO are used to implement soft real-time processes. SCHED_RR imple-
ments a round robin method, while SCHED_FIFO uses a first in, first out mechanism. These
are not handled by the completely fair scheduler class, but by the real-time scheduler class,
which is discussed in Section 2.7 in greater length.

The auxiliary function rt_policy is used to decide if a given scheduling policy belongs to the
real-time class (SCHED_RR and SCHED_FIFO) or not. task_has_rt_policy determines this prop-
erty for a given task.

kernel/sched.c
static inline int rt_policy(int policy)
static inline int task_has_rt_policy(struct task_struct *p)

❑ cpus_allowed is a bit field used on multiprocessor systems to restrict the CPUs on which a pro-
cess may run.22

❑ run_list and time_slice are required for the round-robin real-time scheduler, but not for the
completely fair scheduler. run_list is a list head used to hold the process on a run list, while
time_slice specifies the remaining time quantum during which the process may use the CPU.

The TIF_NEED_RESCHED flag discussed above is just as important for the scheduler as the specific sched-
uler elements held in the task structure. If this flag is set for an active process, the scheduler knows that
the CPU is to be withdrawn from the process — either voluntarily or by force — and granted to a new
process.

Scheduler Classes
Scheduler classes provide the connection between the generic scheduler and individual scheduling
methods. They are represented by several function pointers collected in a special data structure. Each
operation that can be requested by the global scheduler is represented by one pointer. This allows for cre-
ation of the generic scheduler without any knowledge about the internal working of different scheduler
classes.

Without extensions required for multiprocessor systems (I will come back to these later), the structure
looks as follows:

<sched.h>
struct sched_class {

const struct sched_class *next;

void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
void (*yield_task) (struct rq *rq);

void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);

struct task_struct * (*pick_next_task) (struct rq *rq);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);

22The bitmap can be set using the sched_setaffinity system call.

89

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 90

Chapter 2: Process Management and Scheduling

void (*set_curr_task) (struct rq *rq);
void (*task_tick) (struct rq *rq, struct task_struct *p);
void (*task_new) (struct rq *rq, struct task_struct *p);

};

An instance of struct sched_class must be provided for each scheduling class. Scheduling classes are
related in a flat hierarchy: Real-time processes are most important, so they are handled before completely
fair processes, which are, in turn, given preference to the idle tasks that are active on a CPU when there
is nothing better to do. The next element connects the sched_class instances of the different scheduling
classes in the described order. Note that this hierarchy is already set up at compile time: There is no
mechanism to add new scheduler classes dynamically at run time.

The operations that can be provided by each scheduling class are as follows:

❑ enqueue_task adds a new process to the run queue. This happens when a process changes from
a sleeping into a runnable state.

❑ dequeue_task provides the inverse operation: It takes a process off a run queue. Naturally, this
happens when a process switches from a runnable into an un-runnable state, or when the kernel
decides to take it off the run queue for other reasons — for instance, because its priority needs to
be changed.

Although the term run queue is used, the individual scheduling classes need not represent their
processes on a simple queue. In fact, recall from above that the completely fair scheduler uses a
red-black tree for this purpose.

❑ When a process wants to relinquish control of the processor voluntarily, it can use the
sched_yield system call. This triggers yield_task to be called in the kernel.

❑ check_preempt_curr is used to preempt the current task with a newly woken task if this is
necessary. The function is called, for instance, when a new task is woken up with
wake_up_new_task.

❑ pick_next_task selects the next task that is supposed to run, while put_prev_task is called
before the currently executing task is replaced with another one. Note that these operations are
not equivalent to putting tasks on and off the run queue like enqueue_task and dequeue_task.
Instead, they are responsible to give the CPU to a task, respectively, take it away. Switching
between different tasks, however, still requires performing a low-level context switch.

❑ set_curr_task is called when the scheduling policy of a task is changed. There are also some
other places that call the function, but they are not relevant for our purposes.

❑ task_tick is called by the periodic scheduler each time it is activated.

❑ new_task allows for setting up a connection between the fork system call and the scheduler.
Each time a new task is created, the scheduler is notified about this with new_task.

The standard functions activate_task and deactivate_task are provided to enqueue and dequeue a
task by calling the aforementioned functions. Additionally, they keep the kernel statistics up to date.

kernel/sched.c
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)

When a process is registered on a run queue, the on_rq element of the embedded sched_entity instance
is set to 1, otherwise to 0.

90

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 91

Chapter 2: Process Management and Scheduling

Besides these, the kernel defines the convenience method check_preempt_curr to call the
check_preempt_curr method of the scheduling class that is associated with a given task:

kernel/sched.c
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)

Userland applications do not directly interact with scheduling classes. They only know of the constants
SCHED_xyz as defined above. It is the kernel’s job to provide an appropriate mapping between these con-
stants and the available scheduling classes. SCHED_NORMAL, SCHED_BATCH, and SCHED_IDLE are mapped
to fair_sched_class, while SCHED_RR and SCHED_FIFO are associated with rt_sched_class. Both
fair_sched_class and rt_sched_class are instances of struct sched_class that represent, respec-
tively, the completely fair and the realtime scheduler. The contents of these instances will be shown
when I discuss the respective scheduler classes in detail.

Run Queues
The central data structure of the core scheduler that is used to manage active processes is known as the
run queue. Each CPU has its own run queue, and each active process appears on just one run queue. It is
not possible to run a process on several CPUs at the same time.23

The run queue is the starting point for many actions of the global scheduler. Note, however, that pro-
cesses are not directly managed by the general elements of the run queue! This is the responsibility of
the individual scheduler classes, and a class-specific sub-run queue is therefore embedded in each run
queue.24

Run queues are implemented using the following data structure. To simplify matters, I have omitted
several statistical elements that do not directly influence the work of the run queue, and also the elements
required on multiprocessor systems.

kernel/sched.c
struct rq {

unsigned long nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];

...
struct load_weight load;

struct cfs_rq cfs;
struct rt_rq rt;

struct task_struct *curr, *idle;

u64 clock;
...
};

❑ nr_running specifies the number of runnable processes on the queue — regardless of their pri-
ority or scheduling class.

23However, threads originating from the same process can execute on different processors as task management makes no important
distinction between processes and threads.
24For readers familiar with earlier versions of the kernel, it might be interesting to know the scheduler class run queues replace the
lists of active and expired tasks that were utilized by the previous O(1) scheduler.

91

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 92

Chapter 2: Process Management and Scheduling

❑ load provides a measure for the current load on the run queue. The queue load is essentially
proportional to the number of currently active processes on the queue, where each process is
additionally weighted by its priority. The speed of the virtual per-run queue clock is based on
this information. Since computing the load and other related quantities is an important com-
ponent of the scheduling algorithm, I devote Section 2.5.3 below to a detailed discussion of the
mechanisms involved.

❑ cpu_load allows for tracking the load behavior back into the past.

❑ cfs and rt are the embedded sub-run queues for the completely fair and real-time scheduler,
respectively.

❑ curr points to the task structure of the process currently running.

❑ idle points to the task structure of the idle process called when no other runnable process is
available — the idle thread.

❑ clock and prev_raw_clock are used to implement the per-run queue clock. The value of clock
is updated each time the periodic scheduler is called. Additionally, the kernel provides the stan-
dard function update_rq_clock that is called from many places in the scheduler that manipulate
the run queue, for instance, when a new task is woken up in wakeup_new_task.

All run queues of the system are held in the runqueues array, which contains an element for each CPU in
the system. On single-processor systems, there is, of course, just one element because only one run queue
is required.

kernel/sched.c
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

The kernel also defines a number of convenient macros, which are self-explanatory.

kernel/sched.c
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() (&__get_cpu_var(runqueues))
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)

Scheduling Entities
Since the scheduler can operate with more general entities than tasks, an appropriate data structure is
required to describe such an entity. It is defined as follows:

<sched.h>
struct sched_entity {

struct load_weight load; /* for load-balancing */
struct rb_node run_node;
unsigned int on_rq;

u64 exec_start;
u64 sum_exec_runtime;
u64 vruntime;
u64 prev_sum_exec_runtime;

...
}

92

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 93

Chapter 2: Process Management and Scheduling

The structure can contain many more statistical elements if support for scheduler statistics has been
compiled into the kernel, and also has some more elements if group scheduling is enabled. The part
that is interesting for us right now, however, boils down to what you see above. The meaning of the
individual elements is as follows:

❑ load specifies a weight for each entity that contributes to the total load of the queue. Comput-
ing the load weight is an important task of the scheduler because the speed of the virtual clock
required for CFS will ultimately depend on it, so I discuss the method in detail in Section 2.5.3.

❑ run_node is a standard tree element that allows the entity to be sorted on a red-black tree.

❑ on_rq denotes whether the entity is currently scheduled on a run queue or not.

❑ When a process is running, the consumed CPU time needs to be recorded for the completely
fair scheduler. sum_exec_runtime is used for this purpose. Tracking the run time is done
cumulatively, in update_curr. The function is called from numerous places in the scheduler, for
instance, when a new task is enqueued, or from the periodic tick. At each invocation, the
difference between the current time and exec_start is computed, and exec_start is updated to
the current time. The difference interval is added to sum_exec_runtime.

The amount of time that has elapsed on the virtual clock during process execution is accounted
in vruntime.

❑ When a process is taken off the CPU, its current sum_exec_runtime value is preserved in
prev_exec_runtime. The data will later be required in the context of process preemption.
Notice, however, that preserving the value of sum_exec_runtime in prev_exec_runtime
does not mean that sum_exec_runtime is reset! The old value is kept, and sum_exec_runtime
continues to grow monotonically.

Since each task_struct has an instance of sched_entity embedded, a task is a schedulable entity.
Notice, however, that the inverse statement is not true in general: A schedulable entity need not nec-
essarily be a task. However in the following we are concerned only with task scheduling, so for now we
can equate scheduling entities and tasks. Keep in mind that this is not true in general, though!

2.5.3 Dealing with Priorities
Priorities are deceptively simple from the userspace point of view: After all, they seem to be just a range
of numbers. The in-kernel reality is unfortunately somewhat different, and comparatively much effort is
required to work with priorities.

Kernel Representation of Priorities
The static priority of a process can be set in userspace by means of the nice command, which internally
invokes the nice system call.25 The nice value of a process is between −20 and +19 (inclusive). Lower
values mean higher priorities. Why this strange range was chosen is shrouded in history.

The kernel uses a simpler scale ranging from 0 to 139 inclusive to represent priorities internally. Again,
lower values mean higher priorities. The range from 0 to 99 is reserved for real-time processes. The nice
values [−20, +19] are mapped to the range from 100 to 139, as shown in Figure 2-14. Real-time processes
thus always have a higher priority than normal processes can ever have.

25setpriority is an alternative system call for setting process priority. It is able to modify not only the priority of an individual
thread but also the priorities of all threads in a thread group or of all processes of a specific user, selected by means of the UID.

93

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 94

Chapter 2: Process Management and Scheduling

0 99 100 139

Higher Priority

Realtime Normal
Nice +19−20

Figure 2-14: Kernel priority scale.

The following macros are used to convert between the different forms of representation (MAX_RT_PRIO
specifies the maximum priority of real-time processes, and MAX_PRIO is the maximal priority value for
regular processes):

<sched.h>
#define MAX_USER_RT_PRIO 100
#define MAX_RT_PRIO MAX_USER_RT_PRIO
#define MAX_PRIO (MAX_RT_PRIO + 40)
#define DEFAULT_PRIO (MAX_RT_PRIO + 20)

kernel/sched.c
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)

Computing Priorities
Recall that it is not sufficient to consider just the static priority of a process, but that three priorities
must be taken into account: dynamic priority (task_struct->prio), normal priority
(task_struct->normal_prio), and static priority (task_struct->static_prio). These priorities
are related to each other in interesting ways, and in the following I discuss how.

static_prio is the starting point of the calculations. Assume that it has been already set and that the
kernel now wants to compute the other priorities. This is done by a one-liner:

p->prio = effective_prio(p);

The auxiliary function effective_prio performs the following operations:

kernel/sched.c
static int effective_prio(struct task_struct *p)
{

p->normal_prio = normal_prio(p);
/*
* If we are RT tasks or we were boosted to RT priority,
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/

if (!rt_prio(p->prio))
return p->normal_prio;

return p->prio;
}

First of all, the normal priority is computed and stored in normal_priority. This side effect allows for
setting both prio and normal_prio with a single function invocation. Another helper function, rt_prio,

94

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 95

Chapter 2: Process Management and Scheduling

checks if the normal priority is in the real-time range, that is, smaller than RT_RT_PRIO. Notice that the
check is not related to any scheduling class, but only to the numerical value of the priority.

Assume for now that we are dealing with a regular process that is not subjected to real-time scheduling.
In this case, normal_prio just returns the static priority. The effect is then simple: All three priority values
have the same value, namely, that of the static priority!

Things are different for real-time tasks, however. Observe how the normal priority is computed:

kernel/sched.c
static inline int normal_prio(struct task_struct *p)
{

int prio;

if (task_has_rt_policy(p))
prio = MAX_RT_PRIO-1 - p->rt_priority;

else
prio = __normal_prio(p);

return prio;
}

The normal priority needs to be computed differently for regular tasks and real-time tasks. The compu-
tation performed in __normal_prio is only valid for a regular task. Real-time tasks, instead, compute the
normal priority based on their rt_priority setting. Because higher values of rt_priority denote higher
real-time priorities, this runs counter to the kernel-internal representation of priorities, where lower val-
ues mean higher priorities. The proper in-kernel priority value is therefore given by MAX_RT_PRIO-1 -
p->rt_priority. Notice that this time, the detection of a real-time task is, in contrast to effective_prio,
not based on any priority, but on the scheduling policy set in the task_struct.

What does __normal_priority do? The function is really simple; it just returns the static priority:

kernel/sched.c
static inline int __normal_prio(struct task_struct *p)
{

return p->static_prio;
}

Now one can certainly wonder why an extra function is used for this purpose. There is a historical reason:
Computing the normal priority in the old O(1) scheduler was a much trickier business. Interactive tasks
had to be detected and their priority boosted, while non-interactive tasks had to be penalized to obtain
good interactive behavior of the system. This required numerous heuristic calculations that either did
the job well — or failed at it. The new scheduler, thankfully, does not require such magical calculations
anymore.

However, one question remains: Why does the kernel base the real-time check in effective_prio on the
numerical value of the priority instead of using task_has_rt_policy? This is required for non-real-time
tasks that have been temporarily boosted to a real-time priority, which can happen when RT-Mutexes
are in use. 26

26Real-time mutexes allow for protection of dangerous parts of the kernel against concurrent access by multiple processors. However,
a phenomenon called priority inversion, in which a process with lower priority executes even though a process with higher priority
is waiting for the CPU, can occur. This can be solved by temporarily boosting the priority of processes. Refer to the discussion in
Section 5.2.8 for more details about this problem.

95

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 96

Chapter 2: Process Management and Scheduling

Finally, Table 2-3 summarizes the result of the calculations for different types of tasks.

Table 2-3: Computing Priorities for Various Task Types.

Task type / priority static_prio normal_prio prio

Non-real-time task static_prio static_prio static_prio

Priority-boosted non-real-time task static_prio static_prio prio as before

Real-time task static_prio MAX_RT_PRIO-1-rt_priority prio as before

p->prio is set with the method shown above when a newly created task is woken up with
wake_up_new_task, and when the static priority was changed using the nice system call.

Notice that when a process forks off a child, the current static priority will be inherited from the parent.
The dynamic priority of the child, that is, task_struct->prio, is set to the normal priority of the parent.
This ensures that priority boosts caused by RT-Mutexes are not transferred to the child process.

Computing Load Weights
The importance of a task is not only specified by its priority, but also by the load weight stored in
task_struct->se.load. set_load_weight is responsible to compute the load weight depending on
the process type and its static priority.

The load weight is contained in the data structure load_weight:

<sched.h>
struct load_weight {

unsigned long weight, inv_weight;
};

The kernel not only keeps the load itself, but also another quantity that can be used to perform divisions
by the weight.27

The general idea is that every process that changes the priority by one nice level down gets 10 percent
more CPU power, while changing one nice level up gives 10 percent CPU power less. To enforce this
policy, the kernel converts priorities to weight values. Let’s first see the table:

kernel/sched.c
static const int prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,

27Since a normal long is used, the kernel cannot directly store 1/weight, but has to resort to a technique that allows for performing
the division with a multiplication and bit shifting. The details are not of interest here, however.

96

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 97

Chapter 2: Process Management and Scheduling

/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,

};

The array contains one entry for each nice level in the range [0, 39] as used by the kernel. The multiplier
between the entries is 1.25. To see why this is required, consider the following example. Two processes
A and B run at nice level 0, so each one gets the same share of the CPU, namely, 50 percent. The weight
for a nice 0 task is 1,024 as can be deduced from the table. The share for each task is 1024

1024+1024 = 0.5, that
is, 50 percent as expected.

If task B is re-niced by one priority level, it is supposed to get 10 percent less CPU share. In other words,
this means that A will get 55 percent and B will get 45 percent of the total CPU time. Increasing the
priority by 1 leads to a decrease of its weight, which is then 1, 024/1.25 ≈ 820. The CPU share A will
get now is therefore 1024

1024+820 ≈ 0.55, whereas B will have 820
1024+820 ≈ 0.45 — a 10 percent difference as

required.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

80 90 100 110 120 130 140

W
ei

gh
t

Priority

Regular task
Realtime task

0

200

400

600

800

1000

1200

120 125 130 135 140

10

100

1000

10000

100000

80 90 100 110 120 130 140

Figure 2-15: Relation between static priority and load for regular and real-time processes.

The code that performs the conversion also needs to account for real-time tasks. These will get double
of the weight of a normal task. SCHED_IDLE tasks, on the other hand, will always receive a very small
weight:

kernel/sched.c
#define WEIGHT_IDLEPRIO 2
#define WMULT_IDLEPRIO (1 << 31)

97

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 98

Chapter 2: Process Management and Scheduling

static void set_load_weight(struct task_struct *p)
{

if (task_has_rt_policy(p)) {
p->se.load.weight = prio_to_weight[0] * 2;
p->se.load.inv_weight = prio_to_wmult[0] >> 1;
return;

}

/*
* SCHED_IDLE tasks get minimal weight:
*/
if (p->policy == SCHED_IDLE) {

p->se.load.weight = WEIGHT_IDLEPRIO;
p->se.load.inv_weight = WMULT_IDLEPRIO;
return;

}

p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];

}

The kernel not only computes the weight itself, but also stores the value required for division. Notice that
allowing 10 percent more CPU time per priority change leads to an exponential behavior of the weight
(and the related CPU times), which is illustrated in Figure 2-15. The upper inset in the figure shows the
graph for a restricted region of regular priorities. The lower inset employs a logarithmic scale on the y
axis. Note that the function is discontinuous at the transition point from regular to real-time processes.

Recall that not only processes, but also run queues are associated with a load weight. Every time a process
is added to a run queue, the kernel calls inc_nr_running. This not only ensures that the run queue keeps
track of how many processes are running, but also adds the process weight to the weight of the run
queue:

kernel/sched.c
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{

lw->weight += inc;
}

static inline void inc_load(struct rq *rq, const struct task_struct *p)
{

update_load_add(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
{

rq->nr_running++;
inc_load(rq, p);

}

Corresponding functions (dec_nr_running, dec_load, and update_load_sub) are called when a process
is removed from the run queue.

98

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 99

Chapter 2: Process Management and Scheduling

2.5.4 Core Scheduler
As mentioned above, scheduler implementation is based on two functions — the periodic scheduler and
the main scheduler function. These distribute CPU time on the basis of the priorities of the available
processes; this is why the overall method can also be referred to as priority scheduling — although this is
a very general term, naturally. I discuss how priority scheduling is implemented in this section.

The Periodic Scheduler
The periodic scheduler is implemented in scheduler_tick. The function is automatically called by the
kernel with the frequency HZ if system activity is going on. If no processes are waiting to be scheduled, the
tick can also be turned off to save power on computers where this is a scarce resource, for instance, lap-
tops or small embedded systems. The mechanism underlying periodic actions is discussed in Chapter 15.
The function has two principal tasks.

1. To manage the kernel scheduling-specific statistics relating to the whole system and to the
individual processes. The main actions performed involve incrementing counters and are of
no particular interest to us.

2. To activate the periodic scheduling method of the scheduling class responsible for the cur-
rent process.

kernel/sched.c
void scheduler_tick(void)
{

int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;

...
__update_rq_clock(rq)
update_cpu_load(rq);

The first part of the function deals with updating the run queue clock. This is delegated to
__update_rq_clock, which essentially advances the clock time stamp of the current instance of struct
rq. The function has to deal with some oddities of hardware clocks, but these are not relevant for our
purposes. update_cpu_load then deals with updating the cpu_load[] history array of the run queue.
This essentially shifts the previously stored load values one array position ahead, and inserts the present
run queue load into the first position. Additionally, the function introduces some averaging to ensure
that the contents of the load array do not exhibit large discontinuous jumps.

Thanks to the modular structure of the scheduler, the main work is really simple, as it can be completely
delegated to the scheduler-class-specific method:

kernel/sched.c
if (curr != rq->idle)

curr->sched_class->task_tick(rq, curr);
}

How task_tick is implemented depends on the underlying scheduler class. The completely fair sched-
uler, for instance, will in this method check if a process has been running for too long to avoid large
latencies, but I discuss this in detail below. Readers familiar with the old time-slice-based scheduling

99

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 100

Chapter 2: Process Management and Scheduling

method should be aware, however, that this is not equivalent to an expiring time slice — they do not
exist anymore in the completely fair scheduler.

If the current task is supposed to be rescheduled, the scheduler class methods set the TIF_NEED_RESCHED
flag in the task structure to express this request, and the kernel fulfills it at the next opportune moment.

The Main Scheduler
The main scheduler function (schedule) is invoked directly at many points in the kernel to allocate the
CPU to a process other than the currently active one. After returning from system calls, the kernel also
checks whether the reschedule flag TIF_NEED_RESCHED of the current process is set — for example, the
flag is set by scheduler_tick as mentioned above. If it is, the kernel invokes schedule. The function then
assumes that the currently active task is definitely to be replaced with another task.

Before I discuss schedule in detail, I need to make one remark that concerns the __sched prefix. This is
used for functions that can potentially call schedule, including the schedule function itself. The declara-
tion looks as follows:

void __sched some_function(...) {
...

schedule();
...
}

The purpose of the prefix is to put the compiled code of the function into a special section of the object file,
namely, .sched.text (see Appendix C for more information on ELF sections). This information enables
the kernel to ignore all scheduling-related calls when a stack dump or similar information needs to be
shown. Since the scheduler function calls are not part of the regular code flow, they are of no interest in
such cases.

Let’s come back to the implementation of the main scheduler schedule. The function first determines the
current run queue and saves a pointer to the task structure of the (still) active process in prev.

kernel/sched.c
asmlinkage void __sched schedule(void)
{

struct task_struct *prev, *next;
struct rq *rq;
int cpu;

need_resched:
cpu = smp_processor_id();
rq = cpu_rq(cpu);
prev = rq->curr;

...

As in the periodic scheduler, the kernel takes the opportunity to update the run queue clock and clears
the reschedule flag TIF_NEED_RESCHED in the task structure of the currently running task.

kernel/sched.c
__update_rq_clock(rq);
clear_tsk_need_resched(prev);

...

100

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 101

Chapter 2: Process Management and Scheduling

Again thanks to the modular structure of the scheduler, most work can be delegated to the scheduling
classes. If the current task was in an interruptible sleep but has received a signal now, it must be promoted
to a running task again. Otherwise, the task is deactivated with the scheduler-class-specific methods
(deactivate_task essentially ends up in calling sched_class->dequeue_task):

kernel/sched.c
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
unlikely(signal_pending(prev)))) {

prev->state = TASK_RUNNING;
} else {

deactivate_task(rq, prev, 1);
}

...

put_prev_task first announces to the scheduler class that the currently running task is going to be
replaced by another one. Note that this is not equivalent to taking the task off the run queue, but provides
the opportunity to perform some accounting and bring statistics up to date. The next task that is sup-
posed to be executed must also be selected by the scheduling class, and pick_next_task is responsible
to do so:

prev->sched_class->put_prev_task(rq, prev);
next = pick_next_task(rq, prev);

...

It need not necessarily be the case that a new task has been selected. If only one task is currently able to
run because all others are sleeping, it will naturally be left on the CPU. If, however, a new task has been
selected, then task switching at the hardware level must be prepared and executed.

kernel/sched.c
if (likely(prev != next)) {

rq->curr = next;
context_switch(rq, prev, next);

}
...

context_switch is the interface to the architecture-specific methods that perform a low-level context
switch.

The following code checks if the reschedule bit of the current task is set, and the scheduler jumps to the
label described above and the search for a new process recommences:

kernel/sched.c
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))

goto need_resched;
}

Notice that the above piece of code is executed in two different contexts: When no context switch has
been performed, it is run directly at the end of the schedule function. If, however, a context switch
has been performed, the current process will stop running right before this point — the new task has
taken over the CPU. However, when the previous task is reselected to run later on, it will resume its
execution directly at this point. Since prev will not point to the proper process in this case, the current
thread needs to be found via current by test_thread_flag.

101

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 102

Chapter 2: Process Management and Scheduling

Interaction with fork
Whenever a new process is created using the fork system call or one of its variants, the scheduler gets a
chance to hook into the process with the sched_fork function. On a single-processor system, the function
performs essentially three actions: Initialize the scheduling-related fields of the new process, set up data
structures (this is rather straightforward), and determine the dynamic priority of the process:

kernel/sched.c
/*
* fork()/clone()-time setup:
*/

void sched_fork(struct task_struct *p, int clone_flags)
{

/* Initialize data structures */
...

/*
* Make sure we do not leak PI boosting priority to the child:
*/

p->prio = current->normal_prio;
if (!rt_prio(p->prio))

p->sched_class = &fair_sched_class;
...
}

By using the normal priority of the parent process as the dynamic priority of the child, the kernel ensures
that any temporary boosts of the parent’s priority are not inherited by the child. Recall that the dynamic
priority of a process can be temporarily modified when RT-Mutexes are used. This effect must not be
transferred to the child. If the priority is not in the real-time range, the process will always start out in the
completely fair scheduling class.

When a new task is woken up using wake_up_new_task, a second opportunity for the scheduler to inter-
act with task creation presents itself: The kernel calls the task_new function of the scheduling class. This
gives an opportunity to enqueue the new process into the run queue of the respective class.

Context Switching
Once the kernel has selected a new process, the technical details associated with multitasking must
be dealt with; these details are known collectively as context switching. The auxiliary function
context_switch is the dispatcher for the required architecture-specific methods.

kernel/sched.c
static inline void
context_switch(struct rq *rq, struct task_struct *prev,

struct task_struct *next)
{

struct mm_struct *mm, *oldmm;

prepare_task_switch(rq, prev, next);
mm = next->mm;
oldmm = prev->active_mm;

..

102

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 103

Chapter 2: Process Management and Scheduling

Immediately before a task switch, the prepare_arch_switch hook that must be defined by every archi-
tecture is called from prepare_task_switch. This enables the kernel to execute architecture-specific code
to prepare for the switch. Most supported architectures (with the exception of Sparc64 and Sparc) do not
use this option because it is not needed.

The context switch proper is performed by invoking two processor-specific functions:

1. switch_mm changes the memory context described in task_struct->mm. Depending on the
processor, this is done by loading the page tables, flushing the translation lookaside buffers
(partially or fully), and supplying the MMU with new information. Because these actions go
deep into CPU details, I do not intend to discuss their implementation here.

2. switch_to switches the processor register contents and the kernel stack (the virtual user
address space is changed in the first step, and as it includes the user mode stack, it is not
necessary to change the latter explicitly). This task also varies greatly from architecture to
architecture and is usually coded entirely in assembly language. Again, I ignore implemen-
tation details.

Because the register contents of the userspace process are saved on the kernel stack when
kernel mode is entered (see Chapter 14 for details), this need not be done explicitly during
the context switch. And because each process first begins to execute in kernel mode (at that
point during scheduling at which control is passed to the new process), the register contents
are automatically restored using the values on the kernel stack when a return is made to
userspace.

Remember, however, that kernel threads do not have their own userspace memory context and exe-
cute on top of the address space of a random task; their task_struct->mm is NULL. The address space
‘‘borrowed’’ from the current task is noted in active_mm instead:

kernel/sched.c
if (unlikely(!mm)) {

next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next);

} else
switch_mm(oldmm, mm, next);

...

enter_lazy_tlb notifies the underlying architecture that exchanging the userspace portion of the virtual
address space is not required. This speeds up the context switch and is known as the lazy TLB technique.

If the previous task was a kernel thread (i.e., prev->mm is NULL), its active_mm pointer must be reset to
NULL to disconnect it from the borrowed address space:

kernel/sched.c
if (unlikely(!prev->mm)) {

prev->active_mm = NULL;
rq->prev_mm = oldmm;

}
...

103

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 104

Chapter 2: Process Management and Scheduling

Finally, the task switch is finished with switch_to, which switches the register state and the stack — the
new process will be running after the call:

kernel/sched.c
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);

barrier();
/*
* this_rq must be evaluated again because prev may have moved
* CPUs since it called schedule(), thus the ’rq’ on its stack
* frame will be invalid.
*/

finish_task_switch(this_rq(), prev);
}

The code following after switch_to will only be executed when the current process is selected to run
next time. finish_task_switch performs some cleanups and allows for correctly releasing locks, which,
however, we will not discuss in detail. It also gives individual architectures another possibility to hook
into the context switching process, but this is only required on a few machines. The barrier statement is
a directive for the compiler that ensures that the order in which the switch_to and finish_task_switch
statements are executed is not changed by any unfortunate optimizations (see Chapter 5 for more details).

Intricacies of switch_to
The interesting thing about finish_task_switch is that the cleanups are performed for the task that has
been active before the running task has been selected for execution. Notice that this is not the task that
has initiated the context switch, but some random other task in the system! The kernel must find a way
to communicate this task to the context_switch routine, and this is achieved with the switch_to macro.
It must be implemented by every architecture and has a very unusual calling convention: Two variables
are handed over, but in three parameters! This is because not only two, but three processes are involved
in a context switch. The situation is illustrated in Figure 2-16.

Kernel mode
stack

next = B
prev = A

next = C
prev = B

next = A
prev = C

next = B
prev = A

prev = C

Process A B C A

A = switch_to(A,B)
B = switch_to(B,C)

C = switch_to(C,A)

Before switch_to

After switch_to returns

Figure 2-16: Behavior of the prev and next variables during context switches.

Suppose that three processes A, B, and C are running on the system. At some point in time, the kernel
decides to switch from A to B, then from B to C, and then from C back to A again. Before each switch_to
call, the pointers next and prev located on the stacks of the individual processes are set such that prev

104

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 105

Chapter 2: Process Management and Scheduling

points to the currently running process, while next points to the process that will be running next. To
perform the switch from prev to next, the first two arguments are completely sufficient for switch_to.
For process A, prev points to A and next points to B.

A problem arises when A is selected to execute again. Control will return to the point after switch_to,
and if the stack were restored to the exact state it had before the switch, prev and next would still point
to the same values as before the switch — namely, next=B and prev=A. In this situation, the kernel would
not know that process C has actually run before process A.

Therefore, the low-level task switch routine must feed the previously executing task to context_switch
when a new task is selected. Since control flow comes back to the middle of the function, this cannot be
done with regular function return values, and that is why a three-parameter macro is used. However, the
conceptional effect is the same as if switch_to were a function of two arguments that would return a
pointer to the previously executing process. What switch_to essentially does is

prev = switch_to(prev,next)

where the prev value returned is not the prev value used as the argument, but the process that executed
last in time. In the above example, process A would feed switch_to with A and B, but would obtain
prev=C as result. How the kernel implements this behavior depends on the underlying architecture, but
it is obvious that the kernel can reconstruct the desired information by considering the kernel mode
stacks of both processes — which are naturally simultaneously available to the kernel, which can access
all memory at will.

Lazy FPU Mode
Because the speed of context switching plays a major role in system performance, the kernel uses a trick
to reduce the CPU time needed. Floating-point registers (and other extended registers not used by the
kernel; e.g., the SSE2 registers on IA-32 platforms) are not saved unless they are actually used by the
application and are not restored unless they are required. This is known as the lazy FPU technique. Its
implementation differs from platform to platform because assembly language code is used, but the basic
principle is always the same. It should also be noted that, regardless of platform, the contents of the
floating-point registers are not saved on the process stack but in its thread data structure. I illustrate this
technique by means of an example.

For the sake of simplicity, let us assume this time that there are only two processes, A and B, on the
system. Process A is running and uses floating-point operations. When the scheduler switches to process
B, the contents of the floating-point registers of A are saved in the thread data structure of the process.
However, the values in these registers are not immediately replaced with the values for process B.

If B does not perform any floating-point operations during its time slice, A sees its former register con-
tents when it is next activated. The kernel is therefore spared the effort of explicitly restoring register
values, and this represents a time-saving.

If, however, B does perform floating-point operations, this fact is reported to the kernel so that it can
fill the registers with the appropriate values from the thread data structure. Consequently, the kernel
saves and restores floating-point register contents only when needed and wastes no time on superfluous
operations.

105

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 106

Chapter 2: Process Management and Scheduling

2.6 The Completely Fair Scheduling Class
All information that the core scheduler needs to know about the completely fair scheduler is contained
in fair_sched_class:

kernel/sched_fair.c
static const struct sched_class fair_sched_class = {

.next = &idle_sched_class,

.enqueue_task = enqueue_task_fair,

.dequeue_task = dequeue_task_fair,

.yield_task = yield_task_fair,

.check_preempt_curr = check_preempt_wakeup,

.pick_next_task = pick_next_task_fair,

.put_prev_task = put_prev_task_fair,
...

.set_curr_task = set_curr_task_fair,

.task_tick = task_tick_fair,

.task_new = task_new_fair,
};

We have seen in the previous discussion when these functions are called by the main scheduler and will
examine in the following how they are implemented for CFS.

2.6.1 Data Structures
First, I need to introduce how the CFS run queue looks. Recall that an instance is embedded into each
per-CPU run queue of the main scheduler:

kernel/sched.c
struct cfs_rq {

struct load_weight load;
unsigned long nr_running;

u64 min_vruntime;

struct rb_root tasks_timeline;
struct rb_node *rb_leftmost;

struct sched_entity *curr;
}

The individual elements have the following meaning:

❑ nr_running counts the number of runnable processes on the queue, and load maintains the
cumulative load values of them all. Recall that you have already encountered the load calcu-
lation in Section 2.5.3.

❑ min_vruntime tracks the minimum virtual run time of all processes on the queue. This value
forms the basis to implement the virtual clock associated with a run queue. The name is slightly
confusing because min_vruntime can actually be bigger than the vruntime setting of the leftmost

106

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 107

Chapter 2: Process Management and Scheduling

tree element as it needs to increase monotonically, but I will come back to this when I discuss
how the value is set in detail.

❑ tasks_timeline is the base element to manage all processes in a time-ordered red-black tree.
rb_leftmost is always set to the leftmost element of the tree, that is, the element that deserves
to be scheduled most. The element could, in principle, be obtained by walking through the red-
black tree, but since usually only the leftmost element is of interest, this speeds up the average
time spent searching the tree.

❑ curr points to the schedulable entity of the currently executing process.

2.6.2 CFS Operations
Let us now turn our attention to how the scheduling methods provided by the CF scheduler are imple-
mented.

The Virtual Clock
I discussed in the Introduction that the completely fair scheduling algorithm depends on a virtual clock
that measures the amount of time a waiting process would have been allowed to spend on the CPU on
a completely fair system. However, no virtual clock can be found anywhere in the data structures! This
is because all required information can be inferred from the existing real-time clocks combined with the
load weight associated with every process. All calculations related to the virtual clock are performed in
update_curr, which is called from various places in the system including the periodic scheduler. The
code flow diagram in Figure 2-17 provides an overview of what the function does.

Update physical and virtual run time of the process

Update min_vruntime of the CFS queue

Set rq->exec_start

_ _update_curr

update_curr

Figure 2-17: Code flow diagram for update_curr.

First of all, the function determines the currently executing process of the run queue and also obtains the
real clock value of the main scheduler run queue, which is updated at each scheduler tick (rq_of is an
auxiliary function to determine the instance of struct rq that is associated with a CFS run queue):

static void update_curr(struct cfs_rq *cfs_rq)
{

struct sched_entity *curr = cfs_rq->curr;
u64 now = rq_of(cfs_rq)->clock;
unsigned long delta_exec;

if (unlikely(!curr))
return;

...

107

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 108

Chapter 2: Process Management and Scheduling

If no process is currently executing on the run queue, there is obviously nothing to do. Otherwise, the
kernel computes the time difference between the last update of the load statistics and now, and delegates
the rest of the work to __update_curr.

kernel/sched_fair.c
delta_exec = (unsigned long)(now - curr->exec_start);

__update_curr(cfs_rq, curr, delta_exec);
curr->exec_start = now;

}

Based on this information, __update_curr has to update the physical and virtual time that the current
process has spent executing on the CPU. This is simple for the physical time. The time difference just
needs to be added to the previously accounted time:

kernel/sched_fair.c
static inline void
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,

unsigned long delta_exec)
{

unsigned long delta_exec_weighted;
u64 vruntime;

curr->sum_exec_runtime += delta_exec;
...

The interesting thing is how the non-existing virtual clock is emulated using the given information. Once
more, the kernel is clever and saves some time in the common case: For processes that run at nice level
0, virtual and physical time are identical by definition. When a different priority is used, the time must
be weighted according to the load weight of the process (recall that Section 2.5.3 discussed how process
priority and load weight are connected):

kernel/sched_fair.c
delta_exec_weighted = delta_exec;
if (unlikely(curr->load.weight != NICE_0_LOAD)) {

delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
&curr->load);

}
curr->vruntime += delta_exec_weighted;

...

Neglecting some rounding and overflow checking, what calc_delta_fair does is to compute the value
given by the following formula:

delta_exec_weighted = delta_exec× NICE_0_LOAD

curr->load.weight

The inverse weight values mentioned above can be brought to good use in this calculation. Recall that
more important tasks with higher priorities (i.e., lower nice values) will get larger weights, so the virtual
run time accounted to them will be smaller. Figure 2-18 illustrates the connection between real and virtual
time for various priorities. One can also see from the formula that the virtual and physical time are
identical for nice 0 tasks with priority 120, that is, if current->load.weight is NICE_0_LOAD. Notice that
the inset in Figure 2-18 uses a double logarithmic plot to show a wider range of priorities.

108

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 109

Chapter 2: Process Management and Scheduling

0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 100 200 300 400 500 600 700 800 900 1000

Vi
rtu

al
 ti

m
e

in
te

rv
al

 (m
ill

is
ec

on
ds

)

Real time interval (milliseconds)

Nice 0 (prio 120)
Nice +5 (prio 125)
Nice −5 (prio 115)

1

10

100

1000

10000

100000

1 10 100 1000

Nice 0 (prio 120)
Nice +10 (prio 130)
Nice +19 (prio 139)
Nice −10 (prio 110)
Nice −20 (prio 100)

Figure 2-18: Relation between real and virtual time for processes depending on their
priority/nice level.

Finally, the kernel needs to set min_vruntime. Care is taken to ensure that the value is increasing mono-
tonically.

kernel/sched_fair.c
/*
* maintain cfs_rq->min_vruntime to be a monotonically increasing
* value tracking the leftmost vruntime in the tree.
*/

if (first_fair(cfs_rq)) {
vruntime = min_vruntime(curr->vruntime,

__pick_next_entity(cfs_rq)->vruntime);
} else

vruntime = curr->vruntime;

cfs_rq->min_vruntime =
max_vruntime(cfs_rq->min_vruntime, vruntime);

}

first_fair is a helper function that checks if the tree has a leftmost element, that is, if any process is
waiting on the tree to be scheduled. If so, the kernel obtains its vruntime, which is the smallest of all
elements in the tree. If no leftmost element is in the tree because it is empty, the virtual run time of the
current process is used instead. To ensure that the per-queue min_vruntime is monotonic increasing, the
kernel sets it to the larger of both values. This means that the per-queue min_vruntime is only updated if
it is exceeded by the vruntime of one of the elements on the tree. With this policy, the kernel ensures that
min_vrtime can only increase, but never decrease.

109

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 110

Chapter 2: Process Management and Scheduling

One really crucial point of the completely fair scheduler is that sorting processes on the red-black tree is
based on the following key:

kernel/sched_fair.c
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

return se->vruntime - cfs_rq->min_vruntime;
}

Elements with a smaller key will be placed more to the left, and thus be scheduled more quickly. This
way, the kernel implements two antagonistic mechanisms:

1. When a process is running, its vruntime will steadily increase, so it will finally move right-
ward in the red-black tree.

Because vruntime will increase more slowly for more important processes, they will also
move rightward more slowly, so their chance to be scheduled is bigger than for a less impor-
tant process — just as required.

2. If a process sleeps, its vruntime will remain unchanged. Because the per-queue
min_vruntime increases in the meantime (recall that it is monotonic!), the sleeper will be
placed more to the left after waking up because the key got smaller.28

In practice, both effects naturally happen simultaneously, but this does not influence the interpretation.
Figure 2-19 illustrates the different movement mechanisms on the red-black tree graphically.

min_vruntime

vruntime vruntime

Value increases

Value decreases

Position in the red-
black tree (more to
the left is better)

Figure 2-19: Influence of the per-entity and
per-queue virtual times on the placement of
processes in the red-black tree.

Latency Tracking
The kernel has a built-in notion of what it considers a good scheduling latency, that is, the interval
during which every runnable task should run at least once.29 It is given in sysctl_sched_latency, which
can be controlled via /proc/sys/kernel/sched_latency_ns and defaults to, respectively, 20,000,000 ns
(nanoseconds) and 20 ms (milliseconds). A second control parameter, sched_nr_latency, controls the
number of active processes that are at most handled in one latency period. If the number of active pro-
cesses grows larger than this bound, the latency period is extended linearly. sched_nr_latency can be
indirectly controlled via sysctl_sched_min_granularity, which can be set via /proc/sys/kernel/
sched_min_granularity_ns. The default value is 4,000,000 ns, that is, 4 ms, and sched_nr_latency is

28This is slightly different for short sleepers, but I consider this situation when I discuss the exact mechanism.
29Caution: This has nothing to do with time slices, which were used by the old scheduler!

110

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 111

Chapter 2: Process Management and Scheduling

computed as sysctl_sched_latency/sysctl_sched_min_granularity each time one of the values is
changed.

__sched_period determines the length of the latency period, which is usually just
sysctl_sched_latency, but is extended linearly if more processes are running. In this case, the
period length is

sysctl_sched_latency× nr_running

sched_nr_latency
.

Distribution of the time among active processes in one latency period is performed by considering the rel-
ative weights of the respective tasks. The slice length for a given process as represented by a schedulable
entity is computed as follows:

kernel/sched_fair.c
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

u64 slice = __sched_period(cfs_rq->nr_running);

slice *= se->load.weight;
do_div(slice, cfs_rq->load.weight);

return slice;
}

Recall that the run queue load weight accumulates the load weights of all active processes on the queue.
The resulting time slice is given in real time, but the kernel sometimes also needs to know the equivalent
in virtual time.

kernel/sched_fair.c
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
{

u64 vslice = __sched_period(nr_running);

vslice *= NICE_0_LOAD;
do_div(vslice, rq_weight);

return vslice;
}

static u64 sched_vslice(struct cfs_rq *cfs_rq)
{

return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

Recall that a real-time interval time for a process with a given weight has the length

time × NICE_0_LOAD

weight
,

and this is also used to transfer the latency interval portion.

Now we have everything in place to discuss the various methods that must be implemented by CFS to
interact with the global scheduler.

111

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 112

Chapter 2: Process Management and Scheduling

2.6.3 Queue Manipulation
Two functions are available to move elements to and from the run queue: enqueue_task_fair and
dequeue_task_fair. Let us concentrate on placing new tasks on the run queue first.

Besides pointers to the generic run queue and the task structure in question, the function accepts one
more parameter: wakeup. This allows for specifying if the task that is enqueued has only recently been
woken up and changed into the running state (wakeup is 1 in this case), or if it was runnable before
(wakeup is 0 then). The code flow diagram for enqueue_task_fair is shown in Figure 2-20.

enqueue_task_fair

return

enqueue_entity

update_curr

place_entity

enqueue_sleeper

_ _enqueue_entityse != cfs_rq->curr

Task has been woken up?

Already on runqueue?

Figure 2-20: Code flow diagram for enqueue_task_fair.

If the task is already on the run queue as signaled by the on_rq element of struct sched_entity, noth-
ing needs to be done. Otherwise, the work is delegated to enqueue_entity, where the kernel takes the
opportunity to update the statistics with updater_curr.

If the task has recently been running, its virtual run time is still valid, and (unless it is currently executing)
it can be directly included into the red-black tree with __enqueue_entity. This function requires some
mechanics to handle the red-black tree, but it can rely on standard methods of the kernel (see Appendix C
for more information) and is thus not very interesting. The essential point is that the process is placed at
the proper position, but this has already been ensured before by setting the vruntime field of the process,
and by the constant min_vruntime updates performed by the kernel for the queue.

If the process has been sleeping before, the virtual run time of the process is first adjusted in
place_entity30:

kernel/sched_fair.c
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)

30Note that the real kernel sources will execute portions of the code depending on outcomes of sched_feature queries. The CF
scheduler supports some ‘‘configurable’’ features, but they can only be turned on and off in debugging mode — otherwise, the set
of features is fixed. I will therefore ignore the feature selection mechanism and consider only those that are always compiled in and
active.

112

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 113

Chapter 2: Process Management and Scheduling

{
u64 vruntime;

vruntime = cfs_rq->min_vruntime;

if (initial)
vruntime += sched_vslice_add(cfs_rq, se);

if (!initial) {
vruntime -= sysctl_sched_latency;
vruntime = max_vruntime(se->vruntime, vruntime);

}

se->vruntime = vruntime;
}

The function distinguishes between two cases depending on the value of initial. This parameter is only
set if a new task is added to the system, but that’s not the case here: initial is zero (I will come back to
the other case when I discuss task_new_fair below).

Since the kernel has promised to run all active processes at least once within the current latency
period, the min_vruntime of the queue is used as the base virtual time, and by subtracting
sysctl_sched_latency, it is ensured that the newly awoken process will only run after the current
latency period has been finished.

However, if the sleeper has accumulated a large unfairness as indicated by a large se_vruntime value,
the kernel must honor this. If se->vruntime is larger than the previously computed difference, it is kept
as the vruntime of the process, which leads to a leftward placement on the red-black tree — recall that
large vruntime values are good to schedule early!

Let us go back to enqueue_entity: After place_entity has determined the proper virtual run time for
the process, it is placed on the red-black tree with __enqueue_entity. I have already noted before that
this is a purely mechanical function that uses standard methods of the kernel to sort the task into the
red-black tree.

2.6.4 Selecting the Next Task
Selecting the next task to run is performed in pick_next_task_fair. The code flow diagram is shown in
Figure 2-21.

If no tasks are currently runnable on the queue as indicated by an empty nr_running counter,
there is little to do and the function can return immediately. Otherwise, the work is delegated to
pick_next_entity.

If a leftmost task is available in the tree, it can immediately be determined using the first_fair helper
function, and __pick_next_entity extracts the sched_entity instance from the red-black tree. This is
done using the container_of mechanism because the red-black tree manages instances of rb_node that
are embedded in sched_entitys.

Now the task has been selected, but some more work is required to mark it as the running task. This is
handled by set_next_entity.

113

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 114

Chapter 2: Process Management and Scheduling

kernel/sched_fair.c
static void
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

/* ’current’ is not kept within the tree. */
if (se->on_rq) {

__dequeue_entity(cfs_rq, se);
}

...

No processes running?

Leftmost task in red-black tree available?

pick_next_task_fair

pick_next_entity

set_next_entity

return

__pick_next_entity

Figure 2-21: Code flow diagram for pick_next_task_fair.

The currently executing process is not kept on the run queue, so __dequeue_entity removes it from
the red-black tree, setting the leftmost pointer to the next leftmost task if the current task has been the
leftmost one. Notice that in our case, the process has been on the run queue for sure, but this need not be
the case when set_next_entity is called from different places.

Although the process is not contained in the red-black tree anymore, the connection between process and
run queue is not lost, because curr marks it as the running one now:

kernel/sched_fair.c
cfs_rq->curr = se;
se->prev_sum_exec_runtime = se->sum_exec_runtime;

}

Because the process is now the currently active one, the real time spent on the CPU will be charged
to sum_exec_runtime, so the kernel preserves the previous setting in prev_sum_exec_runtime. Note
that sum_exec_runtime is not reset in the process. The difference sum_exec_runtime - prev_sum_
exec_runtime does therefore denote the real time spent executing on a CPU.

2.6.5 Handling the Periodic Tick
This aforementioned difference is important when the periodic tick is handled. The formally responsible
function is task_tick_fair, but the real work is done in entity_tick. Figure 2-22 presents the code flow
diagram.

114

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 115

Chapter 2: Process Management and Scheduling

More than one process running?

Latency limit exceeded?

entity_tick

update_curr

resched_task

Check_preempt_tick

Figure 2-22: Code flow diagram for entity_tick.

First of all, the statistics are — as always — updated using update_curr. If the nr_running counter of
the queue indicates that fewer than two processes are runnable on the queue, nothing needs to be done.
If a process is supposed to be preempted, there needs to be at least another one that could preempt it.
Otherwise, the decision is left to check_preempt_tick:

kernel/sched_fair.c
static void
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{

unsigned long ideal_runtime, delta_exec;

ideal_runtime = sched_slice(cfs_rq, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime)

resched_task(rq_of(cfs_rq)->curr);
}

The purpose of the function is to ensure that no process runs longer than specified by its share of
the latency period. This length of this share in real-time is computed in sched_slice, and the real-
time interval during which the process has been running on the CPU is given by sum_exec_runtime
- prev_sum_exec_runtime as explained above. The preemption decision is thus easy: If the task has been
running for longer than the desired time interval, a reschedule is requested with resched_task. This sets
the TIF_NEED_RESCHED flag in the task structure, and the core scheduler will initiate a rescheduling at the
next opportune moment.

2.6.6 Wake-up Preemption
When tasks are woken up in try_to_wake_up and wake_up_new_task, the kernel uses
check_preempt_curr to see if the new task can preempt the currently running one. Notice that
the core scheduler is not involved in this process! For completely fair handled tasks, the function check_
preempt_wakeup performs the desired check.

115

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 116

Chapter 2: Process Management and Scheduling

The newly woken task need not necessarily be handled by the completely fair scheduler. If the new task
is a real-time task, rescheduling is immediately requested because real-time tasks always preempt CFS
tasks:

kernel/sched_fair.c
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
{

struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *se = &curr->se, *pse = &p->se;
unsigned long gran;

if (unlikely(rt_prio(p->prio))) {
update_rq_clock(rq);
update_curr(cfs_rq);
resched_task(curr);
return;

}
...

The most convenient cases are SCHED_BATCH tasks — they do not preempt other tasks by definition.

kernel/sched.c
if (unlikely(p->policy == SCHED_BATCH))

return;
...

When a running task is preempted by a new task, the kernel ensures that the old one has at least
been running for a certain minimum amount of time. The minimum is kept in sysctl_sched_
wakeup_granularity, which crossed our path before. Recall that it is per default set to 4 ms. This refers
to real time, so the kernel first needs to convert it into virtual time if required:

kernel/sched_fair.c
gran = sysctl_sched_wakeup_granularity;
if (unlikely(se->load.weight != NICE_0_LOAD))

gran = calc_delta_fair(gran, &se->load);
...

If the virtual run time of the currently executing task (represented by its scheduling entity se) is larger
than the virtual run time of the new task plus the granularity safety, a rescheduling is requested:

kernel/sched_fair.c
if (pse->vruntime + gran < se->vruntime)

resched_task(curr);
}

The added ‘‘buffer’’ time ensures that tasks are not switched too frequently so that not too much time is
spent in context switching instead of doing real work.

2.6.7 Handling New Tasks
The last operation of the completely fair scheduler that we need to consider is the hook function that
is called when new tasks are created: task_new_fair. The behavior of the function is controllable with

116

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 117

Chapter 2: Process Management and Scheduling

the parameter sysctl_sched_child_runs_first. As the name might suggest, it determined if a newly
created child process should run before the parent. This is usually beneficial, especially if the child per-
forms an exec system call afterward. The default setting is 1, but this can be changed via /proc/sys/
kernel/sched_child_runs_first.

Initially, the function performs the usual statistics update with update_curr and then employs the pre-
viously discussed place_entity:

kernel/sched_fair.c
static void task_new_fair(struct rq *rq, struct task_struct *p)
{

struct cfs_rq *cfs_rq = task_cfs_rq(p);
struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
int this_cpu = smp_processor_id();

update_curr(cfs_rq);
place_entity(cfs_rq, se, 1);

...

In this case, place_entity is, however, called with initial set to 1, which amounts to computing the
initial vruntime with sched_vslice_add. Recall that this determines the portion of the latency interval
that belongs to the process, but converted to virtual time. This is the scheduler’s initial debt to the process.

kernel/sched_fair.c
if (sysctl_sched_child_runs_first && curr->vruntime < se->vruntime) {

swap(curr->vruntime, se->vruntime);
}

enqueue_task_fair(rq, p, 0);
resched_task(rq->curr);

}

If the virtual run time of the parent (represented by curr) is less than the virtual run time of the child, this
would mean that the parent runs before the child — recall that small virtual run times favor left positions
in the red-black tree. If the child is supposed to run before the parent, the virtual run times of both need
to be swapped.

Afterward, the child is enqueued into the run queue as usual, and rescheduling is requested.

2.7 The Real-Time Scheduling Class
As mandated by the POSIX standard, Linux supports two real-time scheduling classes in addition to
‘‘normal‘‘ processes. The structure of the scheduler enables real-time processes to be integrated into the
kernel without any changes in the core scheduler — this is a definitive advantage of scheduling classes.31

Now is a good place to recall some of the facts discussed a long time ago. Real-time processes can be iden-
tified by the fact that they have a higher priority than normal processes — accordingly, their static_prio
value is always lower than that of normal processes, as shown in Figure 2-14. The rt_task macro is

31The completely fair scheduler needs to be aware of real-time processes in the wake-up preemption code, but this requires only very
little effort.

117

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 118

Chapter 2: Process Management and Scheduling

provided to establish whether a given task is a real-time process or not by inspecting its priority, and
task_has_rt_policy checks if the process is associated with a real-time scheduling policy.

2.7.1 Properties
Real-time processes differ from normal processes in one essential way: If a real-time process exists in the
system and is runnable, it will always be selected by the scheduler — unless there is another real-time
process with a higher priority.

The two available real-time classes differ as follows:

❑ Round robin processes (SCHED_RR) have a time slice whose value is reduced when they run if they
are normal processes. Once all time quantums have expired, the value is reset to the initial value,
but the process is placed at the end of the queue. This ensures that if there are several SCHED_RR
processes with the same priority, they are always executed in turn.

❑ First-in, first-out processes (SCHED_FIFO) do not have a time slice and are permitted to run as long
as they want once they have been selected.

It is evident that the system can be rendered unusable by badly programmed real-time processes — all
that is needed is an endless loop whose loop body never sleeps. Extreme care should therefore be taken
when writing real-time applications.32

2.7.2 Data Structures
The scheduling class for real-time tasks is defined as follows:

kernel/sched-rt.c
const struct sched_class rt_sched_class = {

.next = &fair_sched_class,

.enqueue_task = enqueue_task_rt,

.dequeue_task = dequeue_task_rt,

.yield_task = yield_task_rt,

.check_preempt_curr = check_preempt_curr_rt,

.pick_next_task = pick_next_task_rt,

.put_prev_task = put_prev_task_rt,

.set_curr_task = set_curr_task_rt,

.task_tick = task_tick_rt,
};

The implementation of the real-time scheduler class is simpler than the completely fair scheduler. Only
roughly 250 lines of code compared to 1,100 for CFS are required!

The core run queue also contains a sub-run queue for real-time tasks as embedded instance of struct
rt_rq:

32Notice that this situation will be eased with the introduction of real-time group scheduling in kernel 2.6.25, which was still under
development when this book was written.

118

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 119

Chapter 2: Process Management and Scheduling

kernel/sched.c
struct rq {
...

t_rq rt;
...
}

The run queue is very straightforward — a linked list is sufficient33:

kernel/sched.c
struct rt_prio_array {

DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_RT_PRIO];

};

struct rt_rq {
struct rt_prio_array active;

};

All real-time tasks with the same priority are kept in a linked list headed by active.queue[prio], and
the bitmap active.bitmap signals in which list tasks are present by a set bit. If no tasks are on the list,
the bit is not set. Figure 2-23 illustrates the situation.

In
cr

ea
si

ng
 p

rio

Figure 2-23: Run queue of the
real-time scheduler.

The analog of update_cur for the real-time scheduler class is update_curr_rt: The function keeps track
of the time the current process spent executing on the CPU in sum_exec_runtime. All calculations are
performed with real times; virtual times are not required. This simplifies things a lot.

2.7.3 Scheduler Operations
To enqueue and dequeue tasks is simple: The task is placed or respectively removed from the appropriate
list selected by array->queue + p->prio, and the corresponding bit in the bitmap is set if at least one task
is present, or removed if no tasks are left on the queue. Notice that new tasks are always queued at the
end of each list.

The two interesting operations are how the next task is selected and how preemption is handled. Con-
sider pick_next_task_rt, which handles selection of the next task first. The code flow diagram is shown
in Figure 2-24.

33SMP systems require some more elements for load balancing, but these do not concern us here.

119

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 120

Chapter 2: Process Management and Scheduling

Dequeue task

Set se.exec_start

pick_next_task_rt

sched_find_first_bit

Figure 2-24: Code flow diagram for
pick_next_task_rt.

sched_find_first_bit is a standard function that finds the first set bit in active.bitmap — this means
that higher real-time priorities (which result in lower in-kernel priorities) are handled before lower real-
time priorities. The first task on the selected list is taken out, and se.exec_start is set to the current
real-time clock value of the run queue — that’s all that is required.

The implementation of the periodic tick is likewise simple. SCHED_FIFO tasks are easiest to handle: They
can run as long as they like and must pass control to another task explicitly by using the yield system
call:

kernel/sched.c
static void task_tick_rt(struct rq *rq, struct task_struct *p)
{

update_curr_rt(rq);

/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)

return;
...

If the current process is a round robin process, its time slice is decremented. When the time quantum
is not yet exceeded, nothing more needs to be done — the process can keep running. Once the counter
reverts to 0, its value is renewed to DEF_TIMESLICE, which is set to 100 * HZ / 1000, that is, 100 ms. If the
task is not the only task in its list, it is requeued to the end. Rescheduling is requested as usual by setting
the TIF_NEED_RESCHED flag with set_tsk_need_resched:

kernel/sched-rt.c
if (--p->time_slice)

return;

p->time_slice = DEF_TIMESLICE;

/*
* Requeue to the end of queue if we are not the only element
* on the queue:
*/

if (p->run_list.prev != p->run_list.next) {

120

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 121

Chapter 2: Process Management and Scheduling

requeue_task_rt(rq, p);
set_tsk_need_resched(p);

}
}

The sched_setscheduler system call must be used to convert a process into a real-time process. This call
is not discussed at length because it performs only the following simple tasks:

❑ It removes the process from its current queue using deactivate_task.

❑ It sets the real-time priority and the scheduling class in the task data structure.

❑ It reactivates the task.

If the process was not previously on any run queue, only the scheduling class and the new priority value
need be set; deactivation and reactivation are unnecessary.

Note that changing the scheduler class or priority is only possible without constraints if the
sched_setscheduler system call is performed by a process with root rights (or, equivalently, the
capability CAP_SYS_NICE). Otherwise, the following conditions apply:

❑ The scheduling class can only be changed from SCHED_NORMAL to SCHED_BATCH or vice versa. A
change to SCHED_FIFO is impossible.

❑ Only the priority of processes with the same UID or EUID as the EUID of the caller can be
changed. Additionally, the priority may only be decreased, but not increased.

2.8 Scheduler Enhancements
So far, we have only considered scheduling on real-time systems — naturally, Linux can do slightly
better. Besides support for multiple CPUs, the kernel also provides several other enhancements that
relate to scheduling, discussed in the following sections. Notice, however, that these enhancements add
much complexity to the scheduler, so I will mostly consider simplified situations that illuminate the
essential principle, but do not account for all boundary cases and scheduling oddities.

2.8.1 SMP Scheduling
On multiprocessor systems, the kernel must consider a few additional issues in order to ensure good
scheduling:

❑ The CPU load must be shared as fairly as possible over the available processors. It makes little
sense if one processor is responsible for three concurrent applications while another has only the
idle task to deal with.

❑ The affinity of a task to certain processors in the system must be selectable. This makes it possible,
for example, to bind a compute-intensive application to the first three CPUs on a 4-CPU system
while the remaining (interactive) processes run on the fourth CPU.

121

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 122

Chapter 2: Process Management and Scheduling

❑ The kernel must be able to migrate processes from one CPU to another. However, this option
must be used with great care because it can severely impair performance. CPU caches are the
biggest problem on smaller SMP systems. For really big systems, a CPU can be located literally
some meters away from the memory previously used, so access to it will be very costly.

The affinity of a task to particular CPUs is defined in the cpus_allowed element of the task structure
specified above. Linux provides the sched_setaffinity system call to change this assignment.

Extensions to the Data Structures
The scheduling methods that each scheduler class must provide are augmented by two additional func-
tions on SMP systems:

<sched.h>
struct sched_class {
...
#ifdef CONFIG_SMP

unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
struct rq *busiest, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio);

int (*move_one_task) (struct rq *this_rq, int this_cpu,
struct rq *busiest, struct sched_domain *sd,
enum cpu_idle_type idle);

#endif
...
}

Despite their names, the functions are, however, not directly responsible to handle load balancing. They
are called by the core scheduler code whenever the kernel deems rebalancing necessary. The scheduler
class-specific functions then set up an iterator that allows the generic code to walk through all processes
that are potential candidates to be moved to another queue, but the internal structures of the individual
scheduler classes must not be exposed to the generic code because of the iterator. load_balance employs
the generic function load_balance, while move_one_task uses iter_move_one_task. The functions serve
different purposes:

❑ iter_move_one_task picks one task off the busy run queue busiest and moves it to the run
queue of the current CPU.

❑ load_balance is allowed to distribute multiple tasks from the busiest run queue to the current
CPU, but must not move more load than specified by max_load_move.

How is load balancing initiated? On SMP systems, the scheduler_tick periodic scheduler function
invokes the trigger_load_balance function on completion of the tasks required for all systems as
described above. This raises the SCHEDULE_SOFTIRQ softIRQ (the software analog to hardware interrupts;
see Chapter 14 for more details), which, in turn, guarantees that run_rebalance_domains will be run in
due time. This function finally invokes load balancing for the current CPU by calling rebalance_domains.
The time flow is illustrated in Figure 2-25.

122

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 123

Chapter 2: Process Management and Scheduling

To perform rebalancing, the kernel needs some more information. Run queues are therefore augmented
with additional fields on SMP systems:

kernel/sched.c

struct rq {
...
#ifdef CONFIG_SMP

struct sched_domain *sd;
/* For active balancing */
int active_balance;
int push_cpu;
/* cpu of this runqueue: */
int cpu;

struct task_struct *migration_thread;
struct list_head migration_queue;

#endif
...
}

Timer tick

Raise
SCHEDULE_SOFTIRQ

SoftIRQ

scheduler_tick

trigger_load_balance

run_rebalance_domains rebalance_domains

Figure 2-25: Time flow for initiation of load balancing on SMP systems.

Run queues are CPU-specific, so cpu denotes the processor to which the run queue belongs. The ker-
nel provides one migration thread per run queue to which migration requests can be posted — they are
kept on the list migration_queue. Such requests usually originate from the scheduler itself, but can also
become necessary when a process is restricted to a certain set of CPUs and must not run on the one it is
currently executing on anymore. The kernel tries to balance run queues periodically, but if this fails to
be satisfactory for a run queue, then active balancing must be used. active_balance is set to a nonzero
value if this is required, and cpu notes the processor from which the request for active balancing initiates.

Furthermore, all run queues are organized in scheduling domains. This allows for grouping CPUs that
are physically adjacent to each other or share a common cache such that processes should preferably
be moved between them. On ‘‘normal’’ SMP systems, however, all processors will be contained in one
scheduling domain. I will therefore not discuss this structure in detail, but only mention that it contains
numerous parameters that can be set via /proc/sys/kernel/cpuX/domainY. These include the minimal
and maximal time interval after which load balancing is initiated, the minimal imbalance for a queue
to be re-balanced, and so on. Besides, the structure also manages fields that are set at run time and that

123

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 124

Chapter 2: Process Management and Scheduling

allow the kernel to keep track when the last balancing operation has been performed, and when the next
will take place.

So what does load_balance do? The function checks if enough time has elapsed since the last
re-balancing operation, and initiates a new re-balancing cycle if necessary by invoking load_balance.
The code flow diagram for this function is shown in Figure 2-26. Notice that I describe a simplified
version because the SMP scheduler has to deal with a very large number of corner cases that obstruct the
view on the essential actions.

More than one process on busiest queue?

Balancing failed? Wake up migration task

load_balance

find_busiest_cpu

move_tasks class->load_balance

Figure 2-26: Code flow diagram for load_balance.

First of all, the function has to identify which queue has most work to do. This task is delegated to
find_busiest_queue, which is called for a specific run queue. The function iterates over the queues
of all processors (or, to be precise, of all processors in the current scheduling group) and compares their
load weights. The busiest queue is the queue with the largest value found in the end.

Once find_busiest_queue has identified a very busy queue, and if at least one task is running on this
queue (load balancing will otherwise not make too much sense), a suitable number of its tasks are
migrated to the current queue using move_tasks. This function, in turn, invokes the scheduler-class-
specific load_balance method.

When selecting potential migration candidates, the kernel must ensure that the process in question

❑ is not running at the moment or has just finished running because this fact would cancel out the
benefits of the CPU caches currently filled with the process data.

❑ may execute on the processor associated with the current queue on the grounds of its CPU affin-
ity.

If balancing failed (e.g., because all tasks on the remote queue have a higher kernel-internal priority
value, i.e., a lower nice priority), the migration thread that is responsible for the busiest run queue is
woken up. To ensure that active load balancing is performed that is slightly more aggressive than the
method tried now, load_balance sets the active_balance flag of the busiest run queue and also notes
the CPU from which the request originates in rq->cpu.

The Migration Thread
The migration thread serves two purposes: It must fulfill migration requests originating from the sched-
uler, and it is used to implement active balancing. This is handled in a kernel thread that executes
migration_thread. The code flow diagram for the function is shown in Figure 2-27.

124

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 125

Chapter 2: Process Management and Scheduling

class->
move_one_task

No migration
requests?

schedule

Get migration
request

Iterate over all
scheduler classes

1

1

migration_thread

rq->active_balance set?

active_load_balance

move_one_task

__migrate_task

Figure 2-27: Code flow diagram for migration_thread.

migration_thread runs an infinite loop and sleeps when there is nothing to do. First of all, the function
checks if active balancing is required, and if this is the case, active_load_balance is called to satisfy this
request. The function tries to move one task from the current run queue to the run queue of the CPU that
initiated the request for active balancing. It uses move_one_task for this purpose, which, in turn, ends
up calling the scheduler-class specific move_one_task functions of all scheduler classes until one of them
succeeds. Note that these functions try to move processes more aggressively than load_balance. For
instance, they do not perform the previously mentioned priority comparison, so they are more likely to
succeed.

Once the active load balancing is finished, the migration thread checks if any migration requests from the
scheduler are pending in the migrate_req list. If none is available, the thread can reschedule. Otherwise,
the request is fulfilled with __migrate_task, which performs the desired process movement directly
without further interaction with the scheduler classes.

Core Scheduler Changes
Besides the additions discussed above, some changes to the existing methods are required in the core
scheduler on SMP systems. While numerous small details change all over the place, the most important
differences as compared to uniprocessor systems are the following:

❑ When a new process is started with the exec system call, a good opportunity for the sched-
uler to move the task across CPUs arises. Naturally, it has not been running yet, so there can-
not be any negative effects on the CPU cache by moving the task to another CPU. sched_exec
is the hook function invoked by the exec system call, and the code flow diagram is shown in
Figure 2-28.

sched_balance_self picks the CPU that is currently least loaded (and on which the process
is also allowed to run). If this is not the current CPU, then sched_migrate_task forwards an
according migration request to the migration thread using sched_migrate_task.

❑ The scheduling granularity of the completely fair scheduler scales with the number of CPUs.
The more processors present in the system, the larger the granularities that can be employed.
Both sysctl_sched_min_granularity and sysctl_sched_latency for sysctl_sched_min_

125

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 126

Chapter 2: Process Management and Scheduling

granularity are multiplied by the correction factor 1 + log2(nr_cpus), where nr_cpus repre-
sents the number of available CPUs. However, they must not exceed 200 ms. sysctl_sched_
wakeup_granularity is also increased by the factor, but is not bounded from above.

New CPU selected?

sched_exec

sched_balance_self

sched_migrate_task

Figure 2-28: Code flow diagram for sched_exec.

2.8.2 Scheduling Domains and Control Groups
In the previous discussion of the scheduler code, we have often come across the situation that the sched-
uler does not deal directly with processes, but with schedulable entities. This allows for implementing
group scheduling: Processes are placed into different groups, and the scheduler is first fair among these
groups and then fair among all processes in the group. This allows, for instance, granting identical shares
of the available CPU time to each user. Once the scheduler has decided how much time each user gets,
the determined interval is then distributed between the users’ processes in a fair manner. This naturally
implies that the more processes a user runs, the less CPU share each process will get. The amount of time
for the user in total is not influenced by the number of processes, though.

Grouping tasks between users is not the only possibility. The kernel also offers control groups, which
allow — via the special filesystem cgroups — creating arbitrary collections of tasks, which may even be
sorted into multiple hierarchies. The situation is illustrated in Figure 2-29.

Schedulable
entity

task

Figure 2-29: Overview of fair group scheduling: The available CPU time is first distributed fairly
among the scheduling groups, and then between the processes in each group.

To reflect the hierarchical situation within the kernel, struct sched_entity is augmented with an ele-
ment that allows for expressing this hierarchy:

<sched.h>
struct sched_entity {
...
#ifdef CONFIG_FAIR_GROUP_SCHED

struct sched_entity *parent;
...
#endif
...
}

126

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 127

Chapter 2: Process Management and Scheduling

This substructure of scheduling entities must be considered by all scheduling-class-related operations.
Consider, for instance, how the code to enqueue a task in the completely fair scheduler really looks:

kernel/sched_fair.c
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
{

struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;

for_each_sched_entity(se) {
if (se->on_rq)

break;
cfs_rq = cfs_rq_of(se);
enqueue_entity(cfs_rq, se, wakeup);
wakeup = 1;

}
}

for_each_sched_entity traverses the scheduling hierarchy defined by the parent elements of
sched_entity, and each entity is enqueued on the run queue.

Notice that for_each_sched_entity will resolve to a trivial loop that executes the code contained in the
loop body exactly once when support for group scheduling is not selected, so the behavior described in
the previous discussion is regained.

2.8.3 Kernel Preemption and Low Latency Efforts
Let us now turn our attention to kernel preemption, which allows for a smoother experience of the sys-
tem, especially in multimedia environments. Closely related are low latency efforts performed by the
kernel, which I will discuss afterward.

Kernel Preemption
As described above, the scheduler is invoked before returning to user mode after system calls or at
certain designated points in the kernel. This ensures that the kernel, unlike user processes, cannot be
interrupted unless it explicitly wants to be. This behavior can be problematic if the kernel is in the middle
of a relatively long operation — this may well be the case with filesystem, or memory-management-
related tasks. The kernel is executing on behalf of a specific process for a long amount of time, and other
processes do not get to run in the meantime. This may result in deteriorating system latency, which users
experience as ‘‘sluggish‘‘ response. Video and audio dropouts may also occur in multimedia applications
if they are denied CPU time for too long.

These problems can be resolved by compiling the kernel with support for kernel preemption. This allows
not only userspace applications but also the kernel to be interrupted if a high-priority process has some
things to do. Keep in mind that kernel preemption and preemption of userland tasks by other userland
tasks are two different concepts!

Kernel preemption was added during the development of kernel 2.5. Although astonishingly few
changes were required to make the kernel preemptible, the mechanism is not as easy to implement
as preemption of tasks running in userspace. If the kernel cannot complete certain actions in a single
operation — manipulation of data structures, for instance — race conditions may occur and render the
system inconsistent. The same problems arise on multiprocessor systems discussed in Chapter 5.

127

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 128

Chapter 2: Process Management and Scheduling

The kernel may not, therefore, be interrupted at all points. Fortunately, most of these points have already
been identified by SMP implementation, and this information can be reused to implement kernel pre-
emption. Problematic sections of the kernel that may only be accessed by one processor at a time are
protected by so-called spinlocks: The first processor to arrive at a dangerous (also called critical) region
acquires the lock, and releases the lock once the region is left again. Another processor that wants to
access the region in the meantime has to wait until the first user has released the lock. Only then can it
acquire the lock and enter the dangerous region.

If the kernel can be preempted, even uniprocessor systems will behave like SMP systems. Consider that
the kernel is working inside a critical region when it is preempted. The next task also operates in kernel
mode, and unfortunately also wants to access the same critical region. This is effectively equivalent to
two processors working in the critical region at the same time and must be prevented. Every time the
kernel is inside a critical region, kernel preemption must be disabled.

How does the kernel keep track of whether it can be preempted or not? Recall that each task in the system
is equipped with an architecture-specific instance of struct thread_info. The structure also includes a
preemption counter:

<asm-arch/thread_info.h>
struct thread_info {
...

int preempt_count; /* 0 => preemptable, <0 => BUG */
...
}

The value of this element determines whether the kernel is currently at a position where it may be inter-
rupted. If preempt_count is zero, the kernel can be interrupted, otherwise not. The value must not be
manipulated directly, but only with the auxiliary functions dec_preempt_count and inc_preempt_count,
which, respectively, decrement and increment the counter. inc_preempt_count is invoked each time
the kernel enters an important area where preemption is forbidden. When this area is exited, dec_
preempt_count decrements the value of the preemption counter by 1. Because the kernel can enter some
important areas via different routes — particularly via nested routes — a simple Boolean variable would
not be sufficient for preempt_count. When multiple dangerous regions are entered one after another, it
must be made sure that all of them have been left before the kernel can be preempted again.

The dec_preempt_count and inc_preempt_count calls are integrated in the synchronization opera-
tions for SMP systems (see Chapter 5). They are, in any case, already present at all relevant points of
the kernel so that the preemption mechanism can make best use of them simply by reusing the existing
infrastructure.

Some more routines are provided for preemption handling:

❑ preempt_disable disables preemption by calling inc_preempt_count. Additionally, the com-
piler is instructed to avoid certain memory optimizations that could lead to problems with the
preemption mechanism.

❑ preempt_check_resched checks if scheduling is necessary and does so if required.

❑ preempt_enable enables kernel preemption, and additionally checks afterward if rescheduling
is necessary with preempt_check_resched.

❑ preempt_disable_no_resched disables preemption, but does not reschedule.

128

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 129

Chapter 2: Process Management and Scheduling

At some points in the kernel, the protection by the normal SMP synchronization
methods is not sufficient. This happens, for instance, when per-CPU variables are
modified. On a real SMP system, this requires no form of protection because only
one processor can by definition operate with the variable — every other CPU in the
system has its own instance and does not need to fiddle with the instance of the
current processor. However, kernel preemption would allow that two different code
paths on the same processor would access the variable quasi-concurrently, which
would have the same result as if two independent processors would manipulate the
value. Preemption must therefore be explicitly disabled in these situations using
manual incovations of preempt_disable and preempt_disable.

Note, however, that the get_cpu and put_cpu functions mentioned in the
Introduction will automatically disable kernel preemption, so no extra precautions
are necessary if per-CPU variables are accessed using this mechanism.

How does the kernel know if preemption is required? First of all, the TIF_NEED_RESCHED flag must
be set to signalize that a process is waiting to get CPU time. This is honored by preempt_
check_resched:

<preempt.h>
#define preempt_check_resched() \
do { \

if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) \
preempt_schedule(); \

} while (0)

Recall that the function is called when preemption is re-enabled after it had been disabled, so this
is a good time to check if a process wants to preempt the currently executing kernel code. If this
is the case, it should be done as quickly as possible — without waiting for the next routine call of the
scheduler.

The central function for the preemption mechanism is preempt_schedule. The simple desire that the ker-
nel be preempted as indicated by TIF_NEED_RESCHED does not yet guarantee that this is possible — recall
that the kernel could currently still be inside a critical region, and must not be disturbed. This is checked
by preempt_reschedule:

kernel/sched.c
asmlinkage void __sched preempt_schedule(void)
{

struct thread_info *ti = current_thread_info();
/*
* If there is a non-zero preempt_count or interrupts are disabled,
* we do not want to preempt the current task. Just return..
*/

if (unlikely(ti->preempt_count || irqs_disabled()))
return;

...

If the preemption counter is greater than 0, then preemption is still disabled, and consequently the kernel
may not be interrupted — the function terminates immediately. Neither is preemption possible if the
kernel has disabled hardware IRQs at important points where processing must be completed in a single
operation. irqs_disabled checks whether interrupts are disabled or not, and if they are disabled, the
kernel must not be preempted.

129

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 130

Chapter 2: Process Management and Scheduling

The following steps are required if preemption is possible:

kernel/sched.c
do {

add_preempt_count(PREEMPT_ACTIVE);

schedule();

sub_preempt_count(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/

} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));

Before the scheduler is invoked, the value of the preemption counter is set to PREEMPT_ACTIVE. This sets
a flag bit in the preemption counter that has such a large value that it is never affected by the regular
preemption counter increments as illustrated by Figure 2-30. It indicates to the schedule function that
scheduling was not invoked in the normal way but as a result of a kernel preemption. After the kernel
has rescheduled, code flow returns to the current task — possibly after some time has elapsed, because
the preempting task will have run in between — the flag bit is removed again.

Preemption counter

PREEMPT_ACTIVE

Figure 2-30: The per-process preemption
counter.

I ignored the implications of this flag for schedule before, so I have to discuss it now. Recall that the
scheduler deactivates a task with deactivate_task if it is not in a runnable state at the moment. In fact,
this operation is skipped if the scheduling was initiated via the preemption mechanism as can be seen if
PREEMPT_ACTIVE is set in the preemption counter:

kernel/sched.c
asmlinkage void __sched schedule(void) {
...

if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&

unlikely(signal_pending(prev)))) {
prev->state = TASK_RUNNING;

} else {
deactivate_task(rq, prev, 1);

}
}

...
}

This ensures that the next task is selected as quickly as possible without the hassle of deactivating the
current one. If a high-priority task is waiting to be scheduled, it will be picked by the scheduler class and
will be allowed to run.

130

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 131

Chapter 2: Process Management and Scheduling

This method is only one way of triggering kernel preemption. Another possibility to activate preemption
is after a hardware IRQ has been serviced. If the processor returns to kernel mode after handling the IRQ
(return to user mode is not affected), the architecture-specific assembler routine checks whether the value
of the preemption counter is 0 — that is, if preemption is allowed — and whether the reschedule flag
is set — exactly as in preempt_schedule. If both conditions are satisfied, the scheduler is invoked, this
time via preempt_schedule_irq to indicate that the preemption request originated from IRQ context.
The essential difference between this function and preempt_schedule is that preempt_schedule_irq is
called with IRQs disabled to prevent recursive calls for simultaneous IRQs.

As a result of the methods described in this section, a kernel with enabled preemption is able to replace
processes with more urgent ones faster than a normal kernel could.

Low Latency
Naturally, the kernel is interested in providing good latency times even if kernel preemption is not
enabled. This can, for instance, be important in network servers. While the overhead introduced by
kernel preemption is not desired in such an environment, the kernel should nevertheless respond to
important events with reasonable speed. If, for example, a network request comes in that needs to be
serviced by a daemon, then this should not be overly long delayed by some database doing heavy I/O
operations. I have already discussed a number of measures offered by the kernel to reduce this problem:
scheduling latency in CFS and kernel preemption. Real-time mutexes as discussed in Chapter 5 also aid
in solving the problem, but there is one more scheduling-related action that can help.

Basically, long operations in the kernel should not occupy the system completely. Instead, they should
check from time to time if another process has become ready to run, and thus call the scheduler to select
the process. This mechanism is independent of kernel preemption and will reduce latency also if the
kernel is built without explicit preemption support.

The function to initiate conditional rescheduling is cond_resched. It is implemented as follows:

kernel/sched.c
int __sched cond_resched(void)
{

if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE))
__cond_resched();
return 1;

}
return 0;

}

need_resched checks if the TIF_NEED_RESCHED flag is set, and the code additionally ensures that the ker-
nel is not currently being preempted already34 and rescheduling is thus allowed. Should both conditions
be fulfilled, then __cond_resched takes care of the necessary details to invoke the scheduler.

How can cond_resched be used? As an example, consider the case in which the kernel reads in memory
pages associated with a given memory mapping. This could be done in an endless loop that terminates
after all required data have been read:

for (;;)
/* Read in data */
if (exit_condition)

continue;

34Additionally, the function also makes sure that the system is completely up and running, which is, for instance, not the case if the
system has not finished booting yet. Since this is an unimportant corner case, I have omitted the corresponding check.

131

Mauerer runc02.tex V3 - 09/04/2008 4:15pm Page 132

Chapter 2: Process Management and Scheduling

If a large number of read operations is required, this can consume a sizeable amount of time. Since the
process runs in kernel space, it will not be deselected by the scheduler as in the userspace case, taken that
kernel preemption is not enabled. This can be improved by calling cond_resched in every loop iteration:

for (;;)
cond_resched();
/* Read in data */
if (exit_condition)

continue;

The kernel has been carefully audited to find the longest-running functions, and calls to cond_resched
have been put in the appropriate places. This ensures higher responsiveness even without explicit kernel
preemption.

Following a long-time tradition for Unix kernels, Linux has supported task states for both interruptible
and uninterruptible sleeps. During the 2.6.25 development cycle, however, another state was added:
TASK_KILLABLE.35 Tasks in this state are sleeping and do not react to non-fatal signals, but can — in
contrast to TASK_UNINTERRUPTIBLE — be killed by fatal signals. At the time of writing, almost all places
in the kernel that would provide apt possibilities for killable sleeps are still waiting to be converted to the
new form.

The scheduler has seen a comparatively large number of cleanups during the development of kernels
2.6.25 and 2.6.26. A new feature added during this period is real-time group scheduling. This means that
real-time tasks can now also be handled by the group scheduling framework introduced in this chapter.

Additionally, the scheduler documentation was moved into the dedicated directory Documentation/
scheduler/, and obsolete files documenting the old O(1) scheduler have been removed. Documentation
on real-time group scheduling can be found in Documentation/scheduler/sched-rt-group.txt.

2.9 Summary
Linux is a multiuser and multitasking operating system, and thus has to manage multiple processes from
multiple users. In this chapter, you have learned that processes are a very important and fundamental
abstraction of Linux. The data structure used to represent individual processes has connections with
nearly every subsystem of the kernel.

You have seen how Linux implements the traditional fork/exec model inherited from Unix to create
new processes that are hierarchically related to their parent, and have also been introduced to Linux-
specific extensions to the traditional Unix model in the form of namespaces and the clone system call.
Both allow for fine-tuning how a process perceives the system, and which resources are shared between
parent and child processes. Explicit methods that enable otherwise separated processes to communicate
are discussed in Chapter 5.

Additionally, you have seen how the available computational resources are distributed between pro-
cesses by the scheduler. Linux supports pluggable scheduling modules, and these are used to implement
completely fair and POSIX soft real-time scheduling policies. The scheduler decides when to switch
between which tasks, and is augmented by architecture-specific routines to implement the context switch-
ing proper.

Finally, I have discussed how the scheduler must be augmented to service systems with multiple CPUs,
and how kernel preemption and low-latency modifications make Linux handle time-constrained situa-
tions better.

35Actually, TASK_KILLABLE is not a completely new task state, but an extension to TASK_UNINTERRUPTIBLE. The effect is, how-
ever, identical.

132

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 133

Memory Management

Memory management is one of the most complex and at the same time most important parts of the
kernel. It is characterized by the strong need for cooperation between the processor and the kernel
because the tasks to be performed require them to collaborate very closely. Chapter 1 provided a
brief overview of the various techniques and abstractions used by the kernel in the implementation
of memory management. This chapter examines the technical aspects of implementation in detail.

3.1 Overview
Memory management implementation covers many areas:

❑ Management of physical pages in memory.

❑ The buddy system to allocate memory in large chunks.

❑ The slab, slub, and slob allocators to allocate smaller chunks of memory.

❑ The vmalloc mechanism to allocate non-contiguous blocks of memory.

❑ The address space of processes.

As we know, the virtual address space of the processor is in general divided into two parts by
the Linux kernel. The lower and larger part is available to user processes, and the upper part is
reserved for the kernel. Whereas the lower part is modified during a context switch (between two
user processes), the kernel part of virtual address space always remains the same. On IA-32 systems,
the address space is typically divided between user processes and the kernel in a ratio of 3 : 1;
given a virtual address space of 4 GiB, 3 GiB would be available to userspace and 1 GiB for the
kernel. This ratio can be changed by modifying the relevant configuration options. However, this
has advantages only for very specific configurations and applications. For purposes of our further
investigations, I assume a ratio of 3 : 1 for now, but will come back to different ratios later.

The available physical memory is mapped into the address space of the kernel. Accesses with virtual
addresses whose offset to the start of the kernel area does not exceed the size of the available RAM
are therefore automatically associated with physical page frames. This is practical because memory

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 134

Chapter 3: Memory Management

allocations in the kernel area always land in physical RAM when this scheme is adopted. However,
there is one problem. The virtual address space portion of the kernel is necessarily smaller than the
maximum theoretical address space of the CPU. If there is more physical RAM than can be mapped
into the kernel address space, the kernel must resort to the highmem method to manage ‘‘super
fluous‘‘ memory. On IA-32 systems, up to 896 MiB of RAM can be managed directly; anything
above this figure (up to a maximum of 4 GiB) can only be addressed by means of highmem.

4 GiB is the maximum memory size that can be addressed on 32-bit systems (232 = 4 GiB). If a trick
is used, modern IA-32 implementations — Pentium PRO and higher — can manage up to 64 GiB of
memory if PAE mode is enabled. PAE stands for page address extension and provides additional bits
for memory pointers. However, not all 64 GiB can be addressed at the same time, only sections of 4 GiB
each.

Because most memory management data structures can only be allocated in the range between 0 and
1 GiB, there is a practical limit to the maximum memory size and this is less than 64 GiB. The exact
value varies according to kernel configuration. For example, it is possible to allocate third-level page table
entries in highmem to reduce the load on the normal zone.

Because IA-32 systems with memory in excess of 4 GiB are a rarity and the 64-bit architecture AMD64
that has for all practical purposes replaced IA-32 offers a much cleaner solution to this problem, I won’t
bother discussing the second highmem mode here.

Highmem mode is not required on 64-bit machines because the available address space is gigantic, even
if physical addressing is limited to a smaller number of bits, for example, 48 or 52. Given that exactly the
same was thought of the 4-GiB address space on 32-bit systems just a few years ago, one could argue
that it would merely seem to be a matter of time before the limits of 64-bit systems are reached, although
16 EiB should suffice for some time. But you never know

The use of highmem pages is problematic only for the kernel itself. The kernel
must first invoke the kmap and kunmap functions discussed below to map the
highmem pages into its virtual address space before it can use them — this is not
necessary with normal memory pages. However, for userspace processes, it makes
absolutely no difference if the pages are highmem or normal pages because they are
always accessed via page tables and never directly.

There are two types of machine that manage physical memory in different ways:

1. UMA machines (uniform memory access) organize available memory in a contiguous fashion
(possibly with small gaps). Each processor (in a symmetric multiprocessor system) is able to
access each memory area equally quickly.

2. NUMA machines (non-uniform memory access) are always multiprocessor machines. Local
RAM is available to each CPU of the system to support particularly fast access. The proces-
sors are linked via a bus to support access to the local RAM of other CPUs — this is naturally
slower than accessing local RAM.

Examples of such systems are Alpha-based WildFire servers and NUMA-Q machines
from IBM.

134

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 135

Chapter 3: Memory Management

Figure 3-1 illustrates the difference between the two approaches.

Memory

CPU 0 CPU 1 CPU 3

Memory

CPU 0 CPU 1 CPU 3

Memory Memory

UMA NUMA

Figure 3-1: UMA and NUMA systems.

A mix of both machine types with discontiguous memory is also possible. Such a mix would then
represent a UMA system whose RAM is not contiguous but has large holes. Here it is often helpful
to apply the principles of NUMA organization to make memory access simpler for the kernel. In
fact, the kernel distinguishes three configuration options — FLATMEM, DISCONTIGMEM, and SPARSEMEM.
SPARSEMEM and DISCONTIGMEM serve practically the same purpose, but in the view of developers, differ in
the quality of their code — SPARSEMEM is regarded as more experimental and less stable but does feature
performance optimizations. Discontiguous memory is presumed to be more stable, but is not prepared
for new features like memory hotplugging.

In the following sections, we restrict ourselves largely to FLATMEM because this memory organization type
is used on most configurations and is also usually the kernel default. The fact that we do not discuss
the other options is no great loss because all memory models make use of practically the same data
structures.

Real NUMA systems will set the configuration option CONFIG_NUMA, and the memory management
codes will differ between the two variants. Since the flat memory model will not make sense on NUMA
machines, only discontiguous and sparse memory will be available. Notice that the configuration option
NUMA_EMU allows AMD64 systems with a flat memory to enjoy the full complexities of NUMA systems by
splitting the memory into fake NUMA zones. This can be useful for development when no real NUMA
machine is available — for some reason, these tend to be rather costly.

This book focuses on the UMA case, and does not consider CONFIG_NUMA. This does not mean
that the NUMA data structures can be completely neglected. Since UMA systems can choose
the configuration option CONFIG_DISCONTIGMEM if their address space contains large holes, then more
than one memory node can also be available on systems that do not employ NUMA techniques
otherwise.

Figure 3-2 summarizes the various possible choices for the configuration options related to memory
layout.

Notice that we will come across the term allocation order quite often in the following discussion. It denotes
the binary logarithm of the number of pages that are contained in a memory region. An order 0 allocation
consists of one page, an order two allocation of 21 = 2 pages, an order three allocation of 22 = 4 pages,
and so on.

135

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 136

Chapter 3: Memory Management

Sparse memory

NUMA

UMA

Discontiguous
memoryFlat memory

NUMA
UMA

Address space without holes

Figure 3-2: Overview of possible memory setups for flat, sparse, and
discontiguous memory on UMA and NUMA machines.

3.2 Organization in the (N)UMA Model
The various architectures supported differ greatly in terms of how they manage memory. Owing to the
intelligent design of the kernel and, in some cases, intervening compatibility layers, these differences are
so well concealed that generic code can usually ignore them. As discussed in Chapter 1, a major issue is
the varying number of indirection levels for page tables. A second key aspect is the division into NUMA
and UMA systems.

The kernel uses identical data structures for machines with uniform and non-uniform memory access so
that the individual algorithms need make little or no distinction between the various forms of memory
arrangement. On UMA systems, a single NUMA node is introduced to help manage the entire system
memory. The other parts of memory management are led to believe that they are working with a pseudo-
NUMA system.

3.2.1 Overview
Before we look at the data structures used to organize memory in the kernel, we need to define a few
concepts because the terminology is not always easy to understand. Let’s first consider NUMA systems.
This will enable us to show that it is very easy to reduce them to UMA systems.

Figure 3-3 is a graphic illustration of the memory partitioning described below (the situation is somewhat
simplified, as you will see when we examine the data structures closely).

First, RAM memory is divided into nodes. A node is associated with each processor of the system and is
represented in the kernel by an instance of pg_data_t (these data structures are defined shortly).

Each node is split into zones as further subdivisions of memory. For example, there are restrictions as
to the memory area that can be used for DMA operations (with ISA devices); only the first 16 MiB are
suitable. There is also a highmem area that cannot be mapped directly. Between these is the ‘‘normal‘‘
memory area for universal use. A node therefore comprises up to three zones. The kernel introduces the
following constants to distinguish between them.

136

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 137

Chapter 3: Memory Management

pg_data_t

ZONELIST

Z
O
N
E
S

pg_data_t

ZONELIST

Z
O
N
E
S

pg_data_t

ZONELIST

Z
O
N
E
S

struct page

Figure 3-3: Memory partitioning in NUMA systems.

The kernel introduces the following constants to enumerate all zones in the system:

<mmzone.h>
enum zone_type {
#ifdef CONFIG_ZONE_DMA

ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32

ZONE_DMA32,
#endif

ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM

ZONE_HIGHMEM,
#endif

ZONE_MOVABLE,
MAX_NR_ZONES

};

❑ ZONE_DMA for DMA-suitable memory. The size of this region depends on the processor type. ON
IA-32 machines, the limit is the classical 16 MiB boundary imposed by ancient ISA devices. But
also, more modern machines can be affected by this.

❑ ZONE_DMA32 for DMA-suitable memory in a 32-bit addressable area. Obviously, there is only a
difference between the two DMA alternatives on 64-bit systems. On 32-bit machines, this zone
is empty; that is, its size is 0 MiB. On Alphas and AMD64 systems, for instance, this zone ranges
from 0 to 4 GiB.

❑ ZONE_NORMAL for normal memory mapped directly in the kernel segment. This is the only zone
guaranteed to be possible present on all architectures. It is, however, not guaranteed that the
zone must be equipped with memory. If, for instance, an AMD64 system has 2 GiB of RAM, then
all of it will belong to ZONE_DMA32, and ZONE_NORMAL will be empty.

❑ ZONE_HIGHMEM for physical memory that extends beyond the kernel segment.

137

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 138

Chapter 3: Memory Management

Depending on the compile-time configuration, some zones need not be considered.
64-bit systems, for instance, do not require a high memory zone, and the DMA32 zone
is only required on 64-bit systems that also support 32-bit peripheral devices that
can only access memory up to 4 GiB.

The kernel additionally defines a pseudo-zone ZONE_MOVABLE, which is required when efforts are made to
prevent fragmentation of the physical memory. We will look closer into this mechanism in Section 3.5.2.

MAX_NR_ZONES acts as an end marker if the kernel wants to iterate over all zones present in the system.

Each zone is associated with an array in which the physical memory pages belonging to the
zone — known as page frames in the kernel — are organized. An instance of struct page with the
required management data is allocated for each page frame.

The nodes are kept on a singly linked list so that the kernel can traverse them.

For performance reasons, the kernel always attempts to perform the memory allocations of a process on
the NUMA node associated with the CPU on which it is currently running. However, this is not always
possible — for example, the node may already be full. For such situations, each node provides a fallback
list (with the help of struct zonelist). The list contains other nodes (and associated zones) that can be
used as alternatives for memory allocation. The further back an entry is on the list, the less suitable it is.

What’s the situation on UMA systems? Here, there is just a single node — no others. This node is shown
against a gray background in the figure. Everything else is unchanged.

3.2.2 Data Structures
Now that I have explained the relationship between the various data structures used in memory man-
agement, let’s look at the definition of each.

Node Management
pg_data_t is the base element used to represent a node and is defined as follows:

<mmzone.h>
typedef struct pglist_data {

struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
struct page *node_mem_map;
struct bootmem_data *bdata;

unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page

range, including holes */
int node_id;
struct pglist_data *pgdat_next;
wait_queue_head_t kswapd_wait;
struct task_struct *kswapd;
int kswapd_max_order;

} pg_data_t;

138

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 139

Chapter 3: Memory Management

❑ node_zones is an array that holds the data structures of the zones in the node.

❑ node_zonelists specifies alternative nodes and their zones in the order in which they are used
for memory allocation if no more space is available in the current zone.

❑ The number of different zones in the node is held in nr_zones.

❑ node_mem_map is a pointer to an array of page instances used to describe all physical pages of the
node. It includes the pages of all zones in the node.

❑ During system boot, the kernel needs memory even before memory management has been ini-
tialized (memory must also be reserved to initialize memory management). To resolve this prob-
lem, the kernel uses the boot memory allocator described in Section 3.4.3. bdata points to the
instance of the data structure that characterizes the boot memory allocator.

❑ node_start_pfn is the logical number of the first page frame of the NUMA node. The page
frames of all nodes in the system are numbered consecutively, and each frame is given a number
that is globally unique (not just unique to the node).

node_start_pfn is always 0 in a UMA system because there is only one node whose first page
frame is therefore 0. node_present_pages specifies the number of page frames in the zone and
node_spanned_pages the size of the zone in page frames. This value need not necessarily be the
same as node_present_pages because there may be holes in the zone that are not backed by a
real page frame.

❑ node_id is a global node identifier. All NUMA nodes in the system are numbered starting
from 0.

❑ pgdat_next links the nodes in the system on a singly linked list whose end is indicated, as usual,
by a null pointer.

❑ kswapd_wait is the wait queue for the swap daemon needed when swapping frames out of the
zone (Chapter 18 deals with this at length). kswapd points to the task structure of the swap dae-
mon responsible for the zone. kswapd_max_order is used in the implementation of the swapping
subsystem to define the size of the area to be freed and is currently of no interest.

The association between the node and the zones it contains and the fallback list shown in Figure 3-3 is
established by means of arrays at the beginning of the data structure.

These are not the usual pointers to arrays. The array data are held in the node struc-
ture itself.

The zones of the node are held in node_zones[MAX_NR_ZONES]. The array always has three entries, even
if the node has fewer zones. If the latter is the case, the remaining entries are filled with null elements.

Node State Management
If more than one node can be present on the system, the kernel keeps a bitmap that provides state infor-
mation for each node. The states are specified with a bitmask, and the following values are possible:

<nodemask.h>
enum node_states {

N_POSSIBLE, /* The node could become online at some point */
N_ONLINE, /* The node is online */
N_NORMAL_MEMORY, /* The node has regular memory */

#ifdef CONFIG_HIGHMEM

139

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 140

Chapter 3: Memory Management

N_HIGH_MEMORY, /* The node has regular or high memory */
#else

N_HIGH_MEMORY = N_NORMAL_MEMORY,
#endif

N_CPU, /* The node has one or more cpus */
NR_NODE_STATES

};

The states N_POSSIBLE, N_ONLINE, and N_CPU are required for CPU and memory hotplugging, but these
features are not considered in this book. Essential for memory management are the flags N_HIGH_MEMORY
and N_NORMAL_MEMORY. While the first one announces that the zone is equipped with memory that may
be either regular or high memory, N_NORMAL_MEMORY is only set if non-highmem memory is present
on a node.

Two auxiliary functions are provided to set or clear, respectively, a bit in the bit-field or a specific node:

<nodemask.h>
void node_set_state(int node, enum node_states state)
void node_clear_state(int node, enum node_states state)

Additionally, the macro for_each_node_state(__node, __state) allows for iterating over all nodes
that are in a specific state, and for_each_online_node(node) iterates over all active nodes.

If the kernel is compiled to support only a single node, that is, using the flat memory model, the node
bitmap is not present, and the functions to manipulate it resolve to empty operations that simply do
nothing.

Memory Zones
The kernel uses the zones structure to describe a zone. It is defined as follows:

<mmzone.h>
struct zone {

/* Fields commonly accessed by the page allocator */
unsigned long pages_min, pages_low, pages_high;

unsigned long lowmem_reserve[MAX_NR_ZONES];

struct per_cpu_pageset pageset[NR_CPUS];

/*
* free areas of different sizes
*/
spinlock_t lock;
struct free_area free_area[MAX_ORDER];

ZONE_PADDING(_pad1_)

/* Fields commonly accessed by the page reclaim scanner */
spinlock_t lru_lock;
struct list_head active_list;
struct list_head inactive_list;
unsigned long nr_scan_active;
unsigned long nr_scan_inactive;
unsigned long pages_scanned; /* since last reclaim */

140

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 141

Chapter 3: Memory Management

unsigned long flags; /* zone flags, see below */

/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];

int prev_priority;

ZONE_PADDING(_pad2_)
/* Rarely used or read-mostly fields */

wait_queue_head_t * wait_table;
unsigned long wait_table_hash_nr_entries;
unsigned long wait_table_bits;

/* Discontig memory support fields. */
struct pglist_data *zone_pgdat;
unsigned long zone_start_pfn;

unsigned long spanned_pages; /* total size, including holes */
unsigned long present_pages; /* amount of memory (excluding holes) */

/*
* rarely used fields:
*/
char *name;

} ____cacheline_maxaligned_in_smp;

The striking aspect of this structure is that it is divided into several sections separated by ZONE_PADDING.
This is because zone structures are very frequently accessed. On multiprocessor systems, it commonly
occurs that different CPUs try to access structure elements at the same time. Locks (examined in
Chapter 5) are therefore used to prevent them interfering with each, and giving rise to errors and
inconsistencies. The two spinlocks of the structure — zone->lock and zone->lru_lock — are often
acquired because the kernel very frequently accesses the structure.1

Data are processed faster they are is held in a cache of the CPU. Caches are divided into lines, and
each line is responsible for various memory areas. The kernel invokes the ZONE_PADDING macro to
generate ‘‘padding‘‘ that is added to the structure to ensure that each lock is in its own cache line.
The compiler keyword __cacheline_maxaligned_in_smp is also used to achieve optimal cache
alignment.

The last two sections of the structure are also separated from each other by padding. As neither includes
a lock, the primary aim is to keep the data in a cache line for quick access and thus to dispense with the
need for loading the data from RAM memory, which is a slow process. The increase in size due to the
padding structures is negligible, particularly as there are relatively few instances of zone structures in
kernel memory.

What is the meaning of the structure elements? Since memory management is a complex and comprehen-
sive part of the kernel, it is not possible to cover the exact meaning of all elements at this point — a good
part of this and of following chapters will be devoted to understanding the associated data structures
and mechanisms. What I can provide, however, is an overview that gives a taste of the problems I am
about to discuss. A large number of forward references is nevertheless unavoidable.

1The locks are therefore known as hotspots. In Chapter 17, some tricks that are used by the kernel to reduce the pressure on these
hotspots are discussed.

141

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 142

Chapter 3: Memory Management

❑ pages_min, pages_high, and pages_low are ‘‘watermarks‘‘used when pages are swapped out.
The kernel can write pages to hard disk if insufficient RAM memory is available. These three
elements influence the behavior of the swapping daemon.

❑ If more than pages_high pages are free, the state of the zone is ideal.

❑ If the number of free pages falls below pages_low, the kernel begins to swap pages out onto
the hard disk.

❑ If the number of free pages falls below pages_min, the pressure to reclaim pages is
increased because free pages are urgently needed in the zone. Chapter 18 will discuss
various means of the kernel to find relief.

The importance of these watermarks will mainly show in Chapter 18, but they also come into
play in Section 3.5.5.

❑ The lowmem_reserve array specifies several pages for each memory zone that are reserved for
critical allocations that must not fail under any circumstances. Each zone contributes accord-
ing to its importance. The algorithm to calculate the individual contributions is discussed in
Section 3.2.2.

❑ pageset is an array to implement per-CPU hot-n-cold page lists. The kernel uses these lists to
store fresh pages that can be used to satisfy implementations. However, they are distinguished
by their cache status: Pages that are most likely still cache-hot and can therefore be quickly
accessed are separated from cache-cold pages. The next section discusses the struct per_
cpu_pageset data structure used to realize this behavior.

❑ free_area is an array of data structures of the same name used to implement the buddy system.
Each array element stands for contiguous memory areas of a fixed size. Management of free
memory pages contained in each area is performed starting from free_area.

The employed data structures merit a discussion of their own, and Section 3.5.5 covers the imple-
mentation details of the buddy system in depth.

❑ The elements of the second section are responsible for cataloging the pages used in the zone
according to activity. A page is regarded as active by the kernel if it is accessed frequently; an
inactive page is obviously the opposite. This distinction is important when pages need to be
swapped out. If possible, frequently used pages should be left intact, but superfluous inactive
pages can be swapped out without impunity.

The following elements are involved:

❑ active_list collects the active pages, and inactive_list the inactive pages (page
instances).

❑ nr_scan_active and nr_scan_inactive specify how many active and inactive pages are
to be scanned when reclaiming memory.

❑ pages_scanned specifies how many pages were unsuccessfully scanned since the last time
a page was swapped out.

❑ flags describes the current status of the zone. The following flags are allowed:

<mmzone.h>
typedef enum {

ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */

142

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 143

Chapter 3: Memory Management

ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
} zone_flags_t;

It is also possible that none of these flags is set. This is the normal state of the zone.
ZONE_ALL_UNRECLAIMABLE is a state that can occur when the kernel tries to reuse some
pages of the zone (page reclaim, see Chapter 18), but this is not possible at all because
all pages are pinned. For instance, a userspace application could have used the mlock
system call to instruct the kernel that pages must not be removed from physical memory,
for example, by swapping them out. Such a page is said to be pinned. If all pages in a
zone suffer this fate, the zone is unreclaimable, and the flag is set. To waste no time, the
swapping daemon scans zones of this kind very briefly when it is looking for pages to
reclaim.2

On SMP systems, multiple CPUs could be tempted to reclaim a zone concurrently. The
flag ZONE_RECLAIM_LOCKED prevents this: If A CPU is reclaiming a zone, it set the flag. This
prevents other CPUs from trying.

ZONE_OOM_LOCKED is reserved for an unfortunate situation: If processes use up so much
memory that essential operations cannot be completed anymore, then the kernel will try
to select the worst memory eater and kill it to obtain more free pages. The flag prevents
multiple CPUs from getting into their way in this case.

The kernel provides three auxiliary functions to test and set zone flags:

<mmzone.h>
void zone_set_flag(struct zone *zone, zone_flags_t flag)
int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
void zone_clear_flag(struct zone *zone, zone_flags_t flag)

zone_set_flag and zone_clear_flag set and clear a certain flag, respectively. zone_test_
and_set_flag first tests if a given flag is set and does so if not. The old state of the flag is
returned to the caller.

❑ vm_stat keeps a plethora of statistical information about the zone. Since most of the infor-
mation kept in there will not make much sense at the moment, a detailed discussion is
deferred to Section 17.7.1. For now, it suffices to know that the information is updated from
places all over the kernel. The auxiliary function zone_page_state allows for reading the
information in vm_stat:

<vmstat.h>
static inline unsigned long zone_page_state(struct zone *zone,

enum zone_stat_item item)

item can, for instance, be NR_ACTIVE or NR_INACTIVE to query the number of active and
inactive pages stored on active_list and inactive_list discussed above. The number of
free pages in the zone is obtained with NR_FREE_PAGES.

❑ prev_priority stores the priority with which the zone was scanned in the last scan oper-
ation until sufficient page frames were freed in try_to_free_pages (see Chapter 17). As
you shall also see in Chapter 17, the decision as to whether mapped pages are swapped out
depends on this value.

2However, scanning cannot be totally dispensed with because the zone may contain reclaimable pages again at some time
in the future. If so, the flag is removed and the kswapd daemon treats the zone again like any other zone.

143

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 144

Chapter 3: Memory Management

❑ wait_table, wait_table_bits, and wait_table_hash_nr_entries implement a wait queue
for processes waiting for a page to become available. While the details of this mechanism are
shown in Chapter 14, the intuitive notion holds pretty well: Processes queue up in a line to wait
for some condition. When this condition becomes true, they are notified by the kernel and can
resume their work.

❑ The association between a zone and the parent node is established by zone_pgdat, which points
to the corresponding instance of pg_list_data.

❑ zone_start_pfn is the index of the first page frame of the zone.

❑ The remaining three fields are rarely used, so they’ve been placed at the end of the data struc-
ture.

name is a string that holds a conventional name for the zone. Three options are available at
present: Normal, DMA, and HighMem.

spanned_pages specifies the total number of pages in the zone. However, not all need be usable
since there may be small holes in the zone as already mentioned. A further counter (present_
pages) therefore indicates the number of pages that are actually usable. Generally, the value of
this counter is the same as that for spanned_pages.

Calculation of Zone Watermarks
Before calculating the various watermarks, the kernel first determines the minimum memory space
that must remain free for critical allocations. This value scales nonlinearly with the size of the available
RAM. It is stored in the global variable min_free_kbytes. Figure 3-4 provides an overview of the scaling
behavior, and the inset — which does not use a logarithmic scale for the main memory size in contrast to
the main graph — shows a magnification of the region up to 4 GiB. Some exemplary values to provide a
feeling for the situation on systems with modest memory that are common in desktop environments are
collected in Table 3-1. An invariant is that not less than 128 KiB but not more than 64 MiB may be used.
Note, however, that the upper bound is only necessary on machines equipped with a really satisfactory
amount of main memory.3 The file /proc/sys/vm/min_free_kbytes allows reading and adapting the
value from userland.

Filling the watermarks in the data structure is handled by init_per_zone_pages_min, which is invoked
during kernel boot and need not be started explicitly.4

setup_per_zone_pages_min sets the pages_min, pages_low, and pages_high elements of struct zone.
After the total number of pages outside the highmem zone has been calculated (and stored in lowmem_
pages), the kernel iterates over all zones in the system and performs the following calculation:

mm/page_alloc.c
void setup_per_zone_pages_min(void)
{

unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;

3In practice, it will be unlikely that such an amount of memory is installed on a machine with a single NUMA node, so it will be
hard to actually reach the point where the cutoff is required.
4The functions are not only called from here, but are also invoked each time one of the control parameters is modified via the proc
filesystem.

144

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 145

Chapter 3: Memory Management

...
for_each_zone(zone) {

u64 tmp;

tmp = (u64)pages_min * zone->present_pages;
do_div(tmp,lowmem_pages);
if (is_highmem(zone)) {

int min_pages;

min_pages = zone->present_pages / 1024;
if (min_pages < SWAP_CLUSTER_MAX)

min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)

min_pages = 128;
zone->pages_min = min_pages;

} else {
zone->pages_min = tmp;

}

zone->pages_low = zone->pages_min + (tmp >> 2);
zone->pages_high = zone->pages_min + (tmp >> 1);

}
}

 0

 5000

 10000

 15000

 20000

 25000

 1 10 100 1000

Pa
ge

s
of

 4
 K

iB

Zone memory [GiB]

pages_low
pages_high
pages_min

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000
Zone memory [MiB]

Figure 3-4: Minimum memory size for critical allocations and zone watermarks depending
on the main memory size of a machine (pages_min is nothing other than
min_free_kbytes in units of pages).

145

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 146

Chapter 3: Memory Management

Table 3-1: Correlation between Main Memory Size and Minimum Memory Available
for Critical Allocations.

Main memory Reserve

16 MiB 512 KiB

32 MiB 724 KiB

64 MiB 1024 KiB

128 MiB 1448 KiB

256 MiB 2048 KiB

512 MiB 2896 KiB

1024 MiB 4096 KiB

2048 MiB 5792 KiB

4096 MiB 8192 KiB

8192 MiB 11584 KiB

16384 MiB 16384 KiB

init_per_zone_pages_min

setup_per_zone_pages_min

setup_per_zone_lowmem_reserve

Figure 3-5: Code flow diagram for
init_per_zone_pages_min.

The lower bound for highmem zones, SWAP_CLUSTER_MAX, is an important quantity for the whole page
reclaim subsystem as discussed in Chapter 17. The code there often operates batchwise on page clusters,
and SWAP_CLUSTER_MAX defines the size of such clusters. Figure 3-4 shows the outcome of the calcula-
tions for various main memory sizes. Since high memory is not very relevant anymore these days (most
machines with large amounts of RAM use 64-bit CPUs), I have restricted the graph to show the outcomes
for regular zones.

Computing lowmem_reserve is done in setup_per_zone_lowmem_reserve. The kernel iterates over all
nodes of the system and calculates the minimum reserve for each zone of the node by dividing the total
number of page frames in the zone by sysctl_lowmem_reserve_ratio[zone]. The default settings for
the divisor are 256 for low memory and 32 for high memory.

Hot-N-Cold Pages
The pageset element of struct zone is used to implement a hot-n-cold allocator. The kernel refers to
a page in memory as hot if it is in a CPU cache and its data can therefore be accessed quicker than if

146

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 147

Chapter 3: Memory Management

it were in RAM. Conversely, a cold page is not held in cache. As each CPU has one or more caches on
multiprocessor systems, management must be separate for each CPU.

Even though a zone belongs to a specific NUMA node and is therefore associated
with a specific CPU, the caches of other CPUs may include pages from this zone —
ultimately, each processor can access all pages in the system, albeit at different
speeds. The zone-specific data structure must therefore cater not only for the CPU
associated with the NUMA node of the zone but also for all other CPUs in the
system.

pageset is an array that holds as many entries as the maximum possible number of CPUs that the system
can accommodate.

<mmzone.h>
struct zone {

...
struct per_cpu_pageset pageset[NR_CPUS];
...

};

NR_CPUS is a configurable pre-processor constant defined at compilation time. Its value is always 1 on
uniprocessor systems, but on a kernel compiled for SMP systems, it may be between 2 and 32 (or 64 on
64-bit systems).

The value does not reflect the number of CPUs actually present in a system but the
maximum number of CPUs supported by the kernel.

The array elements are of type per_cpu_pageset, which is defined as follows:

<mmzone.h>
struct per_cpu_pageset {

struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
} ____cacheline_aligned_in_smp;

The structure consists of an array with two entries, the first to manage hot and the second to manage cold
pages.

The useful data are held in per_cpu_pages.5

<mmzone.h>
struct per_cpu_pages {

int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
int batch; /* chunk size for buddy add/remove */
struct list_head list; /* the list of pages */

};

5Kernel 2.6.25, which was still under development when this book was written, will replace the separate lists for hot and cold pages
by a single list. Hot pages will be kept at the beginning, while cold pages will be placed at the end. The change was introduced after
measurements had shown that having two separate lists would not provide substantial benefits compared to a single list.

147

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 148

Chapter 3: Memory Management

Whereas count keeps a record of the number of pages associated with the element, high is a watermark.
If the value of count exceeds high, this indicates that there are too many pages in the list. No explicit
watermark for low fill states is used: When no elements are left, the list is refilled.

list is a doubly linked list that holds the per-CPU pages and is handled using standard methods of the
kernel.

If possible, the per-CPU caches are not filled with individual pages but with multipage chunks. batch is
a guideline to the number of pages to be added in a single pass.

Figure 3-6 illustrates graphically how the data structures of the per-CPU cache are filled on a dual-
processor system.

count = 36
high = 96 batch = 16

count = 16
high = 32 batch = 16

CPU 0

CPU 1
count = 36
high = 96 batch = 16

count = 36
high = 96 batch = 16

Hot pages

Cold pages

Figure 3-6: Per-CPU cache on a dual-processor system.

How watermarks are calculated and how the cache data structures are initialized are discussed in more
detail in Section 3.4.2.

Page Frames
Page frames represent the smallest unit of system memory, and an instance of struct page is created for
each page in RAM. Kernel programmers take care to keep this structure as small as possible because the
memory of systems even with a moderate RAM configuration is broken down into a very large number
of pages. For instance, an IA-32 system working with a standard page size of 4 KiB has around 100,000
pages given a main memory size of 384 MiB. Although this memory size is certainly not excessively large
for today’s standards, the number of pages is already considerable.

This is why the kernel makes great efforts to keep struct page as small as possible. The sheer number
of pages in a typical system causes even small changes in the structure to lead to a large increase in the
amount of physical memory required to keep all page instances.

Keeping the structure small is not exactly simplified by the ubiquity of pages: They are used in many
parts of memory management, and for varying applications. While one part of the kernel absolutely
depends on a specific piece of information being available in struct page, this could be useless for
another part, which itself depends a different piece of information, which could again be completely
useless for the other part, and so on

A C union lends itself naturally as a remedy for this problem, even if clarity of struct page is not
increased at first. Consider an example: A physical page can be mapped into the virtual address space via
page tables from multiple places, and the kernel wants to keep track of how many places map the page.
For this end, a counter in struct page counts the number of mappings. If a page is used by the slub

148

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 149

Chapter 3: Memory Management

allocator (a means to subdivide complete pages into into smaller portions, see Section 3.6.1), then it is
guaranteed to be only used by the kernel and not from somewhere else, so the map count information is
superfluous. Instead, the kernel can reinterpret the field to denote how many small memory objects into
which a page is subdivided are in use. The double interpretation looks as follows in the data structure
definition:

<mm_types.h>
struct page {
...

union {
atomic_t _mapcount; /* Count of ptes mapped in mms,

* to show when page is mapped
* & limit reverse map searches.
*/

unsigned int inuse; /* SLUB: Nr of objects */
};

...
}

Note that atomic_t and unsigned int are two different data types — the first allows for changing values
atomically, that is, safe against concurrent access, while the second is a classical integer. atomic_t pro-
vides 32 bits,6 and an integer also provides this many bits on each architecture supported by Linux. Now
it could be tempting to ‘‘simplify’’ the definition as follows:

struct page {
...

atomic_t counter;
...
}

This would be bad style, though, and is completely unacceptable to the kernel developers. The slub code
does not need atomicity to access its object counter, and this should also be reflected in the data type.
And, most importantly, readability of the code will suffer in both subsystems. While _mapcount and
inuse provide a clear and concise description of what the element is about, counter could mean almost
everything.

Definition of page
The structure is defined as follows:

<mm.h>
struct page {

unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */

atomic_t _count; /* Usage count, see below. */
union {

atomic_t _mapcount; /* Count of ptes mapped in mms,
* to show when page is mapped
* & limit reverse map searches.
*/

6Before kernel 2.6.3, this was not true. The Sparc architecture could only provide 24 bits for atomic manipulation, so the generic code
for all architecture needed to stick to this limit. Luckily, this problem has been resolved now by improvements in the Sparc specific
code.

149

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 150

Chapter 3: Memory Management

unsigned int inuse; /* SLUB: Nr of objects */
};
union {

struct {
unsigned long private; /* Mapping-private opaque data:

* usually used for buffer_heads
* if PagePrivate set; used for
* swp_entry_t if PageSwapCache;
* indicates order in the buddy
* system if PG_buddy is set.
*/

struct address_space *mapping; /* If low bit clear, points to
* inode address_space, or NULL.
* If page mapped as anonymous
* memory, low bit is set, and
* it points to anon_vma object:
* see PAGE_MAPPING_ANON below.
*/

};
...

struct kmem_cache *slab; /* SLUB: Pointer to slab */
struct page *first_page; /* Compound tail pages */

};
union {

pgoff_t index; /* Our offset within mapping. */
void *freelist; /* SLUB: freelist req. slab lock */

};
struct list_head lru; /* Pageout list, eg. active_list

* protected by zone->lru_lock !
*/

#if defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if

not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
};

The elements slab, freelist, and inuse are used by the slub allocator. We do not need to be concerned
with these special arrangements, and they are not used if support for the slub allocator is not compiled
into the kernel, so I omit them in the following discussion to simplify matters.

Each page frame is described by this structure in an architecture-independent format that does not
depend on the CPU type used. Besides the slub elements, the page structure includes several other ele-
ments that can only be explained accurately in the context of kernel subsystems discussed elsewhere. I
shall nevertheless provide an overview of the contents of the structure, even though this means referenc-
ing later chapters.

❑ flags stores architecture-independent flags to describe page attributes. I discuss the different
flag options below.

❑ _count is a usage count indicating the number of references to this page in the kernel. When its
value reaches 0, the kernel knows that the page instance is not currently in use and can therefore
be removed. If its value is greater than 0, the instance should on no account be removed from
memory. If you are not familiar with reference counters, you should consult Appendix C for
further information.

150

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 151

Chapter 3: Memory Management

❑ _mapcount indicates how many entries in the page table point to the page.

❑ lru is a list head used to keep the page on various lists that allow grouping the pages into
different categories, most importantly active and inactive pages. Especially the discussion in
Chapter 18 will come back to these lists.

❑ The kernel allows for combining multiple adjacent pages into a larger compound page. The first
page in the cluster is called the head page, while all other pages are named tail page. All tail pages
have first_page set to point to the head page.

❑ mapping specifies the address space in which a page frame is located. index is the offset within
the mapping. Address spaces are a very general concept used, for example, when reading a file
into memory. An address space is used to associate the file contents (data) with the areas in
memory into which the contents are read. By means of a small trick,7 mapping is able to hold not
only a pointer, but also information on whether a page belongs to an anonymous memory area
that is not associated with an address space. If the bit with numeric value 1 is set in mapping, the
pointer does not point to an instance of address_space but to another data structure (anon_vma)
that is important in the implementation of reverse mapping for anonymous pages; this struc-
ture is discussed in Section 4.11.2. Double use of the pointer is possible because address_space
instances are always aligned with sizeof(long); the least significant bit of a pointer to this
instance is therefore 0 on all machines supported by Linux.

The pointer can be used directly if it points normally to an instance of address_space. If the trick
involving setting the least significant bit to 1 is used, the kernel can restore the pointer by means
of the following operation:

anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON)

❑ private is a pointer to ‘‘private‘‘ data ignored by virtual memory management. The pointer can
be employed in different ways depending on page usage. It is mostly used to associate the page
with data buffers as described in the following chapters.

❑ virtual is used for pages in the highmem area, in other words, for pages that cannot be directly
mapped into kernel memory. virtual then accepts the virtual address of the page.

As the pre-processor statement #ifdef{WANT_PAGE_VIRTUAL} shows, the virtual element is
only part of struct page if the corresponding pre-processor constant is defined. Currently, this
is only the case for a few architectures, namely, Motorola m68k, FRV, and Extensa.

All other architectures adopt a different scheme of addressing virtual pages. At the heart of this
is a hash table used to find the address of all highmem pages. Section 3.5.8 deals with the appro-
priate techniques in more detail. Handling the hash table requires some mathematical operations
that are slow on the aforementioned machines, so they chose the direct approach.

Architecture-Independent Page Flags
The different attributes of a page are described by a series of page flags stored as bits in the flags
element of struct page. The flags are independent of the architecture used and cannot therefore
provide CPU- or machine-specific information (this information is held in the page table itself as is
shown below).

Not only are the individual flags defined with the help of the pre-processor in page-flags.h, but also
macros are generated to set, delete, and query the flags. In doing so, the kernel conforms to a universal

7The trick borders on the unscrupulous but helps save space in one of the most frequently needed kernel structures.

151

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 152

Chapter 3: Memory Management

naming scheme; for example, the PG_locked constant defines the bit position in flags to specify whether
a page is locked or not. The following macros are available to manipulate the bit:

❑ PageLocked queries whether the bit is set.

❑ SetPageLocked sets the PG_locked bit, regardless of its previous state.

❑ TestSetPageLocked sets the bit, but also returns its old value.

❑ ClearPageLocked deletes the bit regardless of its previous state.

❑ TestClearPageLocked deletes the bit and returns its old value.

There is an identical set of macros to perform the operations shown on the appropriate bit for the other
page flags. The macros are implemented atomically. Although some of them are made up of several state-
ments, special processor commands are used to ensure that they act as if they were a single statement;
that is, they cannot be interrupted as this would result in race conditions. (Chapter 14 describes how race
conditions arise and how they can be prevented.)

Which page flags are available? The following list includes the most important flags (again, their mean-
ings become clear in later chapters):

❑ PG_locked specifies whether a page is locked. If the bit is set, other parts of the kernel are not
allowed to access the page. This prevents race conditions in memory management, for example,
when reading data from hard disk into a page frame.

❑ PG_error is set if an error occurs during an I/O operation involving the page.

❑ PG_referenced and PG_active control how actively a page is used by the system. This infor-
mation is important when the swapping subsystem has to select which page to swap out. The
interaction of the two flags is explained in Chapter 18.

❑ PG_uptodate indicates that the data of a page have been read without error from a block device.

❑ PG_dirty is set when the contents of the page have changed as compared to the data on hard
disk. For reasons of performance, pages are not written back immediately after each change. The
kernel therefore uses this flag to note which pages have been changed so that they can be flushed
later.

Pages for which this flag has been set are referred to as dirty (generally, this means that the data
in RAM and the data on a secondary storage medium such as a hard disk have not been synchro-
nized).

❑ PG_lru helps implement page reclaim and swapping. The kernel uses two least recently used
lists8 to distinguish between active and inactive pages. The bit is set if the page is held on one
of these lists. There is also a PG_active flag that is set if the page is on the list of active pages.
Chapter 18 discusses this important mechanism in detail.

❑ PG_highmem indicates that a page is in high memory because it cannot be mapped permanently
into kernel memory.

❑ PG_private must be set if the value of the private element in the page structure is non-NULL.
Pages that are used for I/O use this field to subdivide the page into buffers (see Chapter 16 for
more information), but other parts of the kernel find different uses to attach private data to a
page.

8Frequently used entries are automatically in the foremost positions on this type of list, whereas inactive entries are always moved
toward the end of the list.

152

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 153

Chapter 3: Memory Management

❑ PG_writeback is set for pages whose contents are in the process of being written back to a block
device.

❑ PG_slab is set for pages that are part of the slab allocator discussed in Section 3.6.

❑ PG_swapcache is set if the page is in the swap cache; in this case, private contains an entry of
type swap_entry_t (further details are provided in Chapter 18).

❑ When the available amount of memory gets smaller, the kernel tries to periodically reclaim pages,
that is, get rid of inactive, unused pages. Chapter 18 discusses the details. Once the kernel has
decided to reclaim a specific page, this is announced by setting the PG_reclaim flag.

❑ PG_buddy is set if the page is free and contained on the lists of the buddy system, that is, the core
of the page allocation mechanism.

❑ PG_compound denotes that the page is part of a larger compound page consisting of multiple
adjacent regular pages.

A number of standard macros are defined to check if a page has a specific bit is set, or to manipulate a
bit. Their names follow a certain pattern:

❑ PageXXX(page) checks if a page has the PG_XXX bit set. For instance, PageDirty checks for the
PG_dirty bit, while PageActive checks for PG_active, and so on.

❑ To set a bit if it is not set and return the previous value, SetPageXXX is provided.

❑ ClearPageXXX unconditionally deletes a specific bit.

❑ TestClearPageXXX clears a bit if it is set, but also returns the previously active value.

Notice that these operations are implemented atomically. Chapter 5 discusses what this means in more
detail.

Often it is necessary to wait until the state of a page changes, and then resume work. Two auxiliary
functions provided by the kernel are of particular interest for us:

<pagemap.h>
void wait_on_page_locked(struct page *page);
void wait_on_page_writeback(struct page *page)

Assume that one part of the kernel wants to wait until a locked page has been unlocked.
wait_on_page_locked allows for doing this. While how this is technically done is discussed in
Chapter 14, it suffices to know here that after calling the function, the kernel will go to sleep if the page
is locked. Once the page becomes unlocked, the sleeper is automatically woken up and can continue
its work.

wait_on_page_writeback works similarly, but waits until any pending writeback operations in which
the data contained in the page are synchronized with a block device — a hard disk, for instance — have
been finished.

3.3 Page Tables
Hierarchically linked page tables are used to support the rapid and efficient management of large address
spaces. The principle behind this approach and the benefits it brings as compared to linear addressing
are discussed in Chapter 1. Here we take a closer look at the technical aspects of implementation.

153

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 154

Chapter 3: Memory Management

Recall that page tables are used to establish an association between the virtual address spaces of user
processes and the physical memory of the system (RAM, page frames). The structures discussed so far
serve to describe the structure of RAM memory (partitioning into nodes and zones) and to specify the
number and state (used or free) of the page frames contained. Page tables are used to make a uniform
virtual address space available to each process; the applications see this space as a contiguous memory
area. The tables also map the virtual pages used into RAM, thus supporting the implementation of shared
memory (memory shared by several processes at the same time) and the swapping-out of pages to a block
device to increase the effective size of usable memory without the need for additional physical RAM.

Kernel memory management assumes four-level page tables — regardless of whether this is the case
for the underlying processor. The best example where this assumption is not true is IA-32 systems. By
default, this architecture uses only a two-level paging system — assuming the PAE extensions are not
used. Consequently, the third and fourth levels must be emulated by architecture- specific code.

Page table management is split into two parts, the first architecture-dependent, the second architecture-
independent. Interestingly, all data structures and almost all functions to manipulate them are defined in
architecture-specific files. Because there are some big differences between CPU-specific implementations
(owing to the various CPU concepts used), I won’t go into the low-level details for the sake of brevity.
Extensive knowledge of the individual processors is also required, and the hardware documentation for
each processor family is generally spread over several books. Appendix A describes the IA-32 architec-
ture in more detail. It also discusses, at least in summary form, the architecture of the other important
processors supported by Linux.

The descriptions of data structures and functions in the following sections are usually based on the
interfaces provided by the architecture-dependent files. The definitions can be found in the header files
include/asm-arch/page.h and include/asm-arch/pgtable.h referred to in abbreviated form as page.h
and pgtable.h below. Since AMD64 and IA-32 are unified into one architecture but exhibit a good many
differences when it comes to handling page tables, the definitions can be found in two different files:
include/asm-x86/page_32.h and include/asm-x86/page_64.h, and similar for pgtable_XX.h. When
aspects relating to a specific architecture are discussed, I make explicit reference to the architecture. All
other information is equally valid for all architectures even if the definitions of the associated structures
are architecture-specific.

3.3.1 Data Structures
In C, the void* data type is used to specify a pointer to any byte positions in memory. The number of bits
required differs according to architecture. All common processors (including all those on which Linux
runs) use either 32 or 64 bits.

The kernel sources assume that void* and unsigned long have the same number of bits so that they can
be mutually converted by means of typecasts without loss of information. This assumption — expressed
formally as sizeof(void*) == sizeof(unsigned long) — is, of course, true on all architectures sup-
ported by Linux.

Memory management prefers to use variables of type unsigned long instead of void pointers because
they are easier to handle and manipulate. Technically, they are both equally valid.

Breakdown of Addresses in Memory
Addresses in virtual memory are split into five parts as required by the structure of the four-level
page tables (four table entries to select the page and an index to indicate the position within the page).

154

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 155

Chapter 3: Memory Management

Not only the length but also the way in which the address is split are different on the individual
architectures. The kernel therefore defines macros to break down the address into its individual
components.

PAGE_SHIFT

PMD_SHIFT

PUD_SHIFT

PGDIR_SHIFT

BITS_PER_LONG

PGD PUD PMD PTE Offset

Figure 3-7: Breakdown of a virtual address.

Figure 3-7 shows how the positions of the address elements are defined by bit shifts. BITS_PER_LONG
specifies the number of bits used for an unsigned long variable and therefore also for a generic pointer
to virtual address space.

At the end of each pointer there are several bits to specify the position within the selected frame page.
The number of bits required is held in PAGE_SHIFT.

PMD_SHIFT specifies the total number of bits used by a page and by an entry in the last level of the page
tables. This number can be subtracted from PAGE_SHIFT to determine the number of bits required by
an entry in the last hierarchy level of the page table. More important is the fact that the value indicates
the size of the partial address space managed by an entry in the middle page table, namely, 2PMD_SHIFT

bytes.

PUD_SHIFT adds together the bit lengths of PAGE_OFFSET and PMD_SHIFT, whereas PGDIR_SHIFT combines
the bit lengths of PAGE_OFFSET, PUD_SHIFT, and PMD_SHIFT with the bit number of an entry in the page
middle directory. The value is the binary logarithm of the size of the partial address space that can be
addressed via an entry in the page global directory.

The number of pointers that can be stored in the various directories of the page table is also deter-
mined by macro definitions. PTRS_PER_PGD specifies the number of entries in the page global directory,
PTRS_PER_PMD the number in the page middle directory, PTRS_PER_PUD the number in the page upper
directory, and PTRS_PER_PTE the number in the page table entry.

Architectures with two-level page tables define PTRS_PER_PMD and PTRS_PER_PUD as
1. This persuades the remaining parts of the kernel that they are working with
four-level page translation although only two pages are used — the page middle
and page upper directories are effectively eliminated because they have only a
single entry. Because only a very few systems use a four-level page table, the kernel
uses the header file include/asm-generic/pgtable-nopud.h to hold all the declara-
tions needed to simulate the presence of a fourth page table. The header file
include/asm-generic/pgtable-nopmd.h is also available to simulate the presence
of a third page table level on systems with two-level address translation.

155

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 156

Chapter 3: Memory Management

The size of the address area that can be addressed with pointers of n-bit length is 2n bytes. The kernel
defines additional macro variables to hold the values calculated so that it is unnecessary to repeat the
calculations time and time again. The variables are defined as follows:

#define PAGE_SIZE (1UL << PAGE_SHIFT)
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)

The value 2n is easily calculated in the binary system by shifting a bit n positions to the left starting from
position 0. The kernel uses this ‘‘trick‘‘ at many places. Those of you unfamiliar with bit arithmetic will
find relevant explanations in Appendix C.

include/asm-x86/pgtable_64.h
#define PGDIR_SHIFT 39
#define PTRS_PER_PGD 512

#define PUD_SHIFT 30
#define PTRS_PER_PUD 512

#define PMD_SHIFT 21
#define PTRS_PER_PMD 512

The macros PTRS_PER_XXX specify how many pointers (i.e., different values) a given directory entry can
represent. Since AMD64 employs 9 bits for each directory, 29 = 512 pointers fit into each.

The kernel also needs a means of extracting the individual components from a given address. The kernel
uses the bitmasks defined below to do this.

#define PAGE_MASK (~(PAGE_SIZE-1))
#define PUD_MASK (~(PUD_SIZE-1))
#define PMD_MASK (~(PMD_SIZE-1))
#define PGDIR_MASK (~(PGDIR_SIZE-1))

The masks are applied on a given address by simple bitwise addition.

Format of Page Tables
The size of the entries in the page tables has been established by the above definitions but not
their structure. The kernel provides four data structures (defined in page.h) to represent the entry
structures.

❑ pgd_t for entries of the global directory.

❑ pud_t for entries of the page upper directory.

❑ pmd_t for entries of the page middle directory.

❑ pte_t for direct page table entries.

The standard functions to analyze page table entries are listed in Table 3-2. (Depending on architecture,
some functions are implemented as macros and others as inline functions; I make no distinction between
the two below.)

156

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 157

Chapter 3: Memory Management

Table 3-2: Functions for Analyzing Page Table Entries.

Function Description

pgd_val
pud_val
pmd_val
pte_val
pgprot_val

Convert a variable of type pte_t and so on to an unsigned long number.

__pgd
__pud
__pmd
__pte
__pgprot

Do the reverse of pdg_val and so on: They convert an unsigned long number into
a variable of type pdg_t and so on.

pgd_index
pud_index
pmd_index
pte_index

Yield the address of the next-level table starting from a memory pointer and a
page table entry.

pgd_present
pud_present
pmd_present
pte_present

Check whether the _PRESENT bit of the corresponding entry is set. This is the case
when the page or page table addressed is in RAM memory.

pgd_none
pud_none
pmd_none
pte_none

Do the logical reverse of the xxx_present functions. If they return a true value,
the searched page is not in RAM.

pgd_clear
pud_clear
pmd_clear
pte_clear

Delete the passed page table entry. This is usually done by setting it to zero.

pgd_bad
pud_bad
pmd_bad

Check whether entries of the page middle, upper, and global directories are
invalid. They are used for safety purposes in functions that receive input param-
eters from the outside where it cannot be assumed that the parameters are valid.

pmd_page
pud_page
pte_page

Return the address of the page structure holding the data on the page or the
entries of the page middle directories.

How do the offset functions work? Let us consider pmd_offset as an example. It requires as parameter
an entry from the page global directory (src_pgd) and an address in memory. It returns an element from
one of the page middle directories.

src_pmd = pmd_offset(src_pgd, address);

157

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 158

Chapter 3: Memory Management

PAGE_ALIGN is another standard macro that must be defined by each architecture (typically in page.h). It
expects an address as parameter and ‘‘rounds‘‘ the address so that it is exactly at the start of the next page.
If the page size is 4,096, the macro always returns an integer multiple of this size; PAGE_ALIGN(6000) =
8192 = 2× 4,096, PAGE_ALIGN(0x84590860) = 0x84591000 = 542,097 × 4,096. The alignment of addresses
to page boundaries is important to ensure that best use is made of the cache resources of the processor.

Although C structures are used to represent entries in page tables, most consist of just a single
element — typically unsigned long — as an example of AMD64 architecture shows:9

include/asm-x86_64/page.h
typedef struct { unsigned long pte; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pud; } pud_t;
typedef struct { unsigned long pgd; } pgd_t

structs are used instead of elementary types to ensure that the contents of page table elements are
handled only by the associated helper functions and never directly. The entries may also be constructed
of several elementary variables. In this case, the kernel is obliged to use a struct.10

The virtual address is split into several parts that are used as an index into the page
table in accordance with the familiar scheme. The individual parts are therefore less
than 32 or 64 bits long, depending on the word length of the architecture used. As
the excerpt from the kernel sources shows, the kernel (and therefore also the
processor) uses 32- or 64-bit types to represent entries in the page tables (regardless
of table level). This means that not all bits of a table entry are required to store the
useful data — that is, the base address of the next table. The superfluous bits are
used to hold additional information. Appendix A describes the structure of the page
tables on various architectures in detail.

PTE-Specific Entries
Each final entry in the page table not only yields a pointer to the memory location of the page, but also
holds additional information on the page in the superfluous bits mentioned above. Although these data
are CPU-specific, they usually provide at least some information on page access control. The following
elements are found in most CPUs supported by the Linux kernel:

❑ _PAGE_PRESENT specifies whether the virtual page is present in RAM memory. This need not
necessarily be the case because pages may be swapped out into a swap area as noted briefly in
Chapter 1.

The structure of the page table entry is usually different if the page is not present in memory
because there is no need to describe the position of the page in memory. Instead, information is
needed to identify and find the swapped-out page.

9The definitions for IA-32 are similar. However, only pte_t and pgd_t, which are defined as unsigned long, make an effective
contribution. I use the code example for AMD64 because it is more regular.
10When IA-32 processors use PAE mode, they define pte_t as, for example, typedef struct { unsigned long pte_low,
pte_high; }. 32 bits are then no longer sufficient to address the complete memory because more than 4 GiB can be managed in
this mode. In other words, the available amount of memory can be larger than the processor’s address space.
Since pointers are, however, still only 32 bits wide, an appropriate subset of the enlarged memory space must be chosen for userspace
applications that do still only see 4 GiB each.

158

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 159

Chapter 3: Memory Management

❑ _PAGE_ACCESSED is set automatically by the CPU each time the page is accessed. The kernel reg-
ularly checks the field to establish how actively the page is used (infrequently used pages are
good swapping candidates). The bit is set after either read or write access.

❑ _PAGE_DIRTY indicates whether the page is ‘‘dirty,’’ that is, whether the page contents have been
modified.

❑ _PAGE_FILE has the same numerical value as _PAGE_DIRTY, but is used in a different context,
namely, when a page is not present in memory. Obviously, a page that is not present cannot
be dirty, so the bit can be reinterpreted: If it is not set, then the entry points to the location of
a swapped-out page (see Chapter 18). A set _PAGE_FILE is required for entries that belongs to
nonlinear file mappings which are discussed in Section 4.7.3.

❑ If _PAGE_USER is set, userspace code is allowed to access the page. Otherwise, only the kernel is
allowed to do this (or when the CPU is in system mode).

❑ _PAGE_READ, _PAGE_WRITE, and _PAGE_EXECUTE specify whether normal user processes are
allowed to read the page, write to the page, or execute the machine code in the page.

Pages from kernel memory must be protected against writing by user processes.

There is, however, no assurance that even pages belonging to user processes can be written to,
for example, if the page contains executable code that may not be modified — either intention-
ally or unintentionally.

Architectures that feature less finely grained access rights define the _PAGE_RW constant to allow
or disallow read and write access in combination if no further criterion is available to distinguish
between the two.

❑ IA-32 and AMD64 provide _PAGE_BIT_NX to label the contents of a page as not executable (this
protection bit is only available on IA-32 systems if the page address extensions for addressing
64 GiB memory are enabled). It can prevent, for example, execution of code on stack pages that
can result in security gaps in programs because of intentionally provoked buffer overflows
if malicious code has been introduced. The NX bit cannot prevent buffer overflow but can
suppress its effects because the process refuses to run the malicious code. Of course, the
same result can also be achieved if the architectures themselves provide a good set of access
authorization bits for memory pages, as is the case with some (unfortunately not very common)
processors.

Each architecture must provide two things to allow memory management to modify the additional bits
in pte_t entries — the data type __pgprot in which the additional bits are held, and the pte_modify
function to modify the bits. The above pre-processor symbols are used to select the appropriate entry.

The kernel also defines various functions to query and set the architecture-dependent state of memory
pages. Not all functions can be defined by all processors because of lack of hardware support for a given
feature.

❑ pte_present checks if the page to which the page table entry points is present in memory. This
function can, for instance, be used to detect if a page has been swapped out.

❑ pte_dirty checks if the page associated with the page table entry is dirty, that is, its contents
have been modified since the kernel checked last time. Note that this function may only be called
if pte_present has ensured that the page is available.

❑ pte_write checks if the kernel may write to the page.

159

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 160

Chapter 3: Memory Management

❑ pte_file is employed for nonlinear mappings that provide a different view on file contents by
manipulating the page table (this mechanism is discussed in more detail in Section 4.7.3). The
function checks if a page table entry belongs to such a mapping.

pte_file may only be invoked if pte_present returns false; that is, the page asso-
ciated with the page table entry is not present in memory.

Since the generic code relies on pte_file, it must also be defined if an architecture does not sup-
port nonlinear mappings. In this case, the function always returns 0.

A summary of all functions provided to manipulate PTE entries can be found in Table 3-3.

Table 3-3: Functions for Processing the Architecture-Dependent State of a Memory
Page

Function Description

pte_present Is the page present?

pte_read May the page be read from within userspace?

pte_write May the page be written to?

pte_exec May the data in the page be executed as binary code?

pte_dirty Is the page dirty; that is, have its contents been modified?

pte_file Does the PTE belong to a nonlinear mapping?

pte_young Is the access bit (typically _PAGE_ACCESS) set?

pte_rdprotect Removes read permission for the page.

pte_wrprotect Deletes write permission for the page.

pte_exprotect Removes permission to execute binary data in the page.

pte_mkread Sets read permission.

pte_mkwrite Sets write permission.

pte_mkexec Permits execution of page contents.

pte_mkdirty Marks the page as dirty.

pte_mkclean ‘‘Cleans‘‘ the page; that is, usually deletes the _PAGE_DIRTY bit.

pte_mkyoung Sets the accessed bit — _PAGE_ACCESSED on most architectures.

pte_mkold Deletes the accessed bit.

160

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 161

Chapter 3: Memory Management

The functions often appear in groups of three to set, delete, and query a specific attribute, for instance,
write permission for a page. The kernel assumes that access to page data can be regulated in three dif-
ferent ways — by means of write, read, and execution permission. (Execution permission indicates that
page binary data may be executed as machine code in the same way as programs are executed.) How-
ever, this assumption is a little too optimistic for some CPUs. IA-32 processors support only two control
modes to allow reading and writing. In this case, the architecture-dependent code tries to emulate the
desired semantics as best it can.

3.3.2 Creating and Manipulating Entries
Table 3-4 lists all functions for creating new page table entries.

Table 3-4: Functions for Creating New Page Table Entries

Function Description

mk_pte
Creates a pte entry; a page instance and the desired page access permissions must
be passed as parameters.

pte_page
Yields the address of the page instance belonging to the page described by the
page table entry.

pgd_alloc
pud_alloc
pmd_alloc
pte_alloc

Reserve and initialize memory to hold a complete page table (not just a single
entry).

pgd_free
pud_free
pmd_free
pte_free

Free the memory occupied by the page table.

set_pgd
set_pud
set_pmd
set_pte

Set the value of an entry in a page table.

The functions in the table must be implemented by all architectures to enable memory management code
to create and destroy page tables.

3.4 Initialization of Memory Management
In the context of memory management, initialization can have multiple meanings. On many CPUs, it is
necessary to explicitly set the memory model suitable for the Linux kernel, for example, by switching
to protected mode on IA-32 systems, before it is possible to detect the available memory and register it
with the kernel. In the course of initialization, it is also necessary to set up the data structures of memory
management, and much more. Because the kernel needs memory before memory management is fully

161

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 162

Chapter 3: Memory Management

initialized, a simple additional form of memory management is used during the boot process and is
discarded thereafter.

As the CPU-specific parts of memory management initialization employ many minor, subtle details of
the underlying architecture that reveal little of interest about the structure of the kernel and are simply
best practices in assembly language programming, let’s concern ourselves in this section only with ini-
tialization work on a higher level. The key aspect is initialization of the pg_data_t data structure (and its
subordinate structures) introduced in Section 3.2.2 because this is already machine-independent.

The primary purpose of the aforementioned processor-specific operations whose details we will ignore is
to investigate how much memory is available in total and how it is shared between the individual nodes
and zones of the system.

3.4.1 Data Structure Setup
Initialization of the data structures is launched from within the start_kernel global start routine that is
executed after kernel loading to render the various subsystems operational. As memory management is
a very important kernel component, it is initialized almost immediately after architecture-specific setup,
which is responsible for the technical details of detecting memory and establishing how it is distributed
in the system (Section 3.4.2 deals briefly with the implementation of system-dependent initialization on
IA-32 systems). At this point, an instance of pgdat_t has been generated for each system memory mode
to hold information on how much memory there is in the node and how it is distributed over the node
zones. The architecture-specific NODE_DATA macro implemented on all platforms is used to query the
pgdat_t instance associated with a NUMA node by reference to the number of the instance.

Prerequisites
Since the majority of systems have just one memory node, only systems of this type are examined below.
What is the situation on such systems? To ensure that memory management code is portable (so that it
can be used on UMA and NUMA systems alike), the kernel defines a single instance of pg_data_t (called
contig_page_data) in mm/page_alloc.c to manage all system memory. As the file pathname suggests,
this is not a CPU-specific implementation; in fact, it is adopted by most architectures. The implementation
of NODE_DATA is now even simpler.

<mmzone.h>
#define NODE_DATA(nid) (&contig_page_data)

Although the macro has a formal parameter for selecting a NUMA node, the same data are always
returned — there is just one pseudo-node.

The kernel can also rely on the fact that the architecture-dependent initialization code has set the
numnodes variable to the number of nodes present in the system. This number is 1 on UMA systems
because only one (formal) node is present.

At compilation time, pre-processor statements select the correct definitions for the particular
configuration.

System Start
Figure 3-8 shows a code flow diagram for start_kernel. It includes only the system initialization func-
tions associated with memory management.

162

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 163

Chapter 3: Memory Management

start_kernel

setup_arch

setup_per_cpu_areas

build_all_zonelists

mem_init

setup_per_cpu_pageset

Figure 3-8: Kernel initialization in the
view of memory management.

Let’s take a closer look at the functions invoked in the sections below after first summarizing their tasks
as follows:

❑ setup_arch is an architecture-specific set-up function responsible for, among other things, ini-
tialization of the boot allocator.

❑ On SMP systems, setup_per_cpu_areas initializes per-CPU variables defined statically
in the source code (using the per_cpu macro) and of which there is a separate copy for each
CPU in the system. Variables of this kind are stored in a separate section of the
kernel binaries. The purpose of setup_per_cpu_areas is to create a copy of these data for each
system CPU.

This function is a null operation on non-SMP systems.

❑ build_all_zonelists sets up the node and zone data structures (see below).

❑ mem_init is another architecture-specific function to disable the bootmem allocator and perform
the transition to the actual memory management functions, as discussed shortly.

❑ kmem_cache_init initializes the in-kernel allocator for small memory regions.

❑ setup_per_cpu_pageset allocates memory for the first array element of the pageset arrays from
struct zone mentioned above. Allocating the first array element means, in other words, for the
first system processor. All memory zones of the system are taken into account.

The function is also responsible for setting the limits for the hot-n-cold allocator discussed at
length in Section 3.5.3.

Notice that the pageset arrays members of other CPUs on SMP systems will be initialized when
they are activated.

Node and Zone Initialization
build_all_zonelists builds the data structures required to manage nodes and their zones. Interest-
ingly, it can be implemented by the macros and abstraction mechanisms introduced above regardless of
whether it runs on a NUMA or UMA system. This works because the executed functions are available in
two flavors: one for NUMA systems and one for UMA systems.

Since this little trick is often used by the kernel, I will briefly discuss it. Suppose that a certain task
must be performed differently depending on the compile-time configuration. One possibility would

163

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 164

Chapter 3: Memory Management

be using two different functions and select the proper one each time it is called with some pre-processor
conditionals:

void do_something() {
...
#ifdef CONFIG_WORK_HARD

do_work_fast();
#else

do_work_at_your_leisure();
#endif
...
}

Since this requires using the pre-processor each time the function is called, this approach is consid-
ered bad style by the kernel developers. A much more elegant solution is to define the function itself
differently depending on the chosen configuration:

#ifdef CONFIG_WORK_HARD
void do_work() {

/* Get going, fast! */
...
}

#else
void do_work() {

/* Relax, take it easy */
...
}
#endif

Notice that the same name is employed for both implementations because they can never be active
at the same time. Calling the proper function is now not more complicated than calling a regular
function:

void do_something() {
...

do_work(); /* Work hard or not, depending on configuration /*
...
}

Clearly, this variant is much more readable and is always preferred by the kernel developers (in fact,
patches using the first style will have a very hard time getting into the mainline kernel, if at all).

Let us go back to setting up the zone lists. The portion of build_all_zonelists that is currently of
interest to us (there is some more work to do for the page group mobility extensions to the page allocator,
but I will discuss this separately below) delegates all work to __build_all_zonelists, which, in turn,
invokes build_zonelists for each NUMA node in the system.

mm/page_alloc.c
static int __build_all_zonelists(void *dummy)
{

int nid;

164

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 165

Chapter 3: Memory Management

for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);

build_zonelists(pgdat);
...

}
return 0;

}

for_each_online_node iterates over all active nodes in the system. As UMA systems have only one
node, build_zonelists is invoked just once to create the zone lists for the whole of memory. NUMA
systems must invoke the function as many times as there are nodes; each invocation generates the zone
data for a different node.

build_zonelists expects as parameter a pointer to a pgdat_t instance containing all existing information
on the node memory configuration and holding the newly created data structures.

On UMA systems, NODE_DATA returns the address of contig_page_data.

The task of the function is to establish a ranking order between the zones of the node currently being
processed and the other nodes in the system; memory is then allocated according to this order. This is
important if no memory is free in the desired node zone.

Let us look at an example in which the kernel wants to allocate high memory. It first attempts to find a
free segment of suitable size in the highmem area of the current node. If it fails, it looks at the regular
memory area of the node. If this also fails, it tries to perform allocation in the DMA zone of the node. If it
cannot find a free area in any of the three local zones, it looks at other nodes. In this case, the alternative
node should be as close as possible to the primary node to minimize performance loss caused as a result
of accessing non-local memory.

The kernel defines a memory hierarchy and first tries to allocate ‘‘cheap‘‘ memory. If this fails, it gradually
tries to allocate memory that is ‘‘more costly‘‘ in terms of access and capacity.

The high memory (highmem) range is cheapest because no part of the kernel depends on memory allo-
cated from this area. There is no negative effect on the kernel if the highmem area is full — and this is
why it is filled first.

The situation in regular memory is different. Many kernel data structures must be held in this area and
cannot be kept in highmem. The kernel is therefore faced with a critical situation if regular memory is
completely full — as a result, memory is not allocated from this area until there is no free memory in the
less critical highmem area.

Most costly is the DMA area because it is used for data transfer between peripherals and the system.
Memory allocation from this area is therefore a last resort.

The kernel also defines a ranking order among the alternative nodes as seen by the current memory
nodes. This helps determine an alternative node when all zones of the current node are full.

The kernel uses an array of zonelist elements in pg_data_t to represent the described hierarchy as a
data structure.

165

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 166

Chapter 3: Memory Management

<mmzone.h>
typedef struct pglist_data {

...
struct zonelist node_zonelists[MAX_ZONELISTS];

...
} pg_data_t;

#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
struct zonelist {
...

struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
};

The node_zonelists array makes a separate entry available for every possible zone type. This entry
contains a fallback list of type zonelist whose structure is discussed below.

Because the fallback list must include all zones of all nodes, it consists of MAX_NUMNODES * MAX_NZ_ZONES
entries, plus a further element for a null pointer to mark the end of the list.

The task of creating a fallback hierarchy is delegated to build_zonelists, which creates the data struc-
tures for each NUMA node. It requires as parameter a pointer to the relevant pg_data_t instance. Before
I discuss the code in detail, let us recall one thing mentioned above. Since we have restricted our dis-
cussion to UMA systems, why would it be necessary to consider multiple NUMA nodes? Indeed, the
code shown below will be replaced with a different variant by the kernel if CONFIG_NUMA is set. However,
it is possible that an architecture selects the discontiguous or sparse memory option on UMA systems.
This can be beneficial if the address space contains large holes. The memory ‘‘blocks’’ created by such
holes can best be treated using the data structures provided by NUMA. This is why we have to deal with
them here.

A large external loop first iterates over all node zones. Each loop pass looks for the zone entry for the i-th
zone in the zonelist array in which the fallback list is held.

mm/page_alloc.c
static void __init build_zonelists(pg_data_t *pgdat)
{

int node, local_node;
enum zone_type i,j;

local_node = pgdat->node_id;
for (i = 0; i < MAX_NR_ZONES; i++) {

struct zonelist *zonelist;

zonelist = pgdat->node_zonelists + i;

j = build_zonelists_node(pgdat, zonelist, 0, j);
...
}

The array element of node_zonelists is addressed by means of pointer manipulation, a perfectly legal
practice in C. The actual work is delegated to build_zonelist_node. When invoked, it first generates the
fallback order within the local node.

166

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 167

Chapter 3: Memory Management

mm/page_alloc.c
static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,

int nr_zones, enum zone_type zone_type)
{

struct zone *zone;

do {
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {

zonelist->zones[nr_zones++] = zone;
}
zone_type--;

} while (zone_type >= 0);
return nr_zones;

}

The fallback list entries are ordered by means of the zone_type parameter that specifies the zone from
which memory is best taken and is calculated using highest_zone as shown. Recall that it can have one
of the following values: ZONE_HIGHMEM, ZONE_NORMAL, ZONE_DMA, or ZONE_DMA32. nr_zone denotes the
position in the fallback list at which filling new entries starts. The caller has passed 0 since there is no
entry in the list yet.

The kernel then iterates over all zones from costly to less costly. In each step, populated_zone ensures
that zone->present_pages is greater than 0 for the selected zone; that is, whether there are pages in the
zone. If so, a pointer to the zone instance previously determined is added at the current position within
the zone list zonelist->zones. The current position in the zone list is held in nr_zone.

At the end of each step, the zone type is decremented by 1; in other words, it is set to a more costly zone
type. For example, if the start zone is ZONE_HIGHMEM, decrementing by 1 ensures that the next zone type
used is ZONE_NORMAL.

Consider a system with the zones ZONE_HIGHMEM, ZONE_NORMAL, and ZONE_DMA. In the first run of
build_zonelists_node, the following assignments are made:

zonelist->zones[0] = ZONE_HIGHMEM;
zonelist->zones[1] = ZONE_NORMAL;
zonelist->zones[2] = ZONE_DMA;

Figure 3-9 illustrates this for the case in which a fallback list for node 2 of a system is successively filled.
There are a total of four nodes in the system (numnodes = 4); k = ZONE_HIGHMEM also applies.

C2 C1 C0

C0C1C2 D2 D1 D0

C0C1C2 A2 A1 A0 B2 B1 B0D2 D1 D0

NULL...

A = Node 0
B = Node 1
C = Node 2
D = Node 3

0 = DMA
1 = Normal
2 = Highmem

Figure 3-9: Successive filling of the fallback list.

167

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 168

Chapter 3: Memory Management

After the first step, the allocation targets in the list are highmem, followed by normal memory and finally
the DMA zone of the second node.

The kernel must then establish the order in which the zones of the other nodes in the system are used as
fallback targets.

mm/page_alloc.c
static void __init build_zonelists(pg_data_t *pgdat)
{

...
for (node = local_node + 1; node < MAX_NUMNODES; node++) {

j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
}
for (node = 0; node < local_node; node++) {

j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
}

zonelist->zones[j] = NULL;
}

}
}

The first loop successively iterates over all nodes with a higher number than the node being processed. In
our example, there are four nodes numbered 0, 1, 2, and 3 and therefore only node number 3 is left. New
entries are added to the fallback list by build_zonelists_node. This is where the meaning of j comes
into play. After the fallback targets in the local node had been found, the value of the variable was 3;
this is used as the starting position for the new entries. If node number 3 also consists of three zones, the
situation after invocation of build_zonelists is as shown in the second step of Figure 3-9.

The second for loop then generates the entries for all nodes with lower numbers than the current node.
In our example, these nodes have the numbers 0 and 1. If three zones are also present in these nodes, the
fallback list situation is as shown in the lower part of Figure 3-9.

The number of entries in the fallback list is never known exactly because the zone configurations may be
different in the various nodes of the system. The last entry is therefore assigned a null pointer to explicitly
mark the end of the list.

For any node m of a total number of N nodes, the kernel always selects the order m, m + 1, m +
2, . . . , N, 0, 1, . . . , m − 1 for the fallback nodes. This ensures that no node is overused (as compared, e.g.,
to an unchanging fallback list independent of m).

Figure 3-10 shows the fallback lists built for the third node in a system with four nodes.

Normal

DMA

HighMem A0D0C0 B2 NULL

D1C0C1 D0 A1 B1A0 B0 NULL

C0C1C2 A2 A1 A0 B2 B1 B0D2 D1 D0 NULL

Figure 3-10: Finished fallback lists.

168

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 169

Chapter 3: Memory Management

Section 3.5.5 discusses the implementation of the buddy system that makes use of the fallback lists gen-
erated here.

3.4.2 Architecture-Specific Setup
The initialization of memory management on IA-32 systems is in some aspects a very subtle undertaking
that must overcome a few historical obstacles associated with the processor architecture. These include,
for example, switching the processor from normal mode to protected mode to grant the CPU access to the
32-bit world — a legacy from the days when compatibility with 16-bit 8086 processors was important.
Similarly, paging is not enabled by default and must be activated manually, which, for instance, involves
fiddling with the cr0 register of the processor. However, these subtleties are of no interest to us; you are
referred to the appropriate reference manuals.

Notice that our focus on the IA-32 architecture does not mean that the things discussed in
the following will be completely disconnected from all other architectures supported by the kernel.
Quite the opposite is the case: Even if many details will be unique to the IA-32 architecture, many
other architectures do things in a similar way. It’s just necessary to choose one particular architecture as
an example, and since IA-32 has not only been around for quite some time, but was also the architecture
initially supported by Linux, this is reflected in the kernel’s general design. Although there is a clear
tendency of the kernel toward 64-bit platforms, many aspects can still be traced to its IA-32 roots.

Another reason why we pick the IA-32 architecture as an example is for practical purposes: Since the
address space is only 4 GiB large, all addresses can be described with comparatively compact hexadec-
imal numbers, which are simply easier to read and work with than the long values required by 64-bit
architectures.

Interestingly, the IA-32 architecture does not exist as a separate architecture starting with kernel 2.6.24
anymore! It was merged with the AMD64 architecture to form a new, unified x86 architecture. Although
both are now constrained to the single architecture-specific directory arch/x86, a good many differences
still remain. This is why many files are available in two variants: file_32.c for IA-32, and file_64.c for
AMD64. The existence of two different files for each subarchitecture is something that is only temporarily
tough. Future development will ensure that finally a single file will contain code for both architectures.

Since the unified architecture promotes the AMD64 architecture (even more) to one of the most
important architectures supported by the kernel, I will also consider how architecture-specific
details differ for AMD64 compared to IA-32. Owing to the large number of architectures supported by
the kernel, it is not possible to discuss the specific details for all of them here. Considering one 32- and
one 64-bit architecture in the following will, however, provide the taste of how Linux does things in both
worlds, and lay the fundamentals to understand the approaches by other architectures.

Arrangement of the Kernel in Memory
Before discussing the individual memory initialization operations, we need to examine the situation in
RAM after the boot loader has copied the kernel into memory and the assembler part of the initialization
routines has completed. I concentrate on the default case in which the kernel is loaded to a fixed position
in physical RAM that is determined at compile time.

It is also possible to configure the initial position of the kernel binary in physical RAM if the crash dump
mechanism is enabled. Additionally, some embedded systems will require this ability. The configuration

169

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 170

Chapter 3: Memory Management

option PHYSICAL_START determines the position in RAM in this case, subjected to physical alignment
specified by the configuration option PHYSICAL_ALIGN.

Additionally, the kernel can be built as a relocatable binary, and the physical start address given at compile
time is completely ignored in this case. The boot loader can decide where to put the kernel. Since both
options are either only required in corner cases or are still considered experimental, I will not discuss
them any further.

Figure 3-11 shows the lowest megabytes of physical RAM memory in which the various parts of the
kernel image reside.

First page frame Kernel text Available

Kernel dataROM Initialization data

0x9e800

_text _etext

_end
0x1000
(4 KiB)0x0

640 KiB

0x100000
(1 MiB)

_edata

Figure 3-11: Arrangement of the Linux kernel in RAM memory.

The figure shows the first megabytes of physical memory — how much is exactly required depends on
how big the kernel binary is. The first 4,096 KiB — the first page frame — are omitted because they are
often reserved for the BIOS. The next 640 KiB would be usable in principle, but are again not used for
kernel loading. The reason is that this area is immediately followed by an area reserved for the system
into which various ROM ranges are mapped (typically the system BIOS and the graphic card ROM). It
is not possible to write to these areas. However, the kernel should always be loaded into a contiguous
memory range, and this would be possible only for kernels smaller than 640 KiB if the start address of
RAM memory were used as the start position for the kernel image.

To resolve these problems, IA-32 kernels use 0x100000 as the start address; this corresponds to the start
of the first megabyte in RAM memory. There is sufficient contiguous memory at this point to hold the
entire kernel.

The memory occupied by the kernel is split into several sections whose bounds are held in variables.

❑ _text and _etext are the start and end address of the text section that contains the compiled
kernel code.

❑ The data section in which most kernel variables are kept is located between _etext and _edata.

❑ Initialization data no longer needed after the kernel boot process is finished (among others, e.g.,
the BSS segment that contains all static global variables initialized to 0) are held in the last
section, which extends from _edata to _end. Once kernel initialization has completed, most of
the data can be removed from memory leaving more space for applications. The interval is split

170

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 171

Chapter 3: Memory Management

into smaller subintervals to control what can be removed and what cannot, but this is not of
importance for our purposes now.

Although the variables used to define section bounds are defined in the kernel source code
(arch/x86/kernel/setup_32.c), no values are assigned to them at this point. This is simply not
possible. How can the compiler know at compilation time how large the kernel will be? The exact value is
only established when the object files are linked, and it is then patched into the binary file. This action is
controlled by arch/arch/vmlinux.ld.S (for IA-32, the file is arch/x86/vmlinux_32.ld.S), where
the kernel memory layout is also defined.

The exact value varies according to kernel configuration as each configuration has text and data sections
of different sizes — depending on which parts of the kernel are enabled and which are not used. Only
the start address (_text) is always the same.

Each time the kernel is compiled, a file named System.map is generated and stored in the source base
directory. Besides the addresses of all other (global) variables, procedures, and functions defined in the
kernel, this file also includes the values of the constants shown in Figure 3-11,

wolfgang@meitner> cat System.map
...
c0100000 A _text
...
c0381ecd A _etext
...
c04704e0 A _edata
...
c04c3f44 A _end
...

All values have the offset 0xC0000000, which is the start address of the kernel
segment if the standard 3 : 1 split between user and kernel address space is chosen.
The addresses are virtual addresses because RAM memory is mapped into the
virtual address space as a linear mapping starting at this address. The correspond-
ing physical addresses are obtained by subtraction from 0xC0000000.

/proc/iomem also provides information on the sections into which RAM memory is divided.

wolfgang@meitner> cat /proc/iomem
00000000-0009e7ff : System RAM
0009e800-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-17ceffff : System RAM

00100000-00381ecc : Kernel code
00381ecd-004704df : Kernel data

...

The kernel image begins above the first megabyte (0x00100000). The size of the code is approximately
2.5 MiB, and the data section accounts for about 0.9 MiB.

171

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 172

Chapter 3: Memory Management

The same information is also available for AMD64 systems. Here the kernel starts 2 MiB after the first
page frame, and physical memory is mapped into the virtual address space from 0xffffffff80000000
onward. The relevant entries in System.map are as follows:

wolfgang@meitner> cat System.map
ffffffff80200000 A _text
...
ffffffff8041fc6f A _etext
...
ffffffff8056c060 A _edata
...
ffffffff8077548c A _end

This information is also contained in /proc/iomem for the running kernel:

root@meitner # cat /proc/iomem
...
00100000-cff7ffff : System RAM

00200000-0041fc6e : Kernel code
0041fc6f-0056c05f : Kernel data
006b6000-0077548b : Kernel bss

...

Initialization Steps
Which system-specific steps must the kernel perform once it has been loaded into memory and the assem-
bler parts of initialization have been completed? Figure 3-12 shows a code flow diagram of the individual
actions.

setup_arch

machine_specific_memory_setup

parse_early_param

setup_memory

paging_init

pagetable_init

zone_sizes_init

add_active_range

free_area_init_nodes

Figure 3-12: Code flow diagram for memory
initialization on IA-32 systems.

172

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 173

Chapter 3: Memory Management

The figure includes only those function calls associated with memory management. All others are
unimportant in this context and are therefore omitted. Recall that setup_arch is invoked from within
start_kernel, as already noted in Section 3.4.1.

machine_specific_memory_setup is first invoked to create a list with the memory regions occupied by
the system and the free memory regions. Because the way in which this information is obtained differs
slightly between the ‘‘subarchitectures‘‘ of the IA-32 family,11 the kernel provides a machine-specific
function that is defined in include/asm-x86/mach-type/setup.c. type can then stand for default,
voyager, or visws; I discuss only the default situation.

A map provided by the BIOS and showing the individual memory regions is used in this case.

These are not the same regions as in the NUMA concept but are areas occupied by
system ROM, for example, or by ACPI functions.

When the system is booted, the regions found are displayed by the kernel function print_memory_map.

wolfgang@meitner> dmesg
...
BIOS-provided physical RAM map:
BIOS-e820: 0000000000000000 - 000000000009e800 (usable)
BIOS-e820: 000000000009e800 - 00000000000a0000 (reserved)
BIOS-e820: 00000000000c0000 - 00000000000cc000 (reserved)
BIOS-e820: 00000000000d8000 - 0000000000100000 (reserved)
BIOS-e820: 0000000000100000 - 0000000017cf0000 (usable)
BIOS-e820: 0000000017cf0000 - 0000000017cff000 (ACPI data)
BIOS-e820: 0000000017cff000 - 0000000017d00000 (ACPI NVS)
BIOS-e820: 0000000017d00000 - 0000000017e80000 (usable)
BIOS-e820: 0000000017e80000 - 0000000018000000 (reserved)
BIOS-e820: 00000000ff800000 - 00000000ffc00000 (reserved)
BIOS-e820: 00000000fff00000 - 0000000100000000 (reserved)

...

If this information is not provided by the BIOS (this may be the case on some older machines), the kernel
itself generates a table to mark memory in the ranges 0–640 KiB and 1 MiBend as usable.

The kernel then analyzes the command line with parse_cmdline_early, concentrating on arguments like
mem=XXX[KkmM], highmem=XXX[kKmM], or memmap=XXX[KkmM]""@XXX[KkmM] arguments. The administrator
can overwrite the size of available memory or manually define memory areas if the kernel calculates
an incorrect value or is provided with a wrong value by the BIOS. This option is only of relevance on
older computers. highmem= permits overwriting of the highmem size value detected. It can be used on
machines with a very large RAM configuration to limit available RAM size — as it sometimes yields
performance gains.

11There are not only ‘‘normal‘‘ IA-32 computers but also custom products of Silicon Graphics and NCR that, although they consist
mainly of standard components, take a different approach to some things — including memory detection. Because these machines
are either very old (Voyager from NCR) or not in widespread use (Visual Workstation from SGI), I won’t bother with their oddities.

173

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 174

Chapter 3: Memory Management

The next major step is performed in setup_memory of which there are two versions; one for systems with
contiguous memory (in arch/x86/kernel/setup_32.c) and one for machines with discontiguous mem-
ory (in arch/x86/mm/discontig_32.c). They both have the same effect although their implementations
differ.

❑ The number of physical pages available (per node) is determined.

❑ The bootmem allocator is initialized (Section 3.4.3 describes the implementation of the allocator
in detail).

❑ Various memory areas are then reserved, for instance, for the initial RAM disk needed when
running the first userspace processes.

paging_init initializes the kernel page tables and enables paging since it is not active by default on
IA-32 machines.12 Execute Disable Protection is also enabled if supported by the processor and if the ker-
nel was compiled with PAE support; unfortunately, the feature is otherwise not available. By calling
pagetable_init, the function also ensures that the direct mapping of physical memory into the kernel
address space is initialized. All page frames in low memory are directly mapped to the virtual memory
region above PAGE_OFFSET. This allows the kernel to address a good part of the available memory with-
out having to deal with page tables anymore. More details about paging_init and the whole mechanism
behind it are discussed below.

Calling zone_sizes_init initializes the pgdat_t instances of all nodes of the system. First a com-
paratively simple list of the available physical memory is prepared using add_active_range. The
architecture-independent function free_are_init_nodes then uses this information to prepare the
full-blown kernel data structures. Since this is a very important step that has numerous implications for
how the kernel manages page frames at run time, it is discussed in more detail in Section 3.5.3.

Notice that the memory-related initialization sequence is quite similar on AMD64 machines, as the code
flow diagram in Figure 3-13 shows.

The basic memory setup does not require any machine-type-specific handling, but can always be
done with setup_memory_region. Information about the available RAM is given by the so-called
E820 map supplied from the BIOS. After parsing the command-line options relevant for the
early boot process, a simple list of the available memory is created by add_active called from
e820_register_active_region, which, in turn, just walks over the information provided by parsing the
E820 map above.

The kernel then calls init_memory_mapping to directly map the available physical memory into the vir-
tual address space portion of the kernel starting from PAGE_OFFSET. contig_initmem_init is responsible
to activate the bootmem allocator.

The last function in the list, paging_init, is actually a misnomer: It does not initialize paging, but has
to deal with some set-up routines for sparse memory systems that are not interesting for our purposes.
The important thing, however, is that the function also calls free_area_init_nodes, which is as in the
IA-32 case responsible to initialize the data structures required to manage physical page frames by the
kernel. Recall that this is an architecture-independent function and relies on the information provided
by add_active_range as mentioned above. A detailed discussion of how free_area_init_nodes sets up
memory follows in Section 3.5.3.

12All addresses are interpreted linearly if paging is not explicitly enabled.

174

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 175

Chapter 3: Memory Management

setup_arch

setup_memory_region

parse_early_param

e820_register_active_region

add_active_range

init_memory_mapping

contig_initmem_init

paging_init

free_area_init_nodes

Figure 3-13: Code flow diagram for memory
initialization on AMD64 systems.

Initialization of Paging
paging_init is responsible for setting up the page tables that can be used only by the kernel and are not
accessible in userspace. This has far-reaching effects on the way in which access to memory is regulated
between normal applications and the kernel itself. It is therefore important to explain the purpose of the
function before looking closely at its implementation.

As noted in Chapter 1, on IA-32 systems the kernel typically divides the total available virtual
address space of 4 GiB in a ratio of 3 : 1. The lower 3 GiB are available for user-mode applications,
and the upper gigabyte is reserved exclusively for the kernel. Whereas the current system context is
irrelevant when assigning the virtual address space of the kernel, each process has its own specific
address space.

The major reasons for this division are as follows:

❑ When execution of a user application switches to kernel mode (this always happens when, e.g.,
a system call is used or a periodic timer interrupt is generated), the kernel must be embedded in
a reliable environment. It is therefore essential to assign part of the address space exclusively to
the kernel.

❑ The physical pages are mapped to the start of the kernel address space so that the kernel can
access them directly without the need for complicated page table operations.

If all physical pages were mapped into the address space accessible to userspace processes, this would
lead to serious security problems if several applications were running on the system. Each application
would then be able to read and modify the memory areas of other processes in physical RAM. Obviously
this must be prevented at all costs.

While the virtual address portion employed for userland processes changes with every task switch, the
kernel portion is always the same. The situation is summarized in Figure 3-14.

175

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 176

Chapter 3: Memory Management

1

Page ta
bles

Page tables

Physical memory

Task switch

3

Kernel

User

Kernel

User

Figure 3-14: Connection between virtual and physical
address space on IA-32 processors.

Division of Address Space
Division of address space in a ratio of 3 : 1 is only an approximate reflection of the situation in the kernel
as the kernel address space itself is split into various sections. Figure 3-15 graphically illustrates the
situation.

high_memory VMALLOC_START VMALLOC_END

_ _PAGE_OFFSET
0xC000000

8 MiB

PKMAP_BASE

FIXADDR_START 4 GiB

Mapping of all
physical page

frames
VMALLOC

Persistent
M

appings

Fixm
aps

Figure 3-15: Division of the kernel address space on IA-32 systems.

The figure shows the structure of the page table entries used to manage the fourth
gigabyte of virtual address space. It indicates the purpose of each area of virtual
address space, and this has nothing to do with the assignment of physical RAM.

The first section of the address space is used to map all physical pages of the system into the virtual
address space of the kernel. Because this address space begins at an offset of 0xC0000000 — the fre-
quently mentioned 3 GiB — each virtual address x corresponds to the physical address x − 0xC0000000,
and is therefore a simple linear shift.

As the figure shows, the direct mapping area extends from 0xC0000000 to the high_memory address whose
exact value I discuss shortly. As intimated in Chapter 1, there is a problem with this scheme. Because the
virtual address space of the kernel comprises only 1 GiB, a maximum of 1 GiB of RAM memory can be
mapped. The fact that the maximum memory configuration on IA-32 systems (without PAE) can be up
to 4 GiB raises the question of what to do with the remaining memory.

Here’s the bad news. The kernel cannot map the whole of physical memory at once if it is larger
than 896 MiB.13 This value is even less than the previously stated maximum limit of 1 GiB because

13It would also be possible to get rid of the split completely by introducing two 4 GiB address spaces, one for the kernel and one for
each userspace program. However, context switches between kernel and user mode are more costly in this case.

176

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 177

Chapter 3: Memory Management

the kernel must reserve the last 128 MiB of its address space for other purposes which I explain
shortly. Adding these 128 MiB to the 896 MiB of direct RAM mapping results in a total virtual kernel
address space of 1,024 MiB = 1 GiB. The kernel uses the two frequently employed abbreviations
‘‘normal‘‘ and ‘‘highmem‘‘to distinguish between pages that can be mapped directly and those
than cannot.

The kernel port must provide two macros for each architecture to translate between physical and virtual
addresses in the identity-mapped part of virtual kernel memory (ultimately this is a platform-dependent
task).14

❑ __pa(vaddr) returns the physical address associated with the virtual address vaddr.

❑ __va(paddr) yields the virtual address corresponding to the physical address paddr.

Both functions operate with void pointers and with unsigned longs because both data types are equally
valid for the representation of memory addresses.

Caution: The functions are not valid to deal with arbitrary addresses from the virtual address space, but
only work for the identity-mapped part! This is why they can usually be implemented with simple linear
transformations and do not require a detour over the page tables.

IA-32 maps the page frames into the virtual address space starting from PAGE_OFFSET, and correspond-
ingly the following simple transformation is sufficient:

include/asm-x86/page_32.h
#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)
#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

For what purpose does the kernel use the last 128 MiB of its address space? As Figure 3-15 shows, it is
put to three uses:

1. Virtually contiguous memory areas that are not contiguous in physical memory can be
reserved in the vmalloc area. While this mechanism is commonly used with user processes,
the kernel itself tries to avoid non-contiguous physical addresses as best it can. It usually
succeeds because most of the large memory blocks are allocated for the kernel at boot time
when RAM is not yet fragmented. However, on systems that have been running for longer
periods, situations can arise in which the kernel requires physical memory but the space
available is not contiguous. A prime example of such a situation is when modules are loaded
dynamically.

2. Persistent mappings are used to map non-persistent pages from the highmem area into the
kernel. Section 3.5.8 takes a close look at this topic.

3. Fixmaps are virtual address space entries associated with a fixed but freely selectable page
in physical address space. In contrast to directly mapped pages that are associated with
RAM memory by means of a fixed formula, the association between a virtual fixmap address
and the position in RAM memory can be freely defined and is then always observed by the
kernel.

14The kernel places only two conditions on the functions that must remain as invariants; x1 < x2 ⇒ __va(x1) < __va(x2) must be
valid (for any physical addresses xi), and __va(__pa(x)) = x must be valid for any addresses x within the direct mapping.

177

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 178

Chapter 3: Memory Management

Two pre-processor symbols are important in this context: __VMALLOC_RESERVE sets the size of the vmalloc
area, and MAXMEM denotes the maximum possible amount of physical RAM that can be directly addressed
by the kernel.

The splitting of memory into the individual areas is controlled by means of the constants shown in Figure
3-15. The constants may have different values depending on the kernel and system configuration. The
bound of the direct mappings is specified by high_memory.

arch/x86/kernel/setup_32.c
static unsigned long __init setup_memory(void)
{
...
#ifdef CONFIG_HIGHMEM

high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else

high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
...
}

max_low_pfn specifies the number of memory pages present on systems with less than 896 MiB. The
value is also limited upwards to the maximum number of pages that fit in 896 MiB (the exact calculation is
given in find_max_low_pfn). If highmem support is enabled, high_memory indicates the bound between
two memory areas, which is always at 896 MiB.

There is a gap with a minimum size of VMALLOC_OFFSET between the direct mapping of all RAM pages
and the area for non-contiguous allocations.

include/asm-x86/pgtable_32.h
#define VMALLOC_OFFSET (8*1024*1024)

This gap acts as a safeguard against any kernel faults. If out of bound addresses are accessed (these are
unintentional accesses to memory areas that are no longer physically present), access fails and an excep-
tion is generated to report the error. If the vmalloc area were to immediately follow the direct mappings,
access would be successful and the error would not be noticed. There should be no need for this addi-
tional safeguard in stable operation, but it is useful when developing new kernel features that are not yet
mature.

VMALLOC_START and VMALLOC_END define the start and end of the vmalloc area used for physically non-
contiguous kernel mappings. The values are not defined directly as constants but depend on several
parameters.

include/asm-x86/pgtable_32.h
#define VMALLOC_START (((unsigned long) high_memory + \

2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
#ifdef CONFIG_HIGHMEM
define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
#else
define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
#endif

178

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 179

Chapter 3: Memory Management

The start address of the vmalloc area depends on how much virtual address space memory is used for
the direct mapping of RAM (and therefore on the high_memory variable defined above). The kernel also
takes account of the fact that there is a gap of at least VMALLOC_OFFSET between the two areas and that the
vmalloc area begins at an address divisible by VMALLOC_OFFSET. This results in the offset values shown
in Table 3-5 for different memory configuration levels between 128 and 135 MiB; the offsets start a new
cycle at 136 MiB.

Table 3-5: VMALLOC_OFFSET Values for Different RAM Sizes

Memory (MiB) Offset (MiB)

128 8

129 15

130 14

131 13

132 12

133 11

134 10

135 9

Where the vmalloc area ends depends on whether highmem support is enabled — if it is not, no space is
needed for persistent kernel mappings because the whole of RAM memory can be permanently mapped.
Depending on configuration, the area therefore ends either at the start of the persistent kernel mappings
or at the start of the fixmap area; two pages are always left as a safety gap to the vmalloc area.

The start and end of the persistent kernel mappings are defined as follows:

include/asm-x86/highmem.h
#define LAST_PKMAP 1024
#define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE*(LAST_PKMAP + 1)) & PMD_MASK)

PKMAP_BASE defines the start address (the calculation is made relative to the fixmap area using some
constants that are discussed shortly). LAST_PKMAP defines the number of pages used to hold the
mappings.

The last memory section is occupied by fixed mappings. These are addresses that point to a random location
in RAM memory. In contrast to linear mapping at the start of the fourth gigabyte, the correlation between
virtual address and position in RAM memory is not preordained with this type of mapping but can be
freely defined, even though it cannot be changed later. The fixmap area fills the virtual address space
right up to its top end.

179

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 180

Chapter 3: Memory Management

include/asm-x86/fixmap_32.h
#define __FIXADDR_TOP 0xfffff000
#define FIXADDR_TOP ((unsigned long)__FIXADDR_TOP)
#define __FIXADDR_SIZE (__end_of_permanent_fixed_addresses << PAGE_SHIFT)
#define FIXADDR_START (FIXADDR_TOP - __FIXADDR_SIZE)

The advantage of fixmap addresses is that at compilation time, the address acts like a constant whose
physical address is assigned when the kernel is booted. Addresses of this kind can be de-referenced faster
than when normal pointers are used. The kernel also ensures that the page table entries of fixmaps are
not flushed from the TLB during a context switch so that access is always made via fast cache memory.

A constant is created for each fixmap address and must appear in the enum list called fixed_addresses.

include/asm-x86/fixmap_32.h
enum fixed_addresses {

FIX_HOLE,
FIX_VDSO,
FIX_DBGP_BASE,
FIX_EARLYCON_MEM_BASE,

#ifdef CONFIG_X86_LOCAL_APIC
FIX_APIC_BASE, /* local (CPU) APIC) — required for SMP or not */

#endif
...
#ifdef CONFIG_HIGHMEM

FIX_KMAP_BEGIN, /* reserved pte’s for temporary kernel mappings */
FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1,

#endif
...

FIX_WP_TEST,
__end_of_fixed_addresses

};

The kernel provides the fix_to_virt function to calculate the virtual address of a fixmap constant.

include/asm-x86/fixmap_32.h
static __always_inline unsigned long fix_to_virt(const unsigned int idx)

{
if (idx >= __end_of_fixed_addresses)

__this_fixmap_does_not_exist();

return __fix_to_virt(idx);
}

The if query is totally removed by compiler optimization mechanisms — this is possible because the
function is defined as an inline function, and only constants are used in the query. Such optimization is
necessary because otherwise fixmap addresses would be no better than normal pointers. A formal check
is made to ensure that the required fixmap address is in the valid area. __end_of_fixed_adresses is
the last element of fixed_addresses and defines the maximum possible number. The pseudo-function
__this_fixmap_does_not_exist (for which no definition exists) is invoked if the kernel accesses an
invalid address. When the kernel is linked, this leads to an error message indicating that no image can
be generated because of undefined symbols. Consequently, kernel faults of this kind are detected at
compilation time and not when the kernel is running.

180

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 181

Chapter 3: Memory Management

When a valid fixmap address is referenced, the comparison in the if query yields a positive value. Since
both comparison objects are constants, the query need not be executed and is therefore removed.

__fix_to_virt is defined as a macro. Owing to the inline property of fix_to_virt, it is copied directly
to the point in the code where the fixmap address query is executed. This macro is defined as follows:

include/asm-x86/fixmap_32.h
#define __fix_to_virt(x) (FIXADDR_TOP - ((x) << PAGE_SHIFT))

Starting at the top (and not from the bottom as usual), the kernel goes back n pages to determine the virtual
address of the n-th fixmap entry. As, once again, only constants are used in this calculation, the compiler
is able to compute the result at compilation time. The address in RAM at which the corresponding virtual
address is located has not yet been occupied as a result of the above division of memory.

The association between the fixmap address and physical page in memory is established by
set_fixmap(fixmap, page_nr) and set_fixmap_nocache (whose implementation is not discussed).
They simply associate the corresponding entry in the page tables with a page in RAM. Unlike
set_fixmap, set_fixmap_nocache disables hardware caching for the page involved as this is sometimes
necessary.

Notice that some other architectures also provide fixmaps, including AMD64.

Alternative Division
Dividing virtual address space in a 3 : 1 ratio is not the only option. Relatively little effort is needed to
select a different division because all bounds are defined by constants in the sources. For some purposes
it may be better to split the address space symmetrically, 2 GiB for user address space and 2 GiB for
kernel address space. __PAGE_OFFSET must then be set to 0x80000000 instead of the typical default of
0xC0000000. This division is useful when the system performs tasks that require a large amount of mem-
ory for the kernel but little for the user processes (such tasks are rare). As any change to how memory
is divided requires recompilation of all userspace applications, the configuration statements include no
option to split memory differently, although this would be easy to do in principle.

Basically, it is possible to split memory by manually modifying the kernel sources, but the kernel offers
some default splitting ratios. __PAGE_OFFSET is then defined as follows:

include/asm-x86/page_32.h
#define __PAGE_OFFSET # ((unsigned long)CONFIG_PAGE_OFFSET)

Table 3-6 collects all possibilities for splitting the virtual address space and the resulting maximal amount
of RAM that can be mapped.

Splitting the kernel in ratios other than 3 : 1 can make sense in specific scenarios, for instance, for
machines that mainly run code in the kernel — think about network routers. The general case, however,
is best served with a 3 : 1 ratio.

Splitting the Virtual Address Space
paging_init is invoked on IA-32 systems during the boot process to split the virtual address space as
described above. The code flow diagram is shown in Figure 3-16.

181

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 182

Chapter 3: Memory Management

Table 3-6: Different Splitting Ratios for the IA-32 Virtual Address Space, and the
Resulting Maximum Identity-Mapped Physical Memory.

Ratio CONFIG_PAGE_OFFSET MAXMEM(MiB)

3 : 1 0xC0000000 896

≈ 3 : 1 0xB0000000 1152

2 : 2 0x80000000 1920

≈ 2 : 2 0x78000000 2048

1 : 3 0x40000000 2944

PAE enabled?

Use PSE, PGE extensions if possible

Initialize fixmaps

paging_init

set_nx

pagetable_init

kernel_physical_mapping_init

permanent_kmaps_init

load_cr3

__flush_all_tlb

kmap_init

Figure 3-16: Code flow diagram for paging_init.

pagetable_init first initializes the page tables of the system using swapper_pg_dir as a basic (this
variable was previously used to hold the provisional data). Two extensions available on all modern
IA-32 variants are then enabled (only a few very old Pentium implementations do not support these).

❑ Support for large memory pages. The size of specially marked pages is 4 MiB instead of the usual
4 KiB. This option is used for kernel pages because they are never swapped out. Increasing the
page size means that fewer page table entries are needed, and this has a positive impact on the
translation lookaside buffers (TLBs), which are then less burdened with kernel data.

❑ If possible, kernel pages are provided with a further attribute (_PAGE_GLOBAL) that is why the
__PAGE_GLOBAL bit is activated in the __PAGE_KERNEL and __PAGE_KERNEL_EXEC variables. These

182

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 183

Chapter 3: Memory Management

variables specify the flags set for the kernel itself when pages are allocated; these settings are
therefore automatically transferred to the kernel pages.

The TLB entries of pages with a set _PAGE_GLOBAL bit are not flushed from the TLBs during con-
text switches. Since the kernel is always present at the same location in the virtual address space,
this enhances system performance, a welcome effect as kernel data must be made available as
quickly as possible.

Mapping of the physical pages (or of the first 896 MiB, as discussed above) into virtual address
space as of PAGE_OFFSET is done with the help of kernel_physical_mapping_init. The kernel
successively scans all relevant entries of the various page directories and sets the pointers to the correct
values.

Then the areas for fixmap entries and the persistent kernel mappings are set up. Again, this equates to
filling the page tables with appropriate values.

Once page table initialization with pagetable_init has been concluded, the cr3 register is supplied with
a pointer to the page global directory used (swapper_pg_dir). This is necessary to activate the new page
tables. Reassigning the cr3 register has exactly this effect on IA-32 machines.

The TLB entries must also be flushed because they still contain boot memory allocation data.
__flush_all_tlb does the necessary work. In contrast to TLB flushes during context switches, pages
with a _PAGE_GLOBAL bit are also flushed.

kmap_init initializes the global variable kmap_pte. The kernel uses this variable to store the page table
entry for the area later used to map pages from the highmem zone into kernel address space. Besides,
the address of the first fixmap area for highmem kernel mappings is stored in the global variable
kmem_vstart.

Initialization of the Hot-n-Cold Cache
I have already mentioned the per-CPU (or hot-n-cold) cache in Section 3.2.2.. Here we deal with the
initialization of the associated data structures and the calculation of the ‘‘watermarks‘‘used to control
cache filling behavior.

zone_pcp_init is responsible for initializing the cache. The kernel calls the function from
free_area_init_nodes, which is, in turn, invoked during boot on both IA-32 and AMD64.

mm/page_alloc.c
static __devinit void zone_pcp_init(struct zone *zone)
{

int cpu;
unsigned long batch = zone_batchsize(zone);

for (cpu = 0; cpu < NR_CPUS; cpu++) {
setup_pageset(zone_pcp(zone,cpu), batch);

}
if (zone->present_pages)

printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
zone->name, zone->present_pages, batch);

}

183

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 184

Chapter 3: Memory Management

Once the batch size (which is the basis for calculating the minimum and maximum fill level) has
been determined with zone_batchsize, the code iterates over all CPUs in the system and invokes
setup_pageset to fill the constants of each per_cpu_pageset instance. The zone_pcp macro used when
this function is invoked selects the pageset instance of the zone associated with the CPU currently being
examined.

Let us take a closer look at how the watermark is calculated.

mm/page_alloc.c
static int __devinit zone_batchsize(struct zone *zone)
{

int batch;

batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)

batch = (512 * 1024) / PAGE_SIZE;
batch /= 4;
if (batch < 1)

batch = 1;

batch = (1 << (fls(batch + batch/2)-1)) - 1;

return batch;
}

The code calculates batch so that it corresponds to roughly 25 percent of a thousandth of the pages
present in the zone. The shift operation also ensures that the value calculated has the form 2n − 1 because
it has been established empirically that this minimizes cache aliasing effects for most system loads. fls
is a machine-specific operation to yield the last set bit of a value. Note that this alignment will cause the
resulting values to deviate from 25 percent of one-thousandth the zones pages. The maximal deviation
arises for that case batch = 22. Since 22 + 11 − 1 = 32, fls will find bit 5 as last set bit in the number, and
1 << 5 - 1 = 31. Because the deviation will usually be smaller, it can be neglected for all practical purposes.

The batch size does not increase when the memory in the zone exceeds 512 MiB. For systems with a page
size of 4,096 KiB, for instance, this limit is reached when more than 131,072 pages are present. Figure 3-17
shows how the batch size evolves with the number of pages present in a zone.

The batch value makes sense when we consider how batch is used to calculate the cache limits in
setup_pageset.

mm/page_alloc.c
inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{

struct per_cpu_pages *pcp;

memset(p, 0, sizeof(*p));

pcp = &p->pcp[0]; /* hot */
pcp->count = 0;
pcp->high = 6 * batch;
pcp->batch = max(1UL, 1 * batch);
INIT_LIST_HEAD(&pcp->list);

184

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 185

Chapter 3: Memory Management

pcp = &p->pcp[1]; /* cold*/
pcp->count = 0;
pcp->high = 2 * batch;
pcp->batch = max(1UL, batch/2);
INIT_LIST_HEAD(&pcp->list);

}

 0

 5

 10

 15

 20

 25

 30

 35

0 100 200 300 400 500 600 700

Ba
tc

h
si

ze

Zone memory [MiB]

4 KiB Pages
8 KiB Pages

16 KiB Pages

0

5

10

15

20

25

30

35

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Ba
tc

h
si

ze

Pages in Zone

Figure 3-17: Batch sizes dependent on the amount of memory present (left-hand side) on the zone for
various page sizes. The graph on the right-hand side shows the dependency against the number of pages
present in a zone.

As the lower limit used for hot pages is 0 and the upper limit is 6*batch, the average number of pages in
the cache will be around 4*batch because the kernel tries to not let the caches drain too much. batch*4,
however, corresponds to a thousandth of the total number of zone pages (this is also the reason why
zone_batchsize tried to optimize the batch size for 25 percent of one-thousandth of the total pages). The
size of the L2 cache on IA-32 processors is in the range between 0.25 and 2 MiB, so it makes no sense to
keep much more memory in a hot-n-cold cache than would fit into this space. As a rule of thumb, the
cache size is one-thousandth of the main memory size; consider that current systems are equipped with
between 1 and 2 GiB of RAM per CPU, so the rule is reasonable. The computed batch size will thus likely
allow that the pages on the hot-n-cold cache fit into the CPU’s L2 cache.

The watermarks of the cold list are slightly lower because cold pages not held in the cache are used only
for actions that are not performance-critical (such actions are, of course, in the minority in the kernel,).
Only double of the batch value is used as the upper limit.

The pcp->batch size determines how many pages are used at once when the list needs to be refilled. For
performance reasons, a whole chunk of pages rather than single pages is added to the list.

The number of pages in each zone is output at the end of zone_pcp_init together with the calculated
batch sizes as shown in the boot logs (for a system with 4 GiB of RAM in the example below).

root@meitner # dmesg | grep LIFO
DMA zone: 2530 pages, LIFO batch:0
DMA32 zone: 833464 pages, LIFO batch:31
Normal zone: 193920 pages, LIFO batch:31

185

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 186

Chapter 3: Memory Management

Registering Active Memory Regions
I noted above that initialization of the zone structures is an extensive task. Luckily this task is identical on
all architectures. While kernel versions before 2.6.19 had to set up the required data structures on a per-
architecture basis, the approach has become more modular in the meantime: The individual architectures
only need to register a very simple map of all active memory regions, and generic code then generates
the main data structures from this information.

Notice that individual architectures can still decide to set up all data structures on their own without
relying on the generic framework provided by the kernel. Since both IA-32 and AMD64 let the kernel do
the hard work, I will not discuss this possibility any further. Any architecture that wants to enjoy the pos-
sibilities offered by the generic framework must set the configuration option ARCH_POPULATES_NODE_MAP.
After all active memory regions are registered, the rest of the work is then performed by the generic
kernel code.

An active memory region is simply a memory region that does not contain any holes. add_active_range
must be used to register a region in the global variable early_node_map.

mm/page_alloc.c
static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
static int __meminitdata nr_nodemap_entries;

The number of currently registered regions is denoted by nr_nodemap_entries. The maximal number
of distinct regions is given by MAX_ACTIVE_REGIONS. The value can be set by the architecture-specific
code using CONFIG_MAX_ACTIVE_REGIONS. If not, the kernel allows for registering 256 active regions per
default (or 50 regions per NUMA node if it is running on a system with more than 32 nodes). Each region
is described by the following data structure:

<mmzone.h>
struct node_active_region {

unsigned long start_pfn;
unsigned long end_pfn;
int nid;

};

start_pfn and end_pfn denote the first and last page frame in a continuous region, and nid is the NUMA
ID of the node to which the memory belongs. UMA systems naturally set this to 0.

An active memory region is registered with add_active_range:

mm/page_alloc.c
void __init add_active_range(unsigned int nid, unsigned long start_pfn,

unsigned long end_pfn)

When two adjacent regions are registered, then add_active_regions ensures that they are merged to a
single one. Besides, the function does not present any surprises.

Recall from Figures 3-12 and 3-13 that the function is called from zone_sizes_init on IA-32 systems,
and in e820_register_active_regions on AMD64 systems. Thus I will briefly discuss these
functions.

186

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 187

Chapter 3: Memory Management

Registering Regions on IA-32
Besides calling add_active_range, the function zone_sizes_init stores the boundaries of the different
memory zones in terms of page frames.

arch/x86/kernel/setup_32.c
void __init zone_sizes_init(void)
{

unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] =

virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;

#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
add_active_range(0, 0, highend_pfn);

#else
add_active_range(0, 0, max_low_pfn);

#endif

free_area_init_nodes(max_zone_pfns);
}

MAX_DMA_ADDRESS is the highest suitable memory address for DMA operations. The constant is
declared as PAGE_OFFSET+0x1000000. Recall that the physical pages are mapped into the virtual
starting from PAGE_OFFSET, and the first 16 MiB — hexadecimal 0x1000000 — are suitable for DMA
operations. Conversion with virt_to_phys yields the address in physical memory, and shifting
right by PAGE_SHIFT bits effectively divides this figure by the page size and produces the number
of pages that can be used for DMA. Unsurprisingly, the result is 4,096 since IA-32 uses pages
of 4 KiB.

max_low_pfn and highend_pfn are global constants to specify the highest page number in the low
(usually ≤ 896 MiB if 3 : 1 split of the address space is used) and high memory ranges that were
filled before.

Notice that free_area_init_nodes will combine the information in early_mem_map and max_zone_pfns:
The active ranges for each memory region are selected, and architecture-independent data structures are
constructed.

Registering Regions on AMD64
Registering the available memory is split between two functions on AMD64. The active memory regions
are registered as follows:

arch/x86/kernel/e820_64.c
e820_register_active_regions(int nid, unsigned long start_pfn,

unsigned long end_pfn)
{

unsigned long ei_startpfn;
unsigned long ei_endpfn;
int i;

187

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 188

Chapter 3: Memory Management

for (i = 0; i < e820.nr_map; i++)
if (e820_find_active_region(&e820.map[i],

start_pfn, end_pfn,
&ei_startpfn, &ei_endpfn))

add_active_range(nid, ei_startpfn, ei_endpfn);
}

Essentially the code iterates over all regions provided by the BIOS and finds the active region for each
entry. This is interesting because add_active_range is potentially called multiple times in contrast to the
IA-32 variant.

Filling in max_zone_pfns is handled by paging_init:

arch/x86/mm/init_64.c
void __init paging_init(void)
{

unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;

...
free_area_init_nodes(max_zone_pfns);

}

The page frame boundaries for the 16- and 32-bit DMA regions are stored in pre-processor symbols that
translate the 16 MiB and 4 GiB ranges into page frames:

include/asm-x86/dms_64.h
/* 16MB ISA DMA zone */
#define MAX_DMA_PFN ((16*1024*1024) >> PAGE_SHIFT)

/* 4GB broken PCI/AGP hardware bus master zone */
#define MAX_DMA32_PFN ((4UL*1024*1024*1024) >> PAGE_SHIFT)

end_pfn is the largest page frame number detected. Since AMD64 does not require high memory, the
corresponding entry in max_zone_pfns remains NULL.

Address Space Setup on AMD64
The address space setup on AMD64 systems is easier than for IA-32 in some respects, but unfortunately
also harder in others. While having a 64-bit virtual address space allows for avoiding oddities like high
memory, things are complicated by another factor: The address space spanned by 64 bits is so large
that there are currently simply no applications that would require this. Current implementations there-
fore implement a smaller physical address space that is only 48 bits wide. This allows for simplifying and
speeding up address translation without losing flexibility: 248 bits still allows addressing 256 TiB, or
256 × 1,024 GiB — which is plenty even for Firefox!

While the physical address space is restricted to 48 bits, addressing the virtual address space is still per-
formed with 64-bit pointers, and the space therefore has to span 64 bits formally. This raises a problem,
though: Some parts of the virtual address space cannot be addressed because effectively only 48 bits can
be handled.

188

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 189

Chapter 3: Memory Management

Since future hardware implementations might support larger physical address spaces, it is not possible
to simply to remap the subset that is not addressable to a different subset of the address space. Suppose
that any program would rely on pointers into the unimplemented address space to be remapped to some
part of the regular address space. Next-generation processors that implement more physical address bits
would lead to a different behavior and thus break all existing code.

Clearly, accessing the unimplemented regions must be hindered by the processor. One possibility to
enforce this would be to forbid use of all virtual addresses larger than the physical address space. This,
however, is not the approach chosen by the hardware designers. Their solution is based on a sign extension
approach, which is illustrated in Figure 3-18.

Higher
half

Lower
half

Kernelspace
o × FFFF

Userspace
o

264 FFFF FFFF FFFF

o × 0000 7FFF FFFF FFFF Bits [0,46] arbitrary
[47, 63] not set

Bits [0,46] arbitrary
[47, 63] not set

o × FFFF

Non-canonical area

8000 0000 0000

Figure 3-18: Possible virtual versus implemented physical address
space on AMD64 machines.

The first 47 bits of a virtual address, that is, [0, 46], can be arbitrarily set. Bits in the range [47, 63], however,
always need to have the same value: Either all are 0, or all are 1. Such addresses are called canonical. They
divide the total address space into three parts: a lower half, a higher half, and a forbidden region in
between. Together both portions form an address space that spans exactly 248 bits. The address space for
the lower half is [0x0, 0x0000 7FFF FFFF FFFF], while the subset for the top half is [0xFFF 800 0000 0000,
0xFFFF FFFF FFFF FFFF]. Notice that 0x0000 7FFF FFFF FFFF is a binary number with the lower 47 bits set
to 1 and all other bits not set, so it is the last address before the non-addressable region. Similarly, 0xFFFF
8000 0000 0000 has the bits [48, 63] set and is thus the first valid address in the higher half.

Partitioning the virtual address space into two parts is nothing the kernel is afraid of: It actually relies
on a separation of the address space into kernel and user parts on most architectures.15 The separation
enforced by the AMD64 therefore lends itself naturally to implement the separation between user and
kernel address space. Figure 3-19 shows how the Linux kernel lays out the virtual address space on
AMD64 machines.16

The complete lower half of the accessible address space is used as userspace, while the complete upper
half is reserved for the kernel. Since both spaces are huge, no fiddling with splitting ratios and the like is
required.

The kernel address space starts with a guard hole to prevent incidental access on the non-canonical
portion of the address space that would result in a general protection exception raised by the processor.
Physical pages are identity-mapped into kernel space starting from PAGE_OFFSET. 246 bits (as specified by
MAXMEM) are reserved for physical page frames. This amounts to 16 TiB of memory.

15There are also machines that allow a different approach. UltraSparc processors provide different virtual address spaces for user
and kernel space per default, so a separation of one address space into two components is not required.
16The kernel sources contain some documentation about the address space layout in Documentation/x86_64/mm.txt.

189

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 190

Chapter 3: Memory Management

include/asm-x86/pgtable_64.h
#define __AC(X,Y) (X##Y)
#define _AC(X,Y) __AC(X,Y)

#define __PAGE_OFFSET _AC(0xffff810000000000, UL)
#define PAGE_OFFSET __PAGE_OFFSET
#define MAXMEM _AC(0x3fffffffffff, UL)

Modules

M
O
D
U
L
E
S
_
E
N
D

M
O
D
U
L
E
S
_
V
A
D
D
R

_
S
T
A
R
T
_
K
E
R
N
E
L

_
S
T
A
R
T
_
K
E
R
N
E
L
_
M
A
P

K
E
R
N
E
L
_
T
E
X
T
_
S
T
A
R
T

V
M
M
E
M
M
A
P
_
S
T
A
R
T

V
M
A
L
L
I
C
_
E
N
D

V
M
A
L
L
O
C
_
S
T
A
R
T

P
A
G
E
_
O
F
F
S
E
T

T
A
S
K
_
S
I
Z
E
_
6
4

Ox FFFF 8000 0000 0000

Identity maped pages

Hole
(unused)

KERNEL_TEXT_SIZE
212 Bits

246

0
Bits (MAXMEM)Non-canonical area

Figure 3-19: Organization of the virtual address space on AMD64 systems. The image is not drawn to
scale, naturally.

Note that _AC is used to mark a given constant with a suffix. _AC(17,UL) becomes (17UL), for instance,
which makes the constant an unsigned long. This can be handy in C code, but is not allowed in assembler
code, where the _AC macro directly resolves to the given value without postfix.

Another guard hole is placed between the identity-mapped region and the area for vmalloc area, which
lies between VMALLOC_START and VMALLOC_END:

include/asm-x86/pgtable_64.h
#define VMALLOC_START _AC(0xffffc20000000000, UL)
#define VMALLOC_END _AC(0xffffe1ffffffffff, UL)

The virtual memory map (VMM) area immediately behind the vmalloc area is 1 TiB in size. It is only
useful on kernels that use the sparse memory model. Converting between virtual and physical page
frame number via pfn_to_page and page_to_pfn can be costly on such machines because all holes in
the physical address space must be taken into account. Starting with kernel 2.6.24, a simpler solution is
offered by generic code in mm/sparse-memmap.c: The page tables for the VMM area are set up such that
all struct page instances located in physical memory are mapped into the area without any holes. This
provides a virtually contiguous area in which only the active memory regions are included. The MMU
therefore automatically aids the translation between virtual and physical numbers that does not need to
be concerned with holes anymore. This accelerates the operation considerably.

Besides simplifying the translation between physical and virtual page numbers, the technique also has
benefits for the implementation of the auxiliary functions virt_to_page and page_address, because the
required calculations are likewise simplified.

The kernel text is mapped into the region starting from __START_KERNEL_MAP, with a compile-time con-
figurable offset given by CONFIG_PHYSICAL_START. Setting the offset is required for a relocatable kernel,

190

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 191

Chapter 3: Memory Management

but it is ensured that the resulting address __START_KERNEL is aligned with __KERNEL_ALIGN. The region
reserved for the kernel binary is KERNEL_TEXT_SIZE, currently defined to 40 MiB.

include/asm-x86/page_64.h
#define __PHYSICAL_START CONFIG_PHYSICAL_START
#define __KERNEL_ALIGN 0x200000

#define __START_KERNEL (__START_KERNEL_map + __PHYSICAL_START)
#define __START_KERNEL_map _AC(0xffffffff80000000, UL)
#define KERNEL_TEXT_SIZE (40*1024*1024)
#define KERNEL_TEXT_START _AC(0xffffffff80000000, UL)

Finally, some space to map modules into must be provided, and this is in the region from MODULES_VADDR
to MODULES_END:

include/asm-x86/pgtable_64.h
#define MODULES_VADDR _AC(0xffffffff88000000, UL)
#define MODULES_END _AC(0xfffffffffff00000, UL)
#define MODULES_LEN (MODULES_END - MODULES_VADDR)

The available amount of memory is computed in MODULES_LEN; currently, this amounts to approximately
1,920 MiB.

3.4.3 Memory Management during the Boot Process
Although memory management is not yet initialized, the kernel needs to reserve memory during the
boot process so that it can create various data structures. A bootmem allocator that assigns memory in the
early boot phase is used to do this.

Obviously, what is required is a system that focuses on simplicity rather than on performance and univer-
sality. Kernel developers therefore decided to implement a first-fit allocator as the simplest conceivable
way of managing memory in the boot phase.

A bitmap with (at least) as many bits as there are physical pages present in the system is used to manage
pages. Bit value 1 indicates a used page and 0 a free page.

When memory needs to be reserved, the allocator scans the bitmap bit by bit until it finds a posi-
tion big enough to hold a sufficient number of contiguous pages, literally the first-best or first-fit
position.

This procedure is not very efficient because the bit chain must be scanned right from the start for each
allocation. It cannot therefore be used for memory management once the kernel has been fully initialized.
The buddy system (used in conjunction with the slab, slub, or slob allocator) is a far better alternative, as
discussed in Section 3.5.5.

Data Structures
Even the first-fit allocator has to manage some data. The kernel provides an instance of the bootmem_data
structure (for each node in the system) for this purpose. Of course, the memory needed for the struc-
ture cannot be reserved dynamically but must already be allocated to the kernel at compilation time.

191

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 192

Chapter 3: Memory Management

Reservation is implemented in a CPU-independent way on UMA systems (NUMA systems employ
architecture-specific solutions). The bootmem_data structure is defined as follows:

<bootmem.h>
typedef struct bootmem_data {

unsigned long node_boot_start;
unsigned long node_low_pfn;
void *node_bootmem_map;
unsigned long last_offset;
unsigned long last_pos;
unsigned long last_success;

struct list_head list;
} bootmem_data_t;

When I use the term page below, I always mean a physical page frame.

❑ node_boot_start holds the number of the first page in the system; this is zero for most architec-
tures.

❑ node_low_pfn is the number of the last page of the physical address space that can be managed
directly; in other words, it is the end of ZONE_NORMAL.

❑ node_bootmem_map is a pointer to the memory area in which the allocation bitmap is stored. On
IA-32 systems, the memory area immediately following the kernel image is used for this pur-
pose. The corresponding address is held in the _end variable, which is automatically patched
into the kernel image during linking.

❑ last_pos is the number of the page last allocated. last_offset is used as an offset within the
page if not all of the page memory was requested. This enables the bootmem allocator to assign
memory areas that are smaller than a complete page (the buddy system cannot do this).

❑ last_success specifies the point in the bitmap at which allocation was last successful and is
used as the starting point for new reservations. Although this makes the first-fit algorithm a little
faster, it is still no real substitute for more sophisticated techniques.

❑ Systems with discontinuous memory can require more than one bootmem allocator. This is typ-
ically the case on NUMA machines that register one bootmem allocator per node, but it would,
for instance, also be possible to register one bootmem allocator for each continuous memory
region on systems where the physical address space is interspersed with holes.

A new boot allocator is registered with init_bootmem_core, and the list of all registered alloca-
tors is headed by the global variable bdata_list.

On UMA systems, the single bootmem_t instance required is called contig_bootmem_data. It is associated
with contig_page_data by means of the bdata element.

mm/page_alloc.c
static bootmem_data_t contig_bootmem_data;
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };

Initialization
Initializing the bootmem allocator is an architecture specific process that additionally depends on
the memory layout of the machine in question. As discussed above, IA-32 uses setup_memory,

192

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 193

Chapter 3: Memory Management

which calls setup_bootmem_allocator to initialize the bootmem allocator, whereas AMD64 uses
contig_initmem_init.

The code flow diagram in Figure 3-20 illustrates the individual steps involved in the initialization of the
bootmem allocator on IA-32 systems, and the corresponding diagram for AMD64 is shown in Figure 3-21.

Determine usable low memory page frames

Call reserve_bootmem to reserve special regions

setup_memory

reserve_bootmem(bootmap,bootmap_size)

register_bootmem_low_pages

init_bootmem

setup_bootmem_allocator

Figure 3-20: Initialization of the bootmem allocator on IA-32 machines.

Find suitable memory area

contig_initmem

bootmem_bootmap_pages

init_bootmem

register_bootmem_with_active_regions

reserve_bootmem (bootmap,bootmap_size)

Figure 3-21: Initialization of the bootmem allocator on
AMD64 machines.

Initialization for IA-32
setup_memory analyzes the detected memory regions to find the maximal page frame number in the low
memory region; high memory is of no use for the bootmem allocator because it is too complicated to
handle. The global variable max_low_pfn holds the number of the highest mappable page. The kernel
reports the amount of memory found in its boot logs.

wolfgang@meitner> dmesg
...
0MB HIGHMEM available.
511MB LOWMEM available.
...

193

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 194

Chapter 3: Memory Management

Based on this information, setup_bootmem_allocator is then responsible to initiate all necessary steps to
initialize the bootmem allocator. It first invokes the generic function init_bootmem, which itself is a front
end for init_bootmem_core.

The purpose of init_bootmem_core is to perform the first initialization step of the bootmem allocator.
The previously detected range of low-memory page frames is entered in the responsible bootmem_data_t
instance, in this case, contig_bootmem_data. All pages are initially marked as used in the bitmap
contig_bootmemdata->node_bootmem_map. Because init_bootmem_core is an architecture-independent
function, it cannot yet know which pages are available for use and which are not. Some need special
handling for architectural reasons, for example, page 0 on IA-32 systems. Some are already used, for
instance, by the kernel image. The pages that can actually be used must be explicitly marked by the
architecture-dependent code.

This marking is done with two architecture-specific functions: register_bootmem_low_pages frees
all potentially usable memory pages by setting the corresponding bits in the bitmap to 0 so that the
pages are marked as unused. IA-32 systems are supported in this task by the BIOS, which provides
the kernel with a list of all usable memory areas — the e820 map — at an earlier point during
initialization.

Since the bootmem allocator requires some memory pages to manage the reservation bitmap, these must
be reserved first by calling reserve_bootmem.

However, there are still more regions that are already in use and must be marked accordingly. For
this purpose, reserve_bootmem registers the corresponding pages after the event. The exact number
of regions that must be registered depends highly on the kernel configuration. It is, for instance,
required to reserve the zeroth page because this page is a special BIOS page on many machines
that is required for some machine-specific functions to work properly. Other reserve_bootmem calls
reserve configuration-dependent memory areas, for ACPI data or SMP boot-time configurations, for
instance.

Initialization for AMD64
While the technical details of bootmem initialization differ on AMD64, the general structure is rather
similar to the IA-32 case. This time contig_initmem is the responsible dispatcher.

First of all, bootmem_bootmap_bitmap computes the number of pages required for the bootmem
bitmap. Using the information provided by the BIOS in the e820 map, this allows — as on IA-
32 — for finding a continuous memory region of suitable size that is populated with proper
RAM pages.

This information is then filled into the architecture-independent bootmem data structure using
init_bootmem. As before, the function marks all pages as reserved, and the free pages must now
be selected. free_bootmem_with_active_regions can once more use the information in the e820
map to free all memory regions that were reported as usable by the BIOS. Finally, a single call to
reserve_bootmem is sufficient to register the space required for the bootmem allocation bitmap.
In contrast to IA-32, it is not required to reserve space for legacy information on magical places
in memory.

194

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 195

Chapter 3: Memory Management

Interface to the Kernel
Allocating Memory

The kernel provides a variety of functions for reserving memory during initialization. The following
functions are available on UMA systems:

❑ alloc_bootmem(size) and alloc_bootmem_pages(size) reserve memory whose size is
expressed by size in ZONE_NORMAL; data are aligned so that memory begins either at an ideal
position for the L1 cache or on a page boundary.

Even though the name alloc_bootmem_pages suggests that the required size is
specified in page units, _pages refers only to the alignment of the data.

❑ alloc_bootmem_low and alloc_bootmem_low_pages operate in the same ways as the above
functions but take the area ZONE_DMA that is suitable for DMA operations as their source. Con-
sequently, the functions should only be used when DMA memory is required.

Basically the same API applies for NUMA systems, but the suffix _node is appended to the function
name. As compared with the UMA functions, an additional parameter is required to specify which node
is used for memory reservation.

These functions are all front ends for __alloc_bootmem, which delegates the real work to
__alloc_bootmem_nopanic. Since more than one bootmem allocator can be registered (recall
that they are all kept in a global list), __alloc_bootmem_core iterates over all of them until one
succeeds.

On NUMA systems, __alloc_bootmem_node is used to implement the API functions. First, work is passed
on to __alloc_bootmem_core to try the allocation on the specific bootmem allocator of the node. If this
fails, the function falls back to __alloc_bootmem, which tries all nodes.

mm/bootmem.c
void * __init __alloc_bootmem(unsigned long size, unsigned long align,

unsigned long goal)

__alloc_bootmem requires three parameters to describe a request: size is the size of the desired memory
area, align indicates the alignment of the data, and goal specifies the start address at which the search
for a suitable free area is to begin. The front ends use the function as follows:

<bootmem.h>
#define alloc_bootmem(x) \

__alloc_bootmem((x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS))
#define alloc_bootmem_low(x) \

__alloc_bootmem((x), SMP_CACHE_BYTES, 0)
#define alloc_bootmem_pages(x) \

__alloc_bootmem((x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS))
#define alloc_bootmem_low_pages(x) \

__alloc_bootmem((x), PAGE_SIZE, 0)

195

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 196

Chapter 3: Memory Management

The desired allocation size (x) is forwarded unchanged to __alloc_bootmem, but there are two options
for alignment in memory: SMP_CACHE_BYTES aligns the data on most architectures so that they are ideally
positioned in the L1 cache (despite its name the constant is, of course, also defined on uniprocessor
systems). PAGE_SIZE aligns the data on the page boundaries. The latter alignment is ideal for allocating
one or more complete pages, but the former produces better results when parts of pages are allocated.

The distinction between low and normal memory is made by means of the start address. Searches for
DMA-suitable memory begins at the address 0, whereas requests for normal memory with RAM are
processed from MAX_DMA_ADDRESS upward (__pa translates the memory address into a page number).

__alloc_bootmem_core is a relatively extensive function (efficiency is not required during booting) that I
won’t discuss in detail as the main thing it does is to implement the first-fit algorithm already described.
However, the allocator has been enhanced to permit reservation not only of complete memory pages but
also smaller parts thereof.

The function performs the following (outline) actions:

1. Starting at goal, the page bitmap is scanned for a free area to satisfy the allocation request.

2. If the page found immediately follows the last allocated page held in bootmem_data->
last_pos, the kernel checks by reference to bootmem_data->last_offset whether the
required memory (including the space needed to align the data) can be allocated in the last
page or can at least start there.

3. The bits of the newly allocated pages in the block bitmap are set to 1. The number of the last
page allocated is also stored in bootmem_data->last_pos. If the page is not fully allocated,
the appropriate offset is held in bootmem_data->last_offset; otherwise, this value is set
to 0.

Releasing Memory
The kernel provides the free_bootmem function to free memory. It requires two parameters — the start
address and the size of the area to be freed. The name of the equivalent function on NUMA systems is
not surprisingly free_bootmem_node; it expects an additional parameter to define the appropriate node.

<bootmem.h>
void free_bootmem(unsigned long addr, unsigned long size);
void free_bootmem_node(pg_data_t *pgdat,

unsigned long addr,
unsigned long size);

Both versions delegate their work to __free_bootmem_core. Only whole pages can be freed because
the bootmem allocator does not keep any information about page divisions. The kernel uses
__free_bootmem_core to first calculate the pages whose contents are fully held in the area to be freed.
Pages whose contents are only held in part in this area are ignored. The corresponding entries in the
page bitmap are set to 0 to conclude page freeing.

This procedure conceals the risk that a page is not freed if parts of its contents are returned in successive
requests. If the first half of a page and at some time later the second half of the same page are freed,
the allocator has no way of knowing that the entire page is no longer in use and can therefore be freed.
The page simply remains ‘‘in use,’’ although this is not the case. Nevertheless, this is not a big problem
because free_bootmem is very rarely used. Most memory areas allocated during system initialization are

196

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 197

Chapter 3: Memory Management

intended for basic data structures that are needed throughout kernel run time and are therefore never
relinquished.

Disabling the Bootmem Allocator
The bootmem allocator must be disabled once system initialization has progressed so far that the buddy
system allocator can assume responsibility for memory management; after all, memory cannot be man-
aged by two allocators at the same time. Disabling is done by free_all_bootmem on UMA systems and
by free_all_bootmem_node on NUMA systems. Both need to be invoked by the architecture-specific
initialization code after the buddy system has been set up.

The page bitmap of the bootmem allocator is first scanned, and every unused page is freed. The interface
to the buddy system is the __free_pages_bootmem function that is invoked for each freed page. The
function relies internally on the standard function __free_page. It enables the pages to be incorporated
in the data structures of the buddy system, where they are managed as free pages and are available for
allocation.

Once the page bitmap has been fully scanned, the memory space it occupies must also be removed.
Thereafter, only the buddy system can be used for memory allocation.

Releasing Initialization Data
Many kernel code chunks and data tables are needed only during the system initialization phase. For
example, it is not necessary to keep data structure initialization routines in kernel memory for per-
manently linked drivers. They are no longer needed once the structures have been set up. Similarly,
hardware databases that drivers need to detect their devices are no longer required once the associated
devices have been identified.17

The kernel provides two ‘‘attributes‘‘ (__init and __initcall) to label initialization functions and
data. These must be placed before the function or data declarations. For instance, the probing rou-
tine of the (fictitious . . .) network card HyperHopper2000 is no longer used once the system has been
initialized.

int __init hyper_hopper_probe(struct net_device *dev)

The __init attribute is inserted between the return type and name in the function declaration.

Data sections can likewise be labeled as initialization data. For example, the fictitious network card driver
requires a few strings in the system initialization phase only; thereafter the strings can be discarded.

static char search_msg[] __initdata = "%s: Desperately looking for HyperHopper at address %x...";
static char stilllooking_msg[] __initdata = "still searching...";
static char found_msg[] __initdata = "found.\n";
static char notfound_msg[] __initdata = "not found (reason = %d)\n";
static char couldnot_msg[] __initdata = "%s: HyperHopper not found\n";

__init and __initdata cannot be implemented using normal C means so that the kernel once again
has to resort to special GNU C compiler statements. The general idea behind the implementation of

17At least for compiled-in data and devices that are not hotpluggable. If devices are added to the system dynamically, the data tables
cannot, of course, be discarded as they may be required later.

197

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 198

Chapter 3: Memory Management

initialization functions is to keep the data in a specific part of the kernel image that can be completely
removed from memory when booting has finished. The following macros are defined with this
in mind:

<init.h>
#define __init __attribute__ ((__section__ (".init.text"))) __cold
#define __initdata __attribute__ ((__section__ (".init.data")))

__attribute__ is a special GNU C keyword to permit the use of attributes. The __section__ attribute is
used to instruct the compiler to write the subsequent data or function into the respective .init.data and
.init.text sections of the binary file (those of you unfamiliar with the structure of ELF files are referred
to Appendix E). The prefix __cold also instructs the compiler that paths leading to the function will be
unlikely, that is, that the function won’t be called very often, which is usually the case for initialization
functions.

The readelf tool can be used to display the individual sections of the kernel image.

wolfgang@meitner> readelf — sections vmlinux
There are 53 section headers, starting at offset 0x2c304c8:

Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0
[1] .text PROGBITS ffffffff80200000 00200000

000000000021fc6f 0000000000000000 AX 0 0 4096
[2] __ex_table PROGBITS ffffffff8041fc70 0041fc70

0000000000003e50 0000000000000000 A 0 0 8
[3] .notes NOTE ffffffff80423ac0 00423ac0

0000000000000024 0000000000000000 AX 0 0 4
...

[28] .init.text PROGBITS ffffffff8067b000 0087b000
000000000002026e 0000000000000000 AX 0 0 1

[29] .init.data PROGBITS ffffffff8069b270 0089b270
000000000000c02e 0000000000000000 WA 0 0 16

...

To release initialization data from memory, it is not necessary for the kernel to know the nature of the
data — which data and functions are held in memory and what purpose they serve is totally irrelevant.
The only information of relevance is the addresses in memory at which the data and functions begin
and end.

Because this information is not available at compilation time, it is patched in when the kernel is linked.
I have already mentioned this technique at other places in this chapter. To support it, the kernel defines
the variable pair __init_begin and __init_end, whose names reveal their meanings.

free_initmem is responsible for freeing the memory area defined for initialization purposes and return-
ing the pages to the buddy system. The function is called right at the end of the boot process immediately
before init starts the first process in the system. The boot logs include a message indicating how much
memory was freed.

198

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 199

Chapter 3: Memory Management

wolfgang@meitner> dmesg
...
Freeing unused kernel memory: 308k freed
...

In comparison with today’s typical main memory sizes, the approximately 300 KiB freed are not gigantic
but are a significant contribution. The removal of initialization data is important, particularly on hand-
held or embedded systems, which, by their very nature, make do with little memory.

3.5 Management of Physical Memory
Responsibility for memory management is assumed by the buddy system once kernel initialization has
been completed. The buddy system is based on a relatively simple but nevertheless surprisingly powerful
algorithm that has been with us for almost 40 years. It combines two key characteristics of a good memory
allocator — speed and efficiency.

3.5.1 Structure of the Buddy System
An instance of struct page is available for each physical page of memory (a page frame) in the sys-
tem. Each memory zone is associated with an instance of struct zone that holds the central array for
managing buddy data.

<mmzone.h>
struct zone {
...

/*
* free areas of different sizes
*/

struct free_area free_area[MAX_ORDER];
...
};

free_area is an auxiliary data structure we have not yet met. It is defined as follows:

<mmzone.h>
struct free_area {

struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;

};

nr_free specifies the number of free page blocks in the current area (counting is page by page for the
zeroth area, by two-page pairs for order 1, by sets of four pages for order 2, etc.). free_list is used to
link page lists. As discussed in Chapter 1, the page lists contain contiguous memory areas of the same
size. While the definition provides more than one page list, I ignore this fact for a moment and come back
to why there are different lists below.

The order is a very important term in buddy systems. It describes the quantified units in which memory
can be allocated. The size of a memory block is 2order, where order may extend from 0 to MAX_ORDER.

199

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 200

Chapter 3: Memory Management

<mmzone.h>
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))

The typical value of this constant is 11, which means that the maximum number of pages that can be
requested in a single allocation is 211 = 2, 048. However, this value can be changed manually if the
FORCE_MAX_ZONEORDER configuration option is set by the architecture-specific code. For example, the
gigantic address spaces on IA-64 systems allow for working with MAX_ORDER = 18, whereas ARM or v850
systems use smaller values such as 8 or 9. This, however, is not necessarily caused by little memory sup-
ported by the machine, but can also be because of memory alignment requirements. Or, as the Kconfig
configuration file for the V850 architecture puts it:

arch/v850/Kconfig
The crappy-ass zone allocator requires that the start of allocatable
memory be aligned to the largest possible allocation.
config FORCE_MAX_ZONEORDER

int
default 8 if V850E2_SIM85E2C || V850E2_FPGA85E2C

The indices of the individual elements of the free_area[] array are also interpreted as order parameters
and specify how many pages are present in the contiguous areas on a shared list. The zeroth array ele-
ment lists sections with one page (20 = 1), the first lists page pairs (21 = 2), the third manages sets of 4
pages, and so on.

How are the page areas linked? The list element of the first page in the block is used to keep the blocks
in a list. As a result, there is no need to introduce a new data structure to group pages that are physically
contiguous — otherwise, they wouldn’t be in a block. Figure 3-22 illustrates the situation graphically.

next
prev

struct page
0

1

2
.
.

MAX_ORDER

Figure 3-22: Linking blocks in the buddy system.

The buddies need not be linked with each other. If a block is broken down into two blocks of half the size
during allocation, the kernel automatically adds the unused half to the list of next smaller blocks. If, at
some point in the future, both blocks are not in use after memory has been freed, their addresses can be
referenced to automatically determine whether they are buddies. This minimal administrative effort is a
major advantage of the buddy system.

200

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 201

Chapter 3: Memory Management

Memory management based on the buddy system is concentrated on a single memory zone of a node,
for instance, the DMA or high-memory zone. However, the buddy systems of all zones and nodes are
linked via the allocation fallback list. Figure 3-23 illustrates this relationship.

When a request for memory cannot be satisfied in the preferred zone or node, first another zone in the
same node, and then another node is picked to fulfill the request.

Zone Zone Zone

Zone Zone Zone

Fallback
list

Figure 3-23: Relationship between buddy system and memory zones/nodes.

Finally, note that information about the current state of the buddy system is available in
/proc/buddyinfo:

wolfgang@meitner> cat /proc/buddyinfo
Node 0, zone DMA 3 5 7 4 6 3 3 3 1 1 1
Node 0, zone DMA32 130 546 695 271 107 38 2 2 1 4 479
Node 0, zone Normal 23 6 6 8 1 4 3 0 0 0 0

The number of free entries per allocation order is printed for each zone, and the order increases from left
to right. The information shown above is taken from an AMD64 system with 4 GiB of RAM.

3.5.2 Avoiding Fragmentation
In the simplified explanation given in the Introduction, one doubly linked list was sufficient to satisfy all
the needs of the buddy system. This has, indeed, been the situation until kernel 2.6.23. During the devel-
opment of the kernel 2.6.24, the buddy system has, however, seen the integration of patches disputed
among the kernel developers for an unusually long amount of time. Since the buddy system is one of the
most venerable components of the kernel, changes are not accepted lightly.

Grouping Pages by Mobility
The basic principle of the buddy system has been discussed in the Introduction, and the scheme has,
indeed, worked very well during the last couple of years. However, there is one issue that has been a
long-standing problem with Linux memory management: After systems have been up and running for
longer times, physical memory tends to become fragmented. The situation is depicted in Figure 3-24.

201

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 202

Chapter 3: Memory Management

5948
36
24
12

0

47
35
23

11

Figure 3-24: Fragmentation of physical memory.

Assume that the memory consists of 60 pages — clearly, this is not going to be the key component
to the next supercomputer, but is fair enough for the sake of example. The free pages are scattered
across the address space on the left-hand side. Although roughly 25 percent of the physical mem-
ory is still unallocated, the largest continuous free area is only a single page. This is no problem for
userspace applications: Since their memory is mapped over page tables, it will always appear continu-
ous to them irrespective of how the free pages are distributed in physical memory. The right-hand side
shows the situation with the same number of used and free pages, but with all free pages located in a
continuous area.

Fragmentation is, however, a problem for the kernel: Since (most) RAM is identity-mapped into the
kernel’s portion of the address space, it cannot map an area larger than a single page in this scenario.
While many kernel allocations are small, there is sometimes the need to allocate more than a single page.
Clearly, the situation on the right-hand side, where all reserved and free pages are in continuous regions,
would be preferable.

Interestingly, problems with fragmentation can already occur when most of the memory is still unallo-
cated. Consider the situation in Figure 3-25. Only 4 pages are reserved, but the largest contiguous area
that can be allocated is 8 pages because the buddy system can only work that allocation ranges that are
powers of 2.

0 7 15 23 31

Figure 3-25: Memory fragmentation where few reserved pages
prevent the allocation of larger contiguous blocks.

I have mentioned that memory fragmentation only concerns the kernel, but this is only partially true:
Most modern CPUs provide the possibility to work with huge pages whose page size is much bigger
than for regular pages. This has benefits for memory-intensive applications. When bigger pages are
used, the translation lookaside buffer has to handle fewer entries, and the chance of a TLB cache miss is
reduced. Allocating huge pages, however, requires free contiguous areas of physical RAM!

Fragmentation of physical memory has, indeed, belonged to the weaker points of Linux for an unusually
long time span. Although many approaches have been suggested, none could satisfy the demanding
needs of the numerous workloads that Linux has to face without having too great an impact on others.
During the development of kernel 2.6.24, means to prevent fragmentation finally found their way into
the kernel. Before I discuss their strategy, one point calls for clarification: Fragmentation is also known
from filesystems, and in this area the problem is typically solved by defragmentation tools: They analyze
the filesystem and rearrange the allocated blocks such that larger continuous areas arise. This approach
would also be possible for RAM, in principle, but is complicated by the fact that many physical pages

202

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 203

Chapter 3: Memory Management

cannot be moved to an arbitrary location. Therefore, the kernel’s approach is anti-fragmentation: Try to
prevent fragmentation as well as possible from the very beginning.

How does anti-fragmentation work? To understand the approach, we must be aware that the kernel
distinguishes three different types of reserved pages:

❑ Non-movable pages have a fixed position in memory and cannot be moved anywhere else. Most
allocations of the core kernel fall into this category.

❑ Reclaimable pages cannot be moved directly, but they can be deleted and their contents regener-
ated from some source. Data mapped from files fall into this category, for instance.

Reclaimable pages are periodically freed by the kswapd daemon depending on how often
they are accessed. This is a complicated process that merits a detailed discussion of its own:
Chapter 18 that describes page reclaim in detail. In the meanwhile, it suffices to know that the
kernel will take care of removing reclaimable pages when they start to use up too much RAM.

It is also possible to initiate page reclaim when there is an acute shortage of memory, that is,
when an allocation has failed. You will see further below when the kernel deems it necessary to
do so.

❑ Movable pages can be moved around as desired. Pages that belong to userspace applications fall
into this category. They are mapped via page tables. If they are copied into a new location, the
page table entries can be updated accordingly, and the application won’t notice anything.

A page has a certain mobility depending into which of the three categories it falls. The anti-fragmentation
technique used by the kernel is based on the idea of grouping pages with identical mobility together.
Why does this approach help to reduce fragmentation? Recall from Figure 3-25 that a page that cannot
be moved somewhere else can prevent continuous allocations in an otherwise nearly completely empty
RAM area. By distributing pages onto different lists depending on their mobility, this situation is pre-
vented. For instance, a non-movable page cannot be located in the middle of a block of movable pages
and effectively prevent any larger part of the block from being used.

Imagine that most of the free pages in Figure 3-25 belong to the reclaimable category, while the reserved
pages are non-movable. If the pages had been collected on two different lists, the situation might, how-
ever, look as shown in Figure 3-26. It is still hard to find a large continuous free space for non-movable
pages, but much easier for reclaimable pages.

Reclaimable
pages

Un-movable pages

Figure 3-26: Memory fragmentation is reduced by
grouping pages together depending on their
mobility.

Note, however, that the memory is not partitioned into different mobility regions from the very
beginning. They will be populated at run time. A second approach of the kernel does partition the
memory into regions for movable and non-movable allocations, and I will discuss how this works below.
Such a partitioning, however, is not essential for the approach described here.

203

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 204

Chapter 3: Memory Management

Data Structure
Although the anti-fragmentation technique used by the kernel is highly effective, it has astonishingly little
impact on code and data structures of the buddy allocator. The kernel defines some macros to represent
the different migrate types:

<mmzone.h>
#define MIGRATE_UNMOVABLE 0
#define MIGRATE_RECLAIMABLE 1
#define MIGRATE_MOVABLE 2
#define MIGRATE_RESERVE 3
#define MIGRATE_ISOLATE 4 /* can’t allocate from here */
#define MIGRATE_TYPES 5

The types MIGRATE_UNMOVABLE, MIGRATE_RECLAIMABLE, and MIGRATE_MOVABLE have already been intro-
duced. MIGRATE_RESERVE provides an emergency memory reserve if an allocation request cannot be
fulfilled from the mobility-specific lists (it is filled during initialization of the memory subsystem with
setup_zone_migrate_reserve, but I will not go into detail about this). MIGRATE_ISOLATE is a special
virtual zone that is required to move physical pages across NUMA nodes. On large systems, it can be
beneficial to bring physical pages closer to the CPUs that use them most. MIGRATE_TYPES, finally, is also
not a zone, but just denotes the number of migrate types.

The core adjustment to the buddy system data structures is that the free list is broken into a MIGRATE_TYPE
number of lists:

<mmzone.h>
struct free_area {

struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;

};

nr_free counts the number of free pages on all lists, but a specific free list is provided for each migrate
type. The macro for_each_migratetype_order(order, type) can be used to iterate over the migrate
types of all allocation orders.

What happens if the kernel cannot fulfill an allocation request for a given migrate type? A similar problem
has already occurred before, namely, when we considered what happens when an allocation cannot
be fulfilled from a specific NUMA zone. The kernel proceeds similarly as in this case by providing a
fallback list regulating which migrate types should be used next if a request cannot be fulfilled from the
desired list:

mm/page_alloc.c
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
*/
static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {

[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE },

/* Never used */
};

204

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 205

Chapter 3: Memory Management

The data structure is mostly self-explanatory: When the kernel wants to allocate un-movable pages, but
the corresponding list is empty, then it falls back to reclaimable pages, then to movable pages, and finally
to the emergency reserve.

Global Variables and Auxiliary Functions
While page mobility grouping is always compiled into the kernel, it only makes sense if enough memory
that can be distributed across multiple migrate lists is present in a system. Since on each migrate list a
suitable amount of memory should be present, the kernel needs a notion of ‘‘suitable.’’ This is provided
by the two global variables pageblock_order and pageblock_nr_pages. The first denotes an allocation
order that is considered to be ‘‘large,’’ and pageblock_nr_pages denotes the corresponding number of
pages for this allocation order. Usually the the page order is selected to be the order of huge pages if such
are provided by the architecture:

<pageblock-flags.h>
#define pageblock_order HUGETLB_PAGE_ORDER

On the IA-32 architecture, huge pages are 4 MiB in size, so each huge page consists of 1,024 regular pages
and HUGETLB_PAGE_ORDER is defined to be 10. The IA-64 architecture, in contrast, allows varying regular
and huge page sizes, so the value of HUGETLB_PAGE_ORDER depends on the kernel configuration.

If an architecture does not support huge pages, then the second highest allocation order is taken as a
large order:

<pageblock-flags.h>
#define pageblock_order (MAX_ORDER-1)

Page migration will not provide any benefits if each migrate type cannot at least be equipped with one
large page block, so the feature is turned off by the kernel if too little memory is available. This is checked
in the function build_all_zonelists, which is used to initialize the zone lists. If not enough memory is
available, the global variable page_group_by_mobility is set to 0, otherwise to 1.18

How does the kernel know to which migrate type a given allocation belongs? As you will see
in Section 3.5.4, details about each memory allocation are specified by an allocation mask. The kernel
provides two flags that signal that the allocated memory will be movable (__GFP_MOVABLE) or reclaimable
(__GFP_RECLAIMABLE). If none of these flags is specified, the allocation is assumed to be non-movable.
The following auxiliary function converts between allocation flags and their corresponding migrate
types:

<gfp.h>
static inline int allocflags_to_migratetype(gfp_t gfp_flags)
{

if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;

/* Group based on mobility */
return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |

((gfp_flags & __GFP_RECLAIMABLE) != 0);
}

18Note that systems not only with little memory but also with extremely large page sizes can be affected by this since the check is
performed on a pages-per-list basis.

205

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 206

Chapter 3: Memory Management

If page mobility has been disabled, all pages will be kept in the unmovable zone. Otherwise, the return
value of the function can be directly used as an array index in free_area.free_list.

Finally, note that each memory zone provides a special field that allows for tracking properties of page
blocks with pageblock_nr_pages pages. Since this is currently only used by the page mobility code, I
have not introduced this feature before:

<mmzone.h>
struct zone {
...

unsigned long *pageblock_flags;
...
}

During initialization, the kernel automatically ensures that for each page block group in the zone, suf-
ficient space is available in pageblock_flags to store NR_PAGEBLOCK_BITS bits. Currently, 3 bits are
required to denote the migrate type of the page range:

<pageblock-flags.h>
/* Macro to aid the definition of ranges of bits */
#define PB_range(name, required_bits) \

name, name ## _end = (name + required_bits) - 1

/* Bit indices that affect a whole block of pages */
enum pageblock_bits {

PB_range(PB_migrate, 3), /* 3 bits required for migrate types */
NR_PAGEBLOCK_BITS

};

set_pageblock_migratetype is responsible to set the migrate type for a page block headed by page:

mm/page_alloc.c
void set_pageblock_migratetype(struct page *page, int migratetype)

The migratetype argument can be constructed by the auxiliary function allocflags_to_migratetype
introduced above. Notice that it is essential that the migrate type of a page is always preserved and not
just available when the page is located in the buddy system. When memory is released, the pages must
be put back to the proper migrate list, and this is only possible because the required information can be
obtained with get_pageblock_migratetype.

Finally, notice that the current state of page distribution across the migrate lists can be found in
/proc/pagetypeinfo:

wolfgang@meitner> cat /proc/pagetypeinfo
Page block order: 9
Pages per block: 512

206

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 207

Chapter 3: Memory Management

Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
Node 0, zone DMA, type Unmovable 0 0 1 1 1 1 1 1 1 1 0
Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone DMA, type Movable 3 5 6 3 5 2 2 2 0 0 0
Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 0 1
Node 0, zone DMA, type <NULL> 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone DMA32, type Unmovable 44 37 29 1 2 0 1 1 0 1 0
Node 0, zone DMA32, type Reclaimable 18 29 3 4 1 0 0 0 1 1 0
Node 0, zone DMA32, type Movable 0 0 191 111 68 26 21 13 7 1 500
Node 0, zone DMA32, type Reserve 0 0 0 0 0 0 0 0 0 1 2
Node 0, zone DMA32, type <NULL> 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Unmovable 1 5 1 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Movable 1 4 0 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Reserve 11 13 7 8 3 4 2 0 0 0 0
Node 0, zone Normal, type <NULL> 0 0 0 0 0 0 0 0 0 0 0

Number of blocks type Unmovable Reclaimable Movable Reserve <NULL>
Node 0, zone DMA 1 0 6 1 0
Node 0, zone DMA32 13 18 2005 4 0
Node 0, zone Normal 22 10 351 1 0

Initializing Mobility-Based Grouping
During the initialization of the memory subsystem, memmap_init_zone is responsible to handle the page
instances of a memory zone. The function does some standard initializations that are not too interesting,
but one thing is essential: All pages are initially marked to be movable!

mm/page_alloc.c
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{

struct page *page;
unsigned long end_pfn = start_pfn + size;
unsigned long pfn;

for (pfn = start_pfn; pfn < end_pfn; pfn++) {
...

if ((pfn & (pageblock_nr_pages-1)))
set_pageblock_migratetype(page, MIGRATE_MOVABLE);

...
}

As discussed in Section 3.5.4, the kernel favors large page groups when pages must be ‘‘stolen’’ from
different migrate zones from those the allocation is intended for. Because all pages initially belong to the
movable zone, stealing pages is required when regular, unmovable kernel allocations are performed.

207

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 208

Chapter 3: Memory Management

Naturally, not too many movable allocations will have been performed during boot, so chances are
good that the allocator can pick maximally sized blocks and transfer them from the movable to the non-
movable list. Because the blocks have maximal size, no fragmentation is introduced into the movable
zone!

All in all, this avoids situations in which kernel allocations that are done during boot (and which
often last for the whole system uptime) are spread across the physical RAM such that other allo-
cation types are fragmented — one of the most important goals of the page mobility grouping
framework.

The Virtual Movable Zone
Grouping pages by mobility order is one possible method to prevent fragmentation of physical
memory, but the kernel additionally provides another means to fight this problem: the virtual
zone ZONE_MOVABLE. The mechanism has even found its way into the kernel during the devel-
opment of kernel 2.6.23, one release before the mobility grouping framework was merged. In
contrast to mobility grouping, the ZONE_MOVABLE feature must be explicitly activated by the
administrator.

The basic idea is simple: The available physical memory is partitioned into one zone used for movable
allocations, and one zone used for non-movable allocations. This will automatically prevent any non-
movable pages from introducing fragmentation into the movable zone.

This immediately raises the question of how the kernel is supposed to decide how the available memory
will be distributed between the two competitors. Clearly, this asks too much of the poor kernel, so the
system administrator has to make the decision. After all, a human can predict much better which sce-
narios the machine will handle and what the expected distribution of allocations into the various types
will be.

Data Structures
The kernelcore parameter allows for specifying the amount of memory used for non-movable allo-
cations, that is, for allocations that can neither be reclaimed nor migrated. The remaining memory is
used for movable allocations. After parsing the parameter, the result is stored in the global variable
required_kernelcore.

It is also possible to use the parameter movablecore to control the amount of memory that is used for
movable memory. The size of required_kernelcore will be computed accordingly. If wise guys specify
both parameters simultaneously, the kernel computes required_kernelcore as before, and takes the
larger one of the computed and specified value.

Depending on the architecture and the kernel configuration, the new zone ZONE_MOVABLE is located above
the high-memory or regular-memory zone:

<mmzone.h>
enum zone_type {
...

ZONE_NORMAL
#ifdef CONFIG_HIGHMEM

ZONE_HIGHMEM,

208

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 209

Chapter 3: Memory Management

#endif
ZONE_MOVABLE,
MAX_NR_ZONES

};

In contrast to all other zones in the system, ZONE_MOVABLE is not associated with any memory range that
is of significance to the hardware. Indeed, the zone is filled with memory taken from either the highmem
or the regular zone, and accordingly we call ZONE_MOVABLE a virtual zone in the following.

The auxiliary function find_zone_movable_pfns_for_nodes is used to compute the amount of mem-
ory that goes into ZONE_MOVABLE. If neither the kernelcore nor movablecore parameter was specified,
find_zone_movable_pfns_for_nodes leaves ZONE_MOVABLE empty, and the mechanism is not active.

Two things must be considered with respect to how many pages are taken from a physical zone and used
for ZONE_MOVABLE:

❑ The memory for non-movable allocations is spread evenly across all memory nodes.

❑ Only memory from the highest zone is used. On 32-bit systems with much memory, this will
usually be ZONE_HIGHMEM, but for 64-bit systems, ZONE_NORMAL or ZONE_DMA32 will be used.

The actual computation is rather lengthy, but not very interesting, so I do not consider it in detail. What
matters are the results:

❑ The physical zone from which pages for the virtual zone ZONE_MOVABLE are taken is stored in the
global variable movable_zone.

❑ For each node, the page frame in the movable zone from which onward the memory belongs to
ZONE_MOVABLE is in zone_movable_pfn[node_id].

mm/page_alloc.c
unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];

The kernel ensures that these pages will be used to satisfy allocations that fall into the responsibility of
ZONE_MOVABLE.

Implementation
How are the data structures described so far brought to use? As with the page migration approach,
allocation flags play a crucial role. They are discussed below in Section 3.5.4 in more detail. Here, it
suffices to say that all movable allocations must specify both __GFP_HIGHMEM and __GFP_MOVABLE.

Since the kernel determines the zone from which an allocation is fulfilled by the allocation flags, it
can select ZONE_MOVABLE when the said flags are set. This is the only change required to integrate
ZONE_MOVABLE into the buddy system! The rest is done by generic routines that work on all zones,
discussed below.

3.5.3 Initializing the Zone and Node Data Structures
Until now, we have only seen how the kernel detects the available memory in the system in the
architecture-specific code. The association with higher-level structures — zones and nodes — needs to

209

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 210

Chapter 3: Memory Management

be constructed from this information. Recall that architectures are required to established the following
information during boot:

❑ The page frame boundaries of the various zones in the system as stored in the max_zone_pfn
array.

❑ The distribution of page frames across nodes as stored in the global variable early_node_map.

Managing Data Structure Creation
Starting with kernel 2.6.10, a generic framework was provided to transfer this information into the node
and zone data structures expected by the buddy system; before this, each architecture had to set up the
structures on its own. Today, it suffices to set up the aforementioned simple structures and leave the hard
work to free_area_init_nodes. Figure 3-27 shows an overview of the process, and Figure 3-28 shows
the code flow diagram for free_area_init_nodes.

free_area_init_nodes

pg_data_tFill in
early_node_map

Architecture-specific
initialization

Set max page
frame numbers
for zones
(max_zone_pfns)

pg_data_t

Generic representation
of nodes and zones

Figure 3-27: Overview of the interplay between architecture-specific and
generic kernel code for setting up node and zone data memory management
data structures.

Determine zone
boundaries

Ite
ra

te
 o

ve
r a

ll
no

de
s

free_area_init_nodes

free_area_init_node

calculate_node_totalpages

alloc_node_mem_map

free_area_init_core

check_for_regular_memory

Figure 3-28: Code flow diagram for
free_area_init_nodes.

210

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 211

Chapter 3: Memory Management

free_area_init_nodes first has to analyze and rewrite the information provided by the architecture-
specific code. Among others, the numbers of the lowest and highest page frames that can be used — in
contrast to the principal boundaries specified in zone_max_pfn and zone_min_pfn — need to be obtained
for each zone. Two global arrays are used to store the information:

mm/page_alloc.c
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]

First of all, however, free_area_init_nodes sorts the entries in early_node_map by their first page frame
start_pfn.

mm/page_alloc.c
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{

unsigned long nid;
enum zone_type i;

/* Sort early_node_map as initialisation assumes it is sorted */
sort_node_map();

...

Sorting the entries makes life easier for the following tasks, but is not particularly complicated, so it is
not required to inspect sort_node_map further. Just note that the kernel provides a generic heap sort
implementation in lib/sort.c that is employed by the function.

The information passed to free_area_init_nodes in max_zone_pfn records the maximal page frame
numbers that can be contained in each zone. free_area_init_nodes prepares a more convenient
representation of this information by providing page frame intervals of the form [low, high] for
each zone in the aforementioned global variables (I omit initialization of these variables with
zero bytes):

mm/page_alloc.c
arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];

for (i = 1; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)

continue;
arch_zone_lowest_possible_pfn[i] =

arch_zone_highest_possible_pfn[i-1];
arch_zone_highest_possible_pfn[i] =

max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
}

The auxiliary function find_min_pfn_with_active_regions is used to find the smallest regis-
tered usable page frame for the lowest registered zone. This need not necessarily be ZONE_DMA,
but can, for instance, also be ZONE_NORMAL if the machine does not require DMA memory. The
maximum page frame for the smallest zone can be directly taken from the information provided by
max_zone_pfn.

211

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 212

Chapter 3: Memory Management

The intervals for the other zones are then constructed in a straightforward manner: The smallest page
frame for the n-th zone is the largest page frame of the previous (n − 1) zone. The largest page frames for
the current zone are already available in max_zone_pfn.

mm/page_alloc.c
arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;

/* Find the PFNs that ZONE_MOVABLE begins at in each node */
...

find_zone_movable_pfns_for_nodes(zone_movable_pfn);

Since ZONE_MOVABLE is a virtual zone and not associated with real hardware zones, the zone bound-
aries are always set to zero. Recall from above that it only exists if any of the kernel command-line
parameter kernelcore or movablecore was specified. The movable zone for each node starts above a
certain page frame number of a specific zone for each node. The corresponding numbers are computed
in find_zone_movable_pfns_for_nodes.

Some information about the determined page frame intervals is proudly presented to the user. This
includes, for instance, the following (the output is taken on an AMD64 system with 4 GiB of RAM):

root@meitner # dmesg
...
Zone PFN ranges:

DMA 0 -> 4096
DMA32 4096 -> 1048576
Normal 1048576 -> 1245184

...

The remaining portion of free_area_init_nodes iterates over all nodes to set up the data structures
for each.

mm/page_alloc.c
/* Print information about zones */

...
/* Initialise every node */
for_each_online_node(nid) {

pg_data_t *pgdat = NODE_DATA(nid);
free_area_init_node(nid, pgdat, NULL,

find_min_pfn_for_node(nid), NULL);

/* Any memory on that node */
if (pgdat->node_present_pages)

node_set_state(nid, N_HIGH_MEMORY);
check_for_regular_memory(pgdat);

}
}

The code iterates over all active nodes and delegates setting up the data structures for each to
free_area_init_node. The function requires the first available page frame as a parameter, and
find_min_pfn_for_node extracts this information from the early_node_map array.

212

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 213

Chapter 3: Memory Management

If the node is equipped with memory as indicated by the node_present_pages field, this is
reflected in the node bitmap by setting the N_HIGH_MEMORY flag. Recall from Section 3.2.2 that the
flag — despite its name — only signals that either regular or high memory is present on the node, so
check_for_regular_memory checks if pages in any zone below ZONE_HIGHMEM are present and sets the
flag N_NORMAL_MEMORY in the node bitmap accordingly.

Creating Data Structures for Each Node
Once the zone boundaries have been determined, free_area_init_nodes creates the data structures for
the individual zones iteratively by calling free_area_init_node. Several helper functions are required
for this purpose.

calculate_node_totalpages first calculates the total number of pages in the node by summing up the
pages in the individual zones. In the case of contiguous memory, this could be done in zones_size_init,
but calculate_zone_totalpages also takes holes in the zone into account. The number of pages found
for each node is output in a short message when the system is booted. The example below is taken from
a UMA system with 512 MiB of RAM.

wolfgang@meitner> dmesg
...
On node 0 totalpages: 131056
...

alloc_node_mem_map is responsible for initializing a simple but nevertheless very important data struc-
ture. As noted above, there is an instance of struct page for every physical memory page in the system.
Initialization of this structure is performed by alloc_node_mem_map.

mm/page_alloc.c
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
{

/* Skip empty nodes */
if (!pgdat->node_spanned_pages)

return;

if (!pgdat->node_mem_map) {
unsigned long size, start, end;
struct page *map;

start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)

map = alloc_bootmem_node(pgdat, size);
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);

}

if (pgdat == NODE_DATA(0))
mem_map = NODE_DATA(0)->node_mem_map;

}

213

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 214

Chapter 3: Memory Management

Empty nodes with no pages can obviously be skipped. If the memory map has not already been set up
by architecture-specific code (this can happen, e.g., on IA-64 systems), then the memory required for
all instances of struct page associated with the node must be allocated. Individual architectures can
provide a specific function for this purpose. This is, however, currently only the case for IA-32 with a
discontiguous memory configuration. On all other configurations, the regular boot memory allocator is
used to perform the allocation. Notice that the code aligns the memory map with the maximal allocation
order of the buddy system because this is required for all calculations to work properly.

A pointer to this space is held not only in the pglist_data instance but also in the global variable
mem_map — providing the node just examined is the zeroth node of the system (always the case on a
system with just one memory node). mem_map is a global array that we will come across frequently in our
description of memory management.

mm/memory.c
struct page *mem_map;

The heavy work involved in the initialization of zone data structures is carried out by
free_area_init_core, which iterates over all zones of the node one after the other.

mm/page_alloc.c
static void __init free_area_init_core(struct pglist_data *pgdat,

unsigned long *zones_size, unsigned long *zholes_size)
{

enum zone_type j;
int nid = pgdat->node_id;
unsigned long zone_start_pfn = pgdat->node_start_pfn;

...
for (j = 0; j < MAX_NR_ZONES; j++) {

struct zone *zone = pgdat->node_zones + j;
unsigned long size, realsize, memmap_pages;

size = zone_spanned_pages_in_node(nid, j, zones_size);
realsize = size - zone_absent_pages_in_node(nid, j,

zholes_size);
...

The true size of the zone is obtained by correcting the number of spanned pages with the number of
holes. Both quantities are computed by two helper functions, which I will not bother to discuss in more
detail. Their complexity naturally depends on the memory model and configuration options chosen, but
ultimately all variants do not provide any unexpected surprises.

mm/page_alloc.c
...

if (!is_highmem_idx(j))
nr_kernel_pages += realsize;

nr_all_pages += realsize;

zone->spanned_pages = size;
zone->present_pages = realsize;

...
zone->name = zone_names[j];

...
zone->zone_pgdat = pgdat;

214

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 215

Chapter 3: Memory Management

/* Initialize zone fields to default values,
* and call helper functions */

...
}

The kernel uses two global variables to keep track of how many pages are present in the system:
nr_kernel_pages counts all identity mapped pages, while nr_all_pages also includes high-memory
pages.

The task of the remaining part of free_area_init_core is to initialize the list heads of the zone struc-
ture and to initialize the various structure members to 0. Of particular interest are two helper functions
invoked:

❑ zone_pcp_init initializes the per-CPU caches for the zone as discussed extensively in the next
section.

❑ init_currently_empty_zone initializes the free_area lists and sets all page instances of pages
belonging to the zone to their initial defaults. memmap_init_zone as discussed above is invoked
to initialize the pages of the zone. Also recall that all pages are attributed to MIGRATE_MOVABLE in
the beginning.

Additionally, the free lists are initialized in zone_init_free_lists:

mm/page_alloc.c
static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
struct zone *zone, unsigned long size)
{

int order, t;
for_each_migratetype_order(order, t) {

INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;

}
}

The number of free pages (nr_free) is still currently defined as 0, and this obviously does not reflect
the true situation. The correct value is not set until the bootmem allocator is disabled and normal buddy
allocation comes into effect.

3.5.4 Allocator API
As far as the interface to the buddy system is concerned, it makes no difference whether a NUMA or
a UMA architecture is used as the call syntax is the same for both. Common to all functions is the fact
that pages can only be allocated in integer powers of 2. For this reason, the desired memory size is not
specified as parameter as it would be in the malloc function of the C standard library or in the bootmem
allocator. Instead, the order of the allocation must be specified, and this causes the buddy system to
reserve 2order pages in memory. Finer-grained allocation in the kernel is only possible with the help
of the slab allocator (or alternatively, the slub or slob allocators), which builds on the buddy system
(Section 3.6 gives further details).

❑ alloc_pages(mask, order) allocates 2order pages and returns an instance of struct page to rep-
resent the start of the reserved block. alloc_page(mask) is a shorter notation for order = 0 if
only one page is requested.

215

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 216

Chapter 3: Memory Management

❑ get_zeroed_page(mask) allocates a page and returns a page instance but fills the page with
zeros (with all other functions, page contents are undefined after allocation).

❑ __get_free_pages(mask, order) and __get_free_page(mask) work in the same way as the
above functions but return the virtual address of the reserved memory chunk instead of a page
instance.

❑ get_dma_pages(gfp_mask,order) allows for obtaining pages suitable for DMA.

If allocation fails because insufficient memory is free to satisfy the request, all the above functions
return either a null pointer (alloc_pages and alloc_page) or the value 0 (get_zeroed_page,
__get_free_pages, and __get_free_page). The kernel must therefore check the result returned after
every allocation attempt. This practice is not different from any well-designed userland applications, but
neglecting the check in the kernel will lead to much more severe failures.

The kernel provides other memory management functions in addition to the buddy system functions.
They build on layers that are used as a basis by the buddy system but do not belong to the buddy allocator
itself. These functions are vmalloc and vmalloc_32, which use page tables to map discontiguous memory
into kernel address space so that it appears to be contiguous. There is also a set of functions of the kmalloc
type to reserve memory areas smaller than a complete page. Their implementation is discussed separately
in later sections of this chapter.

Four slightly different functions are defined to return pages no longer needed in memory to the kernel.

❑ free_page(struct page*) and free_pages(struct page*, order) return one or 2order pages
to memory management. The start of the memory area is indicated by means of a pointer to the
first page instance of the area.

❑ __free_page(addr) and __free_pages(addr, order) operate in the same way as the functions
just mentioned but use a virtual memory address instead of a page instance to select the memory
area to be returned.

Allocation Masks
What is the meaning of the mask parameter that is mandatory for all functions? As we know from
Section 3.2.1, Linux divides memory into zones. The kernel provides what is known as zone modifiers
(defined in the least significant 4 bits of a mask) to specify the zone from which the pages are to be taken
for purposes of memory allocation.

<gfp.h>
/* Zone modifiers in GFP_ZONEMASK (see linux/mmzone.h - low three bits) */
#define __GFP_DMA ((__force gfp_t)0x01u)
#define __GFP_HIGHMEM ((__force gfp_t)0x02u)
#define __GFP_DMA32 ((__force gfp_t)0x04u)
...
#define __GFP_MOVABLE ((__force gfp_t)0x100000u) /* Page is movable */

These constants are familiar from Section 3.4.1 in which the creation of fallback lists is discussed. The
abbreviation GFP stands for get free pages. __GFP_MOVABLE does not represent a physical memory zone, but
instructs the kernel that an allocation should be fulfilled from the special virtual zone ZONE_MOVABLE.

216

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 217

Chapter 3: Memory Management

Interestingly, there is no __GFP_NORMAL constant, although the main burden of allocation falls on this
zone. The kernel takes account of this fact by providing a function that calculates the highest memory
zone compatible with the given allocation flags. Allocations can then be made from this zone and from
those below it.

mm/page_alloc.c
static inline enum zone_type gfp_zone(gfp_t flags)
{
#ifdef CONFIG_ZONE_DMA

if (flags & __GFP_DMA)
return ZONE_DMA;

#endif
#ifdef CONFIG_ZONE_DMA32

if (flags & __GFP_DMA32)
return ZONE_DMA32;

#endif
if ((flags & (__GFP_HIGHMEM | __GFP_MOVABLE)) ==

(__GFP_HIGHMEM | __GFP_MOVABLE))
return ZONE_MOVABLE;

#ifdef CONFIG_HIGHMEM
if (flags & __GFP_HIGHMEM)

return ZONE_HIGHMEM;
#endif

return ZONE_NORMAL;
}

Because the way in which the zone modifiers are interpreted may not immediately appear to be intuitive,
Table 3-7 shows an example of the function results when the zones for DMA and DMA32 are identical.
Assume that the __GFP_MOVABLE modifier is not set in the following:

If both __GFP_DMA and __GFP_HIGHMEM are not set, ZONE_NORMAL is first scanned, followed by ZONE_DMA. If
__GFP_HIGHMEM is set and __GFP_DMA is not set, the result is that all three zones are scanned starting with
ZONE_HIGHMEM. If __GFP_DMA is set, it is irrelevant to the kernel whether __GFP_HIGHMEM is set or not. Only
ZONE_DMA is used in both cases. This is reasonable because the simultaneous use of __GFP_HIGHMEM and
__GFP_DMA makes no sense. Highmem is never DMA-suitable.

Table 3-7: Correlation between Zone Modifiers and Zones Scanned

Modifier Zones scanned

Empty ZONE_NORMAL, ZONE_DMA

__GFP_DMA ZONE_DMA

__GFP_DMA & __GFP_HIGHMEM ZONE_DMA

__GFP_HIGHMEM ZONE_HIGHMEM, ZONE_NORMAL,
ZONE_DMA

217

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 218

Chapter 3: Memory Management

Setting __GFP_MOVABLE will not influence the kernel’s decision unless it is specified together
with __GFP_HIGHMEM. In this case, the special virtual zone ZONE_MOVABLE will be used to satisfy
a memory request. This behavior is essential for the anti-fragmentation strategy of the kernel as
outlined.

A few flags can be set in the mask in addition to the zone modifiers. Figure 3-29 shows the layout of the
mask and the constants associated with the bit positions. __GFP_DMA32 appears several times because it
may be located at different places.

Flags
Zone

modifiers

_
_
G
F
P
_
M
O
V
A
B
L
E

_
_
G
F
P
_
R
E
C
L
A
I
M
A
B
L
E

_
_
G
F
P
_
T
H
I
S
N
O
D
E

_
_
G
F
P
_
H
A
D
R
W
A
L
L

_
_
G
F
P
_
N
O
M
E
M
M
A
L
L
O
C

_
_
G
F
P
_
Z
E
R
O

_
_
G
F
P
_
C
O
M
P

_
_
G
F
P
_
N
O
_
G
R
O
W

_
_
G
F
P
_
N
O
R
E
T
R
Y

_
_
G
F
P
_
N
O
F
A
I
L

_
_
G
F
P
_
R
E
P
E
A
T

_
_
G
F
P
_
N
O
W
A
R
N

_
_
G
F
P
_
C
O
L
D

_
_
G
F
P
_
F
S

_
_
G
F
P
_
I
O

_
_
G
F
P
_
H
I
G
H

_
_
G
F
P
_
W
A
I
T

_
_
G
F
P
_
D
M
A

_
_
G
F
P
_
H
I
G
H
M
E
M

_
_
G
F
P
_
D
M
A

(
3
2
)

Figure 3-29: Layout of a GFP mask.

In contrast to the zone modifiers, the additional flags do not limit the RAM segments from which
memory can be allocated, but they do alter the behavior of the allocator. For example, they modify
how aggressively a search is made for free memory. The following flags are defined in the kernel
sources:

<gfp.h>
/* Action modifiers - doesn’t change the zoning */
#define __GFP_WAIT ((__force gfp_t)0x10u) /* Can wait and reschedule? */
#define __GFP_HIGH ((__force gfp_t)0x20u) /* Should access emergency pools? */
#define __GFP_IO ((__force gfp_t)0x40u) /* Can start physical IO? */
#define __GFP_FS ((__force gfp_t)0x80u) /* Can call down to low-level FS? */
#define __GFP_COLD ((__force gfp_t)0x100u) /* Cache-cold page required */
#define __GFP_NOWARN ((__force gfp_t)0x200u) /* Suppress page allocation failure warning */
#define __GFP_REPEAT ((__force gfp_t)0x400u) /* Retry the allocation. Might fail */
#define __GFP_NOFAIL ((__force gfp_t)0x800u) /* Retry for ever. Cannot fail */
#define __GFP_NORETRY ((__force gfp_t)0x1000u)/* Do not retry. Might fail */
#define __GFP_NO_GROW ((__force gfp_t)0x2000u)/* Slab internal usage */
#define __GFP_COMP ((__force gfp_t)0x4000u)/* Add compound page metadata */
#define __GFP_ZERO ((__force gfp_t)0x8000u)/* Return zeroed page on success */
#define __GFP_NOMEMALLOC ((__force gfp_t)0x10000u) /* Don’t use emergency reserves */
#define __GFP_HARDWALL ((__force gfp_t)0x20000u) /* Enforce hardwall cpuset memory allocs */
#define __GFP_THISNODE ((__force gfp_t)0x40000u)/* No fallback, no policies */
#define __GFP_RECLAIMABLE ((__force gfp_t)0x80000u) /* Page is reclaimable */
#define __GFP_MOVABLE ((__force gfp_t)0x100000u) /* Page is movable */

218

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 219

Chapter 3: Memory Management

Some of the constants shown are used only in rare situations, so I won’t discuss them. The meanings of
the most important constants are as follows:

❑ __GFP_WAIT indicates that the memory request may be interrupted; that is, the scheduler is free
to select another process during the request, or the request can be interrupted by a more impor-
tant event. The allocator is also permitted to wait for an event on a queue (and to put the process
to sleep) before memory is returned.

❑ __GFP_HIGH is set if the request is very important, that is, when the kernel urgently needs mem-
ory. This flag is always used when failure to allocate memory would have massive consequences
for the kernel resulting in a threat to system stability or even a system crash.

Despite the similarity in name, __GFP_HIGH has nothing to do with __GFP_HIGHMEM
and must not be confused with it.

❑ __GFP_IO specifies that the kernel can perform I/O operations during an attempt to find fresh
memory. In real terms, this means that if the kernel begins to swap out pages during memory
allocation, the selected pages may be written to hard disk only if this flag is set.

❑ __GFP_FS allows the kernel to perform VFS operations. This must be prevented in kernel layers
linked with the VFS layer because interactions of this kind could cause endless recursive calls.

❑ __GFP_COLD is set if allocation of a ‘‘cold‘‘ page that is not resident in the CPU cache is required.

❑ __GFP_NOWARN suppresses a kernel failure warning if allocation fails. There are very few occa-
sions when this flag is useful.

❑ __GFP_REPEAT automatically retries a failed allocation but stops after a few attempts.
__GFP_NOFAIL retries the failed allocation until it succeeds.

❑ __GFP_ZERO returns a page filled with zero bytes if allocation succeeds.

❑ __GFP_HARDWALL is meaningful on NUMA systems only. It limits memory allocation to the nodes
associated with the CPUs assigned to a process. The flag is meaningless if a process is allowed to
run on all CPUs (this is the default). It only has an explicit effect if the CPUs on which a process
may run are limited.

❑ __GFP_THISNODE also only makes sense on NUMA systems. If the bit is set, then fallback to other
nodes is not permitted, and memory is guaranteed to be allocated on either the current node or
on an explicitly specified node.

❑ __GFP_RECLAIMABLE and __GFP_MOVABLE are required by the page mobility mechanism.
As their names indicate, they mark that the allocated memory will be reclaimable or mov-
able, respectively. This influences from which sublist of the freelist the page or pages will
be taken.

As the flags are used in combination and hardly ever on their own, the kernel classifies them into groups
containing appropriate flags for a variety of standard situations. If at all possible, one of the follow-
ing groups should always be used for memory allocation outside of memory management itself. (This
requirement is reinforced by the fact that the names of the predefined groups do not begin with a double
underscore — the usual convention for internal data and definitions in the kernel sources.)

219

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 220

Chapter 3: Memory Management

<gfp.h>
#define GFP_ATOMIC (__GFP_HIGH)
#define GFP_NOIO (__GFP_WAIT)
#define GFP_NOFS (__GFP_WAIT | __GFP_IO)
#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)
#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
#define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL | \

__GFP_HIGHMEM)
#define GFP_HIGHUSER_MOVABLE (__GFP_WAIT | __GFP_IO | __GFP_FS | \

__GFP_HARDWALL | __GFP_HIGHMEM | \
__GFP_MOVABLE)

#define GFP_DMA __GFP_DMA
#define GFP_DMA32 __GFP_DMA32

❑ The meaning of the first three combinations is clear. GFP_ATOMIC is used for atomic allocations
that may not be interrupted on any account and may also draw on the ‘‘emergency reserves‘‘ of
memory. GFP_NOIO and GFP_NOFS explicitly exclude I/O operations and access to the VFS layer,
respectively, but may be interrupted because __GFP_WAIT is set.

❑ GFP_KERNEL and GFP_USER are the default settings for kernel and user allocations, respectively.
Their failure is not an immediate threat to system stability. GFP_KERNEL is far and away the most
frequently used flag in the kernel sources.

❑ GFP_HIGHUSER is an extension of GFP_USER that is also used on behalf of userspace. It also permits
the use of high-memory areas that can no longer be mapped directly. There is no disadvantage
to using highmem pages because the address space of user processes is always organized by
means of nonlinear page table assignments. GFP_HIGHUSER_MOVABLE is similar to GFP_HIGHUSER
in purpose, but allocations will be satisfied from the virtual zone ZONE_MOVABLE.

❑ GFP_DMA is used for DMA allocations and is currently a simple synonym for __GFP_DMA;
GFP_DMA32 is likewise a synonym for __GFP_GMA32.

Allocation Macros
Through the use of flags, zone modifiers, and the various allocation functions, the kernel offers a very
flexible system of memory reservation. Nevertheless, all interface functions can be traced back to a single
base function (alloc_pages_node).

alloc_page and __get_free_page that reserve a single page are defined with the help of macros, as is
alloc_pages.

<gfp.h>
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
...
#define __get_free_page(gfp_mask) \

__get_free_pages((gfp_mask),0)

<mm.h>
#define __get_dma_pages(gfp_mask, order) \

__get_free_pages((gfp_mask) | GFP_DMA,(order))

Neither is the implementation of get_zeroed_page particularly difficult. alloc_pages used with the
__GFP_ZERO flag reserves a page already filled with null bytes — only the address of the memory area
associated with the page need be returned.

220

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 221

Chapter 3: Memory Management

The clear_page standard function that must be implemented by all architectures helps alloc_pages fill
pages with null bytes.19

__get_free_pages accesses alloc_pages, while alloc_pages, in turn, resorts to alloc_pages_node:

<gfp.h>
#define alloc_pages(gfp_mask, order) \

alloc_pages_node(numa_node_id(), gfp_mask, order)

mm/page_alloc.c
fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{

struct page * page;
page = alloc_pages(gfp_mask, order);
if (!page)

return 0;
return (unsigned long) page_address(page);

}

In this case, a proper function is used instead of a macro because the page instance returned
by alloc_pages still remains to be translated into a memory address using the helper function
page_address. At this point it is enough for us to know that the function yields the linear memory
address of a page associated with the passed page instance. This is problematic with highmem pages, so
I discuss the details of the function in Section 3.5.7.

The unification of all API functions to a common base function — alloc_pages — is thus complete.
Figure 3-30 shows the relationships among the various functions in a graphical overview.

alloc_page get_zeroed_page __get_free_page __get_dma_pages

get_free_pages

alloc_pages

alloc_pages_node

Figure 3-30: Relationships among the allocation functions of the buddy
system.

page_cache_alloc and page_cache_alloc_cold are also convenience functions to yield cache-warm
and cache-cold pages, respectively, by setting the __GFP_COLD modifier accordingly.

Similarly, the memory-freeing functions can be reduced to a central function (__free_pages) invoked
with different parameters:

<gfp.h>
#define __free_page(page) __free_pages((page), 0)
#define free_page(addr) free_pages((addr),0)

19Of course, pages could be filled with zeros by generic processor-independent code, but most CPUs feature special commands that
do this much faster.

221

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 222

Chapter 3: Memory Management

The relationship between free_pages and __free_pages is established by means of a function instead of
a macro because the virtual address must first be converted to a pointer to struct page.

mm/page_alloc.c
void free_pages(unsigned long addr, unsigned int order)
{

if (addr != 0) {
__free_pages(virt_to_page(addr), order);

}
}

virt_to_page converts virtual memory addresses to pointers to page instances. Basically, this is the
reverse of the page_address helper function introduced above.

Figure 3-31 summarizes the relationships among the various memory-freeing functions in a graphical
overview.

free_page

free_pages

__free_pages

__free_page

Figure 3-31: Relationships
among the memory-freeing
functions of the buddy
system.

3.5.5 Reserving Pages
All API functions lead back to alloc_pages_node, which is a kind of ‘‘launch pad‘‘ for central implemen-
tation of the buddy system.

<gfp.h>
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,

unsigned int order)
{

if (unlikely(order >= MAX_ORDER))
return NULL;

/* Unknown node is current node */
if (nid < 0)

nid = numa_node_id();

return __alloc_pages(gfp_mask, order,
NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_mask));

}

Just a simple check is carried out to ensure that no overly large memory chunk is allocated. If a neg-
ative node ID (which does not exist) is specified, the kernel automatically uses the ID that belongs to

222

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 223

Chapter 3: Memory Management

the currently executing CPU. Work is then delegated to __alloc_pages to which an appropriate set
of parameters is passed. Notice that gfp_zone is used to select the zone from which the allocation is
supposed to be fulfilled. This is an important detail that can easily be missed!

The kernel sources refer to this __alloc_pages as the ‘‘heart of the buddy system‘‘ because it deals
with the essential aspects of allocation. Since a heart is an important thing to have, I shall introduce the
function in detail below.

Selecting Pages
Let us therefore turn our attention to how page selection works.

Helper Functions
First, we need to define some flags used by the functions to control behavior when various watermarks
are reached.

mm/page_alloc.c
#define ALLOC_NO_WATERMARKS 0x01 /* don’t check watermarks at all */
#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */

The first flags indicate which watermark applies when the decision is made as to whether pages can be
taken or not. By default (that is, there is no absolute need for more memory because of pressure exerted
by other factors), pages are taken only when the zone still contains at least zone->pages_high pages.
This corresponds to the ALLOC_WMARK_HIGH flag. ALLOC_WMARK_MIN or _LOW must be set accordingly in
order to use the low (zone->pages_low) or minimum (zone->pages_min) setting instead. ALLOC_HARDER
instructs the buddy system to apply the allocation rules more generously when memory is urgently
needed; ALLOC_HIGH relaxes these rules even more when highmem is allocated. Finally, ALLOC_CPUSET
tells the kernel to note that memory must be taken only from the areas associated with the CPUs that the
current process is allowed to use — of course, this option only makes sense on NUMA systems.

The flag settings are applied in the zone_watermark_ok function, which checks whether memory can still
be taken from a given zone depending on the allocation flags set.

mm/page_alloc.c
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,

int classzone_idx, int alloc_flags)
{

/* free_pages my go negative - that’s OK */
long min = mark
long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
int o;

if (alloc_flags & ALLOC_HIGH)
min -= min / 2;

if (alloc_flags & ALLOC_HARDER)
min -= min / 4;

223

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 224

Chapter 3: Memory Management

if (free_pages <= min + z->lowmem_reserve[classzone_idx])
return 0;

for (o = 0; o < order; o++) {
/* At the next order, this order’s pages become unavailable */
free_pages -= z->free_area[o].nr_free << o;

/* Require fewer higher order pages to be free */
min >>= 1;

if (free_pages <= min)
return 0;

}
return 1;

}

Recall that zone_per_state allows for accessing the per-zone statistics. In this case, the number of free
pages is obtained.

Once the ALLOC_HIGH and ALLOC_HARDER flags have been interpreted (they reduce the minimum mark by
a half or quarter of the current value, which makes the allocation effectively try hard or even harder), the
function checks whether the number of free pages is less than the desired minimum plus the emergency
reserve specified in lowmem_reserve. If not, the code iterates over all orders less than the current order
and subtracts all pages in the current zone from free_pages (the o-fold left shift is necessary because
nr_free stores the free page blocks). At the same time, the required number of free pages is halved for
each zone. The allocation is freed if the kernel establishes that not enough pages are present after iterating
over all low-memory zones.

get_page_from_freelist is another important helper function used by the buddy system. It refers to the
flags set and the allocation order to decide whether allocation can be made; if so, it initiates actual page
allocation.20

mm/page_alloc.c
static struct page *
get_page_from_freelist(gfp_t gfp_mask, unsigned int order,

struct zonelist *zonelist, int alloc_flags)
{

struct zone **z;
struct page *page = NULL;
int classzone_idx = zone_idx(zonelist->zones[0]);
struct zone *zone;

...
/*
* Scan zonelist, looking for a zone with enough free.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/

z = zonelist->zones;

do {
...

zone = *z;

20Notice that NUMA systems use a zone list cache that accelerates scanning through the zones. Although the cache is not active on
UMA systems, it has some influence on the code below that I have removed for the sake of simplicity.

224

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 225

Chapter 3: Memory Management

if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))

continue;

if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
unsigned long mark;
if (alloc_flags & ALLOC_WMARK_MIN)

mark = zone->pages_min;
else if (alloc_flags & ALLOC_WMARK_LOW)

mark = zone->pages_low;
else

mark = zone->pages_high;
if (!zone_watermark_ok(zone, order, mark,

classzone_idx, alloc_flags))
continue;

}

...

A pointer to the fallback list is passed as parameter to the function. This list determines the order in
which the other zones (and nodes) of the system are scanned if no pages are free in the desired zone. The
layout and meaning of this data structure are discussed extensively in Section 3.4.1.

The subsequent do loop does more or less exactly what would intuitively be expected as the simplest
way of finding a suitable free memory block — it iterates over all zones of the fallback list. First of all,
the ALLOC_* flags are interpreted (cpuset_zone_allowed_softwall is another helper function to check
whether the given zone belongs to the allowed CPUs for the process). zone_watermark_ok then checks
each zone to find out if enough pages are present and attempts to allocate a contiguous memory block. If
one of these two conditions is not met — either there are not enough free pages or the request cannot be
satisfied with contiguous pages — the next zone in the fallback list is checked in the same way.

If the zone is suitable for the current request, buffered_rmqueue tries to remove the desired number of
pages from it:

mm/page_alloc.c
...

page = buffered_rmqueue(*z, order, gfp_mask);
if (page) {

zone_statistics(zonelist, *z);
break;

}
} while (*(++z) != NULL);
return page;

}

We take a closer look at buffered_rmqueue in Section 3.5.4. If page removal was successful, the page(s)
can be returned to the caller. Otherwise, the loop starts anew, and the next best zone is selected.

Allocation Control
As mentioned above, __alloc_pages is the main function of the buddy system. Now that we have dealt
with all preparatory work and described all possible flags, we turn our attention to the relatively complex
implementation of the function that is one of the lengthier parts of the kernel. Complexity arises above

225

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 226

Chapter 3: Memory Management

all when too little memory is available to satisfy a request or when available memory is slowly running
out. If sufficient memory is available, the necessary work is quickly done as the start of the code shows.

mm/page_alloc.c
struct page * fastcall
__alloc_pages(gfp_t gfp_mask, unsigned int order,

struct zonelist *zonelist)
{

const gfp_t wait = gfp_mask & __GFP_WAIT;
struct zone **z;
struct page *page;
struct reclaim_state reclaim_state;
struct task_struct *p = current;
int do_retry;
int alloc_flags;
int did_some_progress;

might_sleep_if(wait);

restart:
z = zonelist->zones; /* the list of zones suitable for gfp_mask */

if (unlikely(*z == NULL)) {
/*
* Happens if we have an empty zonelist as a result of
* GFP_THISNODE being used on a memoryless node
*/

return NULL;
}

page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);

if (page)
goto got_pg;

...

In the simplest scenario, allocation of a fresh memory area involves a single invocation of
get_page_from_freelist to return the required number of pages (which is handled by the code at the
label got_pg).

The first memory allocation attempt is not particularly aggressive. A failure to find memory in any of the
zones means that there isn’t much memory left but requires more than a moderate increase in effort from
the kernel to find more memory (the big guns are brought out later).

mm/page_alloc.c
...

for (z = zonelist->zones; *z; z++)
wakeup_kswapd(*z, order);

alloc_flags = ALLOC_WMARK_MIN;
if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)

alloc_flags |= ALLOC_HARDER;
if (gfp_mask & __GFP_HIGH)

226

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 227

Chapter 3: Memory Management

alloc_flags |= ALLOC_HIGH;
if (wait)

alloc_flags |= ALLOC_CPUSET;

page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
if (page)

goto got_pg;
...
}

The kernel again iterates over all zones in the fallback list and invokes the wakeup_kswapd each time. As
its name suggests, this function wakes the kswapd daemon responsible for swapping out pages. The task
of the swapping daemons is complex and is therefore described in a separate chapter (Chapter 18). All
you need note here is that fresh memory can be obtained by, for example, shrinking kernel caches and
page reclaim, that is, writing back or swapping out rarely used pages. Both measures are initiated by the
daemon.

Once the swapping daemon has been woken, the kernel starts a new attempt to find a suitable memory
chunk in one of the zones. This time it goes about its search more aggressively by adjusting the allocation
flags to more promising values for the particular situation. In doing so, it reduces the watermark to its
minimum value. ALLOC_HARDER is set for real-time processes and for calls with __GFP_WAIT that may not
go to sleep. A further call of get_page_from_freelist with a changed set of flags tries to obtain the
desired pages.

If this also fails, the kernel resorts to more drastic measures:

mm/page_alloc.c
rebalance:

if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
&& !in_interrupt()) {

if (!(gfp_mask & __GFP_NOMEMALLOC)) {
nofail_alloc:

/* go through the zonelist yet again, ignoring mins */
page = get_page_from_freelist(gfp_mask, order,

zonelist, ALLOC_NO_WATERMARKS);
if (page)

goto got_pg;
if (gfp_mask & __GFP_NOFAIL) {

congestion_wait(WRITE, HZ/50);
goto nofail_alloc;

}
}

goto nopage;
}

...

If PF_MEMALLOC is set or if the TIF_MEMDIE flag is set for the task (in both cases, the kernel must not
be in the interrupt context). get_page_from_freelist tries once more to obtain the desired pages,
but this time, watermarks are completely ignored because ALLOC_NO_WATERMARKS is set. Whereas the
PF_MEMALLOC condition usually only applies when the call for more memory originates from the allocator
itself, TIF_MEMDIE is set when a thread has just been hit by the OOM killer.

227

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 228

Chapter 3: Memory Management

The search can come to an end here for two reasons:

1. __GFP_NOMEMALLOC is set. This flag prohibits using the emergency reserve (which can well
be if the watermarks are ignored), so calling get_page_from_freelist without obeying the
watermarks is forbidden. The kernel can do nothing more than fail ultimately in this case by
jumping to the noopage label, where the failure is reported to the user with a kernel message,
and a NULL pointer is returned to the caller.

2. get_page_from_freelist fails despite watermarks being ignored. In this case, the search
is also aborted and terminates with an error message. However, if __GFP_NOFAIL is set, the
kernel goes into an endless loop (implemented by branching back to the nofail_alloc label)
to first wait (by means of congestion_wait) for the end of ‘‘congestion‘‘ in the block layer,
which can arise when pages are reclaimed (see Chapter 18). Allocation is then attempted
again until it succeeds.

If PF_MEMALLOC is not set, the kernel still has some more options to try, but these require going sleep. This
is necessary to allow kswapd to make some progress.

The kernel now enters on a slow path where time-consuming operations begin. A prerequisite is that the
__GFP_WAIT flag is set in the allocation mask because the subsequent actions can put the process to sleep.

mm/page_alloc.c
/* Atomic allocations - we can’t balance anything */
if (!wait)

goto nopage;

cond_schedule();
...

Recall that wait is 1 if the bit is set, and 0 otherwise. If this flag is not set, allocation is aborted at this
point. Before further attempts are made, the kernel provides the opportunity of rescheduling by means
of cond_resched. This prevents too much time being spent searching for memory so that other tasks are
left unfulfilled.

The paging mechanism provides an as-yet-unused option for swapping rarely used pages out to a block
medium to create more space in RAM. However, this option is very time-consuming and can sleep.
try_to_free_pages is the respective helper function that attempts to find pages that are currently not
urgently needed and can therefore be swapped out. It is invoked after the PF_MEMALLOC flag has been set
for the task to indicate to the remaining kernel code that all subsequent memory allocations are needed
in the search for memory.

mm/page_alloc.c
/* We now go into synchronous reclaim */
p->flags |= PF_MEMALLOC;

...
did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);

...
p->flags &= ~PF_MEMALLOC;

cond_resched();
...

228

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 229

Chapter 3: Memory Management

The call is framed by code that sets the above PF_MEMALLOC flag. It may be necessary for
try_to_free_pages to allocate new memory for its own work. As this additional memory is
needed to obtain fresh memory (a rather paradoxical situation), the process should, of course, enjoy
maximum priority in terms of memory management from this point on — this is achieved by setting the
above flag.

Recall that only a few lines ago, a very aggressive attempt at memory allocation was tried conditioned on
PF_MEMALLOC being set.

Besides, setting the flag ensures that try_to_free_pages is not called recursively because __alloc_pages
will already have aborted before if PF_MEMALLOC is set.

try_to_free_pages is itself a lengthy and complex function whose implementation I won’t discuss
here. Instead, see Chapter 18, which includes a detailed description of the underlying mechanism. At the
moment, it is sufficient to know that the function selects pages not recently in very active use and writes
them to the swap area to free space in RAM memory. The number of freed pages by try_to_free_pages
is returned as the result.

try_to_free_pages acts only on the node containing the desired zone. All other
nodes are ignored.

If more than one page is to be allocated, pages from the per-CPU cache are brought back into the buddy
system:

mm/page_alloc.c
if (order != 0)

drain_all_local_pages();

How this is technically done is not of relevance here, so it is not necessary to discuss drain_all_
local_pages in detail.

The next kernel action — could it be any different — is to invoke get_page_from_freelist to attempt
allocation again if some pages could be freed by try_to_free_pages:

mm/page_alloc.c
if (likely(did_some_progress)) {

page = get_page_from_freelist(gfp_mask, order,
zonelist, alloc_flags);

if (page)
goto got_pg;

} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
...

If the kernel may perform calls that affect the VFS layer and is not hindered by GFP_NORETRY, the out-of-
memory (OOM) killer is invoked:

mm/page_alloc.c
/* The OOM killer will not help higher order allocs so fail */
if (order > PAGE_ALLOC_COSTLY_ORDER) {

clear_zonelist_oom(zonelist);

229

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 230

Chapter 3: Memory Management

goto nopage;
}

out_of_memory(zonelist, gfp_mask, order);
goto restart;

}

Without going into the details of implementation, note that out_of_memory picks one task that the kernel
deems particularly guilty of reserving all the memory — and kills it. This, hopefully, will lead to a good
number of free pages, and the allocation is retried by jumping to the label restart. However, it is unlikely
that killing a process will immediately lead to a continuous range of more than 2PAGE_COSTLY_ORDER

pages (where PAGE_COSTLY_ORDER_PAGES is usually set to 3), so the kernel spares one innocent task’s life
if such a big allocation was requested, does not perform out-of-memory killing, and admits failure by
jumping to nopage.

What happens if __GFP_NORETRY is set or the kernel is not allowed to use operations that might affect the
VFS layer? In this case, the size of the desired allocation comes in:

mm/page_alloc.c
...

do_retry = 0;
if (!(gfp_mask & __GFP_NORETRY)) {

if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
(gfp_mask & __GFP_REPEAT))

do_retry = 1;
if (gfp_mask & __GFP_NOFAIL)

do_retry = 1;
}
if (do_retry) {

congestion_wait(WRITE, HZ/50);
goto rebalance;

}
nopage:
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {

printk(KERN_WARNING "%s: page allocation failure."
" order:%d, mode:0x%x\n",
p->comm, order, gfp_mask);

dump_stack();
show_mem();

}
got_pg:

return page;
}

The kernel goes into an endless loop if the allocation size is less than 2PAGE_ALLOC_COSTLY_ORDER = 8
pages, or the __GFP_REPEAT flag is set. GFP_NORETRY must naturally not be set in both cases since the
caller does not like to retry the allocation in this case. The kernel branches back to the rebalance label
that introduces the slow path and remains there until a suitable memory chunk is finally found — with
reservations of this size, the kernel can assume that the endless loop won’t last all that long. Beforehand,
the kernel invokes congestion_wait to wait for the block layer queues to free up (see Chapter 6) so that
it has a chance to swap pages out.

The kernel also goes into the above endless loop if the desired allocation order is greater than 3 but the
__GFP_NOFAIL flag is set — the flag does not allow failing on any account.

230

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 231

Chapter 3: Memory Management

If this is not the case, the kernel gives up and can do nothing more than return a NULL pointer to the user,
and print a warning message that a memory request could not be fulfilled.

Removing the Selected Pages
Two things remain to be done once the kernel has found a suitable zone with sufficient free pages for
the allocation. First, it must be checked whether the pages are contiguous (up to now it only knows how
many free pages there are). And second, the pages must be removed from the free_lists in the buddy
fashion, and this may make it necessary to break up and rearrange memory regions.

The kernel delegates this work to buffered_rmqueue as discussed in the previous section. Figure 3-32
shows the essential steps of the function.

Fill in per-CPU cache if necessary

Appropriate page found? Remove page

Return Null pointer

Yes

No

Yes== 0?

No
buffered_rmqueue

order

prep_new_page

_ _rmqueue

prep_new_page

Figure 3-32: Code flow diagram for buffered_rmqueue.

The kernel performs optimization if only a single page is to be allocated, that is, if the allocation order
is 0 because 20 = 1. The page is not taken directly from the buddy system but from the per-CPU page
cache (recall that this cache provides a CPU-local list of cache-hot and cache-cold pages; the required
data structures are described in Section 3.2.2).

As usual, some variables need to be set up first:

mm/page_alloc.c
static struct page *
buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
{

unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
int migratetype = allocflags_to_migratetype(gfp_flags);

If GFP_COLD is set in the allocation flags, then a cache-cold page must be taken from the per-CPU allocator
if any exists. The double negation ensures that cold is either 0 or 1.21 It is also essential to determine the

21If just gfp_flags & __GFP_COLD were used, then the numerical value of cold would be the bit value of __GFP_COLD if the
flag is set. This would not allow using cold as an index into a binary array.

231

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 232

Chapter 3: Memory Management

migrate list from the allocation flags. The previously introduced function allocflags_to_migratetype
(see Section 3.5.2) comes in handy here.

When only a single page is desired, the kernel tries to speed up the request with the help of the per-CPU
cache. If the cache is empty, the kernel takes the opportunity to check the cache fill level.

mm/page_alloc.c
again:

if (order == 0) {
struct per_cpu_pages *pcp;

page = NULL;
pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
if (!pcp->count)

pcp->count = rmqueue_bulk(zone, 0,
pcp->batch, &pcp->list);

if (unlikely(!pcp->count))
goto failed;

}
...

Once the appropriate (i.e., hot or cold) per-CPU list for the current processor has been selected,
rmqueue_bulk is invoked to refill the cache. I won’t reproduce the function here as it simply removes
pages from the normal buddy system and adds them to the cache. However, it is important to note that
buffered_rmqueue stores the migrate type of the page in the private element of struct page. This will
become important when pages are taken off the cache:

mm/page_alloc.c
/* Find a page of the appropriate migrate type */
list_for_each_entry(page, &pcp->list, lru)

if (page_private(page) == migratetype)
break;

/* Allocate more to the pcp list if necessary */
if (unlikely(&page->lru == &pcp->list)) {

pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, &pcp->list, migratetype);

page = list_entry(pcp->list.next, struct page, lru);
}

list_del(&page->lru);
pcp->count--

} else {
page = __rmqueue(zone, order);
if (!page)

goto failed;
}

...

The kernel iterates over all pages on the per-CPU cache and checks if the page of the desired migrate
type is available. This need not be the case if the cache has been refilled by a previous call with pages of a
different migrate type. If no suitable page is found, some more pages with the currently desired migrate

232

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 233

Chapter 3: Memory Management

type are added to the cache, and one page is removed from the per-CPU list and processed further
below.

If more than one page is to be allocated (as handled in the else branch), the kernel calls __rmqueue to
select a suitable page block from the zone’s buddy lists. If necessary, the function automatically breaks
down larger blocks and puts unused parts back in the lists (how this is done is described below). Caution:
It can be the case that there are enough free pages in the zone to satisfy the allocation request, but that
the pages are not contiguous. In this case, __rmqueue fails, and a NULL pointer is returned.

Since all failures are handled by jumping to the label failed, it is guaranteed that page points to a
valid sequence of pages once the kernel gets to the current point. Before the pointer can be returned,
prep_new_page has to prepare the pages for life in the kernel (note that the function returns a positive
value if something is wrong with the selected pages; in this case, the allocation is restarted from the
beginning):

mm/page_alloc.c
if (prep_new_page(page, order, gfp_flags))

goto again;
return page;

failed:
...

return NULL;
}

prep_new_page performs several checks on the pages to ensure that they leave the allocator in a perfect
state — this means, in particular, that the page must not be in use in existing mappings and no incorrect
flags like PG_locked or PG_buddy may be set because this would imply that the page is in use somewhere
else and should not be on the free list. Normally, however, no error should occur because this would
imply a kernel error elsewhere. The function also sets the following default flags used for each new page:

mm/page_alloc.c
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{

page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1 << PG_referenced | 1 << PG_arch_1 |
1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);

...

The meanings of the individual bits are given in Section 3.2.2. prep_new_page is also invoked to set the
reference counters of the first page instance involved to the initial value of 1. Besides, some more work is
required depending on the page flags:

mm/page_alloc.c
if (gfp_flags & __GFP_ZERO)

prep_zero_page(page, order, gfp_flags);

if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);

return 0;
}

233

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 234

Chapter 3: Memory Management

❑ If __GFP_ZERO is set, prep_zero_page fills the page with zero bytes using an efficient,
architecture-specific function.

❑ If __GFP_COMP is set and more than one page has been requested, the kernel must group the
pages into compound pages. The first page is called the head page, while all other pages are called
tail pages. The structure of compound pages is shown in Figure 3-33.

All pages are identified as compound pages by the PG_compound bit. The private elements of
the page instance of all pages — even the head page itself — point to the head page. Besides,
the kernel needs to store information on how to free the compound page. This requires both a
function to free the page and information on how many pages compose the compound page.
The LRU list element of the first tail page is abused for this purpose: A pointer to a destructor
function is thus kept in lru.next, while the allocation order is stored in lru.prev. Notice that
the lru element cannot be used for this purpose because it is required if the compound page is
to be kept on a kernel list.

Why is this information required? The kernel can combine multiple adjacent physical pages to a
so-called huge-TLB page. When a userland application works with large chunks of data, many
processors allow using huge-TLB pages to keep the data in memory. Since the page size of a
huge-TLB page is larger than the regular page size, this reduces the amount of information that
must be stored in the translation lookaside buffer (TLB), that, in turn, reduces the probability of
a TLB cache miss — and thus speeds things up.22 However, huge-TLB pages need to be freed
differently than compound pages composed of multiple regular pages, so an explicit destructor
is required. free_compound_pages is used for this purpose. The function essentially determines
the page order stored in lru.prev and frees the pages one after another when the compound
page is freed.

The auxiliary function prep_compound_page is used to arrange the described structure.

PG_compound
private
Iru.next
Iru.prev

PG_compound
private
Iru.next

2n pages

Iru.prev

PG_compound
private

PG_compound
private

struct
page

free_compound_page

n

Figure 3-33: Higher-order allocations generate compound pages in which the
individual pages are linked.

The __rmqueue Helper Function
The kernel uses the __rmqueue function (whose purpose is evident from the preceding description),
which acts as a gatekeeper to penetrate into the innermost core of the buddy system:

mm/page_alloc.c
static struct page *__rmqueue(struct zone *zone, unsigned int order,

int migratetype)

22Huge-TLB pages are created at boot time and kept in a special cache. The kernel parameter hugepages allows for specifying
how many huge-TLB pages are to be created, and applications can request them via the special filesystem hugetlbfs. The library
libhugetlbfs allows userland applications to use huge-TLB pages without direct interference with this filesystem.

234

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 235

Chapter 3: Memory Management

{
struct page *page;

page = __rmqueue_smallest(zone, order, migratetype);

if (unlikely(!page))
page = __rmqueue_fallback(zone, order, migratetype);

return page;
}

By reference to the desired allocation order, the zone from which the pages are to be removed, and
the migrate type, __rmqueue_smalles scans the page lists until it finds a suitable contiguous chunk of
memory. When it does this, buddies can be split as described in Chapter 1. Should the desired migrate
list not be able to satisfy the request, then other migrate lists are tried as an emergency measure in
__rmqueue_fallback.

The implementation of __rmqueue_smallest is not very long. Essentially, it consists of a loop that iterates
over the list of migrate-type-specific free pages list of the zone in ascending order until an appropriate
entry is found.

mm/page_alloc.c
static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{

unsigned int current_order;
struct free_area * area;
struct page *page;

/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {

area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))

continue;

page = list_entry(area->free_list[migratetype].next,
struct page, lru);

list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
expand(zone, page, order, current_order, area, migratetype);
return page;

}

return NULL;
}

The search begins at the entry for the desired allocation order. Smaller areas are of no use because the
pages allocated must be contiguous. Recall that all pages of a given allocation order are again subdivided
into migrate-type-specific lists, and the proper one is selected.

235

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 236

Chapter 3: Memory Management

Checking for a suitable chunk of memory is very simple: If an element is present in the examined list, it
can be used because it contains as many contiguous pages as needed. Otherwise, the kernel selects the
next higher allocation order and continues the search there.

Once a memory chunk has been removed from the list with list_del, its removal must be noted by
decrementing the nr_free element of struct free_area by 1. The per-zone statistics of the current
zone must also be updated accordingly with __mod_zone_page_state. rmv_page_order is a helper func-
tion that deletes the PG_buddy bit from the page flags — the page is not contained in the buddy system
anymore — and sets the private element of struct page to 0.

If the memory chunk to be allocated is smaller than the selected range of contiguous pages, that is, if the
pages stem from a higher allocation order than required because no suitable smaller block was available,
it must be split into smaller segments in accordance with the principles of the buddy system. This is done
by the expand function.

mm/page_alloc.c
static inline struct page *
expand(struct zone *zone, struct page *page,

int low, int high, struct free_area *area)
int migratetype)

{
unsigned long size = 1 << high;

while (high > low) {
area--;
high--;
size >>= 1;
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);

}
return page;

}

This function uses a whole range of parameters. The meanings of page, zone, and area are obvious. index
specifies the index position of the buddy pair in the allocation bitmap, low is the desired allocation order,
and high indicates the order from which the memory found was taken. migratetype sticks to its name
and denotes the migrate type.

It is best to look at the code step-by-step to understand how it works. Let us assume the following sit-
uation: A block with order = 3 is to be allocated. There is no block of this size in RAM, so the kernel
selects a block with order = 5 instead. For the sake of simplicity, this is located at index = 0. The function
is therefore invoked with the following parameters.

expand(page,index=0,low=3,high=5,area)

Figure 3-34 illustrates the steps described below that are needed to split the page (the previous contents
of the free_area lists are not shown, only the new pages).

1. The value of size is initialized to 2high = 25 = 32. The allocated memory area has already
been removed from the free_area list in __rmqueue and is therefore shown with dashed
lines in Figure 3-34.

2. In the first loop pass, the kernel switches to the migrate-type-specific free_area list with the
next smaller memory units, namely, area=4. Analogously, the area size reduces to size=16

236

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 237

Chapter 3: Memory Management

(calculated by size >> 1). The front half of the initial area is inserted in the free_area list for
order=4.

5
4
3
2
1

page

mem_map
Ar

ea

5
4
3
2
1

page

mem_map

Ar
ea

5
4
3
2
1

page

mem_map

Ar
ea

Figure 3-34: Steps performed by expand when splitting a memory area.

Only the first page instance of a memory area is needed by the buddy system for
management purposes; the size of the area is derived automatically from the list in
which the page is located.

3. The index of the rear memory area with size = 16 can be calculated by adding size to index,
thus skipping the next 16 bits in the allocation bitmap. Because all page instances are in lin-
ear succession in memory, the pointer to page must also be increased by 16 to arrive at the
corresponding page instance. The position of the page pointer is indicated by an arrow in
Figure 3-34.

4. The next loop pass places the first half of the remaining 16 units on the free_area list with
size=8. Both index and page are then increased by 8 units. The function has now arrived at
the desired size unit, and the page pointer can be returned as the result. From the figure, it
is evident that the last 8 pages of the original area of 32 pages are used; all other pages are in
the appropriate free_area lists of the buddy system.

237

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 238

Chapter 3: Memory Management

The kernel always uses the migrate-type-specific free_area list and does not change the migrate type of
any page during the process.

The set_page_order helper function invoked in each step is responsible for setting the private flag of
the first instance of struct page in each block to the order currently being processed and for assigning
the PG_buddy bit to the page. This indicates that the block is managed by the buddy system.

If no contiguous memory area is available on the migrate-type-specific list, __rmqueue_smallest returns
a NULL pointer. The kernel then tries to fulfill the request using other migrate lists based on the fallback
order. The task is delegated to __rmqueue_fallback. Recall from Section 3.5.2 that the fallback order
for migrate types is defined in the fallbacks array. First of all, the function iterates once again over the
various allocation order lists:

mm/page_alloc.c
static struct page *__rmqueue_fallback(struct zone *zone, int order,

int start_migratetype)
{

struct free_area * area;
int current_order;
struct page *page;
int migratetype, i;

/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;

--current_order) {
for (i = 0; i < MIGRATE_TYPES - 1; i++) {

migratetype = fallbacks[start_migratetype][i];
...

However, not just the desired migrate type, but also different migrate types as specified in the fallback list
are considered. Notice that the function iterates from large to small allocation orders! This is done contrary
to the usual strategy, because the kernel wants to take a maximally big block out of foreign allocation
lists if this cannot be avoided. If smaller blocks were favored, this would introduce fragmentation into
the other zone because blocks of different migrate types would be mixed, and this is clearly undesired.

The special zone MIGRATE_RESERVE contains emergency reservations and requires special treatment,
discussed below. If the free list for the currently considered migrate type contains free page blocks, the
request can be satisfied from there:

mm/page_alloc.c
/* MIGRATE_RESERVE handled later if necessary */
if (migratetype == MIGRATE_RESERVE)

continue;

area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))

continue;

page = list_entry(area->free_list[migratetype].next,
struct page, lru);

area->nr_free--;
...

238

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 239

Chapter 3: Memory Management

Recall that migrate lists are the basis for the page mobility approach that is used to keep memory frag-
mentation as low as possible. Low memory fragmentation means that larger contiguous page blocks are
available even after the system has been running for a longer time. As discussed in Section 3.5.2, the
notion of how big a larger block is given by the global variable pageblock_order, which defines the order
for a large block.

If it is required to break a block of free pages from another migration list, the kernel has to choose what
to do with the remaining pages. If the rest itself qualifies as a large block, it makes sense to transfer the
whole block to the migrate list of the allocation type to mitigate fragmentation.

The kernel is more aggressive about moving free pages from one migrate list to another if an allocation
is performed for reclaimable memory. Allocations of this type often appear in bursts, for instance, when
updatedb is running, and could therefore scatter many small reclaimable portions across all migrate lists.
To avoid this situation, remaining pages for MIGRATE_RECLAIMABLE allocations are always transferred to
the reclaimable migrate list.

The kernel implements the described policy as follows:

mm/page_alloc.c
/*
* If breaking a large block of pages, move all free
* pages to the preferred allocation list. If falling
* back for a reclaimable kernel allocation, be more
* agressive about taking ownership of free pages
*/

if (unlikely(current_order >= (pageblock_order >> 1)) ||
start_migratetype == MIGRATE_RECLAIMABLE) {

unsigned long pages;
pages = move_freepages_block(zone, page,

start_migratetype);

/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)))

set_pageblock_migratetype(page,
start_migratetype);

migratetype = start_migratetype;
}

...

move_freepages tries to move the complete page block with 2pageblock_order pages in which the current
allocation is contained to the new migrate list. However, only free pages (i.e., those with the PG_buddy bit
set) are moved. Additionally, move_freepages also obeys zone boundaries, so the total number of pages
can be smaller than a complete large page block. If, however, more than one-half of a large page block is
free, then set_pageblock_migratetype claims the complete block (recall that the function always works
on groups with pageblock_nr_pages pages).

Finally, the kernel can remove the page block from the list, and use expand to place the unused parts of a
larger block back on the buddy system.

mm/page_alloc.c
/* Remove the page from the freelists */
list_del(&page->lru);

239

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 240

Chapter 3: Memory Management

rmv_page_order(page);
__mod_zone_page_state(zone, NR_FREE_PAGES,

-(1UL << order));
...

expand(zone, page, order, current_order, area, migratetype);
return page;

}
}

...

Notice that the new migrate type is used by expand if the kernel has decided to change it before. Other-
wise, the remainders are put back onto their original migrate list.

Finally, one more scenario must be considered: What if the allocation cannot be satisfied despite all page
orders and all migrate types have been taken into account? In this case, the kernel can try to fulfill the
allocation from the MIGRATE_RESERVE list, which serves as a last resort:

mm/page_alloc.c
/* Use MIGRATE_RESERVE rather than fail an allocation */
return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);

}

3.5.6 Freeing Pages
__free_pages is the base function used to implement all functions of the kernel API. Its code flow dia-
gram is shown in Figure 3-35.

Yes

No

__free_pages

_ _free_pages_ok __free_one_page

free_hot_pageSingle page?

Figure 3-35: Code flow diagram for __free_pages.

__free_pages first establishes whether a single page or a larger contiguous block is to be freed. If a single
page is freed, it is not returned to the buddy system but is placed in the per-CPU cache — in the warm list
for all pages that are highly likely to reside in the CPU cache. For this purpose, the kernel provides the
free_hot_page helper function, which is a parameter conversion function for free_hot_cold_page that
is invoked in turn.

If free_hot_cold_page determines that the number of pages in the per-CPU cache exceeds the limit
set by pcp->count, a whole batch of pages — whose size is specified by pcp->batch — is returned
to the buddy system. This strategy is known as lazy coalescing. It prevents large numbers of wasteful
coalescing operations that would be carried out if single pages were returned to the buddy system and
then immediately split to satisfy subsequent allocation requests. The free_pages_bulk function is used
to return pages to the buddy system.

240

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 241

Chapter 3: Memory Management

If the lazy coalescing limit is not exceeded, the page is simply kept on the per-CPU cache. However, it
is important that the private element be set to the migrate type of the page. As described, this allows
allocations fulfilled from the per-CPU cache to pick only pages of the proper migrate type.

If more than one page is freed, then __free_pages delegates work (after a detour that is not interesting
for our purposes) to __free_pages_ok and finally to __free_one_page. Despite the name, the function
not only handles freeing of single pages, but also takes compound pages into account.

mm/page_alloc.c
static inline void __free_one_page (struct page *page,

struct zone *zone, unsigned int order)

This function is the cornerstone of memory freeing. The relevant area is added to the appropriate
free_area list of the buddy system. When buddy pairs are freed, the function coalesces them into a
contiguous area that is then placed in the next higher free_area list. If this reunites a further buddy
pair, it is also coalesced and moved to a higher list. This procedure is repeated until all possible buddy
pairs have been coalesced and the changes have been propagated upward as far as possible.

However, this doesn’t answer the question as to how the kernel knows that both parts of a buddy pair
are located on the list of free pages. To place a page group back into the buddy system, the kernel must
be able to compute two things: the address of the potential buddy and the index of the combined page
group if both buddies can be recombined. Two auxiliary functions are provided for this purpose:

mm/page_alloc.c
static inline struct page *
__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
{

unsigned long buddy_idx = page_idx ^ (1 << order);

return page + (buddy_idx - page_idx);
}

static inline unsigned long
__find_combined_index(unsigned long page_idx, unsigned int order)
{

return (page_idx & ~(1 << order));
}

It is advantageous to remember that the operator ^ performs a bitwise XOR operation. The calculations
performed by the function will be clarified by an example immediately.

First, we need to introduce one more helper function, though. The page index of the buddy is not enough.
The kernel must also ensure that all pages, belonging to the buddy are free and thus contained in the
buddy system to be able to merge both pairs:

mm/page_alloc.c
static inline int page_is_buddy(struct page *page, struct page *buddy,

int order)
{

241

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 242

Chapter 3: Memory Management

...
if (PageBuddy(buddy) && page_order(buddy) == order) {

return 1;
}
return 0;

}

If the first page of the buddy group is in the buddy system, then the PG_buddy bit of the corresponding
struct page instance is set. This, however, is not sufficient to reunite two buddies: When freeing a page
group with 2order pages, the kernel must ensure that 2order pages of the second buddy are contained
in the buddy system. This is easy to check because the page order of the free group is stored in the first
private element of the struct page instance of a free group, and page_order reads this value. Note that
page_is_buddy is slightly more complicated in reality because it needs to account for memory holes, but
this is omitted to simplify matters.

Table 3-8: Calculations When a Page is Placed Back into the Buddy System.

order page_idx buddy_index - page_index __find_combined_index

0 10 1 10

1 10 -2 8

2 8 4 8

3 8 -8 0

The following code determines whether a buddy pair can be coalesced:

mm/page_alloc.c
static inline void __free_one_page(struct page *page,
struct zone *zone, unsigned int order)
{

int migratetype = get_pageblock_migratetype(page);
...

while (order < MAX_ORDER-1) {
unsigned long combined_idx;
struct page *buddy;

buddy = __page_find_buddy(page, page_idx, order);
if (!page_is_buddy(page, buddy, order))

break; /* Move the buddy up one level. */

list_del(&buddy->lru);
zone->free_area[order].nr_free--;
rmv_page_order(buddy);
combined_idx = __find_combined_index(page_idx, order);
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
order++;

}
...

242

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 243

Chapter 3: Memory Management

The routine tries to free a page group of order order. Because it is possible not only that the current group
can be merged with its direct buddy, but also that higher-order buddies can be merged, the kernel needs
to find the maximal allocation order for which this is possible.

The action of the code is best understood by means of an example. Imagine that an order 0 allocation, that
is, a single page, is freed, and let this page have the page index 10. The required calculations are found in
Table 3-8, and Figure 3-36 visualizes the process step-by-step. We assume that page 10 is the last missing
link that allows for coalescing two buddies of order 3 to form a new range of order 4.

order 4
0 7 8 10 15

pi = 0

ci = 0
buddy = 0pi = 8order 3

order 2

order 1

order

empty page used page returned page

0

ci = 8
buddy = 12pi = 8

ci = 8
buddy = 8pi = 10

pi = 10
ci = 10
buddy = 11

pi = 10

Figure 3-36: Returning a page into the buddy system can cause
higher-order allocations to be coalesced. pi stands for page_index,
while ci denotes combined_index.

The first loop pass finds page number 11 as the buddy for page 10. Since not the page number of the
buddy, but a pointer to the corresponding page instance is required, the difference buddy_idx - page_idx
is of relevance: It denotes the difference between the current page and its buddy, and adding it to the page
pointer will deliver a pointer to the page instance of the buddy.

This pointer is required by page_is_buddy to check if the buddy is free. As per Figure 3-36, this is
luckily the case, so the buddies can be combined. This requires that page number 11 is temporarily
removed from the buddy system because it will be reintegrated as part of a larger block later.
The page instance is taken off the free list, and rmv_page_order clears the PG_buddy flag and the
private data.

Computing the index of the combined group in __find_combined_index delivers 10, because the
2-page buddy block starts at this page number. At the end of each loop step, the page pointer
is set to point to the first page in the new buddy group, but in this case, nothing needs to be
modified.

The next loop pass works similarly, but now for order=1; that is, the kernel tries to combine two 2-
page buddies into a 4-page group. The buddy of the [10, 11] page group starts at page number 8, so the
difference buddy_index - page_index is negative. Naturally, there’s nothing preventing a buddy from
being on the left-hand side of the current page group. The combined index of the merged group is 8, so
the page pointer has to be updated accordingly after page_is_buddy has ensured that all pages of the
new buddy (i.e., pages 8 and 9) are contained in the buddy system.

243

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 244

Chapter 3: Memory Management

The loop continues until the order 4. This page group cannot be merged with its buddy because the
buddy is not empty, as the figure shows. Consequently, page_is_buddy does not allow for merging the
two regions, and the loop is left.

Finally, the 24 = 16 page region must now be placed on the free lists of the buddy system. This is not
very complicated:

mm/page_alloc.c
set_page_order(page, order);
list_add(&page->lru,

&zone->free_area[order].free_list[migratetype]);
zone->free_area[order].nr_free++;

}

Notice that the allocation order of the page group is preserved in the private element of the first page
instance of the group. This way the kernel knows that not only page 0, but also the whole range [0, 15], is
free and in the buddy system.

3.5.7 Allocation of Discontiguous Pages in the Kernel
Physically contiguous mappings are best for the kernel for the reasons given above, but they cannot
always be used successfully. When a larger chunk of memory is allocated, it may be that it is not available
in a contiguous block despite all efforts made to avoid this situation. This is not a problem in userspace
because normal processes are designed to use the paging mechanism of the processor even though this
is costly in terms of speed and TLBs.

The same technique can also be applied in the kernel. As discussed in Section 3.4.2, the kernel reserves a
chunk of its virtual address space so that it can set up contiguous mappings in them.

As Figure 3-37 shows, a memory zone for the management of discontiguous memory on IA-32 follows
the direct mapping of the first 892 MiB of RAM after an intervening safety gap of 8 MiB. This segment
has all the properties of a linear address space; the pages assigned to it can be located anywhere in RAM
memory. This is achieved by modifying the kernel page tables responsible for this area.

Direct physical
page mappings

Protection gap

vmalloc-Areas

8 MiB

Figure 3-37: vmalloc area in the kernel’s virtual address space on IA-32
systems.

A self-contained area separated from the other areas by a memory page is assigned to each vmalloc
allocation. Like the boundary between direct mappings and the vmalloc area, the purpose of this is to
safeguard against incorrect memory access operations; these occur only as a result of kernel faults and

244

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 245

Chapter 3: Memory Management

should be reported by a system error message rather than allowing the data of other kernel parts to be
overwritten unnoticed. Because this separation is made in virtual address space, no valuable real memory
pages are wasted.

Reserving Memory with vmalloc
vmalloc is the interface function used by the kernel code to request memory that is not necessarily con-
tiguous in physical memory but is always linear in virtual memory.

<vmalloc.h>
void *vmalloc(unsigned long size);

Just one parameter is required to specify the size of the required memory area — in contrast to the func-
tions discussed earlier, the size unit is not pages but bytes, as is common in userspace programming.

The best-known example of vmalloc use is in the module implementation of the kernel. Because modules
can be loaded at any time, there is no guarantee — particularly if the system has been up and running for
a long time — that sufficient contiguous memory will be available for the sometimes voluminous module
data. This problem can be circumvented by using vmalloc if sufficient memory can be pieced together
from smaller chunks.

vmalloc is also invoked at about 400 other places in the kernel, particularly in device and sound drivers.

Because the memory pages used for vmalloc must in any case be actively mapped in kernel address
space, it is obviously preferable to use pages from ZONE_HIGHMEM for this purpose. This allows the
kernel to conserve the more valuable lower zones without incurring any added disadvantages. For
this reason, vmalloc (along with the mapping functions discussed in Section 3.5.8) is one of the few
occasions when the kernel is able to use highmem pages for its own purposes (and not for userspace
applications).

Data Structures
When it manages the vmalloc area in virtual memory, the kernel must keep track of which sections
are in use and which are free. To this end, it defines a data structure to hold all used sections in a
linked list.

The kernel uses an important data structure called vm_area_struct to manage the
virtual address space contents of a userspace process. Despite the similarity of name
and purpose, these two structures must not be confused.

<vmalloc.h>
struct vm_struct {

struct vm_struct *next;
void *addr;
unsigned long size;
unsigned long flags;
struct page **pages;
unsigned int nr_pages;
unsigned long phys_addr;

};

245

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 246

Chapter 3: Memory Management

There is an instance of the structure in kernel memory for each area allocated with vmalloc. The meanings
of the structure elements are as follows:

❑ addr defines the start address of the allocated area in virtual address space; size indicates the
size of the area. A complete allocation plan of the vmalloc area can be drawn up on the basis of
this information.

❑ flags stores the — almost inevitable — flag set associated with the memory section. It is used
only to specify the memory area type and currently accepts one of the three values below.

❑ VM_ALLOC specifies that the area was created by vmalloc.

❑ VM_MAP is set to indicate that an existing collection of pages was mapped into the contigu-
ous virtual address space.

❑ VM_IOREMAP indicates that an (almost) random physical memory area was mapped into the
vmalloc area; this is an architecture-specific operation.

Section 3.5.7 shows how the latter two values are employed.

❑ pages is a pointer to an array of page pointers. Each element represents the page instance of a
physical page mapped into virtual address space.

nr_pages specifies the number of entries in pages and therefore the number of memory pages
involved.

❑ phys_addr is required only if physical memory areas described by a physical address are
mapped with ioremap. This information is held in phys_addr.

❑ next enables the kernel to hold all sections in the vmalloc area on a singly linked list.

Figure 3-38 shows an example of how the structure is used. Three physical pages whose (fictitious) posi-
tions in RAM are 1,023, 725 and 7,311 are mapped one after the other. In the virtual vmalloc area, the
kernel sees them as a contiguous memory area starting at the VMALLOC_START + 100.

addr=VMALLOC_START+100
size=3*PAGE_SIZE
nr_pages=3
pages=

mem_map

PAGE_OFFSET

vmalloc-Area:

725

725

1023

1023

7311

7311

Figure 3-38: Mapping physical pages into the vmalloc area.

246

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 247

Chapter 3: Memory Management

Creating a vm_area
Before a new virtual memory area can be created, it is necessary to find a suitable location for it. A linked
list with instances of vm_area manages the sections already created in the vmalloc area. The global
variable vmlist defined in mm/vmalloc is the list head.

mm/vmalloc.c
struct vm_struct *vmlist;

The kernel provides the get_vm_area helper function in mm/vmalloc; it acts as a parameter-preparation
front end for __get_vm_area. In turn, the latter function is a frontend for __get_vm_area_node that does
the actual work. On the basis of the size information for the area, the function tries to find a suitable place
in the virtual vmalloc space.

As a safety gap of 1 page (guard page) is inserted between each vmalloc area, the kernel first increases
the size specification by the appropriate amount.

mm/vmalloc.c
struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,

unsigned long start, unsigned long end, int node)
{

struct vm_struct **p, *tmp, *area;
...

size = PAGE_ALIGN(size);
....

/*
* We always allocate a guard page.
*/

size += PAGE_SIZE;
...

The start and end parameters are set to VMALLOC_START and VMALLOC_END, respectively, by the calling
functions.

A loop then iterates over all elements of the vmlist list to find a suitable entry.

mm/vmalloc.c
for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {

if ((unsigned long)tmp->addr < addr) {
if((unsigned long)tmp->addr + tmp->size >= addr)

addr = ALIGN(tmp->size +
(unsigned long)tmp->addr, align);

continue;
}
if ((size + addr) < addr)

goto out;
if (size + addr <= (unsigned long)tmp->addr)

goto found;
addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);

247

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 248

Chapter 3: Memory Management

if (addr > end - size)
goto out;

}
...

The kernel finds a suitable position if size+addr is less than the start address of the area just examined
(held in tmp->addr). The new list element is then initialized with the appropriate values and is added to
the vmlist linked list.

mm/vmalloc.c
found:

area->next = *p;
*p = area;

area->flags = flags;
area->addr = (void *)addr;
area->size = size;
area->pages = NULL;
area->nr_pages = 0;
area->phys_addr = 0;

return area;
...
}

A null pointer is returned to indicate failure if no suitable memory area is found.

The remove_vm_area function removes an existing area from the vmalloc address space.

<vmalloc.h>
struct vm_struct *remove_vm_area(void *addr);

The function expects as a parameter the virtual start address of the area to be removed. To find the area,
the kernel must successively scan the list elements of vmlist until it finds a match. The corresponding
vm_area instance can then be removed from the list.

Allocating a Memory Area
Allocation of a non-continuous memory area is initiated by vmalloc. This is simply a front-end function
to supply __vmalloc with suitable parameters and to directly invoke __vmalloc_node. The associated
code flow diagram is shown in Figure 3-39.

Implementation is divided into three parts. First, get_vm_area finds a suitable area in the vmalloc
address space. Then individual pages are allocated from physical memory, and finally, these pages are
mapped contiguously into the vmalloc area — and VM allocation is done.

The full code need not be reproduced here because it is riddled with boring safety checks.23 What is
interesting is the allocation of the physical memory area (ignore the possibility that there may not be
enough physical pages available).

23This, however, does not mean that you should avoid safety checks in your own code!

248

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 249

Chapter 3: Memory Management

mm/vmalloc.c
void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,

pgprot_t prot, int node)
{
...

for (i = 0; i < area->nr_pages; i++) {
if (node < 0)

area->pages[i] = alloc_page(gfp_mask);
else

area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
}

...
if (map_vm_area(area, prot, &pages))

goto fail;
return area->addr;

...
}

Return address

Al
lo

ca
te

 a
s

m
an

y
pa

ge
s

as
 n

ec
es

sa
ry Allocate memory for

page instances

vmalloc

_vmalloc_node

get_vm_area_node

alloc_pages_node

_vmalloc_area_node

_vmalloc

Figure 3-39: Code flow diagram for vmalloc.

If an explicit node is specified from which the pages are to be allocated, the kernel invokes
alloc_pages_node. Otherwise, pages are taken from the current node using alloc_page.

The pages are removed from the buddy system of the relevant node; when this is done, vmalloc sets
gfp_mask to GFP_KERNEL | __GFP_HIGHMEM — the kernel instructs memory management to take the pages
from ZONE_HIGHMEM if possible. The reasons for this were given above: Pages from the lower-memory
areas are more valuable and should therefore not be wasted for vmalloc allocations that could just as
well be satisfied with high-memory pages.

Memory is taken from the buddy system, and gfp_mask is set to GFP_KERNEL | __GFP_HIGHMEM so that the
kernel instructs memory management to take the pages from ZONE_HIGHMEM if possible. We have already
seen the reasons.

249

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 250

Chapter 3: Memory Management

Memory is not allocated from the buddy system in a single chunk but page-by-page.
This is a key aspect of vmalloc. If it were certain that a contiguous allocation could
be made, there would be no need to use vmalloc. After all, the whole purpose of the
function is to reserve large memory chunks even though they may not be
contiguous owing to fragmentation of the available memory. Splitting the allocation
into the smallest possible units — in other words, individual pages — ensures that
vmalloc will still work even when physical memory is fragmented.

The kernel invokes map_vm_area to map the scattered physical pages contiguously into the virtual
vmalloc area. This function iterates over the reserved physical pages and allocates the required number
of entries in the various page directories and in the page tables.

Some architectures require flushing of the CPU caches after the page tables have been modified. The
kernel therefore invokes the flush_cache_vmap whose definition is architecture-specific. Depending
on CPU type, this includes the required low-level assembler statements to flush the cache, an invoca-
tion of flush_cache_all (if there is no function to flush selective virtually mapped areas), or an empty
procedure if the CPU is not reliant on cache flushing, as is the case with IA-32.

Alternative Mapping Methods
Besides vmalloc, there are other ways of creating virtually contiguous mappings. All are based on the
__vmalloc function discussed above or make use of a very similar mechanism (not discussed here).

❑ vmalloc_32 works in the same way as vmalloc but ensures that the physical memory used can
always be addressed by means of regular 32-bit pointers. This is important if an architecture can
address more memory than would normally be possible on the basis of its word length; this is
the case, for example, on IA-32 systems with enabled PAE.

❑ vmap uses a page array as its starting point to create a virtually contiguous memory area. In con-
trast to vmalloc, the physical memory location is not allocated implicitly but must be passed
ready-made to the function. Mappings of this kind can be recognized by the VM_MAP flag in their
vm_map instance.

❑ Unlike all mapping methods described above, ioremap is a processor-specific function that must
be implemented on all architectures. It enables a chunk taken from the physical address space
used by the system buses for I/O operations to be mapped into the address space of the kernel.

This function is used predominantly in device drivers to make the address areas used for com-
munication with the peripherals available to the rest of the kernel (and, of course, to itself).

Freeing Memory
Two functions return memory to the kernel — vfree for areas allocated by vmalloc and vmalloc_32,
and vunmap for mappings created using vmap or ioremap. Both lead back to __vunmap.

mm/vmalloc.c
void __vunmap(void *addr, int deallocate_pages)

addr indicates the start address of the area to be freed, and deallocate_pages specifies whether the
physical pages associated with the area are to be returned to the buddy system. vfree sets the parameter

250

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 251

Chapter 3: Memory Management

to 1, whereas vunmap sets it to 0 because in this case only the mappings are removed but the associ-
ated physical pages are not returned to the buddy system. Figure 3-40 shows the code flow diagram for
__vunmap.

__vunmap

remove_vm_area

_ _remove_vm_area

_ _free_pages

unmap_vm_area

deallocate_pages set?

Find areas

Free kernel data structures

Figure 3-40: Code flow diagram for __vunmap.

It is not necessary to explicitly state the size of the area to be freed because this can be derived from
the information in vmlist. The first task of __vunmap is therefore to scan this list in __remove_vm_area
(invoked by remove_vm_area after completion of locking) in order to find the associated entry.

The vm_area instance found is used by unmap_vm_area to remove the entries no longer needed from
the page tables. In the same way as when memory is reserved, the function works its way through the
various hierarchy levels of page management, but this time removes the entries involved. It also updates
the CPU caches.

If the __vunmap function parameter deallocate_pages is set to a true value (in vfree), the kernel iterates
over all elements of area->pages in which there are pointers to the page instances of the physical pages
involved. __free_page is invoked for each entry to return the page to the buddy system.

Finally, the kernel data structures used to manage the memory area must be returned.

3.5.8 Kernel Mappings
Although the vmalloc family of functions can be used to map pages from the highmem area into the
kernel (these are then not usually directly visible in kernel space), this is not the actual purpose of these
functions. It is important to underline this fact because the kernel provides other functions for the explicit
mapping of ZONE_HIGHMEM pages into kernel space, and these are unrelated to the vmalloc mechanism;
this is, therefore, a common source of confusion.

Persistent Kernel Mappings
The kmap function must be used if highmem pages are to be mapped into kernel address space for a
longer period (as a persistent mapping). The page to be mapped is specified by means of a pointer to page
as the function parameter. The function creates a mapping when this is necessary (i.e., if the page really
is a highmem page) and returns the address of the data.

251

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 252

Chapter 3: Memory Management

This task is simple if highmem support is not enabled. In this case, all pages can be accessed directly so
it is only necessary to return the page address; there is no need to create a mapping explicitly.

The situation is more complicated if highmem pages are actually present. As with vmalloc, the
kernel must first establish an association between the highmem pages and the addresses at which
they are mapped. An area in virtual address space must also be reserved to map the pages, and
finally, the kernel must keep track of which parts of the virtual area are already in use and which are
still free.

Data Structures
As discussed in Section 3.4.2, the IA-32 kernel reserves a region that follows on from the vmalloc area
and extends from PKMAP_BASE to FIXADDR_START. This area is used for persistent mappings. The schemes
used by different architectures are similar.

pkmap_count (defined in mm/highmem.m) is an integer array with LAST_PKMAP positions that contain an
entry for each page that can be persistently mapped. It is, in fact, a usage counter for the mapped pages
with slightly unusual semantics. The number of users in the kernel is not counted, but the number of
users plus 1. If the value of the counter is 2, the mapped page is used at just one point in the kernel. The
counter value 5 indicates that there are four users. Expressed more generally, the counter value n stands
for n − 1 users in the kernel.

As with classic usage counters, 0 means that the associated page is not in use. Counter value 1 has a
special meaning. The page associated with the position has already been mapped but cannot be used
because the TLB of the CPU has not been updated and access would either fail or be directed to an
incorrect address.

The kernel makes use of the following data structure to create the association between the page instances
of the physical pages and their position in the virtual memory area:

mm/highmem.c
struct page_address_map {

struct page *page;
void *virtual;
struct list_head list;

};

This structure is used to create the page−→virtual mapping (hence the name of the structure). page
holds a pointer to the page instance in the global mem_map array, and virtual specifies the allocated
position in the kernel virtual address space.

For ease of organization, the mappings are kept in a hash table where the list element is used to set up
an overflow list to handle hash collisions.

The hash table is implemented by means of the page_address_htable array, not discussed further here.
The hash function is page_slot from mm/highmen.c, which determines the page address on the basis
of the page instance. page_address is the front-end function to determine the address of a given page
instance using the data structures just described:

252

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 253

Chapter 3: Memory Management

mm/highmem.c
void *page_address(struct page *page)

Figure 3-41 outlines the interplay between the above data structures.

struct page_address_map

page_address_map->virtual

page_address_map->page

LAST_
PKMAP

pkmap_count

page_address_htable

mem_map

PKMAP_
BASE

LAST_
PKMAP

FIXMAP_
START

Virtual address space
0

0

1

2

1 2

Figure 3-41: Data structures for managing persistent mappings.

Finding Page Addresses
page_address first checks whether the passed page instance is in normal memory or high memory. If the
former applies, the page address can be calculated from the position of page in the mem_map array. In the
latter case, the above hash table is referenced to find the virtual address.

Creating a Mapping
The kmap function must be used to create a mapping by means of a page pointer.24 It is only a front end
to establish whether the desired page really is in highmem. If not, the address yielded by page_address
is returned as the result. Otherwise, the kernel delegates work to kmap_high, which is defined as follows:

mm/highmem.c
void fastcall *kmap_high(struct page *page)
{

unsigned long vaddr;

vaddr = (unsigned long)page_address(page);
if (!vaddr)

vaddr = map_new_virtual(page);
pkmap_count[PKMAP_NR(vaddr)]++;
return (void*) vaddr;

}

24This function resides not only in arch/x86/mm/highmem_32.c but also in include/asm-ppc/highmem.h and
include/asm-sparc/highmem.h with practically the same definition.

253

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 254

Chapter 3: Memory Management

The page_address function discussed above first checks whether the page is already mapped. If it does
not return a valid address, the page must be mapped using map_new_virtual. The function performs the
following main steps:

1. The pkmap_count array is scanned backward from the last used position (held in the global
variable last_pkmap_nr) until a free position is found. If no position is free, the function
sleeps until another part of the kernel performs an unmapping.

When the maximum index of pkmap_count is reached, the search begins at position 0. In this
case, the flush_all_zero_pkmaps function is also invoked to flush the caches (you will see
this shortly).

2. The page tables of the kernel are modified so that the page is mapped at the desired position.
However, the TLB is not updated.

3. The usage counter for the new position is set to 1. As stated above, this means that the page
is reserved but cannot be used because the TLB entries are not current.

4. set_page_address adds the page to the data structures of the persistent kernel mappings.

The function returns the virtual address of the newly mapped page as its result.

On architectures that do not require high-memory pages (or if CONFIG_HIGHMEM is not set), a generic
version of kmap is used to return only the page address without changing anything in virtual memory.

<highmem.h>
static inline void *kmap(struct page *page)
{

might_sleep();
return page_address(page);

}

Unmapping
Pages mapped with kmap must be unmapped using kunmap when they are no longer needed. As usual,
this function first checks whether the relevant page (identified by means of its page instance) is actually
in high memory. If so, work is delegated to kunmap_high from mm/highmem.c, whose main task is to
decrement the counter at the corresponding position in the pkmap_count array (I won’t discuss the
details).

This mechanism can never reduce the counter value to less than 1; this means that
the associated page is not freed. This is because of the additional usage counter
increment required to ensure correct handling of the CPU cache as discussed above.

The flush_all_zero_pkmaps also mentioned above is key to the final freeing of a mapping; it is always
invoked when the search for a free position in map_new_virtual starts from the beginning. It is responsi-
ble for three actions:

1. flush_cache_kmaps performs a flush on the kernel mappings (on most architectures that
require explicit flushing, the complete CPU cache is flushed using flush_cache_all)
because the global page tables of the kernel are changed.25

25This is a very costly operation that fortunately is not required on many processor architectures. In this case, it is defined
as a null operation as described in Section 3.7.

254

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 255

Chapter 3: Memory Management

2. pkmap_count is scanned in full. Entries with counter value 1 are set to 0, and the associated
entry is deleted from the page table, thus finally removing the mapping.

3. Finally, all TLB entries present for the PKMAP area are flushed using the flush_tlb_kernel_
range function.

Temporary Kernel Mappings
The kmap function just described must not be used in interrupt handlers because it can sleep. If there are
no free positions in the pkmap array, it goes to sleep until the situation improves. The kernel therefore
provides an alternative mapping function that executes atomically and is logically named kmap_atomic.
A major advantage of this function is that it is faster than a normal kmap. However, it must not be used
in code that can potentially go to sleep. It is therefore ideal for short code sections that quickly require a
temporary page.

The definition of kmap_atomic is architecture-specific for IA-32, PPC, and Sparc32, but the three imple-
mentations differ only in very minor details. Their prototype is identical.

void *kmap_atomic(struct page *page, enum km_type type)

page is a pointer to the management structure of the highmem page, and type defines the type of map-
ping required.26

<asm-arch/kmap_types.h>
enum km_type {

KM_BOUNCE_READ,
KM_SKB_SUNRPC_DATA,

...
KM_PTE0,
KM_PTE1,

...
KM_SOFTIRQ1,
KM_TYPE_NR

};

The fixmap mechanism discussed in Section 3.4.2 makes the memory needed to create atomic mappings
available in the kernel address space. An area that can be used to map highmem pages is set up between
FIX_KMAP_BEGIN and FIX_KMAP_END in the fixed_addresses array. The exact position is calculated on
the basis of the CPU currently active and the desired mapping type.

idx = type + KM_TYPE_NR*smp_processor_id();
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);

In the fixmap area, there is a ‘‘window‘‘for each processor in the system. It contains just one entry for each
mapping type, as demonstrated in Figure 3-42 (KM_TYPE_NR is not a separate type but simply indicates
how many entries there are in km_type). This arrangement makes it clear why functions may not block
when they use kmap_atomic. If they did, another process could create a mapping of the same type behind
their backs and overwrite the existing entries.

26The contents of the structure differ according to architecture, but the differences are so insignificant that they are not worth
describing.

255

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 256

Chapter 3: Memory Management

CPU 0 CPU 1 CPU n

FIX_KMAP_BEGIN FIX_KMAP_END
1 = KM_BOUNCE_READ
2 = KM_SKB_SUNRPC_DATA,...

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7n n 0 1 2 3 4 5 6 7 n

Figure 3-42: Mapping high-memory pages by means of fixed mappings.

Once the appropriate index has been calculated using the formula specified above and the associated
fixmap address has been found, all the kernel need do is modify the page tables accordingly and flush
the TLBs to put the changes into effect.

The kunmap_atomic function unmaps an existing atomic mapping from virtual memory by reference to
its type and virtual address simply by deleting the corresponding entry in the page tables.

Mapping Functions on Machines without Highmem
Many architectures do not support high memory because they don’t need it — 64-bit architectures head
this list. However, to permit use of the above functions without having to constantly distinguish between
highmem and non-highmem architectures, the kernel defines several macros that implement compatible
functions in normal memory (these are also used when highmem support is disabled on highmem-
capable machines).

<highmem.h>
#ifdef CONFIG_HIGHMEM
...
#else
static inline void *kmap(struct page *page)
{

might_sleep();
return page_address(page);

}

#define kunmap(page) do { (void) (page); } while (0)
#define kmap_atomic(page, idx) page_address(page)
#define kunmap_atomic(addr, idx) do { } while (0)
#endif

3.6 The Slab Allocator
Every C programmer is familiar with malloc and all its related functions in the standard library; they are
frequently invoked by most programs to reserve a few bytes of memory.

The kernel must also frequently allocate memory but cannot resort to the standard library functions.
The buddy system resources described above support the allocation of memory in pages, but this unit is
much too big. If space is needed for a string with 10 characters, reserving a full page with 4 KiB or more
is not only wasteful but absolutely unacceptable. The obvious solution is to split the memory in a page
into smaller units that can then hold large numbers of small objects.

256

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 257

Chapter 3: Memory Management

To this end, it is necessary to introduce new management mechanisms that place a greater overhead
on the kernel. To minimize the impact of this extra burden on system performance, the implementation
of the management layer should be as compact as possible so that there is little noticeable effect on the
caches and TLBs of the processor. At the same time, the kernel must ensure that memory is utilized
speedily and efficiently. Not only Linux but look-alikes and all other operating systems face this prob-
lem. Over the course of time, some good solutions and some bad solutions have been proposed and are
described in the general operating system literature (e.g., [Tan07]).

One such proposal — slab allocation — has proved to be very efficient for many workloads.
It was devised and implemented for Solaris 2.4 by Jeff Bonwick, a Sun employee. Because
he publicly documented his method [Bon94], it was also possible to implement a version
for Linux.

The provision of smaller memory blocks is not the only task of the slab allocator. Owing to its structure,
it also serves as a cache for objects that are frequently allocated and then released. By setting up a slab
cache, the kernel is able to keep a store of objects at the ready for subsequent use, even in an initialized
state, if so desired. For instance, the kernel must frequently generate new instances of struct fs_struct
to manage the filesystem data associated with a process (see Chapter 8). The memory blocks occupied
by instances of this type are reclaimed just as often (when a process terminates). In other words, the
kernel tends to allocate and release sizeof{fs_struct} memory blocks with great regularity. The slab
allocator keeps the returned memory blocks on an internal list and does not immediately give them back
to the buddy system. A recently returned block is then used when a new request is received for a fresh
instance of the object. This has two advantages. First, handling time is shorter because the kernel need
not apply the buddy system algorithms. Second, because the memory blocks are still ‘‘fresh,’’ there is a
strong probability that they are still in one of the CPU caches.

The slab allocator also has two further benefits:

❑ Calls to the buddy system are operations that have a considerable impact on the data and
instruction caches of the system. The more the kernel wastes these resources, the less they
are available for userspace processes. The more lightweight slab allocator dispenses with the
need for calls to the buddy system wherever possible and helps prevent undesirable cache
‘‘contamination.’’

❑ Data stored in pages delivered directly by the buddy system is always clustered around
addresses divisible by powers of 2 (many other allocation methods that divide pages into
smaller blocks share this characteristic). This has a negative impact on CPU cache utilization
because some cache lines are overused owing to this kind of address distribution and others
are almost empty. This disadvantage can be even more drastic on multiprocessor systems if
different memory addresses are transferred on different buses because some buses may be
congested, while others are little used.

By means of slab coloring, the slab allocator is able to distribute objects uniformly to achieve uni-
form cache utilization, as demonstrated below.

That frequently used kernel objects are kept in the CPU cache is a desired effect. The earlier
comment that the large cache and TLB footprints of the buddy system are negative in terms
of the slab allocator related to the fact that unimportant data land in the CPU cache and
important data are displaced — a situation that should naturally be prevented.

257

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 258

Chapter 3: Memory Management

The term color is used in the metaphorical sense. It has nothing to do with colors
but represents a certain offset by which the objects in the slab are shifted to place
them in a different cache line.

Where does the name slab allocator come from? The objects managed in each cache are combined into
larger groups covering one or more contiguous page frames. Such groups are called slabs; each cache
consists of several such slabs.

3.6.1 Alternative Allocators
Although the slab allocator works well for many possible workloads, there are naturally situations in
which it fails to provide optimal performance. Problems arise when slab allocation is used on machines
that range on the borders of the current hardware scale: tiny embedded systems and large, massively
parallel systems equipped with huge amounts of RAM. In the second case, the large amount of metadata
required by the slab allocator can become a problem: developers have reported that many gigabytes of
memory are required only for the slab data structures on large systems. For embedded systems, the total
footprint and complexity of slab allocation can simply be too much.

To cope with such situations, two drop-in replacements for the slab allocator were added during the
development of kernel 2.6:

❑ The slob allocator is especially optimized for low code size. It is centered around a simple linked
lists of blocks (thus its name). To allocate memory, a likewise simple first-fit algorithm is used.

With only roughly 600 lines, the total footprint of the slob allocator is very small. Naturally, it
is not the most efficient allocator in terms of speed and is definitely not designed to be used on
large-scale systems.

❑ The slub allocator tries to minimize the required memory overhead by packing page frames into
groups and to manage these groups by overloading unused fields in struct page. While this
certainly does not simplify the definition of this structure, as you have seen before, the effort is
justified by the better performance of slub in contrast to slab on large machines.

Since slab allocation is the default option used by most kernel configurations, alternative allocators are
not discussed in detail. It is, however, important to emphasize that the rest of the kernel need not be
concerned about which low-level allocator is chosen. The visible front end is identical for all allocators.
Each must implement a certain set of functions for memory allocation and caching:

❑ kmalloc, __kmalloc, and kmalloc_node as general (node-specific) allocation functions.

❑ kmem_cache_alloc, kmem_cache_alloc_node as (node-specific) providers of specific kernel
caches.

The behavior of these functions is included in the following discussion of the slab allocator. Using these
standard functions, the kernel can provide further convenience functions that do not require specific
knowledge about how memory is managed internally — for instance, kcalloc to allocate memory for
arrays, or kzalloc to allocate a memory region that is filled with zero bytes. The situation is illustrated
in Figure 3-43.

Regular kernel code just needs to include slab.h to enjoy all standard kernel functions for memory
allocation. The build system will ensure that the allocator chosen at compile time is used to fulfill the
desired requests.

258

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 259

Chapter 3: Memory Management

Physical page frames

Generic kernel code

Buddy system

Standard
interfaceSlab, slob, or

slub allocator

Convenience
functions

Figure 3-43: Connection between the
buddy system, general-purpose
allocators, and the interface to
generic kernel code.

3.6.2 Memory Management in the Kernel
The general allocation and freeing functions of the kernel have similar names to their equivalents in the
C standard library and are employed in exactly the same way.

❑ kmalloc(size, flags) reserves a memory area of size bytes and returns a void pointer to the
start of the area. If insufficient memory is available (a very improbable situation in the kernel but
one that must always be catered for), a null pointer is the result.

The flags argument specifies the area from which memory is to be selected using the GFP_ con-
stants discussed in Section 3.5.4, for example, GFP_DMA for a DMA-suitable memory area.

❑ kfree{*ptr} frees the memory area pointed at by *ptr.

In contrast to the situation in userspace programming, the kernel also includes the percpu_alloc and
percpu_free functions to reserve and free the desired memory area for each system CPU (and not specif-
ically for the CPU currently active).27

kmalloc is used at thousands of places in the kernel sources, but the pattern is always the same. The
memory area reserved with kmalloc is converted to the correct type by means of a typecast and is then
assigned to a pointer variable.

info = (struct cdrom_info *) kmalloc (sizeof (struct cdrom_info), GFP_KERNEL);

The task of setting up and using caches is not especially difficult from the programmer’s point of view. A
suitable cache must first be created with kmem_cache_create, then the objects it contains can be allocated

27Older kernel versions have used the functions alloc_percpu and free_percpu for this purpose, but since these functions do
not support CPU hotplugging, they are only supported for compatibility reasons and should not be used in new code.

259

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 260

Chapter 3: Memory Management

and freed using kmem_cache_alloc and kmem_cache_free. The slab allocator is automatically responsible
for interaction with the buddy system to reserve the required pages.

A list of all active caches is held in /proc/slabinfo (the output below omits a few less important columns
for reasons of space).28

wolfgang@meitner> cat /proc/slabinfo
slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables
<limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail>
nf_conntrack_expect 0 0 224 18 1 : tunables 0 0 0 : slabdata 0 0 0
UDPv6 16 16 960 4 1 : tunables 0 0 0 : slabdata 4 4 0
TCPv6 19 20 1792 4 2 : tunables 0 0 0 : slabdata 5 5 0
xfs_inode 25721 25725 576 7 1 : tunables 0 0 0 : slabdata 3675 3675 0
xfs_efi_item 44 44 352 11 1 : tunables 0 0 0 : slabdata 4 4 0
xfs_efd_item 44 44 360 11 1 : tunables 0 0 0 :
slabdata 4 4 0
...
kmalloc-128 795 992 128 32 1 : tunables 0 0 0 : slabdata 31 31 0
kmalloc-64 19469 19584 64 64 1 : tunables 0 0 0 : slabdata 306 306 0
kmalloc-32 2942 2944 32 128 1 : tunables 0 0 0 : slabdata 23 23 0
kmalloc-16 2869 3072 16 256 1 : tunables 0 0 0 : slabdata 12 12 0
kmalloc-8 4075 4096 8 512 1 : tunables 0 0 0 : slabdata 8 8 0
kmalloc-192 2940 3276 192 21 1 : tunables 0 0 0 : slabdata 156 156 0
kmalloc-96 754 798 96 42 1 : tunables 0 0 0 : slabdata 19 19 0

The file columns contain the following information in addition to a string that identifies each cache (and
also ensures that no identical caches are created):

❑ Number of active objects in the cache.

❑ Total number of objects in the cache (used and unused).

❑ Size of the managed objects in bytes.

❑ Number of objects in a slab.

❑ Pages per slab.

❑ Number of active slabs.

❑ Object number allocated when the kernel decides to make more memory available to a cache. (A
larger memory block is allocated in one chunk so that the required interaction with the buddy
system is worthwhile.) This value is also used as the block size when shrinking the cache.

28Additional information on slab allocator statistics is output if the CONFIG_DEBUG_SLAB option is set at compilation time.

260

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 261

Chapter 3: Memory Management

In addition to easily identified cache names such as unix_sock (for domain sockets, i.e., objects of type
struct unix_sock), there are other fields called kmalloc-size. (Machines that provide DMA memory
also include caches for DMA allocations, but these are not present in the above example.) These are the
basis of the kmalloc function in which the kernel provides slab caches for various memory sizes that, with
few exceptions, are in power-of-2 steps between 25 = 32 (for machines with 4 KiB page size), respective
64 (for all other machines), and 225 bytes. The upper bound can also be considerably smaller and is set by
KMALLOC_MAX_SIZE, which, in turn, is computed based on the page size of the system and the maximally
allowed allocation order:

<slab.h>
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
(MAX_ORDER + PAGE_SHIFT - 1) : 25)

#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)

Each time kmalloc is invoked, the kernel finds the most suitable cache and allocates one of its objects to
satisfy the request for memory as best it can (if no cache fits exactly, larger objects are always allocated
but never smaller objects).

The difference between the slab allocator and cache outlined above quickly disappears in the concrete
implementation, so much so that both terms are used synonymously in the further course of the book.
Section 3.6.5 looks at the details of kmalloc after discussing the implementation of the slab allocator.

3.6.3 The Principle of Slab Allocation
The slab allocator is made up of a closely interwoven network of data and memory structures that is not
easy to untangle at first sight. It is therefore important to obtain an overview of the relationships between
the structures before moving on to examine the implementation.

Basically, the slab cache consists of the two components shown in Figure 3-44: a cache object to hold the
management data and slabs to hold the managed objects.

Each cache is responsible for just one object type, instances of struct unix_sock, for example, or general
buffers. The number of slabs in each cache varies according to the number of pages used, the object size,
and the number of objects managed. Section 3.6.4 goes into the details of how cache sizes are calculated.

All caches in the system are also kept in a doubly linked list. This gives the kernel the opportunity to
traverse all caches one after the other; this is necessary, for example, when shrinking cache memory
because of an impending memory shortage.

Fine Structure of the Cache
If we look more closely at the cache structure, we note further details of importance. Figure 3-45 provides
an overview of the cache components.

261

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 262

Chapter 3: Memory Management

Cache Cache Cache

Slab Slab Slab

Cache Object

Figure 3-44: Components of the slab allocator.

struct
kmem_cache

free

array_
cache

array_
cache

Arrays with pointers
to Slab objects

Slab
Head

Slab
Head

Slab
Head

Page Frames

on- or
off-Slab

full

partial

Figure 3-45: Fine structure of a slab cache.

Besides management data (such as the number of used and free objects or flag registers), the cache struc-
ture includes two elements of special significance:

❑ A pointer to an array in which the last freed objects can be kept for each specific CPU.

❑ Three list heads per memory node under which slabs can be listed. The first list contains full
slabs, the second partially free slabs, and the third free slabs.

The cache structure points to an array that contains as many entries as there are CPUs in the system.
Each element is a pointer to a further structure known as an array cache, which contains the management
data for the particular system CPU (and not for the cache as a whole). The memory area immediately
following the management data contains an array with pointers to as-yet-unused objects in the slabs.

The per-CPU pointers are important to best exploit the CPU caches. The LIFO principle (last in, first out)
is applied when objects are allocated and returned. The kernel assumes that an object just returned is still

262

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 263

Chapter 3: Memory Management

in the cache and allocates it again as quickly as possible (in response to the next request). Only when the
per-CPU caches are empty are free objects from the slabs used to refill them.

This results in a three-level hierarchy for object allocation within which both the allocation cost and the
negative impact of the operation on caches and TLBs rise from level to level:

1. Per-CPU objects in the CPU cache.

2. Unused objects from an existing slab.

3. Unused objects from a new slab just reserved using the buddy system.

Fine Structure of Slabs
Objects are not listed continuously in slabs but are distributed according to a rather complicated scheme.
Figure 3-46 illustrates the details.

Manage-
ment
head

...

B
U
F
C
T
L
_
E
N
D

Management
of free objects

Color
Space

Unused
Memory

...Free Used Free

Fill bytes for
alignment

Object Size

Figure 3-46: Fine structure of a slab.

The size used for each object does not reflect its exact size. Instead, the size is rounded to fulfill certain
alignment criteria. Two alternatives are possible:

❑ Using the flag SLAB_HWCACHE_ALIGN at slab creation time, the slab user can request that objects
are aligned to hardware cache lines. The alignment is then performed along the value returned
by cache_line_size, which returns the processor-specific size of the L1 cache.

If objects are smaller than half of the cache line size, then more than one object is fit into one
cache line.

❑ If alignment along hardware cache lines is not requested, then the kernel ensures that objects are
aligned with BYTES_PER_WORD — the number of bytes needed to represent a void pointer.

On 32-bit processors, 4 bytes are required for a void pointer. Consequently, for an object with 6 bytes,
8 = 2 × 4 bytes are needed, and objects with 15 bytes require 16 = 4 × 4 bytes. The superfluous bytes are
referred to as fill bytes.

263

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 264

Chapter 3: Memory Management

Fill bytes speed access to the objects in a slab. Memory access is faster on almost all architectures if aligned
addresses are used. This compensates for the disadvantage of higher memory requirements entailed by
the use of fill bytes.

The management structure holding all the management data (and the list element to link with the
cache lists) is located at the start of each slab. It is immediately followed by an array that includes
an (integer) entry for each object in the slab. The entries are only of significance if the associated
object is not allocated. In this case, it specifies the index of the next free object. Because the number
of the free object with the lowest number is also stored in the management structure at the start of
the slab, the kernel is easily able to find all objects currently available without having to use linked
lists or other complicated associations.29 The last array entry is always an end marker with the value
BUFCTL_END.

Figure 3-47 illustrates the situation graphically.

Slab objectsManagement array

Used objectUnused object

2 4 6

Figure 3-47: Management of the free objects in a
slab.

In most cases, the size of the slab area (minus the management head) is not divisible by the (possibly
padded) object size without a remainder. Consequently, a little superfluous memory is available to
the kernel and is used to give the slab a ‘‘color‘‘ in the form of an offset as described above. The slab
members of a cache are given different offsets to position the data in different cache lines with the
result that the free memory at the start and end of a slab varies. When the offset is calculated, the ker-
nel must take other alignment factors into account, for instance, alignment of the data on the L1 cache
(discussed below).

The management data can be positioned either on the slab itself or in an external memory area allocated
using kmalloc.30 Which alternative the kernel selects depends on the size of the slab and of the objects
used. The corresponding selection criteria are discussed shortly. The association between the manage-
ment data and slab memory is easy to establish because the slab header contains a pointer to the start of
the slab data area (regardless of whether it is on-slab or off-slab).

Figure 3-48 shows the situation when the data are not on the slab itself (as it is in Figure 3-46) but in
external memory.

And finally, the kernel needs a way of identifying the slab (and therefore the cache in which an object
resides) by reference to the object itself. On the basis of an object’s physical memory address, it is not
difficult to find the associated page and therefore the matching page instance in the global mem_map
array. As we already know, the page structure includes a list element used to manage the page in

29The original implementation of the slab allocator in the SunOS operating system kernel uses a linked list to keep track of the free
objects.
30This requires special precautions when the kmalloc caches are initialized because obviously kmalloc cannot be invoked there
yet. This and other chicken-and-egg problems of slab initialization are discussed below.

264

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 265

Chapter 3: Memory Management

various lists. As this is not necessary for pages on the slab cache, the pointers can be used for other
purposes:

❑ page->list.next points to the management structure of the cache in which the page resides.

❑ page->list.prev points to the management structure of the slab on which the page is held.

Management
area

Figure 3-48: Slab with external
(off-slab) slab header.

Setting or reading this information is concealed behind the set_page_slab and get_page_slab, respec-
tively, _cache functions to lower the hack value of this convention.

mm/slab.c
void page_set_cache(struct page *page, struct kmem_cache *cache)
struct kmem_cache *page_get_cache(struct page *page)

void page_set_slab(struct page *page, struct slab *slab)
struct slab *page_get_slab(struct page *page)

Additionally, the kernel sets the page flag PG_SLAB for each physical page, that is allocated for the slab
allocator.

3.6.4 Implementation
Various data structures are used to implement the slab allocator as described above. Although this does
not appear to be difficult, the code is not always easy to read or understand. This is because many mem-
ory areas need to be manipulated using pointer arithmetic and type-casting — not necessarily one of the
areas of C famed for its clarity. The code is also pervaded with pre-processor statements because the slab
system features numerous debugging options. 31 Some of these are listed below:

❑ Red Zoning — An additional memory area filled with a known byte pattern is placed at the start
and end of each object. If this pattern is overwritten, programmers will note when analyzing
kernel memory that their code accesses memory areas that don’t belong to them.

❑ Object Poisoning — Objects are filled with a predefined pattern when a slab is created and
freed. If it is noted at object allocation that this pattern is changed, programmers know that
unauthorized access has already taken place.

For the sake of simplicity and to focus attention on the big picture rather than minor details, let’s restrict
our description below to a ‘‘pure‘‘ slab allocator that doesn’t make use of the above options.

31The CONFIG_DEBUG_SLAB configuration option must be set at compilation time to enable debugging. However, this significantly
slows allocator performance.

265

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 266

Chapter 3: Memory Management

Data Structures
Each cache is represented by an instance of the kmem_cache structure defined in mm/slab.c. The structure
is not normally visible at other points of the kernel because it is defined in a C header and not in a
header file. This is because users of the cache need not know in detail how the cache is implemented. It is
sufficient to regard slab caches as mechanisms for the efficient creation and release of objects of a specific
type by means of a set of standard functions.

The contents of the structure are as follows:

mm/slab.c
struct kmem_cache {
/* 1) per-cpu data, touched during every alloc/free */

struct array_cache *array[NR_CPUS];
/* 2) Cache tunables. Protected by cache_chain_mutex */

unsigned int batchcount;
unsigned int limit;
unsigned int shared;

unsigned int buffer_size;
u32 reciprocal_buffer_size;

/* 3) touched by every alloc & free from the backend */

unsigned int flags; /* constant flags */
unsigned int num; /* # of objs per slab */

/* 4) cache_grow/shrink */
/* order of pgs per slab (2^n) */
unsigned int gfporder;

/* force GFP flags, e.g. GFP_DMA */
gfp_t gfpflags;

size_t colour; /* cache colouring range */
unsigned int colour_off; /* colour offset */
struct kmem_cache *slabp_cache;
unsigned int slab_size;
unsigned int dflags; /* dynamic flags */

/* constructor func */
void (*ctor)(struct kmem_cache *, void *);

/* 5) cache creation/removal */
const char *name;
struct list_head next;

/* 6) statistics */
...

struct kmem_list3 *nodelists[MAX_NUMNODES];
};

266

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 267

Chapter 3: Memory Management

This lengthy structure is divided into multiple parts as indicated by the comments in the kernel sources.32

The initial elements are concerned with CPU-specific data accessed by the kernel during each allocation,
touched upon in Section 3-46.

❑ array is a pointer to an array with an entry for each CPU in the system. Each entry contains a
further pointer to an instance of the array_cache structure discussed below.

❑ batchcount specifies the number of objects to be taken from the slabs of a cache and added to the
per-CPU list if it is empty. It also indicates the number of objects to be allocated when a cache is
grown.

❑ limit specifies the maximum number of objects that may be held in a per-CPU list. If this value
is exceeded, the kernel returns the number of objects defined in batchcount to the slabs (if the
kernel then shrinks the caches, memory is returned from the slabs to the buddy system).

❑ buffer_size specifies the size of the objects managed in the cache.33

❑ Suppose that the kernel has a pointer to an element in a slab and wants to determine the corre-
sponding object index. The easiest way to do this is to divide the offset of the pointer compared
to the start of the slab area by the object size. Consider, for example, that a slab area starts at
memory location 100, each object requires 5 bytes, and the object in question is located at mem-
ory position 115. The offset between the slab start and the object is 115 − 100 = 15, so the object
index is 15/5 = 3. Unfortunately, divisions are slow on some older machines.

Since multiplications are much faster on these machines, the kernel uses the so-called
Newton-Raphson technique, which requires only multiplications and bit shifts. While the
mathematical details are not interesting for our purposes (they can be found in any standard
textbook), we need to know that instead of computing C = A/B, the kernel can also employ C
= reciprocal_divide(A, reciprocal_value(B)) — both functions are provided as library
routines. Since the object size in a slab is constant, the kernel can store the recpirocal value of
buffer_size in recpirocal_buffer_size, which can be used later when the division must be
computed.

The kernel provides an instance of array_cache for each system processor. This structure is defined as
follows:

mm/slab.c
struct array_cache {

unsigned int avail;
unsigned int limit;
unsigned int batchcount;
unsigned int touched;
spinlock_t lock;
void *entry[];

};

32If slab debugging is enabled, another part with statistical information gathered by the kernel concludes the structure.
33If slab debugging is enabled, the buffer size can differ from the object size because extra padding (in addition to the padding used
to align the objects properly) is introduced per element. In this case, a second variable denotes the real size of the object.

267

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 268

Chapter 3: Memory Management

The meanings of batchcount and limit are as given above. The values of kmem_cache_s
are applied (normally unchanged) as defaults for the per-CPU values used for cache refill or
emptying.

avail holds the number of elements currently available. touched is set to 1 when an element is removed
from the cache, whereas cache shrinking causes touched to be set to 0. This enables the kernel to establish
whether a cache has been accessed since it was last shrunk and is an indicator of the importance of the
cache. The last element is a dummy array without an entry to facilitate access to the cache elements
following each array_cache instance in memory.

The third and fourth parts of kmem_cache contain all the variables needed to manage the slabs and are
required when the per-CPU caches are filled or emptied.

❑ nodelists is an array that contains an entry for each possible node in the system. Each entry
holds an instance of struct kmem_list3 that groups the three slab lists (full, free, partially free)
together in a separate structure discussed below.

The element must be placed at the end of the structure. While it formally always has
MAX_NUMNODES entries, it is possible that fewer nodes are usable on NUMA machines. The array
thus requires fewer entries, and the kernel can achieve this at run time by simply allocating less
memory than the array formally requires. This would not be possible if nodelists were placed
in the middle of the structure.

On UMA machines, this is not much of a concern because only a single node will ever be
available.

❑ flags is a flag register to define the global properties of the cache. Currently, there is only one
flag bit. CFLGS_OFF_SLAB is set when the management structure is stored outside the slab.

❑ objsize is the size of the objects in the cache, including all fill bytes added for alignment
purposes.

❑ num holds the maximum number of objects that fit into a slab.

❑ free_limit specifies the upper limit of free objects in a cache after it has been shrunk (if there is
no reason to shrink the cache during normal operation, the number of free objects may exceed
this value).

The list heads to manage the slab lists are kept in a separate data structure defined as follows:

mm/slab.c
struct kmem_list3 {

struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
spinlock_t list_lock;
struct array_cache *shared; /* shared per node */
struct array_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */

};

268

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 269

Chapter 3: Memory Management

The meanings of the first three list heads are clear from the explanations in the above sections.
free_objects indicates the total number of free objects in all slabs of slabs_partial and slabs_free.

free_touched indicates whether the cache is active or not. When an object is taken from the cache, the
kernel sets the value of this variable to 1; when the cache is shrunk, the value is reset to 0. However, the
kernel only shrinks a cache if free_touched has been set to 0 beforehand, because the value 1 indicates that
another part of the kernel has just taken objects from the cache and thus it is not advisable to shrink it.

This variable applies for the whole cache unlike the per-CPU touched element.

next_reap defines a time interval that the kernel must allow to elapse between two attempts to shrink
the cache. The idea is to prevent degradation of system performance due to frequent cache shrinking
and growing operations as can happen in certain load situations. This technique is only used on NUMA
systems and will thus not concern us any further.

free_limit specifies the maximum number of unused objects permitted on all slabs.

The structure is concluded by pointers to array_cache instances that are either shared per node or origi-
nate from other nodes. This is of relevance on NUMA machines but, for the sake of simplicity, this won’t
be discussed in detail.

The third part of kmem_cache contains all variables needed to grow (and shrink) the cache.

❑ gfporder specifies the slab size as a binary logarithm of the number of pages, or, expressed dif-
ferently, the slab comprises 2gfporder pages.

❑ The three colour elements hold all relevant data for slab coloring.

colour specifies the maximum number of colors and colour_next the color to use for the
next slab created by the kernel. Note, however, that this value is specified as an element of
kmem_list3. colour_off is the basic offset multiplied by a color value to obtain the absolute
offset. This is again required for NUMA machines — UMA systems could keep colour_next in
struct kmem_cache. Placing the next color in a node-specific structure, however, allows coloring
slabs added on the same node sequentially, which is beneficial for the local caches.

Example: If there are five possible colors (0, 1, 2, 3, 4) and the offset unit is 8 bytes, the kernel can
use the following offset values: 0 × 8 = 0, 1 × 8 = 8, 2 × 8 = 16, 3 × 8 = 24 and 4 × 8 = 32 bytes.

Section 3.6.4 examines how the kernel determines the possible settings for slab colors. Besides,
note that the kernel sources, in contrast to this book, spell colour properly, at least from the British
point of view.

❑ If the slab head is stored outside the slab, slabp_cache points to the general cache from which
the required memory is taken. If the slab head is on-slab, slabp_cache contains a null pointer.

❑ dflags is a further set of flags that describe the ‘‘dynamic properties‘‘ of the slab, but currently
no flags are defined.

❑ ctor is a pointer to a constructor function that is invoked when objects are created. This method
is well known in object-oriented languages such as C++ and Java. Former kernel versions did
offer the ability to specify an additional destructor function, but since this opportunity was not
used, it has been dropped during the development of kernel 2.6.22.

269

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 270

Chapter 3: Memory Management

The fifth and last part (statistics fields that are of no further interest for our purposes) of struct
kmem_cache consists of two further elements:

❑ name is a string containing a human-readable name for the cache. It is used, for example, to list
the available caches in /proc/slabinfo.

❑ next is a standard list element to keep all instances of kmem_cache on the global list cache_chain.

Initialization
At first sight, initialization of the slab system does not appear to be especially complicated because the
buddy system is already fully enabled and no other particular restrictions are imposed on the kernel.
Nevertheless, there is a chicken-and-egg problem34 because of the structure of the slab allocator.

To initialize the slab data structures, the kernel needs memory blocks that are much smaller than a com-
plete page and are therefore best allocated by kmalloc. And here’s the crux: kmalloc only functions if the
slab system is already enabled.

To be more accurate, the problem lies with the initialization of the per-CPU caches for kmalloc. Before
these caches can be initialized, kmalloc must be available to reserve the required memory space, and
kmalloc itself is just in the process of being initialized. In other words, kmalloc can only be initialized
once kmalloc has been initialized — an impossible scenario. The kernel must therefore resort to a few
tricks.

The kmem_cache_init function is used to initialize the slab allocator. It is invoked during the kernel
initialization phase (start_kernel) once the buddy system is enabled. However, on multiprocessor
systems, the boot CPU is running and the other CPUs are not yet initialized. kmem_cache_init employs
a multistep process to activate the slab allocator step-by-step:

1. kmem_cache_init creates the first slab cache in the system to generate memory for instances
of kmem_cache. To this end, the kernel uses mainly static data created at compilation time; in
fact, a static data structure (initarray_cache) is used as a per-CPU array. The name of this
cache is cache_cache.

2. kmem_cache_init then initializes the general caches that serve as a source for kmalloc. For
this purpose, kmem_cache_create is invoked for each cache size required. The function first
needs only the cache_cache cache already created; however, when the per-CPU caches are
to be initialized, the function must resort to kmalloc, and this is not yet possible.

To resolve this problem, the kernel uses the g_cpucache_up variable, which can accept one
of four values (NONE, PARTIAL_AC, PARTIAL_L3, or FULL) to reflect the state of kmalloc initial-
ization.

Initially the state of the kernel is NONE. When the smallest kmalloc cache (which provides
memory blocks of 32 bytes on machines with 4 KiB memory pages; if other page sizes are
used, the smallest allocation size is 64 bytes; the exact definition of existing sizes is given
in Section 3.6.5) is initialized, a static variable is again used for the per-CPU cache data.

34Chicken-and-egg problems are encountered where something cannot happen until a second thing does, and the second thing cannot
happen until the first does. For example, B must be present in order to initialize A, but A must be present to initialize B. It’s the age-
old question of which came first, the chicken or the egg?
If you are a scientist, you can also use the term causality dilemma, which expresses exactly the same, but sounds much more
educated

270

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 271

Chapter 3: Memory Management

The state in g_cpucache_up is then set to PARTIAL_AC, meaning that array_cache instances
can be allocated immediately. If the initialized size is also sufficient to allocate kmem_list3
instances, the state immediately changes to PARTIAL_L3. Otherwise, this only happens when
the next larger cache has been initialized.

The per-CPU data of the remaining kmalloc caches can now be created with kmalloc as an
instance of arraycache_init, as only the smallest kmalloc area is needed for this purpose.

mm/slab.c
struct arraycache_init {

struct array_cache cache;
void * entries[BOOT_CPUCACHE_ENTRIES];

};

3. In the last step of kmem_cache_init, all statically instantiated elements of the data struc-
tures used up to present are replaced with dynamically allocated version created using
kmalloc. The state of g_cpucache_up is now FULL, indicating that the slab allocator is ready
for use.

Creating Caches
kmem_cache_create must be invoked to create a new slab cache. This function requires a large set of
parameters.

mm/slab.c
struct kmem_cache *
kmem_cache_create (const char *name, size_t size, size_t align,

unsigned long flags,
void (*ctor)(struct kmem_cache *, void *))

Besides a human-readable name that subsequently appears in /proc/slabinfo, the function requires the
size of the managed objects in bytes, an offset used when aligning data (align, in almost all cases 0), a
set of flags in flags, and constructor/destructor functions in ctor and dtor.

Creation of a new cache is a lengthy procedure, as the code flow diagram for kmem_cache_create in
Figure 3-49 shows.

Several parameter checks are carried out to ensure that no invalid specifications are used (e.g., an object
size with fewer bytes than a processor word, a slab without name, etc.) before the first important step is
carried out — calculation of the required alignment. First, the object size is rounded up to a multiple of
the word length of the processor used:

mm/slab.c
kmem_cache_t *
kmem_cache_create (...) {
...

if (size & (BYTES_PER_WORD-1)) {
size += (BYTES_PER_WORD-1);
size &= ~(BYTES_PER_WORD-1);

}

Object alignment (in align) is typically also based on the processor word length. However, if the
SLAB_HWCACHE_ALIGN flag is set, the kernel aligns the data as recommended by the architecture-specific
function cache_line_size. It also attempts to pack as many objects as possible in a cache line by halving

271

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 272

Chapter 3: Memory Management

the alignment factor as long as this is possible for the given object size. As a result, 2, 4, . . . objects fit into
a cache line instead of a single object.

mm/slab.c
/* 1) arch recommendation: */
if (flags & SLAB_HWCACHE_ALIGN) {

/* Default alignment: as specified by the arch code.
* Except if an object is really small, then squeeze multiple
* objects into one cacheline.
*/

ralign = cache_line_size();
while (size <= ralign/2)

ralign /= 2;
} else {

ralign = BYTES_PER_WORD;
}

...

Sanity checks

Calculate alignment

Allocate cache structure

Determine where to store slab head

Compute cache size iteratively with cache_estimate

Compute colors

Insert cache in cache_chain

kmem_cache_create

calculate_slab_order

enable_cpucache do_tune_cpucache

Figure 3-49: Code flow diagram for kmem_cache_create.

The kernel also takes account of the fact that some architectures require a minimum boundary for
the alignment of data as defined by ARCH_SLAB_MINALIGN; the alignment required by users is also
accepted.

mm/slab.c
/* 2) arch mandated alignment */
if (ralign < ARCH_SLAB_MINALIGN) {

ralign = ARCH_SLAB_MINALIGN;
}
/* 3) caller mandated alignment */
if (ralign < align) {

272

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 273

Chapter 3: Memory Management

ralign = align;
}
/* 4) Store it. */
align = ralign;

...

A new instance of struct kmem_cache is allocated once the data alignment has been calculated (a separate
slab cache named cache_cache is provided to perform allocation).

The decision as to whether to store the slab head on-slab or off-slab (see Section 3.6.3) is relatively simple.
If the object size is more than one-eighth of a page frame, the head is stored off-slab, otherwise on the
slab itself.

mm/slab.c
if (size >= (PAGE_SIZE>>3))

/*
* Size is large, assume best to place the slab management obj
* off-slab (should allow better packing of objs).
*/

flags |= CFLGS_OFF_SLAB;

size = ALIGN(size, align);
...

The slab header can also be stored off-slab for smaller objects by explicitly setting CFLGS_OFF_SLAB in the
kmem_cache_create call.

Finally, the object size is increased until it corresponds to the alignment calculated above.

Up to now we have only defined the size of the objects but not of the slab. In the next step, an attempt is
therefore made to find a suitable number of pages that is neither too small nor too big. Too few objects on
a slab increase administrative overhead and render the method less efficient, while overlarge slab areas
are detrimental to the buddy system.

The kernel tries to find the ideal slab size in an iterative process implemented in calculate_slab_order.
Based on the given object size, cache_estimate calculates the number of objects, the wasted space, and
the space needed for coloring for a specific number of pages. The function is invoked in a loop until the
kernel is satisfied with the results.

By systematic trial and error, cache_estimate finds a slab arrangement that can be described by the
following elements: size is the object size, gfp_order the order for page allocation, num the number of
objects on the slab, and wastage the space that is ‘‘wasted‘‘ with this order and is therefore no longer
available for useful data (of course, wastage < size always applies; otherwise, another object could be
fitted on the slab). head specifies how much space is required for the slab head. This layout corresponds
to the following formula:

PAGE_SIZE<<gfp_order = head + num*size + left_over

If the slab head is stored off-slab, the value of head is 0 because no space need be reserved for head. If it
is stored on-slab, the value is calculated as follows:

head = sizeof(struct slab) + num*sizeof(kmem_bufctl_t)

273

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 274

Chapter 3: Memory Management

As discussed in Section 3.6.3, each slab head is followed by an array with as many entries as there are
objects on the slab. The kernel refers to this array to find the position of the next free object. The data
type used to do this is kmem_bufctl_t, which is nothing more than an ordinary unsigned int variable
appropriately abstracted by typedef.

The number of objects num is used to calculate the head size; this is needed to determine the number
of objects in a slab — and is another example of the chicken-and-egg problem. The kernel solves this
problem by systematically incrementing the number of objects to check whether a given configuration
still fits in the available space.

cache_estimate is repeatedly invoked in a while loop, and each time the available gfp_order is incre-
mented by 1 — thus doubling the slab size each time starting with a single page frame. The kernel
terminates the loop and is satisfied with the result if one of the following conditions applies:

❑ 8*left_over is less than the size of the slab; that is, less than one-eighth of the space is wasted.

❑ gfp_order is greater than or equal to the value stored in slab_break_gfp_order.
slab_break_gfp_order has the value BREAK_GFP_ORDER_LO = 1 if the machine has less
than 32 MiB of main memory; otherwise, its value is BREAK_GFP_ORDER_HI = 2.

❑ The management head is stored off-slab, and the number of objects is greater than the value
stored in offslab_limit. offslab_limit specifies the maximum number of kmem_bufctl_t
instances that can be held together with an instance of struct slab in a memory block reserved
with kmalloc. If the number of objects in a slab exceeds this value, it is no longer possible to
reserve the required space, with the result that gfp_order is decremented by 1, the data are
recalculated, and the loop is exited.

Of course, the kernel always makes sure that there is space for at least one object on the slab, as a cache
with no objects makes little sense.

The size of the slab head is rounded to ensure that the entry immediately following the head is properly
aligned.

mm/slab.c
...

slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
+ sizeof(struct slab), align);

...

ALIGN(x,y) is a standard macro provided by the kernel that computes the required space that is sufficient
to store the object x, but is additionally an integer-valued multiple of align. Table 3-9 provides some
exemplary alignment calculations.

If sufficient free space is available to store the slab head on-slab although it should actually be stored
off-slab, the kernel gladly makes use of the opportunity. The CFLGS_OFF_SLAB is deleted, and the head is
stored on the slab despite the earlier decision to do the opposite or despite the default setting.

The following steps are performed to color the slab:

mm/slab.c
cachep->colour_off = cache_line_size();
/* Offset must be a multiple of the alignment. */

274

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 275

Chapter 3: Memory Management

if (cachep->colour_off < align)
cachep->colour_off = align;

cachep->colour = left_over/cachep->colour_off;
...

The kernel uses the size of an L1 cache that can be determined using the architecture-specific
cache_line_size function as an offset. It must also be ensured that the offset is a multiple of the
alignment used — otherwise, the alignment effect would be lost.

Table 3-9: Examplary Calculations of the Alignment on 4- and 8-Byte Boundaries

Object size x Alignment y ALIGN(x,y)

1 4 8

4 4 8

5 8 8

8 8 8

9 12 16

12 12 16

13 16 16

16 16 16

17 20 24

19 20 24

The color of the slab (i.e., the number of potential offset values) is calculated by dividing the
free space on the slab (known as the left_over) by the color offset (colour_off) without a
remainder.

For example, on an older IA-32 machine, the kernel produces the following results for
a cache that manages 256-byte objects aligned on the hardware cache with SLAB_HWCACHE_
ALIGN:

❑ 15 objects are managed on a slab (num = 15).

❑ One page is used (gfp_order = 0).

❑ There are five possible colors (colour = 5), and an offset of 32 bytes is used for each color
(colour_off = 32).

❑ The slab head is stored on-slab.

275

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 276

Chapter 3: Memory Management

Now that we have dealt with the slab arrangement, there are still two more things to do when creating a
new slab cache in kmem_cache_create:

❑ The per-CPU caches must be generated. This task is delegated to enable_cpucache (the layout
and structure of these caches are described in Section 3.6.4). First, the kernel defines the number
of object pointers in the cache depending on the object size:

0 < size ≤ 256 :120 objects

256 < size ≤ 1024 :54 objects

1024 < size ≤ PAGE_SIZE :24 objects

PAGE_SIZE < size :8 objects

size > 131072 :1 object

Allocation of the required memory for each processor — an instance of array_cache and an
array of pointers to objects with the calculated number of elements — as well as initialization of
the data structures is delegated to do_tune_cpucache. A particularly interesting aspect is that
the batchcount field is always set to half the calculated number of objects in the cache.

This regulates the number of objects processed in one go when a cache is filled.

❑ To conclude initialization, the initialized kmem_cache instance is added to a globally linked list
whose list head (cache_chain) is defined in mm/slab.c.

Allocating Objects
kmem_cache_alloc is invoked to obtain objects from a specific cache. Like all malloc functions, it yields
either a pointer to the reserved memory area or a null pointer if allocation fails. The function requires two
parameters — the cache from which the object is to be obtained and a flag variable to accurately describe
the allocation characteristics.

<slab.h>
void *kmem_cache_alloc (kmem_cache_t *cachep, gfp_t flags)

Any of the GFP_ values mentioned in Section 3.5.4 can be specified for the flags.35

As the code flow diagram in Figure 3-50 shows, kmem_cache_alloc is based on the internal function
__cache_alloc that requires the same parameters and can be invoked without further ado (this structure
was adopted to merge the implementation of kmalloc and kmem_cache_alloc as quickly as possible, as
demonstrated in Section 3.6.5). However, __cache_allloc is also only a front-end function to perform all
necessary locking operations. The actual work is delegated to ____cache_alloc (with four underscores),
as shown in Figure 3-50 (actually, the function do_cache_alloc stands between __cache_alloc and
____cache_alloc, but is only required on NUMA systems).

The figure clearly shows that work can follow one of two paths; the first, which is the more frequent and
more convenient of the two, is taken if there are free objects in the per-CPU cache. However, if all objects
are in use, the cache must be refilled, and in the worst-case scenario, this means that a new slab must be
created.

35Notice that the kernel used to provide a differently named set of constants (SLAB_ATOMIC, SLAB_DMA, etc.) with the same
numerical values. These have been dropped during the development of kernel 2.6.20 and cannot be used anymore.

276

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 277

Chapter 3: Memory Management

kmalloc kmem_cache_alloc

__cache_alloc

__ __cache_alloc

cache_alloc_refill

cache_grow

Object in per-CPU Cache
Ja

Take object from cache Return object

Return object

Nein

Find object and take
it from the cache

Insufficient space in available slabs?

Figure 3-50: Code flow diagram for kmem_cache_alloc.

Selecting a Cached Object
____cache_alloc can check relatively easily if an object is in the per-CPU cache, as the following code
excerpt shows:

mm/slab.c
static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
{

ac = ac_data(cachep);
if (likely(ac->avail)) {

ac->touched = 1;
objp = ac->entry[--ac->avail];

}
else {

objp = cache_alloc_refill(cachep, flags);
}

return objp;

cachep is a pointer to the kmem_cache_t instance of the cache used. The ac_data macro yields the asso-
ciated array_cache instance for the currently active CPU by returning cachep->array[smp_processor_
id()].

As the objects in memory immediately follow the array_cache instance, the kernel can access them
easily with the help of the dummy array at the end of the structure without the explicit need for pointer
arithmetic. The object is removed from the cache by decrementing ac->avail.

Refilling the Per-CPU Cache
The workload is heavier when there are no more objects in the per-CPU cache. The refill operations
needed in this situation are located in cache_alloc_refill, which is invoked when the allocation cannot
be satisfied directly from the per-CPU cache.

277

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 278

Chapter 3: Memory Management

The kernel must now find array_cache->batchcount unused objects to refill the per-CPU cache by
first scanning the list of all partially free slabs (slabs_partial) and then taking all free objects one after
another by slab_get_obj until no more objects are free in the relevant slab. The kernel then performs the
same procedure on all other slabs in the slabs_partial list. If this finds the desired number of objects, the
kernel iterates over the slabs_free list of all unused slabs. When objects are taken from a slab, the kernel
must also ensure that it places them on the correct slab list (slabs_full or slabs_partial, depending
on whether the slab was totally emptied or still contains some objects). The above is implemented by the
following code:

mm/slab.c
static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
{
...

while (batchcount > 0) {
/* Select list from which slabs are to be taken

(first slabs_partial, then slabs_free) */
...

slabp = list_entry(entry, struct slab, list);
while (slabp->inuse < cachep->num && batchcount--) {

/* get obj pointer */
ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,

node);
}
check_slabp(cachep, slabp);

/* move slabp to correct slabp list: */
list_del(&slabp->list);
if (slabp->free == BUFCTL_END)

list_add(&slabp->list, &l3->slabs_full);
else

list_add(&slabp->list, &l3->slabs_partial);
}

...
}

The key to removing one slab element after another is in slab_get_obj:

mm/slab.c
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,

int nodeid)
{

void *objp = index_to_obj(cachep, slabp, slabp->free);
kmem_bufctl_t next;

slabp->inuse++;
next = slab_bufctl(slabp)[slabp->free];
slabp->free = next;

return objp;
}

278

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 279

Chapter 3: Memory Management

Recall from Figure 3-47 that the kernel uses an interesting system to keep track of free entries: The index
of the free object that is currently under consideration is stored in slabp->free, and the index of the next
free object, is kept in the management array.

Obtaining the object that belongs to a given index is a matter of some simple pointer manipulation per-
formed in index_to_obj. slab_bufctl is a macro that yields a pointer to the kmem_bufctl array after
slabp.

Let us return to cache_alloc_grow. If no free object is found although all slabs have been scanned, the
cache must be enlarged using cache_grow. This is a costly operation examined in the next section.

Growing the Cache
Figure 3-51 shows the code flow diagram for cache_grow.

Compute offset and next color

Set page pointer

Add slab to cache

cache_grow

kmem_getpages

alloc_slabmgt

alloc_pages_node

cache_init_objs

Figure 3-51: Code flow diagram for cache_grow.

The arguments of kmem_cache_alloc are passed to cache_grow. It is also possible to specify an explicit
node from which the fresh memory pages are to be supplied.

The color and offset are first calculated:

mm/slab.c
static int cache_grow(struct kmem_cache *cachep,

gfp_t flags, int nodeid, void *objp)
{
...

l3 = cachep->nodelists[nodeid];
...

offset = l3->colour_next;
l3->colour_next++;
if (l3->colour_next >= cachep->colour)

l3->colour_next = 0;
offset *= cachep->colour_off;

...
}

279

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 280

Chapter 3: Memory Management

The kernel restarts counting at 0 when the maximum number of colors is reached; this automatically
results in a zero offset.

The required memory space is allocated page-by-page by the buddy system using the kmem_getpages
helper function. The sole purpose of this function is to invoke the alloc_pages_node function discussed
in Section 3.5.4 with the appropriate parameters. The PG_slab bit is also set on each page to indicate
that the page belongs to the buddy system. When a slab is used to satisfy short-lived or reclaimable
allocations, the flag __GFP_RECLAIMABLE is passed down to the buddy system. Recall from Section 3.5.2
that this is important to allocate the pages from the appropriate migrate list.

The allocation of the management head for the slab is not very exciting. The relevant alloc_slabmgmt
function reserves the required space if the head is stored off-slab; if not, the space is already reserved on
the slab. In both situations, the colouroff, s_mem, and inuse elements of the slab data structure must be
initialized with the appropriate values.

The kernel then establishes the associations between the pages of the slab and the slab or cache structure
by invoking slab_map_pages. This function iterates over all page instances of the pages newly allo-
cated for the slab and invokes page_set_cache and page_set_slab for each page. These two functions
manipulate (or misuse) the lru element of a page instance as follows:

mm/slab.c
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{

page->lru.next = (struct list_head *)cache;
}
static inline void page_set_slab(struct page *page, struct slab *slab)
{

page->lru.prev = (struct list_head *)slab;
}

cache_init_objs initializes the objects of the new slab by invoking the constructor for each object assum-
ing it is present. (As only a very few parts of the kernel make use of this option, there is normally little
to do in this respect.) The kmem_bufctl list of the slab is also initialized by storing the value i + 1 at array
position i: because the slab is as yet totally unused, the next free element is always the next consecutive
element. As per convention, the last array element holds the constant BUFCTL_END.

The slab is now fully initialized and can be added to the slabs_free list of the cache. The number of new
objects generated is also added to the number of free objects in the cache (cachep->free_objects).

Freeing Objects
When an allocated object is no longer required, it must be returned to the slab allocator using
kmem_cache_free. Figure 3-52 shows the code flow diagram of this function.

kmem_cache_free immediately invokes __cache_free and forwards its arguments unchanged.
(Again the reason is to prevent code duplication in the implementation of kfree, as discussed in
Section 3.6.5.)

As with allocation, there are two alternative courses of action depending on the state of the per-CPU
cache. If the number of objects held is below the permitted limit, a pointer to the object in the cache is
stored.

280

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 281

Chapter 3: Memory Management

Include object into cache

Move remaining cache entries upward

Yes

No

kmem_cache_free

_ _cache_free

cache_flush_array

free_block

Space in per-CPU array available?

Figure 3-52: Code flow diagram for kmem_cache_free.

mm/slab.c
static inline void __cache_free(kmem_cache_t *cachep, void *objp)
{
...

if (likely(ac->avail < ac->limit)) {
ac->entry[ac->avail++] = objp;
return;

} else {
cache_flusharray(cachep, ac);
ac->entry[ac->avail++] = objp;

}
}

If not, some objects (the exact number is given by array_cache->batchcount) must be moved from the
cache back into the slabs starting with the array elements with the lowest numbers — because the cache
implementation applies the LIFO principle, these are objects that have been in the array longest and
whose data are therefore least likely still to be held in the CPU cache.

Implementation is delegated to cache_flusharray. In turn, this function invokes free_block to move
the objects from the cache to their original slabs and shifts the remaining objects in the cache to the start
of the array. For example, if there is space for 30 objects in the cache and the batchcount is 15, the objects
at positions 0 to 14 are moved back into the slabs. The remaining objects numbered 15 to 29 are shifted
upward in the cache so that they now occupy positions 0 to 14.

Moving objects from the cache back onto the slabs is instructive, so it’s well worth taking a closer look
at free_block. The arguments required by this function are the kmem_cache_t instance of the cache, a
pointer to an array consisting of pointers to the objects in the cache, an integer to indicate the number of
objects in the array, and the node whose memory is just being processed.

The function iterates over all objects in objpp after the number of unused objects in the cache data struc-
ture has been updated.

mm/slab.c
static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,

int node)
{

int i;

281

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 282

Chapter 3: Memory Management

struct kmem_list3 *l3;

for (i = 0; i < nr_objects; i++) {
void *objp = objpp[i];
struct slab *slabp;

...

The following operations must be performed for each object:

mm/slab.c
slabp = virt_to_slab(objp)
l3 = cachep->nodelists[node];
list_del(&slabp->list);
slab_put_obj(cachep, slabp, objp, node);
slabp->inuse--;
l3->free_objects++;

Before it can be established to which slab an object belongs, it is first necessary to invoke virt_to_page
to find the page in which the object is located. The association with the slab is determined using
page_get_slab as discussed above.

The slab is (temporarily) removed from the lists of the cache. slab_put_obj is used to reflect this action
in the freelist: The first object to be used for allocation purposes is the one just removed, and the next
object in the list is the one that was previously first.

Thereafter, the slab is reinserted in the linked lists of the cache:

mm/slab.c
...

/* fixup slab chains */
if (slabp->inuse == 0) {

if (l3->free_objects > l3->free_limit) {
l3->free_objects -= cachep->num;
slab_destroy(cachep, slabp);

} else {
list_add(&slabp->list, &l3->slabs_free);

}
} else {

list_add(&slabp->list, &l3->slabs_partial);
}

}
}

The slab is normally placed on the slabs_free list if, after deletion, all objects in the slab are unused
(slab->inuse == 0).

Exception: The number of free objects in the cache is above the predefined limit cachep->free_limit.
In this case, the complete slab is returned to the buddy system using slab_destroy.

The slab is inserted into the slabs_partial list of the cache if it contains both used and unused
objects.

282

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 283

Chapter 3: Memory Management

Destroying Caches
The kmem_cache_destroy function must be invoked to destroy a complete cache in which there are
only unused objects. This function is needed primarily when removing modules that want to return all
memory space allocated to them.36

Since the implementation itself reveals nothing new, we will confine ourselves to outlining the main steps
needed to remove a cache:

❑ The slabs on the slabs_free list are scanned successively. The destructor is first invoked for
each object on each slab, and then the slab memory space is returned to the buddy system.

❑ The memory space for the per-CPU caches is freed.

❑ The data are removed from the cache_cache list.

3.6.5 General Caches
The kmalloc and kfree functions must be used to allocate and free memory in the classic sense rather
than objects. These are the kernel equivalents to the malloc and free functions from the C standard
library in userspace.37

I have already noted several times that kmalloc and kfree are implemented as slab allocator front-ends
and mimic the semantics of malloc/free as best they can. We can therefore deal with their implementa-
tion succinctly.

Implementation of kmalloc
The base of kmalloc is an array that groups slab caches for memory areas of graded sizes. The array
entries are instances of the cache_sizes data structure that is defined as follows:

<slab_def.h>
struct cache_sizes {

size_t cs_size;
kmem_cache_t *cs_cachep;
kmem_cache_t *cs_dmacachep;

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *cs_dmacachep;

#endif
}

size specifies the size of the memory area for which the entry is responsible. There are two slab caches
for each size, one of which supplies DMA-suitable memory.

The statically defined malloc_sizes array groups the available sizes essentially using powers of 2
between 25 = 32 and 225 = 131, 072, depending on the setting of KMALLOC_MAX_SIZE as discussed above.

36This is not mandatory. If a module wants to obtain persistent memory that is preserved between unloading a module and reload-
ing the next time (assuming, of course, that the system is not rebooted in the meantime), it can retain a cache so that the data it
contains are available for reuse.
37Use of printk, kmalloc and kfree in userspace programs is an unmistakable sign of too much contact with kernel
programming.

283

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 284

Chapter 3: Memory Management

mm/slab.c
static struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#if (PAGE_SIZE == 4096)

CACHE(32)
#endif

CACHE(64)
#if L1_CACHE_BYTES < 64

CACHE(96)
#endif

CACHE(128)
#if L1_CACHE_BYTES < 128

CACHE(192)
#endif

CACHE(256)
CACHE(512)
CACHE(1024)
CACHE(2048)
CACHE(4096)
CACHE(8192)
CACHE(16384)
CACHE(32768)
CACHE(65536)
CACHE(131072)

#if KMALLOC_MAX_SIZE >= 262144
CACHE(262144)

#endif
#if KMALLOC_MAX_SIZE >= 524288

CACHE(524288)
#endif
...
#if KMALLOC_MAX_SIZE >= 33554432

CACHE(33554432)
CACHE(ULONG_MAX)

There is always a cache for allocations up to the maximum size that can be represented in an unsigned
long variable. However, this cache (in contrast to all others) is not filled with elements in advance; this
allows the kernel to ensure that each giant allocation is satisfied with freshly allocated memory pages. As
allocations of this size can request the entire memory of the system, a corresponding cache would not be
particularly useful. However, this kernel approach makes sure that very large allocation requests can be
satisfied if sufficient memory is available.

The pointers to the corresponding caches are not initially filled. They are assigned their correct value
when initialization is performed with kmem_cache_init.

kmalloc from <slab_def.h> first checks whether a constant is specified as the memory size; in this case,
the required cache can be determined statically at compilation time, and this delivers speed gains. If not,
__kmalloc is invoked to find the cache of matching size. The function is a parameter-conversion front
end for __do_kmalloc:

mm/slab.c
void *__do_kmalloc(size_t size, gfp_t flags)
{

kmem_cache_t *cachep;

284

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 285

Chapter 3: Memory Management

cachep = __find_general_cachep(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(cachep)))

return NULL;
return __cache_alloc(cachep, flags);

}

Once __find_general_cachep has found a suitable cache (it iterates over all possible kmalloc sizes
to find a matching cache), the heavy work is delegated to the __cache_alloc function discussed
above.

Implementation of kfree
kfree is likewise easy to implement:

mm/slab.c
void kfree(const void *objp)
{

kmem_cache_t *c;
unsigned long flags;

if (unlikely(ZERO_OR_NULL_PTR(objp)))
return;

c = virt_to_cache(objp));
__cache_free(c, (void*)objp);

}

kfree hands over the actual work to the __cache_free function also discussed above once the cache
associated with the memory pointer has been found.

3.7 Processor Cache and TLB Control
Caches are crucial in terms of overall system performance, which is why the kernel tries to exploit them
as effectively as possible. It does this primarily by skillfully aligning kernel data in memory. A judicious
mix of normal functions, inline definitions, and macros also helps extract greater performance from the
processor. The compiler optimizations discussed in Appendix C also make their contribution.

However, the above aspects affect the cache only indirectly. Use of the correct alignment for a data
structure does indeed have an effect on the cache but only implicitly — active control of the processor
cache is not necessary.

Nevertheless, the kernel features some commands that act directly on the cache and the TLB of the pro-
cessor. However, they are not intended to boost system efficiency but to maintain the cache contents in a
consistent state and to ensure that no entries are incorrect and out-of-date. For example, when a mapping
is removed from the address space of a process, the kernel is responsible for removing the corresponding
entries from the TLBs. If it failed to do so and new data were added at the position previously occupied
by the mapping, a read or write operation to the virtual address would be redirected to the incorrect
location in physical memory.

The hardware implementation of caches and TLBs differs significantly from architecture to architecture.
The kernel must therefore create a view on TLBs and caches that takes adequate account of the different
approaches without neglecting the specific properties of each architecture.

285

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 286

Chapter 3: Memory Management

❑ The meaning of the translation lookaside buffer is abstracted to refer to a mechanism that translates
a virtual address into a physical address.38

❑ The kernel regards a cache as a mechanism that provides rapid access to data by reference to a
virtual address without the need for a request to RAM memory. There is not always an explicit
difference between data and instruction caches. The architecture-specific code is responsible for
any differentiation if its caches are split in this manner.

It is not necessary for each processor type to implement every control function defined by the kernel. If a
function is not required, its invocation can be replaced with an empty operation (do {} while (0)) that is
optimized away by the compiler. This is very frequently the case with cache-related operations because,
as above, the kernel assumes that addressing is based on virtual addresses. The resultant problems do
not occur in physically organized caches so that it is not usually necessary to implement the cache control
functions.

The following functions must be made available (even if only as an empty operation) by each CPU-
specific part of the kernel in order to control the TLBs and caches39:

❑ flush_tlb_all and flush_cache_all flush the entire TLB/cache. This is only required when the
page tables of the kernel (and not of a userspace process) are manipulated because a modification
of this kind affects not only all processes but also all processors in the system.

❑ flush_tlb_mm(struct mm_struct *mm) and flush_cache_mm flush all TLB/cache entries belong-
ing to the address space mm.

❑ flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
and flush_cache_range(vma, start, end) flush all entries from the TLB/cache between the
start and end virtual addresses in the address range vma->vm_mm.

❑ flush_tlb_page(struct vm_area_struct *vma, unsigned long page) and
flush_cache_page(vma, page) flush all entries from the TLB/cache whose virtual addresses are
in an interval that begins at page and consists of PAGE_SIZE bytes.

❑ update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) is
invoked after a page fault has been handled. It inserts information in the memory management
unit of the processor so that the entry at the virtual address address is described by the page
table entry pte.

This function is needed only if there is an external MMU. Typically, the MMU is integrated into
the processor, but MIPS processors, for example, have external MMUs.

The kernel makes no distinction between data and instruction caches. If a distinction is required, the
processor-specific code can reference the VM_EXEC flag in vm_area_struct->flags to ascertain whether
the cache contains data or instructions.

The flush_cache_ and flush_tlb_ functions very often occur in pairs; for instance, when the address
space of a process is duplicated using fork.

kernel/fork.c
flush_cache_mm(oldmm);
...

38Whether TLBs are the only hardware resource for doing this or whether other alternatives (e.g., page tables) are provided is irrele-
vant.
39The following description is based on the documentation by David Miller [Mil] in the kernel sources.

286

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 287

Chapter 3: Memory Management

/* Manipulate page tables */
...
flush_tlb_mm(oldmm);

The sequence of operations — cache flushing, memory manipulation, and TLB flushing — is important
for two reasons:

❑ If the sequence were reversed, another CPU in a multiprocessor system could take the wrong
information from the process table after the TLBs have been flushed but before the correct infor-
mation is supplied.

❑ Some architectures require the presence of ‘‘virtual-to-physical‘‘ transformation rules in the TLB
when the cache is flushed (caches with this property are referred to as strict). flush_tlb_mm must
execute after flush_cache_mm to guarantee that this is the case.

Some control functions apply specifically to data caches (flush_dcache_ . . .) or instruction caches
(flush_icache_ . . .).

❑ flush_dcache_page(struct page *page) helps prevent alias problems that arise if a cache may
contain several entries (with different virtual addresses) that point to the same page in memory.
It is always invoked when the kernel writes to a page in the page cache or when it wants to read
data from a page that is also mapped in userspace. This routine gives each architecture in which
alias problems can occur an opportunity to prevent such problems.

❑ flush_icache_range(unsigned long start, unsigned long end) is invoked when the kernel
writes data to kernel memory (between start and end) for subsequent execution. A standard
example of this scenario is when a module is loaded into the kernel. The binary data are first
copied to RAM and are then executed. flush_icache_range ensures that data and instruction
caches do not interfere with each other if implemented separately.

❑ flush_icache_user_range(*vma, *page, addr, len) is a special function for the ptrace mecha-
nism. It is needed to propagate changes to the address space of a traced process.

It is beyond the scope of this book to discuss the implementation details of the cache and TLB control
functions. Too much background knowledge on the structure of the underlying processor (and
the subtle problems involved) would be required for a full understanding of the implementation
details.

3.8 Summary
This chapter has discussed many aspects of memory management. Our focus lies on physical memory
management, but the connection between virtual and physical memory via page tables has also been cov-
ered. Although the architecture-specific details in this area differ greatly among the various architectures
supported by Linux, an architecture-independent set of data structures and functions allows generic code
to manipulate the page tables. However, some architecture-specific code is required before the generic
view is enabled, and this code runs during the boot process.

Once the kernel is up and running, memory management is handled by two layers: The buddy system
is responsible for the management of physical page frames, while the slab allocator must handle small
allocations and provides an in-kernel equivalent to the malloc function family known from userland
programming.

287

Mauerer runc03.tex V2 - 09/04/2008 4:52pm Page 288

Chapter 3: Memory Management

The buddy system is centered around the idea of splitting and recombining larger continuous blocks of
pages. When a continuous area becomes free, the kernel notices this automatically, and can use it once the
need for a corresponding allocation arises. Since this is unfortunately not sufficient to prevent fragmen-
tation of physical memory after longer uptimes in a satisfactory manner, recent kernels have acquired
anti-fragmentation techniques that allow grouping pages by their mobility, on the one hand, and aug-
ment the kernel with a new virtual memory zone, on the other hand. Both help to avoid fragmentation
by essentially decreasing the chance that coalescing of larger regions is prohibited by allocated blocks in
their middle.

The slab allocator is implemented on top of the buddy system. It does not only allow to allocate small
chunks of memory for arbitrary use, but additionally offers the possibility to create specific caches for
often used data structures.

Initializing memory management is challenging because the data structures employed by the subsystem
itself also require memory, which must be allocated from somewhere. We have seen how the kernel
solves the situation by introducing a very simple boot memory allocator that is shut down after the
proper allocation routines function fully.

While we have mostly focused on physical memory here, the next chapter will discuss how the virtual
address space is managed by the kernel.

288

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 289

Virtual Process Memory
The virtual address space of userland processes is an important abstraction of Linux: It allows the
same view of the system to each running process, and this makes it possible for multiple processes
to run simultaneously without interfering with the memory contents of the others. Additionally, it
allows various advanced programming techniques like memory mappings. In this chapter, I will
discuss how these concepts are realized in the kernel. This also requires an examination of the
connection between page frames of the available physical RAM and pages in all virtual process
address spaces: The reverse mapping technique helps to track which virtual pages are backed by
which physical page, and page fault handling allows filling the virtual address space with data from
block devices on demand.

4.1 Introduction
All the memory management methods discussed in the preceding chapter were concerned either
with the organization of physical memory or management of the virtual kernel address space. This
section examines the methods required by the kernel to manage the virtual user address space. For
a variety of reasons, some of which are given below, this is more complex than managing kernel
address space:

❑ Each application has its own address space that is segregated from all other applications.

❑ Usually only a few sections of the large linear address space available to each userspace
process are actually used, and they may also be some distance from each other. The kernel
needs data structures to efficiently manage these (randomly) spread sections.

❑ Only the smallest part of the address space is directly associated with physical pages. Infre-
quently used parts are linked with pages only when necessary.

❑ The kernel has trust in itself, but not in user processes. For this reason, each operation to
manipulate user address space is accompanied by various checks to ensure that programs
cannot acquire more rights than are due to them and thus endanger system stability and
security.

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 290

Chapter 4: Virtual Process Memory

❑ The fork-exec model used under Unix to generate new processes (described in Chapter 2)
is not very powerful if implemented carelessly. The kernel must therefore concentrate on
managing user address spaces as efficiently as possible by resorting to a few tricks.

Most of the ideas discussed below are based on the assumption that the system has a memory management
unit (or MMU) that supports the use of virtual memory. This is, in fact, the situation on all ‘‘normal‘‘
processors. However, during the development of Linux 2.5, three architectures that do not provide an
MMU were added to the kernel sources — V850E, H8300, and m68knommu. Another one (blackfin)
was added during the development of kernel 2.6.22. Some of the functions examined below are not
available on these CPUs, and the interface to the outside returns error messages because the underlying
mechanisms are not implemented in the kernel and cannot be implemented owing to the lack of processor
support. The information below covers only machines with MMU. I do not deal with the oddities and
modifications needed for MMU-less architectures.

4.2 Vir tual Process Address Space
The virtual address space of each process starts at address 0 and extends to TASK_SIZE - 1; the kernel
address space begins above this. On IA-32 systems with 232 = 4 GiB, the total address space is usually
split in a 3 :1 ratio on which we focus in the information below. The kernel is assigned 1 GiB, while 3 GiB
is available to each userspace process. Other ratios are possible but yield benefits only on very specific
configurations and with certain work loads, as discussed above.

A very important aspect relating to system integrity is that user programs may access only the lower part
of the overall address space but not the kernel part. Neither is it possible for a user process to manipulate
parts of the address space of another process without previous ‘‘agreement,’’ simply because these parts
are invisible to it.

The contents of the virtual address space portion of the kernel are always the same regardless of which
user process is currently active. Depending on hardware, this is achieved either by manipulating the page
tables of user processes so that the upper part of the virtual address space always appears to be identical
or by instructing the processor itself to provide a separate address space for the kernel, which is mapped
above each user address space. Recall that this is visualized in Figure 1-3 in the Introduction.

The virtual address space is made up of many sections of varying sizes that serve different purposes and
must be handled differently. For example, in most cases, it is not permitted to modify the text segment,
but it must be possible to execute its contents. On the other hand, it must be possible to modify the
contents of a text file mapped into the address space but not to execute such contents as this doesn’t
make sense — it’s just data and not machine code.

4.2.1 Layout of the Process Address Space
The virtual address space is populated by a number of regions. How they are distributed is architecture-
specific, but all approaches have the following elements in common:

❑ The binary code of the code currently running. This code is normally referred to as text and the
area of virtual memory in which it is located as a text segment.1

❑ The code of dynamic libraries used by the program.

1This is not the same as a hardware segment, which is featured in some architectures and acts as a separate address space. It is simply
the linear address space area used to hold the data.

290

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 291

Chapter 4: Virtual Process Memory

❑ The heap where global variables and dynamically generated data are stored.

❑ The stack used to hold local variables and to implement function and procedure calls.

❑ Sections with environment variables and command-line arguments.

❑ Memory mappings that map the contents of files into the virtual address space.

Recall from Chapter 2 that each process in the system is equipped with an instance of struct mm_struct
that can be accessed via the task structure. This instance holds memory management information for the
process:

<mm_types.h>
struct mm_struct {
...

unsigned long (*get_unmapped_area) (struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags);

...
unsigned long mmap_base; /* base of mmap area */
unsigned long task_size; /* size of task vm space */

...
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;

...
}

The start and end of the virtual address space area consumed by the executable code are marked by
start_code and end_code. Similarly, start_data and end_data mark the region that contains initialized
data. Notice that the size of these areas does not change once an ELF binary has been mapped into the
address space.

The start address of the heap is kept in start_brk, while brk denotes the current end of the heap area.
While the start is constant during the lifetime of a process, heap size and thus the value of brk will vary.

The position of the argument list and the environment is described by arg_start and arg_end, respec-
tively, env_start and env_end. Both regions reside in the topmost area of the stack.

mmap_base denotes the starting point for memory mappings in the virtual address space, and get_
unmapped_area is invoked to find a suitable place for a new mapping in the mmap area.

task_size — variable names don’t lie — stores the task size of the corresponding process. For native
applications, this will usually be TASK_SIZE. However, 64-bit architectures are often binary-compatible
with their predecessors. If a 32-bit binary is executed on a 64-bit machine, then task_size describes the
effective task size visible to the binary.

The individual architectures can influence the layout of the virtual address space by several configuration
options:

❑ If an architecture wants to choose between different possibilities for how the mmap area is
arranged, it needs to set HAVE_ARCH_PICK_MMAP_LAYOUT and provide the function arch_
pick_mmap_layout.

291

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 292

Chapter 4: Virtual Process Memory

❑ When a new memory mapping is created, the kernel needs to find a suitable place for it unless
a specific address has been specified by the user. If the architecture wants to choose the proper
location itself, it must set the pre-processor symbol HAVE_ARCH_UNMAPPED_AREA and define the
function arch_get_unmapped_area accordingly.

❑ New locations for memory mappings are usually found by starting the search from lower mem-
ory locations and progressing toward higher addresses. The kernel provides the default func-
tion arch_get_unmapped_area_topdown to perform this search, but if an architecture wants
to provide a specialized implementation, it needs to set the pre-processor symbol HAVE_ARCH_
GET_UNMAPPED_AREA.

❑ Usually, the stack grows from bottom to top. Architectures that handle this differently need to
set the configuration option CONFIG_STACK_GROWSUP.2 In the following, only stacks that grow
from top to bottom are considered.

Finally, we need to consider the task flag PF_RANDOMIZE. If it is set, the kernel does not choose fixed
locations for stack and the starting point for memory mappings, but varies them randomly each time a
new process is started. This complicates, for instance, exploiting security holes that are caused by buffer
overflows. If an attacker cannot rely on a fixed address where the stack can be found, it will be much
harder to construct malicious code that deliberately manipulates stack entries after access to the memory
region has been gained by a buffer overflow.

Figure 4-1 illustrates how the aforementioned components are distributed across the virtual address
space on most architectures.

Text

Heap

MMAP

Stack

TASK_SIZE
STACK_TOP-randomized_variable

mm->mmap_base (TASK_UNMAPPED_SIZE)

Gap

already used

Figure 4-1: Composition of the linear process address space.

2Currently only PA-Risc processors require this option. The constants in the kernel thus have a slight tendency toward a sit-
uation where the stack grows from downward, albeit the PA-Risc code is not quite satisfied with that, as we can read in
include/asm-parisc/a.out.h:

/* XXX: STACK_TOP actually should be STACK_BOTTOM for parisc. * prumpf *\

The funny thing is that ‘‘prumpf’’ is not a grumpy sign of discontent, but an abbreviation for a developer, Philipp Rumpf :-)

292

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 293

Chapter 4: Virtual Process Memory

How the text segment is mapped into the virtual address space is determined by the ELF standard (see
Chapter E for more information about this binary format). A specific starting address is specified for
each architecture: IA-32 systems start at 0x08048000, leaving a gap of roughly 128 MiB between the
lowest possible address and the start of the text mapping that is used to catch NULL pointers. Other
architectures keep a similar hole: UltraSparc machines use 0x100000000 as the starting point of the text
segment, while AMD64 uses 0x0000000000400000. The heap starts directly above the text segment and
grows upward.

The stack starts at STACK_TOP, but the value is decremented by a small random amount if PF_RANDOMIZE
is set. STACK_TOP must be defined by each architecture, and most set it to TASK_SIZE — the stack starts at
the highest possible address of the user address space. The argument list and environment of a process
are stored as initial stack elements.

The region for memory mappings starts at mm_struct->mmap_base, which is usually set to TASK_
UNMAPPED_BASE, needing to be defined by every architecture. In nearly all cases, TASK_SIZE/3 is
chosen. Note that the start of the mmap region is not randomized if the default kernel approach
is used.

Using the described address space layout works very well on machines that provide a large virtual
address space. However, problems can arise on 32-bit machines. Consider the situation on IA-32: The
virtual address space ranges from 0 to 0xC0000000, so 3 GiB are available for each user process. TASK_
UNMAPPED_BASE starts at 0x4000000, that is, at 1 GiB. Unfortunately, this implies that the heap can only
consume roughly 1 GiB before it crashes right into the mmap area, which is clearly not a desirable
situation.

The problem is caused by the memory mapping region that is located in the middle of the virtual address
space. This is why a new virtual address space layout for IA-32 machines (in addition to the classical
one, which can still be used) was introduced during the development of kernel 2.6.7. It is illustrated in
Figure 4-2.

Gap

already used

Text
0×0804 80000
0

MMAP

Heap

Stack

TASK_SIZE

Random offset
mm->mmap_base

STACK_TOP-randomized_variable

Figure 4-2: Layout of the virtual address space on IA-32
machines when the mmap region is expanded from
top to bottom.

293

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 294

Chapter 4: Virtual Process Memory

The idea is to limit the maximal stack size to a fixed value. Since the stack is bounded, the region into
which memory mappings are installed can then be started immediately below the end of the stack. In
contrast to the classical approach, it now expands from top to bottom. Since the heap is still located in the
lower region of the virtual address space and grows upward, both mmap region and heap can expand
until there is really no portion of the virtual address space left. To ensure that the stack does not collide
with the mmap region, a safety gap is installed between both.

4.2.2 Creating the Layout
The address space of a task is laid out when an ELF binary is loaded with load_elf_binary — recall that
the function is used by the exec system call. Loading an ELF file is cluttered with numerous technical
details that are not interesting for our purposes, so the code flow diagram in Figure 4-3 concentrates on
the steps required to set up the virtual memory region.

Set PF_RANDOMIZE if required

load_elf_binary

arch_pick_mmap_layout

setup_arg_pages

Figure 4-3: Code flow diagram for
load_elf_binary.

Address space randomization is enabled if the global variable randomize_va_space is set to 1. This is
usually the case, but is disabled for Transmeta CPUs because it has a negative speed impact on such
machines. Besides, the user can use /proc/sys/kernel/randomize_va_space to disable the feature.

The address space layout is selected in arch_pick_mmap_layout. If the architecture does not provide
a specific function, the kernel’s default routine sets up the address space as shown in Figure 4-1. It is,
however, more interesting to observe how IA-32 chooses between the classical and the new alternative:

arch/x86/mm/mmap_32.c
void arch_pick_mmap_layout(struct mm_struct *mm)
{

/*
* Fall back to the standard layout if the personality
* bit is set, or if the expected stack growth is unlimited:

*/
if (sysctl_legacy_va_layout ||

(current->personality & ADDR_COMPAT_LAYOUT) ||
current->signal->rlim[RLIMIT_STACK].rlim_cur == RLIM_INFINITY)

{
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
mm->unmap_area = arch_unmap_area;

} else {
mm->mmap_base = mmap_base(mm);

294

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 295

Chapter 4: Virtual Process Memory

mm->get_unmapped_area = arch_get_unmapped_area_topdown;
mm->unmap_area = arch_unmap_area_topdown;

}
}

The old layout is chosen if the user has explicitly instructed to do so via /proc/sys/kernel/legacy_
va_layout, if a binary that was compiled for a different Unix flavor that requires the old layout is exe-
cuted, or — most importantly — the stack may grow infinitely. This makes it difficult to find a bound for
the stack below which the mmap region can start.

In the classical case, the start of the mmap area is at TASK_UNMAPPED_BASE, which resolves to 0x4000000,
and the standard function arch_get_unmapped_area (despite its name, the function is not necessarily
architecture-specific, but there’s also a standard implementation available in the kernel) is used to grow
new mappings from bottom to top.

When the new layout is used, memory mappings grow from top to bottom. The standard function
arch_get_unmapped_area_topdown (which I will not consider in detail) is responsible for this. More
interesting is how the base address for memory mappings is chosen:

arch/x86/mm/mmap_32.c
#define MIN_GAP (128*1024*1024)
#define MAX_GAP (TASK_SIZE/6*5)

static inline unsigned long mmap_base(struct mm_struct *mm)
{

unsigned long gap = current->signal->rlim[RLIMIT_STACK].rlim_cur;
unsigned long random_factor = 0;

if (current->flags & PF_RANDOMIZE)
random_factor = get_random_int() % (1024*1024);

if (gap < MIN_GAP)
gap = MIN_GAP;

else if (gap > MAX_GAP)
gap = MAX_GAP;

return PAGE_ALIGN(TASK_SIZE - gap - random_factor);
}

The lowest possible stack location that can be computed from the maximal stack size can be used as the
start of the mmap area. However, the kernel ensures that the stack spans at least 128 MiB. Additionally,
it is ensured that at least a small portion of the address space is not taken up by the stack if a gigantic
stack limit is specified.

If address space randomization is requested, the position is modified by a random offset of maximally
1 MiB. Additionally, the kernel ensures that the region is aligned along the page frame size because this
is required by the architecture.

At a first glance, one could assume that life is easier for 64-bit architectures because they should not have
to choose between different address layouts — the virtual address space is so large that collisions of heap
and mmap region are nearly impossible.

295

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 296

Chapter 4: Virtual Process Memory

However, the definition of arch_pick_mmap_layout for the AMD64 architecture shows that another
complication arises:

arch/x86_64/mmap.c
void arch_pick_mmap_layout(struct mm_struct *mm)
{
#ifdef CONFIG_IA32_EMULATION

if (current_thread_info()->flags & _TIF_IA32)
return ia32_pick_mmap_layout(mm);

#endif
mm->mmap_base = TASK_UNMAPPED_BASE;
if (current->flags & PF_RANDOMIZE) {

/* Add 28bit randomness which is about 40bits of address space
because mmap base has to be page aligned.
or ~1/128 of the total user VM
(total user address space is 47bits) */

unsigned rnd = get_random_int() & 0xfffffff;
mm->mmap_base += ((unsigned long)rnd) << PAGE_SHIFT;

}
mm->get_unmapped_area = arch_get_unmapped_area;
mm->unmap_area = arch_unmap_area;

}

If binary emulation for 32-bit applications is enabled, any process that runs in compatibility mode
should see the same address space as it would encounter on a native machine. Therefore, ia32_pick_
mmap_layout is used to lay out the address space for 32-bit applications. The function is an identical copy
of arch_pick_mmap_layout for IA-32 systems, as discussed above.

The classic layout for virtual address space is always used on AMD64 systems so that there is no need
to distinguish between the various options. Address space randomization is performed by shifting the
otherwise fixed mmap_base if the PF_RANDOMIZE flag is set.

Let us go back to load_elf_binary. Finally, the function needs to create the stack at the appropriate
location:

<fs/binfmt_elf.c>
static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
{
...

retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
executable_stack);

...
}

The standard function setup_arg_pages is used for this purpose. I will not discuss it in detail because it is
only technical. The function requires the top of the stack as a parameter. This is given by the architecture-
specific constant STACK_TOP, but randomize_stack_top ensures that the address is changed by a random
amount if address space randomization is required.

296

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 297

Chapter 4: Virtual Process Memory

4.3 Principle of Memory Mappings
Because the total virtual address space of all user processes is substantially larger than the available RAM
memory, only the most frequently used elements can be associated with a physical page frame. This
is not a problem because most programs occupy only a small part of the memory actually available to
them. Let’s look at the situation in which a file is manipulated by a text editor. Typically, the user is only
bothered with the end of the file so although the complete file is mapped into memory, only a few pages
are actually used to store the data at the end of the file. As for the beginning of the file, the kernel need
only keep the information in address space about where on the disk to find the data and how to read
them when they are required.

The situation is similar with the text segment — only part of it is always needed. If we stay with the
example of the text editor, only the code for the central editing function is required. Other parts — the
Help system or the obligatory Web and e-mail client common to all programs — are only loaded when
explicitly required by the user.3

The kernel must provide data structures to establish an association between the regions of the virtual
address space and the places where the related data are located. In the case of a mapped text file, for
example, the virtual memory area must be associated with the area on the hard disk in which the filesys-
tem has stored the contents of the file. This is illustrated in Figure 4-4.

Virtual
address space

File on hard disk

Figure 4-4: Mapping a file into virtual memory.

Of course, I have shown the situation in simplified form because file data are not generally stored con-
tiguously on hard disk but are distributed over several smaller areas (this is discussed in Chapter 9). The
kernel makes use of the address_space data structure4 to provide a set of methods to read data from
a backing store — from a filesystem, for example. address_spaces therefore form an auxiliary layer to
represent the mapped data as a contiguous linear area to memory management.

Allocating and filling pages on demand is known as demand paging. It is based on interaction between the
processor and the kernel using a variety of data structures as shown in Figure 4-5.

3I assume that all program parts reside in a single, large binary file. Of course, program parts can also be loaded at the explicit
request of the program itself, but I do not discuss this here.
4Unfortunately, the names for the virtual address space and the address space indicating how the data are mapped are identical.

297

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 298

Chapter 4: Virtual Process Memory

Backing
Store

Virtual
address space

Ad
dr

es
 s

pa
ce

 re
gi

on

Physical page
frames

Not mapped, in use

Mapped, in use

Not mapped, not in use

Page tables

Figure 4-5: Interaction of data structures during demand paging.

❑ A process tries to access a memory address that is in user address space but cannot be resolved
using the page tables (there is no associated page in RAM memory).

❑ The processor then triggers a page fault that is forwarded to the kernel.

❑ The kernel runs through the process address space data structures responsible for the area in
which the fault occurred to find the appropriate backing store or to establish that access was,
indeed, incorrect.

❑ A physical page is allocated and filled with the requisite data from the backing store.

❑ The physical page is incorporated into the address space of the user process with the help of the
page tables, and the application resumes.

These actions are transparent to user processes; in other words, the processes don’t notice whether a page
is actually available or must first be requested by means of demand paging.

4.4 Data Structures
Recall that struct mm_struct is important — it provides all necessary information to lay out a task in
memory as discussed before. Additionally, it includes the following elements for management of all
memory regions in the virtual address space of a user process.

<mm_types.h>
struct mm_struct {

struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */

...
}

The following sections discuss the meanings of the entries.

298

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 299

Chapter 4: Virtual Process Memory

4.4.1 Trees and Lists
Each region is described by an instance of vm_area_struct, and the regions of a process are sorted in
two ways:

1. On a singly linked list (starting with mm_struct->mmap).

2. In a red-black tree whose root element is located in mm_rb.

mmap_cache is a cache for the region last handled; its meaning will become clear in Section 4.5.1.

Red-black trees are binary search trees whose nodes also have a color (red or black). They exhibit all the
properties of normal search trees (and can therefore be scanned very efficiently for a specific element).
The red-black property also simplifies re-balancing.5 Readers unfamiliar with this concept are referred
to Appendix C, which deals extensively with the structure, properties, and implementation of red-black
trees.

The start and end addresses describe each region in virtual user address space. The existing regions
are included in the linked list in ascending order of start address. Scanning the list to find the region
associated with a particular address is a very inefficient operation if there are a very large number of
regions (as is the case with data-intensive applications). The individual instances of vm_area_struct are
therefore also managed in a red-black tree, which speeds up scanning considerably.

To add a new region, the kernel first searches the red-black tree for the region immediately preceding the
new region. With its help, it can add the new region to the tree and also to the linear list without having
to explicitly scan the list (the algorithm used by the kernel to add new regions is discussed at length in
Section 4.5.3). Finally, the situation in memory is illustrated in Figure 4-6. Notice that the representation
of the tree is only symbolic and does not reflect the real layout, which is more complicated.

mm

mmap
struct vm_area_struct

Red_Black
tree

mmap_rb

struct
task_struct

struct
mm_struct

Manage vm_area_structs
associated with a process

Figure 4-6: Association of vm_area_struct instances with the virtual process space of a
process.

5All important tree operations (add, delete, find) can be performed in O(log n), where n is the number of elements in the tree.

299

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 300

Chapter 4: Virtual Process Memory

4.4.2 Representation of Regions
Each region is represented by an instance of vm_area_struct, which is defined (in simplified form) as
follows:

<mm_types.h>
struct vm_area_struct {

struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */

/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, listed below. */

struct rb_node vm_rb;

/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap prio tree, or
* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.
*/

union {
struct {

struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;

} vm_set;

struct raw_prio_tree_node prio_tree_node;
} shared;

/*
* A file’s MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/

struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */

/* Function pointers to deal with this struct. */
struct vm_operations_struct * vm_ops;

/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */

};

300

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 301

Chapter 4: Virtual Process Memory

The individual elements have the following meanings:

❑ vm_mm is a back-pointer to the mm_struct instance to which the region belongs.

❑ vm_start and vm_end specify the virtual start and end addresses of the region in userspace.

❑ The linear linking of all vm_area_struct instances of a process is achieved using vm_next,
whereas incorporation in the red-black tree is the responsibility of vm_rb.

❑ vm_page_prot stores the access permissions for the region in the constants discussed in
Section 3.3.1, which are also used for pages in memory.

❑ vm_flags is a set of flags describing the region. I discuss the flags that can be set below.

❑ A mapping of a file into the virtual address space of a process is uniquely determined by the
interval in the file and the corresponding interval in memory. To keep track of all intervals asso-
ciated with a process, the kernel uses a linked list and a red-black tree as described above.

However, it is also necessary to go the other way round: Given an interval in a file, the kernel
sometimes needs to know all processes into which the interval is mapped. Such mappings are
called shared mappings, and the C standard library, which is used by nearly every process in the
system, is a prime example of why such mappings are necessary.

To provide the required information, all vm_area_struct instances are additionally managed
in a priority tree, and the elements required for this are contained in shared. As you can easily
imagine from the rather complicated definition of this structure member, this is a tricky business,
which is discussed in detail in Section 4.4.3 below.

❑ anon_vma_node and anon_vma are used to manage shared pages originating from anonymous
mappings. Mappings that point to the same pages are held on a doubly linked list, where
anon_vma_node acts as the list element.

There are several of these lists, depending on how many sets of mappings there are that share
different physical pages. The anon_vma element serves as a pointer to the management structure
that is associated with each list and comprises a list head and an associated lock.

❑ vm_ops is a pointer to a collection of methods used to perform various standard operations on
the region.

<mm.h>
struct vm_operations_struct {

void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
struct page * (*nopage)(struct vm_area_struct * area, unsigned long

address, int *type);
...
};

❑ open and close are invoked when a region is created and deleted, respectively. They are
not normally used and have null pointers.

❑ However, fault is very important. If a virtual page is not present in an address space, the
automatically triggered page fault handler invokes this function to read the corresponding
data into a physical page that is mapped into the user address space.

❑ nopage is the kernel’s old method to respond to page faults that is less flexible than fault.
The element is still provided for compatibility reasons, but should not be used in new code.

301

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 302

Chapter 4: Virtual Process Memory

❑ vm_pgoffset specifies an offset for a file mapping when not all file contents are to be mapped
(the offset is 0 if the whole file is mapped).

The offset is not expressed in bytes but in multiples of PAGE_SIZE. On a system with
pages of 4 KiB, an offset value of 10 equates to an actual byte offset of 40,960. This is
reasonable because the kernel only supports mappings in whole-page units, and
smaller values would make no sense.

❑ vm_file points to the file instance that describes a mapped file (it holds a null pointer if the
object mapped is not a file). Chapter 8 discusses the contents of the file structure at length.

❑ Depending on mapping type, vm_private_data can be used to store private data that are not
manipulated by the generic memory management routines. (The kernel ensures only that the
element is initialized with a null pointer when a new region is created.) Currently, only a few
sound and video drivers make use of this option.

vm_flags stores flags to define the properties of a region. They are all declared as pre-processor constants
in <mm.h>.

❑ VM_READ, VM_WRITE, VM_EXEC, and VM_SHARED specify whether page contents can be
read, written, executed, or shared by several processes.

❑ VM_MAYREAD, VM_MAYWRITE, VM_MAYEXEC, and VM_MAYSHARE determine whether
the VM_* flags may be set. This is required for the mprotect system call.

❑ VM_GROWSDOWN and VM_GROWSUP indicate whether a region can be extended downward
or upward (to lower/higher virtual addresses). Because the heap grows from bottom to
top, VM_GROWSUP is set in its region; VM_GROWSDOWN is set for the stack, which grows from top
to bottom.

❑ VM_SEQ_READ is set if it is likely that the region will be read sequentially from start to end;
VM_RAND_READ specifies that read access may be random. Both flags are intended as ‘‘prompts‘‘
for memory management and the block device layer to improve their optimizations (e.g., page
readahead if access is primarily sequential. Chapter 8 takes a closer look at this technique).

❑ If VM_DONTCOPY is set, the relevant region is not copied when the fork system call is executed.

❑ VM_DONTEXPAND prohibits expansion of a region by the mremap system call.

❑ VM_HUGETLB is set if the region is based on huge pages as featured in some architectures.

❑ VM_ACCOUNT specifies whether the region is to be included in the calculations for the overcommit
features. These features restrict memory allocations in various ways (refer to Section 4.5.3 for
more details).

4.4.3 The Priority Search Tree
Priority search trees are required to establish a connection between a region in a file and all virtual address
spaces into which the region is mapped. To understand how this connection is established, we need to
introduce some data structures of the kernel, which will be discussed in more detail and within a more
general context in the following chapters.

302

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 303

Chapter 4: Virtual Process Memory

Additional Data Structures
Every open file (and every block device, because these can also be memory-mapped via device special
files) is represented by an instance of struct file. This structure, in turn, contains a pointer to an address
space object as represented by struct address_space. This object is the basis of the priority search tree
(prio tree) by which the connection between mapped intervals and the address spaces into which these are
mapped is established. The definition of both structures is as follows (I only show the elements required
for our purposes here):

<fs.h>
struct address_space {

struct inode *host; /* owner: inode, block_device */
...

struct prio_tree_root i_mmap; /* tree of private and shared mappings */
struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */

...
}

<fs.h>
struct file {
...

struct address_space *f_mapping;
...
}

Additionally, each file and each block device are represented by an instance of struct inode. In contrast
to struct file, which is the abstraction for a file opened by the open system call, the inode represents
the object in the filesystem itself.

<fs.h>
struct inode {
...

struct address_space *i_mapping;
...
}

Notice that only mapped file intervals are discussed below although, it is also possible to map different
things, for instance, direct intervals in raw block devices, without a detour over filesystems. When a file is
opened, the kernel sets file->f_mapping to inode->i_mapping. This allows multiple processes to access
the same file without directly interfering with the other processes: inode is a file-specific data structure,
while file is local to a given process.

These data structures are connected with each other, and Figure 4-7 provides an overview about the
situation in memory. Notice that the representation of the tree is only symbolic and does not reflect the
actual, complicated tree layout.

Given an instance of struct address_space, the kernel can infer the associated inode, which, in turn,
allows for access to the backing store on which the file data are stored. Usually, the backing store will be a
block device; the details are discussed in Chapter 9. Section 4.6 and Chapter 16 are devoted to discussing
more about address spaces. Here it suffices to know that the address space is the base element of a

303

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 304

Chapter 4: Virtual Process Memory

priority tree that contains all vm_area_struct instances describing the mapping of an interval of the
file associated with the inode into some virtual address space. Since each instance of struct vm_area
contains a pointer to the mm_struct of the process to which it belongs, the desired connection is set up!
Note that vm_area_structs can also be associated with an address space via a doubly linked list headed
by i_mmap_nonlinear. This is required for nonlinear mappings, which I neglect for now. I will come back
to them in Section 4.7.3, though.

i_mapping

struct
file

i_mapping

i_mmap
i_mmap_nonlinear

host

struct
file

i_mapping

struct inode

vm
_m
m

vm_mm

vm_mm

mm_struct

Backing
device

mm_struct

mm_struct

struct
address_space

Manage vm_area_structs
associated with a file

struct vm_area_struct

Figure 4-7: Tracking the virtual address spaces into which a given interval of a file is mapped with
the help of a priority tree.

Recall that Figure 4-6 shows how vm_area_struct instances are organized in a linked list and a red-black
tree. It is important to realize that these are the same vm_area_struct instances that are managed in the
prio tree. While keeping vm_area_structs in two or more data structures at the same time is no problem
for the kernel at all, it is nearly impossible to visualize. Therefore, keep in mind that a given instance of
struct vm_area can be contained in two data structures: One establishes a connection between a region
in the virtual address space of a process to the data in the underlying file, and one allows for finding all
address spaces that map a given file interval.

Representing Priority Trees
Priority trees allow for management of the vm_area_struct instances that represent a particular interval
of the given file. This requires that the data structure cannot only deal with overlapping, but also with
identical file intervals. The situation is illustrated in Figure 4-8: Two processes map the region [7, 12] of a
file into their virtual address space, while a third process maps the interval [10, 30].

Managing overlapping intervals is not much of a problem: The boundaries of the interval provide a
unique index that allows for storing each interval in a unique tree node. I will not discuss in detail
how this is implemented by the kernel because it rather similar to radix trees (see Appendix C for more
details). It suffices to know that if intervals B, C, and D are completely contained in another interval A,
then A will be the parent element of B, C, and D.

However, what happens if multiple identical intervals must be included in the prio tree? Each prio
tree node is represented by the raw_prio_tree_node instance, which is directly included in each

304

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 305

Chapter 4: Virtual Process Memory

vm_ area_struct instance. Recall, however, that it is in a union with a vm_set. This allows for associating
a list of vm_sets (and thus vm_area_structs) with a prio tree node. Figure 4-9 illustrates the situation in
memory.

Process 1 Process 2

Process 3

File

7 10 12 30

Figure 4-8: Multiple processes can map identical or
overlapping regions of a file into their virtual address
space.

prio_tree_root

vm_set

vm_set vm_set vm_set

raw_prio_
tree_node

raw_prio_tree_node

Figure 4-9: Interrelation of data structures in the
management of shared identical mappings.

When an interval is inserted into the prio tree, the kernel proceeds as follows:

❑ When the vm_area_struct instance is linked into the prio tree as a node, prio_tree_node is
used to establish the necessary associations. To check whether there is a vm_area_struct in
the tree, the kernel exploits the fact that the parent element of vm_set coincides with the last
structure element of prio_tree_node — the data structures are coordinated accordingly. Since
parent is not used within vm_set, the kernel can use parent != NULL to check whether the cur-
rent vm_area_struct member is in a tree.

The definition of prio_tree_node also ensures that the head element of vmset does not overlap
with prio_tree_node so that both can be used together, although they are actually combined in
a union.

The kernel therefore uses vm_set.head to point to the first element on the list of vm_area_struct
instances that belong to a shared mapping.

❑ If the above list of shared mappings contains a vm_area_struct, vm_set.list is used as the list
head to list all regions affected.

Section 4.5.3 discusses the technical details of how the kernel goes about inserting new regions.

305

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 306

Chapter 4: Virtual Process Memory

4.5 Operations on Regions
The kernel provides various functions to manipulate the regions of a process. Creating and deleting
regions (and finding a suitable memory location for a new region) are standard operations needed when
setting up or removing a mapping. The kernel is also responsible for performing optimizations when
managing the data structures, as shown in Figure 4-10.

Existing region New region Region is being deleted

Figure 4-10: Operations on regions.

❑ When a new region is added immediately before or after an existing region (and therefore also
between two existing regions), the kernel merges the data structures involved into a single
structure — but, of course, only if the access permissions for all the regions involved are identical
and contiguous data are mapped from the same backing store.

❑ If a deletion is made at the start or end of a region, the existing data structure must be truncated
accordingly.

❑ If a region between two other regions is deleted, the existing data structure is reduced in size, and
a new data structure is created for the resultant new region.

A further important standard operation is the search for a region associated with a specific virtual address
in userspace. Before explaining the optimizations mentioned above, let’s discuss the helper function used
to do this.

4.5.1 Associating Virtual Addresses with a Region
By reference to a virtual address, find_vma finds the first region in user address space whose end is after
the given address and therefore satisfies the addr < vm_area_struct->vm_end condition. As parameters,
the function requires not only the virtual address (addr) but also a pointer to the mm_struct instance of
the relevant process whose address space is to be scanned.

<mm/mmap.c>
struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
{

struct vm_area_struct *vma = NULL;

if (mm) {
/* Check the cache first. */

306

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 307

Chapter 4: Virtual Process Memory

/* (Cache hit rate is typically around 35%.) */
vma = mm->mmap_cache;
if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {

struct rb_node * rb_node;

rb_node = mm->mm_rb.rb_node;
vma = NULL;

while (rb_node) {
struct vm_area_struct * vma_tmp;

vma_tmp = rb_entry(rb_node,
struct vm_area_struct, vm_rb);

if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)

break;
rb_node = rb_node->rb_left;

} else
rb_node = rb_node->rb_right;

}
if (vma)

mm->mmap_cache = vma;
}

}
return vma;

}

The kernel first checks whether the region last processed and now held in mm->mmap_cache contains the
required address — that is, whether its end is after the required address and its start is before. If so, the
kernel does not execute the if block and immediately returns the pointer to the region.

If not, the red-black tree must be searched step by step. rb_node is the data structure used to represent
each node in the tree. rb_entry enables the ‘‘useful data‘‘ (in this case, an instance of vm_area_struct)
to be removed from the node.

The root element of the tree is located in mm->mm_rb.rb_node. If the end address of the associated region
is less than the required address and the start address is greater than the required address, the kernel has
found the appropriate element and can exit the while loop to return a pointer to the vm_area_struct
instance. Otherwise, the search is resumed at the

❑ left child if the end address of the current region is after the required address,

or at the

❑ right child if the end address of the region is before the required address.

As the root elements of the tree have null pointers as child elements, it is easy for the kernel to decide
when to terminate the search and return a null pointer as an error message.

If a suitable region is found, a pointer to it is stored in mmap_cache because there is a strong likelihood
that the next find_vma call will search for a neighboring address in the same region.

307

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 308

Chapter 4: Virtual Process Memory

find_vma_intersection is another helper function to establish whether an interval bounded by start_
addr and end_addr is fully within an existing region. It builds on find_vma and is easily implemented as
follows:

<mm.h>
static inline
struct vm_area_struct * find_vma_intersection(struct mm_struct * mm,

unsigned long start_addr,
unsigned long end_addr)

{
struct vm_area_struct * vma = find_vma(mm,start_addr);

if (vma && end_addr <= vma->vm_start)
vma = NULL;

return vma;
}

4.5.2 Merging Regions
When a new region is added to the address space of a process, the kernel checks whether it can be merged
with one or more existing regions as shown in Figure 4-10.

vm_merge merges a new region with the surrounding regions if this is possible. It requires numerous
parameters.

mm/mmap.c
struct vm_area_struct *vma_merge(struct mm_struct *mm,

struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t pgoff, struct mempolicy *policy)

{
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
struct vm_area_struct *area, *next;

...

mm is the address space instance of the relevant process and prev the region immediately before the new
region. rb_parent is the parent element of the region in the red-black search tree.

addr, end, and vm_flags describe the start, end, and flags of the new region as their names suggest. If
the region belongs to a file mapping, file contains a pointer to the file instance that identifies the file.
pgoff specifies the offset of the mapping within the file data. Since policy is required on NUMA systems
only, I won’t discuss it further.

The technical details of implementation are very straightforward. A check is first made to ascertain
whether the end address of the predecessor region corresponds to the start address of the new region.
If so, the kernel must then check that the flags and the mapped file are identical for both regions, that
the offsets of file mappings are such that a contiguous region results, that both regions do not con-
tain anonymous mappings, and that both regions are mutually compatible.6 This is done using the

6The regions cannot be merged if two file mappings follow each other without a hole but map non-contiguous sections of the file.

308

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 309

Chapter 4: Virtual Process Memory

can_vma_merge_after helper function. The work of merging a region with its predecessor region looks
like this:

mm/mmap.c
if (prev && prev->vm_end == addr &&

can_vma_merge_after(prev, vm_flags,
anon_vma, file, pgoff)) {

...

If it can, the kernel then checks whether the successor region can and must be merged.

mm/mmap.c
/*
* OK, it can. Can we now merge in the successor as well?
*/

if (next && end == next->vm_start &&
can_vma_merge_before(next, vm_flags,

anon_vma, file, pgoff+pglen) &&
is_mergeable_anon_vma(prev->anon_vma,

next->anon_vma)) {
vma_adjust(prev, prev->vm_start,

next->vm_end, prev->vm_pgoff, NULL);
} else

vma_adjust(prev, prev->vm_start,
end, prev->vm_pgoff, NULL);

return prev;
}

The first difference as compared to the previous case is that can_vma_merge_before is used instead of
can_vma_merge_after to check whether the two regions can be merged. If both the predecessor and the
successor region can be merged with the current region, it must also be ensured that the anonymous
mappings of the predecessor can be merged with those of the successor before a single region consisting
of all three regions can be created.

In both cases, the helper function vma_adjust is invoked to perform final merging; it appropriately
modifies all data structures involved — the priority tree and the vm_area_struct instances — as well as
deallocating the instances of these structures that are no longer needed.

4.5.3 Inserting Regions
insert_vm_struct is the standard function used by the kernel to insert new regions. The actual work is
delegated to two helper functions, as the code flow diagram in Figure 4-11 shows.

find_vma_prepare is first invoked to obtain the information listed below by reference to the start address
of the new region and of the address space involved (mm_struct).

❑ The vm_area_struct instance of the preceding address space.

❑ The parent node (in the red-black tree) in which the node for the new region is held.

❑ The leaf node (of the red-black tree) that contains the region itself.

309

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 310

Chapter 4: Virtual Process Memory

insert_vm_struct

find_vma_prepare

vma_link

_ _vma_link

_ _vma_link_list

_ _vma_link_rb

_ _anon_vma_link

_ _vma_link_file

Figure 4-11: Code flow diagram for
insert_vm_struct.

It’s common knowledge that C permits functions to return just one variable — consequently, the above
function returns only a pointer to the successor region as its direct result; the remaining information is
supplied by means of pointer arguments.

The information found is sufficient to incorporate the new region into the existing data structures
of the process using vma_link. After some preparatory work, the function delegates the real
work to insert_vm_struct, which performs three insert operations as the code flow diagram
shows.

❑ __vma_link_list puts the new region on the linear list of regions of the process; only the prede-
cessor and successor region found using find_vma_prepare are needed to do this.7

❑ __vma_link_rb links the new region into the data structures of the red-black tree, as the name
suggests.

❑ __anon_vma_link adds the vm_area_struct instance to the linked list of anonymous mappings
discussed above.

Finally, __vma_link_file links the relevant address_space and the mapping in the case of file mappings
and also adds the region to the prio tree using vma_prio_tree_insert, which handles multiple identical
regions as described above.

4.5.4 Creating Regions
Before a new memory region can be inserted into the data structures, the kernel must establish where
there is enough free space in virtual address space for a region of a given size. This job is assigned to the
get_unmapped_area helper function.

7If there is no predecessor region because the new region is the new start region or because no regions are defined for the address
space, the information in the red-black tree is used to set the pointers correctly.

310

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 311

Chapter 4: Virtual Process Memory

mm/mmap.c
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,

unsigned long pgoff, unsigned long flags)

The arguments are self-explanatory. The implementation of the function is of no further interest as the
actual work is delegated to the architecture-specific helper function stored in the mm_struct instance of
the current process.8

Recall from Section 4.2 that different mapping functions are used depending on the layout of the virtual
process address space. Here I consider the standard function arch_get_unmapped_area that is employed
on most systems.

arch_get_unmapped_area first has to check whether the MAP_FIXED flag is set, indicating that the map-
ping is to be created at a fixed address. If so, the kernel ensures only that the address satisfies alignment
requirements (page-by-page) and that the interval is fully within the available address space.

If no desired area was specified, the kernel tries to find a suitable section in the virtual memory area of the
process by invoking arch_get_unmapped_area. If a particular preferred (as opposed to a fixed) address
is specified, the kernel checks whether the region overlaps with an existing region. If not, the address can
be returned as the target.

mm/mmap.c
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,

unsigned long len, unsigned long pgoff, unsigned long flags)
{

struct mm_struct *mm = current->mm;
...

if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&

(!vma || addr + len <= vma->vm_start))
return addr;

}
...

Otherwise, the kernel must try to find a free area of the right size by iterating over the available regions
of the process. In doing so, it checks whether a cached area from previous scans could be used.

mm/mmap.c
if (len > mm->cached_hole_size) {

start_addr = addr = mm->free_area_cache;
} else {

start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;

}
...

8Files can also be equipped with a special-purpose mapping function. This is, for instance, used by the frame-buffer code to allow
direct manipulation of the video memory when a frame-buffer device file is mapped into memory. However, because the kernel gen-
erally uses the standard implementation, I won’t bother to discuss other more specific routines.

311

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 312

Chapter 4: Virtual Process Memory

The actual iteration begins either at the address of the last ‘‘hole‘‘ in the virtual address space or at the
global start address TASK_UNMAPPED_BASE.

mm/mmap.c
full_search:

for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
/* At this point: (!vma || addr < vma->vm_end). */
if (TASK_SIZE - len < addr) {

/*
* Start a new search - just in case we missed
* some holes.
*/
if (start_addr != TASK_UNMAPPED_BASE) {

addr = TASK_UNMAPPED_BASE;
start_addr = addr;
mm->cached_hole_size = 0;
goto full_search;

}
return -ENOMEM;

}
if (!vma || addr + len <= vma->vm_start) {

/*
* Remember the place where we stopped the search:
*/

mm->free_area_cache = addr + len;
return addr;

}
if (addr + mm->cached_hole_size < vma->vm_start)

mm->cached_hole_size = vma->vm_start - addr;
addr = vma->vm_end;

}
}

If the search continues to the end of the user address space (TASK_SIZE) and no suitable area is found, the
kernel returns an -ENOMEM error that must be forwarded to userspace for processing by the relevant appli-
cation, as it indicates that insufficient virtual address space memory is available to satisfy the request. If
memory is found, its virtual start address is returned.

The version for top-down allocation, arch_get_unmapped_area_topdown, progresses similarly, but the
search direction is, of course, reversed. We need not bother with the details of implementation here.

4.6 Address Spaces
Memory mappings of files can be regarded as mappings between two different address spaces to simplify
the work of (system) programmers. One address space is the virtual memory address space of the user
process, the other is the address space spanned by the filesystem.

When the kernel creates a mapping, it must create a link between the address spaces to support com-
munication between the two — in the form of read and write requests. The vm_operations_struct
structure with which we are familiar from Section 4.4.2 is first used to do this. It provides an operation to
read pages not yet in physical memory although their contents have already been mapped there.

312

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 313

Chapter 4: Virtual Process Memory

However, the operation has no information on the mapping type or on its properties. As there are numer-
ous kinds of file mappings (regular files on different filesystem types, device files, etc.), more information
is required. In fact, the kernel needs a more detailed description of the address space of the data source.

The address_space structure mentioned briefly above is defined for this purpose and contains additional
information on a mapping. Recall that the connection between files, address spaces, and inodes has been
shown in Figure 4-7. Some of the data structures involved are explained in future chapters, and thus their
relationships are not dealt with here; let us simply state that each file mapping has an associated instance
of address_space.

Neither is the exact definition of struct address_space relevant at this point; it is discussed in more
detail in Chapter 16. Here it is sufficient to know that each address space has a set of address space
operations held as function pointers in the structure shown below (only the most important entries are
reproduced).

<fs.h>
struct address_space_operations {

int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage)(struct file *, struct page *);

...
/* Write back some dirty pages from this mapping. */
int (*writepages)(struct address_space *, struct writeback_control *);

/* Set a page dirty. Return true if this dirtied it */
int (*set_page_dirty)(struct page *page);

int (*readpages)(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages);

...
};

A detailed description of the structure can also be found in Chapter 16.

❑ readpage reads a single page from the underlying block medium into RAM memory; readpages
performs the same task for several pages at once.

❑ writepage writes the contents of a page from RAM memory back to the corresponding location
on a block device to permanently save changes.

❑ set_page_dirty indicates that the contents of a page have been changed and no longer match
the original contents on the block device.

How is the link between vm_operations_struct and address_space established? There is no static
link to assign an instance of each structure to the other structure. Nevertheless, both are linked by the
standard implementations that the kernel provides for vm_operations_struct and that are used by
almost all filesystems.

mm/filemap.c
struct vm_operations_struct generic_file_vm_ops = {

.fault = filemap_fault,
};

313

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 314

Chapter 4: Virtual Process Memory

The implementation of filemap_fault uses the readpage method of the underlying mapping and there-
fore adopts the above address_space concept, as you will see in the concept description in Chapter 8.

4.7 Memory Mappings
Now that we are familiar with the data structures and address space operations related to memory
mappings, we move on in this section to examine the interaction between the kernel and the applications
when mappings are created. As we know, the C standard library features the mmap function to install
mappings. Two system calls — mmap and mmap2 — are provided on the kernel side. Some architectures
implement both versions [e.g., IA-64, and Sparc(64)], others only the first (AMD64) or only the second
(IA-32). Both have the same set of parameters.

asmlinkage unsigned long sys_mmap{2}(unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags, unsigned long fd,
unsigned long off)

Both calls create a mapping of length len at position pos in the virtual user address space whose access
permissions are defined in prot. flags is a flag set used to set a number of parameters. The relevant file
is identified by means of its file descriptor in fd.

The difference between mmap and mmap2 lies in the meaning of the offset (off). In both calls, it indicates
the point in the file at which mapping is to begin. For mmap, the position is specified in bytes, whereas
the unit used by mmap2 is pages (PAGE_SIZE) — this enables file sections to be mapped even if the file is
larger than the address space available.

Typically, the C standard library provides only a single function for the creation of memory mappings
by applications. This function call is then translated internally to the system call appropriate to the archi-
tecture.

The munmap system call is invoked to remove a mapping. There is no need for a munmap2 system call
because no file offset is required — just the virtual address of the mapping.

4.7.1 Creating Mappings
The call syntax for mmap and mmap2 has already been introduced above, so I only need briefly list the most
important flags that can be set:

❑ MAP_FIXED specifies that no other address than the one given may be used for the mapping. If
this flag is not set, the kernel is free to change the desired address if, for example, a mapping
already resides there (the existing mapping would otherwise be overwritten).

❑ MAP_SHARED must be used when an object (usually a file) is to be shared between several pro-
cesses.

❑ MAP_PRIVATE creates a private mapping that is separated from the contents of the source — write
operations on the mapped region have no effect on the data in the file.

❑ MAP_ANONYMOUS creates an anonymous mapping that is not associated with any data source — the
fd and off parameters are ignored. This type of mapping can be used to allocate malloc-like
memory for applications.

314

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 315

Chapter 4: Virtual Process Memory

A combination of PROT_EXEC, PROT_READ, PROT_WRITE, and PROT_NONE values can be used to define access
permission in prot. Not all combinations are implemented for all processors, with the result that the
region may be granted more rights than those specified. Although the kernel does its best to set the
desired mode, it can only guarantee that the access permissions set are not more restrictive than those
specified.

For the sake of simplicity, the description below deals only with sys_mmap2 (sys_mmap behaves in a very
similar way on most other architectures: all arrive in the do_mmap_pgoff function discussed below). In
line with the convention discussed in Chapter 13, the function serves as the entry point for the mmap2
system call and immediately delegates work to do_mmap2. There the kernel references the file descriptor
to find the file instance with all the characteristic data of the file being processed (Chapter 8 examines
this data structure more closely). The remaining work is delegated to do_mmap_pgoff.

do_mmap_pgoff is an architecture-independent function defined in mm/mmap.c. Figure 4-12 shows the asso-
ciated code flow diagram.

Already existing region?

Compute flags

do_mmap_pgoff

get_unmapped_area

mmap_region

find_vma_prepare

do_munmap

file->f_op->mmap

make_pages_present

Check memory limits

Create a new vm_area_struct

VM_LOCKED set?

Return start address of mapping

Figure 4-12: Code flow diagram for do_mmap_pgoff.

do_mmap_pgoff used to be one of the longest functions in the kernel. It is now effectively split into two
parts, which are, however, still rather voluminous. One part has to thoroughly check the parameters
of the user application, and the second part has to take a very large number of special situations and
subtleties into consideration. As the latter make no valuable contribution to a general understanding of
the mechanism involved, we look only at a representative standard situation — mapping of a regular file
with MAP_SHARED — to avoid bloating our description, and the code flow diagram also applies just for
this case.

315

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 316

Chapter 4: Virtual Process Memory

The get_unmapped_area function described in Section 4.5.4 is first invoked to find a suitable area for
the mapping in the virtual address space. Recall that the application may specify a fixed address for the
mapping, suggest an address, or leave the choice of address to the kernel.

calc_vm_prot_bits and calc_vm_flag_bits combine the flags and access permission constants speci-
fied in the system call in a joint flag set that is easier to handle in the subsequent operations (the MAP_ and
PROT_ flags are ‘‘translated‘‘into flags with the prefix VM_).

mm/mmap.c
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |

mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

What is most interesting is that the kernel includes the value of def_flags in the flag set after removing it
from the mm_struct instance of the currently running process. def_flags has the value 0 or VM_LOCK. The
former brings about no change to the resulting flag set, whereas VM_LOCK means that pages subsequently
mapped in cannot be swapped out (the implementation of swapping is discussed in Chapter 18). To set
the value of def_flags, the process must issue the mlockall system call, which uses the mechanism
described above to prevent all future mappings from being swapped out, even if this was not requested
explicitly by means of the VM_LOCK flag at creation time.

After the arguments have been checked and all required flags have been set up, the remaining work is
delegated to mmap_region. The find_vma_prepare function with which we are familiar from Section 4.5.3
is invoked to find the vm_area_struct instances of the predecessor and successor areas and the data for
the entry in the red-black tree. If a mapping already exists at the specified mapping point, it is removed
by means of do_munmap (as described in the section below).

vm_enough_memory is invoked9 if either the MAP_NORESERVE flag is not set or the value of the kernel
parameter sysctl_overcommit_memory10 is set to OVERCOMMIT_NEVER, that is, when overcommiting is
not allowed. The function chooses whether to allocate the memory needed for the operation. If it selects
against, the system call terminates with -ENOMEM.

9Using security_vm_enough_memory, which calls __vm_enough_memory over varying paths depending on the security
framework in use.
10sysctl_overcommit_memory can be set with the help of the /proc/sys/vm/overcommit_memory. Currently there are
three overcommit options. 1 allows an application to allocate as much memory as it wants, even more than is permitted by the
address space of the system. 0 means that heuristic overcommitting is applied with the result that the number of usable pages is
determined by adding together the pages in the page cache, the pages in the swap area, and the unused page frames; requests for
allocation of a smaller number of pages are permitted. 2 stands for the strictest mode, known as strict overcommitting, in which the
permitted number of pages that can be allocated is calculated as follows:

allowed = (totalram_pages - hugetlb) * sysctl_overcommit_ratio / 100;
allowed += total_swap_pages;

Here sysctl_overcommit_ratio is a configurable kernel parameter that is usually set to 50. If the total number of pages used
exceeds this value, the kernel refuses to perform further allocations.
Why does it make sense to allow an application to allocate more pages than can ever be handled in principle? This is sometimes
required for scientific applications. Some tend to allocate huge amounts of memory without actually requiring it — but, in the opinion
of the application authors, it seems good to have it just in case. If the memory will, indeed, never be used, no physical page frames
will ever be allocated, and no problem arises.
Such a programming style is clearly bad practice, but unfortunately this is often no criterion for the value of software. Writing clean
code is usually not rewarding in the scientific community outside computer science. There is only immediate interest that a program
works for a given configuration, while efforts to make programs future-proof or portable do not seem to provide immediate benefits
and are therefore often not valued at all.

316

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 317

Chapter 4: Virtual Process Memory

Once the kernel has granted the desired memory, the following steps are taken:

1. Allocation and initialization of a new vm_area_struct instance that is inserted in the
list/tree data structures of the process.

2. Creation of the mapping with the file-specific function file->f_op->mmap. Most filesystems
use generic_file_mmap for this purpose; all it does is set the vm_ops element of the mapping
to generic_file_vm_ops.

vma->vm_ops = &generic_file_vm_ops;

The definition of generic_file_vm_ops is given in Section 4.5.3. Its key element is filemap_
fault, which is invoked when an application accesses the mapped area but the correspond-
ing data are not yet in RAM memory. filemap_fault enlists the help of low-level routines of
the underlying filesystem to fetch the desired data and — transparently to the application —
read them into RAM memory. In other words, the mapped data are not read in immediately
when the mapping is created but only when they are actually needed.

Chapter 8 takes a closer look at the implementation of filemap_fault.

If VM_LOCKED is set — either explicitly with system call flags or implicitly by means of the mlockall
mechanism — the kernel invokes make_pages_present to successively scan the pages of the mapping
and to trigger a page fault for each so that their data are read in. Of course, this means that the perfor-
mance gain of deferred reading is lost, but the kernel makes sure that the pages are always in memory
after a mapping has been created — after all, the VM_LOCKED flag prevents them from being swapped out,
so they must be first in.

The start address of the new mapping is then returned to conclude the system call.

do_mmap_pgoff performs several checks (not described in detail here) at various points in addition to the
actions described above. If one of the checks fails, the operation is terminated, and the system call returns
to userspace with an error code.

❑ Accounting — The kernel keeps statistics on the number of pages a process uses for mappings.
As it is possible to limit process resources, the kernel must always ensure that the permitted
value is not exceeded. There is also a maximum number of mappings per process.

❑ Extensive security and plausibility checks must be carried out to prevent the applications from
setting invalid parameters or parameters that could threaten system stability. For example, no
mappings may be created that are larger than the virtual address space or extend beyond the
boundaries of virtual address space.

4.7.2 Removing Mappings
The munmap system call, which requires two parameters — the start address and length of the area to be
unmapped, must be used to remove an existing mapping from virtual address space. sys_munmap is the
entry point for the system call; it delegates its work in the usual way to the do_munmap function defined
in mm_mmap.c. (Further implementation information is shown in the associated code flow diagram in
Figure 4-13.)

317

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 318

Chapter 4: Virtual Process Memory

Split region?

do_munmap

find_vma_prev

find_vma

split_vma

split_vma

detach_vmas_to_be_unmapped

unmap_region

remove_vma_list

Another split necessary?

Figure 4-13: Code flow diagram for do_munmap.

The kernel must first invoke find_vma_prev to try to find the vm_area_struct instance for the region to
be unmapped. This function operates in exactly the same way as find_vma discussed in Section 4.5.1, but
it not only finds the vm_area_struct matching the address, but also returns a pointer to the predecessor
region.

If the start address of the area to be unmapped is not precisely at the start of the region found by
find_vma_prev, only part but not the whole of the mapping is unmapped. Before the kernel does this,
it must first divide the existing mapping into several parts. The front part of the mapping that is not to
be unmapped is first split off by split_vma. This is a helper function I won’t bother discussing because
all it does is perform standard operations on familiar data structures. It simply allocates a new instance
of vm_area_struct, fills it with the data of the old region, and adjusts the boundaries. The new region is
inserted into the data structures of the process.

The same procedure is repeated for the rear part of the mapping if the old region is not to be unmapped
right up to its end.

The kernel then invokes detach_vmas_to_be_unmapped to draw up a list of all regions to be unmapped.
Because an unmapping operation can involve any area of address space, it may well be that several suc-
cessive regions are affected. The kernel has ensured that only complete regions are affected by splitting
the areas at the start and the end.

detach_vmas_to_be_unmapped iterates over the linear list of vm_area_struct instances until the whole
area is covered. The vm_next element of the structures is briefly ‘‘misused‘‘to link the regions to be
unmapped with each other. The function also sets the mmap cache to NULL, thus invalidating it.

Two final steps follow. First, unmap_region is invoked to remove all entries from the page tables associ-
ated with the mapping. When this is done, the kernel must also make sure that the relevant entries are
removed from the translation lookaside buffer or are rendered invalid. Second, the space occupied by
the vm_area_struct instances is freed with remove_vma_list to finally remove the mapping from the
kernel.

318

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 319

Chapter 4: Virtual Process Memory

4.7.3 Nonlinear Mappings
As just demonstrated, normal mappings map a continuous section from a file into a likewise continuous
section of virtual memory. If various parts of a file are mapped in a different sequence into an otherwise
contiguous area of virtual memory, it is generally necessary to use several mappings, which is more
costly in terms of resources (particularly in vm_area_structs). A simpler way of achieving the same
result11 is to use nonlinear mappings as introduced during the development of 2.5. The kernel features a
separate system call specifically for this purpose.

mm/fremap.c
long sys_remap_file_pages(unsigned long start, unsigned long size,

unsigned long __prot, unsigned long pgoff, unsigned long flags)

The system call allows for rearranging pages in a mapping such that the order in memory is not identical
with the order in the file. This is achieved without moving the memory contents around, but is instead
performed by manipulating the page tables of the process.

sys_remap_file_pages enables an existing mapping at position pgoff and with a size of size to be
moved to a new position in virtual memory. start identifies the mapping whose pages are to be moved,
and thus must fall into the address of an already existing mapping. It also specifies the new position into
which the pages identified by pgoff and size are supposed to be moved.

If a nonlinear mapping is swapped out, the kernel must ensure that the offsets are still present when the
mapping is swapped back in again. The information needed to do this is stored in the page table entries
of the pages swapped out and must be referenced when they are swapped back in, as we shall see below.
But how is the information encoded? Two components are used:

1. The vm_area_struct instances of all installed nonlinear mappings are stored in a list headed
by the i_mmap_nonlinear element of struct address_space. The individual vm_area_
structs on the list can employ shared.vm_set.list as list element because a nonlinear
VMA will not be present on the standard prio tree.

2. The page table entries for the region in question are populated with special entries. These
are constructed such that they look like PTEs of pages that are not present, but contain
additional information identifying them as PTEs for nonlinear mappings. When the page
described by the PTE is accessed, a page fault is generated, and the correct page can be
read in.

Naturally, page table entries cannot be modified at will, but must adhere to conventions imposed by the
underlying architecture. To create nonlinear PTEs, help by the architecture-specific code is required, and
three functions must be defined:

1. pgoff_to_pte takes a file offset encoded as a page number and encodes it into a format that
can be stored in a page table.

2. pte_to_pgoff can decode a file offset encoded in a page table.

11Even though there appears to be very little need for this, there are various large databases that use operations of this kind to rep-
resent data transactions.

319

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 320

Chapter 4: Virtual Process Memory

3. pte_file(pte) checks if a given page table entry is used to represent a nonlinear mapping.
This especially allows for distinguishing a page table entry of a nonlinear mapping from a
page table entry for a regular swapped-out page when a page fault occurs.

The pre-processor constant PTE_FILE_MAX_BITS denotes how many bits of a page table entry can be
used to store a file offset. Since this constant will usually be smaller than the word size of the processor
because some status bits in the PTE are required by the architecture and to distinguish it from swap-PTEs,
the range of a file that can be remapped is, in general, smaller than the maximally possible file size.

Since the layout of non-present page table entries is not plagued by any historical oddities on IA-64,
the way nonlinear PTEs are implemented is particularly clean, so I present it as an example, which is
illustrated in Figure 4-14.

include/asm-ia64/pgtable.h
#define PTE_FILE_MAX_BITS 61
#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3)
#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE })

_
P
A
G
E
_
P
R
E
S
E
N
T

_
P
A
G
E
_
P
R
O
T
N
O
N
E

_
P
A
G
E
_
F
I
L
E

01
63

Nonlinear page
offset

Figure 4-14: Representing
nonlinear mappings in page
table entries on IA-64
systems.

Swap identifiers are 64 bits long. Bit 0 must be zero because the page is not present, and bit 1 represents
_PAGE_FILE to indicate that the entry belongs to a nonlinear mapping in contrast to a swap specifier. The
last bit, that is, 63, is reserved for the _PAGE_PROTNONE bit.12 Consequently, this leaves 61 bits raw capacity
to represent the nonlinear page offset.

pte_to_pgoff first extracts the value stored in the page table entry with pte_val as provided by the
architecture-specific code. Performing one left-shift and two right-shifts is a simple method to extract the
bits at position [2, 62]. When a PTE representing a nonlinear mapping is constructed, the kernel needs to
shift the offset into the bit range starting at bit 2, and must additionally ensure that _PTE_FILE is set to
identify it as a nonlinear mapping in contrast to a regular swapped-out identifier.

The essential steps of sys_remap_file_pages are summarized in the code flow diagram in Figure 4-15.

12A page with this bit set was marked as completely inaccessible by the mmap system call. While such pages do not need to be
backed by a physical page frame (they are not accessible, so what should be read from or written to the page?), the kernel never-
theless has to mark somehow that they must not be accessed, and the aforementioned bit provides this capability.

320

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 321

Chapter 4: Virtual Process Memory

VM_NONLINEAR notset?

Check flags and sizes

vma_prio_tree_remove

vma_nonlinear_insert

populate_range

make_pages_present

sys_remap_file_pages

Set VM_NONLINEAR

MAP_NONBLOCK not set?

Figure 4-15: Code flow diagram for sys_remap_file_pages.

After all flags have been checked and the kernel has ensured that the range to be remapped is valid, the
vm_area_struct instance of the target region is selected by find_vma. If the destination has not been
nonlinearly remapped before, the flag VM_NONLINEAR is not set in vm_area_struct->vm_flags. In this
case, the linear mapping has to be removed from the prio tree with vma_prio_tree_remove, and it is
inserted into the list of nonlinear mappings using vma_nonlinear_insert.

The crucial step is to install the modified page table entries. The auxiliary routine populate_range is
responsible for this:

mm/fremap.c
static int populate_range(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long size, pgoff_t pgoff)
{

int err;
...

The mapping is described by vma. The region starting currently at page offset pgoff with length length
is to be remapped to address addr. Since this can involve multiple pages, the kernel needs to iterate over
all of them and install new page table entries with install_file_pte:

mm/fremap.c
do {

err = install_file_pte(mm, vma, addr, pgoff, vma->vm_page_prot);
if (err)

return err;

size -= PAGE_SIZE;
addr += PAGE_SIZE;
pgoff++;

} while (size);

return 0;
}

321

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 322

Chapter 4: Virtual Process Memory

install_file_pte first removes any existing page table entry with zap_file_pte and then constructs
a new entry using the helper function pgoff_to_pte, which encodes a given file offset into a format
suitable for a PTE:

mm/fremap.c
static int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma,

unsigned long addr, unsigned long pgoff, pgprot_t prot)
{

pte_t *pte;
...

if (!pte_none(*pte))
zap_pte(mm, vma, addr, pte);

set_pte_at(mm, addr, pte, pgoff_to_pte(pgoff));
...
}

The final step in sys_remap_file_pages is to read in the pages of the mapping if this is desired (it can be
prevented by setting the flag MAP_NONBLOCK). This is done using make_present_pages, which acts as if a
page fault would have occurred for each single page in the mapping, and triggers reading the data from
the underlying block device.

4.8 Reverse Mapping
The data structures already discussed enable the kernel to establish a link between a virtual and a physi-
cal address (via the page tables) and between a memory region of a process and its virtual page addresses.
What is still missing is a link between a physical page and the processes to which the page belongs (or,
to be more accurate, to the page table entries of all processes that use the page). This is the very link that
is needed when swapping pages out (see Chapter 18) in order to update all processes that use the page
because the fact that the page has been swapped out must be noted in their page tables.

In this context, it is necessary to distinguish between two similar terms:

1. When a page is mapped, it is associated with a process but need not necessarily be in
active use.

2. The number of references to a page indicates how actively the page is used. In order to deter-
mine this number, the kernel must first establish a link between a page and all its users and
must then resort to a few tricks to find out how actively the page is used.

The first task is therefore to create a link between a page and all points at which it is mapped. To do this,
the kernel uses a few additional data structures and functions and adopts a reverse mapping approach.13

All mapping actions described above are concerned only with virtual pages, and there was therefore no
need (and no way) to create reverse mappings. The discussion of how the kernel handles page faults and

13Reverse mappings were first introduced during the development of kernel 2.5. They were available as separate patches for 2.4 but
had never been included in the standard sources. Swapping-out of shared pages is much more complicated and inefficient without
this mechanism because the shared page had to be kept in a special cache until the kernel had chosen separately (and independently)
to swap the page out for all processes involved. The implementation of the reverse mapping algorithm was also heavily revised dur-
ing the development of kernel 2.6.

322

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 323

Chapter 4: Virtual Process Memory

assigns physical pages to hold mapping data in Section 4.10 notes that there is then a need for reverse
mapping.

4.8.1 Data Structures
The kernel uses lean data structures to minimize management overhead for reverse mappings. The page
structure (discussed in Section 3.2.2) contains a single element to implement reverse mapping.

mm.h
struct page {
....

atomic_t _mapcount; /* Count of ptes mapped in mms,
* to show when page is mapped
* & limit reverse map searches.
*/

...
};

_mapcount indicates at how many points the page is shared. The original value of the counter is −1. It is
assigned the value 0 when the page is inserted in the reverse mapping data structures and is incremented
by 1 for each additional user. This enables the kernel to check quickly how many users are using the page
in addition to the owner.

Obviously, this isn’t much help because the purpose of reverse mapping is to find all points at which the
physical page is used by reference to a given page instance. Consequently, two other data structures have
a role to play:

1. The priority search tree in which each region belonging to a non-anonymous mapping is
embedded

2. The linked lists of anonymous areas that lead back to the same pages in memory

The elements needed to generate both data structures are integrated in vm_area_struct — these are the
shared union as well as anon_vma_node and anon_vma. To refresh the reader’s memory, I reproduce the
corresponding section from vm_area_struct below.

mm.h
struct vm_area_struct {
...

/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap prio tree, or
* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.
*/

union {
struct {

struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;

} vm_set;

struct raw_prio_tree_node prio_tree_node;

323

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 324

Chapter 4: Virtual Process Memory

} shared;

/*
* A file’s MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/

struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */

...
}

The trick employed by the kernel when implementing reverse mapping is not to store a direct link
between a page and the associated users but only the association between a page and the region in which
the page is located. All other regions in which the page is included (and therefore all users) can be found
by means of the data structures just mentioned. This method is also known as object-based reverse mapping
because no direct link between page and user is stored; instead, a further object (the regions in which the
page is located) is interposed between the two.

4.8.2 Creating a Reverse Mapping
When a reverse mapping is created, it is necessary to distinguish between two alternatives — anonymous
pages and pages with file-based mappings. This is understandable because the data structures used to
manage both alternatives also differ.

The information below only covers working with page instances to be inserted into
the reverse mapping scheme. Other parts of the kernel are responsible for adding
the relevant vm_area_structs to the data structures discussed above (priority tree
and anon list); for example, by invoking vma_prio_tree_insert that is used
(directly or indirectly) at several places in the kernel.

Anonymous Pages
There are two ways of inserting an anonymous page into the reverse mapping data structures. page_
add_new_anon_rmap must be invoked for new anonymous pages. page_add_anon_rmap is the right option
for pages that are already reference-counted. The only difference between these alternatives is that the
former sets the mapping counter page->_mapcount to 0 (reminder: the initial value of _mapcount is 0
for newly initialized pages), and the latter increments the counter by 1. Both functions then merge into
__page_set_anon_rmap.

mm/rmap.c
void __page_set_anon_rmap(struct page *page,

struct vm_area_struct *vma, unsigned long address)
{

struct anon_vma *anon_vma = vma->anon_vma;

anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;

page->index = linear_page_index(vma, address);
}

324

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 325

Chapter 4: Virtual Process Memory

The address of the anon_vma list head is stored in the mapping element of the page instance after PAGE_
MAPPING_ANON has been added to the pointer. This enables the kernel to distinguish between anony-
mous pages and pages with a regular mapping by checking whether the least significant bit is 0 (if
PAGE_MAPPING_ANON is not set) or 1 (if PAGE_MAPPING_ANON is set) as discussed above. Recall that this
trick is valid because the lowest-order bit of a page pointer is guaranteed to be zero because of alignment
requirements.

Pages with a File-Based Mapping
Work is even simpler for pages of this type, as the following code excerpt shows:

mm/rmap.c
void page_add_file_rmap(struct page *page)
{

if (atomic_inc_and_test(&page->_mapcount))
__inc_zone_page_state(page, NR_FILE_MAPPED);

}

Basically, all that needs to be done is to increment the _mapcount variable atomically and update the
per-zone statistics.

4.8.3 Using Reverse Mapping
The real benefits of reverse mapping do not become clear until Chapter 18, which examines the imple-
mentation of swapping. There we will see that the kernel defines the try_to_unmap function, which
is invoked to delete a specific physical page from the page tables of all processes by which the page is
used. It is apparent that this is only possible with the data structures just described. Nevertheless, the
implementation is influenced by many details of the swap layer, and this is why I won’t go into how
try_to_unmap works at this point.

page_referenced is an important function that puts the data structures of the reverse mapping scheme
to good use. It counts the number of processes that have actively used a shared page recently by accessing
it — this is different from the number of regions into which the page is mapped. Whereas the second
quantity is mostly static, the first changes rapidly if the page is in active use.

The function is a multiplexer that invokes page_referenced_anon for anonymous pages or page_
referenced_file for pages from a file-based mapping. Both try to establish at how many places
a page is used, but each adopts a different approach owing to the different underlying data
structures.

Let’s first look at the version for anonymous pages. We first need the page_lock_anon_vma helper
function to find the associated list of regions by reference to a specific page instance (by reading the
information discussed in the previous section from the data structure).

<mm/rmap.c>
static struct anon_vma *page_lock_anon_vma(struct page *page)
{

struct anon_vma *anon_vma = NULL;
unsigned long anon_mapping;

anon_mapping = (unsigned long) page->mapping;
if (!(anon_mapping & PAGE_MAPPING_ANON))

goto out;

325

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 326

Chapter 4: Virtual Process Memory

if (!page_mapped(page))
goto out;

anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);

return anon_vma;
}

Once the code has ensured that the page->mapping pointer actually points to an anon_vma instance using
the by-now-familiar trick (the least significant bit of the pointer must be set), page_mapped checks whether
the page has been mapped at all (page->_mapcount must then be greater than or equal to 0). If so, the
function returns a pointer to the anon_vma instance associated with the page.

page_referenced_anon makes use of this knowledge as follows:

mm/rmap.c
static int page_referenced_anon(struct page *page)
{

unsigned int mapcount;
struct anon_vma *anon_vma;
struct vm_area_struct *vma;
int referenced = 0;

anon_vma = page_lock_anon_vma(page);
if (!anon_vma)

return referenced;

mapcount = page_mapcount(page);
list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {

referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)

break;
}

return referenced;
}

Once the matching anon_vma instance has been found, the kernel iterates over all regions in the list
and invokes page_referenced_one for each one to return the number of places at which the page is
used (some corrections are required when the system is swapping pages in and out, but these are not of
interest here and are discussed in Section 18.7). The results are added together for all pages before the
total is returned.14

page_referenced_one performs its task in two steps:

1. It finds the page table entry that points to the page. This is possible because not only the
page instance but also the associated vm_area_struct is passed to page_referenced_one.
The position in virtual address space at which the page is mapped can be determined from
the latter variable.

14The kernel terminates its work when the number of references reaches the number of mappings held in mapcount as it makes no
sense to continue searching. page_referenced_one automatically decrements the mapcount counter passed for each referenced
page.

326

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 327

Chapter 4: Virtual Process Memory

2. It checks whether the _PAGE_ACCESSED bit is set in the page table entry and then deletes the
bit. This flag is set on each access to the page by the hardware (with the additional support
of the kernel if required by the particular architecture). The reference counter is incremented
by 1 if the bit is set; otherwise, it is left unchanged. As a result, frequently used pages have
a high number of references, and the opposite is true for rarely used pages. The kernel is
therefore able to decide immediately whether a page is important based on the number of
references.

The approach adopted for checking the number of references for pages with file-based mapping is
similar.

mm/rmap.c
static int page_referenced_file(struct page *page)
{
...

mapcount = page_mapcount(page);

vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))

== (VM_LOCKED|VM_MAYSHARE)) {
referenced++;
break;

}
referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)

break;
}

...
return referenced;

}

The kernel invokes vm_prio_tree_foreach to iterate over all elements of the priority tree that store a
region where the relevant page is included. As above, page_referenced_one is invoked for each page in
order to collect all references. If a page is locked into memory (with VM_LOCKED) and may be shared by
processes (VM_MAYSHARE), the reference value is increased further because pages of this kind should not
be swapped out and are therefore given a bonus.

4.9 Managing the Heap
Managing the heap — the memory area of a process used to dynamically allocate variables and data — is
not directly visible to application programmers because it relies on various helper functions of the stan-
dard library (the most important of which is malloc) to reserve memory areas of any size. The classic
interface between malloc and the kernel is the brk system call that expands/shrinks the heap. Recent
malloc implementations (such as those of the GNU standard library) now use a combined approach that
operates with brk and anonymous mappings. This approach delivers better performance and certain
advantages when returning larger allocations.

327

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 328

Chapter 4: Virtual Process Memory

The heap is a contiguous memory area that grows from bottom to top when expanded. The mm_struct
structure already mentioned includes the start and the current end address (start_brk and brk) of the
heap in virtual address space.

<mm_types.h>
struct mm_struct {
...

unsigned long start_brk, brk, start_stack;
...
};

The brk system call expects just a single parameter to specify the new end address of the heap in virtual
address space (it can, of course, be smaller than the previous value if the heap is to be shrunk).

As usual, the entry point for the implementation of the brk system call is the sys_brk function, whose
code flow diagram is shown in Figure 4-16.

Check resource limits

sys_brk

find_vma_intersection

do_brk

do_munmap

Align brk value per page

Increase of brk value?

Return new brk value

Return new brk value

No

Ye
s

Figure 4-16: Code flow diagram for sys_brk.

The brk mechanism is not another independent kernel concept but is implemented on the basis of anony-
mous mappings to reduce internal overhead. Many of the functions to manage memory mappings
discussed in the preceding sections can therefore be reused to implement sys_brk.

After it has been checked that the new desired address for brk is actually within the heap limits, the first
important action of sys_brk is to align the request to page size.

mm/mmap.c
asmlinkage unsigned long sys_brk(unsigned long brk)
{

unsigned long rlim, retval;
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;

328

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 329

Chapter 4: Virtual Process Memory

...
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);

...

This code ensures that the new (and, as a precaution, the old) value of brk is a multiple of the system
page size. In other words, a page is the smallest memory area that can be reserved with brk.15

do_munmap, with which we are familiar from Section 4.7.2, is invoked when it is necessary to shrink
the heap.

<mm/mmap.c>
/* Always allow shrinking brk. */
if (brk <= mm->brk) {

if (!do_munmap(mm, newbrk, oldbrk-newbrk))
goto set_brk;

goto out;
}

...

If the heap is to be enlarged, the kernel must first check whether the new size is outside the limit set as
the maximum heap size for the process. find_vma_intersection then checks whether the enlarged heap
would overlap with an existing mapping of the process; if so, it returns without doing anything.

<mm/mmap.c>
/* Check against existing mmap mappings. */
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))

goto out;
...

Otherwise, the actual work of enlarging the heap is delegated to do_brk. The new value of mm->brk is
always returned regardless of whether it is larger, smaller, or unchanged as compared to the old value.

<mm/mmap.c>
/* Ok, looks good - let it rip. */
if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)

goto out;
set_brk:

mm->brk = brk;
out:

retval = mm->brk;
return retval;

}

We need not discuss do_brk separately as essentially it is a simplified version of do_mmap_pgoff and
reveals no new aspects. Like the latter, it creates an anonymous mapping in user address space but omits
some safety checks and the handling of special situations to improve code performance.

15It is therefore essential to interpose a further allocator function in userspace to split the page into smaller areas; this is the task of
the C standard library.

329

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 330

Chapter 4: Virtual Process Memory

4.10 Handling of Page Faults
The association between virtual and physical memory is not established until the data of an area are
actually needed. If a process accesses a part of virtual address space not yet associated with a page in
memory, the processor automatically raises a page fault that must be handled by the kernel. This is one
of the most important and complex aspects of memory management simply because a myriad of details
must be taken into account. For example, the kernel must ascertain the following:

❑ Was the page fault caused by access to a valid address from the user address space, or did the
application try to access the protected area of the kernel?

❑ Does a mapping exist for the desired address?

❑ Which mechanism must be used to obtain the data for the area?

Figure 4-17 shows an initial overview of the potential paths the kernel may follow when handling page
faults.

Kernel or User-
space address?

Kernel mode?

Synchronize with
reference page table

Segmentation Fault

Yes

No

Sufficient privileges?

Handle request
Demand Paging/Allocation,
Swapping or COW

Mapping exists?

Segmentation Fault

Segmentation Fault

NoYes

Yes No

Kernel User

Figure 4-17: Potential options for handling page faults.

As demonstrated below, the individual actions are much more complicated because the kernel must not
only guard against malicious access from userspace but must also take note of many minor details; on
top of this, it must not allow the page handling operations to degrade system performance unnecessarily.

The implementation of page fault handling varies from processor to processor. Because the CPUs employ
different memory management concepts, the details of page fault generation also differ. Consequently,
the handler routines in the kernel are located in the architecture-specific source code segments.

We confine ourselves below to a detailed description of the approach adopted on the IA-32 architecture.
Implementation on most other CPUs is at least similar.

An assembler routine in arch/x86/kernel/entry_32.S serves as the entry point for page faults but
immediately invokes the C routine do_page_fault from arch/x86/mm/fault_32.c. (A routine of the

330

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 331

Chapter 4: Virtual Process Memory

same name is present in the architecture-specific sources of most CPUs.16,17) Figure 4-18 shows the code
flow diagram of this extensive routine.

Save faulting address

Interrupt handler
or no context?

Usermode access Segmentation Fault
Yes

No

Address > TASK_SIZE
and no protection fault

and kernel mode?
vmalloc-Handler

Yes

No

vm_area_struct exists?

Stack?

No

unsuccesssful

erfolgreich
Allowed read access,

page not present
Alllowed write access

page not present
Not allowed
write access

Not allowed
read access

successsful

Yes

No

Yes

do_page_fault

find_vma

fixup_exception

expand_stack fixup_exception

handle_mm_fault

Figure 4-18: Code flow diagram for do_page_fault on IA-32 processors.

This situation is complex, so it is necessary to examine the implementation of do_page_fault very
closely.

Two parameters are passed to the routine — the register set active at the time of the fault, and an error
code (long error_code) that supplies information on the cause of the fault. Currently, only the first three
bits (0, 1, and 2) of error_code are used; their meanings are given in Table 4-1.

arch/x86/mm/fault_32.c
fastcall void __kprobes do_page_fault(struct pt_regs *regs,

unsigned long error_code)
{

struct task_struct *tsk;
struct mm_struct *mm;

16As usual, Sparc processors are the odd man out. There the name of the function is do_sparc_fault (Sparc32),
do_sun4c_fault (Sparc32 sun4c), or do_sparc64_fault (UltraSparc). ia64_do_page_fault is used on IA-64 systems.
17Note that the code for IA-32 and AMD64 will be unified in kernel 2.6.25, which was still under development when this book was
written. The remarks given here also apply for the AMD64 architecture.

331

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 332

Chapter 4: Virtual Process Memory

struct vm_area_struct * vma;
unsigned long address;
unsigned long page;
int write, si_code;
int fault;

...

/* get the address */
address = read_cr2();

...

Table 4-1: Meaning of Page Fault Error Codes on IA-32

Bit Set (1) Not set (0)

0 No page present in RAM Protection fault (insufficient access permission)

1 Read access Write access

2 Privileged kernel mode User mode

Once a large number of variables have been declared for subsequent use, the kernel stores the address of
the location that triggered the fault in address.18

arch/i386/mm/fault.c
tsk = current;

si_code = SEGV_MAPERR;

/*
* We fault-in kernel-space virtual memory on-demand. The
* ’reference’ page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & 4) == 0, and that the fault was not a
* protection error (error_code & 9) == 0.
*/

if (unlikely(address >= TASK_SIZE)) {
if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)

return;
/*
* Don’t take the mm semaphore here. If we fixup a prefetch
* fault we could otherwise deadlock.

18On IA-32 processors, the address is held in register CR2, whose contents are copied to address by read_cr2. The processor-
specific details are of no interest.

332

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 333

Chapter 4: Virtual Process Memory

*/
goto bad_area_nosemaphore;

}
...

A vmalloc fault is indicated if the address is outside user address space. The page tables of the process
must therefore be synchronized with the information in the kernel’s master page table. Naturally, this is
only permitted if access took place in kernel mode and the fault was not triggered by a protection error;
in other words, neither bit 2 nor bits 3 and 0 of the error code may be set.19

The kernel uses the auxiliary function vmalloc_fault to synchronize the page tables. I won’t show the
code in detail because all it does is copy the relevant entry from the page table of init — this is the
kernel master table on IA-32 systems — into the current page table. If no matching entry is found there,
the kernel invokes fixup_exception in a final attempt to recover the fault; I discuss this shortly.

The kernel jumps to the bad_area_nosemaphore label if the fault was triggered during an interrupt (see
Chapter 14) or in a kernel thread (see Chapter 14) that does not have its own context and therefore no
separate instance of mm_struct.

arch/i386/mm/fault.c
mm = tsk->mm;

/*
* If we’re in an interrupt, have no user context or are running in an
* atomic region then we must not take the fault..
*/

if (in_atomic() || !mm)
goto bad_area_nosemaphore;

...
bad_area_nosemaphore:

/* User mode accesses just cause a SIGSEGV */
if (error_code & 4) {

...
force_sig_info_fault(SIGSEGV, si_code, address, tsk);
return;

}

no_context:
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))

return;

A segmentation fault is output if the fault originates from userspace (indicated by the fact that bit 4 is
set in error_code). If, however, the fault originates from kernel space, fixup_exception is invoked. I
describe this function below.

If the fault does not occur in an interrupt or without a context, the kernel checks whether the address
space of the process contains a region in which the fault address lies. It invokes the find_vma function,
which we know from Section 4.5.1 to do this.

19This is checked by !(error_code & 0x0000000d). Because 20 + 22 + 23 = 13 = 0xd, neither bit 2 nor bits 3 and 0 may be set.

333

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 334

Chapter 4: Virtual Process Memory

arch/i386/mm/fault.c
vma = find_vma(mm, address);
if (!vma)

goto bad_area;
if (vma->vm_start <= address)

goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))

goto bad_area;
...

if (expand_stack(vma, address))
goto bad_area;

good_area and bad_area are labels to which the kernel jumps once it has discovered whether the address
is valid or invalid.

The search can yield various results:

❑ No region is found whose end address is after address, in which case access is invalid.

❑ The fault address is within the region found, in which case access is valid and the page fault is
corrected by the kernel.

❑ A region is found whose end address is after the fault address but the fault address is not within
the region. There may be two reasons for this:

1. The VM_GROWSDOWN flag of the region is set; this means that the region is a stack that grows
from top to bottom. expand_stack is then invoked to enlarge the stack accordingly. If it
succeeds, 0 is returned as the result, and the kernel resumes execution at good_area. Oth-
erwise, access is interpreted as invalid.

2. The region found is not a stack, so access is invalid.

good_area follows on immediately after the above code.

arch/i386/mm/fault.c
...
good_area:

si_code = SEGV_ACCERR;
write = 0;
switch (error_code & 3) {

default: /* 3: write, present */
/* fall through */

case 2: /* write, not present */
if (!(vma->vm_flags & VM_WRITE))

goto bad_area;
write++;
break;

case 1: /* read, present */
goto bad_area;

case 0: /* read, not present */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))

goto bad_area;
}

...

334

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 335

Chapter 4: Virtual Process Memory

The presence of a mapping for the fault address does not necessarily mean that access is actually permit-
ted. The kernel must check the access permissions by examining bits 0 and 1 (because 20 + 21 = 3). The
following situations may apply:

❑ VM_WRITE must be set in the event of a write access (bit 1 set, cases 3 and 2). Otherwise, access is
invalid, and execution resumes at bad_area.

❑ In the event of a read access to an existing page (Case 1), the fault must be a permission fault
detected by the hardware. Execution then resumes at bad_area.

❑ If a read access is made to a page that doesn’t exist, the kernel must check whether VM_READ or
VM_EXEC is set, in which case access is valid. Otherwise, read access is denied, and the kernel
jumps to bad_area.

If the kernel does not explicitly jump to bad_area, it works its way down through the case statement and
arrives at the handle_mm_fault call that immediately follows; this function is responsible for correcting
the page fault (i.e., reading the required data).

arch/i386/mm/fault.c
...
survive:

/*
* If for any reason at all we couldn’t handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/

fault = handle_mm_fault(mm, vma, address, write);
if (unlikely(fault & VM_FAULT_ERROR)) {

if (fault & VM_FAULT_OOM)
goto out_of_memory;

else if (fault & VM_FAULT_SIGBUS)
goto do_sigbus;

BUG();
}
if (fault & VM_FAULT_MAJOR)

tsk->maj_flt++;
else

tsk->min_flt++;

return;
...
}

handle_mm_fault is an architecture-independent routine for selecting the appropriate fault correction
method (demand paging, swap-in, etc.) and for applying the method selected (we take a close look at the
implementation and the various options of handle_mm_fault in Section 4.11).

If the page is created successfully, the routine returns either VM_FAULT_MINOR (the data were already in
memory) or VM_FAULT_MAJOR (the data had to be read from a block device). The kernel then updates the
process statistics.

However, faults may also occur when a page is created. If there is insufficient physical memory to load
the page, the kernel forces termination of the process to at least keep the system running. If a permitted

335

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 336

Chapter 4: Virtual Process Memory

access to data fails for whatever reason — for instance, if a mapping is accessed but has been shrunk by
another process in the meantime and is no longer present at the given address — the SIGBUS signal is
sent to the process.

4.11 Correction of Userspace Page Faults
Once the architecture-specific analysis of the page fault has been concluded and it has been established
that the fault was triggered at a permitted address, the kernel must decide on the appropriate method to
read the required data into RAM memory. This task is delegated to handle_mm_fault, which is no longer
dependent on the underlying architecture but is implemented system-independently within the memory
management framework. The function ensures that page table entries for all directory levels that lead to
the faulty PTE are present. The function handle_pte_fault analyzes the reason for the page fault. entry
is a pointer to the relevant page table element (pte_t).

mm/memory.c
static inline int handle_pte_fault(struct mm_struct *mm,

struct vm_area_struct *vma, unsigned long address,
pte_t *pte, pmd_t *pmd, int write_access)

{
pte_t entry;
spinlock_t *ptl;

if (!pte_present(entry)) {
if (pte_none(entry)) {

if (vma->vm_ops) {
return do_linear_fault(mm, vma, address,

pte, pmd, write_access, entry);
}
return do_anonymous_page(mm, vma, address,

pte, pmd, write_access);
}
if (pte_file(entry))

return do_nonlinear_fault(mm, vma, address,
pte, pmd, write_access, entry);

return do_swap_page(mm, vma, address,
pte, pmd, write_access, entry);

}
...
}

Three cases must be distinguished if the page is not present in physical memory [!pte_present(entry)].

1. If no page table entry is present (page_none), the kernel must load the page from scratch —
this is known as demand allocation for anonymous mappings and demand paging for
file-based mappings. This does not apply if there is no vm_operations_struct regis-
tered in vm_ops — in this case, the kernel must return an anonymous page using do_
anonymous_page.

2. If the page is marked as not present but information on the page is held in the page table,
this means that the page has been swapped out and must therefore be swapped back in from
one of the system swap areas (swap-in or demand paging).

336

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 337

Chapter 4: Virtual Process Memory

3. Parts of nonlinear mappings that have been swapped out cannot be swapped in like regular
pages because the nonlinear association must be restored correctly. The function pte_file
allows for checking if the PTE belongs to a nonlinear mapping, and do_nonlinear_fault
handles the fault.

A further potential case arises if the region grants write permission for the page but the access mecha-
nisms of the hardware do not (thus triggering the fault). Notice that since the page is present in this case,
the above if case is executed and the kernel drops right through to the following code:

mm/memory.c
if (write_access) {

if (!pte_write(entry))
return do_wp_page(mm, vma, address,

pte, pmd, ptl, entry);
entry = pte_mkdirty(entry);

}
...

do_wp_page is responsible for creating a copy of the page and inserting it in the page tables of the
process — with write access permission for the hardware. This mechanism is referred to as copy on write
(COW, for short) and is discussed briefly in Chapter 1. When a process forks, the pages are not copied
immediately but are mapped into the address space of the process as ‘‘read-only‘‘ copies so as not to
spend too much time in the (wasteful) copying of information. A separate copy of the page is not created
for the process until write access actually takes place.

The sections below take a closer look at the implementation of the fault handler routines invoked dur-
ing page fault correction. They do not cover how pages are swapped in from a swap area by means of
do_swap_page, as this topic is discussed separately in Chapter 18 and requires additional knowledge of
the structure and organization of the swap layer.

4.11.1 Demand Allocation/Paging
Allocation of pages on demand is delegated to do_linear_fault, which is defined in mm/memory.c. After
some parameter conversion, the work is delegated to __do_fault, and the code flow diagram of this
function is shown in Figure 4-19.

First of all, the kernel has to make sure that the required data are read into the faulting page. How this is
handled depends on the file that is mapped into the faulting address space, and therefore a file-specific
method is invoked to obtain the data. Usually, it is stored in vm->vm_ops->fault. Since earlier kernel
versions used a method with a different calling convention, the kernel must account for the situation in
which some code has not yet been updated to stick to the new convention. Therefore, the old variant
vm->vm_ops->nopage is invoked if no fault method is registered.

Most files use filemap_fault to read in the required data. The function not only reads in the required
data, but also implements readahead functionality, which reads in pages ahead of time that will most
likely be required in the future. The mechanisms needed to do this are introduced in Chapter 16, which
discusses the function in greater length. At the moment, all we need to know is that the kernel reads the
data from the backing store into a physical memory page using the information in the address_space
object.

337

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 338

Chapter 4: Virtual Process Memory

Write access on private page?

Only vma->vm_ops->nopage available?

Allocate page

Write access?

Anonymous page?

Yes

No

Yes

No

_ _do_fault

vma->vm_ops->nopage

vma->vm_ops->fault

anon_vma_prepare

copy_user_highpage

flush_icache_page

mk_pte

pte_mkwrite

lru_cache_add_active

page_add_new_anon_rmap

page_add_file_rmap

update_mmu_cache

Figure 4-19: Code flow diagram for __do_fault.

Given the vm_area_struct region involved, how can the kernel choose which method to use to read the
page?

1. The mapped file object is found using vm_area_struct->vm_file.

2. A pointer to the mapping itself can be found in file->f_mapping.

3. Each address space has special address space operations from which the readpage method
can be selected. The data are transferred from the file into RAM memory using mapping->
a_ops->readpage(file, page).

If write access is required, the kernel has to distinguish between shared and private mappings. For private
mappings, a copy of the page has to be prepared.

mm/memory.c
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,

unsigned long address, pmd_t *pmd,
pgoff_t pgoff, unsigned int flags, pte_t orig_pte)

{
...

338

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 339

Chapter 4: Virtual Process Memory

/*
* Should we do an early C-O-W break?
*/

if (flags & FAULT_FLAG_WRITE) {
if (!(vma->vm_flags & VM_SHARED)) {

anon = 1;
if (unlikely(anon_vma_prepare(vma))) {

ret = VM_FAULT_OOM;
goto out;

}
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,

vma, address);
...

}
copy_user_highpage(page, vmf.page, address, vma);

}
...

A new page must be allocated once a new anon_vma instance has been created for the region with
anon_vma_prepare (the pointer to the old region is redirected to the new region in anon_vma_prepare).
The high memory area is preferably used for this purpose as it presents no problems for userspace pages.
copy_user_highpage then creates a copy of the data (routines for copying data between kernel and
userspace are discussed in Section 4.13).

Now that the position of the page is known, it must be added to the page table of the process and incor-
porated in the reverse mapping data structures. Before this is done, a check is made to ensure that the
page contents are visible in userspace by updating the caches with flush_icache_page. (Most processors
don’t need to do this and define an empty operation.)

A page table entry that normally points to a read-only page is generated using the mk_pte function
discussed in Section 3.3.2. If a page with write access is created, the kernel must explicitly set write
permission with pte_mkwrite.

How pages are integrated into the reverse mapping depends on their type. If the page generated when
handling the write access is anonymous, it is added to the active area of the LRU cache using lru_cache_
add_active (Chapter 16 examines the caching mechanisms used in more detail) and then integrated into
the reverse mapping with page_add_new_anon_rmap. page_add_file_rmap is invoked for all other pages
associated with a file-based mapping. Both functions are discussed in Section 4.8. Finally, the MMU cache
of the processor has to be updated if required because the page tables have been modified.

4.11.2 Anonymous Pages
do_anonymous_page is invoked to map pages not associated with a file as a backing store. Except that no
data must be read into a page, the procedure hardly differs from the way in which file-based data are
mapped. A new page is created in the highmem area, and all its contents are deleted. The page is then
added to the page tables of the process, and the caches/MMU are updated.

Notice that earlier kernels distinguished between read-only and write access to anonymous mappings: In
the first case, a single, global page filled with zero bytes was used to satisfy read requests to anonymous
regions. During the development of kernel 2.6.24, this behavior has, however, been dropped because
measurements have shown that the performance gain is negligible, while larger systems can experience
several problems with shared zero mappings, which I do not want to discuss in detail here.

339

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 340

Chapter 4: Virtual Process Memory

4.11.3 Copy on Write
Copy on write is handled in do_wp_page, whose code flow diagram is shown in Figure 4-20.

do_wp_page

Insert page into page tables

vm_normal_page

anon_vma_prepare

alloc_page_vma

cow_user_vma

page_remove_rmap

lru_cache_add_active

page_add_new_anon_rmap

Figure 4-20: Code flow diagram for
do_wp_page.

Let’s examine a slightly simplified version in which I have omitted potential interference with the swap
cache as well as some corner cases, since this would complicate the situation without revealing anything
insightful about the mechanism itself.

The kernel first invokes vm_normal_page to find the struct page instance of the page by reference to
the page table entry — essentially, this function builds on pte_pfn and pfn_to_page, which must be
defined on all architectures. The former finds the page number for an associated page table entry, and
the latter determines the page instance associated with the page number. This is possible because the
COW mechanism is invoked only for pages that actually reside in memory (otherwise, they are first
automatically loaded by one of the other page fault mechanisms).

After obtaining a reference on the page with page_cache_get, anon_vma_prepare then prepares the
data structures of the reverse mapping mechanism to accept a new anonymous area. Since the fault
originates from a page filled with useful data that must be copied to a new page, the kernel invokes
alloc_page_vma to allocate a fresh page. cow_user_page then copies the data of the faulted page into the
new page to which the process may subsequently write.

The reverse mapping to the original read-only page is then removed using page_remove_rmap. The new
page is added to the page tables, at which point the CPU caches must also be updated.

The final actions involve placing the newly allocated pages on the active list of the LRU cache using
lru_cache_add_active and inserting them in the reverse mapping data structures by means of
page_add_anon_rmap. Thereafter, the userspace process can write to the page to its heart’s content.

340

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 341

Chapter 4: Virtual Process Memory

4.11.4 Getting Nonlinear Mappings
Page fault handling for nonlinear mappings is much shorter than when the methods described above are
used:

mm/memory.c
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,

unsigned long address, pte_t *page_table, pmd_t *pmd,
int write_access, pte_t orig_pte)

{
...

pgoff = pte_to_pgoff(orig_pte);
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);

}

Since the faulting address is not linearly associated with the contents of the mapped file, the desired posi-
tion must be obtained from the information in the PTE that was previously encoded with pgoff_to_pte.
Now comes the time to put this information to use: pte_to_pgoff analyzes the page table entry and
obtains the desired page-sized offset into the file.

Once the address within the file is known, reading in the required data can be pursued as for regular
page faults. The kernel thus hands off the work to the previously discussed function __do_page_fault
and is done.

4.12 Kernel Page Faults
When kernel address space is accessed, page faults can be triggered by various conditions as described
below.

❑ A programming error in the kernel has caused an incorrect address to be accessed — this is a
genuine bug. Of course, this should never happen in stable versions20 but does occur occasion-
ally in developer versions.

❑ The kernel accesses an invalid address passed as a system call parameter from userspace.

❑ The page fault was triggered by access to an area allocated using vmalloc.

The first two conditions are genuine errors against which the kernel must guard by performing additional
checks. The vmalloc situation is a legitimate reason for a page fault that must be corrected. Modifications
in the vmalloc address space are not transmitted to the page tables of a process until a corresponding
page fault has occurred; the appropriate access information must be copied from the master page table.
Although this is not a difficult operation, it is strongly architecture-dependent, so I won’t discuss it here.

The exception fixup mechanism is a last resort when handling page faults not due to accessing vmalloc
area. At some points, the kernel makes preparations for intercepting incorrect accesses that are made
for a legitimate reason — for example, when copying address data from userspace addresses passed as
system call parameters.

20In fact, errors of this kind very rarely occur because — as you might have already noted — Linux is an extremely stable system . . .

341

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 342

Chapter 4: Virtual Process Memory

Copying is performed by various central functions, such as copy_from_user, which is discussed in the
next section. At present, it is sufficient to know that access to the incorrect address may occur at only a
few places in the kernel.

When data are copied to or from userspace, page faults may occur if access is made to an address
in virtual address space that is not associated with a physical page. We are already familiar with
this situation in user mode. When an application accesses a virtual address, the kernel automatically
and transparently returns a physical page using the demand paging mechanism discussed above.
If access takes place in kernel mode, the fault must likewise be corrected, albeit using slightly
different means.

Each time a page fault occurs, the cause of the fault and the address in the code currently executing are
output. This enables the kernel to compile a list of all risky chunks of code that may carry out unau-
thorized memory access operations. This ‘‘exception table‘‘ is created when the kernel image is linked
and is located between __start_exception_table and __end_exception_table in the binary file. Each
entry corresponds to an instance of struct exception_table, which, although architecture-dependent,
is almost always structured as follows:

<include/asm-x86/uaccess_32.h>
struct exception_table_entry
{

unsigned long insn, fixup;
};

insn specifies the position in virtual address space at which the kernel expects the fault; fixup is the code
address at which execution resumes when the fault occurs.

fixup_exception is used to search the exception tables and is defined as follows on IA-32 systems:

arch/x86/mm/extable_32.c
int fixup_exception(struct pt_regs *regs)
{

const struct exception_table_entry *fixup;

fixup = search_exception_tables(regs->eip);
if (fixup) {

regs->eip = fixup->fixup;
return 1;

}

return 0;
}

regs->eip points to the EIP register that, on IA-32 processors, contains the address of the code segment
where the fault was triggered. search_exception_tables scans the exception table for a suitable entry.21

21To be more accurate, several tables are scanned — the main kernel table and the tables registered by modules loaded dynamically
at kernel run time. As the mechanisms used are practically the same, it’s not worth describing their minor differences.

342

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 343

Chapter 4: Virtual Process Memory

When a fixup routine is found, the instruction pointer is set to the corresponding memory location. The
kernel executes the routine found after fixup_exception returns with return.

What happens if there is no fixup routine? This indicates a genuine kernel fault that is handled by the
code in do_page_fault, which follows the (unsuccessful) call of search_exception_table and results in
a kernel oops. It looks like this on IA-32 processors:

arch/x86/mm/fault_32.c
fastcall void __kprobes do_page_fault(struct pt_regs *regs,

unsigned long error_code)
{
...
no_context:

/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))

return;
...

/*
* Oops. The kernel tried to access some bad page. We’ll have to
* terminate things with extreme prejudice.
*/

...
if (address < PAGE_SIZE)

printk(KERN_ALERT "BUG: unable to handle kernel NULL "
"pointer dereference");

else
printk(KERN_ALERT "BUG: unable to handle kernel paging"

" request");
printk(" at virtual address %08lx\n",address);
printk(KERN_ALERT "printing eip: %08lx ", regs->eip);

page = read_cr3();
page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
printk("*pde = %08lx ", page);

...
tsk->thread.cr2 = address;
tsk->thread.trap_no = 14;
tsk->thread.error_code = error_code;
die("Oops", regs, error_code);
do_exit(SIGKILL);

...

If a virtual address between 0 and PAGE_SIZE - 1 is accessed, the kernel reports an invalid NULL pointer
de-reference. Otherwise, the user is informed that a paging request could not be satisfied in kernel
memory — this is a kernel bug in both cases. Additional information is also output to help debug the
fault and to supply hardware-specific data; die prints the contents of the current registers (among other
things).

Thereafter, the current process is forced to terminate with SIGKILL to save whatever can be saved (in
many cases, the system is rendered unusable by a fault of this kind).

343

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 344

Chapter 4: Virtual Process Memory

4.13 Copying Data between Kernel and
Userspace

The kernel often needs to copy data from userspace to kernel space; for example, when lengthy data
structures are passed indirectly in system calls by means of pointers. There is a similar need to write data
in the reverse direction from kernel space to userspace.

This cannot be done simply by passing and de-referencing pointers for two reasons. First, userspace
programs must not access kernel addresses; and second, there is no guarantee that a virtual page belong-
ing to a pointer from userspace is really associated with a physical page. The kernel therefore provides
several standard functions to cater for these special situations when data are exchanged between kernel
space and userspace. They are shown in summary form in Table 4-2.

Table 4-2: Standard Functions for Exchanging Data between Userspace and Kernel
Space

Function Meaning

copy_from_user(to, from, n)
__copy_from_user

Copies a string of n bytes from from (userspace) to to
(kernel space).

get_user(type *to, type* ptr) __get_user Reads a simple variable (char, long, . . .) from ptr
to to; depending on pointer type, the kernel decides
automatically to transfer 1, 2, 4, or 8 bytes.

strncopy_from_user(to, from, n)
__strncopy_from_user

Copies a null-terminated string with a maximum of n
characters from from (userspace) to to (kernel space).

put_user(type *from, type *to)
__put_user

Copies a simple value from from (kernel space) to to
(userspace); the relevant value is determined automat-
ically from the pointer type passed.

copy_to_user(to, from, n)
__copy_to_user

Copies n bytes from from (kernel space) to to
(userspace).

Table 4-3 lists additional helper functions for working with strings from userspace. These functions are
subject to the same restrictions as the functions for copying data.

get_user and put_user function correctly only when applied to pointers to
‘‘simple‘‘ data types such as char, int, and so on. They do not function with
compound data types or arrays because of the pointer arithmetic required (and
owing to the necessary implementation optimizations). Before structs can be
exchanged between userspace and kernel space, it is necessary to copy the data and
then convert it to the correct type by means of typecasts.

344

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 345

Chapter 4: Virtual Process Memory

Table 4-3: Standard Functions for Working with Strings in Userspace Data

Function Meaning

clear_user(to, n) __clear_user Fills the next n bytes after to with zeros.

strlen_user(s) __strlen_user Gets the size of a null-terminated string in userspace (includ-
ing the terminating character).

strnlen_user(s, n) __strnlen_user Gets the size of a null-terminated string but restricts the
search to a maximum of n characters.

As the tables show, there are two versions of most of the functions. In the versions without preceding
underscores, access_user is also invoked to perform checks on the userspace address; the checks carried
out differ from architecture to architecture. For example, one check ensures that a pointer really points to
a position in the user segment; another invokes handle_mm_fault if pages are not found in memory to
make sure that data are read in for processing. All functions also apply the fixup mechanism described
above to detect and correct page faults.

The functions are implemented mainly in assembler language. They are extremely performance-critical
because they are invoked so frequently. The exception code must also be integrated using complicated
GNU C constructions to embed assembler and linker directives in the code. It is not my intention to
discuss the implementation of the individual functions in detail.

A checker tool was added to the compilation process during the development of kernel 2.5. It analyzes the
sources to check whether userspace pointers can be de-referenced directly without the need for the above
functions. The pointers originating from userspace must be labeled with the keyword __user so that the
tool knows which pointers to check. One particular example is the chroot system call, which expects a
filename as argument. Many, many more places in the kernel contain similarly marked arguments from
userspace.

<fs/open.c>
asmlinkage long sys_chroot(const char __user * filename) {
...
}

Address space randomization has been augmented further during the development of kernel 2.6.25. It
is now possible to randomize the address of the heap, traditionally called brk address. The randomiza-
tion is, however, only performed if the new configuration option COMPAT_BRK is not set because some
ancient propgrams are not compatible with a randomized heap address. On the technical level, brk
randomization works as all other randomization techniques introduced in this chapter.

4.14 Summary
You have seen that handling the virtual address space of userland processes is a very important part
of the Linux kernel. I have introduced you to the general structure of address spaces and how they
are managed by the kernel, and you have learned how they are partitioned into regions. These allow
for describing the contents of the virtual memory space of userland processes and form the backbone for

345

Mauerer runc04.tex V3 - 09/04/2008 4:55pm Page 346

Chapter 4: Virtual Process Memory

linear and nonlinear memory mappings. Besides, they are connected with paging, which helps to manage
the connection between physical and virtual memory.

Since the virtual address space of each userland process is different but the virtual address space portion
of the kernel always remains the same, some effort is required to exchange data between both, and I have
introduced you to the mechanisms required for this purpose.

346

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 347

Locking and Interprocess
Communication

As a multitasking system, Linux is able to run several processes at the same time. Normally, the
individual processes must be kept as separate as possible so that they do not interfere with each
other. This is essential to protect data and to ensure system stability. However, there are situations
in which applications must communicate with each other; for example,

❑ when data generated by one process are transferred to another.

❑ when data are shared.

❑ when processes are forced to wait for each other.

❑ when resource usage needs to be coordinated.

These situations are handled using several classic techniques that were introduced in System V and
have since proven their worth, so much so that they are now part and parcel of Linux. Because not
only userspace applications but also the kernel itself are faced with such situations — particularly
on multiprocessor systems — various kernel-internal mechanisms are in place to handle them.

If several processes share a resource, they can easily interfere with each other — and this must
be prevented. The kernel therefore provides mechanisms not only for sharing data but also for
coordinating access to data. Again, the kernel employs mechanisms adopted from System V.

Resources need to be protected not only in userspace applications but especially in the kernel itself.
On SMP systems, the individual CPUs may be in kernel mode at the same time and, theoretically,
may want to manipulate all existing data structures. To prevent the CPUs from getting into each
other’s way, it is necessary to protect some kernel areas by means of locks; these ensure that access
is restricted to one CPU at a time.

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 348

Chapter 5: Locking and Interprocess Communication

5.1 Control Mechanisms
Before describing the various interprocess communication (IPC) and data synchronization options of
the kernel, let’s briefly discuss the ways in which communicating processes can interfere with each
other — and how this can be prevented. Our discussion is restricted to basic and central aspects. For
detailed explanations and numerous examples of classic problems, see the general textbooks on operating
systems that are available on the market.

5.1.1 Race Conditions
Let us consider a system that reads data from an external device via two interfaces. Independent data
packets arrive via both interfaces at irregular intervals and are saved in separate files. To log the order of
arrival of the data packets, a number is added at the end of each filename to indicate the ‘‘serial number‘‘
of the packet. A typical sequence of filenames would be act1.fil, act2.fil, act3.fil, and so on. A
separate variable is used to simplify the work of both processes. This variable is held in a memory page
shared by both processes and specifies the next unused serial number (for the sake of simplicity, I refer
to this variable as counter below).

When a packet arrives, the process must perform a few actions to save the data correctly:

1. It reads the data from the interface.

2. It opens a file with the serial number count.

3. It increments the serial number by 1.

4. It writes the data to the file and closes it.

Why should errors occur with this system? If each process strictly observes the above procedure and
increments the status variable at the appropriate places, the procedure should obviously function cor-
rectly not just with two but with any number of processes.

As a matter of fact, it will function correctly in most cases — and this is where the real difficulty lies
with distributed programming — but it won’t in certain circumstances. Let us set a trap by calling the
processes that read data from the interfaces process 1 and process 2:

Our scenario begins with a number of files to which a serial number has been added, say, 12 files in all.
The value of counter is therefore 13. Obviously a bad omen . . .

Process 1 receives data from the interface as a new block has just arrived. Dutifully it opens a file with
the serial number 13 just at the moment when the scheduler is activated and decides that the process has
had enough CPU time and must be replaced with another process — in this case, process 2. Note that at
this time, process 1 has read but not yet incremented the value of counter.

Once process 2 has started to run, it too receives data from its interface and begins to perform the neces-
sary actions to save these data. It reads the value of counter, increments it to 14, opens a file with serial
number 13, writes the data to the file, and terminates.

Soon it’s the turn of process 1 again. It resumes where it left off and increments the value of counter by 1,
from 14 to 15. Then it writes its data to the previously opened file with serial number 13 — and, in doing
so, overwrites the existing data of process 2.

This is a double mishap — a data record is lost, and serial number 14 is not used.

348

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 349

Chapter 5: Locking and Interprocess Communication

The program sequence could be modified to prevent this error by changing the individual steps after
data have been received. For example, processes could increment the value of counter immediately after
reading its value and before opening a file. However, closer examination of suggestions of this kind
quickly lead to the conclusion that it is always possible to devise situations that result in a fatal error.
If we look at our suggestion, it soon becomes clear that an inconsistency is generated if the scheduler is
invoked between reading counter and incrementing its value.

Situations in which several processes interfere with each other when accessing resources are generally
referred to as race conditions. Such conditions are a central problem in the programming of distributed
applications because they cannot usually be detected by systematic trial and error. Instead, a thorough
study of source code (coupled with intimate knowledge of the various paths that code can take) and a
generous supply of intuition are needed to find and eliminate them.

Situations leading to race conditions are few and far between, thus begging the question as to whether
it’s worth making the — sometimes very considerable — effort to protect code against their occurrence.

In some environments (electronic aircraft control, monitoring of vital machinery, or dangerous equip-
ment), race conditions may prove to be fatal in the literal sense of the word. But even in routine software
projects, protection against potential race conditions is an important contribution to program quality
and user satisfaction. As part of improved multiprocessor support in the Linux kernel, much effort has
been invested in pinpointing areas where dangers lurk and in providing suitable protection. Unexpected
system crashes and mysterious errors owing to lack of protection are simply unacceptable.

5.1.2 Critical Sections
The essence of the problem is as follows: Processes are interrupted at points where they shouldn’t be if
they are to do their work correctly. Obviously, a potential solution is to mark the relevant code section so
that it can no longer be interrupted by the scheduler. Although this approach would work in principle,
there are several inherent problems. Under certain circumstances, a faulty program would be unable
to find its way out of the marked code section and would fail to relinquish the CPU, thus making the
computer unusable. We must therefore reject this solution out of hand.1

The solution to the problem does not necessarily require that the critical section not be interrupted.
Processes may well be interrupted in a critical section as long as no other process enters the section. This
strict prohibition ensures that values cannot be changed by several processes at the same time and is
referred to as mutual exclusion. Only one process may enter a critical area of code at a given time.

There are many ways of designing a mutual exclusion method of this kind (regardless of the technical
implementation). However, all must ensure that the exclusion principle functions under all circum-
stances. It must depend neither on the number nor on the speed of the processors involved. If this were the
case (and the solution were therefore only available on a given computer system with a specific hardware
configuration), the solution would be impracticable because it would not provide general protection —
and this is exactly what is needed. Processes should not be allowed to block each other and come to a
permanent stop. Although this is a desirable goal, it cannot always be achieved by technical means as
you will see below. It is often up to the programmer to think ahead so that the problem does not occur.

Which principles are applied to support a mutual exclusion method? A multitude of different solu-
tions have been proposed in the history of multitasking and multiuser systems, all with their specific

1The kernel itself can (and must) reserve the right to disable interrupts at certain points to seal itself off completely from external or
periodic events. This is not, however, possible for user processes.

349

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 350

Chapter 5: Locking and Interprocess Communication

advantages and disadvantages. Some solutions are of an academic nature, and some have found their
way into practice in various operating systems — one solution has been adopted in most systems and is
therefore worth discussing in detail.

Semaphores
Semaphores were designed by E. W. Dijkstra in 1965. At first glance, they provide a surprisingly sim-
ple solution to all kinds of interprocess communication problems — but their use calls for experience,
intuition, and caution.

Basically, semaphores are simply specially protected variables that can represent both positive and nega-
tive integers; their initial value is 1.

Two standard operations are defined to manipulate semaphores — up and down. They are used to control
entry to and exit from critical code areas, where it is assumed that competing processes have equal access
to the semaphores.

When a process wants to enter critical code, it invokes the down function. This decrements the value of the
semaphore by 1; that is, it sets it to 0 and executes the dangerous section of code. Once it has performed
the programmed actions, the up function is invoked to increment the value of the semaphore by 1 — thus
resetting it to its original value. Semaphores are characterized by two special features:

1. When a second process tries to enter the critical code section, it too must first perform a down
operation on the semaphore. Because a first process has already entered the code section, the
value of the semaphore is 0. This causes the second process to ‘‘sleep‘‘on the semaphore. In
other words, it waits until the first process has exited the relevant code.

It is of particular importance in the implementation of the down operation that it is handled
as an elementary step from the perspective of the application. It cannot then be interrupted by
a scheduler call, and this means that race conditions cannot occur. In the view of the kernel,
querying the variable and modifying its value are two different actions but are seen by the
user as an atomic unit.

When a process sleeps on a semaphore, the kernel puts it in the blocked state and also places
it on a wait list with all other processes waiting on the semaphore.

2. When a process exits the critical code section, it performs the up operation. This not only
increments the value of the semaphore (to 1), but also selects a process sleeping on it. This
process is now able to safely begin execution of the critical code after resuming and complet-
ing its down operation to decrement the semaphore value to 0.

This procedure would not be possible without the special support of the kernel because a userspace
library cannot guarantee that the down operation will not be interrupted. Before describing the imple-
mentation of the corresponding functions, it is first necessary to discuss the mechanisms that the kernel
itself uses to protect critical code sections. These mechanisms are the basis for the protection facilities
exported to user programs.

Semaphores work well in userland, and could in principle also be used to solve all kinds of in-kernel
locking problems. But they are not: Performance is one of the foremost goals of the kernel, and despite
the fact that semaphores might seem simple to implement at a first glance, their overhead is usually too
large for the kernel. This is why a plethora of different locking and synchronization mechanisms are
available for use in the kernel, which I discuss in the following.

350

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 351

Chapter 5: Locking and Interprocess Communication

5.2 Kernel Locking Mechanisms
The kernel requires no explicit mechanisms to facilitate the distributed use of memory areas because
it has unrestricted access to the full address space. On multiprocessor systems (or similarly, on unipro-
cessor systems with enabled kernel preemption; see Chapter 2), this gives rise to a few problems. If
several processors are in kernel mode at the same time, they can access the same data structure simulta-
neously — and this is exactly what causes the problem described in the previous sections.

In the first SMP-capable version of the kernel, the solution to this problem was very simple. Only one
processor at a time was ever allowed to be in kernel mode. Consequently, uncoordinated parallel access
to data was automatically ruled out. Unfortunately, this method was obviously not very efficient and
was quickly dropped.

Nowadays, the kernel uses a fine-grained network of locks for the explicit protection of individual data
structures. If processor A is manipulating data structure X, processor B may perform any other kernel
actions — but it may not manipulate X.

The kernel provides various locking options for this purpose, each optimized for different kernel data
usage patterns.

❑ Atomic Operations — These are the simplest locking operations. They guarantee that simple
operations, such as incrementing a counter, are performed atomically without interruption even
if the operation is made up of several assembly language statements.

❑ Spinlocks — These are the most frequently used locking option. They are designed for the short-
term protection of sections against access by other processors. While the kernel is waiting for a
spinlock to be released, it repeatedly checks whether it can acquire the lock without going to
sleep in the meantime (busy waiting). Of course, this is not very efficient if waits are long.

❑ Semaphores — These are implemented in the classical way. While waiting for a semaphore to
be released, the kernel goes to sleep until it is woken. Only then does it attempt to acquire the
semaphore. Mutexes are a special case of semaphores — only one user at a time can be in the
critical region protected by them.

❑ Reader/Writer Locks — These are locks that distinguish between two types of access to data
structures. Any number of processors may perform concurrent read access to a data structure,
but write access is restricted to a single CPU. Naturally, the data structure cannot be read while
it is being written.

The sections below discuss the implementation and usage of these options in detail. Their deployment is
omnipresent over all the kernel sources, and locking has become a very important aspect of kernel devel-
opment, both for fundamental core kernel code as well as for device drivers. Nevertheless, when I discuss
specific kernel code in this book, I will mostly omit locking operations except if locks are employed in
an unusual way, or if special locking requirements must be fulfilled. But why do we omit this aspect of
the kernel in other chapters if it is important? Most of you will certainly agree that this book does not
belong to the thinner specimen on your bookshelves, and adding a detailed discussion of locking in all
subsystems would certainly not be the ultimate diet for the book. More important, however, is that in
most cases a discussion of locking would obstruct and complicate the view on the essential working of a
particular mechanism. My main concern, however, is to provide exactly this to you.

Fully understanding the use of locks requires line-by-line familiarity with all kernel code affected by
the locks, and this is something a book cannot provide — in fact, something that it should not even try:

351

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 352

Chapter 5: Locking and Interprocess Communication

The source code of Linux is readily available, and there’s no need to fill page after page with material
that you cannot only easily inspect yourself on your computer, but that is additionally subject to perma-
nent change in many details. So it is much better to equip you with a solid understanding of the concepts
that are naturally much less likely to change rapidly. Nevertheless, this chapter will provide you with
everything necessary to understand how protection against concurrency is implemented in specific sub-
systems, and together with the explanations about the design and working of these, you will be well
equipped to dive into the source code, read, and modify it.

5.2.1 Atomic Operations on Integers
The kernel defines the atomic_t data type (in <asm-arch/atomic.h>) as the basis for atomic operations
with integer counters. In the view of the kernel, these are operations that are performed as if they con-
sisted of a single assembly language instruction. A short example, in which a counter is incremented
by 1, is sufficient to demonstrate the need for operations of this kind. On the assembly language level,
incrementation is usually performed in three steps:

1. The counter value is copied from memory into a processor register.

2. The value is incremented.

3. The register data are written back to memory.

Problems may occur if this operation is performed on a second processor at the same time. Both proces-
sors read the value in memory simultaneously (e.g., 4), increment it to 5, and write the new value back to
memory. However, the correct value in memory should be 6 because the counter was incremented twice.

All processors supported by the kernel provide means of performing operations of this kind atomically.
In general, special lock instructions are used to prevent the other processors in the system from working
until the current processor has completed the next action. Equivalent mechanisms that produce the same
effect may also be used.2

To enable platform-independent kernel parts to use atomic operations, the architecture-specific code
must provide the operations listed in Table 5-1 that manipulate variables of type atomic_t. Because,
on some systems, these operations are much slower than normal C operations, they should not be used
unless really necessary.

As an understanding of operation implementation presupposes a deep knowledge of the assembler
facilities of the individual CPUs, I do not deal with this topic here (each processor architecture provides
special functions to implement operations).

It is not possible to mix classic and atomic operations. The operations listed in
Table 5-1 do not function with normal data types such as int or long, and
conversely standard operators such as ++ do not work with atomic_t variables.

It should also be noted that atomic variables may be initialized only with the help of the ATOMIC_INIT
macro. Because the atomic data types are ultimately implemented with normal C types, the kernel
encapsulates standard variables in a structure that can no longer be processed with normal operators
such as ++.

2The required instruction is actually called lock on IA-32 systems.

352

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 353

Chapter 5: Locking and Interprocess Communication

<asm-arch/atomic.h>
typedef struct { volatile int counter; } atomic_t;

Table 5-1: Atomic Operations

Operation Effect

atomic_read(atomic_t *v) Reads the value of the atomic variable.

atomic_set(atomic_t *v, int i) Sets v to i.

atomic_add(int i, atomic_t *v) Adds i to v.

atomic_add_return(int i, atomic_t *v) Adds i to v and returns the result.

atomic_sub(int i, atomic_t *v) Subtracts i from v.

atomic_sub_return(int i, atomic_t *v) Subtracts i from v and returns the result.

atomic_sub_and_test(int i, atomic_t *v) Subtracts i from v. Returns a true value if the result is 0,
otherwise false.

atomic_inc(atomic_t *v) Subtracts 1 from v.

atomic_inc_and_test(atomic_t *v) Adds 1 to v. Returns true if the result is 0, otherwise
false.

atomic_dec(atomic_t *v) Subtracts 1 from v.

atomic_dec_and_test(atomic_t *v) Subtracts 1 from v. Returns true if the result is 0, other-
wise false.

atomic_add_negative(int i, atomic_t *v) Adds i to v. Returns true if the result is less than 0,
otherwise false.

atomic_add_negative(int i, atomic_t *v) Adds i to v and returns true if the result is negative,
otherwise false.

If the kernel was compiled without SMP support, the operations described are implemented in the same
way as for normal variables (only atomic_t encapsulation is observed) because there is no interference
from other processors.

The kernel provides the local_t data type for SMP systems. This permits atomic operations on a single
CPU. To modify variables of this kind, the kernel basically makes the same functions available as for the
atomic_t data type, but it is then necessary to replace atomic with local.

Notice that atomic variables are well suited for integer operations, but not so for bit operations. Each
architecture therefore has to define a set of bit manipulation operations, and these also work atomically
to provide coherence across processors on SMP systems. The available operations are summarized in
Section A.8.

353

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 354

Chapter 5: Locking and Interprocess Communication

5.2.2 Spinlocks
Spinlocks are used to protect short code sections that comprise just a few C statements and are therefore
quickly executed and exited. Most kernel data structures have their own spinlock that must be acquired
when critical elements in the structure are processed. Although spinlocks are omnipresent in the kernel
sources, I omit them in most pieces of code shown in this book. They do not provide any valuable insight
into how the kernel functions but make the code more difficult to read, as explained above. Nevertheless,
it is important that code is equipped with appropriate locks!

Data Structures and Usage
Spinlocks are implemented by means of the spinlock_t data structure, which is manipulated essentially
using spin_lock and spin_unlock. There are a few other spinlock operations: spin_lock_irqsave
not only acquires the spinlock but also disables the interrupts on the local CPU, and spin_lock_bh
also disables softIRQs (see Chapter 14). Spinlocks acquired with these operations must be released
by means of their counterpart; spin_unlock_bh and spin_unlock_irqsave, respectively. Once again,
implementation is almost fully in (strongly architecture-dependent) assembly language and is therefore
not discussed here.

Spinlocks are used as follows:

spinlock_t lock = SPIN_LOCK_UNLOCKED;
...
spin_lock(&lock);
/* Critical section */
spin_unlock(&lock);

SPIN_LOCK_UNLOCKED must be used in its unlocked state to initialize the spinlock. spin_lock takes
account of two situations:

1. If lock is not yet acquired from another place in the kernel, it is reserved for the current
processor. Other processors may no longer enter the following area.

2. If lock is already acquired by another processor, spin_lock goes into an endless loop to
repeatedly check whether lock has been released by spin_unlock (thus the name spinlock).
Once this is the case, lock is acquired, and the critical section of code is entered.

spin_lock is defined as an atomic operation to prevent race conditions arising when spinlocks are
acquired.

Additionally, the kernel provides the two methods spin_trylock and spin_trylock_bh. They try to
obtain a lock, but will not block if it cannot be immediately acquired. When the locking operation has
succeeded, they return a nonzero value (and the code is protected by the spinlock), but otherwise they
return 0. In this case, the code is not protected by the lock.

Two points must be noted when using spinlocks:

1. If a lock is acquired but no longer released, the system is rendered unusable. All
processors — including the one that acquired the lock — sooner or later arrive at a point
where they must enter the critical region. They go into the endless loop to wait for lock
release, but this never happens. This produces a deadlock, and the grim name suggests that
it’s something that should be avoided.

354

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 355

Chapter 5: Locking and Interprocess Communication

2. On no account should spinlocks be acquired for a longer period because all processors wait-
ing for lock release are no longer available for other productive tasks (the situation with
semaphores is different, as you will see shortly).

Code that is protected by spinlocks must not go to sleep. This rule is not so simple
to obey as it seems: It is not complicated to avoid going to sleep actively, but it must
also be ensured that none of the functions that are called inside a spinlocked region
can go to sleep! One particular example is the kmalloc function: Usually the
requested memory will be returned straight away, but when the kernel is short on
memory, the function can go to sleep, as discussed in Chapter 3. Code that makes
the mistake of allocating memory inside a spinlocked region will thus work
perfectly fine most of the time, but sometimes cause a failure. Naturally, such
problems are very hard to reproduce and debug. Therefore, you should pay great
attention to which functions you call inside a spinlocked region, and make sure that
they cannot go to sleep in any circumstance.

On uniprocessor systems, spinlocks are defined as empty operations because critical sections cannot be
entered by several CPUs at the same time. However, this does not apply if kernel preemption is enabled.
If the kernel is interrupted in a critical region and this region is then entered by another process, this has
exactly the same effect as if the region were actually being executed by two processors on SMP systems.
This is prevented by a simple trick — kernel preemption is disabled when the kernel is in a critical
region protected by a spinlock. When a uniprocessor kernel is compiled with enabled kernel preemption,
spin_lock is (basically) equivalent to preempt_disable and spin_unlock to preempt_enable.

Spinlocks cannot be acquired more than once from the current holder! This is
especially important when functions that call other functions that each operate with
the same lock. If a lock has already been acquired and a function is called that tries
to again acquire it although the current code path is already holding the lock, a
deadlock will occur — the processor will wait for itself to release the lock, and this
might take a while . . .

Finally, notice that the kernel itself also provides some notes on how to use spinlocks in
Documentation/spinlocks.txt.

5.2.3 Semaphores
Semaphores that are used in the kernel are defined by the structure below. Userspace semaphores are
implemented differently, as described in Section 5.3.2.

<asm-arch/semaphore.h>
struct semaphore {

atomic_t count;
int sleepers;
wait_queue_head_t wait;

};

355

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 356

Chapter 5: Locking and Interprocess Communication

Although the structure is defined in an architecture-dependent header file, most architectures use the
structure shown.

❑ count specifies how many processes may be in the critical region protected by the semaphore at
the same time. count == 1 is used in most cases (semaphores of this kind are also known as mutex
semaphores because they are used to implement mutual exclusion).

❑ sleepers specifies the number of processes waiting to be allowed to enter the critical region.
Unlike spinlocks, waiting processes go to sleep and are not woken until the semaphore is free;
this means that the relevant CPU can perform other tasks in the meantime.

❑ wait is used to implement a queue to hold the task structures of all processes sleeping on the
semaphore (Chapter 14 describes the underlying mechanisms).

In contrast to spinlocks, semaphores are suitable for protecting longer critical sections against parallel
access. However, they should not be used to protect shorter sections because it is very costly to put
processes to sleep and wake them up again — as happens when the semaphore is contended.

In most cases, the full potential of semaphores is not required, but they are used in the form of mutexes,
which are nothing other than binary semaphores. To simplify this case, the kernel provides the macros
DECLARE_MUTEX, which declare a binary semaphore that starts out unlocked with count = 1.3

DECLARE_MUTEX(mutex)
...
down(&mutex);
/* Critical section */
up(&mutex);

The usage counter is decremented with down when the critical section is entered. When the counter has
reached 0, no other process may enter the section.

When an attempt is made to acquire a reserved semaphore with down, the current process is put to sleep
and placed on the wait queue associated with the semaphore. At the same time, the process is placed
in the TASK_UNINTERRUPTIBLE state and cannot receive signals while waiting to enter the critical region.
If the semaphore is not reserved, the process may immediately continue without being put to sleep and
enters the critical region, but not without reserving the semaphore first.

up must be called when the critical region is exited. The routine is responsible for waking one of the
processes sleeping on the semaphore — this process is then allowed to enter the critical section, and all
other processes continue to sleep.

In addition to down, two other operations are used to reserve a semaphore (unlike spinlocks, only one up
function is available and is used to exit the section protected by a semaphore):

❑ down_interruptible works in the same way as down but places the task in the
TASK_INTERRUPTIBLE state if the semaphore could not be acquired. As a result, the
process can be woken by signals while it is sleeping.4

3Note that earlier kernel versions also provided the macro DECLARE_MUTEX_LOCKED to initialize a locked semaphore, but this
variant has been removed during the development of kernel 2.6.24 because it was only required for operations that can be better
implemented by completions, as discussed in Section 14.4.
4If the semaphore is acquired, the function returns 0. If the process is interrupted by a signal without acquiring the semaphore,
-EINTR is returned.

356

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 357

Chapter 5: Locking and Interprocess Communication

❑ down_trylock attempts to acquire a semaphore. If it fails, the process does not go to sleep to wait
for the semaphore but continues execution normally. If the semaphore is acquired, the function
returns a false value, otherwise a true value.

In addition to mutex variables that can be used in the kernel only, Linux also features so-called futexes (fast
userspace mutex) that consist of a combination of kernel and user mode. These provide mutex functionality
for userspace processes. However, it must be ensured that they are used and manipulated as quickly
and efficiently as possible. For reasons of space, I dispense with a description of their implementation,
particularly as they are not especially important for the kernel itself. See the manual page futex(2) for
more information.

5.2.4 The Read-Copy-Update Mechanism
Read-copy-update (RCU) is a rather new synchronization mechanism that was added during the devel-
opment of kernel 2.5, but has been very favorably accepted by the kernel community. It is by now used
in numerous places all over the kernel. RCU performs very well in terms of performance impact, if at a
slight cost in memory requirements, which is, however, mostly negligible. This is a good thing, but good
things are always accompanied by a number of not-so-good things. This time, it’s the constraints that
RCU places on potential users:

❑ Accesses to the shared resource should be Read Only most of the time, and writes should be
correspondingly rare.

❑ The kernel cannot go to sleep within a region protected by RCU.

❑ The protected resource must be accessed via a pointer.

The principle of RCU is simple: The mechanism keeps track of all users of the pointer to the shared
data structure. When the structure is supposed to change, a copy (or a new instance that is filled in
appropriately, this does not make any difference) is first created and the change is performed there. After
all previous readers have finished their reading work on the old copy, the pointer can be replaced by a
pointer to the new, modified copy. Notice that this allows read access to happen concurrently with write
updates!

Core API
Suppose that a pointer ptr points to a data structure that is protected by RCU. It is forbidden to simply
de-reference the pointer, but rcu_dereference(ptr) must be invoked before and the result be de-
referenced. Additionally, the code that de-references the pointer and uses the result needs to be embraced
by calls to rcu_read_lock and rcu_read_unlock:

rcu_read_lock();

p = rcu_dereference(ptr);
if (p != NULL) {

awesome_function(p);
}

rcu_read_unlock();

The de-referenced pointer may not be used outside the region protected by
rcu_read_lock() ... rcu_read_unlock(), nor may it be used for write access!

357

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 358

Chapter 5: Locking and Interprocess Communication

If the object pointed at by ptr has to be modified, this must be done with rcu_assign_pointer:

struct super_duper *new_ptr = kmalloc(...);

new_ptr->meaning = xyz;
new_ptr->of = 42;
new_ptr->life = 23;

rcu_assign_pointer(ptr, new_ptr);

In RCU terminology, this publishes the pointer, and subsequent read operations will see the new structure
instead of the old one.

If updates can come from many places in the kernel, protection against concurrent
write operations must be provided using regular synchronization primitives, for
instance, spinlocks. While RCU protects readers from writers, it does not protect
writers against writers!

What happens to the old structure once the new value has been published? After all readers are gone,
the kernel can get rid of the memory — but it needs to know when this is safe to do. RCU provides two
more functions for this purpose:

❑ synchronize_rcu() waits until all existing readers have finished their work. After the function
returns, it is safe to free the memory associated with the old pointer.

❑ call_rcu can be used to register a function that is called after all existing readers to a shared
resource are gone. This requires that an instance of rcu_head is embedded — and not just acces-
sible via a pointer — into the data stucture protected by RCU:

struct super_duper {
struct rcu_head head;
int meaning, of, life;

};

The callback gets the rcu_head of the object passed as parameter and can use the container_of
mechanism to access the object.

kernel/rcupdate.c
void fastcall call_rcu(struct rcu_head *head,

void (*func)(struct rcu_head *rcu))

List Operations
Generic pointers are not the only objects that can be protected by RCU. The kernel also provides stan-
dard functions that allow for protecting doubly linked lists by the RCU mechanism, and this is the most
prominent application within the kernel. Additionally, hash lists that consist of struct hlist_head and
struct hlist_node pairs can also be protected by RCU.

The nice thing about list protection by RCU is that the standard list elements can still be used — it is only
necessary to invoke the RCU variants of standard functions to iterate over lists and change and delete list
elements. The names of the functions are easy to remember: Just append _rcu to the standard functions.

358

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 359

Chapter 5: Locking and Interprocess Communication

<list.h>
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
static inline void list_add_tail_rcu(struct list_head *new,

struct list_head *head)
static inline void list_del_rcu(struct list_head *entry)
static inline void list_replace_rcu(struct list_head *old,

struct list_head *new)

❑ list_add_rcu adds a new element new to the beginning of a list headed by head, while
list_add_tail_rcu adds it to the end.

❑ list_replace_rcu replaces the list element old with new.

❑ list_del_rcu removes the element entry from its list.

Most importantly, list_for_each_rcu allows for iterating over all elements of a list. The variant
list_for_each_rcu_safe is even safe against element removal.

Both operations must be enclosed in a rcu_read_lock() ... rcu_read_unlock() pair.

Notice that the kernel provides a large amount of documentation about RCU by the creator of the mecha-
nism. It is located in Documentation/RCU and makes for a very interesting read — especially because it is
not outdated like many other texts included in the kernel. The documents not only provide information
about how RCU is implemented, but additionally introduce some further standard functions not covered
here because their use in the kernel is not so common.

5.2.5 Memory and Optimization Barriers
Modern compilers and processors will try to squeeze every bit of performance out of code, and readers
will certainly agree that this is a good thing. However, as with every good thing, there is also a drawback
to consider (maybe you’ve heard this before in this chapter). One particular technique to achieve better
performance is to reorder instructions. This can be perfectly fine, as long as the result is identical. How-
ever, it can be hard to decide for a compiler or processor if the result of a reordering will really match
the intended purpose, especially if side effects need to be considered — a thing at which machines are
naturally suboptimal compared to humans. Side effects are, however, a common and necessary effect
when data are written to I/O registers.

While locks are sufficient to ensure atomicity, they cannot always guarantee time ordering of code that is
subjected to optimizations by compilers and processors. And, in contrast to race conditions, this problem
not only affects SMP systems, but also uniprocessor machines.

The kernel provides several functions to prevent both the processor and the compiler from reordering
code:

❑ mb(), rmb(), and wmb() insert hardware memory barriers into the code flow. rmb() is a read mem-
ory barrier. It guarantees that all read operations issued before the barrier are completed before
any read operations after the barrier are carried out. wmb does the same thing, but this time for
write accesses. And, as you have guessed, mb() combines both effects.

❑ barrier inserts an optimization barrier. This instructs the compiler to assume that all memory
locations in RAM stored in CPU registers that were valid before the barrier are invalid
after the barrier. Essentially, this means that the compiler does not process any read or write

359

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 360

Chapter 5: Locking and Interprocess Communication

requests following the barrier before read or write requests issued before the barrier have been
completed.

The CPU can still reorder the time flow!

❑ smb_mb(), smp_rmb(), and smp_wmb() act as the hardware memory barriers described above,
but only when they are used on SMP systems. They generate a software barrier on uniprocessor
systems instead.

❑ read_barrier_depends() is a special form of a read barrier that takes dependencies among
read operations into account. If a read request after the barrier depends on data for which a read
request is performed before the barrier, then both compiler and hardware must not reorder these
requests.

Notice that all commands presented above will have an impact on run-time performance. This is only
natural because if optimizations are disabled, things tend to run slower than with optimizations, which
is the whole purpose of optimizing code. Most of you will agree, though, the code that runs a little slower
but does the right thing is preferable to code that is fast — and wrong.

One particular application for optimization barriers is the kernel preemption mechanism. Note
that the preempt_disable increments the preemption counter and thus disables preemption, while
preempt_enable reenables preemption again by decreasing the preemption counter. Code inside a
region embraced by these commands is protected against preemption. Consider the following code:

preempt_disable();
function_which_must_not_be_preempted();
preempt_enable();

It would be quite inconvenient if the compiler would decide to rearrange the code as follows:

function_which_must_not_be_preempted();
preempt_disable();
preempt_enable();

Another possible reordering would be likewise suboptimal:

preempt_disable();
preempt_enable();
function_which_must_not_be_preempted();

In both cases, the non-preemptible part could be preempted. Therefore, preempt_disable inserts a mem-
ory barrier after the preemption counter has been incremented:

<preempt.h>
#define preempt_disable() \
do { \

inc_preempt_count(); \
barrier(); \

} while (0)

This prevents the compiler from swapping inc_preempt_count() with any of the following statements.
Likewise, preempt_enable has to insert an optimization barrier before preemption is enabled again:

<preempt.h>
#define preempt_enable() \
do { \

360

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 361

Chapter 5: Locking and Interprocess Communication

...
barrier(); \
preempt_check_resched(); \

} while (0)

This measure protects against the second erroneous reordering shown above.

All barrier commands discussed so far are made available by including <system.h>. You might have got-
ten the impression that memory barriers are notoriously complicated to use, and your perception serves
you well, indeed — getting memory and optimization barriers right can be a very tricky business. It
should therefore be noted that memory barriers are not particularly favored by some kernel maintainers,
and code using them will have a hard time finding its way into mainline. So it’s always worth a try to see
if things cannot be done differently without barriers. This is possible because locking instructions will on
many architectures also act as memory barriers. However, this needs to be checked for the specific cases
that require memory barriers, and general advice is hard to give.

5.2.6 Reader/Writer Locks
The mechanisms described above have one disadvantage. They do not differentiate between situations
in which data structures are simply read and those in which they are actively manipulated. Usually, any
number of processes are granted concurrent read access to data structures, whereas write access must be
restricted exclusively to a single task.

The kernel therefore provides additional semaphore and spinlock versions to cater for the above — these
are known accordingly as Reader/Writer semaphores and Reader/Writer spinlocks.

The rwlock_t data type is defined for Reader/Writer spinlocks. Locks must be acquired in different ways
in order to differentiate between read and write access.

❑ read_lock and read_unlock must be executed before and after a critical region to which a pro-
cess requires read access. The kernel grants any number of read processes concurrent access to
the critical region.

❑ write_lock and write_unlock are used for write access. The kernel ensures that only one writer
(and no readers) is in the region.

An _irq _irqsave variant is also available and functions in the same way as normal spinlocks. Variants
ending in _bh are also available. They disable software interrupts, but leave hardware interrupts still
enabled.

Read/write semaphores are used in a similar way. The equivalent data structure is struct rw_semaphore,
and down_read and up_read are used to obtain read access to the critical region. Write access is per-
formed with the help of down_write and up_write. The _trylock variants are also available for all
commands — they also function as described above.

5.2.7 The Big Kernel Lock
A relic of earlier days is the option of locking the entire kernel to ensure that no processors run in par-
allel in kernel mode. This lock is known as the big kernel lock but is most frequently referred to by its
abbreviation, BKL.

The complete kernel is locked using lock_kernel; its unlocking counterpart is unlock_kernel.

361

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 362

Chapter 5: Locking and Interprocess Communication

A special feature of the BKL is that its lock depth is also counted. This means that lock_kernel
can be invoked even when the kernel has already been locked. The matching unlocking operation
(unlock_kernel) must then be invoked the same number of times to unlock the kernel so that other
processors can enter it.

Although the BKL is still present at more than 1,000 points in the kernel, it is an obsolete concept whose
use is deprecated by kernel developers because it is a catastrophe in terms of performance and scalability.
New code should on no account use the lock but should instead adopt the finer-grained options described
above. Nevertheless, it will be a few more years before the BKL finally disappears — if ever at all.5 The
kernel sources summarize the situation well:

lib/kernel_lock.c
/*
* lib/kernel_lock.c
*
* This is the traditional BKL - big kernel lock. Largely
* relegated to obsolescence, but used by various less
* important (or lazy) subsystems.
*/

Notice that SMP systems and UP systems with kernel preemption allow for preempting the big kernel
lock if the configuration option PREEMPT_BKL is set, although I will not discuss this mechanism further.
While this helps to decrease kernel latency, it is not a cure for the problems created by the BKL and
should only be seen as an emergency measure that serves as good as possible as an interim solution.

5.2.8 Mutexes
Although semaphores can be used to implement the functionality of mutexes, the overhead imposed
by the generality of semaphores is often not necessary. Because of this, the kernel contains a separate
implementation of special-purpose mutexes that are not based on semaphores. Or, to be precise, the
kernel contains two implementations of mutexes: A classical variant, and real-time mutexes that allow
for solving priority inversion problems. I discuss both approaches in the following.

Classical Mutexes
The basic data structure for classical mutexes is defined as follows:

<mutex.h>
struct mutex {

/* 1: unlocked, 0: locked, negative: locked, possible waiters */
atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

};

The concept is rather simple: count is 1 if the mutex is unlocked. The locked case distinguishes between
two situations. If only a single process is using the mutex, then count is set to 0. If the mutex is locked
and any processes are waiting on the mutex to be unlocked (and need be awoken when this happens),
count is negative. This special casing helps to speed up the code because in the usual case, no one will be
waiting on the mutex.

5During the development of kernel 2.6.26, a special kernel tree whose purpose is to speed up BKL removal was created, and hope-
fully progress will be accelerated by this measure.

362

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 363

Chapter 5: Locking and Interprocess Communication

There are two ways to define new mutexes:

1. Static mutexes can be generated at compile time by using DEFINE_MUTEX (be sure not to con-
fuse this with DECLARE_MUTEX from the semaphore-based mutexes!).

2. mutex_init dynamically initializes a new mutex at run time.

mutex_lock and mutex_unlock are used to lock and unlock a mutex, respectively. In addition, the kernel
also provides the function mutex_trylock, which tries to obtain the mutex, but will return immediately
if this fails because the mutex is already locked. Finally, mutex_trylock can be used to check if a given
mutex is locked or not.

Real-Time Mutexes
Real-time mutexes (RT-mutexes) are another form of mutex supported by the kernel. They need to be
explicitly enabled at compile time by selecting the configuration option CONFIG_RT_MUTEX. In contrast
to regular mutexes, they implement priority inheritance, which, in turn, allows for solving (or, at least,
attenuating) the effects of priority inversion. Both are well-known effects, respectively, methods and are
discussed in most operating systems textbooks.

Consider a situation in which two processes run on a system: A has high priority, and C has low priority.
Assume the C has acquired a mutex and is happily operating in the protected region, with no intention of
leaving it sometime in the near future. However, shortly after C has entered the protected region, A also
tries to obtain the mutex that protects it — and has to wait, because C has already acquired the mutex.
This causes the higher-priority process A to wait for the lower-priority process C.

Things can get worse when a third process B with a priority between A and C enters the field. Suppose
that C still holds the lock, and A is waiting for it. Now B gets ready to run. Because it has a higher
priority than C, it can preempt C. But it has also effectively preempted A, although this process has a
higher priority than B. If B continues to stay runnable, it can prevent A from running for a long time,
because C will finish its operation only slowly. B therefore acts as if it had a higher priority than A. This
unfortunate situation is referred to as unbounded priority inversion.

This problem can be solved by priority inheritance: When a high-priority process blocks on a mutex that
is currently held by a low-priority process, the priority of C (in our example) is temporarily boosted to the
priority of A. If B starts to run now, it will only get as much CPU time as if it were competing with A,
thus setting priorities straight again.

The definition of a RT-mutex is tantalizingly close to the definition of a regular mutex:

<rtmutex.h>
struct rt_mutex {

spinlock_t wait_lock;
struct plist_head wait_list;
struct task_struct *owner;

};

The mutex owner is denoted by owner, and wait_lock provides the actual protection. All waiting pro-
cesses are enqueued on wait_list. The decisive change in contrast to regular mutexes is that the tasks
on the waiter lists are sorted by priority. Whenever the waiter list changes, the kernel can consequently
adjust the priority of the owner up or down. This requires an interface to the scheduler that is provided
by the function rt_mutex_setprio. The function updates the dynamic priority task_struct->prio, but

363

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 364

Chapter 5: Locking and Interprocess Communication

leaves the normal priority task_struct->normal_priority untouched. If you are confused by these
terms, it might be a good idea to refresh yourself with the discussion of the scheduler in Chapter 2.

Besides, the kernel provides several standard functions (rt_mutex_init, rt_mutex_lock,
rt_mutex_unlock, rt_mutex_trylock) that work exactly as for regular mutexes and thus need
not be discussed any further.

5.2.9 Approximate Per-CPU Counters
Counters can become a bottleneck if a system is equipped with a large number of CPUs: Only one CPU at
a time may modify the value; all other CPUs need to wait for the operation to finish until they can access
the counter again. If a counter is frequently visited, this has a severe impact on system performance.

For some counters, it is not necessary to know the exact value at all times. An approximation of the
value serves quite as well as the proper value would do. This insight can be used to accelerate counter
manipulation on SMP systems by introducing per-CPU counters. The basic idea is depicted in Figure 5-1:
The proper counter value is stored at a certain place in memory, and an array with one entry for every
CPU in the system is kept below the memory location of the proper value.

value

Per-CPU
difference

Figure 5-1: Data stucture for approximate
per-CPU counters.

If a processor wants to modify the value of the counter by adding or subtracting a number n, it does
not perform this modification by directly changing the counter value because this would require locking
out other CPUs from accessing the counter, a potentially time-consuming operation. Instead, the desired
modification is stored in the CPU-specific entry of the array associated with the counter. If, for instance,
the value 3 was supposed to be added to the counter, the entry +3 would be stored in the array. If the
same CPU wants to substract a number (say, 5) from the counter at some other time, it also does not
perform the operation directly on the counter, but on the value in the CPU-specific array: 5 is subtracted
from 2, and the new value is thus −2. If any processor reads the counter value, it is not entirely accurate.
If the original value was 15, then it would be 13 after the previously mentioned modifications, but is still
15. If one wants to know the value only approximately, 13 is still a good approximation to 15.

If the changes in one of the CPU-specific array elements sum up to a value above or below a threshold
that is considered to be large, the proper counter value is changed. In this case, the kernel needs to make
sure that the access is protected by appropriate locking. But since this change now occurs only seldom,
the cost of the locking operation is not so important anymore.

364

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 365

Chapter 5: Locking and Interprocess Communication

As long as the counter changes only moderately, the mean value received from read operations in this
scheme is quite close to the proper value of the counter.

The kernel implements per-CPU counters with the help of the following data structure:

<percpu_counter.h>
struct percpu_counter {

spinlock_t lock;
long count;
long *counters;

};

count is the proper value of the counter, and lock is a spinlock to protect the counter when the exact
value is required. The CPU-specific array buffering counter manipulations is given by counters.

The threshold value that triggers the modification of the proper counter depends on the number of CPUs
found in the system:

<percpu_counter.h>
#if NR_CPUS >= 16
#define FBC_BATCH (NR_CPUS*2)
#else
#define FBC_BATCH (NR_CPUS*4)
#endif

The following functions are available to modify approximate per-CPU counters:

<percpu_counter.h>
static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount)
static inline void percpu_counter_dec(struct percpu_counter *fbc)
static inline s64 percpu_counter_sum(struct percpu_counter *fbc)
static inline void percpu_counter_set(struct percpu_counter *fbc, s64 amount)
static inline void percpu_counter_inc(struct percpu_counter *fbc)
static inline void percpu_counter_dev(struct percpu_counter *fbc)

❑ percpu_counter_add and percpu_counter_dec modify the counter by a given increment or
decrement. The change is propagated to the proper counter if the accumulated changes surpass
the threshold as given by FBC_BATCH.

❑ percpu_counter_read reads the current value of the counter without considering changes made
by the individual CPUs.

❑ percpu_counter_inc and percpu_counter_inc are shortcuts to, respectively, increment and
decrement an approximate counter by 1.

❑ percpu_counter_set sets the counter to a specific value.

❑ percpu_counter_sum computes the exact value.

5.2.10 Lock Contention and Fine-Grained Locking
After having discussed the numerous locking primitives provided by the kernel, let us briefly address
some of the problems related to locking and kernel scalability. While multiprocessor systems were nearly
completely unknown to the average user only a decade ago, they are present on nearly every desktop

365

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 366

Chapter 5: Locking and Interprocess Communication

today. Scalability of Linux on systems with more than a single CPU has therefore become a very impor-
tant goal. This needs especially to be taken into account when locking rules are designed for a piece of
kernel code. Locking needs to fulfill two purposes that are often hard to achieve simultaneously:

1. Code must be protected against concurrent access, which would lead to failures.

2. The impact on performance must be as little as possible.

Having both things at the same time is especially complicated when data are heavily used by the kernel.
Consider a really important data structure that is accessed very often — the memory management sub-
system contains such structures, for instance, but also the networking code and many other components
of the kernel. If the whole data structure (or, even worse, multiple data structures, or a whole driver, or
a whole subsystem6) is protected by only a single lock, than chances are high that the lock is acquired by
some other part of the system when one part want to get hold of it. Lock contention is said to be high in
this case, and the lock becomes a hotspot of the kernel. To remedy this situation, it is customary to iden-
tify independent parts of a data structure and use multiple locks to protect the elements. This solution is
known as fine-grained locking. While the approach is beneficial for scalability on really big machines, it
raises two other problems:

1. Taking many locks increases the overhead of an operation, especially on smaller SMP
machines.

2. When a data structure is protected by multiple locks, then cases naturally arise that an oper-
ation needs to access two protected regions simultaneously, and multiple locks must be held
at the same time. This makes it necessary to obey a certain lock ordering, which mandates
in which order locks are to be acquired and released. If not, then again deadlocks will be
the result! Since the code paths through the kernel can be complicated and interwoven, it is
especially hard to ensure that all cases are right.

Achieving fine-grained locking for good scalability while making sure to avoid deadlocks is therefore
currently among the kernel’s foremost challenges.

5.3 System V Interprocess Communication
Linux uses mechanisms introduced in System V (SysV) to support interprocess communication and syn-
chronization for user processes. System calls provide various routines to enable user libraries (typically
the C standard library) to implement the required operations.

In addition to semaphores, the SysV scheme of interprocess communication includes an option for
exchanging messages and sharing memory areas between processes in accordance with a controlled
pattern as described below.7

5.3.1 System V Mechanisms
The three IPC mechanisms of System V Unix (semaphores, message queues, and shared memory) reflect
three very different concepts but have one thing in common. They all make use of system-wide resources

6This is not so ridiculous as it may first sound, but the initial SMP-capable kernels even went one step further: After all, the big
kernel lock protects all of the kernel!
7The POSIX standard has now introduced similar structures in a more modern form. I do not discuss these because most applications
still use SysV mechanisms.

366

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 367

Chapter 5: Locking and Interprocess Communication

that can be shared by several processes at the same time. This would seem to be logical for IPC mecha-
nisms but nevertheless should not be taken for granted. For example, the mechanisms could have been
designed in such a way as to ensure that only the threads of a program or a structure generated by a fork
are able to access shared SysV objects.

Before individual SysV elements can be accessed by various independent processes, they must be
uniquely identifiable in the system. To this end, each IPC structure is assigned a number when it
is created. Each program with knowledge of this magic number is able to access the corresponding
structure. If independent applications are to communicate with each other, this number is usually
permanently compiled into the individual programs. An alternative is to dynamically generate a magic
number that is guaranteed to be unique (statically assigned numbers cannot be guaranteed to be unique).
The standard library provides several functions to do this (see the relevant system programming
manuals for detailed information).

A privilege system based on the system adopted for file access permissions is used to access IPC objects.
Each object has a user ID and a group ID that depend on the UID/GID under which the program that
generated the IPC object is running. Read and write permissions are assigned at initialization. As with
normal files, these govern access for three different user classes — owner, group, and others. Detailed
information on how this is done is provided in the corresponding system programming manuals.

The flag 0666 must be specified to create a semaphore that grants all possible access permissions (owner,
group, and all other users have read and write permissions).

5.3.2 Semaphores
System V semaphores are implemented using sem/sem.c in conjunction with the header file <sem.h>.
These semaphores are not related in any way to the kernel semaphores described above.

Using System V Semaphores
The System V interface for using semaphores is anything but intuitive because the concept of a
semaphore has been expanded well beyond its actual definition. Semaphores are no longer treated as
simple variables to support atomic execution of predefined operations. Instead, a System V semaphore
now refers to a whole set of semaphores, which allows not just one but several operations to be
performed at the same time (although they appear to be atomic to users). It is, of course, possible to
request a semaphore set with just a single semaphore and to define functions that simulate the behavior
of simple operations. The following sample program shows how semaphores are used:

#include<stdio.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/sem.h>

#define SEMKEY 1234L /* Identifier */
#define PERMS 0666 /* Access permission: rwrwrw */

struct sembuf op_down[1] = { 0, -1 , 0 };
struct sembuf op_up[1] = { 0, 1 , 0 };

int semid = -1; /* Semaphore identifier */
int res; /* Result of semaphore operations */

367

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 368

Chapter 5: Locking and Interprocess Communication

void init_sem() {
/* Test whether semaphore already exists */
semid = semget(SEMKEY, 0, IPC_CREAT | PERMS);
if (semid < 0) {
printf("Create the semaphore\n");

semid = semget(SEMKEY, 1, IPC_CREAT | PERMS);
if (semid < 0) {

printf("Couldn’t create semaphore!\n");
exit(-1);

}

/* Initialize with 1 */
res = semctl(semid, 0, SETVAL, 1);

}
}

void down() {
/* Perform down operation */
res = semop(semid, &op_down[0], 1);

}

void up() {
/* Perform up operation */
res = semop(semid, &op_up[0], 1);

}

int main(){
init_sem();
/* Normal program code. */

printf("Before critical code\n");
down();
/* Critical code */
printf("In critical code\n");
sleep(10);
up();

/* Remaing program code */
return 0;

}

A new semaphore with a permanently defined magic number (1234) is first created in main for purposes
of identification within the system. Because several copies of the program are to run in parallel, it is
necessary to test whether a corresponding semaphore already exists. If not, one is created. This is done
using the semget system call to reserve a semaphore set. It requires the following parameters: the magic
number (SEMKEY), the number of semaphores in the set (1), and the desired access permissions. The above
sample program creates a semaphore set with just a single semaphore. The access permissions indicate
that all users have both read and write access to the semaphore.8 Then the value of the single semaphore
in the semaphore set is initialized to 1 using the semctl system call. The semid variable identifies the
semaphore in the kernel (it can be obtained with the help of the magic number of any other program).

8IPC_CREAT is a system constant that must be ‘‘ORed‘‘with the access number to specify that a new semaphore is to be created.

368

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 369

Chapter 5: Locking and Interprocess Communication

0 specifies that we want to manipulate the semaphore with identifier 0 in our semaphore set (this is the
only semaphore in our set). The meaning of SETVAL, 1 is obvious — the semaphore value is to be set to 1.9

The familiar up and down operations are implemented by procedures of the same name. How the
semaphore value is modified in the SysV scheme is interesting. Operations are performed using the
semop system call, and, as usual, the semid variable is used to identify the desired semaphore. Of
particular note are the last two arguments. One is a pointer to an array with sembuf elements, each of
which represents a semaphore operation. The number of operations in the array is defined by an integer
argument because the kernel cannot otherwise identify the operations.

Entries in the sembuf array consist of three elements with the following meanings:

1. The first entry serves to select the semaphore in the semaphore set.

2. The second entry specifies the desired operation. 0 waits until the value of the semaphore
reaches 0; a positive number is added to the value of the semaphore (and corresponds to
releasing a resource; the process cannot go to sleep with this action); a negative number is
used to request resources. If the absolute value is less than the value of the semaphore, its
(absolute) value is subtracted from the current semaphore value without sleeping on the
semaphore; otherwise, the process blocks until the semaphore value reaches a value that
allows the operation to be performed.

3. The third entry is a flag used for fine control of the operation.

The behavior of a semaphore can be simulated by using 1 and -1 as numeric arguments. down tries to
subtract 1 from the semaphore counter (and goes to sleep when the semaphore value reaches 0), while up
adds 1 to the semaphore value and therefore corresponds to releasing a resource.

The code yields the following result:

wolfgang@meitner> ./sema
Create the semaphore
Before the critical code
In the critical code

The program creates the semaphore, enters the critical code, and waits there for 10 seconds. Before the
code is entered, a down operation is performed to decrement the semaphore value to 0. A second process
started during the wait period is not allowed to enter critical code.

wolfgang@meitner> ./sema
Before the critical code

Any attempt to enter critical code triggers a down operation, which tries to subtract 1 from the semaphore
value. This fails because the current value is 0. The process goes to sleep on the semaphore. It is not
woken until the first process has released the resource by means of an up operation (and the semaphore
value has reverted to 1). It can then decrement the semaphore value and enter the critical code.

Data Structures
The kernel uses several data structures to describe the current status of all registered semaphores and
to build a kind of network. They are responsible not only for managing the semaphores and their

9For the sake of simplicity, we do not query for errors in our sample program.

369

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 370

Chapter 5: Locking and Interprocess Communication

characteristics (value, read, and write permissions, etc.), but also for associating semaphores with waiting
processes by means of a waiting list.

Starting with kernel 2.6.19, the IPC mechanism is aware of namespaces (see Chapter 2 for more informa-
tion about this concept). Managing IPC namespaces is, however, simple because they are not hierarchi-
cally related. A given task belongs to the namespace pointed at by task_struct->nsproxy->ipc_ns, and
the initial default namespace is implemented by the static ipc_namespace instance init_ipc_ns. Each
namespace carries essentially the following information:

<ipc.h>
struct ipc_namespace {
...

struct ipc_ids *ids[3];

/* Resource limits */
...
}

I have omitted a large number of elements devoted to observing resource consumption and setting
resource limits. The kernel, for instance, restricts the maximum number of shared memory pages, the
maximum size for a shared memory segment, the maximum number of message queues, and so on.
All restrictions apply on a per-namespace basis and are documented in the manual pages msgget(2),
shmget(2), and semget(2), so I will not discuss them further here. All are implemented by simple
counters.

More interesting is the array ids. One array position per IPC mechanism — shared memory, semaphores,
and messages — exists, and each points to an instance of struct ipc_ids that is the basis to keep track
of the existing IPC objects per category. To prevent getting lost in search of the proper array index per
category, the kernel provides the auxiliary functions msg_ids, shm_ids, and sem_ids. But just in case
you were wondering, semaphores live in position 0, followed by message queues and then by shared
memory.

struct ipc_ids is defined as follows:

ipc/util.h
struct ipc_ids {

int in_use;
unsigned short seq;
unsigned short seq_max;
struct rw_semaphore rw_mutex;
struct idr ipcs_idr;

};

The first elements hold general information on the status of the IPC objects:

❑ in_use holds the number of IPC objects currently in use.

❑ seq and seq_id allow generating userspace IPC identifiers sequentially. Note that the identifiers
are not identical with the sequence numbers, though. The kernel identifies an IPC object inter-
nally with an identifier managed per resource type, that is, one identifier for message queues,
one for semaphores, and one for shared memory objects. Each time a new IPC object is created,
the sequence number is incremented by 1 (wrapping is handled automatically).

370

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 371

Chapter 5: Locking and Interprocess Communication

The identifier visible to userland is given by s*SEQ_MULTIPLIER+i, where s is the current
sequence number and i is the kernel-internal identifier. The sequence multiplier is set to
the upper limit for IPC objects. If an internal ID is reused, a different userspace identifier is
generated this way because the sequence number is reused. This minimizes the risk of using a
wrong resource when a stale ID is passed from userland.

❑ rw_mutex is a kernel semaphore. It is used to implement semaphore operations and safeguards
against race conditions in userspace. The mutex appropriately protects the data structures that
contain, for instance, the semaphore value.

Each IPC object is represented by an instance of kern_ipc_perm to which we come in a moment. Each
object has a kernel-internal ID, and ipcs_idr is used to associate an ID with a pointer to the correspond-
ing kern_ipc_perm instance. Since the number of used IPC objects can grow and shrink dynamically,
a static array would not serve well to manage the information, but the kernel provides a radix-tree-like
(see Appendix C) standard data structure in lib/idr.c for this purpose. How the entries are managed
in detail is not relevant for our purposes; it suffices to know that each internal ID can be associated with
the respective kern_ipc_perm instance without problems.

The elements of kern_ipc_perm hold information on semaphore ‘‘owners‘‘ and on access permissions.

<ipc.h>
struct kern_ipc_perm
{

int id;
key_t key;
uid_t uid;
gid_t gid;
uid_t cuid;
gid_t cgid;
mode_t mode;
unsigned long seq;

};

The structure can be used not only for semaphores but also for other IPC mechanisms. You will come
across it frequently in this chapter.

❑ key holds the magic number used by user programs to identify the semaphore, and id is the
kernel-internal identifier.

❑ uid and gid specify the user and group ID of the owner. cuid and cgid hold the same data for
the process that generated the semaphore.

❑ seq is a sequence number that was used when the object was reserved.

❑ mode holds the bitmask, which specifies access permissions in accordance with the owner, group,
others scheme.

The above data structures are not sufficient to keep all information required for semaphores. A special
per-task element is required:

<sched.h>
struct task_struct {
...
#ifdef CONFIG_SYSVIPC

371

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 372

Chapter 5: Locking and Interprocess Communication

/* ipc stuff */
struct sysv_sem sysvsem;

#endif
...
};

Note that the SysV code is only compiled into the kernel if the configuration option CONFIG_SYSVIPC is
set. The sysv_sem data structure is used to encapsulate a further element.

sem.h
struct sysv_sem {

struct sem_undo_list *undo_list;
};

The only member, undo_list, is used to permit semaphore manipulations that can be undone. If a pro-
cess crashes after modifying a semaphore, the information held in the list is used to return the semaphore
to its state prior to modification. The mechanism is useful when the crashed process has made changes
after which processes waiting on the semaphore can no longer be woken. By undoing these actions (using
the information in the undo list), the semaphore can be returned to a consistent state, thus preventing
deadlocks. I won’t bother with the details here, however.

sem_queue is another data structure that is used to associate a semaphore with a sleeping process that
wants to perform a semaphore operation but is not allowed to do so at the moment. In other words, each
instance of the data structure is an entry in the list of pending operations.

<sem.h>
struct sem_queue {

struct sem_queue * next; /* next entry in the queue */
struct sem_queue ** prev; /* previous entry in the queue, *(q->prev) == q */
struct task_struct* sleeper; /* this process */
struct sem_undo * undo; /* undo structure */
int pid; /* process id of requesting process */
int status; /* completion status of operation */
struct sem_array * sma; /* semaphore array for operations */
int id; /* internal sem id */
struct sembuf * sops; /* array of pending operations */
int nsops; /* number of operations */
int alter; /* does the operation alter the array? */

};

For each semaphore, there is exactly one queue that manages all sleeping processes associated with the
semaphore. The queue is not implemented using standard kernel facilities but manually by means of
next and prev pointers.

❑ sleeper is a pointer to the task structure of the process waiting for permission to perform a
semaphore operation.

❑ pid specifies the PID of the waiting process.

❑ id holds the kernel-internal semaphore identifier.

372

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 373

Chapter 5: Locking and Interprocess Communication

❑ sops is a pointer to an array that holds the pending semaphore operations (a further data struc-
ture discussed below is used to describe the operations themselves). The number of operations
(i.e., the size of the array) is defined in sops.

❑ alter indicates whether the operations alter the value of the semaphore (e.g., a status query
leaves the value unchanged).

sma holds a pointer to an instance of the data structure used to manage the semaphore status.

<sem.h>
struct sem_array {

struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
time_t sem_otime; /* last semop time */
time_t sem_ctime; /* last change time */
struct sem *sem_base; /* ptr to first semaphore in array */
struct sem_queue *sem_pending; /* pending operations to be processed */
struct sem_queue **sem_pending_last; /* last pending operation */
struct sem_undo *undo; /* undo requests on this array */
unsigned long sem_nsems; /* no. of semaphores in array */

};

There is exactly one instance of this data structure in the system for each semaphore set. The instance is
used to manage all the semaphores that make up the set.

❑ Semaphore access permissions are held in sem_perm of the familiar kern_ipc_perm type. This
must be located at the beginning of the structure so that a trick can be used involving the
ipc_ids->entries arrays employed to manage all semaphore sets. Because the individual
elements point to areas in which sufficient memory is reserved not only for kern_ipc_perm but
also for sem_array, the kernel can switch between both representations by means of typecasts.

This trick is also used for other SysV-IPC objects, as you will see further below.

❑ sem_nsems specifies the number of semaphores in a user semaphore.

❑ sem_base is an array, each of whose entries describes a semaphore in the set. It holds the current
semaphore value and the PID of the process that last accessed it.

<sem.h>
struct sem {

int semval; /* current value */
int sempid; /* pid of last operation */

};

❑ sem_otime specifies the time of the last access to the semaphore in jiffies (including, e.g., infor-
mation queries). sem_ctime specifies the time the semaphore value was last changed.

❑ sem_pending points to a linked list of pending semaphore operations. The list consists of
sem_queue instances. sem_pending_last is used to quickly access the last element in the list,
whereas sem_pending points to the start of the list.

Figure 5-2 shows the interplay between the data structures involved.

373

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 374

Chapter 5: Locking and Interprocess Communication

ipcs_idr

s
t
r
u
c
t

s
e
m
_
a
r
r
a
y

sem_pending
_last

sem_base
sem_
pending

struct
kern_ipc_perm

ID to pointer mapping

sma sma sma sma

struct task_struct

struct sem_queue

sembuf->sleeper

struct sem[]

struct
ipc_ids

Figure 5-2: Interplay between the semaphore data structures.

Starting from the sem_ids instance obtained from the current namespace, the kernel travels via ipcs_idr
to the ID-to-pointer database and looks up the required instance of kern_ipc_perm. The kern_ipc_perm
entry can be type-cast into an instance of type sem_array. The current status of the semaphore is indicated
by linking with two further structures.

❑ The pending operations are managed in a linked list of sem_queue instances. Processes that are
sleeping while waiting for operation execution can also be determined from this list.

❑ An array of struct sem instances is used to hold the values of the individual semaphores of
the set.

Not shown is the information for managing undo operations because it is not particularly interesting and
would complicate matters unnecessarily.

kern_ipc_perm is the first element of the data structure for managing IPC objects not only for semaphores
but also for message queues and shared memory objects. It enables the kernel to use the same code to
check access permissions in all three cases.

Each sem_queue element contains a pointer to an array of sem_ops instances that describe in detail the
operations to be performed on the semaphore. (An array of sem_ops instances is used because several
operations can be performed on the semaphores in a semaphore set using a single semctl call.)

<sem.h>
struct sembuf {

unsigned short sem_num; /* semaphore index in array */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

374

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 375

Chapter 5: Locking and Interprocess Communication

This definition brings to mind the sample code shown in Section 5.3.2. It is exactly the same data struc-
ture used by the program to describe an operation on a semaphore. It holds not only the number of the
semaphore in the semaphore set (sem_num) but also the desired operation (sem_op) and a number of
operation flags (sem_flg).

Implementing System Calls
All operations on semaphores are performed using a single system call named ipc. This call is used not
only for semaphores but also to manipulate message queues and shared memory. Its first parameter
delegates the actual multiplex work to other functions. These functions are as follows for semaphores:

❑ SEMCTL performs a semaphore operation and is implemented in sys_semctl.

❑ SEMGET reads the semaphore identifier; sys_semget is the associated implementation.

❑ SEMOP and SEMTIMEDOP are responsible for incrementing and decrementing the semaphore value;
the latter enables a time-out to be specified.

The use of a single system call to delegate work to multiple other functions is a relic of early days.10

Some architectures to which the kernel was later ported (e.g., IA-64 and AMD64) dispense with the
implementation of the ipc multiplexer and use the above ‘‘subfunctions‘‘ directly as system calls. Older
architectures like IA-32 still provide the multiplexer, but individual system calls for the variants have
been added during the development of kernel 2.5. Since the implementation is generic, all architectures
benefit from this. sys_semtimedop offers the functionality of sys_ipc for SEMOP and SEMTIMEDOP, and
sys_semctl and sys_semget are direct implementations of SEMCTL and SEMGET, respectively.

Notice that the operations that get an IPC object are, however, quickly reunited, as Figure 5-3 illustrates.
This is possible because the data structures to manage IPC objects are generic and not dependent on a
particular IPC type as described above.

ipcget

Other operations

select
ipd_ids
instance

select
ipd_ids
instance

select
ipd_ids
instance

Yes

sys_ipc

sys_shmget sys_msgget sys_semget

IPC_PRIVATE?

ipc_get_public

ipcget_new

Figure 5-3: The system calls to obtain IPC objects can be unified by a common helper
function.

10The kernel comment ‘‘This is really horribly ugly‘‘ for sys_ipc does have a cause.

375

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 376

Chapter 5: Locking and Interprocess Communication

Permission Checks
IPC objects are protected by the same mechanisms that apply to regular file-based objects. Access rights
can be separately specified for the owner of an object, the group, and all other users. Furthermore, the
possible rights are reading, writing, and executing. ipcperms is responsible for checking if permissions
are given for a certain operation on any of the possible IPC objects. It is defined as follows:

ipc/util.c
int ipcperms (struct kern_ipc_perm *ipcp, short flag)
{ /* flag will most probably be 0 or S_...UGO from <linux/stat.h> */

int requested_mode, granted_mode, err;
...

requested_mode = (flag >> 6) | (flag >> 3) | flag;
granted_mode = ipcp->mode;
if (current->euid == ipcp->cuid || current->euid == ipcp->uid)

granted_mode >>= 6;
else if (in_group_p(ipcp->cgid) || in_group_p(ipcp->gid))

granted_mode >>= 3;
/* is there some bit set in requested_mode but not in granted_mode? */
if ((requested_mode & ~granted_mode & 0007) &&

!capable(CAP_IPC_OWNER))
return -1;

return security_ipc_permission(ipcp, flag);
}

The requested mode (request_mode) contains the requested flags bit-triples as a threefold copy.
granted_mode initially holds the mode bits of the IPC object. Depending on whether the user himself,
a member of the group, or someone else wants to perform a specific operation, the contents of
granted_mode are shifted to the right such that the appropriate bit-triple resides in the low three bits.
If the last three bits of requested_mode and granted_mode disagree, permission is denied accordingly.
securit_ipc_permission hooks into other security frameworks like SELinux, which are potentially
active but need not concern us here.

5.3.3 Message Queues
Another way of communicating between processes is to exchange messages. This is done using the
message queue mechanism, whose implementation is based on the System V model. There are some
commonalities between message queues and semaphores as far as data structures are concerned.

The functional principle of messages queues is relatively simple, as Figure 5-4 shows.

A

C

B

1
2
3
4

Figure 5-4: Functional principle of System V
message queues.

376

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 377

Chapter 5: Locking and Interprocess Communication

A process usually referred to as the sender generates messages and writes them to a queue, while one or
more other processes (logically known as receivers) retrieve them from the queue. The individual message
elements contain the message text and a (positive) number to implement several types within a message
queue. Receivers can retrieve messages on the basis of the number (e.g., they can specify that they will
accept only messages with the number 1 or messages up to the number 5). Once a message has been read,
the kernel deletes it from the queue. Even if several processes are listening in on a channel, each message
can be read by one process only.

Messages with the same number are processed in FIFO order (first in, first out). Messages placed on
the queue first are retrieved first. However, if messages are read selectively, the FIFO order no longer
applies.

Sender and receiver need not be running at the same time in order to communicate
via message queues. For example, a sender process can open a queue, write
messages on it, and terminate its work. A receiver process started after the sender
has terminated can still access the queue and (by reference to the message number)
retrieve the messages intended for it. The messages are held by the kernel in the
intervening period.

Message queues are also implemented using a network of data structures similar to those already dis-
cussed. The starting point is the appropriate ipc_ids instance of the current namespace.

Again, the internal ID numbers are formally associated with kern_ipc_perm instances, but as in the
semaphore case, a different data type (struct msg_queue) is obtained as a result of type conversion. The
structure is defined as follows:

<msg.h>
struct msg_queue {

struct kern_ipc_perm q_perm;
time_t q_stime; /* last msgsnd time */
time_t q_rtime; /* last msgrcv time */
time_t q_ctime; /* last change time */
unsigned long q_cbytes; /* current number of bytes on queue */
unsigned long q_qnum; /* number of messages in queue */
unsigned long q_qbytes; /* max number of bytes on queue */
pid_t q_lspid; /* pid of last msgsnd */
pid_t q_lrpid; /* last receive pid */

struct list_head q_messages;
struct list_head q_receivers;
struct list_head q_senders;

};

The structure includes status information as well as queue access permissions.

❑ q_stime, q_rtime and q_ctime specify the last send, receive, and change time (if queue proper-
ties are changed).

❑ q_cbytes specifies the number of bytes currently used by the messages in the queue.

377

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 378

Chapter 5: Locking and Interprocess Communication

❑ q_qbytes specifies the maximum number of bytes that may be used by the messages in the
queue.

❑ q_num specifies the number of messages in the queue.

❑ q_lspid is the PID of the last sender process; q_lrpid is the PID of the last receiver process.

Three standard lists of the kernel are used to manage sleeping senders (q_senders), sleeping receivers
(q_receivers), and the messages themselves (q_messages). Each uses its own separate data structures as
list elements.

Each message in q_messages is encapsulated in an instance of msg_msg.

ipc/msg.c
struct msg_msg {

struct list_head m_list;
long m_type;
int m_ts; /* message text size */
struct msg_msgseg* next;
/* the actual message follows immediately */

};

m_list is used as a list element to link the individual messages; the other elements are used to manage
the message itself.

❑ m_type specifies the message type and is used as described to support several types per queue.

❑ m_ts specifies the message text size in bytes.

❑ next is needed to hold long messages requiring more than one memory page.

There is no explicit field in which the message itself is stored. Because (at least) one page is always
reserved for each message and the msg_msg instance is held at the beginning of this page, the remaining
space can be used to store the message text, as shown in Figure 5-5.

Page frame

struct msg_msg
next next

struct msg_msg_seq struct msg_msg_seq

Message text

Figure 5-5: Managing an IPC message in memory.

The maximum number of bytes available for the message text in a msg_msg page is calculated by sub-
tracting the size of the structure from the size of a memory page.

ipc/msgutils.c
#define DATALEN_MSG (PAGE_SIZE-sizeof(struct msg_msg))

378

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 379

Chapter 5: Locking and Interprocess Communication

Longer messages must be spread over several pages with the help of the next pointer. This points to
an instance of msg_msgseq that is also situated at the beginning of a page, as shown in Figure 5-5. It is
defined as follows:

ipc/msgutils.c
struct msg_msgseg {

struct msg_msgseg* next;
/* the next part of the message follows immediately */

};

Again, the message text immediately follows the data structure instance. next is used to enable the
message to be spread over any number of pages.

Both sender and receiver processes can go to sleep when communicating via message queues —
senders while they are attempting to write a message on a queue whose maximum capacity has
already been reached; receivers when they want to retrieve a message from a queue although none
has arrived.

Sleeping senders are placed on the q_senders list of msg_queue using the following data structure:

ipc/msg.c
struct msg_sender {

struct list_head list;
struct task_struct* tsk;

};

list is a list element, and tsk is a pointer to the corresponding task structure. No additional information
is required because the sender process goes to sleep during the sys_msgsnd system call — which can also
be activated via sys_ipc — used to send the message and automatically repeats the send operation when
it is woken.

The data structure to hold the receiver process in the q_receivers list is a little longer.

ipc/msg.c
struct msg_receiver {

struct list_head r_list;
struct task_struct *r_tsk;

int r_mode;
long r_msgtype;
long r_maxsize;

struct msg_msg *volatile r_msg;
};

It holds not only a pointer to the corresponding task structure but also the descriptors of the expected
message (above all, the message type r_msgtype) and a pointer to a msg_msg instance into which the data
are copied if available.

Figure 5-6 illustrates the interplay of the message queue data structures (for the sake of clarity, the list of
sleeping senders is not shown).

379

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 380

Chapter 5: Locking and Interprocess Communication

q_messages
q_receivers
q_senders

struct msg_receiver

struct task_struct

struct msg_msg
ipcs_idr

s
t
r
u
c
t

m
s
g
_
q
u
e
u
e

struct
kern_ipc_perm

ID to pointer mapping

struct
ipc_ids

Figure 5-6: Data structures for System V message queues.

5.3.4 Shared Memory
From the user and kernel perspective, shared memory — the third and final SysV concept for interprocess
communication — uses similar structures for its implementation to the first two mechanisms described
above. Its essential aspects do not differ from those of semaphores and message queues.

❑ Applications request an IPC object that can be accessed via a common magic number and a
kernel-internal identifier via the current namespace.

❑ Access to memory can be restricted by means of a system of privileges.

❑ System calls are used to allocate memory that is associated with the IPC object and that can be
accessed by all processes with the appropriate authorization.

Kernel-side implementation also adopts very similar concepts to those described above. I will therefore
make do with a brief description of the data structures shown in Figure 5-7.

shm_file

s
h
m
i
d
_
k
e
r
n
e
l

struct
address_
space

struct
file

ipcs_idr

ID to pointer mapping

struct
ipc_ids kern_ipc_perm

Figure 5-7: Data structures for System V shared memory.

Once again, a combination of kern_ipc_perm and shmid_kernel held in the entries array of the smd_ids
global variable is used to facilitate management of the access permissions to the IPC object. A dummy

380

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 381

Chapter 5: Locking and Interprocess Communication

file linked with the corresponding instance of shmid_kernel via shm_file is created for each shared
memory object. The kernel uses the pointer smh_file->f_mapping to access the address space object
(struct address_space) used to create anonymous mappings as described in Chapter 4. The page tables
of the processes involved are set up so that each process is able to access the areas linked with the region.

5.4 Other IPC Mechanisms
There are other traditional ways of exchanging messages and data between processes in addition to the
IPC mechanisms adopted from System V Unix. Whereas the SysV options are primarily of interest to
application programmers, practically all users who have ever worked with the shell will know signals
and pipes.

5.4.1 Signals
Signals are an older form of communication than the SysV mechanisms. Although they provide fewer
options, they are generally very suited to their purpose. The underlying concept is very simple — the
kill command sends a signal to a process identified by its PID. The number of the signal is specified
using -s sig and is a positive integer whose maximum size varies depending on processor type. The two
most frequently used variants of the command are kill without a signal number, which politely requests
the process to terminate (the process is free to ignore the signal), and kill -9, which is the equivalent of
a signature on an execution warrant (and results in certain death).

In the past, 32-bit systems supported a maximum of 32 signals, but this restriction has now been lifted,
and all signals listed on the kill manual page are now supported. Nevertheless, all the ‘‘classic‘‘ sig-
nals occupy the first 32 positions on the list. They are followed by new signals introduced for real-time
processes.

Processes must install handler routines to process signals. These are invoked when signals are sent to
the processes (but there are several signals such as SIGKILL whose behavior cannot be overridden). If no
explicit handler routine is installed, the kernel uses a default handler implementation.

Signals introduce several special features that must always be kept in mind. A process can decide to block
specific signals (sometimes referred to as the masking of signals). If this happens, the signal is ignored
until the process decides to remove the block. There is therefore no guarantee that a process will be
aware that a signal has been sent to it. When a signal is blocked, the kernel places it on a pending list. If
the same signal is blocked more than once, only a single occurrence of the signal is placed on the pending
list. No matter how many identical signals are sent, the process receives just one occurrence of the signal
when it removes the block.

The SIGKILL signal cannot be blocked and cannot be handled by a process-specific handler function. It
cannot be overridden because it is the last resort to remove an out-of-control process from the system.
This contrasts with the SIGTERM signal, which can be dealt with by a user-defined signal handler — after
all, the signal is just a polite request to the process to stop work as soon as possible. If a handler is installed
for this signal, the program is, for example, given the opportunity to save data or to ask users whether
they really want to exit the program. SIGKILL does not provide such opportunities because the kernel
brings the process to an immediate and abrupt end.

The init process is granted a special status. The kernel ignores any SIGKILL signals sent to it. Because
this process is of particular importance to the entire system, it may not be forced to terminate — not even
unintentionally.

381

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 382

Chapter 5: Locking and Interprocess Communication

Implementing Signal Handlers
The sigaction system call is used to install a new handler function.

#include<signal.h>
#include<stdio.h>

/* Handler function */
void handler(int sig) {

printf("Receive signal: %u\n", sig);
};

int main(void) {
struct sigaction sa;
int count;

/* Initialize the signal handler structure */
sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

/* Assign a new handler function to the SIGTERM signal */
sigaction(SIGTERM, &sa, NULL);

sigprocmask(&sa.sa_mask); /* Accept all signals */
/* Block and wait until a signal arrives */
while (1) {
sigsuspend(&sa.sa_mask);
printf("loop\n");

}

return 0;
};

If no user-specific handler function is assigned to a signal, the kernel automatically installs predefined
functions to provide reasonable standard operations and to deal with the specific situation.

The definition of the field of type sigaction used to describe the new handler is platform-specific but
has practically the same contents on all architectures.

<asm-arch/signal.h>
struct sigaction {

__sighandler_t sa_handler;
unsigned long sa_flags;

...
sigset_t sa_mask; /* mask last for extensibility */

};

❑ sa_handler is a pointer to the handler function invoked by the kernel when a signal arrives.

❑ sa_mask contains a bitmask with exactly one bit for each signal available in the system. It is used
to block other signals during execution of the handler routine. On completion of the routine, the
kernel resets the list of blocked signals to its value prior to signal handling.

❑ sa_flags contains additional flags to specify how the signal must be handled; these are docu-
mented in various system programming manuals.

382

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 383

Chapter 5: Locking and Interprocess Communication

The prototype of functions that act as signal handlers is as follows:

<asm-generic/signal.h>
typedef void __signalfn_t(int);
typedef __signalfn_t __user *__sighandler_t;

The parameter accepts the number of the signal received so that the same handler function can be
installed for different signals.11

The signal handler is installed using the sigaction system call, which (in our example) replaces the
default handler for SIGTERM with the user-defined handler function.

Processes can set a global mask to specify which signals are to be blocked while the handler is running.
A bit chain is used to indicate that a signal is either blocked (bit value 1) or not blocked (bit value 0). The
sample program sets all bit positions to 0 so that all signals sent to the process from the outside can be
received while the handler is running.

The last step in the program is to wait for a signal using the sigsuspend system call. The process is
placed in the blocked state (see Chapter 2) and sleeps until woken by the arrival of a signal; it is then
immediately put to sleep again (by the while loop). The main code need not concern itself with signal
handling because this is done automatically by the kernel in conjunction with the handler function. The
approach shown is a good example of how to avoid the deprecated practice of busy waiting.12

If the SIGTERM signal is sent to the process using kill, the process is not terminated as it normally would
be; instead, it outputs the number of the received signal (15) and continues to run because, as desired,
the signal was forwarded to the user-defined handler routine and not to the default implementation of
the kernel.

Implementing Signal Handling
All signal-related data are managed with the help of a linked data structure consisting of several C
structures. Its entry point is the task_struct task structure, which includes various signal-relevant
fields.

<sched.h>
struct task_struct {
...
/* signal handlers */

struct signal_struct *signal;
struct sighand_struct *sighand;

sigset_t blocked;
struct sigpending pending;

unsigned long sas_ss_sp;
size_t sas_ss_size;

...
};

11Another version that passes more information exists for handler functions used with POSIX real-time signals.
12Instead of repeatedly running through an empty loop to wait for a signal (a senseless waste of CPU time because the process is
always running in this approach), the program can happily devote itself to doing nothing without burdening the CPU — the kernel
automatically wakes the process when the signal arrives and can use CPU time more profitably in the meantime.

383

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 384

Chapter 5: Locking and Interprocess Communication

Although signal handling takes place in the kernel, the installed signal handlers run in user
mode — otherwise, it would be very easy to introduce malicious or faulty code into the kernel and
undermine the system security mechanisms. Generally, signal handlers use the user mode stack of
the process in question. However, POSIX mandates the option of running signal handlers on a stack
set up specifically for this purpose (using the sigaltstack system call). The address and size of this
additional stack (which must be explicitly allocated by the user application) are held in sas_ss_sp and
sas_ss_size, respectively.13

The sighand element with the following structure is used to manage information on the signal handlers
installed. The underlying structure is essentially defined as follows:

<sched.h>
struct sighand_struct {

atomic_t count;
struct k_sigaction action[_NSIG];

};

count holds the number of processes that share the instance. As described in Chapter 2, it is possible to
specify in the clone operation that parent and child process share the same signal handler so that there
is no need to copy the data structure.

The installed signal handlers are held in the action array that has _NSIG elements. _NSIG specifies
the number of different signals that can be handled. This figure is 64 on most platforms, but there are
exceptions — Mips, for instance, which supports 128 signals.

Each element contains an instance of the k_sigaction structure to specify the properties of a signal
as seen by the kernel. On some platforms, the kernel has more information on signal handlers than
is available for userspace applications. Normally, k_sigaction has a single element that includes the
familiar sigaction structure.

<asm-arch/signal.h>
struct k_sigaction {

struct sigaction sa;
};

If no user-defined handler routine is installed for a signal (this means that the default routine is used
instead), the sa.sa_handler flag is set to SIG_DFL. In this case, the kernel performs one of four standard
actions depending on the signal type:

❑ Ignore — Nothing happens.

❑ Terminate — Terminates the process or process group.

❑ Stop — Places the process in the TASK_STOPPED state.

❑ Core Dump — Creates a core dump of the address space and writes it to a core file for process-
ing, for example, by a debugger.

13Signal handlers that use this stack must be installed using the SA_ONSTACK flag. Since this mechanism is rarely used, I will not
bother discussing it here.

384

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 385

Chapter 5: Locking and Interprocess Communication

Table 5-2 shows which signals are assigned to which default handler. The corresponding infor-
mation can be obtained from the macros SIG_KERNEL_ONLY_MASK, SIG_KERNEL_COREDUMP_
MASK, SIG_KERNEL_IGNORE_MASK, and SIG_KERNEL_STOP_MASK in <signal.h>.

Table 5-2: Default Actions for Standard Signals

Action Signals

Ignore SIGCONT, SIGCHLD, SIGWINCH, SIGURG

Terminate SIGHUP, SIGINT, SIGKILL, SIGUSR1, SIGUSR2, SIGALRM, SIGTERM, SIGVTALRM,
SIGPROF, SIGPOLL, SIGIO, SIGPWR and all real-time signals.

Stop SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU

Core dump SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGBUS, SIGFPE, SIGSEGV, SIGXCPU, SIGXFSZ,
SIGSYS, SIGXCPU, SIGEMT

All blocked signals are defined by the blocked element of the task structure. The sigset_t data type
used is a bitmask that must contain (at least) as many positions as the number of signals supported. For
this purpose, the kernel uses an array of unsigned longs whose size is calculated on the basis of _NSIG
and _NSIG_BPW (bits per word).

<asm-arch/signal.h>
#define _NSIG 64
#define _NSIG_BPW 32
#define _NSIG_WORDS (_NSIG / _NSIG_BPW)

typedef struct {
unsigned long sig[_NSIG_WORDS];

} sigset_t;

pending is the final task structure element of relevance for signal handling. It creates a linked list of all
signals raised and still to be handled by the kernel. The following data structure is used:

<signal.h>
struct sigpending {

struct list_head list;
sigset_t signal;

};

list manages all pending signals in a doubly linked list, while signal, with the bitmask described above,
specifies the numbers of all signals still to be handled. The list elements are instances of type sigqueue,
which is essentially defined as follows:

<signal.h>
struct sigqueue {

struct list_head list;
siginfo_t info;

};

The individual entries are linked by means of list. The siginfo_t data structure contains more detailed
information on the pending signals.

385

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 386

Chapter 5: Locking and Interprocess Communication

<asm-generic/siginfo.h>
typedef struct siginfo {

int si_signo;
int si_errno;
int si_code;

union {
/* Signal-specific information */
struct { ... } _kill;
struct { ... } _timer; /* POSIX.1b timers */
struct { ... } _rt; /* POSIX.1b signals */
struct { ... } _sigchld;
struct { ... } _sigfault; /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
struct { ... } _sigpoll;

} _sifields;
} siginfo_t;

❑ si_signo holds the signal number.

❑ si_errno has a non-zero value if the signal was raised as a result of an error; otherwise, its
value is 0.

❑ si_code returns detailed information on the origin of the signal; we are interested only in the
distinction between user signal (SI_USER) and kernel-generated signal (SI_KERNEL).

❑ Additional information needed by the kernel to handle some signals is held in the _sifield
union. For example, _sigfault contains the userspace address of the instruction that raised the
signal.

Because a very large number of data structures are used, Figure 5-8 gives an overview of how they are
interlinked.

pending
sighand

task_struct

count

k_sigaction[_NSIG]

list_head list
sigset_t signal

Figure 5-8: Data structures used in signal management.

Implementing Signal Handling
Table 5-3 shows an overview of the most important system calls used by the kernel to implement signal
handling. In practice, there are a few more, some for historical reasons, some to ensure compatibility with
various standards — above all, POSIX.

Although the signal mechanism appears to be very simple, its implementation is made more complicated
by the many subtleties and details that must be taken into account. Because these reveal no significant

386

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 387

Chapter 5: Locking and Interprocess Communication

information on the implementation structure, I will not discuss specific cases but restrict myself to a
description of the key mechanisms.

Table 5-3: Some System Calls Relating to Signals

System call Function

kill Sends a signal to all processes of a process group.

tkill Sends a signal to a single process.

sigpending Checks whether there are pending signals.

sigprocmask Manipulates a bitmask of blocked signals.

sigsuspend Sleeps until a specific signal is received.

Sending Signals
Despite their names, kill and tkill send any signal to a process group or to a single process, respec-
tively. As both functions are basically identical,14 I discuss only sys_tkill, whose code flow diagram is
shown in Figure 5-9.

sys_tkill

Cancel processing

do_tkill

find_task_by_vpid

check_kill_permission

specific_send_sig_info

sig_ignored?

send_signal

signal_wake_up

Figure 5-9: Code flow diagram for sys_tkill.

14sys_kill sends the signal to several processes that are interpreted according to the form of the PID passed.

❑ pid > 0 sends the signal to the process with the specified PID.

❑ pid = 0 sends the signal to all members of the process group of the task that sent the signal.

❑ pid = −1 sends the signal to all processes with pid > 1.

❑ pid = −pgrp < −1 sends the signal to all members of the pgrp process group.

387

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 388

Chapter 5: Locking and Interprocess Communication

Once find_task_by_vpid has found the task structure of the target process, the kernel dele-
gates the job of checking whether the process has the permissions needed to send the signal to
check_kill_permission, which uses the following query:

kernel/signal.c
static int check_kill_permission(int sig, struct siginfo *info,

struct task_struct *t)
{
...

if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
&& ((sig != SIGCONT) ||

(task_session_nr(current) != task_session_nr(t)))
&& (current->euid ^ t->suid) && (current->euid ^ t->uid)
&& (current->uid ^ t->suid) && (current->uid ^ t->uid)
&& !capable(CAP_KILL))

return -EPERM;
...
}

It could be helpful to remember that the ^ operator implements an XOR operation, but otherwise the
checks are rather straightforward.

The remaining signal handling work is passed on to specific_send_sig_info.

❑ If the signal is blocked (this can be checked with sig_ignored), handling is aborted immediately
to prevent further waste of time.

❑ send_signal generates a new sigqueue instance (using the cache sigqueue_cachep), which is
filled with the signal data and added to the sigpending list of the target process.

❑ If the signal is delivered successfully and is not blocked, the process is woken with
signal_wake_up so that it is available for selection by the scheduler. The TIF_SIGPENDING flag is
also set to indicate to the kernel that it must deliver signals to the process.

Although the signal is sent after these actions, it does not trigger the signal handler. How this is done is
described below.

Processing the Signal Queue
Signal queue processing is not triggered by a system call but is initiated by the kernel each time a switch
is made from kernel mode to user mode, as mentioned in Chapter 14. Implementation is naturally very
architecture-specific because processing is initiated in the assembly language code of entry.S. Regardless
of the particular architecture, the ultimate effect of the actions performed is to invoke the do_signal
function, which, although also platform-specific, behaves in much the same way on all systems.

❑ get_signal_to_deliver gathers all information on the next signal to be delivered. It also
removes the signal from the process-specific pending list.

❑ handle_signal manipulates the user mode stack of the process so that the signal handler is run
and not the normal program code after switching from kernel to user mode. This complicated
approach is necessary because the handler function may not be executed in kernel mode.

The stack is also modified so that the sigreturn system call is invoked when the handler
function terminates. How this is done depends on the particular architecture, but the kernel

388

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 389

Chapter 5: Locking and Interprocess Communication

either writes the required machine code instructions to execute the system call directly onto the
stack, or uses some glue that is available in userspace.15 This routine is responsible for restoring
the process context so that the application can continue to run when the next switch is made to
user mode.

Figure 5-10 illustrates the chronological flow and the various switches between user and kernel mode
during signal handler execution.

Kernel

User Handler
Function

Continue program
execution

do_signal

handle_signal

sys_sigreturn

Figure 5-10: Signal handler execution.

5.4.2 Pipes and Sockets
Pipes and sockets are popular interprocess communication mechanisms. I provide only an overview of
how both concepts work because both make intense use of other kernel subsystems. Pipes use objects of
the virtual filesystem, while sockets use various network functions and also the virtual filesystem.

Shell users are familiar with pipes in command lines such as

wolfgang@meitner> prog | ghostscript | lpr -

which use the output of one process as input for another process, the pipe being responsible for data
transport. As the name suggests, a pipe is a connection used to exchange data. One process feeds data
into one end of the pipe, and another takes the data out at the other end for further processing. Several
processes can be joined together by a series of individual pipes.

When pipes are generated via the shell, there is always one read and one write process. Applications
must invoke the pipe system call to generate pipes. The call returns two file descriptors — one for the
read end and one for the write end of the pipe. Because both descriptors exist in the same process, the
process can initially only send messages to itself, and this is not very practical.

Pipes exist as a data object in process address space — and are retained when a process is duplicated
with fork or clone. It is this very characteristic that programs exploit. Once the exec system call has
replaced the child process with another program, there is a communication link between two different
applications (the pipe descriptors must be directed to standard input and output or the dup system call
must be invoked to ensure that the file descriptors are not closed when exec is called).

Sockets are also objects that return a file descriptor when initialized in the kernel and can then be handled
as normal files. However, unlike pipes, they can be used bidirectionally and to communicate with remote

15On IA-32 machines, this glue code can, for instance, be found in the vsyscall page, which is mapped into every user address
space. It assists the C standard library in finding the fastest way to perform system calls on a given machine by providing the
required machine code instructions. The kernel decides at boot time which method is used best, and maps the page into the address
space of each userland process. The page also includes the required code to execute the aforementioned sigreturn system call.

389

Mauerer runc05.tex V3 - 09/04/2008 4:59pm Page 390

Chapter 5: Locking and Interprocess Communication

systems connected via a network (this does not mean that they cannot be used to support communication
between two processes located on the same system).

Socket implementation is one of the rather more complex parts of the kernel because extensive abstraction
mechanisms are needed to hide the details of communication. From a user point of view, there is no
great difference whether communication is between two local processes on the same system or between
applications running on computers located in different continents. The implementation of this amazing
mechanism is discussed in depth in Chapter 12.

During the development of kernel 2.6.26, the architecture-specific implementation of semaphores
has been replaced with a generic variant. Naturally, the generic implementation performs slightly
less efficient than optimized code, but since semaphores are not in very widespread use across the
kernel (mutexes are much more common), this does not really matter. The definition of struct
semaphore has been moved to include/linux/semaphore.h, and all operations are implemented in
kernel/semaphore.c. Most importantly, the semaphore API has not changed, so existing code will run
without modifications.

Another change introduced during the development of kernel 2.6.26 concerns the implementation of
spinlocks. Because these locks are by definition supposed to be uncontended in the average case, the
kernel did not make any efforts to achieve fairness among multiple waiters, i.e., the order in which tasks
waiting for a spinlock to become unlocked are allowed to run after the lock is released by the current
holder was undefined. Measurements have, however, shown that this can lead to unfairness problems
on machines with a larger number of processors, e.g., 8-CPU systems. Since machines of this kind are not
uncommon anymore nowadays, the implementation of spinlocks has been changed such that the order
in which multiple waiters are allowed to obtain the lock is the same order in which they arrived. The API
was also left unchanged in this case, so existing code will again run without modifications.

5.5 Summary
While systems with more than one CPU were oddities only a few years ago, recent achievements of
semiconductor engineering have changed this drastically. Thanks to multi-core CPUs, SMP computers
are not only found in specialized niches like number crunching and supercomputing, but on the average
desktop. This creates some unique challenges for the kernel: More than one instance of the kernel can
run simultaneously, and this requires coordinated manipulation of shared data structures. The kernel
provides a whole set of possibilities for this purpose, which I have discussed in this chapter. They range
from simple and fast spinlocks to the powerful read-copy-update mechanism, and allow for ensuring
correctness of parallel operations while preserving performance. Choosing the proper solution is impor-
tant, and I have also discussed the need to select an appropriate design that ensures performance by
fine-grained locking, but does not lead to too much overhead on smaller machines.

Similar problems as in the kernel arise when userland tasks communicate with each other. Besides pro-
viding means that allow otherwise separated processes to communicate, the kernel must also make
means of synchronization available to them. I have discussed how the mechanisms originally invented
in System V Unix are implemented in the Linux kernel.

390

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 391

Device Drivers

Device drivers are a key area of the kernel as many users judge operating system performance
primarily by the number of peripherals for which drivers are available and how effectively they are
supported. Consequently, large parts of the kernel sources are devoted to the implementation of
device drivers.

Device drivers build on many different mechanisms provided by the central kernel (this is why
drivers are sometimes referred to as kernel ‘‘applications‘‘). The immense number of drivers in the
Linux kernel means that it is impossible to discuss all (or even a few) in detail. Fortunately, this
is not necessary. The structures of the drivers are generally very similar — regardless of device
— so that in this chapter we need only discuss a few key aspects common to all drivers. Since the

objective of this book is to cover all important parts of the kernel, this chapter omits some of the
more specific points of driver writing which would require a book of its own. However, two books
that focus solely on driver writing are currently available. The classic text in this area is Linux Device
Drivers by Corbet et al. [CRKH05]. We can recommend it wholeheartedly to anyone interested
in or charged with writing a device driver. A recent addition to kernel hackers’ bookshelves is
Essential Linux Device Drivers by Venkateswaran [Ven08]. Developers who are able to read German
will certainly also enjoy Linux Gerätetreiber by Quade and Kunst [QK06]. The quoted references
are complementary to this book. Here, we document how the kernel sets up and manages data
structures and generic infrastructure for device drivers. Also, we discuss routines that are provided
to support device drivers. Device driver books, on the other hand, focus on how to use these routines
to actually create new drivers, but are not so much interested in how the underlying foundations
are implemented.

6.1 I/O Architecture
Communication with peripherals is usually referred to as input and output, abbreviated I/O in the
literature. The kernel must deal with three problem areas when implementing I/O for peripherals.
Firstly, the hardware must be addressed using a variety of methods depending on the specific

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 392

Chapter 6: Device Drivers

device type and model. Secondly, the kernel must provide user applications and system tools with
ways of accessing the various devices. Wherever possible, a uniform scheme should be adopted
to keep programming effort within limits and to ensure that applications are able to interoperate
regardless of the particular hardware approach. Thirdly, userspace needs to know which devices
are available in the kernel.

Communication with peripherals is layered as illustrated in Figure 6-1.

User

Kern

VFS

Driver

Hardware

Application

/dev/xyz
Device special file

open, read,
write etc.

Figure 6-1: Layer model for addressing
peripherals.

Access to each individual device is performed via abstraction layers arranged hierarchically. At the
bottom of the hierarchy is the device itself, which is attached to other devices and the system CPU by
means of a bus system. Communication with the kernel follows this path.

Before we examine the relevant algorithms and structures in the Linux kernel, it is worthwhile taking a
brief look at how expansion hardware generally works. For detailed descriptions, readers are referred to
hardware-specific publications such as [MD03].

6.1.1 Expansion Hardware
Hardware devices may be attached to the system in various ways; internal slots on the motherboard or
external connectors are the most common methods. Of course, expansions can also be accommodated
directly on the system board; this method has gained in popularity over the last few years. Whereas in
the 80386 era it was quite usual to house the hard disk controller as an expansion board in a special slot
on the motherboard, server boards are now commonplace; they are able to accommodate networks, USB,
SCSI, graphic cards, and the like without the need for bulky plug-in cards. This trend toward miniatur-
ization is being pushed even further in handhelds and mini-laptops. As far as the kernel is concerned, it
generally makes no difference how a peripheral is attached to the rest of the system because these details
are abstracted from the hardware.

Bus Systems
Even though the spectrum of peripherals — ranging from CD writers, modems, and ISDN boards to
cameras and sound cards — may appear to be unlimited, they all share one thing in common. They are

392

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 393

Chapter 6: Device Drivers

not attached directly to the CPU; instead, they are connected via a bus that is responsible for communica-
tion between the device and the CPU and also between the individual devices. There are numerous ways
of implementing buses,1 most of which are supported by Linux. We list a representative selection below.

❑ Peripheral Component Interconnect (PCI) — The main system bus used on many architectures.
As such, we will take a closer look at its special features and its implementation in the kernel
in the further course of this chapter. PCI devices are placed in slots on the motherboard of the
system. Modern versions of the bus also support hotplugging so that devices can be connected
and disconnected while the system is running (although this option is rarely used, it is supported
in the kernel sources). PCI achieves maximum transfer speeds of a few hundred megabytes per
second and thus covers a wide range of application.

❑ Industrial Standard Architecture (ISA) — An older bus that (unfortunately) is still in
widespread use. Because it is very simple in terms of its electronics, it is easy for electronics
enthusiasts or small companies to design and manufacture additional hardware. This was
indeed the intention when IBM introduced this bus in the early days of PCs. However, over time
it gave rise to more and more problems and has now finally been replaced in more advanced
systems. ISA is tied very closely to the particular features of the IA-32 architecture (and to those
of its predecessors) but may also be used with other processors.

❑ SBus — This is a very advanced bus but already has quite a few years under its belt. It was
designed by SUN as a non-proprietary or open bus but was unable to establish a position for
itself on other architectures. Even though more recent UltraSparc-based models by SUN are
moving more in the direction of PCI, the SBus still plays an important role on older SparcStations
and is supported by Linux for this reason.

❑ IEEE1394 — This is obviously not an easy name to market. This bus is therefore referred to as
FireWire by some manufacturers and as I.link by others. It has several very interesting techni-
cal features including planned hotplug capability and the potential for very high transfer rates.
IEEE1394 is an external bus used predominantly in laptops of the higher price range to provide
a high-speed expansion option.

❑ Universal Serial Bus (USB) — This is also an external bus in widespread use and with very
high market acceptance. The main features of this bus are its hotplug capability and its ability
to detect new hardware automatically. Its maximum speed is only moderate but sufficient for
devices such as CD writer, keyboard, and mouse. A new version of the bus (2.0) delivers much
faster maximum speeds but is practically unchanged in terms of software (the differences on the
hardware level are much more dramatic, but fortunately we needn’t bother with them here).

The topology of USB systems is unusual because the devices are not arranged in a single chain
but in a tree structure; this fact is noticeable in the way the devices are addressed in the ker-
nel. USB hubs are used as nodes to which further devices (and further hubs) can be connected.
Another unusual feature of USB is the option of reserving a fixed bandwidth for individual
devices; this is an important factor when it is necessary to implement a uniform data stream.

❑ Small Computer System Interface (SCSI) — This bus used to be called the bus for professionals
because of the high cost of the associated peripherals. Because SCSI supports high data through-
put, it is used mainly to address hard disks in server systems based on the most varied of

1To be strictly accurate, buses are used not only to communicate with peripherals but also to exchange data with basic system com-
ponents such as RAM memory. However, because buses have more to do with hardware and electronics and present no problems
to the software and the kernel, I don’t discuss them in detail here.

393

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 394

Chapter 6: Device Drivers

processor architectures. It is rarely used in workstation systems because its electrical installation
is very complicated as compared to other buses (each SCSI chain must be terminated in order to
function correctly).

❑ Parallel and Serial Interfaces — These are present in most architectures regardless of the design
of the overall system. These are extremely simple and very slow connections to the outside world
and have been with us for an eternity. They are used to address slow devices such as printers,
modems, and keyboards that place no great performance demands on the system.

Regardless of the processor architecture employed, systems usually have not just one but a combination
of buses. Current PC designs generally include two PCI buses interconnected by a bridge. For compatibil-
ity reasons, they sometimes also feature an ISA bus (mostly with just one slot). Some buses such as USB
or FireWire cannot be operated as main buses but always require a further system bus via which data are
passed to the processor. Figure 6-2 shows how different buses are linked in a system.

CPURAM
Memory

bus

PCI #0

PCI #1

PCI
Bridge

PCI Slots

Root-Hub

Hub Webcam

KeyboardMouse

SCSI
Controller Scanner

Hard Disk
Hard Disk CD ROM

USB
Controller

Figure 6-2: Linking different kinds of buses.

Interaction with the Peripherals
Let us turn our attention to the methods that are available to communicate with peripherals. There are
several ways of communicating with the hardware attached to the system.

I/O Ports
One option is to use the I/O ports found on IA-32 and many other architectures. In this case, the kernel
sends data to an I/O controller. The device for which the data are intended then is identified by means of

394

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 395

Chapter 6: Device Drivers

a unique port number, and the data are forwarded to the attached device for processing. A separate vir-
tual address space managed by the processor is used for the management of all I/O addresses. However,
it must also be supported by the remaining system hardware.

The I/O address space is not usually linked with normal system memory. This often
gives rise to confusion because ports can also be mapped into memory.

There are different types of ports. Some are Read Only and some are Write Only, but typically they
operate bidirectionally so that data can be exchanged in both directions between the processor (and
therefore the application and the kernel) and the peripheral.

On IA-32 architectures, the port address space consists of 216 (i.e., approximately 64,000) different 8-bit
addresses that are uniquely identified by means of numbers ranging from 0x0 to 0xFFFFH. Each resulting
port has a device assigned to it or is unused. It is not possible for several peripherals to share a port.

In view of today’s complex technology, 8 bits is not much when it comes to exchanging data with external
units. For this reason, it is possible to combine two successive 8-bit ports into a 16-bit port. Furthermore,
two successive 16-bit ports (in reality, four successive 8-bit ports) can be regarded as a 32-bit port. The
processor features suitable assembler statements to perform input and output operations.

Each processor type implements access to its ports differently. Consequently, the kernel must provide an
appropriate abstraction layer. Commands such as outb (to write a byte), outw (to write a word), and inb
(to read a byte) are implemented in asm-arch/io.h. These are very processor-specific definitions so there
is no need to discuss them here.2

I/O Memory Mapping
Programmers must address many devices in a similar way to RAM memory. For this reason, modern
processors provide the option of memory mapping of I/O ports in which the port addresses of a specific
peripheral are mapped into normal memory, where they can be manipulated with the same statements
used to handle regular memory. Graphic cards typically use this type of operation because it is easier
to process extensive image data with normal processor commands than with specific port commands.
System buses such as PCI are also often addressed by means of mapped I/O addresses.

To work with memory mappings, I/O ports must first be mapped into regular system memory (using
processor-specific routines). Because the methods used to do this differ greatly between the various
underlying architectures, the kernel once again provides a small abstraction layer consisting primarily of
the ioremap and iounmap commands to map and unmap I/O areas. I don’t deal specifically with their
implementation.

Polling and Interrupts
Besides the technical details of access to peripheral devices, another question is also interesting. How
does the system know whether and when data are ready to be read from a device? There are two ways
of finding out — by means of polling or by using interrupts.

Polling is the less elegant alternative, but the strategy behind polling is very simple. The device is repeat-
edly asked if data are available — when this is the case, the processor then fetches the data. It’s more than

2Nevertheless, the implementation of the I/O functions for IA-32 processors is interesting from a certain point of view because
include/asm-i386/io.h delves quite deeply into the pre-processor’s box of tricks.

395

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 396

Chapter 6: Device Drivers

evident that this is not very sparing on resources. Much system run time is needed to check the status of
peripherals, to the detriment of more important tasks.

Interrupts are the better alternative. Each CPU provides interrupt lines that are shared between the individ-
ual system devices (several devices may also share an interrupt but I discuss this below). Each interrupt
is identified by a unique number, and the kernel makes a service routine available for each interrupt used.

Interrupts suspend normal system work, thus drawing attention to themselves. A peripheral raises an
interrupt when data are ready to be processed by the kernel or (indirectly) by an application program.
With this method the system need no longer constantly check whether new data are available because it
is notified automatically by the peripheral when this is the case.

Interrupt handling and implementation are complex topics whose details are discussed separately in
Chapter 14.

Device Control via Buses
Not all devices are addressed directly by I/O statements but via a bus system. How this is done varies
according to the bus and devices used. Rather than going into specific details, I describe the basic differ-
ences between the various approaches here.

Not all device classes can be attached to all bus systems. For example, it is possible to connect hard disks
and CD writers but not graphic cards to an SCSI interface. However, the latter can be housed in PCI slots.
In contrast, hard disks must be attached to a PCI bus via another interface (typically IDE).

The different bus types are called system and expansion buses (I won’t bother with their technical details).
The differences in hardware implementation are not important for the kernel (and are therefore of no
relevance when programming device drivers). Only the way in which the buses and attached peripherals
are addressed is relevant.

In the case of the system bus — a PCI bus on many processor types and system architectures — I/O
statements and memory mappings are used to communicate with the bus itself and with the devices
attached to it. The kernel also provides several commands for device drivers to invoke special bus func-
tions — querying a list of available devices, reading or setting configuration information in a uniform
format, and so on — that are platform-independent and that simplify driver development because their
code can be used unchanged on various platforms.

Expansion buses such as USB, IEEE1394, and SCSI exchange data and commands with attached devices
by means of a clearly defined bus protocol. The kernel communicates with the bus itself via I/O state-
ments or memory mappings3 and makes platform-independent routines available to enable the bus to
communicate with the attached devices.

Communication with bus-attached devices need not be performed in kernel space in the form of a device
driver but in some cases may also be implemented from userspace. Prime examples are SCSI writers
that are typically addressed by the cdrecord tool. This tool generates the required SCSI commands,
sends them to the corresponding device via the SCSI bus with the help of the kernel, and processes the
information and responses generated and returned by the device.

3The buses are often plug-in cards in a PCI slot and must be addressed accordingly.

396

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 397

Chapter 6: Device Drivers

6.2 Access to Devices
Device special files (often referred to as device files) are used to access expansion devices. These files are not
associated with a data segment on hard disk or on any other storage medium but establish a link with a
device driver in order to support communication with the expansion device. As far as the application is
concerned, there is little difference between processing regular files and device files. Both are handled by
exactly the same library functions. However, for more convenient handling, several additional commands
are provided to perform actions on device files that are not possible on regular files.

6.2.1 Device Files
Let us examine the approach adopted by reference to a modem attached to a serial interface. The name
of the corresponding device file is /dev/ttyS0. The device is identified not by means of its filename but
by means of the major and minor number of the file; these numbers are managed as special attributes in
the filesystem.

The same tools used to read and write regular files are employed to write data to or read results from a
device file. For instance,

wolfgang@meitner> echo "ATZ" > /dev/ttyS0

sends an initialization string to a modem connected to the first serial interface.

6.2.2 Character, Block, and Other Devices
The ways in which data are exchanged between peripherals and the system can be classified into several
categories. Some devices are better suited to character-oriented exchange because the volumes of data
transferred are low. Others are better able to handle data blocks with a fixed number of bytes. The kernel
makes a distinction between character and block devices. The former category includes serial interfaces
and text consoles, while the latter covers hard disks, CD-ROM devices, and the like.

Identifying Device Files
Both the above types can be distinguished by reference to the properties of their device files. Let us look
at some members of the /dev directory.

wolfgang@meitner> ls -l /dev/sd{a,b} /dev/ttyS{0,1}
brw-r----- 1 root disk 8, 0 2008-02-21 21:06 /dev/sda
brw-r----- 1 root disk 8, 16 2008-02-21 21:06 /dev/sdb
crw-rw---- 1 root uucp 4, 64 2007-09-21 21:12 ttyS0
crw-rw---- 1 root uucp 4, 65 2007-09-21 21:12 ttyS1

In many aspects, the above output is not different from that for regular files, particularly as concerns the
access permissions. However, there are two important differences.

❑ The letter preceding the access permissions is either b or c to denote block and character devices,
respectively.

❑ Instead of the file size, two figures are given; these are the major number and minor number.
Together they form a unique number that allows the kernel to find the corresponding device
driver.

397

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 398

Chapter 6: Device Drivers

Names are assigned to device files because users (humans) find it easier to
remember symbolic names rather than numbers. However, the actual functionality
of a device file is not denoted by its name but exclusively by its major and minor
number. Neither is the directory in which a device file is located of any relevance.
(Nevertheless, a standard way of naming files has been adopted.) mknod is used to
create device files. How this is done is described in the standard literature on
system administration.

The kernel employs the major and minor numbers to identify the matching driver. The reason why two
numbers are used is because of the general structure of a device driver. Firstly, the system may include
several devices of the same type that are managed by a single device driver (it wouldn’t make sense
to load the same code into the kernel more than once). Secondly, devices of the same category can be
combined so that they can be inserted logically into the kernel’s data structures.

The major number is used to address the device driver itself. For instance, as we can see in the above
example, the major number of the first SATA controller on which disks sda and sdb are located is 8. The
individual devices of the drive (that is, the primary and secondary disk) are designated by the different
minor numbers; 0 for sda and 16 for sdb. Why is there such a big gap between both numbers? Let’s look
at the remaining files that refer to the sda disk in the /dev directory.

wolfgang@meitner> ls -l /dev/sda*
brw-r----- 1 root disk 8, 0 2008-02-21 21:06 /dev/sda
brw-r----- 1 root disk 8, 1 2008-02-21 21:06 /dev/sda1
brw-r----- 1 root disk 8, 2 2008-02-21 21:06 /dev/sda2
brw-r----- 1 root disk 8, 5 2008-02-21 21:06 /dev/sda5
brw-r----- 1 root disk 8, 6 2008-02-21 21:06 /dev/sda6
brw-r----- 1 root disk 8, 7 2008-02-21 21:06 /dev/sda7

As you know, individual partitions of a disk can be addressed by means of device files /dev/sda1,
/dev/sda2, and so on, whereas /dev/sda refers to the entire disk. Consecutive minor numbers are used to
identify partitions so that the driver is able to distinguish between the different versions. A single driver
can reserve more than one major number. If two SATA buses are present in the system, the second SATA
channel gets a different major number from the first one.

The division just described also applies for character devices, which are likewise represented by a major
and a minor number. For example, the major number of the driver for the serial interface is 4, and the
individual interfaces have a minor number from 64 onward.

Each major number is allocated to both a block device and a character device.
Consequently, the information needed to select the correct driver is not unique
unless both the number and the type of the device (block or char) are specified.

In the early days of Linux, major numbers were allocated in a very lax way (at the time, there were
only a small number of drivers), but the allocation of major and minor numbers for new drivers is now
regulated by a more or less official organization. Drivers that did not use the major numbers registered
in this list to identify their devices cannot and are not included in the standard distribution of kernel
sources.

The current list can be obtained at http://www.lanana.org. This rather strange-sounding URL stands for
Linux assigned name and numbers authority. The standard distribution of kernel sources also includes the

398

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 399

Chapter 6: Device Drivers

file Documentation/devices.txt with current data at the time of kernel release. Pre-processor constants,
which are easier to read than the raw number, are defined in <major.h>. The numbers here are synchro-
nized with the assignments in the LANANA list, but not all LANANA-assigned numbers also have a
pre-processor symbol. SCSI disks (as required by SATA devices) and TTY devices with major numbers 8
and 4, respectively, are represented by the following pre-processor symbols:

<major.h>
...
#define TTY_MAJOR 4
...
#define SCSI_DISK0_MAJOR 8
...

Dynamic Creation of Device Files
Traditionally the device nodes in /dev were created statically on a disk-based filesystem. With more
and more supported devices, more and more entries had to be installed and managed — around 20,000
entries for typical distributions. Most of these entries are not necessary on an average system, which
contains only a handful of devices — especially compared to the 20,000 available device nodes. Nearly
all distributions have thus switched to managing the contents of /dev with udevd, a daemon that allows
dynamic device file creation from userland.

Kernel udevd

create
new /dev/sda

/dev/sdbdevice
node

Hotplug message:
New device

Figure 6-3: Managing device nodes from
userspace with udevd.

The basic idea of udevd is depicted in Figure 6-3. Even if the device files are managed from userland,
support from the kernel is an absolute necessity: It is impossible to determine which devices are available
in the system otherwise.

Whenever the kernel detects a device, a kernel object (kobject; see Chapter 1) is created. The object is
exported to userland with the help of the sysfs filesystem (see Section 10.3 for more details). Additionally,
the kernel sends a hotplug message to userspace, as is discussed in Section 7.4.

When a new device is found during startup or attached at run time (like USB sticks), the hotplug mes-
sages generated by the kernel include which major and minor numbers the driver assigns for the device.
All the udevd daemon needs to do is listen to these messages. When a new device is registered, the entries
in /dev are created, and the device can be accessed from userland.

Since the introduction of the udev mechanism, /dev is not contained on a disk-based filesystem anymore,
but uses tmpfs — a slight variation on the RAM-disk filesystem ramfs. This implies that device nodes are
not persistent across system boots. When a device is removed during the downtime, the corresponding
device node will not be contained in /dev anymore. Since it will also not be created anew — there is
no message from the kernel that the device was registered since it is not present in the system anymore
— this ensures that no old and obsolete devices files are aggregated in /dev. Although nothing would

prevent udevd from working on a disk-based filesystem, this would not really make sense.

399

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 400

Chapter 6: Device Drivers

In addition to the task outlined above, the udev daemon also assumes some more responsibilities like
ensuring that device nodes for specific devices always have the same name irrespective of the device
topology. For instance, users usually desire to have the same device node for USB sticks independent of
when and where they are plugged in. Refer to the manual page udevd(5) for more information on how
the udev daemon handles such cases — this is a pure userspace problem and nothing the kernel needs
to be concerned about.

6.2.3 Device Addressing Using Ioctls
Even though character and block devices generally fit snugly in the structures of the filesystem and
therefore conform to the Unix philosophy that ‘‘everything is a file,‘‘ some tasks are very difficult to
perform using only input and output commands. These involve checking device-specific functions and
properties that are not within the general file framework. A prime example is setting the configuration of
a device.

If is, of course, possible to carry out such tasks by defining ‘‘magic‘‘ strings with special meanings and
using generic read and write functions. For example, an approach of this kind can be used with a floppy
disk drive to support software ejection. The device driver could monitor the data stream to the device
and eject the disk from the drive when it encounters the string floppy: eject. Special codes can likewise
be defined for other tasks.

This method has one obvious disadvantage. What happens if a text file containing the above string is
written to floppy disk (the text may be part of an operating guide for the disk drive)? The driver would
eject the disk — to the annoyance of the user because this is not what is wanted. Naturally, it is possible
to prevent this situation by having a userspace application check that the string does not appear in the
text or by masking it if it does (an appropriate method would also have to be defined to do this too). This
whole process is not only a waste of time and resources but lacks elegance and sophistication.4

The kernel must therefore provide a way of supporting special device properties without having recourse
to normal Read and Write commands. One way of doing this is to introduce special system calls. How-
ever, this a deprecated practice among kernel developers and is therefore used only for a few very
popular devices. A more appropriate solution goes by the name of IOCTL, which stands for input output
control interface and is a general interface for configuring and modifying specific device characteristics.
There’s also a third alternative available: Sysfs, a file system that hierarchically represents all devices of
the system, and also provides means to set parameters for these devices. More information about this
mechanism is contained in Section 10.3. For now, I will stick to the slightly more old-fashioned, but still
valid IOCTL method.

Ioctls are implemented by means of a special method that can be used to process files. This method
produces the desired results when applied to device files but has no effect when used with regular files.
Chapter 8 discusses how the implementation fits into the virtual filesystem schema. All we need to know
at this point is that each device driver is free to define an ioctl routine that enables control data to be
transferred separately from the actual input/output channel.

How are ioctls employed from a user and programming point of view? The standard libraries pro-
vide the ioctl function to direct an ioctl command to an opened file by means of a specific code. The

4For historical reasons, some drivers do employ this method. It is used widely with terminals to transfer control characters to modify
device properties such as text color, cursor position, and so on.

400

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 401

Chapter 6: Device Drivers

implementation of this function is based on the ioctl system call that is handled by sys_ioctl in the
kernel (see Chapter 13 for information on the implementation of system calls).

fs/ioctl.c
asmlinkage long sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
{
...
}

The ioctl code (cmd) is passed to an opened file identified by its file descriptor (fd) in the form of a more
or less easily readable pre-processor constant. A third parameter (arg) transfers further information
(detailed tables of all ioctls and parameters supported by the kernel are provided in numerous manuals
on system programming). Section 6.5.9 discusses the kernel-side implementation of ioctls in more detail.

Network Cards and Other Devices
Character and block devices are not the only device categories managed by the kernel. Network cards
occupy a special position in the kernel because they do not fit into this category scheme (Chapter 12 deals
extensively with why this is so). This is revealed by the fact that there are no device files for network
cards. Instead, user programs must use sockets to communicate with network cards, the sockets being
an abstraction layer to provide an abstract view of all network cards. Access takes place by means of
the socketcall system call invoked by the network-related functions of the standard library to support
communication and interaction with the kernel.

There are also other system devices that do not have device files; these are accessed either by specially
defined system calls or are simply not accessed from userspace. An example of the latter is all expansion
buses such as USB and SCSI. Although these are addressed by a device driver, the corresponding func-
tions are made available within the kernel only (accordingly, USB expansion cards do not have device
files via which they can be addressed). It is left to lower-level device drivers to provide functions that are
exported into userspace.

6.2.4 Representation of Major and Minor Numbers
For historical reasons, there are two ways of managing the major and minor numbers of a device in a
compound data type. During the development of 2.6, a 16-bit integer (typically unsigned short) was
used to represent major and minor numbers. The integer was split in a 1:1 ratio, that is, 8 bits for the
major number and 8 bits for the minor number. This meant that exactly 256 major numbers and 256
minor numbers were possible. This is not sufficient on today’s much bigger systems — one need only
consider the example of SCSI storage arrays comprising a very large number of hard disks.

The 16-bit integer definition was therefore replaced with a 32-bit integer (dev_t is the associated abstract
type), but this had certain consequences. It was realized that 16 bits are more than enough for the major
numbers. As a result, 12 bits were reserved for the major and 20 for the minor numbers. This gave rise to
the following problems.

❑ Many drivers make the incorrect assumption that only 16 bits are available to represent the num-
bers.

❑ Device file numbers stored on old filesystems use only 16 bits but must still function correctly.
The problem of the now non-symmetrical division of bits between major and minor numbers
must therefore be resolved.

401

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 402

Chapter 6: Device Drivers

The first problem can be eliminated by revising the driver, but the second is of a more fundamental
nature. To come to terms with the new situation, the kernel uses the division of the userspace-visible
device number data type u32 shown in Figure 6-4.

❑ In the kernel itself the bit range 0 — 19, that is, 20 bits are used for the minor number. This leaves
12 bits in the range 20 — 31 for the major number.

❑ When it is necessary to represent a dev_t externally, the 8 bits from the range 0 — 7 are used for
the first part of the minor number, the next 12 bits (range 8 — 19) for the major number, and the
last 12 bits (range 20 — 31) for the missing part of the minor number.

The old layout consists of 16 bits evenly split between major and minor numbers. If both major
and minor are less than 255, the new representation is compatible with the old version.

Code that sticks to these functions to convert between dev_t and external representations will require no
changes should the internal data type be changed once more in the future.

Old representation

0

0

7

7

15

19 31

0 19 31

External
representation

Internal representation

Minor

Major

Figure 6-4: Division of a device number into major and minor parts.

The advantage of this split is that the first 16 bits of the data structure can be interpreted as an old device
specification; this is important for reasons of compatibility.

The kernel provides the functions/macros listed below (and defined in <kdev_t.h>) to extract informa-
tion from the u32 representation and convert between u32 and dev_t.

❑ MAJOR and MINOR extract the major and minor number, respectively, from a dev_t.

❑ MKDEV(major, minor) generates a dev_t type from the major and minor numbers.

❑ new_encode_dev converts dev_t to u32 in the external representation mentioned above.

❑ new_decode_dev converts the external representation to dev_t.

❑ old_encode_dev and old_decode_dev switches between a number of type u16, that is, the old
representation, and the modern dev_t representation.

The prototypes are as follows.

<kdev_t.h>
u16 old_encode_dev(dev_t dev);
dev_t old_decode_dev(u16 val);
u32 new_encode_dev(dev_t dev);
dev_t new_decode_dev(u32 dev);

402

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 403

Chapter 6: Device Drivers

6.2.5 Registration
The kernel has a natural interest in knowing which character and block devices are available in the
system, thus a database needs to be maintained. Additionally, an interface for driver writers to submit
new entries into the database must be provided.

Data Structures
Let us turn our attention to the data structures used to manage devices.

The Device Database
Although block and character devices can and do behave very differently from each other, the databases
employed to keep track of all available devices are identical. This is natural since both block and character
devices are identified by a unique device number. Nevertheless, the database keeps track of different
objects dependent on whether block or character devices are managed.

❑ Each character device is represented by an instance of struct cdev.

❑ struct genhd is used to manage partitions of block devices and plays a role similar to that of
cdev for character devices. This is reasonable since a block device without partitions can also be
seen as a block device with a single, large partition!

For now, it is sufficient to know that each block and character device is represented by an instance of
the respective data structure. Their contents do not matter here as we will have a closer look at them
below. Instead, it is important to see how the kernel keeps track of all available cdev and genhd instances.
Figure 6-5 summarizes the situation graphically.

[b,c] dev_map

dev_
range

data

dev_
range

data

dev_
range

struct cdev
struct genhd

dep. on
device
type

data

Figure 6-5: Device database to keep track of all
block and character devices.

A global array — bdev_map for block and cdev_map for character devices — is used to implement a hash
table, which employs the device major number as hash key. Both cdev_map and bdev_map are instances of
the same data structure, struct kobj_map. The hashing method is quite simple: major % 255. This works
well since currently only a very limited number of devices has major numbers larger than 255, so hash
collisions are rare. The definition of struct kobj_map also includes the definition of the hash list elements
struct probe.

403

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 404

Chapter 6: Device Drivers

drivers/base/map.c
struct kobj_map {

struct probe {
struct probe *next;
dev_t dev;
unsigned long range;
struct module *owner;
kobj_probe_t *get;

...
void *data;

} *probes[255];
struct mutex *lock;

};

The mutex lock serializes access to the hash table. The elements of struct probe are as follows:

❑ next connects all hash elements in a singly linked list.

❑ dev denotes the device number. Recall that both major and minor numbers are contained in this
datum.

❑ The consecutive range of minor numbers is stored in range. The minor numbers associated to
the device are thus given by MINORS(DEV) + range - 1.

❑ owner points to the module (if any) providing the device driver.

❑ get points to a function that returns the kobject instance associated with the device. Usually,
this task is rather straightforward, but it may become more involved if device mappers are in
use.

❑ The distinction between block and character devices is made by data. For character devices, it
points to an instance of struct cdev, while struct genhd is the pointer destination for block
devices.

Character Device Range Database
A second database is for character devices only. It is used to manage device number range allocation to
drivers. A driver can either request a dynamic device number, or it can specify a range that is supposed
to be acquired. In the first case, the kernel needs to find a free range, while in the second case, it must be
ensured that the desired range does not overlap with any existing region.

Again a hash table is employed to keep track of previously allocated device number ranges, and again
the major number is used as hash key. The data structure in question looks as follows:

fs/char_dev.c
static struct char_device_struct {

struct char_device_struct *next;
unsigned int major;
unsigned int baseminor;
int minorct;
char name[64];
struct file_operations *fops;
struct cdev *cdev; /* will die */

} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];

404

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 405

Chapter 6: Device Drivers

The way entries are organized is quite similar to the techniques employed for struct kobj_map above.
next links all elements on the same hash line (major_to_index computes the hash position given a major
number). You will have guessed that major specifies the major number, while baseminor is the smallest
minor number in a consecutive range of minorct minor numbers. name provides an identifier for the
device. Usually, this name is chosen similar to the name of the device special file used for the device, but
this is no strict requirement. fops points to the file_operations associated with the device, and cdev
provides a link with struct cdev, which is discussed in Section 6.4.1.

Registration Procedures
Now consider how block and character devices are registered.

Character Devices
Registering a block device in the kernel requires two steps:

❑ Register or allocate a range of device numbers. If the driver wants to use a specified range of
device numbers, register_chrdev_region must be employed, while alloc_chrdev_region lets
the kernel choose an apt range. The prototypes are as follows:

<fs.h>
int register_chrdev_region(dev_t from, unsigned count, const char *name)
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,

const char *name);

When a new range is allocated with alloc_chrdev_region, the smallest minor number and
the size of the desired range have to be specified in baseminor and count. The selected major
number is returned in dev. Note that struct cdev is not required to register or allocate device
numbers.

❑ After a device number range has been obtained, the device needs to be activated by adding
it to the character device database. This requires initializing an instance of struct cdev with
cdev_init, followed by a call to cdev_add. The prototypes of the functions are defined as
follows:

<cdev.h>
void cdev_init(struct cdev *cdev, const struct file_operations *fops);
int cdev_add(struct cdev *p, dev_t dev, unsigned count);

fops in cdev_init contains pointers to the operations that handle the actual communication
with the device. count in cdev_add denotes how many minors the device provides.

Observe, for instance, how the FireWire video driver activates a character device (the driver has
already registered the major number IEEE1394_VIDEO1394_DEV with 16 minor numbers before).

drivers/ieee1394/video1394.c
static struct cdev video1394_cdev;

cdev_init(&video1394_cdev, &video1394_fops);
...
ret = cdev_add(&video1394_cdev, IEEE1394_VIDEO1394_DEV, 16);

After cdev_add returns successfully, the device is alive and active.

405

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 406

Chapter 6: Device Drivers

Since all registration functions discussed above manipulate the database data structures in a straightfor-
ward way, I do not bother to discuss their code explicitly.

In ancient times long long ago, the standard registration function for character devices used to be
register_chrdev. It is still supported for backward compatibility, and quite a number of drivers have
not been updated to the new interface as described above. New code, however, should not employ it!5

The function does also not work for device numbers larger than 255.

Block Devices
Registering block devices requires only a single call to add_disk. To describe the device properties, an
instance of struct genhd is required as a parameter; this structure is discussed in Section 6.5.1.

Earlier kernel versions required block devices to be registered using register_blkdev, which has the
following prototype:

<fs.h>
int register_blkdev(unsigned int major, const char *name);

name is usually identical to the device filename, but can be any arbitrary valid string. Although it is not
necessary to call the function anymore today, it is still possible. The benefit is that the block device will
show up in /proc/devices.

6.3 Association with the Filesystem
With few exceptions, device files are handled by standard functions in the same way as regular files.
They are managed in the virtual filesystem discussed in Chapter 8. Both regular files and device files are
accessed via an absolutely identical interface.

6.3.1 Device File Elements in Inodes
Each file in the virtual file system is associated with just one inode that manages the file properties. Since
the inode data structure is very lengthy, I don’t reproduce it in full here but only include the elements
relevant to device drivers.

<fs.h>
struct inode {

...
dev_t i_rdev;
...
umode_t i_mode;
...
struct file_operations *i_fop;
...
union {

...

5When register_chrdev is used, no handling of struct cdev is necessary since this is automatically managed. The reason is
simple: The cdev abstraction was not available in the kernel at the time register_chrdev was designed, so old drivers cannot
know anything about it.

406

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 407

Chapter 6: Device Drivers

struct block_device *i_bdev;
struct cdev *i_cdev;

};
...

};

❑ To uniquely identify that device associated with a device file, the kernel stores the file type
(block- or character-oriented) in i_mode and the major and minor numbers in i_rdev. These two
items of information are combined in the kernel into a single variable of type dev_t.

The definition of this data type is by no means set in stone but may be modified if
kernel developers deem it necessary. For this reason, only the two helper functions
imajor and iminor — which expect a pointer to an inode instance as
parameter — should be used to extract the major and minor number from i_rdev.

❑ i_fop is a collection of file operations such as open, read, and write used by the virtual filesystem
to work with the block device (the exact definition of the structure is given in Chapter 8).

❑ Depending on whether the inode represents a block or a character device, i_bdev or i_cdev
point to more specific information, which is discussed further below.

6.3.2 Standard File Operations
When a device file is opened, the various filesystem implementations invoke the init_special_inode
function to create the inode for a block or character device file.6

fs/inode.c
void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
{

inode->i_mode = mode;
if (S_ISCHR(mode)) {

inode->i_fop = &def_chr_fops;
inode->i_rdev = rdev;

} else if (S_ISBLK(mode)) {
inode->i_fop = &def_blk_fops;
inode->i_rdev = rdev;

}
else

printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
mode);

}

The underlying filesystem must return the major and minor numbers of a device in addition to the device
type (block or character) passed in mode. The inode is supplied with different file operations depending
on device type.

6.3.3 Standard Operations for Character Devices
The situation with character devices is initially very unclear because only a single file operation is made
available.

6For the sake of simplicity, I omit the creation of inodes for sockets and fifos as these are not relevant in this context.

407

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 408

Chapter 6: Device Drivers

fs/devices.c
struct file_operations def_chr_fops = {

.open = chrdev_open,
};

Character devices differ considerably. The kernel cannot therefore initially provide more than one
operation because each device file requires a separate, custom set of operations. The main task of the
chrdev_open function is therefore to fill the structure with the missing function pointers appropriate to
the opened device so that meaningful operations can be performed on the device file and ultimately on
the device itself.

6.3.4 Standard Operations for Block Devices
Block devices conform to a much more uniform scheme. This allows the kernel to provide a much larger
selection of operations right from the start. These are grouped together in a general structure called
blk_fops.

fs/block_dev.c
const struct file_operations def_blk_fops = {

.open = blkdev_open,

.release = blkdev_close,

.llseek = block_llseek,

.read = do_sync_read,

.write = do_sync_write,

.aio_read = generic_file_aio_read,

.aio_write = generic_file_aio_write_nolock,

.mmap = generic_file_mmap,

.fsync = block_fsync,

.unlocked_ioctl = block_ioctl,

.splice_read = generic_file_splice_read,

.splice_write = generic_file_splice_write,
};

Read and write operations are performed by generic kernel routines. The caches generally present in the
kernel are used automatically for block devices.

file_operations must not be used with block_device_operations although both
are similarly structured. Although file_operations is used by the VFS layer to
communicate with userspace, the routines it contains invoke the functions in
block_device_operations to implement communication with the block device. The
block_device_operations must be implemented specifically for each block device
to abstract the device properties, but the same file_operations that build on these
can be used for all block devices.

In contrast to character devices, block devices are not fully described by the above data structures,
because access to block devices is not performed in response to each individual request but is efficiently
managed by a refined and complex system of caches and request lists. The caches are operated predomi-
nantly by general kernel code, but the request lists are managed by the block device layer. When I discuss
possible block device driver operations at greater length, you will see further structures used to manage
the request queue, which collects and arranges statements addressed to the relevant device.

408

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 409

Chapter 6: Device Drivers

6.4 Character Device Operations
The hardware of character devices is usually very simple, and, not surprisingly, the associated drivers
are not very difficult to implement.

6.4.1 Representing Character Devices
Recall that character devices are represented by struct cdev. We have seen how the kernel keeps a
database of all active cdev instances, but have not yet looked into the content of the structure. It is defined
as follows:

<cdev.h>
struct cdev {

struct kobject kobj;
struct module *owner;
const struct file_operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;

};

kobj is a kernel object embedded in the structure. As usual, it is used for general management of the data
structure. owner points to the module (if any) that provides the driver, and ops is a list of file operations
that implement specific operations to communicate with the hardware. dev specifies the device number,
and count denotes how many minors are associated with the device. list allows for implementing a list
of all inodes that represent device special files for the device.

Initially, the file operations for character devices are limited to just a single method for opening the
associated device file (always the first action when using a driver). Logically, let’s examine this method
first.

6.4.2 Opening Device Files
chrdev_open from fs/devices.c is the generic function for opening character devices. Figure 6-6 shows
the associated code flow diagram.

chrdev_open

Find device specific file_operations

f_op->open

Figure 6-6: Code flow diagram for chrdev_open.

Assume that the inode that represents the device file has not been opened before. Given the device
number, kobject_lookup queries the character device database introduced in Section 6.2.5 and returns
the kobject instance associated with the driver. This, in turn, allows for obtaining the cdev instance.

409

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 410

Chapter 6: Device Drivers

With the cdev instance for the device in hand, the kernel also has access to the device-specific
file_operations via cdev->ops. Various connections between data structures are then set up like
Figure 6-7.

struct inode

i_devices

i_cdev

p_list
ops

struct cdev struct file_operations

struct file

f_op

Figure 6-7: Relations between data structures for the representation of
character devices.

❑ inode->i_cdev points to the selected cdev instance. When the inode is opened next time, the
character device database need not be queried anymore because the cached value can be used.

❑ The inode is added to cdev->list (i_devices is used as the list element in the inode).

❑ file->f_ops, that is, the file_operations for struct file, are set to point to the
file_operations instance given by struct cdev.

The (now device-specific) open method of the new file_operations from struct file is then invoked
to carry out the required initialization tasks on the device (some peripherals need to negotiate operating
details by means of handshaking before they are used for the first time). The function can also be used to
make the data structure changes needed for a specific minor number.

Let us consider the example of a character device with major number 1. According to the LANANA
standard, this device has 10 different minor numbers; each provides a different function each provides a
different function, each of which relates to memory access operations. Table 6-1 lists a few minor numbers
together with the associated filenames and functions.

Some devices will be familiar, particularly the /dev/null device. Without going into the details of the
individual minor numbers, it is clear from the device descriptions that there are considerable differences
between the functions implemented, even though they are all concerned with memory access. It is there-
fore not surprising that, again, only a single function pointer is defined in the file_operations structure
of the chrdevs entry; open points to memory_open after one of the above files has been opened.

The procedure is defined in drivers/char/mem.c and implements a dispatcher that distinguishes
between the individual devices by reference to the minor number and selects the appropriate
file_operations. Figure 6-8 illustrates how the file operations change when a memory device is
opened.

The functions gradually reflect the special features of the device. Initially, only the general procedure
for opening character devices is known. This is then replaced by a special procedure to open the

410

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 411

Chapter 6: Device Drivers

memory-related device files. The function pointers are then refined even further depending on the
minor number selected. The end products do not necessarily use identical functions, as the examples of
null_fops (for /dev/null) and random_fops (for /dev/random) demonstrate.

Table 6-1: Minor Numbers for Major 1 (Memory Access).

Minor File Description

1 /dev/mem Physical memory

2 /dev/kmem Virtual kernel address space

3 /dev/null Bit bucket

4 /dev/port Access to I/O ports

5 /dev/zero Source for null characters

8 /dev/random Non-deterministic random generator

Selected by
major number

Selected by
minor number

def_chr_fops memory_fops

mem_fops

kmem_fops

null_fops

random_fops

Figure 6-8: File operations when memory devices are opened.

drivers/char/mem.c
static struct file_operations null_fops = {

.llseek = null_lseek,

.read = read_null,

.write = write_null,

.splice_write = splice_write_null,
};

drivers/char/random.c
struct file_operations random_fops = {

.read = random_read,

.write = random_write,

.poll = random_poll,

.ioctl = random_ioctl,
};

The same approach is adopted for other device types. A specific set of file operations is first installed
on the basis of the major number. These operations can then be replaced by other operations selected
according to the minor number.

411

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 412

Chapter 6: Device Drivers

6.4.3 Reading and Writing
The actual work of reading from and writing to character device files is not an especially interesting
task because of the links already established between the virtual file and the device driver code. Calling
the read and write operations of the standard library issues the system calls discussed in Chapter 8 to
ultimately invoke the relevant operations (primarily read and write) in the file_operations structure.
The specific implementation of these methods varies according to device and cannot be generalized.

The above memory devices have it easy because they need not bother with interaction with concrete
peripherals but simply invoke other kernel functions to do their work for them.

For example, the /dev/null device uses the read_null and write_null procedures to implement read
and write operations on the bit bucket. A quick look at the kernel sources will confirm that the imple-
mentation of these functions is really very simple.

drivers/char/mem.c
static ssize_t read_null(struct file * file, char __user * buf,

size_t count, loff_t *ppos)
{

return 0;
}

static ssize_t write_null(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)

{
return count;

}

Reading from the null device returns nothing, and this is easy to implement; the result returned is a data
stream with a length of 0 bytes. Data written to the device are simply ignored, but a successful write
operation is reported for data of any length.

More complicated character devices supply functions that read and write meaningful results. The generic
mechanism, however, is unchanged.

6.5 Block Device Operations
Block devices account for the second large group of peripherals supported via the VFS interface of the
kernel. Unfortunately, the situation faced by block device drivers is more complicated than that for
character devices. This is caused by a range of circumstances, above all by the need for continuous speed
adjustment occasioned by the design of the block device layer, by the way in which block devices work,
and by the historical development of the block device layer.

Block devices differ fundamentally from character devices in three principle areas.

❑ Access can be performed at any point within the data. This can but need not be the case with
character devices.

❑ Data are always transferred in fixed-size blocks. Even if a single byte is requested, the device
driver must always fetch a complete block from the device. In contrast, character devices are
able to return individual bytes.

412

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 413

Chapter 6: Device Drivers

❑ Accesses to block devices are massively cached; that is, read data are kept in memory and are
accessed from there if they are needed again. Write operations are also delayed by using caches.

This makes no sense on character devices (such as keyboards); each read request must be satis-
fied by genuine interaction with the device.

We use two terms repeatedly below — block and sector. A block is a byte sequence of a specific size
used to hold data transferred between the kernel and a device; the size of the block can be modified by
software means. A sector is a fixed hardware unit and specifies the smallest amount of data that can be
transferred by a device. A block is nothing more than a sequence of successive sectors; consequently,
the block size must always be an integer multiple of the sector size. As a sector is a hardware-specific
constant, it is also used to specify the position of a data block on a device. The kernel regards each block
device as a linear list of integer-numbered sectors or blocks.

Today, almost all common block devices have a sector size of 512 bytes, which equates to a block size
of 512, 1,024, 2,048 or 4,096. It should, however, be noted that the maximum block size is limited by the
memory page size of the particular architecture. IA-32 systems support a maximum block size of 4,096
bytes because the memory page size is 4,096 bytes. On the other hand, IA-64 and Alpha systems are able
to handle blocks with 8,192 bytes.

The relative freedom of choice with regard to block size has advantages for many block device applica-
tions as you will see when examining, for example, how filesystems are implemented. Filesystems may
divide the hard disk into blocks of different sizes in order to optimize performance when many small
files or few large files are involved. Implementation is made much easier because the filesystem is able to
match the transfer block size to its own block size.

The block device layer is not only responsible for addressing the block devices but also for carrying
out other tasks to enhance the performance of all block devices in the system. Such tasks include the
implementation of readahead algorithms that read data from a block device speculatively in advance
when the kernel assumes that the data will be required shortly by an application program.

The block device layer must provide buffers and caches to hold the readahead data if they are not
required immediately. Such buffers and caches are not reserved solely for readahead data but are also
used to temporarily store frequently needed block device data.

The list of tricks and optimizations performed by the kernel when addressing block devices is long and
beyond the scope of this chapter. What is more important is to sketch the various components of the
block device layer and demonstrate how they interact.

6.5.1 Representation of Block Devices
Block devices have a set of characteristic properties managed by the kernel. The kernel uses what is
known as request queue management to support communication with devices of this kind as effectively as
possible. This facility enables requests to read and write data blocks to be buffered and rearranged. The
results of requests are likewise kept in caches so that the data can be read and reread in a very efficient
way. This is useful when a process repeatedly accesses the same part of a file or when different processes
access the same data in parallel.

A comprehensive network of data structures as described below is needed to perform these tasks.
Figure 6-9 shows an overview of the various elements of the block layer.

413

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 414

Chapter 6: Device Drivers

Inode

Userspace application

File operations

VFS

Gen-
Disk

Block device
operations

I/O scheduler
sorts requests

Request Queue

block_device

Block
device database

Kernel

User

Figure 6-9: Overview of the block device layer.

Raw block devices are represented by struct block_device, which I discuss further below. Since this
structure is managed in an interesting way by the kernel, we need to take a close look at this first.

By convention, the kernel stores the block_device instance associated with a block device immediately
in front of the block device’s inode. This behavior is implemented by the following data structure:

fs/block_dev.c
struct bdev_inode {

struct block_device bdev;
struct inode vfs_inode;

};

All inodes that represent block devices are kept on the bdev pseudo-filesystem (see Section 8.4.1), which
is not visible to userland. This allows for using standard VFS functions to work with the collection of
block device inodes.

In particular, this is exploited by the auxiliary function bdget. Given a device number represented by
a dev_t, the function searches through the pseudo-filesystem to see if a corresponding inode already
exists and returns a pointer to it. Thanks to struct bdev_inode, this immediately allows for finding the
block_device instance for the device. If the inode does not yet exist because the device has not been
opened before, bdget and the pseudo-filesystem automatically ensure that a new bdev_inode is allocated
and set up properly.

In contrast to the character device layer, the block device layer provides comprehensive queueing func-
tions as demonstrated by the request queue associated with each device. Queues of this kind are the reason
for most of the complexity of the block device layer. As Figure 6-9 shows, the individual array entries (in
simplified form) contain pointers to various structures and procedures whose most important elements
are as follows:

❑ A wait queue to hold both read and write requests to the device.

❑ Function pointers to the I/O scheduler implementation used to rearrange requests.

414

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 415

Chapter 6: Device Drivers

❑ Characteristic data such as sector and block size or device capacity.

❑ The generic hard disk abstraction genhd that is available for each device and that stores both parti-
tioning data and pointers to low-level operations.

Each block device must provide a probe function that is registered with the kernel either directly by
means of register_blkdev_range or indirectly via the gendisk object discussed below using add_disk.
The function is invoked by the filesystem code to find the matching gendisk object.

Read and write requests to block devices do not immediately cause the corresponding operations
to be executed. Instead, they are collected and transferred to the device later in a kind of concerted
action. For this reason, no specific functions to perform the read and write operations are held in the
file_operations structure for the corresponding device files. Instead, they contain generic versions
such as generic_read_file and generic_write_file, which are discussed in Chapter 8.

What is remarkable is that exclusively generic functions are used — a distinctive feature of block devices.
In character devices these functions are represented by driver-specific versions. All hardware-specific
details are handled when requests are executed; all other functions work with an abstracted queue and
receive their results from buffers and caches that do not interact with the underlying device until it
is absolutely necessary. The path from the read or write system call to actual communication with a
peripheral device is therefore long and complex.

6.5.2 Data Structures
Until now, I have only gently touched the data structures required to represent block devices within the
kernel. Now I am going to dissect them in detail.

Block Devices
The core properties of a block device are represented by — the name says it all — struct block_device.
Let us discuss this structure first and afterward examine how it fits into a network with various other
structures.

<fs.h>
struct block_device {

dev_t bd_dev; /* not a kdev_t - it’s a search key */
struct inode * bd_inode; /* will die */
int bd_openers;

...
struct list_head bd_inodes;
void * bd_holder;

...
struct block_device * bd_contains;
unsigned bd_block_size;
struct hd_struct * bd_part;

unsigned bd_part_count;
int bd_invalidated;
struct gendisk * bd_disk;
struct list_head bd_list;

...
unsigned long bd_private;

};

415

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 416

Chapter 6: Device Drivers

❑ The device number for the block device is stored in bd_dev.7

❑ A link back to the inode that represents the block device in the bdev pseudo-filesystem is given
by bd_inode (basically, this could also be obtained using bdget, so the information is redundant,
and the field will be removed in a future kernel version).

❑ bd_inodes heads a list of all inodes that represent device special files for the block device.

These inodes represent regular files and must not be confused with the bdev inode,
which represents the block device itself!

❑ bd_openers counts how often the block device has been opened with do_open.

❑ bd_part points to a specialized data structure (struct hd_struct) that represents the partition
contained on the block device. I will come back to this representation in a moment.

❑ bd_part_count does not count the number of partitions as could be assumed. Instead, it is a
usage count that states from how many places in the kernel partitions within the device have
been referenced.

This is necessary when partitions are rescanned with rescan_partitions: If bd_part_count is
greater than zero, rescanning is refused because the old partitions are still in use.

❑ bd_invalidated is set to 1 if the partition information in the kernel is invalid because it has
changed on disk. Next time the device is opened, the partition tables will be rescanned.

❑ bd_disk provides another abstraction layer that also allows for partitioning hard disks. This
mechanism is examined in the following section.

❑ bd_list is a list element that allows for keeping track of all block_device instances available in
the system. The list is headed by the global variable all_bdevs. This allows for iterating over all
block devices without querying the block device database.

❑ bd_private can be used to store holder-specific data with each block_device instance.

As the term holder-specific implies, only the current holder of the block_device
instance may use bd_private. To become a holder, bd_claim needs to be
successfully called on the block device. bd_claim is successful if bd_holder is a NULL
pointer, that is, if no holder is yet registered. In this case, bd_holder points to the
current holder, which can be an arbitrary address in kernel space. Calling bd_claim
signalizes to other parts of the kernel that they essentially do not have any business
with the block device anymore.

There are no fixed rules on which part of the kernel can hold a block device. The Ext3 filesystem,
for instance, claims the block device which represents an external journal of a mounted filesys-
tem, and the superblock is registered as a holder. If a partition is used as a swap space, then the
swapping code holds the partition after it is activated with the swapon system call.

7The comment on data type kdev_t is included for historical reasons. When development work started on 2.6 the kernel used
two different data types (dev_t and kdev_t) to represent device numbers inside and outside the kernel.

416

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 417

Chapter 6: Device Drivers

When a block device is opened for using blkdev_open and exclusive use is requested as dis-
cussed in Section 6.5.4, the file instance associated with the device file claims the block device.

It is interesting to observe that there are currently no users of bd_private field in the kernel
sources. The bd_claim mechanism, however, is still useful even if no holder needs to associate
private data with a block device currently.

A block device is released with bd_release.

Generic Hard Disks and Partitions
While struct block_device represents a block device toward the device driver level, another abstrac-
tion emphasizes the connection with generic kernel data structures. From this point of view, the block
devices by themselves are not interesting. Instead, the notion of a hard disk, possibly with subpartitions,
is more useful. The partition information on a device is independent of the block_device instances that
represent the partitions. Indeed, when a disk is added to the system, the kernel reads and analyzes the
partition information on the underlying block device but does not create the block_device instances
for the individual partitions. For these reasons, the kernel uses the following data structure to provide a
representation for generic partitioned hard disks (some fields related to statistics bookkeeping have been
omitted):

<genhd.h>
struct gendisk {

int major; /* major number of driver */
int first_minor;
int minors; /* maximum number of minors, =1 for

* disks that can’t be partitioned. */
char disk_name[32]; /* name of major driver */
struct hd_struct **part; /* [indexed by minor] */
int part_uevent_suppress;
struct block_device_operations *fops;
struct request_queue *queue;
void *private_data;
sector_t capacity;
int flags;
struct device *driverfs_dev;
struct kobject kobj;

...
};

❑ major specifies the major number of the driver; first_minor and minors indicate the range
within which minor numbers may be located (we already know that each partition is allocated
its own minor number).

❑ disk_name gives a name to the disk. It is used to represent the disk in sysfs and in
/proc/partitions.

❑ part is an array consisting of pointers to hd_struct, whose definition is given below. There is
one entry for each disk partition.

❑ If part_uevent_suppress is set to a positive value, no hotplug events are sent to userspace if
changes in the partition information of the device are detected. This is only used for the initial
partition scan that occurs before the disk is fully integrated into the system.

417

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 418

Chapter 6: Device Drivers

❑ fops is a pointer to device-specific functions that perform various low-level tasks. I discuss these
below.

❑ queue is needed to manage request queues, which I discuss below.

❑ private_data is a pointer to private driver data not modified by the generic functions of the
block layer.

❑ capacity specifies the disk capacity in sectors.

❑ driverfs_dev identifies the hardware device to which the disk belongs. The destination is an
object of the driver model, which is discussed in Section 6.7.1.

❑ kobj is an integrated kobject instance for the generic kernel object model as discussed in
Chapter 1.

For each partition, there is an instance of hd_struct to describe the key data of the partition within
the device. Again, I present a slightly simplified version of the data structure to focus on the essential
features.

<genhd.h>
struct hd_struct {

sector_t start_sect;
sector_t nr_sects;
struct kobject kobj;

...
};

start_sect and nr_sects define the start sector and the size of the partition on the block device, thus
describing the partition uniquely (for the sake of brevity, other elements used for statistical purposes are
omitted). kobj associates the object with the generic object model, as usual.

The parts array is filled by various routines that examine the partition structure of the hard disk when
it is registered. The kernel supports a large number of partitioning methods to support coexistence with
most other systems on many architectures. I won’t bother describing how they are implemented because
they differ only in the details of how information is read from disk and analyzed.

Although gendisks represent partitioned disks, they can as well represent devices
without any partitions.

It is also important to note that instances of struct gendisk may not be individually allocated by drivers.
Instead, the auxiliary function alloc_disk must be used:

<genhd.h>
struct gendisk *alloc_disk(int minors);

Given the number of minors for the device, calling this function automatically allocates the genhd instance
equipped with sufficient space for pointers to hd_structs of the individual partitions.

Only memory for the pointers is added; the partition instances are only allocated when an actual partition
is detected on the device and added with add_partition.

Additionally, alloc_disk integrates the new disk into the device model data structures.

Consequently, gendisks must not be destroyed by simply freeing them. Use del_gendisk instead.

418

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 419

Chapter 6: Device Drivers

Connecting the Pieces
The previously introduced data structures — struct block_device, struct gendisk, and struct
hd_struct — are directly connected with each other. Figure 6-10 shows how.

struct
block_device

bd_contains

bd_contains

bd_part

bd_disk

bd_part

bd_disk

bd_contains

bd_part

bd_disk

struct
gendisk

struct hd_struct

part

Figure 6-10: Connection between block devices, generic hard disks, and partitions.

For each partition of a block device that has already been opened, there is an instance of struct
block_device. The objects for partitions are connected with the object for the complete device via
bd_contains. All block_device instances contain a link to their generic disk data structure gen_disk via
bd_disk. Note that while there are multiple block_device instances for a partitioned disk, one gendisk
instance is sufficient.

The gendisk instance points to an array with pointers to hd_structs. Each represents one partition. If
a block_device represents a partition, then it contains a pointer to the hd_struct in question — the
hd_struct instances are shared between struct gendisk and struct block_device.

Additionally, generic hard disks are integrated into the kobject framework as shown in Figure 6-11. The
block subsystem is represented by the kset instance block_subsystem. The kset contains a linked list on
which the embedded kobjects of each gendisk instance are collected.

list

kobj.parent kobj.parent

struct hd_struct

struct kset
block_subsys

entry entry

struct gendisk

embedded
kobj

Figure 6-11: Integration of generic hard disks with the generic kernel object
framework.

419

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 420

Chapter 6: Device Drivers

Partitions represented by struct hd_struct also contain an embedded kobject. Conceptually, partitions
are subelements of a hard disk, and this is also captured in the data structures: The parent pointer of the
kobject embedded in every hd_struct points to the kobject of the generic hard disk.

Block Device Operations
Operations specific to a class of block devices are collected in the following (slightly simplified) data
structure:

<fs.h>
struct block_device_operations {

int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);
int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);

...
int (*media_changed) (struct gendisk *);
int (*revalidate_disk) (struct gendisk *);

...
struct module *owner;

};

open, release and ioctl have the same meaning as the equivalent functions in file_operations and
are used to open and close files, and to send special commands to a block device.

The functions are not invoked directly by the VFS code but indirectly by the
operations contained in the standard file operations for block devices,
def_blk_fops.

The remaining elements of block_device_operations list the options available only to block devices.

❑ media_changed checks whether the storage medium has been changed as can happen with
devices such as floppy disks and ZIP drives (hard disks do not usually support this function
because they cannot normally be exchanged . . .). The routine is provided for internal use in
the kernel to prevent inconsistencies owing to careless user interaction. Data loss is inevitable if
a floppy disk is removed from the drive without first having been unmounted and if the data
in the cache have not been synchronized with the contents on the disk in the meantime. The
situation is even worse if a user removes a floppy disk whose changes have not yet been written
back and inserts a new floppy with different contents. When writeback finally takes place,
the contents of the new floppy are destroyed or at least severely compromised — this should
be prevented at all costs because it compounds the fact that the data on the first floppy have
already been lost. The kernel can, indeed, prevent such loss by invoking check_media_change at
the appropriate points in the code.

❑ As its name suggests, revalidate_disk is called to revalidate the device. Currently, this is only
necessary when an old medium is removed and replaced with a new medium without first per-
forming a correct unmount followed by a new mount.

The owner field holds a pointer to a module structure in memory if the driver is implemented as a mod-
ule. Otherwise, it contains a NULL pointer.

420

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 421

Chapter 6: Device Drivers

Request Queues
Read and write requests to block devices are placed on a queue known as a request queue. The gendisk
structure includes a pointer to the device-specific queue, which is represented by the following data type.

<blkdev.h>
struct request_queue
{

/*
* Together with queue_head for cacheline sharing
*/

struct list_head queue_head;
struct list_head *last_merge;
elevator_t elevator;
struct request_list rq; /* Queue request freelists */

request_fn_proc *request_fn;
make_request_fn *make_request_fn;
prep_rq_fn *prep_rq_fn;
unplug_fn *unplug_fn;
merge_bvec_fn *merge_bvec_fn;
prepare_flush_fn *prepare_flush_fn;
softirq_done_fn *softirq_done_fn;

...

/*
* Auto-unplugging state
*/

struct timer_list unplug_timer;
int unplug_thresh; /* After this many requests */
unsigned long unplug_delay; /* After this many jiffies */
struct work_struct unplug_work;

struct backing_dev_info backing_dev_info;
...

/* queue needs bounce pages for pages above this limit */
unsigned long bounce_pfn;
int bounce_gfp;

unsigned long queue_flags;

/* queue settings */
unsigned long nr_requests; /* Max # of requests */
unsigned int nr_congestion_on;
unsigned int nr_congestion_off;
unsigned int nr_batching;

unsigned short max_sectors;
unsigned short max_hw_sectors;
unsigned short max_phys_segments;
unsigned short max_hw_segments;
unsigned short hardsect_size;
unsigned int max_segment_size;

};

421

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 422

Chapter 6: Device Drivers

queue_head is the central list head used to construct a doubly linked list of requests — each element is
of the data type request discussed below and stands for a request to the block device to read or fetch
data. The kernel rearranges the list to achieve better I/O performance (several algorithms are provided
to perform I/O scheduler tasks as described below). As there are various ways of resorting requests, the
elevator element8 groups the required functions together in the form of function pointers. I shall come
back to this structure further below.

rq serves as a cache for request instances. struct request_list is used as a data type; in addition to the
cache itself, it provides two counters to record the number of available free input and output requests.

The next block in the structure contains a whole series of function pointers and represents the central
request handling area. The parameter settings and return type of the function are defined by typedef
macros (struct bio manages the transferred data and is discussed below).

<blkdev.h>
typedef void (request_fn_proc) (struct request_queue *q);
typedef int (make_request_fn) (struct request_queue *q, struct bio *bio);
typedef int (prep_rq_fn) (struct request_queue *, struct request *);
typedef void (unplug_fn) (struct request_queue *);

typedef int (merge_bvec_fn) (struct request_queue *, struct bio *, struct bio_vec *);
typedef void (prepare_flush_fn) (struct request_queue *, struct request *);
typedef void (softirq_done_fn)(struct request *);

The kernel provides standard implementations of these functions that can be used by most device drivers.
However, each driver must implement its own request_fn function because this represents the main link
between the request queue management and the low-level functionality of each device — it is invoked
when the kernel processes the current queue in order to perform pending read and write operations.

The first four functions are responsible to manage the request queue:

❑ request_fn is the standard interface for adding new requests to the queue. The function is auto-
matically called by the kernel when the driver is supposed to perform some work like reading
data from or writing data to the underlying device. In kernel nomenclature, this function is also
referred to as strategy routine.

❑ make_request_fn creates new requests. The standard kernel implementation of this function
adds the request to the request list as you will see below. When there are enough requests in the
list, the driver-specific request_fn function is invoked to process them together.

The kernel allows device drivers to define their own make_request_fn functions because some
devices (RAM disks, for example) do not make use of queues as data can be accessed in any
sequence without impairing performance, or they might know better than the kernel how to
deal with requests and would not benefit from the standard methods (volume managers, for
example). However, this practice is rare.

❑ prep_rq_fn is a request preparation function. It is not used by most drivers and is therefore set
to NULL. If it is implemented, it generates the hardware commands needed to prepare a request
before the actual request is sent. The auxiliary function blk_queue_prep_rq sets prep_rq_fn in a
given queue.

8This term is slightly confusing because none of the algorithms used by the kernel implements the classic elevator method. Never-
theless, the basic objective is similar to that of elevators.

422

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 423

Chapter 6: Device Drivers

❑ unplug_fn is used to unplug a block device. A plugged device does not execute requests but
collects them and sends them when it is unplugged. Used skillfully, this method enhances block
layer performance. The remaining three functions are slightly more specialized.

❑ merge_bvec_fn determines if it is allowed to augment an existing request with more data.
Since request queues usually have fixed size limits for their requests, the kernel can use these
to answer the question. However, more specialized drivers — especially compound devices
— may have varying limits so that they need to provide this function. The kernel provides the
auxiliary routine blk_queue_merge_bvec to set merge_bvec_fn for a queue.

❑ prepare_flush_fn is called to prepare flushing the queue, that is, before all pending requests
are executed in one go. Devices can perform necessary cleanups in this method.

The auxiliary function blk_queue_ordered is available to equip a request queue with a specific
method.

❑ Completing requests, that is, ending all I/O, can be a time-consuming process for large requests.
During the development of 2.6.16, the possibility to complete requests asynchronously using
SoftIRQs (see Chapter 14 for more details on this mechanism) was added. Asynchronous com-
pletion of a request can be demanded by calling blk_complete_request, and softirq_done_fn
is in this case used as a callback to notify the driver that the completion is finished.

The kernel provides the standard function blk_init_queue_node to generate a standard request queue.
The only management function that must be provided by the driver itself in this case is request_fn.
Any other management issues are handled by standard functions. Drivers that implement request man-
agement this way are required to call blk_init_queue_node and attach the resulting request_queue
instance to their gendisk before add_disk is called to activate the disk.

Request queues can be plugged when the system is overloaded. New requests then remain unprocessed
until the queue is unplugged (this is called queue plugging). The unplug_ elements are used to imple-
ment a timer mechanism that automatically unplugs a queue after a certain period of time. unplug_fn is
responsible for actual unplugging.

queue_flags is used to control the internal state of the queue with the help of flags.

The last part of the request_list structure contains information that describes the managed block device
in more detail and reflects the hardware-specific device settings. This information is always in the form
of numeric values; the meaning of the individual elements is given in Table 6-2.

nr_requests indicates the maximum number of requests that may be associated with a queue; we come
back to this topic in Chapter 17.

6.5.3 Adding Disks and Partitions to the System
After having introduced numerous data structures that build up the block layer, everything is set to
examine in more detail how generic hard disks are added to the system. As mentioned above, add_disk is
provided for this purpose. A discussion of the implementation follows an examination of how partitions
are added to the kernel’s data structures using add_partition.

423

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 424

Chapter 6: Device Drivers

Table 6-2: Hardware Characteristics of a Request Queue.

Element Meaning

max_sectors Specifies the maximum number of sectors that the device can process in a
single request; the sector size of the specific device (hardsect_size) is used
as the size unit.

max_segment_size Maximum segment size (in bytes) for a single request.

max_phys_segments Specifies the maximum number of non-continuous segments for scatter-
gather requests used to transport non-contiguous data.

max_hw_segments Same as max_phys_segments but takes into account any remappings that
may be made by a (possible) I/O MMU. The constant specifies the maxi-
mum number of address/length pairs that the driver can pass to the device.

hardsect_size Specifies the physical sector size with which the device operates. This value
is almost always 512; only a few very new devices use different settings.

Adding Partitions
add_partition is responsible for adding a new partitions into the generic hard disk data structures. I
shall discuss a slightly simplified version here. First of all, a new instance of struct hd_struct is allo-
cated and filled with some basic information about the partition:

fs/partitions/check.c
void add_partition(struct gendisk *disk, int part, sector_t start, sector_t len, int flags)
{

struct hd_struct *p;

p = kzalloc(sizeof(*p), GFP_KERNEL);
...

p->start_sect = start;
p->nr_sects = len;
p->partno = part;

...

After assigning a name that shows up, for instance, in sysfs, the partition’s kernel object parent is set to be
the generic hard disk object. In contrast to complete disks, the ktype is not ktype_block, but ktype_part.
This allows for distinguishing uevents (see Section 7.4) that originate from disks from uevents that origi-
nate from partitions:

fs/partitions/check.c
kobject_set_name(&p->kobj, "%s%d",
kobject_name(&disk->kobj),part);

p->kobj.parent = &disk->kobj;
p->kobj.ktype = &ktype_part;

...

424

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 425

Chapter 6: Device Drivers

Adding the new object with kobject_add makes it a member of the block subsystem, and consequently,
the sysfs entries that provide information about the partition appear in /sys/block. Finally, the generic
hard disk object must be modified to point to the new partition:

fs/partitions/check.c
kobject_init(&p->kobj);
kobject_add(&p->kobj);

disk->part[part-1] = p;
}

Adding Disks
Figure 6-12 shows the code flow diagram for add_disk. A three-stage strategy is employed.

add_disk

blk_register_region

register_disk

blk_register_queue

Figure 6-12: Code flow diagram
for add_disk.

First of all, calling blk_register_region ensures that the desired device number range is not yet allo-
cated. More interesting work is performed in register_disk. After the kernel object is supplied with
a name, a new block_device instance for the device is obtained with bdget_disk (the function is a
parameter conversion front end for bdget).

Until now, nothing is known about the partitions of the device. To remedy this situation, the kernel
calls several procedures that end up in rescan_partitions (see the discussion of the exact call chain in
the next section). The function tries to identify the partitions on the block device by trial and error. The
global array check_part contains pointers to functions that are able to identify one particular partition
type. On standard computers, usually PC Bios or EFI partitions will be used, but support is also available
for more esoteric types like SGI Ultrix or Acorn Cumana partitions. Each of these functions is allowed to
have a look at the block device,9 and if a known partition scheme is detected, the check_part function
returns this information to rescan_partitions. Here, add_partition as discussed above is called for
each detected partition.

6.5.4 Opening Block Device Files
When a user application opens the device file of a block device, the virtual filesystem invokes the open
function of the file_operations structure and arrives at blkdev_open. Figure 6-13 shows the associated
code flow diagram.

9Note that this implies that reading data from the block device is already required to work when the device is registered with
disk_add!

425

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 426

Chapter 6: Device Drivers

blkdev_open

bd_acquire

do_open

get_gendisk

disk->fops->open

flag 0_EXCL set? bd_claim

Figure 6-13: Code flow diagram for
blkdev_open.

bd_acquire first finds the matching block_device instance for the device. The pointer to the instance can
be read directly from inode->i_bdev if the device has already been used. Otherwise, it is created using
the dev_t information. Afterward do_open carries out the main portion of the task, described below.
If exclusive access to the block device is requested by setting the flag O_EXCL, then the block device is
claimed with bd_claim. This sets the file instance associated with the device file as current holder of the
block device.

Main device?

Partition information invalid?

Insert block_device into data structures

Partition information invalid

Yes

No

Yes

No

do_open

get_gendisk

disk->fops->open

disk->fops->open

rescan_partitions

rescan_partitions

Device opened before?

Partition?

Figure 6-14: Code flow diagram for do_open.

The first step of do_open is to call get_gendisk. This delivers the gendisk instance that belongs to the
block device. Recall that the gendisk structure describes the partitions of the block device as discussed in
Section 6.2.5. However, if the block device is opened for the first time, the information is not yet complete.
Nevertheless, the device-specific block_device_operations that are required to work with the device
can already be found in the generic hard disk structure.

The kernel then needs to proceed differently depending on the type and state of the block device, as is
shown in Figure 6-14. Things are simpler if the block device has been opened before, as can be inferred
from the openers count block_device->bd_openers.

426

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 427

Chapter 6: Device Drivers

❑ disk->fops->open invokes the appropriate open function for the file to perform hardware-
specific initialization tasks.

❑ If the partition information has become invalid as indicated by block_device->bd_invalidated,
rescan_partitions is called to re-read the partition information. Partition information can
become invalid if a removable medium is exchanged.

If the device has not been opened before, some more work is required. First suppose that not a
partition, but the main block device is opened — which may nevertheless contain partitions. In this
case, the required actions are modulo some bookkeeping details identical to the case shown above:
disk->fops->open handles the low-level work of opening the device, and rescan_partitions reads the
partition table if the existing information is invalid.

This is, however, usually the first time that partition information is read in. When a new disk is registered
using add_disk, the kernel sets gendisk->bd_invalidated to 1, which signals an invalid partition table
on the block device (in fact, since there is no partition table at all, it cannot really be called valid!). Then a
fake file is constructed as a parameter passed to do_open, and this, in turn, triggers reading the partition
table.

If the opened block device represents a partition that has not been opened before, the kernel needs to
associate the block_device instance for the partition with the block_device that contains the partition.
Essentially this works as follows:

fs/block_dev.c
struct hd_struct *p;
struct block_device *whole;
whole = bdget_disk(disk, 0);
...
bdev->bd_contains = whole;
p = disk->part[part - 1];
...
bdev->bd_part = p;

After finding the block_device instance that represents the whole disk that includes the partition, a link
between partition and container is set up using block_device->bd_contains. Note that the kernel can
find the whole block device starting from the partition’s block device, but not vice versa! Additionally, the
partition information in hd_struct is now shared between the generic hard disk and the block_device
instance for the partition, as indicated in Figure 6-10.

6.5.5 Request Structure
The kernel provides its own data structure to describe a request to a block device.

<blkdev.h>
struct request {

struct list_head queuelist;
struct list_head donelist;

struct request_queue *q;

unsigned int cmd_flags;

427

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 428

Chapter 6: Device Drivers

enum rq_cmd_type_bits cmd_type;
...

sector_t sector; /* next sector to submit */
sector_t hard_sector; /* next sector to complete */
unsigned long nr_sectors; /* no. of sectors left to submit */
unsigned long hard_nr_sectors; /* no. of sectors left to complete */
/* no. of sectors left to submit in the current segment */
unsigned int current_nr_sectors;

/* no. of sectors left to complete in the current segment */
unsigned int hard_cur_sectors;

struct bio *bio;
struct bio *biotail;

...
void *elevator_private;
void *elevator_private2;

struct gendisk *rq_disk;
unsigned long start_time;

unsigned short nr_phys_segments;
unsigned short nr_hw_segments;

...
unsigned int cmd_len;

...
};

The very nature of a request is to be kept on a request queue. Such queues are implemented using doubly
linked lists, and queuelist provides the required list element.10 q points back to the request queue to
which the request belongs, if any.

Once a request is completed, that is, when all required I/O operations have been performed, it can be
queued on a completed list, and donelist provides the necessary list element.

The structure includes three elements to indicate the exact position of the data to be transferred.

❑ sector specifies the start sector at which data transfer begins.

❑ current_nr_sectors indicates the number of sectors to transfer for the current request.

❑ nr_sectors specifies the number of sector requests still pending.

hard_sector, hard_cur_sectors, and hard_nr_sectors have the same meaning but relate to the actual
hardware and not to a virtual device. Usually, both variable collections have the same values, but dif-
ferences may occur when RAID or the Logical Volume Manager is used because these combine several
physical devices into a single virtual device.

When scatter-gather operations are used, nr_phys_segments and nr_hw_segments specify, respectively,
the number of segments in a request and the number of segments used after possible re-sorting by an
I/O MMU.

10This is only necessary for asynchronous request completion. Normally the list is not required.

428

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 429

Chapter 6: Device Drivers

Like most kernel data types, requests are equipped with pointers to private data. In this case, not only
one, but two elements (elevator_private and elevator_private2) are available! They can be set by the
I/O scheduler — traditionally called elevator — which currently processes the request.

BIOs are used to transfer data between the system and a device. Their definition is examined below.

❑ bio identifies the current BIO instance whose transfer has not yet been completed.

❑ biotail points to the last request, since a list of BIOs may be used in a request.

A request can be used to transmit control commands to a device (more formally, it can be used as packet
command carrier). The desired commands are listed in the cmd array. We have omitted several entries
related to bookkeeping required in this case.

The flags associated with a request are split into two parts. cmd_flags contains a set of generic flags for
the request, and cmd_type denotes the type of request. The following request types are possible:

<blkdev.h>
enum rq_cmd_type_bits {

REQ_TYPE_FS = 1, /* fs request */
REQ_TYPE_BLOCK_PC, /* scsi command */
REQ_TYPE_SENSE, /* sense request */
REQ_TYPE_PM_SUSPEND, /* suspend request */
REQ_TYPE_PM_RESUME, /* resume request */
REQ_TYPE_PM_SHUTDOWN, /* shutdown request */
REQ_TYPE_FLUSH, /* flush request */
REQ_TYPE_SPECIAL, /* driver defined type */
REQ_TYPE_LINUX_BLOCK, /* generic block layer message */

...
};

The most common request type is REQ_TYPE_FS: It is used for requests that actually transfer data to and
from a block device. The remaining types allow for sending various types of commands as documented
in the source comments to a device.

Besides the type, several additional flags characterize the request type:

<blkdev.h>
enum rq_flag_bits {

__REQ_RW, /* not set, read. set, write */
__REQ_FAILFAST, /* no low level driver retries */
__REQ_SORTED, /* elevator knows about this request */
__REQ_SOFTBARRIER, /* may not be passed by ioscheduler */
__REQ_HARDBARRIER, /* may not be passed by drive either */
__REQ_FUA, /* forced unit access */
__REQ_NOMERGE, /* don’t touch this for merging */
__REQ_STARTED, /* drive already may have started this one */
__REQ_DONTPREP, /* don’t call prep for this one */
__REQ_QUEUED, /* uses queueing */
__REQ_ELVPRIV, /* elevator private data attached */
__REQ_FAILED, /* set if the request failed */
__REQ_QUIET, /* don’t worry about errors */
__REQ_PREEMPT, /* set for "ide_preempt" requests */

429

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 430

Chapter 6: Device Drivers

__REQ_ORDERED_COLOR, /* is before or after barrier */
__REQ_RW_SYNC, /* request is sync (O_DIRECT) */
__REQ_ALLOCED, /* request came from our alloc pool */
__REQ_RW_META, /* metadata io request */
__REQ_NR_BITS, /* stops here */

};

__REQ_RW is especially important because it indicates the direction of data transfer. If the bit is set, data
are written; if not, data are read. The remaining bits are used to send special device-specific commands,
to set up barriers,11 or to transfer control codes. Their meaning is concisely described by the kernel com-
mentary, so I need not add anything further.

6.5.6 BIOs
Before giving an exact definition of BIOs, it is advisable to discuss their underlying principles as illus-
trated in Figure 6-15.

BIO BIO BIO

bi_io_vec

s
t
r
u
c
t

p
a
g
e

Figure 6-15: Structure of BIOs.

The central management structure (bio) is associated with a vector whose individual entries each point
to a memory page (caution: Not the address in memory but the page instance belonging to the page).
These pages are used to receive data from and send data to the device.

It is explicitly possible to use highmem pages that are not directly mapped in the
kernel and cannot therefore be addressed via virtual kernel addresses. This is
useful when data are copied directly to userspace applications that are able to access
the highmem pages using their page tables.

The memory pages can but need not be organized contiguously; this facilitates the implementation of
scatter-gather operations.

BIOs have the following (simplified) structure in the kernel sources:

<bio.h>
struct bio {

sector_t bi_sector;
struct bio *bi_next; /* request queue link */

11If a device comes across a barrier in a request list, all still pending requests must be fully processed before any other actions can
be performed.

430

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 431

Chapter 6: Device Drivers

struct block_device *bi_bdev;
...

unsigned short bi_vcnt; /* how many bio_vec’s */
unsigned short bi_idx; /* current index into bvl_vec */

unsigned short bi_phys_segments;
unsigned short bi_hw_segments;

unsigned int bi_size; /* residual I/O count */
...

struct bio_vec *bi_io_vec; /* the actual vec list */

bio_end_io_t *bi_end_io;

void *bi_private;
...
};

❑ bi_sector specifies the sector at which transfer starts.

❑ bi_next combines several BIOs in a singly linked list associated with a request.

❑ bi_bdev is a pointer to the block device data structure of the device to which the request belongs.

❑ bi_phys_segments and bi_hw_segments specify the number of segments in a transfer before and
after remapping by the I/O MMU.

❑ bi_size indicates the total size of the request in bytes.

❑ bi_io_vec is a pointer to the I/O vectors, and bi_vcnt specifies the number of entries in the
array. bi_idx denotes which array entry is currently being processed.

The structure of the individual array elements is as follows:

<bio.h>
struct bio_vec {

struct page *bv_page;
unsigned int bv_len;
unsigned int bv_offset;

};

bv_page points to the page instance of the page used for data transfer. bv_offset indicates the
offset within the page; typically this value is 0 because page boundaries are normally used as
boundaries for I/O operations.

len specifies the number of bytes used for the data if the whole page is not filled.

❑ bi_private is not modified by the generic BIO code and can be used for driver-specific informa-
tion.

❑ bi_destructor points to a destructor function invoked before a bio instance is removed from
memory.

❑ bi_end_io must be invoked by the device driver when hardware transfer is completed. This
gives the block layer the opportunity to do clean-up work or wake sleeping processes that are
waiting for the request to end.

431

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 432

Chapter 6: Device Drivers

6.5.7 Submitting Requests
In this section, I discuss the mechanism that the kernel provides to submit data requests to peripheral
devices. This also involves buffering and reordering requests to reduce disk head seek movements, for
example, or to boost performance by bundling operations. Also covered are the operation of the device
driver, which interacts with the specific hardware in order to process requests, and the general code of the
virtual filesystem that is associated with device files and therefore with user applications and other parts
of the kernel. As you will see in Chapters 16 and 8, the kernel employs caches to retain data already read
from block devices for future reuse if the same request is submitted repeatedly. We are not interested
in this particular aspect here. Instead, we will examine how the kernel goes about submitting a physical
request to a device to read or write data.

The kernel submits a request in two steps.

❑ It creates a bio instance to describe the request and then embeds the instance in a request that is
placed on a request queue.

❑ It processes the request queue and carries out the actions described by the bio.

Creating a new bio instance is not particularly interesting as all it involves is filling the desired locations
on a block device and providing page frames to hold and transfer the relevant data. I won’t bother with
the details.

Once a BIO has been created, make_request_fn is invoked to generate a new request for insertion on the
request queue.12 The requests are submitted by request_fn.

The implementation of these actions reside in block/ll_rw_blk.c up to kernel 2.6.24. The strange-
sounding filename is an abbreviation of low level read write handling for block devices. Later kernels split
the implementation into a number of smaller files named by the scheme block/blk-*.c.

Creating Requests
submit_bio is the key function that creates a new request based on a passed bio instance and finally
places it on the request queue of the driver using make_request_fn. Figure 6-16 shows the associated
code flow diagram. Let’s consider a simplified version first, but come back later to address some problems
that can arise in certain cases, and how the kernel solves them with a little trick.

The function is invoked at various places in the kernel to initiate physical data transfers. submit_bio
simply updates the kernel statistics, the actual work being delegated to __generic_make_request after
a detour over generic_make_request, which is explained below. The work is done in three steps after
a few sanity checks have been performed (one such check establishes, for example, whether the request
exceeds the physical capabilities of the device).

❑ The request queue of the block device to which the request refers is found using
bdev_get_queue.

❑ If the device is partitioned, the request is remapped with blk_partition_remap to ensure that
the correct area is read or written. This enables the remaining kernel to treat individual partitions
in the same way as independent, non-partitioned devices. If a partition starts at sector n and

12Or to store the request elsewhere if the driver has explicitly replaced the default implementation with its own function.

432

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 433

Chapter 6: Device Drivers

access is to be made to sector m within the partition, a request must be created to access sector
m + n of the block device. The correct offset for the partition is held in the parts array of the
gendisk instance associated with the queue.

❑ q->make_request_fn generates a request by reference to the bio and forwards it to the device
driver. The kernel standard function (__make_request) is invoked for most devices.

Perform statistics acccounting

submit_bio

generic_make_request

_ _generic_make_request

bdev_get_queue

blk_partition_remap

queue->make_request_fn

Figure 6-16: Code flow diagram for submit_bio.

I have announced above that this approach can cause problems, and they manifest themselves exactly
at this point. Some block drivers in the kernel — MD and the device mapper — cannot use the
standard function supplied by the kernel and implement their own functions. These, however, call
generic_make_request recursively!

While recursive function calls are no problem in userspace, they can become problematic in the kernel
since only very limited stack space is available. Therefore a way to limit the maximal recursion depth to
a sane value needs to be devised. To understand how this is done, observe first that the task_struct,
which represents central data for each process (refer to Chapter 2), also contains two elements related to
BIO handling:

<sched.h>
struct task_struct {
...
/* stacked block device info */

struct bio *bio_list, **bio_tail;
...
}

The pointers are used to limit the maximal recursion depth to one — without losing any of the submitted
BIOs, naturally. If __generic_make_request or some subfunction calls generic_make_request, the code
flow will return before the next recursive call to __generic_make_request. To understand how, we
need to take a look at the implementation of generic_make_request (recall that current points to the
task_struct instance of the currently running process).

block/ll_rw_blk.c
void generic_make_request(struct bio *bio)
{

if (current->bio_tail) {
/* make_request is active */

433

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 434

Chapter 6: Device Drivers

*(current->bio_tail) = bio;
bio->bi_next = NULL;
current->bio_tail = &bio->bi_next;
return;

}

do {
current->bio_list = bio->bi_next;
if (bio->bi_next == NULL)

current->bio_tail = ¤t->bio_list;
else

bio->bi_next = NULL;
__generic_make_request(bio);
bio = current->bio_list;

} while (bio);
current->bio_tail = NULL; /* deactivate */

}

The method is simple, yet creative. Figure 6-17 shows how the data structures evolve over time.

bio_list

bio_tail

current

bio_list

bio_tail

Bio 1

(a) (b)

(c) (d)

Bio 1

bio_list

bio_tail

current

bio

bi_next

bi_nextbi_nextbi_next

Bio 2

bi_next

Bio 3

bi_next

Bio 4

bi_next

Bio 2Bio 1

bio bio

bio

bi_next

bio_list

bio_tail

Bio 2

bi_next

Bio 1

current

Figure 6-17: BIO lists evolving under recursive calls to generic_make_request.

current->bio_tail is initialized to NULL, so we can skip the first conditional block. One bio instance
is submitted, and the data structures look as in Figure 6-17(a). bio points to the submitted BIO, while
current->bio_list is NULL and current_bio_tail point to the address of current_bio_tail. Note that
the following pictures in the figure will always consider the local bio variable of the first function call to
generic_make_request — not any variables in later stack frames.

Now suppose that __generic_make_request does recursively call generic_make_request to submit
a BIO instance, which we call BIO 2. How do the data structures look when __generic_make_request
returns? Consider the action of the recursive call: Since current->bio_tail is not a NULL pointer any-
more, the initial if-block in generic_make_request is processed. current->bio_list then points to
the second BIO, and current->bio_tail points at the address of the bi_next of BIO 2. Thus the data
structure looks as in Figure 6-17(b) when __generic_make_request returns.

434

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 435

Chapter 6: Device Drivers

The do loop is now executed a second time. Before the second — iterative! — call to __generic_make_
request, the data structure looks as in Figure 6-17(c), and the second bio instance is processed. If no
more BIOs are submitted recursively, the job is done afterward.

The method also works if __generic_make_request calls generic_make_request more than once. Imag-
ine that three additional BIOs are submitted. The resulting data structure is depicted in Figure 6-17(d). If
no more BIOs are submitted afterward, the loop processes the existing BIO instances one after another
and then returns.

After having resolved the difficulties with recursive generic_make_request calls, we can go on to exam-
ine the default make_request_fn implementation __make_request. Figure 6-18 shows the code flow
diagram.13

Read information from bio

elv_queue_empty?

Implement elevator guideline

Unplug queue (if necessary) and quit function

Setup request instance

Queue unplugged and unplug threshold reached?

_ _make_request

blk_plug_device

elv_merge

get_request_wait

add_request _ _elv_add_request_pos

_ _generic_unplug_device

Figure 6-18: Code flow diagram for __make_request.

Once the information needed to create the request has been read from the passed bio instance, the kernel
invokes elv_queue_empty to check whether the elevator queue is currently empty. If so, work is made
easier as there is no need to merge the request with existing requests (because none is present).

If there are pending requests in the queue, elv_merge is called to invoke the elevator_merge_fn function
of the elevator element associated with the request queue (Section 6.5.8 deals with the implementation
of I/O schedulers). At this point, we are interested only in the result of the function. It returns a pointer
to the request list position at which the new request is to be inserted. The I/O scheduler also specifies
whether and how the request is to be coalesced with existing requests.

13As a slight simplification, I omit bounce buffer handling. Older hardware might only be able to transfer data into some specific
region in memory. In this case, the kernel initiates the transfer to go into this region and copies the result to some more apt place
after the transfer is finished.

435

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 436

Chapter 6: Device Drivers

❑ ELEVATOR_BACK_MERGE and ELEVATOR_FRONT_MERGE cause the new request to be coalesced with
the request at the found position in the request list. ELEVATOR_BACK_MERGE merges the new data
after the data of the existing request, ELEVATOR_FRONT_MERGE before the data.

The existing element is modified to produce a merged request covering the desired areas.

❑ ELEVATOR_NO_MERGE finds out that the request cannot be coalesced with existing elements on the
request queue and must therefore be added on its own.

These are the only actions that an elevator can take; it cannot influence the request queue in any other
way. This clearly demonstrates the difference between I/O and CPU schedulers. Although both are faced
with a very similar problem, the solutions they provide diverge greatly.

Once the elevator requirements have been satisfied (as far as this is possible), the kernel must generate a
new request.

get_request_wait allocates a new request instance that is then filled with data from the bio using
init_request_from_bio. If the queue is still empty (this is checked by elv_queue_empty), it is plugged
with blk_plug_device. This is how the kernel prevents the queue from being processed after each new
request; instead, it collects requests for read and/or write operations and executes them in a single action.
I discuss the mechanism used shortly.

After a few kernel statistics have been updated with __elv_add_request_pos, add_request adds the
request to the request list (this leads to the I/O scheduler-specific elevator_add_req_fn function) at the
position selected by the above I/O scheduler call.

If a request is to be processed synchronously (BIO_RW_SYNC must then be set in the bio instance of the
request), the kernel must unplug the queue using __generic_unplug_device to ensure that the request
can, in fact, be handled synchronously. Requests of this kind are seldom used because they negate the
effect of I/O scheduling.

Queue Plugging
In terms of performance, it is, of course, desirable to re-sort individual requests and merge them into
larger units to optimize data transfer. Obviously, this only works if the queue contains several requests
that can be merged. The kernel must therefore first collect a few requests in the queue before it can
process them in a single operation; this automatically generates opportunities for merging.

The kernel uses queue plugging to intentionally prevent requests from being processed. A request queue
may be in one of two states — either free or plugged. If it is free, the requests waiting in the queue are
processed. Otherwise, new requests are added to the list but not processed. The QUEUE_FLAG_PLUGGED
flag in the queue_flags element of request_queue is set when a queue is plugged; the kernel provides
the blk_queue_plugged helper function to check this flag.

In the description of __make_request, I already noted that the kernel plugs a queue with
blk_plug_device but does not explicitly unplug the queue if no synchronous request is sent.
How is it possible to ensure that queues will be processed again at some time in the future? The solution
is to be found in blk_plug_device.

436

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 437

Chapter 6: Device Drivers

drivers/block/ll_rw_blk.c
void blk_plug_device(request_queue_t *q)

{
...

if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);

...
}

}

This section of code ensures that the unplug timer of the queue is enabled after q->unplug_delay jiffies
[typically (3 * HZ) / 1000, or 3 milliseconds]; in turn, this invokes blk_unplug_timeout to unplug the
queue.

A second mechanism is also available to unplug the queue. If the number of current read and write
requests (stored in the two entries of the count array of the request list) corresponds to the threshold
specified by unplug_thresh, __generic_unplug_device is invoked in elv_insert14 to trigger unplug-
ging so that waiting requests are processed.

__generic_unplug_device is not very complicated.

block/ll_rw_blk.c
void __generic_unplug_device(request_queue_t *q)
{
...

if (!blk_remove_plug(q))
return;

q->request_fn(q);
}

request_fn is invoked to process the waiting requests after blk_remove_plug has removed the plug of
the queue and the timer used for automatic unplugging (unplug_timer) is set. That’s all that need be
done!

The kernel is also able to perform unplugging manually when important I/O operations are pending.
This ensures that important read operations, for example, are carried out immediately if data are urgently
required. This situation arises when synchronous requests (mentioned briefly above) need to be satisfied.

Executing Requests
The device-specific request_fn function is invoked when the requests in the request queue are ready to
be processed. This is a very hardware-specific task so the kernel does not provide a default implementa-
tion. Instead, it always uses the method passed when the queue was registered with blk_dev_init.

Nevertheless, the structure of the request function described below is similar in most device drivers. I
assume a situation in which there are several requests in the request queue.

14elv_insert is an internal function of the elevator implementation and is called at various points in the kernel.

437

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 438

Chapter 6: Device Drivers

sample_request is a hardware-independent sample routine for request_fn that illustrates the basic
steps performed by all drivers.

void sample_request (request_queue_t *q)
int status;
struct request *req;

while ((req = elv_next_request(q)) != NULL)
if (!blk_fs_request(req))

end_request(req, 0);
continue;

status = perform_sample_transfer(req);
end_request(req, status);

The basic layout of the strategy function is simple; elv_next_request — embedded in a while
loop — is used to read the requests sequentially from the queue. Transfer itself is carried out by
perform_sample_transfer. end_request is a standard kernel function to delete the request from the
request queue, to update the kernel statistics, and to execute any completions (see Chapter 5) waiting
in request->completion. Also invoked is the BIO-specific bi_end_io function to which the kernel can
assign a cleanup that depends on the purpose of the BIO.

As BIOs can be used to transfer not only data but also diagnostics information, the driver must invoke
blk_fs_request to check whether, in fact, data are to be transferred — for the sake of simplicity, I ignore
all other types of transfer.

The hardware-specific actions in genuine drivers are typically segregated into separate functions
to keep code concise. I have adopted the same approach in our sample strategy function. The
hardware-specific functions that would be found in a genuine driver are replaced with comments in
perform_sample_transfer.

int perform_transfer(request *req)
switch(req->cmd)
case READ:
/* Perform hardware-specific reading of data */
break;

case WRITE:
/* Perform hardware-specific writing of data */
break;

default:
return -EFAULT;

The cmd field is referenced to establish whether the request is for a read or write operation. The appropri-
ate actions are then taken to transfer the data between the system and the hardware.

6.5.8 I/O Scheduling
The various algorithms employed in the kernel for scheduling and reordering I/O operations are known
as I/O schedulers (in contrast to normal process schedulers or packet schedulers for traffic shaping in
networks). Traditionally, I/O schedulers are also called elevators. They are represented by a collection of
functions grouped together in the following data structure15:

15The kernel also defines typedef struct elevator_s elevator_t.

438

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 439

Chapter 6: Device Drivers

<elevator.h>
struct elevator_ops
{

elevator_merge_fn *elevator_merge_fn;
elevator_merged_fn *elevator_merged_fn;
elevator_merge_req_fn *elevator_merge_req_fn;

elevator_dispatch_fn *elevator_dispatch_fn;
elevator_add_req_fn *elevator_add_req_fn;
elevator_activate_req_fn *elevator_activate_req_fn;
elevator_deactivate_req_fn *elevator_deactivate_req_fn;

elevator_queue_empty_fn *elevator_queue_empty_fn;
elevator_completed_req_fn *elevator_completed_req_fn;

elevator_request_list_fn *elevator_former_req_fn;
elevator_request_list_fn *elevator_latter_req_fn;

elevator_set_req_fn *elevator_set_req_fn;
elevator_put_req_fn *elevator_put_req_fn;

elevator_may_queue_fn *elevator_may_queue_fn;

elevator_init_fn *elevator_init_fn;
elevator_exit_fn *elevator_exit_fn;

};

The I/O scheduler is not only responsible for request reordering but also for the complete management
of the request queue.

❑ elevator_merge_fn checks whether a new request can be coalesced with an existing request as
described above. It also specifies the position at which a request is inserted in the request queue.

❑ elevator_merge_req_fn coalesces two requests into a single request; elevator_merged_fn is
invoked after two requests have been merged (it performs clean-up work and returns manage-
ment data of the I/O scheduler that are no longer needed because of the merge to the system).

❑ elevator_dispatch_fn selects which request from a given request queue should be dispatched
next.

❑ elevator_add_req_fn and elevator_remove_req_fn add and remove a request to/from the
request queue.

❑ elevator_queue_empty_fn checks whether the queue contains requests ready for processing.

❑ elevator_former_req_fn and elevator_latter_req_fn find the predecessor and successor
request of a given request; this is useful when performing merging.

❑ elevator_set_req_fn and elevator_put_req_fn are invoked when a new request is instanti-
ated and returned to memory management (at this point in time the requests are not yet or no
longer associated with any queue or have been satisfied). The functions give the I/O scheduler
the opportunity to allocate, initialize, and return management data structures.

❑ elevator_init_fn and elevator_exit_fn are invoked when a queue is initialized and
returned; their effect is the same as that of a constructor or destructor.

439

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 440

Chapter 6: Device Drivers

Each elevator is encapsulated in the following data structure that holds further management information
for the kernel:

<elevator.h>
struct elevator_type
{

struct list_head list;
struct elevator_ops ops;
struct elv_fs_entry *elevator_attrs;
char elevator_name[ELV_NAME_MAX];
struct module *elevator_owner;

};

The kernel keeps all elevators in a doubly linked standard list implemented by means of the list element
(the list head is represented by the global variable elv_list). Each elevator is also given a human-
readable name that can be used to select the elevator from userspace. Attributes that will appear in
sysfs are kept in elevator_attrs. They can be used to tune the elevator behavior on a per-disk basis.

The kernel implements a whole series of I/O schedulers. However, device drivers may overwrite specific
functions of the schedulers for their own purposes or even implement their own schedulers. The elevators
have the following properties.

❑ elevator_noop is a very simple I/O scheduler that adds incoming requests to the queue one
after the other for processing on a ‘‘first come, first served‘‘ basis. Requests are merged but not
reordered. The noop I/O scheduler (no operation) is only a good choice for intelligent hardware
that can reorder requests by itself. It is also reported to be a good scheduler for devices where
there are no moving parts and thus no seek times — flash disks, for instance.

❑ iosched_deadline serves two purposes: it tries to minimize the number of disk seeks (i.e.,
movement of the read/write heads) and also does its best to ensure that requests are processed
within a certain time. In the latter case, the kernel’s timer mechanism is used to implement an
‘‘expiry time‘‘ for the individual requests. In the former case, lengthy data structures (red-black
trees and linked lists) are used to analyze requests so that they can be reordered with the
minimum of delay, thus reducing the number of disk seeks.

❑ iosched_as implements the anticipatory scheduler, which — as its name suggests — anticipates
process behavior as far as possible. Naturally, this is not an easy goal, but the scheduler tries
to achieve it by assuming that read requests are not totally independent of each other. When
an application submits a read request to the kernel, the assumption is then made that a second
related request will be submitted within a certain period. This is important if the read request is
submitted in a period during which the disk is busy with write operations. To ensure satisfactory
interaction, the write operations are deferred, and preference is given to the read operations. If
writing is resumed immediately, a disk seek operation is required but is negated by a new read
request arriving shortly afterward. In this case, it is better to leave the disk head in its position
after the first read request and to wait briefly for the next read request — if a second read request
does not arrive, the kernel is free to resume write operations.

❑ iosched_cfq provides complete fairness queuing. It is centered around several queues into which
all requests are sorted. Requests from a given process always end up on the same queue. Time

440

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 441

Chapter 6: Device Drivers

slices are allocated for each of the queues, and a round robin algorithm is used to process the
queue. This ensures that the I/O bandwidth is shared in a fair manner between the different
queues. If the number of queues is bigger than or equal to the number of processes doing simul-
taneous I/O, this implies that the bandwidth is also fairly distributed between the processes.
Some practical problems (like multiple processes being mapped to identical queues, varying
request sizes, different I/O priorities, etc.) make the distribution not completely fair, but basi-
cally, the method achieves its goal to a good extent.

The deadline scheduler was the default scheduler almost up to the end of development of 2.5 but was
replaced with the anticipatory scheduler until 2.6.17. From 2.6.18 onward, the Completely Fair Queuing
scheduler is the default choice.

For reasons of space, I shall not deal with the implementation details of each scheduler. It should be
noted, however, that the deadline scheduler is much less complicated than the anticipatory scheduler but
delivers practically identical performance in most situations.

6.5.9 Implementation of Ioctls
Ioctls permit the use of special device-specific functions that cannot be accessed by normal read and write
operations. This form of support is implemented by means of the ioctl system call that can be used with
regular files (detailed descriptions of how it is used are provided in the many system programming
manuals).

As expected, the system call is implemented in sys_ioctl, but the main work is done in vfs_ioctl.
Figure 6-19 shows the associated code flow diagram.

Process standard ioctls

Block devices: blkdef_ioctl

Yes

No

vfs_ioctl

file_ioctl

file->f_op->ioctl

Regular file?

Figure 6-19: Code flow diagram for sys_ioctl.

The desired ioctl is specified by means of a passed constant; typically, symbolic pre-processor constants
are used for this purpose.

Two situations must be distinguished once the kernel has checked whether one of the standard ioctls has
been applied (these are available for all files in the system regardless of type); for example, whether the
file descriptor is to be closed when exec is executed (see Chapter 2).

441

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 442

Chapter 6: Device Drivers

❑ If the file is a regular file, file_ioctl is invoked. The function first checks a number of stan-
dard ioctls that are always implemented for this file type (FIGETBSZ, for example, to query the
block size used by the file). do_ioctl is then used to invoke the file-specific ioctl function in the
file_operations (if it exists) to process the ioctl (regular files do not usually provide a ioctl
function so that the system call returns an error code).

❑ If the file is not a regular file, do_ioctl and therefore the file-specific ioctl methods are invoked
immediately; the method for block device files is blkdev_ioctl.

blkdev_ioctl also implements some ioctls that must be available for all block devices; for instance,
a request to read the partitioning data or a method of determining the total size of the device. There-
after the device-specific ioctls are processed by invoking the ioctl method in the file_operations of
the gendisk instance. This is where driver-specific commands, such as the eject medium command for
CD-ROMs, are implemented.

6.6 Resource Reservation
I/O ports and I/O memory are two conceptual ways of supporting communication between device drivers
and devices. So that the various drivers do not interfere with each other, it is essential to reserve ports and
I/O memory ranges prior to use by a driver. This ensures that several device drivers do not attempt to
access the same resources.

6.6.1 Resource Management
Let us first examine the data structures and functions for managing resources.

Tree Data Structures
Linux provides a generalized framework to help build data structures in memory. These structures
describe the resources available in the system and enable the kernel code to manage and allocate the
resources. Significantly, the name of the key structure is resource; it is defined as follows:

<ioport.h>
struct resource {

resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;
struct resource *parent, *sibling, *child;

};

name stores a string so that the resource can be given a meaningful name. It has no relevance for the
kernel but is useful when a resource list (in the proc filesystem) is output in readable form.

The resource itself is characterized by the three parameters below. start and end specify a general area
marked by unsigned long numbers; even though theoretically the contents of the two numbers can be
interpreted freely, they usually represent an area in an address space. flags enables the resource and its
current state to be described more precisely.

442

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 443

Chapter 6: Device Drivers

Of particular interest are the three pointers to other resource structures. These enable a tree-like hierar-
chy to be established in which the pointers are often arranged as you will see below.

Figure 6-20 illustrates how the parent, child, and sibling pointers are arranged in a tree structure that is
reminiscent of the process network discussed in Chapter 2.

Sibling
Parent
Child

Figure 6-20: Resource management in a tree structure.

The rules for linking the parent, child, and sibling elements are simple.

❑ Each child has just one parent.

❑ A parent can have any number of children.

❑ All children with the same parent are linked on the list of siblings.

The following must be noted when the data structure is represented in memory.

❑ Even though there may be a pointer from each child to the parent, there is always only a single
pointer from the parent to the first child. All other children can be reconstructed from the sibling
list.

❑ The pointer to the parent may also be NULL, in which case there is no higher-level element.

How can this hierarchical structure be used for device drivers? Let us look at the example of a system bus
to which a network card is attached. The card supports two outputs, each of which is assigned a specific
memory area for data input and output. The bus itself also has a I/O memory area, sections of which are
used by the network card.

This scheme fits perfectly into the tree hierarchy. The bus memory area that theoretically occupies the
(fictitious) range between 0 and 1,000 acts as the root element (the uppermost parent element). The net-
work card lays claim to the memory area between 100 and 199 and is a child of the root element (the bus
itself). The child elements of the network card represent the individual network outputs to which the I/O

443

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 444

Chapter 6: Device Drivers

ranges from 100 to 149 and from 150 to 199 are assigned. The originally large resource area is repeatedly
subdivided into smaller sections, each of which represents a layer of an abstraction model. Consequently,
child elements can be used to partition the area into ever smaller and ever more specific sections.

Requesting and Releasing Resources
To ensure that resources — regardless of kind — are deployed reliably, the kernel must feature a mech-
anism to allocate and subsequently release them. Once a resource has been allocated, it may not be used
by any other driver.

Requesting and releasing a resource equates to nothing more than adding and removing entries from a
resource tree.16

Requesting Resources
The kernel provides the __request_resource function to request a resource area.17 The function expects
a series of parameters including a pointer to the parent element, the start and end address of the resource
area, and a string to hold the name of the area.

kernel/resource.c
static struct resource * request_resource(struct resource *root,

struct resource *new);

The purpose of the function is to allocate a request instance and fill it with the data passed. Checks are
also performed to detect obvious errors (start address bigger than the end address, for example) that
would render the request useless and would abort the action. request_resource is responsible only for
the requisite locking. The heavy work is delegated to __request_resource. It scans the existing resources
consecutively to add the new resource at the correct position or to reveal conflicts with areas already
allocated. It does this by running through the list of siblings. The new resource instance is inserted if the
required resource area is free, thus reserving the resource. Reservation fails if the area is not free.

The children of a specific parent are scanned on one sibling level only. The kernel does not scan the list
of children downward.

If a resource cannot be reserved, the driver automatically knows that it is already in use and is therefore
not available at the moment.

Releasing Resources
The release_resource function is invoked to release a resource that is in use.

kernel/resource.c
void release_resource(struct resource *old)

16It is important to note that many system resources could be addressed without the need to reserve them. With few exceptions, pro-
cessors have no way of enforcing resource reservation. The functions described below should therefore be employed in the interests
of a clean programming style, although it would be possible to dispense with reservations in most cases.
17The kernel sources include other functions for allocating resources for reasons of compatibility, but they should no longer be used
in new code. There are also functions that search for resources of a certain size so that areas still free are filled automatically. I won’t
discuss these extended options as they are used only at a few places in the kernel.

444

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 445

Chapter 6: Device Drivers

6.6.2 I/O Memory
One of the most important aspects of the resource concept deals with how I/O memory is distributed
because this is the main way on all platforms (with the exception of IA-32, where great importance is
attached to I/O ports) of communicating with peripherals.

I/O memory includes not only the memory regions used directly to communicate with expansion devices
but also the regular RAM and ROM memory available to the system and included in the resource list
(which can be displayed using the iomem file in the proc filesystem).

wolfgang@meitner> cat /proc/iomem
00000000-0009e7ff : System RAM
0009e800-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-07ceffff : System RAM

00100000-002a1eb9 : Kernel code
002a1eba-0030cabf : Kernel data

07cf0000-07cfefff : ACPI Tables
07cf0000-07cfefff : ACPI Tables
07cff000-07cfffff : ACPI Non-volatile Storage
...
f4000000-f407ffff : Intel Corp. 82815 CGC [Chipset Graphics Controller]
f4100000-f41fffff : PCI Bus #01

f4100000-f4100fff : Intel Corp. 82820 (ICH2) Chipset Ethernet Controller
f4100000-f4100fff : eepro100

f4101000-f41017ff : PCI device 104c:8021 (Texas Instruments)
...

All allocated I/O memory addresses are managed in a resource tree that uses the global kernel variable
iomem_resource as its root. Each text indentation represents a child level. All entries with the same
indentation level are siblings and are linked as such. Figure 6-21 shows the parts of the data structures in
memory from which the information in the proc filesystem is obtained.

However, reservation of a memory region is not the only action needed when using I/O memory.
Depending on bus system and processor type, it may be necessary to map the address space of an expan-
sion device into kernel address space before it can be accessed (this is known as software I/O mapping).
This is achieved by setting up the system page tables appropriately using the ioremap kernel function,
which is available at various points in the kernel sources and whose definition is architecture-specific.
The likewise architecture-specific iounmap function is provided to unmap mappings.

Implementation requires, in part, long and complex manipulation of the process tables. I won’t there-
fore discuss it in detail, particularly as it varies greatly from system to system and is not important for
an understanding of device drivers. What’s more important is that — in general terms — a physical
address is mapped into the virtual address space of the processor so that it can be used by the kernel.
As applied to device drivers, this means that the address space of an expansion bus is mapped into the
address space of the CPU, where it can then be manipulated using normal memory access functions.

445

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 446

Chapter 6: Device Drivers

parent

sibling

childparent

parent

sibling

child

parent

71: *(*(struc...->parent

name = 0xc11e7300 "PCI Bus #01"
start = 4094689280
end = 4095737855
flags = 512
parent = 0xc02f1234
sibling = 0xc11e645c
child = 0xc11e345c

57: *(*(struc....sibling

name = 0xc11e661c "Intel Corp. 82815 CGC [Chipset Graphics Controller]"
start = 4160749568
end = 4227858431
flags = 4616
parent = 0xc02f1234
sibling = 0xc0002120
child = 0x0

60: *(*(struc...8].child

name = 0xc11e361c "Intel Corp. 82820 (ICH2) Chipset Ethernet Controller"
start = 4094689280
end = 4094693375
flags = 512
parent = 0xc11e693c
sibling = 0xc11e485c
child = 0xc11fad60

68: *(*(struc...>sibling

name = 0xc11e4a1c "PCI device 104c:8021 (Texas Instruments)"
start = 4094693376
end = 4094695423
flags = 512
parent = 0xc11e693c
sibling = 0xc11e4c5c
child = 0x0

69: *(*(struc...d->child

name = 0xc02c60af "eepro100"
start = 4094689280
end = 4094693375
flags = 2147483648
parent = 0xc11e345c
sibling = 0x0
child = 0x0

58: *(*(struc...].parent

name = 0xc02aa2a7 "PCI mem"
start = 0
end = 4294967295
flags = 512
parent = 0x0
sibling = 0x0
child = 0xc0002000

Figure 6-21: Allocated resources of a PCI network card.

Even after I/O areas have been mapped, it is necessary on some platforms to use
special methods rather than direct pointer de-referencing to access the individual
memory areas. Table 6-3 shows the functions declared to do this on all platforms
(generally in <asm-arch/io.h>). They should always be used by portable drivers
even if they boil down to simple pointer de-referencing on some architectures
because no other steps are needed to communicate with the I/O areas (as on IA-32
systems, for example).

6.6.3 I/O Ports
I/O ports are a popular way of communicating with devices and buses, above all in the IA-32 world. As
with I/O memory, the required region must first be registered before it can be accessed by a driver in
good faith — unfortunately, the processor is again unable to check whether this has been done.

ioport_resource from kernel/resource.c acts as the root element of a resource tree. The ioports file
in the proc filesystem reveals the reserved port addresses.

wolfgang@meitner> cat /proc/ioports
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
...

446

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 447

Chapter 6: Device Drivers

0170-0177 : ide1
...
0378-037a : parport0
03c0-03df : vga+
...
0cf8-0cff : PCI conf1
1800-180f : Intel Corp. 82820 820 (Camino 2) Chipset IDE U100 (-M)

1800-1807 : ide0
1808-180f : ide1

1810-181f : Intel Corp. 82820 820 (Camino 2) Chipset SMBus
1820-183f : Intel Corp. 82820 820 (Camino 2) Chipset USB (Hub A)
...
3000-3fff : PCI Bus #01

3000-303f : Intel Corp. 82820 (ICH2) Chipset Ethernet Controller
3000-303f : eepro100

Table 6-3: Functions for Accessing I/O Memory Areas.

Function Meaning

readb(addr)

readw(addr)

readl(addr) Reads a byte, word, or long from the specified I/O address addr.

writeb(val, addr)

writew(val, addr)

writel(val, addr) Writes a byte, word, or long value specified by val to the I/O
address addr.

memcpy_fromio(dest, src, num) Moves num bytes from the I/O addresss src to dest in normal
address space.

memcpy_toio(dst, src, nun) Copies num bytes from dst in normal address space to src in the
I/O area.

memset_io(addr, value, count) Fills count bytes with value starting at position addr.

Again the kernel makes use of indentation to reflect the parent/child and sibling relationships. The
list was generated on the same system as the I/O memory areas shown above. It is interesting that the
list includes not only standard system components such as keyboard and timer but also a few familiar
devices from the I/O mapping such as the Ethernet controller — after all, there’s no reason why a device
cannot be addressed via ports and I/O memory.

Usually ports must be accessed by means of special processor commands on the assembler level. The
kernel therefore provides corresponding macros to make a system-independent interface available to
driver programmers. They are listed in Table 6-4.

447

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 448

Chapter 6: Device Drivers

Table 6-4: Functions for Accessing I/O Ports.

Function Meaning

insb(port, addr, num)

insl(port, addr, num)

insw(port, addr, num) Reads num bytes, words, or longs from port port to the address addr
of the regular address space.

outsb(port, addr, num)

outsb(port, addr, num)

outsb(port, addr, num) Writes num bytes, words, or longs from the virtual address addr to the
port port.

The functions are declared and implemented (usually by means of access to
‘‘normal‘‘ I/O memory) even on architectures that make no use of ports in order to
simplify driver development for various architectures.

6.7 Bus Systems
Whereas expansion devices are addressed by device drivers that communicate with the remaining code
only via a fixed set of interfaces and therefore have no effect on the core kernel sources, the kernel is
also responsible for a more basic issue — how devices are attached to the rest of the system by means of
buses.

Bus drivers are much more closely linked with the central kernel code than drivers for specific devices can
ever be. Also, there is no standardized interface via which a bus driver makes its functions and options
available to associated drivers. This is because the hardware techniques used differ greatly between the
various bus systems. However, this does not mean that the code responsible for managing the different
buses has no commonalities. Similar buses adopt similar concepts, and the generic driver model has been
introduced to manage all system buses in a collection of central data structures, reducing them as far as
possible to the smallest common denominator.

The kernel supports a large number of buses, sometimes on several hardware platforms, sometimes on
just a single platform. It is therefore impossible to discuss all versions in detail. I shall therefore limit us
to a close examination of the PCI bus since its design is relatively modern, it features all the common and
key elements of a powerful system bus, and it is used on most architectures supported by Linux. I shall
also discuss the widely used and system-independent USB for external peripherals.18

18Whether this is a classical bus is a matter of controversy because USB does not offer the functionality of a system bus but is reliant
on an additional distribution mechanism ‘‘within the computer.’’ I take a pragmatic approach and am little concerned with this con-
troversial issue.

448

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 449

Chapter 6: Device Drivers

6.7.1 The Generic Driver Model
Modern bus systems may differ in the details of their layout and structure, but they have much in com-
mon, a fact that is reflected in the data structures in the kernel. Many elements are used in all buses (and
in the associated device data structures). During the development of 2.6, a generic driver model (device
model) was incorporated into the kernel to prevent unnecessary duplication. Properties common to all
buses are packed into special data structures that are associated with the bus-specific elements and can
be processed by generic methods.

The generic driver model is heavily based on the generic object model as discussed in Chapter 1, and has
thus also strong connections with the sysfs filesystem as examined in Section 10.3.

Representation of Devices
The driver model features a special data structure to represent the generic device properties of practically
all bus types.19 This structure is embedded directly in the bus-specific data structures and not by means of
a reference — as is the case with the kobjects introduced above. Its (simplified) definition is as follows:

<device.h>
struct device {

struct klist klist_children;
struct klist_node knode_parent; /* node in sibling list */
struct klist_node knode_driver;
struct klist_node knode_bus;
struct device * parent;

struct kobject kobj;
char bus_id[BUS_ID_SIZE]; /* position on parent bus */

...

struct bus_type * bus; /* type of bus device is on */
struct device_driver *driver; /* which driver has allocated this

device */
void *driver_data; /* data private to the driver */
void *platform_data; /* Platform specific data, device

core doesn’t touch it */
...

void (*release)(struct device * dev);
};

The klist and klist_node data structures used are enhanced versions of the familiar list_head data
structures to which locking and reference management elements have been added. klist is a list head
and klist_node a list element. Various list manipulation operations implemented by means of this
mechanism are located in <klist.h>. The associated code is rather technical, but does not offer any
deep insight into the kernel, so I won’t discuss it here, particularly as lists of this kind are used only for
the generic device model but not by the remainder of the kernel.

19Devices of all relatively modern buses include such properties, and this will not change in new bus designs. Older buses that do
not comply with the model are regarded as exceptions.

449

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 450

Chapter 6: Device Drivers

More interesting are the elements of struct device, which have the following meanings:

❑ The embedded kobject controls generic object properties as discussed above.

❑ Various elements are used to build hierarchical relationships between devices. klist_children
is the head of a linked list with all lower-level devices of the specified device. knode_parent is
used as a list element if the device itself is included on such a list. parent points to the device
instance of the parent element.

❑ Since a device driver is able to serve more than one device (when, for example, two identical
cards are installed in the system), knode_driver is used as a list element to list the device
instances of all managed devices. driver points to the data structure of the device driver that
controls the device (more on this below).

❑ bus_id uniquely specifies the position of the device on the hosting bus (the format used varies
between bus types). For example, the position of devices on a PCI bus is uniquely defined by a
string with the following format: <bus number>:<slot number>.<function number>.

❑ bus is a pointer to the data structure instance of the bus (more below) on which the device is
located.

❑ driver_data is a private element of the driver that is not modified by generic code. It can be
used to point to specific data that do not fit into the general scheme but are needed to work with
the device. platform_data and firmware_data are also private elements that can be used to
associate architecture-specific data and firmware information with a device; they are also left
untouched by the generic driver model.

❑ release is a destructor function to free the allocated resources to the kernel when the device (or
device instance) is no longer in use.

The kernel provides the device_register standard function to add a new device to the kernel data
structures. This function is examined below. The device_get and device_put function pair counts the
references.

The generic driver model also makes a separate data structure available for device drivers.

<driver.h>
struct device_driver {

const char * name;
struct bus_type * bus;

struct kobject kobj;
struct klist klist_devices;
struct klist_node knode_bus;

...
int (*probe) (struct device * dev);
int (*remove) (struct device * dev);
void (*shutdown) (struct device * dev);
int (*suspend) (struct device * dev, pm_message_t state);
int (*resume) (struct device * dev);

};

450

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 451

Chapter 6: Device Drivers

The meanings of the elements are as follows:

❑ name points to a text string to uniquely identify the driver.

❑ bus points to an object that represents the bus and provides bus-specific operations (see closer
look at this below).

❑ klist_devices is the head of a standard list that includes the device instances of all
devices controlled by the driver. The individual devices are interlinked by means of
devices->knode_devices.

❑ knode_bus is used to link all devices on a common bus.

❑ probe is a function to check whether a device that can be handled by the device driver is present
in the system.

❑ remove is invoked to remove a device from the system.

❑ shutdown, suspend, and resume are used for power management.

Drivers are registered with the system using the driver_register standard function of the kernel dis-
cussed below.

Representation of Buses
The generic driver model represents not only devices but also buses using a further data structure that is
defined as follows:

<device.h>
struct bus_type {

const char * name;
...

struct kset subsys;
struct kset drivers;
struct kset devices;
struct klist klist_devices;
struct klist klist_drivers;

...
int (*match)(struct device * dev, struct device_driver * drv);
int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
int (*probe)(struct device * dev);
int (*remove)(struct device * dev);
void (*shutdown)(struct device * dev);
int (*suspend)(struct device * dev, pm_message_t state);

...
int (*resume)(struct device * dev);

...
};

❑ name is a text name for the bus. It is especially used to identify the bus in the sysfs filesystem.

❑ All devices and drivers associated with the bus are managed as sets using the drivers and
devices entries. The kernel also generates two lists (klist_devices and klist_drivers) to hold

451

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 452

Chapter 6: Device Drivers

the same data. The lists enable all resources (devices and drivers) to be scanned quickly, and the
ksets ensure automatic integration into the sysfs filesystem. subsys provides a connection with
the bus subsystem. Accordingly buses appear in /sys/bus/busname.

❑ match points to a function that attempts to find a matching driver for a given device.

❑ add is used to inform a bus that a new device has been added to the system.

❑ probe is invoked when it is necessary to link a driver with a device. This function checks whether
the device is actually present in the system.

❑ remove removes the link between a driver and a device. This happens, for example, when a hot-
pluggable device is removed from the system.

❑ shutdown, suspend, and resume are power management functions.

Registration Procedures
To clarify how the data structures for buses, devices, and device drivers are connected with each other, it
is useful to examine the registration procedures for each type. Some technical details like error handling
are omitted in the following to highlight the essential points. Naturally, the functions make extensive use
of methods provided by the generic device model.

Registering Buses

Before devices and their drivers can be registered, a bus is required. Thus we start with bus_register,
which adds a new bus to the system. First of all, the new bus is added to the bus subsystem via the
embedded subsys kset:

drivers/base/bus.c
int bus_register(struct bus_type * bus)
{

int retval;

retval = kobject_set_name(&bus->subsys.kobj, "%s", bus->name);
bus->subsys.kobj.kset = &bus_subsys;
retval = subsystem_register(&bus->subsys);

...

The bus wants to know all about both its devices and their drivers, so the bus registers kernel sets for
them. Both have the bus as parent and drivers ksets:

drivers/base/bus.c
kobject_set_name(&bus->devices.kobj, "devices");
bus->devices.kobj.parent = &bus->subsys.kobj;
retval = kset_register(&bus->devices);

kobject_set_name(&bus->drivers.kobj, "drivers");
bus->drivers.kobj.parent = &bus->subsys.kobj;
bus->drivers.ktype = &driver_ktype;
retval = kset_register(&bus->drivers);

...
}

452

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 453

Chapter 6: Device Drivers

Registering Devices
Registering devices consists of two separate steps as Figure 6-22 shows: Initializing the data structures of
the device, and including it into the data structure network.

device_register

device_initialize

device_add

Figure 6-22: Code flow diagram
for device_register.

device_initialize mainly adds the new device to the device subsystem by kobj_set_kset_s(dev,
devices_subsys).

device_add requires a little more effort. First of all, the parent/child relationship specified via
device->parent is brought over to the generic kernel object hierarchy:

drivers/base/core.c
int device_add(struct device *dev)
{

struct device *parent = NULL;
...

parent = get_device(dev->parent);
kobj_parent = get_device_parent(dev, parent);
dev->kobj.parent = kobj_parent;

...

Registering the device in the devices subsystem requires a simple call to kobject_add since subsystem
membership was already set in device_initialize.

drivers/base/core.c
kobject_set_name(&dev->kobj, "%s", dev->bus_id);
error = kobject_add(&dev->kobj);

...

Afterward bus_add_device adds links within sysfs — one in the bus directory that points to the device,
and one in the device directory which points to the bus subsystem. bus_attach_device tries to autoprobe
the device. If a suitable driver can be found, the device is added to bus->klist_devices. The device is
also added to the child list of the parent (before that, the device knew its parent, but the parent did not
know the child).

drivers/base/core.c
error = bus_add_device(dev);
bus_attach_device(dev);
if (parent)

klist_add_tail(&dev->knode_parent, &parent->klist_children);
...
}

453

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 454

Chapter 6: Device Drivers

Registering Device Drivers
After performing some sanity checks and initialization work, driver_register employs
bus_add_driver to add a new driver to a bus. Once more, the driver is first equipped with a
name and then registered in the generic data structure framework:

drivers/base/bus.c
int bus_add_driver(struct device_driver *drv)
{

struct bus_type * bus = bus_get(drv->bus);
int error = 0;

...
error = kobject_set_name(&drv->kobj, "%s", drv->name);
drv->kobj.kset = &bus->drivers;
error = kobject_register(&drv->kobj);

...

If the bus supports autoprobing, driver_attach is called. The function iterates over all devices on the
bus and checks if the driver feels responsible for any of them using the driver’s match function. Finally,
the driver is added to the list of all drivers registered with the bus.

drivers/base/bus.
if (drv->bus->drivers_autoprobe)

error = driver_attach(drv);
...

klist_add_tail(&drv->knode_bus, &bus->klist_drivers);
...
}

6.7.2 The PCI Bus
PCI is short for peripheral component interconnect, a standard bus developed by Intel that has quickly
established itself as a very popular bus among component manufacturers and architecture vendors, not
because of a skillful marketing strategy but on the basis of its technical merits. It was designed to combat
one of the worst plagues ever to affect the (programming) world — the ISA bus.20 The following goals
were formulated to compensate for the deficiencies inherent in the ISA bus design once and for all:

❑ Support for high transfer bandwidths to cater to multimedia applications with large data
streams.

❑ Simple and easily automated configuration of attached peripherals.

❑ Platform independence; that is, not tied to a specific processor type or system platform.

Several versions of the PCI specification exist, as enhancements have been added to cover more recent
technical developments — for example, one of the last major ‘‘updates‘‘ relates to support for hotplug-
ging (the addition and removal of devices while the system is up and running).

20ISA stands for industrial standard architecture. This bus was developed by a large association of hardware vendors in response
to IBM’s attempts to suppress the manufacture of expansion devices through the introduction of the patented and proprietary
microchannel. The ISA bus system is of very simple design to facilitate the use of expansion cards; in fact, it is so simple that even
amateur electronics enthusiasts are able to develop suitable expansion hardware — something that is practically inconceivable with
today’s modern designs. It does, however, exhibit serious deficiencies in terms of bus programming and device driver addressing
that are due in part to the totally different computer technology situation of the time and in part to the bus design, which can by no
means be regarded as forward-looking.

454

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 455

Chapter 6: Device Drivers

As a result of the processor-independent nature of the PCI specification, the bus is used not only on IA-32
systems (and their more or less direct successors IA-64 and AMD64) but also on other complementary
architectures such as PowerPC, Alpha, or SPARC — justified by the need to enjoy the benefits of the
numerous inexpensive expansion cards produced for the bus.

Layout of a PCI System
Before discussing how PCI is implemented in the kernel, let us examine the major principles on which
the bus is based. Readers who require more detailed descriptions are referred to the many textbooks on
hardware technology (e.g., [BH01]).

Identification of Devices
Each device on one of the PCI buses of the system is identified by a set of three numbers.

❑ The bus number is the number of the bus to which the device is assigned; numbering starts at 0 as
usual. The PCI specification permits a maximum of 255 buses per system.

❑ The device number is a unique identifying number within a bus. A maximum of 32 devices can be
attached to a bus. Devices on different buses may have the same device number.

❑ The function number is used to implement devices with more than one expansion device (in the
classical sense) on a single plug-in card. For example, two network cards can be housed on a
plug-in card for reasons of space, in which case the individual interfaces are designated by dif-
ferent function numbers. Much used in laptops are multifunction chipsets, which are attached
to the PCI and integrate a whole range of expansions (IDE controller, USB controller, modem,
network, etc.) in a minimum of space; these expansions must also be kept apart by means of the
function number. The PCI standard defines the maximum number of function units on a device
as eight.

Each device is uniquely identified by a 16-bit number, where 8 bits are reserved for the bus number, 5 for
the device number, and 3 for the function number. Drivers need not bother with this extremely compact
notation because the kernel builds a network of data structures that contains the same information but is
much easier to handle from a C point of view.

Address Spaces
Three address spaces support communication with PCI devices.

❑ The I/O space is described by 32 bits and therefore provides a maximum of 4 GB for the port
addresses used to communicate with the device.

❑ Depending on processor type, either 32 or 64 bytes are available for data space; of course, the
latter is supported only on CPUs with a corresponding word length. The devices present in the
system are split over the two memory areas and therefore have unique addresses.

❑ The configuration space contains detailed information on the type and characteristics of the indi-
vidual devices in order to dispense with the need for dangerous autoprobing.21

The address spaces are mapped to different locations in the system’s virtual memory according to pro-
cessor type so that the kernel and the device drivers are able to access the corresponding resources.

21Autoprobing is the ‘‘automatic detection‘‘ of devices by sending data to various addresses and waiting for the system to respond
in order to recognize the cards present in the system. This was one of the many evils of the ISA bus.

455

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 456

Chapter 6: Device Drivers

Configuration Information
In contrast to many of its predecessors, the PCI bus is a jumper-free system. In other words, expansion
devices can be fully configured by software means and without user intervention.22 To support such
configuration, each PCI device has a 256-byte-long configuration space with information on the special
characteristics and requirements of the device. Even though 256 bytes may at first appear to be a paltry
figure given current memory configuration levels, a large amount of information can be stored, as shown
in Figure 6-23, which illustrates the layout of the configuration space as required by the PCI specification.

BIST

Base address 0 Base address 1 Base address 2 Base address 3

Base address 4 Base address 5 CardBus CIS
Pointer

Subsystem
Vendor ID

Subsystem
Device ID

Expansion ROM
base address Reserved IRQ

Line
IRQ
Pin

Min
Gnt

Max
Lat

Vendor
ID

Device
ID

Cmd
Reg

Status
Reg Re

v
ID Class Code

Ca
ch

e
Li

ne

La
te

nc
y

Ti
m

er

He
ad

er
Ty

pe

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0–16

16–32

32–45

48–64

Figure 6-23: Layout of the PCI configuration space.

Although the structure must be 256 bytes in length, only the first 64 bytes are
standardized. The remainder are freely available and are typically used to exchange
additional information between the device and the driver. The structure of this
information is (or should be) defined in the hardware documentation. It should also
be noted that not all information in the first 64 bytes is mandatory; some items are
optional and may be filled with zeros if they are not required by a device. The
mandatory items are highlighted in darker gray in the figure.

The vendor ID and device ID uniquely identify the vendor and device type. Whereas the former is assigned
by the PCI Special Interest Group (an industry consortium) to identify individual companies,23 the latter
can be freely selected by the vendors — they alone are responsible for ensuring that there are no overlaps
in their address space. Taken together the two IDs are often referred to as the signature of a device. Two
additional fields with similar names — subsystem vendor ID and subsystem device ID — may also be used
to more accurately describe generic interfaces. The revision ID enables a distinction to be made between
various device revision levels. This helps users select device driver versions where known hardware
faults have been eliminated or where new features have been added.

The class code field is used to assign devices to various function groups and is split into two parts. The
first 8 bits indicate the base class and the remaining 16 bits a subclass of the base class. Examples of
base classes and their subclasses are given below (I use the names of the corresponding constants in
<pci_ids.h>).

22Some readers may well remember the ISA ‘‘game‘‘ where the cards, mostly miserably documented, were configured by manually
adjusting resources by means of jumpers.
23The ID for Intel is 0x8086 . . .

456

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 457

Chapter 6: Device Drivers

❑ Mass storage (PCI_BASE_CLASS_STORAGE)

❑ SCSI controller (PCI_CLASS_STORAGE_SCSI)

❑ IDE controller (PCI_CLASS_STORAGE_IDE)

❑ RAID controller (to combine multiple disk drives) (PCI_CLASS_STORAGE_RAID)

❑ Network (PCI_BASE_CLASS_NETWORK)

❑ Ethernet (PCI_BASE_NETWORK_ETHERNET)

❑ FDDI (PCI_BASE_NETWORK_FDDI)

❑ System components (PCI_BASE_CLASS_SYSTEM)

❑ DMA controller (PCI_CLASS_SYSTEM_DMA)

❑ Real-time clock (PCI_CLASS_SYSTEM_RTC)

The six base address fields each comprise 32 bits and are used to define the addresses for communication
between the PCI device and the rest of the system. When 64-bit devices are involved (as can happen
on Alpha and Sparc64 systems), two base address fields are always merged to describe the position in
memory; this halves the number of possible base addresses to three. As far as the kernel is concerned, the
only remaining field of any relevance is the IRQ number, which can accept any value between 0 and 255
to specify the interrupt used by the device. A value of 0 indicates that the device does not use interrupts.

Even though the PCI standard supports up to 255 interrupts, the number that can
actually be used is generally limited by the specific architecture. Methods such as
interrupt sharing (discussed in Chapter 5) must then be employed on such systems
to support the use of more devices than there are IRQ lines.

The remaining fields are used by the hardware and not by the software so I won’t bother explaining their
meanings.

Implementation in the Kernel
The kernel provides an extensive framework for PCI drivers that can be roughly divided into two cate-
gories.

❑ Initialization of the PCI system (and, depending on system, the assignment of resources)
together with the provision of corresponding data structures to reflect the contents and
capabilities of the individual buses and devices so that they can be manipulated easily

❑ Standardized function interfaces to support access to all PCI options

PCI system initialization sometimes differs greatly between the individual system types. For example,
IA-32 systems allocate all relevant PCI resources themselves with the help of the BIOS at boot time so
that there’s little left for the kernel to do. As Alpha systems have no BIOS nor any suitable equivalent,
this must be done manually by the kernel. Consequently, when describing the relevant data structures
in kernel memory, I shall make the assumption that all PCI devices and buses have already been fully
initialized.

457

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 458

Chapter 6: Device Drivers

Data Structures
The kernel provides several data structures to manage the system’s PCI structures. They are declared in
<pci.h> and are interlinked by a network of pointers. I give an overview of the structure elements below
before moving on to take a closer look at their definitions.

❑ The individual buses in the system are represented by instances of pci_bus.

❑ The pci_dev structure is provided for individual devices, cards, and function units.

❑ Each driver is described by an instance of pci_driver.

The kernel makes two global list_heads available to head the network of PCI data structures (both are
defined in <pci.h>).

❑ pci_root_buses lists all the PCI buses in the system. It is the starting point when the data struc-
tures are scanned ‘‘downward‘‘ to find all devices attached to the individual buses.

❑ pci_devices links all PCI devices in the system without taking the bus structure into account.
This is useful when a driver wants to search for all devices it supports because the topology is of
no interest in this situation (it is, of course, possible to find the bus associated with a device using
the many links between the PCI data structures, as you will see below).

Representation of Buses
Each PCI bus is represented in memory by an instance of the pci_bus data structure, which is defined as
follows:

<pci.h>
#define PCI_BUS_NUM_RESOURCES 8

struct pci_bus {
struct list_head node; /* node in list of buses */
struct pci_bus *parent; /* parent bus this bridge is on */
struct list_head children; /* list of child buses */
struct list_head devices; /* list of devices on this bus */
struct pci_dev *self; /* bridge device as seen by parent */
struct resource *resource[PCI_BUS_NUM_RESOURCES];

/* address space routed to this bus */

struct pci_ops *ops; /* configuration access functions */
void *sysdata; /* hook for sys-specific extension */
struct proc_dir_entry *procdir; /* directory entry in /proc/bus/pci */

unsigned char number; /* bus number */
unsigned char primary; /* number of primary bridge */
unsigned char secondary; /* number of secondary bridge */
unsigned char subordinate; /* max number of subordinate buses */

char name[48];
...
};

The structure is divided into function sections as indicated by the source code formatting.

458

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 459

Chapter 6: Device Drivers

The first section includes all elements that create links with other PCI data structures. node is a list ele-
ment used to keep all buses on the global list mentioned above. parent is a pointer to the data structure of
the higher-level bus. There may be just one parent bus. The subordinate or child buses must be managed
on a linked list with children as the list head.

All attached devices are likewise managed in a linked list headed by devices.

With the exception of bus 0, all system buses can be addressed only via a PCI bridge that functions like
a normal PCI device. The self element provides each bus with a pointer to a pci_dev instance that
describes the bridge.

The sole purpose of the resource array is to hold the address areas occupied by the bus in virtual mem-
ory; each array element contains an instance of the above resource structure. Since the array contains
four entries, a bus can reserve just as many different address spaces to communicate with the rest of the
system (the array dimension does, of course, conform to the PCI standard). The first element contains the
address area for I/O ports. The second always holds the I/O memory area.

The second block first lists a large number of function pointers concentrated in the ops element. These
are a collection of functions invoked to access the configuration space, examined more closely below.
The sysdata element enables the bus structure to be associated with hardware-specific and therefore
driver-specific functions, although the kernel rarely makes use of this option. Finally, procdir provides
an interface to the proc filesystem so that /proc/bus/pci can be used to export information on the
individual buses to userspace.

The next block contains numeric information. number is a consecutive number that uniquely identifies
the bus in the system. subordinate is the maximum number of subordinate buses that the particular bus
may have. The name field holds a text name for the bus (e.g., PCI Bus #01) but may also be left blank.

A list of all system buses is compiled when the PCI subsystem is initialized. The buses are linked together
in two different ways. The first involves a linear list starting with the above-mentioned root_buses global
variable and including all the buses in the system. The node element acts as the list head.

The two-dimensional topology structure of the PCI buses in the form of a tree is facilitated by the parent
and children structure members.

Device Management
The struct pci_dev data structure described in this section is the key structure used to represent the
individual PCI devices in the system.

In this context, the kernel interprets the term device to mean not only expansion
cards but also the PCI bridges used to connect buses to each other. There are not
only bridges to interlink PCI buses but also (on older systems) bridges to link PCI
buses with ISA buses.

<pci.h>
struct pci_dev {

struct list_head global_list; /* node in list of all PCI devices */
struct list_head bus_list; /* node in per-bus list */

459

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 460

Chapter 6: Device Drivers

struct pci_bus *bus; /* bus this device is on */
struct pci_bus *subordinate; /* bus this device bridges to */

void *sysdata; /* hook for sys-specific extension */
struct proc_dir_entry *procent; /* device entry in /proc/bus/pci */

unsigned int devfn; /* encoded device & function index */
unsigned short vendor;
unsigned short device;
unsigned short subsystem_vendor;
unsigned short subsystem_device;
unsigned int class; /* 3 bytes: (base,sub,prog-if) */
u8 revision; /* PCI revision, low byte of class word */
u8 hdr_type; /* PCI header type (‘multi’ flag masked out) */
u8 pcie_type; /* PCI-E device/port type */
u8 rom_base_reg; /* which config register controls the ROM */
u8 pin; /* which interrupt pin this device uses */

struct pci_driver *driver; /* which driver has allocated this
device */

...
struct device dev; /* Generic device interface */

/* device is compatible with these IDs */
unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];

int cfg_size; /* Size of configuration space */

/*
* Instead of touching interrupt line and base address registers
* directly, use the values stored here. They might be different!
*/
unsigned int irq;
struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O and memory
regions + expansion ROMs */

...
};

The first elements of the structure are dedicated to implementing links by means of lists or trees.
global_list and bus_list are two list heads to place the device on the global device list (headed by
pci_devices) or on the bus-specific device list (headed by pci_bus->devices).

The bus element is used for backward linking between device and bus. It contains a pointer to the
pci_bus instance to which the device is assigned. A second link to a bus is held in subordinate, which
only has a valid value if the device represented is a PCI-to-PCI bridge that interconnects two PCI buses
(otherwise it contains a null pointer). If this is the case, subordinate is used to point to the data structure
of the ‘‘subordinate‘‘ PCI bus.

The next two elements are less interesting — sysdata is used to store driver-specific data, and procentry
to manage the proc entry for the device. Neither does the next block hold any surprises. All elements
between devfn and rom_base_reg simply store PCI configuration space data already mentioned above.
They are filled with data read from the hardware when the system is initialized. It is then no longer

460

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 461

Chapter 6: Device Drivers

necessary to fetch these data from the configuration space for subsequent operations since they can be
obtained quickly and easily from the data structure.

driver points to the driver used to control the device; I discuss the struct pci_driver data structure
used to do this shortly. Each PCI driver is uniquely identified by an instance of this structure. A link to
the generic device model is also a must for PCI devices and is established by means of the dev element.

irq specifies the number of the interrupt used by the device, and resource is an array that holds the
instances of the resources reserved by the driver for I/O memory.

Driver Functions
The third and final basic data structure that forms the PCI layer is called pci_driver. It is used to imple-
ment PCI drivers and represents the interface between generic kernel code and the low-level hardware
driver for a device. Each PCI driver must pack its functions into this interface so that the kernel is able to
control the available drivers consistently.

The structure is defined as follows (for the sake of simplicitiy I have omitted the entries required to
implement power management):

<pci.h>
struct pci_driver {
...

char *name;
const struct pci_device_id *id_table; /* must be non-NULL for probe to be called */
int (*probe) (struct pci_dev *dev, const struct pci_device_id *id); /* New device

inserted */
void (*remove) (struct pci_dev *dev); /* Device removed (NULL if not a hot-plug capable

driver) */
...

struct device_driver driver;
...
};

The meaning of the first two elements is self-evident. name is a text identifier for the device (typically, the
name of the module in which the driver is implemented), and driver establishes the link to the generic
device model.

The most important aspect of the PCI driver structure is support for detection, installation, and removal
of devices. Two function pointers are available for this purpose: probe, which checks whether a PCI
device is supported by the driver (this procedure is known as probing and explains the name of the
pointer); and remove, which helps remove a device. Removal of PCI devices only makes sense if the
system supports hotplugging (which is not usually the case).

A driver must know for which devices it is responsible. The (sub)device and (sub)vendor IDs discussed
above are used to uniquely identify the devices supported in a list to which the kernel refers to ascertain
which devices are supported by the driver. A further data structure named pci_device_id is used to
implement the list. This structure is of great importance in the PCI subsystem and is discussed below.
Since a driver can support various (more or less compatible) devices, the kernel supports a whole search
list of device IDs.

461

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 462

Chapter 6: Device Drivers

Registering Drivers
PCI drivers can be registered by means of pci_register_driver. The function is quite primitive. Its
prime task is to fill a few remaining fields of a pci_device instance to which relevant functions have
already been assigned. This instance is passed to the generic device layer using driver_register, whose
mode of operation was discussed above.

More interesting than the registration process is the filling of the pci_device structure in the individual
drivers as this involves not only defining the above functions that define the interfaces between the driver
and the generic kernel code but also creating a list of all devices whose (sub)device and (sub)vendor IDs
indicate that they are suitable for the driver.

As already noted above, the pci_device_id data structure whose definition is given below has a decisive
role to play in this context.

<mod_devicetable.h>
struct pci_device_id {

__u32 vendor, device; /* Vendor and device ID or PCI_ANY_ID*/
__u32 subvendor, subdevice; /* Subsystem ID’s or PCI_ANY_ID */
__u32 class, class_mask; /* (class,subclass,prog-if) triplet */
unsigned long driver_data; /* Data private to the driver */

};

You are familiar with the elements of this structure from the description of the PCI configuration space.
By defining specific constants, a driver is able to refer to a particular chipset/device; class_mask also
allows classes to be filtered by reference to a bitmask.

In many cases, it is neither necessary nor desirable to describe just one device. If a large number of com-
patible devices is supported, this would quickly result in endless declaration lists in the driver sources;
these would be difficult to read and would have the tangible disadvantage that a compatible device may
not be found simply because it is not included in the list of supported devices. The kernel therefore pro-
vides the wildcard constant PCI_ANY_ID that matches any identifier of a PCI device. Let us look at how
this is used in the following example for the eepro100 driver (a widely used network card chipset from
Intel):

drivers/net/e100/e100_main.c
#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\

PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }

static struct pci_device_id e100_id_table[] = {
INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),

...
INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
{ 0, }

};

Each macro expansion of INTEL_8255X_ETHERNET_DEVICE generates an entry in the table. The individual
elements of the entry are given in the sequence in which they are declared in pci_device_id.

462

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 463

Chapter 6: Device Drivers

0x8086 is the vendor ID for Intel, the manufacturer of the chipset (the driver could also have used the
pre-processor constant PCI_VENDOR_ID_INTEL defined with the same value). Each entry holds a specific
device ID that identifies all versions currently on the market. Subvendor and subdevice ID are of no
relevance and are therefore represented by PCI_ANY_ID; this means that any subvendor or any subdevice
is recognized as valid.

The kernel provides the pci_match_id function to compare the PCI device data with the data in an ID
table. It refers to the given ID table of a pci_dev instance to ascertain whether the device is included in
the table.

drivers/pci/pci-driver.c
const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,

struct pci_dev *dev);

A match is found when all elements in an ID table entry and all elements in the device configuration are
identical. If a field in the ID table contains the special entry PCI_ANY_ID, every value in the corresponding
field of the pci_device instance is interpreted as a match.

6.7.3 USB
USB (Universal Serial Bus) was developed at the end of the ′90s of what is now the last century as an exter-
nal bus to satisfy ever-more-demanding PC requirements and to produce solutions for new computer
types such as handhelds, PDAs, and the like. As a universal external bus, USB delivers its benefits when
used in conjunction with devices requiring low to medium data transfer rates such as mice, Webcams,
and keyboards. However, more broadband-intensive devices such as external hard disks, CD-ROMs,
and CD writers can also be operated on USB buses. The maximum transfer rate for USB 1.1 is limited to
12 MBit/second but Version 2.0 of the standard supports higher rates of up to 480 MBit/second.

When the bus was designed, special attention was focused on ease of use for inexperienced computer
users. As a consequence, hotplugging and the associated transparent installation of drivers are core
aspects of the USB design. In contrast to earlier PCI hotplug cards (which were difficult to obtain) and
PCMCIA/PC cards (which were little used because of their high price), USB is the first bus that has made
the hotplugging capabilities of the kernel available to a wide audience.

Features and Mode of Operation
There are three versions of the USB standard. The most important are the first version (1.0) and its suc-
cessor (1.1), as most hardware has adopted this standard. The more recent version (2.0) is designed to
eliminate the speed disadvantages of USB as compared with other external buses (primarily FireWire),
and is nowadays in widespread use. Kernel support is available for both protocols. The in-kernel data
structures employed to manage devices are identical for all versions, and since I will concentrate on
these in the following, I will not be much concerned with the technical differences between the different
versions of the standard.

What are the special features of USB as compared to other buses? In addition to ease of use for end-users,
mention must be made of the topological structure used to sort attached devices, which is reminiscent
of network structures. Starting from a single root controller, devices are connected via hubs in a tree-like
structure, as illustrated in Figure 6-24. Up to 127 terminal devices can be attached to a system in this
manner.

463

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 464

Chapter 6: Device Drivers

Host
Root Hub

Hub

Hub

Device

Device

Device

Logical
Device

Logical
Device

DeviceDevice
Logical
Device

Logical
Device

Host
Root Hub

Logical
Device

Logical
Device

Logical
Device

Logical
Device

Figure 6-24: Topology of a USB system.

A device is never connected directly to the host controller but always via a hub. To ensure that drivers
have a uniform view of the situation, the kernel replaces the root controller with a small emulation layer
so that the rest of the system sees the controller as a virtual hub; this simplifies the development of
drivers.

The fact that the devices in a USB system are physically arranged in a tree structure
is only of relevance to specific parts of the USB subsystem. The drivers for terminal
devices need not concern themselves with whether a device is connected directly to
the root hub or via five intervening hubs. Each device on the bus is assigned a
unique number for communication purposes, and, as a result, the USB driver sees
all devices as being connected directly to the root hub. The right-hand part of
Figure 6-24 shows the logical view of the structure as seen by a device driver.

USB is not explicitly tied to a specific processor or system architecture but can, in principle, be used on
all platforms — even if, as usual, the PC platform is primarily responsible for the popularity of the bus.
Because USB interfaces are also available as PCI plug-in cards (which, as standard, use a motherboard
chip connected to the PCI system bus via a bridge), all architectures that support PCI cards (in the main,
Sparc64, Alpha, etc.) are automatically able to support USB.

Due care should be exercised when using the term device in the context of USB because it splits into three
levels.

❑ A device is anything that the user can connect to the USB bus — for example, a videocamera
with integrated microphone or the like. As this example shows, a device may consist of several
function units that can be controlled by different drivers.

❑ Each device is made up of one or more configurations that govern the global characteristics of
the device. For instance, a device may feature two interfaces, one of which is used if power is
supplied from the bus, the other if an external power supply is used.

❑ In turn, each configuration consists of one or more interfaces, each of which provides different
setting options. Three interfaces are conceivable for a videocamera — microphone only enabled,

464

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 465

Chapter 6: Device Drivers

camera only enabled, or both enabled. The bandwidth requirements of the device may differ
according to the interface selected.

❑ And finally, each interface may have one or more end points that are controlled by a driver. There
are situations in which a driver controls all end points of a device but each end point may require
a different driver. In our example above, the end points are the imaging video unit and the
microphone. Another common example of a device with two different end points is a USB key-
board that integrates a USB hub to permit the connection of other devices (a hub is ultimately a
special kind of USB device).

All USB devices are classified in categories; this is reflected in the fact that the source code for the indi-
vidual drivers is kept separate in the kernel sources. drivers/usb/ contains a number of subdirectories
with the following contents:

❑ image for graphics and video devices such as digital cameras, scanners, and the like.

❑ input for input and output devices for communication with computer users. Classic represen-
tatives of this category include not only keyboards and mice but also touch screens, data gloves,
and the like.

❑ media for the numerous multimedia devices that have come to the fore in the last few years.

❑ net for network cards that are attached to the computer by means of USB and are therefore often
referred to as adapters that bridge the gap between Ethernet and USB.

❑ storage for all mass storage devices such as hard disks and the like.

❑ class includes all drivers support devices of one of the standard classes defined for USB.

❑ core contains drivers for host adapters to which a USB chain is attached.

Roughly speaking, the driver sources originate from the following three areas: standard devices such as
keyboards, mice, and the like that can always be supported by the same driver, regardless of device
vendor; proprietary hardware such as MP3 players and other gadgets that require special drivers; and
drivers for host adapters that are attached to the rest of the system via a different bus system (typically
PCI) and that establish the connection (also physical) to the USB device chain.

The USB standard defines four different transfer modes, each of which must be explicitly catered for by
the kernel.

❑ Control transfer involves the transfer of control information needed (primarily) for the initial con-
figuration of a device. This type of communication must be safe and reliable but requires only
a narrow bandwidth. The various control commands are transferred by means of pre-defined
tokens whose symbolic names such as GET_STATUS, SET_INTERFACE, and so on have been defined
and documented in the USB standard. In the kernel sources they can all be found in <usb.h>,
where they are prefixed with USQ_REQ_ — to prevent namespace problems — and declared as
pre-processor constants. The standard mandates a minimum set of commands that all devices
must understand. However, vendors are free to add further device-specific commands that must
be used and understood by their own drivers.

❑ Bulk transfers send individual data packets that can take up the full bus bandwidth. In this
mode, data transfer takes place with the security guaranteed by the bus; in other words, data

465

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 466

Chapter 6: Device Drivers

sent always reach their destination unchanged.24 Devices such as scanners or mass storage
expansions use this mode.

❑ Interrupt transfers are similar to bulk transfers but are repeated at periodic intervals. The interval
length can be freely defined (within certain limits) by the driver. This transfer mode is used by
preference by network cards and similar devices.

❑ A special role is played by isochronous transfer as this is the only way of setting up a transfer that
although unreliable makes use of a fixed, pre-defined bandwidth (in certain respects, this mode
can be compared with the datagram technique for network cards as discussed in Chapter 12).
This transfer mode is best used in situations where it is important to guarantee a continuous
data stream and where the occasional loss of data is acceptable. A prime example of where this
mode is used are Webcams that send video data via the USB bus.

Management of Drivers
The USB bus system is implemented in two layers in the kernel.

❑ A driver must be available for the host adapter. The adapter must provide a connection option
for the USB chain and assume responsibility for electrical communication with the terminated
devices; the adapter itself must be connected to another system bus (currently, three different
host adapter types called OHCI, EHCI, and UHCI are available; they cover all controller types
offered on the market).

❑ Device drivers communicate with individual USB devices and export their functionality to other
parts of the kernel respectively into userspace. These drivers interact with the host controllers
via a standardized interface so that the controller type is irrelevant to the USB driver. Any
other approach is obviously impractical because it would then be necessary to develop a host
controller-dependent driver for each USB device.

Below I shall examine the structure and mode of operation of USB drivers. In doing so, I shall regard the
host controller simply as a transparent interface without discussing the details of its implementation.

Although the structure and layout of the USB subsystem are closely based on the USB standard in terms
of the contents of data structures and the names of constants, account must be taken of several subtle
details during the practical development of USB drivers. To keep the following information as concise
as possible, I shall limit our discussion to the core aspects of the USB subsystem. Consequently, I have
‘‘relieved‘‘ the data elements I examine of their less relevant members. Once the structure of the subsys-
tem has become clear, it is a simple matter to look up the corresponding details in the kernel sources.

The USB subsystem performs four principal tasks.

❑ Registering and managing the device drivers present.

❑ Finding a suitable driver for a USB device plus initialization and configuration.

❑ Representing the device tree in kernel memory.

❑ Communicating with the device (exchanging data).

24Assuming, of course, that there are no hardware faults or other effects of force majeure.

466

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 467

Chapter 6: Device Drivers

The following data structures are associated with the items in this list.

The usb_driver structure is the starting point of the collaboration between the USB device driver and
the rest of the kernel (above all the USB layer).

<usb.h>
struct usb_driver {

const char *name;

int (*probe) (struct usb_interface *intf,
const struct usb_device_id *id);

void (*disconnect) (struct usb_interface *intf);
int (*ioctl) (struct usb_interface *intf, unsigned int code,

void *buf);
...

const struct usb_device_id *id_table;
...

struct usbdrv_wrap drvwrap;
...
};

The name and owner fields fulfill the usual management purposes. The former holds the name of the
driver, which must be unique within the kernel (the filename of the module is normally used). The latter
creates an association between usb_driver and the module structure if the driver has been added to the
kernel as a module. The usual embedded driver object is hidden in another structure this time.

<usb.h>
struct usbdrv_wrap {

struct device_driver driver;
int for_devices;

};

The extra data structure allows distinguishing between interface drivers (for_devices is zero in this
case) and proper device drivers.

Of special interest are the function pointers probe and disconnect. Together with id_table, they form
the backbone of the hotplugging capabilities of the USB subsystem. When the host adapter detects that a
new device has been inserted, a probing process is started to find a suitable device driver.

The kernel then traverses all elements of the device tree to ascertain whether any driver is interested.
This presupposes, of course, that a driver has not already been assigned to the device. If a driver has
been allocated, the device is skipped.

The kernel first scans the list of all devices that are supported by the driver and are included in its
id_table list. This approach is familiar because USB devices (like PCI devices) can be uniquely iden-
tified by a number. Once a match has been found between device and table, the driver-specific probe
function is invoked to perform further checks and initialization work.

If no match is found between the device ID and the list of drivers, the kernel skips to the next driver and
need not invoke the function stored in probe.

467

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 468

Chapter 6: Device Drivers

The ID table is made up of several instances of the following structure, which describes a USB device by
means of several identifiers:

<mod_devicetable.h>
struct usb_device_id {

/* which fields to match against? */
__u16 match_flags;

/* Used for product specific matches; range is inclusive */
__u16 idVendor;
__u16 idProduct;
__u16 bcdDevice_lo;
__u16 bcdDevice_hi;

/* Used for device class matches */
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;

/* Used for interface class matches */
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;

...
};

match_flags is used to specify which fields of the structure are to be compared with the device data; var-
ious pre-processor constants are defined for this purpose. For example, USB_DEVICE_ID_MATCH_VENDOR
indicates that the idVendor field is to be checked, and USB_DEVICE_ID_MATCH_DEV_PROTOCOL instructs the
kernel to check the protocol field. The meaning of the other fields of usb_device_id is self-explanatory.

The association between driver and device is established not only when a new device is added to the
system but also when a new driver is loaded. The same approach is adopted as described above. The
starting point is the usb_register routine, which must be invoked to register a new USB driver.

The probe and remove functions work with interfaces that are described by a separate data structure
(usb_interface). Besides interface characteristics, these include pointers to the associated device, the
driver, and the USB class to which the interface belongs. It is not therefore necessary to go into the details
of the data structure definition.

Representation of the Device Tree
A further data structure is needed to represent the USB device tree and the various device characteristics
in the kernel.

<usb.h>
struct usb_device {

int devnum; /* Address on USB bus */
char devpath [16]; /* Use in messages: /port/port/... */
enum usb_device_state state; /* configured, not attached, etc */
enum usb_device_speed speed; /* high/full/low (or error) */

...

468

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 469

Chapter 6: Device Drivers

unsigned int toggle[2]; /* one bit for each endpoint
* ([0] = IN, [1] = OUT) */

struct usb_device *parent; /* our hub, unless we’re the root */
struct usb_bus *bus; /* Bus we’re part of */

struct device dev; /* Generic device interface */

struct usb_device_descriptor descriptor;/* Descriptor */
struct usb_host_config *config; /* All of the configs */

struct usb_host_config *actconfig;/* the active configuration */
...

u8 portnum; /* Parent port number (origin 1) */

...
/* static strings from the device */
char *product; /* iProduct string, if present */
char *manufacturer; /* iManufacturer string, if present */
char *serial; /* iSerialNumber string, if present */

...
int maxchild; /* Number of ports if hub */
struct usb_device *children[USB_MAXCHILDREN];

...
};

❑ devnum holds the unique number of the device (globally unique in the entire USB tree). state
and speed indicate the state (attached, configured, etc.) and the speed of the device. The USB
standard defines three possible values for the speed: USB_SPEED_LOW and USB_SPEED_FULL for
USB 1.1 and USB_SPEED_HIGH for USB 2.0.

❑ devpath specifies the position of the device in the topology of the USB tree. The port numbers
of all hubs that must be traversed to move from the root element to the device are stored in the
individual array entries.

❑ parent points to the data structure of the hub on which the device is attached, and bus points
to the corresponding data structure of the bus. Both fields therefore supply information on the
topology of the USB chain.

❑ dev establishes the link to the generic device model.

❑ descriptor groups together the characteristic data that describe a USB device in a further data
structure (which includes things like vendor ID, product ID, device class, etc.).

❑ actconfig points to the current configuration of the device, and config lists all possible alterna-
tives.

❑ usbfs_entry is used to link with the USB filesystem that is normally mounted at /proc/bus/usb
and provides access to the devices from userspace.

❑ product, manufacturer, and serial point to ASCII strings with the product name, the manufac-
turer, and a serial number for the device, all of which are supplied by the hardware itself.

❑ Two more elements are relevant if the current device is a hub: maxchild specifies how many
ports the hub has (i.e., how many devices can be attached), and children contains a collection of
pointers to their usb_device instances. These elements define the topology of the USB tree.

469

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 470

Chapter 6: Device Drivers

Even though up to now I have always spoken of just one USB device tree, there may
be several such trees in kernel memory (that do not share the same root element).
This happens when a computer has several USB host controllers. The root elements
of all buses are kept in a separate list named usb_bus_list that is defined in
drivers/usb/core/hcd.c.

The elements in the bus list are represented by the following data structure:

<usb.h>
struct usb_bus {

struct device *controller;
int busnum; /* Bus number (in order of reg) */
char *bus_name; /* stable id (PCI slot_name etc) */

...
struct usb_devmap devmap; /* device address allocation map */
struct usb_device *root_hub; /* Root hub */
struct list_head bus_list; /* list of busses */

...
struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */

...
};

The data structure has two elements that uniquely identify the bus: busnum is an integer number assigned
sequentially when buses are registered, and bus_name is a pointer to a short string holding a unique
name. controller stores a pointer to the device instance of the hardware device that implements the
bus.

Not only devices but also the buses themselves appear in the USB filesystem mentioned above. usb_bus
must therefore also include a pointer to the dentry instance to create the requisite link to the virtual
filesystem.

The middle elements of the data structure contain the most interesting data which link the available
buses with each other and also the attached devices. They also provide a standardized connection to the
underlying host controllers, thus abstracting the controllers as seen by the remaining USB layer.

❑ bus_list is a list element used to manage all usb_bus instances on a linked list.

❑ root_hub is a pointer to the data structure of the (virtual) root hub that represents the root ele-
ment of the bus’s device tree.

❑ devmap is a bitmap list with a (minimum) length of 128 bits. It is used to keep track of which USB
numbers have already been allocated and which are still free.

Reminder: Each USB device on a number is assigned a unique integer number when it is
inserted. The standard specifies a maximum of 128 devices on a bus.

The usb_devnum structure type used is simply an array of unsigned long elements that serves no
other purpose than to ensure that at least 128 consecutive bits are available.

To communicate with underlying controller hardware, a USB request block is used. Such blocks are used
to exchange data with USB devices in all possible forms of transfer (isochronous transfer, etc.).

drivers/usb/core/hcd.h
int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) ;

470

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 471

Chapter 6: Device Drivers

URBs have not always been used to communicate and exchange data with USB devices. In earlier
versions of the USB system, there were various interfaces for each type of transfer — not something
that made the programming of device drivers any easier. In this old approach, the implementation of
isochronous transfers was riddled with errors. A group of kernel developers therefore decided not only
to totally rewrite the driver for the host adapter used at the time but also to fully redesign the entire USB
layer.25 URBs are something of an oddity in the Linux kernel in the sense that their design was lifted from
the USB implementation of MS Windows, otherwise so unloved in Linux circles. There are differences in
detail, but the basic concept is the same in both operating systems. Of course, it goes without saying that
the Linux version has far fewer bugs . . .

The exact layout of URBs is not particularly interesting for our purposes, so I will dispense with a close
examination of the associated struct urb structure. The many references to the details of and difference
between the individual transfer types means that the structure is difficult to understand without a com-
prehensive knowledge of USB data transfer, and a detailed description of the structure is beyond the
scope of this book.

As it is, USB device drivers rarely come into contact with urb instances but instead make use of a whole
set of macros and helper functions to facilitate filling in URBs for requests and the reading of returned
data. This requires in-depth knowledge of the operation of USB devices and is therefore not discussed
here.

6.8 Summary
Device drivers comprise the largest part of the Linux kernel sources. Nevertheless, I did not consider the
implementation of individual drivers in this chapter, but focused on the framework provided by the kernel
for this purpose instead. This is reasonable because device drivers can be seen as ‘‘kernel applications’’
that are built on top of this framework.

You have learned that device drivers can essentially be grouped into two categories: Character devices
that transfer a stream of bytes to and from the kernel, and block devices that require a more complicated
request management. Both, however, do interact with userland applications by means of device special
files that allow them to access the services of drivers with regular file I/O operations.

Finally, I have also discussed how I/O memory and port resources are handled by the kernel, and have
discussed how bus systems connect devices with the computer and with other devices. This also included
a presentation of the generic device and driver model, which allows both kernel and userspace applica-
tions to enjoy a unified picture of the available resources.

25In allusion to the date of the patch, the authors of the new layer refer to this rewrite as the ‘‘USB October revolution‘‘ . . .

471

Mauerer runc06.tex V2 - 09/04/2008 5:03pm Page 472

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 473

Modules

Modules are an efficient way of adding device drivers, filesystems and other components dynami-
cally into the Linux kernel without having to build a new kernel or reboot the system. They remove
many of the restrictions constantly raised as arguments against monolithic architectures by, above
all, micro-kernel proponents. These arguments concern primarily the lack of dynamic extensibility.
In this chapter, we examine how the kernel interacts with the modules; in other words, how they are
loaded and unloaded and how the kernel detects the interdependencies between various modules.
It is therefore necessary to deal in some detail with the structure of module binary files (and their
ELF structure).

7.1 Overview
Modules have many advantages,1 of which the following are worthy of particular mention:

❑ By using modules, distributors are able to pre-compile a comprehensive collection of
drivers without bloating the size of the kernel image beyond bounds. After automatic
hardware detection or user prompting, the installation routine selects the appropriate
modules and adds them into the kernel.

This enables even inexperienced users to install drivers for system devices without having
to build a new kernel. This represents a major step toward (and perhaps even a prerequisite
for) wider acceptance of Linux systems.

❑ Kernel developers can pack experimental code into modules that can be unloaded and
reloaded after each modification. This allows new features to be tested quickly without
having to reboot the system each time.2

License issues can also be resolved with the help of modules. As is generally known, the source
code of the Linux kernel is available under the GNU General Public License (Version 2), one of the

1And also some disadvantages. However, these are so minor that they are of little consequence.
2Unless, of course, the system has crashed in the meantime, and this is said to happen when developing drivers.

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 474

Chapter 7: Modules

first and most widely used Open Source licenses.3 A major problem is the fact that for a variety of
reasons — which may or may not be sensible and justified — many hardware manufacturers keep
the documentation needed to control their add-on devices under wraps or require developers to sign
‘‘nondisclosure agreements‘‘ in which they, in turn, promise to keep secret the source code they write
using information in the documentation and not to reveal it to the public. This means that the driver
cannot be included in official kernel sources whose source code is always open.

This problem can be solved — at least from a technical point of view — by using binary modules that
are passed on in compiled form only but not in source code. Control of proprietary hardware is possible
using this approach, but most kernel developers are not happy with this situation because using open
code has many advantages. The sweeping success of the Linux kernel is certainly a prime example.

Modules can be inserted almost seamlessly into the kernel, as illustrated in Figure 7-1. The module code
exports functions that can be used by other kernel modules (and also by code permanently compiled into
the kernel). The link between the module and the remaining parts of the kernel can, of course, be broken
when the code needs to be unloaded; I discuss the technical details in the sections below.

Code

Exported
Functions

Code

Exported
Functions

Code

Exported
Functions

Module Compiled in

Kernelspace

Userspacermmodinsmod

Figure 7-1: Modules in the kernel.

7.2 Using Modules
To add and remove modules, there are several system calls that are normally addressed using the tools
of the modutils package that is installed on practically every system.4

7.2.1 Adding and Removing
From the user point of view, modules can be added into a running kernel by two different system
programs: modprobe and insmod. The former takes into account the dependencies that arise between indi-
vidual modules when a module depends on the functions of one or more partner modules. In contrast,
insmod loads only a single module into the kernel, and this module may depend only on the code already

3To counter the criticisms levied by license purists: GPL does not, of course, stand for Open Source but for free software. However,
because the details are of a legal rather than a technical nature, I do not consider them here.
4Notice that during the development of kernel 2.5, the module implementation was revised from top to bottom. The userspace inter-
face differs completely from the old version, which also necessitated a full rewrite of the modutils.

474

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 475

Chapter 7: Modules

in the kernel, regardless of whether the code was generated dynamically by modules or is permanently
compiled into the kernel.

modprobe also accesses insmod internally once it has identified the additional modules needed for the
desired module. Before discussing how this is implemented, I will first describe the mode of operation of
insmod on which work with modules in userspace is based.

The actions needed when loading a module show strong similarities with the linking of application
programs by means of ld and with the use of dynamic libraries with ld.so. Externally, modules are just
normal relocatable object files, as a file call will quickly confirm:

wolfgang@meitner> file vfat.ko
vfat.ko: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

They are, of course, neither executable files nor program libraries as normally found in system program-
ming; however, the basic structure of the binary module file is based on the same scheme also used for
the above purposes.

The output of the file command indicates that the module file is relocatable, a familiar term in userspace
programming. Relocatable files have no function references to absolute addresses but point only to relative
addresses within the code and can therefore be loaded at any offsets in memory provided the addresses
are modified accordingly by the dynamic linker ld.so. The same applies for kernel modules. Addresses
are again given in relative and not absolute units. However, it is the kernel itself and not the dynamic
loader that performs relocation.

Whereas in earlier kernel versions (up to 2.4) modules had to be loaded in a multistep process (reser-
vation of memory in the kernel, followed by relocation of data in userspace and copying of the binary
code into the kernel), only one system call — init_module — is now needed to perform all actions in the
kernel itself.

When the system call is processed, the module code is first copied from the kernel into kernel memory;
this is followed by relocation and the resolution of as yet undefined references in the module. These occur
because the module uses functions that are permanently compiled into the kernel and whose addresses
are not known at compilation time.

Handling Unresolved References
In order to work with the remaining parts of the kernel, modules must use functions provided by the
kernel. These may be general auxiliary functions such as printk or kmalloc used by almost every ker-
nel part. More specific functions associated with the module functionality must also be used. The ramfs
module enables a filesystem to be made available in memory (usually known as RAM disk) and must
therefore — like any other code used to implement file systems — call the register_filesystem func-
tion to add itself to the list of available filesystems in the kernel. The module also makes use of (among
others) the generic_file_read and generic_file_write standard functions that are present in the
kernel code and that are used by most kernel filesystems.

A similar situation arises when libraries are used in userspace. Programs use functions defined in
an external library by storing pointers to the functions — but not the implementation of the function
itself — in their own binary code (of course, other symbol types such as global variables can appear
instead of functions). References are resolved for static libraries when the program is linked (using ld)
and for dynamic libraries when the binary file is loaded (using ld.so).

475

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 476

Chapter 7: Modules

The nm tool can be used to generate a list of all external functions in a module (or in any object file). The
following example shows a number of functions that are used in the romfs module but are labeled as
external references:

wolfgang@meitner> nm romfs.ko
U generic_read_dir
U generic_ro_fops
...
U printk
...
U register_filesystem
...

The U in the output stands for an unresolved reference. Note that if your kernel was not built with
KALLSYMS_ALL enabled, generic_ro_fops will not be visible. Only symbols of functions but no other
symbols like constant structures as generic_ro_fops are included in this case.

It is clear that these functions are defined in kernel base code and are therefore already held in memory.
But how can the matching addresses needed to resolve the reference be found? For this purpose, the
kernel provides a list of all exported functions; this list shows the memory addresses together with the
corresponding function names and can be accessed via the proc filesystem, this being the purpose of
the file /proc/kallsyms5:

wolfgang@meitner> cat /proc/kallsyms | grep printk
ffffffff80232a7f T printk

The function references shown in the above example can be fully resolved using the following informa-
tion, all of which is held in the symbol table of the kernel:

fffffc0000324aa0 T printk
fffffc00003407e0 T generic_file_write
ffffffff8043c710 R generic_ro_fops
fffffc0000376d20 T register_filesystem

A T denotes that the symbol is located in the text segment, while D determines it to be in the data segment.
Refer to Appendix E for more information on the layout of object files.

Logically, the information in the symbol table differs not only according to kernel configuration but also
from processor to processor. In our example, we used an AMD64 system. Searching through the symbol
table on an IA-32 CPU, for example, would produce the following picture:

c0119290 T printk
c012b7b0 T generic_read_dir
c0129fc0 D generic_ro_fops
c0139340 T register_filesystem

The addresses are not only shorter (after all, IA-32 use a word length of 32 bits) but, logically, point to
different locations.

5Notice that because the reference is resolved in the kernel itself and not in userspace, this file is available for information purposes
but is not used by the module utilities.

476

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 477

Chapter 7: Modules

7.2.2 Dependencies
A module can also depend on one or more other modules. Let us take a look at the vfat module that
depends on the fat module because the latter includes several functions that do not make a distinction
between the two variants of the filesystem.6 In the view of the object file vfat.o, all this means is that
there are code references to functions defined in fat.o. The advantages of this approach are obvious.
Because the code for handling a VFAT filesystem differs only in a few routines from that for handling
a FAT filesystem, a large part of the code can be used by both modules. This not only reduces space
requirements in system memory but also makes the source code shorter, more readable, and easier to
maintain.

The nm tool illustrates the situation clearly:

wolfgang@meitner> nm vfat.ko
...

U fat_alloc_new_dir
U fat_attach

...

wolfgang@meitner> nm fat.ko
...

0000000000001bad T fat_alloc_new_dir
0000000000004a67 T fat_attach
...

I have selected two examples: fat_alloc_new_dir and fat_attach (fat also provides many other func-
tions used by vfat). As the output of nm shows, the two functions are listed in the vfat module as
unresolved references, whereas in fat.o, they appear together with their (still unrelocated) addresses
in the object file.

Naturally, it makes no sense to patch these addresses into the object code of vfat.ko because the func-
tions would be somewhere totally different in memory after relocation of fat.ko. Of greater interest are
the addresses of the functions after the fat module is added. This information is exported to userspace
by /proc/kallsyms but is still held directly in the kernel. For both the permanently compiled part of the
kernel and for all subsequently added modules, there is an array whose entries assign symbols to their
addresses in virtual address space.

The following items are relevant when adding modules into the kernel:

❑ The symbol list of the functions provided by the kernel can be dynamically extended when mod-
ules are loaded. As you will see below, modules can specify exactly which functions in their code
are to be released for general use and which may be used internally only.

❑ The order in which modules are added into the kernel is important if there are interdependencies
between the modules. If, for example, an attempt is made to load the vfat module before fat
is in the kernel, the attempt will fail because the addresses of a number of functions cannot be
resolved (and the code would not run).

6FAT (file allocation table) is the very simple filesystem used by MS-DOS and still used for diskettes; vfat is a (minimal) enhance-
ment with an identical basic structure that supports filenames up to 255 characters long and no longer restricts them to the old 8 + 3
schema.

477

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 478

Chapter 7: Modules

Dependencies between modules can make the situation extremely complex during dynamic extension of
the kernel if users are not aware of the specific structure of the inter-module dependencies. Whereas in
our example this does not present a problem, or at least not for interested and technically versed users, it
can be very laborious to find the correct module loading sequence if there are complex dependencies. A
means of automatically analyzing the dependencies between modules is therefore required.

The depmod tool in the modutils standard tool collection is used to calculate the dependencies between
the modules of a system. The program usually runs each time the system is booted or after new modules
have been installed. The dependencies found are stored in a list. By default, they are written to the file
/lib/modules/version/modules.dep. The format is not complicated; the name of the binary file of the
module is noted, and this is followed by the filenames of all modules that contain code needed for correct
execution of the module first named. The entry for the vfat module therefore looks like this:

wolfgang@meitner> cat modules.dep | grep vfat
/lib/modules/2.6.24/kernel/fs/vfat/vfat.ko: /lib/modules/2.6.24/kernel/fs/fat/fat.ko

This information is processed by modprobe, which is used to insert modules into the kernel if existing
dependencies are to be resolved automatically. The strategy is simple: modprobe reads in the contents of
the dependency file, searches for the line in which the desired module is described, and compiles a list of
prerequisite modules. Because these modules may, in turn, depend on other modules, a search is made
for their entries in the dependency file, and then the entries are checked; this procedure is continued until
the names of all prerequisite modules are known. The actual task of inserting all modules involved into
the kernel is delegated to the insmod tool.7

The most interesting question still remains unanswered. How can dependencies between modules be
identified? To solve this problem, depmod employs no special features of kernel modules but simply uses
the information shown above. This information can be read not only from modules but also from normal
executable files or libraries using nm.

depmod analyzes the binary code of all available modules, generates a list for each that includes all defined
symbols and all unresolved references, and finally compares these lists with each other. If module A
contains a symbol that is found in module B as an unresolved reference, this means that B depends on
A — and this fact will be duly acknowledged by means of an entry in the form B: A in the dependency
file. Most symbols to which the modules refer are not defined in other modules but in the kernel itself.
For this reason, the file /lib/modules/version/System.map is generated (likewise using depmod) when
modules are installed. This file lists all symbols exported by the kernel. If it contains an unresolved
symbol of a module, this is not a problem because it will be resolved automatically when the module is
loaded. If the symbol cannot be found in the file or in another module, the module may not be added into
the kernel because it refers to external functions not implemented anywhere.

7.2.3 Querying Module Information
Additional sources of information are text descriptions that specify the purpose and usage of modules
and are stored directly in the binary files. They can be queried using the modinfo tool in the modutils
distribution. Various items of data are stored:

❑ Author of the driver, usually with an e-mail address. This information is useful, particularly for
bug reports (besides granting the developer some personal satisfaction).

❑ A brief description of the driver function.

7It is, of course, also necessary to check whether a module is already resident in the kernel — logically, it need not then be added.

478

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 479

Chapter 7: Modules

❑ Configuration parameters that can be passed to the module; possibly with a description of the
exact meaning of the parameters.

❑ The designation of the device supported (e.g., fd for floppy disk).

❑ The license under which the module is distributed.

A separate list is also provided in the module information to accept a list of different device types
supported by the driver.

Querying module information using the modinfo tool is not difficult, as the following example shows:

wolfgang@meitner> /sbin/modinfo 8139too
filename: /lib/modules/2.6.24/kernel/drivers/net/8139too.ko
version: 0.9.28
license: GPL
description: RealTek RTL-8139 Fast Ethernet driver
author: Jeff Garzik <jgarzik@pobox.com>
srcversion: 1D03CC1F1622811EB8ACD9E
alias: pci:v*d00008139sv000013D1sd0000AB06bc*sc*i*
...
alias: pci:v000010ECd00008139sv*sd*bc*sc*i*
depends:
vermagic: 2.6.24 SMP mod_unload
parm: debug:8139too bitmapped message enable number (int)
parm: multicast_filter_limit:8139too maximum number of filtered multicast addresses
(int)
parm: media:8139too: Bits 4+9: force full duplex, bit 5: 100Mbps (array of int)
parm: full_duplex:8139too: Force full duplex for board(s) (1) (array of int)

The kernel does not demand that developers supply this information in every module, although this is
good programming practice and should be done for new drivers. Many older modules do not provide
all the above fields, and developers are generally quite happy to omit detailed descriptions of possible
parameters. However, in most cases, there is at least a brief description, the name of the (main) author,
and a note on the software license under which the driver is distributed.

How can this additional information be incorporated in the binary module file? In all binary files that
use the ELF format (see Appendix E), there are various units that organize the binary data into different
categories — technically these are known as sections. To allow information on the module to be added,
the kernel introduces a further section named .modinfo. As you will see below, this process is relatively
transparent to the module programmer because a set of simple macros is provided to insert the data into
the binary file. Naturally, the presence of this additional information does not change the behavior of
the code because the .modinfo sections are ignored by all programs that handle modules but are not
interested in the information.

Why is information on the module license used stored in the binary file? The reason is not (unfortunately)
a technical one but is of a legal nature. Because the kernel source code is covered by the GNU GPL license,
there are several legal problems surrounding the use of modules distributed in binary code only. In this
respect, the GPL license is somewhat difficult to interpret.8 For this reason, I do not intend to deal with
the legal implications here — this is best left to the legal departments of large software manufacturers. It
is enough to know that such modules may use only the kernel functions explicitly provided (in contrast,
there are also functions that are explicitly provided for GPL-compatible modules only). The standard set

8Some programmers suggest that there are more interpretations of GPL than there are programs distributed under the license.

479

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 480

Chapter 7: Modules

is perfectly adequate to program standard drivers — if, however, the module wants to delve deeply into
the depths of the kernel, it must use other functions, and with some licenses this is prohibited for legal
reasons. The modprobe tool must take this situation into consideration when new modules are used. This
is why it checks the licenses and rejects illegal link actions.

Most developers (and also users) are not particularly happy about the fact that some manufacturers
distribute their drivers in binary modules. This not only makes it difficult to debug kernel errors, but also
has an adverse effect on ongoing driver development because it is necessary to rely on manufacturers to
eliminate bugs or implement new functions. At this point, it is not my intention to waste your time with
the many and varied aspects of manufacturer behavior. I simply refer you to the countless discussions
that have taken place, are still taking place, and will doubtless take place in the future on the various
Internet channels (not least on the kernel mailing list, see Appendix F).

7.2.4 Automatic Loading
Generally, module loading is initiated from userspace, either by the user or by means of automated
scripts. To achieve greater flexibility in the handling of modules and to improve transparency, the kernel
itself is also able to request modules.

Where is the catch? It is not difficult for the kernel to insert the binary code once it has access to it. How-
ever, it cannot do this without further help from userspace. The binary file must be localized in the
filesystem, and dependencies must be resolved. Because this is far easier to do in userspace than in ker-
nel space, the kernel has an auxiliary task known as kmod to which these tasks are delegated. Note that
kmod is not a permanent daemon, but is only initiated by the kernel on demand.

Let us examine a scenario that demonstrates the advantages of kernel-initiated module loading. It is
assumed that the VFAT filesystem is available as a module only and is not permanently integrated into
the kernel. If a user issues the following command for mounting a diskette:

wolfgang@meitner> mount -t vfat /dev/fd0 /mnt/floppy

before the vfat module is loaded into the kernel, an error message would normally be returned indicating
that the corresponding filesystem is not supported because it is not registered with the kernel. However,
in practice this is not the case. The diskette is mounted without any problem, even if the module is not
loaded. When the mount call terminates, the required modules are located in the kernel.

How is this possible? When the kernel processes the mount system call, it discovers that no information
on the desired filesystem — vfat — is present in its data structures. It therefore attempts to load the corre-
sponding module using the request_module function whose exact structure is discussed in Section 7.4.1.
This function uses the kmod mechanism to start the modprobe tool, which then inserts the vfat module in
the usual way. In other words, the kernel relies on an application in userspace that, in turn, uses kernel
functions to add the module as illustrated in Figure 7-2.

Once this has been done, the kernel again tries to obtain information on the desired filesystem; as a result
of the modprobe call, this information is now held in its data structures if, of course, the module actually
exists — if not, the system call terminates with a corresponding error code.

480

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 481

Chapter 7: Modules

Request by kernel Load module

Find module request_modulemodprobe

Figure 7-2: Automatic module loading.

request_module calls are located at various points throughout the kernel sources; with their help, the
kernel attempts to make functions delegated to modules accessible as transparently as possible by adding
the code automatically as needed and without user interaction.

Situations can arise in which it is not possible to uniquely define which module is required to provide
the desired functionality. Consider the case that a USB stick is added to the system. The host controller
driver recognizes the new device. The module that needs to be loaded is usb-storage, but how can the
kernel know this? The solution to the problem is a small ‘‘database‘‘ that is attached to every module.
The contents describe which devices are supported by the module. In case of USB devices, this is a list of
supported interface types, manufacturer IDs, or any similar piece of information that identifies the device.
Modules that provide a driver for PCI devices, as another example, also use the unique IDs associated
with the device. The module provides a list of all supported devices.

The database information is provided via module aliases. These are generic identifiers for modules that
encode the described pieces of information. The macro MODULE_ALIAS is used to generate module
aliases.

<modules.h>
/* Generic info of form tag = "info" */
#define MODULE_INFO(tag, info) __MODULE_INFO(tag, tag, info)

/* For userspace: you can also call me... */
#define MODULE_ALIAS(_alias) MODULE_INFO(alias, _alias)

<moduleparam.h>
#define __MODULE_INFO(tag, name, info) \
static const char __module_cat(name,__LINE__)[] \

__attribute_used__ \
__attribute__((section(".modinfo"),unused)) = __stringify(tag) "=" info

The alias provided to MODULE_ALIAS is stored in the .modinfo section of the module binary. If a module
provides several different services, appropriate aliases are inserted directly. The code for RAID 4, 5, and
6 is contained in the same module, for instance.

drivers/md/raid5.c
MODULE_ALIAS("md-personality-4"); /* RAID5 */
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

481

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 482

Chapter 7: Modules

More important than direct aliases is the inclusion of device databases. The kernel provides the macro
MODULE_DEVICE_TABLE to implement such databases. The device table for the 8139too module that was
shown above is created by the following code:

drivers/net/8139too.c
static struct pci_device_id rtl8139_pci_tbl[] = {

{0x10ec, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x10ec, 0x8138, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1113, 0x1211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },

...
{PCI_ANY_ID, 0x8139, 0x13d1, 0xab06, 0, 0, RTL8139 },

{0,}
};

MODULE_DEVICE_TABLE (pci, rtl8139_pci_tbl);

The macro provides a standardized name in the module binary by which the table can be accessed:

<module.h>
#define MODULE_GENERIC_TABLE(gtype,name) \
extern const struct gtype##_id __mod_##gtype##_table \

__attribute__ ((unused, alias(__stringify(name))))

<module.h>
#define MODULE_DEVICE_TABLE(type,name) \

MODULE_GENERIC_TABLE(type##_device,name)

In the case of PCI, this generates the ELF symbol __mod_pci_device_table, which is an alias for
rtl8139_pci_tbl.

When modules are built, a conversion script (scripts/mod/file2alias.c) parses the device tables for
the different bus systems (PCI, USB, IEEE1394, . . .) — which have all different formats — and gener-
ates MODULE_ALIAS entries for the database entries. This allows treating device databases entries in the
same way as module aliases without having to duplicate the database information. Since the conversion
process basically consists of parsing an ELF file and doing some string rewriting, I will not discuss it in
greater detail here. The output looks as follows for the 8139too module:

drivers/net/8139too.mod.c
MODULE_ALIAS("pci:v000010ECd00008139sv*sd*bc*sc*i*");
MODULE_ALIAS("pci:v000010ECd00008138sv*sd*bc*sc*i*");
MODULE_ALIAS("pci:v00001113d00001211sv*sd*bc*sc*i*");
...
MODULE_ALIAS("pci:v00001743d00008139sv*sd*bc*sc*i*");
MODULE_ALIAS("pci:v0000021Bd00008139sv*sd*bc*sc*i*");
MODULE_ALIAS("pci:v*d00008139sv000010ECsd00008139bc*sc*i*");
MODULE_ALIAS("pci:v*d00008139sv00001186sd00001300bc*sc*i*");
MODULE_ALIAS("pci:v*d00008139sv000013D1sd0000AB06bc*sc*i*");

Providing module aliases forms the basis to solve the automatic module loading problem, but is not
yet completely sufficient. The kernel needs some support from userspace. After the kernel has noticed
that it needs a module for a device with specific properties, it needs to pass an appropriate request to

482

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 483

Chapter 7: Modules

a userspace daemon. This daemon then seeks the apt module and inserts it into the kernel. Section 7.4
describes how this is implemented.

7.3 Inserting and Deleting Modules
Two system calls form the interface between the userspace tools and the module implementation of the
kernel:

❑ init_module — Inserts a new module into the kernel. All the userspace tool needs do is provide
the binary data. All further steps (particularly relocation and symbol resolution) are performed
in the kernel itself.

❑ delete_module — Removes a module from the kernel. A prerequisite is, of course, that the
code is no longer in use and that no other modules are employing functions exported from the
module.

There is also a function named request_module (not a system call) that is used to load modules from the
kernel side. It is required not only to load modules but also to implement hotplug capabilities.

7.3.1 Module Representation
Before looking more closely at the implementation of the module-related functions, it is necessary to
explain how modules (and their properties) are represented in the kernel. As usual, a set of data struc-
tures is defined to do this.

Not surprisingly, the name of the most important structure is module; an instance of this structure is
allocated for each module resident in the kernel. It is defined as follows:

<module.h>
struct module
{

enum module_state state;

/* Member of list of modules */
struct list_head list;

/* Unique handle for this module */
char name[MODULE_NAME_LEN];

...
/* Exported symbols */
const struct kernel_symbol *syms;
unsigned int num_syms;
const unsigned long *crcs;

/* GPL-only exported symbols. */
const struct kernel_symbol *gpl_syms;
unsigned int num_gpl_syms;
const unsigned long *gpl_crcs;

...

483

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 484

Chapter 7: Modules

/* symbols that will be GPL-only in the near future. */
const struct kernel_symbol *gpl_future_syms;
unsigned int num_gpl_future_syms;
const unsigned long *gpl_future_crcs;

/* Exception table */
unsigned int num_exentries;
const struct exception_table_entry *extable;

/* Startup function. */
int (*init)(void);

/* If this is non-NULL, vfree after init() returns */
void *module_init;

/* Here is the actual code + data, vfree’d on unload. */
void *module_core;

/* Here are the sizes of the init and core sections */
unsigned long init_size, core_size;

/* The size of the executable code in each section. */
unsigned long init_text_size, core_text_size;

...
/* Arch-specific module values */
struct mod_arch_specific arch;

unsigned int taints; /* same bits as kernel:tainted */
...

#ifdef CONFIG_MODULE_UNLOAD
/* Reference counts */
struct module_ref ref[NR_CPUS];

/* What modules depend on me? */
struct list_head modules_which_use_me;

/* Who is waiting for us to be unloaded */
struct task_struct *waiter;

/* Destruction function. */
void (*exit)(void);
#endif

#ifdef CONFIG_KALLSYMS
/* We keep the symbol and string tables for kallsyms. */
Elf_Sym *symtab;
unsigned long num_symtab;
char *strtab;

/* Section attributes */
struct module_sect_attrs *sect_attrs;

/* Notes attributes */
struct module_notes_attrs *notes_attrs;

484

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 485

Chapter 7: Modules

#endif

/* Per-cpu data. */
void *percpu;

/* The command line arguments (may be mangled). People like
keeping pointers to this stuff */
char *args;

};

As this source code extract shows, the structure definition depends on the kernel configuration settings:

❑ KALLSYMS is a configuration option (but only for embedded systems — it is always enabled on
regular machines) that holds in memory a list of all symbols defined in the kernel itself and in the
loaded modules (otherwise only the exported functions are stored). This is useful if oops mes-
sages (which are used if the kernel detects a deviation from the normal behavior, for example, if
a NULL pointer is de-referenced) are to output not only hexadecimal numbers but also the names
of the functions involved.

❑ In contrast to kernel versions prior to 2.5, the ability to unload modules must now be config-
ured explicitly. The required additional information is not included in the module data structure
unless the configuration option MODULE_UNLOAD is selected.

Other configuration options that occur in conjunction with modules but do not change the definition of
struct module are as follows:

❑ MODVERSIONS enables version control; this prevents an obsolete module whose interface defini-
tions no longer match those of the current version from loading into the kernel. Section 7.5 deals
with this in more detail.

❑ MODULE_FORCE_UNLOAD enables modules to be removed from the kernel by force, even if there
are still references to the module or the code is being used by other modules. This brute force
method is never needed in normal operation but can be useful during development.

❑ KMOD enables the kernel to automatically load modules once they are needed. This requires some
interaction with the userspace, which is described below in the chapter.

The elements of struct module have the following meaning:

❑ state indicates the current state of the module and can assume one of the values of
module_state:

<module.h>
enum module_state
{

MODULE_STATE_LIVE,
MODULE_STATE_COMING,
MODULE_STATE_GOING,

};

During loading, the state is MODULE_STATE_COMING. In normal operation (after completion of
all initialization tasks), it is MODULE_STATE_LIVE; and while a module is being removed, it is
MODULE_STATE_GOING.

485

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 486

Chapter 7: Modules

❑ list is a standard list element used by the kernel to keep all loaded modules in a doubly linked
list. The modules global variable defined in kernel/module.c is used as list header.

❑ name specifies the name of the module. This name must be unique because it is referenced, for
example, to select the module to be unloaded. In this element, the name of the binary file is usu-
ally given without the suffix .ko — vfat, for example, for the VFAT filesystem.

❑ syms, num_syms, and crc are used to manage the symbols exported by the module. syms is an
array of num_syms entries of the kernel_symbol type and is responsible for assigning identifiers
(name) to memory addresses (value):

<module.h>
struct kernel_symbol
{

unsigned long value;
const char *name;

};

crcs is also an array with num_syms entries that store checksums for the exported symbols
needed to implement version control (see Section 7.5).

❑ When symbols are exported, the kernel considers not only symbols that may be used by all
modules regardless of their license, but also symbols that may be used only by modules with
GPL and GPL-compatible licenses. The third category consists of modules that may at present
still be used by modules with any license, but will be made GPL-only in the near future. The
gpl_syms, num_gpl_syms and gpl_crcs elements are provided for GPL-only symbols, while
gpl_future_syms, num_gpl_future_syms and gpl_future_crcs serve for future GPL-only sym-
bols. They have the same meaning as the entries discussed above but are responsible for manag-
ing symbols that may be used only by GPL-compatible modules now or in the future.

Two more sets of symbols (which are for brevity’s sake omitted from the structure definition
above) are described by the structure members unused_gpl_syms and unused_syms, together
with the corresponding counter and checksum members. The sets are used to store (GPL-only)
symbols that are exported, but unused by in-tree kernel modules. The kernel prints a warning
message when an out-of-tree module nevertheless uses a symbol of this type.

❑ If a module defines new exceptions (see Chapter 4), their description is held in the extable array.
num_exentries specifies the number of entries in the array.

❑ init is a pointer to a function called when the module is initialized.

❑ The binary data of a module are divided into two parts: the initialization part and the core part.
The former contains everything that can be discarded after loading has terminated (e.g., the ini-
tialization functions). The latter contains all data needed during the current operation. The start
address of the initialization part is held in module_init and comprises init_size bytes, whereas
the core area is described by module_core and core_size.

❑ arch is a processor-specific hook that, depending on the particular system, can be filled with
various additional data needed to run modules. Most architectures do not require any addi-
tional information and therefore define struct mod_arch_specific as an empty structure that is
removed by the compiler during optimization.

❑ taints is set if a module taints the kernel. Tainting means that the kernel suspects the module
of doing something harmful that could prevent correct kernel operation. Should a kernel panic9

9A kernel panic is triggered when a fatal internal error occurs that does not allow resumption of regular operations.

486

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 487

Chapter 7: Modules

occur, then the error diagnosis will also contain information about why the kernel is tainted.
This helps developers to distinguish bug reports coming from properly running systems and
those where something was already suspicious.

The function add_taint_module is provided to taint a given instance of struct module. A mod-
ule can taint the kernel for two reasons:

❑ TAINT_PROPRIETARY_MODULE is used if a module with a proprietary license, or a license
that is not compatible with the GPL, is loaded into the kernel. Since the source code for
proprietary modules is most likely not available, kernel developers will not be willing to
fix kernel bugs that appear in possibly even completely unrelated kernel areas. The module
might have done arbitrary things to the kernel that cannot be tracked, so the bugs might
well have been introduced by the module.

Note that the kernel provides the function license_is_gpl_compatible to decide whether
a given license is compatible with the GPL.

All licenses are, in contrast to the usual habit, not specified by constants, but by C
strings.

❑ TAINT_FORCED_MODULE denotes that the module was forcibly loaded. Forced loading can be
requested if no version information (also called version magic) is present in the module, or if
the module and kernel disagree about the version of some symbol.

❑ license_gplok is a Boolean variable that specifies whether the module license is GPL-
compatible; in other words, whether GPL-exported functions may be used or not. The flag is set
when the module is inserted into the kernel. How the kernel judges a license to be compatible
with the GPL or not is discussed below.

❑ module_ref is used for reference counting. There is an entry in the array for each CPU of the
system; this entry specifies at how many other points in the system the module is used. The data
type module_ref used for the individual array elements contains only one entry, which should,
however, be aligned on the L1 cache:
<mm.h>
struct module_ref
{

local_t count;
} ____cacheline_aligned;

The kernel provides the try_module_get and module_put functions to increment or decrement
the reference counter. It is also possible to use __module_get to increment the reference count if
the caller is sure that the module is not being unloaded right now. try_module_get, in contrast,
ensures that this is really the case.

❑ modules_which_use_me is used as a list element in the data structures that describe the inter-
module dependencies in the kernel. Section 7.3.2 goes into greater detail.

❑ waiter is a pointer to the task structure of the process that caused the module to be unloaded
and is now waiting for the action to terminate.

❑ exit is the counterpart to init. It is a pointer to a function called to perform module-specific
clean-up work (e.g., releasing reserved memory areas) when a module is removed.

❑ symtab, num_symtab and strtab are used to record information on all symbols of the module
(not only on the explicitly exported symbols).

487

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 488

Chapter 7: Modules

❑ percpu points to per-CPU data that belong to the module. It is initialized when the module is
loaded.

❑ args is a pointer to the command-line arguments passed to the module during loading.

7.3.2 Dependencies and References
A relationship exists between two modules A and B if B uses functions provided by A. This relationship
can be viewed in two different ways.

1. B depends on A. B cannot be loaded unless A is already resident in kernel memory.

2. A references B. In other words, B cannot be removed from the kernel unless A has been
removed — or unless all other modules that reference B have disappeared. In the kernel,
this kind of relationship is described as A uses B.

To correctly manage these dependencies, the kernel needs to introduce a further data structure:

kernel/modules.c
struct module_use
{

struct list_head list;
struct module *module_which_uses;

};

The dependency network is set up together with the modules_which_use_me element of the module data
structure. A new instance of module_use is created for each module A that uses functions in module B.
This instance is added to the modules_which_use_me list of B. module_which_uses points to the module
instance of A. On the basis of this information, the kernel can easily find out which other kernel modules
are used by a particular module.

As the relationship described is not immediately clear, Figure 7-3 provides a graphic example to illustrate
the situation.

ip_conntrack_ftpip_nat_ftp iptable_nat ip_tablesip_conntrack

modules_which_use_me

module_use->module_which_usesmodule_use->list

Figure 7-3: Data structures for managing dependencies between modules.

488

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 489

Chapter 7: Modules

I have selected a number of modules from the Netfilter package for this example. The dependency file
modules.dep includes the following dependencies found when the modules were compiled10:

ip_tables.ko:
iptable_nat.ko: ip_conntrack.ko ip_tables.ko
ip_nat_ftp.ko: iptable_nat.ko ip_tables.ko ip_conntrack.ko
ip_conntrack.ko:
ip_conntrack_ftp.ko: ip_conntrack.ko

Although ip_nat_ftp and ip_conntrack_ftp depend on several other modules, they do not have any
modules that depend on them, which is why the modules_which_use_me element of their module instance
is a null pointer.

ip_tables does not have any dependencies on other modules and can therefore be loaded into the kernel
on its own. However, there are two modules that depend on ip_tables: iptable_nat and ip_nat_ftp.
An instance of module_use is created for each; these are placed in the list of the modules_which_use_me
element of ip_tables. Their module_which_use pointers point to ip_nat_ftp and iptable_nat, as
shown in Figure 7-3.

Three modules depend on ip_conntrack, which is why its modules_which_use_me list contains three
instances of module_use with pointers to iptable_nat, ip_nat_ftp, and ip_conntrack_ftp.

The kernel data structures indicate only which other modules depend on a
particular module — they are not suitable (at least not without looking through the
list of all modules and reanalyzing the information in the list) for finding out which
modules already need to be resident in the kernel before a specific new module can
be loaded. However, this is not necessary because it is sufficient that the
information is present in userspace; and, thanks to modules.dep, this is the case.

If an attempt is made to load a module for which it was not possible to resolve all symbols because
dependent modules are not present, the kernel returns an error code and aborts loading. However, no
effort is made to load the prerequisite modules from the kernel side. This is the sole responsibility of the
modprobe userspace tool.

Only two calls of modprobe are needed to insert the displayed modules into the kernel:

wolfgang@meitner> /sbin/modprobe ip_nat_ftp
wolfgang@meitner> /sbin/modprobe ip_conntrack_ftp

When ip_nat_ftp is inserted, ip_conntrack, ip_tables and iptable_nat are automatically added
because they are listed as prerequisites in modules.dep. ip_conntrack_ftp can then be added with-
out explicit resolution of dependencies because the requisite ip_conntrack module was automatically
inserted into the kernel when ip_nat_ftp was loaded.

Manipulating Data Structures
The kernel provides the already_uses function to test whether module A requires another module B:

kernel/module.c
/* Does a already use b? */
static int already_uses(struct module *a, struct module *b)

10To improve readability, I have not specified the files with their full pathnames as they would appear in modules.dep. Addition-
ally, the example is slightly simplified.

489

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 490

Chapter 7: Modules

{
struct module_use *use;

list_for_each_entry(use, &b->modules_which_use_me, list) {
if (use->module_which_uses == a) {

return 1;
}

}
return 0;

}

If A depends on B, the modules_which_use_me list of B must contain a pointer to the module instance of A.
This is why the kernel looks through the list step by step and checks the pointers in module_which_uses.
If a matching entry is found — in other words, if the dependency really exists — 1 is returned; otherwise,
the function terminates and returns 0.

use_module is used to establish the relation between A and B — module A needs module B to function
correctly. It is implemented as follows:

kernel/module.c
/* Module a uses b */
static int use_module(struct module *a, struct module *b)
{

struct module_use *use;
...

if (b == NULL || already_uses(a, b)) return 1;

if (!strong_try_module_get(b))
return 0;

use = kmalloc(sizeof(*use), GFP_ATOMIC);
if (!use) {

printk("%s: out of memory loading\n", a->name);
module_put(b);
return 0;

}

use->module_which_uses = a;
list_add(&use->list, &b->modules_which_use_me);

...
return 1;

}

already_uses first checks whether the relation has already been established. If so, the function can
return immediately (a NULL pointer as a dependent module is also interpreted as meaning that the
relation already exists). If not, the reference counter of B is incremented so that it can no longer be
removed — after all, A insists on its presence. The strong_try_module_get used for this purpose is a
wrapper around the aforementioned try_module_get function; it deals with the situation in which the
module is in the process of being loaded:

kernel/module.c
static inline int strong_try_module_get(struct module *mod)
{

if (mod && mod->state == MODULE_STATE_COMING)

490

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 491

Chapter 7: Modules

return 0;
return try_module_get(mod);

}

It is not complicated to establish the relation. A new instance of module_use, whose module_which_uses
pointer is set to the module instance of A, is created. The new module_use instance is added to the list
list of B.

7.3.3 Binary Structure of Modules
Modules use the ELF binary format, which features several additional sections not present in normal
programs or libraries. In addition to a few compiler-generated sections that are not relevant for our
purposes (mainly relocation sections), modules consist of the following ELF sections11:

❑ The __ksymtab, __ksymtab_gpl, and __ksymtab_gpl_future sections contain a symbol table
with all symbols exported by the module. Whereas the symbols in the first-named section can be
used by all kernel parts regardless of the license, symbols in __kysmtab_gpl may be used only
by GPL-compatible parts, and those in __ksymtab_gpl_future only by GPL-compatible parts in
the future.

❑ __kcrctab, __kcrctab_gpl, and __kcrctab_gpl_future contain checksums for all (GPL, or
future-GPL) exported functions of the module. __versions includes the checksums for all ref-
erences used by the module from external sources.

The above sections are not created unless the version control feature was enabled
when the kernel was configured.

Section 7.5 deals in more detail with how version information is generated and used.

❑ __param stores information on the parameters accepted by a module.

❑ __ex_table is used to define new entries for the exception table of the kernel in case the module
code needs this mechanism.

❑ .modinfo stores the names of all other modules that must reside in the kernel before a module
can be loaded — in other words, the names of all modules that the particular module
depends on.

In addition, each module can hold specific information that can be queried using the modinfo
userspace tool, particularly the name of the author, a description of the module, license informa-
tion, and a list of parameters.

❑ .exit.text contains code (and possibly data) required when the module is removed from the
kernel. This information is not kept in the normal text segment so that the kernel need not load it
into memory if the option for removing modules was not enabled in the kernel configuration.

❑ The initialization functions (and data) are stored in .init.text. They are held in a separate
section because they are no longer needed after completion of initialization and can therefore
be removed from memory.

❑ .gnu.linkonce.this_module provides an instance of struct module, which stores the name of
the module (name) and pointers to the initialization and clean-up functions (init and cleanup)
in the binary file. By referring to this section, the kernel recognizes whether a specific binary file
is a module or not. If it is missing, file loading is rejected.

11readelf -S module.ko lists all the sections in a module object.

491

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 492

Chapter 7: Modules

Some of the above sections cannot be generated until the module itself and possibly all other kernel
modules have been compiled, for example, the section that lists all module dependencies. Because no
explicit dependency information is given in the source code, the kernel must get this information by
analyzing non-resolved references of the module involved as well as the exported symbols of all other
modules.

A multistep strategy is therefore adopted for generating modules:

1. First, all C files in the source code of a module are compiled into normal .o object files.

2. Once the object files have been generated for all modules, the kernel can analyze them. The
additional information found (e.g., on module dependencies) is stored in a separate file that
is also compiled into a binary file.

3. The two binary files are linked and thus produce the final module.

Appendix B describes the kernel build process in detail and deals with problems encountered when
compiling modules.

Initialization and Cleanup Functions
The module initialization and clean-up functions are stored in the module instance in the
.gnu.linkonce.module section. The instance is located in the abovementioned autogenerated
extra file for each module. It is defined as follows12:

module
module.mod.c
struct module __this_module
__attribute__((section(".gnu.linkonce.this_module"))) = {
.name = KBUILD_MODNAME,
.init = init_module,

#ifdef CONFIG_MODULE_UNLOAD
.exit = cleanup_module,

#endif
.arch = MODULE_ARCH_INIT,

};

KBUILD_MODNAME contains the name of the module and is only defined if the code is compiled as a module.
If the code is to be permanently bound into the kernel, no __this_module object is generated because no
post-processing of the module object is performed. MODULE_ARCH_INIT is a pre-processor symbol that can
point to architecture-specific initialization methods for modules. This is currently only required for m68k
CPUs.

The module_init and module_exit macros in init.h> are used to define the init and exit functions.13

Each module includes code of the following kind that defines the init/exit functions14:

12The attribute directive of the GNU C compiler is used to place the data in the desired section. Other uses of this directive are
described in Appendix C.
13The macros define init_module and exit_module functions that are created as aliases — a GCC enhancement — for the
actual initialization and clean-up functions. This trick enables the kernel to always use the same names to refer to the functions; how-
ever, programmers can choose whichever names they want.
14If the code is not compiled as a module, module_init and module_exit convert the functions into regular init/exit calls.

492

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 493

Chapter 7: Modules

#ifdef MODULE
static int __init xyz_init(void) {

/* Initialization code */
}

static void __exit xyz_cleanup (void) {
/* Cleanup code */

}

module_init(xyz_init);
module_exit(xyz_exit);
#endif

The __init and __exit prefixes help place the two functions in the right sections of the binary code:

<init.h>
#define __init __attribute__ ((__section__ (".init.text"))) __cold
#define __initdata __attribute__ ((__section__ (".init.data")))
#define __exitdata __attribute__ ((__section__(".exit.data")))
#define __exit_call __attribute_used__ __attribute__ ((__section__ (".exitcall.exit")))

The data variants are used to place data (in contrast to functions) in the .init and .exit section.

Exporting Symbols
The kernel provides two macros for exporting symbols — EXPORT_SYMBOL and EXPORT_SYMBOL_GPL. As
their names suggest, a distinction is made between exporting general symbols and exporting symbols
that may be used only by GPL-compatible code. Again, their purpose is to place the symbols in the
appropriate section of the module binary image:

<module.h>
/* For every exported symbol, place a struct in the __ksymtab section */
#define __EXPORT_SYMBOL(sym, sec) \

extern typeof(sym) sym; \
__CRC_SYMBOL(sym, sec) \
static const char __kstrtab_##sym[] \
__attribute__((section("__ksymtab_strings"))) \
= MODULE_SYMBOL_PREFIX #sym; \
static const struct kernel_symbol __ksymtab_##sym \
__attribute_used__ \
__attribute__((section("__ksymtab" sec), unused)) \

#define EXPORT_SYMBOL(sym) \
__EXPORT_SYMBOL(sym, "")

#define EXPORT_SYMBOL_GPL(sym) \
__EXPORT_SYMBOL(sym, "_gpl")

#define EXPORT_SYMBOL_GPL_FUTURE(sym) \
__EXPORT_SYMBOL(sym, "_gpl_future")

493

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 494

Chapter 7: Modules

At first glance, the definition is anything but clear. Its effect is therefore illustrated by reference to the
following example:

EXPORT_SYMBOL(get_rms)
/***/
EXPORT_SYMBOL_GPL(no_free_beer)

The above code is processed by the pre-processor and then looks something like this:

static const char __kstrtab_get_rms[]
__attribute__((section("__ksymtab_strings"))) = "get_rms";

static const struct kernel_symbol __ksymtab_get_rms
__attribute_used__ __attribute__((section("__ksymtab" ""), unused)) =

(unsigned long)&get_rms, __kstrtab_get_rms

/***/

static const char __kstrtab_no_free_beer[]
__attribute__((section("__ksymtab_strings"))) = "no_free_beer";

static const struct kernel_symbol __ksymtab_no_free_beer
__attribute_used__ __attribute__((section("__ksymtab" "_gpl"), unused)) =

(unsigned long)&no_free_beer, __kstrtab_no_free_beer

Two code sections are generated for each exported symbol. They serve the following purpose:

❑ __kstrtab_function is stored in the __ksymtab_strings section as a statically defined variable.
Its value is a string that corresponds to the name of the (function) function.

❑ A kernel_symbol instance is stored in the __ksymtab (or __kstrtab_gpl) section. It consists of a
pointer to the exported function and a pointer to the entry just created in the string table.

This allows the kernel to find the matching code address by reference to the function name in the
string; this is needed when resolving references, as is discussed in Section 7.3.4.

MODULE_SYMBOL_PREFIX can be used to assign a prefix to all exported symbols of a module; this is neces-
sary on some architectures (but most define an empty string as the prefix).

__CRC_SYMBOL is used when kernel version control is enabled for exported functions (refer to Section 7.5
for further details); otherwise, it is defined as an empty string as I have assumed here for simplicity’s
sake.

General Module Information
The .modinfo section of a module includes general information set using MODULE_INFO:

<module.h>
#define MODULE_INFO(tag, info) __MODULE_INFO(tag, tag, info)

<moduleparam.h>
#define __MODULE_INFO(tag, name, info) \
static const char __module_cat(name,__LINE__)[] \

494

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 495

Chapter 7: Modules

__attribute_used__ \
__attribute__((section(".modinfo"),unused)) = __stringify(tag) "=" info

In addition to this general macro that generates tag = info entries, there are a range of macros that create
entries with pre-defined meanings. These are discussed below.

Module License
The module license is set using MODULE_LICENSE:

<module.h>
#define MODULE_LICENSE(_license) MODULE_INFO(license, _license)

The technical implementation is not particularly stunning. More interesting is the question as to which
license types are classified as GPL-compatible by the kernel.

❑ GPL and GPLv2 stand for the second version of the GNU Public License; in the first definition, any
later version of the license (that may not yet exist) may also be used.

❑ GPL and additional rights must be used if further clauses, which must be compatible with the
free software definition software, have been added to the GPL.

❑ Dual BSD/GPL, Dual MIT/GPL, or Dual MPL/GPL are used for modules whose sources are available
under a dual license (GPL combined with the Berkeley, MIT, or Mozilla license).

❑ Proprietary modules (or modules whose license is not compatible with GPL) must use
Proprietary.

❑ unspecified is used if no explicit license is specified.

Author and Description
Each module should contain brief information about the author (with e-mail address, if possible) and a
description of the purpose of the module:

<module.h>
#define MODULE_AUTHOR(_author) MODULE_INFO(author, _author)
#define MODULE_DESCRIPTION(_description) MODULE_INFO(description, _description)

Alternative Name
MODULE_ALIAS(alias) is used to give a module alternative names (alias) by which it can be addressed
in userspace. This mechanism enables a distinction to be made between, for example, alternative drivers,
when only one of the drivers can be used although externally they all implement the same functionality.
It is also essential for constructing systematic names. This enables, for instance, assigning one or more
alias names to a module. These aliases specify the identification numbers of all PCI devices that are
supported by the module. When such a device is found in the system, the kernel can (with the help of the
userspace) automatically insert the corresponding module.

Elementary Version Control
Some indispensable version control information is always stored in the .modinfo section, regardless of
whether the version control feature is enabled or disabled. This allows a distinction to be made between

495

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 496

Chapter 7: Modules

various kernel configurations that have a drastic impact on the entire code and therefore need a sepa-
rate set of modules. The following code is linked into each module during the second phase of module
compilation:

module.mod.c
MODULE_INFO(vermagic, VERMAGIC_STRING);

VERMAGIC_STRING is a string that indicates the key features of the kernel configuration:

<vermagic.h>
#define VERMAGIC_STRING \

UTS_RELEASE " " \
MODULE_VERMAGIC_SMP MODULE_VERMAGIC_PREEMPT \
MODULE_VERMAGIC_MODULE_UNLOAD MODULE_ARCH_VERMAGIC

A copy of VERMAGIC_STRING is stored in the kernel itself and in each module; a module may only be
loaded if both variants match. This means that the following must be identical in the module and in the
kernel:

❑ The SMP configuration (enabled or not)

❑ The preemption configuration (enabled or not)

❑ The compiler version used

❑ An architecture-specific constant

On IA-32 systems, the processor type is used as the architecture-specific constant because some very
different features are available. For example, a module compiled with special optimization for Pentium 4
processors cannot be inserted into an Athlon kernel.

The kernel version is stored but is ignored when the comparison is made. Modules with different kernel
versions whose remaining version string matches can be loaded with no problem; for example, modules
of 2.6.0 can be loaded into a kernel with version 2.6.10.

7.3.4 Inserting Modules
The init_module system call is the interface between userspace and kernel and is used to load new
modules.

kernel/module.c
asmlinkage long
sys_init_module(void __user *umod, unsigned long len, const char __user *uargs)

The call requires three parameters — a pointer to the area in user address space in which the binary
code of the module is located (umod), its length (len), and a pointer to a string that specifies the module
parameters. From the userspace viewpoint, inserting a module is very simple because all that need be
done is to read in the module binary code and to issue a system call.

System Call Implementation
Figure 7-4 shows the code flow diagram for sys_init_module.

496

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 497

Chapter 7: Modules

sys_init_module

Insert module into kernel list

load_module

mod->init

Free initialization area

Figure 7-4: Code flow diagram for
sys_init_module.

The binary data are transferred into the kernel address space using load_module. All required relocations
are performed, and all references are resolved. The arguments are converted into a form that is easy to
analyze (a table of kernel_param instances), and an instance of the module data structure is created with
all the necessary information on the module.

Once the module instance created in the load_module function has been added to the global modules list,
all the kernel need do is to call the module initialization function and free the memory occupied by the
initialization data.

Loading Modules
The real difficulties are encountered when implementing load_module — the kernel comment ‘‘do all the
hard work’’ for the function is quite right. This is a very comprehensive function (with more than 350
lines) that assumes the following tasks:

❑ Copying module data (and arguments) from userspace into a temporary memory location in ker-
nel address space; the relative addresses of the ELF sections are replaced with absolute addresses
of the temporary image.

❑ Finding the positions of the (optional) sections

❑ Ensuring that the version control string and the definition of struct module match in the kernel
and module

❑ Distributing the existing sections to their final positions in memory

❑ Relocating symbols and resolving references. Any version control information linked with the
module symbols is noted.

❑ Processing the arguments of the module

load_module is the cornerstone of the module loader, which is why I deal in greater detail with the most
important code sections.

The information below makes frequent reference to special features of the ELF
format. The data structures made available for this format by the kernel are also
often used. Appendix E discusses both in detail.

kernel/module.c
static struct module *load_module(void __user *umod,

unsigned long len,
const char __user *uargs)

497

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 498

Chapter 7: Modules

{
Elf_Ehdr *hdr;
Elf_Shdr *sechdrs;
char *secstrings, *args, *modmagic, *strtab = NULL;
unsigned int i;
unsigned int symindex = 0;
unsigned int strindex = 0;
unsigned int setupindex;
unsigned int exindex;
unsigned int exportindex;
unsigned int modindex;
unsigned int obsparmindex;
unsigned int infoindex;
unsigned int gplindex;
unsigned int crcindex;
unsigned int gplcrcindex;

...
struct module *mod;
long err = 0;

...
if (copy_from_user(hdr, umod, len) != 0) {

err = -EFAULT;
goto free_hdr;

}
...

/* Convenience variables */
sechdrs = (void *)hdr + hdr->e_shoff;
secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;

Once a large number of variables has been defined, the kernel loads the module binary data into kernel
memory using copy_from_user (I have dispensed with some index variables for ELF sections and infor-
mation on error handling — and will do so in the following sections — so as not to add unnecessarily to
the volume of this description).

hdr then points to the start address of the binary data, in other words, to the ELF header of the module.

sechdrs and secstring are set so that they point to the positions in memory where information on the
existing ELF sections and the string table with the section names is located. The relative value in the ELF
header is added to the absolute address of the module in the kernel address space to determine the correct
position (we will come across this procedure frequently).

Rewriting Section Addresses
The addresses of all sections in the binary code are then rewritten into absolute values in the temporary
image15:

kernel/module.c
for (i = 1; i < hdr->e_shnum; i++) {
...

/* Mark all sections sh_addr with their address in the

15e_shnum indicates the number of sections, sh_addr is the address of a section, and sh_offset is the identifier of the section
in the section table as described in detail in Appendix E.

498

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 499

Chapter 7: Modules

temporary image. */
sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset;

/* Internal symbols and strings. */
if (sechdrs[i].sh_type == SHT_SYMTAB) {

symindex = i;
strindex = sechdrs[i].sh_link;
strtab = (char *)hdr + sechdrs[strindex].sh_offset;

}
}

Iteration through all sections is used to find the position of the symbol table (the only section whose type
is SHT_SYMTAB) and of the associated symbol string table whose section is linked with the symbol table
using the ELF link feature.

Finding Section Addresses
In section .gnu.linkonce.this_module, there is an instance of struct module (find_sec is an auxiliary
function that finds the index of an ELF section by reference to its name):

module/kernel.c
modindex = find_sec(hdr, sechdrs, secstrings,

".gnu.linkonce.this_module");
...
mod = (void *)sechdrs[modindex].sh_addr;

mod now points to an instance of struct module in which the name and the pointers to the initialization
and clean-up functions are supplied but whose remaining elements are still initialized with NULL or 0.

find_sec is also used to find the index positions of the remaining module sections (they are held in the
section index variable defined above):

kernel/module.c
/* Optional sections */
exportindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab");
gplindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab_gpl");
gplfutureindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab_gpl_future");
...
versindex = find_sec(hdr, sechdrs, secstrings, "__versions");
infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo");
pcpuindex = find_pcpusec(hdr, sechdrs, secstrings);

The module loader then calls the architecture-specific function mod_frob_arch_sections used by some
architectures to manipulate the contents of the individual sections. Because this is not usually needed
(the function is defined accordingly as a no-operation), it is not discussed here.

Organizing Data in Memory
layout_sections is used to decide which sections of the module are to be loaded at which positions in
memory or which modules must be copied from their temporary address. The sections are split into two
parts: core and init. While the first contains all code sections required during the entire run time of the
module, the kernel places all initialization data and functions in a separate part that is removed when
loading is completed.

499

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 500

Chapter 7: Modules

Module sections are not transferred to their final memory position unless the SHF_ALLOC flag is set in
their header.16 For example, this flag is not set for sections with debugging information (produced when
the gcc option -g is used) because these data need not be present in memory and can be read from the
binary file if needed.

layout_sections checks whether the name of a section contains the .init string. This enables a distinc-
tion to be made between initialization code and regular code; accordingly, the start position of the section
refers to the core or to the init section.

The result of layout_sections is communicated using the following elements:

❑ sh_entsize in the ELF section data structure, of which there is one instance for each section,
indicates the relative position of the section in the core or initialization area. If a section is not to
be loaded, the value is set to ~0UL.

To then differentiate between initialization and core sections, the INIT_OFFSET_MASK bit (defined
by (1UL << (BITS_PER_LONG-1))) is set in sh_entsize. This stores the relative position of all init
modules.

❑ core_size is used to transfer the total code size that is to reside in the kernel permanently, at
least until the module is unloaded. init_size totals the volumes of all sections that are required
for module initialization.

Transferring Data
Now that section distribution in memory is clear, the required memory space is reserved and initialized
with null bytes:

kernel/module.c
/* Do the allocs. */
ptr = module_alloc(mod->core_size);
...
memset(ptr, 0, mod->core_size);
mod->module_core = ptr;

ptr = module_alloc(mod->init_size);
...
memset(ptr, 0, mod->init_size);
mod->module_init = ptr;

module_alloc is an architecture-specific function for allocating module memory. In most cases, it is
implemented by directly calling vmalloc or one of its variants as described in Chapter 3. In other words,
the module resides in the memory area of the kernel that is mapped via page tables and not directly.

The data of all sections of the SHF_ALLOC type are then copied to their final memory area using the infor-
mation obtained by layout_sections; the sh_addr elements of each section are also set to the final
position of the section (previously they pointed to the section position in the temporary module area).

Querying the Module License
Technically insignificant but important from a legal point of view — the module license can now be read
from the .modinfo section and placed in the module data structure:

16This is not quite correct because the kernel also defines a specific order for the various sections on the basis of their flags. However,
I need not discuss this here.

500

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 501

Chapter 7: Modules

kernel/module.c
set_license(mod, get_modinfo(sechdrs, infoindex, "license"));

set_license checks whether the license used is GPL-compatible (by comparing its name with the string
in section 7.3.3):

kernel/module.c
static void set_license(struct module *mod, const char *license)
{

if (!license)
license = "unspecified";

if (!license_is_gpl_compatible(license)) {
if (!(tainted & TAINT_PROPRIETARY_MODULE))

printk(KERN_WARNING "%s: module license ’%s’ taints "
"kernel.\n", mod->name, license);

add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
}

}

If the license found is not GPL-compatible, the TAINT_PROPRIETARY_MODULE flag is set in the tainted
global variable via add_taint_module, which also taints the module via the taints field in struct
module. license_is_gpl_compatible determines which licenses are considered to be GPL-compatible at
the moment:

kernel/module.c
static inline int license_is_gpl_compatible(const char *license)
{

return (strcmp(license, "GPL") == 0
|| strcmp(license, "GPL v2") == 0
|| strcmp(license, "GPL and additional rights") == 0
|| strcmp(license, "Dual BSD/GPL") == 0
|| strcmp(license, "Dual MIT/GPL") == 0
|| strcmp(license, "Dual MPL/GPL") == 0);

}

In an additional step, the kernel is also tainted if the module ndiswrapper or driverwrapper is loaded
into the kernel. Although these modules would comply with the kernel by their own license, their pur-
pose is to load binary data into the kernel (Windows drivers for wireless networking cards in the case of
ndiswrapper). This is incompatible with the kernel’s license and must thus require tainting.

Resolving References and Relocation
The next step is to continue with processing of the module symbols. This task is delegated to the
simplify_symbols auxiliary function that iterates through all symbols in the symbol table17:

kernel/module.c
static int simplify_symbols(Elf_Shdr *sechdrs,

unsigned int symindex,
const char *strtab,
unsigned int versindex,

17The number of symbols is determined by dividing the size of the symbol table by the size of an entry.

501

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 502

Chapter 7: Modules

unsigned int pcpuindex,
struct module *mod)

{
Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
unsigned long secbase;
unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
int ret = 0;

for (i = 1; i < n; i++) {
switch (sym[i].st_shndx) {

Different symbol types must be handled differently. This is easiest for absolutely defined symbols because
nothing need be done:

kernel/module.c
case SHN_ABS:

/* Don’t need to do anything */
DEBUGP("Absolute symbol: 0x%08lx\n",

(long)sym[i].st_value);
break;

Undefined symbols must be resolved (I deal below with the corresponding resolve_symbol function
that returns the matching address for a given symbol):

kernel/module.c
case SHN_UNDEF:

sym[i].st_value
= resolve_symbol(sechdrs, versindex,

strtab + sym[i].st_name, mod);

/* Ok if resolved. */
if (sym[i].st_value != 0)

break;
/* Ok if weak. */
if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK)

break;

printk(KERN_WARNING "%s: Unknown symbol %s\n",
mod->name, strtab + sym[i].st_name);

ret = -ENOENT;
break; strtab + sym[i].st_name, mod);

If the symbol cannot be resolved because no matching definition is available, resolve_symbol returns 0.
This is OK if the symbol is defined as weak (see Appendix E); otherwise, the module cannot be inserted
because it references symbols that do not exist.

All other symbols are resolved by looking up their value in the symbol table of the module:

kernel/module.c
default:

secbase = sechdrs[sym[i].st_shndx].sh_addr;
sym[i].st_value += secbase;

502

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 503

Chapter 7: Modules

break;
}

}

return ret;
}

The next step in module loading is to place the table of (GPL-) exported symbols in the kernel by setting
the num_syms, syms and crcindex elements (or their GPL equivalents) to the corresponding memory
locations of the binary data:

kernel/module.c
/* Set up EXPORTed & EXPORT_GPLed symbols (section 0 is 0 length) */
mod->num_syms = sechdrs[exportindex].sh_size / sizeof(*mod->syms);
mod->syms = (void *)sechdrs[exportindex].sh_addr;
if (crcindex)

mod->crcs = (void *)sechdrs[crcindex].sh_addr;
mod->num_gpl_syms = sechdrs[gplindex].sh_size / sizeof(*mod->gpl_syms);
mod->gpl_syms = (void *)sechdrs[gplindex].sh_addr;
if (gplcrcindex)

mod->gpl_crcs = (void *)sechdrs[gplcrcindex].sh_addr;
mod->num_gpl_future_syms = sechdrs[gplfutureindex].sh_size /

sizeof(*mod->gpl_future_syms);
mod->gpl_future_syms = (void *)sechdrs[gplfutureindex].sh_addr;
if (gplfuturecrcindex)

mod->gpl_future_crcs = (void *)sechdrs[gplfuturecrcindex].sh_addr;

Symbols marked as unused are handled identically so that we omit the corresponding code. Relocation
is then performed, and again, the kernel iterates through all module sections. Depending on section type
(SHT_REL or SHT_RELA), either apply_relocate or apply_relocate_add is called to perform relocation.
Depending on processor type, there is usually only one type of relocation (general relocation or add relo-
cation; see Appendix E). However, let’s not go into the details of relocation because this would involve
discussing a large number of architecture-specific subtleties.

module_finalize then offers a further architecture-specific hook that allows the individual implementa-
tions to perform system-specific finalization tasks. On IA-32 systems, for example, some slower assembly
language instructions of older processor types are replaced with newer, faster instructions, if this is
possible.

Parameter processing is performed by parse_args, which converts the passed string of the foo=bar,bar2
baz=fuz wiz type into an array of kernel_param instances. A pointer to this array, which can be processed
by the module initialization function, is stored in the args element of the module data structure.

As a final step, load_module installs module-related files into sysfs and frees temporary memory occu-
pied by the initial copy of the binary code.

Resolving References
resolve_symbol is used to resolve undefined symbol references. It is primarily a wrapper function, as
the code flow diagram in Figure 7-5 indicates.

503

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 504

Chapter 7: Modules

resolve_symbol

_ _find_symbol

check_version

use_module

Figure 7-5: Code flow diagram
for resolve_symbol.

Actual resolution of the symbol is performed in __find_symbol. The kernel first looks through all sym-
bols permanently compiled into the kernel:

kernel/module.c
static unsigned long __find_symbol(const char *name,

struct module **owner,
const unsigned long **crc,
int gplok)

{
struct module *mod;
const struct kernel_symbol *ks;

/* Core kernel first. */
*owner = NULL;
ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
if (ks) {

*crc = symversion(__start___kcrctab, (ks - __start___ksymtab));
return ks->value;

}
...

The helper function lookup_symbol(name, start, end) searches through the symbol table found
between start and end and checks if an entry with a given name can be found. symversion is an
auxiliary macro. If the MODVERSIONS option is enabled, it extracts the corresponding entry from the CRC
table; otherwise, it returns 0.

The code to search in further sections is basically identical to the code shown above, so we don’t list
it explicitly here. If gplok is set to 1 because the module uses a GPL-compatible license, the GPL sym-
bols of the kernel located between __start___ksymtab_gpl and __stop___kysmtab_gpl are scanned
if no matching information is found in the generally accessible symbols. If this fails, the future GPL-
exported symbols are searched. If this still fails, the unused symbols as well as the unused GPL symbols
are searched. Should the symbol be present in these section, the kernel uses it to resolve the dependency
but prints out a warning because the symbol is bound to disappear sooner or later, so any modules using
the symbol will stop working at this point.

If the search is still unsuccessful, the exported symbols of the modules already loaded are scanned:

kernel/module.c
/* Now try modules. */
list_for_each_entry(mod, &modules, list) {

504

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 505

Chapter 7: Modules

*owner = mod;
ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
if (ks) {

*crc = symversion(mod->crcs, (ks - mod->syms));
return ks->value;

}

if (gplok) {
ks = lookup_symbol(name, mod->gpl_syms,

mod->gpl_syms + mod->num_gpl_syms);
if (ks) {

*crc = symversion(mod->gpl_crcs,
(ks - mod->gpl_syms));

return ks->value;
}

}

...
/* Try unused symbols etc. */
...

}
return 0;

}

Each module stores its exported symbols in the mod->syms array, which has the same structure as the
symbol array of the kernel.

If the module is GPL-compatible, all GPL-exported symbols of the modules are scanned; this is done in
exactly the same way as the above search, but mod->gpl_syms is used as the database. If this remains
unsuccessful, the kernel tries the remaining symbol sections.

The kernel sets the owner parameter of __find_symbol to the module data structure
of the second module that is presently being processed. This serves to create a
dependency between modules when a symbol is resolved with the help of another
module.

0 is returned if the kernel cannot resolve the symbol.

Let’s return to resolve_symbol. If __find_symbol is successful, the kernel first uses check_version to
determine whether the checksums match (this function is discussed in Section 7.5). If the symbol used
originates from another module, a dependency between the two modules is established by means of the
familiar use_module function; this prevents the referenced module from being removed as long as the
symbol just loaded is still in memory.

7.3.5 Removing Modules
Removing modules from the kernel is much simpler than inserting them, as shown by the code flow
diagram of sys_delete_module in Figure 7-6.

505

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 506

Chapter 7: Modules

Ensure module is not used

sys_delete_module

find_module

mod->exit

free_module

Figure 7-6: Code flow diagram for
sys_delete_module.

The system call identifies a module by its name, which must be passed as a parameter18:

kernel/module.c
asmlinkage long
sys_delete_module(const char __user *name_user, unsigned int flags)

First, the kernel must find the matching module instance by using find_module to look through the list
of all registered modules.

It must then be ensured that the module is not required by any other modules:

kernel/module.c
if (!list_empty(&mod->modules_which_use_me)) {

/* Other modules depend on us: get rid of them first. */
ret = -EWOULDBLOCK;
goto out;

}

It is sufficient to check whether the list is empty because a link is automatically established via the
modules_which_use_me element described above each time a symbol is referenced by another module.

Once it has been established that the reference counter has returned to 0, the module-specific clean-up
function is called, and memory space occupied by the module data is freed by means of free_module.

7.4 Automation and Hotplugging
Modules can be loaded not only on the initiative of the user or by means of an automated script, but can
also be requested by the kernel itself. There are two situations where this kind of loading is useful:

1. The kernel establishes that a required function is not available. For example, a filesystem
needs to be mounted but is not supported by the kernel.

The kernel can attempt to load the required module and then retry file mounting.

2. A new device is connected to a hotpluggable bus (USB, FireWire, PCI, etc.). The kernel
detects the new device and automatically loads the module with the appropriate driver.

18Two flags can be passed in addition to the name: O_TRUNC, which indicates that the module may also be removed from the kernel
‘‘by force‘‘ (despite, e.g., the fact that the reference counter is positive); O_NONBLOCK, which specifies that the operation must be
performed without blocking. To keep things simple, the flags are not discussed here.

506

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 507

Chapter 7: Modules

The implementation of this feature is interesting because, in both cases, the kernel relies on utilities
in userspace. On the basis of the information provided by the kernel, the utilities find the appropriate
module and insert it into the kernel in the usual way.

7.4.1 Automatic Loading with kmod
request_module in kernel/kmod.c is the main function for automatic kernel-initiated module loading.
The name of a module (or a generic placeholder19) is passed to this function.

Module requests must be built into the kernel explicitly — logically at points where attempts are made
to reserve a particular resource but fail because no driver is available. At the moment, there are about 100
such points in the kernel. The IDE driver, for example, attempts to load required drivers when probing
for existing devices. The module name of the desired driver must be specified directly to do this:

drivers/ide/ide-probe.c
if (drive->media == ide_disk)

request_module("ide-disk");
...
if (drive->media == ide_floppy)

request_module("ide-floppy");

If a particular protocol family is not available, the kernel must make do with a general request:

net/socket.c
if (net_families[family]==NULL)
{

request_module("net-pf-%d",family);
}

Whereas automatic module loading in earlier kernel versions (up to 2.0) was the responsibility of a
separate daemon that had to be started explicitly in userspace, loading is now implemented by kernel
means — but the kernel still requires a utility in userspace to insert modules. /sbin/modprobe is used by
default. The tool was mentioned above when discussing how the manual insertion of modules is used
by default. It is not my intention to consider with the numerous tool control options available when
automatically inserting modules. Instead, see the comprehensive system administration literature on on
this subject.

Figure 7-7 shows the code flow diagram for request_module.

The function requires a minimal environment in which the modprobe process executes (with full root
permissions):

kernel/kmod.c
char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
static char *envp[] = { "HOME=/",

"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
NULL };

19This is a service name that is not associated with a particular hardware. For example, the kernel determines that a network mod-
ule for a certain protocol family is needed, but not linked into the kernel. Because it only knows the number of the protocol family,
but not the name of the module that provides support for this family number, the kernel uses net-pf-X as the module name — X
denotes the family number. The modules.alias file assigns the appropriate module name for the particular family. net-pf-24,
for instance, resolves to pppoe.

507

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 508

Chapter 7: Modules

request_module

Prepare environment for modprobe

Too many simultaneous calls of request_module? return

call_usermodehelper

Figure 7-7: Code flow diagram for request_module.

The default value for modprobe_path is /sbin/modprobe. However, this value can be changed via the
proc filesystem (/proc/sys/kernel/modprobe) or the corresponding Sysctl. The name of the required
module is passed as a command-line argument.

If modprobe itself builds on a service implemented in a module,20 the kernel goes into a recursive endless
loop because modprobe instances are started repeatedly. To prevent this, the kernel uses the global vari-
able kmod_concurrent, which is incremented by 1 each time modprobe is called. The operation is termi-
nated when the lesser of the two values MAX_KMOD_CONCURRENT — the default is 50 — or max_threads/2
is exceeded.

call_usermodehelper is then called to start the utility in userspace. Via some detours over functions
that are not described in further detail here, the function declares a new work queue entry (see
Chapter 14) and adds it to the work queue of the khelper kernel thread. When the queue entry is
processed, ____call_usermodehelper is called. This function is, in turn, responsible to run the modprobe
application, which inserts the desired module into the kernel using the method described above.

7.4.2 Hotplugging
When a new device is connected (or removed) at a hotpluggable bus, the kernel, again with the help of a
userspace application, ensures that the correct driver is loaded. In contrast to normal module insertion,
it is necessary to perform several additional tasks (e.g., the right driver must be found by reference to
a device identification string, or configuration work must be carried out). For this reason, another tool
(usually /sbin/udevd21) is used in place of modprobe.

Note that the kernel provides messages to userspace not only when devices are inserted and removed,
but also for a much more generic set of events. When, for instance, a new hard disk is connected to the
system, the kernel does not just provide information about this event, but also sends notifications about
partitions that have been found on the device. Every component of the device model can send registration
and unregistration events to the userland. Since this results in a rather large and comprehensive set of
messages that can be potentially passed on from the kernel, I do not want to describe them all in detail.

20In other words, modprobe is dependent on a service in a module; accordingly, the kernel issues an instruction to modprobe to
load the module — and this, in turn, causes modprobe to instruct the kernel to start modprobe to load the module.
21For former versions of the kernel, /sbin/hotplug was used as the only hotplug agent. With the introduction of the device
model and its maturation during the development of 2.6, udevd is now the method of choice for most distributions. Neverthe-
less, the kernel does provide generic messages and is not tied to a particular mechanism in userspace. In some places, the ker-
nel still calls the program registered in uevent_helper, which can be set to /sbin/hotplug — the setting is accessible via
/proc/sys/kernel/hotplug. Setting the value to an empty string disables the mechanism. Since it is only needed during early
boot or for some very specific configurations (mostly systems where networking is completely disabled), I will not consider it any
further.

508

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 509

Chapter 7: Modules

Instead, we focus on a specific example illustrating the basic mechanism. Consider that a USB memory
stick is attached to the system, but the module that provides USB mass storage support has not yet been
loaded into the kernel. Additionally, the distribution wants to automatically mount the device so that the
user can immediately access it without further ado. The following steps are necessary to achieve this:

❑ The USB host controller detects a new device on the bus and reports this to the device driver.
The host controller allocates a new device and calls usb_new_device to register it.

❑ usb_new_device triggers kobject_uevent to be called.22This function calls the subsystem-
specific event notification procedure registered in the kobject instance for the object in
question.

❑ For USB device objects, usb_uevent is used as the notification function. The function prepares a
message that contains all necessary information for udevd to react properly to the insertion of the
new USB mass storage device.

The udevd daemon allows inspection of all messages received from the kernel. Observe the following log
of the communication that takes place when a new USB stick is plugged into the system.

root@meitner # udevmonitor --environment
...
UEVENT[1201129806.368892] add /devices/pci0000:00/0000:00:1a.7/usb7/7-4/7-4:1.0
(usb)
ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1a.7/usb7/7-4/7-4:1.0
SUBSYSTEM=usb
DEVTYPE=usb_interface
DEVICE=/proc/bus/usb/007/005
PRODUCT=951/1600/100
TYPE=0/0/0
INTERFACE=8/6/80
MODALIAS=usb:v0951p1600d0100dc00dsc00dp00ic08isc06ip50
SEQNUM=1830

The first message is generated by the abovementioned function usb_uevent. Every message consists of
identifier/value pairs that determine what is going on inside the kernel. Since a new device is added to
the system, the value for ACTION is add. DEVICE denotes where the information about the device can be
found in the USB filesystem, and PRODUCT offers some information about vendor and device. The most
important field in this case is INTERFACE because this determines the interface class to which the new
device belongs. The USB standard reserves 8 for mass storage devices:

<usb_ch9.h>
#define USB_CLASS_MASS_STORAGE 8

The field MODALIAS contains all generic pieces of information that are available about the device. It is
encoded in a string that is obviously not designed for the human eye, but can easily be parsed by a com-
puter. It is generated as follows (add_uevent_var is a helper function that adds a new identifier/value
pair to a hotplug message).

drivers/usb/core/usb.c
add_uevent_var(env,

"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",

22The precise call path is usb_new_device → device_add → kobject_uevent.

509

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 510

Chapter 7: Modules

le16_to_cpu(usb_dev->descriptor.idVendor),
le16_to_cpu(usb_dev->descriptor.idProduct),
le16_to_cpu(usb_dev->descriptor.bcdDevice),
usb_dev->descriptor.bDeviceClass,
usb_dev->descriptor.bDeviceSubClass,
usb_dev->descriptor.bDeviceProtocol,
alt->desc.bInterfaceClass,
alt->desc.bInterfaceSubClass,
alt->desc.bInterfaceProtocol));

By comparing the value of MODALIAS against the aliases provided by the modules, udevd can find the
proper module that needs to be inserted. In this case, usb-storage is the right choice because the follow-
ing alias matches the requirements:

wolfgang@meitner> /sbin/modinfo usb-storage
...
alias: usb:v*p*d*dc*dsc*dp*ic08isc06ip50*
...

The asterisks are placeholders for arbitrary values as in normal regular expressions, and the last part of
the alias (ic08isc06ip50*) is identical with the MODALIAS value. Thus the alias matches, and udevd can
insert the usb-storage module into the kernel. How does udevd know which aliases a given module
has? It relies on the program depmod, which scans all available modules, extracts the alias information,
and stores them in the text file /lib/modules/2.6.x/modules.alias.

The story, however, has not come to an end here. After the USB mass storage module has been inserted
into the kernel, the block layer recognizes the device and the partitions contained on it. This leads to
another notification.

root@meitner # udevmonitor
...
UDEV [1201129811.890376] add /block/sdc/sdc1 (block)
UDEV_LOG=3
ACTION=add
DEVPATH=/block/sdc/sdc1
SUBSYSTEM=block
MINOR=33
MAJOR=8
PHYSDEVPATH=/devices/pci0000:00/0000:00:1a.7/usb7/7-4/7-4:1.0/host7/target7:0:0/7:0:0:0
PHYSDEVBUS=scsi
SEQNUM=1837
UDEVD_EVENT=1
DEVTYPE=partition
ID_VENDOR=Kingston
ID_MODEL=DataTraveler_II
ID_REVISION=PMAP
ID_SERIAL=Kingston_DataTraveler_II_5B67040095EB-0:0
ID_SERIAL_SHORT=5B67040095EB
ID_TYPE=disk
ID_INSTANCE=0:0
ID_BUS=usb
ID_PATH=pci-0000:00:1a.7-usb-0:4:1.0-scsi-0:0:0:0
ID_FS_USAGE=filesystem
ID_FS_TYPE=vfat

510

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 511

Chapter 7: Modules

ID_FS_VERSION=FAT16
ID_FS_UUID=0920-E14D
ID_FS_UUID_ENC=0920-E14D
ID_FS_LABEL=KINGSTON
ID_FS_LABEL_ENC=KINGSTON
ID_FS_LABEL_SAFE=KINGSTON
DEVNAME=/dev/sdc1
DEVLINKS=/dev/disk/by-id/usb-Kingston_DataTraveler_II_5B67040095EB-0:0-part1
/dev/disk/by-path/pci-0000:00:1a.7-usb-0:4:1.0-scsi-0:0:0:0-part1
/dev/disk/by-uuid/0920-E14D /dev/disk/by-label/KINGSTON

The message provides information about the name of the newly detected partition (/dev/sdc1) and
the filesystem that is found on the partition (vfat). This is enough for udevd to automatically mount the
filesystem and make the USB stick accessible.

7.5 Version Control
Constantly changing kernel sources naturally has implications for driver and module programming —
particularly in the context of proprietary binary-only drivers; and it is these implications that are dis-
cussed in this section.

When new features are implemented or overall design is revised, it is often necessary to modify the
interfaces between the individual parts of the kernel to cope with the new situation or to support a
range of performance and design improvements. Of course, developers do their best, whenever possible,
to restrict changes to internal functions not directly used by drivers. However, this does not rule out
occasional modifications to the ‘‘public‘‘ interfaces. Naturally, the module interface is also affected by
such changes.

When drivers are made available in the source code, this does not present a problem so long as an indus-
trious kernel hacker can be found to adapt the code to the new structures — with most drivers, this can
be done in a matter of days (if not hours). Since there is no explicit ‘‘development kernel‘‘ anymore, it is
unavoidable that interface changes are introduced between two stable revisions of the kernel, but since
the in-tree code can be easily updated, this does not pose a particular problem.

The situation is different with drivers distributed by manufacturers in binary only. Users are forced
to rely on the goodwill of the manufacturers and must wait until a new driver has been developed
and released. This approach gives rise to a whole range of problems, two of which are technical 23 and
therefore of particular interest to us:

❑ If the module uses an obsolete interface, not only is correct module functioning impaired, but
also there is a great likelihood that the system will crash.

❑ Because the interfaces differ for SMP and single-processor systems, two binary versions are
needed, and again this can cause the system to crash if the wrong one is loaded.

Of course, these arguments also apply if Open Source modules in binary only are used. Sometimes, this
is the only option available to technically less experienced users until manufacturers offer an appropriate
update.

23There is a wealth of detailed information on moral, ethical, and ideological issues on the Internet.

511

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 512

Chapter 7: Modules

The need for module version control is therefore apparent. But which is the best approach? The sim-
plest solution would be to introduce a constant stored in both the kernel and module. The value of the
constant would be incremented each time an interface changes. The kernel would not accept a module
unless the interface number in the module and in the kernel were identical; this would solve the version
problem. This approach works in principle but is not very intelligent. If an interface not used by a module
is changed, it can no longer be loaded although it would function perfectly.

For this reason, a finely grained method is used to take account of changes in the individual
kernel procedures. The actual module and kernel implementation is not relevant. What is relevant
is that the call interface may not change if a module is to function with different kernel versions.24

The method used is striking in its simplicity, but its mechanism is perfectly capable of solving
version control problems.

7.5.1 Checksum Methods
The basic idea is to use a CRC checksum generated using the parameters of a function or procedure. The
checksum is an 8-byte figure that requires four letters in hexadecimal notation. If the function interface
is modified, so is the checksum. This enables the kernel to deduce that the new version is no longer
compatible with the old version.

The checksum is not a mathematically unique sum — (different procedures could be mapped to the same
checksum because there are more combinations (in fact, an infinite number) derived from procedure
parameters than there are checksums available (namely, 232). In practice, this is not a problem because
the likelihood that a function interface has the same checksum after several of its parameters have been
changed is low.

Generating a Checksum
The genksym tool that comes with the kernel sources and is automatically created at compilation time is
used to generate a function checksum. To demonstrate how it works, let’s use the following header file,
which contains an exported function definition:

#include<linux/sched.h>
#include<linux/module.h>
#include<linux/types.h>

int accelerate_task(long speedup, struct task_struct *task);

EXPORT_SYMBOL(accelerate_task);

The function definition contains a compound structure as a parameter, and this makes the work of
genksyms more difficult. When the definition of the structure changes, the checksum of the function
also changes. In order to analyze the contents of the structure, it is a given that the contents must be
known. Consequently, input for genksyms is made up exclusively of files that have been processed by the
pre-processor and therefore contain the required include files in which the appropriate definitions are
located.

24This presupposes, of course, that the name of the function changes when the semantics of its code change but that the interface
definition remains unchanged.

512

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 513

Chapter 7: Modules

The following call is needed to generate the checksum of the exported function25:

wolfgang@meitner> gcc -E test.h -D__GENKSYMS__ -D__KERNEL__ | genksyms > test.ver

The contents of test.ver are then as follows:

wolfgang@meitner> cat test.ver
__crc_accelerate_task = 0x3341f339 ;

If the definition of accelerate_task changes because, for example, an integer is used as the first param-
eter, the checksum also changes: in this case, genksym calculates 0xbb29f607.

If several symbols are defined in a file, genksyms generates several checksums. The resulting file has the
following sample contents for the vfat module:

wolfgang@meitner> cat .tmp_vfat.ver
__crc_vfat_create = 0x50fed954 ;
__crc_vfat_unlink = 0xe8acaa66 ;
__crc_vfat_mkdir = 0x66923cde ;
__crc_vfat_rmdir = 0xd3bf328b ;
__crc_vfat_rename = 0xc2cd0db3 ;
__crc_vfat_lookup = 0x61b29e32 ;

This is a script for the linker ld whose significance in the compilation process is explained below.

Linking Into Modules and the Kernel
The kernel must incorporate the information supplied by genksym in the binary code of a module in order
to use it later; how this is done is discussed in the following.

Exported Functions
Recall that __EXPORT_SYMBOL calls the __CRC_SYMBOL macro internally, as discussed in Section 7.3.3. This
is defined as follows when version control is enabled:

<module.h>
#define __CRC_SYMBOL(sym, sec) \

extern void *__crc_##sym __attribute__((weak)); \
static const unsigned long __kcrctab_##sym \
__attribute_used__ \
__attribute__((section("__kcrctab" sec), unused)) \
= (unsigned long) &__crc_##sym;

When EXPORT_SYMBOL(get_shorty) is called, __CRC_SYMBOL expands as follows:

extern void *__crc_get_richard __attribute__((weak));
static const unsigned long __kcrctab_get_shorty

__attribute_used__
__attribute__((section("__kcrctab" ""), unused)) =
(unsigned long) &__crc_get_shorty;

25For simplicity’s sake, the parameters for matching the include paths to the kernel sources are not shown; also, in a genuine module
compilation, -DMODULE, for example, would also be specified. Refer to the output of make modules for details.

513

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 514

Chapter 7: Modules

As a result, the kernel creates two objects in the binary file:

❑ The undefined void pointer __crc_function is located in the normal symbol table of the mod-
ule. 26

❑ A pointer to the variable just defined is stored under krcrtab_function in the __kcrctab section
of the file.

When the module is linked (in the first phase of module compilation), the linker uses the .ver file gen-
erated by genksyms as a script. This supplies the __crc_function symbols with the values in the script.
The kernel reads them in later. If another module refers to one of these symbols, the kernel uses the
information shown here to ensure that both refer to the same version.

Unresolved References
Naturally it is not sufficient to store only the checksums of the exported functions of a module. It is more
important to note the checksums of all symbols used because these must be compared with the versions
made available by the kernel when modules are inserted.

In the second part of module compilation,27 the following steps are performed to insert version informa-
tion for all referenced symbols of a module into the module binary files:

1. modpost is called as follows:

wolfgang@meitner> scripts/modpost vmlinux module1 module2 module3 ...
modulen

Not only the name of the kernel image but also the names of all previously generated .o
module binaries are specified. modpost is a utility that comes with the kernel sources. It pro-
duces two lists, a global list containing all symbols made available (regardless of whether by
the kernel or by a module), and a specific list for each module with all unresolved module
references.

2. modprobe then iterates through all modules and tries to find the unresolved references in
the list of all symbols. This succeeds if the symbol is defined either by the kernel itself or in
another module.

A new module.mod.c file is created for each module. Its contents look like this (for the vfat
module, e.g.):

wolfgang@meitner> cat vfat.mod.c
#include <linux/module.h>
#include <linux/vermagic.h>
#include <linux/compiler.h>

MODULE_INFO(vermagic, VERMAGIC_STRING);

struct module __this_module
__attribute__((section(".gnu.linkonce.this_module"))) =
.name = KBUILD_MODNAME,

26The weak attribute creates a (weakly) linked variable. If it is not supplied with a value, no error is reported — as it would be for a
normal variable. It is ignored instead. This is necessary because genksyms does not generate a checksum for some symbols.
27In the first part of compilation, all module source files were compiled into .o object files that contain version information on the
exported symbols but not the referenced symbols.

514

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 515

Chapter 7: Modules

.init = init_module,
#ifdef CONFIG_MODULE_UNLOAD
.exit = cleanup_module,

#endif
.arch = MODULE_ARCH_INIT,

};

static const struct modversion_info ____versions[]
__attribute_used__
__attribute__((section("__versions"))) =

0x8533a6dd, "struct_module" ,
0x21ab58c2, "fat_detach" ,
0xd8ec2862, "__mark_inode_dirty" ,

...
0x3c15a491, "fat_dir_empty" ,
0x9a290a43, "d_instantiate" ,

};

static const char __module_depends[]
__attribute_used__
__attribute__((section(".modinfo"))) =
"depends=fat";

In the file, two variables located in different sections of the binary file are defined:

a. All symbols referenced by the module — together with the checksum that they
need and that was copied from the symbol definition in the kernel or in another
module — are stored in the modversions_info array in the __modversions section.
When a module is inserted, this information is used to check whether the running
kernel has the correct versions of the required symbols.

b. A list of all modules on which the processed module depends is located in the
module_depends array in the .modinfo section. In our example, the VFAT module
depends on the FAT module.
It is a simple matter for modprobe to create the depends list. If module A references a
symbol that is not defined in the kernel itself but in another module B, the name of B is
noted in the depends list of A.

3. In the last step, the kernel compiles the resulting .mod.o file into an object file and links it
with the existing .o object file of the module using ld; the resulting file is named module.ko
and is the finished kernel module that can be loaded with insmod.

7.5.2 Version Control Functions
Above I noted that the kernel uses the auxiliary function check_version to determine whether the sym-
bol versions required by a module match the versions made available by the kernel.

This function requires several parameters: a pointer to the section header of the (sechdrs) module, the
index of the __version section, the name of the processed symbol (symname), a pointer to the module
data structure (mod), and a pointer to the checksum (crc) that the kernel provides for the symbol and that
is supplied by __find_symbol when the symbol is resolved.

515

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 516

Chapter 7: Modules

kernel/module.c
static int check_version(Elf_Shdr *sechdrs,

unsigned int versindex,
const char *symname,
struct module *mod,
const unsigned long *crc)

{
unsigned int i, num_versions;
struct modversion_info *versions;

/* Exporting module didn’t supply crcs? OK, we’re already tainted. */
if (!crc)

return 1;
...

If the module (from which the symbol to be resolved originates) does not provide any CRC information,
the function returns 1 directly. This means that the version check was successful — if no information is
available, the check cannot fail.

Otherwise the kernel iterates through all symbols referenced by the module, searches for the corre-
sponding entry and compares the checksum returned in versions[i].crc by the module with the (crc)
returned by the kernel. If the two match, the kernel returns 1; if not, a warning message is issued and the
function terminates with 0:

kernel/module.c
versions = (void *) sechdrs[versindex].sh_addr;
num_versions = sechdrs[versindex].sh_size

/ sizeof(struct modversion_info);

for (i = 0; i < num_versions; i++) {
if (strcmp(versions[i].name, symname) != 0)

continue;

if (versions[i].crc == *crc)
return 1;

printk("%s: disagrees about version of symbol %s\n",
mod->name, symname);

return 0;
}

If the symbol is not found in the version table of the module, no version requirements are applied. As
a result, the function again returns 1 for success. However, the aforementioned tainted global variable
and the instance of struct module for the module in question are supplied with TAINT_FORCED_MODULE
to note for later that a symbol without version information was used.

kernel/module.c
/* Not in module’s version table. OK, but that taints the kernel. */
if (!(tainted & TAINT_FORCED_MODULE)) {

printk("%s: no version for \"%s\" found: kernel tainted.\n",
mod->name, symname);

add_taint_module(mod, TAINT_FORCED_MODULE);
}
return 1;

}

516

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 517

Chapter 7: Modules

7.6 Summary
Modules allow us to extend the functionalities provided by the kernel at run time. Considering the exten-
sive number of drivers available in the kernel, this is an important mechanism because only the really
required code needs to be active. However, not only device drivers, but all except the most fundamental
parts of the kernel can be configured as modules.

I have discussed how dependencies between modules are detected and can be resolved, how modules
are represented in binary files, and how they are loaded into and unloaded from the kernel. Additionally,
I have described how the kernel can automatically request modules when a particular feature is accessed
from userland, but the corresponding code is not present in the kernel. This requires some interaction
with userland to resolve which module is required.

Finally, I have shown how the kernel can protect itself against modules that are compiled against a
different kernel version and that might employ an incompatible set of functions with the help of module
version control.

517

Mauerer runc07.tex V2 - 09/04/2008 5:09pm Page 518

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 519

The Virtual Filesystem
Typically, a full Linux system consists of somewhere between several thousand and a few million
files that store programs, data, and all kinds of information. Hierarchical directory structures are
used to catalog and group files together. Various approaches are adopted to permanently store the
required structures and data.

Every operating system has at least one ‘‘standard filesystem‘‘ that features functions, some good,
some less so, to carry out required tasks reliably and efficiently. The Second/Third Extended
Filesystem that comes with Linux is a kind of standard filesystem that has proved itself to be
very robust and suitable for everyday use over the past few years. Nevertheless, there are other
filesystems written for or ported to Linux, all of which are acceptable alternatives to the Ext2 stan-
dard. Of course, this does not mean that programmers must apply different file access methods for
each filesystem they use — this would run totally counter to the concept of an operating system as
an abstraction mechanism.

To support various native filesystems and, at the same time, to allow access to files of other oper-
ating systems, the Linux kernel includes a layer between user processes (or the standard library)
and the filesystem implementation. This layer is known as the Virtual File System, or VFS for short.1

Figure 8-1 shows the significance of the layer.

The task of VFS is not a simple one. On the one hand, it is intended to provide uniform ways of
manipulating files, directories, and other objects. On the other, it must be able to come to terms with
the concrete implementations of the various approaches, which differ in part not only in specific
details but also in their overall design. However, the rewards are high because VFS adds substantial
flexibility to the Linux kernel.

The kernel supports more than 40 filesystems of various origins — ranging from the FAT
filesystem from the MS-DOS era through UFS (Berkeley Unix) and iso9660 for CD-ROMs to
network filesystems such as coda and NFS and virtual versions such as procfs.

1The term virtual filesystem switch is also used occasionally.

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 520

Chapter 8: The Virtual Filesystem

C-Standard Library (Libc)

Application ApplicationApplication

System-
calls

Userspace

KernelspaceVirtual Filesystem (VFS)

Ext2/3 XFSReiserfs

Figure 8-1: VFS layer for filesystem abstraction.

8.1 Filesystem Types
Filesystems may be grouped into three general classes:

1. Disk-based filesystems are the classic way of storing files on nonvolatile media to retain
their contents between sessions. In fact, most filesystems have evolved from this category.
Some well-known examples are Ext2/3, Reiserfs, FAT, and iso9660. All make use of block-
oriented media and must therefore answer the question, how to store file contents and struc-
ture information on the directory hierarchies. Of no interest to us here is the way in which
communication takes place with the underlying block device — the corresponding device
drivers in the kernel provide a uniform interface for this purpose. From the filesystem point
of view, the underlying devices are nothing more than a list of storage blocks for which an
appropriate organization scheme must be adopted.

2. Virtual filesystems are generated in the kernel itself and are a simple way of enabling
userspace programs to communicate with users. The proc filesystem is the best example of
this class. It requires no storage space on any kind of hardware device; instead, the kernel
creates a hierarchical file structure whose entries contain information on a particular part
of the system. The file /proc/version, for example, has a nominal length of 0 bytes when
viewed with the ls command.

wolfgang@meitner> ls -l /proc/version
-r--r--r-- 1 root root 0 May 27 00:36 /proc/version

However, if the file contents are output with cat, the kernel generates a list of infor-
mation on the system processor; this list is extracted from the data structures in kernel
memory.

wolfgang@meitner> cat /proc/version
Linux version 2.6.24 (wolfgang@schroedinger) (gcc version 4.2.1 (SUSE Linux))
#1 Tue Jan 29 03:58:03 GMT 2008

3. Network filesystems are a Halfway House between disk-based and virtual filesystems. They
permit access to data on a computer attached to the local computer via a network. In this
case, the data are, in fact, stored on a hardware device on a different system. This means
that the kernel need not be concerned with the details of file access, data organization, and
hardware communication — this is taken care of by the kernel of the remote computer. All
operations on files in this filesystem are carried out over a network connection. When a pro-
cess writes data to a file, the data are sent to the remote computer using a specific protocol

520

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 521

Chapter 8: The Virtual Filesystem

(determined by the network filesystem). The remote computer is then responsible for storing
the transmitted data and for informing the sender that the data have arrived.

Nevertheless, the kernel needs information on the size of files, their position within the
directory hierarchy, and other important characteristics, even when it is working with net-
work filesystems. It must also provide functions to enable user processes to perform typical
file-related operations such as open, read, or delete. As a result of the VFS layer, userspace
processes see no difference between a local filesystem and a filesystem available only via a
network.

8.2 The Common File Model
The VFS not only provides methods and abstractions for filesystems, but also supports a uniform view
of the objects (or files) in the filesystem. Even though the meaning of the term file may appear to be clear,
there are many small, often subtle differences in detail owing to the underlying implementations of the
individual filesystems. Not all support the same functions, and some operations (which are indispensable
for ‘‘normal‘‘ files) make no sense when applied to certain objects — named pipes, for instance — which
are also integrated into VFS.

Not every filesystem supports all abstraction types in VFS. Device files cannot be stored in filesystems
originating from other systems (i.e., FAT) because the latter do not cater to objects of this kind.

Defining a minimum common model that supports only those functions implemented by all filesystems
in the kernel is not practical because many essential features would be lost or would only be accessible via
filesystem-specific paths. This would negate the benefits of a virtual abstraction layer. The VFS answer is
quite the opposite — a structure model consisting of all components that mirror a powerful filesystem.
However, this model exists only virtually and must be adapted to each filesystem using a variety of
objects with function pointers. All implementations must provide routines that can be adapted to the
structures defined by the VFS and can therefore act as a go-between between the two views.

Naturally, the structure of the virtual filesystem is not a product of fantasy but is based on structures used
to describe classical filesystems. The VFS layer was also organized to clearly resemble the Ext2 filesystem.
This makes life more difficult for filesystems based on totally different concepts (e.g., the Reiser filesystem
or XFS) but delivers speed gains when working with Ext2fs because practically no time is lost converting
between Ext2 and VFS structures.

When working with files, the central objects differ in kernel space and userspace. For user programs, a
file is identified by a file descriptor. This is an integer number used as a parameter to identify the file in
all file-related operations. The file descriptor is assigned by the kernel when a file is opened and is valid
only within a process. Two different processes may therefore use the same file descriptor, but it does not
point to the same file in both cases. Shared use of files on the basis of the same descriptor number is not
possible.

The inode is key to the kernel’s work with files. Each file (and each directory) has just one inode, which
contains metadata such as access rights, date of last change, and so on, and also pointers to the file data.
However, and this may appear to be slightly strange, the inode does not contain one important item of
information — the filename. Usually, it is assumed that the name of a file is one of its major characteristics
and should therefore be included in the object (inode) used to manage it. I explain why this is not so in
the following section.

521

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 522

Chapter 8: The Virtual Filesystem

8.2.1 Inodes
How can directory hierarchies be represented by data structures? As already noted, inodes are central
to file implementation, but are also used to implement directories. In other words, directories are just a
special kind of file and must be interpreted correctly.

The elements of an inode can be grouped into two classes:

1. Metadata to describe the file status; for example, access permissions or date of last change

2. A data segment (or a pointer to data) in which the actual file contents are held; text in the
case of a text file

To demonstrate how inodes are used to structure the directory hierarchy of the filesystem, let’s look at
how the kernel goes about finding the inode of /usr/bin/emacs.

Lookup starts at the root inode, which represents the root directory / and must always be known to the
system. The directory is represented by an inode whose data segment does not contain normal data but
only the root directory entries. These entries may stand for files or other directories. Each entry consists
of two elements.

1. The number of the inode in which the data of the next entry are located

2. The name of the file or directory

All inodes of the system have a specific number by which they are uniquely identified. The association
between filename and inode is established by this number.

The first step in the lookup operation is to find the inode of the subdirectory usr. The data field of the
root inode are scanned until an entry named usr is found (if lookup fails, a ‘‘File not found‘‘ error is
returned). The associated inode can be localized by reference to the inode number.

The above step is repeated, but this time a search is made for a data entry with the name bin so that
the inode can be identified by its inode number. The name sought in its data entry is emacs. Again, this
returns the number of an inode — which, in this case, represents a file and not a directory. Figure 8-2
shows the situation at the end of the lookup process (the path taken is indicated by pointers between the
objects).

The file contents of the last inode differ from those of the three previous inodes. Each of the first three
represents a directory and therefore contains a list of its subdirectories and files. The inode associated
with the emacs file stores the contents of the file in the data segment.

Although the basic idea of a step-by-step file lookup process is the same in the actual implementation of
the VFS, there are a few differences in detail. For example, caches are used to speed the lookup operations
because frequent opening of files is a slow process. In addition, the VFS layer must communicate with
the underlying filesystems that supply the actual information.

8.2.2 Links
Links are used to establish connections between filesystem objects that do not fit into the classic tree
model. There are two types of link — symbolic and hard.

522

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 523

Chapter 8: The Virtual Filesystem

Inode Data area

data

usr 2
bin 3
share 4

var 10
bin 11
opt 12

X 117
vi 118
emacs 119

data

1 2

data

10

Figure 8-2: Lookup operation for /usr/bin/emacs.

Symbolic links can be regarded as ‘‘direction pointers‘‘ (at least by user programs) to indicate
the presence of a file at a particular location, although — as we all know — the actual file resides
somewhere else.

Sometimes the name soft link is used for links of this kind. This is because the link and link target are not
tightly coupled with each other. A link can be imagined as a directory entry that does not contain any
data but just a pointer to a filename. The link is retained when the target file is deleted. A separate inode
is used for each symbolic link. The data segment of the inode contains a character string that gives the
name of the link target.

With symbolic links, it is possible to distinguish between the original file and the link. This is not the case
with hard links. Once a hard link has been created, it is no longer possible to establish which filename is
the original and which is the hard link. When a hard link is created, a directory entry is generated whose
associated inode uses an existing inode number.

Deleting a symbolic link is not difficult, but the situation with hard links is a little trickier.
Let us assume that a hard link (B) shares the same inode with the original file (A). A user now
wants to delete A; this normally destroys the associated inode together with its data segment
so that it can be released and subsequently overwritten. Access to B is then no longer possible
because the associated inode and file information no longer exists. Of course, this is not desirable
behavior.

It can be prevented by a counter incorporated in the inode. The counter is incremented each time a hard
link to the file is created. If one of the hard links or, indeed, the original file (because it is impossible
to differentiate between the two) is deleted, the counter is decremented by 1. Only when the counter
has reverted to 0 is it certain that the inode is no longer in use and can therefore be removed from
the system.

8.2.3 Programming Interface
The interface between user processes and the kernel implementation of the VFS is formed, as usual, by
system calls, most of which involve the manipulation of files, directories, and filesystems in general. At
this point, we will not concern ourselves with the specific details of system programming as these are the
subject of many other publications such as [SR05] and [Her03].

523

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 524

Chapter 8: The Virtual Filesystem

The kernel provides more than 50 system calls for the above manipulations. We look only at the most
important calls to demonstrate the key principles.2

Files must be opened with the open or openat system call before they can be used. The kernel returns a
non-negative integer number to userland after opening the file successfully. The assigned file descriptor
numbers start at 3. Recall that numbering does not start at 0 because the first three file descriptors are
reserved for all processes, although no explicit instructions need be given. 0 represents standard input, 1
standard output, and 2 standard error.

Once a file has been opened, its name has no further significance. It is now uniquely identified by its file
descriptor, which is passed as a parameter to all further library functions (and therefore to system calls).
While file descriptors were traditionally sufficient to identify a file within the kernel, this is not the case
anymore. Since the introduction of multiple namespaces and containers, multiple file descriptors with
the same numerical value can coexist in the kernel. A unique representation is provided by a special data
structure (struct file), discussed below.

We see this in the close part of the sample program that closes the ‘‘connection‘‘ to a file (and returns
the file descriptor so that it can be used for files to open other files in the future). read also expects the
file descriptor as its first parameter so that it can identify the source from which to read data.

The current position within an open file is held in the file pointer, which is an integer that specifies the
offset from the start of the file. The pointer can be set to any value for random access files as long as the
value remains within the file limits. This supports random access to the file data. Other file types — named
pipes or device files for character devices, for instance — prohibit this. They may only be read sequentially
from beginning to end.

Various flags (such as O_RDONLY) are specified to define the access mode when a file is opened. More
detailed explanations are given in all works on system programming.

8.2.4 Files as a Universal Interface
Unix is based on just a few judiciously selected paradigms. A very important ‘‘metaphor‘‘ threads its way
through the kernel (and particularly through the VFS), particularly with regard to the implementation of
input and output mechanisms.

Everything is a file.

OK, let’s admit it: There are, of course, a few exceptions to this rule (e.g., network devices), but most
functions exported by the kernel and employed by user programs can be reached via the file interface
defined by the VFS. The following is a selection of kernel subsystems that use files as their central means
of communication:

❑ Character and block devices

❑ Pipes between processes

2Communication with files is carried out not only by means of file descriptors but also with the help of streams. The latter provide
a convenient interface. They are, however, implemented in the C standard library and not in the kernel. Internally they make use of
normal file descriptors.

524

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 525

Chapter 8: The Virtual Filesystem

❑ Sockets for all network protocols

❑ Terminals for interactive input and output

Note that some of the objects are not necessarily linked with an entry in a filesystem. Pipes, for instance,
are generated by special system calls and then managed by the kernel in the data structures of the VFS
without having a ‘‘real‘‘ filesystem entry that can be accessed with typical commands such as rm, ls, and
so on.3

Of particular interest (above all, in the context of Chapter 6) are device files to access block and charac-
ter devices. These are real files that typically reside in the /dev directory. Their contents are generated
dynamically by the associated device driver when a read or write operation is performed.

8.3 Structure of the VFS
Now that we are familiar with the basic structure of the VFS and the interface to users, we turn our
attention to the implementation details. A large number of sometimes very lengthy data structures are
involved in the implementation of the VFS interface. It is therefore best to sketch out a rough overview
of the components and how they are interlinked.

8.3.1 Structural Overview
The VFS consists of two components — files and filesystems — that need to be managed and abstracted.

File Representation
As noted above, inodes are the means of choice for representing file contents and associated metadata. In
theory, only one (albeit very long) data structure with all the requisite data would be needed to imple-
ment this concept. In practice, the data load is spread over a series of smaller, clearly laid out structures
whose interplay is illustrated in Figure 8-3.

No fixed functions are used to abstract access to the underlying filesystems. Instead, function pointers
are required. These are held in two structures that group together related functions.

1. Inode Operations — Create links, rename files, generate new file entries in a directory, and
delete files.

2. File Operations — Act on the data contents of a file. They include obvious operations such
as read and write, but also operations such as setting file pointers and creating memory map-
pings.

Other structures in addition to the ones above are needed to hold the information associated with an
inode. Of particular significance is the data field that is linked with each inode and stores either the
contents of the file or a table of directory entries. Each inode also includes a pointer to the superblock
object of the underlying filesystem used to perform operations such as the manipulation of the inodes
themselves (these operations are also implemented by arrays of function pointers, as we will see shortly).
Information on filesystem features and limits can also be provided.

3Named pipes do have an entry in the filesystem so that they can be accessed.

525

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 526

Chapter 8: The Virtual Filesystem

address_
space_
operations

dentry_
operations

s_files

super_block

host
page_tree

a_ops

address_space

f_op
f_dentry

f_op
f_dentry

f_op
f_dentry

file instances of the superblock

d_inode
d_sb
d_ops
NAME

task_struct

files
files_
struct

inode_
operations

file_
operations

i_op
i_dentry
i_fop
i_sb
i_mapping

inode

struct page

Doubly chained
list (schematically)

Figure 8-3: Interplay of the VFS components.

Because opened files are always assigned to a specific system process, the kernel must store the connec-
tion between the file and the process in its data structures. As discussed briefly in Chapter 2, the task
structure includes an element in which all opened files are held (via a roundabout route). This element is
an array that is accessed using the file descriptor as an index. The objects it contains are not only linked
with the inode of the corresponding file, but also have a pointer to an element of the dentry cache used to
speed lookup operations.

The individual filesystem implementations are also able to store their own data (that is not manipulated
by the VFS layer) in the VFS inode.

Filesystem and Superblock Information
The supported filesystem types are linked by means of a special kernel object that features a method of
reading the superblock. As well as key information on the filesystem (block size, maximum file size, etc.),
the superblock contains function pointers to read, write, and manipulate inodes.

The kernel also creates a list of the superblock instances of all active filesystems. I use the term active
instead of mounted because, in certain circumstances, it is possible to use a single superblock for several
mount points.4

4When a filesystem of a block device is mounted at several points in the directory hierarchy.

526

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 527

Chapter 8: The Virtual Filesystem

Whereas each filesystem appears just once in file_system_type, there may be
several instances of a superblock for the same filesystem type in the list of
superblock instances because several filesystems of the same type can be stored on
various block devices or partitions. Most systems have, for example, both a root and
a home partition, which may be on different partitions of the hard disk but
normally use the same filesystem type. Only one occurrence of the filesystem type
need appear in file_system_type, but the superblocks for both mounts are
different, although the same filesystem is used in both cases.

An important element of the superblock structure is a list with all modified inodes of the relevant filesys-
tem (the kernel refers to these rather disrespectfully as dirty inodes). Files and directories that have been
modified are easily identified by reference to this list so that they can be written back to the storage
medium. Writeback must be coordinated and kept to a necessary minimum because it is a very time-
consuming operation (hard disks, floppy disk drives, and other media are very slow as compared to
other system components). On the other hand, it is fatal to write back modified data too infrequently
because a system crash (or, more likely in the case of Linux, a power outage) results in irrecoverable data
loss. The kernel scans the list of dirty blocks at periodic intervals and transfers changes to the underlying
hardware.5

8.3.2 Inodes
The inode structure of the VFS is as follows:

<fs.h>
struct inode {

struct hlist_node i_hash;
struct list_head i_list;
struct list_head i_sb_list;
struct list_head i_dentry;
unsigned long i_ino;
atomic_t i_count;
unsigned int i_nlink;
uid_t i_uid;
gid_t i_gid;
dev_t i_rdev;
unsigned long i_version;
loff_t i_size;
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
unsigned int i_blkbits;
blkcnt_t i_blocks;
umode_t i_mode;

struct inode_operations *i_op;
const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
struct super_block *i_sb;
struct address_space *i_mapping;
struct address_space i_data;

5There are additional caches between the raw hardware and the kernel, as described in Chapter 6.

527

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 528

Chapter 8: The Virtual Filesystem

struct dquot *i_dquot[MAXQUOTAS];

struct list_head i_devices;
union {

struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

};

int i_cindex;

__u32 i_generation;

unsigned long i_state;
unsigned long dirtied_when; /* jiffies of first dirtying */

unsigned int i_flags;

atomic_t i_writecount;
void *i_security;

};

The structure opens with several list heads that are used to manage each inode instance according to
category. We look at the significance of the individual lists below in this section.

Before explaining the meanings of the individual structural members, it is worth remembering that the
inode structure examined here was designed for processing in memory and therefore includes a few
elements that are not present in the stored inodes. They are created dynamically or generated by the
kernel itself when the information on the low-level filesystem is read in.

There are also filesystems such as FAT and Reiserfs that do not use inodes in the classic sense and must
therefore generate the information shown here by extracting it from the data they themselves contain.

The majority of the elements are dedicated to managing simple status information; for example, i_atime,
i_mtime, and t_ctime store the time of the last access, the time of the last modification, and the time of the
last inode change. Modification is taken to mean a change to the data contents associated with the inode.
A change must be made to the inode structure itself (or to an attribute of the file) to bring about a change
to i_ctime.

The file length in bytes is stored in i_size. i_blocks specifies the value in blocks. The latter value
is a characteristic of the filesystem rather than of the file itself. When many filesystems are created, a
block size can be selected as the minimum unit for storage space allocation on the hardware medium
(the default for the Ext2 filesystem is 4,096 bytes per block, but smaller or larger values may be
chosen — Chapter 9 discusses this in more detail). The file size in blocks could therefore also be
calculated using the information on the filesystem block size and the file size in bytes. This is not done,
but for convenience, the file size is included in the inode structure.

Each VFS inode (for a given filesystem) is identified by a unique number held in i_ino. i_count is a
usage counter to specify how many processes are accessing the same inode structure. (Inodes are used
simultaneously when, for example, a process duplicates itself with fork, as demonstrated in Chapter 2.)
i_nlink is the counter used to record the total number of hard links that are using the inode.

528

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 529

Chapter 8: The Virtual Filesystem

File access and ownership rights are held in i_mode (file type and access permissions) and in i_uid and
i_gid (the UID and GID associated with the file).

i_rdev is needed when the inode represents a device file. It indicates the device with which communica-
tion is to take place. Note that i_rdev is only a number, not a data structure! The information contained
in this number is, however, sufficient to find everything interesting about the device. For block devices,
this would be an instance of struct block_device, as is discussed in Chapter 6.6

If the inode represents a device special file, then the elements contained in the anonymous union that
follows i_rdev contain pointers to specialized data structures about the devices.

i_bdev is used for block devices, i_pipe contains relevant information for inodes used to implement
pipes, and i_cdev is utilized for character devices. Since an inode cannot represent more than one type of
device at a time, it is safe to keep i_pipe, i_bdev, and i_cdev in a union. i_devices is also connected to
device file handling: It allows a block or character device to keep a list of inodes that represent a device
file over which it can be accessed. While in many cases a single device file per device will suffice, there are
also numerous possibilities — chroot’ed environments, for instance — where a given block or character
device will be accessible via more than one device file and thus more than one inode.

Most of the remaining elements point to compound data types whose meanings are discussed below in
this chapter.

Inode Operations
The kernel provides a large number of functions for performing operations on inodes. A set of function
pointers is defined to abstract the operations because data are manipulated by the specific filesystem
implementation. The call interface always remains the same, although the actual work is carried out by
implementation-specific functions.

The inode structure has two pointers (i_op and i_fop) to arrays that implement the above abstraction.
One relates to the inode-specific operations, and the other provides file operations. A reference to the
file operations structure is included not only in the inode structure but also in the file structure. We take
a closer look at this after we have examined how files are represented in the kernel. Here, suffice it to
say that file operations deal with manipulating the data contained in a file, while inode operations are
responsible for managing the structural operations (e.g., deleting a file) and metadata associated with
files (e.g., attributes).

All inode operations are grouped together in the following structure:

<fs.h>
struct inode_operations {

int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata *);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,int);
int (*rmdir) (struct inode *,struct dentry *);

6The auxiliary function bdget can be used to construct an instance of block_device given the device identifier in i_rdev.

529

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 530

Chapter 8: The Virtual Filesystem

int (*mknod) (struct inode *,struct dentry *,int,dev_t);
int (*rename) (struct inode *, struct dentry *,
struct inode *, struct dentry *);
int (*readlink) (struct dentry *, char __user *,int);
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
void (*truncate) (struct inode *);
int (*permission) (struct inode *, int, struct nameidata *);
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *);
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*removexattr) (struct dentry *, const char *);
void (*truncate_range)(struct inode *, loff_t, loff_t);
long (*fallocate)(struct inode *inode, int mode, loff_t offset,

loff_t len);
}

In most cases, the meaning of the element is clear from the name of the function pointer. The strong
similarity with the names of the corresponding system calls and userspace tools is intentional. For
example, rmdir deletes directories, rename renames filesystem objects, and so on.

Nevertheless, not all names can be traced back to familiar standard commands:

❑ lookup finds the inode instance of a filesystem object by reference to its name (expressed as a
string).

❑ link is invoked to delete a file. However, as described above, the delete operation is not
carried out if the hard link reference counter indicates that the inode is in use by more than
one file.

❑ The xattr functions create, read, and delete extended attributes not supported in the
classicUnix model. They are used, for example, in the implementation of access control
lists (ACLs).

❑ truncate changes the size of the specified inode. The function accepts just one parameter — the
data structure of the inode to be processed. The new file size must be set manually in the i_size
element of the inode structure before the function is invoked.

❑ truncate_range allows for truncating a range of blocks (i.e., for punching holes into files), but
this operation is currently only supported by the shared memory filesystem.

❑ follow_link follows a symbolic link by finding the inode of the target file. Because sym-
bolic links may go beyond filesystem boundaries, the implementation of the routine is
usually very short, and work is quickly delegated to generic VFS routines that complete
the task.

❑ fallocate is used to pre-allocate space for a file, which can in some circumstances lead to per-
formance benefits. However, only very recent filesystems (like Reiserfs or Ext4) support this
operation.

struct dentrys are used as parameters throughout the function prototypes. A struct dentry is a stan-
dardized data structure that may represent a filename or a directory. It also establishes the important
link between a filename and its inode. We examine the structure extensively below when we discuss the

530

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 531

Chapter 8: The Virtual Filesystem

dentry cache, which is of great relevance to VFS implementation. At the moment, we can simply regard
a dentry as a structure with information on a filename and its inode.

Inode Lists
Each inode has a i_list list head element to store the inode on a list. Depending on the state of the inode,
three main cases are possible:

1. The inode exists in memory but is not linked to any file and is not in active use.

2. The inode structure is in memory and is being used for one or more tasks, usually to rep-
resent a file. The value of both counters (i_count and i_nlink) must be greater than 0. The
file contents and the inode metadata are identical to the information on the underlying block
device; that is, the inode has not been changed since the last synchronization with the stor-
age medium.

3. The inode is in active use. Its data contents have been changed and therefore differ from the
contents on the storage medium. Inodes in this state are described as dirty.

In fs/inode.c, the kernel defines two global variables for use as list heads — inode_unused for valid but
no longer active inodes (the first category in the above list), and inode_in_use for all used but unchanged
inodes (the second category). The dirty inodes (third category) are held in a superblock-specific list.

A fourth, less frequent possibility arises when all inodes associated with a superblock are invalidated.
This happens when a media change has been detected for a removable device such that previously used
inodes become meaningless, or when a filesystem was remounted. In all cases, the code ends up in the
function invalidate_inodes, and the invalidated inodes are kept on a local list that does not have any
further relevance for the VFS code.

Each inode appears not only in the state-specific list but also in a hash table to support quick access by
reference to the inode number and superblock — this combination is unique throughout the system. The
hash table is an array that can be accessed with the help of the global variable inode_hashtable (also
from fs/inode.c). The table is initialized during booting in the inode_init function from fs/inode.c.
The messages output indicate the size of the array calculated on the basis of the available RAM.

wolfgang@meitner> dmesg
...
Inode-cache hash table entries: 262144 (order: 9, 2097152 bytes)
...

The hash function from fs/inode.c is used to compute the hash sum (I won’t describe the implemen-
tation of the hash method). It combines the inode number and the address of the superblock object into
a unique number that is guaranteed to reside within the reserved index range of the hash table.7 Colli-
sions are resolved as usual by means of an overflow list. The inode element i_hash is used to manage the
overflow elements.

In addition to the hash table, inodes are also kept on a per-superblock list headed by super_block->s_
inodes. i_sb_list is used as the list element.

7There are, however, filesystems in which there is no guarantee that inodes can be identified by reference to their number and asso-
ciated superblock. In this situation, additional elements must be scanned (using filesystem-specific methods); ilookup5 is provided
as a front end for this purpose. Currently, the function is not in widespread use except for sysfs and some rarely used filesystems
like OCFS2, but external code for more esoteric filesystems is able to access it.

531

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 532

Chapter 8: The Virtual Filesystem

However, the superblock manages more inode lists that are managed independently of i_sb_list
(Section 8.4.1 takes a closer look at the definition of struct super_block). If an inode is dirty, that is,
its content has been modified, it is listed on a dirty list headed by super_block->s_dirty with the list
element i_list. This has the advantage that it is not necessary to scan all inodes of the system when
writing back data (data writeback is also often referred to as synchronization) — it suffices to consider all
inodes on the dirty list. Two more lists (headed by super_block->s_io and super_block->s_more_io)
use the same list element i_list. They contain inodes that have been selected to be written back to disk
and are waiting for this to happen.

8.3.3 Process-Specific Information
File descriptors (which are nothing more than integer numbers) are used to uniquely identify opened files
within a process. This assumes that the kernel is capable of establishing a link between the descriptors in
the user process and the structures used internally. The elements needed to do this are included in the
task structure of each process.

<sched.h>
struct task_struct {
...
/* file system info */

int link_count, total_link_count;
...

/* filesystem information */
struct fs_struct *fs;

/* open file information */
struct files_struct *files;

/* namespaces */
struct nsproxy *nsproxy;

...
}

The integer elements link_count and total_link_count are used to prevent endless loops when looking
up circularly chained links as I will demonstrate in Section 8.4.2.

The filesystem-related data of a process are stored in fs. These data include, for example, the current
working directory and information on chroot restrictions, which I discuss in Section 8.3.4.

Since the kernel allows for simultaneously running multiple containers that mimic independent sys-
tems, every resource that seems ‘‘global’’ to the container is wrapped up by the kernel and separately
managed for every container. The virtual filesystem is also affected because each container can face a
different mount hierarchy. The corresponding information is contained in ns_proxy->mnt_namespace
(see Section 8.3.4).

files contains the process file descriptors examined in the section below.

Associated Files
The file element of the task structure is of type files_struct. The definition is as follows:

<sched.h>
struct files_struct {

atomic_t count;
struct fdtable *fdt;

532

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 533

Chapter 8: The Virtual Filesystem

struct fdtable fdtab;

int next_fd;
struct embedded_fd_set close_on_exec_init;
struct embedded_fd_set open_fds_init;
struct file * fd_array[NR_OPEN_DEFAULT];

};

next_fd denotes the number of the file descriptor that will be used when a new file is opened.
close_on_exec_init and open_fds_init are bitmaps. close_on_exec contains a set bit for all file
descriptors that will be closed on exec. open_fds_init is the initial set of file descriptors. struct
embedded_fd_set is just a simple unsigned long encapsulated in a special structure.

<file.h>
struct embedded_fd_set {

unsigned long fds_bits[1];
};

fd_array contains a pointer to an instance of struct file for every open file; I will discuss this structure
in a moment.

By default, the kernel allows each process to open NR_OPEN_DEFAULT files. This value is defined
in include/linux/sched.h with the default setting of BITS_PER_LONG. On 32-bit systems, the
initial number of files is therefore 32; 64-bit systems can handle 64 files simultaneously. If a process
attempts to open more files at the same time, the kernel must increase the memory space for various
elements of files_struct that are used to manage information on all files associated with the
process.

The most important information is contained in fdtab. The kernel defines another data structure for this
purpose.

<file.h>
struct fdtable {

unsigned int max_fds;
struct file ** fd; /* current fd array */
fd_set *close_on_exec;
fd_set *open_fds;
struct rcu_head rcu;
struct files_struct *free_files;
struct fdtable *next;

};

Both an instance of this structure itself and a pointer to an instance are included in struct files_struct
because the RCU mechanism is used to enable lock-free reading of these data structures, which
speeds up things. Before I come back to how this is done, I need to introduce the meaning of the
elements:

max_fds specifies the current maximum number of file objects and file descriptors that the process
can handle. There are no fundamental upper limits because both values can be increased if neces-
sary (providing they do not exceed the value specified by Rlimit — but this has nothing to do with
the file structure). Although the same number of file objects and file descriptors is always used, the
kernel must define different maximum numbers. This is due to the way in which the associated data

533

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 534

Chapter 8: The Virtual Filesystem

structures are managed. I explain this below, but first have to clarify what the remaining members of the
structure mean:

❑ fd is an array of pointers to file structures that manage all information on an opened file. The
file descriptor of the userspace process acts as an array index. The current size of the array is
defined by max_fds.

❑ open_fds is a pointer to a bit field that manages the descriptors of all currently opened files.
There is just one bit for each possible file descriptor; if it is set to 1, the descriptor is in use; other-
wise, it is unused. The current maximum number of bit positions is specified by max_fdset.

❑ close_on_exec is also a pointer to a bit field that holds the descriptors of all files to be closed on
the exec system call (see Chapter 2).

At a first glance, some information seems to be duplicated between struct fdtable and struct
files_struct: the close-on-exec and open file descriptor bitmap as well as the file array. This is
not the case because the elements in file_struct are real instances of some data structure, while the
elements of fdtable are pointers. Indeed, fd, open_fds, and close_on_exec are initialized so that
they point to these three elements in the structure. As a result, the fd array contains NR_OPEN_DEFAULT
entries; close_on_exec and open_fds are represented by bitmaps with BITS_PER_LONG entries initially
as I mentioned above. Since NR_OPEN_DEFAULT is set to BITS_PER_LONG, all share the same size. Should
the need for more open files arise, the kernel allocates an instance of fd_set to replace the initial
embedded_fd_set. fd_set is defined as follows:

<posix_types.h>
#define __NFDBITS (8 * sizeof(unsigned long))
#define __FD_SETSIZE 1024
#define __FDSET_LONGS (__FD_SETSIZE/__NFDBITS)

typedef struct {
unsigned long fds_bits [__FDSET_LONGS];

} __kernel_fd_set;

typedef __kernel_fd_set fd_set;

Note that struct embedded_fd_set can be typecast into struct fd_set. In this sense, embedded_fd_set
is a shrunken version of fd_set that can be used in the same way but requires less space.

If one of the initial limits for the bitmaps or the fd array is too low, the kernel can expand the relevant
elements by making the pointers point to correspondingly larger structures. The arrays are expanded in
different steps — this explains why there are different maximum values for the descriptor numbers and
file elements in the structure.

One component used for the definition of files_struct still needs to be discussed: struct file. The
structure holds characteristic information on a file as seen by the kernel. Slightly simplified, it is defined
as follows:

<fs.h>
struct file {

struct list_head fu_list;
struct path f_path;

#define f_dentry f_path.dentry

534

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 535

Chapter 8: The Virtual Filesystem

#define f_vfsmnt f_path.mnt
const struct file_operations *f_op;
atomic_t f_count;
unsigned int f_flags;
mode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
unsigned int f_uid, f_gid;
struct file_ra_state f_ra;

unsigned long f_version;
...

struct address_space *f_mapping;
...
};

The elements have the following meanings:

❑ f_uid and f_gid specify the UID and the GID of the user.

❑ f_owner contains information on the process working with the file (and therefore determines the
PID to which SIGIO signals are sent to implement asynchronous input and output).

❑ The readahead characteristics are held in f_ra. These values specify if and how file data are to
be read in anticipation before they are actually requested (readahead improves system perfor-
mance).

❑ The mode passed when a file is opened (generally read, write, or read and write access) is held in
the f_mode field.

❑ f_flags specifies additional flags that can be passed on the open system call.

❑ The current position of the file pointer (which is important for sequential read operations or
when reading a specific file section) is held in the f_pos variable as a byte offset from the begin-
ning of the file.

❑ f_path encapsulates two pieces of information:

❑ An association between filename and inode

❑ Information about the mounted filesystem in which the file resides

The path data structure is defined as follows:

<namei.h>
struct path {

struct vfsmount *mnt;
struct dentry *dentry;

};

struct dentry provides a connection between filename and inode. I discuss it in Section 8.3.5.
Information about the mounted filesystem is contained in struct vfs_mount, discussed in
Section 8.4.1.

Since former kernel versions did not use struct path but had explicit dentry and vfsmount
members in struct file, corresponding helper macros are required ensuring that code that is
not yet updated continues to work.

535

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 536

Chapter 8: The Virtual Filesystem

❑ f_op specifies the functions invoked for file operations (see Section 8.3.4).

❑ f_version is used by filesystems to check whether a file instance is still compatible with the
contents of the associated inode. This is important to ensure the consistency of cached objects.

❑ mapping points to the address space mapping that belongs to the inode instance with which
the file is associated. Usually, it is a shorthand for inode->i_mapping, but filesystems or
other subsystems of the kernel may modify it for their purposes, which I will not discuss any
further.

Every superblock provides an s_list list head element to hold file objects — linked by means of
file->f_list. The list includes all opened files of the filesystem represented by the superblock. It is
scanned when, for example, a filesystem in Read/Write mode is to be remounted in Read Only mode.
Of course, this cannot be done if files are still open in Write mode — and the kernel checks this list to
find out.8

file instances can be reserved with get_empty_filp, which employs its own cache and pre-initializes
the instances with essential data.

Increasing the Initial Limits
Whenever the kernel opens a file or does some other action that could need more entries in file_struct
than initially provided, it calls expand_files. The function checks if an enlargement is necessary
and calls expand_fdtable if this is the case. The function is — slightly simplified — implemented as
follows.

fs/file.c
static int expand_fdtable(struct files_struct *files, int nr)
{

struct fdtable *new_fdt, *cur_fdt;

spin_unlock(&files->file_lock);
new_fdt = alloc_fdtable(nr);
spin_lock(&files->file_lock);

copy_fdtable(new_fdt, cur_fdt);
rcu_assign_pointer(files->fdt, new_fdt);
if (cur_fdt->max_fds > NR_OPEN_DEFAULT)

free_fdtable(cur_fdt);

return 1;
}

alloc_fdtable allocates a file descriptor table with the maximal number of possible entries and also
reserves memory for the enlarged bitmaps — it only makes sense to increase all components at the
same time. After this, the function copies the previous contents of the file descriptor table into the
new, enlarged instance. Switching the pointer files_fdt to the new instance is handled by the RCU
function rcu_assign_pointer as described in Chapter 5. After this, the old file descriptor table can
be freed.

8Actually, this is slightly more complicated in reality because the RCU mechanism is used to make the freeing of file instances
more efficient. Since this only complicates things, but does not add new insights. I am not going to discuss it any further.

536

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 537

Chapter 8: The Virtual Filesystem

8.3.4 File Operations
Files must not only be able to store information, but must also allow this information to be manipu-
lated. From the user viewpoint, manipulation is performed by functions of the standard library. These
instruct the kernel to execute system calls, which then perform the required operations. Of course, the
interface may not differ for each filesystem implementation. The VFS layer therefore provides abstracted
operations that link general file objects with the low-level mechanisms of the underlying filesystem.

The structure used to abstract the file operations must be kept as general as possible or as necessary to
cater for a wide range of target files. At the same time, it must not feature too many specialized operations
that are useful for one particular file type but not for the rest. Nevertheless, the special requirements of
the various files (normal files, device files, etc.) must be satisfied in order to exploit their capabilities to
the full.

Each file instance includes a pointer to an instance of the struct file_operations structure that holds
function pointers to all possible file operations. This structure is defined as follows:

<fs.h>
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long,

unsigned long, unsigned long);
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t,

unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t,

unsigned int);
};

The owner entry is used only if a filesystem has been loaded as a module and is not compiled into the
kernel. This entry then points to the data structure representing the module in memory.

537

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 538

Chapter 8: The Virtual Filesystem

Most pointer names reveal the task that they perform (there are also many identically named system calls
that invoke the corresponding function in a more direct way).

❑ read and write read and write data — How could it be otherwise? They make use of the file
descriptor, a buffer (in which the Read/Write data reside) and an offset to specify the position
within the file. A further pointer indicates the number of bytes to be read or written.

❑ aio_read is used for asynchronous read operations.

❑ open opens a file; this corresponds to associating a file object with an inode.

❑ release is invoked when the usage counter of a file object reaches 0; in other words, when
no one is using the file. This allows low-level implementations to release memory and cache
contents no longer needed.

❑ Files can be accessed very easily if their contents are mapped into the virtual address space of a
process. This is done by mmap, whose mode of operation is discussed in Chapter 3.

❑ readdir reads the contents of directories and is therefore only available for objects of this type.

❑ ioctl is used to communicate with hardware devices and can therefore only be applied to
device files (not to other objects because these contain a null pointer). This method is used when
it is necessary to send control commands to a device (the write function is used to send data).
Even though the function has the same name and the same call syntax for all peripherals, the
actual commands differ depending on the hardware-specific situation.

❑ poll is used with the poll and select system calls needed to implement synchronous I/O mul-
tiplexing. What does this mean? The read function is used when a process is waiting for input
data from a file object. If no data are available (this may be the case when the process is read-
ing from an external interface), the call blocks until data become available. This could result
in unacceptable situations if there are no more data to be read and the read function blocks
forever.

The select system call, which is also based on the poll method, comes to the rescue. It sets a
time-out to abort a read operation after a certain period during which no new data arrive. This
ensures that program flow is resumed if no further data are available.

❑ flush is invoked when a file descriptor is closed, which goes hand in hand with decrementing a
usage counter — this time the counter need not be 0 (as with release). This function is required
by network filesystems to conclude transmissions.

❑ fsync is used by the fsync and fdatasync system calls to initiate synchronization of file data in
memory with that on a storage medium.

❑ fasync is needed to enable and disable signal-controlled input and output (processes are notified
of changes in the file object by means of signals).

❑ readv and writev are used in the implementation of the system calls of the same name for read-
ing and writing vectors. Vectors are basically structures that provide a non-contiguous memory
area to hold results or initial data. This technique is known as fast scatter-gather. It is used to dis-
pense with the need for multiple read and write calls that would impair performance.

❑ The lock function enables files to be locked. It synchronizes concurrent file access by several
processes.

❑ revalidate is used by network filesystems to ensure consistency of remote data after a media
change.

538

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 539

Chapter 8: The Virtual Filesystem

❑ check_media_change is only available for device files and checks whether there has been a
media change since the last access. Prime examples are the block-device files for CD-ROMs and
floppies that can be exchanged by users (hard disks are not usually exchanged).

❑ sendfile exchanges data between two file descriptors by means of the sendfile system call. As
sockets (see Chapter 12) are also represented by file descriptors, this function is also used for the
simple, efficient exchange of data over networks.

❑ splice_read and splice_write are used to transfer data from a pipe into a file and vice versa.
Since the methods are currently only used by the system call splice2, I will not discuss them
any further.

An object that uses the structure shown here as an interface need not implement all operations. To
take a concrete example, pipes between processes provide only a few operations because the remain-
ing operations make no sense at all — pipes cannot read directory contents, so readdir is not available,
for instance.

There are two ways of specifying that a certain method is not available — either by assigning a null
pointer to the function pointer or by invoking a dummy that simply returns an error value.

For example, the following file_operations instance is provided for block devices (see Chapter 6):

fs/block_dev.c
const struct file_operations def_blk_fops = {

.open = blkdev_open,

.release = blkdev_close,

.llseek = block_llseek,

.read = do_sync_read,

.write = do_sync_write,

.aio_read = generic_file_aio_read,

.aio_write = generic_file_aio_write_nolock,

.mmap = generic_file_mmap,

.fsync = block_fsync,

.unlocked_ioctl = block_ioctl,

.splice_read = generic_file_splice_read,

.splice_write = generic_file_splice_write,
};

The Ext3 filesystem uses a different set of functions.

fs/ext3/file.c
const struct file_operations ext3_file_operations = {

.llseek = generic_file_llseek,

.read = do_sync_read,

.write = do_sync_write,

.aio_read = generic_file_aio_read,

.aio_write = ext3_file_write,

.ioctl = ext3_ioctl,

.mmap = generic_file_mmap,

.open = generic_file_open,

.release = ext3_release_file,

.fsync = ext3_sync_file,

.splice_read = generic_file_splice_read,

.splice_write = generic_file_splice_write,
};

539

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 540

Chapter 8: The Virtual Filesystem

Although different pointers are assigned to the two objects, they share some common
features — functions whose name begins with generic_. These are general helper functions of
the VFS layer, a few of which are discussed in Section 8.5.

Directory Information
Other process-specific data must be managed in addition to the list of open file descriptors. Every
task_struct instance therefore includes a pointer to a further structure of type fs_struct.

<fs_struct.h>
struct fs_struct {

atomic_t count;
int umask;
struct dentry * root, * pwd, * altroot;
struct vfsmount * rootmnt, * pwdmnt, * altrootmnt;

};

umask represents the standard mask used to set permissions for a new file. Its value can be read or set
using the umask command. The system call of the same name does this internally.

The dentry elements of the structure point to the name of a directory, and vfsmount represents a
mounted filesystem (the exact definition of the data structures is given below).

There are three dentry and three VFS mount elements with similar names. In fact, the entries are linked
in pairs.

❑ root and rootmnt specify the root directory and the filesystem of the relevant process. Normally
these are the / directory and the root filesystem of the system. This situation is, of course, dif-
ferent for processes locked into a certain subdirectory by chroot (and implicitly by the system
call of the same name). A subdirectory is then used instead of the global root directory, and the
process sees this subdirectory as its own new root directory.

❑ pwd and pwdmnt specify the present working directory and the VFS mount structure of the filesys-
tem. Both change dynamically when the process changes its present directory; this happens
frequently (cd command) when working with a shell. Whereas the value of pwd changes with
each chdir system call,9 pwdmnt is only modified when the territory of a new mount point is
entered. Let us look at an example where a floppy disk drive is mounted at /mnt/floppy. A user
starts working with the shell in the root directory (/) and switches to the appropriate directory
by successively entering the cd /mnt and cd floppy commands. Both commands change the data
in fs_struct.

❑ cd /mnt changes the pwd entry but leaves the pwdmnt entry unchanged — we are still in root
directory territory.

❑ cd floppy changes the value of pwd and of pwdmnt because a switch has been made to a new
directory and the territory of a new filesystem has been entered.

❑ The altroot and altrootmnt elements are used when implementing personalities; they permit
the creation of an emulation environment for binary programs so that they have the impres-
sion they are working with an operating system other than Linux. For example, this method is

9The only exception is a switch to the . directory.

540

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 541

Chapter 8: The Virtual Filesystem

used on Sparc systems to emulate SunOS; special files and libraries needed for emulation are
installed in a directory (usually /usr/gnemul/). Information on this path is stored in the alt
elements.

The above directory is always scanned first when searching for a file so that libraries or system
files of the emulation are found before the Linux originals (these are searched afterward). This
supports the parallel use of different libraries for different binary formats. Since this technique is
rarely used, I won’t discuss it further.

VFS Namespaces
Recall from Chapter 2 that the kernel provides the possibility to implement containers. A single system
can provide many containers, but processes trapped in a container cannot see the world outside and do
not have any information about their fellow containers. The containers are completely independent of
each other, and from the VFS point of view, this implies that mounted filesystems need to be tracked
separately for each container. A single global view is not sufficient.

A VFS namespace is the collection of all mounted filesystems that make up the directory tree of a con-
tainer.10

Normally, forked or cloned processes inherit the namespace of their parent process. However, the
CLONE_NEWNS flag can be set to create a new VFS namespace (in the following, I drop the distinction
between VFS namespace and namespace, although the kernel also provides non-VFS namespaces). If the
new namespace is modified, changes are not propagated to processes belonging to a different namespace.
Neither do changes to other namespaces affect the new namespace.

Recall that struct task_struct contains a member element, nsproxy, which is responsible for names-
pace handling.

The kernel uses the following (slightly simplified) structure to manage namespaces. One of the names-
paces is the VFS namespace.

<nsproxy.h>
struct nsproxy {
...

struct mnt_namespace *mnt_ns;
...
};

The amount of information required to implement a VFS namespace is comparatively little:

<mnt_namespace.h>
struct mnt_namespace {

atomic_t count;
struct vfsmount * root;
struct list_head list;

...
};

10Note that chroot environments do not require a separate namespace. Although they cannot access the complete directory tree,
they are affected by changes to their superordinate namespace — unmounting a directory, for example — if the changes are in their
territory.

541

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 542

Chapter 8: The Virtual Filesystem

count is a usage counter to specify the number of processes using the namespace. root points to the
vfsmount instance of the root directory, and list is the start of a doubly linked list that holds all vfsmount
instances linked by their mnt_list elements.

Namespace manipulation operations such as mount and umount do not act on a global data structure of
the kernel (as was previously the case). Instead, they manipulate the namespace instance of the current
process that can be accessed via the task structure element of the same name. The change affects all
members because all processes of a namespace share the same namespace instance.

8.3.5 Directory Entry Cache
Owing to slow block media, it can take quite some time to find the inode associated with a filename. Even
if the device data are already in the page cache (see Chapter 16), it is nonsensical to repeat the full lookup
operation each time.

Linux uses the directory entry cache (dentry cache, for short) to provide quick access to the results of a
previous full lookup operation (we take a closer look at this in Section 8.4.2). The cache is built around
struct dentry, which has already been mentioned a few times.

Once the VFS — together with the filesystem implementations — has read the data of a directory or file
entry, a dentry instance is created to cache the data found.

Dentry Structure
The structure is defined as follows:

<dcache.h>
struct dentry {

atomic_t d_count;
unsigned int d_flags; /* protected by d_lock */
spinlock_t d_lock; /* per dentry lock */
struct inode *d_inode; /* Where the name belongs to - NULL is

* negative */
/*
* The next three fields are touched by __d_lookup. Place them here
* so they all fit in a cache line.
*/

struct hlist_node d_hash; /* lookup hash list */
struct dentry *d_parent; /* parent directory */
struct qstr d_name;

struct list_head d_lru; /* LRU list */
union {

struct list_head d_child; /* child of parent list */
struct rcu_head d_rcu;

} d_u;
struct list_head d_subdirs; /* our children */
struct list_head d_alias; /* inode alias list */
unsigned long d_time; /* used by d_revalidate */
struct dentry_operations *d_op;
struct super_block *d_sb; /* The root of the dentry tree */
void *d_fsdata; /* fs-specific data */

542

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 543

Chapter 8: The Virtual Filesystem

int d_mounted;
unsigned char d_iname[DNAME_INLINE_LEN_MIN]; /* small names */

};

The dentry instances form a network to map the structure of the filesystem. All files and subdirectories
associated with a dentry instance for a given directory are included in the d_subdirs list (also as dentry
instances); d_child in the child elements links the instances.11

However, the topology of the filesystem is not mapped in full because the dentry cache only ever contains
a small extract of it. The most frequently used files and directories are held in memory. In principle, it
would be possible to generate dentry entries for all filesystem objects, but RAM space and performance
reasons militate against this.

As frequently noted, the main purpose of the dentry structure is to establish a link between a filename
and its associated inode. Three elements are used to do this:

1. d_inode is a pointer to the relevant inode instance.

A null pointer is used for d_inode if a dentry object is created for a nonexistent
filename. This helps speed lookup for nonexistent filenames which takes just as
long as lookup for files that actually exist.

2. d_name specifies the name of the file. qstr is a kernel string wrapper. It stores the actual
char* string as well as its length and hash sum; this makes it easier to handle.

No absolute filenames are stored, only the last component — for example, only
emacs for /usr/bin/emacs — the reason being that the directory hierarchy is already
mapped by the above list structure.

3. If a filename consists of only a few characters, it is held in d_iname instead of in dname to
speed up access.

The minimum length up to which a filename is still regarded as ‘‘short‘‘ is specified by
DNAME_INLINE_NAME_LEN and is (at least) 16 characters. However, the kernel can sometimes
accommodate longer filenames because the element is at the end of the structure and the
cache line with the data may still have space available (this depends on the architecture and
the processor type).

The remaining elements have the following meanings:

❑ d_flags can contain several flags defined in include/linux/dcache.h. However, only two of
them are relevant for our purposes: DCACHE_DISCONNECTED specifies that a dentry is currently not
connected to the dentry tree of the superblock. DCACHE_UNHASHED states that the dentry instance
is not contained in the hash table of any inode. Note that both flags are completely independent
of each other.

11The RCU element that shares a union with the list head comes into play when list elements are deleted, but is not interesting for
our purposes.

543

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 544

Chapter 8: The Virtual Filesystem

❑ d_parent is a pointer to the parent directory in whose d_subdirs list the dentry instance is
located. In the root directory (which has no parent directory), d_parent points to its own dentry
instance.

❑ d_mounted is set to 1 if the dentry object represents a mount point; otherwise, its value is 0.

❑ d_alias links the dentry objects of identical files. This situation arises when links are used to
make the file available under two different names. This list is linked from the corresponding
inode by using its i_dentry element as a list head. The individual dentry objects are linked by
d_alias.

❑ d_op points to a structure with function pointers to provide various operations for dentry
objects. The operations must be implemented by the underlying filesystems. I discuss the
structure contents below.

❑ s_sb is a pointer to the filesystem superblock instance to which the dentry object belongs.
The pointer enables the individual dentry instances to be distributed over the available (and
mounted) filesystems. The dentry tree can be split into several subtrees because each superblock
structure contains a pointer to the dentry element of the directory on which the filesystem is
mounted.

All active instances of dentry in memory are held in a hash table implemented using the global variable
dentry_hashtable from fs/dcache.c. An overflow chain implemented with d_hash is used to resolve
hash collisions. I refer to this hash table as the global dentry hash table in the following.

The kernel also has a second dentry list headed by the global variable dentry_unused (also initialized in
fs/dcache.c). Which entries does this list contain? All dentry instances whose usage counter (d_count)
has reached 0 (and are therefore no longer used by any process) are automatically placed on this list. You
will see how the list is managed in the next section, which deals with the structure of the dentry cache.

Dentry objects are very convenient when the kernel needs to obtain information on
files, but they are not the principal object for representing files and their
contents — this role is assigned to inodes. For example, there is no way of
ascertaining whether a file was modified or not by reference to a dentry object. It is
essential to look at the corresponding inode instance to find out — and this instance
is easy to find using the dentry object.

Cache Organization
The dentry structures not only make working with filesystem structures easier, but are also crucial to
system performance. They accelerate work with the VFS by keeping communication with the underlying
filesystem implementations to a minimum.

Each request forwarded to the underlying implementations by the VFS leads to the creation of a new
dentry object to hold the request results. These objects are held in a cache so that they can be accessed
faster the next time they are needed and operations can be performed more quickly. How is the cache
organized? It comprises the following two components to organize dentry objects in memory:

1. A hash table (dentry_hashtable) containing all dentry objects.

2. An LRU (least recently used) list in which objects no longer used are granted a last period of
grace before they are removed from memory.

544

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 545

Chapter 8: The Virtual Filesystem

Recall that the hash table is implemented in keeping with the classical pattern. The function d_hash from
fs/dcache.c is used to determine the hash position of a dentry object.

Handling of the LRU list is a bit trickier. The list is headed by the global variable dentry_unused, and the
objects it contains are linked by the d_lru element of struct dentry.

dentry objects are placed on the LRU list when their usage counter (d_count) has reached 0 — this
indicates that no application is actively using the object. New entries are always placed at the beginning
of the list. In other words, the further back an entry is in the list, the older it is — the classic LRU principle.
The prune_dcache function is invoked from time to time, for instance, when a filesystem is unmounted
or when the kernel needs more memory. Old objects are removed and memory is freed. Note that it can
temporarily happen that dentry objects are on the unused list although they are in active use and their
usage count is bigger than zero. This is because the kernel does some optimizations: When a dentry that
was on the unused list comes back into use, it is not immediately taken off the unused list since this saves
some locking and thus increases performance. Operations like prune_dcache, which are costly anyway,
make up for this: When they encounter an object with positive usage count, they just remove it from the
list, but do not free it.

Because LRU list objects are still simultaneously present in the hash table, they can be found by lookup
operations searching for the entry they represent. Once an entry is found, the object is removed from the
LRU list because it is now in active use. The usage counter is also incremented.

Dentry Operations
The dentry_operations structure holds function pointers to various filesystem-specific operations that
can be performed on dentry objects. The structure is defined as follows:

<dcache.h>
struct dentry_operations {

int (*d_revalidate)(struct dentry *, struct nameidata *);
int (*d_hash) (struct dentry *, struct qstr *);
int (*d_compare) (struct dentry *, struct qstr *, struct qstr *);
int (*d_delete)(struct dentry *);
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);
char *(*d_dname)(struct dentry *, char *, int);

};

❑ d_iput releases an inode from a dentry object no longer in use (in the default implementation,
the usage counter is decremented, and the inode is removed from the various lists once the
counter reaches 0).

❑ d_delete is invoked after the last reference has been removed (when d_count reaches 0).

❑ d_release is invoked before a dentry object is finally deleted. The two default implementations
for d_release and d_delete do nothing.

❑ d_hash calculates hash values that can be used to place objects in the dentry hash table.

❑ d_compare compares the filenames of two dentrys. Whereas VFS performs a simple string com-
parison, filesystems can override this behavior to suit their own requirements. For example, the
filenames in the FAT implementation are not case-sensitive. As no distinction is made between

545

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 546

Chapter 8: The Virtual Filesystem

uppercase and lowercase, a simple string match would return an incorrect result. A FAT-specific
function must be provided in this case.

❑ d_revalidate is of particular relevance for network filesystems. It checks whether the
structure set up by the individual dentry objects in memory still reflects the current situa-
tion. Because the underlying filesystem is not directly linked with the kernel/VFS and all
information must be gathered via a network connection, some dentrys may no longer be
valid as a result of changes to the filesystem made at the other end. This function ensures
consistency.

As inconsistencies of this kind do not usually occur in local filesystems, the default implementa-
tion in VFS does nothing when d_revalidate is invoked.

As the functions in the preceding list are not implemented by most filesystems, the convention is that
the operations are always replaced with the VFS default implementation if a null pointer is found for a
function.

Standard Functions
Several auxiliary functions that ease handling dentry objects are provided by the kernel. Their imple-
mentation is mostly an exercise in list management and data structure handling, so I won’t bother to
discuss their code. It is, however, important to show their prototypes and describe their effect since
we will come across them frequently in discussing implementation of VFS operations. The follow-
ing auxiliary functions require a pointer to struct dentry as parameter. Each performs one simple
operation.

❑ dget needs to be called whenever a dentry instance is put to use by some part of the kernel.
Calling dget increments the reference count of the object; that is, it acquires a reference to it.

❑ dput is the counterpart to dget: It must be called when a dentry instance is not required any
more by a user in the kernel.

The function decrements the usage count of a dentry object. If the count drops to zero, the
dentry_operations->d_delete method is called if it is available. Additionally, the instance is
unhashed from the global dentry hash using d_drop, and also taken away from the LRU list and
put on the unused list.

If the object is not contained in the hash when dput is called, it is deleted from memory via
kfree.

❑ d_drop unhashes a dentry instance from the global dentry hash tables. It is automatically called
from dput if the usage count drops to zero, but can also be called manually if a dentry cache
object needs to be invalidated. __d_drop is a variant of d_drop that does not automatically han-
dle locking.

❑ d_delete unhashes a dentry object using __d_drop if it is still contained on the global dentry
hash tables. If only one user for the object remains, dentry_iput is also called to decrement the
usage count of the inode associated with the dentry object.

d_delete is usually called immediately before dput. This ensures that the dentry object will be
erased by dput since it is not on the global dentry hash anymore.

546

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 547

Chapter 8: The Virtual Filesystem

Some helper functions are more complicated, so it’s best to inspect their prototypes.12

<dcache.h>
extern void d_instantiate(struct dentry *, struct inode *);

struct dentry * d_alloc(struct dentry *, const struct qstr *);
struct dentry * d_alloc_anon(struct inode *);

struct dentry * d_splice_alias(struct inode *, struct dentry *);

static inline void d_add(struct dentry *entry, struct inode *inode);
struct dentry * d_lookup(struct dentry *, struct qstr *);

❑ d_instantiate associates a dentry instance with an inode. This means setting the d_inode field
and adding the dentry to the list headed by inode->i_dentry.

❑ d_add instantiates a dentry object by using d_instantiate. Additionally, the object is added to
the global inode hash table dentry_hashtable.

❑ d_alloc allocates memory for a new instance of struct dentry as the name does suggest. The
fields are initialized, and if a parent dentry is given, the superblock pointer for the new dentry
is taken from the parent. Additionally, the new dentry is added to the subdirectory list of the
parent headed by parent->d_subdirs.

❑ d_alloc_anon allocates memory for an instance of struct dentry but does not set up any
connections with a parent dentry — this is why no such parameter is required in contrast to
d_alloc. The new dentry is added to two lists: the superblock-specific list of anonymous dentry
objects headed by super_block->s_anon and the list of all dentry instances associated with the
inode, which is headed by inode->i_dentry.

Note that if the inode already contains a disconnected dentry as allocated by a previous call to
d_alloc_anon, this copy is used instead of creating a new instance.

❑ d_splice_alias splices a disconnected dentry into the dentry tree. The inode parameter
required by the function denotes the inode to which the dentry is supposed to be associated.

For inodes that represent any filesystem object other than directories, it suffices to call d_add. For
directories, the function ensures that only a single dentry alias is present, which requires some
more administrative work that I won’t bother to discuss in detail.

❑ d_lookup takes the dentry instance of a directory and searches for a dentry object that represents
a file with name.

8.4 Working with VFS Objects
The data structures described above act as a basis for working with the VFS layer. We examine this layer
in the following sections. Let us first focus on mounting and unmounting filesystems (and filesystem

12More auxiliary functions are defined in <dentry.h> and implemented in fs/dcache.c. Since they are not so frequently used,
I will not discuss them here, but refer to the documentation associated with them for more information.

547

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 548

Chapter 8: The Virtual Filesystem

registration, which is a prerequisite for these actions). I then introduce the most important and most
interesting functions involving files and all other objects represented via the same interfaces.

We start with the system calls used by the standard library to communicate with the kernel.

8.4.1 Filesystem Operations
Whereas file operations are part of the standard repertoire of all applications, actions on filesystems are
restricted to just a few system programs, namely, the mount and umount programs13 for mounting and
unmounting filesystems.

A further important aspect must also be taken into consideration. Filesystems are implemented in
modular form in the kernel; this means that they can be compiled into the kernel as modules
(see Chapter 7) or can be totally ignored by compiling the kernel without support for a particular
filesystem version — given the fact that there are about 50 filesystems, it would make little sense to keep
the code for all of them in the kernel.

Consequently, each filesystem must register with the kernel before it is used so that Linux has an
overview of the available filesystems and can invoke the required mount functions.

Registering Filesystems
When a filesystem is registered with the kernel, it makes no difference whether the code is compiled as
a module or is permanently compiled into the kernel. The technical approach is the same in both cases,
regardless of the time of registration (permanently compiled filesystems are registered at boot time,
modular filesystems when the relevant module is loaded into the kernel).

register_filesystem from fs/super.c is used to register a filesystem with the kernel. The structure
of the function is very simple. All filesystems are stored in a (singly) linked list, and the name of each
filesystem is stored as a string in a list object. When a new filesystem is registered with the kernel, this
list is scanned element-by-element until either the end of the list is reached or the required filesystem
is found. In the latter case, an appropriate error message is returned (a filesystem cannot be registered
twice); otherwise, the object describing the new filesystem is placed at the end of the list and is therefore
registered with the kernel.

The structure used to describe a filesystem is defined as follows:

<fs.h>
struct file_system_type {

const char *name;
int fs_flags;
struct super_block *(*get_sb) (struct file_system_type *, int,

const char *, void *, struct vfsmount *);
void (*kill_sb) (struct super_block *);
struct module *owner;
struct file_system_type * next;
struct list_head fs_supers;

};

13In earlier Unix versions, this command was logically called unmount, but the first n has been lost in the long history of this oper-
ating system.

548

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 549

Chapter 8: The Virtual Filesystem

name holds the filesystem name as a string (and therefore contains values such as reiserfs, ext3, and the
like). fs_flags are flags used, for example, to indicate Read Only mounting, to disallow setuid/setgid
execution, or to make other fine adjustments. owner is a pointer to a module structure that only con-
tains a value if the filesystem was loaded as a module (a null pointer indicates a filesystem permanently
compiled into the kernel).

The available filesystems are linked by means of the next element, which cannot use standard list func-
tions because the list is linked in one direction only.

The most interesting entries are fs_supers and the function pointer get_sb. A superblock structure
is created in memory for each mounted filesystem. This structure holds relevant information on the
filesystem itself and on the mount point. Because several filesystems of the same type can be mounted
(the best example is of a filesystem of the same type on the home and root partition), several superblock
structures exist for a single filesystem type and are grouped together in a linked list. fs_supers is
the corresponding list head. Further details are provided in the information below on filesystem
mounting.

Also of great importance for the mount process is the function (stored in the get_sb) for reading
the superblock of the underlying storage medium. Logically, this function depends on the specific
filesystem and cannot be implemented as an abstraction. Neither can the function be held in the above
super_operations structure because the superblock object and the pointer to this structure are not
created until get_sb is invoked.

kill_super performs clean-up work when a filesystem type is no longer needed.

Mounting and Unmounting
Mounting and unmounting directory trees is much more complex than simply registering filesystems
because the actions required on kernel-internal data structures are considerably more complicated than
adding objects to a linked list. Filesystem mounting is initiated by the mount system call. Before dis-
cussing the individual steps in detail, we need to clarify which tasks must be performed to mount a new
filesystem in an existing directory tree. We also need to look at the data structure used to describe mount
points.

VFS Mount Structures
Unix employs a single filesystem hierarchy into which new filesystems can be integrated, as shown in
Figure 8-4.

/

bin mnt

tmp data

usr

share bin cdrom

src libs

Ext2

Reiserfs

ISO9660

Figure 8-4: Filesystem hierarchy with various filesystem types.

549

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 550

Chapter 8: The Virtual Filesystem

The illustration shows three different filesystems. The global root directory / uses the Ext2 filesystem (see
Chapter 9), /mnt has a Reiserfs, and /mnt/cdrom uses the ISO9660 format commonly used on CD-ROMs.
This scenario can be queried using mount.

wolfgang@meitner> mount
/dev/hda7 on / type ext2 (rw)
/dev/hda3 on /mnt type reiserfs (rw)
/dev/hdc on /mnt/cdrom type iso9660 (ro,noexec,nosuid,nodev,user=wolfgang)

The /mnt and /mnt/cdrom directories are known as mount points because this is where filesystems are
attached (mounted). Each mounted filesystem has a local root directory that contains the system direc-
tories (the source and libs directories in the case of a CD-ROM). When a directory is mounted, the
contents of the mount point are replaced with the relative root directory of the mounted filesystem. The
previous directory data disappear until the new directory is unmounted (naturally, the data in the old
filesystem remain unchanged but can no longer be accessed).

Mounts can be nested as in our example. The CD-ROM is mounted in the directory /mnt/cdrom. This
means that the relative root directory of the ISO9660 filesystem is mounted within a Reiser filesystem
and is therefore totally divorced from the Second Extended Filesystem used for the global root directory.

The child–parent relationship common to other parts of the kernel is also used to better describe the
relationship between two filesystems. Ext2 is the parent filesystem of the Reiserfs in /mnt. /mnt/cdrom
contains the child filesystem of /mnt, which is unrelated to the Ext2 root filesystem (at least from this
point of view).

The platform for each mounted filesystem is an instance of the vfsmount structure, which is defined as
follows:

<mount.h>
struct vfsmount {

struct list_head mnt_hash;
struct vfsmount *mnt_parent; /* fs we are mounted on */
struct dentry *mnt_mountpoint; /* dentry of mountpoint */
struct dentry *mnt_root; /* root of the mounted tree */
struct super_block *mnt_sb; /* pointer to superblock */
struct list_head mnt_mounts; /* list of children, anchored here */
struct list_head mnt_child; /* and going through their mnt_child */
int mnt_flags;
/* 4 bytes hole on 64bits arches */
char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */
struct list_head mnt_list;
struct list_head mnt_expire; /* link in fs-specific expiry list */
struct list_head mnt_share; /* circular list of shared mounts */
struct list_head mnt_slave_list;/* list of slave mounts */
struct list_head mnt_slave; /* slave list entry */
struct vfsmount *mnt_master; /* slave is on master->mnt_slave_list */
struct mnt_namespace *mnt_ns; /* containing namespace */
/*
* We put mnt_count & mnt_expiry_mark at the end of struct vfsmount
* to let these frequently modified fields in a separate cache line
* (so that reads of mnt_flags wont ping-pong on SMP machines)
*/

550

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 551

Chapter 8: The Virtual Filesystem

atomic_t mnt_count;
int mnt_expiry_mark; /* true if marked for expiry */

};

mnt_mntpoint is the dentry structure of the mount point in the parent directory in which the filesystem was
mounted; the relative root directory of the filesystem itself is stored in mnt_root. Two dentry instances
represent the same directory (namely, the mount point). This means that it is not necessary to delete the
previous mount point information from memory and make it available again once the filesystem has been
unmounted. When I discuss the mount system call, the need for two dentry entries will become crystal
clear.

The mnt_sb pointer creates a link to the associated superblock (of which there is exactly one instance for
each mounted filesystem); mnt_parent points to the vfsmount structure of the parent filesystem.

The parent–child relationships are represented by a linked list implemented by two elements of the
structure. The mnt_mounts list head is the starting point for the list of child filesystems. The individual
list elements are linked by the mnt_child field.

Each vfsmount instance of the system can be identified in two further ways. All mounted filesystems of a
namespace are held in a linked list headed by namespace->list. The individual objects are linked by the
mnt_list element. I ignore the topology here because all mounts are performed one after the other.

Various filesystem-independent flags can be set in nmt_flags. The following constants list all possible
flags:

<mount.h>
#define MNT_NOSUID 0x01
#define MNT_NODEV 0x02
#define MNT_NOEXEC 0x04
#define MNT_NOATIME 0x08
#define MNT_NODIRATIME 0x10
#define MNT_RELATIME 0x20

#define MNT_SHRINKABLE 0x100

#define MNT_SHARED 0x1000 /* if the vfsmount is a shared mount */
#define MNT_UNBINDABLE 0x2000 /* if the vfsmount is a unbindable mount */
#define MNT_PNODE_MASK 0x3000 /* propagation flag mask *

The first block is concerned with classic properties like disallowing setuid execution or the existence of
device files on the mount, or how access time handling is managed. MNT_NODEV is set if the mounted
filesystem is virtual, that is, does not have a physical backing device. MNT_SHRINKABLE is a specialty of
NFS and AFS that is used to mark submounts. Mounts with this mark are allowed to be automatically
removed.

The last block contains flags that indicate shared and unbindable mounts. Refer to Section 8.4.1 for more
details on what these types are good for.

A hash table called mount_hashtable and defined in fs/namespace.c is also used. The overflow list is
implemented as a linked list with mnt_hash. The address of the vfsmount instance and the address of the
associated dentry object are used to calculate the hash sum. mnt_namespace is the namespace to which
the mount belongs.

551

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 552

Chapter 8: The Virtual Filesystem

A usage counter is implemented with mnt_count. Whenever a vfsmount instance is not required
anymore, the counter must be decreased with mntput. mntget is the counterpart that needs to be called
when the instance is taken in use.

The remaining fields are used to implement several novel mount types that were mostly introduced
during the development of kernel 2.6. mnt_slave, mnt_slave_list, and mnt_master serve to realize
slave mounts. The master mount keeps all slave mounts on a linked list for which mnt_slave_list is
used as the list head, while mnt_slave_list serves as the list element. All slave mounts point back to
their master via mnt_master.

Shared mounts are easier to represent. All the kernel needs to do is to keep all shared peer mounts on a
circular list. mnt_share serves as the list element for this.

Mount expiration is handled with mnt_expiry_mark. The element is used to indicate if the mount is
unused. mnt_expire allows for placing all mounts that are subjected to auto-expiration on a linked list.
Section 8.4.1 discusses the implementation of expiring mounts.

Finally, mnt_ns points at the namespace to which the mount belongs.

Superblock Management
The mount structures themselves are not the only objects generated in memory when new filesystems are
mounted. The mount operation starts by reading a structure called a superblock. I mentioned this structure
several times above without bothering to define it properly. I do this now.

The read_super function pointer stored in the file_system_type objects returns an object of type
super_block that represents a superblock in memory. It is generated with the help of the low-level
implementation.

The structure definition is very long. I therefore reproduce a simplified version below (which itself is
anything but lean).

<fs.h>
struct super_block {

struct list_head s_list; /* Keep this first */
dev_t s_dev; /* search index; _not_ kdev_t */
unsigned long s_blocksize;
unsigned char s_blocksize_bits;
unsigned char s_dirt;
unsigned long long s_maxbytes; /* Max file size */
struct file_system_type *s_type;
struct super_operations *s_op;
unsigned long s_flags;
unsigned long s_magic;
struct dentry *s_root;
struct xattr_handler **s_xattr;

struct list_head s_inodes; /* all inodes */
struct list_head s_dirty; /* dirty inodes */
struct list_head s_io; /* parked for writeback */
struct list_head s_more_io; /* parked for more writeback */
struct list_head s_files;

552

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 553

Chapter 8: The Virtual Filesystem

struct block_device *s_bdev;
struct list_head s_instances;

char s_id[32]; /* Informational name */
void *s_fs_info; /* Filesystem private info */

/* Granularity of c/m/atime in ns.
Cannot be worse than a second */

u32 s_time_gran;
};

❑ s_blocksize and s_blocksize_bits specify the block size of the filesystem (this is of particular
interest for data organization on hard disk, etc., as discussed in Chapter 9). Basically, the two
variables represent the same information expressed in different ways. The unit for s_blocksize
is kilobytes, whereas _bits stores the corresponding log2 value.14

❑ s_maxbytes holds the maximum file size that the filesystem can handle and therefore varies from
implementation to implementation.

❑ s_type points to the file_system_type instance (discussed in Section 8.4.1), which holds gen-
eral type information on the filesystem.

❑ s_root associates the superblock with the dentry entry of the global root directory as seen by the
filesystem.

Only the superblocks of normally visible filesystems point to the dentry instance of
the / (root) directory. Versions for filesystems that have special functions and do not
appear in the regular directory hierarchy (e.g., pipe or socket filesystems) point to
special entries that cannot be accessed by normal file commands.

Code that deals with filesystem objects often needs to check if a filesystem is mounted or not, and
s_root provides a possibility to do this. If it is NULL, then the filesystem is a pseudo-filesystem
that is only visible within the kernel. Otherwise, the filesystem is visible in userspace.

❑ xattr_handler is a pointer to the structure that determines the functions to use for handling
extended attributes.

❑ s_dev and s_bdev specify the block device on which the data of the underlying filesystem reside.
The former uses the internal kernel number, whereas the latter is a pointer to the block_device
structure in memory that is used to define device operations and capabilities in more detail
(Chapter 6 takes a closer look at both types).

The s_dev entry is always supplied with a number (even for virtual filesystems that
do not require block devices). In contrast, the s_bdev pointer may also contain a null
pointer.

❑ s_fs_info is a pointer to private data of the filesystem implementation and is not manipulated
by the VFS.

❑ s_time_gran specifies the maximal granularity that is possible for the various time stamps sup-
ported by the filesystem. The value is identical for all time stamps and is given in nanoseconds,
that is, the 10−9-th part of a second.

14Standard Ext2 filesystems use 1,024 KiB so that s_blocksize holds the value 1024 and s_blocksize_bits the value 10
(because 210 = 1, 024).

553

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 554

Chapter 8: The Virtual Filesystem

Two list heads group together inodes and files associated with the superblock.

❑ s_dirty is a list head for the list of ‘‘dirty‘‘ inodes (discussed in Section 8.3.2) used to achieve
major speed gains when synchronizing memory contents with the data on the underlying stor-
age medium. Not all inodes need be scanned to write back changes — only those that have been
modified and therefore appear in this list. This field must not be confused with s_dirt, which
is not a list head, but a simple integer variable. It is set to 1 if the superblock was altered in any
way and needs to be written back to disk. Otherwise, it is 0.

❑ s_files is a series of file structures listing all opened files of the filesystem represented by
the superblock. The kernel references this list when unmounting filesystems. If it still contains
files opened for writing, the filesystem is still in use, and the unmount operation fails with an
appropriate error message.

The first element of the structure is also a list element called s_list that is used to group together all
superblock elements in the system. The list is headed by the global variable super_blocks defined in
fs/super.c.

Finally, the individual superblocks are linked in a further list that combines all instances representing
filesystems of the same type, regardless of the underlying block devices but with the condition that
the filesystem type is the same for all elements. The list head is the fs_supers element of the
file_system_type structure discussed in Section 8.4.1. s_instances links the individual elements.

s_op points to a structure with function pointers that, in the familiar VFS manner, provide a generic
interface with operations for working with superblocks. The implementation of the operations must be
provided by the underlying low-level code of the filesystems.

The structure is defined as follows:

<fs.h>
struct super_operations {

struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);

void (*read_inode) (struct inode *);

void (*dirty_inode) (struct inode *);
int (*write_inode) (struct inode *, int);
void (*put_inode) (struct inode *);
void (*drop_inode) (struct inode *);
void (*delete_inode) (struct inode *);
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
void (*write_super_lockfs) (struct super_block *);
void (*unlockfs) (struct super_block *);
int (*statfs) (struct super_block *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);
void (*umount_begin) (struct super_block *);

int (*show_options)(struct seq_file *, struct vfsmount *);
int (*show_stats)(struct seq_file *, struct vfsmount *);

};

554

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 555

Chapter 8: The Virtual Filesystem

The operations in the structure do not change the contents of inodes but control the way in which inode
data are obtained and returned to the underlying implementations. The structure also includes methods
for carrying out relatively extensive tasks such as remounting filesystems. As the names of the function
pointers clearly indicate the actions performed by the functions, I describe them in a very cursory fashion
below.

❑ read_inode reads inode data; strangely, it requires a pointer to an inode structure but no other
parameters. How does the function then know which inode to read? The answer is relatively
simple. The i_ino field of the passed inode holds an inode number that uniquely identifies the
desired inode in the filesystem. The routines of the low-level implementation read this value,
fetch the relevant data from the storage medium, and fill the remaining fields of the inode object.

❑ dirty_inode marks the passed inode structure as ‘‘dirty‘‘ because its data have been modified.

❑ delete_inode deletes the inode from memory and from the underlying storage medium.

As you will see when examining the filesystem implementations, deleting an inode
from a storage medium causes the pointer to the associated data blocks to be
removed but leaves the file data untouched (they are overwritten at an unspecified
time in the future). Knowledge of the filesystem structure coupled with physical
access to the computer are therefore sufficient to restore deleted files — and this
could be a problem where sensitive data are concerned.

❑ put_inode decrements the inode usage counter in memory when a process finishes using the
data.

The object cannot be removed from memory until all users have invoked this
function and the counter has reached 0.

❑ clear_inode is invoked internally by the VFS when there is no further use for an inode. It frees
all associated memory pages still containing data. clear_inode is not implemented by all filesys-
tems as these are able to release memory in other ways.

❑ write_super and write_super_lockfs write the superblock to the storage medium. The differ-
ence between the two functions is the way in which they use kernel locking. The kernel must
select the function appropriate to the situation. I won’t bother discussing the detailed differences
in code because both alternatives do basically the same work.

❑ unlockfs is used by the Ext3 and Reiserfs journaling filesystem to ensure correct interaction with
the Device Mapper Code.

❑ remount_fs remounts a mounted filesystem with modified options (this happens at boot time,
e.g., to allow Write access to the root filesystem previously mounted with Read Only access).

❑ put_super removes private information of the superblock from memory when a filesystem is
unmounted and the data are no longer needed.

❑ statfs delivers statistics information on the filesystem — for instance, the number of used and
unused data blocks or the maximum length of filenames. It works hand-in-hand with the system
call of the same name.

❑ umount_begin is used only by networking filesystems (NFS, CIFS, and 9fs) and userspace filesys-
tems (FUSE). It permits communication with the remote partner before the unmounting operation

555

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 556

Chapter 8: The Virtual Filesystem

is started. It is invoked only when a filesystem is forced to unmount; in other words, it is only
used when MNT_FORCE forces the kernel to perform the umount operation, although there are still
references to the filesystem.

❑ sync_fs synchronizes the filesystem data with the data on the underlying block device.

❑ show_options is used by the proc filesystem to display the filesystem mount options.
show_stats provides filesystem statistics for the same purpose.

The Mount System Call
The point of entry for the mount system call is the sys_mount function defined in fs/namespace.c.
Figure 8-5 shows the associated code flow diagram.

Copy mount options

sys_mount

Call flag specific mount function

do_mount

path_lookup

Figure 8-5: Code flow diagram for sys_mount.

The approach described here is used only to mount a new filesystem in an existing root filesystem. A
modified version of the above algorithm mounts the root filesystem itself, but is not sufficiently interest-
ing to merit a separate description (its code can be found in mount_root in init/do_mounts.c).

After the mount options (type, device, and options) have been copied from userspace by sys_mount, the
kernel transfers control to do_mount, where the information passed is analyzed, and the relevant flags
are set. This is also where the dentry entry of the mount point is found using the path_lookup function
discussed below.

do_mount acts as a multiplexer to delegate work that still needs to be done to various mount type-
dependent functions.

❑ do_remount modifies the options of a filesystem already mounted (MS_REMOUNT).

❑ do_loopback is invoked to mount a filesystem via the loopback interface (the MS_BIND flag is
required to do this).15

❑ do_move_mount (MS_MOVE) is used to move a mounted filesystem.

❑ do_change_type is responsible for handling shared, slave, and unbindable mounts by changing
the mount flags or building up the required data structure connections between the vfsmount
instances involved.

❑ do_new_mount handles normal mount operations. This is the default situation, so no special flags
are required.

15A loopback mount involves mounting a filesystem whose data reside in a file and not on a normal block device.
This is useful to quickly test new filesystems or to check CD-ROM filesystems before writing them to CD.

556

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 557

Chapter 8: The Virtual Filesystem

It’s worth taking a closer look at do_new_mount because it is used so frequently. Its code flow diagram is
shown in Figure 8-6.

Initialize struct vfsmnt

Prevent identical mounts

do_new_mount

do_kern_mount

get_fs_type

vfs_kern_mount

type->get_sb

do_add_mount

graft_tree

attach_recursive_mnt

Figure 8-6: Code flow diagram for do_new_mount.

do_new_mount splits into two parts — do_kern_mount and do_add_mount:

❑ The initial task of do_kern_mount is to find the matching file_system_type instance using
get_fs_type. The helper function scans the linked list of registered filesystems mentioned above
and returns the correct entry. If no matching filesystem is found, the routine automatically tries
to load the corresponding module (see Chapter 7).

After this, vfs_kern_mount invokes the filesystem-specific get_sb function to read the associated
superblock that is returned as an instance of struct super_block.

❑ do_add_mount handles some necessary locking and ensures that a filesystem is not mounted
to the same place multiple times (notwithstanding that, it is certainly possible to mount the
same filesystem at multiple different places). The main work is delegated to graft_tree.
The newly mounted filesystem is added to the namespace of the parent mount by calling
attach_recursive_mount. The function is essentially defined as follows:

fs/namespace.c
static int attach_recursive_mnt(struct vfsmount *source_mnt,

struct nameidata *nd, struct nameidata *parent_nd)
{

struct vfsmount *dest_mnt = nd->mnt;
struct dentry *dest_dentry = nd->dentry;

...
mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
commit_tree(source_mnt);

...
}

nameidata is a structure used to group together a vfsmnt instance and a dentry instance. In
this case, the structure holds the dentry instance of the mount point and the vfsmnt instance of

557

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 558

Chapter 8: The Virtual Filesystem

the filesystem in which the directory was previously located, that is, before the new mount was
performed.

mnt_set_mountpoint ensures that both the mnt_parent and the mnt_mountpoint element of the
new vfsmnt instance child_mount are set to point to the old elements:

fs/namespace.c
void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,

struct vfsmount *child_mnt)
{

child_mnt->mnt_parent = mntget(mnt);
child_mnt->mnt_mountpoint = dget(dentry);
dentry->d_mounted++;

}

This enables the situation prior to mounting to be reconstructed when the kernel unmounts a
filesystem. The d_mounted value of the old dentry instance is incremented so that the kernel is
able to recognize that a filesystem is mounted at this point.

In addition, the new vfsmnt instance is added to the global hash table and to the child list of the
previous entry using the list elements discussed above. This is performed by commit_tree:

fs/namespace.c
static void commit_tree(struct vfsmount *mnt)
{

struct vfsmount *parent = mnt->mnt_parent;
...

list_add_tail(&mnt->mnt_hash, mount_hashtable +
hash(parent, mnt->mnt_mountpoint));

list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
...
}

Shared Subtrees
The mechanisms I have discussed so far covered the standard mount cases that are available on any
Unix system. However, Linux supports some more advanced possibilities that allow for gaining more
power from namespaces. Since they were only introduced during the development of 2.6 (2.6.16, to be
precise), their use is still somewhat limited, so I will briefly review their basic principle before I discuss
the implementation. For specific details on potential applications and a precise description of the shared
subtree semantics of the mount tool, see the manual page mount(8). Another detailed investigation of the
features provided by shared subtrees can be found on http://lwn.net/Articles/159077/.

The extended mount options (which I collectively call shared subtrees) implement several new attributes
for mounts:

❑ Shared Mounts — A set of mounted filesystems between which mount events are propagated.
If a new filesystem is mounted into one member of the set, the mount is replicated into all other
members of the set.

❑ Slave Mounts — Similar to shared mounts, except that the symmetry between all members of
the set is removed. One mount in the set is especially distinguished as the master mount. All
mount operations in the master mount propagate into the slave mounts, but mount operations
in the slaves do not propagate back into the master.

558

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 559

Chapter 8: The Virtual Filesystem

❑ Unbindable Mounts — Cannot be cloned through a bind operation.

❑ Private Mounts — essentially a new name for the classical mount type known from Unix: They
can be mounted on multiple places across the filesystem, but mounts propagate neither to nor
from them.

usr media virtual

usbstick

usbstick camera

a b c

usr media virtual

usbstick floppy

usr media virtual

usr media virtual

a b c

usr media virtual virtual

1 2

3 4

usr media virtual

usbstick

media

a

a cb

b c

usr virtual

usr media virtual

usbstick

media

usbstick

media

usbstick

a b c

usr virtual

a cb

Figure 8-7: Illustration of some features provided by shared subtrees.

Consider a filesystem that is mounted on multiple places across the filesystem. This is a standard feature
of Unix and Linux and can be achieved with the old framework discussed so far. Imagine the situation
depicted in the top-left part of Figure 8-7: The directory /virtual contains three identical bind mounts
of the root filesystem in /virtual/a, /virtual/b, and /virtual/c. However, it could be desirable that
any medium mounted in /media will also be visible in /virtual/user/media, even if the medium was
added after the mount structure has been established. The solution is to replace the bind mounts by
shared mounts: In this case, any filesystem mounted in /media in any of the peers (/, /file/virtual/a/,
/file/virtual/b/, and /file/virtual/c/) will be visible in all of them. The top-right part of Figure 8-7
shows the directory tree in this situation.

If the filesystem structure presented above is used as a basis for containers, each user of a container
can see all other containers by looking at the contents of /virtual/name/virtual! Usually, this is not
desired.16 A remedy to the problem is provided by turning /virtual into an unbindable subtree: Its
contents can then not be seen anymore in bind mounts, and the users trapped in the containers will not
see anything that lives outside their world. The bottom-left part of Figure 8-7 illustrates the situation.

16Note that many of the problems presented here can also be solved to some extent by using more refined variants of binding
mounts or proper access control, but usually, some drawbacks or limitations will come along with these solutions. The possibilities
offered by shared subtrees are usually more powerful.

559

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 560

Chapter 8: The Virtual Filesystem

Another issue arises when all container users are supposed to see devices mounted on /media, for
instance, a USB stick in /media/usbstick. This clearly works if /media is shared between the containers,
but has one drawback: Any container user will see the media mounted by any other container. Turning
/media into a slave mount keeps the desired features (mount events propagating from /), but isolates the
containers from each other. As the bottom-right part of Figure 8-7 shows, the camera mounted by user
A cannot be seen in any other container, while the USB stick mount point propagates downward into all
subdirectories of /virtual.

Recall that the data structures that are the basis for shared subtrees were described in Section 8.4.1. Let us
thus now turn our attention to the required extensions of the mount implementation. If one of the flags
MS_SHARED, MS_PRIVATE, MS_SLAVE, or MS_UNBINDABLE is passed to the mount system call, then do_mount
calls do_change_type to change the type of a given mount. The function is essentially implemented as
follows:

fs/namespace.c
static int do_change_type(struct nameidata *nd, int flag)
{

struct vfsmount *m, *mnt = nd->mnt;
int recurse = flag & MS_REC;
int type = flag & ~MS_REC;

...
for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))

change_mnt_propagation(m, type);
return 0;
}

The mount type for the path given in nd is changed using change_mnt_propagation; if the MS_REC flag is
set, the mount types of all submounts are changed recursively. next_mnt provides an iterator that allows
for traversing all submounts of a given mount.

change_mnt_propagation is responsible to set the appropriate propagation flag for an instance of struct
vfsmount.

fs/pnode.c
void change_mnt_propagation(struct vfsmount *mnt, int type)
{

if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;

}
do_make_slave(mnt);
if (type != MS_SLAVE) {

list_del_init(&mnt->mnt_slave);
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)

mnt->mnt_flags |= MNT_UNBINDABLE;
}

}

This is simple for shared mounts: It suffices to set the flag MNT_SHARED with the auxiliary function
set_mnt_shared.

560

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 561

Chapter 8: The Virtual Filesystem

If a slave — or a private or unbindable mount — has to be established, the kernel has to rearrange the
mount data structure such that the vfsmount instance under consideration is turned into a slave mount.
This is done by do_make_slave. The function proceeds in several steps:

1. A master for the mount itself and any possible slave mounts needs to be found. First,
the kernel searches among the shared-mount peers; the first one with the same root
dentry is taken as the new master. If no such peer exists, the first element in the peer list
is used.

2. If a new master has been found, both the mount under consideration and all its slave mounts
are made slaves of the new master.

3. If the kernel could not find a new master, all slave mounts of the mount under consideration
are freed — they do not have a master anymore.

In any case, the MNT_SHARED flag is also removed.

After do_make_slave has performed these rearrangements, change_mnt_propagation needs some more
steps for unbindable and private mounts.17 In both cases, the mount is deleted from a slave list if it should
be on one, and the master is set to NULL — neither mount type has a master. For unbindable mounts, the
MNT_UNBINDABLE flag is set to identify it as such.

Shared subtrees obviously also influence the kernel behavior when new mounts are added to the sys-
tem. The crucial steps are taken in attach_recursive_mnt. Recall that the function has already been
touched on before, but the presentation was simplified. This time, I also include the effects of shared
subtrees.18 First of all, the function needs to check into which mounts the mount event is supposed to
propagate.

fs/namespace.c
static int attach_recursive_mnt(struct vfsmount *source_mnt,
struct nameidata *nd, struct nameidata *parent_nd)
{

LIST_HEAD(tree_list);
struct vfsmount *dest_mnt = nd->mnt;
struct dentry *dest_dentry = nd->detnry;
struct vfsmount *child, *p;

if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
return -EINVAL;

...

propagate_mnt iterates over all slave and shared mounts of the mount destination and mounts the new
filesystem into them using mnt_set_montpoint. All mount points that are affected by this are returned
in tree_list.

17Since the function has already returned to the caller in the case of shared mounts, only these mount types remain and can be dif-
ferent from MS_SLAVE in the if conditional.
18Note that we also perform a slight simplification this time since we only consider add mounts, but no move mounts where an
existing mount is shifted from one place in the filesystem hierarchy to another.

561

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 562

Chapter 8: The Virtual Filesystem

If the destination mount point is a shared mount, then the new mount and all its submounts need to
become shared as well:

fs/namespace.c
if (IS_MNT_SHARED(dest_mnt)) {

for (p = source_mnt; p; p = next_mnt(p, source_mnt))
set_mnt_shared(p);

}
...

Finally, the kernel needs to finish the mount process by calling mnt_set_mountpoint and commit_tree to
introduce the changes into the data structures as discussed for regular mounts. Note, however, that
commit_tree needs to be called for every mount that has been propagated to shared peers or slave
mounts (mnt_set_mountpoint for these mounts has already been called in propagate_mnt):

fs/namespace.c
mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
commit_tree(source_mnt);

list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
list_del_init(&child->mnt_hash);
commit_tree(child);

}

return 0;
}

The umount System Call
Filesystems are unmounted by the umount system call, whose entry point is sys_umount from
fs/namespace.c. Figure 8-8 shows the associated code flow diagram.

return-EBUSY

Yes

No

sys_umount

__user_walk

do_umount

sb->s_op->umount_begin

umount_tree

release_mounts

MNT_DETACH set or
entry not used anymore?

Figure 8-8: Code flow diagram for sys_umount.

First, __user_walk finds the vfsmnt instance and the dentry instance of the mount point, which are
packed in a nameidata structure.19

19__user_walk invokes the path_walk function after the pathname has been copied into kernel space.

562

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 563

Chapter 8: The Virtual Filesystem

The actual work is delegated to do_umount.

❑ If a superblock-specific umount_begin function is defined, it is invoked. This allows, for instance,
network filesystems to terminate communication with the remote partner before an unmount is
forced.

❑ umount_tree is invoked if the mounted filesystem is no longer needed (this is indicated
by the usage counter) or if MNT_DETACH was specified to force a filesystem unmount. The
real work is delegated to umount_tree and release_mounts. Essentially, the first one is
responsible for decrementing the counter d_mounted, while the latter one uses the data stored
in mnt_mountpoint and mnt_parent to restore the original state before the new filesystem
was mounted. The structures of the previously mounted filesystem are also removed from the
kernel lists.

Automatic Expiration
The kernel also provides some infrastructure to allow automatic expiration of mounts. When a mount is
not used by any process or the kernel itself, it will be automatically removed from the VFS mount tree if
automatic expiration is used. Currently the NFS and AFS network filesystems use this offer. All vfsmount
instances of submounts that are supposed to expire automatically must be collected on a linked list that
uses vfsmount->mnt_expire to chain the elements together.

It then suffices to periodically apply mark_mounts_for_expiry on the list. The function scans through
all entries. A mount is unused if its usage count is 1, that is, if it is only referenced by the parent mount.
When such an unused mount is found, mnt_expiry_mark is set. When mark_mounts_for_expiry finds
an unused entry with mnt_expiry_mark set on the next list traversal, the mount is removed from the
namespace.

Note that the mntput is responsible to clear mnt_expiry_mark. This ensures that a mount that has already
been on the expiration list but became used again is not immediately expired when it becomes once more
unused. The code flow is as follows:

1. An unused mount is marked for expiry by mark_mounts_for_expiry.

2. After this, the mount comes into use again, so its mnt_count is increased. This prevents
mark_mounts_for_expiry from removing the mount from the namespace despite the expi-
ration mark still being set.

3. When the usage count is decreased with mntput, the function will also ensure that the
expiration mark is removed. The mark_mounts_for_expiry circle can thus commence as
usual.

Pseudo-Filesystems
Filesystems do not necessarily require an underlying block medium. They can either use memory as
backing store, as is the case for ramfs and tmpfs, or can require no backing store at all, as procfs and
sysfs do — their contents are generated synthetically from information contained in the kernel’s data
structures. While filesystems of this type are already quite distinct from the traditional concepts, it is still
possible to take a further step forward. How? All filesystems, be they virtual or not, have one common
property: They are visible to userspace in the form of files and directories. However, this property is not
sacrosanct. Pseudo-filesystems are filesystems that cannot be mounted and are thus never directly visible
in userland.

563

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 564

Chapter 8: The Virtual Filesystem

This does not seem overly useful at a first glance. What is a filesystem good for if it does not export
anything to userland? While files and directories are, indeed, one possible and without doubt useful
representation of the contents of a filesystem, they are not the only one. It is also perfectly valid to think
of a filesystem solely in terms of inodes! Files and directories are only a front end in this picture, and they
can be omitted without any loss of information.

Except visibility to userland. But this does not really concern the kernel. On some occasions, the need can
arise to internally group inodes together, and userland need not know anything about this. The kernel,
however, can benefit from organizing such collections in the form of filesystems because all standard
auxiliary functions that work for regular filesystems will automatically work for such collections as well.

Particular examples of pseudo-filesystems are bdev to manage inodes that represent block devices,
pipefs to handle pipes, and sockfs to deal with sockets. All appear in /proc/filesystems, but cannot
be mounted:

root@meitner # cat /proc/filesystems
...
nodev bdev
...
nodev sockfs
nodev pipefs
...
root@meitner # mount -t bdev bdev /mnt/bdev
mount: wrong fs type, bad option, bad superblock on bdev,

missing codepage or helper program, or other error
In some cases useful info is found in syslog - try
dmesg | tail or so

The kernel provides the mount flag MS_NOUSER to prevent a filesystem from being mounted. Apart from
this, all filesystem mechanisms work as discussed in this chapter. The kernel can mount a pseudo-
filesystem with kern_mount or kern_mount_data. This ends up in vfs_kern_mount, which integrates
the filesystem data into the VFS data structures.

When a filesystem is mounted from userland, do_kern_mount is not sufficient. Integration of the files
and directories into the user-visible representation is afterward handled by graft_tree. The method,
however, refuses to perform its job if the flag MS_NOUSER is set:

fs/namespace.c
static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
{
...

if (mnt->mnt_sb->s_flags & MS_NOUSER)
return -EINVAL;

...
}

Nevertheless, structure and contents of the pseudo-filesystem are available to the kernel. The filesystem
library provides some means to write pseudo-filesystems with little effort, and I will come back to this in
Section 10.2.4.

564

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 565

Chapter 8: The Virtual Filesystem

8.4.2 File Operations
Operations with complete filesystems are an important aspect of the VFS layer but occur comparatively
rarely — because, with the exception of removable devices, filesystems are mounted during the boot
process and are unmounted at shutdown. More usual are frequently repeated operations on files by all
system processes.

To permit universal access to files regardless of the filesystem used, the VFS provides interface functions
for file processing in the form of various system calls as already noted above. This section concentrates
on the most common operations performed by processes when working with files.

Finding Inodes
A major operation is the finding of an inode by reference to a given filename. This provides us with an
opportunity to examine the lookup mechanism used to find this information.

The nameidata structure is used to pass parameters to the lookup function and to hold the lookup result.
We encountered this structure above without actually defining it, so let’s do this now.

<fs.h>
struct nameidata {

struct dentry *dentry;
struct vfsmount *mnt;
struct qstr last;
unsigned int flags;

...
}

❑ dentry and mnt contain the data of the required filesystem entry after completion of lookup.

❑ flags holds flags to fine-tune the lookup operation. I will come back to these when I describe the
lookup algorithm.

❑ last contains the name to be looked up. It is a quick string that, as described above, includes not
only the string itself but also the length of the string and a hash value.

The kernel uses the path_lookup function to find any path or filename.

fs/namei.c
int fastcall path_lookup(const char *name, unsigned int flags,

struct nameidata *nd)

In addition to the required name and the lookup flags, the function expects a pointer to a nameidata
instance that is used as ‘‘working memory‘‘ for interim results.

First, the kernel uses the nameidata instance to define the starting point for lookup. If the name begins
with /, the dentry and vfsmnt instances of the current root directory are used (note must be taken of
any active chroot cage); otherwise, the current working directory data obtained from the task structure
are used.

565

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 566

Chapter 8: The Virtual Filesystem

link_path_walk is a front end for the __link_path_walk function, which works its way through the
directory levels. With approximately 200 lines, this function is one of the longest parts of the kernel.
Figure 8-9 shows its code flow diagram — much simplified because I have ignored minor aspects.

__link_path_walk

Check permissions

Compute hash value of next path component

Handle . and ..

do_lookup

Next entry is a link? do_follow_link

Figure 8-9: Code flow diagram for __link_path_walk.

The function is made up of a large loop to process a filename or pathname component-by-component.
The name is broken down into its individual components (each separated by one or more slashes) inside
the loop. Each component represents a directory name with the exception of the last, which is always a
filename.

Why is the code for __link_path_walk so long? Unfortunately, finding the inode associated with a
given filename is more complicated than it would at first appear and is made more difficult because the
following must be taken into account:

❑ One file can reference another by means of a symbolic link, and the lookup code must cater for
this possibility by being able to recognize and break cyclic link loops.

❑ Mount points must be detected, and the lookup operation must be redirected accordingly.

❑ The access rights of all directories on the path to the target filename must be checked. The pro-
cess must have the appropriate rights, or the operation is aborted with an error message.

❑ Strangely formulated but correct names such as /./usr/bin/../local/././bin//emacs20 must
be resolved correctly.

Let us take a look at the actions performed in each loop pass until the specified file or directory name
has been fully processed and the matching inode has been found. The mnt and dentry values of the
nameidata instance are filled with the values of either the root directory or the working directory and are
the starting point for further actions in which the following steps are carried out:

❑ Checking if the current process is granted permission to enter the directory depends on whether
the inode under inspection defines the permission method in its inode_operations. If this is not
the case, exec_lite is used to make the decision. Depending on the credentials of the process,
the function selects the proper parts of the file’s mode mask and checks if the MAY_EXEC bit is set
(certain capabilities are also taken into account, but I omit this here for simplicity).

20This could have been written as /usr/local/bin/emacs.

566

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 567

Chapter 8: The Virtual Filesystem

If the inode defines a specific permission method, then exec_permission_light tells this
to the callee by returning _EAGAIN. In this case, vfs_permission is used to decide whether
the process has the rights needed to switch to the specified directory. vfs_permission just
calls the permission function, and this, in turn, invokes the permission method stored
in the inode_operations structure. Section 8.5.3 discusses permission-checking in further
detail.

❑ The name is scanned character-by-character until the kernel arrives at one (or more) slashes
(/). These are skipped because only the name itself is of interest. If, for example, the name of
the file is /home/wolfgang/test.txt, only the home, wolfgang, and test.txt components are
relevant — the slashes simply separate the components from each other. One name component
is processed in each loop pass.

Each character of a component is used by the partial_name_hash function to calculate an incre-
mental hash sum. This sum is translated into the final hash value when all characters of a path
component are known and is then stored in a qstr instance.

❑ A dot (.) as a path component indicates the current directory and is very easy to process. The
kernel simply skips to the next cycle of the lookup loop because the position in the directory
hierarchy has not changed.

❑ Dot dot (..) is a little more difficult to handle, so this task is delegated to the follow_dotdot
function. When the lookup operation is in the root directory of the process, it has no effect
because there is no parent directory to which it could switch.

Otherwise, two options are available. If the current directory is not the root directory of a mount
point, the d_parent entry of the current dentry object can be used as a new directory because it
always represents the parent directory. If, however, the current directory is the root directory of
a mounted filesystem, the information held in mnt_mountpoint and mnt_parent is used to define
the new dentry and vfsmount object. follow_mount and lookup_mnt are used to retrieve the
required information.

❑ If the directory component is a normal file, the kernel can find the corresponding dentry instance
(and therefore the corresponding inode) in one of two ways. Either the desired information
is in the dentry cache and can be accessed with minimum delay, or it must be found by the
low-level implementation of the filesystem, and the appropriate data structures must be con-
structed. do_lookup is responsible for distinguishing between these two situations (discussed
shortly) and returns the desired dentry instance. Note that mount points are also detected in
this step.

❑ The last step in the processing of a path component is the kernel check to determine whether the
component is a symbolic link.

How does the kernel establish whether a dentry structure is a symbolic link? Only inodes used
to represent symbolic links21 include the lookup function in the inode operations. Otherwise, the
field is assigned a null pointer.

do_follow_link is used as a VFS layer front-end to follow the link, as discussed below.

The loop is repeated until the end of the filename is reached — the kernel recognizes this by the fact
that the pathname contains no further /. Using the means described above, the last component is also
resolved into a dentry entry that is returned as the result of the link_path_walk operation.

21Hard links require no special treatment in lookup code because they are indistinguishable from normal files.

567

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 568

Chapter 8: The Virtual Filesystem

Implementation of do_lookup
do_lookup starts from a path component and the nameidata instance with the data of the initial directory
and returns the associated inode.

The kernel first attempts to find the inode in the dentry cache using the __d_lookup function described in
Section 8.3.5. Even if a matching element is found, this does not necessarily mean that it is current — the
d_revalidate function in the dentry_operations of the underlying filesystem must be invoked to check
whether it is still valid. If so, it is returned as the result of the cache search. If not, a lookup operation
must be initiated in the low-level filesystem. The same operation is used when no entry is found in the
cache.

real_lookup performs the filesystem-specific lookup action. Its work involves allocating data structures
in memory (to hold the lookup result) and, above all, invoking the filesystem-specific lookup function
made available by the inode operation structure inode_operations.

If the required directory exists, the result received by the kernel is a filled dentry instance; otherwise, a
null pointer is returned. Note that Chapter 9 describes in greater detail how filesystems perform low-level
lookups.

do_lookup also needs to take care of following mount points. If a valid dentry is found in the cache,
__follow_mount takes care of this. As discussed in Section 8.4.1, the kernel records the fact that a filesys-
tem is mounted by incrementing the d_mounted structure element of the associated dentrys. To ensure
that mounting has the desired effect, the kernel must take this fact into account when traversing the direc-
tory structure. This is done by invoking __follow_mount, whose implementation is surprisingly simple
(the path structure used as argument collects the required pointers to the vfsmount and dentry instances
of the mount point).22

fs/namei.c
static int __follow_mount(struct path *path)
{

int res = 0;
while (d_mountpoint(path->dentry)) {

struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
if (!mounted)

break;
path->mnt = mounted;
path->dentry = mounted->mnt_root;
res = 1;

}
return res;

}

How does this loop work? A check is first made to ascertain whether the current dentry instance is a
mount point. In this context, the d_mountpoint macro need only check whether the value of d_mounted
is greater than 0. The lookup_mount function extracts the vfsmount instance of the mounted filesystem
from the mount_hashtable discussed in Section 8.4.1. The mnt_root field of the mounted filesystem is
used as the new value for the dentry structure; all this means is that the root directory of the mounted
filesystem is used as the mount point — and this is exactly what we want to achieve.

22I have omitted the required locking and reference counting operations, which would make the code less readable.

568

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 569

Chapter 8: The Virtual Filesystem

A while loop caters to the fact that several filesystems can be mounted one after the other where the last
system mounted conceals all the others.

Implementation of do_follow_link
When the kernel follows symbolic links, it must note that users may construct cyclic structures (inten-
tionally or not), as the following example shows:

wolfgang@meitner> ls -l a b c
lrwxrwxrwx 1 wolfgang users 1 Mar 8 22:18 a -> b
lrwxrwxrwx 1 wolfgang users 1 Mar 8 22:18 b -> c
lrwxrwxrwx 1 wolfgang users 1 Mar 8 22:18 c -> a

a, b, and c form an endless loop. This could be exploited to render the system unusable if the kernel did
not take appropriate precautions.

In fact, the kernel recognizes the situation and aborts processing.

wolfgang@meitner> cat a
cat: a: Too many levels of symbolic links

A further problem with symbolic links is the fact that the link target may be located on a different filesys-
tem from the link source. This results in a linkage between filesystem-specific code and VFS functions
that doesn’t normally occur. Low-level code for following links then references VFS functions, whereas
normally only the reverse occurs (the VFS invokes low-level functions of the individual implementa-
tions).

Figure 8-10 shows the code flow diagram for do_follow_link.

Check link limits

do_follow_link

__do_follow_link i_op->follow_link

current->link_count-

current->link_count++, current-> total_link_count++

Figure 8-10: Code flow diagram for do_follow_link.

The task_struct structure includes two count variables used to follow links.

<sched.h>
struct task_struct {
...
/* file system info */

int link_count, total_link_count;
...
};

569

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 570

Chapter 8: The Virtual Filesystem

link_count prevents recursive loops, and total_link_count limits the maximum number of links in a
pathname. By default, the kernel permits MAX_NESTED_LINKS (usually set to 8) recursive and 40 consecu-
tive links — the latter constant is hardcoded and not definable via a pre-processor symbol.

At the beginning of the do_follow_link routine, the kernel first checks whether the maximum value of
either of the counters has been exceeded. If so, do_follow_link is aborted with the error code -ELOOP.

If not, both counters are incremented by 1, and the filesystem-specific follow_link routine is invoked
to follow the current link. If the link does not point to a further link (and the function therefore simply
returns the new dentry entry), the value of link_count is decremented by 1 as shown in the following
code segment:

fs/namei.c
static inline int do_follow_link(struct dentry *dentry, struct nameidata *nd)
{

...
current->link_count++;
current->total_link_count++;
err = __do_follow_link(path, nd);
current->link_count--;
...

}

When is the value of total_link_count reset? Not at all — at least not during lookup for a single path
component. Because this counter is a mechanism to limit the total number of links used (which need not
be recursive to reach a high figure), the counter is reset to 0 when lookup is initiated for a full path or
filename in path_walk (this function is called by do_path_lookup). Every symbolic link in the lookup
operation (not just recursive links) adds to its value.

Opening Files
Files must be opened before reading or writing. In the view of the application, this is done by the open
function of the standard library, which returns a file descriptor.23 The function uses the identically named
open system call, which invokes the sys_open function in fs/open.c. The associated code flow diagram
is shown in Figure 8-11.

As a first step, force_o_largefile checks if the flag O_LARGEFILE should always be set irregardless of
which flags were passed from userland. This is the case if the word size of the underlying processor is not
32 bits, that is, a 64-bit system. Such systems use 64-bit indexing, and large files are thus the only sensible
default on them. The proper work of opening the file is then delegated to do_sys_open.

In the kernel, each opened file is represented by a file descriptor that acts as a position index for
a process-specific array (task_struct->files->fd_array). This array contains an instance of the
abovementioned file structure with all necessary file information for each opened file. For this reason,
get_unused_fd_flags is first invoked to find a used file descriptor.

Because a string with the name of the file is used as a system call parameter, the main problem is to find
the matching inode. The procedure described above does this.

23It would also be possible to use openat, which opens a file relative to a directory. The mechanisms are, however, more or less
identical.

570

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 571

Chapter 8: The Virtual Filesystem

fd_install

sys_open

force_o_largefile

do_sys_open

get_unused_fd_flags

do_flip_open

open_namei

nameidata_to_filp

Figure 8-11: Code flow diagram for sys_open.

do_filp_open finds the file inode with the support of two helper functions.

1. open_namei invokes the path_lookup function to find the inode and performs several
additional checks (e.g., to ascertain whether the application is trying to open a directory
as if it were a regular file). If a new filesystem entry needs to be created, the function also
applies the current default settings for the permission bits as stored in the process’s umask
(current->fs->umask).

2. nameidata_to_filp initializes the readahead structure, places the newly generated file
instance on the s_files list of the superblock (see Section 8.4.1), and invokes the open func-
tion in the file_operations structure of the underlying filesystem.

fd_install must then install the file instance in files->fd from the task structure of the process before
control is transferred back to the user process to which the file descriptor is returned.

Reading and Writing
Once a file has been successfully opened, a process either reads or modifies the data it contains using the
read and write system calls provided by the kernel. As usual, the entry routines are called sys_read and
sys_write, and both are implemented in fs/read_write.c.

Read
The read function requires three parameters — the file descriptor, a buffer to hold data, and a length
argument to specify the number of characters to be read. The parameters are passed directly to the kernel.

For the VFS layer, reading from a file is not particularly difficult, as Figure 8-12 illustrates.

By reference to the file descriptor number, the kernel (using the fget_light function from
fs/file_table.c) is able to find the file instance associated with the task structure of the process.

After finding the current position in the file with file_pos_read (the routine just needs to return the
value of file->f_pos), the read operation itself is delegated to vfs_read. This routine invokes either

571

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 572

Chapter 8: The Virtual Filesystem

the file-specific read routine file->f_op->read or — if it doesn’t exist — the generic helper function
do_sync_read. After this, the new position within the file is recorded by file_pos_write — again, the
routine just needs to bring file->f_pos to the current position.

Ye
s

file_pos_write

No

sys_read

fget_light

file_pos_read

vfs_read

file->f_op->read exists? do_sync_read

file->f_op->read

Figure 8-12: Code flow diagram for sys_read.

Reading data involves a sophisticated system of buffers and caches to increase system performance. I
therefore deal extensively with this topic in Chapter 16. Chapter 9 examines how filesystems implement
the read routine.

Write
The structure of the write system call is just as simple as that of the read routine. Both code flow dia-
grams are identical except that the f_op->write and do_sync_write functions are used instead of their
read equivalents.

From a formal point of view, sys_write requires the same parameters as sys_read — a file descriptor,
a pointer variable, and a length specification (expressed as an integer number). Obviously, their mean-
ings are slightly different. The pointer does not point to a buffer area in which the data to be read are
stored but to the data to be written to the file. The length argument specifies the length of these data
in bytes.

Write operations are likewise directed through the cache system of the kernel (we discuss this topic
extensively in Chapter 16).

8.5 Standard Functions
Useful resources of the VFS layer are the standard functions provided to read and write data. These
operations are more or less identical for all filesystems. If the blocks in which the data reside are known,
the page cache is first consulted. If the data are not held there, a read request is submitted to the rele-
vant block device. Implementing these operations for every single filesystem would result in a massive
duplication of code that must be prevented at all costs.

572

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 573

Chapter 8: The Virtual Filesystem

Most filesystems include the do_sync_read24 and do_sync_write standard routines in the read and
write pointers of their file_operations instance.

The routines are strongly associated with other kernel subsystems (block layer and page cache in par-
ticular) and must also handle many potential flags and special situations. As a result, their implemen-
tation is not always the source of true clarity and sublimeness (comment in the kernel: this is really
ugly . . .). For this reason, I examine slightly simplified versions below; these focus on the main path
usually traversed so that important aspects are not obscured by a wealth of details. Nevertheless, I have
still found it necessary to make many references to routines in other chapters (and in other subsystems).

8.5.1 Generic Read Routine
generic_file_read is the library routine used by almost all filesystems to read data. It reads data syn-
chronously; in other words, it guarantees that the desired data are in memory when the function returns
to the caller. This is achieved by delegating the actual read operation to an asynchronous routine and
waiting until it ends. Slightly simplified, the function is implemented as follows:

mm/filemap.c
ssize_t do_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
{

struct iovec iov = { .iov_base = buf, .iov_len = len };
struct kiocb kiocb;
ssize_t ret;

init_sync_kiocb(&kiocb, filp);
kiocb.ki_pos = *ppos;
kiocb.ki_left = len;

ret = filp->f_op->aio_read(&kiocb, &iov, 1, kiocb.ki_pos);

if (-EIOCBQUEUED == ret)
ret = wait_on_sync_kiocb(&kiocb);

*ppos = kiocb.ki_pos;
return ret;

}

init_sync_kiocb initializes a kiocb instance that controls the asynchronous I/O operation; its detailed
contents are of little interest here.25 The real work is delegated to the filesystem-specific asynchronous
read operation that is stored in aio_read of struct file_operations. Usually generic_file_aio_read,
which I discuss shortly, is used. However, the routine performs work asynchronously, so there is no
guarantee that the data have already been read when the routine returns to the caller.

24In former kernel versions, the standard read and write operations used to be generic_file_read and generic_file_
write, but they have been replaced by the variants I am about to discuss.
25Asynchronous I/O operations are used to submit a read or write request to the kernel. These requests are not satisfied immediately
but are queued in a list. The code flow then returns immediately to the calling function (in contrast to the regular I/O operations
implemented here). In this case, the calling function has the impression that the result is returned immediately because it does not
notice the delay involved in performing the operation. The data can be queried later after the request has been dealt with asyn-
chronously.
Asynchronous operations are not performed with file handles but with I/O control blocks. Consequently, an instance of the corre-
sponding data type must first be generated with init_sync_kiocb. Currently, asynchronous I/O is used only by very few appli-
cations (e.g., large databases), so it’s not worth going into the details.

573

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 574

Chapter 8: The Virtual Filesystem

The -EIOCBQUEUED return value indicates that the read request was queued and not yet processed. In this
case, wait_on_sync_kiocb waits until the data are in memory. The function can check this by referring
to the initialized control block. The process is put to sleep while it is waiting so that the CPU is available
for other tasks. For the sake of simplicity, I do not differentiate between synchronous or asynchronous
termination of the read operation in the following description.

Asynchronous Reading
generic_file_aio_read from mm/filemap.c reads data asynchronously. The associated code flow dia-
gram is shown in Figure 8-13.

Yes

N
o

do_generic_mapping_read

generic_file_aio_read

generic_segment_checks

0_DIRECT set? generic_file_direct_IO

do_generic_file_read

Figure 8-13: Code flow diagram for generic_file_aio_read.

After generic_segment_checks has ensured that the read request contains valid parameters, two possi-
ble Read modes are distinguished.

1. If the flag O_DIRECT is set, data are read without using the page cache. generic_file_
direct_IO must then be used.

2. Otherwise, do_generic_file_read — a front end for do_generic_mapping_read — is used.
This converts the read request for a file into a read operation with a mapping.

Reading from Mappings
Figure 8-14 shows the code flow diagram for do_generic_mapping_read.

The function uses the mapping mechanism described in Chapter 3 to map the desired section of the file
onto pages in memory. It consists of a large endless loop that continues to read pages until all file data
have been transferred into memory if the data are not already in any cache.

Each loop pass performs the following actions:

❑ First of all, find_get_page checks if the page is already contained in the page cache. If this fails,
a synchronous readahead request is issued by calling page_cache_sync_readahead.

❑ Since the readahead mechanism has most likely ensured that the data are by now in the cache,
find_get_page is used to find the page once again. There’s still a small chance that this fails
again and that the page has to be read in manually, which is handled by jumping to the label
no_cached_page. I will deal with this below. Usually, however, the page will have been read in
at this point.

❑ If the page flag PG_readahead is set — the kernel can check this with ReadaheadPage — an asyn-
chronous readahead operation must be started with page_cache_async_readahead. Note that

574

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 575

Chapter 8: The Virtual Filesystem

this is different from the synchronous readahead operation started before: Now the kernel does
not wait for the readahead operation to complete, but performs the reading whenever it finds
time. The readahead mechanism is considered in more detail in Chapter 16.4.5.

❑ Although the page is in the page cache, the data may not be current; this can be checked using
Page_Uptodate.

If the page is not up-to-date, it must be re-read using mapping->a_ops->readpage. The function
pointer normally points to mpage_readpage. After this call, the kernel knows for sure that the
page is filled with the most recent data.

The access to the page must be marked with mark_page_accessed; this is important to
determine page activity when it is necessary to swap data out of RAM. (Swapping is
discussed in Chapter 18.) The actor routine (usually file_read_actor) maps the appro-
priate page into userspace address space. I won’t bother going into the details of how this
is done.26

page still not in cache?

Usually mpage_readpage

Async
readahead
requested?

Page uptodate?

No

No

Yes

Yes

Yes

Oage not
in Page

Ite
ra

te
 u

nt
il

al
l d

es
ire

d
pa

ge
s

ha
ve

 b
ee

n
re

ad
 in

do_generic_mapping_read

find_get_page

page_cache_sync_readahead

find_get_page

page_cache_async_readahead

mapping->a_ops->readpage

no_cached_page

mark_page_accessed

actor

Figure 8-14: Code flow diagram for do_generic_mapping_read.

If the readahead mechanism has not already read the desired page in anticipation, the function is forced
to do it itself. The no_cached_page section of do_generic_mapping_read is used for this purpose. Its
code flow diagram is shown in Figure 8-15.27

Once page_cache_alloc_cold has reserved a cache-cold page, it is inserted in the LRU list of the
page cache via add_to_page_cache_lru as described in Chapter 16. The mapping->a_ops->readpage
method provided by the mapping is used to read the data. Usually, the function pointer points to
mpage_readpage, which I deal with in Chapter 16. Finally, mark_page_accessed tells the accounting
system that the page has been accessed.

27Except to say that the copy_to_user routine discussed in Chapter 3 is used.

575

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 576

Chapter 8: The Virtual Filesystem

mark_page_accessed

no_cached_page

page_cache_alloc_cold

add_to_page_cache_lru

mapping->a_ops->readpage

Figure 8-15: Code flow diagram for
no_cached_page.

8.5.2 The fault Mechanism
Memory mappings normally invoke the filemap_fault standard routine provided by the VFS layer to
read pages not held in cache. Figure 8-16 shows the code flow diagram of this function.

mark_page_accessed

No

filemap_fault

page_cache_read

find_lock_page

mapping->a_ops->readpage

Random Read Hint?

Sequential read hint? Use generic RA logic

Page not found?

Invoke generic readahead

Page uptodate?

Retry from find_lock_page onwards

Ye
s

Figure 8-16: Code flow diagram for filemap_fault.

As the diagram illustrates, the implementation exhibits several parallels with the generic_file_read
mechanism just discussed.

First, the function checks if the virtual memory area to which the page belongs contains a hint that
accesses are mostly random and not in any predictable order. This hint is given if the VM_RAND_READ
is set; this can be checked with the helper macro VM_RandomReadHint. Note that the madvise system call
(not discussed here) can be invoked to advise memory management which access pattern will be most
likely. If a random read pattern is expected, the kernel directly calls page_cache_read to allocate a new
page in the page cache and issue a read request.

576

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 577

Chapter 8: The Virtual Filesystem

Independent of the expected read pattern, the find_get_page function checks whether the page is
already in the page cache. Afterward, the kernel handles a sequential read hint that could be associ-
ated with the VM area to which the page belongs.28 The generic readahead logic that is used in this case
consists of the following code sequence:

mm/filemap.c
if (VM_SequentialReadHint(vma)) {

if (!page) {
page_cache_sync_readahead(mapping, ra, file,

vmf->pgoff, 1);
page = find_lock_page(mapping, vmf->pgoff);
if (!page)

goto no_cached_page;
}
if (PageReadahead(page)) {

page_cache_async_readahead(mapping, ra, file, page,
vmf->pgoff, 1);

}
}

The mechanism is identical with the mechanism used in do_generic_mapping_read. When the page can-
not be found with synchronous readahead, the jump to no_cached_page employs page_cache_read to
allocate a new page in the page cache and issue a read request. Afterward, the code retries the operation
from the first call to find_lock_page onward. Obviously, this requires using C’s goto feature.

Let’s go back to the code snippet shown above. If the page was present in the system, it has origi-
nated from a previous readahead operation. As discussed in Chapter 16.4.5., the readahead mecha-
nism marks a page near the end of a readahead window, that is, a range of files that is read in before
a process actually requests them. Once this page is reached, then asynchronous readahead should
be started to read in pages speculatively. The required mark is the PG_readahead bit (which can be
checked with PageReadahead), and the function responsible to perform asynchronous readahead is
page_cache_async_readahead. Again, notice that more details about this mechanism are discussed in
Chapter 16.4.5.

If no sequential readahead hint was given and the page could not be found in the page cache, the generic
readahead mechanism needs to be invoked. Slightly simplified, it is implemented as follows:

mm/filemap.c
if (!page) {

unsigned long ra_pages;
...

ra_pages = max_sane_readahead(file->f_ra.ra_pages);
if (ra_pages) {

pgoff_t start = 0;

if (vmf->pgoff > ra_pages / 2)
start = vmf->pgoff - ra_pages / 2;

do_page_cache_readahead(mapping, file, start, ra_pages);
}

28It sounds odd that the kernel checks for a sequential read hint even if a random read hint was found only a couple of steps before,
and the check could in this case be, in fact, avoided. However, the structure of filemap_fault, which contains a quite liberal use
of goto, can lead to this situation.

577

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 578

Chapter 8: The Virtual Filesystem

page = find_lock_page(mapping, vmf->pgoff);
if (!page)

goto no_cached_page;
}

max_sane_readahead computes a sensible upper bound on the number of pages that are supposed to be
read in in advance. If this number is greater than zero, do_page_cache_readahead is invoked to allocate
pages in the page cache and read in the data. Since afterward there is sufficient hope the desired page
is in the page cache, find_lock_page once again tries to locate it there. Should this again fail, the kernel
jumps to no_cached_page as described before.

If the page is by now contained in the page cache, it is necessary to ensure that the page is up-to-date. If it
is not, it is re-read using the readpage method of the mapping, and retries the page access again starting
from the call to find_lock_page further above. Otherwise, it suffices to call mark_page_accessed to mark
the page as active.

8.5.3 Permission-Checking
vfs_permission is the VFS layer’s standard function to check if access to a given inode is allowed for
a certain right. This right can be MAY_READ, MAY_WRITE, or MAY_EXEC. vfs_permission is just a wrapper
function for parameter conversion; the real work is delegated to permission. First of all, the function
ensures that Write access to Read Only filesystems and immutable files is forbidden:

fs/namei.c
int permission(struct inode *inode, int mask, struct nameidata *nd)
{

int retval, submask;

if (mask & MAY_WRITE) {
umode_t mode = inode->i_mode;

/* Nobody gets write access to a read-only fs. */
if (IS_RDONLY(inode) &&

(S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
return -EROFS;

/* Nobody gets write access to an immutable file. */
if (IS_IMMUTABLE(inode))

return -EACCES;
}

...

After this, the real work is either delegated to a filesystem-specific permission-checking routine if one
exists, or to generic_permission:

fs/namei.c
...

/* Ordinary permission routines do not understand MAY_APPEND. */
submask = mask & ~MAY_APPEND;
if (inode->i_op && inode->i_op->permission)

retval = inode->i_op->permission(inode, submask, nd);
else

578

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 579

Chapter 8: The Virtual Filesystem

retval = generic_permission(inode, submask, NULL);

if (retval)
return retval;

return security_inode_permission(inode, mask, nd);
}

If any of these denies the permission to access the object in the desired way, the error code is immediately
returned. If they grant permission, that is, if their result is zero, it is still necessary to call the appropriate
security hook via security_inode_permission, which delivers the final verdict.

Note that most filesystems rely on generic_permission, but can pass a special handler function to per-
form ACL-based permission checks. Thus, generic_permission not only requires the inode in question
and the permission request as parameters, but also a callback function check_acl for ACL checks. First
of all, the kernel needs to find out if it should use the inode rights for user, group, or other.

❑ If the filesystem UID of the current process is the same as the UID of the inode, then the permis-
sion set of the owner needs to be used.

❑ If the GID of the inode is contained in the list of groups to which the current process belongs,
then the group permissions need to be used.

❑ If both conditions fail, the permissions for ‘‘other’’ need to be used.

This is implemented as follows:

fs/namei.c
int generic_permission(struct inode *inode, int mask,

int (*check_acl)(struct inode *inode, int mask))
{

umode_t mode = inode->i_mode;

if (current->fsuid == inode->i_uid)
mode >>= 6;

else {
if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {

int error = check_acl(inode, mask);
if (error == -EACCES)

goto check_capabilities;
else if (error != -EAGAIN)

return error;
}

if (in_group_p(inode->i_gid))
mode >>= 3;

}
...

Checking for the fsuid is simple. If the fsuid agrees with the UID of the file, then the mode value needs
to be shifted by six positions such that the bits for ‘‘owner’’ are now the least significant ones.

Checking the fsgid is slightly more involved because all groups to which the process belongs need to
be considered, so this is delegated to the (not discussed) helper function in_group_p. Should this be

579

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 580

Chapter 8: The Virtual Filesystem

successful, the mode value needs to be shifted by three places such that the mode bits for ‘‘group’’ are
now the least significant ones. Note that the kernel may also need to perform an ACL check, which is
described below.

If both UID and GID checks fail, then no shifting of the mode bits is performed, and the bits for ‘‘other’’
remain the least significant ones.

The discretionary access control (DAC) check is then performed on the chosen permission bits as follows:

fs/namei.c
...

if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
return 0;

...

If the required permissions mask is allowed by the mode permission bits, then a zero is returned. This
signals that the operation is allowed.

Failure of the DAC check does not yet mean that the desired operation is forbidden since capabilities
might still allow it. The kernel tests this as follows:

fs/namei.c
...
check_capabilities:

/*
* Read/write DACs are always overridable.
* Executable DACs are overridable if at least one exec bit is set.
*/

if (!(mask & MAY_EXEC) ||
(inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))

if (capable(CAP_DAC_OVERRIDE))
return 0;

/*
* Searching includes executable on directories, else just read.
*/

if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
if (capable(CAP_DAC_READ_SEARCH))

return 0;

return -EACCES;
}

If the process possesses the capability DAC_CAP_OVERRIDE, the desired permission is granted if any of the
following conditions holds:

❑ Read or Write access, but not Execution access was requested.

❑ Any of the three possible execution bits is set.

❑ The inode represents a directory.

580

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 581

Chapter 8: The Virtual Filesystem

The other capability that comes into play is CAP_DAC_READ_SEARCH, which grants the process the right to
override DAC decisions when reading files and searching directories. If the capability is present, then
access is granted if any of the following conditions holds:

❑ A Read operation was requested.

❑ The inode in question is a directory, and no Write access was requested.

Finally, the question remains how ACLs are taken into account. If the inode in question has an ACL
associated with it (checked by IS_POSIXACL) and a permission check callback for ACLs was passed to
generic_permission, the callback is utilized right after the fsuid of the current task is compared with
the UID of the file in question. If the desired access is denied, then process capabilities might still allow
it. (Note that the DAC check can be skipped if an ACL callback is given because the standard DAC check
is included in the ACL check.) Otherwise, the result of the ACL check is directly returned.

8.6 Summary
One of the core concepts of Unix is that nearly every resource can be represented by a file, and Linux
has inherited this point of view. Files are therefore very prominent members of the kernel world, and
a considerable effort goes into their representation. This chapter has introduced the virtual filesystem, a
glue layer that sits between deeper kernel layers and userland. It provides various abstract data structures
to represent files and inodes, and implementations of real filesystems must fill in these structures such
that applications can always use the same interface to access and manipulate files irregardless of the
underlying filesystem.

I have discussed how filesystems are mounted into the filesystem tree visible for userland applications,
and have additionally shown how shared subtrees can be used to create different views of the ‘‘global’’
filesystem depending on the namespace. You have also learned that the kernel employs a number of
pseudo-filesystems that are not visible to userland, but nevertheless contain some information that is
interesting for internal purposes.

Opening files requires a traversal of the file tree, and you have seen how this problem is solved by the
VFS layer. Once a file has been opened, it can be written to and read from, and you have also seen how
the VFS is involved in these operations.

Finally, you have learned that the kernel provides some generic standard functions that make things
easier for real filesystems like Ext3, as discussed in the next chapter, and how the kernel ensures that
only appropriately privileged users may access objects located in the filesystem.

581

Mauerer runc08.tex V2 - 09/04/2008 5:16pm Page 582

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 583

The Extended Filesystem
Family

The structure and layout of the interfaces and data structures of the Virtual Filesystem discussed
in Chapter 8 define a framework within which filesystem implementations must operate. How-
ever, this does not dictate that the same ideas, approaches, and concepts must be adopted by every
filesystem when files are organized on block devices to store their contents permanently. Quite the
opposite: Linux supports a wide variety of concepts including those that are easy to implement and
understand but are not particularly powerful (e.g., the Minix filesystem); the proven Ext2 filesystem,
which is used by millions; specific versions designed to support RAM- and ROM-based approaches;
highly available cluster filesystems; and modern, tree-based filesystems with rapid restoration of
consistency by means of transaction journals. No other operating system offers this versatility.

The techniques used differ considerably even though they can all be addressed — from both
the user and kernel sides — via an identical interface, thanks to the virtual filesystem. Because
of the large number of filesystems supported, every single implementation cannot be discussed
here — not even briefly. Instead, this chapter focuses on the extended filesystem family, that is,
the Ext2 and Ext3 filesystems. They illustrate the key concepts underlying the development of
filesystems.

9.1 Introduction
Ext3 and Ext3 can be briefly characterized as follows:

❑ The Second Extended Filesystem — This has been with Linux from the early days and
has proved itself as the backbone of many server and desktop systems, where it has done
a very good job. The design of the Ext2 filesystem makes use of structures very similar to
those used in the virtual filesystem, simply because it was developed with optimized inter-
operation with Linux in mind. It can be — and is — used with other operating systems,
though.

❑ The Third Extended Filesystem — This is an evolutionary development of Ext2. It is still
mostly compatible with Ext2, but provides an extension — journaling — that is especially

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 584

Chapter 9: The Extended Filesystem Family

helpful to recover from system crashes. This chapter also takes a brief look at the journal
mechanism of Ext3. As compared with Ext2, this features several interesting options, but
the basic filesystem principles are unchanged.

While most installations nowadays prefer Ext3 to Ext2, it nevertheless makes sense to discuss Ext2 first:
Since the code need not implement any journaling functionalities, it is often simpler as compared to the
Ext3 implementation, and thus makes the essential principles easier to understand. Besides journaling,
both variants are otherwise nearly completely identical, and many general improvements that originate
from Ext3 have been back-ported to Ext2.

One specific problem — fragmentation — is encountered in the management of storage space for disk-
based filesystems. Available space becomes more and more fragmented as files are removed and new
ones are added — particularly if the files are very small. Because this has a negative impact on access
speed, filesystems must try to keep fragmentation to a minimum.

A second important requirement is to put storage space to efficient use, and here the filesystem must
make a compromise. Full use of space can only be achieved at the cost of large amounts of management
data that must also be stored on disk. This cancels out any benefit gained from more compact data stor-
age and may even make the situation worse. Wasteful use of disk capacity should also be avoided — the
advantages of less management data are lost because space is not used efficiently. The various filesystem
implementations address this problem differently. Often, administrator-configured parameters are intro-
duced to optimize the filesystem for anticipated usage patterns (e.g., a predominantly large number of
big files or small files).

Maintaining the consistency of file contents is also a key issue that requires careful thought during the
planning and implementation of filesystems. Even the most stable of kernels can give up the ghost unex-
pectedly, not only because of software errors, but also owing to power outages, hardware faults, and
the like. Even if mishaps of this kind cause irrecoverable errors (e.g., changes are lost if they are still
cached in RAM and have not been written back to disk), the implementation must make every effort to
rectify damage as quickly and as comprehensively as possible. At minimum, it must be able to restore
the filesystem to a usable state.

Finally, speed is also a vital ingredient when assessing the quality of filesystems. Even if hard disks are
extremely slow as compared to the CPU or RAM, a badly implemented filesystem can certainly apply
the brakes to system speed.

9.2 Second Extended Filesystem
Even though Linux is neither a clone nor a further development of the educational Minix, many parts
of the early Linux kernel (and ‘‘early’’ by now means roughly a decade ago!) clearly reflected its Minix
heritage. The first filesystem the Linux kernel had to deal with was a direct adaptation of the Minix
system. This had primarily practical reasons because Linux was originally developed on a Minix system
before it was capable of hosting itself. We have come a long way since then.

The code of the Minix filesystem may have been valuable in educational terms, but it left a lot to be
desired in terms of performance.1 Many standard features of commercial Unix systems were simply

1Note that the situation has changed somewhat with with the introduction of Minix 3, which has explicitly been designed to be
usable on embedded devices and similar systems with little computing power. Most people, however, still seem to prefer embedded
Linux distributions for these purposes.

584

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 585

Chapter 9: The Extended Filesystem Family

not supported by the Minix filesystem — for example, the length of filenames was still restricted to 14
characters — rather short, but still better than the 8.3 scheme supported by another operating system that
was quite ubiquitous at that time!

This fact promoted the development of the Extended Filesystem, which, although a great improvement
on the Minix filesystem, still had clear deficits in terms of performance and functionality as compared
to commercial filesystems.2 Only with the development of the second version of this file system, known
unsurprisingly as the Second Extended Filesystem or Ext2 for short, was an extremely powerful filesystem
available that neither then nor now needed to fear comparison with commercial products. Its design was
influenced primarily by the Fast File System (FFS) from the BSD world (described in detail in [MBKQ96]).

The Ext2 filesystem focused on high performance and on the goals summarized below and defined by
the filesystem authors in [CTT]:

❑ Support for variable block sizes to enable the filesystem to cope with anticipated usage (many
big files or many small files).

❑ Fast symbolic links, whose link target is stored in the inode itself (and not in the data area) if the
name of the target is short enough.

❑ Integration of extensions into the design without having to reformat and reload the hard disk to
migrate from the old to the new version.

❑ Minimization of the effect of system crashes by means of a sophisticated strategy of data manip-
ulation on the storage medium. The filesystem can normally be restored to a state in which
auxiliary tools (fsck) are at least able to repair it so that it can be used again. (This does not
exclude the possibility that data are lost.)

❑ Use of special attributes (not found in classic Unix filesystems) to label files as unchangeable.
These allow important configuration files, for example, to be protected from unintentional
changes — even by the superuser.

Today, these features are standard requirements for any filesystem that is used on production machines.
Many new filesystems that were devised after Ext2 provide much additional functionality. Nevertheless,
the extended filesystem family is still quite apt for a large range of applications. One particular advantage
should not be underestimated: The code for Ext2 is very compact compared with that for more modern
filesystems. Less than 10,000 lines suffice for the implementation, compared with more than 30,000 for
JFS and roughly 90,000 for XFS.

9.2.1 Physical Structure
Various structures, defined as C data types in the kernel, must be created to hold filesystem data — file
contents, representation of the directory hierarchy, and associated administration data such as access
permissions or user and group affiliations, as well as metadata to manage filesystem-internal information.
This is necessary so that data can be read from block devices for analysis. Obviously persistent copies of
these structures need to reside on the hard disk so that data are not lost between working sessions and are
still available the next time the kernel is activated. Because hard disk and RAM requirements differ, there

2Another filesystem of the time that has now fallen into oblivion (and for which kernel support has long been withdrawn) is the Xia
filesystem, an enhancement of the Minix filesystem. The author nevertheless still has fond memories of using this filesystem for one
of his first Linux installations, a choice that did not prove to be very visionary . . .

585

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 586

Chapter 9: The Extended Filesystem Family

are usually two versions of a data structure — one for persistent storage on disk, the other for working
with memory.

In the sections below, the frequently used word block has two different meanings:

❑ On the one hand, some filesystems reside on block-oriented devices that — as explained in
Chapter 6 — do not transfer individual characters but entire data blocks.

❑ On the other, the Second Extended Filesystem is a block-based filesystem that divides the hard
disk into several blocks, all of the same size, to manage metadata and the actual file contents.
This means that the structure of the underlying storage medium is imposed on the structure
of the filesystem and this naturally influences the design of the algorithms and data structures
used. This chapter takes a closer look at this influence.

One aspect is of particular importance when dividing the hard disk into fixed-sized blocks — files may
occupy only integer multiples of the block size. Let us look at the impact of this situation by reference to
Figure 9-1, in which, for simplicity’s sake, we assume a block size of 5 units. We want to store three files
whose sizes are 2, 4, and 11 units.

File A

File B

File C

Figure 9-1: File distribution in block-based filesystems.

The clearly more effective method of dividing existing storage space is applied in the upper part, where
the contents of the individual files are spread as compactly as possible across the available blocks. How-
ever, this method is not used in practice because it has a major disadvantage.3 The information needed
to manage the file boundaries within the individual blocks would be so voluminous that it would imme-
diately cancel out any advantage gained as compared to the wasteful assignment of blocks in the right
part of the figure. As a result, each file occupies not only the space needed for its data but also the space
left over when the block size is rounded up to the next integer multiple.

Structure Overview
Let’s first take a bird’s eye view of the C structures used to manage data to get a clear picture of the
functions of the individual components and the interplay among them. Figure 9-2 shows the contents of
a block group, a central element of the Ext2 filesystem.

A block group is the basic element that accommodates the further structures of the filesystem. Each
filesystem consists of a very large number of block groups arranged one after the other on the hard disk
as shown in Figure 9-3.

3‘‘Not used‘‘ is not strictly accurate because a diluted form of this scheme that, to a certain extent, allows the use of a single block to
hold several small files is under development and may be included as standard in future versions of the Ext2/3 filesystem. Although
the basic infrastructure for such fragments is included in the code, it is not yet implemented.

586

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 587

Chapter 9: The Extended Filesystem Family

Group
descriptors

Data
bitmap

Inode
bitmap

Inode
tables

Super
block

Data blocks

1 Block k Blocks 1 Block 1 Block n Blocks m Blocks

Figure 9-2: Block group of the Second Extended Filesystem.

Boot
block Block group 0 Block group 1 Block group n• • •

Figure 9-3: Boot sector and block groups on a hard disk.

The boot sector is a hard disk area whose contents are automatically loaded by the BIOS and executed
when the system is powered up. It includes a boot loader4 that permits selection of one of the systems
installed on the computer and is also responsible for continuing the boot process. Obviously, this area
must not be filled with filesystem data. Boot loaders are not needed on all systems. On systems where
they are, they are usually located at the beginning of the hard disk so that later partitions are not affected.

The remaining space on the disk is occupied by successive block groups that store filesystem metadata
and the useful data of the individual files. As Figure 9-2 clearly illustrates, each block group contains a
great deal of redundant information. Why does the Ext2 filesystem accept this waste of space? There are
two reasons why the additional space is justified:

❑ If the superblock is destroyed by a system crash, all information on filesystem structure and con-
tents is lost. This information can be recovered only with great difficulty (perhaps not at all by
most users) if redundant copies are available.

❑ By keeping file and management data closer together, the number of movements and associated
travel of the read/write head are reduced, and this improves filesystem performance.

In practice, data are not duplicated in each block group, and the kernel works only with the first copy
of the superblock; generally, this is sufficient. When a filesystem check is performed, the data of the first
superblock are spread over the remaining superblocks, where it can be read in an emergency. Because this
method also consumes a large amount of storage space, later versions of Ext2 adopt the sparse superblock
technique. Superblocks are no longer kept in each block group of the filesystem but are written only to
groups 0 and 1 as well as to all other groups whose ID can be represented as a power of 3, 5, and 7.

The superblock data are cached in memory so that the kernel is not forced to repeatedly read this infor-
mation from hard disk — this is, of course, much faster. The second point made above is also no longer
relevant because seeks between the individual superblock entries are no longer necessary.

Although it was assumed when designing the Ext2 filesystem that the two issues above would have a
strong impact on filesystem performance and security, it was later discovered that this is not the case.
The modifications described above were made for this reason.

4LILO on IA-32, MILO on Alpha, SILO on Sparc, and so on.

587

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 588

Chapter 9: The Extended Filesystem Family

What is the purpose of the individual structures in the block groups? Before answering this question, it
is best to briefly summarize their meaning:

❑ The superblock is the central structure for storing meta-information on the filesystem itself. It
includes information on the number of free and used blocks, block size, current filesystem status
(needed when booting the system in order to detect a previous crash), and various time stamps
(e.g., time of last filesystem mount, time of last write operation). It also includes a magic number
so that the mount routine can establish whether the filesystem is of the correct type.

The kernel uses only the superblock of the first block group to read filesystem meta-information,
even if there are superblock objects in several block groups.

❑ The group descriptors contain information that reflects the status of the individual block groups
of the filesystem, for instance, information on the number of free blocks and inodes of the group.
Each block group includes group descriptors for all block groups of the filesystem.

❑ Data block and inode bitmaps are used to hold long bit strings. These structures contain exactly
1 bit for each data block and each inode to indicate whether the block or inode is free or
in use.

❑ The inode table contains all block group inodes that hold all metadata associated with the individ-
ual files and directories of the filesystem.

❑ As the name suggests, the data block section contains the useful data of the files in the filesystem.

Whereas inodes and block bitmaps always occupy an entire block, the remaining elements consist of
several blocks. The exact number depends not only on the options selected when creating the filesystem
but also on the size of the storage medium.

The similarity of these structures with the elements of the virtual filesystem (and the general concept
of Unix filesystems as discussed in Chapter 8) is unmistakable. Even though many problems, such as
directory representation, are solved by adopting this structure, the Ext2 filesystem still needs to address
several tricky issues.

A key problem in filesystem implementation is the fact that the individual files may differ
drastically — in terms of their size and purpose. While files with multimedia contents (e.g., videos) or
large databases can easily consume hundreds of megabytes or even gigabytes, small configuration files
often take up just a handful of bytes. There are also different types of meta-information. For example,
the information stored for device files differs from that for directories, regular files, or named pipes.

If filesystem contents are manipulated in memory only, these problems are not as serious as when
data are stored on slow external media. High-speed RAM is able to set up, scan, and modify the required
structures in no time at all, whereas the same operations are much slower and much more costly on
hard disk.

The structures used to store data must be designed to optimally satisfy all filesystem requirements — not
always an easy task on hard disks, particularly with regard to capacity utilization and access speed. The
Second Extended Filesystem therefore resorts to the tricks and dodges described below.

Indirection
Even though the Ext2 filesystem adopts the classic Unix scheme of implementing files by means of linked
inodes, further problems of little consequence in an abstract concept need to be addressed. Hard disks

588

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 589

Chapter 9: The Extended Filesystem Family

are divided into blocks that are occupied by files. How many blocks a particular file occupies depends on
the size of the file contents (and, of course, on the size of the block itself).

Like system memory, which, in the view of the kernel, is divided into pages of equal size and is addressed
by unique numbers or pointers, all hard disk blocks are uniquely identified by a number. This enables
the file metadata stored in the inode structure to be associated with the file contents located in the
data block sections on hard disk. The link between the two is established by storing the addresses of
the data blocks in the inode.

Files do not necessarily occupy successive data blocks (although this would be
desirable for performance reasons) but are spread over the entire hard disk.

A closer examination of this concept quickly reveals a problem. Maximum file size is limited by the
number of block numbers that can be held in the inode structure. If this number is too small, less space is
needed to manage the inode structures, but, at the same time, only small-sized files can be represented.

Increasing the number of blocks in the inode structure does not solve the problem, as the following quick
calculation proves. The size of a data block is 4 KiB. To hold a file comprising 700 MiB, the filesystem
would need approximately 175,000 data blocks. If a data block can be uniquely identified by a 4-byte
number, the inode would need 175,000 × 4 bytes to store the information on all data blocks — this is
impracticable because a large portion of disk space would be given over to storing inode information.
What’s more, most of this space would not be needed by most files, whose average size would be less
than 700 MiB.

This is, of course, an age-old problem and is not Linux-specific. Fortunately, all Unix filesystems includ-
ing Ext2 feature a proven solution known as indirection.5

With indirection, only a few bytes of the inode hold pointers to blocks — just enough to ensure that an
average small-size file can be represented. With larger files, pointers to the individual data blocks are
stored indirectly, as illustrated graphically in Figure 9-4.

12 direct
data blocks

•

•

•

Data blocksIndirection
blocks

Inode

Figure 9-4: Simple and double indirection.

5Even the relatively primitive Minix filesystem supports indirection.

589

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 590

Chapter 9: The Extended Filesystem Family

This approach permits the flexible storage of large and small files because the size of the area in which
data block pointers is stored can be varied dynamically as a function of the actual size of the file. The
inode itself is always of a fixed size, and additional data blocks needed for purposes of indirection are
allocated dynamically.

Let’s first take a look at the situation with a small file. The pointers stored directly in the inode are suffi-
cient to identify all data blocks, and the inode structure occupies little hard disk space because it contains
just a few pointers.

Indirection is used if the file is bigger and there aren’t enough primary pointers for all blocks. The filesys-
tem reserves a data block on the hard disk — not for file data but for additional block pointers. This
block is referred to as a single indirect block and can accept hundreds of additional block pointers (the
actual number varies according to the size of the block; Table 9-1 lists possible values for Ext2). The
inode must include a pointer to the first indirection block so that it can be accessed. Figure 9-4 shows that
in our example this pointer immediately follows the direct block pointers. The size of the inode always
remains constant; the space needed for the additional pointer block is of some consequence with larger
files but represents no additional overhead for small files.

Table 9-1: Block and File Sizes in the Second Extended Filesystem

Block size Maximum file size

1,024 16 GiB

2,048 256 GiB

4,096 2 TiB

The further progress of indirection is evident from the illustration. Adding to available space by means
of indirection must also come up against its limits when files get larger and larger. The next logical step is
therefore to use double indirection. Again, a hard disk block is reserved to store pointers to data blocks.
However, the latter do not store useful data but are arrays that hold pointers to other data blocks that, in
turn, store the useful file data.

Using double indirection dramatically increases manageable space per file. If a data block holds pointers
to 1,000 other data blocks, double indirection enables 1,000 × 1,000 data blocks to be addressed. Of course,
the method has a downside because access to large files is more costly. The filesystem must first find the
address of the indirection block, read a further indirection entry, look for the relevant block, and find
the pointer to the data block address. There is therefore a trade-off between the ability to handle files of
varying sizes and the associated reduction in speed (the larger the file, the slower the speed).

As Figure 9-4 shows, double indirection is not the end of the road. The kernel offers triple indirection to
represent really gigantic files. This is an extension of the principle of simple and double indirection and is
not discussed here.

Triple indirection takes maximum file size to such heights that other kernel-side problems crop up,
particularly on 32-bit architectures. Because the standard library uses long variables with a length of

590

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 591

Chapter 9: The Extended Filesystem Family

32 bits to address positions within a file, this restricts maximum file size to 232 bits, which corresponds
to 2 GiB and is less than can be managed with triple indirection in the Ext2 filesystem. To cope with
this drawback, a special scheme was introduced to access large files; this not only has an impact on the
routines of the standard library, but must also be taken into account in the kernel sources.

Fragmentation
The similarity between memory management and disk storage in terms of their block structure means
that they share the familiar problem of fragmentation discussed in Chapter 3. Over time, many files of a
filesystem are deleted at random positions on the disk, and new ones are added. This inevitably leads to
fragmentation of free disk space into chunks of different sizes, as illustrated in Figure 9-5.

used
free

Figure 9-5: Fragmentation in filesystems.

Although the situation illustrated may well be exaggerated, it clearly indicates the nature of the problem.
There are still 12 blocks free on the hard disk, but the longest contiguous unit is 5 blocks. What happens
when a program wants to save data occupying a total of 7 blocks to disk? Or what about when it is nec-
essary to add data to an existing file and the data blocks beyond the end of the file are already occupied
by other data?

The answer is obvious. The data are spread over different areas of the disk and become fragmented. It is
important that this be done transparently to the user process. Processes accessing a file always see the file
as a continuous linear structure, regardless of the degree of data fragmentation on the hard disk. This is
reminiscent of the way in which a processor presents working memory to processes, the difference being
that there is no automatic hardware instance to ensure linearization on behalf of the filesystem. The code
of the filesystem itself is responsible for this task.

Of course, this does not present any basic difficulty when direct pointers or simple, double, and triple
indirection are used to point to the file data blocks. The data block numbers are always uniquely identi-
fied by the information in the pointers. From this point of view, it is irrelevant whether the data blocks
are sequential or are spread randomly across the entire hard disk.

However, there is a noticeable difference in access speed. If all file blocks are contiguous on the hard disk
(this is desirable), movement of the read/write head when reading data is reduced to a minimum, thus
boosting the speed of data transfer. If the opposite is true — and the file blocks are distributed across the
disk — the read/write head is forced to constantly traverse the disk in order to read the data, and this
slows access.

Consequently, the Second Extended Filesystem does its best to prevent fragmentation. When fragmen-
tation cannot be avoided, it attempts to keep the individual file blocks in the same block group.6 It is
very helpful if the filesystem is not filled to capacity and is operated with appropriate reserves; more file
storage options are then available, and this automatically reduces susceptibility to fragmentation.

6The defrag.ext2 system tool analyzes Ext2 partitions and reorganizes fragmented data in a contiguous structure.

591

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 592

Chapter 9: The Extended Filesystem Family

9.2.2 Data Structures
Now that we have considered the structural principles underlying the Ext2 filesystem, let’s take a closer
look at the data structures used to implement and store data on the hard disk. As noted above, the struc-
tures on the hard disk have counterparts in memory. These are used in addition to the virtual filesystem
structures, first to support communication with the filesystem and to simplify the management of impor-
tant data, and second to buffer metadata to speed up work with the filesystem.

Superblock
The superblock is the central structure in which all characteristic data of the filesystem are kept. Its contents
are the first thing the kernel sees when mounting a filesystem. Data are read using the ext2_read_super
routine (located in fs/ext2/super.c) invoked by means of the read_super function pointer in the
file_system_type structure discussed in Chapter 8. The actions performed by this routine are analyzed
in Section 9.2.4. The structure and layout of the superblock on the hard disk concern us here.

The relatively extensive ext2_super_block structure is used to define the superblock as follows:

<ext2_fs.h>
struct ext2_super_block {

__le32 s_inodes_count; /* Inodes count */
__le32 s_blocks_count; /* Blocks count */
__le32 s_r_blocks_count; /* Reserved blocks count */
__le32 s_free_blocks_count; /* Free blocks count */
__le32 s_free_inodes_count; /* Free inodes count */
__le32 s_first_data_block; /* First Data Block */
__le32 s_log_block_size; /* Block size */
__le32 s_log_frag_size; /* Fragment size */
__le32 s_blocks_per_group; /* # Blocks per group */
__le32 s_frags_per_group; /* # Fragments per group */
__le32 s_inodes_per_group; /* # Inodes per group */
__le32 s_mtime; /* Mount time */
__le32 s_wtime; /* Write time */
__le16 s_mnt_count; /* Mount count */
__le16 s_max_mnt_count; /* Maximal mount count */
__le16 s_magic; /* Magic signature */
__le16 s_state; /* File system state */
__le16 s_errors; /* Behaviour when detecting errors */
__le16 s_minor_rev_level; /* minor revision level */
__le32 s_lastcheck; /* time of last check */
__le32 s_checkinterval; /* max. time between checks */
__le32 s_creator_os; /* OS */
__le32 s_rev_level; /* Revision level */
__le16 s_def_resuid; /* Default uid for reserved blocks */
__le16 s_def_resgid; /* Default gid for reserved blocks */
/*
* These fields are for EXT2_DYNAMIC_REV superblocks only.
*
* Note: the difference between the compatible feature set and
* the incompatible feature set is that if there is a bit set
* in the incompatible feature set that the kernel doesn’t
* know about, it should refuse to mount the filesystem.
*
* e2fsck’s requirements are more strict; if it doesn’t know

592

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 593

Chapter 9: The Extended Filesystem Family

* about a feature in either the compatible or incompatible
* feature set, it must abort and not try to meddle with
* things it doesn’t understand...
*/

__le32 s_first_ino; /* First non-reserved inode */
__le16 s_inode_size; /* size of inode structure */
__le16 s_block_group_nr; /* block group # of this superblock */
__le32 s_feature_compat; /* compatible feature set */
__le32 s_feature_incompat; /* incompatible feature set */
__le32 s_feature_ro_compat; /* readonly-compatible feature set */
__u8 s_uuid[16]; /* 128-bit uuid for volume */
char s_volume_name[16]; /* volume name */
char s_last_mounted[64]; /* directory where last mounted */
__le32 s_algorithm_usage_bitmap; /* For compression */
/*
* Performance hints. Directory preallocation should only
* happen if the EXT2_COMPAT_PREALLOC flag is on.
*/

__u8 s_prealloc_blocks; /* Nr of blocks to try to preallocate*/
__u8 s_prealloc_dir_blocks; /* Nr to pre-allocate for dirs */
__u16 s_padding1;
/*
* Journaling support valid if EXT3_FEATURE_COMPAT_HAS_JOURNAL set.
*/

...
__u32 s_reserved[190]; /* Padding to the end of the block */

};

The elements at the end of the structure are not shown because they are not used by Ext2 and are relevant
only in Ext3. Why this is so is explained in Section 9.3.

It is necessary to clarify various matters relating to the data types of these elements before going on to
define the meanings of the individual fields. As can be seen, the data types of most of the fields are named
__le32, __le16, and so on. These are, without exception, integers of an absolutely defined bit length that
are represented in little endian byte order.7

Why are no elementary C types used? Recall that different processors represent elementary types by
means of different bit lengths. Using elementary types would thus result in different superblock for-
mats depending on processor type — which is clearly no good. When removable media are swapped
between different computer systems, the metadata must always be stored in the same format, regardless
of processor type.

Other parts of the kernel also need data types of a guaranteed bit length that does not differ from pro-
cessor to processor. For this reason, the architecture-specific files contain include/asm-arch/types.h
definitions for a series of types from __s8 to __u64 to control mapping onto the correct elementary data
types of the CPU type used. The endian-specific types are directly based on these definitions.

However, use of the correct length of a data type is, in itself, not enough. As established in Chapter 1,
the arrangement of the most significant and least significant parts of a multibyte data type also differs
depending on CPU type — again, we are faced with the problem of big and little endianness.

7The distinction between little and big endian numbers does not influence the number of bits. The information can be used by auto-
mated source code analysis tools to ensure that no mistakes are made when the quantities are, for example, inspected bitwise.

593

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 594

Chapter 9: The Extended Filesystem Family

To ensure filesystem portability between systems, the designers of the Ext2 filesystem decided to store
all numerical values of the superblock structure in little endian arrangement on the hard disk. When
data are read into memory, the kernel is therefore responsible for converting this format into the native
format of the CPU. The two files byteorder/big_endian.h and byteorder/little_endian.h provide
routines for converting between the individual CPU types. Because the data of Ext2 filesystems are
stored in little endian format by default, no conversion is necessary on CPU types such as IA-32 and
AMD64. This delivers a slight speed advantage over systems such as Sparc that are forced to swap the
order of the bytes for types with more than 8 bits.8

The superblock structure itself consists of an extensive collection of numbers to characterize the general
properties of the filesystem. Its size is always 1,024 bytes. This is achieved by padding the end of the
structure with a filler element (s_reserved).

Because the meaning of most entries is clear from the element name or associated comment, only those
that are of interest and not self-explanatory are discussed.

❑ s_log_block_size is the binary logarithm of the block size used divided by 1,024. Currently,
the three values 0, 1, and 2 are used, giving block sizes of 20 × 1,024 = 1,024, 21 × 1,024 = 2,048,
and 22 × 1,024 = 4,096 bytes. Minimum and maximum block sizes are currently limited to
1024 and 4096, respectively, by means of the kernel constants EXT2_MIN_BLOCK_SIZE and
EXT2_MAX_BLOCK_SIZE.9

The desired block size must be specified during filesystem creation with mke2fs. It cannot be
changed during current operation as it represents a fundamental filesystem constant. The system
administrator must decide on a reasonable block size commensurate with the anticipated use of
the filesystem. A balance must be struck between wasted storage space and costly administration
effort — no simple undertaking. Nevertheless, nearly all distributions relieve the administrator
from this burden and provide reasonable default settings based on heuristic experience.

❑ s_blocks_per_group and s_inodes_per_group define the number of blocks and inodes in each
block group. These values must also be fixed when the filesystem is created because they can-
not be modified thereafter. In most cases, it is advisable to use the default settings selected by
mke2fs.

❑ A magic number is stored in the s_magic field. This number ensures that a filesystem to be
mounted really is of type Ext2. It is stored with the value 0xEF53 in EXT2_SUPER_MAGIC (in
ext2_fs.h). The s_rev_level and s_minor_rev_level fields accept a revision number to
differentiate between filesystem versions.

Even though a Second Extended Filesystem may be uniquely identifiable by this
number, there is still no guarantee that the kernel can really mount it in Read/Write
mode (or even in Read mode). Because Ext2 supports a series of optional and/or
incompatible extensions (as you will see shortly), it is necessary to check several
other fields in addition to the magic number field before a filesystem can be
mounted.

8The endianness of a CPU has no effect on file contents if files are interpreted byte-by-byte as is the case, for example, with text files
(in files of this kind, numbers are stored as a text string, thus avoiding the problem of endianness). Sound files, on the other hand,
must often be converted between different representations using appropriate tools — sox, for example — because the arrangement
of bits is of relevance for binary interpretation of the data.
9Note that the upper limit is currently not checked by the kernel.

594

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 595

Chapter 9: The Extended Filesystem Family

❑ The s_def_resuid and s_def_resgid fields specify the user and group IDs of a system user for
whom a certain number of blocks has been exclusively reserved. The corresponding number is
stored in s_r_blocks_count.

No other user may use these blocks. What purpose does this serve? By default, both
s_def_resuid and s_ref_gid are set to 0; this corresponds to the system superuser (or root
user). This user is able to write to filesystems that normal users see as already being full. This
additional free space is usually referred to as the root reserve.

If this protection were not provided, it could happen, for instance, that certain daemons or
servers running under the root ID could no longer be started, thus rendering the system
unusable. Take, for example, the ssh server, which has to create a status file when a login is per-
formed. If the hard disk were totally full, no user — not even a system administrator — would
be able to log in. This would be a major catastrophe, particularly on remote systems such as
Internet servers.

The root reserve (usually ≈ 5% of available space is set aside when a filesystem is created) helps
prevent such mishaps and provides the superuser (or any other user if the UID/GID is changed
accordingly in the above variables) with a safety margin to ensure that at least actions can be
taken to counter overfilling of the hard disk.

❑ Filesystem consistency checks are performed with the help of three variables: s_state,
s_lastcheck, and s_checkinterval. The first is used to specify the current state of the
filesystem. When a partition is properly unmounted, its state is set to EXT2_VALID_FS (in
ext2_fs.h) to indicate to the mount program that the partition is OK. If the filesystem was
not correctly unmounted (because, e.g., the computer was shut down by switching off the
power), the variable still indicates the state to which it was set directly after the filesystem
was mounted, namely, EXT2_ERROR_FS. In this case, an e2fsck consistency check is triggered
automatically.

Incorrect unmounting is not the only reason for initiating a consistency check. The date of the
last check is recorded in s_lastcheck. If s_checkinterval has elapsed since this date, a check is
enforced even if the filesystem is in a clean state.

A third (and the most frequently used) way of enforcing a consistency check is implemented
with the help of counters called s_max_mnt_count and s_mnt_count. The latter counts the num-
ber of mount operations since the last check and the first the maximum number of mounts that
may be performed between two checks. When this value is exceeded, a consistency check with
e2fsck is initiated.

❑ The Ext2 filesystem was certainly not perfect when it was introduced and (like any other
software product) never will be. Ongoing technological development brings constant changes
and modifications to systems — understandably, these should be as easy as possible to integrate
into existing schemes. After all, nobody wants to have to completely rebuild a system every
2 weeks to enjoy the benefits of a new function. Care was therefore taken during design of
the Ext2 filesystem to ensure ease of integration of new features into the old design. For this
reason, three elements of the superblock structure are dedicated to describing additional
features: s_feature_compat, s_feature_incompat, and s_feature_ro_compat. As the names of
the variables indicate, there are three different classes into which new functions are
grouped.

❑ Compatible Features (s_feature_compat) — Can be used by new versions of the
filesystem code and have no negative impact (or functional impairment) on older

595

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 596

Chapter 9: The Extended Filesystem Family

versions. Examples of this kind of enhancement are the journal introduced in Ext3
(discussed extensively in Section 9.3) and the provision of ACLs (access control lists) to
support finer-grained assignments of permissions than is possible with the classic Unix
Read/Write/Execute system for user/group/others. The full list of all enhancements
known to each kernel version is located in ext2_fs.h in the form of pre-processor
definitions named EXT2_FEATURE_COMPAT_FEATURE.

Kernel 2.6.24 includes the following compatible features:

<ext2_fs.h>

#define EXT2_FEATURE_COMPAT_DIR_PREALLOC 0x0001
#define EXT2_FEATURE_COMPAT_IMAGIC_INODES 0x0002
#define EXT3_FEATURE_COMPAT_HAS_JOURNAL 0x0004
#define EXT2_FEATURE_COMPAT_EXT_ATTR 0x0008
#define EXT2_FEATURE_COMPAT_RESIZE_INO 0x0010
#define EXT2_FEATURE_COMPAT_DIR_INDEX 0x0020
#define EXT2_FEATURE_COMPAT_ANY 0xffffffff

The EXT2_FEATURE_COMPAT_ANY constant can be used to test whether any feature of this
category is present.

❑ Read-Only Features — Are enhancements that do not impair read access to a filesystem
when an obsolete version of the filesystem code is used. Write access, however, does
result in errors and inconsistencies in the filesystem. If a Read Only feature is set using
s_feature_ro_compat, the partition can be mounted in Read Only mode, and write access
is prohibited.

One example of a Read Only-compatible enhancement is the sparse superblock feature,
which saves space by not storing a superblock in every block group of a partition. Because,
in general, the kernel uses only the (still present) superblock copy in the first block
group, there is no difference in terms of read access as modifications would be made to
the remaining — now no longer existent — superblock copies when the filesystem is
unmounted and could therefore overwrite important data.

As for the compatible features, a list of all known variants for the current kernel
version is provided in ext2_fs.h. Again, pre-processor variables with the name
EXT2_FEATURE_RO_COMPAT_FEATURE are defined to assign a unique numeric value to each
enhancement or extension.

<ext2_fs.h>
#define EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER 0x0001
#define EXT2_FEATURE_RO_COMPAT_LARGE_FILE 0x0002
#define EXT2_FEATURE_RO_COMPAT_BTREE_DIR 0x0004
#define EXT2_FEATURE_RO_COMPAT_ANY 0xffffffff

❑ Incompatible features (s_incompat_features) — With regard to old versions
render a filesystem unusable if old code is used. A filesystem cannot be mounted
if an enhancement of this kind, which the kernel does not understand, is present.
EXT2_FEATURE_INCOMPAT_FEATURE macros assign numeric values to the incompatible
enhancements. An example of this kind of enhancement is ‘‘on the fly‘‘ compression that
stores all files in packed form — compressed file contents are meaningless, in both Read
and Write mode, to filesystem code that cannot unpack them.

596

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 597

Chapter 9: The Extended Filesystem Family

Other incompatible features are:

ext2_fs.h

#define EXT2_FEATURE_INCOMPAT_COMPRESSION 0x0001
#define EXT2_FEATURE_INCOMPAT_FILETYPE 0x0002
#define EXT3_FEATURE_INCOMPAT_RECOVER 0x0004
#define EXT3_FEATURE_INCOMPAT_JOURNAL_DEV 0x0008
#define EXT2_FEATURE_INCOMPAT_META_BG 0x0010
#define EXT2_FEATURE_INCOMPAT_ANY 0xffffffff

All three field elements are bitmaps whose individual bits represent a specific kernel enhance-
ment. This enables the kernel to determine (by means of comparisons with pre-defined con-
stants) which of the features it knows can be used on a filesystem. It is also able to scan the
entries for features it doesn’t know (these are marked by bits set at positions it doesn’t know)
and to decide, according to category, how to handle the filesystem.

Some elements of the structure are not used by the Ext2 code as they are provided
for future enhancements envisaged when the structure was designed. This is
intended to dispense with the need to reformat filesystems when new features are
added. Reformatting is often impracticable on heavily loaded server systems.

In the further course of the present description, reference is made to some of these fields when discussing
potential enhancements to existing functionality.

Group Descriptor
As Figure 9-2 shows, each block group has a collection of group descriptors arranged directly after the
superblock. The information they hold reflects the contents of each block group of the filesystem and
therefore relates not only to the data blocks associated with the local block group but also to the data and
inode blocks of other block groups.

The data structure used to define a single group descriptor is much shorter than the superblock structure,
as the following section of kernel source code demonstrates:

<ext2_fs.h>
struct ext2_group_desc
{

__le32 bg_block_bitmap; /* Blocks bitmap block */
__le32 bg_inode_bitmap; /* Inodes bitmap block */
__le32 bg_inode_table; /* Inodes table block */
__le16 bg_free_blocks_count; /* Free blocks count */
__le16 bg_free_inodes_count; /* Free inodes count */
__le16 bg_used_dirs_count; /* Directories count */
__le16 bg_pad;
__le32 bg_reserved[3];

};

The kernel uses a copy of this structure for each block group described in the group descriptor collection.

597

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 598

Chapter 9: The Extended Filesystem Family

The contents of each group descriptor include not only status entries indicating the number of free
blocks (bg_free_blocks_count), and inodes (bg_free_inodes_count) as well as the number of direc-
tories (bg_used_dirs_count), but also, and more importantly, two pointers to blocks containing the
bitmaps needed to organize used and free blocks and inodes. These are called bg_block_bitmap and
bg_inode_bitmap and are implemented by means of a 32-bit number that uniquely describes a block on
the hard disk.

The block to which bg_block_bitmap refers is not used to store data. Each of its bits stands for a data
block of the current block group. If a bit is set, the block is being used by the filesystem; otherwise,
the block is available. Because the position at which the first data block is located is known and all data
blocks are in linear sequence, it is easy for the kernel to convert between bit positions in the block bitmap
and the associated block positions.

The same method is applied for the inode pointer bg_inode_bitmap. It, too, points to a block whose
individual bits are used to describe all inodes of a block group. Because it is also known in which blocks
the inode structures are located and how big the inode structure is, the kernel can convert between the
bitmap entries and the associated positions on the hard disk (see also Figure 9-2).

Each block group contains not just one but a large number of group descriptor structures — a copy
for each block group in the filesystem. From each block group, it is therefore possible to determine the
following information for every single block group in the system:

❑ The position of the block and inode bitmaps.

❑ The position of the inode table.

❑ The number of free blocks and inodes.

The blocks used as block and inode bitmaps are not, however, duplicated in each block group for all
other block groups: in fact, there is only one occurrence of them in the system. Each block group has a
local block for the block bitmap and an extra block for the inode bitmap. Nevertheless, all data and inode
bitmaps of the remaining groups can be accessed from every block group because their position can be
determined with the help of the entries in the group descriptor.

Because the filesystem block size is variable, the number of blocks that can be represented by a block
bitmap also changes accordingly. If the block size is set to 2,048 bytes, each block has exactly 2,048 × 8 =
16,384 bits that can be used to describe the state of data blocks. Similarly, block sizes of 1,024 and 4,096
bytes mean that exactly 8,192 and 32,768 blocks can be managed. This data are summarized in Table 9-2.

In our example, we use only 2 bytes to store the block bitmap so that exactly 16 blocks can be addressed.
The data blocks that hold the actual contents of the filesystem files (and the data used for indirection) are
at the end of the block group.

Table 9-2: Maximum Sizes in a Block Group

Block size Number of blocks

1,024 8,192

2,048 16,384

4,096 32,768

598

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 599

Chapter 9: The Extended Filesystem Family

The division of a partition into block groups makes sense for systematic reasons and also brings tangible
benefits in terms of speed. The filesystem always attempts to store the contents of a file in a single block
group to minimize the travel of the read/write head between inode, block bitmap, and data blocks.
Normally, this can be achieved, but there are, of course, situations in which files are spread over several
block groups because there is not enough space in a single block group. Because, depending on block
size, a block group can accept only a certain number of data blocks, there are maximum limits for file
sizes (see Table 9-2). If these are exceeded, files must be spread over several block groups at the price of
longer read/write head travel and reduced performance.

Inodes
Each block group also contains an inode bitmap and a local inode table that may extend over several
blocks. The bitmap contents relate to the local block group and are not copied to any other point in the
filesystem.

The inode bitmap is used to provide an overview of the used and free inodes of a group. As usual, each
inode is represented as ‘‘used‘‘ or ‘‘free‘‘ by means of a single bit. The inode data are stored in the inode
table with the help of a large number of sequential inode structures. How these data are held on the
storage medium is defined by the following lengthier structure:

<ext2_fs.h>
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
union {

struct {
__le32 l_i_reserved1;

} linux1;
struct {
...
} hurd1;
struct {
...
} masix1;

} osd1; /* OS dependent 1 */
__le32 i_block[EXT2_N_BLOCKS];/* Pointers to blocks */
__le32 i_generation; /* File version (for NFS) */
__le32 i_file_acl; /* File ACL */
__le32 i_dir_acl; /* Directory ACL */
__le32 i_faddr; /* Fragment address */
union {

struct {
__u8 l_i_frag; /* Fragment number */
__u8 l_i_fsize; /* Fragment size */

599

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 600

Chapter 9: The Extended Filesystem Family

__u16 i_pad1;
__le16 l_i_uid_high; /* these 2 fields */
__le16 l_i_gid_high; /* were reserved2[0] */
__u32 l_i_reserved2;

} linux2;
struct {
...
} hurd2;
struct {
...
} masix2;

} osd2; /* OS dependent 2 */
};

The structure includes three operating-system-specific unions that accept different data, depending on
use. The Ext2 filesystem is used not only in Linux but also in the HURD kernel10 of the GNU project and
in the Masix experimental operating system (one of the principal authors of Ext2 was involved in the
development of Masix). The structure in the preceding code shows only the Linux-specific elements; the
data of other operating systems are beyond the scope of this book.

At the beginning of the structure there is a whole host of data on the properties of the file characterized
by the inode. Many of these data will be familiar from Chapter 8, where the structure of a generalized
virtual filesystem inode is discussed.

❑ i_mode saves the access rights (in accordance with the usual Unix scheme of user, group, others)
and the file type (directory, device file, etc.).

❑ Time stamps with the following meanings are held in ctime, atime, mtime, and dtime:

❑ atime gives the time of the last file access.

❑ mtime gives the time of the last file change.

❑ ctime gives the time of the last inode change.

❑ dtime gives the time of file deletion.

All time stamps are stored in the conventional Unix format to indicate the number of seconds
elapsed since midnight on 1 January 1970.

❑ The user and group ID consist of 32 bits and are, for historical reasons, split into two fields. The
lower-order part is in i_uid and i_gid, and the higher-order parts are in l_i_uid_high and
l_i_gid_high.

Why is this rather strange approach adopted instead of two simple 32-bit numbers? When the
Ext2 filesystem was conceived, 16-bit numbers were adequate for user and group IDs because
this permitted a maximum of 216 = 65,536 users. At the time, this figure seemed to be large
enough, but this assumption was proved to be wrong, particularly on very large systems such as
commercial mail servers. To support enhancement to 32 bits without the need for a new filesys-
tem format, a 32-bit entry from the Linux-specific osd1 field was split into two 16-bit parts that
had been reserved for enhancements. Used in conjunction with the existing data, these permit

10Hurd = Hird of Unix replacing daemons, Hird = Hurd of interfaces representing depth — a recursive acronym. The Hurd is well
known for announcements of its developers that it will be finished in half a year — or so. Unfortunately, this tradition had already
been established nearly a decade ago, and a final (or at least usable) version is still far on the horizon.

600

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 601

Chapter 9: The Extended Filesystem Family

the representation of a 32-bit wide user and group identifier so that 232 = 4,294,967,296 users can
be supported.

❑ i_size and i_blocks specify the file size in bytes and blocks, where 512 bytes is always assumed
as the block size (this unit has nothing to do with the low-level block size of the filesystem and
is always constant). At first glance, it would be easy to suppose that i_blocks can always be
derived from i_size. However, owing to optimization of the Ext2 filesystem, this is not the case.
The file holes method is used to ensure that files with longer empty sections do not waste space. It
keeps the space used by holes to a minimum and requires two fields to store the byte and block
length of a file.

❑ The pointers to the data blocks of a file are held in the i_block array that comprises
EXT2_N_BLOCKS. By default, this value is set to 12 + 3. The first 12 elements are used for direct
block addressing and the last three for implementing simple, double, and triple indirection.
Although theoretically this value can be changed at compilation time, this is not advisable
because it produces incompatibility with all other standard formats of Ext2.

❑ i_links_count is a counter to specify the number of hard links that point to an inode.

❑ i_file_acl and i_dir_acl support implementation of access control lists that permit
finer-grained control of access rights than is possible with the classic Unix approach.

❑ Some elements of the inode are already defined but not yet in use. They are available for future
enhancements. For example, i_faddr, l_i_fsize and l_i_fsize are provided to store fragmen-
tation data so that the contents of several small files can be allocated to a single block.

How many inodes are there in each block group? The answer depends on the settings at filesystem
creation time. The number of inodes per block group can be set to any (reasonable) value when the
filesystem is created. This number is held in the s_inodes_per_group field. Because the inode structure
has a constant size of 120 bytes, this information and the block size can be used to determine the number
of blocks with inode structures. Regardless of the block size, the default setting is 128 inodes per block
group, an acceptable value for most scenarios.

Directories and Files
Now that the principal aspects of infrastructure have been explained, let’s discuss the representation of
directories that define the topology of filesystems. As noted in Chapter 8, directories — as in classic Unix
filesystems — are nothing more than special files with pointers to inodes and their filenames to represent
files and subdirectories in the current directory. This is also true in the Second Extended Filesystem. Each
directory is represented by an inode to which data blocks are assigned. The blocks contain structures to
describe the directory entries. The data structure needed to do this is defined as follows in the kernel
sources:

<ext2_fs.h>
struct ext2_dir_entry_2 {

__le32 inode; /* Inode number */
__le16 rec_len; /* Directory entry length */
__u8 name_len; /* Name length */
__u8 file_type;
char name[EXT2_NAME_LEN]; /* File name */

};

typedef struct ext2_dir_entry_2 ext2_dirent;

601

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 602

Chapter 9: The Extended Filesystem Family

The typedef statement allows the shorter ext2_dirent to be used in place of struct ext2_dir_entry_2
in the kernel sources.

The names of the individual fields are more or less self-explanatory because they are directly based
on the scheme introduced in Chapter 8. inode is a pointer to the inode of the directory entry; name_len
is the length of the directory entry string. The name itself is held in the names[] array and may be up to
EXT2_NAME_LEN characters long (the default value is 255).

Because the length of a directory entry must always be a multiple of 4, names may
be padded with up to three zero bytes (i.e., bytes with ASCII value 0). No zero bytes
need be added if the length of the name is divisible by 4 without a remainder.

file_type specifies the directory entry type. This variable accepts one of the values defined in the fol-
lowing enum structure:

<ext2_fs.h>
535
enum {

EXT2_FT_UNKNOWN,
EXT2_FT_REG_FILE,
EXT2_FT_DIR,
EXT2_FT_CHRDEV,
EXT2_FT_BLKDEV,
EXT2_FT_FIFO,
EXT2_FT_SOCK,
EXT2_FT_SYMLINK,
EXT2_FT_MAX

};

EXT2_FT_REG_FILE is used most frequently because it indicates a regular file (whose contents are of
no relevance). EXT2_FT_DIR also occurs often and represents directories. The other constants denote
character-special and block-special files (BLKDEV and CHRDEV), FIFOs (named pipes; FIFO), sockets (SOCK),
and symbolic links (SYMLINK).

rec_len is the only field in the directory structure whose meaning is not so obvious. It is an offset pointer
indicating the number of bytes between the end of the rec_len field and the end of the next rec_len field.
This enables the kernel to scan directories efficiently by jumping from one name to the next. By reference
to an example, Figure 9-6 shows how different directory entries are represented on hard disk.

ls lists the contents of directories as follows:

wolfgang@meitner> ls -la
total 20
drwxr-xr-x 3 wolfgang users 4096 Feb 14 12:12 .
drwxrwxrwt 13 wolfgang users 8192 Feb 14 12:12 ..
brw-r--r-- 1 wolfgang users 3, 0 Feb 14 12:12 harddisk
lrwxrwxrwx 1 wolfgang users 14 Feb 14 12:12 linux -> /usr/src/linux
-rw-r--r-- 1 wolfgang users 13 Feb 14 12:12 sample
drwxr-xr-x 2 wolfgang users 4096 Feb 14 12:12 sources

602

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 603

Chapter 9: The Extended Filesystem Family

s o u r c e \0 \0

12 1 2 . \0 \0 \0

12 2 2

16 8 4

32 5 7

16 6 2

16 6 1

16 7 2

. .h \0 \0

h a r d d i s k

l i n u x \0 \0 \0

d e l d i r \0 \0

s a m p l e \0 \0

inode r
e
c
_
l
e
n

n
a
m
e
_
l
e
n

f
i
l
e
_
t
y
p
e

name

Figure 9-6: Representation of files and directories in the
Second Extended Filesystem.

The first two entries are always . and .. to point to the current and parent directory. The meaning of the
rec_len field in Figure 9-6 is also clear. It indicates the number of bytes to be skipped after the end of
the rec_len field to get to the start of the next entry, beginning with name_len.

The filesystem code makes use of this information when deleting entries from a directory. To make it
unnecessary to shift the contents of the entire inode, rec_len of the entry before the entry to be deleted is
set to a value that points to the entry after the entry to be deleted. The preceding list of directory contents
does not include an entry for the deldir directory shown in Figure 9-6 because this directory was deleted.
The value of the rec_len field in the entry before deldir is 32, and this directs the filesystem code to the
next but one entry (sample) when it scans the directory contents. The detailed mechanisms used to delete
files/inodes are described in Section 9.2.4.

Naturally, files are also represented by inodes. It is clear how regular data files are represented, but there
are a number of file types where the filesystem must exercise special care. These include symbolic links,
device files, named pipes, and sockets.

The type of a file is not defined in the inode itself but in the file_type field of the parent directory entry.
Nevertheless, the contents of an inode differ according to the file type it represents. It should be noted
that only directories and regular files11 occupy data blocks on the hard disk. All other types are fully
described by the information in the inode.

❑ Symbolic links are saved in their entirety in the inode if the name of the link target is less than 60
characters long. Because the inode itself does not provide a field for the target name of symbolic
links (this would, in fact, be a massive waste of space), a trick is used. The i_block structure
normally used to hold the addresses of file blocks consists of 15 32-bit entries (a total of 15 × 4 =
60 bytes), is assigned a new role and stores the target name of symbolic links.

If the target name comprises more than 60 characters, the filesystem allocates a data block to
store the string.

11And also links with targets comprising more than 60 characters.

603

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 604

Chapter 9: The Extended Filesystem Family

❑ Device files, named pipes, and persistent sockets are also fully described by the information in the
inode. In memory, data also required are held in the inode structure of the VFS (i_cdev for char-
acter devices and i_rdev for block devices; all information can be reconstructed from these). On
the hard disk the first element of the data pointer array i_data[0] is used to store the additional
information; this does not cause any problems because device files require no data blocks; the
same trick is used as with symbolic links.

Data Structures in Memory
To dispense with the need to constantly read administration structures from slow hard disks, Linux
saves the most important information that these structures contain in special data structures that reside
permanently in RAM. Access is considerably faster, and less interaction with the hard disk is required.
Then why aren’t all filesystem management data held in RAM (with writeback of changes to disk at
regular intervals)? Although theoretically this would be possible, it does not work in practice because so
much memory would be required to hold all block and inode bitmaps of a large hard disk with several
gigabytes — as found on many computers today.

The virtual filesystem provides an element named u in the struct super_block and struct inode struc-
tures. This element is used by the various filesystem implementations to store information not already
included in the filesystem-independent contents of the structure. The Second Extended Filesystem uses
the ext2_sb_info and ext2_inode_info structures for the same purpose. The latter is of no particular
interest as compared to its counterpart on the hard disk.

ext2_sb_info is defined as follows:

<ext2_fs_sb.h>
struct ext2_sb_info {

unsigned long s_frag_size; /* Size of a fragment in bytes */
unsigned long s_frags_per_block;/* Number of fragments per block */
unsigned long s_inodes_per_block;/* Number of inodes per block */
unsigned long s_frags_per_group;/* Number of fragments in a group */
unsigned long s_blocks_per_group;/* Number of blocks in a group */
unsigned long s_inodes_per_group;/* Number of inodes in a group */
unsigned long s_itb_per_group; /* Number of inode table blocks per group */
unsigned long s_gdb_count; /* Number of group descriptor blocks */
unsigned long s_desc_per_block; /* Number of group descriptors per block */
unsigned long s_groups_count; /* Number of groups in the fs */
unsigned long s_overhead_last; /* Last calculated overhead */
unsigned long s_blocks_last; /* Last seen block count */
struct buffer_head * s_sbh; /* Buffer containing the super block */
struct ext2_super_block * s_es; /* Pointer to the super block in the buffer

*/
struct buffer_head ** s_group_desc;
unsigned long s_mount_opt;
unsigned long s_sb_block;
uid_t s_resuid;
gid_t s_resgid;
unsigned short s_mount_state;
unsigned short s_pad;
int s_addr_per_block_bits;
int s_desc_per_block_bits;
int s_inode_size;
int s_first_ino;

604

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 605

Chapter 9: The Extended Filesystem Family

spinlock_t s_next_gen_lock;
u32 s_next_generation;
unsigned long s_dir_count;
u8 *s_debts;
struct percpu_counter s_freeblocks_counter;
struct percpu_counter s_freeinodes_counter;
struct percpu_counter s_dirs_counter;
struct blockgroup_lock s_blockgroup_lock;

};

What is interesting in the structure definition is the fact that machine-specific data types can be used in
place of the bit-oriented variants (u32, etc.). This is because it is not necessary to be able to swap different
forms of data representation in memory between machines. Although most elements of the structure are
already familiar from the on-disk superblock, some elements are found only in the RAM variant.

❑ s_mount_opt holds the mount options, and the current mount state is saved in s_mount_state.
The following flags are available for s_mount_opt:

<ext2_fs.h>
#define EXT2_MOUNT_CHECK 0x0001 /* Do mount-time checks */
#define EXT2_MOUNT_OLDALLOC 0x0002 /* Don’t use the new Orlov

allocator */
#define EXT2_MOUNT_GRPID 0x0004 /* Create files with directory’s

group */
#define EXT2_MOUNT_DEBUG 0x0008 /* Some debugging messages */
#define EXT2_MOUNT_ERRORS_CONT 0x0010 /* Continue on errors */
#define EXT2_MOUNT_ERRORS_RO 0x0020 /* Remount fs ro on errors */
#define EXT2_MOUNT_ERRORS_PANIC 0x0040 /* Panic on errors */
#define EXT2_MOUNT_MINIX_DF 0x0080 /* Mimics the Minix statfs */
#define EXT2_MOUNT_NOBH 0x0100 /* No buffer_heads */
#define EXT2_MOUNT_NO_UID32 0x0200 /* Disable 32-bit UIDs */
#define EXT2_MOUNT_XATTR_ER 0x4000 /* Extended user attributes */
#define EXT2_MOUNT_POSIX_ACL 0x8000 /* POSIX Access Control Lists */
#define EXT2_MOUNT_XIP 0x010000 /* Execute in place */
#define EXT2_MOUNT_USRQUOTA 0x020000 /* user quota */
#define EXT2_MOUNT_GRPQUOTA 0x040000 /* group quota */
#define EXT2_MOUNT_RESERVATION 0x080000 /* Preallocation */

To check a given ext2_sb_info instance sb for a mount option opt, the macro
test_opt(sb,opt) is provided. The calling syntax is somewhat unusual: The mount
option is not specified by the pre-processor constant, but only by the part without EXT2_MOUNT_.
To check, for instance, if pre-allocation is required or not requires the following code:
test_opt(sb,RESERVATION). Keep this especially in mind when greping through the kernel
sources, or analyzing them with LXR: Searching for EXT2_MOUNT_RESERVATION will only reveal
the definition of the pre-processor symbol, but none of its uses. Searching for RESERVATION
instead delivers the desired hits.

❑ If the superblock is not read from the default block 1, but from some other block (in case the first
one should be damaged), the corresponding (relative) block is stored in s_sb_block.

❑ The statfs system call (and most users as well) is interested in the number of blocks a filesystem
provides. That means the number of blocks that can be used to store data. Unavoidably, some
space needs to be sacrificed for filesystem management data like superblocks or block group
descriptors. Computing the net block number is easy: the kernel just needs to subtract the

605

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 606

Chapter 9: The Extended Filesystem Family

number of management blocks from the number of blocks available for the filesystem.
Albeit simple, the operation is costly (the kernel needs to iterate over all block groups), so
s_overhead_last and s_blocks_last are used to cache the last computed value for the number
of management blocks and the totally available blocks.

Note that the values usually remain constant. Once they have been computed, they can never-
theless change if the filesystem is resized while being mounted. But resizing is seldomly used
and requires an external kernel patch, so it will not be discussed any further.

❑ s_dir_count indicates the total number of directories; this is needed for implementation of
the Orlov allocator discussed in Section 9.2.4. Because this value is not saved in the on-disk
structure, it must be determined each time a filesystem is mounted. The kernel provides the
ext2_count_dirs function for this purpose.

❑ s_debts is a pointer to an array of 8-bit numbers (generally, shorts) with a separate entry for
each block group. The Orlov allocator uses this array to keep a balance between file and directory
inodes in a block group (this is discussed in greater depth in Section 9.2.4).

❑ The percpu_counter instances at the end of the structure provide approximate, but fast and scal-
able counters for the free blocks and inodes and the number of directories. The implementation
of such counters is discussed in Section 5.2.9.

In kernel versions up to 2.4, ext2_sb_info included additional elements to cache the block and inode
bitmaps. Because of their size, it was not possible (or at least not reasonable) to keep them all in memory
at the same time. As a result, an LRU method was used to keep only the most frequently used elements
in RAM. In the meantime, this specific cache implementation has been rendered superfluous because
accesses to block devices are now cached automatically by the kernel, even if only a single block (and
not an entire page) is read. Chapter 16 discusses the implementation of the new caching scheme in detail
when describing __bread.

Pre-allocation
To increase the performance of block allocation, the second extended filesystem employs a mechanism
known as pre-allocation. Whenever a number of new blocks is requested for a file, not just the absolutely
necessary blocks are allocated. Blocks for consecutive allocations are additionally spied out and marked
for later use without being finally allocated. The kernel ensures that reserved areas don’t overlap. This
saves time when new allocations are made and prevents fragmentation, especially when multiple files
grow concurrently. It should be emphasized that pre-allocation does not lead to poorer use of the avail-
able disk space. A region pre-allocated by one inode can at any time be overwritten by another inode if
the need arises. However, the kernel tries to be polite and avoid this. One can think of pre-allocation as
an additional layer before the final block allocation that determines how the available space could be put
to good use. Pre-allocation is a suggestion, while allocation is final.

Several data structures are required to implement this mechanism. The reservation window itself is not
very complicated: It uses a start and end block to specify a reserved region. The following data structure
reflects this:

<ext2_fs_sb.h>
struct ext2_reserve_window {

ext2_fsblk_t _rsv_start; /* First byte reserved */
ext2_fsblk_t _rsv_end; /* Last byte reserved or 0 */

};

606

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 607

Chapter 9: The Extended Filesystem Family

The window needs to be integrated with the other Ext2 data structures. Recall that both struct
ext2_inode and struct ext2_sb_info contain fields that point to information about pre-allocation.

fs/ext2/ext2.h
struct ext2_inode_info {
...

struct ext2_block_alloc_info *i_block_alloc_info;
...
}

<ext2_fs_sb.h>
struct ext2_sb_info {
...

spinlock_t s_rsv_window_lock;
struct rb_root s_rsv_window_root;
struct ext2_reserve_window_node s_rsv_window_head;

...
}

The pre-allocation information for each individual inode is contained in struct ext2_block_alloc_info
and struct ext2_reserve_window_node, which are defined as follows:

<ext2_fs_sb.h>
struct ext2_reserve_window_node {

struct rb_node rsv_node;
__u32 rsv_goal_size;
__u32 rsv_alloc_hit;
struct ext2_reserve_window rsv_window;

};

struct ext2_block_alloc_info {
/* information about reservation window */
struct ext2_reserve_window_node rsv_window_node;

__u32 last_alloc_logical_block;
ext2_fsblk_t last_alloc_physical_block;

};

The data structures are heavily interconnected and embedded within each other, but Figure 9-7 helps to
keep track.

All instances of ext2_reserve_window_node are collected in a red-black tree headed by
ext2_sb_info->s_rsv_window_root (refer to Appendix C for more information about such
trees). The tree nodes are embedded into ext2_reserve_window via rsv_node.

The red-black tree allows for sorting the elements by their reservation window borders. This
allows the kernel to quickly find reservations into which a given goal block falls. Additionally,
ext2_reserve_window_node contains the following information:

❑ The desired size of the allocation window is given by rsv_goal_size. Note that the ioctl
EXT2_IOC_SETRSVSZ can be used to set the value from userland, while EXT2_IOC_GETRESVZ
retrieves the current setting. The maximum allowed reservation window size is
EXT2_MAX_RESERVE_BLOCKS, usually defined to 1,027.

607

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 608

Chapter 9: The Extended Filesystem Family

❑ rsv_alloc_hits keeps track of the pre-allocation hits, that is, how many allocations were per-
formed from within the reservation window.

❑ Most importantly, the reserve window itself is given by rsv_window.

Ext2 reservation
windows

struct ext2_reserve_
window

struct ext2_reserve_
window_node

struct ext2_block_
alloc_info

struct ext2_Inode_
info

struct rb_node

ext2_sb_info

f_rsv_window_root

Figure 9-7: Data structures used by the pre-allocation mechanism.

If an inode is equipped with pre-allocation information, then ext2_inode_info->i_block_alloc_info
points to an instance of struct ext2_block_alloc_info. In addition to an embedded instance of
ext2_reserve_window_node that brings the connection with the red-black tree, the data structure
contains information about the last allocated block: last_alloc_logical_block denotes the file-relative
number of the last allocated block, while last_alloc_physical_block stores the corresponding physical
number on the block device.

9.2.3 Creating a Filesystem
Filesystems are not created by the kernel itself but by the mke2fs userspace tool. Although I am more
concerned with the work of the kernel, I discuss this important aspect of filesystem work briefly below.
mk2efs not only shares the space on a partition between management information and useful data, but
also creates a simple directory structure on the storage medium so that the filesystem can be mounted.

Which management information is meant? When a newly formatted12 Ext2 partition is mounted,
it already contains a standard subdirectory named lost+found to hold defective blocks of the data

12It is, of course, possible to argue about the subtle difference between low-level formatting and filesystem creation and to insist on
a distinction between the two terms. I take a pragmatic approach and use both terms synonymously, as most Unix users do, because
there is no danger of confusing the two.

608

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 609

Chapter 9: The Extended Filesystem Family

medium (thanks to the quality of today’s hard disks, it is almost always empty). This involves the
following steps:

1. An inode and a data block are reserved and initialized for the root directory. The data block
contains a file list with three entries: ., .., and lost+found. As this is the root directory, both
. and .. point back to the root inode that represents the root directory.

2. An inode and a data block are also reserved for the lost+found directory, which has only
two entries: .. points back to the root inode and ., as usual, points to the inode of the direc-
tory itself.

Although mke2fs is designed for use with block special files, it is possible to use a regular file on a data
medium to create a filesystem. This is because of the ‘‘everything is just a file philosophy‘‘ of Unix accord-
ing to which the same routines can be used to handle regular files and block special devices, at least from
the userspace perspective. Using regular files instead of block special files is a very good way of experi-
menting with filesystem structures without having to access existing filesystems with possibly important
data or without having to bother with slow floppy disk drives. For this reason, I briefly discuss the steps
involved below.

First, a file of arbitrary size is created using the dd standard utility.

wolfgang@meitner> dd if=/dev/zero of=img.1440 bs=1k count=1440
1550+0 records in
1440+0 records out

This creates a file with a size of 1.4 MiB, the same capacity as a 3.5-inch floppy disk. The file contains only
zero bytes (with ASCII value 0) generated by /dev/zero.

mke2fs now creates a filesystem on the file:

wolfgang@meitner> /sbin/mke2fs img.1440
mke2fs 1.40.2 (12-Jul-2007)
img.1440 is not a block special device.
Proceed anyway? (y,n) y
File System label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
Maximum file system blocks=1572864
1 block group
8192 blocks per group, 8192 fragments per group
184 inodes per group
...

The data in img.1440 can be viewed using a hex editor to draw conclusions on the filesystem structure.
od and hexedit are classic examples of such editors, but all distributions include numerous alternatives
ranging from Spartan text-mode tools to sophisticated, user-friendly graphic applications.

609

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 610

Chapter 9: The Extended Filesystem Family

An empty filesystem is not very interesting, so we need a way of filling the sample filesystem with data.
This is done by mounting the filesystem using the loopback interface, as shown in the following example:

wolfgang@meitner> mount -t ext2 -o loop=/dev/loop0 img.1440 /mnt

The filesystem can then be manipulated in such a way as to give the impression that it is located on a
regular partition of a block device. All changes are transferred to img.1440 and can be examined there.

9.2.4 Filesystem Actions
As demonstrated in Chapter 8, the association between the virtual filesystem and specific implemen-
tations is established in the main by three structures that include a series of function pointers; this
association must be implemented by all filesystems.

❑ Operations for manipulating the contents of a file are stored in file_operations.

❑ Operations for processing the file objects themselves are held in inode_operations

❑ Operations with generalized address spaces are stored in address_space_operations.

The Ext2 filesystem features various instances of file_operations for different file types. Naturally, the
most frequently used variant is for regular files and is defined as follows:

fs/ext2/file.c
struct file_operations ext2_file_operations = {

.llseek = generic_file_llseek,

.read = do_sync_read,

.write = do_sync_write,

.aio_read = generic_file_aio_read,

.aio_write = generic_file_aio_write,

.ioctl = ext2_ioctl,

.mmap = generic_file_mmap,

.open = generic_file_open,

.release = ext2_release_file,

.fsync = ext2_sync_file,

.readv = generic_file_readv,

.splice_read = generic_file_splice_read,

.splice_write = generic_file_splice_write,
};

Most entries hold pointers to the standard functions of VFS discussed in Chapter 8.

Directories also have their own file_operations instance — which is much shorter because many file
operations make no sense if applied to directories.

fs/ext2/dir.c
struct file_operations ext2_dir_operations = {

.llseek = generic_file_llseek,

.read = generic_read_dir,

.readdir = ext2_readdir,

.ioctl = ext2_ioctl,

.fsync = ext2_sync_file,
};

610

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 611

Chapter 9: The Extended Filesystem Family

Fields not shown are automatically initialized with NULL pointers by the compiler.

The inode operations are initialized as follows for regular files:

fs/ext2/file.c
struct inode_operations ext2_file_inode_operations = {

.truncate = ext2_truncate,

.setxattr = generic_setxattr,

.getxattr = generic_getxattr,

.listxattr = ext2_listxattr,

.removexattr = generic_removexattr,

.setattr = ext2_setattr,

.permission = ext2_permission,
};

More inode operations are available for directories.

fs/ext2/namei.c
struct inode_operations ext2_dir_inode_operations = {

.create = ext2_create,

.lookup = ext2_lookup,

.link = ext2_link,

.unlink = ext2_unlink,

.symlink = ext2_symlink,

.mkdir = ext2_mkdir,

.rmdir = ext2_rmdir,

.mknod = ext2_mknod,

.rename = ext2_rename,

.setxattr = generic_setxattr,

.getxattr = generic_getxattr,

.listxattr = ext2_listxattr,

.removexattr = generic_removexattr,

.setattr = ext2_setattr,

.permission = ext2_permission,
};

Filesystem and block layers are linked by the address_space_operations discussed in Chapter 4. In the
Ext2 filesystem, these operations are filled with the following entries13:

fs/ext2/inode.c
struct address_space_operations ext2_aops = {

.readpage = ext2_readpage,

.readpages = ext2_readpages,

.writepage = ext2_writepage,

.sync_page = block_sync_page,

.write_begin = ext2_write_begin,

.write_end = generic_write_end,

.bmap = ext2_bmap,

.direct_IO = ext2_direct_IO,

.writepages = ext2_writepages,
};

13There is a second version of address space operations named ext2_nobh_aops; it contains only functions in which the page
cache manages without buffer_heads. These functions are used (predominantly on machines with gigantic RAM configurations)
when the mount option nobh is specified. This is a seldom used option not discussed here.

611

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 612

Chapter 9: The Extended Filesystem Family

A fourth structure (super_operations) is used for interaction with the superblock (reading, writing, and
allocating inodes). Its values are as follows for the Ext2 filesystem:

fs/ext2/super.c
static struct super_operations ext2_sops = {

.alloc_inode = ext2_alloc_inode,

.destroy_inode = ext2_destroy_inode,

.read_inode = ext2_read_inode,

.write_inode = ext2_write_inode,

.delete_inode = ext2_delete_inode,

.put_super = ext2_put_super,

.write_super = ext2_write_super,

.statfs = ext2_statfs,

.remount_fs = ext2_remount,

.clear_inode = ext2_clear_inode,

.show_options = ext2_show_options,
};

It is neither possible nor does it make sense to discuss the details of all functions listed in the above
structures. Instead, the sections below are restricted to an examination of the most important functions
that illustrate the key mechanisms and principles of the Ext2 implementation. You are encouraged to look
up the remaining functions in the kernel sources: they are not hard to understand with the background
which is provided in the following sections.

Mounting and Unmounting
Recall from Chapter 8 that the kernel requires a further structure to hold mount and unmount informa-
tion when working with filesystems — the information is not provided in any of the structures discussed
above. The file_system_type structure is used for this purpose and is defined as follows for the Second
Extended File System:

fs/ext2/super.c
static struct file_system_type ext2_fs_type = {

.owner = THIS_MODULE,

.name = "ext2",

.get_sb = ext2_get_sb,

.kill_sb = kill_block_super,

.fs_flags = FS_REQUIRES_DEV,
};

Chapter 8 explained that the mount system call invokes the function in get_sb to read the superblock
of a filesystem. The Second Extended Filesystem relies on a standard function of the virtual filesystem
(get_sb_bdev) to do this:

fs/ext2/super.c
static int ext2_get_sb(struct file_system_type *fs_type,

int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{

return get_sb_bdev(fs_type, flags, dev_name, data, ext2_fill_super, mnt);
}

612

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 613

Chapter 9: The Extended Filesystem Family

A function pointer to ext2_fill_super is passed as a parameter for get_sb_bdev. This function fills
a superblock object with data that must be read from the hard disk if there is no suitable superblock
object in memory.14 In this section, we need therefore only examine the ext2_fill_super function in
fs/ext2/super.c. Its code flow diagram is shown in Figure 9-8.

Check magic number

ext2_fill_super

sb_min_blocksize

sb_set_blocksize

ext2_check_descriptors

ext2_count_free_blocks

ext2_count_inodes

ext2_count_dirs

ext2_write_superext2_setup_super

sb_bread

sb_bread

parse_options

Set default options

Check features

Block size not equal sb_min_blocksize?

Fill in super_block_info

Read in group descriptors

Set up approximate per-CPU counters

Figure 9-8: Code flow diagram for ext2_fill_super.

ext2_fill_super starts by setting an initial block size for reading the superblock. Because the block size
used in the file system is not yet known, the kernel first attempts to find the minimum possible value with
the help of sb_min_blocksize. This function normally sets 1,024 bytes as the block size. If, however, the
block device has a larger minimum block size, this is used instead.

14This is naturally only the case when the desired filesystem is already mounted on the system but needs to be mounted somewhere
else, a comparatively rare occurrence.

613

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 614

Chapter 9: The Extended Filesystem Family

The data block in which the superblock is located is then read by sb_bread. This is a wrapper for the
__bread function described in Chapter 16. A simple typecast converts the raw data returned by the
function into an instance of type ext2_super_block.15

A check is now made to establish whether the partition used actually contains a Second Extended Filesys-
tem. The magic number stored in the superblock holds the required information. Its value must match
that of the EXT2_SUPER_MAGIC constant. If the check fails, the mount operation is aborted, and an error
message indicates that an attempt was made to mount a non-Ext2 filesystem.

parse_options analyzes the parameters passed to specify mount options (such as the use of access
control lists or enhanced attributes). All values are set to their defaults before this is done to ensure that
not specifying an option is equivalent to specifying the default value.

A check of the filesystem features reveals whether the kernel is able to mount the filesystem at all, in Read
and Write mode, or in Read mode only (the enhancement features of Ext2 are discussed in Section 9.2.2).
The bit strings stored in s_feature_ro_compat and s_feature_incompat are compared with the corre-
sponding kernel constants. Two constants are defined for this purpose: EXT2_FEATURE_INCOMPAT_SUPP
contains all incompatible features together, while EXT2_FEATURE_RO_COMPAT contains all bits for compat-
ible features that can only be handled Read Only. Filesystem mounting is rejected if bits are set whose
meaning is not clear to the kernel or if any incompatible bits are set. Mounting is also rejected if any of
the bits in EXT2_FEATURE_RO_COMPAT are set and the mount options do not specify the Read Only flag.

If the filesystem block size stored in s_blocksize does not match the initially specified minimum value,
the hard disk is set to this value using set_blocksize, and the superblock is read again. The work of the
kernel is simplified if the same block size is used in the filesystem and for data transfer because filesystem
blocks can then be read in a single step.

Meta-information on the filesystem that should always reside in memory is held in the ext2_sb_info
data structure (described in Section 9.2.2), which is now filled. Generally, this information comprises
simple value allocations that copy data from the hard disk into the corresponding elements of the data
structure.

The group descriptors are then read in block-by-block and checked for consistency by
ext2_check_descriptors.

The last steps when filling superblock information are performed by ext2_count_free_blocks,
ext2_count_free_inodes, and ext2_count_dirs, which count the number of free blocks, the number
of free inodes, and the number of directories, respectively. These numbers are needed by the Orlov
allocator discussed in Section 9.2.4, for instance. Note that the values are stored in an approximative
counter that starts with correct initial values, but can deviate slightly from the proper count during
operation.

Control is now transferred to ext2_setup_super, which runs several final checks and outputs appro-
priate warnings (if, e.g., a filesystem is mounted in an inconsistent state, or if the maximum number
of mounts without a consistency check has been exceeded). As a final step, ext2_write_super writes
the contents of the superblock back to the underlying storage medium. This is necessary because some
superblock values are modified during the mount operation — the mount count and date of last mount,
for example.

15An offset must be added if the superblock doesn’t start at a hardware sector boundary.

614

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 615

Chapter 9: The Extended Filesystem Family

Reading and Generating Data and Indirection Blocks
Once the filesystem has been mounted, user processes can invoke the functions in Chapter 8 to access file
contents. The required system calls are first forwarded to the VFS layer, which, depending on file type,
invokes the appropriate routine of the underlying filesystem.

As mentioned at the beginning of this section, a large number of low-level functions are available for
this purpose. Not all variants are discussed in detail here but only the central basic actions that make
up the major part of the code in user applications — generating, opening, reading, closing, and deleting
files and directory objects. Both file-specific and inode-specific operations are used to this end. Often
the virtual filesystem provides default actions (such as generic_file_read and generic_file_mmap);
these use only a few elementary functions of the low-level filesystem to perform higher abstracted tasks.
This discussion is restricted to the required interfaces of the Ext2 file system ‘‘upward‘‘ to the virtual
filesystem; these include primarily the reading and writing of data blocks associated with a specific
position in a file. From the VFS perspective, the purpose of a filesystem is to establish the link between
file contents and the corresponding blocks on the associated storage medium.

Finding Data Blocks
ext2_get_block is the key function for associating the Ext2 implementation with the default functions
of the virtual filesystem. It should be remembered that all filesystems wishing to use the VFS standard
functions must define a function of type get_block_t with the following signature:

<fs.h>
typedef int (get_block_t)(struct inode *inode, sector_t iblock,

struct buffer_head *bh_result, int create);

This function not only reads blocks (as its name suggests), but also writes blocks from memory to a block
medium. When it does the latter, it may under certain circumstances also be necessary to generate new
blocks, and this behavior is controlled by the create parameter.

The function used by ext2 is ext2_get_block. It is a front end to the more universal ext2_get_blocks
that performs the important task of finding blocks. Its code flow diagram is shown in Figure 9-9, where
the actions needed to create blocks (create==true) are initially ignored.

ext2_get_blocks

ext2_get_block_to_path

ext2_get_branch

Figure 9-9: Code flow diagram for
ext2_get_block (reading a block).

The operation is split into three small steps. The first auxiliary function invoked is ext2_block_to_path,
which concerns itself with finding the ‘‘path’’ to a data block by reference to its position in the file. As
explained in Section 9.2.1, the Ext2 filesystem uses up to three levels of indirection to manage file data
blocks.

615

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 616

Chapter 9: The Extended Filesystem Family

In this context, the term path means the path through the descriptor tables to arrive at the desired data
block.

This information can be obtained without I/O interaction with the data block. All that is needed is the
position of the block in the file and the filesystem block size that is stored in the superblock data structure
and need not be read in explicitly.

ext2_block_to_path performs a step-by-step comparison. If the data block number is smaller than the
number of direct blocks (EXT2_NDIR_BLOCKS), it is returned without modification because the block can
be addressed directly.16

If not, a calculation is made — with the help of the block size — to determine how many pointers to
blocks fit in a single block. The number of direct blocks is added to the result of the calculation to obtain
the maximum possible number of blocks in a file whose contents can be addressed by means of simple
indirection. If the number of the desired block is smaller than this value, an array with two block numbers
is returned. The first entry contains the number of the simple indirection block, and the second specifies
the address of the pointer in the indirection block.

The same scheme is adopted to cater for double and triple indirection. An additional entry is added to
the returned array for each further level of indirection.

The number of array entries used to describe the position of a block in the indirection network is referred
to as the path length. Logically, the path length increases as the number of indirection levels grows.

Up to now, use has been made only of the filesystem block size, and the filesystem has not had to perform
actual I/O operations on the hard disk. To find the absolute address of a data block, the path defined in
the path array must be followed, and this entails reading data from the hard disk.

ext2_get_branch in fs/ext2/inode.c follows a known path to finally arrive at a data block. This task
is relatively straightforward. sb_bread reads the indirection blocks one after the other. The data in each
block and the offset value known from the path are used to find the pointer to the next indirection block.
This procedure is repeated until the code reaches a pointer to a data block that is returned as the result of
the function. This absolute address is used by higher-level functions such as block_read_full_page to
read the block contents.

Requesting New Blocks
The situation becomes more complicated when it is necessary to process a block that has not yet been
allocated. Before this situation can arise, a process must write to a file, thereby enlarging it; whether
classic system calls or memory mapping are used to do this is irrelevant. In all cases, ext2_get_blocks is
invoked to request new blocks for the file. Conceptually, adding new blocks to a file is composed of four
tasks:

❑ After detecting that new blocks are necessary, the kernel needs to decide if and how many levels
of indirection are required to associate the new blocks with the file.

❑ Free blocks must be found on the storage medium and reserved.

❑ The freshly allocated blocks must be added to the block list of the file.

16Reminder: File blocks are numbered linearly starting at 0.

616

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 617

Chapter 9: The Extended Filesystem Family

❑ To achieve better performance, the kernel also performs block reservation. This means that for
regular files, a number of blocks is pre-allocated. If the need for further blocks arises, they are
preferably allocated from the pre-allocated area.

The code flow diagram for ext2_get_blocks in Figure 9-10 shows how the first and third tasks are done:
detecting that new blocks are required, deciding which level of indirection is required, and adding the
newly allocated blocks with the file. I leave the remaining two tasks for below.

The following diagram is a little bit more complicated than the simpler version in Figure 9-9, where
the fact that a data block could be located outside the available range is ignored. Figure 9-10 shows the
situation that arises when ext2_get_blocks needs to request new blocks.

ext2_get_blocks

ext2_blocks_to_path

ext2_get_branch

ext2_init_block_alloc_info

ext2_find_nearext2_find_goal

ext2_blks_to_allocate

ext2_alloc_branch

ext2_splice_branch

Regular file and no reservation info?

Figure 9-10: Code flow diagram for ext2_get_blocks (creation of a
block).

The path array passed as a function argument is structured in accordance with the familiar method
because it doesn’t make any difference whether a block is available in a file or not. Only the position
within the file and the block size of the filesystem must be known in order to set up the path.

The difference as compared with the ext2_get_blocks version above does not become apparent until
the ext2_get_branch function is invoked. Whereas previously a NULL pointer was returned to indicate
a successful search, the address of the last indirection block is now returned as the starting point for
extending the file if the desired data block is outside the previously valid range.

To understand the situation where a new block is created, it is necessary to take a closer look at how
ext2_get_branch works because a new data structure is introduced:

fs/ext2/inode.c
typedef struct {

__le32 *p;
__le32 key;
struct buffer_head *bh;

} Indirect;

617

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 618

Chapter 9: The Extended Filesystem Family

While key indicates the block number, p is a pointer to the address in memory where the key resides. A
buffer head (bh) is used to keep the block data in memory.

In the case of a fully filled Indirect instance, the information on the block number is stored redundantly
in key and in *p. This again becomes clear when we examine the auxiliary function to fill Indirect:

fs/ext2/inode.c
static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
{

p->key = *(p->p = v);
p->bh = bh;

}

If, when traversing the block path, ext2_get_branch detects that there is no pointer to the next indirec-
tion level (or to a data block if direct allocation is used), an incomplete Indirect instance is returned.
Although the p element points to the position where the number of the next indirection or data block
should be located in the indirection block, the number itself is 0 because the block has not yet been
allocated.

Figure 9-11 illustrates this fact graphically. The fourth data block to be addressed by the simple indirec-
tion block is not present but should be used. The returned Indirect instance contains a pointer to the
position in the indirection block where the block number must be inserted (namely, 1,003 because the
indirection block starts at the address 1,000 and the fourth element is of interest). However, the value of
the key is 0 because the associated data block has not yet been allocated.

Direct
pointers

0x1000

Indirect = <p=0x1003, key=0, bh=NULL>

0x1234

0x7f3c

0x9831

0x0

0x0

0x0

Figure 9-11: Return of ext2_get_branch.

Now that the position in the indirection chain in which no further blocks are allocated is clear, the Second
Extended Filesystem must find out where there is space in the partition to add one or more new blocks to
the file. This is not a trivial task because ideally the blocks of a file should be contiguous or, if this is not
feasible, at least as close together as possible. This ensures that fragmentation is minimized and results
not only in better utilization of hard disk capacity but in faster read/write operations because read/write
head travel is reduced.

618

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 619

Chapter 9: The Extended Filesystem Family

Several steps are involved in searching for a new block. A search is first made for a goal block; from the
perspective of the filesystem, this block is the ideal candidate for allocation. The search for a global block
is based on general principles only and does not take account of the actual situation in the filesystem. The
ext2_find_goal function is invoked to search for the best new block. When searching is performed, it is
necessary to distinguish between two situations:

❑ When the block to be allocated logically immediately follows the block last allocated in the file
(in other words, data are to be written contiguously), the filesystem tries to write to the next
physical block on the hard disk. This is obvious — if data are stored sequentially in a file, they
should if at all possible be stored contiguously on the hard disk.

❑ If the position of the new logical block is not immediately after the last allocated block, the
ext2_find_near function is invoked to find the most suitable new block. Depending on the
specific situation, it finds a block close to the indirection block or at least in the same cylinder
group. I won’t bother with the details here.

Once it has these two pieces of information (the position in the indirection chain in which there are no
further data blocks, and the desired address of the new block), the kernel sets about reserving a block on
the hard disk. Of course, there is no guarantee that the desired address is really free, so the kernel may
have to be satisfied with poorer alternatives, which unavoidably entails data fragmentation.

Not only might new data blocks be required — it can also be the case that some blocks are required to
hold indirection information. ext2_blks_to_allocate computes the total number of new blocks, that is,
the sum of data and (single, double, and triple) indirection blocks. The allocation proper is then done
by ext2_alloc_branch. The parameters passed to this function include the desired address of the new
block, information on the last incomplete part of the indirection chain, and the number of indirection
levels still missing up to the new data block. Expressed differently, the function returns a linked list of
indirection and data blocks that can be added to the existing indirection list of the filesystem. Last but
not least, ext2_slice_branch adds the resulting hierarchy (or, in the simplest case, the new data block)
to the existing network and performs several relatively unimportant updates on Ext2 data structures.

Block Allocation
ext2_alloc_branch is responsible to allocate the required blocks for a given new path and set up
the chain that connects them. At a first glance, this seems an easy task, as the code flow diagram in
Figure 9-12 might suggest.

The function calls ext2_alloc_blocks, which, in turn relies on ext2_new_blocks to reserve the required
new blocks. Since the function always allocates consecutive blocks, one single call might not be sufficient
to obtain the total number of required blocks. If the filesystem becomes fragmented, it can be that no such
consecutive region is available. However, this is no problem: ext2_new_block is called multiple times
until at least the number of blocks that is required for the indirection mechanism has been allocated. The
surplus blocks can be used as data blocks.

Finally, ext2_alloc_branch need only set up the Indirect instances for the indirection blocks, and it is
done.

Obviously, the hard work is hidden in ext2_new_blocks. The code flow diagram in Figure 9-13 proves
that this is really the case!

619

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 620

Chapter 9: The Extended Filesystem Family

Ite
ra

te
 u

nt
il

at
le

as
t t

he
 n

um
be

r
of

 b
lo

ck
s

re
qu

ire
d

fo
r i

nd
ire

ct
io

n
ha

s
be

en
 a

llo
ca

te
d

ext2_alloc_branch

ext2_alloc_blocks

ext2_alloc_blocks

ext2_new_blocks

Set up indirection structures

Figure 9-12: Code flow diagram for
ext2_alloc_branch.

Decide if reservations should be used

ext2_new_blocks

ext2_has_free_blocks

ext2_get_group_desc

ext2_try_to_allocate_with_rsv

Disable preallocation if not enough free blocks are available

Update statistics and returnAllocation successsful?

Allocation successsful?

Try different block groups

Update statistics and return

Retry from beginning without reservations

Yes

No

Yes

No

Figure 9-13: Code flow diagram for ext2_new_blocks.

Recall that Ext2 supports pre-allocation, and this needs to be partly handled in ext2_new_blocks. Since
the mechanism is already complicated enough without the details of pre-allocation, let’s first consider it
without this extra complexity. We will come back to how pre-allocation works exactly afterward.

Consider the prototype of ext2_new_blocks (note that ext2_fsblk_t is typedef’d to unsigned long and
represents a block number).

fs/ext2/balloc.c
ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,

unsigned long *count, int *errp)
{
...

620

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 621

Chapter 9: The Extended Filesystem Family

inode represents the inode for which the allocation is performed, while count designates the desired
number of blocks. Since the function returns the number of the first block in the allocated block sequence,
possible error codes cannot be passed as a function result, thus the pointer errp is used. Finally, the goal
parameter allows for specifying a goal block. This provides a hint to the allocation code about which block
would be preferred. This is only a suggestion: Should this block not be available, then any other block
can be selected.

First of all, the function decides if the pre-allocation mechanism should be used and a reserved, but
not yet allocated area be created. The choice is simple: If the inode is equipped with information for
pre-allocation, then use it; otherwise, not.

Allocations only make sense if the filesystem contains at least one free block, and ext2_has_free_blocks
checks this. If the condition is not fulfilled, the allocation can immediately be canceled.

In a world where all wishes come true, the goal block will be free, but in reality, this need not be the case.
In fact, the goal block need not even be a valid block at all, and the kernel needs to check this (es is the
ext2_super_block instance for the filesystem under consideration).

fs/ext2/balloc.c
if (goal < le32_to_cpu(es->s_first_data_block) ||

goal >= le32_to_cpu(es->s_blocks_count))
goal = le32_to_cpu(es->s_first_data_block);

group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
EXT2_BLOCKS_PER_GROUP(sb);

goal_group = group_no;
retry_alloc:

gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);

If the goal block is not within a valid range, the first data block of the filesystem is picked as the new
goal. In any case, the block group of the goal block is computed. ext2_get_group_desc provides the
corresponding group descriptor.

Afterward, a little bookkeeping for the pre-allocation mechanism is again necessary. If reservations
are enabled but the free space is not sufficient to fulfill it, then the mechanism is turned off. By
calling ext2_try_to_allocate_with_rsv, the kernel then tries to actually reserve the desired data
blocks — possibly using the reservation mechanism. As promised, this function is discussed below.

For now, let us just observe the two possible outcomes:

1. The allocation was successful. In this case, ext2_new_blocks needs to update the statistical
information, but is otherwise done and can return to the caller.

2. If the request could not be satisfied in the current block group, then all other block groups
are tried. If this still fails, the whole allocation is restarted without the pre-allocation mecha-
nism in case it was still turned on at this point — recall that it might have been turned off by
default or in the previous course of action.

Pre-allocation Handling
In the hierarchy of ext2 allocation functions, we’ve come as deep down as ext2_try_to_allocate_with_
rsv. However, there’s good news: The kernel source code cheers us up by remarking that this is ‘‘the

621

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 622

Chapter 9: The Extended Filesystem Family

main function used to allocate a new block and its reservation window.’’ We’re almost done! Note that
now might also be a good opportunity to remember the pre-allocation data structures introduced in
Section 9.2.2 since they form the core of the reservation window mechanism.

The code flow diagram for ext2_try_to_allocate_rsv is shown in Figure 9-14. Basically, the
function handles some reservation window issues and passes the proper allocation down to
ext2_try_to_allocate, the last link in the chain. ext2_try_to_allocate_with_rsv has no direct
connection with the inode for which the allocation is performed, but the reservation window is passed
as a parameter. If a NULL pointer is given instead, this means that the reservation mechanism is not
supposed to be used.

ext2_try_to_allocate_with_rsv

Reservation undesired?

ext2_try_to_allocate

ext2_try_to_allocate

explicitely
w/o reservation window

with reservation window

Uses alloc_new_reservation

Update reservation hitsLo
op

 u
nt

il
al

lo
ca

tio
n

re
qu

es
t i

f f
ul

fil
le

d

No

Yes

Create new reservation window
or extend existing reservation
window if necessary

ext2_try_to_allocate

compute preferred allocation range

No reservation window? Find first free block

find_next_usable_block

Try to reserve desired number of blocks

No target block within group?

Figure 9-14: Code flow diagram for ext2_try_to_allocate_with_rsv.

Thus the first check is to determine whether using pre-allocation is desired or possible at all. Should this
not be the case, then ext2_try_to_allocate can be called immediately. Likewise, the function also has a
parameter for the reservation information, and if a NULL pointer is passed instead, no pre-allocation will
be used. If a reservation window exists, the kernel checks if the pre-allocation information needs to be
updated, and does so if necessary. In this case, ext2_try_to_allocate is called with the order to use the
reservation window.

After calling ext2_try_to_allocate, the reservation hit statistics need to be updated by
ext2_try_to_allocate_with_rcv in case an allocation could be performed in the allocation
window. If the required number of blocks could be allocated, we are finished. Otherwise, the reservation
window settings are readapted, and ext2_try_to_allocate is called again.

622

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 623

Chapter 9: The Extended Filesystem Family

By what criteria does the kernel update the reservation window? Observe the allocation loop:

fs/etc2/balloc.c
static ext2_grpblk_t
ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
struct ext2_reserve_window_node * my_rsv,
unsigned long *count)
{
...
group_first_block = ext2_group_first_block_no(sb, group);
group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
...

while (1) {
if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||

!goal_in_my_reservation(&my_rsv->rsv_window,
grp_goal, group, sb)) {

if (my_rsv->rsv_goal_size < *count)
my_rsv->rsv_goal_size = *count;

ret = alloc_new_reservation(my_rsv, grp_goal, sb,
group, bitmap_bh);

if (!goal_in_my_reservation(&my_rsv->rsv_window,
grp_goal, group, sb))

grp_goal = -1;
} else if (grp_goal >= 0) {

int curr = my_rsv->rsv_end -
(grp_goal + group_first_block) + 1;

if (curr < *count)
try_to_extend_reservation(my_rsv, sb,

*count - curr);
}

...
ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,

&num, &my_rsv->rsv_window);
if (ret >= 0) {

my_rsv->rsv_alloc_hit += num;
*count = num;
break; /* succeed */

}
num = *count;

}
return ret;

}

If either there is no reservation associated with the file (checked by rsv_is_empty) or the desired
goal block is not within the current reservation window (checked by goal_in_my_reservation), the
kernel needs to create a new reservation window. This task is delegated to alloc_new_reservation,
which contains the goal block. A more detailed discussion of the function follows below. Although
alloc_new_reservation will try to find a region that contains the goal block, this might not be possible.
In this case, grp_goal is set to −1, which signifies that no desired goal should be used.

623

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 624

Chapter 9: The Extended Filesystem Family

rsv_start

grp_goal rsv_end

group_first_block
100 120 160 200140

reservation
window

curr

Figure 9-15: Check if a desired allocation can be fulfilled with a given
reservation window.

If the file is equipped with a reservation window and a goal block is specified (as checked by the condition
grp_goal > 0), the kernel has to check if the desired allocation will fit into the existing reservation. Starting
from the desired allocation goal that specifies a block number relative to the beginning of the group, the
code computes the number of blocks until the end of the block group. The calculation is illustrated in
Figure 9-15. If the desired allocation as given by count is larger than the possible region, the reservation
window is increased with try_to_extend_reservation. The function simply queries the pre-allocation
data structures to see if no other reservation window prevents the current window to grow, and does so
if possible.

Finally, the kernel can pass the allocation request together with the (possibly modified) reservation win-
dow to ext2_try_to_allocate. While the function guarantees that a consecutive number of blocks is
allocated if some free space can be found, it cannot guarantee that the desired number of blocks is avail-
able. This has some implications on the returned values. While the first allocated block is returned as the
direct function result, the number of allocated blocks must be passed upward via the pointer num.

If some space could be allocated, ret is larger than or equal to zero. The kernel then needs to update the
allocation hit counter rsv_alloc_hit and return the number of allocated blocks via the count pointer.
If the allocation has failed, the loop needs to start again. Since ret is negative in this case, the kernel
allocates a new reservation window in the next run as guaranteed by the condition ret < 0 in the initial
if conditional. Otherwise, everything runs again as described.

Finally, ext2_try_to_allocate is responsible for the low-level allocation that directly interacts with the
block bitmaps. Recall that the function can work with a reservation window or not. The kernel now needs
to search through the block bitmap, and thus an interval for the search needs to be determined. Note that
the boundaries are specified relative to the current block group. This means that numbering starts from zero.
A number of scenarios is distinguished, and Figure 9-16 illustrates various cases.

search region

block group

goal block
(no reservation
window & goal block)

reservation
window

Figure 9-16: Search interval selection for block allocation in
ext2_try_to_allocate.

624

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 625

Chapter 9: The Extended Filesystem Family

❑ If a reservation window is available and the reservation starts within the block group, the abso-
lute block number needs to be converted into a relative start position. For instance, if the block
group starts at block 100 and the reservation window at block 120, the relative start block within
the group is block 20.

If the reservation window starts before the block group, block number 0 is used as the starting
point.

If the reservation window goes beyond the current block group, the search interval is restricted
to the last block of the block group.

❑ If no reservation window is present, but a goal block is given, the goal can be directly used as the
start block.

If no reservation window is available and no goal block is specified, the search starts from block
0. In both cases, the end of the block group is used as the end block of the search.

ext2_try_to_allocate then proceeds as follows:

fs/ext2/balloc.c
static int
ext2_try_to_allocate(struct super_block *sb, int group,
struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
unsigned long *count,
struct ext2_reserve_window *my_rsv)
{
...

ext2_grpblk_t start, end;
...

/* Determine start and end */
...
repeat:

if (grp_goal < 0) {
grp_goal = find_next_usable_block(start, bitmap_bh, end);

...
if (!my_rsv) {

int i;

for (i = 0; i < 7 && grp_goal > start &&
!ext2_test_bit(grp_goal - 1,

bitmap_bh->b_data);
i++, grp_goal--)

;
}

}
start = grp_goal;
...

If no goal block was given (grp_goal < 0), the kernel uses find_next_usable_block to find the first free
bit in the previously selected interval in the block allocation bitmap.

find_next_usable_block first performs a bitwise search up to the next 64-bit boundary.17 This tries to
find a free block near the allocation goal. If one is available, the function returns the bit position.

17If the starting block is zero, then find_next_usable_block assumes that no goal block was given and does not perform the
near-goal search. Instead, it starts immediately with the next search step.

625

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 626

Chapter 9: The Extended Filesystem Family

If no free bit is found near the desired goal, the search is not performed bitwise, but bytewise to increase
performance. A free byte corresponds to eight successive zeros or eight free file blocks. If a free byte
is found, the address of the first bit is returned. As a last resort, a bitwise scan over the whole range is
performed. This equates to searching for a single, isolated free block and is, of course, the worst-case
scenario, which, unfortunately, cannot always be avoided.

Let us go back to ext2_try_to_allocate. Since the bit might originate from a bytewise search, the
last seven preceding bits are scanned for a free area. (A larger number of preceding bits is not possi-
ble because the kernel would then have found a free byte in the previous step.) The newly allocated
block is always shifted as far to the left as possible to ensure that the free area to its right is as large as
possible.

What now remains to be done is a simple bitwise traversal of the block bitmap. In each step, a block is
added to the allocation if the bit is not set. Recall that allocating a block is equivalent to setting the corre-
sponding bit in the block bitmap to one. The traversal stops when either an occupied block is encountered
or a sufficient number of blocks has been allocated.

fs/ext2/balloc.c
if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal,

bitmap_bh->b_data)) {
/*
* The block was allocated by another thread, or it was
* allocated and then freed by another thread
*/

start++;
grp_goal++;
if (start >= end)

goto fail_access;
goto repeat;

}
num++;
grp_goal++;
while (num < *count && grp_goal < end

&& !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group),
grp_goal, bitmap_bh->b_data)) {

num++;
grp_goal++;

}
*count = num;
return grp_goal - num;

fail_access:
*count = num;
return -1;

}

The only complication stems from the fact that the initial bit might have been allocated by another process
between the time it was chosen and when the kernel tries to allocate it. In this case, both the starting
position and group goal are increased by 1, and the search started again.

Creating New Reservations
Above, it was mentioned that alloc_new_reservation is employed to create new reservation windows.
This is an important task now discussed in detail. An overview of the function is presented in Figure 9-17.

626

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 627

Chapter 9: The Extended Filesystem Family

Compute start block

alloc_new_reservation

search_reserve_window

find_next_reservable_window

return

Old reservation window available Update settings

No further window? Return with error code

Retry next reservable space

Free block in reserve window?
Yes

No

Figure 9-17: Code flow diagram for alloc_new_reservation.

First, alloc_new_reservation determines the block from which the search for a reservation window
starts.

fs/ext2/balloc.c
static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,

ext2_grpblk_t grp_goal, struct super_block *sb,
unsigned int group, struct buffer_head *bitmap_bh)

{
struct ext2_reserve_window_node *search_head;
ext2_fsblk_t group_first_block, group_end_block, start_block;
ext2_grpblk_t first_free_block;
struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
unsigned long size;
int ret;

group_first_block = ext2_group_first_block_no(sb, group);
group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);

if (grp_goal < 0)
start_block = group_first_block;

else
start_block = grp_goal + group_first_block;

size = my_rsv->rsv_goal_size;
...

If the inode is already equipped with a reservation window, the allocation hit counter is evaluated and
the window resized accordingly:

fs/ext2/balloc.c
if (!rsv_is_empty(&my_rsv->rsv_window)) {

/*
* if the old reservation is cross group boundary
* and if the goal is inside the old reservation window,

627

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 628

Chapter 9: The Extended Filesystem Family

* we will come here when we just failed to allocate from
* the first part of the window. We still have another part
* that belongs to the next group. In this case, there is no
* point to discard our window and try to allocate a new one
* in this group(which will fail). we should
* keep the reservation window, just simply move on.
*/

if ((my_rsv->rsv_start <= group_end_block) &&
(my_rsv->rsv_end > group_end_block) &&
(start_block >= my_rsv->rsv_start))

return -1;

if ((my_rsv->rsv_alloc_hit >
(my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {

/*
* if the previously allocation hit ratio is
* greater than 1/2, then we double the size of
* the reservation window the next time,
* otherwise we keep the same size window
* /

size = size * 2;
if (size > EXT2_MAX_RESERVE_BLOCKS)

size = EXT2_MAX_RESERVE_BLOCKS;
my_rsv->rsv_goal_size= size;

}
}

...

The kernel code precisely states what is going on (and especially why this is going on), and for a change,
there’s nothing further to add.

If new boundaries for the window have been computed (or if there has not been a reservation window
before), search_reserve_window checks if a reserve window that contains the allocation goal is already
present. If this is not the case, the window before the allocation goal is returned. The selected window is
used as a starting point for find_next_reservable_window, which tries to find a suitable new reservation
window. Finally, the kernel checks if the window contains at least a single free bit. If not, it does not make
any sense to pre-allocate space, so the window is discarded. Otherwise, the function returns successfully.

Creating and Deleting Inodes
Inodes must also be created and deleted by low-level functions of the Ext2 filesystem. This is necessary
when a file or directory is created (or deleted) — the core code of the two variants hardly differs.

Let’s begin with the creation of a file or directory. As explained in Chapter 8, the open and mkdir system
calls are available for this purpose. They work through the various functions of the virtual filesystem
to arrive at the create and mkdir functions, each of which is pointed to by a function pointer in the
file-specific instance of inode_operations. The ext2_create and ext2_mkdir functions are inserted as
described in Section 9.2.4. Both functions are located in fs/ext2/namei.c. The flow of both actions is
shown in the code flow diagrams in Figures 9-18 and 9-19.

628

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 629

Chapter 9: The Extended Filesystem Family

ext2_mkdir

ext2_new_inode

ext2_make_empty

ext2_add_link

Insert i_op, i_fop, and i_mapping->a_ops

Figure 9-18: Code flow diagram for ext2_mkdir.

ext2_create

ext2_new_inode

ext2_add_nondir ext2_add_link

Set i_op, i_fop, and i_mapping->a_ops

Figure 9-19: Code flow diagram for ext2_create.

Let us first examine how new directories are created using mkdir. The kernel passes via the VFS function
vfs_mkdir to the ext2_mkdir low-level function with the following signature.

fs/ext2/namei.c
static int ext2_mkdir(struct inode * dir, struct dentry * dentry, int mode)

dir is the directory in which the new subdirectory is to be created, and dentry specifies the pathname of
the new directory. mode specifies the access mode of the new directory.

Once ext2_new_inode has reserved a new inode at a suitable place on the hard disk (the section below
describes how the kernel finds the most suitable location with the help of the Orlov allocator), it is pro-
vided with the appropriate file, inode, and address space operations.

fs/ext2/namei.c
static int ext2_mkdir(struct inode * dir, struct dentry * dentry, int mode)
{
...

inode->i_op = &ext2_dir_inode_operations;
inode->i_fop = &ext2_dir_operations;
if (test_opt(inode->i_sb, NOBH))

inode->i_mapping->a_ops = &ext2_nobh_aops;
else

inode->i_mapping->a_ops = &ext2_aops;
...
}

629

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 630

Chapter 9: The Extended Filesystem Family

ext2_make_empty fills the inode with the default . and .. entries by generating the corresponding file
structures and writing them to the data block. Then ext2_add_link adds the new directory to the existing
directory data of the initial inode in the format described in Section 9.2.2.

New files are created in a similar way. The sys_open system call arrives at vfs_create, which again
invokes the ext2_create low-level function of the Ext2 filesystem.

Once it has allocated a new inode on the hard disk by means of ext2_new_inode, the appropriate file,
inode, and address space structures are added, this time using the variants for regular files, that is,
ext2_file_inode_operations and ext2_file_operations.

There is no difference between the address space operations for directory inodes
and file inodes.

Responsibility for adding the new file to the directory hierarchy is assumed by ext2_add_nondir, which
immediately invokes the familiar ext2_add_link function.

Registering Inodes
When directories and files are created, the ext2_new_inode function is used to find a free inode for the
new filesystem entry. However, the search strategy varies according to situation — this can be distin-
guished by the mode argument (S_IFDIR is set for directories but not for regular files).

The search itself is not performance-critical, but it is very important for filesystem performance that the
inode be optimally positioned to permit rapid access to data. For this reason, this section is devoted to an
examination of the inode distribution strategy adopted by the kernel.

The kernel applies three different strategies:

1. Orlov allocation for directory inodes.

2. Classic allocation for directory inodes. This is only used if the oldalloc option is passed to
the kernel, which disables Orlov allocation. Normally, Orlov allocation is the default strat-
egy.

3. Inode allocation for regular files.

The three options are investigated below.

Orlov Allocation
A standard scheme proposed and implemented for the OpenBSD kernel by Grigoriv Orlov is used to
find a directory inode. The Linux version was developed later. The goal of the allocator is to ensure that
directory inodes of child directories are in the same block group as the parent directory so that they are
physically closer to each other and costly hard disk seek operations are minimized. Of course, not all
directory inodes should end up in the same block group because they would then be too far away from
their associated data.

The scheme distinguishes whether a new directory is to be created directly in the (global) root directory or
at another point in the filesystem, as the code flow diagram for find_group_orlov in Figure 9-20 shows.

630

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 631

Chapter 9: The Extended Filesystem Family

While entries for subdirectories should be as close to the parent directory as possible, subdirectories of
the filesystem root should be diverted as well as possible. Otherwise, directories would again accumulate
in a distinguished block group.

Parent inode is root inode?

Test suitability of group

Group found?

Return group number

Fallback selection

Yes

Yes

No

find_group_orlov

get_random_bytes

No

Search starts in
random groupSearch starts in

present group

Iterate over
all groups

Figure 9-20: Code flow diagram for find_group_orlov.

Let’s first take a look at the standard situation in which a new subdirectory is to be created at some
point in the directory tree (and not in the root directory). This corresponds to the right-hand branch in
Figure 9-20. The kernel computes several variables used as criteria to establish the suitability of a block
group to accommodate the desired directory node (I took the liberty of rearranging the code a little to
make it easier to understand):

fs/ext2/ialloc.c
int ngroups = sbi->s_groups_count;
int inodes_per_group = EXT2_INODES_PER_GROUP(sb);

freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
avefreei = freei / ngroups;
free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
avefreeb = free_blocks / ngroups;
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);

blocks_per_dir = (le32_to_cpu(es->s_blocks_count)-free_blocks) / ndirs;

max_dirs = ndirs / ngroups + inodes_per_group / 16;
min_inodes = avefreei - inodes_per_group / 4;
min_blocks = avefreeb - EXT2_BLOCKS_PER_GROUP(sb) / 4;

max_debt = EXT2_BLOCKS_PER_GROUP(sb) / max(blocks_per_dir, BLOCK_COST);
if (max_debt * INODE_COST > inodes_per_group)

max_debt = inodes_per_group / INODE_COST;
if (max_debt > 255)

max_debt = 255;
if (max_debt == 0)

max_debt = 1;

631

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 632

Chapter 9: The Extended Filesystem Family

avefreei and avefreeb denote the number of free inodes and blocks (which can be read from the approx-
imative per-CPU counters associated with the superblock) divided by the number of groups. The values
thus specify the average number of free inodes and blocks per group. This explains the prefix ave.

max_dirs specifies the absolute upper limit for the number of directory inodes in a block group.
min_inodes and min_blocks define the minimum number of free inodes or blocks in a group before a
new directory may be created.

debt is a numeric value between 0 and 255. It is saved for each block group in the ext2_sb_info filesys-
tem instance that makes the s_debts array available (ext2_sb_info is defined in Section 9.2.2). The value
is incremented by 1 (in ext2_new_inode) each time a new directory inode is created, and is decremented
by 1 when the inode is required for a different purpose — usually for a regular file. The value of debt is
therefore an indication of the ratio between the number of directories and inodes in a block group.

Starting at the block group of the parent entry, the kernel iterates over all block groups until the following
criteria are met:

❑ There are no more than max_ndir directories.

❑ No less than min_inodes inodes and min_blocks data blocks are free.

❑ The debt value does not exceed max_debt; that is, the number of directories does not get out of
hand.

If just one of these criteria is not satisfied, the kernel skips the current block group and checks the next:

fs/ext2/ialloc.c
for (i = 0; i < ngroups; i++) {

group = (parent_group + i) % ngroups;
desc = ext2_get_group_desc (sb, group, NULL);
if (!desc || !desc->bg_free_inodes_count)

continue;
if (sbi->s_debts[group] >= max_debt)

continue;
if (le16_to_cpu(desc->bg_used_dirs_count) >= max_dirs)

continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < min_inodes)

continue;
if (le16_to_cpu(desc->bg_free_blocks_count) < min_blocks)

continue;
goto found;

}

Division without a remainder (%) at the beginning of the loop ensures that the search is resumed at the
first block group once the last block group of the partition is reached.

Once a suitable group is found (which is automatically as close as possible to the parent group unless the
inode there has been removed), the kernel need only update the corresponding statistics counters and
return the group number. If no group matches the requirements, the search is repeated with the help of
a less demanding ‘‘fallback‘‘ algorithm:

fs/ext2/ialloc.c
fallback:
for (i = 0; i < ngroups; i++) {

632

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 633

Chapter 9: The Extended Filesystem Family

group = (parent_group + i) % ngroups;
desc = ext2_get_group_desc (sb, group, &bh);
if (!desc || !desc->bg_free_inodes_count)

continue;
if (le16_to_cpu(desc->bg_free_inodes_count) >= avefreei)

goto found;
}

...

return -1;

Again, the kernel starts at the parent group. The directories are scanned one after the other. However, this
time the kernel accepts the first group that contains more than the average number of inodes (specified
by avefreei).

This method is modified slightly when a new subdirectory is created in the root directory of the system,
as illustrated by the left-hand branch of the code flow diagram in Figure 9-20 above.

To spread the directory inodes across the filesystem as uniformly as possible, the immediate sub-
directories of the root directory are distributed statistically over the block groups. The kernel uses
get_random_bytes to select a random number that is trimmed to the maximum number of existing
block groups by dividing (without remainder) by ngroups. The kernel then iterates as follows over the
randomly selected groups and subsequent groups:

fs/ext2/ialloc.c
get_random_bytes(&group, sizeof(group));
parent_group = (unsigned)group % ngroups;
for (i = 0; i < ngroups; i++) {

group = (parent_group + i) % ngroups;
desc = ext2_get_group_desc (sb, group, &bh);
if (!desc || !desc->bg_free_inodes_count)

continue;
if (le16_to_cpu(desc->bg_used_dirs_count) >= best_ndir)

continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei)

continue;
if (le16_to_cpu(desc->bg_free_blocks_count) < avefreeb)

continue;
best_group = group;
best_ndir = le16_to_cpu(desc->bg_used_dirs_count);
best_desc = desc;
best_bh = bh;

}

While, again, the minimum number of free inodes or blocks must not be below the limit set by avefreei
and avefreeb, the kernel also ensures that the number of free directories is not greater than or equal
to best_ndir. The value is initially set to the value of inodes_per_group but is always updated to the
lowest value encountered by the kernel during its search. The winner is the block group that has the
fewest entries and that also satisfies the other two conditions.

If a suitable group is found, the kernel updates the statistics and returns the group number selected.
Otherwise, the fallback mechanism comes into effect to find a less qualified block group.

633

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 634

Chapter 9: The Extended Filesystem Family

Classic Directory Allocation
Kernel versions up to and including 2.4 did not use Orlov allocation, but the technique described below,
called classic allocation. Ext2 filesystems can be mounted using the oldalloc option, which sets the
EXT2_MOUNT_OLDALLOC bit in the s_mount_opt field of the superblock. The kernel then no longer uses the
Orlov allocator but resorts to the classic scheme of allocation.18

How does the classic scheme work? The block groups of the system are scanned in a forward search, and
particular attention is paid to two conditions:

1. Free space should still be available in the block group.

2. The number of directory inodes should be as small as possible compared to other inodes in
the block group.

In this scheme, directory inodes are typically spread as uniformly as possible across the entire filesystem.

If none of the block groups satisfies requirements, the kernel restricts selection to groups with above
average amounts of free space and from these chooses those with the fewest directory inodes.

Inode Allocation for Other Files
A simpler scheme known as quadratic hashing is applied when searching for an inode for regular files,
links, and all file types other than directories. It is based on a forward search starting at the block group
of the directory inode of the directory in which the new file is to be created. The first block group found
with a free inode is reserved.

The block group in which the directory inode is located is searched first. Let’s assume its group ID is
start. If it does not have a free inode, the kernel scans the block group with the number start + 20, then
start + 20 + 21, start + 20 + 21 + 22, and so on. A higher power of 2 is added to the group number in each
step, which results in the sequence 1, 1 + 2, 1 + 2 + 4, 1 + 2 + 4 + 8, · · · = 1, 3, 7, 15,

Usually, this method quickly finds a free inode. However, if no free inode is returned on an (almost
hopelessly) overfilled filesystem, the kernel scans all block groups in succession to ensure that every
effort is made to find a free inode. Again, the first block group with a free inode is selected. If absolutely
no inodes are free, the action is aborted with a corresponding error code.19

Deleting Inodes
Both directory inodes and file inodes can be deleted, and, from the perspective of the filesystem, both
actions are much simpler than allocating inodes.

Let us first look at how directories are deleted. After the appropriate system call (rmdir) has been
invoked, the code meanders through the kernel and finally arrives at the rmdir function pointer
of the inode_operations structure, which, for the Ext2 filesystem, contains ext2_rmdir from
fs/ext2/namei.c.

18In terms of compatibility with old kernel versions, it makes no difference whether directory inodes are reserved with the Orlov
allocator or not because the format of the filesystem remains unchanged.
19In practice, this situation hardly ever occurs because the hard disk would have to contain a gigantic number of small files, and this
is very rarely the case on standard systems. A more realistic situation (often encountered in practice) is that all data blocks are full,
but a large number of inodes are still free.

634

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 635

Chapter 9: The Extended Filesystem Family

Two main actions are needed to delete a directory:

1. First, the entry in the directory inode of the parent directory is deleted.

2. Then the data blocks assigned on the hard disk (an inode and the associated data blocks with
the directory entries) are released.

As the code flow diagram in Figure 9-21 shows, this is done in a few steps.

Decrement usage counter

ext2_rmdir

ext2_empty_dir

ext2_unlink

ext2_find_entry

ext2_delete_entry

Figure 9-21: Code flow diagram for
ext2_rmdir.

To ensure that the directory to be deleted no longer contains any files, the contents of its data block are
checked using the ext2_empty_dir function. If the kernel finds only the entries for . and .., the directory
is released for deletion. Otherwise, the action is aborted, and an error code (-ENOTEMPTY) is returned.

Removal of the directory entry from the parent directory is delegated to the ext2_unlink function. This
entry is found in the directory table using the ext2_find_entry function, which scans the individual
directory entries one after the other (the scheme adopted for storing entries is described in Section 9.2.2).
If a matching entry is found, the function returns an instance of ext2_dir_entry_2 to identify it uniquely.

ext2_delete_entry removes the entry from the directory table. As described in Section 9.2.2, the data
are not physically deleted from the table. Instead, the rec_len field of the ext2_dir_entry_2 structure
is set in such a way that the entry is skipped when the table is traversed. As already noted, this approach
yields substantial benefits in terms of speed, as actual deletion would necessitate rewriting a large
amount of data.

This has both advantages and disadvantages. By inspecting the filesystem structures on the hard
disk (assuming the corresponding permissions to read and write raw data on the partition) it is
possible to recover a deleted file by reactivating the directory entry by resetting the rec_len field of
its predecessor — if, of course, the allocated blocks have not been overwritten with other data in the
meantime. If sensitive data are deleted, this can prove to be a final lifeline and, of course, a source of
danger because a little technical know-how is all that is needed to access the data if the data blocks have
not yet been overwritten.20

The kernel has now removed the directory entry from the filesystem, but the data blocks for the inode
and directory contents are still marked as occupied. When are they released?

20Explicitly overwriting the file with null bytes before deletion is a remedy.

635

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 636

Chapter 9: The Extended Filesystem Family

In this context, care should be exercised because of the structure of Unix filesystems, as explained in
Chapter 8. If hard links are used, users have access to inodes (and therefore to the associated data blocks)
under several names in the system. However, the nlink counter in the inode structure keeps a record of
how many hard links point to an inode.

The filesystem code decrements this counter by 1 each time a link to the inode is deleted. When the
counter value reaches 0, there are no remaining hard links to the inode, and it can therefore be finally
released. Once again it should be noted that only the corresponding bit in the inode bitmap is set to 0; the
associated data are still present in the block and can potentially be used to reconstruct the file contents.

The data blocks associated with the inode have not yet been released. This is not done until all references
to the inode data structure have been returned with iput.

What is the difference between deleting a regular file and deleting a directory? Most of the above actions
(with the exception of ext2_empty_dir) do not specifically relate to directories and can be used for gen-
eral inode types. In fact, the procedure used to delete non-directories is very similar to the one described
above. Starting with the unlink system call, the VFS vfs_unlink function is invoked to initiate the file-
specific inode_operations->unlink operation. For the Second Extended Filesystem, this operation is
ext2_unlink, which is described above. Everything said there also applies for deleting regular files,
links, and so on.

Removing Data Blocks
In the delete operations described above, the data blocks remain untouched, partly because of the hard
link problem. Removal of data blocks is closely associated with the reference counting of inode objects
because two conditions must be satisfied before the data blocks can actually be deleted:

1. The link counter nlink must be zero to ensure that there are no references to the data in the
filesystem.

2. The usage counter (i_count) of the inode structure must be flushed from memory.

The kernel uses the iput function to decrement the reference counter for the memory object. It therefore
makes sense to introduce a check at this point to establish whether the inode is still needed and to remove
it if not. This is a standard function of the virtual filesystem not discussed in detail here because the only
aspect of interest is that the kernel invokes the ext2_delete_inode function to release the data associated
with the inode on the hard disk (iput also returns memory data structures and memory pages reserved
for data). This function builds primarily on two other functions — ext2_truncate, which releases the
data blocks associated with the inode (regardless of whether the inode represents a directory or a regular
file); and ext2_free_inode, which releases the memory space occupied by the inode itself.

Neither function deletes the space occupied on the hard disk or overwrites it with
null bytes. They simply release the corresponding positions in the block or inode
bitmap.

Since both functions reverse the technique used to create files, their implementation need not be discussed
here.

636

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 637

Chapter 9: The Extended Filesystem Family

Address Space Operations
In Section 9.2.4, the address space operations associated with the Ext2 filesystem are discussed. For the
most part, functions whose names are prefixed with ext2_ are assigned to the individual function point-
ers. At first glance, it could therefore be assumed that they are all special implementations for the Second
Extended Filesystem.

However, this is not the case. Most of the functions make use of standard implementations of the virtual
filesystem, which uses the function discussed in Section 9.2.4 as an interface to the low-level code. For
example, the implementation of ext2_readpage is as follows:

fs/ext2/inode.c
static int ext2_readpage(struct file *file, struct page *page)
{

return mpage_readpage(page, ext2_get_block);
}

This is simply a transparent front end for the mpage_readpage standard function (introduced in
Chapter 16) whose parameters are a pointer to ext2_get_block and the memory page to be processed.

ext2_writepage is used to write memory pages and is similar in terms of its implementation:

fs/ext2/inode.c
static int ext2_writepage(struct page *page, struct writeback_control *wbc)
{

return block_write_full_page(page, ext2_get_block, wbc);
}

Again, a standard function described in Chapter 16 is used. This function is associated with the low-level
implementation of the Ext2 filesystem using ext2_get_block.

Most other address space functions provided by the Ext2 filesystem are implemented via similar front
ends that use ext2_get_block as a go-between. It is therefore not necessary to discuss additional Ext2-
specific implementations because the functions described in Chapter 8 together with the information on
ext2_get_block in Section 9.2.4 are all we need to know about address space operations.

9.3 Third Extended Filesystem
The third extension to the Ext filesystem, logically known as Ext3, features a journal in which actions
performed on the filesystem data are saved. This helps to considerably shorten the run time of fsck
following a system crash.21 Since the underlying filesystem concepts not related to the new journal
mechanism have remained unchanged in the third version of the filesystem, I will discuss only the
new Ext3 capabilities. However, for reasons of space, I will not delve too deeply into their technical
implementation.

The transaction concept originates from the database sector, where it helps guarantee data consistency
if operations are not completed. The same consistency problem (which is not specific to Ext) arises in

21On filesystems with several hundred gigabytes, consistency checks may take a few hours depending on system speed. This down-
time is not acceptable on servers. But even PC users appreciate the fact that consistency checks take just a few seconds rather than
several minutes.

637

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 638

Chapter 9: The Extended Filesystem Family

filesystems. How can the correctness and consistency of metadata be ensured if filesystem operations
are interrupted unintentionally — for example, in the event of a power outage or if a user switches a
computer off without shutting it down first?

9.3.1 Concepts
The basic idea of Ext3 is to regard each operation on the filesystem metadata as a transaction that is
saved in a journal before it is performed. Once the transaction has terminated (i.e., when the desired
modifications to the metadata have been made), the associated information is removed from the jour-
nal. If a system error occurs after transaction data have been written to the journal — but before (or
during) performance of the actual operations — the pending operations are carried out in their entirety
the next time the filesystem is mounted. The filesystem is then automatically in a consistent state. If the
interruption occurs before the transaction is written to the journal, the operation itself is not performed
because the information on it is lost when the system is restarted, but at least filesystem consistency is
retained.

However, Ext3 cannot perform miracles. It is still possible to lose data because of a system crash. Never-
theless, the filesystem can always be restored to a consistent state very quickly afterward.

The additional overhead needed to log transactions is, of course, reflected in the performance of Ext3,
which does not quite match that of Ext2. The kernel is able to access the Ext3 filesystem in three different
ways in order to strike a suitable balance between performance and data integrity in all situations:

1. In writeback mode, only changes to the metadata are logged to the journal. Operations on
useful data bypass the journal. This mode guarantees highest performance but lowest data
protection.

2. In ordered mode only changes to the metadata are logged to the journal. However, changes to
useful data are grouped and are always made before operations are performed on the meta-
data. This mode is therefore slightly slower than Writeback mode.

3. In journal mode, changes not only to metadata but also to useful data are written to the
journal. This guarantees the highest level of data protection but is by far the slowest mode
(except in a few pathological situations). The chance of losing data is minimized.

The desired mode is specified in the data parameter when the filesystem is mounted. The default is
ordered.

As already stated, the Ext3 filesystem is designed to be fully compatible with Ext2 — not only downward
but also (as far as possible) upward. The journal therefore resides in a special file with (as usual) its own
inode. This enables Ext3 filesystems to be mounted on systems that support only Ext2. Even existing Ext2
partitions can be converted to Ext3 quickly and, above all, without the need for complicated data copying
operations — a major consideration on server systems.

The journal can be held not only in a special file but also on a separate partition, but the details are not
discussed here.

638

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 639

Chapter 9: The Extended Filesystem Family

The kernel includes a layer called a journaling block device (JBD) layer to handle journals and associated
operations. Although this layer can be used on different filesystems, currently it is used only by Ext3. All
other journaling filesystems such as ReiserFS, XFS, and JFS have their own mechanisms. In the sections
below, therefore, JBD and Ext3 are regarded as a single unit.

Log Records, Handles, and Transactions
Transactions are not a monolithic structure used to implement the transaction concept. Owing to the
structure of filesystems (and also for performance reasons), it is necessary to break a transaction down
into smaller units, as shown in Figure 9-22.

Handle Handle Handle

Transaction

Log Record

Figure 9-22: Interaction of transactions, log records, and handles.

❑ Log records are the smallest units that can be logged. Each represents an individual update to a
block.

❑ (Atomic) handles group together several log records on the system level. For example, if a write
request is issued using the write system call, all log records involved in this operation are
grouped into a handle.

❑ Transactions are groupings of several handles that ensure better performance.

9.3.2 Data Structures
Whereas transactions include data with system-wide validity, each handle is always associated with a
specific process. For this reason, the familiar task structure discussed in Chapter 2 includes an element
that points to the current process handle:

<sched.h>
struct task_struct {
...
/* journaling file system info */

void *journal_info;
...
}

The JBD layer automatically assumes responsibility for converting the void pointer to a pointer to
handle_t. The journal_current_handle auxiliary function is used to read the active handle of the
current process.

639

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 640

Chapter 9: The Extended Filesystem Family

handle_t is a typedef to the struct handle_s data type used to define a handle (a simplified version is
shown):

<jbd.h>
typedef struct handle_s handle_t; /* Atomic operation type */

<jbd.h>
struct handle_s
{

/* Which compound transaction is this update a part of? */
transaction_t *h_transaction;

/* Number of remaining buffers we are allowed to dirty: */
int h_buffer_credits;

...
};

h_transaction is a pointer to the transaction data structure with which the handle is associated, and
h_buffer_credits specifies how many free buffers are still available for journal operations (discussed
shortly).

The kernel provides the journal_start and journal_stop functions that are used in pairs to label a code
section whose operation is to be regarded as atomic by the journal layer:

handle_t *handle = journal_start(journal, nblocks);
/* Perform operations to be regarded as atomic */
journal_stop(handle);

The functions can be nested, but it must be ensured that journal_stop is invoked the same number of
times as journal_start. The kernel provides the wrapper function ext3_journal_start, which takes
a pointer to the inode in question as a parameter to infer the associated journal. With this information,
journal_start is called. While journal_start is usually not used directly, ext3_journal_start is used
all over the Ext3 code.

Each handle consists of various log operations, each of which has its own buffer head (see Chapter 16)
to save the change — even if only a single bit is modified in the underlying filesystem. What appears at
first glance to be a massive waste of memory is compensated by higher performance because buffers are
processed very efficiently.

The data structure is defined (in greatly simplified form) as follows:

<journal_head.h>
struct journal_head {

struct buffer_head *b_bh;

transaction_t *b_transaction;
struct journal_head *b_tnext, *b_tprev;

❑ b_bh points to the buffer head that contains the operation data.

❑ b_transaction references the transaction to which the log entry is assigned.

❑ b_tnext and b_tprev help implement a doubly linked list of all logs associated with an atomic
operation.

640

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 641

Chapter 9: The Extended Filesystem Family

The JBD layer provides journal_dirty_metadata to write modified metadata to the journal:

fs/jbd/transaction.c
int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)

The matching journal_dirty_data function writes useful data to the journal and is used in data mode.

Transactions are represented by a dedicated data structure; again a much simplified version is shown:

<jbd.h>
typedef transaction_s transaction_t;

struct transaction_s
{

journal_t *t_journal;
tid_t t_tid;

enum {
T_RUNNING,

...
T_FLUSH,
T_COMMIT,
T_FINISHED

} t_state;

struct journal_head *t_buffers;
unsigned long t_expires;
int t_handle_count;

};

❑ t_journal is a pointer to the journal to which the transaction data are written (for the sake of
simplicity, the data structure used is not discussed because it is overburdened with technical
details).

❑ Each transaction can have different states that are held in t_state:

❑ T_RUNNING indicates that new atomic handles can be added to the journal.

❑ T_FLUSH indicates that log entries are being written at the moment.

❑ T_COMMIT indicates when all data have been written to disk, but the metadata still need to
be processed.

❑ T_FINISHED indicates that all log entries have been written safely to disk.

❑ t_buffers points to the buffers associated with the transaction.

❑ t_expires specifies the time by which the transaction data must have been physically written
to the journal. The kernel uses a timer that expires by default 5 seconds after the transaction has
been generated.

❑ t_handle_count indicates the number of handles associated with the transaction.

The Ext3 code uses ‘‘checkpoints‘‘ at which a check is made to ascertain whether the changes in the
journal have been written to the filesystem. If they have, the data in the journal are no longer needed

641

Mauerer runc09.tex V2 - 09/04/2008 5:17pm Page 642

Chapter 9: The Extended Filesystem Family

and can be removed. During normal operation, the contents of the journal play no active role. Only if a
system crash occurs are the journal data used to reconstruct changes to the filesystem and return it to a
consistent state.

As compared to the original definition in Ext2, several elements have been added to the superblock data
structure of Ext3 to support the journal functions:

<ext3_fs_sb.h>

struct ext3_sb_info {
...

/* Journaling */
struct inode * s_journal_inode;
struct journal_s * s_journal;
unsigned long s_commit_interval;
struct block_device *journal_bdev;

};

As noted, the journal can be held both in a file and on its own partition. Depending on the option chosen,
either s_journal_inode or journal_bdev is used to reference its location. s_commit_interval specifies
the frequency with which data are transferred from memory into the journal, and s_journal points to
the journal data structure.

9.4 Summary
Filesystems are used to organize file data on physical block devices like hard disks to store information
persistently across reboots. The second and third extended filesystems have been the standard working
horses of Linux for many years, and you have seen their implementation and how they represent data on
disks in detail.

After describing the basic challenges that filesystems have to face, you have seen the on-disk and in-
kernel structures of the second extended file system. You have learned how filesystem objects are man-
aged by inodes, and how data blocks that provide storage space for files are handled. Various important
filesystem operations like creating new directories were also discussed in detail.

Finally, you have been introduced to the journaling mechanisms of Ext3, the evolutionary successor
of Ext2.

642

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 643

Filesystems without
Persistent Storage

Traditionally, filesystems are used to store data persistently on block devices. However, it is also
possible to use filesystems to organize, present, and exchange information that is not stored on
block devices, but dynamically generated by the kernel. This chapter examines some of them:

❑ The proc filesystem enables the kernel to generate information on the state and con-
figuration of the system. This information can be read from normal files by users
and system programs without the need for special tools for communication with the
kernel; in some cases, a simple cat is sufficient. Data can not only be read from the
kernel, but also sent to it by writing character strings to a file of the proc filesystem.
echo "value" > /proc/file — there’s no easier way of transferring information from
userspace to the kernel.

This approach makes use of a virtual filesystem that generates file information ‘‘on the fly,’’
in other words, only when requested to do by read operations. A dedicated hard disk par-
tition or some other block storage device is not needed with filesystems of this type.

In addition to the proc filesystem, the kernel provides many other virtual filesystems for
various purposes, for example, for the management of all devices and system resources
cataloged in the form of files in hierarchically structured directories. Even device drivers
can make status information available in virtual filesystems, the USB subsystem being one
such example.

❑ Sysfs is one particularly important example of another virtual filesystem that serves a sim-
ilar purpose to procfs on the one hand, but is rather different on the other hand. Sysfs is,
per convention, always mounted at /sys, but there is nothing that would prevent includ-
ing it in other places. It was designed to export information from the kernel into userland
at a highly structured level. In contrast to procfs, it was not designed for direct human
use because the information is deeply and hierarchically nested. Additionally, the files do
not always contain information in ASCII text form, but may well use unreadable binary

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 644

Chapter 10: Filesystems without Persistent Storage

strings. The filesystem is, however, very useful for tools that want to gather detailed infor-
mation about the hardware present in a system and the topological connection between the
devices.

It is also possible to create sysfs entries for kernel objects that use kobjects (see Chapter 1
for more information) with little effort. This gives userland easy access to important core
kernel data structures.

❑ Small filesystems that serve a specific purpose can be constructed from standard func-
tions supplied by the kernel. The in-kernel library that provides the required functions
is called libfs. Additionally, the kernel provides means to implement sequential files with
ease. Both techniques are put together in the debugging filesystem debugfs, which allows
kernel developers to quickly export values to and import values from userland without the
hassle of having to create custom interfaces or special-purpose filesystems.

10.1 The proc Filesystem
As mentioned at the beginning of this chapter, the proc filesystem is a virtual filesystem whose informa-
tion cannot be read by a block device. Information is generated dynamically only when the contents of a
file are read.

Using the proc filesystem, information can be obtained on the kernel subsystems (e.g., memory uti-
lization, peripherals attached, etc.) and kernel behavior can be modified without the need to recompile
the sources, load modules, or reboot the system. Closely related to this filesystem is the system control
mechanism — sysctl for short — which has been frequently referenced in previous chapters. The proc
filesystem provides an interface to all options exported using this mechanism, thus allowing parameters
to be modified with little effort. No special communication programs need be developed — all that is
required is a shell and the standard cat and echo programs.

Usually, the process data filesystem (its full name) is mounted in /proc, from which it obviously
derives its more frequently used abbreviated name (procFS). Nevertheless, it is worth noting that the
filesystem — like any other filesystem — can be mounted at any other point in the file tree, although this
would be unusual.

The section below describes the layout and contents of the proc filesystem to illustrate its functions and
options before we move on to examine its implementation details.

10.1.1 Contents of /proc
Although the size of the proc filesystem varies from system to system (different data are exported
depending on hardware configuration, and different architectures affect its contents) it nevertheless con-
tains a large number of deeply nested directories, files, and links. However, this wealth of information
can be grouped into a few larger categories:

❑ Memory management

❑ Characteristic data of system processes

❑ Filesystems

❑ Device drivers

644

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 645

Chapter 10: Filesystems without Persistent Storage

❑ System buses

❑ Power management

❑ Terminals

❑ System control parameters

Some of these categories are very different in nature (and the above list is by no means comprehensive)
and share few common features. In the past, this information overload was a latent but ever-present
source of criticism (which occasionally erupted violently) of the proc filesystem concept. It may well be
useful to provide data by means of a virtual filesystem, but a more structured approach would have been
appreciated

The trend in kernel development is away from the provision of information by the proc filesystem and
toward the exporting of data by a problem-specific but likewise virtual filesystem. A good example of this
is the USB filesystem which is used to export many types of status information on the USB subsystem into
userspace without ‘‘overburdening‘‘ /proc with new entries. Additionally, the Sysfs filesystem allows
for presenting a hierarchical view not only of the device tree (by device, I mean system buses, PCI devices,
CPUs, etc.), but also of important kernel objects. Sysfs is discussed in Section 10.3.

On the kernel mailing list, the addition of new entries to /proc is viewed with deep suspicion and is the
subject of controversial discussion. New code has a far better chance of finding its way into the sources
if it does not use /proc. Of course, this does not mean that the proc filesystem will gradually become
superfluous. In fact, the opposite is true. Today, /proc is as important as ever not only when installing
new distributions, but also to support (automated) system administration.

The following sections give a brief overview of the various files in /proc and the information they con-
tain. Again, I lay no claim to completeness and discuss only the most important elements found on all
supported architectures.

Process-Specific Data
Each system process, regardless of its current state, has a subdirectory (with the same name as the PID)
that contains information on the process. As the name suggests, the original intention of the ‘‘process
data system‘‘ (proc for short) was to deliver process data.

What information is held in the process-specific directories? A simple ls -l command paints an initial
picture:

wolfgang@meitner> cd /proc/7748
wolfgang@meitner> ls -l
total 0
dr-xr-xr-x 2 wolfgang users 0 2008-02-15 04:22 attr
-r-------- 1 wolfgang users 0 2008-02-15 04:22 auxv
--w------- 1 wolfgang users 0 2008-02-15 04:22 clear_refs
-r--r--r-- 1 wolfgang users 0 2008-02-15 00:37 cmdline
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 cpuset
lrwxrwxrwx 1 wolfgang users 0 2008-02-15 04:22 cwd -> /home/wolfgang/wiley_kbook
-r-------- 1 wolfgang users 0 2008-02-15 04:22 environ
lrwxrwxrwx 1 wolfgang users 0 2008-02-15 01:30 exe -> /usr/bin/emacs
dr-x------ 2 wolfgang users 0 2008-02-15 00:56 fd
dr-x------ 2 wolfgang users 0 2008-02-15 04:22 fdinfo

645

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 646

Chapter 10: Filesystems without Persistent Storage

-rw-r--r-- 1 wolfgang users 0 2008-02-15 04:22 loginuid
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 maps
-rw------- 1 wolfgang users 0 2008-02-15 04:22 mem
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 mounts
-r-------- 1 wolfgang users 0 2008-02-15 04:22 mountstats
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 numa_maps
-rw-r--r-- 1 wolfgang users 0 2008-02-15 04:22 oom_adj
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 oom_score
lrwxrwxrwx 1 wolfgang users 0 2008-02-15 04:22 root -> /
-rw------- 1 wolfgang users 0 2008-02-15 04:22 seccomp
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 smaps
-r--r--r-- 1 wolfgang users 0 2008-02-15 00:56 stat
-r--r--r-- 1 wolfgang users 0 2008-02-15 01:30 statm
-r--r--r-- 1 wolfgang users 0 2008-02-15 00:56 status
dr-xr-xr-x 3 wolfgang users 0 2008-02-15 04:22 task
-r--r--r-- 1 wolfgang users 0 2008-02-15 04:22 wchan

Our example shows the data for an emacs process with the PID 7,748 as used to edit the LaTeX sources
of this book.

The meanings of most entries are evident from the filename. For instance, cmdline is the command line
used to start the process — that is, the name of the program including all parameters as a string:

The kernel does not use normal blanks to separate elements but NUL bytes as used
in C to indicate the end of a string.

wolfgang@meitner> cat cmdline
emacsfs.tex

The od tool can be used to convert the data to a readable format:

wolfgang@meitner> od -t a /proc/7748/cmdline
0000000 e m a c s nul f s . t e x nul
0000015

The above output makes it clear that the process was called by emacs fs.tex.

The other files contain the following data:

❑ environ indicates all environment variables set for the program; again, NUL characters are used
as separators instead of blanks.

❑ All memory mappings to libraries (and to the binary file itself) used by the process are listed
in text form in maps. In the case of emacs, an excerpt from this file would look like this (I use a
regular text format without NUL characters):

wolfgang@meitner> cat maps
00400000-005a4000 r-xp 00000000 08:05 283752
/usr/bin/emacs
007a3000-00e8c000 rw-p 001a3000 08:05 283752
/usr/bin/emacs
00e8c000-018a1000 rw-p 00e8c000 00:00 0 [heap]
2af4b085d000-2af4b0879000 r-xp 00000000 08:05 1743619

646

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 647

Chapter 10: Filesystems without Persistent Storage

/lib64/ld-2.6.1.so
...
4003a000-40086000 r-xp 00000000 03:02 131108 /usr/lib/libcanna.so.1.2
40086000-4008b000 rwxp 0004b000 03:02 131108 /usr/lib/libcanna.so.1.2
4008b000-40090000 rwxp 4008b000 00:00 0
40090000-400a0000 r-xp 00000000 03:02 131102 /usr/lib/libRKC.so.1.2
400a0000-400a1000 rwxp 00010000 03:02 131102 /usr/lib/libRKC.so.1.2
400a1000-400a3000 rwxp 400a1000 00:00 0
400a3000-400e6000 r-xp 00000000 03:02 133514 /usr/X11R6/lib/libXaw3d.so.8.0
400e6000-400ec000 rwxp 00043000 03:02 133514 /usr/X11R6/lib/libXaw3d.so.8.0
400ec000-400fe000 rwxp 400ec000 00:00 0
400fe000-4014f000 r-xp 00000000 03:02 13104 /usr/lib/libtiff.so.3.7.3
4014f000-40151000 rwxp 00051000 03:02 13104 /usr/lib/libtiff.so.3.7.3
40151000-4018f000 r-xp 00000000 03:02 13010 /usr/lib/libpng.so.3.1.2.8
4018f000-40190000 rwxp 0003d000 03:02 13010 /usr/lib/libpng.so.3.1.2.8
40190000-401af000 r-xp 00000000 03:02 9011 /usr/lib/libjpeg.so.62.0.0
401af000-401b0000 rwxp 0001e000 03:02 9011 /usr/lib/libjpeg.so.62.0.0
401b0000-401c2000 r-xp 00000000 03:02 12590 /lib/libz.so.1.2.3
401c2000-401c3000 rwxp 00011000 03:02 12590 /lib/libz.so.1.2.3
...
2af4b7dc1000-2af4b7dc3000 rw-p 00001000 08:05 490436
/usr/lib64/pango/1.6.0/modules/pango-basic-fc.so
2af4b7dc3000-2af4b7e07000 r--p 00000000 08:05 1222118
/usr/share/fonts/truetype/arial.ttf
2af4b7e4d000-2af4b7e53000 r--p 00000000 08:05 211780
/usr/share/locale-bundle/en_GB/LC_MESSAGES/glib20.mo
2af4b7e53000-2af4b7e9c000 rw-p 2af4b7e07000 00:00 0
7ffffa218000-7ffffa24d000 rw-p 7ffffa218000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vdso]

❑ status returns general information on process status in text form.

wolfgang@meitner> cat status
Name: emacs
State: S (sleeping)
SleepAVG: 98%
Tgid: 7748
Pid: 7748
PPid: 4891
TracerPid: 0
Uid: 1000 1000 1000 1000
Gid: 100 100 100 100
FDSize: 256
Groups: 16 33 100
VmPeak: 140352 kB
VmSize: 139888 kB
VmLck: 0 kB
VmHWM: 28144 kB
VmRSS: 27860 kB
VmData: 10772 kB
VmStk: 212 kB
VmExe: 1680 kB
VmLib: 13256 kB
VmPTE: 284 kB
Threads: 1
SigQ: 0/38912

647

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 648

Chapter 10: Filesystems without Persistent Storage

SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000000000000
SigCgt: 00000001d1817efd
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
Cpus_allowed: 00000000,00000000,00000000,0000000f
Mems_allowed: 00000000,00000001

Information is provided not only on UID/GID and other process numbers but also on memory
allocation, process capabilities, and the state of the individual signal masks (pending, blocked,
etc.).

❑ stat and statm contain — as a consecutive sequence of numbers — more status information on
the process and its memory consumption.

The fd subdirectory contains files with numbers as names; these represent the individual file descriptors
of the process. A symbolic link points to the position in the filesystem that is associated with the file
descriptor, assuming it is a file in the proper sense. Other elements such as pipes that are also addressed
via file descriptors are given a link target in the form pipe:[1434].

Similarly, symbolic links point to files and directories associated with the process:

❑ cwd points to the current working directory of the process. If users have the appropriate rights,
they can switch to this directory using

cd cwd

without needing to know which directory it is.

❑ exe points to the binary file with the application code. In our example, it would point to
/usr/bin/emacs

❑ root points to the root directory of the process. This need not necessarily be the global root direc-
tory (see the chroot mechanism discussed in Chapter 8).

General System Information
Not only the subdirectories of /proc contain information but also the directory itself. General information
relating to no specific kernel subsystem (or shared by several subsystems) resides in files in /proc.

Some of these files were mentioned in earlier chapters. For example, iomem and ioports provide infor-
mation on memory addresses and ports used to communicate with devices, as discussed in Chapter 6.
Both files contain lists in text form:

wolfgang@meitner> cat /proc/iomem
00000000-0009dbff : System RAM

00000000-00000000 : Crash kernel
0009dc00-0009ffff : reserved
000c0000-000cffff : pnp 00:0d
000e4000-000fffff : reserved
00100000-cff7ffff : System RAM

00200000-004017a4 : Kernel code
004017a5-004ffdef : Kernel data

648

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 649

Chapter 10: Filesystems without Persistent Storage

cff80000-cff8dfff : ACPI Tables
cff8e000-cffdffff : ACPI Non-volatile Storage
cffe0000-cfffffff : reserved
d0000000-dfffffff : PCI Bus #01

d0000000-dfffffff : 0000:01:00.0
d0000000-d0ffffff : vesafb

...
fee00000-fee00fff : Local APIC
ffa00000-ffafffff : pnp 00:07
fff00000-ffffffff : reserved
100000000-12fffffff : System RAM

wolfgang@meitner> cat /proc/ioports
0000-001f : dma1
0020-0021 : pic1
0040-0043 : timer0
0050-0053 : timer1
0060-006f : keyboard
0070-0077 : rtc
0080-008f : dma page reg
00a0-00a1 : pic2
...
e000-efff : PCI Bus #03

e400-e40f : 0000:03:00.0
e400-e40f : libata

e480-e483 : 0000:03:00.0
e480-e483 : libata

e800-e807 : 0000:03:00.0
e800-e807 : libata

e880-e883 : 0000:03:00.0
e880-e883 : libata

ec00-ec07 : 0000:03:00.0
ec00-ec07 : libata

Similarly, some files provide a rough overview of the current memory management situation. buddyinfo
and slabinfo supply data on current utilization of the buddy system and slab allocator, and meminfo
gives an overview of general memory usage — broken down into high and low memory, free, allocated
and shared areas, swap and writeback memory, and so on. vmstat yields further memory management
characteristics including the number of pages currently in each memory management subsystem.

The kallsyms and kcore entries support kernel code debugging. The former holds a table with the
addresses of all global kernel variables and procedures including their addresses in memory:

wolfgang@meitner> cat /proc/kallsyms
...
ffffffff80395ce8 T skb_abort_seq_read
ffffffff80395cff t skb_ts_finish
ffffffff80395d08 T skb_find_text
ffffffff80395d76 T skb_to_sgvec
ffffffff80395f6d T skb_truesize_bug
ffffffff80395f89 T skb_under_panic
ffffffff80395fe4 T skb_over_panic
ffffffff8039603f t copy_skb_header
ffffffff80396273 T skb_pull_rcsum

649

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 650

Chapter 10: Filesystems without Persistent Storage

ffffffff803962da T skb_seq_read
ffffffff80396468 t skb_ts_get_next_block
...

kcore is a dynamic core file that ‘‘contains‘‘ all data of the running kernel — that is, the entire contents of
main memory. It is no different from the normal core files that are saved for debugging purposes when
a fatal error in user applications generates a core dump. The current state of a running system can be
inspected using a debugger together with the binary file. Many of the figures in this book illustrating
the interplay among the kernel data structures were prepared using this method. Appendix 2 takes a
closer look at how available capabilities can be used with the help of the GNU gdb debugger and the ddd
graphical user interface.

interrupts saves the number of interrupts raised during the current operation (the underlying mecha-
nism is described in Chapter 14). On an IA-32 quad-core server, the file could look like this:

wolfgang@meitner> cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

0: 1383211 1407764 1292884 1364817 IO-APIC-edge timer
1: 0 1 1 0 IO-APIC-edge i8042
8: 0 1 0 0 IO-APIC-edge rtc
9: 0 0 0 0 IO-APIC-fasteoi acpi
12: 1 3 0 0 IO-APIC-edge i8042
16: 8327 4251 290975 114077 IO-APIC-fasteoi libata, uhci_hcd:usb1
18: 0 1 0 0 IO-APIC-fasteoi ehci_hcd:usb2, uhci_hcd:usb4,

uhci_hcd:usb7
19: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb6
21: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb3
22: 267439 93114 10575 5018 IO-APIC-fasteoi libata, libata, HDA Intel
23: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb5, ehci_hcd:usb8
4347: 12 17 7 77445 PCI-MSI-edge eth0
NMI: 0 0 0 0
LOC: 5443482 5443174 5446374 5446306
ERR: 0

Not only the number of interrupts but also the name of the device or driver responsible for the interrupt
are given for each interrupt number.

Last but not least, I must mention loadavg and uptime, which display, respectively, the average system
loading (i.e., the length of the run queue) during the last 60 seconds, 5 minutes, and 15 minutes; and the
system uptime — the time elapsed since system boot.

Network Information
The /proc/net subdirectory supplies data on the various network options of the kernel. The information
held there is a colorful mix of protocol and device data and includes several interesting entries as follows:

❑ Statistics on UDP and TCP sockets are available for IPv4 in udp and tcp; the equivalent data for
IPv6 are held in udp6 and tcp6. Unix sockets are logged in unix.

❑ The ARP table for backward resolution of addresses can be viewed in the arp file.

❑ dev holds statistics on the volume of data transferred via the network interfaces of the
system (including the loopback software interface). This information can be used to check the

650

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 651

Chapter 10: Filesystems without Persistent Storage

transmission quality of the network because it also includes incorrectly transmitted and rejected
packages as well as collision data.

Some network card drivers (e.g., for the popular Intel PRO/100 chipset) create additional subdirectories
in /proc/net with more detailed hardware-specific information.

System Control Parameters
The system control parameters used to check and modify the behavior of the kernel dynamically make
up the lion’s share of entries in the proc filesystem. However, this interface is not the only way of manip-
ulating data — this can also be done using the sysctl system call. This requires more effort because it
is first necessary to write a program to support communication with the kernel via the system call inter-
face. As a result, the numeric sysctl mechanism was tagged as being obsolete during development of 2.5
(the kernel outputs a warning message to this effect each time sysctl is invoked) and was planned to be
dropped at some point. Removing the system call has, however, created a controversial discussion, and
up to 2.6.25, the call is still in the kernel — although a message warns the user that it is deprecated.

The sysctl system call is not really needed because the /proc interface is a kernel data manipulation
option of unrivaled simplicity. The sysctl parameters are managed in a separate subdirectory named
/proc/sys, which is split into further subdirectories in line with the various kernel subsystems:

wolfgang@meitner> ls -l /proc/sys
total 0
dr-xr-xr-x 0 root root 0 2008-02-15 04:29 abi
dr-xr-xr-x 0 root root 0 2008-02-15 04:29 debug
dr-xr-xr-x 0 root root 0 2008-02-14 22:26 dev
dr-xr-xr-x 0 root root 0 2008-02-14 22:22 fs
dr-xr-xr-x 0 root root 0 2008-02-14 22:22 kernel
dr-xr-xr-x 0 root root 0 2008-02-14 22:22 net
dr-xr-xr-x 0 root root 0 2008-02-14 22:26 vm

The subdirectories contain a series of files that reflect the characteristic data of the associated kernel
subsystems. For example, /proc/sys/vm includes the following entries:

wolfgang@meitner> ls -l /proc/sys/vm
total 0
-rw-r--r-- 1 root root 0 2008-02-17 01:32 block_dump
-rw-r--r-- 1 root root 0 2008-02-16 20:55 dirty_background_ratio
-rw-r--r-- 1 root root 0 2008-02-16 20:55 dirty_expire_centisecs
-rw-r--r-- 1 root root 0 2008-02-16 20:55 dirty_ratio
-rw-r--r-- 1 root root 0 2008-02-16 20:55 dirty_writeback_centisecs
...
-rw-r--r-- 1 root root 0 2008-02-17 01:32 swappiness
-rw-r--r-- 1 root root 0 2008-02-17 01:32 vfs_cache_pressure
-rw-r--r-- 1 root root 0 2008-02-17 01:32 zone_reclaim_mode

Unlike the files discussed earlier, the contents of the files in these directories can not only be read, but also
supplied with new values by means of normal file operations. For instance, the vm subdirectory includes
a swappiness file to indicate how ‘‘aggressively‘‘ the swapping algorithm goes about its job of swapping
out pages. The default value is 60, as shown when the file contents are output using cat:

wolfgang@meitner> cat /proc/sys/vm/swappiness
60

651

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 652

Chapter 10: Filesystems without Persistent Storage

However, this value can be modified by issuing the following command (as root user):

wolfgang@meitner> echo "80" > /proc/sys/vm/swappiness
wolfgang@meitner> cat /proc/sys/vm/swappiness
80

As discussed in Chapter 18, the higher the swappiness value the more aggressively will the kernel swap
out pages; this can lead to better performance at certain system load levels.

Section 10.1.8 describes in detail the implementation used by the kernel to manipulate parameters in the
proc filesystem.

10.1.2 Data Structures
Once again there are a number of central data structures around which the code used to implement
the process data filesystem is built. These include the structures of the virtual filesystem discussed in
Chapter 8. proc makes generous use of these, simply because, as a filesystem itself, it must be integrated
into the VFS layer of the kernel.

There are also proc-specific data structures to organize the data provided in the kernel. An interface to the
subsystems of the kernel must also be made available to enable the kernel to extract required information
from its structures before it is supplied to userspace by means of /proc.

Representation of proc Entries
Each entry in the proc filesystem is described by an instance of proc_dir_entry whose (abbreviated)
definition is as follows:

<proc_fs.h>
struct proc_dir_entry {

unsigned int low_ino;
unsigned short namelen;
const char *name;
mode_t mode;
nlink_t nlink;
uid_t uid;
gid_t gid;
loff_t size;
struct inode_operations * proc_iops;
const struct file_operations * proc_fops;
get_info_t *get_info;
struct module *owner;
struct proc_dir_entry *next, *parent, *subdir;
void *data;
read_proc_t *read_proc;
write_proc_t *write_proc;

...
};

Because each entry is given a filename, the kernel uses two elements of the structure to store the corre-
sponding information: name is a pointer to the string in which the name is held, and namelen specifies

652

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 653

Chapter 10: Filesystems without Persistent Storage

the length of the name. Also adopted from the classic filesystem concept is the numbering of all inodes
using low_ino. The meaning of mode is the same as in normal filesystems because the element reflects the
type of the entry (file, directory, etc.), and the assignment of access rights in accordance with the classic
‘‘owner, group, others‘‘ scheme by means of the appropriate constants in <stat.h>. uid and gid specify
the user ID and group ID to which the file belongs. Both are usually set to 0, which means that the root
user is the owner of almost all proc files.

The usage counter common to most data structures is implemented by count, which indicates the number
of points at which the instance of a data structure is used in the kernel to ensure that the structure is not
freed inadvertently.

proc_iops and proc_fops are pointers to instances of types inode_operations and file_operations
discussed in Chapter 8. They hold operations that can be performed on an inode or file and act as an inter-
face to the virtual filesystem that relies on their presence. The operations used depend on the particular
file type and are discussed in more detail below.

The file size in bytes is saved in the size element. Because proc entries are generated dynamically, the
length of a file is not usually known in advance; in this case, the value 0 is used.

If a proc entry is generated by a dynamically loaded module, module contains a reference to the associ-
ated module data structure in memory (if the entry was generated by compiled-in code, module holds a
null pointer).

The following three elements are available to control the exchange of information between the virtual
filesystem (and ultimately userspace) and the various proc entries or individual kernel subsystems.

❑ get_info is a function pointer to the relevant subsystem routine that returns the desired data.
As with normal file access, the offset and length of the desired range can be specified so that it is
not necessary to read the full data set. This is useful, for example, for the automated analysis of
proc entries.

❑ read_proc and write_proc point to functions to support the reading of data from and the writ-
ing of data to the kernel. The parameters and return values of the two functions are specified by
the following type definition:

<proc_fs.h>
typedef int (read_proc_t)(char *page, char **start, off_t off,

int count, int *eof, void *data);
typedef int (write_proc_t)(struct file *file, const char __user *buffer,

unsigned long count, void *data);

Whereas data are read on the basis of memory pages (of course, an offset and the length of the
data to be read can also be specified), the writing of data is based on a file instance. Both rou-
tines have an additional data argument that is defined when a new proc entry is registered and
is passed as a parameter each time the routine is invoked (the data element of proc_dir_entry
holds the data argument). This means that a single function can be registered as the read/write
routine for several proc entries; the code can then distinguish the various cases by reference to
the data argument (this is not possible with get_info because no data argument is passed). This
tactic has already been adopted in preceding chapters to prevent the unnecessary duplication of
code.

653

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 654

Chapter 10: Filesystems without Persistent Storage

Recall that there is a separate instance of proc_dir_entry for each entry in the proc filesystem. They
are used by the kernel to represent the hierarchical structure of the filesystem by means of the following
elements:

❑ nlink specifies the number of subdirectories and symbolic links in a directory. (The number of
files of other types is irrelevant.)

❑ parent is a pointer to the directory containing a file (or subdirectory) represented by the current
proc_dir_entry instance.

❑ subdir and next support the hierarchical arrangement of files and directories. subdir points to
the first entry of a directory (which, in spite of the name of the element, can be either a file or a
directory), and next groups all common entries of a directory in a singly linked list.

proc inodes
The kernel provides a data structure called proc_inode to support an inode-oriented view of the proc
filesystem entries. This structure is defined as follows:

<proc_fs.h>
union proc_op {

int (*proc_get_link)(struct inode *, struct dentry **, struct vfsmount **);
int (*proc_read)(struct task_struct *task, char *page);

};

struct proc_inode {
struct pid *pid;
int fd;
union proc_op op;
struct proc_dir_entry *pde;
struct inode vfs_inode;

};

The purpose of the structure is to link the proc-specific data with the inode data of the VFS layer. pde
contains a pointer to the proc_dir_entry instance associated with each entry; the meaning of the instance
was discussed in the previous section. At the end of the structure there is an instance of inode.

This is the actual data, not a pointer to an instance of the structure.

This is exactly the same data used by the VFS layer for inode management. In other words, directly before
each instance of an inode structure linked with the proc filesystem, there are additional data in memory
that can be extracted from a given instance of proc_inode using the container mechanism. Because the
kernel frequently needs to access this information, it defines the following auxiliary procedure:

<proc_fs.h>
static inline struct proc_inode *PROC_I(const struct inode *inode)
{

return container_of(inode, struct proc_inode, vfs_inode);
}

This returns the inode-specific data associated with a VFS inode. Figure 10-1 illustrates the situation in
memory.

654

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 655

Chapter 10: Filesystems without Persistent Storage

proc_inode VFS-Inode

PROC_I

Figure 10-1: Connection between struct proc_inode
and struct inode.

The remaining elements of the structure are only used if the inode represents a process-specific entry
(which is therefore located in the proc/pid directory). Their meanings are as follows:

❑ pid is a pointer to the pid instance of a process. Because it is possible to access a large amount of
process-specific information this way, it is clear why a process-specific inode should be directly
associated with this data.

❑ proc_get_link and proc_read (which are collected in a union because only one at a time makes
sense) are used to get process-specific information or to generate links to process-specific data in
the Virtual Filesystem.

❑ fd holds the filedescriptor for which a file in /proc/<pid>/fd/ presents information. With the
help of fd, all files in this directory can use the same file_operations.

The meanings and use of these elements are discussed in detail in Section 10.1.7.

10.1.3 Initialization
Before the proc filesystem can be used, it must be mounted with mount, and the kernel must set up and
initialize several data structures to describe the filesystem structure in kernel memory. Unfortunately, the
appearance and contents of /proc differ substantially from platform to platform and from architecture
to architecture, and the code is crammed with #ifdef pre-processor statements that select code sections
according to the particular situation. Although this practice is frowned upon, it simply cannot be avoided.

Because initialization differences relate primarily to creation of the subdirectories that subse-
quently appear in /proc, they are not evident in Figure 10-2, which shows a code flow diagram of
proc_root_init in fs/proc/root.c.

proc_root_init

proc_init_inodecache

register_filesystem

kern_mount_data

proc_misc_init

proc_net_init

Create directories with proc_mkdir

Figure 10-2: Code flow diagram for
proc_root_init.

655

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 656

Chapter 10: Filesystems without Persistent Storage

proc_root_init first creates a slab cache for proc_inode objects using proc_init_inodecache; these
objects are the backbone of the proc filesystem and often need to be generated and destroyed as quickly
as possible. Then the filesystem is officially registered with the kernel using the register_filesystem
routine described in Chapter 8. And finally, mount is invoked to mount the filesystem.

kern_mount_data is a wrapper function for do_kern_mount, also discussed in Chapter 8. It returns a
pointer to a vfsmount instance. The pointer is saved in the global variable proc_mnt for later use by the
kernel.

proc_misc_init generates various file entries in the proc main directory; these are linked using special
procedures to read information from the kernel data structures. Examples of these procedures are:

❑ loadavg (loadavg_read_proc)

❑ meminfo (meminfo_read_proc)

❑ filesystems (filesystems_read_proc)

❑ version (version_read_proc)

create_proc_read_entry is invoked for each name on this list (and for a few more, as the kernel
sources show). The function creates a new instance of the familiar proc_dir_entry data structure whose
read_proc entry is set to the procedure associated with each name. The implementation of most of these
procedures is extremely simple, as exemplified by the version_read_proc procedure used to get the
kernel version:

init/version.c
const char linux_proc_banner[] =

"%s version %s"
" (" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ")"
" (" LINUX_COMPILER ") %s\n";

fs/proc/proc_misc.c
static int version_read_proc(char *page, char **start, off_t off,

int count, int *eof, void *data)
{

int len;

len = snprintf(page, PAGE_SIZE, linux_proc_banner,
utsname()->sysname,
utsname()->release,
utsname()->version);

return proc_calc_metrics(page, start, off, count, eof, len);
}

The kernel string linux_proc_banner is written into a userspace page using sprintf. When this is done,
the proc_calc_metrics auxiliary function determines the length of the data returned.

Once proc_misc_init has completed, the kernel uses proc_net_init to install a large number of net-
working related files in /proc/net. Since the mechanism is similar to the previous case, it is not discussed
here.

Finally, the kernel invokes proc_mkdir to create a number of /proc subdirectories; these are required
later but do not contain files at the moment. As for proc_mkdir, all we need to know is that the function

656

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 657

Chapter 10: Filesystems without Persistent Storage

registers a new subdirectory and returns the associated proc_dir_entry instance; its implementation is
of no further interest. The kernel saves these instances in global variables because these data are needed
later when filling the directories with files (i.e., when supplying the real information).

fs/proc_root.c
struct proc_dir_entry *proc_net, *proc_bus, *proc_root_fs, *proc_root_driver;

void __init proc_root_init(void)
{
...

proc_net = proc_mkdir("sysvipc", NULL);
...

proc_root_fs = proc_mkdir("fs", NULL);
proc_root_driver = proc_mkdir("driver", NULL);

...
proc_bus = proc_mkdir("bus", NULL);

}

Further directory initialization is no longer carried out by the proc layer itself but is performed by other
parts of the kernel where the required information is made available. This makes it clear why the kernel
uses global variables to save the proc_dir_entry instances of these subdirectories. The files in proc/net
are filled, for example, by the network layer, which inserts files at many different points in the code of
card drivers and protocols. Because new files are created when new cards or protocols are initialized, this
can be done during the boot operation (in the case of compiled-in drivers) or while the system is running
(when modules are loaded) — in any case, after initialization of the proc filesystem by proc_root_init
has completed. If the kernel did not use global variables, it would have to provide functions to register
subsystem-specific entries, and this is neither as clean nor as elegant as using global variables.

The system control mechanism fills proc_sys_root with files that are always generated when a new
sysctl is defined in the kernel. Repeated reference was made to this facility in earlier chapters. A detailed
description of the associated mechanism is provided in Section 10.1.8.

10.1.4 Mounting the Filesystem
Once all kernel-internal data that describe the structure and contents of the proc filesystem have been
initialized, the next step is to mount the filesystem in the directory tree.

In the view of the system administrator in userspace, mounting /proc is almost the same as mounting a
non-virtual filesystem. The only difference is that an arbitrary keyword (usually proc or none) is specified
as the source instead of a device file:

root@meitner # mount -t proc proc /proc

The VFS-internal processes involved in mounting a new filesystem are described in detail in Chapter 8,
but as a reminder are summarized below. When it adds a new filesystem, the kernel uses a linked list
that is scanned to find an instance of file_system_type associated with the filesystem. This instance
provides information on how to read in the filesystem superblock. For proc, the structure is initialized as
follows:

fs/proc/root.c
static struct file_system_type proc_fs_type = {

.name = "proc",

657

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 658

Chapter 10: Filesystems without Persistent Storage

.get_sb = proc_get_sb,

.kill_sb = kill_anon_super,
};

The filesystem-specific superblock data are used to fill a vfsmount structure so that the new filesystem
can be incorporated in the VFS tree.

As the source code extract above shows, the superblock of the proc filesystem is supplied by
proc_get_sb. The function builds on a further kernel auxiliary routine (get_sb_single) that enlists the
help of proc_fill_super to fill a new instance of super_block.

proc_fill_super is not very complex and is mainly responsible for filling the super_block elements
with defined values that never change:

fs/proc/inode.c
int proc_fill_super(struct super_block *s, void *data, int silent)
{

struct inode * root_inode;
...

s->s_blocksize = 1024;
s->s_blocksize_bits = 10;
s->s_magic = PROC_SUPER_MAGIC;
s->s_op = &proc_sops;

...
root_inode = proc_get_inode(s, PROC_ROOT_INO, &proc_root);
s->s_root = d_alloc_root(root_inode);

...
return 0;

}

The block size cannot be set and is always 1,024; as a result, s_blocksize_bitsmust always be 10 because
210 equals 1,024.

With the help of the pre-processor, the magic number used to recognize the filesystem is defined as
0x9fa0. (This number is not actually needed in the case of proc because data do not reside on a storage
medium but are generated dynamically.)

More interesting is the assignment of the proc_sops superblock operations that group together the func-
tions needed by the kernel to manage the filesystem:

fs/proc/inode.c
static struct super_operations proc_sops = {

.alloc_inode = proc_alloc_inode,

.destroy_inode = proc_destroy_inode,

.read_inode = proc_read_inode,

.drop_inode = generic_delete_inode,

.delete_inode = proc_delete_inode,

.statfs = simple_statfs,

.remount_fs = proc_remount,
};

658

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 659

Chapter 10: Filesystems without Persistent Storage

The next two lines of proc_fill_super create an inode for the root directory and use d_alloc_root to
convert it into a dentry that is assigned to the superblock instance; here it is used as the starting point for
lookup operations in the mounted filesystem, as described in Chapter 8.

In the main, the proc_get_inode function used to create the root inode fills several inode structure values
to define, for example, the owner and the access mode. Of greater interest is the static proc_dir_entry
instance called proc_root; when it is initialized, it gives rise to data structures with relevant function
pointers:

fs/proc/root.c
struct proc_dir_entry proc_root = {

.low_ino = PROC_ROOT_INO,

.namelen = 5,

.name = "/proc",

.mode = S_IFDIR | S_IRUGO | S_IXUGO,

.nlink = 2,

.count = ATOMIC_INIT(1),

.proc_iops = &proc_root_inode_operations,

.proc_fops = &proc_root_operations,

.parent = &proc_root,
}

The root inode differs from all other inodes of the proc file system in that it not only contains ‘‘normal‘‘
files and directories (even though they are generated dynamically), but also manages the process-specific
PID directories that contain detailed information on the individual system processes, as mentioned above.
The root inode therefore has its own inode and file operations, which are defined as follows:

fs/proc/root.c
/*
* The root /proc directory is special, as it has the
* <pid> directories. Thus we don’t use the generic
* directory handling functions for that..
*/

static struct file_operations proc_root_operations = {
.read = generic_read_dir,
.readdir = proc_root_readdir,

};

/*
* proc root can do almost nothing..
*/

static struct inode_operations proc_root_inode_operations = {
.lookup = proc_root_lookup,
.getattr = proc_root_getattr,

}

generic_read_dir is a standard virtual filesystem function that returns -EISDIR as an error code; this
is because directories cannot be handled like normal files in order to get data from them. Section 10.1.5
describes how proc_root_lookup functions.

659

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 660

Chapter 10: Filesystems without Persistent Storage

10.1.5 Managing /proc Entries
Before the proc filesystem can be put to meaningful use, it must be filled with entries containing data.
Several auxiliary routines are provided to add files, create directories, and so on, in order to make this
job as easy as possible for the remaining kernel sections. These routines are discussed below.

The fact that new proc entries can be easily generated should not disguise the fact
that it is not accepted practice to use code to do this. Nevertheless, the simple, lean
interface can be very useful for opening up a communication channel for test
purposes between kernel and userspace with minimum effort.

I also discuss methods used by the kernel to scan the tree of all registered proc entries to find required
information.

Creating and Registering Entries
New entries are added to the proc filesystem in two steps. First, a new instance of proc_dir_entry is
created together with all information needed to describe the entry. This instance is then registered in the
data structures of proc so that it is visible to the outside. Because the two steps are never carried out
independently of each other, the kernel makes auxiliary functions available to combine both actions so
that new entries can be generated quickly and easily.

The most frequently used function is called create_proc_entry and requires three arguments:

<proc_fs.h>
extern struct proc_dir_entry *create_proc_entry(const char *name, mode_t mode,

struct proc_dir_entry *parent);

❑ name specifies the filename.

❑ mode specifies the access mode in the conventional Unix scheme (user/group/others).

❑ parent is a pointer to the proc_dir_entry instance of the directory where the file is to be
inserted.

Caution: The function fills only the essential elements of the proc_dir_entry structure. It is therefore
necessary to make a few brief ‘‘manual‘‘ corrections to the structure generated.

This is illustrated by the following sample code, which generates the proc/net/hyperCard entry to
supply information on a (unbelievably good) network card:

struct proc_dir_entry *entry = NULL;

entry = create_proc_entry("hyperCard", S_IFREG|S_IRUGO|S_IWUSR,
&proc_net);

if (!entry) {
printk(KERN_ERR "unable to create /proc/net/hyperCard\n");
return -EIO;

} else {
entry->read_proc = hypercard_proc_read;

660

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 661

Chapter 10: Filesystems without Persistent Storage

entry->write_proc = hypercard_proc_write;
}

Once the entry has been created, it is registered with the proc filesystem using proc_register in
fs/proc/generic.c. The task is divided into three steps:

1. A unique proc-internal number is generated to give the entry its own identity.
get_inode_number is used to return an unused number for dynamically generated
entries.

2. The next and parent elements of the proc_dir_entry instance must be set appropriately to
incorporate the new entry into the hierarchy.

3. Depending on the file type, the pointers must be set appropriately to file and inode
operations if the corresponding elements of proc_dir_entry, proc_iops and proc_fops
previously contained a null pointer. Otherwise, the value held there is retained.

Which file and inode operations are used for proc files? The corresponding pointers are set as
follows:

fs/proc/generic.c
static int proc_register(struct proc_dir_entry * dir, struct proc_dir_entry * dp)
{

if (S_ISDIR(dp->mode)) {
if (dp->proc_iops == NULL) {

dp->proc_fops = &proc_dir_operations;
dp->proc_iops = &proc_dir_inode_operations;

}
dir->nlink++;

} else if (S_ISLNK(dp->mode)) {
if (dp->proc_iops == NULL)

dp->proc_iops = &proc_link_inode_operations;
} else if (S_ISREG(dp->mode)) {

if (dp->proc_fops == NULL)
dp->proc_fops = &proc_file_operations;

if (dp->proc_iops == NULL)
dp->proc_iops = &proc_file_inode_operations;

}
...
}

For regular files, the kernel uses proc_file_operations and proc_file_inode_operations to define
the file and inode operation methods:

fs/proc/generic.c
static struct inode_operations proc_file_inode_operations = {

.setattr = proc_notify_change,
};

fs/proc/generic.c
static struct file_operations proc_file_operations = {

.llseek = proc_file_lseek,

.read = proc_file_read,

.write = proc_file_write,
};

661

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 662

Chapter 10: Filesystems without Persistent Storage

Directories use the following structures:

fs/proc/generic.c
static struct file_operations proc_dir_operations = {

.read = generic_read_dir,

.readdir = proc_readdir,
};

fs/proc/generic.c
/* proc directories can do almost nothing... */
static struct inode_operations proc_dir_inode_operations = {

.lookup = proc_lookup,

.getattr = proc_getattr,

.setattr = proc_notify_change,
};

Symbolic links require inode operations but not file operations:

fs/proc/generic.c
static struct inode_operations proc_link_inode_operations = {

.readlink = generic_readlink,

.follow_link = proc_follow_link,
};

Later in this section, I take a closer look at the implementation of some of the routines in the above data
structures.

In addition to create_proc_entry, the kernel provides two further auxiliary functions for creating new
proc entries. All three are short wrapper routines for create_proc_entry and are defined with the
following parameter list:

<proc_fs.h>
static inline struct proc_dir_entry *create_proc_read_entry(const char *name,

mode_t mode, struct proc_dir_entry *base,
read_proc_t *read_proc, void * data) { ... }

static inline struct proc_dir_entry *create_proc_info_entry(const char *name,
mode_t mode, struct proc_dir_entry *base, get_info_t *get_info) { ... }

create_proc_read_entry and create_proc_info_entry are used to create a new read entry. Because
this can be done in two different ways (as discussed in Section 10.1.2), there must also be two routines.
Whereas create_proc_info_entry requires a procedure pointer of type get_info_t that is added to the
get_info element of proc_dir_entry, create_proc_info_entry expects not only a procedure pointer
of type read_proc_t, but also a data pointer that enables the same function to be used as a read routine
for various proc entries distinguished by reference to their data argument.

Although we are not interested in their implementation, I include below a list of other auxiliary functions
used to manage proc entries:

❑ proc_mkdir creates a new directory.

❑ proc_mkdir_mode creates a new directory whose access mode can be explicitely specified.

662

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 663

Chapter 10: Filesystems without Persistent Storage

❑ proc_symlink generates a symbolic link.

❑ remove_proc_entry deletes a dynamically generated entry from the proc directory.

The kernel sources include a sample file in Documentation/DocBook/procfs_example.c. This demon-
strates the options described here and can be used as a template for writing proc routines. Section 10.1.6
includes some sample kernel source routines that are responsible for interaction between the read/write
routines of the proc filesystem and the kernel subsystems.

Finding Entries
Userspace applications access proc files as if they were normal files in regular filesystems; in other words,
they follow the same path as the VFS routines described in Chapter 8 when searching for entries. As
discussed there, the lookup process (e.g., of the open system call) duly arrives at real_lookup, which
invokes the function saved in the lookup function pointer of inode_operations to resolve the filename
by reference to its individual path components. In this section, we take a look at the steps performed by
the kernel to find files in the proc filesystem.

The search for entries starts at the mount point of the proc filesystem, usually /proc. In Section 10.1.2
you saw that the lookup pointer of the file_operations instance for the root directory of the process
filesystem points to the proc_root_lookup function. Figure 10-3 shows the associated code flow diagram.

proc_root_lookup

proc_lookup

proc_pid_lookup

Figure 10-3: Code flow diagram for
proc_root_lookup.

The kernel uses this routine simply to distinguish between two different types of proc entries before
delegating the real work to specialized routines. Entries may be files in a process-specific directory, as
with /proc/1/maps. Alternatively, entries may be files registered dynamically by a driver or subsystem
(e.g., /proc/cpuinfo or /proc/net/dev). It is up to the kernel to distinguish between the two.

The kernel first invokes proc_lookup to find regular entries. If the function finds the file it is looking
for (by sequentially scanning the components of the specified path), everything is OK, and the lookup
operation is terminated.

If proc_lookup fails to find an entry, the kernel invokes proc_pid_lookup to look in the list of process-
specific entries.

These functions are not examined in detail here. All we need to know is that an appropriate inode type
is returned (proc_pid_lookup is discussed again in Section 10.1.7, where the creation and structure of
process-specific inodes are discussed).

663

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 664

Chapter 10: Filesystems without Persistent Storage

10.1.6 Reading and Writing Information
As noted in Section 10.1.5, the kernel uses the operations stored in proc_file_operations to read and
write the contents of regular proc entries. The contents of the function pointers in this structure are as
follows:

fs/proc/generic.c
static struct file_operations proc_file_operations = {

.llseek = proc_file_lseek,

.read = proc_file_read,

.write = proc_file_write,
};

The sections below examine the read and write operations implemented by means of proc_file_read
and proc_file_write.

Implementation of proc_file_read
Data are read from a proc file in three steps:

1. A kernel memory page is allocated into which data are generated.

2. A file-specific function is invoked to fill the kernel memory page with data.

3. The data are copied from kernel space to userspace.

Obviously, the second step is the most important because the subsystem data and kernel data structures
must be specially prepared. The other two steps are simple routine tasks. Section 10.1.2 noted that the
kernel provides two function pointers to get_info and read_proc in the proc_dir_entry structure;
these functions are used to read data, and the kernel must select the one that matches.

fs/proc/generic.c
proc_file_read(struct file *file, char __user *buf, size_t nbytes,

loff_t *ppos)
{
...

if (dp->get_info) {
/* Handle old net routines */
n = dp->get_info(page, &start, *ppos, count);
if (n < count)

eof = 1;
} else if (dp->read_proc) {

n = dp->read_proc(page, &start, *ppos,
count, &eof, dp->data);

} else
break;

...
}

page is a pointer to the memory page allocated to hold the data in the first step.

Since a sample implementation of read_proc is included in Section 10.1.5, it need not be repeated here.

664

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 665

Chapter 10: Filesystems without Persistent Storage

Implementation of proc_file_write
Writing to proc files is also a simple matter — at least from the perspective of the filesystem. The code of
proc_file_write is very compact and thus is reproduced in full below.

fs/proc/generic.c
static ssize_t
proc_file_write(struct file * file, const char __user *buffer,

size_t count, loff_t *ppos)
{

struct inode *inode = file->f_dentry->d_inode;
struct proc_dir_entry * dp;

dp = PDE(inode);

if (!dp->write_proc)
return -EIO;

return dp->write_proc(file, buffer, count, dp->data);
}

The PDE function needed to obtain the required proc_dir_entry instance from the VFS inode using
the container mechanism is very simple. All it does is execute PROC_I(inode)->pde. As discussed in
Section 10.1.2, PROC_I finds the proc_inode instance associated with an inode (in the case of proc inodes,
the inode data always immediately precede the VFS inode).

Once the proc_dir_entry instance has been found, the routine registered for write purposes must be
invoked with suitable parameters — assuming, of course, that the routine exists and is not assigned a
null pointer.

How does the kernel implement a write routine for proc entries? This question is answered using
proc_write_foobar, which is included as an example for a write handler in the kernel sources:

kernel/Documentation/DocBook/procfs_example.c
static int proc_write_foobar(struct file *file,

const char *buffer,
unsigned long count,
void *data)

{
int len;
struct fb_data_t *fb_data = (struct fb_data_t *)data;

if(count > FOOBAR_LEN)
len = FOOBAR_LEN;

else
len = count;

if(copy_from_user(fb_data->value, buffer, len))
return -EFAULT;

fb_data->value[len] = ’\0’;

665

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 666

Chapter 10: Filesystems without Persistent Storage

/* Parse the data and perform actions in the subsystem */
return len;

}

Usually, a proc_write implementation performs the following actions:

1. First, the length of the user input (it can be determined using the count parameter) must be
checked to ensure that it is not longer than the reserved area.

2. The data are copied from userspace into the reserved kernel space area.

3. Information is extracted from the string. This operation is known as parsing, a term
borrowed from compiler design. In the above example, this task is delegated to the
cpufreq_parse_policy function.

4. Manipulations are then performed on the (sub)system in accordance with the user informa-
tion received.

10.1.7 Task-Related Information
Outputting detailed information on system processes was one of the prime tasks for which the proc
filesystem was originally designed, and this still holds true today. As demonstrated in Section 10.1.7,
proc_pid_lookup is responsible for opening PID-specific files in /proc/<pid>. The associated code flow
diagram is shown in Figure 10-4.

proc_pid_lookup

name == self? Create self incodeYes

No

find_task_by_pid_ns

proc_pid_instantiate

proc_pid_make_inode

Fill in file and inode operations

name_to_int

Figure 10-4: Code flow diagram for proc_pid_lookup.

The goal of the routine is to create an inode that acts as the first object for further PID-specific operations;
this is because the inode represents the /proc/pid directory containing all files with process-specific
information. Two cases, analyzed below, must be distinguished.

The self directory
Processes can be selected by explicit reference to their PIDs, but the data of the currently running pro-
cess can be accessed without knowing PID by selecting the /proc/self directory — the kernel then

666

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 667

Chapter 10: Filesystems without Persistent Storage

automatically determines which process is currently running. For example, outputting the contents of
/proc/self/map with cat produces the following result:

wolfgang@meitner> cat /proc/self/cmdline
cat/proc/self/cmdline

If a Perl script is used to read the file, the following information is obtained.

wolfgang@meitner> perl -e ’open(DAT, "< /proc/self/cmdline"); print(<DAT>); close(DAT);’
perl-eopen(DAT, "< /proc/self/cmdline"); print(<DAT>); close(DAT);

Because the script was passed to the Perl interpreter as a command-line parameter, it reproduces
itself — in fact, it is almost a self-printing Perl script.1

The self case is handled first in proc_pid_lookup, as the code flow diagram in Figure 10-4 shows.

When a new inode instance is generated, only a few uninteresting standard fields need to be filled. Of
prime importance is the fact that the statically defined proc_self_inode_operations instance is used
for the inode operations:

fs/proc/base.c
static struct inode_operations proc_self_inode_operations = {

.readlink = proc_self_readlink,

.follow_link = proc_self_follow_link,
};

The self directory is implemented as a link to a PID-specific directory. As a result, the associated inode
always has the same structure and does not contain any information as to which process it refers. This
information is obtained dynamically when the link target is read (this is necessary when following or
reading a link, e.g., when listing the entries of /proc). This is precisely the purpose of the two functions
in proc_self_inode_operations whose implementations require just a few lines:

fs/proc/base.c
static int proc_self_readlink(struct dentry *dentry, char *buffer, int buflen)
{

char tmp[30];
sprintf(tmp, "%d", current->tgid);
return vfs_readlink(dentry,buffer,buflen,tmp);

}

static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
{

char tmp[PROC_NUMBUF];
sprintf(tmp, "%d", task_tgid_vnr(current));
return ERR_PTR(vfs_follow_link(nd,tmp));

}

Both functions generate a string into tmp. For proc_self_readlink, it holds the thread group ID of the
currently running process, which is read using current->tgid. For proc_self_follow_link, the PID
that the current namespace associates with the task is used. Recall from Chapter 2 that PIDs are not
unique across the system because of namespaces. Also remember that the thread group ID is identical

1Writing programs that print themselves is an old hacker’s delight. A collection of such programs in a wide variety of high-level
languages is available at www.nyx.net/~gthompso/quine.htm.

667

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 668

Chapter 10: Filesystems without Persistent Storage

with the classic PID for single-threaded processes. The sprintf function, with which we are familiar
from the C programming of userspace applications, converts the integer number into a string.

The remaining work is then delegated to standard virtual filesystem functions that are responsible for
directing the lookup operation to the right places.

Selection According to PID
Let us turn our attention to how the process-specific information is selected by PID.

Creating the Directory Inode
If a PID is passed to proc_pid_lookup instead of "self", the course of the lookup operation is as shown
in the code flow diagram in Figure 10-4.

Because filenames are always processed in the form of strings but PIDs are integer numbers, the former
must be converted accordingly. The kernel provides the name_to_int auxiliary function to convert strings
consisting of digits into an integer.

The information obtained is used to find the task_struct instance of the desired process by means
of the find_task_by_pid_ns function described in Chapter 2. However, the kernel cannot make the
assumption that the desired process actually exists. After all, it is not unknown for programs to try to
process a nonexistent PID, in which case, a corresponding error (-ENOENT) is reported.

Once the desired task_struct is found, the kernel delegates the rest of the work mostly to
proc_pid_instantiate implemented in fs/proc/base.c, which itself relies on proc_pid_make_inode.
First, a new inode is created by the new_inode standard function of VFS; this basically boils down to the
same proc-specific proc_alloc_inode routine mentioned above that makes use of its own slab cache.

The routine not only generates a new struct inode instance, but also reserves
memory needed by struct proc_inode; the reserved memory holds a normal VFS
inode as a ‘‘subobject,‘‘ as noted in Section 10.1.2. The elements of the object
generated are then filled with standard values.

After calling proc_pid_make_inode, all the remaining code in proc_pid_instantiate has to do is per-
form a couple of administrative tasks. Most important, the inode->i_op inode operations are set to the
proc_tgid_base_inode_operations static structure whose contents are examined below.

Processing Files
When a file (or directory) in the PID-specific /proc/pid directory is processed, this is done using the
inode operations of the directory, as noted in Chapter 8 when discussing the virtual filesystem mech-
anisms. The kernel uses the statically defined proc_base_inode_operations structure as the inode
operations of PID inodes. This structure is defined as follows:

fs/proc/base.c
static const struct inode_operations proc_tgid_base_inode_operations = {

.lookup = proc_tgid_base_lookup,

.getattr = pid_getattr,

.setattr = proc_setattr,
};

668

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 669

Chapter 10: Filesystems without Persistent Storage

In addition to attribute handling, the directory supports just one more operation — subentry lookup.2

The task of proc_tgid_base_lookup is to return an inode instance with suitable inode operations by
reference to a given name (cmdline, maps, etc.). The extended inode operations (proc_inode) must also
include a function to output the desired data. Figure 10-5 shows the code flow diagram.

proc_tgid_base_lookup

proc_pident_lookup

Check if name exits in tigd_base_stuff

proc_pident_instantiate

proc_pid_make_inode

Fill in inode and file operations

Figure 10-5: Code flow diagram for proc_tgid_base_lookup.

The work is delegated to proc_pident_lookup, which works not only for TGID files, but is a generic
method for other ID types. The first step is to find out whether the desired entry exists at all. Because the
contents of the PID-specific directory are always the same, a static list of all files together with a few other
bits of information is defined in the kernel sources. The list is called tgid_base_stuff and is used to find
out easily whether a desired directory entry exists or not. The array contains elements of type pid_entry,
which is defined as follows:

fs/proc/base.c
struct pid_entry {

char *name;
int len;
mode_t mode;
const struct inode_operations *iop;
const struct file_operations *fop;
union proc_op op;

};

name and len specify the filename and the string length of the name, while mode denotes the mode bits.
Additionally, there are fields for the inode and file operations associated with the entry, and a copy of
proc_op. Recall that this contains a pointer to the proc_get_link or proc_read_link operation, depend-
ing on the file type.

Some macros are provided to ease the construction of static pid_entry instances:

fs/proc/base.c
#define DIR(NAME, MODE, OTYPE) \

NOD(NAME, (S_IFDIR|(MODE)), \

2A special readdir method is also implemented for proc_tgid_base_operations (an instance of struct
file_operations) to read a list of all files in the directory. It’s not discussed here simply because every PID-specific directory
always contains the same files, and therefore the same data would always be returned.

669

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 670

Chapter 10: Filesystems without Persistent Storage

&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
{})

#define LNK(NAME, OTYPE) \
NOD(NAME, (S_IFLNK|S_IRWXUGO), \

&proc_pid_link_inode_operations, NULL, \
{ .proc_get_link = &proc_##OTYPE##_link })

#define REG(NAME, MODE, OTYPE) \
NOD(NAME, (S_IFREG|(MODE)), NULL, \

&proc_##OTYPE##_operations, {})
#define INF(NAME, MODE, OTYPE) \

NOD(NAME, (S_IFREG|(MODE)), \
NULL, &proc_info_file_operations, \
{ .proc_read = &proc_##OTYPE })

As the names indicate, the macros generate directories, links, and regular files. INF also generates regular
files, but in contrast to REG files, they do not need to provide specialized inode operations, but need only
fill in proc_read from pid_entry->op. Observe how

REG("environ", S_IRUSR, environ)
/*********************************/
INF("auxv", S_IRUSR, pid_auxv)

is expanded to see how both types differ:

{ .name = ("environ"),
.len = sizeof("environ") - 1,
.mode = (S_IFREG|(S_IRUSR)),
.iop = NULL,
.fop = &proc_environ_operations,
.op = {},

}
/*********************************/
{ .name = ("auxv"),

.len = sizeof("auxv") - 1,

.mode = (S_IFREG|(S_IRUSR)),

.iop = NULL,

.fop = &proc_info_file_operations,

.op = { .proc_read = &proc_pid_auxv },
}

The macros are used to construct the TGID-specific directory entries in tgid_base_stuff:

fs/proc/base.c
static const struct pid_entry tgid_base_stuff[] = {

DIR("task", S_IRUGO|S_IXUGO, task),
DIR("fd", S_IRUSR|S_IXUSR, fd),
DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
REG("environ", S_IRUSR, environ),
INF("auxv", S_IRUSR, pid_auxv),
INF("status", S_IRUGO, pid_status),
INF("limits", S_IRUSR, pid_limits),

...
INF("oom_score", S_IRUGO, oom_score),
REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),

670

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 671

Chapter 10: Filesystems without Persistent Storage

#ifdef CONFIG_AUDITSYSCALL
REG("loginuid", S_IWUSR|S_IRUGO, loginuid),

#endif
#ifdef CONFIG_FAULT_INJECTION

REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
#endif
#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)

REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
#endif
#ifdef CONFIG_TASK_IO_ACCOUNTING

INF("io", S_IRUGO, pid_io_accounting),
#endif
};

The structure describes each entry by type, name, and access rights. The latter are defined using the usual
VFS constants with which we are familiar from Chapter 8.

To summarize, various types of entry can be distinguished:

❑ INF-style files use a separate read_proc function to obtain the desired data. The
proc_info_file_operations standard instance is used as the file_operations struc-
ture. The methods it defines represent the VFS interface that passes the data returned upward
using read_proc.

❑ SYM generates symbolic links that point to another VFS file. A type-specific function in
proc_get_link specifies the link target, and proc_pid_link_inode_operations forwards the
data to the virtual filesystem in suitable form.

❑ REG creates regular files that use specialized inode operations responsible for gathering data and
forwarding them to the VFS layer. This is necessary if the data source does not fit into the frame-
work provided by proc_info_inode_operations.

Let us return to proc_pident_lookup. To check whether the desired name is present, all the kernel does
is iterate over the array elements and compare the names stored there with the required name until
it strikes lucky — or perhaps not. After it has ensured that the name exists in tgid_base_stuff, the
function generates a new inode using proc_pident_instantiate, which, in turn, uses the already known
proc_pid_make_inode function.

10.1.8 System Control Mechanism
Kernel behavior can be modified at run time by means of system controls. Parameters can be transferred
from userspace into the kernel without having to reboot. The classic method of manipulating the ker-
nel is the sysctl system call. However, for a variety of reasons, this is not always the most elegant
option — one reason being that it is necessary to write a program to read arguments and pass them to
the kernel using sysctl. Unfortunately, this method does not allow users to obtain a quick overview of
which kernel control options are available; unlike with system calls, there is no POSIX or, indeed, any
other standard that defines a standard set of sysctls to be implemented by all compatible systems. Con-
sequently, the sysctl implementation is now regarded as outmoded and will, in the short or the long
term, sink into oblivion.

To resolve this situation, Linux resorts to the proc filesystem. It exports to /proc/sys a directory structure
that arranges all sysctls hierarchically and also allows parameters to be read and manipulated using
simple userspace tools; cat and echo are sufficient to modify kernel run-time behavior.

671

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 672

Chapter 10: Filesystems without Persistent Storage

This section not only examines the proc interface of the sysctl mechanism, but also discusses how sysctls
are registered and managed in the kernel, particularly as these two aspects are closely related.

Using Sysctls
To paint a general picture of system control options and usage, I have chosen a short example to illustrate
how userspace programs call on sysctl resources with the help of the sysctl system call. The example
also shows how difficult things would be without the proc filesystem.

The many sysctls in every Unix look-alike are organized into a clear hierarchical structure that mirrors
the familiar tree structure used in filesystems: and it’s thanks to this feature that sysctls can be exported
with such ease by a virtual filesystem.

However, in contrast to filesystems, sysctls do not use strings to represent path components. Instead,
they use integer numbers packed in symbolic constants. These are easier for the kernel to parse than
pathnames in strings.

The kernel provides several ‘‘base categories‘‘ including CTL_DEV (information on peripherals), CTL_KERN
(information on the kernel itself), and CTL_VM (memory management information and parameters).

CTL_DEV includes a subcategory named DEV_CDROM that supplies information on the CD-ROM drive(s) of
the system (CD-ROM drives are obviously peripherals).

In CTL_DEV/DEV_CDROM there are several ‘‘end points‘‘ representing the actual sysctls. For
example, there is a sysctl called DEV_CDROM_INFO which supplies general information on the
capabilities of the drive. Applications wishing to access this sysctl must specify the path-
name CTL_DEV/DEV_CDROM/DEV_CDROM_INFO to identify it uniquely. The numeric values of
the required constants are defined in <sysctl.h>, which the standard library also used (via
/usr/include/sys/sysctl.h).

Figure 10-6 shows a graphic excerpt from the sysctl hierarchy that also includes the path described above.

CTL_KERN

KERN_OSTYPE
KERN_OSRELEASE
KERN_SYSRQ

DEV_CDROM_CHECK_MEDIA

CTL_VM
VM_PAGEBUF
VM_SWAPPINESS

CTL_NET

NET_CORE

NET_IPV4

NET_CORE_FASTROUTE
NET_CORE_DEVWEIGHT

NET_IPV4_TVP_FIN_TIMEOUT

NET_IPV4_AUTOCONFIG

CTL_DEV
DEV_CDROM

DEV_PARPORT DEV_CDROM_INFO
DEV_CDROM_AUTOCLOSE

Figure 10-6: Hierarchy of sysctl entries.

672

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 673

Chapter 10: Filesystems without Persistent Storage

The core of the code is the sysctl function defined by the C standard library in /usr/include/
sys/sysctl.h:

int sysctl (int *names, int nlen, void *oldval,
size_t *oldlenp, void *newval, size_t newlen)

The path to the sysctl is given as an integer array in which each array element represents a path compo-
nent. In our example, the path is defined statically in names.

The kernel does not know how many path components there are and must therefore be informed explic-
itly by means of nlen; there are three components in our example.

oldval is a pointer to a memory area of undefined type, and oldlenp specifies the size of the reserved
area in bytes. The kernel uses the oldval pointer to return the old value represented by sysctl. If this
information can be read but not manipulated, its value is the same both before and after the sysctl call.
In this case, oldval is used to read its value. Once the system call has been executed, the length of the
output data is given in oldval; for this reason, the variable must be passed by reference and not by value.

newval and newlen also form a pair consisting of a pointer and a length specification. They are used when
a sysctl allows a kernel parameter to be modified. The newval pointer points to the memory area where
the new information is held in userspace, and newlenp specifies its length. A null pointer is passed for
newval and a zero for newlenp in the case of read access, as in our example.

How does the sample code work? Once all parameters have been generated for the sysctl call (path-
name and memory location to return the desired information), sysctl is invoked and returns an integer
number as its result. 0 means that the call was successful (I skip error handling for the sake of simplicity).
The data obtained are held in oldval and can be printed out like any normal C string using printf.

Data Structures
The kernel defines several data structures for managing sysctls. As usual, let’s take a closer look at them
before examining their implementation. Because sysctls are arranged hierarchically (each larger kernel
subsystem defines its own sysctl list with its various subsections), the data structure must not only hold
information on the individual sysctls and their read and write operations, it must also provide ways of
mapping the hierarchy between the individual entries.

Each sysctl entry has its own ctl_table instance:

<sysctl.h>
struct ctl_table
{

int ctl_name; /* Binary ID */
const char *procname; /* Text ID for /proc/sys, or zero */
void *data;
int maxlen;
mode_t mode;
struct ctl_table *child;
struct ctl_table *parent; /* Automatically set */
proc_handler *proc_handler; /* Callback for text formatting */
ctl_handler *strategy; /* Callback function for all r/w */

673

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 674

Chapter 10: Filesystems without Persistent Storage

struct proc_dir_entry *de; /* /proc control block */
void *extra1;
void *extra2;

};

The name of the structure is misleading. A sysctl table is an array of sysctl struc-
tures, whereas a single instance of the structure is called a sysctl entry — despite the
word table in its name.

The meanings of the structure elements are as follows:

❑ ctl_name is an ID, that must be unique only on the given hierarchy level of the entry but not in
the entire table.

<sysctl.h> contains countless enums that define sysctl identifiers for various purposes. The
identifiers for the base categories are defined by the following enumeration:

<sysctl.h>
enum
{

CTL_KERN=1, /* General kernel info and control */
CTL_VM=2, /* VM management */
CTL_NET=3, /* Networking */
CTL_PROC=4, /* Process info */
CTL_FS=5, /* File Systems */
CTL_DEBUG=6, /* Debugging */
CTL_DEV=7, /* Devices */
CTL_BUS=8, /* Busses */
CTL_ABI=9, /* Binary emulation */
CTL_CPU=10 /* CPU stuff (speed scaling, etc) */

...
};

Below CTL_DEV, there are entries for various device types:

<sysctl.h>
/* CTL_DEV names: */
enum {

DEV_CDROM=1,
DEV_HWMON=2,
DEV_PARPORT=3,
DEV_RAID=4,
DEV_MAC_HID=5,
DEV_SCSI=6,
DEV_IPMI=7,

};

The constant 1 (and others) occurs more than once in the enumerations shown — in both
CTL_KERN and DEV_CDROM. This is not a problem because the two entries are on different
hierarchy levels, as shown in Figure 10-6.

❑ procname is a string containing a human-readable description of the entry in /proc/sys. The
names of all root entries appear as directory names in /proc/sys.

674

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 675

Chapter 10: Filesystems without Persistent Storage

wolfgang@meitner> ls -l /proc/sys
total 0
dr-xr-xr-x 2 root root 0 2006-08-11 00:09 debug
dr-xr-xr-x 8 root root 0 2006-08-11 00:09 dev
dr-xr-xr-x 7 root root 0 2006-08-11 00:09 fs
dr-xr-xr-x 4 root root 0 2006-08-11 00:09 kernel
dr-xr-xr-x 8 root root 0 2006-08-11 00:09 net
dr-xr-xr-x 2 root root 0 2006-08-11 00:09 proc
dr-xr-xr-x 2 root root 0 2006-08-11 00:09 sunrpc
dr-xr-xr-x 2 root root 0 2006-08-11 00:09 vm

If the entry is not to be exported to the proc filesystem (and is therefore only accessible using
the sysctl system call), procname can also be assigned a null pointer, although this is extremely
unusual.

❑ data may be assigned any value — usually a function pointer or a string — that is processed by
sysctl-specific functions. The generic code leaves this element untouched.

❑ maxlen specifies the maximum length (in bytes) of data accepted or output by a sysctl.

❑ mode controls the access rights to the data and determines whether and by whom data may be
read or written. Rights are assigned using the virtual filesystem constants with which you are
familiar from Chapter 8.

❑ child is a pointer to an array of additional ctl_table elements regarded as children of the cur-
rent element. For example, in the CTL_KERN sysctl entry, child points to a table containing entries
such as KERN_OSTYPE (operating system type), KERN_OSRELEASE (kernel version number), and
KERN_HOSTNAME (name of the host on which the kernel is running) because these are hierarchi-
cally subordinate to the CTL_KERN sysctl.

Because the length of the ctl_table arrays is not stored explicitly anywhere, the last entry must
always be an instance of ctl_table whose entries consist of null pointers.

❑ proc_readsys is invoked when data are output via the proc interface. The kernel can output the
data stored in the kernel directly, but also has the option of translating it into a more readable
form (e.g., converting numeric constants into more meaningful strings).

❑ strategy is used by the kernel to read or write the value of a sysctl via the system call
interface discussed above (note that proc uses different functions of its own for this purpose).
ctl_handler is a typedef for a function pointer defined as follows:

<sysctl.h>
typedef int ctl_handler (ctl_table *table, int __user *name, int nlen,

void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen);

In addition to the complete set of arguments used when the sysctl system call is invoked, the
function also expects a pointer to the ctl_table instance where the current sysctl is located.
It also needs a context-dependent void* pointer that is currently unused and to which a null
pointer is therefore always assigned.

❑ The interface to the proc data is set up by de.

❑ extra1 and extra2 can be filled with proc-specific data that are not manipulated by the generic
sysctl code. They are often used to define upper and lower limits for numeric arguments.

675

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 676

Chapter 10: Filesystems without Persistent Storage

The kernel provides the ctl_table_header data structure to enable several sysctl tables to be maintained
in a linked list that can be traversed and manipulated using the familiar standard functions. The structure
is prefixed to a sysctl table in order to insert the elements needed for list management:

<sysctl.h>
struct ctl_table_header
{

ctl_table *ctl_table;
struct list_head ctl_entry;

...
};

ctl_table is a pointer to a sysctl array (consisting of ctl_table elements). ctl_entry holds the elements
required to manage the list. Figure 10-7 clearly illustrates the relationship between ctl_table_header
and ctl_table.3

child

INFO
AUTO
CLOSE

...

child child

ctl_entry

DEV KERN ...

ctl_entry

DEV

CDROM.........

Figure 10-7: Relationship between ctl_table_header and
ctl_table.

The hierarchical relationship between the various sysctl tables of the system is established by the child
element of ctl_table and by the linked list implemented using ctl_table_header. The linkage via
child enables a direct connection to be made between the various tables that map the sysctl hierarchy.

In the kernel it is possible to define various hierarchies in which sysctl tables are interlinked by means
of child pointers. However, because there may be just one overall hierarchy, the individual hierarchies
must be ‘‘overlaid‘‘ to form a single hierarchy. This situation is illustrated in Figure 10-7, in which there
are two independent hierarchies. One is the standard kernel hierarchy containing sysctls to query, for
example, the name of the host or the network status. This hierarchy also includes a container to supply
information on system peripherals.

The CD-ROM driver wants to export sysctls to output information on the CD-ROM drive of the sys-
tem. What is needed is a sysctl (in /proc/sys/dev/cdrom/info in the proc filesystem) that is a child of
CTL_DEV and provides, for example, general data to describe the drive. How does the driver go about
this?

3The list elements are actually below the data elements, but, for reasons of presentability, I have turned this situation ‘‘on its head‘‘
in the figure.

676

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 677

Chapter 10: Filesystems without Persistent Storage

❑ First, a four-level hierarchy is created with the help of sysctl tables. CTL_DEV is the base level
and has a child called DEV_CDROM. This also has several child elements, one of which is called
DEV_CDROM_INFO.

❑ The new hierarchy is associated with the existing standard hierarchy in a linked list. This has the
effect of ‘‘overlaying‘‘ the two hierarchies. Seen from userspace, it is impossible to distinguish
between the hierarchies because they appear as a single overall hierarchy.

The sample program above used the sysctl described without having to know how the hierarchy
is represented in the kernel. All it needs to know to access the required information is the path
CTL_DEV->DEV_CDROM->DEVCDROM_INFO.

Of course, the contents of the /proc/sys directory in the proc filesystem are also constructed in such a
way that the internal composition of the hierarchy is not visible.

Static Sysctl Tables
Static sysctl tables are defined for all sysctls, regardless of the system configuration.4 The base element is
the table named root_table, which acts as the root of the statically defined data:

kernel/sysctl.c
static ctl_table root_table[];
static struct ctl_table_header root_table_header =

{ root_table, LIST_HEAD_INIT(root_table_header.ctl_entry) };

The table is given a header element so that additional hierarchies can be maintained in a linked list as
described above; these can be overlaid with the hierarchy defined by root_table. The root_table table
defines the framework into which the various sysctls are sorted:

kernel/sysctl.c
static ctl_table root_table[] = {

{
.ctl_name = CTL_KERN,
.procname = "kernel",
.mode = 0555,
.child = kern_table,

},
{

.ctl_name = CTL_VM,

.procname = "vm",

.mode = 0555,

.child = vm_table,
},

#ifdef CONFIG_NET
{

.ctl_name = CTL_NET,

.procname = "net",

.mode = 0555,

.child = net_table,
},

#endif#
...

4Even though sysctls of this kind are implemented on all architectures, their effect may differ from architecture to architecture.

677

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 678

Chapter 10: Filesystems without Persistent Storage

{
.ctl_name = CTL_DEV,
.procname = "dev",
.mode = 0555,
.child = dev_table,

},

{ .ctl_name = 0 }
};

Of course, further top-level categories can be added using the overlay mechanism described above. The
kernel also selects this option, for example, for all sysctls that are assigned to the ABI (application binary
interface) and belong to the CTL_ABI category.

The tables referenced in the definition of root_table — kern_table, net_table, and so on — are like-
wise defined as static arrays. Because they hold a wealth of sysctls, we ignore their lengthy definitions
here, particularly as they offer little of interest besides further static ctl_table instances. Their contents
can be viewed in the kernel sources, and their definitions are included in kernel/sysctl.c.

Registering Sysctls
In addition to statically initiated sysctls, the kernel features an interface for dynamically registering and
unregistering new system control functions. register_sysctl_table is used to register controls and its
counterpart, unregister_sysctl_table, to remove sysctl tables, typically when modules are unloaded.

The register_sysctl_table function requires one parameter — a pointer to an array of ctl_table
entries in which the new sysctl hierarchy is defined. The function also comprises just a few steps. First,
a new ctl_table_header is instantiated and associated with the sysctl table. The resulting construct is
then added to the existing list of sysctl hierarchies.

The auxiliary function sysct_check_table is used to check that the new entry contains proper informa-
tion. Basically, it ensures that no nonsense combinations are specified (i.e., directories that contain data
directories that are writable) and that regular files have a valid strategy routine.

Registering a sysctl entry does not automatically create inode instances that connect the sysctl entries
with proc entries. Since most sysctls are never used via proc, this wastes memory. Instead, the connection
with proc files is created dynamically. Only the directory /proc/sys is created when procfs is initialized:

fs/proc/proc_sysctl.c
int proc_sys_init(void)
{

proc_sys_root = proc_mkdir("sys", NULL);
proc_sys_root->proc_iops = &proc_sys_inode_operations;
proc_sys_root->proc_fops = &proc_sys_file_operations;
proc_sys_root->nlink = 0;
return 0;

}

The inode operations specified in proc_sys_inode_operations ensure that files and directories below
/proc/sys are dynamically generated when they are needed. The contents of the structure are as follows:

678

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 679

Chapter 10: Filesystems without Persistent Storage

fs/proc/proc_sysctl.c
static struct inode_operations proc_sys_inode_operations = {

.lookup = proc_sys_lookup,

.permission = proc_sys_permission,

.setattr = proc_sys_setattr,
};

Lookup operations are handled by proc_sys_lookup. The following approach is used to dynamically
construct inodes for proc entries:

❑ do_proc_sys_lookup takes the parent dentry and the name of the file or directory to find the
desired sysctl table entry. This involves mainly iterating over the data structures presented
before.

❑ Given the inode of the parent directory and the sysctl table, proc_sys_make_inode is employed
to construct the required inode instance. Since the new inode’s inode operations are also imple-
mented by proc_sys_inode_operations, it is ensured that the described method also works for
new subdirectories.

The file operations for /proc/sys entries are given as follows:

kernel/sysctl.c
static const struct file_operations proc_sys_file_operations = {

.read = proc_sys_read,

.write = proc_sys_write,

.readdir = proc_sys_readdir,
};

Read and write file operations for all entries are implemented by means of standard operations.

/proc/sys File Operations
The implementations for proc_sys_read and proc_sys_write are very similar. Both require three easy
steps:

1. do_proc_sys_lookup finds the sysctl table entry that is associated with the file in /proc/sys.

2. It is not guaranteed that all rights on sysctl entries are granted even to the root user. Some
entries can, for instance, be only read, but are not allowed to be changed, that is, written to.
Thus an extra permission check with sysctl_perm is required. While proc_sys_read needs
read permission, write permission is necessary for proc_sys_write.

3. Calling the proc handler stored in the sysctl table completes the action.

proc_handler is assigned a function pointer when the sysctl tables are defined. Because the various
sysctls are spread over several standard categories (in terms of their parameter and return values), the
kernel provides standard implementations that are normally used in place of the specific function imple-
mentations. Most frequently, the following functions are used:

❑ proc_dointvec reads or writes integer values from or to the kernel [the exact number of values
is specified by table->maxlen/sizeof(unsigned int)]. Only a single integer may be involved
(and not a vector) if maxlen indicates the byte number of a single unsigned int.

679

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 680

Chapter 10: Filesystems without Persistent Storage

❑ proc_dointvec_minmax works in the same way as proc_dointvec, but ensures that each number
is within a minimum and maximum value range specified by table->extra1 (minimum value)
and table->extra2 (maximum value). All values outside the range are ignored.

proc_doulongvec_minmax serves the same purpose, but uses values with type unsigned long
instead of int.

❑ proc_dointvec_jiffies reads an integer table. The values are converted to jiffies. A nearly
identical variant is proc_dointvec_ms, where the values are interpreted as milliseconds.

❑ proc_dostring transfers strings between kernel and userspace and vice versa. Strings that are
longer than the internal buffer of an entry are automatically truncated. When data are copied
into userspace, a carriage return (\n) is appended automatically so that a line break is added after
information is output (e.g., using cat).

10.2 Simple Filesystems
Full-featured filesystems are hard to write and require a considerable amount of effort until they reach
a usable, efficient, and correct state. This is reasonable if the filesystem is really supposed to store data
on disk. However, filesystems — especially virtual ones — serve many purposes that differ from storing
proper files on a block device. Such filesystems still run in the kernel, and their code is thus subjected
to the rigorous quality requirements imposed by the kernel developers. However, various standard
methods makes this aspect of life much easier. A small filesystem library — libfs — contains nearly all
ingredients required to implement a filesystem. Developers only need to provide an interface to their
data, and they are done.

Additionally, some more standard routines — in the form of the seq_file mechanism — are available to
handle sequential files with little effort. Finally, developers might want to just export a value or two into
userspace without messing with the existing filesystems like procfs. The kernel also provides a cure for
this need: The debugfs filesystem allows for implementing a bidirectional debugging interface with only
a few function calls.

10.2.1 Sequential Files
Before discussing any filesystem library, we need to have a look at the sequential file interface. Files in
small filesystems will usually be read sequentially from start to end from userland, and their contents are
created by iterating over several items. These could, for instance, be array elements. The kernel traverses
the the whole array from start to end and creates a textual representation for each element. Put into kernel
nomenclature, one could also call this making synthetic files from sequences of records.

The routines in fs/seq_file.c allow implementing such files with minimal effort. Despite their
name, seeking is possible for sequential files, but the implementation is not very efficient. Sequential
access — where one item is read after another — is clearly the preferred mode of access; simplicity in
one aspect often comes with a price in other regards.

The kprobe mechanism contains an interface to the aforementioned debug filesystem. A sequential file
presents all registered probes to userland. I consider the implementation to illustrate the idea of sequen-
tial files.

680

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 681

Chapter 10: Filesystems without Persistent Storage

Writing Sequential File Handlers
Basically, an instance of struct file_operations that provides pointers to some seq_ routines must be
implemented to benefit from the sequential file standard implementation. The kprobes subsystem does
this as follows:

kernel/kprobes.c
static struct file_operations debugfs_kprobes_operations = {

.open = kprobes_open,

.read = seq_read,

.llseek = seq_lseek,

.release = seq_release,
};

This instance of file_operations can be associated with a file by the methods discussed in Chapter 8. In
the case of kprobes, the file will be created in the debugging filesystem; see Section 10.2.3.

The only method that needs to be implemented is open. Not much effort is required for the function,
though: A simple one-liner connects the file with the sequential file interface:

kernel/kprobes.c
static struct seq_operations kprobes_seq_ops = {

.start = kprobe_seq_start,

.next = kprobe_seq_next,

.stop = kprobe_seq_stop,

.show = show_kprobe_addr
};

static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
{

return seq_open(filp, &kprobes_seq_ops);
}

struct file struct seq_file struct seq_operations

private op

start

stop

next

show

Figure 10-8: Data structures for sequential files.

seq_open sets up the data structures required by the sequential file mechanism. The result is shown in
Figure 10-8. Recall from Chapter 8 that the private_data element of struct file can point to arbitrary
data that are private to the file and not touched by the generic VFS functions. In this case, seq_open uses
the pointer to establish a connection with an instance of struct seq_file that contains status information
about the sequential file:

<seq_file.h>
struct seq_file {

char *buf;

681

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 682

Chapter 10: Filesystems without Persistent Storage

size_t size;
size_t from;
size_t count;
loff_t index;

...
const struct seq_operations *op;

...
};

buf points to a memory buffer that allows for constructing data that go out to userland. count specifies
the number of bytes remaining to be written to userland. The start position of the copy operation is
denoted by from, and size gives the total number of bytes in the buffer. index is another index into the
buffer. It marks the start position for the next new record that is written into the buffer by the kernel. Note
that index and from can evolve differently since writing data into the buffer is different from copying
these data to userspace.

The most important element from a filesystem implementor’s point of view is the pointer op to an
instance of seq_operations. This connects the generic sequential file implementation with routines
providing file-specific contents. Four methods are required by the kernel and need to be implemented by
the file provider:

<seq_file.h>
struct seq_operations {

void * (*start) (struct seq_file *m, loff_t *pos);
void (*stop) (struct seq_file *m, void *v);
void * (*next) (struct seq_file *m, void *v, loff_t *pos);
int (*show) (struct seq_file *m, void *v);

};

The first argument to the functions is always the seq_file instance in question. The start method is
called whenever an operation on a sequential file is started. The position argument pos is a cursor in the
file. The interpretation is left to the implementation. It could be taken as a byte offset, but can also be
interpreted as an array index. The kprobes example implements all these routines as shown above, so
they are discussed now.

Let us first, however, briefly describe which type of information is passed to userland — we need to know
what goes out before we can discuss how it goes out. The kprobes mechanism allows for attaching probes
to certain points in the kernel. All registered probes are hashed on the array kprobe_table, and the size
of the array is statically defined to KPROBE_TABLE_SIZE. The file cursor for sequential files is interpreted
as an index into the array, and the debug file is supposed to show information about all registered probes
that must be constructed from the contents of the hash table.

The start method is simple: It just needs to check if the current cursor is beyond the array bounds.

kernel/kprobes.c
static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
{

return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
}

This is simple, but closing a sequential file is even simpler: In almost all cases, nothing needs to be done!

682

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 683

Chapter 10: Filesystems without Persistent Storage

kernel/kprobes.c
static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
{

/* Nothing to do */
}

The next function is called when the cursor must be updated to the next position. Besides incrementing
the array index, the function must check that it does not go out of bounds:

kernel/kprobes.c
static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
{

(*pos)++;
if (*pos >= KPROBE_TABLE_SIZE)

return NULL;
return pos;

}

A NULL pointer indicates that the end of the file is reached.

The most interesting function is show since the actual contents of the sequential file are generated here.
For the sake of illustration, I present a slightly simplified version that abstracts some of the difficulties
associated with kprobes that would detract from the seq_file issues:

kernel/kprobes.c
static int show_kprobe_addr(struct seq_file *pi, void *v)
{

struct hlist_head *head;
struct hlist_node *node;
struct kprobe *p;
const char *sym = NULL;
unsigned int i = *(loff_t *) v;
unsigned long offset = 0;
char *modname, namebuf[128];

head = &kprobe_table[i];

hlist_for_each_entry_rcu(p, node, head, hlist) {
sym = kallsyms_lookup((unsigned long)p->addr, NULL,

&offset, &modname, namebuf);
if (sym)

seq_printf(pi, "%p %s+0x%x %s\n", p->addr,
sym, offset, (modname ? modname : " "));

else
seq_printf(pi, "%p\n", p->addr);

}
return 0;

}

The current value of the file cursor is in the argument v, and the function converts it into the array index
i. Data generation is done by iterating over all elements hashed on this array index. An output line is
constructed for each element. Information about the probe point and the symbol that is possibly associ-
ated with the point is generated, but this is not really relevant for the example. What does matter is that

683

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 684

Chapter 10: Filesystems without Persistent Storage

instead of printk, seq_printf is used to format the information. In fact, the kernel provides some auxil-
iary functions that must be used for this purpose. All take a pointer to the seq_file instance in question
as first parameter:

❑ seq_printf works like printk and can be used to format arbitrary C strings.

❑ seq_putc and seq_puts, respectively, write out a single character and a string without any
formatting.

❑ seq_esc takes two strings. All characters in the second string that are found in the first string are
replaced by their value in octal.

The special function sec_path allows for constructing the filename associated with a given instance of
struct dentry. It is used by filesystem- or namespace-specific code.

Connection with the Virtual Filesystem
Up to now, I have presented everything that is required from a sequential file user. The rest, that is,
connecting the operations with the virtual filesystem, is left to the kernel. To establish the connection,
it is necessary to use the seq_read as read method for file_operations as shown above in the case of
debugfs_kprobes_operations. The method bridges VFS and sequential files.

First of all, the function needs to obtain the seq_file instance from the VFS layer’s struct file. Recall
that seq_opened has established a connection via private_data.

If some data are waiting to be written out — as indicated by a positive count element of struct
seq_file — , they are copied to userland with copy_to_user. Additionally, updating the various status
elements of seq_file is required.

In the next step, new data are generated. After calling start, the kernel calls show and next one after
another until the available buffer is filled. Finally, stop is employed, and the generated data are copied
to userspace using copy_to_user.

10.2.2 Writing Filesystems with Libfs
Libfs is a library that provides several very generic standard routines that can be used to create small
filesystems that serve one specific purpose. The routines are well suited for in-memory files without a
backing store. Obviously the code cannot provide means to interact with specific on-disk formats; this
needs to be handled properly by full filesystem implementations. The library code is contained in a single
file, fs/libfs.c.

The prototypes are defined in <fs.h>; there is no <libfs.h>! Routines provided by
libfs are generally prefixed by simple_. Recall from Chapter 8 that the kernel also
provides several generic filesystem routines that are prefixed by generic_. In con-
trast to libfs routines, these can also be used for full-blown filesystems.

The file and directory hierarchy of virtual filesystems that use libfs is generated and traversed using
the dentry tree. This implies that during the lifetime of the filesystem, all dentries must be pinned into
memory. They must not go away unless they are explicitly removed via unlink or rmdir. However, this
is simple to achieve: The code only needs to ensure that all dentries always have a positive use count.

684

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 685

Chapter 10: Filesystems without Persistent Storage

To understand the idea of libfs better, let’s discuss the way directory handling is implemented. Boilerplate
instances of inode and file operations for directories are provided that can immediately be reused for any
virtual filesystem implemented along the lines of libfs:

fs/libfs.c

const struct file_operations simple_dir_operations = {
.open = dcache_dir_open,
.release = dcache_dir_close,
.llseek = dcache_dir_lseek,
.read = generic_read_dir,
.readdir = dcache_readdir,
.fsync = simple_sync_file,

};

const struct inode_operations simple_dir_inode_operations = {
.lookup = simple_lookup,

};

In contrast to the convention introduced above, the names of the routines that make up
simple_dir_operations do not start with simple_. Nevertheless, they are defined in fs/libfs.c. The
nomenclature reflects that the operations solely operate on objects from the dentry cache.

If a virtual filesystem sets up a proper dentry tree, it suffices to install simple_dir_operations and
simple_dir_inode_operations as file or inode operations, respectively, for directories. The libfs func-
tions then ensure that the information contained on the tree is exported to userland via the standard
system calls like getdents. Since constructing one representation from another is basically a mechanical
task, the source code is not discussed in detail.

Instead, it is more interesting to observe how new files are added to a virtual filesystem. Debugfs (dis-
cussed below) is one filesystem that employs libfs. New files (and thus new inodes) are created with the
following routine:

fs/debugfs/inode.c
static struct inode *debugfs_get_inode(struct super_block *sb, int mode, dev_t dev)
{

struct inode *inode = new_inode(sb);

if (inode) {
inode->i_mode = mode;
inode->i_uid = 0;
inode->i_gid = 0;
inode->i_blocks = 0;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
switch (mode & S_IFMT) {
default:

init_special_inode(inode, mode, dev);
break;

case S_IFREG:
inode->i_fop = &debugfs_file_operations;
break;

...
case S_IFDIR:

685

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 686

Chapter 10: Filesystems without Persistent Storage

inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;

/* directory inodes start off with i_nlink == 2
* (for "." entry) */

inc_nlink(inode);
break;

}
}
return inode;

}

Besides allocating a new instance of struct inode, the kernel needs to decide which file and inode oper-
ations are to be associated with the file depending on the information in the access mode. For device
special files, the standard routine init_special_file (not connected with libfs) is used. The more inter-
esting cases, however, are regular files and directories. Directories require the standard file and inode
operations as discussed above; this ensures with no further effort that the new directory is correctly
handled.

Regular files cannot be provided with boilerplate file operations. It is at least necessary to manually
specify the read, write, and open methods. read is supposed to prepare data from kernel memory and
copy them into userspace, while write can be used to read input from the user and apply it somehow.
This is all that is required to implement custom files!

A filesystem also requires a superblock. Thankfully for lazy programmers, libfs provides the method
simple_fill_super, that can be used to fill in a given superblock:

<fs.h>
int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files);

s is the superblock in question, and magic specifies a unique magic number which can be used to identify
the filesystem. The files parameter provides a very convenient method to populate the virtual filesystem
with what it is supposed to contain: files! Unfortunately, only files in a single directory can be specified
with this method, but this is not a real limitation for virtual filesystems. More content can still be added
later dynamically.

An array with struct tree_descr elements is used to describe the initial set of files. The structure is
defined as follows:

<fs.h>
struct tree_descr {

char *name;
const struct file_operations *ops;
int mode;

};

name denotes the filename, ops points to the associated file operations, and mode specifies the access bits.

The last entry in the list must be of the form { "", NULL, 0 }.

686

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 687

Chapter 10: Filesystems without Persistent Storage

10.2.3 The Debug Filesystem
One particular filesystem using functions from libfs is the debug filesystem debugfs. It presents kernel
developers with a possibility of providing information to userland. The information is not supposed to
be compiled into production kernels. Quite in contrast, it is only an aid for developing new features.
Support for debugfs is only activated if the kernel is compiled with the DEBUG_FS configuration option.
Code that registers files in debugfs thus needs to be embraced by C pre-processor conditionals checking
for CONFIG_DEBUG_FS.

Example
Recall the kprobes example discussed earlier in the chapter as an example for the sequential file mecha-
nism. The resulting file is exported via debugfs in only a couple of lines — as simple as can be!

kernel/kprobes.c
#ifdef CONFIG_DEBUG_FS
...
static int __kprobes debugfs_kprobe_init(void)
{

struct dentry *dir, *file;
unsigned int value = 1;

dir = debugfs_create_dir("kprobes", NULL);
...

file = debugfs_create_file("list", 0444, dir, NULL,
&debugfs_kprobes_operations);

...
return 0;

}
...
#endif /* CONFIG_DEBUG_FS */

debugfs_create_dir is used to create a new directory, and debugfs_create_file establishes a new file
in this directory. debugfs_kprobes_operations was discussed above as an example for the sequential
file mechanism.

Programming Interface
Since the debugfs code is very clean, simple, and well documented, it is not necessary to add remarks
about the implementation. It suffices to discuss the programming interface. However, have a look at the
source code, which is a very nice application of the libfs routines.

Three functions are available to create new filesystem objects:

<debugfs.h>
struct dentry *debugfs_create_file(const char *name, mode_t mode,

struct dentry *parent, void *data,
const struct file_operations *fops);

struct dentry *debugfs_create_dir(const char *name, struct dentry *parent);

687

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 688

Chapter 10: Filesystems without Persistent Storage

struct dentry *debugfs_create_symlink(const char *name, struct dentry *parent,
const char *dest);

Unsurprisingly, a filesystem object can either be a regular file, a directory, or a symbolic link. Two addi-
tional operations allow for renaming and removing files:

<debugfs.h>
void debugfs_remove(struct dentry *dentry);

struct dentry *debugfs_rename(struct dentry *old_dir, struct dentry *old_dentry,
struct dentry *new_dir, const char *new_name);

When kernel code is being debugged, the need to export and manipulate a single elementary value like
an int or a long often arises. Debugfs also provides several functions that create a new file that allows
for reading the value from userspace and passing a new value into the kernel. They all share a common
prototype:

<debugfs.h>
struct dentry *debugfs_create_XX(const char *name, mode_t mode,

struct dentry *parent, XX *value);

name and mode denote the filename and access mode, while parent points to the dentry instance of the
parent directory. value is most important: It points to the value that is exported and can be modified by
writing into the file. The function is available for several data types.

If XX is replaced by any of the standard kernel data types u8, u16, u32, or u64, a file that allows for reading
but forbids changing the value is created. If x8, x16, or x32 is used, the value can also be changed from
userspace.

A file that presents a Boolean value can be created by debugfs_create_bool:

<debugfs.h>
struct dentry *debugfs_create_bool(const char *name, mode_t mode,

struct dentry *parent, u32 *value)

Finally, it is also possible to exchange short portions of binary data (conventionally called binary blobs)
with userspace. The following function is provided for this purpose:

<debugfs.h>
struct dentry *debugfs_create_blob(const char *name, mode_t mode,

struct dentry *parent,
struct debugfs_blob_wrapper *blob);

The binary data are represented by a special data structure containing a pointer to the memory location
that holds the data and the data length:

<debugfs.h>
struct debugfs_blob_wrapper {

void *data;
unsigned long size;

};

688

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 689

Chapter 10: Filesystems without Persistent Storage

10.2.4 Pseudo Filesystems
Recall from Section 8.4.1 that the kernel supports pseudo-filesystems that collect related inodes, but
cannot be mounted and are thus not visible in userland. Libfs also provides an auxiliary function to
implement this specialized type of filesystem.

The kernel employs a pseudo-filesystem to keep track of all inodes that represent block devices:

fs/block_dev.c
static int bd_get_sb(struct file_system_type *fs_type,

int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{

return get_sb_pseudo(fs_type, "bdev:", &bdev_sops, 0x62646576, mnt);
}

static struct file_system_type bd_type = {
.name = "bdev",
.get_sb = bd_get_sb,
.kill_sb = kill_anon_super,

};

The code looks as for any regular filesystem, but libfs provides the method get_sb_pseudo which
ensures that the filesystem cannot be mounted from userspace. This is simple: It just needs to set the
flag MS_NOUSER as discussed in Chapter 8. Besides, an instance of struct super_block is filled in, and the
root inode for the pseudo-filesystem is allocated.

To use a pseudo-filesystem, the kernel needs to mount it using kern_mount or kern_mount_data. It can
be used to collect inodes without the hassle of writing a specialized data structure to do so. For bdev, all
inodes that represent block devices are grouped together. The collection, however, will only be visible to
the kernel and not to userspace.

10.3 Sysfs
Sysfs is a filesystem for exporting kernel objects to userspace, providing the ability to not only observe
properties of kernel-internal data structures, but also to modify them. Especially important is the highly
hierarchical organization of the filesystem layout: The entries of sysfs originate from kernel objects
(kobjects) as introduced in Chapter 1, and the hierarchical order of these is directly reflected in the
directory layout of sysfs.5 Since all devices and buses of the system are organized via kobjects, sysfs
provides a representation of the system’s hardware topology.

In many cases, short, human readable text strings are used to export object properties, but passing binary
data to and from the kernel via sysfs is also frequently employed. Sysfs has become an alternative to the
more old-fashioned IOCTL mechanism. Instead of sending cryptic ioctls into the kernel, which usually
requires a C program, it is much simpler to read from or write a value to a sysfs file. A simple shell
command is sufficient. Another advantage is that a simple directory listing provides a quick overview on
what options can be set.

As for many virtual filesystems, sysfs was initially based on ramfs; thus, the implementation uses many
techniques known from other places in the kernel. Note that sysfs is always compiled into the kernel

5The large number of extensively interconnected data structures known from the kobject mechanism is thus also directly transferred
to sysfs, at least when a kobject is exported to the filesystem.

689

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 690

Chapter 10: Filesystems without Persistent Storage

if it is configured to be active; generating it as a module is not possible. The canonical mount point for
sysfs is /sys.

The kernel sources contain some documentation on sysfs, its relation to the driver model with respect to
the kobject framework, and so on. It can be found in Documentation/filesystems/sysfs.txt
and Documentation/filesystems/sysfs-pci.txt. An overview article by the author of
sysfs himself is available in the proceedings of the Ottawa Linux Symposium 2005 on
www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf.

Finally, note that the connection between kobjects and sysfs is not automatically set up. Standalone
kobject instances are by default not integrated into sysfs. You need to call kobject_add to make an
object visible in the filesystem. If the kobject is a member of a kernel subsystem, the registration is
performed automatically, though.

10.3.1 Overview
struct kobject, the related data structures, and their usage are described in Chapter 1; thus, here
our discussion is restricted to a recap of the most essential points. In particular, it is important to
remember that

❑ kobjects are included in a hierarchic organization; most important, they can have a parent and
can be included in a kset. This determines where the kobject appears in the sysfs hierarchy: If
a parent exists, a new entry in the directory of the parent is created. Otherwise, it is placed in the
directory of the kobject that belongs to the kset the object is contained in (if both of these possi-
bilities fail, the entry for the kobject is located directly in the top level of the system hierarchy,
but this is obviously a rare case).

❑ Every kobject is represented as a directory within sysfs. The files that appear in this directory
are the attributes of the object. The operations used to export and set attribute values are pro-
vided by the subsystem (class, driver, etc.) to which the kobject belongs.

❑ Buses, devices, drivers, and classes are the main kernel objects using the kobject mechanism;
they thus account for nearly all entries of sysfs.

10.3.2 Data Structures
As usual, let’s first discuss the data structures used by the sysfs implementation.

Directory Entries
Directory entries are represented by struct sysfs_dirent as defined in <sysfs.h>. It is the main data
structure of sysfs; the whole implementation is centered around it. Each sysfs node is represented by a
single instance of sysfs_dirent. The definition is as follows:

<sysfs.h>
struct sysfs_dirent {

atomic_t s_count;
atomic_t s_active;
struct sysfs_dirent *s_parent;
struct sysfs_dirent *s_sibling;
const char *s_name;

690

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 691

Chapter 10: Filesystems without Persistent Storage

union {
struct sysfs_elem_dir s_dir;
struct sysfs_elem_symlink s_symlink;
struct sysfs_elem_attr s_attr;
struct sysfs_elem_bin_attr s_bin_attr;

};

unsigned int s_flags;
ino_t s_ino;
umode_t s_mode;
struct iattr *s_iattr;

};

❑ s_sibling and s_children are used to capture the parent/child relationship between sysfs
entries in a data structure: s_sibling is used to connect all children of a parent among each
other, and s_children is used by the parent element to serve as a list head.

❑ The kernel uses s_flags with a twofold purpose: First, it is used to set the type of the sysfs entry.
Second, it can set a number of flags. The lower 8 bits are used for the type; they can be accessed
with the auxiliary function sysfs_type. The type can be any of SYSFS_DIR, SYSFS_KOBJ_ATTR,
SYSFS_KOBJ_BIN_ATTR or SYSFS_KOBJ_LINK, depending on whether the instance is a directory, a
regular respectively binary attribute, or a symbolic link.

The remaining bits are reserved for flags. Currently, only SYSFS_FLAG_REMOVED is defined, which
is set when a sysfs entry is in the process of being removed.

❑ Information about the access mode of the file associated with the sysfs_dirent instance is
stored in s_mode. Attributes are described by an iattr instance pointed at by s_iattr; if this is a
NULL pointer, a default set of attributes is used.

❑ s_name points to the filename for the file, directory, or link represented by the object.

❑ Depending on the type of the sysfs entry, different types of data are associated with it. Since an
entry can only represent a single type at a time, the data structures that encapsulate the entry’s
payload are collected in an anonymous union. The members are defined as follows:

fs/sysfs/sysfs.h
struct sysfs_elem_dir {

struct kobject *kobj;
/* children list starts here and goes through sd->s_sibling */
struct sysfs_dirent *children;

};

struct sysfs_elem_symlink {
struct sysfs_dirent *target_sd;

};

struct sysfs_elem_attr {
struct attribute *attr;
struct sysfs_open_dirent *open;

};

struct sysfs_elem_bin_attr {
struct bin_attribute *bin_attr;

};

691

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 692

Chapter 10: Filesystems without Persistent Storage

sysfs_elem_attr and sysfs_bin_attr contain pointers to data structures that represent
attributes, and are discussed in the following section. sysfs_elem_symlink implements a
symbolic link. All it needs to do is provide a pointer to the target sysfs_dirent instance.

Directories are implemented with the aid of sysfs_elem_dir. children is the head of a singly
linked list connecting all children via s_sibling. Note that the elements on the sibling list are
sorted by s_ino in decreasing order. The relationship is illustrated in Figure 10-9.

Like any other filesystem, sysfs entries are also represented by instances of struct dentry. The con-
nection between both layers is given by dentry->d_fsdata, which points to the sysfs_dirent instance
associated with the dentry element.

s_dir.children s_sbiling

s ino = 1000 s ino = 953

s_sbiling

d_fsdata

struct dentry

sysfs_dirent

Figure 10-9: Sysfs directory hierarchy based on struct sysfs_dirent.

Reference counting for struct sysfs_dirent is unconventional because two reference counters are pro-
vided: s_count and s_active. The first one is a standard reference counter that needs to be incremented
when the sysfs_dirent instance under consideration is required by some part of the kernel and decre-
mented when it is not required anymore. A problem arises, though, because whenever a sysfs node is
opened, the associated kobject is also referenced. Userland applications could thus prevent the ker-
nel from deleting kobject instances by simply keeping a sysfs file open. To circumvent this, the kernel
requires that an active reference on a sysfs_direntry is held whenever the associated internal objects
(available via sysfs_elem_*) are accessed. Unsurprisingly, the active reference counter is implemented
with s_active.

When a sysfs file is supposed to be deleted, access to the internal objects associated with it can be
deactivated by setting the active reference counter to a negative value — the auxiliary function
sysfs_dectivate is provided for this. Once the value is negative, operations on the associated kobject
cannot be performed anymore. When all users of the kobject have disappeared, it can safely be deleted
by the kernel. The sysfs file and thus the sysfs_dirent instance, however, can still exist — even if they
do not make much sense anymore!

Active references can be obtained by sysfs_get_active or sysfs_get_active_two (for a given
sysfs_direntry instance as well as its parent). They must immediately be released with

692

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 693

Chapter 10: Filesystems without Persistent Storage

sysfs_put_active (respectively, sysfs_put_active_two) as soon as the operation with the
associated internal data is finished.

Attributes
Let us turn our attention to the data structures that represent attributes and the mechanisms used to
declare new attributes:

Data Structures
Attributes are defined by the following data structure:

include/linu/<sysfs.h>
struct attribute {

const char * name;
struct module * owner;
mode_t mode;

};

name provides a name for the attribute that is used as a filename in sysfs (thus attributes that belong to
the same object need to have unique names), while mode specifies the access mode. owner points to the
module instance to which the owner of the attribute belongs.

It is also possible to define a group of attributes with the aid of the following data structure:

<sysfs.h>
struct attribute_group {

const char * name;
struct attribute ** attrs;

};

name is a name for the group, and attrs points to an array of attribute instances terminated by a NULL
entry.

Note that these data structures only provide a means to represent attributes, but do not specify how
to read or modify them. This is covered in Section 10.3.4. The separation of representation and access
method was chosen because all attributes belonging to a certain entity (e.g., a driver, a device class, etc.)
are modified in a similar way, so it makes sense to transfer this group property to the export/import
mechanism. Note, though, that it is customary that the show and store operations of the subsystem rely
on attribute-specific show and store methods that are internally connected with the attribute and that
differ on a per-attribute basis. The implementation details are left to the respective subsystem; sysfs is
unconcerned about this.

For a read/write attribute, two methods denoted as show and store need to be available; the kernel
provides the following data structure to keep them together:

<sysfs.h>
struct sysfs_ops {

ssize_t (*show)(struct kobject *, struct attribute *,char *);
ssize_t (*store)(struct kobject *,struct attribute *,const char *, size_t);

};

693

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 694

Chapter 10: Filesystems without Persistent Storage

It is the responsibility of the code that declares a new attribute type to provide a suitable set of show and
store operations.

The situation is different for binary attributes: Here, the methods used to read and modify the data are
usually different for each attribute. This is reflected in the data structure, where methods for reading,
writing, and memory mapping are specified explicitly:

<sysfs.h>
struct bin_attribute {

struct attribute attr;
size_t size;
void *private;
ssize_t (*read)(struct kobject *, struct bin_attribute *,

char *, loff_t, size_t);
ssize_t (*write)(struct kobject *, struct bin_attribute *,

char *, loff_t, size_t);
int (*mmap)(struct kobject *, struct bin_attribute *attr,

struct vm_area_struct *vma);
};

size denotes the size of the binary data associated with the attribute, and private is (usually) used to
point to the place where the data are actually stored.

Declaring New Attributes
Many possibilities for declaring subsystem-specific attributes are spread around the kernel, but since
they all share a basic structure with regard to their implementation, it is sufficient to consider one imple-
mentation as an example for the underlying mechanism. Consider, for instance, how the generic hard
disk code defines a structure that unites an attribute and the associated methods to read and modify the
attribute:

<genhd.h>
struct disk_attribute {

struct attribute attr;
ssize_t (*show)(struct gendisk *, char *);
ssize_t (*store)(struct gendisk *, const char *, size_t);

};

The attr member is nothing other than an attribute as introduced before; this can be fed to sysfs when-
ever an instance of attribute is required. But note that the show and store function pointers have a
different prototype from that required for sysfs!

How do the subsystem-specific attribute functions get called by the sysfs layer? The connection is made
by the following struct:

block/genhd.c
static struct sysfs_ops disk_sysfs_ops = {

.show = &disk_attr_show,

.store = &disk_attr_store,
};

The show and store methods of sysfs_ops are called when a process wants to read from (or write to) a
sysfs file as will be shown below in more detail.

694

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 695

Chapter 10: Filesystems without Persistent Storage

When a sysfs file related to generic hard disk attributes is accessed, the kernel uses the methods
disk_attr_show and disk_attr_store to read and modify the attribute values. The disk_attr_show
function is called whenever the value of an attribute of this type needs to be read from the kernel; the
code acts as the glue between sysfs and the genhd implementation:

block/genhd.c
static ssize_t disk_attr_show(struct kobject *kobj, struct attribute *attr,

char *page)
{

struct gendisk *disk = to_disk(kobj);
struct disk_attribute *disk_attr =

container_of(attr,struct disk_attribute,attr);
ssize_t ret = -EIO;

if (disk_attr->show)
ret = disk_attr->show(disk,page);

return ret;
}

The attribute connected to the sysfs file can be used to infer the containing disk_attribute instance by
using the container_of-mechanism; after the kernel has made sure that the attribute possesses a show
method, it is called to transfer data from the kernel to userspace and thus from the internal data structures
to the sysfs file.

Similar methods are implemented by many other subsystems, but since their code is basically identical
to the example shown above, it is unnecessary to consider them in greater detail here. Instead, I will
cover the steps leading to a call of the sysfs-specific show and store methods; the connection between
subsystem and sysfs is left to the subsystem-specific code.

10.3.3 Mounting the Filesystem
As usual, let’s start the discussion of the implementation by considering how the filesystem is mounted.
The system call ends up in delegating the work to fill a superblock to sysfs_fill_super; the associated
code flow diagram can be found in Figure 10-10.

sysfs_fill_super

sysfs_get_inode

sysfs_init_inode

d_alloc_root

root->d_fsdata = &sysfs_root

Figure 10-10: Code flow diagram for
sysfs_fill_super.

There is not too much to do for sysfs_fill_super: Some uninteresting initialization work needs to
be performed first. sysfs_get_inode is then used to create a new instance of struct inode as the

695

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 696

Chapter 10: Filesystems without Persistent Storage

starting point for the whole sysfs tree. The routine can not only be used to obtain the root inode, but is
a generic function that works for any sysfs entry. This routine first checks if the inode is already present
in the inode hash. Because the filesystem has not been mounted before, this check will fail in our case,
so sysfs_init_inode is used to construct a new inode instance from scratch. I will come back to this
function in a moment.

The final steps are again performed in sysfs_fill_super. After allocating a root dentry with
d_alloc_root, the connection between the sysfs data and the filesystem entry is established:

sysfs/mount.c
static int sysfs_fill_super(struct super_block *sb, void *data, int silent)
{

struct inode *inode;
struct dentry *root;

...
root->d_fsdata = &sysfs_root;
sb->s_root = root;

...
}

Recall that dentry->d_fsdata is a function pointer reserved for filesystem internal use, so sysfs is allowed
to create a connection between sysfs_dirents and dentry instances this way. sysfs_root is a static
instance of stuct sysfs_dirent that represents the root entry of sysfs. It is defined as follows:

sysfs/mount.c
struct sysfs_dirent sysfs_root = {

.s_name = "",

.s_count = ATOMIC_INIT(1),

.s_flags = SYSFS_DIR,

.s_mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO,

.s_ino = 1,
};

Note that d_fsdata always points to the associated instance of struct sysfs_dirent; the scheme is not
only used for the root entry, but also for all other entries of sysfs. This connection allows the kernel to
derive the sysfs-specific data from the generic VFS data structures.

I will now consider inode initialization in sysfs_init_inode in more detail as promised above. The code
flow diagram for the function is depicted in Figure 10-11.

sysfs_init_inode

Set inode, file, and address space operations

Yes

No

Non-standard attributes specified? sysfs_inode_attr

set_default_inode_attr

Figure 10-11: Code flow diagram for sysfs_new_inode.

sysfs_init_inode sets the inode operations such that only setattr is implemented by a filesystem-
specific function, namely, sysfs_setattr. Following this, the kernel takes care of assigning the inode

696

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 697

Chapter 10: Filesystems without Persistent Storage

attributes. These can either be specified explicitly via sysfs_dirent->iattr or can be left to the default
values if the field contains a NULL pointer. In this case, the following auxiliary function is used to set the
default attributes:

fs/sysfs/inode.c
static inline void set_default_inode_attr(struct inode * inode, mode_t mode)
{

inode->i_mode = mode;
inode->i_uid = 0;
inode->i_gid = 0;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;

}

While the access mode of the file can be arbitrarily chosen by the caller, the ownership of the file belongs
to root.root in the default case.

Finally, the inode needs to be initialized according to the type of the sysfs entry:

fs/sysfs/inode.c
static void sysfs_init_inode(struct sysfs_dirent *sd, struct inode *inode)
{
...

/* initialize inode according to type */
switch (sysfs_type(sd)) {
case SYSFS_DIR:

inode->i_op = &sysfs_dir_inode_operations;
inode->i_fop = &sysfs_dir_operations;
inode->i_nlink = sysfs_count_nlink(sd);
break;

case SYSFS_KOBJ_ATTR:
inode->i_size = PAGE_SIZE;
inode->i_fop = &sysfs_file_operations;
break;

case SYSFS_KOBJ_BIN_ATTR:
bin_attr = sd->s_bin_attr.bin_attr;
inode->i_size = bin_attr->size;
inode->i_fop = &bin_fops;
break;

case SYSFS_KOBJ_LINK:
inode->i_op = &sysfs_symlink_inode_operations;
break;

default:
BUG();

}
...

Different types are distinguished by different inode and file operations.

10.3.4 File and Directory Operations
Since sysfs exposes its data structures in a filesystem, most interesting operations can be triggered with
standard filesystem operations. The functions that implement the filesystem operations thus serve as
a glue layer between sysfs and the internal data structures. As for every filesystem, the methods used

697

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 698

Chapter 10: Filesystems without Persistent Storage

for operations on files are collected in an instance of struct file_operations. For sysfs, the following
selection is available:

fs/sysfs/file.c
const struct file_operations sysfs_file_operations = {

.read = sysfs_read_file,

.write = sysfs_write_file,

.llseek = generic_file_llseek,

.open = sysfs_open_file,

.release = sysfs_release,

.poll = sysfs_poll,
};

In the following, not only are the functions responsible for reading and writing data
(sysfs_{read,write}_file) described, but also the method for opening files (sysfs_open_file) since
the connection between sysfs internals and the virtual filesystem is set up there.

A rather small number of directory inode operations need to be specifically provided by sysfs:

fs/sysfs/dir.c
struct inode_operations sysfs_dir_inode_operations = {

.lookup = sysfs_lookup,

.setattr = sysfs_setattr,
};

Most operations can be handled by standard VFS operations; only directory lookup and attribute mani-
pulation need to be taken care of explicitly. These methods are discussed in the following sections.

The picture is even simpler for inode operations for regular files; only attribute manipulation needs to be
specifically taken care of:

fs/sysfs/inode.c
static struct inode_operations sysfs_inode_operations ={

.setattr = sysfs_setattr,
};

Opening Files
Opening a file is a rather boring operation for a regular filesystem. In the case of sysfs, it becomes more
interesting because the sysfs internal data needs to be connected with the user-visible representation in
the filesystem.

Data Structures
In order to facilitate the exchange of data between userland and the sysfs implementation, some buffer
space needs to be available. It is provided by the following slightly simplified data structure:

fs/sysfs/file.c
struct sysfs_buffer {

size_t count;
loff_t pos;
char * page;

698

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 699

Chapter 10: Filesystems without Persistent Storage

struct sysfs_ops * ops;
int needs_read_fill;
struct list_head list;

};

The contents of the structure are as follows: count specifies the length of the data in the buffer, pos
denotes the present position within the data for partial reads and seeking, and page points to a single
page used to store the data.6 The sysfs_ops instance belonging to the sysfs entry is connected with an
open file via the ops pointer of the buffer. needs_read_fill specifies if the contents of the buffer need to
be filled or not (filling the data is performed on the first read and need not be repeated for any successive
reads if no write operation was performed in the meantime).

list

sysfs_elem_attr.open

sysfs_dirent

buffers

private_data

filefile

list

private_data

sysfs_open_dirent

sysfs_buffer sysfs_buffer

Figure 10-12: Connection between struct sysfs_dirent, struct file, and struct
sysfs_buffer.

To understand the meaning of list, observe Figure 10-12, which shows how sysfs_buffers are con-
nected with struct file and struct sysfs_dirent. Each open file as represented by an instance of
struct file is connected with one instance of sysfs_buffer via file->private_data. A sysfs entry can
be referenced via multiple open files, so more than one sysf_buffer can be associated with one instance
of struct sysfs_dirent. All these buffers are collected in a list that uses sysfs_buffer->list as list ele-
ment. The list is headed by an instance of sysfs_open_dirent. For the sake of simplicity, this structure
is not discussed in great detail. Suffice it to say that it is connected with sysfs_dirent and heads the list
of sysfs_buffers.

Implementation
Recall that sysfs_file_operations provides sys_open_file to be called when a file is opened. The
associated code flow diagram is shown in Figure 10-13.

6The restriction to a single page is intentional because sysfs is supposed to export only one simple attribute per file; this will not
require more space than a single page.

699

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 700

Chapter 10: Filesystems without Persistent Storage

sysfs_open_file

sysfs_get_active_two

sysfs_put_active_two

sysfs_get_open_dirent

Set sysfs_ops

Allocate sysfs_buffer

Check read and write support

Figure 10-13: Code flow diagram for
sysfs_open_file.

The first task is to find the sysfs_ops operations that belong to the opened file. Recall that struct
kobj_type provides a pointer to an instance of sysf_ops:

<kobject.h>
struct kobj_type {
...

struct sysfs_ops * sysfs_ops;
...
};

However, the kernel needs to obtain an active reference on the kobject instance that is associated with
the sysfs file before the proper instance of sysfs_ops can be found. The function sysfs_get_active_two
grabs the active reference as discussed above. If the kobject is a member of a set, then the pointer is read
from the kset instance. Otherwise, the kobject itself is used as source. If neither provides a pointer to
an instance of sysfs_ops, a generic set of operations given by sysfs_sysfs_ops is used. However, this
is only necessary for direct kernel attributes found in /sys/kernel:

fs/sysfs/file.c
static int sysfs_open_file(struct inode *inode, struct file *file)
{

struct sysfs_dirent *attr_sd = file->f_path.dentry->d_fsdata;
struct kobject *kobj = attr_sd->s_parent->s_dir.kobj;
struct sysfs_buffer * buffer;
struct sysfs_ops * ops = NULL;

...

/* need attr_sd for attr and ops, its parent for kobj */
if (!sysfs_get_active_two(attr_sd))

return -ENODEV;

/* if the kobject has no ktype, then we assume that it is a subsystem
* itself, and use ops for it.
*/

if (kobj->kset && kobj->kset->ktype)

700

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 701

Chapter 10: Filesystems without Persistent Storage

ops = kobj->kset->ktype->sysfs_ops;
else if (kobj->ktype)

ops = kobj->ktype->sysfs_ops;
else

ops = &subsys_sysfs_ops;
...

Since all members of kernel subsystems are collected in a kset, this allows for connecting attributes at
a subsystem-specific level because the same access functions are used for all elements. If the kobject
under consideration is not contained in a kset, then it is still possible that it has a ktype from which the
sysfs_ops can be taken. It is up to the subsystem how to implement the sysfs_ops, but the methods
used are quite similar, as shown in Section 10.3.5.

If something is supposed to be written into the file, it is not sufficient to just check if the access mode
bits allow this. Additionally, the entry is required to provide a store operation in the sysfs_ops. It does
not make sense to grant read access if there is no function that can actually present data to userspace. A
similar condition holds for read access:

fs/sysfs/file.c
/* File needs write support.
* The inode’s perms must say it’s ok,
* and we must have a store method.
*/

if (file->f_mode & FMODE_WRITE) {
if (!(inode->i_mode & S_IWUGO) || !ops->store)
goto err_out;

}

/* File needs read support.
* The inode’s perms must say it’s ok, and we there
* must be a show method for it.
*/

if (file->f_mode & FMODE_READ) {
if (!(inode->i_mode & S_IRUGO) || !ops->show)
goto err_out;

}
...

After the kernel has chosen to allow the access, an instance of sysfs_buffer is allocated, filled in with
the appropriate elements, and connected to the file via file->private_data as shown below:

fs/sysfs/file.c
buffer = kzalloc(sizeof(struct sysfs_buffer), GFP_KERNEL);

...
mutex_init(&buffer->mutex);
buffer->needs_read_fill = 1;
buffer->ops = ops;
file->private_data = buffer;

/* make sure we have open dirent struct */
error = sysfs_get_open_dirent(attr_sd, buffer);

...
/* open succeeded, put active references */

701

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 702

Chapter 10: Filesystems without Persistent Storage

sysfs_put_active_two(attr_sd);
return 0;

}

Finally, sysfs_get_open_dirent connects the freshly allocated buffer with the sysfs data structures
via sysfs_open_dirent as shown in Figure 10-12. Note that since no further access to the kobjects
associated with the sysfs entry is required anymore, the active references can (and need!) be dropped
using sysfs_put_active_two.

Reading and Writing File Contents
Recall that sysfs_file_operations specifies the methods used by the VFS to access the content of files
in sysfs. After having introduced all necessary data structures for reading and writing data, it is now time
to discuss these operations.

Reading
Reading data is delegated to sysfs_read_file; the associated code flow diagram can be found in
Figure 10-14.

sys_read_file

Buffer refill needed? fill_read_buffer

simple_read_from_buffer

Figure 10-14: Code flow diagram for sysfs_read_file.

The implementation is comparatively simple: If the data buffer is not yet filled in because it is accessed for
the first time or has been modified by a write operation (both indicated by buffer->needs_read_fill),
fill_read_buffer needs to be called to fill the buffer first. This function is responsible for two things:

1. Allocate a (zero-filled) page frame to hold the data.

2. Call the show method of the struct sysfs_ops instance to provide the buffer contents, that
is, fill in data to the page frame allocated above.

Once the buffer is filled with data, the remaining work is delegated to simple_read_from_buffer. As
you might have guessed from the name, the task is simple and requires only some bounds checking and
a memory copy operation from kernel to userspace.

Writing
To allow the reverse process, namely, writing data from user to kernel space, sysfs_write_file is pro-
vided. Like for the read companion, the implementation is quite simple as the code flow diagram in
Figure 10-15 shows.

First, fill_write_buffer allocates a page frame into which the data given from userspace are copied.
This sets buffer->needs_refill because the content of the buffer needs to be refreshed if a read request
takes place after the write. The remaining work is delegated to flush_write_buffer; its main job is to
call the store method provided by the sysfs_ops instance specific to the file.

702

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 703

Chapter 10: Filesystems without Persistent Storage

sysfs_write_file

fill_write_file

flush_write_bufferSomething to write?

Figure 10-15: Code flow diagram for sysfs_write_file.

Directory Traversal
The lookup method of sysfs_dir_inode_operations is the basic building block for directory traversal.
We therefore need to have a closer look at sysfs_lookup. Figure 10-16 provides the code flow diagram.

sysfs_lookup

sysfs_find_dirent

sysfs_get_inode

Update and rehash dentry

Figure 10-16: Code flow diagram
for sysfs_lookup.

Attributes constitute the entries of a directory, and the function tries to find an attribute with a specific
name that belongs to an instance of struct sysfs_dirent. By iterating over them and comparing names,
the desired entry can be found. Recall that all attributes associated with a kobject are stored in a linked
list whose head is sysfs_dirent.s_dir.children. This data structure is now brought to good use:

fs/sysfs/dir.c
struct sysfs_dirent *sysfs_find_dirent(struct sysfs_dirent *parent_sd,
const unsigned char *name)
{

struct sysfs_dirent *sd;

for (sd = parent_sd->s_dir.children; sd; sd = sd->s_sibling)
if (!strcmp(sd->s_name, name))

return sd;
return NULL;

}

sysfs_find_dirent is used by sysfs_lookup to find the desired sysfs_dirent instance for a given
filename. With this in hand, the kernel then needs to establish the connection between sysfs, kernel
subsystem, and the filesystem representation by attaching the sysfs_dirent instance of the attribute
with the dentry instance of the attribute file.

Dentry and inode are then connected with sysfs_get_inode. The method resorts to sysfs_init_inode;
this function is discussed in Section 10.3.3.

The final steps are not sysfs-specific: The inode information is filled into the dentry. This also requires
rehashing the dentry on the global dentry hash.

703

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 704

Chapter 10: Filesystems without Persistent Storage

10.3.5 Populating Sysfs
Since sysfs is an interface to export data from the kernel, only the kernel itself can populate sysfs with file
and directory entries. This can be triggered from places all over the kernel, and, indeed, such operations
are ubiquitous within the whole tree, which renders it impossible to cover all appearances in detail. Thus
only the general methods used to connect sysfs with the internal data structures of the diverse subsystems
are demonstrated; the methods used for this purpose are quite similar everywhere.

Registering Subsystems
Once more I use the generic hard disk code as an example for a subsystem that uses kobjects that are
represented in sysfs. Observe that the directory /sys/block is used to represent this subsystem. For
every block device available in the system, a subdirectory contains several attribute files:

root@meitner # ls -l /sys/block
total 0
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop0
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop1
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop2
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop3
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop4
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop5
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop6
drwxr-xr-x 4 root root 0 2008-02-09 23:26 loop7
drwxr-xr-x 10 root root 0 2008-02-09 23:26 sda
drwxr-xr-x 5 root root 0 2008-02-09 23:26 sdb
drwxr-xr-x 5 root root 0 2008-02-09 23:26 sr0
root@meitner # ls -l /sys/block/hda
total 0
-r--r--r-- 1 root root 4096 2008-02-09 23:26 capability
-r--r--r-- 1 root root 4096 2008-02-09 23:26 dev
lrwxrwxrwx 1 root root 0 2008-02-09 23:26 device -> ../../devices/pci0000:00/
0000:00:1f.2/host0/target0:0:0/0:0:0:0
drwxr-xr-x 2 root root 0 2008-02-09 23:26 holders
drwxr-xr-x 3 root root 0 2008-02-09 23:26 queue
-r--r--r-- 1 root root 4096 2008-02-09 23:26 range
-r--r--r-- 1 root root 4096 2008-02-09 23:26 removable
drwxr-xr-x 3 root root 0 2008-02-09 23:26 sda1
drwxr-xr-x 3 root root 0 2008-02-09 23:26 sda2
drwxr-xr-x 3 root root 0 2008-02-09 23:26 sda5
drwxr-xr-x 3 root root 0 2008-02-09 23:26 sda6
drwxr-xr-x 3 root root 0 2008-02-09 23:26 sda7
-r--r--r-- 1 root root 4096 2008-02-09 23:26 size
drwxr-xr-x 2 root root 0 2008-02-09 23:26 slaves
-r--r--r-- 1 root root 4096 2008-02-09 23:26 stat
lrwxrwxrwx 1 root root 0 2008-02-09 23:26 subsystem -> ../../block
--w------- 1 root root 4096 2008-02-09 23:26 uevent

One of the central elements behind this output is the following data structure, which connects a sysfs-
specific attribute structure with genhd-specific store and show methods. Note that these methods do
not have the signature required for the show/store methods required by sysfs; these will be provided
later:

<genhd.h>
struct disk_attribute {

struct attribute attr;

704

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 705

Chapter 10: Filesystems without Persistent Storage

ssize_t (*show)(struct gendisk *, char *);
ssize_t (*store)(struct gendisk *, const char *, size_t);

};

Some attributes are attached to all objects represented by the genhd subsystem, so the kernel creates a
collection of instances of disk_attribute as follows:

block/genhd.c
static struct disk_attribute disk_attr_uevent = {

.attr = {.name = "uevent", .mode = S_IWUSR },

.store = disk_uevent_store
};
static struct disk_attribute disk_attr_dev = {

.attr = {.name = "dev", .mode = S_IRUGO },

.show = disk_dev_read
};
...
static struct disk_attribute disk_attr_stat = {

.attr = {.name = "stat", .mode = S_IRUGO },
.show = disk_stats_read

};

static struct attribute * default_attrs[] = {
&disk_attr_uevent.attr,
&disk_attr_dev.attr,
&disk_attr_range.attr,

...
&disk_attr_stat.attr,

...
NULL,

};

The connection between the attribute-specific show/store methods and the show/store methods in
sysfs_ops is made by the following structure:

block/genhd.c
static struct sysfs_ops disk_sysfs_ops = {

.show = &disk_attr_show,

.store = &disk_attr_store,
};

Without getting into any details about their implementation, note that both methods are provided with
an attribute instance when called by sysfs, transform this instance into a disk_attribute, and call the
show/store method associated with the specific attributes that does the low-level, subsystem-specific
work.

Finally, the only thing that needs to be considered is how the set of default attributes is connected with
all kobjects belonging to the genhd subsystem. For this, a kobj_type is used:

block/genhd.c
static struct kobj_type ktype_block = {

.release = disk_release,

.sysfs_ops = &disk_sysfs_ops,

.default_attrs = default_attrs,
};

705

Mauerer runc10.tex V2 - 09/04/2008 5:18pm Page 706

Chapter 10: Filesystems without Persistent Storage

Two further steps are necessary to connect this data structure with sysfs:

1. Create a kset that corresponds to the kobj_type by using decl_subsys.

2. Register the kset with register_subsystem; this function ends up in calling kset_add
which, in turn, calls kobject_add to create an appropriate directory with create_dir. Once
more, this function calls populate_dir, which iterates over all default attributes and creates
a sysfs file for each of them.

Because subelements of generic hard disks (i.e., partitions) are connected with the kset introduced above,
they automatically inherit all default attributes by virtue of the kobject model.

10.4 Summary
Filesystems do not necessarily need to be backed by a physical block device, but their contents can also be
generated dynamically. This allows for passing information from the kernel to userland (and vice versa),
which can be easily obtained by regular file I/O operations. The /proc filesystem was one of the first
virtual filesystems used by Linux, and a more recent addition is sysfs, which presents a hierarchically
structured representation of (nearly) all objects known to the kernel.

This chapter also discussed some generic routines to implement virtual filesystems and additionally
considered how pseudo-filesystems that are not visible to userland carry information important for the
kernel itself.

706

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 707

Extended Attributes and
Access Control Lists

Many filesystems provide features that extend the standard functionality offered by the VFS layer.
It is impossible for the virtual filesystem to provide specific data structures for every feature that can
be imagined — fortunately, there’s lots of room in our imagination, and developers are not exactly
short of new ideas. Additional features that go beyond the standard Unix file model often require
an extended set of attributes associated with every filesystem object. What the kernel can provide,
however, is a framework that allows filesystem-specific extensions. Extended attributes (xattrs) are
(more or less) arbitrary attributes that can be associated with a file. Since usually every file will
possess only a subset of all possible extended attributes, the attributes are stored outside the regular
inode data structure to avoid increasing its size in memory and wasting disk space. This allows a
really generic set of attributes without any significant impact on filesystem performance or disk
space requirements.

One use of extended attributes is the implementation of access control lists that extend the Unix-style
permission model: They allow implementation of finer-grained access rights by not only using the
concept of the classes user, group, and others, but also by associating an explicit list of users and their
allowed operations on the file. Such lists fit naturally into the extended attribute model. Another
use of extended attributes is to provide labeling information for SE-Linux.

11.1 Extended Attributes
From the filesystem user’s point of view, an extended attribute is a name/value pair associated
with objects in the filesystem. While the name is given by a regular string, the kernel imposes no
restrictions on the contents of the value. It can be a text string, but may contain arbitrary binary data
as well. An attribute may be defined or not (this is the case if no attribute was associated with a file).
If it is defined, it may or may not have a value. No one can blame the kernel for not being liberal in
this respect.

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 708

Chapter 11: Extended Attributes and Access Control Lists

Attribute names are subdivided into namespaces. This implies that addressing attributes are required to
list the namespace as well. As per notational convention, a dot is used to separate the namespace and
attribute (e.g., user.mime_type). Only the basic details are covered here — it is assumed that you are
familiar with the manual page attr(5), where further information about the fine points is given. The
kernel uses macros to define the list of valid top-level namespaces. They are of the form XATTR_*_PREFIX.
A set of accompanying macros XATTR_*_PREFIX_LEN is useful when a name string passed from the
userspace needs to be compared with the namespace prefixes:

<xattr.h>
/* Namespaces */
#define XATTR_OS2_PREFIX "os2."
#define XATTR_OS2_PREFIX_LEN (sizeof (XATTR_OS2_PREFIX) - 1)

#define XATTR_SECURITY_PREFIX "security."
#define XATTR_SECURITY_PREFIX_LEN (sizeof (XATTR_SECURITY_PREFIX) - 1)

#define XATTR_SYSTEM_PREFIX "system."
#define XATTR_SYSTEM_PREFIX_LEN (sizeof (XATTR_SYSTEM_PREFIX) - 1)

#define XATTR_TRUSTED_PREFIX "trusted."
#define XATTR_TRUSTED_PREFIX_LEN (sizeof (XATTR_TRUSTED_PREFIX) - 1)

#define XATTR_USER_PREFIX "user."
#define XATTR_USER_PREFIX_LEN (sizeof (XATTR_USER_PREFIX) - 1)

The kernel provides several system calls to read and manipulate extended attributes:

❑ setxattr is used to set or replace the value of an extended attribute or to create a new one.

❑ getxattr retrieves the value of an extended attribute.

❑ removexattr removes an extended attribute.

❑ listxattr provides a list of all extended attributes associated with a given filesystem object.

Note that all calls are also available with the prefix l; this variant does not follow symbolic links by
resolving them but operates on the extended attributes of the link itself. Prefixing the calls with f does
not work on a filename given by a string, but uses a file descriptor as the argument.

As usual, the manual pages provide more information about how these system calls must be used and
provide the exact calling convention.

11.1.1 Interface to the Virtual Filesystem
The virtual filesystem provides an abstraction layer to the userspace such that all applications can use
extended attributes regardless of how the underlying filesystem implementations store the information
on disk. The following sections discuss the required data structures and system calls. Note that although
the VFS provides an abstraction layer for extended attributes, this does not mean that they have to be
implemented by every filesystem. In fact, quite the contrary is the case. Most filesystems in the kernel
do not support extended attributes. However, it should also be noted that all filesystems that are used as
Linux workhorses (ext3, reiserfs, xfs, etc.) support extended attributes.

708

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 709

Chapter 11: Extended Attributes and Access Control Lists

Data Structures
Since the structure of an extended attribute is very simple, the kernel does not provide a specific data
structure to encapsulate the name/value pairs; instead, a simple string is used to represent the name,
while a void-pointer denotes the area in memory where the value resides.

Nevertheless, there need to be methods that set, retrieve, remove, and list the extended attributes. Since
these operations are inode-specific, they are integrated into struct inode_operations:

<fs.h>
struct inode_operations {
...

int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*removexattr) (struct dentry *, const char*);

...
}

Naturally, a filesystem can provide custom implementations for these operations, but the kernel also
offers a set of generic handler functions. They are, for instance, used by the third extended filesystem, as
discussed below in the chapter. Before the implementation is presented, I need to introduce the funda-
mental data structures. For every class of extended attributes, functions that transfer the information to
and from the block device are required. They are encapsulated in the following structure:

<xattr.h>
struct xattr_handler {

char *prefix;
size_t (*list)(struct inode *inode, char *list, size_t list_size,

const char *name, size_t name_len);
int (*get)(struct inode *inode, const char *name, void *buffer,

size_t size);
int (*set)(struct inode *inode, const char *name, const void *buffer,

size_t size, int flags);
};

prefix denotes the namespace to whose attributes the operations apply: it can be any of the values intro-
duced by XATTR_*_PREFIX as discussed above in the chapter. The get and set methods read and write
extended attributes to the underlying block device, while list provides a list of all extended attributes
associated with a file.

The superblock provides a link to an array of all supported handlers for the respective filesystem:

<fs.h>
struct super_block {
...

struct xattr_handler **s_xattr;
...
}

There is no fixed order in which the handlers need to appear in the array. The kernel can find the proper
one by comparing the handler’s prefix element with the namespace prefix of the extended attribute
name in question. Figure 11-1 presents a graphical summary.

709

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 710

Chapter 11: Extended Attributes and Access Control Lists

Array of

pointers
xattr_handler

s_xattr

struct super_block

Figure 11-1: Data structures used for the
generic xattr implementation.

System Calls
Recall that there are three system calls for each extended attribute operation (get, set, and list), which
differ in how the destination is specified. To avoid code duplication, the system calls are structured into
two parts:

1. Find the instance of dentry associated with the target object.

2. Delegate further processing to a function common to all three calls.

Looking up the dentry instance is performed by user_path_walk, by user_path_walk_link, or by read-
ing the dentry pointer contained in the file instance, depending on which system call was used. After
this, a common basis for all three system call variants has been established.

In the case of setxattr, the common function used for further processing is setxattr; the associated
code flow diagram is shown in Figure 11-2.

Copy name and value from userspace

setxattr

vfs_setxattr

Figure 11-2: Code flow diagram for
setxattr.

First, the routine copies both the name and the attribute value from userspace to kernel space. Since the
value of the extended attribute can have arbitrary contents, the size is not predetermined. The system call
has an explicit size parameter to indicate how many bytes are supposed to be read in. To avoid abuse of
kernel memory, it is ensured that the size of name and value does not exceed the limits imposed by the
following quantities:

limits.h
#define XATTR_NAME_MAX 255 /* # chars in an extended attribute name */
#define XATTR_SIZE_MAX 65536 /* size of an extended attribute value (64k) */

After this preparation step, further processing is delegated to vfs_setxattr. The associated code flow
diagram is shown in Figure 11-3.

710

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 711

Chapter 11: Extended Attributes and Access Control Lists

Delegate decision to security module

Yes

No

security namespace?

vfs_setxattr

xattr_permission

setxattr available? setxattr

fsnotify_xattr

Figure 11-3: Code flow diagram for vfs_setxattr.

At first, the kernel needs to make sure that the user is privileged to perform the desired operation; the
choice is made by xattr_permission. For Read-Only or immutable inodes, the operation fails immedi-
ately; otherwise, the following checks are performed:

fs/xattr.c
static int
xattr_permission(struct inode *inode, const char *name, int mask)
{
...

/*
* No restriction for security.* and system.* from the VFS. Decision
* on these is left to the underlying file system / security module.
*/

if (!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN) ||
!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))

return 0;

/*
* The trusted.* namespace can only accessed by a privileged user.
*/

if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN))
return (capable(CAP_SYS_ADMIN) ? 0 : -EPERM);

/* In user.* namespace, only regular files and directories can have
* extended attributes. For sticky directories, only the owner and
* privileged user can write attributes.
*/

if (!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) {
if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))

return -EPERM;
if (S_ISDIR(inode->i_mode) && (inode->i_mode & S_ISVTX) &&

(mask & MAY_WRITE) && !is_owner_or_cap(inode))
return -EPERM;

}

return permission(inode, mask, NULL);
}

The VFS layer does not care about attributes that live in the security or system namespace. Note
that the request is granted if 0 is returned as result of xattr_permission! The kernel ignores these

711

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 712

Chapter 11: Extended Attributes and Access Control Lists

namespaces and delegates the choice to security modules that are included via numerous security-related
calls, security_*, found everywhere in the kernel, or the underlying filesystem.

However, the VFS layer is concerned about the trusted namespace. Only a sufficiently privileged user
(i.e., root or a user with appropriate capabilities) is allowed to perform operations on such attributes. For
a change, the comments in the source code state precisely how the kernel thinks that attributes from the
user namespace should be taken care of, so I need not add anything further.

Any decision for attributes from a different namespace from those processed until now is deferred to
the generic permission function as discussed in Section 8.5.3. Note that this includes ACL checks that
are implemented with the aid of extended attributes; how these checks are implemented is discussed in
Section 11.2.2.

If the inode passed the permission check, vfs_setxattr continues as follows:

1. If a filesystem-specific setxattr method is available in the inode operations, it is called to
perform the low-level interaction with the filesystem. After this, fsnotify_xattr uses the
inotify mechanism to inform the userland about the extended attribute change.

2. If no setxattr method is available (i.e., if the underlying filesystem does not support
extended attributes), but the extended attribute in question belongs to the security names-
pace, then the kernel tries to use a function that can be provided by security frameworks like
SELinux. If no such framework is registered, the operation is denied.

This allows security labels on files that reside on filesystems without extended attribute sup-
port. It is the task of the security subsystem to store the information in a reasonable way.

Note that some more hook functions of the security framework are called during the extended attribute
system calls. They are omitted here since if no extra security framework like SELinux is present, they will
have no effect.

Since the implementation for the system calls getxattr and removexattr nearly completely follows the
scheme presented for setxattr, it is not necessary to discuss them in greater depth. The differences are
as follows:

❑ getxattr does not need to use fnotify because nothing is modified.

❑ removeattr need not copy an attribute value, but only the name from the userspace. No special
casing for the security handler is required.

The code for listing all extended attributes associated with a file differs more from this scheme, particu-
larly because no function vfs_listxattr is used. All work is performed in listxattr. The implementa-
tion proceeds in three easy steps:

1. Adapt the maximum size of the list as given by by the userspace program such that it is
not higher than the maximal size of an extended attribute list as allowed by the kernel with
XATTR_LIST_MAX, and allocate the required memory.

2. Call listxattr from inode_operations to fill the allocated space with name/value pairs.

3. Copy the result back to the userspace.

712

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 713

Chapter 11: Extended Attributes and Access Control Lists

Generic Handler Functions
Security is an important business. If wrong decisions are made, then the best security mechanisms are
worth nothing. Since duplicating code increases the possibility of getting details wrong, the kernel
provides generic implementations of the inode_operation methods for extended attribute handling
on which filesystem writers can rely. As an additional benefit, this allows the filesystem people to be
lazy — and concentrate their talents on things that matter much more to them than getting each and
every security corner case right. The following examples look at these default implementations. As
before, the code for different types of access is very similar, so the implementation of generic_setxattr
is discussed first and the differences of the other methods afterward.

Let’s get right down into the code:

fs/xattr.c
int
generic_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int
flags)
{

struct xattr_handler *handler;
struct inode *inode = dentry->d_inode;

if (size == 0)
value = ""; /* empty EA, do not remove */

handler = xattr_resolve_name(inode->i_sb->s_xattr, &name);
if (!handler)

return -EOPNOTSUPP;
return handler->set(inode, name, value, size, flags);

}

First, xattr_resolve_name finds the instance of xattr_handler that is apt for the namespace of
the extended attribute in question. If a handler exists, the set method is called to perform the
desired set operation. Obviously, there cannot be any further generic step; handler->set must
be a filesystem-specific method (the implementation of these methods for Ext3 is discussed in
Section 11.1.2).

It is also not difficult to find the proper handler:

fs/xattr.c
static struct xattr_handler *
xattr_resolve_name(struct xattr_handler **handlers, const char **name)
{
...

for_each_xattr_handler(handlers, handler) {
const char *n = strcmp_prefix(*name, handler->prefix);
if (n) {

*name = n;
break;

}
}
return handler;

}

713

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 714

Chapter 11: Extended Attributes and Access Control Lists

for_each_xattr_handler is a macro that iterates over all entries in handlers until it encounters a NULL
entry. For every array element, the kernel compares the handler prefix with the namespace part of the
attribute name. If there is a match, the appropriate handler has been found.

The generic implementations for the other extended attribute operations differ only slightly from the
code for generic_setxattr:

❑ generic_getxattr calls handler->get instead of the handler->set.

❑ generic_removexattr calls handler->set but specifies NULL for the value and a size of 0. This
triggers, per convention, removing the attribute.1

generic_listxattr can operate in two modes: If a NULL pointer instead of a buffer was passed to the
function to hold the result, the code iterates over all handlers registered in the superblock and calls the
list method for the inode in question; since list returns the number of bytes required to hold the result,
they can be summed up to provide predictions about how much memory is required in total. If a buffer
for the results was specified, generic_listxattr again iterates over all handlers, but this time uses the
buffer to actually store the results.

11.1.2 Implementation in Ext3
Among the citizens in filesystem land, Ext3 is one of the most prominent members because it makes it
understood that support for extended attributes is available and well developed. Examine the following
source code to learn more about the filesystem side of extended attribute implementations. This also
raises a question that has not been touched on: namely, how extended attributes are permanently stored
on disk.

Data Structures
As an exemplary citizen, Ext3 starts with some good advice on coding efficiency and employs the generic
implementation presented above. A number of handler functions are provided, and the following map
makes it possible to access handler functions by their identification number and not by their string iden-
tifier; this simplifies many operations and allows a more efficient use of disk space because rather than
the prefix string, only a simple number needs to be stored:

fs/ext3/xattr.c
static struct xattr_handler *ext3_xattr_handler_map[] = {

[EXT3_XATTR_INDEX_USER] = &ext3_xattr_user_handler,
#ifdef CONFIG_EXT3_FS_POSIX_ACL

[EXT3_XATTR_INDEX_POSIX_ACL_ACCESS] = &ext3_xattr_acl_access_handler,
[EXT3_XATTR_INDEX_POSIX_ACL_DEFAULT] = &ext3_xattr_acl_default_handler,

#endif
[EXT3_XATTR_INDEX_TRUSTED] = &ext3_xattr_trusted_handler,

#ifdef CONFIG_EXT3_FS_SECURITY
[EXT3_XATTR_INDEX_SECURITY] = &ext3_xattr_security_handler,

#endif
};

1Note that both a NULL value and a size of 0 must be specified for it is possible to have empty attributes with size 0 and an empty
value string (which differs from a NULL value).

714

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 715

Chapter 11: Extended Attributes and Access Control Lists

Figure 11-4 presents an overview of the on-disk layout of Ext3 extended attributes.

ext3_xattr_entry

struct ext3_xattr_entry

e_value_offs

Attribute valueH
e
a
d
e
r

Figure 11-4: Overview of the on-disk format for extended attributes in the Ext3 filesystem.

The space consumed by the extended attributes starts with a short identification header followed by a list
of entry elements. Each holds the attribute name and a pointer to the region where the associated value
is stored. The list grows downward when new extended attributes are added to the file.

The values are stored at the end of the extended attribute data space; the value table grows in the opposite
direction of the attribute name table. The values will, in general, not be sorted in the same order as the
names, but can be in any arbitrary order.

A structure of this kind can be found in two places:

❑ The unused space at the end of the inode.

❑ A separate data block somewhere on the disk.

The first alternative is only possible if the new filesystem format with dynamic inode sizes is used (i.e.,
EXT3_DYNAMIC_REV); the amount of free space is stored in ext3_inode_info->i_extra_isize. Both alter-
natives can be used together, but the total size of all extended attribute headers and values is still limited
to the sum of the space of a single block and the free space in the inode. It is not possible to use more than
one additional block to store extended attributes. In practice, the space required will usually be much less
than a complete disk block.

Note that it is possible for two files with identical sets of extended attributes to share the on-disk repre-
sentation; this helps to save some disk space.

How do the data structures that implement this layout look? The header is defined as follows:

fs/ext3/xattr.h
struct ext3_xattr_header {

__le32 h_magic; /* magic number for identification */
__le32 h_refcount; /* reference count */
__le32 h_blocks; /* number of disk blocks used */
__le32 h_hash; /* hash value of all attributes */
__u32 h_reserved[4]; /* zero right now */

};

715

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 716

Chapter 11: Extended Attributes and Access Control Lists

The comments in the code precisely describe the meaning of the elements, and nothing more needs to be
added. The only exception is h_blocks: Although this element suggests that multiple blocks can be used
to store extended attribute data, it is at the moment always set to 1. Any other value is treated as an error.

Every entry is represented by the following data structure:

fs/ext3/xattr.h
struct ext3_xattr_entry {

__u8 e_name_len; /* length of name */
__u8 e_name_index; /* attribute name index */
__le16 e_value_offs; /* offset in disk block of value */
__le32 e_value_block; /* disk block attribute is stored on (n/i) */
__le32 e_value_size; /* size of attribute value */
__le32 e_hash; /* hash value of name and value */
char e_name[0]; /* attribute name */

};

Note that the entries are not of a uniform size because the length of the attribute names is variable; this is
why the name is stored at the end of the structure; e_name_len is available to determine the name length
and thus compute the size of each entry. e_value_block, together with e_value_offset, dertermines the
location of the attribute value associated with the extended attribute name (if the extended attribute is
stored within the inode, ext3_value_offs is used as an offset that starts at the first entry). e_name_index
is used as an index into the table ext3_xattr_handler_map defined above.

Implementation
Since the handler implementation is quite similar for different attribute namespaces, the following dis-
cussion is restricted to the implementation for the user namespace; the handler functions for the other
namespaces differ only little or not at all. ext3_xattr_user_handler is defined as follows:

fs/ext3/xattr_user.c
struct xattr_handler ext3_xattr_user_handler = {

.prefix = XATTR_USER_PREFIX,

.list = ext3_xattr_user_list,

.get = ext3_xattr_user_get,

.set = ext3_xattr_user_set,
};

Retrieving Extended Attributes
Consider ext3_xattr_user_get first. The code is just a wrapper for a standard routine that works inde-
pendently of the attribute type. Only the identification number of the type is necessary to choose the
correct attributes from the set of all attributes:

fs/ext3/xattr_user.c
static int
ext3_xattr_user_get(struct inode *inode, const char *name,

void *buffer, size_t size)
{
...

if (!test_opt(inode->i_sb, XATTR_USER))
return -EOPNOTSUPP;

return ext3_xattr_get(inode, EXT3_XATTR_INDEX_USER, name, buffer, size);
}

716

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 717

Chapter 11: Extended Attributes and Access Control Lists

The test for XATTR_USER ensures that the filesystem supports extended attributes in the user namespace.
It is possible to enable or disable this support at mount time.

Note that all get-type functions can be used for two purposes. If a buffer is allocated, the result is copied
into it, but if a NULL pointer is given instead of a proper buffer, only the required size for the attribute
value is computed and returned. This allows the calling code to first identify the size of the required
allocation for the buffer. After the buffer has been allocated, a second call fills in the data.

Figure 11-5 shows the code flow diagram for ext3_xattr_get. The function is a dispatcher that first tries
to find the required attribute directly in the free space of the inode with ext3_xattr_ibody_get; if this
fails, ext3_xattr_block_get is used to read the value from an external attribute data block.

No xattrs directly stored in inode?

ext3_xattr_get

ext3_xattr_ibody_get

ext3_xattr_block_get

Figure 11-5: Code flow diagram for ext3_xattr_get.

Consider the direct search in the free inode space first. The associated code flow diagram is depicted in
Figure 11-6.

Locate inode

Copy value to buffer if buffer!= NULL

ext3_xattr_ibody_get

ext3_xattr_check_names

ext3_xattr_find_entry

Figure 11-6: Code flow diagram for
ext3_xattr_ibody_get.

After the location of the inode is determined and access to the raw data is ascertained,
ext3_xattr_check_names performs several sanity checks that ensure that the entry table is
located within the free space of the inode. The real work is delegated to ext3_xattr_find_entry. Since
the routine will be used on several more occasions further below, we need to discuss it in more detail.

fs/ext3/xattr.c
static int
ext3_xattr_find_entry(struct ext3_xattr_entry **pentry, int name_index,

const char *name, size_t size, int sorted)
{

struct ext3_xattr_entry *entry;
size_t name_len;
int cmp = 1;

717

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 718

Chapter 11: Extended Attributes and Access Control Lists

if (name == NULL)
return -EINVAL;

name_len = strlen(name);
entry = *pentry;
for (; !IS_LAST_ENTRY(entry); entry = EXT3_XATTR_NEXT(entry)) {

cmp = name_index - entry->e_name_index;
if (!cmp)

cmp = name_len - entry->e_name_len;
if (!cmp)

cmp = memcmp(name, entry->e_name, name_len);
if (cmp <= 0 && (sorted || cmp == 0))

break;
}
*pentry = entry;

...
return cmp ? -ENODATA : 0;

}

pentry points to the start of the extended attribute entry table. The code loops over all entries and com-
pares the desired name with the entry name if the entry has the correct type (as indicated by cmp == 0,
which results from subtracting the namespace index of the entry under consideration from the index of
the queried entry — a slightly unconventional but nevertheless valid way to check this). Since the entries
do not have a uniform size, the kernel uses EXT3_XATTR_NEXT to compute the address of the next entry
in the table by adding the length of the actual attribute name (plus some padding that is handled by
EXT3_XATTR_LEN) to the size of the entry data structure:

fs/ext3/xattr.h
#define EXT3_XATTR_NEXT(entry) \

((struct ext3_xattr_entry *)(\
(char *)(entry) + EXT3_XATTR_LEN((entry)->e_name_len)))

The end of the list is marked by a zero that IS_LAST_ENTRY checks for.

After ext3_xattr_find_entry returns with the data of the desired entry, ext3_xattr_ibody_get needs
to copy the value to the buffer given in the function arguments if it is not a NULL pointer; otherwise, only
the size of the entry is returned.

If the desired extended attribute cannot be found within the inode, the kernel uses ext3_xattr_block_
get to search for the entry. The associated code flow diagram is presented in Figure 11-7.

Read the block pointed to by i_file_acl

Copy attribute value to buffer if buffer != NULL

ext3_xattr_block_get

ext3_xattr_cache_insert

ext3_xattr_find_entry

Figure 11-7: Code flow diagram for ext3_xattr_block_get.

718

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 719

Chapter 11: Extended Attributes and Access Control Lists

The course of action is basically identical with the previously considered case where the data were located
in the inode, but two modifications need to be made:

❑ The kernel needs to read the extended attribute block; the address is stored in the i_file_acl
element of struct ext3_inode_info.

❑ Metadata blocks are cached by calling ext3_xattr_cache_insert. The kernel uses the so-called
filesystem metadata block cache implemented in fs/mbcache.c for this.2 Since nothing really
unexpected happens there, it is not necessary to discuss the code in more detail.

Setting Extended Attributes
Setting extended attributes for the user namespace is handled by — you guessed it — ext3_xattr_user_
set. As for the get operation, the function is just a wrapper for the generic helper ext3_xattr_set. The
code flow diagram in Figure 11-8 shows that this is yet another wrapper function that is responsible for
handling the interaction with the journal. The real work is delegated to ext3_xattr_set_handle; the
associated code flow diagram can be seen in Figure 11-9.

Get handle

Stop Journal

ext3_xattr_set

ext3_xattr_set_handle

Figure 11-8: Code flow diagram for
ext3_xattr_set.

Get inode location

Attibute not directly in inode?

Set attribute in the appropriate location

Update superblock and mark inode dirty

Yes

No

value == NULL?

ext3_xattr_set_handle

ext3_xattr_ibody_find

ext3_xattr_block_find

ext3_xattr_{ibody,block}_set

Figure 11-9: Code flow diagram for ext3_xattr_set.

2Although the structure of this cache is generic, it is currently only used by the extended filesystem family.

719

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 720

Chapter 11: Extended Attributes and Access Control Lists

The following calling convention is used:

❑ If the data buffer passed to the function is NULL, then remove an existing extended attribute.

❑ If the data buffer contains a value, replace an existing extended attribute or create a new one. The
flags XATTR_REPLACE and XATTR_CREATE can be used to indicate that the attribute must or must
not exist before the call as per the documentation in the man page setxattr(2).

ext3_xattr_set_handle implements these requirements by utilizing the previously introduced frame-
work as follows:

1. Find the location of the inode.

2. Use ext3_xattr_ibody_find to find the data of the extended attribute. If this fails, search in
the external data block with ext3_xattr_block_find.

3. If no value is given, delete the attribute with ext3_xattr_ibody_set or ext3_xattr_block_
set depending on whether the entry is contained in the inode or in a separate data block.

4. If a value was given, use ext3_xattr_*_set to modify the value or create a new value either
within the inode or on the external data block depending on where enough space is left.

The functions ext3_xattr_ibody_set and ext3_xattr_block_set handle the low-level work of remov-
ing an entry from the data structure described in Section 11.1.2. If no value is given to update, the
functions respectively create a new entry. This is primarily a matter of data structure manipulation and
will not be discussed in detail here.

Listing Extended Attributes
Although the kernel includes a generic function (generic_listxattr) for listing all extended attributes
associated with a file, it is not among the filesystem favorites: Only the shared memory implementation
makes use of it. So let’s step back a little farther to discuss the operation for Ext3.

The inode_operations instance for Ext3 lists ext3_listxattr as the handler function for
listxattr. The method is just a one-line wrapper for ext3_xattr_list. This routine calls, in turn,
ext3_xattr_ibody_list and ext3_xattr_block_list, depending on where extended attributes are
stored. Both functions compute the location of the extended attributes and read the data, but then
delegate the work to ext3_xattr_list_entries, which finally does the real work — after all, someone
has to do it! It uses the previously introduced macros to iterate over all extended attributes defined
for the inode, calls handler->list to retrieve the name of the attribute for each entry, and collects the
results in a buffer:

fs/ext3/xattr.c
static int
ext3_xattr_list_entries(struct inode *inode, struct ext3_xattr_entry *entry,

char *buffer, size_t buffer_size)
{

size_t rest = buffer_size;

for (; !IS_LAST_ENTRY(entry); entry = EXT3_XATTR_NEXT(entry)) {
struct xattr_handler *handler =

ext3_xattr_handler(entry->e_name_index);

if (handler) {

720

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 721

Chapter 11: Extended Attributes and Access Control Lists

size_t size = handler->list(inode, buffer, rest,
entry->e_name,
entry->e_name_len);

if (buffer) {
if (size > rest)

return -ERANGE;
buffer += size;

}
rest -= size;

}
}
return buffer_size - rest;

}

Since the list handler implementation is quite similar for the various attribute types, it suffices to consider
the variant for the user namespace. Observe the following code:

fs/ext3/xattr_user.c
static size_t
ext3_xattr_user_list(struct inode *inode, char *list, size_t list_size,

const char *name, size_t name_len)
{

const size_t prefix_len = sizeof(XATTR_USER_PREFIX)-1;
const size_t total_len = prefix_len + name_len + 1;

if (!test_opt(inode->i_sb, XATTR_USER))
return 0;

if (list && total_len <= list_size) {
memcpy(list, XATTR_USER_PREFIX, prefix_len);
memcpy(list+prefix_len, name, name_len);
list[prefix_len + name_len] = ’\0’;

}
return total_len;

}

The routine copies the prefix ‘‘user.’’ followed by the attribute name and a null byte into the buffer list
and returns the number of copied bytes as result.

11.1.3 Implementation in Ext2
The implementation of extended attributes in Ext2 is quite similar to the implementation in Ext3 pre-
sented above. This is not surprising since Ext3 is a direct descendent of Ext2, but nevertheless, some
features present in Ext3 that are not available in Ext2 are the source of some differences in the xattr
implementation:

❑ Since Ext2 does not support dynamic inode sizes, there is not sufficient space left in the on-disk
inode to store the data of extended attributes. Thus, xattrs are always stored on a separate data
block. This simplifies some functions because no distinction between different locations of the
extended attribute data is necessary.

❑ Ext2 does not use journaling, so all journaling-related function calls are not necessary. This also
eliminates the need for some wrapper functions that are just dealing with handle operations.

721

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 722

Chapter 11: Extended Attributes and Access Control Lists

Otherwise, both implementations are nearly identical; for most functions described above, a variant with
the prefix ext3_ replaced with ext2_ is available.

11.2 Access Control Lists
POSIX access control lists (ACLs) are an extension specified in a POSIX standard to make the DAC model
of Linux finer grained. As usual, I assume that you have some familiarity with the concept, but a very
good overview is provided in the manual page acl(5).3 ACLs are implemented on top of extended
attributes and modified with the same methods as other extended attributes are. In comparison to other
xattrs whose contents are of no interest to the kernel, ACL xattrs are integrated into the inode permission
checks. Although filesystems are free to choose a physical format to represent extended attributes, the
kernel nevertheless defines a conversation structure to represent an access control list. The following
namespaces must be used for extended attributes that carry access control lists:

<posix_acl_xattr.h>
#define POSIX_ACL_XATTR_ACCESS "system.posix_acl_access"
#define POSIX_ACL_XATTR_DEFAULT "system.posix_acl_default"

The userland programs getfacl, setfacl, and chacl are used to get, set, and change the contents of
an ACL. They use the standard system calls to manipulate extended attributes and do not require any
non-standard interaction with the kernel. Many other utilities, for instance, ls, also have built-in support
for dealing with access control lists.

11.2.1 Generic Implementation
The generic code for the implementation of ACLs is contained in two files: fs/posix_acl.c contains
code to allocate new ACLs, clone ACLs, perform extended permission checks, and so on; while
fs/xattr_acl.c holds functions to convert between extended attributes and the generic representation
of ACLs, and vice versa. All generic data structures are defined in include/linux/posix_acl.h and
include/linux/posix_acl_xattr.h.

Data Structures
The central data structure for in-memory representation that holds all data associated with an ACL is
defined as follows:

<posix_acl.h>
struct posix_acl_entry {

short e_tag;
unsigned short e_perm;
unsigned int e_id;

};

struct posix_acl {
atomic_t a_refcount;

3Note that another good overview about ACLs in general and the status of the implementation in various filesystems supported by
Linux is given in the Usenix paper of Andreas Grünbacher [Grü03], one of the principal authors of ACL support for the Ext2 and
Ext3 filesystems.

722

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 723

Chapter 11: Extended Attributes and Access Control Lists

unsigned int a_count;
struct posix_acl_entry a_entries[0];

};

Each entry contains a tag, a permission, and a (user or group) ID to which the ACL refers. All ACLs
belonging to a given inode are collected by struct posix_acl. The number of ACL entries is given by
a_count; since the array that contains all entries is located at the bottom of the structure, there is no limit
on the number of entries except for the maximal size of an extended attribute. a_refcount is a standard
reference counter.

Symbolic constants for the ACL type, the tag, and the permissions are given by the following pre-
processor definitions:

<posix_acl.h>
/* a_type field in acl_user_posix_entry_t */
#define ACL_TYPE_ACCESS (0x8000)
#define ACL_TYPE_DEFAULT (0x4000)

/* e_tag entry in struct posix_acl_entry */
#define ACL_USER_OBJ (0x01)
#define ACL_USER (0x02)
#define ACL_GROUP_OBJ (0x04)
#define ACL_GROUP (0x08)
#define ACL_MASK (0x10)
#define ACL_OTHER (0x20)

/* permissions in the e_perm field */
#define ACL_READ (0x04)
#define ACL_WRITE (0x02)
#define ACL_EXECUTE (0x01)

The kernel defines another set of data structures similar to the ones presented above for xattr representa-
tion of ACLs. However, this time they are supposed to be used for external interaction with userland:

<posix_acl_xattr.h>
typedef struct {

__le16 e_tag;
__le16 e_perm;
__le32 e_id;

} posix_acl_xattr_entry;

typedef struct {
__le32 a_version;
posix_acl_xattr_entry a_entries[0];

} posix_acl_xattr_header;

The structures used for internal and external representation are quite similar except that types with
defined endianness (see Appendix A.8) and explicit bit length are used for the latter purpose; addition-
ally, no reference counting is necessary for the on-disk representation.

Two functions to convert back and forth between the references are available: posix_acl_from_xattr
and posix_acl_from_xattr. Since the translation is purely mechanical, it is not necessary to discuss

723

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 724

Chapter 11: Extended Attributes and Access Control Lists

it in more detail. It is, however, important to observe that they work independently of the underlying
filesystem.

Permission Checks
For permission checks that involve access control lists, the kernel usually needs support from the underly-
ing filesystems: Either they implement all permission checks by themselves (via the permission function
of struct inode_operations), or they provide a callback method for generic_permission. The latter
method is preferred by most filesystems in the kernel.

The callback is used in generic_permission as follows (note that check_acl denotes the callback
function):

fs/namei.c
int generic_permission(struct inode *inode, int mask,

int (*check_acl)(struct inode *inode, int mask))
{
...

if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
int error = check_acl(inode, mask);
if (error == -EACCES)

goto check_capabilities;
else if (error != -EAGAIN)

return error;
}

...
}

IS_POSIXACL checks if the (mount-time) flag MS_POSIXACL is set signaling that ACLs need to be used.

Even if a filesystem provides a specialized function to perform the ACL permission check, the individual
routines usually boil down to some technical work like obtaining the ACL data. The real permission
checks are again delegated to the standard function posix_acl_permission provided by the kernel.

Accordingly, posix_acl_permission needs to be discussed in more detail. Given a pointer to an inode,
a pointer to (the in-memory representation of) an access control list, and the right to check for (MAY_READ,
MAY_WRITE or MAY_EXEC in mode), the function returns 0 if access is granted or an appropriate error code
otherwise. The implementation is as follows:

fs/posix_acl.c
int
posix_acl_permission(struct inode *inode, const struct posix_acl *acl, int want)
{

const struct posix_acl_entry *pa, *pe, *mask_obj;
int found = 0;

FOREACH_ACL_ENTRY(pa, acl, pe) {
switch(pa->e_tag) {

case ACL_USER_OBJ:
/* (May have been checked already) */
if (inode->i_uid == current->fsuid)

goto check_perm;

724

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 725

Chapter 11: Extended Attributes and Access Control Lists

break;
case ACL_USER:

if (pa->e_id == current->fsuid)
goto mask;

break;
case ACL_GROUP_OBJ:

if (in_group_p(inode->i_gid)) {
found = 1;
if ((pa->e_perm & want) == want)

goto mask;
}
break;

case ACL_GROUP:
if (in_group_p(pa->e_id)) {

found = 1;
if ((pa->e_perm & want) == want)

goto mask;
}
break;

case ACL_MASK:
break;

case ACL_OTHER:
if (found)

return -EACCES;
else

goto check_perm;
default:

return -EIO;
}

}
return -EIO;

...
}

The code uses the macro FOREACH_ACL_ENTRY to iterate over all ACL entries. For each entry, a suitable
comparison between the file system UID (FSUID) and the appropriate part of the current process cre-
dentials (the UID/GID of the inode for _OBJ type entries and the ID specified in the ACL entry for other
types). Obviously, the logic needs to be exactly as defined in the manual page acl(5).

The code involves two jump labels that are located behind the loop. The code flow ends up at mask once
access has basically been granted. It still needs to be ensured, however, that no declaration of ACL_MASK
follows the granting entry and denies the access right:

fs/posix_acl.c
...
mask:

for (mask_obj = pa+1; mask_obj != pe; mask_obj++) {
if (mask_obj->e_tag == ACL_MASK) {

if ((pa->e_perm & mask_obj->e_perm & want) == want)
return 0;

return -EACCES;
}

}
...

725

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 726

Chapter 11: Extended Attributes and Access Control Lists

Victory can seem to be beguilingly close when a granting entry has been found, but the hopes are quickly
annihilated when an ACL_MASK entry denies the access.

The following code snippet ensures that not only the rights are valid because of a proper UID or GID,
but also that the desired access (read, write, or execute) is allowed by the granting entry:

fs/posix_acl.c
...
check_perm:

if ((pa->e_perm & want) == want)
return 0;

return -EACCES;
}

11.2.2 Implementation in Ext3
Since ACLs are implemented on top of extended attributes and with the aid of many generic helper
routines as discussed above, the implementation in Ext3 is quite concise.

Data Structures
The on-disk representation format for an ACL is similar to the in-memory representation required by the
generic POSIX helper functions:

fs/ext3/acl.h
typedef struct {

__le16 e_tag;
__le16 e_perm;
__le32 e_id;

} ext3_acl_entry;

The meaning of the struct members is identical to the meaning discussed above for the in-memory vari-
ant. To save disk space, a version without the e_id field is also defined. It is used for the first four entries
of an ACL list because no specific UID/GID is required for them:

fs/ext3/acl.h
typedef struct {

__le16 e_tag;
__le16 e_perm;

} ext3_acl_entry_short;

A list of ACL entries is always led by a header element, which is defined as follows:

fs/ext3/acl.h
typedef struct {

__le32 a_version;
} ext3_acl_header;

The a_version field would allow for distinguishing between different versions of the ACL implemen-
tation. Fortunately, the current implementation has not yet shown any weaknesses that would require
introducing a new version, so revision EXT3_ACL_VERSION) — 0x0001 — is still perfectly fine. Although

726

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 727

Chapter 11: Extended Attributes and Access Control Lists

the field is not relevant right now, it will become important should an incompatible future version be
developed.

The in-memory representation of every Ext3 inode is augmented with two fields that are relevant for the
ACL implementation:

<ext3_fs_i.h>
struct ext3_inode_info {
...
#ifdef CONFIG_EXT3_FS_POSIX_ACL

struct posix_acl *i_acl;
struct posix_acl *i_default_acl;

#endif
...
}

While i_acl points to the posix_acl instance for a regular ACL list associated with an inode,
i_default_acl points to the default ACL that may be associated with a directory and is inherited
by subdirectories. Since all information is stored in extended attributes on disk, no extension of the
disk-based struct ext3_inode is necessary.

Note that the kernel does not automatically construct the ACL information for every inode; if the infor-
mation is not present in memory, the fields are set to EXT3_ACL_NOT_CACHED [defined as (void*)-1].

Conversion between On-Disk and In-Memory Representation
Two conversion functions are available to switch between the on-disk and the in-memory representation:
ext3_acl_to_disk and ext3_acl_from_disk. Both are implemented in fs/ext3/acl.c.

The latter one takes the raw data as read from the information contained in the extended inode, strips off
the header, and converts the data from little endian format into a format suitable for the system’s CPU
for every entry in the list of ACLs.

The counterpart ext3_acl_to_disk works similarly: It iterates over all entries of a given instance of
posix_acl and converts the contained data from the CPU-specific format to little endian numbers with
appropriate lengths.

Inode Initialization
When a new inode is created with ext3_new_inode, the initialization of the ACLs is delegated to
ext3_init_acl. In addition to the transaction handle and the instance of struct inode for the new
inode, the function also expects a pointer to the inode of the directory in which the new entry is created:

fs/ext3/acl.c
int
ext3_init_acl(handle_t *handle, struct inode *inode, struct inode *dir)
{

struct posix_acl *acl = NULL;
int error = 0;

if (!S_ISLNK(inode->i_mode)) {

727

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 728

Chapter 11: Extended Attributes and Access Control Lists

if (test_opt(dir->i_sb, POSIX_ACL)) {
acl = ext3_get_acl(dir, ACL_TYPE_DEFAULT);
if (IS_ERR(acl))

return PTR_ERR(acl);
}
if (!acl)

inode->i_mode &= ~current->fs->umask;
}

...
}

The inode parameter points to the new inode, and dir shows the inode of the directory containing the
file. The directory information is required because if the directory has a default ACL, the contents need
also to be applied to the new file. If the superblock of the directory does not support ACLs or no default
ACL is associated with it, the kernel simply applies the current umask setting of the process.

A more interesting case is when the inode’s filesystem supports ACLs and a default ACL is associated
with the parent directory. If the new entry is a directory, the default ACL is inherited to it:

fs/ext3/acl.c
...

if (test_opt(inode->i_sb, POSIX_ACL) && acl) {
struct posix_acl *clone;
mode_t mode;

if (S_ISDIR(inode->i_mode)) {
error = ext3_set_acl(handle, inode,

ACL_TYPE_DEFAULT, acl);
if (error)

goto cleanup;
}

...
}

ext3_set_acl is used to set the ACL contents of a specific inode; this function is discussed below in this
chapter.

For all file types and not just directories, the following code remains to be executed:

fs/ext3/acl.c
...

clone = posix_acl_clone(acl, GFP_KERNEL);
error = -ENOMEM;
if (!clone)

goto cleanup;

mode = inode->i_mode;
error = posix_acl_create_masq(clone, &mode);
if (error >= 0) {

inode->i_mode = mode;
if (error > 0) {

/* This is an extended ACL */

728

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 729

Chapter 11: Extended Attributes and Access Control Lists

error = ext3_set_acl(handle, inode,
ACL_TYPE_ACCESS, clone);

}
}
posix_acl_release(clone);

}
cleanup:

posix_acl_release(acl);
return error;

}

First, a working copy of the in-memory representation of the ACL is created with posix_acl_clone.
Afterward, posix_acl_create_masq is called to remove all permissions given by the mode specification
of the inode creation process that are not granted by the default ACL. This can result in two scenarios:

1. The access mode can remain unchanged or some elements of it must be removed in order to
comply with the ACL’s requirements. In this case, the i_mode field of the new inode is set to
the mode as computed by posix_acl_create_masq.

2. In addition to the necessity of trimming the mode, the default ACL can contain elements
that cannot be represented in the regular user/group/other scheme. In this case, an ACL
with extended information that provides the extra information is created for the new inode.

Retrieving ACLs
Given an instance of struct inode, ext3_get_acl can be used to retrieve an in-memory representation
of the ACL. Note that another parameter (type) specifies if the default or the access inode is supposed to
be retrieved. The cases are distinguished with ACL_TYPE_ACCESS and ACL_TYPE_DEFAULT. The code flow
diagram for the function is shown in Figure 11-10.

ACL cached?

Return pointer to in-memory representation

Update ACL cache in ext3_inode_info

ext3_get_acl

ext3_iget_acl

ext3_xattr_get

ext3_acl_from_disk

Figure 11-10: Code flow diagram for ext3_get_acl.

At first, the kernel uses the helper function ext3_iget_acl to check if the in-memory representation of
the ACL is already cached in ext3_inode_info->i_acl (or, respectively, i_default_acl if the default
ACL is requested). Should this be the case, the function creates a copy of the representation that can be
returned as the result of ext3_get_acl.

729

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 730

Chapter 11: Extended Attributes and Access Control Lists

If the ACL is not yet cached, then first ext3_xattr_get is called to retrieve the raw data from the
extended attribute subsystem4; the conversion from the on-disk to the in-memory representation is per-
formed with the aid of ext3_acl_from_disk. Before a pointer to this representation can be returned, the
cache field in question of ext3_inode_info is updated so that subsequent requests can directly get the
in-memory representation.

Modifying ACLs
The function ext3_acl_chmod is responsible for keeping ACLs up to date and consistent when the
(generic) attributes of a file are changed via ext3_setattr that is, in turn, called by the VFS layer and
thus triggered by the respective system calls from userspace. Since ext3_acl_chmod is called at the very
end of ext3_setattr, the new desired mode has already been set for the classical access control part
of the inode. A pointer to the instance of struct inode in question is thus sufficient as input data. The
operational logic of ext3_acl_chmod is depicted in the code flow diagram in Figure 11-11.

Get a cloned working copy of the ACL

Get handle

Stop journalling

Release clone

ext3_acl_chmod

ext3_get_acl

posix_acl_chmod_masq

ext3_set_acl

Figure 11-11: Code flow diagram for
ext3_acl_chmod.

After retrieving a pointer to the in-memory representation of the ACL data, a clone as work-
ing copy is created using the helper function posix_acl_clone. The main work is delegated to
posix_acl_chmod_masq covered below. The remaining work for the Ext3 code deals with technical issues:
After a handle for the transaction has been obtained, ext3_set_acl is used to write back the modified
ACL data. Finally, the end of the operation is announced to the journal, and the clone is released.

The generic work of updating the ACL data is performed in posix_acl_chmod_masq by iterating over all
ACL entries. The relevant entries for the owning user and group as well as the generic entry for ‘‘other’’
and mask entries are updated to reflect the new situation:

fs/posix_acl.c
int
posix_acl_chmod_masq(struct posix_acl *acl, mode_t mode)
{

struct posix_acl_entry *group_obj = NULL, *mask_obj = NULL;

4Note that there are actually two calls to ext3_xattr_get: The first computes how much memory is needed to hold the data, then
the appropriate amount is allocated with vmalloc, and the second call of ext3_xattr_get actually transfers the desired data.

730

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 731

Chapter 11: Extended Attributes and Access Control Lists

struct posix_acl_entry *pa, *pe;

/* assert(atomic_read(acl->a_refcount) == 1); */

FOREACH_ACL_ENTRY(pa, acl, pe) {
switch(pa->e_tag) {

case ACL_USER_OBJ:
pa->e_perm = (mode & S_IRWXU) >> 6;
break;

case ACL_USER:
case ACL_GROUP:

break;

case ACL_GROUP_OBJ:
group_obj = pa;
break;

case ACL_MASK:
mask_obj = pa;
break;

case ACL_OTHER:
pa->e_perm = (mode & S_IRWXO);
break;

default:
return -EIO;

}
}

if (mask_obj) {
mask_obj->e_perm = (mode & S_IRWXG) >> 3;

} else {
if (!group_obj)

return -EIO;
group_obj->e_perm = (mode & S_IRWXG) >> 3;

}

return 0;
}

Permission Checks
Recall that the kernel provides the generic permission checking function generic_permission, which
allows for integration of a filesystem-specific handler for ACL checks. Indeed, Ext3 makes use of this
option: The function ext3_permission (which is, in turn, called by the VFS layer when a permission
check is requested) instructs generic_permission to use ext3_check_acl for the ACL-related work:

fs/ext3/acl.c
int
ext3_permission(struct inode *inode, int mask, struct nameidata *nd)
{

return generic_permission(inode, mask, ext3_check_acl);
}

731

Mauerer runc11.tex V2 - 09/04/2008 5:22pm Page 732

Chapter 11: Extended Attributes and Access Control Lists

ext3_check_acl

ext3_get_acl

posix_acl_permission

Figure 11-12: Code flow diagram for
ext3_check_acl.

The code flow diagram in Figure 11-12 shows that there is little to do for ext3_check_acl. After the ACL
data have been read in by ext3_get_acl, all policy work is delegated to posix_acl_permission, which
was introduced in Section 11.2.1.

11.2.3 Implementation in Ext2
The implementation of ACLs for Ext2 is nearly completely identical with the implementation for Ext3.
The differences are even less than for extended attributes because for ACLs, the handle-related parts are
not split into separate functions. Thus, by replacing ext3_ with ext2_ in all functions and data structures,
the comments about ACLs in this chapter apply equally well for Ext2 as for Ext3.

11.3 Summary
Traditionally, the discretionary access control model is used by Unix and Linux to decide which user
may access a given resource as represented by a file in a filesystem. Although these methods work quite
well for average installations, it is a very coarse-grained approach to security, and can be inappropriate
in certain circumstances.

In this chapter, you have seen how ACLs provide more fine-grained means to access control for filesystem
objects by attaching an explicit list of access control rules to each object.

You have also seen that ACLs are implemented on top of extended attributes, which allow augment-
ing filesystem objects with additional and more complex attributes than in the traditional Unix model
inherited by Linux.

732

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 733

Networks

That Linux is a child of the Internet is beyond contention. Thanks, above all, to Internet communi-
cation, the development of Linux has demonstrated the absurdity of the widely held opinion that
project management by globally dispersed groups of programmers is not possible. Since the first
kernel sources were made available on an ftp server more than a decade ago, networks have always
been the central backbone for data exchange, for the development of concepts and code, and for the
elimination of kernel errors. The kernel mailing list is a living example that nothing has changed.
Everybody is able to read the latest contributions and add their own opinions to promote Linux
development — assuming, of course, that the opinions expressed are reasonable.

Linux has a very cozy relationship with networks of all kinds — understandably as it came of age
with the Internet. Computers running Linux account for a large proportion of the servers that build
the Internet. Unsurprisingly, network implementation is a key kernel component to which more
and more attention is being paid. In fact, there are very few network options that are not supported
by Linux.

Implementation of network functionality is one of the most complex and extensive parts of the
kernel. In addition to classic Internet protocols such as TCP, UDP, and the associated IP transport
mechanism, Linux also supports many other interconnection options so that all conceivable types
of computers and operating systems are able to interoperate. The work of the kernel is not made
any simpler by the fact that Linux also supports a gigantic hardware spectrum dedicated to data
transfer — ranging from Ethernet cards and token ring adapters to ISDN cards and modems.

Nevertheless, Linux developers have been able to come up with a surprisingly well-structured
model to unify very different approaches. Even though this chapter is one of the longest in the book,
it makes no claim to cover every detail of network implementation. Even an outline description of
all drivers and protocols is beyond the scope of a single book — many would be needed owing to
the volume of information. Not counting device drivers for network cards, the C implementation
of the network layer occupies 15 MiB in the kernel sources, and this equates to more than 6,000
printed pages of code. The shear number of header files that relate to networking has motivated the
kernel developers to store them not in the standard location include/linux, but devote the special
directory include/net to them. Embedded in this code are many concepts that form the logical

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 734

Chapter 12: Networks

backbone of the network subsystem, and it is these that interest us in this chapter. Our discussion is
restricted mainly to the TCP/IP implementation because it is by far the most widely used network
protocol.

Of course, development of the network layer did not start with a clean sheet. Standards and conventions
for exchanging data between computers had already existed for decades and were well known and well
established. Linux also implements these standards to link to other computers.

12.1 Linked Computers
Communication between computers is a complex topic that raises many questions such as:

❑ How is the physical connection established? Which cables are used? Which
restrictions and special requirements apply in terms of the media?

❑ How are transmission errors handled?

❑ How are individual computers identified in a network?

❑ How are data exchanged between computers connected to each other via intervening
computers? And how is the best route found?

❑ How are data packaged so that they are not reliant on special features of individual computers?

❑ If there are several network services on a computer, how are they identified?

This catalog of questions could be extended at will. Unfortunately, the number of answers as well as the
number of questions is almost unlimited, so that over time many suggestions have been put forward as
to how to deal with specific problems. The most ‘‘reasonable‘‘ systems are those that classify problems
into categories and create various layers to resolve clearly defined issues and communicate with the other
layers by means of set mechanisms. This approach dramatically simplifies implementation, maintenance,
and, above all, troubleshooting.

12.2 ISO/OSI and TCP/IP Reference Model
The International Organization for Standardization — better known as ISO — has devised a reference model
that defines the various layers that make up a network. This model comprises the seven layers shown in
Figure 12-1 and is called the Open Systems Interconnection (OSI) model.

However, the division into seven layers is too detailed for some issues. Therefore, in practice, use is often
made of a second reference model in which some layers of the ISO/OSI model are combined into new
layers. This model has only four layers so that its structure is simpler. It is known as the TCP/IP reference
model, where IP stands for Internet Protocol and TCP for Transmission Control Protocol. Most of today’s
communication across the Internet is based on this model. Figure 12-1 compares the layers of the two
models.

Each layer may speak only to the layer immediately above or below. For instance, the transport layer in
the TCP/IP model may communicate only with the Internet and application layer but is totally indepen-
dent of the host-to-network layer (ideally, it does not even know that such a layer exists).

734

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 735

Chapter 12: Networks

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer
Host-to-host

Internet (IP)

Transport (TCP, UDP)

Application
(HTTP, FTP etc.)

Figure 12-1: TCP/IP and ISO/OSI reference
models.

The various layers perform the following tasks:

❑ The host-to-network layer is responsible for transferring information from one computer to a
distant computer. It deals with the physical properties of the transmission medium1 and with
dividing the data stream into frames of a certain size to permit retransmission of data chunks
if transmission errors occur. If several computers are sharing a transmission line, the network
adapters must have a unique ID number known as a MAC address that is usually burned into the
hardware. An agreement between manufacturers ensures that this number is globally unique.
An example of a MAC address is 08:00:46:2B:FE:E8.

In the view of the kernel, this layer is implemented by device drivers for network cards.

❑ The network layer of the OSI model is called the Internet layer in the TCP/IP model, but both
refer basically to the same task of exchanging data between any computers in a network, not
necessarily computers that are directly connected, as shown in Figure 12-2.

A direct transmission link between computers A and B is not possible because they are not phys-
ically connected to each other. The task of the network layer is therefore to find a route via which
the computers can talk to each other; for example, A–E–B or A–E–C–B.

A

BC

D E

Figure 12-2:
Network-linked
computers.

1Predominantly coaxial cable, twisted-pair cable, and fiber optic links are used, but there is an increasing trend toward wireless
transmission.

735

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 736

Chapter 12: Networks

The network layer is also responsible for additional connection details such as splitting the
data to be transported into packets of a specific size. This is necessary because the computers
along the route may have different maximum limits to the size of the data packets they can
accept. When data are sent, the data stream is split into packets that are reassembled upon
receipt. This is done so that higher-level protocols can operate transparently with data units
of a guaranteed size without having to bother with the specific properties of the Internet or
network layer.

The network layer also assigns unique addresses within the network so that computers can talk
to each other (these are not the same as the abovementioned hardware addresses because net-
works are usually made up of physical subnets).

In the Internet, the network layer is implemented by means of the Internet Protocol (IP), which
comes in two versions (v4 and v6). At the moment, most connections are handled by IPv4, but
IPv6 will replace it in the future.2 When I speak of IP connections below, I always mean IPv4
connections.

IP uses addresses formatted like this — 192.168.1.8 or 62.26.212.10 — to address comput-
ers. These addresses are assigned by official registration authorities or providers (sometimes
dynamically) or can be freely selected (within defined private ranges).

IP allows networks to be divided flexibly into subnets on the address level by supporting various
address categories, which, depending on requirements, hold tens of millions of computers and
more. However, it is not my intention to deal with this topic in detail. See the wealth of literature
on network and system administration, for example, [Ste00] and [Fri02].

❑ In both models, the fourth layer is the transport layer. Its task is to regulate data transport
between applications running on two linked computers. It is not sufficient to establish
communication between the computers themselves; it is also necessary to set up a connection
between the client and the server application, and this presupposes, of course, that there is an
existing link between the computers. In the Internet, TCP (Transmission Control Protocol) or UDP
(User Datagram Protocol) is used for this purpose. Each application interested in data in the IP
layer uses a unique port number that uniquely identifies it on the target system. Typically, port 80
is used for web servers. Browser clients must send requests to this address to obtain the desired
data. (Naturally, the client must also have a unique port number so that the web server can
respond to the request, but this port number is generated dynamically.) To fully define a port
address, the port number is usually appended to the IP address after a colon; for example, a web
server on the computer with the address 192.168.1.8 is uniquely identifiable by the address
192.168.1.8:80.

An additional task of this layer can (but need not) be the provision of a reliable connection over
which data are transmitted in a given sequence. The above feature and the TCP protocol are
discussed in Section 12.9.2.

❑ The application layer in the TCP/IP reference model is represented by layers 5 to 7 (session
layer, presentation layer, and application layer) of the OSI model. As the name suggests, this
layer represents the application view of a network connection. Once a communication con-
nection has been established between two applications, this layer is responsible for the actual
contents to be transferred. After all, web servers communicate with their clients differently than
mail servers.

2The move to IPv6 should have already have taken place, but this is very slow in happening, particularly in the academic and com-
mercial sectors. Perhaps the impending exhaustion of IPv4 address space will act as a spur.

736

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 737

Chapter 12: Networks

A very large number of standard protocols are defined for the Internet. Usually, they are defined
in Request for Comments (RFC) documents and must be implemented by applications wishing to
use or offer a particular service. Most protocols can be tested with the telnet tool because they
operate with simple text commands. A typical example of the communication flow between a
browser and web server is shown below.

wolfgang@meitner> telnet 192.168.1.20 80
Trying 192.168.1.20...
Connected to 192.168.1.20.
Escape character is ’^]’.

GET /index.html HTTP/1.1
Host: www.sample.org
Connection: close

HTTP/1.1 200 OK
Date: Wed, 09 Jan 2002 15:24:15 GMT
Server: Apache/1.3.22 (Unix)
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Fri, 04 May 2001 00:00:38 GMT
ETag: "83617-5b0-3af1f126;3bf57446"
Accept-Ranges: bytes
Content-Length: 1456
Connection: close
Content-Type: text/html
Content-Language: en

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
...
</html>

telnet is used to set up a TCP connection on port 80 of computer 192.168.1.20. All user input
is forwarded via the network connection to the process associated with this address (which is
uniquely identified by the IP address and the port number). A response is sent once the request
has been received. The contents of the desired HTML page are output together with a header
with information on the document and other stuff. Web browsers use exactly the same proce-
dure to access data transparently to users.

As a result of the systematic division of network functionality into layers, applications wishing
to communicate with other computers need concern themselves with only a very few details.
The actual link between the computers is implemented by lower layers, and all the application
has to do is read and generate text strings — regardless of whether the two computers are sitting
side by side in the same room or are located on different continents.

The layer structure of the network is reflected in the kernel by the fact that the individual levels are
implemented in separate sections of code that communicate with each other via clearly defined interfaces
to exchange data or forward commands.

737

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 738

Chapter 12: Networks

12.3 Communication via Sockets
From the programmer’s view, external devices are simply regular files under Linux (and Unix) that
are accessed by normal read and write operations, as described in Chapter 8. This simplifies access to
resources because only a single, universal interface is needed.

The situation is a bit more complicated with network cards because the above scheme either cannot
be adopted at all or only with great difficulty. Network cards function in a totally different way from
normal block and character devices so that the typical Unix motto that ‘‘everything is a file‘‘ no longer
fully applies.3 One reason is that many different communication protocols are used (in all layers) where
many options need to be specified in order to establish a connection — and this cannot be done when
device files are opened. Consequently, there are no entries for network cards in the /dev directory.4

Of course, the kernel must provide an interface that is as universal as possible to allow access to its
network functions. This problem is not Linux-specific and gave BSD Unix programmers headaches in
the 1980s. The solution they adopted — special structures called sockets that are used as an interface for
network implementation — has now established itself as an industry standard. Sockets are defined in the
POSIX standard and are therefore also implemented by Linux.

Sockets are now used to define and set up network connections so that they can be accessed (particularly
by read and write operations) using the normal means of an inode. In the view of programmers, the
ultimate result of socket creation is a file descriptor that provides not only the whole range of standard
functions but also several enhanced functions. The interface used for the actual exchange of data is the
same for all protocols and address families.

When a socket is created, a distinction is made not only between address and protocol families but
also between stream-based and datagram-based communication. What is also important (with stream-
oriented sockets) is whether a socket is generated for a client or for a server program.

To illustrate the function of a socket from a user point of view, I include a short sample program to
demonstrate just a few of the network programming options. Detailed descriptions are provided in
numerous specialized publications, [Ste00], for example.

12.3.1 Creating a Socket
Sockets can be used not only for IP connections with different transport protocols, but also for all other
address and protocol types supported by the kernel (e.g., IPX, Appletalk, local Unix sockets, DECNet,
and many other listed in <socket.h>). For this reason, it is essential to specify the desired combination
when generating a socket. Although, as a relic of the past, it is possible to select any combination of
partners from the address and protocol families, now only one protocol family is usually supported
for each address family, and it is only possible to differentiate between stream- and datagram-oriented

3There are, however, several Unix variants that implement network connections directly by means of device files, /dev/tcp, for
example (see [Vah96]). From the application programmer’s point of view and from that of the kernel itself, this is far less elegant than
the socket method. Because the differences between network devices and normal devices are particularly evident when a connection
is opened, network operations in Linux are only implemented by means of file descriptors (that can be processed with normal file
methods) once a connection has been set up using the socket mechanism.
4One exception is the TUN/TAP driver, which simulates a virtual network card in userspace and is therefore very useful for debug-
ging, for simulating network cards, or for setting up virtual tunnel connections. Because it does not communicate with any real
device in order to send or receive data, this job is done by a program that communicates with the kernel via /dev/tunX or
dev/tapX.

738

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 739

Chapter 12: Networks

communication. For example, only TCP (for streams) or UDP (for datagram services) can be used
as the transport protocol for a socket to which an Internet address such as 192.168.1.20 has been
assigned.

Sockets are generated using the socket library function, which communicates with the kernel via a
system call discussed in Section 12.10.3. A third argument could be used in addition to address family
and communication type (stream or datagram) in order to select a protocol; however, as already stated,
this is not necessary because the protocol is uniquely defined by the first two parameters. Specifying 0
for the third argument instructs the function to use the appropriate default.

Once the socket function has been invoked, it is clear what the format of the socket address must be (or
in which address family it resides), but no local address has yet been assigned to it.

The bind function to which a sockaddr_type structure must be passed as an argument is used for this
purpose. The structure then defines the address. Because address types differ from address family to
address family, there is a different version of the structure for each family so that various requirements
can be satisfied. type specifies the desired address type.

Internet addresses are uniquely identified by IP number and port number, which is why sockaddr_in is
defined as follows:

<in.h>
struct sockaddr_in {

sa_family_t sin_family; /* Address family */
__be16 sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address */

...
}

An IP address and a port number are also needed in addition to the address family (here, AF_INET).

The IP address is not expected in the usual dotted decimal notation (four numbers
separated by dots, i.e., 192.168.1.10), but must be specified as a number. The
inet_aton library function converts an ASCII string into the format required by the
kernel (and by the C library). For example, the numeric representation of the
address 192.168.1.20 is 335653056. It is generated by writing the 1-byte-long
sections of the IP address successively into a 4-byte data type that is then interpreted
as a number. This permits the unique conversion of both representations.

As stated in Chapter 1, CPUs apply two popular conventions for storing numeric values — little and
big endian. An explicit network byte order corresponding to the big endian format has been defined to
ensure that machines with different byte arrangements are able to communicate with each other easily.
Numeric values appearing in protocol headers must therefore always be specified in this format. The
fact that both the IP address and the port number consist only of numbers must be taken into account
when defining the values in the sockaddr_in structure. The C library features numerous functions for
converting numbers from the native format of the CPU to the network byte order (if the CPU and the
network have the same byte order, the functions leave it unchanged). Good network applications always
use these functions even if they are developed on big endian machines to ensure that they can be ported
to different machine types.

To represent little and big endian types explicitly, the kernel provides several data types. __be16, __be32,
and __be64 represent big endian numbers with 16, 32, and 64 bits, while the variants with prefix __le are

739

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 740

Chapter 12: Networks

analogs for little endian values. They are all defined in <types.h>. Note that both little and big endian
types resolve to the same data types finally (namely, u32 and so on, as introduced in Chapter 1), but
an explicit specification of the byte order allows for checking correctness of code with automated type
checking tools.

12.3.2 Using Sockets
It is assumed that you are familiar with the userland side of network programming. However, to briefly
illustrate how sockets represent an interface to the network layer of the kernel, I discuss two very brief
sample programs, one that acts as a client for echo requests, the other as a server. A text string is sent
from the client to the server and is returned unchanged. The TCP/IP protocol is used.

Echo Client
The source code for the echo client is as follows5:

#include<stdio.h>
#include<netinet/in.h>
#include<sys/types.h>
#include<string.h>

int main() {
/* Host and port number of the echo server */
char* echo_host = "192.168.1.20";
int echo_port = 7;
int sockfd;
struct sockaddr_in *server=

(struct sockaddr_in*)malloc(sizeof(struct sockaddr_in));

/* Set address of server to be connected */
server->sin_family = AF_INET;
server->sin_port = htons(echo_port); // Note network byte order!
server->sin_addr.s_addr = inet_addr(echo_host);

/* Create a socket (Internet address family, stream socket and
default protocol) */

sockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Connect to server */
printf("Connecting to %s \n", echo_host);
printf("Numeric: %u\n", server->sin_addr);
connect(sockfd, (struct sockaddr*)server, sizeof(*server));

/* Send message */
char* msg = "Hello World";
printf("\nSend: ’%s’\n", msg);
write(sockfd, msg, strlen(msg));

/* ... and receive result */
char* buf = (char*)malloc(1000); // Receive buffer for max. 1000 chars
int bytes = read(sockfd, (void*)buf, 1000);

5To simplify matters, all error checks that would be performed in a genuine, robust implementation are omitted.

740

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 741

Chapter 12: Networks

printf("\nBytes received: %u\n", bytes);
printf("Text: ’%s’\n", buf);

/* End communication (i.e. close socket) */
close(sockfd);

}

The Internet superdaemon (inetd, xinetd, or similar) normally uses a built-in echo server. Consequently,
the source code can be tested immediately after compilation.

wolfgang@meitner> ./echo_client
Connect to 192.168.1.20
Numeric: 335653056

Send: ’Hello World’

Bytes received: 11
Text: ’Hello World’

The following steps are performed by the client:

1. An instance of the sockaddr_in structure is generated to define the address of the server to
be contacted. AF_INET indicates that it is an Internet address and the target server is precisely
defined by its IP address (192.168.1.20) and port number (7).

Also, the data from the host are converted to the network byte order. htons is used for the
port number, and the inet_addr auxiliary function performs the conversion implicitly by
translating the text string with a dotted decimal address into a number.

2. A socket is created in the kernel by means of the socket function, which (as shown below)
is based on the socketcall system call of the kernel. The result returned is an integer num-
ber that is interpreted as a file descriptor — and can therefore be processed by all functions
available for regular files, as described in Chapter 8. In addition to these operations, there
are other network-specific ways of handling the file descriptor; these permit exact setting of
various transmission parameters not discussed here.

3. A connection is set up by invoking the connect function in conjunction with the file descrip-
tor and the server variable that stores the server connection data (this function is also based
on the socketcall system call).

4. Actual communication is initiated by sending a text string (‘‘Hello World‘‘ — how could it
be anything else?) to the server by means of write. Writing data to a socket file descriptor
is the equivalent of sending data. This step is totally independent of the server location and
the protocol used to set up the connection. The network implementation ensures that the
character string reaches its destination — no matter how this is done.

5. The server response is read by read, but a buffer must first be allocated to hold the data
received. As a precaution, 1,000 bytes are reserved in memory, although we only expect the
original string to be returned. read blocks until the server supplies a response, and it then
returns the number of bytes received as an integer number.

Because strings in C are always null-terminated, 11 bytes are received, although the mes-
sage itself appears to be only 10 bytes long.

741

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 742

Chapter 12: Networks

Echo Server
How sockets are used for server processes differs slightly from how they are used in clients. The follow-
ing sample program demonstrates how a simple echo server can be implemented:

#include<stdio.h>
#include<netinet/in.h>
#include<sys/types.h>
#include<string.h>

int main() {
char* echo_host = "192.168.1.20";
int echo_port = 7777;
int sockfd;
struct sockaddr_in *server=

(struct sockaddr_in*)malloc(sizeof(struct sockaddr_in));

/* Set own address */
server->sin_family = AF_INET;
server->sin_port = htons(echo_port); // Note network byte order!
server->sin_addr.s_addr = inet_addr(echo_host);

/* Create a socket */
sockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Bind to an address */
if (bind(sockfd, (struct sockaddr*)server, sizeof(*server))) {
printf("bind failed\n");

}

/* Enable server mode of socket */
listen(sockfd, SOMAXCONN);

/* ...and wait for incoming data */
int clientfd;
struct sockaddr_in* client =
(struct sockaddr_in*)malloc(sizeof(struct sockaddr_in));

int client_size = sizeof(*client);
char* buf = (char*)malloc(1000);
int bytes;

printf("Wait for connection to port %u\n", echo_port);

/* Accept a connection request */
clientfd = accept(sockfd, (struct sockaddr*)client, &client_size);
printf("Connected to %s:%u\n\n", inet_ntoa(client->sin_addr),

ntohs(client->sin_port));
printf("Numeric: %u\n", ntohl(client->sin_addr.s_addr));

while(1) { /* Endless loop */
/* Receive transmitted data */
bytes = read(clientfd, (void*)buf, 1000);
if (bytes <= 0) {

close(clientfd);
printf("Connection closed.\n");
exit(0);

}

742

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 743

Chapter 12: Networks

printf("Bytes received: %u\n", bytes);
printf("Text: ’%s’\n", buf);

/* Send response */
write(clientfd, buf, bytes);

}
}

The first section is almost the same as the client code. An instance of the sockaddr_in structure is created
to hold the Internet address of the server, but this is done for a different reason. The address of the server
to which the client wishes to connect is specified in the client code. In this case, the address specified is
that used by the server to wait for connections. The socket is generated in exactly the same way as for the
client.

In contrast to the client, the server does not actively attempt to set up a connection to another program
but simply waits passively until it receives a connection request. Three library functions (again based on
the universal socketcall system call) are required to set up a passive connection:

❑ bind binds the socket to an address (192.186.1.20:7777 in our example).6

❑ listen instructs the socket to wait passively for an incoming connection request from a client.
The function creates a wait queue on which all processes wishing to establish a connection are
placed. The length of the queue is defined by the second parameter. (SOMAXCONN specifies that the
maximum system-internal number must be used so as not to arbitrarily restrict the maximum
number of waiting processes.)

❑ The accept function accepts the connection request of the first client on the wait queue. When
the queue is empty, the function blocks until a client wishing to connect is available.

Again, actual communication is performed by read and write, which use the file descriptor returned by
accept.

The client connection data (supplied by accept and consisting of the IP address and port number) are
output for information purposes. While the client IP address for a specific computer is fixed, the port
number is selected dynamically by the computer’s kernel when the connection is established.

The function of the echo server is easily imitated by reading all client input with read and writing it back
with write in an endless loop. When the client closes the connection, read returns a data stream that is
0 bytes long so that the server then also terminates.

Client Server

wolfgang@meitner> ./stream_client wolfgang@meitner> ./stream_server

Connect to 192.168.1.20 Wait for connection on port 7777

Numeric: 335653056

Client: 192.168.1.10:3505

Send: ’Hello World’ Numeric: 3232235786

Bytes received: 11

Bytes received: 11 Text: ’Hello World’

Text: ’Hello World’

Connection closed.

6Under Linux (and all other Unix flavors), all ports between 1 and 1,024 are referred to as reserved ports and may be used only by
processes with root rights. For this reason, we use the free port number 7,777.

743

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 744

Chapter 12: Networks

A 4-tuple notation (192.168.1.20:7777, 192.168.1.10:3506) is used to uniquely identify a connection.
The first element specifies the address and port of the local system, the second the address and port of
the client.

An asterisk (*) is substituted if one of the elements is still undefined. A server process listening on a
passive socket but not yet connected to a client is therefore denoted by 192.168.1.20:7777, *.*.

Two socket pairs are registered in the kernel once a server has duplicated itself with fork to handle a
connection.

Listen Established

192.168.1.20:7777, *.* 192.168.1.20:7777, 192.168.1.10:3506

Although the sockets of both server processes have the same IP address/port number combination, they
are differentiated by the 4-tuple.

Consequently, the kernel must note all four connection parameters when distributing incoming and out-
going TCP/IP packets to ensure that assignments are made correctly. This task is known as multiplexing.

The netstat tool displays and checks the state of all TCP/IP connections on the system. The following
sample output is produced if two clients are connected to the server:

wolfgang@meitner> netstat -na
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.1.20:7777 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.20:7777 192.168.1.10:3506 ESTABLISHED
tcp 0 0 192.168.1.20:7777 192.168.1.10:3505 ESTABLISHED

12.3.3 Datagram Sockets
UDP is a second, widely used transport protocol that builds on IP connections. UDP stands for User
Datagram Protocol and differs from TCP in several basic areas:

❑ UDP is packet-oriented. No explicit connection setup is required before data are sent.

❑ Packets can be lost during transmission. There is no guarantee that data will actually reach their
destination.

❑ Packets are not necessarily received in the same order in which they were sent.

UDP is commonly used for video conferencing, audio streaming, and similar services. Here it doesn’t
matter if a few packets go missing — all that would be noticed would be brief dropouts in multimedia
sequences. However, like IP, UDP guarantees that the contents of packets are unchanged when they arrive
at their destinations.

An IP address and port number can be used by a TCP and a UDP process at the same time. In multiplexing,
the kernel ensures that only packets of the correct transport protocol are forwarded to the appropriate
process.

744

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 745

Chapter 12: Networks

Comparing TCP and UDP is like comparing the postal service with the telephone network. TCP corre-
sponds to a telephone call. The calling party must set up a connection (which must be accepted by the
person called) before information can be passed. During the call, all information sent is received in the
same order in which it was sent.

UDP can be likened to the postal service. Packets (or letters in this analogy) can be sent to recipients
without contacting them in advance for permission to do so. There is no guarantee that letters will be
delivered (although both the postal service and the network will do their best). Similarly, there is no
guarantee that letters will be sent or received in a particular sequence.

Those interested in further examples of the use of UDP sockets are referred to the many textbooks on
network and system programming.

12.4 The Layer Model of Network
Implementation

The kernel implements the network layer very similarly to the TCP/IP reference model introduced at the
beginning of this chapter.

The C code is split into levels with clearly defined tasks, and each level is able to communicate only with
the level immediately above and below via clearly defined interfaces. This has the advantage that various
devices, transmission mechanisms, and protocols can be combined. For example, normal Ethernet cards
can be used not only to set up Internet (IP) connections but also to transmit other protocols such as
Appletalk or IPX without the need for any kind of modification to the device driver of the card.

Figure 12-3 illustrates the implementation of the layer model in the kernel.

Application

C Standard library

Protocol
specific

Hardware Specific
Physical
Transmission

Host to Host Layer

Network Layer

Transport Layer

Application Layer
Kernel

Userspace

struct socket
struct sock

struct proto

dev.c

driver.c

struct net_device

struct
packet_
type

Figure 12-3: Implementation of the layer model in the kernel.

The network subsystem is one of the most comprehensive and demanding parts of the kernel. Why is
this so? The answer is that it deals with a very large number of protocol-specific details and subtleties,
and the code path through the layer is riddled with excessive function pointers in place of direct function

745

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 746

Chapter 12: Networks

calls. This is unavoidable because of the numerous ways in which the layers can be combined — but this
does not make the code path any clearer or easier to follow. In addition, the data structures involved
are generally very closely linked with each other. To reduce complexity, the information below relates
primarily to the Internet protocols.

The layer model is mirrored not only in the design of the network layer, but also in the way data are
transmitted (or, to be more precise, the way in which the data generated and transmitted by the individ-
ual layers are packaged). In general, the data of each layer are made up of a header section and a data
section, as shown in Figure 12-4.

Header Payload

Data of a protocol session

Figure 12-4: Division into header and data sections.

Whereas the header contains metadata (destination address, length, transport protocol type, etc.) on the
data section, the data section itself consists of the useful data (or payload).

The base unit of transmission is the (Ethernet) frame used by the network card to transmit data. The main
entry in the frame header is the hardware address of the destination system to which the data are to be
transmitted and which is needed for transmission via cable.

The data of the higher-level protocol are packaged in the Ethernet frame by including the header and
data tuple generated by the protocol in the data section of the frame. This is the IP layer data in Internet
networks.

Because not only IP packets but also, for example, Appletalk or IPX packets can be transmitted via Eth-
ernet, the receiving system must be able to distinguish between protocol types in order to forward the
data to the correct routines for further processing. Analyzing data to find out which transport protocol
is used is very time-consuming. As a result, the Ethernet header (and the headers of all other modern
protocols) includes an identifier to uniquely identify the protocol type in the data section. The identifiers
(for Ethernet) are assigned by an international organization (IEEE).

This division is continued for all protocols in the protocol stack. For this reason, each frame transmitted
starts with a series of headers followed by the data of the application layer, as shown in Figure 12-5.7

Mac
Header

IP
Header

TCP
Header

HTTP
Header HTML Data

Ethernet-Frame

Payload of Ethernet Frame

Payload of IP

Payload of TCP

Figure 12-5: Transporting HTTP data via TCP/IP in an Ethernet frame.

7The boundary between the HTTP header and the data section is indicated by a change of shading because this distinction is made
in userspace and not in the kernel.

746

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 747

Chapter 12: Networks

The figure clearly illustrates that part of the bandwidth is inevitably sacrificed to accommodate control
information.

12.5 Networking Namespaces
Recall from Chapter 1 that many parts of the kernel are contained in namespaces. These allow for build-
ing multiple virtual viewpoints of the system that are separated and segregated from each other. Every
instance looks like a single machine running Linux, but, in fact, many such instances can operate simul-
taneously on a single physical machine. During the development of 2.6.24, the kernel started to adopt
namespaces also for the networking subsystem. This adds some extra complexity to the networking layer
because all properties of the subsystem that used to be ‘‘global’’ in former versions — for instance, the
available network cards — need to be managed on a per-namespace basis now. If a particular networking
device is visible in one namespace, it need not be available in another one.

As usual, a central structure is used to keep track of all available namespaces. The definition is as follows:

include/net/net_namespace.h
struct net {

atomic_t count; /* To decided when the network
* namespace should be freed.
*/

...
struct list_head list; /* list of network namespaces */

...
struct proc_dir_entry *proc_net;
struct proc_dir_entry *proc_net_stat;
struct proc_dir_entry *proc_net_root;

struct net_device *loopback_dev; /* The loopback */

struct list_head dev_base_head;
struct hlist_head *dev_name_head;
struct hlist_head *dev_index_head;

};

Work has only begun to make the networking subsystem fully aware of namespaces. What you see
now — the situation in kernel 2.6.24 — still represents a comparatively early stage of development.
Therefore, struct net will grow in size in the future as more and more networking components are
transferred from a global management to a namespace-aware implementation. For now, the basic infras-
tructure is in place. Network devices are kept track of under consideration of namespaces, and support
for the most important protocols is available. Since I have not yet discussed any specific points of the net-
working implementation, the structures referenced in struct net are naturally still unknown (however,
I promise that this will certainly change in the course of this chapter). For now, it suffices to present a
broad overview about what is handled in a namespace-aware fashion:

❑ count is a standard usage counter, and the auxiliary functions get_net and put_net are pro-
vided to obtain and release permission to use a specific net instance. When count drops to zero,
the namespace is deallocated and removed from the system.

❑ All available namespaces are kept on a doubly linked list that is headed by net_namespace_list.
list is used as the list element. The function copy_net_ns adds a new namespace to the list. It is
automatically called when a set of new namespaces is created with create_new_namespace.

747

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 748

Chapter 12: Networks

❑ Since each namespace can contain different network devices, this must also be reflected
in the contents of Procfs (see Chapter 10.1). Three entries require a per-namespace han-
dling: /proc/net is represented by proc_net, while /proc/net/stats is represented by
proc_net_stats. proc_net_root points to the root element of the Procfs instance for the current
namespace, that is, /proc.

❑ Each namespace may have a different loopback device, and loopback_dev points to the (virtual)
network device that fulfills this role.

❑ Network devices are represented by struct net_device. All devices associated with a specific
namespace are kept on a doubly linked list headed by dev_base_head. The devices are kept on
two additional hash tables: One uses the device name as hash key (dev_name_head), and one
uses the interface index (dev_index_head).

Note that there is a slight difference in terminology between devices and interfaces. While devices
represent hardware devices that provide physical transmission capabilities, interfaces can be
purely virtual entities, possibly implemented on top of real devices. For example, a network card
could provide two interfaces.

Since the distinction between these terms is not relevant for our purposes, I use both terms inter-
changeably in the following.

Many components still require substantial rework to make them handle namespaces correctly, and there
is still a considerable way to go until a fully namespace-aware networking subsystem will be avail-
able. For instance, kernel 2.6.25 (which was still under development when this chapter was written) will
introduce initial preparations to make specific protocols aware of namespaces:

include/net/net_namespace.h
struct net {
...

struct netns_packet packet;
struct netns_unix unx;
struct netns_ipv4 ipv4;

#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct netns_ipv6 ipv6;

#endif
};

The new members like ipv4 will store (formerly global) protocol parameters, and protocol-specific struc-
tures are introduced for this purpose. The approach proceeds step-by-step: First, the basic framework is
set in place. Subsequent steps will then move global properties into the per-namespace representation;
the structures are initially empty. More work along these lines is expected to be accepted into future
kernel versions.

Each network namespace consists of several components, for example, the representation in Procfs.
Whenever a new networking namespace is created, these components must be initialized. Likewise,
some cleanups are necessary when a namespace is deleted. The kernel employs the following structure
to keep track of all required initialization/cleanup tuples:

include/net/net_namespace.h
struct pernet_operations {

struct list_head list;

748

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 749

Chapter 12: Networks

int (*init)(struct net *net);
void (*exit)(struct net *net);

};

The structure does not present any surprises: init stores an initialization function, while clean-up
work is handled by exit. All available pernet_operation instances are kept on a list headed by
pernet_list; list is used as the list element. The auxiliary functions register_pernet_subsys and
unregister_pernet_subsys add and remove elements to and from the list, respectively. Whenever
a new networking namespace is created, the kernel iterates over the list of pernet_operations and
calls the initialization function with the net instance that represents the new namespace as parameter.
Cleaning up when a networking namespace is deleted is handled similarly.

Most computers will typically require only a single networking namespace. The global variable init_net
(and in this case, the variable is really global and not contained in another namespace!) contains the net
instance for this namespace. In the following, I mostly neglect namespaces to simplify matters. It suffices
to keep in mind that all global functions of the network layer require a network namespace as parameter,
and that any global properties of the networking subsystem may only be referenced by a detour through
the namespace under consideration.

12.6 Socket Buffers
When network packets are analyzed in the kernel, the data of lower-level protocols are passed to higher-
level layers. The reverse sequence applies when data are sent. The data (header and payload) generated
by the various protocols are successively passed to lower layers until they are finally transmitted. As
the speed of these operations is crucial to network layer performance, the kernel makes use of a special
structure known as a socket buffer, which is defined as follows:

<skbuff.h>
struct sk_buff {

/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;

struct sock *sk;
ktime_t tstamp;
struct net_device *dev;

struct dst_entry *dst;

char cb[48];

unsigned int len,
data_len;

__u16 mac_len,
hdr_len;

union {
__wsum csum;
struct {

__u16 csum_start;

749

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 750

Chapter 12: Networks

__u16 csum_offset;
};

};
__u32 priority;
__u8 local_df:1,

cloned:1,
ip_summed:2,
nohdr:1,
nfctinfo:3;

__u8 pkt_type:3,
fclone:2,
ipvs_property:1;
nf_trace:1;

__be16 protocol;
...

void (*destructor)(struct sk_buff *skb);
...

int iif;
...

sk_buff_data_t transport_header;
sk_buff_data_t network_header;
sk_buff_data_t mac_header;

/* These elements must be at the end, see alloc_skb() for details. */
sk_buff_data_t tail;
sk_buff_data_t end;
unsigned char *head,

*data;
unsigned int truesize;
atomic_t users;

};

Socket buffers are used to exchange data between the network implementation levels without having to
copy packet data to and fro — this delivers considerable speed gains. The socket structure is one of the
cornerstones of the network layer because it is processed on all levels both when packets are analyzed
and generated.

12.6.1 Data Management Using Socket Buffers
Socket buffers are linked by means of the various pointers they contain with an area in memory where
the data of a network packet reside, as shown in Figure 12-6. The figure assumes that we are working on
a 32-bit system (the organization of a socket buffer is slightly different on a 64-bit machine, as you will
see in a moment).

The basic idea of a socket buffer is to add and remove protocol headers by manipulating pointers.

❑ head and end point to the start and end of the area in memory where the data reside.

This area may be larger than actually needed because it is not clear how big packets
will be when they are synthesized.

❑ data and tail point to the start and end of the protocol data area.

750

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 751

Chapter 12: Networks

transport_header
MAC

IP

TCP

network_header

mac_header

tail

end

head

data

Figure 12-6: Link between socket buffer and
network packet data.

❑ mac_header points to the start of the MAC header, while network_header and
transport_header point to the header data of the network and transport layer, respec-
tively. On systems with 32-bit word length, the data type sk_buff_data_t that is used for the
various data components is a simple pointer:

<skbuff.h>
typedef unsigned char *sk_buff_data_t;

This enables the kernel to use socket buffers for all protocol types. Simple type conversions are
necessary to interpret the data correctly, and several auxiliary functions are provided for this
purpose. A socket buffer can, for example, contain a TCP or UDP packet. The corresponding
information from the transport header can be extracted with tcp_hdr, respectively, udp_hdr.
Both functions convert the raw pointer into an appropriate data type. Other transport layer pro-
tocols also provide helper functions of the type XXX_hdr that require a pointer to struct sk_buff
and return the reinterpreted transport header data. Observe, for example, how a TCP header can
be obtained from a socket buffer:

<tcp.h>
static inline struct tcphdr *tcp_hdr(const struct sk_buff *skb)
{

return (struct tcphdr *)skb_transport_header(skb);
}

struct tcphdr is a structure that collects all fields contained in a TCP header; the exact layout is
discussed in Section 12.9.2.

Similar conversion functions are also available for the network layer. For our purposes, ip_hdr
is most important: It is used to interpret the contents of an IP packet.

data and tail enable data to be passed between protocol levels without requiring explicit copy opera-
tions, as shown in Figure 12-7, which demonstrates how packets are synthesized.

When a new packet is generated, the TCP layer first allocates memory in userspace to hold the packet
data (header and payroll). The space reserved is larger than needed for the data so that lower-level layers
can add further headers.

A socket buffer is allocated so that head and end point to the start and end of the space reserved in
memory, while the TCP data are located between data and tail.

A new layer must be added when the socket buffer is passed to the IP layer. This can simply be written
into the reserved space, and all pointers remain unchanged with the exception of data, which now points

751

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 752

Chapter 12: Networks

to the start of the IP header. The same operations are repeated for the layers below until a finished packet
is ready to be sent across the network.

head

tail
data

end
TCP

head

tail
data

end
TCP

IP

Figure 12-7: Manipulation of the socket buffer in the transition
between protocol levels.

The procedure adopted to analyze packets is similar. The packet data are copied into a reserved memory
area in the kernel and remain there for the duration of the analysis phase. The socket buffer associated
with the packet is passed on from layer to layer, and the various pointers are successively supplied with
the correct values.

The kernel provides the standard functions listed in Table 12-1 for manipulating socket buffers.

Table 12-1: Operations on Socket Buffers

Function Meaning

alloc_skb Allocates a new sk_buff instance.

skb_copy Creates a copy of the socket buffer and associated data.

skb_clone Duplicates a socket buffer but uses the same packet data for the original and
the copy.

skb_tailroom Returns the size of the free space at the end of the data.

skb_headroom Returns the size of the free space at the start of the data.

skb_realloc_headroom Creates more free space at the start of the data. The existing data are retained.

Socket buffers require numerous pointers to represent the different components of the buffer’s contents.
Since low memory footprint and high processing speed are essential for the network layer and thus for
struct sk_buff, it is desirable to make the structure as small as possible. On 64-bit CPUs, a little trick
can be used to save some space. The definition of sk_buff_data_t is changed to an integer variable:

<skbuff.h>
typedef unsigned int sk_buff_data_t;

Since integer variables require only half the memory of pointers (4 instead of 8 bytes) on such architec-
tures, the structure shrinks by 20 bytes.8 The information contained in a socket buffer is still the same,

8Since integers and pointers use an identical number of bits on 32-bit systems, the trick does not work for them.

752

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 753

Chapter 12: Networks

though. data and head remain regular pointers, and all sk_buff_data_t elements are now interpreted as
offsets relative to these pointers. A pointer to the start of the transport header is now computed as follows:

<skbuff.h>
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{

return skb->head + skb->transport_header;
}

It is valid to use this approach since 4 bytes are sufficient to describe memory regions of up to 4 GiB, and
a socket buffer that exceeds this size will never be encountered.

Since the internal representation of socket buffers is not supposed to be visible to the generic networking
code, several auxiliary functions as shown above are provided to access the elements of struct
sk_buff. They are all defined in <skbuff.h>, and the proper variant is automatically chosen at
compile time.

❑ skb_transport_header(const struct sk_buff *skb) obtains the address of the transport
header for a given socket buffer.

❑ skb_reset_transport_header(struct sk_buff *skb) resets the start of the transport header to
the start of the data section.

❑ skb_set_transport_header(struct sk_buff *skb, const int offset) sets the start of the
transport header given the offset to the data pointer.

The same set of functions is available for the MAC and network headers by replacing transport with
mac or network, respectively.

12.6.2 Management Data of Socket Buffers
The socket buffer structure contains not only the above pointers, but also other elements that are used to
handle the associated data and to manage the socket buffer itself.

The less common elements are dicsussed in this chapter when they are needed. The most important
elements are listed below.

❑ tstamp stores the time the packet arrived.

❑ dev specifies the network device on which the packet is processed. dev may change in the course
of processing the packet — for instance, when it will leave the computer on another device at
some point.

❑ The interface index number of the input device is always preserved in iif. Section 12.7.1
explains how to use this number.

❑ sk is a link to the socket instance (see Section 12.10.1) of the socket used to process the packet.

❑ dst indicates the further route of the packet through the network implementation. A special
format is used (this is discussed in Section 12.8.5).

❑ next and prev hold socket buffers in a doubly linked list. The standard list implementation of
the kernel is not used here but is replaced by a manual version.

753

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 754

Chapter 12: Networks

A list head is used to implement wait queues with socket buffers. Its structure is defined as follows:

<skbuff.h>
struct sk_buff_head {

/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;

__u32 qlen;
spinlock_t lock;

};

qlen specifies the length of the wait queue; that is, the number of elements in the queue. next and prev
of sk_buff_head and sk_buff are used to create a cyclic doubly linked list, and the list element of the
socket buffer points back to the list head, as illustrated in Figure 12-8.

next
prev
len=2

sk_buff_head

list

next
prev

sk_buff

list

next
prev

sk_buff

Figure 12-8: Managing socket buffers in a doubly linked
list.

Packets are often placed on wait queues, for example, when they are awaiting processing or when packets
that have been fragmented are reassembled.

12.7 Network Access Layer
Now that we have examined the structure of the network subsystem in the Linux kernel, we turn our
attention to the first layer of the network implementation — the network access layer. This layer is pri-
marily responsible for transferring information between computers and collaborates directly with the
device drivers of network cards.

It is not my intention to discuss the implementation of the card drivers and the associated problems9

because the techniques employed are only slightly different from those described in Chapter 6. I am
much more interested in the interface made available by each card driver and used by the network code
to provide an abstract view of the hardware.

By reference to Ethernet frames, I explain how data are represented ‘‘on the cable‘‘ and describe the
steps taken between receiving a packet and passing it on to a higher layer. I also describe the steps in the
reverse direction when generated packets leave the computer via a network interface.

9Even though this may be quite interesting — unfortunately not for technical reasons but for product policy reasons.

754

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 755

Chapter 12: Networks

12.7.1 Representation of Network Devices
In the kernel, each network device is represented by an instance of the net_device structure.
Once a structure instance has been allocated and filled, it must be registered with the kernel using
register_netdev from net/core/dev.c. This function performs some initialization tasks and
registers the device within the generic device mechanism. This creates a sysfs entry (see Chapter 10.3)
/sys/class/net/<device>, which links to the device’s directory. A system with one PCI network card
and the loopback device has two entries in /sys/class/net:

root@meitner # ls -l /sys/class/net
total 0
lrwxrwxrwx 1 root root 0 2008-03-09 09:43 eth0 -> ../../devices/pci0000:00/0000:00:1c.5/
0000:02:00.0/net/eth0
lrwxrwxrwx 1 root root 0 2008-03-09 09:42 lo -> ../../devices/virtual/net/lo

Data Structure
Before discussing the contents of struct net_device in detail, let us address the question of how the ker-
nel keeps track of the available network devices, and how a particular network device can be found. As
usual, the devices are not arranged globally, but on a per-namespace basis. Recall that three mechanisms
are available for each namespace net:

❑ All network devices are stored in a singly linked list with the list head dev_base.

❑ Hashing by device name. The auxiliary function dev_get_by_name(struct net *net, const
char *name) finds a network device on this hash.

❑ Hashing by interface index. The auxiliary function dev_get_by_index(struct net *net, int
ifindex) finds the net_device instance given the interface index.

The net_device structure holds all conceivable information on the device. It spans more than 200 lines
and is one of the most voluminous structures in the kernel. As the structure is overburdened with details,
a much simplified — but still quite long — version is reproduced below.10 Here’s the code:

<netdevice.h>
struct net_device
{

char name[IFNAMSIZ];
/* device name hash chain */
struct hlist_node name_hlist;

/* I/O specific fields */
unsigned long mem_end; /* shared mem end */
unsigned long mem_start; /* shared mem start */
unsigned long base_addr; /* device I/O address */
unsigned int irq; /* device IRQ number */

unsigned long state;
struct list_head dev_list;
int (*init)(struct net_device *dev);

/* Interface index. Unique device identifier */

10The kernel developers are not quite satisfied with the current state of the structure either. The source code states that ‘‘Actually,
this whole structure is a big mistake’’.

755

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 756

Chapter 12: Networks

int ifindex;

struct net_device_stats* (*get_stats)(struct net_device *dev);

/* Hardware header description */
const struct header_ops *header_ops;

unsigned short flags; /* interface flags (a la BSD) */
unsigned mtu; /* interface MTU value */
unsigned short type; /* interface hardware type */
unsigned short hard_header_len; /* hardware hdr length */

/* Interface address info. */
unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
unsigned char addr_len; /* hardware address length */
int promiscuity;

/* Protocol specific pointers */
void *atalk_ptr; /* AppleTalk link */
void *ip_ptr; /* IPv4 specific data */
void *dn_ptr; /* DECnet specific data */
void *ip6_ptr; /* IPv6 specific data */
void *ec_ptr; /* Econet specific data */

unsigned long last_rx; /* Time of last Rx */
unsigned long trans_start; /* Time (in jiffies) of last Tx */

/* Interface address info used in eth_type_trans() */
unsigned char dev_addr[MAX_ADDR_LEN]; /* hw address, (before bcast

because most packets are unicast) */

unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */

int (*hard_start_xmit) (struct sk_buff *skb,
struct net_device *dev);

/* Called after device is detached from network. */
void (*uninit)(struct net_device *dev);
/* Called after last user reference disappears. */
void (*destructor)(struct net_device *dev);

/* Pointers to interface service routines. */
int (*open)(struct net_device *dev);
int (*stop)(struct net_device *dev);

void (*set_multicast_list)(struct net_device *dev);
int (*set_mac_address)(struct net_device *dev,

void *addr);
int (*do_ioctl)(struct net_device *dev,

struct ifreq *ifr, int cmd);
int (*set_config)(struct net_device *dev,

struct ifmap *map);
int (*change_mtu)(struct net_device *dev, int new_mtu);

756

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 757

Chapter 12: Networks

void (*tx_timeout) (struct net_device *dev);
int (*neigh_setup)(struct net_device *dev, struct neigh_parms *);

/* Network namespace this network device is inside */
struct net *nd_net;

/* class/net/name entry */
struct device dev;

...

The abbreviations Rx and Tx that appear in the structure are often also used in function names, variable
names, and comments. They stand for Receive and Transmit, respectively, and crop up a few times in the
following sections.

The name of the network device is stored in name. It consists of a string followed by a number to differen-
tiate between multiple adapters of the same type (if, e.g., the system has two Ethernet cards). Table 12-2
lists the most common device classes.

Table 12-2: Designations for Network Devices

Name Device class

ethX Ethernet adapter, regardless of cable type and transmission speed

pppX PPP connection via modem

isdnX ISDN cards

atmX Asynchronous transfer mode, interface to high-speed network cards

lo Loopback device for communication with the local computer

Symbolic names for network cards are used, for example, when parameters are set using the ifconfig
tool.

In the kernel, network cards have a unique index number that is assigned dynamically when they are
registered and is held in the ifindex element. Recall that the kernel provides the dev_get_by_name and
dev_get_by_index functions to find the net_device instance of a network card by reference to its name
or index number.

Some structure elements define device properties that are relevant for the network layer and the network
access layer:

❑ mtu (maximum transfer unit) specifies the maximum length of a transfer frame. Protocols of the
network layer must observe this value and may need to split packets into smaller units.

❑ type holds the hardware type of the device and uses constants from <if_arp.h>. For example,
ARPHRD_ETHER and ARPHDR_IEEE802 stand for 10 Mbit and 802.2 Ethernet, ARPHRD_APPLETLK for
AppleTalk, and ARPHRD_LOOPBACK for the loopback device.

757

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 758

Chapter 12: Networks

❑ dev_addr stores the hardware address of the device (e.g., the MAC address for Ethernet cards),
and addr_len specifies the address length. broadcast is the broadcast address used to send mes-
sages to attached stations.

❑ ip_ptr, ip6_ptr, atalk_ptr, and so on are pointers to protocol-specific data not manipulated by
the generic code.

Several of these pointers may have a non-null value because a network device can
be used with several network protocols at the same time.

Most elements of the net_device structure are function pointers to perform network card-typical tasks.
Although the implementation differs from adapter to adapter, the call syntax (and the task performed) is
always the same. These elements therefore represent the abstraction interface to the next protocol level.
They enable the kernel to address all network cards by means of a uniform set of functions, while the
low-level drivers are responsible for implementing the details.

❑ open and stop initialize and terminate network cards. These actions are usually triggered from
outside the kernel by calling the ifconfig command. open is responsible for initializing the
hardware registers and registering system resources such as interrupts, DMA, IO ports, and so
on. close releases these resources and stops transmission.

❑ hard_start_xmit is called to remove finished packets from the wait queue and send them.

❑ header_ops contains a pointer to a structure that provides more function pointers to operations
on the hardware header.

Most important are header_ops->create, which creates a new, and header_ops->parse, to ana-
lyze a given hardware header.

❑ get_stats queries statistical data that are returned in a structure of type net_device_stats.
This structure consists of more than 20 members, all of which are numeric values to indicate,
for example, the number of packets sent, received, with errors, discarded, and so on. (Lovers of
statistics can query these data using ifconfig and netstat -i.)

Because the net_device structure provides no specific field to store the net_device_stats
object, the individual device drivers must keep it in their private data area.

❑ tx_timeout is called to resolve the problem of packet transmission failure.

❑ do_ioctl forwards device-specific commands to the network card.

❑ nd_det is a pointer to the networking namespace (represented by an instance of struct net) to
which the device belongs.

Some functions are not normally implemented by driver-specific code but are identical for all Ethernet
cards. The kernel therefore makes default implementations available (in net/ethernet/net.c).

❑ change_mtu is implemented by eth_change_mtu and modifies the maximum transfer unit. The
default for Ethernet is 1.5 KiB, other transmission techniques have different defaults. In some
situations, it can be useful to increase or decrease this value. However, many cards do not allow
this and support only the default hardware setting.

758

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 759

Chapter 12: Networks

❑ The default implementation of header_ops->create is in eth_header. This function is used to
generate the network access layer header for the existing packet data.

❑ header_ops->parse (usually implemented by eth_header_parse) obtains the source hardware
address of a given packet.

An ioctl (see Chapter 8) is applied to the file descriptor of a socket to modify the configuration of a net-
work device from userspace. One of the symbolic constants defined in <sockios.h> must be specified
to indicate which part of the configuration is to be changed. For example, SIOCGIFHWADDR is responsi-
ble for setting the hardware address of a network card, but the kernel ultimately delegates this task to
the set_mac_address function of the net_device instance. Device-specific constants are passed to the
do_ioctl function. The implementation is very lengthy because of the many adjustment options but is
not interesting enough for us to discuss it here.

Network devices work in two directions — they send and they receive (these directions are often referred
to as downstream and upstream). The kernel sources include two driver skeletons (isa-skeleton.c and
pci-skeleton.c in drivers/net) for use as network driver templates. Below, occasional reference is
made to these drivers when we are primarily interested in their interaction with the hardware but do not
want to restrict ourselves to a specific proprietary card type. More interesting than the programming of
the hardware is the interfaces used by the kernel for communication purposes, which is why I focus on
them below. First, we only need to introduce how network devices are registered within the kernel.

Registering Network Devices
Each network device is registered in a two-step process:

1. alloc_netdev allocates a new instance of struct net_device, and a protocol-specific
function fills the structure with typical values. For Ethernet devices, this function is
ether_setup. Other protocols (not considerd in detail) use XXX_setup, where possible
values for XXX include fddi (fiber distributed data), tr (token ring), ltalk (localtalk), hippi
(high-performance parallel interface), or fc (fiber channel).

Some in-kernel pseudo-devices implementing specific ‘‘interfaces’’ without being bound to
particular hardware also use the net_device framework. ppp_setup initializes devices for
the PPP protocol, for example. Several more XXX_setup functions can be found across the
kernel sources.

2. Once struct net_device is completely filled in, it needs to be registered with
register_netdev or register_netdevice. The difference between both functions is
that register_netdev allows for working with (limited) format strings for interface names.
The name given in net_device->dev can contain the format specifier %d. When the device
is registered, the kernel selects a unique number that is substituted for %d. Ethernet devices
specify eth%d, for instance, and the kernel subsequently creates the devices eth0, eth1 . . .

The convenience function alloc_etherdev(sizeof_priv) allocates an instance of struct net_device
together with sizeof_priv bytes for private use — recall that net_device->priv is a pointer to driver-
specific data associated with the device. Additionally, ether_setup mentioned above is called to set
Ethernet-specific standard values.

759

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 760

Chapter 12: Networks

The steps taken by register_netdevice are summarized in the code flow diagram in Figure 12-9.

Initialization function available?

Check name and features

Insert into namespace specific list and hashes

register_netdevice

dev_new_index

netdev_register_kobject

net_device->init

Figure 12-9: Code flow diagram for register_netdevice.

Should a device-specific initialization function be provided by net_device->init, the kernel calls it
before proceeding any further. A unique interface index that identifies the device unambiguously within its
namespace is generated by dev_new_index. The index is stored in net_device->ifindex. After ensuring
that the chosen name is not already in use and no device features (see NETIF_F_* in <netdevice.h> for a
list of supported features) that would contradict themselves have been specified, the new device is added
to the generic kernel object model with netdev_register_kobject. This also creates the sysfs entries
mentioned above. Finally, the device is integrated into the namespace-specific list and the device name
and interface index hash tables.

12.7.2 Receiving Packets
Packets arrive at the kernel at unpredictable times. All modern device drivers use interrupts (discussed
in Chapter 14) to inform the kernel (or the system) of the arrival of a packet. The network driver installs
a handler routine for the device-specific interrupt so that each time an interrupt is raised — whenever a
packet arrives — the kernel invokes the handler function to transfer the data from the network card into
RAM, or to notify the kernel to do this some time later.

Nearly all cards support DMA mode and are able to transfer data to RAM autonomously. However,
these data still needs to be interpreted and processed, and this is only performed later.

Traditional Method
Currently the kernel provides two frameworks for packet reception. One of them has been in the kernel
for a long time, and thus is referred to as the traditional method. This API suffers from problems with very-
high-speed network adapters, though, and thus a new API (which is commonly referred to as NAPI11)
has been devised by the network developers. Let us first start with the traditional methods since they are
easier to understand. Besides, more adapters use the old instead of the new variant. This is fine since their
physical transmission speed is not so high as to require the new methods. NAPI is discussed afterward.

11While the name describes precisely that the API is new in contrast to the old API, the naming scheme does not really scale well.
Since NNAPI seems rather out of question, it remains interesting to see how the next new revision will be named. However, it might
take a while until this problem becomes pressing since the current state of the art does not expose any severe problems that would
justify the creation of another API.

760

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 761

Chapter 12: Networks

Figure 12-10 shows an overview of the path followed by a packet through the kernel to the network layer
functions after it arrives at the network adapter.

Soft-IRQ

Driver specific codeInterrupt

per-CPU
wait queue

net_rx_action

do_softirq

netif_rx

dev.c

dev.cnet_interrupt, net_rx

Figure 12-10: Path of an incoming packet through the
kernel.

Because packets are received in the interrupt context, the handler routine may perform only essential
tasks so that the system (or the current CPU) is not delayed in performing its other activities for too long.

In the interrupt context, data are processed by three short functions12 that carry out the following tasks:

1. net_interrupt is the interrupt handler installed by the device driver. It determines whether
the interrupt was really raised by an incoming packet (other possibilities are, e.g., signal-
ing of an error or confirmation of a transmission as performed by some adapters). If it was,
control is passed to net_rx.

2. The net_rx function, which is also card-specific, first creates a new socket buffer. The packet
contents are then transferred from the network card into the buffer and therefore into RAM,
where the header data are analyzed using library functions available in the kernel sources
for each transmission type. This analysis determines the network layer protocol used by the
packet data — IP, for instance.

3. Unlike the methods mentioned above, netif_rx is not a network driver-specific function but
resides in net/core/dev.c. Its call marks the transition between the card-specific part and
the universal interface of the network layer.

The purpose of this function is to place the received packet on a CPU-specific wait queue
and to exit the interrupt context so that the CPU can perform other activities.

The kernel manages the wait queues of incoming and outgoing packets in the globally defined
softnet_data array, which contains entries of type softnet_data. To boost performance on multi-
processor systems, wait queues are created per CPU to support parallel processing of packets. Explicit
locking to protect the wait queues against concurrent access is not necessary because each CPU modifies

12net_interrupt and net_rx are names taken from the driver skeleton isa-skeleton.c. They have different names in other
drivers.

761

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 762

Chapter 12: Networks

only its own queue and cannot therefore interfere with the work of the other CPUs. Below, I ignore the
multiprocessor aspect and refer only to a single ‘‘softnet_data wait queue‘‘ so as not to overcomplicate
matters.

Only one element of the data structure is of interest for our purposes right now:

<netdevice.h>
struct softnet_data
{
...

struct sk_buff_head input_pkt_queue;
...
};

input_pkt_queue uses the sk_buff_head list head mentioned above to build a linked list of all incoming
packets.

netif_rx marks the soft interrupt NET_RX_SOFTIRQ for execution (refer to Chapter 14 for more informa-
tion) before it finishes its work and exits the interrupt context.

net_rx_action is used as the handler function of the softIRQ. Its code flow diagram is shown in
Figure 12-11. Keep in mind that a simplified version is described here. The full story — which includes
the new methods introduced for high-speed network adapters — follows below.

for example: ip_rcv

Ite
ra

te
 o

ve
r

al
l p

ac
ke

t
ty

pe
s

net_rx_action

process_backlog

_ _skb_dequeue

netif_receive_skb

deliver_skb packet_type->func

Figure 12-11: Code flow diagram for net_rx_action.

After a few preparatory tasks, work is passed to process_backlog, which performs the following steps in
a loop. To simplify matters, assume that the loop iterates until all pending packets have been processed
and is not interrupted by any other condition.

1. __skb_dequeue removes a socket buffer that is managing a received packet from the wait
queue.

2. The packet type is analyzed by the netif_receive_skb function so that it can be delivered
to the receive function of the network layer (i.e., to a higher layer of the network system). For
this, it iterates over all network layer functions that feel responsible for the current type and
calls deliver_skb for each of them.

762

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 763

Chapter 12: Networks

In turn, the function uses a type-specific handler func that assumes further processing of the
packet in the higher layers like IP.

netif_receive_skb also handles specialties like bridging, but it is not necessary to discuss
these corner cases — at least they are corner cases on average systems — any further.

All network layer functions used to receive data from the underlying network access layer are registered
in a hash table implemented by the global array ptype_base.13

New protocols are added by means of dev_add_pack. The entries are structures of type packet_type
whose definition is as follows:

<netdevice.h>
struct packet_type {

__be16 type; /* This is really htons(ether_type). */
struct net_device *dev; /* NULL is wildcarded here */
int (*func) (struct sk_buff *,

struct net_device *,
struct packet_type *,
struct net_device *);

...
void *af_packet_priv;
struct list_head list;

};

type specifies the identifier of the protocol for the handler. dev binds a protocol handler to a specific
network card (a null pointer means that the handler is valid for all network devices of the system).

func is the central element of the structure. It is a pointer to the network layer function to which the
packet is passed if it has the appropriate type. ip_rcv, discussed below, is used for IPv4-based protocols.

netif_receive_skb finds the appropriate handler element for a given socket buffer, invokes its func
function, and delegates responsibility for the packet to the network layer — the next higher level of the
network implementation.

Support for High-Speed Interfaces
The previously discussed old approach to transferring packets from the network device into higher layers
of the kernel works well if the devices do not support too high transmission rates. Each time a frame
arrives, an IRQ is used to signalize this to the kernel. This implies a notion of ‘‘fast’’ and ‘‘slow.’’ For slow
devices, servicing the IRQ is usually finished before the next packet arrives. Since the next packet is also
signaled by an IRQ, failing to fulfill this condition — as is often the case for ‘‘fast’’ devices — leads to
problems. Modern Ethernet network cards operate at speeds of 10,000 MBit/s, and this would cause true
interrupt storms if the old methods were used to drive them. However if a new IRQ is received while
packets are still waiting to be processed, no new information is conveyed to the kernel: It was known
before that packets are waiting to be processed, and it is known afterward that packets are supposed to
be processed — which is not really any news. To solve this problem, NAPI uses a combination of IRQs
and polling.

13Actually, another list with packet handlers is available. ptype_all contains packet handlers that are called for all packet types.

763

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 764

Chapter 12: Networks

Assume that no packets have arrived on a network adapter yet, but start to come in at high frequency
now. This is what happens with NAPI devices:

1. The first packet causes the network adapter to issue an IRQ. To prevent further packets from
causing more IRQs, the driver turns off Rx IRQs for the adapter. Additionally, the adapter is
placed on a poll list.

2. The kernel then polls the device on the poll list as long as no further packets wait to be pro-
cessed on the adapter.

3. Rx interrupts are re-enabled again.

If new packets arrive while old packets are still waiting to be processed, the work is not slowed down by
additional interrupts. While polling is usually a very bad technique for a device driver (and for kernel
code in general), it does not have any drawbacks here: Polling is stopped when no packets need to be
processed anymore, and the device returns to the normal IRQ mode of operation. No unnecessary time is
wasted with polling empty receive queues as would be the case if polling without support by interrupts
were used all the time.

Another advantage of NAPI is that packets can be dropped efficiently. If the kernel is sure that processing
any new packets is beyond all question because too much other work needs to be performed, then packets
can be directly dropped in the network adapter without being copied into the kernel at all.

The NAPI method can only be implemented if the device fulfills two conditions:

1. The device must be able to preserve multiple received packets, for instance, in a DMA ring
buffer. I refer to this buffer as an Rx buffer in the following discussion.

2. It must be possible to disable IRQs for packet reception. However, sending packets and other
management functions that possibly also operate via IRQs must remain enabled.

What happens if more than one device is present on the system? This is accounted for by a round robin
method employed to poll the devices. Figure 12-12 provides an overview of the situation.

IRQ signals disable IRQs

Round
robin

Re-enable IRQs

Higher
network
layers

poll list

20
Poll devices

Remove device if
all packets have
been processed

packet reception

10

10

20

Figure 12-12: Overview of the NAPI mechanism and the round robin poll list.

Recall that it was mentioned above that a device is placed on a poll list when the initial packet arrives
into an empty Rx buffer. As is the very nature of a list, the poll list can also contain more than one device.

764

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 765

Chapter 12: Networks

The kernel handles all devices on the list in a round robin fashion: One device is polled after another,
and when a certain amount of time has elapsed in processing one device, the next device is selected and
processed. Additionally, each device carries a relative weight that denotes the importance in contrast to
other devices on the poll list. Large weights are used for faster devices, while slower devices get lower
weights. Since the weight specifies how many packets are processed in one polling round, this ensures
that faster devices receive more attention than slower ones.

Now that the basic principle of NAPI is clear, let’s discuss the details of implementation. The key
change in contrast to the old API is that a network device that supports NAPI must provide a
poll function. The device-specific method is specified when the network card is registered with
netif_napi_add. Calling this function also indicates that the devices can and must be handled with the
new methods.

<netdevice.h>
static inline void netif_napi_add(struct net_device *dev,

struct napi_struct *napi,
int (*poll)(struct napi_struct *, int),
int weight);

dev points to the net_device instance for the device in question, poll specifies which function is used
to poll the device with IRQs disabled, and weight does what you expect it to do: It specifies a relative
weight for the interface. In principle, an arbitrary integer value can be specified. Usually 10- and 100-MBit
drivers specify 16, while 1,000- and 10,000-MBit drivers use 64. In any case, the weight must not exceed
the number of packets that can be stored by the device in the Rx buffer.

netif_napi_add requires one more parameter, a pointer to an instance of struct napi_struct. The
structure is used to manage the device on the poll list. It is defined as follows:

<netdevice.h>
struct napi_struct {

struct list_head poll_list;

unsigned long state;
int weight;
int (*poll)(struct napi_struct *, int);

};

The poll list is implemented by means of a standard doubly linked kernel list, and poll_list is used
as the list element. weight and poll have the same meaning as described above. state can either be
NAPI_STATE_SCHED when the device has to be polled next time the kernel comes around to doing so, or
NAPI_STATE_DISABLE once polling is finished and no more packets are waiting to be processed, but the
device has not yet been taken off the poll list.

Note that struct napi_struct is often embedded inside a bigger structure containing driver-specific
information about the network card. This allows for using the container_of mechanism to obtain the
information when the kernel polls the card with the poll function.

Implementing Poll Functions
The poll function requires two arguments: a pointer to the napi_struct instance and an integer that
specifies the budget, that is, how many packets the kernel allows to be processed by the driver. Since we

765

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 766

Chapter 12: Networks

do not want to deal with the peculiarities of any real networking card, let us discuss a pseudo-function
for a very, very fast adapter that needs NAPI:

static int hyper_card_poll(struct napi_struct *napi, int budget)
{

struct nic *nic = container_of(napi, struct nic, napi);
struct net_device *netdev = nic->netdev;
int work_done;

work_done = hyper_do_poll(nic, budget);

if (work_done < budget) {
netif_rx_complete(netdev, napi);
hcard_reenable_irq(nic);

}

return work_done;
}

After obtaining device-specific information from the container of napi_struct, a hardware-specific
poll method — in this case, hyper_do_poll — is called to perform the required low-level actions to
obtain the packets from the network adapter and pass them to the higher networking layers using
netif_receive_skb as before.

hyper_do_poll allows processing up to budget packets. The function returns as result how many packets
have actually been processed. Two cases must be distinguished:

❑ If the number of processed packets is less than the granted budget, then no more packets are
available and the Rx buffer is empty — otherwise, the remaining packets would have been pro-
cessed. As a consequence, netif_rx_complete signals this condition to the kernel, and the kernel
will remove the device from the poll list in consequence. In turn, the driver has to re-enable IRQs
by means of a suitable hardware-specific method.

❑ Although the budget has been completely used up, more packets are still waiting to be pro-
cessed. The device is left on the poll list, and interrupts are not enabled again.

Implementing IRQ Handlers
NAPI also requires some changes in the IRQ handlers of network devices. Again, I will not resort to any
specific piece of hardware, but present code for an imaginary device:

static irqreturn_t e100_intr(int irq, void *dev_id)
{

struct net_device *netdev = dev_id;
struct nic *nic = netdev_priv(netdev);

if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {
hcard_disable_irq(nic);
__netif_rx_schedule(netdev, &nic->napi);

}

return IRQ_HANDLED;
}

766

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 767

Chapter 12: Networks

Assume that interface-specific data are contained in net_device->private; this is the method used by
most network card drivers. The auxiliary function netdev_priv is provided to access it.

Now the kernel needs to be informed that a new packet is available. A two-stage approach is required:

1. netif_rx_schedule_prep prepares the device to be put on the poll list. Essentially, this sets
the NAPI_STATE_SCHED flag in napi_struct->flags.

2. If setting this flag succeeds (it just fails if NAPI is already active), the driver must disable
IRQs with a suitable device-specific method. Invoking __netif_rx_schedule adds the
device’s napi_struct to the poll list and raises the softIRQ NET_RX_SOFTIRQ. This notifies
the kernel to start polling in net_rx_action.

Handling the Rx SoftIRQ
After having discussed what individual device drivers are required to do for NAPI, the kernel’s
responsibilities remain to be investigated. net_rx_action is as before the handler for the softIRQ
NET_RX_SOFTIRQ. Recall that a simplified version was shown in the preceding section. With more details
about NAPI in place, we are now prepared to discuss all the details. Figure 12-13 shows the code flow
diagram.

net_rx_action

Budget used up or
processing takes too long?

Call poll method

Decrease budget

Yes

No

work == weight Move device to end of poll list

Lo
op

 o
ve

r a
ll

de
vi

ce
s

on
 p

ol
l l

is
t

Raise NET_RX_SOFTIRQ

Figure 12-13: Code flow diagram for net_rx_action.

Essentially, the kernel processes all devices that are currently on the poll list by calling the device-specific
poll methods for one after another. The device’s weight is used as the local budget, that is, the number
of packets that may be processed in a single poll step.

It must be made sure that not too much time is spent in the softIRQ handler. Processing is aborted on
two conditions:

1. More than one jiffie has been spent in the handler.

2. The total number of processed packets is larger than a total budget specified
by netdev_budget. Usually, this is set to 300, but the value can be changed via
/proc/sys/net/core/netdev_budget.

This budget must not be confused with the local budget for each network device! After each
poll step, the number of processed packets is subtracted from the global budget, and if the
value drops below zero, the softIRQ handler is aborted.

767

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 768

Chapter 12: Networks

After an individual device has been polled, the kernel checks if the number of processed packets is
identical with the allowed local budget. If this is the case, then the device could not obtain all waiting
packets as represented by work == weight in the code flow diagram. The kernel moves it to the end of
the poll list and will continue to poll the device after all other devices on the list have been processed.
Clearly, this implements round robin scheduling between the network devices.

Implementation of the Old API on Top of NAPI
Finally, note how the old API is implemented on top of NAPI. The normal behavior of the kernel is
controlled by a dummy network device linked with the softnet queue; the process_backlog standard
function in net/core/dev.c is used as the poll method. If no network adapters add themselves to the
poll list of the queue, it contains only the dummy adapter, and the behavior of net_rx_action there-
fore corresponds to a single call of process_backlog in which the packets in the queue are processed
regardless of the device from which they originate.

12.7.3 Sending Packets
A finished packet is sent when a protocol-specific function of the network layer instructs the network
access layer to process a packet defined by a socket buffer.

What must be noted when messages are sent from the computer? In addition to complete headers
and the checksums required by the particular protocol and already generated by the higher instances,
the route to be taken by the packet is of prime importance. (Even if the computer has only one net-
work card, the kernel still has to distinguish between packets for external destinations and for the
loopback link.)

Because this question can only be clarified by higher protocol instances (particularly if there is a choice
of routes to the desired destination), the device driver assumes that the decision has already been made.

Before a packet can be sent to the next correct computer (normally not the same as the target computer
because IP packets are usually sent via gateways unless there is a direct hardware connection), it is neces-
sary to establish the hardware address of the receiving network card. This is a complicated process looked
at more closely in Section 12.8.5. At this point, simply assume that the receiving MAC address is known.
A further header for the network access layer is normally generated by protocol-specific functions.

dev_queue_xmit from net/core/dev.c is used to place the packet on the queue for outgoing packets. I
ignore the implementation of the device-specific queue mechanism because it reveals little of interest on
how the network layer functions. It is sufficient to know that the packet is sent a certain length of time
after it has been placed on the wait queue. This is done by the adapter-specific hard_start_xmit function
that is present as a function pointer in each net_device structure and is implemented by the hardware
device drivers.

12.8 Network Layer
The network access layer is still quite strongly influenced by the properties of the transmission medium
and the device drivers of the associated adapters. The network layer (and therefore specifically the IP
Internet protocol) is almost totally divorced from the hardware properties of the network adapters. Why
only almost? As you will see shortly, the layer is responsible not only for sending and receiving data, but

768

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 769

Chapter 12: Networks

also for forwarding and routing packets between systems not directly connected with each other. Finding
the best route and selecting a suitable network device to send the packet also involves handling lower-
level address families (such as hardware-specific MAC addresses), which accounts for why the layer is
at least loosely associated with network cards. The assignment between the addresses of the network
layer and the network access layer is made in this layer — another reason why the IP layer is not fully
divorced from the hardware.

Fragmentation of larger data packets into smaller units cannot be performed without taking the underly-
ing hardware into account (in fact, the properties of the hardware are what make this necessary in the first
place). Because each transmission technique supports a maximum packet size, the IP protocol must offer
ways of splitting larger packets into smaller units that can be reassembled by the receiver — unnoticed
by the higher layers. The size of the fragmented packets depends on the capabilities of the particular
transmission protocol.

IP was formally defined in 1981 (in RFC 791) and is therefore of ripe old age.14 Even though the situation
on the ground is not as represented in the usual company press releases that praise, for example, each
new version of a spreadsheet as the greatest invention since the beginning of mankind, the last two
decades have left their mark on today’s technology. Deficiencies and unforeseen problems occasioned
by the strong growth of the Internet are now more and more evident. This is why the IPv6 standard has
been developed as the successor to the present IPv4. Unfortunately, this future standard is only slowly
being adopted owing to the lack of a central control authority. In this chapter, our interest focuses on
the implementation of the algorithms for Version 4, but we also take a cursory look at future practicable
techniques and their implementation in the Linux kernel.

To understand how the IP protocol is implemented in the kernel, it is necessary to briefly examine how
it works. Naturally, we can only touch on the relevant topics in this huge area. For detailed descriptions,
see the many specialized publications, particularly [Ste00] and [Ste94].

12.8.1 IPv4
IP packets use a protocol header as shown in Figure 12-14.

Version IHL Codepoint/Type of
service Total length

Fragment Identification Flags Fragment Offset
TTL Protocol Header Checksum

Source address
Destination address

Options Padding

Payload

16 320 4 8 2420

Figure 12-14: Structure of an IP header.

The meanings of the individual components of the structure are explained below.

14Even though the marketing departments of some companies suggest the opposite, the Internet is older than most of its users.

769

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 770

Chapter 12: Networks

❑ version specifies the IP protocol version used. Currently, this field accepts the value 4 or 6. On
hosts that support both versions, the version used is indicated by the transmission protocol iden-
tifier discussed in the previous chapter; this identifier also holds different values for the two
versions of the protocol.

❑ IHL defines the header length, which is not always the same owing to the variable number of
options.

❑ Codepoint or Type of Service is required for more complex protocol options that need not con-
cern us here.

❑ Length specifies the total length of the packet, in other words, the length of the header plus data.

❑ The fragment ID identifies the individual parts of a fragmented IP packet. The fragmenting sys-
tem assigns the same fragment ID to all parts of an original packet so that they can be identified
as members of the same group. The relative arrangement of the parts is defined in the fragment
offset field. The offset is specified in units of 64 bits.

❑ Three status bits (flags) enable and disable specific characteristics; only two of them are used.

❑ DF stands for don’t fragment and specifies that the packet must not be split into smaller units.

❑ MF indicates that the present packet is a fragment of a larger packet and is followed by other
fragments (the bit is set for all fragments but the last).

The third field is ‘‘reserved for future use,’’ which is very unlikely in view of the presence of
IPv6.

❑ TTL stands for Time to Live and specifies the number of intermediate stations (or hops) along the
route to the receiver.15

❑ Protocol identifies the higher-layer protocol (transport layer) carried in the IP datagram. For
example, there are unique values for TCP and UDP.

❑ Checksum contains a checksum calculated on the basis of the contents of the header and the data.
If the specified checksum does not match the figure calculated upon receipt, the packet is dis-
carded because a transmission error has occurred.

❑ src and dest specify the 32-bit IP address of the source and destination.

❑ options is used for extended IP options, not discussed here.

❑ data holds the packet data (payload).

All numeric values in the IP header must be in network byte order (big endian).

In the kernel sources the header is implemented in the iphdr data structure:

<ip.h>
struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)

__u8 ihl:4,
version:4;

#elif defined (__BIG_ENDIAN_BITFIELD)
__u8 version:4,

15In the past, this value was interpreted as the maximum lifetime in seconds.

770

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 771

Chapter 12: Networks

ihl:4;
#endif

__u8 tos;
__u16 tot_len;
__u16 id;
__u16 frag_off;
__u8 ttl;
__u8 protocol;
__u16 check;
__u32 saddr;
__u32 daddr;
/*The options start here. */

};

The ip_rcv function is the point of entry into the network layer. The onward route of a packet through
the kernel is illustrated in Figure 12-15.

ip_rcv

ip_local_deliver

Routing
Forwarding
ip_forward

Transport Layer (TCP, UDP)

Host to Host Layer (Ethernet, etc.)

Netfilter:
NF_IP_PRE_ROUTING

Netfilter:
NF_IP_LOCAL_IN

Netfilter:
NF_IP_LOCAL_OUT

Netfilter:
NF_IP_FORWARD

Poll Mechanism

Netfilter:
NF_IP_POST_ROUTING

ip_output

ip_queue_xmit

Routing

dev_queue_xmit

Figure 12-15: Route of a packet through the IP layer.

The program flow for send and receive operations is not always separate and may be interleaved if
packets are only forwarded via the computer. The packets are not passed to higher protocol layers (or to
an application) but immediately leave the computer bound for a new destination.

12.8.2 Receiving Packets
Once a packet (respectively, the corresponding socket buffer with appropriately set pointers) has been
forwarded to ip_rcv, the information received must be checked to ensure that it is correct. The main
check is that the checksum calculated matches that stored in the header. Other checks include, for
example, whether the packet has at least the size of an IP header and whether the packet is actually
IP Version 4 (IPv6 employs its own receive routine).

After these checks have been made, the kernel does not immediately continue with packet processing but
allows a netfilter hook to be invoked so that the packet data can be manipulated in userspace. A netfilter
hook is a kind of ‘‘hook‘‘ inserted at defined points in the kernel code to enable packets to be manipulated

771

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 772

Chapter 12: Networks

dynamically. Hooks are present at various points in the network subsystem, and each one has a special
(label) — for example, NF_IP_POST_ROUTING.16

When the kernel arrives at a hook, the routines registered for the label are invoked in userspace.
Kernel-side processing (possibly with a modified packet) is then continued in a further kernel function.
Section 12.8.6 below discusses the implementation of the netfilter mechanism.

In the next step, the received IP packets arrive at a crossroads where a decision is made as to whether
they are intended for the local system or for a remote computer. Depending on the answer, they must
either be forwarded to one of the higher layers or transferred to the output path of the IP level (I don’t
bother with the third option — delivery of packets to a group of computers by means of multicast).

ip_route_input is responsible for choosing the route. This relatively complex decision is discussed in
detail in Section 12.8.5. The result of the routing decision is that a function for further packet process-
ing is chosen. Available functions are ip_local_deliver and ip_forward. Which is selected depends
on whether the packet is to be delivered to local routines of the next higher protocol layer or is to be
forwarded to another computer in the network.

12.8.3 Local Delivery to the Transport Layer
If the packet is intended for the local computer, ip_local_deliver must try to find a suitable transport
layer function to which the data can be forwarded. IP packets typically use TCP or UDP as the transport
layer.

Defragmentation
This is made difficult by the fact that IP packets may be fragmented. There is no certainty that a full
packet is available. The first task of the function is therefore to reassemble a fragmented packet from
its constituent parts by means of ip_defrag.17 The corresponding code flow diagram is shown in
Figure 12-16.

Other fragment parts in the cache?

All parts available?

ip_defrag

ip_frag_queue

ip_frag_reasm

ip_find

Figure 12-16: Code flow diagram for ip_defrag.

16Note that kernel 2.6.25 (which was still under development when this book was written) will change the names from NF_IP_* to
NF_INET_*. This change unifies the names for IPv4 and IPv6.
17The kernel recognizes that a packet is fragmented either by the set fragment bit or by a non-zero value in the offset field. A zero
value in the offset field indicates that this fragment is the last in the packet.

772

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 773

Chapter 12: Networks

The kernel manages the fragments of an originally composite packet in a separate cache known as a
fragment cache. In the cache, fragments that belong together are held in a separate wait queue until all
fragments are present.

The ip_find function is then invoked. It uses a hashing procedure involving the fragment ID, source
and destination address, and packet protocol identifier to check whether a wait queue has already been
created for the packet. If not, a new queue is created and the packet is placed on it. Otherwise, the address
of the existing queue is returned so that ip_frag_queue can place the packet on it.18

When all fragments of the packet are in the cache (i.e., the first and last fragment are present and the
data in all the fragments equal the expected total length of the packet), the individual fragments are
reassembled by ip_frag_reasm. The socket buffer is then released for further processing.

If not all fragments of a packet have arrived, ip_defrag returns a null pointer that terminates packet
processing in the IP layer. Processing is resumed when all fragments are present.

Delivery to the Transport Layer
Let us go back to ip_local_deliver. After packet defragmentation, the netfilter hook NF_IP_LOCAL_IN
is called to resume processing in ip_local_deliver_finish.

There the packet is passed to a transport layer function that must first be determined by reference to the
protocol identifier. All protocols based on the IP layer have an instance of the structure net_protocol
that is defined as follows:

include/net/protocol.h
struct net_protocol {

int (*handler)(struct sk_buff *skb);
void (*err_handler)(struct sk_buff *skb, u32 info);

...
};

❑ handler is the protocol routine to which the packets are passed (in the form of socket buffers) for
further processing.

❑ err_handler is invoked when an ICMP error message is received and needs to be passed to
higher levels.

The inet_add_protocol standard function is used to store each instance in the inet_protos array that
maps the protocols onto the individual list positions using a hashing method.

Once the IP header has been ‘‘removed‘‘ by means of the usual pointer manipulations in the socket buffer,
all that remains to be done is to invoke the corresponding receive routine of the network access layer
stored in the handler field of inet_protocol, for example, the tcp_v4_rcv routine to receive TCP packets
and udp_rcv to receive UDP packets. Section 12.9 examines the implementation of these functions.

18The fragment cache uses a timer mechanism to remove fragments from the cache. When it expires, fragments in the cache are
deleted if not all fragments have arrived by then.

773

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 774

Chapter 12: Networks

12.8.4 Packet Forwarding
IP packets may be delivered locally as described above, or they may leave the IP layer for forwarding to
another computer without having come into local contact with the higher protocol instances. There are
two categories of packet destinations:

1. Target computers in one of the local networks to which the sending computer is attached.

2. Geographically remote computers not attached to the local network and accessible only via
gateways.

The second scenario is rather more complicated. The first station to which the packet is forwarded along
the remaining route must be found in order to move one step closer to the final destination. Information
is therefore required not only on the structure of the network in which the computer resides but also on
the structure of the ‘‘adjacent‘‘ networks and associated outgoing paths.

This information is provided by routing tables managed by the kernel in a variety of data structures
discussed in Section 12.8.5. The ip_route_input function invoked when a packet is received acts as the
interface to the routing implementation, not only because it is able to recognize whether a packet is to be
delivered locally or forwarded, but also because it also finds the route to the destination. The destination
is stored in the dst field of the socket buffer.

This makes the work of ip_forward very easy, as the code flow diagram in Figure 12-17 shows.

Discard packetTTL ≤ 1?

ip_forward

ip_decrease_ttl

ip_forward_finish

ip_forward_options

dst_output skb->dst->output

Netfilter hook NF_IP_FORWARD

Figure 12-17: Code flow diagram for ip_forward.

First, the function refers to the TTL field to check whether the packet is allowed to pass through another
hop. If the TTL value is less than or equal to 1, the packet is discarded; otherwise, the counter is decre-
mented by 1. ip_decrease_ttl does this because changing the TTL field also means that the packet
checksum must be altered.

Once the netfilter hook NF_IP_FORWARD has been called, the kernel resumes processing in
ip_forward_finish. This function delegates its work to two other functions:

774

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 775

Chapter 12: Networks

❑ If the packet includes additional options (not normally the case), they are processed in
ip_forward_options.

❑ dst_output passes the packet to the send function selected during routing and held in
skb->dst->output. Normally, ip_output, which passes the packet to the network adapter that
matches the destination, is used for this purpose.19 ip_output is part of the send operation for
IP packets described in the next section.

12.8.5 Sending Packets
The kernel provides several functions that are used by higher protocol layers to send data via IP.
ip_queue_xmit, whose code flow diagram, shown in Figure 12-18, is the one most frequently used.

No route available yet? Determine route

ip_queue_xmit

ip_send_check

dst_output

skb->dst->output

Netfilter hook: NF_IP_LOCAL_out

Figure 12-18: Code flow diagram for
ip_queue_xmit.

The first task is to find a route for the packet. The kernel exploits the fact that all packets originating
from a socket have the same destination address so that the route doesn’t have to be determined afresh
each time. A pointer to the corresponding data structure discussed below is linked with the socket data
structure. When the first packet of a socket is sent, the kernel is required to find a new route (discussed
below).

Once ip_send_check has generated the checksum for the packet,20 the kernel calls the netfilter hook
NF_IP_LOCAL_OUT. The dst_output function is then invoked; it is based on the destination-specific
skb->dst->output function of the socket buffer found during routing. Normally, this is ip_output,
which is the point where locally generated and forwarded packets are brought together.

Transition to the Network Access Layer
Figure 12-19 shows the code flow diagram of the ip_output function that splits the route into two parts,
depending on whether a packet needs to be fragmented or not.

19A different output routine is used when, for example, IP packets are tunneled inside IP packets. This is a very special application
that is rarely needed.
20Generation of IP checksums is time-critical and can be highly optimized by modern processors. For this reason, the various archi-
tectures provide fast assembly language implementations of their own in ip_fast_csum.

775

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 776

Chapter 12: Networks

Fragmentation of the packet necessary?

Not enough space for hardware header?

ip_output

ip_finish_output

ip_finish_output2

skp_realloc_headroom

dst->neighbour->output

ip_fragment

Netfilter hook NF_IP_POST_ROUTING

Figure 12-19: Code flow diagram for ip_output.

First of all, the netfilter hook NF_IP_POST_ROUTING is called, followed by ip_finish_output. I
first examine the situation in which the packet fits into the MTU of the transmission medium
and need not be fragmented. In this case, ip_finish_output2 is directly invoked. The function
checks whether the socket buffer still has enough space for the hardware header to be generated. If
necessary, skb_realloc_headroom adds extra space. To complete transition to the network access
layer, the dst->neighbour->output function set by the routing layer is invoked, normally using
dev_queue_xmit.21

Packet Fragmenting
IP packets are fragmented into smaller units by ip_fragment, as shown in Figure 12-20.

IP TCP Payload

IP TCP IP IP IP1 2 3 4

Figure 12-20: Fragmenting of an IP packet.

IP fragmenting is very straightforward if we ignore the subtleties documented in RFC 791. A data frag-
ment, whose size is compatible with the corresponding MTU, is extracted from the packet in each cycle
of a loop. A new socket buffer, whose old IP header can be reused with a few modifications, is created
to hold the extracted data fragment. A common fragment ID is assigned to all fragments to support
reassembly in the destination system. The sequence of the fragments is established on the basis of the
fragment offset, which is also set appropriately. The more fragments bit must also be set. Only in the last
packet of the series must this bit be set to 0. Each fragment is sent using ip_output after ip_send_check
has generated a checksum.22

21The kernel also uses a hard header cache. This holds frequently needed hardware headers that are copied to the start of a packet. If
the cache contains a required entry, it is output using a cache function that is slightly faster than dst->neighbour->output.
22ip_output is invoked via a function pointer passed to ip_fragment as a parameter. This means, of course, that other send
functions can be selected. The bridging subsystem is the only user of this possibility, and is not discussed in more detail.

776

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 777

Chapter 12: Networks

Routing
Routing is an important part of any IP implementation and is required not only to forward external
packets, but also to deliver data generated locally in the computer. The problem of finding the correct
path for data ‘‘out‘‘ of the computer is encountered not only with non-local addresses, but also if there are
several network interfaces. This is the case even if there is only one physical network adapter — because
there are also virtual interfaces such as the loopback device.

Each packet received belongs to one of the following three categories:

1. It is intended for the local host.

2. It is intended for a computer connected directly to the current host.

3. It is intended for a remote computer that can only be reached by way of intermediate
systems.

The previous section discussed packets of the first category; these are passed to the higher protocol layers
for further processing (this type is discussed below because all arriving packets are passed to the routing
subsystem). If the destination system of a packet is connected directly to the local host, routing is usually
restricted to finding the corresponding network card. Otherwise, reference must be made to the routing
information to find a gateway system (and the network card associated with the gateway) via which the
packet can be sent.

The routing implementation has gradually become more and more comprehensive from kernel version
to kernel version and now accounts for a large part of the networking source code. Caches and lengthy
hash tables are used to speed up work because many routing tasks are time-critical. This is reflected in
the profusion of data structures. For reasons of space, we won’t worry what the mechanisms for finding
the correct routes in the kernel data structures look like. We look only at the data structures used by the
kernel to communicate the results.

The starting point of routing is the ip_route_input function, which first tries to find the route in the
routing cache (this topic is not discussed here, nor what happens in the case of multicast routing).

ip_route_input_slow is invoked to build a new route from the data structures of the kernel. Basically,
the routine relies on fib_lookup, whose implicit return value (via a pointer used as a function argument)
is an instance of the fib_result structure containing the information we want. fib stands for forwarding
information base and is a table used to manage the routing information held by the kernel.

The routing results are linked with a socket buffer by means of its dst element that points to an instance
of the dest_entry structure that is filled during lookup. The (very simplified) definition of the data
structure is as follows:

include/net/dst.h
struct dst_entry
{

struct net_device *dev;
int (*input)(struct sk_buff*);
int (*output)(struct sk_buff*);
struct neighbour *neighbour;

};

777

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 778

Chapter 12: Networks

❑ input and output are invoked to process incoming and outgoing packets as described above.

❑ dev specifies the network device used to process the packets.

input and output are assigned different functions depending on packet type.

❑ input is set to ip_local_deliver for local delivery and output to ip_rt_bug (the latter function
simply outputs an error message to the kernel logs because invoking output for a local packet in
the kernel code is an error condition that should not occur).

❑ input is set to ip_forward for packets to be forwarded, and a pointer to the ip_output function
is used for output.

The neighbour element stores the IP and hardware addresses of the computer in the local network, which
can be reached directly via the network access layer. For our purposes, it is sufficient to look at just a few
elements of the structure:

include/net/neighbour.h
struct neighbour
{

struct net_device *dev;
unsigned char ha[ALIGN(MAX_ADDR_LEN, sizeof(unsigned long))];
int (*output)(struct sk_buff *skb);

};

While dev holds the network device data structure and ha the hardware address of the device, output is
a pointer to the appropriate kernel function that must be invoked to transmit a packet via the network
adapter. neighbour instances are created by the ARP layer of the kernel that implements the address reso-
lution protocol — a protocol that translates IP addresses into hardware addresses. Because the dst_entry
structure has a pointer to neighbour instances, the code of the network access layer can invoke the output
function when a packet leaves the system via the network adapter.

12.8.6 Netfilter
Netfilter is a Linux kernel framework that enables packets to be filtered and manipulated in accor-
dance with dynamically defined criteria. This dramatically increases the number of conceivable network
options — from a simple firewall through detailed analyses of network traffic to complex state-dependent
filters. Because of the sophisticated netfilter design, only a few sections of network code are needed to
achieve the above goals.

Extending Network Functionality
In brief, the netfilter framework adds the following capabilities to the kernel:

❑ Packet filtering for different flow directions (incoming, outgoing, forwarded) depending on state
and other criteria.

❑ Network address translation (NAT) to convert source and destination addresses in accordance with
certain rules. NAT can be used, for example, to implement shared Internet connections where
several computers that are not attached directly to the Internet share an Internet access (this is
often referred to as masquerading or transparent proxy).

❑ Packet mangling and manipulation, the splitting and modification of packets according to specific
rules.

778

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 779

Chapter 12: Networks

Netfilter functionality can be enhanced by modules loaded into the kernel at run time. A defined rule set
informs the kernel when to use the code from the individual modules. The interface between the kernel
and netfilter is kept very small to separate the two areas from each other as well as possible (and as little
as necessary) in order to prevent mutual interference and improve the network code stability.

As frequently mentioned in the preceding sections, netfilter hooks are located at various points in the
kernel to support the execution of netfilter code. These are provided not only for IPv4 but also for IPv6
and the DECNET protocol. Only IPv4 is discussed here, but the concepts apply equally to the other two
protocols.

Netfilter implementation is divided into two areas:

❑ Hooks in the kernel code are used to call netfilter code and are at the heart of the network imple-
mentation.

❑ Netfilter modules whose code is called from within the hooks but that are otherwise indepen-
dent of the remaining network code. A set of standard modules provides frequently needed
functions, but user-specific functions can be defined in extension modules.

Iptables used by administrators to configure firewall, packet filter, and similar functions are simply
modules that build on the netfilter framework and provide a comprehensive, well-defined set of library
functions to facilitate packet handling. I won’t bother describing how the rules are activated and managed
from within userspace; see the abundance of literature on network administration.

Calling Hook Functions
Functions of the network layer are interrupted by hooks at which netfilter code is executed. An important
feature of hooks is that they split a function into two parts — the first part runs before the netfilter code
is called, the second after. Why are two separate functions used instead of calling a specific netfilter func-
tion that executes all relevant netfilter modules and then returns to the calling function? This approach,
which at first may appear to be somewhat complicated, can be explained as follows. It enables users (or
administrators) to decide not to compile the netfilter functionality into the kernel, in which case, the net-
work functions can be executed without any loss of speed. It also dispenses with the need to riddle the
network implementation with pre-processor statements that, depending on the particular configuration
option (netfilter enabled or disabled), select the appropriate code sections at compilation time.

Netfilter hooks are called by the NF_HOOK macro from <netfilter.h>. The macro is defined as follows if
netfilter support is enabled in the kernel:

<netfilter.h>
static inline int nf_hook_thresh(int pf, unsigned int hook,

struct sk_buff **pskb,
struct net_device *indev,
struct net_device *outdev,
int (*okfn)(struct sk_buff *), int thresh,
int cond)

{
if (!cond)

return 1;
return nf_hook_slow(pf, hook, pskb, indev, outdev, okfn, thresh);

}

779

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 780

Chapter 12: Networks

<netfilter.h>
#define NF_HOOK_THRESH(pf, hook, skb, indev, outdev, okfn, thresh) \
({int __ret; \
if ((__ret=nf_hook_thresh(pf, hook, &(skb), indev, outdev, okfn, thresh, 1)) == 1)\

__ret = (okfn)(skb); \
__ret;})

#define NF_HOOK(pf, hook, skb, indev, outdev, okfn) \
NF_HOOK_THRESH(pf, hook, skb, indev, outdev, okfn, INT_MIN)

The macro arguments have the following meanings:

❑ pf refers to the protocol family from which the called netfilter hook should originate. All calls in
the IPv4 layer use PF_INET.

❑ hook is the hook number; possible values are defined in <netfilter_ipv4.h>. The values have
names such as NF_IP_FORWARD and NF_IP_LOCAL_OUT in IPv4, as mentioned above.

❑ skb is the socket buffer being processed.

❑ indev and outdev are pointers to net_device instances of the network devices via which the
packet enters and leaves the kernel.

Null pointers can be assigned to these values because this information is not known for all hooks
(e.g., before routing is performed, the kernel does not know via which device a packet will leave
the kernel).

❑ okfn is a pointer to a function with prototype int (*okfn)(struct sk_buff *). It is executed
when the netfilter hook terminates.

The macro expansion makes a detour over NF_HOOK_THRESH and nf_hook_thresh before nf_hook_slow
will take care of processing the netfilter hook and calling the continuation function. This seemingly com-
plicated way is necessary because the kernel also provides the possibility to consider only netfilter hooks
whose priority is above a certain threshold and skip all others. In the case of NF_HOOK, the threshold is set
to the smallest possible integer value so every hook function is considered. Nevertheless, it is possible
to use NF_HOOK_THRESH directly to set a specific threshold. Since only the bridging implementation and
connection tracking for IPv6 make use of this currently, I will not discuss it any further.

Consider the implementation of NF_HOOK_THRESH. First, nf_hook_thresh is called. The function checks
if the condition given in cond is true. If that is not so, then 1 is directly passed to the caller. Otherwise,
nf_hook_slow is called. The function iterates over all registered netfilter hooks and calls them. If the
packet is accepted, 1 is returned, and otherwise some other value.

If nf_hook_thresh returned 1, that is, if the netfilter verdict was to accept the packet, then control is
passed to the continuation function specified in okfn.

The IP forwarding code includes a typical NF_HOOK macro call, which we will consider as an example:

net/ipv4/in_forward.c
int ip_forward(struct sk_buff *skb)
{
...

return NF_HOOK(PF_INET, NF_IP_FORWARD, skb, skb->dev, rt->u.dst.dev,
ip_forward_finish);

}

780

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 781

Chapter 12: Networks

The okfn specified is ip_forward_finish. Control is passed directly to this function if the above test
establishes that no netfilter hooks are registered for the combination of PF_INET and NF_IP_FORWARD.
Otherwise, the relevant netfilter code is executed and control is then transferred to ip_forward_finish
(assuming the packet is not discarded or removed from kernel control). If no hooks are installed, code
flow is the same as if ip_forward and ip_forward_finish were implemented as a single, uninterrupted
procedure.

The kernel makes use of the optimization options of the C compiler to prevent speed loss if netfilter is
disabled. Kernel versions before 2.6.24 required that the okfn was defined as an inline function:

net/ipv4/ip_forward.c
static inline int ip_forward_finish(struct sk_buff *skb) {
...
}

This means that it is shown as a normal function, but the compiler does not invoke it by means of a classic
function call (pass parameters, set instruction pointers to function code, read arguments, etc.). Instead,
the entire C code is copied to the point at which the function is invoked. Although this results in a longer
executable (particularly for larger functions), it is compensated by speed gains. The GNU C compiler
guarantees that inline functions are as fast as macros if this approach is adopted.

However, starting with kernel 2.6.24, the inline definition could be removed in nearly all cases!

net/ipv4/ip_forward.c
static int ip_forward_finish(struct sk_buff *skb) {
...
}

This is possible because the GNU C compiler has become able to perform an additional optimization
technique: procedure tail calls. They originate from functional languages and are, for instance, mandatory
for implementations of the Scheme language. When a function is called as the last statement of another
function, it is not necessary that the callee returns to the caller after it has finished its work — there is
nothing left to do in the caller. This allows for performing some simplifications of the call mechanism
that lead to an execution that is as fast as with the old inline mechanism, without the need to duplicate
code by inlining, and thus without increasing the size of the kernel. However, this optimization is not
performed by gcc for all hook functions, and a small number of them still remain inlined.

If the netfilter configuration is enabled, scanning of the nf_hooks array makes no sense, and the NF_HOOK
macro is then defined differently:

include/net/netfilter.h
#define NF_HOOK(pf, hook, skb, indev, outdev, okfn) (okfn)(skb)

Invocation of the hook function is simply replaced with a call to the function defined in okfn (the inline
keyword instructs the compiler to do this by copying the code). The original two functions have now
merged into one, and there is no need for an intervening function call.

Scanning the Hook Table
nf_hook_slow is called if at least one hook function is registered and needs to be invoked. All hooks are
stored in the nf_hooks two-dimensional array:

net/netfilter/core.c
struct list_head nf_hooks[NPROTO][NF_MAX_HOOKS] __read_mostly;

781

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 782

Chapter 12: Networks

NPROTO specifies the maximum number of protocol families supported by the system (currently
34). Symbolic constants for the individual families are PF_INET and PF_DECnet; these are stored in
include/linux/socket.h. It is possible to define NF_MAX_HOOKS lists with hooks for each protocol; the
default is 8.

The list_head elements of the table are used as list heads for a doubly linked list that accepts
nf_hook_ops instances:

<netfilter.h>
struct nf_hook_ops
{

struct list_head list;

/* User fills in from here down. */
nf_hookfn *hook;
struct module *owner;
int pf;
int hooknum;
/* Hooks are ordered in ascending priority. */
int priority;

};

In addition to the standard elements (list for linking the structure in a doubly linked list, and owner as
a pointer to the module data structure of the owner module if the hook is implemented modularly), there
are other elements with the following meanings:

❑ hook is a pointer to the hook function that requires the same arguments as the NF_HOOK macro:

<netfilter.h>
typedef unsigned int nf_hookfn(unsigned int hooknum,

struct sk_buff **skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *));

❑ pf and hooknum specify the protocol family and the number associated with the hook. This infor-
mation could also be derived from the position of the hook list in nf_hooks.

❑ The hooks in a list are sorted in ascending priority (indicated by priority). The full signed int
range can be used to indicate the priority, but a number of preferred defaults are defined:

<netfilter_ipv4.h>
enum nf_ip_hook_priorities {

NF_IP_PRI_FIRST = INT_MIN,
NF_IP_PRI_CONNTRACK_DEFRAG = -400,
NF_IP_PRI_RAW = -300,
NF_IP_PRI_SELINUX_FIRST = -225,
NF_IP_PRI_CONNTRACK = -200,
NF_IP_PRI_MANGLE = -150,
NF_IP_PRI_NAT_DST = -100,
NF_IP_PRI_FILTER = 0,
NF_IP_PRI_NAT_SRC = 100,
NF_IP_PRI_SELINUX_LAST = 225,
NF_IP_PRI_CONNTRACK_HELPER = INT_MAX - 2,

782

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 783

Chapter 12: Networks

NF_IP_PRI_NAT_SEQ_ADJUST = INT_MAX - 1,
NF_IP_PRI_CONNTRACK_CONFIRM = INT_MAX,
NF_IP_PRI_LAST = INT_MAX,

};

This ensures, for example, that mangling of packet data is always performed before any filter
operations.

The appropriate list can be selected from the nf_hook array by reference to the protocol family and hook
number. Work is then delegated to nf_iterate, which traverses the list elements and invokes the hook
functions.

Activating the Hook Functions
Each hook function returns one of the following values:

❑ NF_ACCEPT accepts a packet. This means that the routine in question has made no changes to the
data. The kernel continues to use the unmodified packet and lets it run through the remaining
layers of the network implementation (or through subsequent hooks).

❑ NF_STOLEN specifies that the hook function has ‘‘stolen‘‘ a packet and will deal with it. As of this
point, the packet no longer concerns the kernel, and it is not necessary to call any further hooks.
Further processing by other protocol layers must also be suppressed.

❑ NF_DROP instructs the kernel to discard the packet. As with NF_STOLEN, no further processing by
other hooks or in the network layer takes place. Memory space occupied by the socket buffer
(and therefore by the packet) is released because the data it contains can be discarded — for
example, packets regarded as corrupted by a hook.

❑ NF_QUEUE places the packet on a wait queue so that its data can be processed by userspace code.
No other hook functions are executed.

❑ NF_REPEAT calls the hook again.

Ultimately, packets are not further processed in the network layer unless all hook
functions return NF_ACCEPT (NF_REPEAT is never the final result). All other packets
are either discarded or processed by the netfilter subsystem itself.

The kernel provides a collection of hook functions so that separate hook functions need not be defined for
every occasion. These are known as iptables and are used for the high-level processing of packets. They
are configured using the iptables userspace tool, which is not discussed here.

12.8.7 IPv6
Even though widespread use of the Internet is a a recent phenomenon, its technical foundations have
been in place for some time. Today’s Internet protocol was introduced in 1981. Although the underlying
standard is well thought out and forward-looking, it is showing signs of age. The explosive growth of
the Internet over the past few years has thrown up a problem relating to the available address space of
IPv4 — 32-bit addresses allow a maximum of 232 hosts to be addressed (if subnetting and the like are
ignored). Although earlier thought to be inexhaustible, this address space will no longer be sufficient in
the foreseeable future because more and more devices — ranging from PDAs and laser printers to coffee
machines and refrigerators — require IP addresses.

783

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 784

Chapter 12: Networks

Overview and Innovations
In 1998 a new standard named IPv6 was defined23 and is now supported by the Linux kernel in produc-
tion quality. A full implementation of the protocol is located in the net/ipv6 directory. The modular and
open structure of the network layer means that IPv6 can make use of the existing, mature infrastructure.
As many aspects of IPv6 are similar to IPv4, a brief overview will suffice at this point.

A key change in IPv6 is a completely new packet format that uses 128-byte IP addresses, and is therefore
easier and faster to process. The structure of an IPv6 packet is shown in Figure 12-21.

Version Traffic Class Flow Label
Payload length Next Header Hop Limit

Source address

Destination address

Payload

Figure 12-21: Structure of an IPv6 packet.

The structure is much simpler than that in IPv4. There are only eight header fields instead of 14. Of
particular note is the absence of the fragmentation field. Although IPv6 also supports the splitting of
packet data into smaller units, the corresponding information is held in an extension header pointed to
by the next header field. Support for a variable number of extension headers makes it easier to introduce
new features.

The changes between IPv4 and IPv6 have also necessitated modification of the interface via which con-
nections are programmed. Although sockets are still used, many old and familiar functions appear under
a new name to support the new options. However, this is a problem faced by userspace and C libraries
and will be ignored here.

The notation of IP addresses has also changed because of the increase in address length from 32
to 128 bits. Retaining the former notation (tuples of bytes) would have resulted in extremely long
addresses. Preference was therefore given to hexadecimal notation for IPv6 addresses, for example,
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 and 1080:0:0:0:8:800:200C:417A. A mixture of IPv4
and IPv6 formats resulting in addresses such as 0:0:0:0:0:FFFF:129.144.52.38 is also permitted.

Implementation
What route does an IPv6 packet take when it traverses the network layer? On the lower layers, there
is no change as compared with IPv4 because the mechanisms used are independent of the higher-level

23It couldn’t be called IPv5 because the name had already been used to designate the STP protocol, which was defined in an RFC
but never filtered through to a wide public.

784

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 785

Chapter 12: Networks

protocols. Changes are apparent, however, when data are passed to the IP layer. Figure 12-22 shows a
(coarse-grained) code flow diagram for IPv6 implementation.

ipv6_rcv

ip6_input_finish

Routing
Forwarding

ip6_forward

Transport Layer (TCP, UDP)

Host to Host Layer (Ethernet, etc.)

Netfilter:
NF_IP6_PRE_ROUTING

Netfilter:
NF_IP6_LOCAL_IN

Netfilter:
NF_IP6_LOCAL_OUT

Netfilter:
NF_IP6_FORWARD

Poll Mechanism

Netfilter:
NF_IP6_POST_ROUTING

ip6_output

ip6_xmit

Routing

Figure 12-22: Code flow diagram for IPv6 implementation.

As the diagram shows, the structural changes between version 4 and version 6 are minor. Although the
function names are different, the code follows more or less the same path through the kernel. For reasons
of space, the implementation details are not discussed.24

12.9 Transport Layer
Two main IP-based transport protocols are used — UDP to send datagrams, and TCP to set up secure,
connection-oriented services. Whereas UPD is a simple, easily implemented protocol, TCP has several
well-concealed (but nevertheless well-known) booby traps and stumbling blocks that make implementa-
tion all the more complex.

12.9.1 UDP
As explained in the previous section, ip_local_deliver distributes the transport data contents of IP
packets. udp_rcv from net/ipv4/udp.c is used to further process UDP datagram packets. The associated
code flow diagram is shown in Figure 12-23.

udp_rcv is just a wrapper function for __udp4_lib_rcv since the code is shared with the implementation
of the UDP-lite protocol as defined in RFC 3828.

As usual, the input parameter passed to the function is a socket buffer. Once it has been established
that the packet data are intact, it is necessary to find a listening socket using __udp4_lib_lookup. The
connection parameters can be derived from the UDP header, whose structure is shown in Figure 12-24.

24Note that the names of the netfilter hooks will be changed in the same manner as noted for IPv4 in kernel 2.6.25, which was still
under development when this book was written. The constants will not be prefixed NF_IP6_ anymore, but instead by NF_INET_.
The same set of constants is thus used for IPv4 and IPv6.

785

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 786

Chapter 12: Networks

Consistency check

Find socket in udptable

Send Destination unreachable message

Yes
No

udp_rcv

_ _udp4_lib_rcv

_ _udp4_lib_lookup

udp_queue_rcv_skb sock_queue_rcv_skbDestination socket found?

Figure 12-23: Code flow diagram for udp_rcv.

Source Port Destination Port
Length Checksum

Payload

0 16 32

Figure 12-24: Structure of a UDP packet.

In figure 12-24, ‘‘Source’’ and ‘‘Destination Port’’ specify the port number of the source and destination
system and accept values from 0 to 65,535 because each uses 16 bytes.25 ‘‘Length’’ is the total length of
the packet (header and data) in bytes, and ‘‘Checksum’’ holds an optional checksum.

The header of a UDP packet is represented in the kernel by the following data structure:

<udp.h>
struct udphdr {

__be16 source;
__be16 dest;
__be16 len;
__be16 check;

};

__udp4_lib_lookup from net/ipv4/udp.c is used to find a kernel-internal socket to which the packet is
sent. They employ a hashing method to find and return an instance of the sock structure in the udphash
global array when a listening process is interested in the packet. If they cannot find a socket, they send a
destination unreachable message to the original system, and the contents of the packet are discarded.

Although I have not yet discussed the sock structure, it inevitably brings the term socket to mind, exactly
as is intended. As we are on the borderline of the application layer, the data must be passed to userspace
at some time or other using sockets as described in the sample programs at the beginning of the chapter.

25The IP address need not be specified because it is already in the IP header.

786

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 787

Chapter 12: Networks

Note, however, that two data structures are used to represent sockets in the kernel. sock is the interface
to the network access layer, and socket is the link to userspace. These rather lengthy structures are
discussed in detail in the next section, which examines the part of the application layer anchored in the
kernel. At the moment, we are interested only in the methods of the sock structure needed to forward
data to the next higher layer. These must allow data received to be placed on a socket-specific wait queue
and must also inform the receiving process that new data have arrived. Currently, the sock structure can
be reduced to the following abbreviated version:

include/net/sock.h
/* Short version */
struct sock {

wait_queue_head_t *sk_sleep;
struct sk_buff_head sk_receive_queue;

/* Callback */
void (*sk_data_ready)(struct sock *sk, int bytes);

}

Control is transferred to udp_queue_rcv_skb once udp_rcv has found the appropriate sock instance and
immediately afterward to sock_queue_rcv_skb, where 2 important actions are performed to complete
data delivery to the application layer.

❑ Processes waiting for data delivery via the socket sleep on the sleep wait queue.

❑ Invoking skb_queue_tail inserts the socket buffer with the packet data at the end of the
receive_queue list whose head is held in the socket-specific sock structure.

❑ The function pointed to by data_ready (typically, sock_def_readable if the sock instance
is initialized with the standard function sock_init_data) is invoked to inform the socket
that new data has arrived. It wakes all processes sleeping on sleep while waiting for data
to arrive.

12.9.2 TCP
TCP provides many more functions than UDP. Consequently, its implementation in the kernel is much
more difficult and comprehensive, and a whole book could easily be dedicated to the specific problems
involved. The connection-oriented communication model used by TCP to support the secure transmis-
sion of data streams not only requires greater administrative overhead in the kernel, but also calls for
further operations such as explicit connection setup following from negotiations between computers.
The handling (and prevention) of specific scenarios as well as optimization to boost transmission perfor-
mance account for a large part of TCP implementation in the kernel; all their subtleties and oddities are
not discussed here.

Let’s look at the three major components of the TCP protocol (connection establishment, connection
termination, and the orderly transmission of data streams) by first describing the procedure required by
the standard before going on to examine the implementation.

A TCP connection is always in a clearly defined state. These include the listen and established states men-
tioned above. There are also other states and clearly defined rules for the possible transitions between
them, as shown in Figure 12-25.

At first glance, the diagram is a little confusing, not to say off-putting. However, the information it con-
tains almost fully describes the behavior of a TCP implementation. Basically, the kernel could distinguish

787

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 788

Chapter 12: Networks

SYN
SYN

SYN
SYN, ACK

SYN
ACK

ACKFIN SYN, ACK
ACK

FIN

ACKACK

FIN
ACK

ACK ACKFIN

FIN
ACK

FIN

Timeout

Receiving: Gray
Sending: Black

closed

listen

syn_recv

established

close_wait

last_ack

closedtime_wait

closing

syn_sent

fin_wait_1

fin_wait_2

Passive Open
Close

Close

Active Open

Send

Close

Close

Close

Protocol: Underlined

Figure 12-25: TCP state-transition diagram.

between the individual states and implement the transitions between them (using a tool known as a finite
state machine). This is neither particularly efficient nor fast, so the kernel adopts a different approach.
Nevertheless, when describing the individual TCP actions, I make repeated reference to this diagram
and use it as a basis for our examination.

TCP Headers
TCP packets have a header that contains state data and other connection information. The header struc-
ture is shown in Figure 12-26.

Source Port Destination Port
Sequence Number

Offset Reserved Window
Check sum Urgent Pointer

Options Padding

Payload

0 16 3224104
URG
ACK
PSH

RST
SYN
FIN1 2 3 4 5 6

1

2

3

4

5

6

Figure 12-26: Structure of a TCP packet.

❑ source and dest specify the port numbers used. As with UDP, they consist of 2 bytes.

❑ seq is a sequence number. It specifies the position of a TCP packet within the data stream and is
important when lost data need to be retransmitted.

788

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 789

Chapter 12: Networks

❑ ack_seq holds a sequence number used when acknowledging receipt of TCP packets.

❑ doff stands for data offset and specifies the length of the TCP header structure, which is not
always the same owing to the variable nature of some of the options.

❑ reserved is not available (and should therefore always be set to 0).

❑ urg (urgent), ack (acknowledgment), psh (push), rst (reset), syn (synchronize), and fin are control
flags used to check, establish, and terminate connections.

❑ window tells the connection partner how many bytes it can send before the receiver buffer will be
full. This prevents backlog when fast senders communicate with slow receivers.

❑ checksum is the packet checksum.

❑ options is a variable-length list of additional connection options.

❑ The actual data (or payload) follows the header. The options field may be padded because the
data entry must always start at a 32-bit position (to simplify handling).

The header is implemented in the tcphdr data structure. The system endianness must be noted because
a split byte field is used.

<tcp.h>
struct tcphdr {

__be16 source;
__be16 dest;
__be32 seq;
__be32 ack_seq;

#if defined(__LITTLE_ENDIAN_BITFIELD)
__u16 res1:4,
doff:4,
fin:1,
syn:1,
rst:1,
psh:1,
ack:1,
urg:1,
ece:1,
cwr:1;

#elif defined(__BIG_ENDIAN_BITFIELD)
__u16 doff:4,
res1:4,
cwr:1,
ece:1,
urg:1,
ack:1,
psh:1,
rst:1,
syn:1,
fin:1;

#else
#error "Adjust your <asm/byteorder.h> defines"
#endif

__be16 window;
__sum16 check;
__be16 urg_ptr;

};

789

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 790

Chapter 12: Networks

Receiving TCP Data
All TCP actions (connection setup and shutdown, data transmission) are performed by sending data
packets with specific properties and various flags. Before discussing state transitions, I must first establish
how the TCP data are passed to the transport layer and at what point the information in the header is
analyzed.

tcp_v4_rcv is the entry point into the TCP layer once a packet has been processed by the IP layer. The
code flow diagram for tcp_v4_rcv is shown in Figure 12-27.

No socket?

Realize TCP state automaton

tcp_v4_rcv

_ _inet_lookup

_ _inet_lookup_established

inet_lookup_listener

tcp_v4_do_rcv

Figure 12-27: Code flow diagram for tcp_v4_rcv.

Each TCP socket of the system is included in one of three hash tables that accept sockets in the following
states:

❑ Sockets that are fully connected.

❑ Sockets that are waiting for a connection (in the listen state).

❑ Sockets that are in the process of establishing a connection (using the three-way handshake dis-
cussed below).

After performing various checks on the packet data and copying information from the header into the
control block of the socket buffer, the kernel delegates the work of finding a socket that is waiting for the
packet to the __inet_lookup function. The only task of this function is to invoke two further functions
to scan various hash tables. __inet_lookup_established attempts to return a connected socket. If no
appropriate structure is found, the inet_lookup_listener function is invoked to check all listening
sockets.

In both cases, the functions combine different elements of the respective connection (IP addresses of the
client and server, port addresses and the kernel-internal index of the network interface) by means of hash
functions to find an instance of the abovementioned sock type. When searching for a listening socket, a
score method is applied to find the best candidate among several sockets working with wildcards. This
topic is not discussed because the results simply reflect what would intuitively be regarded as the best
candidate.

In contrast to UDP, work does not end but begins when the appropriate sock structure for the connec-
tion is found. Depending on connection state, it is necessary to perform a state transition as shown in

790

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 791

Chapter 12: Networks

Figure 12-25. tcp_v4_do_rcv is a multiplexer that splits the code flow into different branches on the basis
of the socket state.

The sections below deal with the individual options and associated actions but do not cover all of the
sometimes tricky and seldom used oddities of the TCP protocol. For this, see specialized publications
such as [WPR+01], [Ben05], and [Ste94].

Three-Way Handshake
A connection must be established explicitly between a client and a host before a TCP link can be used. As
already noted, a distinction is made between active and passive connection setup.

The kernel (i.e., the kernel of both machines involved in the connection) sees the following situation
immediately prior to connection establishment — the state of the client process socket is CLOSED, that
of the server socket is LISTEN.

A TCP connection is set up by means of a procedure that involves the exchange of three TCP packets and
is therefore known as a three-way handshake. As the state diagram in Figure 12-25 shows, the following
actions take place:

❑ The client sends SYN to the server26 to signal a connection request. The socket state of the client
changes from CLOSED to SYN_SENT.

❑ The server receives the connection request on a listening socket and returns SYN and ACK.27

The state of the server socket changes from LISTEN to SYN_REC.

❑ The client socket receives the SYN/ACK packet and switches to the ESTABLISHED state, indi-
cating that a connection has been set up. An ACK packet is sent to the server.

❑ The server receives the ACK packet and also switches to the ESTABLISHED state. This concludes
connection setup on both sides, and data exchange can begin.

In principle, a connection could be established using only one or two packets. However, there is then a
risk of faulty connections as a result of leftover packets of old connections between the same addresses
(IP addresses and port numbers). The purpose of the three-way handshake is to prevent this.

A special characteristic of TCP links immediately becomes apparent when connections are established.
Each packet sent is given a sequence number, and receipt of each packet must be acknowledged by the
TCP instance at the receiving end. Let us take a look at the log of a connection request to a web server28:

1 192.168.0.143 192.168.1.10 TCP 1025 > http [SYN] Seq=2895263889 Ack=0
2 192.168.1.10 192.168.0.143 TCP http > 1025 [SYN, ACK] Seq=2882478813 Ack=2895263890
3 192.168.0.143 192.168.1.10 TCP 1025 > http [ACK] Seq=2895263890 Ack=2882478814

The client generates random sequence number 2895263889 for the first packet; it is stored in the SEQ field
of the TCP header. The server responds to the arrival of this packet with a combined SYN/ACK packet
with a new sequence number (in our example, 2882478813). What we are interested in here is the contents
of the SEQ/ACK field (the numeric field, not the flag bit). The server fills this field by adding the number
of bytes received +1 to the sequence number received (the underlying principle is discussed below).

26This is the name given to an empty packet with a set SYN flag.
27This step could be split into two parts by sending one packet with ACK and a second with SYN, but this is not done in practice.
28Network connection data can be captured with tools such as tcpdump and wireshark.

791

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 792

Chapter 12: Networks

Together with the set ACK flag of the packet, this indicates to the client that the first packet has been
received. No extra packet need be generated to acknowledge receipt of a data packet. Acknowledgment
can be given in any packet in which the ACK flag is set and the ack field is filled.

Packets sent to establish the connection do not contain data; only the TCP header is relevant. The length
stored in the len field of the header is therefore 0.

The mechanisms described are not specific to the Linux kernel but must be implemented by all operating
systems wishing to communicate via TCP. The sections below deal more extensively with the kernel-
specific implementation of the operations described.

Passive Connection Establishment
Active connection setup does not originate from the kernel itself but is triggered by receipt of a SYN
packet with a connection request. The starting point is therefore the tcp_v4_rcv function, which, as
described above, finds a listening socket and transfers control to tcp_v4_do_rcv, whose code flow dia-
gram (for this specific scenario) is shown in Figure 12-28.

tcp_v4_rcv

tcp_v4_do_rcv

tcp_v4_hnd_req

tcp_rcv_state_process

Figure 12-28: Code flow diagram for
tcp_v4_rcv_passive.

tcp_v4_hnd_req is invoked to perform the various initialization tasks required in the network layer to
establish a new connection. The actual state transition takes place in tcp_rcv_state_process, which
consists of a long case statement to differentiate between the possible socket states and to invoke the
appropriate transition function.

Possible socket states are defined in an enum list:

include/net/tcp_states.h
enum {

TCP_ESTABLISHED = 1,
TCP_SYN_SENT,
TCP_SYN_RECV,
TCP_FIN_WAIT1,
TCP_FIN_WAIT2,
TCP_TIME_WAIT,
TCP_CLOSE,
TCP_CLOSE_WAIT,
TCP_LAST_ACK,
TCP_LISTEN,
TCP_CLOSING, /* Now a valid state */

TCP_MAX_STATES /* Leave at the end! */
};

792

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 793

Chapter 12: Networks

tcp_v4_conn_request is invoked if the socket state is TCP_LISTEN.29 The function concerns itself with
many details and subtleties of TCP that are not described here. What is important is the acknowledgment
packet sent at the end of the function. It contains not only the set ACK flag and the sequence number
of the received packet but also a newly generated sequence number and a SYN flag as required by the
three-way handshake procedure. This concludes the first phase of connection setup.

The next step at the client is reception of the ACK packet that arrives at the tcp_rcv_state_process
function via the usual path. The socket state is now TCP_SYN_RECV, which is handled by a separate branch
of case differentiation. The main task of the kernel is to change the socket state to TCP_ESTABLISHED to
indicate that a connection has now been set up.

Active Connection Establishment
Active connection setup is initiated by invoking the open library function by means of a userspace appli-
cation that issues the socketcall system call to arrive at the kernel function tcp_v4_connect, whose
code flow diagram is shown on the upper part of Figure 12-29.

tcp_v4_connect

ip_route_connect

tcp_connect

Set socket status to SYN_SENT

tcp_transmit_skb

tcp_rcv_state_process

tcp_rcv_synsent_state_process

tcp_send_ack

inet_csk_reset_xmit_timer

Set socket status to ESTABILISHED

Figure 12-29: Code flow diagram for active connection establishment.

The function starts by looking for an IP route to the destination host using the framework described
above. After the TCP header has been generated and the relevant values have been set in a socket buffer,
the socket state changes from CLOSED to SYN_SENT. tcp_connect, then sends a SYN packet to the IP layer
and therefore to the client. In addition, a timer is created in the kernel to ensure that packet sending is
repeated if no acknowledgment is received within a certain period.

29A function pointer to an address family-specific data structure is used because the dispatcher supports both IPv4 and IPv6. As the
implementation of the finite-state machine is the same for IPv4 and IPv6, a large amount of code can be saved.

793

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 794

Chapter 12: Networks

Now the client must wait for server acknowledgment of the SYN packet and for a SYN packet acknowl-
edging the connection request, which is received by means of the normal TCP mechanisms (lower part of
Figure 12-29). This leads to the tcp_rcv_state_process dispatcher, which, in this case, directs the flow of
control to tcp_rcv_synsent_state_process. The socket state is set to ESTABLISHED, and tcp_send_ack
returns another ACK packet to the server to conclude connection setup.

Transmission of Data Packets
Data are transferred between computers once a connection has been set up as described above. This
process is sometimes quite tricky because TCP has several features that call for comprehensive control
and security procedures between the communicating hosts:

❑ Byte streams are transmitted in a guaranteed order.

❑ Lost packets are retransmitted by automated mechanisms.

❑ Data flow is controlled separately in each direction and is matched to the speeds of the hosts.

Even though initially these requirements may not appear to be very complex, a relatively large number
of procedures and tricks are needed to satisfy them. Because most connections are TCP-based, the speed
and efficiency of the implementation are crucial. The Linux kernel therefore resorts to tricks and opti-
mizations, and unfortunately these don’t necessarily make the implementation any easier to understand.

Before turning our attention to how data transmission is implemented over an established connection,
it is necessary to discuss some of the underlying principles. We are particularly interested in the mecha-
nisms that come into play when packets are lost.

The concept of packet acknowledgment based on sequence numbers is also adopted for normal data
packets. However, sequence numbers reveal more about data transmission than mentioned above.
According to which scheme are sequence numbers assigned? When a connection is set up, a random
number is generated (by the kernel using secure_tcp_sequence_number from drivers/char/random.c).
Thereafter a system supporting the strict acknowledgment of all incoming data packets is used.

A unique sequence number that builds on the number initially sent is assigned to each byte of a TCP
transmission. Let us assume, for example, that the initial random number of the TCP system is 100. The
first 16 bytes sent therefore have the sequence numbers 100, 101, . . . , 115.

TCP uses a cumulative acknowledgment scheme. This means that an acknowledgment covers a contiguous
range of bytes. The number sent in the ack field acknowledges all bytes between the last and the current
ACK number of a data stream. (The initial sequence number is used as the starting point if an acknowl-
edgment has not yet been sent and there is therefore no last number.) The ACK number confirms receipt
of all data up to and including the byte that is 1 less than the number and therefore indicates which byte
is expected next. For instance, ACK number 166 acknowledges all bytes up to and including 165 and
expects bytes from 166 upward in the next packet.

This mechanism is used to trace lost packets. Note that TCP does not feature an explicit re-request mech-
anism; in other words, the receiver cannot request the sender to retransmit lost packets. The onus is on
the sender to retransmit the missing segment automatically if it does not receive an acknowledgment
within a certain time-out period.

How are these procedures implemented in the kernel? We assume that the connection was established as
described above so that the two sockets (on the different systems) both have the ESTABLISHED state.

794

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 795

Chapter 12: Networks

Receiving Packets
The code flow diagram in Figure 12-30 shows the path taken — starting from the familiar tcp_v4_rcv
function — when packets are received.

No

Ye
s

tcp_v4_rcv

tcp_v4_do_rcv

tcp_rcv_established

sk->sk_data_ready

sk->sk_data_ready

Packet easy to process? Slow Path

Fast Path

Figure 12-30: Receiving packets in TCP connections.

After control has been passed to tcp_v4_do_rcv, a fast path is selected (if a connection already exists)
rather than entering the central dispatcher function — this is in contrast to other socket states but is logi-
cal because the transmission of data packets accounts for the lion’s share of work in any TCP connection
and should therefore be performed as quickly as possible. Once it has been established that the state of
the destination socket is TCP_ESTABLISHED, the tcp_rcv_established function is invoked to split the
control flow again. Packets that are easy to analyze are handled in the fast path and those with unusual
options in the slow path.

Packets must fulfill one of the following criteria to be classified as easy to analyze:

❑ The packet must contain only an acknowledgment for the data last sent.

❑ The packet must contain the data expected next.

In addition, none of the following flags must be set: SYN, URG, RST, or FIN.

This description of the ‘‘best case scenario‘‘ for packets is not Linux-specific but is also found in many
other Unix variants.30 Almost all packets fall within these categories,31 which is why it makes sense to
differentiate between a fast and a slow path.

Which operations are performed in the fast path? A few packet checks are carried out to find more
complex packets and return them to the slow path. Thereafter the packet length is analyzed to ascertain
whether the packet is an acknowledgment or a data packet. This is not difficult because ACK packets do
not contain data and must therefore be of exactly the same length as a TCP packet header.

30This approach was developed by Van Jacobsen, a well-known network researcher, and is often referred to as the VJ mechanism.
31Today’s transmission techniques are so sophisticated that very few errors occur. This was not the case in the early days of TCP.
Although more faults arise on global Internet connections than in local networks, most packets can still be handled in the fast path
owing to the low error rates.

795

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 796

Chapter 12: Networks

The fast path code doesn’t bother with processing ACK segments but delegates this task to tcp_ack. Here,
obsolete packets and packets sent too early owing to faulty TCP implementations at the receiving end or
to unfortunate combinations of transmission errors and time-outs are filtered out. The most important
tasks of this function are not only to analyze new information on the connection (e.g., on the receiving
window) and on other subtleties of the TCP protocol, but also to delete acknowledged data from the
retransmission queue (discussed below). This queue holds all sent packets and retransmits them if they
are not acknowledged by means of an ACK within a certain time period.

Because it has been established during selection of the packet for fast path handling that the data received
immediately follow the previous segment, the data can be acknowledged by means of an ACK to the
sender without the need for any further checks. Finally, the sk_data_ready function pointer stored in the
socket is invoked to inform the user process that new data are available.

What is the difference between the slow path and the fast path? Owing to the many TCP options, the
code in the slow path is more extensive. For this reason, I won’t go into the many special situations that
can arise because they are less of a kernel problem and more of a general problem of TCP connections
(detailed descriptions are available in, e.g., [Ste94] and [WPR+01]).

In the slow path, data cannot be forwarded directly to the socket because complicated packet option
checks are necessary, and these may be followed by potential TCP subsystem responses. Data arriving
out of sequence are placed on a special wait queue, where they remain until a contiguous data segment
is complete. Only then can the complete data be forwarded to the socket.

Sending Packets
As seen from the TCP layer, the sending of TCP packets begins with the invocation of the tcp_sendmsg
function by higher network instances. Figure 12-31 shows the associated code flow diagram.

No connection?

Copy data into socket buffer

tcp_sendmsg

sk_stream_wait_connect

tcp_push_one

tcp_snd_test

update_send_head

af_specific->queue_xmittcp_transmit_skb

Set resend timer if necessary

Figure 12-31: Code flow diagram for tcp_sendmsg.

Naturally, the state of the socket used must be TCP_ESTABLISHED before data transmission can begin.
If this is not the case, the kernel waits (with the help of wait_for_tcp_connect) until a connection has

796

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 797

Chapter 12: Networks

been established. The data are then copied to the address space of the userspace process in the kernel and
are used to build a TCP packet. I do not intend to discuss this complicated operation because it involves a
large number of procedures, all of which are targeted at satisfying the complex requirements of the TCP
protocol. Unfortunately, sending a TCP packet is not limited simply to construction of a packet header
and transfer to the IP layer. It is also necessary to comply with the following (by no means exhaustive)
list of demands:

❑ Sufficient space for the data must be available in the wait queue of the receiver.

❑ The ECN mechanism must be implemented to prevent connection congestion.

❑ Possible stalemate situations must be detected as otherwise communication comes to a halt.

❑ The TCP slow-start mechanism requires a gradual increase in packet size at the start of
communication.

❑ Packets sent but not acknowledged must be retransmitted repeatedly after a certain timeout
period until they are finally acknowledged by the receiver.

As the retransmission queue is a key element of reliable data transmission via a TCP connection, let’s
take a look here at how it actually works. After a packet has been assembled, the kernel arrives at
tcp_push_one, which performs the following three tasks:

❑ tcp_snd_test checks whether the data can be sent at the present time. This may not be possible
because of backlogs caused by an overloaded receiver.

❑ tcp_transmit_skb forwards the data to the IP layer using the address family-specific
af_specific->queue_xmit function (ip_queue_xmit is used for IPv4).

❑ update_send_head takes care of updating some statistics. More important, it initializes the
retransmit timer of the TCP segment sent. This is not necessary for every sent packet, but only
for the first packet that follows after an acknowledged data region.

inet_csk_reset_xmit_timer is responsible for resetting the retransmit timer. The timer is the basis
for resending data packets that have not been acknowledged and acts as a kind of TCP transmission
guarantee certificate. If the receiver does not acknowledge data receipt within a certain period (time-out),
the data are retransmitted. The kernel timer used is described in Chapter 15. The sock instance associated
with the particular socket holds a list of retransmit timers for each packet sent. The time-out function used
by the kernel is tcp_write_timer, which invokes the function tcp_retransmit_timer if an ACK is not
received. The following must be noted when retransmitting segments:

❑ The connection may have been closed in the meantime. In this case, the stored packet and the
timer entry are removed from kernel memory.

❑ Retransmission is aborted when more retransmit attempts have been made than specified in the
sysctl_tcp_retries2 variable.32

As mentioned above, the retransmit timer is deleted once an ACK has been received for a packet.

32The default for this variable is 15, but it can be modified using /proc/sys/net/ipv4/tcp_retries2.

797

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 798

Chapter 12: Networks

Connection Termination
Like connection setup, shutdown of TCP connections is also brought about by a multistage exchange of
packets, as shown in Figure 12-25. A connection can be closed in one of two ways:

1. A graceful close terminates the connection at the explicit request of one of the participating
systems (in rare cases, both systems issue a request at the same time).

2. Termination or abort can be brought about by a higher protocol (because, e.g., programs have
crashed).

Fortunately, since the first situation is by far the more usual, we discuss it and ignore the second.

TCP partners must exchange four packets to close a connection gracefully. The sequence of steps is
described below.

1. The standard library function close is invoked in computer A to send a TCP packet whose
FIN flag is set in the header. The socket of A switches to the FIN_WAIT_1 state.

2. B receives the FIN packet and returns an ACK packet. Its socket state changes from ESTAB-
LISHED to CLOSE_WAIT. The socket is informed of receipt of the FIN by means of an ‘‘end
of file.’’

3. After receipt of the ACK packet, the socket state of computer A changes from FIN_WAIT_1
to FIN_WAIT_2.

4. The application associated with the socket on computer B also executes close to
send a FIN segment from B to A. The state of the socket of computer B then changes
to LAST_ACK.

5. Computer A confirms receipt of the FIN with an ACK packet and first goes into the
TIME_WAIT state before automatically switching to the CLOSED state after a certain
period.

6. Computer B receives the ACK packet, which causes its socket also to switch to the CLOSED
state.

The status transitions are performed in the central dispatcher function (tcp_rcv_state_process), in the
path for existing connections (tcp_rcv_established), and in the tcp_close function not yet discussed.

The latter is invoked when the user process decides to call the close library function to close a connection.
If the state of the socket is LISTEN (i.e., there is no connection to another computer), the approach is
simpler because no external parties need be informed of the end of the connection. This situation is
checked at the beginning of the procedure, and, if it applies, the response is a change of socket state to
CLOSED.

If not, tcp_send_fin sends a FIN packet to the other party once the socket state has been set to
FIN_WAIT_1 by the tcp_close_state and tcp_set_state call chain.33

33The approach is not fully compatible with the TCP standard because the socket is not actually allowed to change its state until
after the FIN packet has been sent. However, the Linux alternative is simpler to implement and does not give rise to any problems
in practice. This is why kernel developers have gone down this path as noted in a comment to this effect in tcp_close.

798

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 799

Chapter 12: Networks

The transition from FIN_WAIT_1 to FIN_WAIT_2 is performed by the central dispatcher function
tcp_rcv_state_process because there is no longer any need to take the fast path for existing connec-
tions. In the familiar case differentiation, a packet received with a set ACK flag triggers the transition to
FIN_WAIT_2 by tcp_set_state. All that is now required to place the TCP connection in the TIME_WAIT
state followed automatically by the CLOSED state is a FIN packet from the other party.

The status transitions of the other party that performs a passive close upon receipt of the first FIN packet
follow a similar pattern. Because the first FIN packet is received when the state is ESTABLISHED, han-
dling takes place in the slow path of tcp_rcv_established and involves sending an ACK to the other
party and changing the socket state to TCP_CLOSING.

The next state transition (to LAST_ACK) is performed by calling the close library function to invoke the
tcp_close_state function of the kernel. Only a further ACK packet from the other party is then needed
to terminate the connection. This packet is also handled by the tcp_rcv_state_process function, which
changes the socket state to CLOSED (by means of tcp_done), releases the memory space occupied by the
socket, and thus finally terminates the connection.

Only the possible transition from the FIN_WAIT_1 state is described above. As the
TCP finite-state machine illustrated in Figure 12-25 shows, two other alternatives are
implemented by the kernel but are far less frequently used than the path I describe,
reason enough not to bother with them here.

12.10 Application Layer
Sockets are used to apply the Unix metaphor that ‘‘everything is a file‘‘ to network connections. The
interfaces between kernel and userspace sockets are implemented in the C standard library using the
socketcall system call.

socketcall acts as a multiplexer for various tasks performed by various procedure, for instance, opening
a socket or binding or sending data.

Linux adopts the concept of kernel sockets to make communication with sockets in userspace as simple
as possible. There is an instance of the socket structure and the sock structure for every socket used
by a program. These serve as an interface downward (to the kernel) and upward (to userspace). Both
structures were referenced in the previous sections without defining them in detail, which is done now.

12.10.1 Socket Data Structures
The socket structure, slightly simplified, is defined as follows:

<net.h>
struct socket {

socket_state state;
unsigned long flags;
const struct proto_ops *ops;
struct file *file;
struct sock *sk;
short type;

};

799

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 800

Chapter 12: Networks

❑ type specifies the numeric identifier of the protocol type.

❑ state indicates the connection state of the socket by means of the following values (SS stands for
socket state):

<net.h>
typedef enum {
SS_FREE = 0, /* not allocated */
SS_UNCONNECTED, /* unconnected to any socket */
SS_CONNECTING, /* in process of connecting */
SS_CONNECTED, /* connected to socket */
SS_DISCONNECTING /* in process of disconnecting */

} socket_state;

The values listed here have nothing in common with the state values used by the protocols of the
transport layer when connections are set up and closed. They denote general states relevant to
the outside world (i.e., to user programs).

❑ file is a pointer to the file instance of a pseudo-file for communication with the socket (as
discussed earlier, user applications use normal file descriptors to perform network operations).

The definition of socket is not tied to a specific protocol. This explains why proto_ops is used as a
pointer to a data structure that, in turn, holds pointers to protocol-specific functions to handle the socket:

<net.h>
struct proto_ops {

int family;
struct module *owner;
int (*release) (struct socket *sock);
int (*bind) (struct socket *sock,

struct sockaddr *myaddr,
int sockaddr_len);

int (*connect) (struct socket *sock,
struct sockaddr *vaddr,
int sockaddr_len, int flags);

int (*socketpair)(struct socket *sock1,
struct socket *sock2);

int (*accept) (struct socket *sock,
struct socket *newsock, int flags);

int (*getname) (struct socket *sock,
struct sockaddr *addr,
int *sockaddr_len, int peer);

unsigned int (*poll) (struct file *file, struct socket *sock,
struct poll_table_struct *wait);

int (*ioctl) (struct socket *sock, unsigned int cmd,
unsigned long arg);

int (*compat_ioctl) (struct socket *sock, unsigned int cmd,
unsigned long arg);

int (*listen) (struct socket *sock, int len);
int (*shutdown) (struct socket *sock, int flags);
int (*setsockopt)(struct socket *sock, int level,

int optname, char __user *optval, int optlen);
int (*getsockopt)(struct socket *sock, int level,

800

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 801

Chapter 12: Networks

int optname, char __user *optval, int __user *optlen);
int (*compat_setsockopt)(struct socket *sock, int level,

int optname, char __user *optval, int optlen);
int (*compat_getsockopt)(struct socket *sock, int level,

int optname, char __user *optval, int __user *optlen);
int (*sendmsg) (struct kiocb *iocb, struct socket *sock,

struct msghdr *m, size_t total_len);
int (*recvmsg) (struct kiocb *iocb, struct socket *sock,

struct msghdr *m, size_t total_len,
int flags);

int (*mmap) (struct file *file, struct socket *sock,
struct vm_area_struct * vma);

ssize_t (*sendpage) (struct socket *sock, struct page *page,
int offset, size_t size, int flags);

};

Many function pointers have the same name as the corresponding functions in the C standard library.
This is not a coincidence because the functions are directed to the functions stored in the pointers by
means of the socketcall system call.

The sock pointer also included in the structure points to a much lengthier structure that holds additional
socket management data of significance to the kernel. The structure consists of a horrendous number of
elements used for sometimes very subtle or seldom required features (the original definition is almost
100 lines long). Here I make do with a much shorter and simplified version. Note that the kernel itself
places the most important elements in the structure sock_common that is embedded into struct sock
right at the beginning. The following code excerpt shows both structures:

include/net/sock.h
struct sock_common {

unsigned short skc_family;
volatile unsigned char skc_state;
struct hlist_node skc_node;
unsigned int skc_hash;
atomic_t skc_refcnt;
struct proto *skc_prot;

};

struct sock {
struct sock_common __sk_common;

struct sk_buff_head sk_receive_queue;
struct sk_buff_head sk_write_queue;

struct timer_list sk_timer;
void (*sk_data_ready)(struct sock *sk, int bytes);

...
};

The sock structures of the system are organized in a protocol-specific hash table. skc_node is the hash
linkage element, while skc_hash denotes the hash value.

801

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 802

Chapter 12: Networks

Data are sent and received by placing them on wait queues (sk_receive_queue and sk_write_queue)
that contain socket buffers.

In addition, a list of callback functions is associated with each sock structure used by the kernel to draw
attention to special events or bring about state changes. Our simplified version shows only one function
pointer called sk_data_ready because it is the most significant and its name has already been mentioned
several times in the last few chapters. The function it contains is invoked when data arrive for handling
by the user process. Typically, the value of the pointer is sock_def_readable.

There is a great danger of confusion between the ops element of type struct proto_ops in the socket
structure and the prot entry of type struct proto in sock. The latter is defined as follows:

include/net/sock.h
struct proto {

void (*close)(struct sock *sk,
long timeout);

int (*connect)(struct sock *sk,
struct sockaddr *uaddr,
int addr_len);

int (*disconnect)(struct sock *sk, int flags);

struct sock * (*accept) (struct sock *sk, int flags, int *err);

int (*ioctl)(struct sock *sk, int cmd,
unsigned long arg);

int (*init)(struct sock *sk);
int (*destroy)(struct sock *sk);
void (*shutdown)(struct sock *sk, int how);
int (*setsockopt)(struct sock *sk, int level,

int optname, char __user *optval,
int optlen);

int (*getsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
int __user *option);

...
int (*sendmsg)(struct kiocb *iocb, struct sock *sk,

struct msghdr *msg, size_t len);
int (*recvmsg)(struct kiocb *iocb, struct sock *sk,

struct msghdr *msg,
size_t len, int noblock, int flags,
int *addr_len);

int (*sendpage)(struct sock *sk, struct page *page,
int offset, size_t size, int flags);

int (*bind)(struct sock *sk,
struct sockaddr *uaddr, int addr_len);
struct sockaddr *uaddr, int addr_len);

...
};

Both structures have member elements with similar (and often identical) names although they represent
different functions. Whereas the operations shown here are used for communication between the (kernel-
side) socket layer and transport layer, the functions held in the function pointer block of the socket

802

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 803

Chapter 12: Networks

structure are designed to communicate with system calls. In other words, they form the link between
user-side and kernel-side sockets.

12.10.2 Sockets and Files
Userspace processes access sockets using normal file operations once a connection has been established.
How is this implemented in the kernel? Owing to the open structure of the VFS layer (as discussed in
Chapter 8), very few actions are needed.

VFS inodes of the virtual filesystem are discussed in Chapter 8. Each socket is assigned an inode of this
type, which is, in turn, linked with the other structures associated with normal files. The functions for
manipulating files are stored in a separate pointer table:

<fs.h>
struct inode {

...
struct file_operations *i_fop; /* former ->i_op->default_file_ops */

...
}

As a result, file access to the file descriptor of a socket can be redirected transparently to the code of the
network layer. Sockets use the following file operations:

net/socket.c
struct file_operations socket_file_ops = {

.owner = THIS_MODULE,

.llseek = no_llseek,

.aio_read = sock_aio_read,

.aio_write = sock_aio_write,

.poll = sock_poll,

.unlocked_ioctl = sock_ioctl,

.compat_ioctl = compat_sock_ioctl,

.mmap = sock_mmap,

.open = sock_no_open, /* special open code to disallow open via /proc */

.release = sock_close,

.fasync = sock_fasync,

.sendpage = sock_sendpage,

.splice_write = generic_splice_sendpage,
};

The sock_ functions are simple wrapper routines that invoke a sock_operations routine as shown in the
following example of sock_mmap:

net/socket.c
static int sock_mmap(struct file * file, struct vm_area_struct * vma)
{

struct socket *sock = file->private_data;

return sock->ops->mmap(file, sock, vma);
}

803

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 804

Chapter 12: Networks

Inode and socket are linked by allocating one directly after the other in memory by means of the follow-
ing auxiliary structure:

include/net/sock.h
struct socket_alloc {

struct socket socket;
struct inode vfs_inode;

};

The kernel provides two macros that perform the necessary pointer arithmetic to move from an inode
to the associated socket instance (SOCKET_I) and vice versa (SOCK_INODE). To simplify the situation,
whenever a socket is attached to a file, sock_attach_fd sets the private_data element of struct file
so that it points to the socket instance. The sock_mmap example shown above makes use of this.

12.10.3 The socketcall System Call
In addition to the read and write operations of the file functions that enter the kernel by means of the sys-
tem calls of the virtual filesystem where they are redirected to function pointers of the socket_file_ops
structure, it is also necessary to carry out other tasks with sockets that cannot be forced into the file
scheme. These include, for example, creating a socket and bind and listen calls.

For this purpose, Linux provides the socketcall system call, which is implemented in sys_socketcall
and to which I have made frequent reference.

It is remarkable that there is just one system call for all 17 socket operations. This results in very different
lists of arguments depending on the task in hand. The first parameter of the system call is therefore
a numeric constant to select the desired call. Possible values are, for example, SYS_SOCKET, SYS_BIND,
SYS_ACCEPT, and SYS_RECV. The routines of the standard library use the same names but are all redirected
internally to socketcall with the corresponding constant. The fact that there is only a single system call
is primarily for historical reasons.

The task of sys_socketcall is not especially difficult — it simply acts as a dispatcher to forward the
system call to other functions, each of which implements a ‘‘small‘‘ system call to which the parameters
are passed:

net/socket.c
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{

unsigned long a[6];
unsigned long a0,a1;
int err;

if(call<1||call>SYS_RECVMSG)
return -EINVAL;

/* copy_from_user should be SMP safe. */
if (copy_from_user(a, args, nargs[call]))

return -EFAULT;
...

a0=a[0];
a1=a[1];

804

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 805

Chapter 12: Networks

switch(call)
{

case SYS_SOCKET:
err = sys_socket(a0,a1,a[2]);
break;

case SYS_BIND:
err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
break;

...
case SYS_SENDMSG:

err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
break;

case SYS_RECVMSG:
err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
break;

default:
err = -EINVAL;
break;

}
return err;

}

Even though the target functions comply with the same naming conventions as
system calls, they can be invoked only via the socketcall call and not by any other
system call.

Table 12-3 shows which ‘‘subcalls‘‘ of socketcall are available.

12.10.4 Creating Sockets
sys_socket is the starting point for creating a new socket. The associated code flow diagram is shown in
Figure 12-32.

sys_socket

sock_create

sock_alloc

sock_map_fd

net_families[family]->create

_ _sock_create

Figure 12-32: Code flow diagram for sys_socket.

First, a new socket data structure is created using sock_create, which directly calls __sock_create. The
task of reserving the required memory is delegated to sock_alloc, which not only reserves space for an
instance of struct socket, but also allocates memory for an inode instance directly below. This enables
the two objects to be combined as discussed above.

805

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 806

Chapter 12: Networks

All transport protocols of the kernel are grouped into the array static struct net_proto_family
*net_families[NPROTO] defined in net/socket.c. (ccodesock_register is used to add new entries to
the database.) The individual members provide a protocol-specific initialization function.

<net.h>
struct net_proto_family {

int family;
int (*create)(struct socket *sock, int protocol);
struct module *owner;

};

Table 12-3: Network-Related System Calls for Which sys_socketcall Acts as a Multi-
plexer

Function Meaning

sys_socket Creates a new socket.

sys_bind Binds an address to a socket.

sys_connect Connects a socket with a server.

sys_listen Opens a passive connection to listen on the socket.

sys_accept Accepts an incoming connection request.

sys_getsockname Returns the address of the socket.

sys_getpeername Returns the address of the communication partner.

sys_socketpair Creates a socket pair that can be used immediately for bidirectional communi-
cation (both sockets are on the same system).

sys_send Sends data via an existing connection.

sys_sendto Sends data to an explicitly specified destination address (for UDP connections).

sys_recv Receives data.

sys_recvfrom Receives data from a datagram socket and returns the source address at the
same time.

sys_shutdown Closes the connection.

sys_setsockopt Returns information on the socket settings.

sys_getsockopt Sets socket options.

sys_sendmsg Sends messages in BSD style.

sys_recvmsg Receives messages in BSD style.

806

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 807

Chapter 12: Networks

It is exactly this function (create) that is invoked after memory has been reserved for the
socket. inet_create is used for Internet connections (both TCP and UDP). It creates a new instance
of a kernel-internal sock socket, initializes it as far as possible, and inserts it in the kernel data
structures.

map_sock_fd generates a pseudo-file for the socket (the file operations are specified by socket_ops). A
file descriptor is also allocated so that it can be returned as the result of the system call.

12.10.5 Receiving Data
Data are received using the recvfrom and recv system calls and the file-related readv and read func-
tions. Because the code of each of these functions is very similar and merges at an early point, only
sys_recvfrom, whose code flow diagram is shown in Figure 12-33, is discussed.

sys_recvfrom

fget_light

sock_from_file

sock_recvmsg

sock->ops->recvmsg

move_addr_to_user

Figure 12-33: Code flow diagram for
sys_recvfrom.

A file descriptor to identify the desired socket is passed to the system call. Consequently, the first task is
to find the relevant socket. First, fget_light references the descriptor table of the task structure to find
the corresponding file instance. sock_from_file determines the associated inode and ultimately the
associated socket by using SOCKET_I.

After a few preparations (not discussed here) sock_recvmsg invokes the protocol-specific receive rou-
tine sock->ops->recv_msg0. For example, TCP uses tcp_recvmsg to do this. The UDP equivalent is
udp_recvmsg. The implementation for UDP is not particularly complicated:

❑ If there is at least one packet on the receive queue (implemented by the receive_queue element
of the sock structure), it is removed and returned.

❑ If the receive queue is empty, it is obvious that no data can be passed to the user process. In this
case, the process uses wait_for_packet to put itself to sleep until data arrive.

As the data_ready function of the sock structure is always invoked when new data arrive, the
process can be woken at this point.

move_addr_to_user copies the data from kernel space to userspace using the copy_to_user functions
described in Chapter 2.

807

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 808

Chapter 12: Networks

The implementation for TCP follows a similar pattern but is made a little more complicated by the many
details and protocol oddities.

12.10.6 Sending Data
Userspace programs also have several alternative ways of sending data. They can use two network-
related system calls (sendto and send) or the write and writev functions of the file layer. Because, once
again, the code in the kernel merges at a certain point, it is sufficient to examine the implementation of
the first of the above calls (in the sys_sendto procedure in the kernel sources). The associated code flow
diagram is shown in Figure 12-34.34

sys_sendto

fget_light

sock_from_file

move_addr_to_kernel

sock_sendmsg sock->ops->sendmsg

Figure 12-34: Code flow diagram for sys_sendto.

fget_light and sock_from_file find the relevant socket by reference to the file descriptor. The data
to be sent are copied from userspace to kernel space using move_addr_to_kernel before sock_sendmsg
invokes the protocol-specific send routine sock->ops->sendmsg. This routine generates a packet in the
required format and forwards it to the lower layers.

12.11 Networking from within the Kernel
Not only userland applications have the desire and need to communicate with other hosts. The kernel
could likewise be required to communicate with other computers — without explicit requests from user-
land to do so. This is not only useful for oddities like the in-kernel web server that used to be included
with a number of releases. Network filesystems like CIFS or NCPFS depend on network communication
support from within the kernel.

This, however, does not yet fulfill all communication needs of the kernel. One more piece is missing:
communication between kernel components and communication between userland and kernel. The
netlink mechanism provides the required framework.

12.11.1 Communication Functions
First, let us turn our attention to the in-kernel networking API. The definitions are nearly identical to the
userland case:

34The sources contain some code that has to deal with the case that __sock_sendmsg can use an asynchronous request. I omit this
on purpose in the code flow diagram. If the request is not directly completed in __sock_sendmsg, then wait_on_sync_kiocb
is called immediately after __sock_sendmsg, and the synchronous behavior is restored.

808

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 809

Chapter 12: Networks

<net.h>
int kernel_sendmsg(struct socket *sock, struct msghdr *msg,

struct kvec *vec, size_t num, size_t len);
int kernel_recvmsg(struct socket *sock, struct msghdr *msg,

struct kvec *vec, size_t num,
size_t len, int flags);

int kernel_bind(struct socket *sock, struct sockaddr *addr,
int addrlen);

int kernel_listen(struct socket *sock, int backlog);
int kernel_accept(struct socket *sock, struct socket **newsock,

int flags);
int kernel_connect(struct socket *sock, struct sockaddr *addr,

int addrlen, int flags);
int kernel_getsockname(struct socket *sock, struct sockaddr *addr,

int *addrlen);
int kernel_getpeername(struct socket *sock, struct sockaddr *addr,

int *addrlen);
int kernel_getsockopt(struct socket *sock, int level, int optname,

char *optval, int *optlen);
int kernel_setsockopt(struct socket *sock, int level, int optname,

char *optval, int optlen);
int kernel_sendpage(struct socket *sock, struct page *page, int offset,

size_t size, int flags);
int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg);
int kernel_sock_shutdown(struct socket *sock,

enum sock_shutdown_cmd how);

With the exception of kernel_sendmsg and kernel_recvmsg, the parameters are more or less identical
with the userland API, except that sockets are not specified by socket file descriptors, but directly by a
pointer to an instance of struct socket. The implementation is simple since the functions work as simple
wrapper routines around the pointers stored in the protocol operations proto_ops of struct socket:

net/socket.c
int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
int flags)
{

return sock->ops->connect(sock, addr, addrlen, flags);
}

A little care is required when the buffer space that takes received data or holds data that must be sent
is specified. kernel_sendmsg and kernel_recvmsg do not access the data region directly via struct
msghdr as in userland, but employ struct kvec. However, the kernel automatically provides a conversion
between both representations as kernel_sendmsg shows.

net/socket.c
int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size)
{
...

int result;
...

msg->msg_iov = (struct iovec *)vec;
msg->msg_iovlen = num;

809

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 810

Chapter 12: Networks

result = sock_sendmsg(sock, msg, size);
...

return result;
}

12.11.2 The Netlink Mechanism
Netlink is a networking-based mechanism that allows for communication within the kernel as well as
between kernel and userland. The formal definition can be found in RFC 3549. The idea to use the net-
working framework to communicate between kernel and userland stems from BSD’s networking sockets.
Netlink sockets, however, extend the possible uses much further. The mechanism is not only used for
networking purposes. By now, one of the most important users is the generic object model, which uses
netlink sockets to pass all kinds of status information about what is going on inside the kernel to user-
land. This includes registration and removal of new devices, special events that have happened on the
hardware side, and much more. While netlink used to be compilable as a module in former kernel ver-
sions, it is nowadays automatically integrated if the kernel has support for networking. This emphasizes
the importance of the mechanism.

There are some alternative methods in the kernel that implement similar functionality — just think of
files in procfs or sysfs. However, the netlink mechanism provides some distinct advantages compared to
these approaches:

❑ No polling is required on any side. If status information were passed via a file, then the userland
side would constantly need to check if any new messages have arrived.

❑ System calls and ioctls that also allow passing information from userland to the kernel are harder
to implement than a simple netlink connection. Besides, there is no problem with modules using
netlink services, while modules and system calls clearly do not fit together very well.

❑ The kernel can initiate sending information to userland without being requested to do so from
there. This is also possible with files, but impossible with system calls or ioctls.

❑ Userspace applications do not need to use anything else than standard sockets to interact with
the kernel.

Netlink supports only datagram messages, but provides bidirectional communication. Additionally, not
only unicast but also multicast messages are possible. Like any other socket-based mechanism, netlink
works asynchronously.

Two manual pages document the netlink mechanism: netlink(3) contains information about in-kernel
macros that can be used to manipulate, access, and create netlink datagrams. The manual page
netlink(7) contains generic information about netlink sockets and documents the data structures used
in this context. Also note that /proc/net/netlink contains some information about the currently active
netlink connections.

On the userspace side, two libraries simplify the creation of applications employing netlink sockets:

❑ libnetlink is bundled with the iproute2 packages. The library has specifically been written
with routing sockets in mind. Additionally, is does not come as standalone code, but must be
extracted from the package if it is to be used separately.

810

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 811

Chapter 12: Networks

❑ libnl is a standalone library that has not been optimized for a particular use case. Instead, it
provides support for all types of netlink connections, including routing sockets.

Data Structures
Specifying Addresses

As for every networking protocol, an address needs to be assigned to a netlink socket. The following
variant of struct sockaddr represents netlink addresses:

<netlink.h>
struct sockaddr_nl
{

sa_family_t nl_family; /* AF_NETLINK */
unsigned short nl_pad; /* zero */
__u32 nl_pid; /* port ID */
__u32 nl_groups; /* multicast groups mask */

};

To distinguish between different netlink channels used by different parts of the kernel, nl_family is
employed. Several different families are specified in <netlink.h>, and the list has especially grown
during the development of 2.6. Currently 20 families are defined, and some examples are:

❑ NETLINK_ROUTE represents the initial purpose of netlink sockets, namely, changing routing
information.

❑ NETLINK_INET_DIAG allows for monitoring IP sockets; see net/ipv4/inet_diag.c for more
details.

❑ NETLINK_XFRM is used to send and receive messages related to IPSec (or, more generally, to any
XFRM transformations).

❑ NETLINK_KOBJECT_UEVENT specifies the protocol for kernel to userland messages that originate
from the generic object model (the reverse direction, userland to kernel, is not possible for this
type of message). The channel provides the basis of the hotplugging mechanism as discussed in
Section 7.4.2.

A unique identifier for the socket is provided in nl_pid. While this is always zero for the kernel itself,
userspace applications conventionally use their thread group ID. Note that nl_pid explicitly does not
represent a process ID, but can be any unique value — the thread group ID is just one particularly con-
venient choice.35 nl_pid is a unicast address. Each address family can also specify different multicast
groups, and nl_groups is a bitmap that denotes to which multicast addresses the socket belongs. If mul-
ticast is not supposed to be used, the field is 0. To simplify matters, I consider only unicast transmissions
in the following.

Netlink Protocol Family
Recall from Section 12.10.4 that each protocol family needs to register an instance of net_proto_family
within the kernel. The structure contains a function pointer that is called when a new socket is created for

35See the manual page netlink(7) on how to proceed if a userspace process wants to hold more than one netlink socket and thus
requires more than one unique identifier.

811

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 812

Chapter 12: Networks

the protocol family. Netlink uses netlink_create for this purpose.36 The function allocates an instance
of struct sock that is connected with the socket via socket->sk. However, space is not only reserved
for struct sock but for a larger structure that is (simplified) defined as follows:

net/netlink/af_netlink.c
struct netlink_sock {
/* struct sock has to be the first member of netlink_sock */

struct sock sk;
u32 pid;
u32 dst_pid;

...
void (*netlink_rcv)(struct sk_buff *skb);

...
};

In reality, there are many more netlink-specific elements, and the above code is a selection of the most
essential ones.

The sock instance is directly embedded into netlink_sock. Given an instance of struct sock for netlink
sockets, the associated netlink-specific structure netlink_socket can be obtained using the auxiliary
function nlk_sk. The port IDs of both ends of the connection are kept in pid and dst_pid. netlink_rcv
points to a function that is called to receive data.

Message Format
Netlink messages need to obey a certain format as depicted in Figure 12-35.

Message 1 Message 2

struct nlmsg_hdr

Header Payload Header

aligned on
NLMSG_ALIGNTO

Padding

Figure 12-35: Format of a netlink message.

Each message consists of two components: the header and the payload. While the header is required to
be represented by struct nlmsghdr, the payload can be arbitrary.37 The required contents of the header
are given by the following data structure:

<netlink.h>
struct nlmsghdr
{

__u32 nlmsg_len; /* Length of message including header */
__u16 nlmsg_type; /* Message content */
__u16 nlmsg_flags; /* Additional flags */

36The protocol family operations netlink_family_ops point to this function. Recall from Section 12.10.4 that the creation func-
tion is automatically called when a new socket is created.
37The kernel offers the standard data structure struct nlattr if netlink is used to transport attributes. This possibility is
not discussed in detail, but note that all attribute definitions and a useful set of auxiliary helper functions can be found in
include/net/netlink.h.

812

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 813

Chapter 12: Networks

__u32 nlmsg_seq; /* Sequence number */
__u32 nlmsg_pid; /* Sending process port ID */

};

❑ The length of the total message — including header and any required padding — is stored in
nlmsg_len.

❑ The message type is denoted by nlmsg_type. The value is private to the family and not inspected
or modified by generic netlink code.

❑ Various flags can be stored in nlmsg_flags. All possible values are defined in <netlink.h>. For
our purposes, mainly two flags are of relevance: NLM_F_REQUEST is set if a message contains a
request to perform some specific action (as opposed to transferring just some status informa-
tion), and NLM_F_ACK requests that an acknowledgment is sent on receiving the message and
successfully processing the request.

❑ nlmsg_seq holds a sequence number that induces a temporal relationship amongst a series of
messages.

❑ The unique port ID that identifies the sender is stored in nlmsg_pid.

Note that the constituents of netlink messages are always aligned to NLMSG_ALIGNTO (usually set to 4)
byte boundaries as indicated in the figure. Since the size of struct nlmsghdr is currently a multiple of
NLMSG_ALIGNTO, the alignment criterion is automatically fulfilled for the header. Padding might, how-
ever, be required behind the payload. To ensure that the padding requirements are fulfilled, the kernel
introduces several macros in <netlink.h> that can be used to properly compute the boundaries. Since
they are well documented in the manual page netlink(3), the information is not repeated here.

The length of a message should fit into a single page because this places only little pressure on memory
allocation. However, if pages larger the 8 KiB are used, then the message size should not exceed 8 KiB
because userland should not be forced to allocate excessively big buffers to receive netlink messages. The
kernel defines the constant NLMSG_GOODSIZE, which contains the preferred amount of total space for a
message. NLMSG_DEFAULT_SIZE specifies how much space is available for the payload without header.
When a socket buffer into which a netlink message is constructed is allocated, NLMSG_GOODSIZE is a good
choice for its size.

Keeping Track of Netlink Connections
The kernel keeps track of all netlink connections as represented by sock instances using several hash
tables. They are implemented around the global array nl_table, which contains pointers to instances of
struct netlink_table. The actual definition of this structure does not bother us in detail because the
hashing method follows a rather straightforward path:

1. Each array element of nl_table provides a separate hash for each protocol family member.
Recall that each family member is identified by one of the constants defined by NETLINK_XXX,
where XXX includes ROUTE or KOBJECT_UEVENT, for instance.

2. The hash chain number is determined using nl_pid_hashfn based on the port ID and a
(unique) random number associated with the hash chain.38

38Actually, the situation is more complicated because the kernel rehashes the elements on the hash table when there are too many
entries, but this extra complexity is ignored here.

813

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 814

Chapter 12: Networks

netlink_insert is used to insert new entries into the hash table, while netlink_lookup allows for find-
ing sock instances:

net/netlink/af_netlink.c
static int netlink_insert(struct sock *sk, struct net *net, u32 pid);
static __inline__ struct sock *netlink_lookup(struct net *net, int protocol,

u32 pid);

Note that the hashing data structures are not designed to operate on a per-namespace basis since there is
only one global structure for the whole system. Nevertheless, the code is networking-namespace-aware:
When a sock is looked up, the code ensures that the result lives in the proper namespace. Connections
with identical port IDs that originate from different namespaces can exist on the same hash chain simul-
taneously without problems.

Protocol-Specific Operations
Since userland applications use the standard socket interface to deal with netlink connections, the kernel
must provide a set of protocol operations. They are defined as follows:

net/netlink/af_netlink.c
static const struct proto_ops netlink_ops = {

.family = PF_NETLINK,

.owner = THIS_MODULE,

.release = netlink_release,

.bind = netlink_bind,

.connect = netlink_connect,

.socketpair = sock_no_socketpair,

.accept = sock_no_accept,

.getname = netlink_getname,

.poll = datagram_poll,

.ioctl = sock_no_ioctl,

.listen = sock_no_listen,

.shutdown = sock_no_shutdown,

.setsockopt = netlink_setsockopt,

.getsockopt = netlink_getsockopt,

.sendmsg = netlink_sendmsg,

.recvmsg = netlink_recvmsg,

.mmap = sock_no_mmap,

.sendpage = sock_no_sendpage,
};

Programming Interface
The generic socket implementation provides most of the basic functionality required for netlink. Netlink
sockets can be opened both from the kernel and from userland. In the first case, netlink_kernel_create
is employed, while in the second case, the bind method of netlink_ops is triggered via the standard
networking paths. For reasons of space, I do not want to discuss the implementation of the userland
protocol handlers in detail, but focus on how connections are initialized from the kernel. The function
requires various parameters:

net/netlink/af_netlink.c
struct sock *
netlink_kernel_create(struct net *net, int unit, unsigned int groups,

814

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 815

Chapter 12: Networks

void (*input)(struct sk_buff *skb),
struct mutex *cb_mutex, struct module *module);

net denotes the networking namespace, unit specifies the protocol family member, and input is a call-
back function that is activated when data arrives for the socket.39 If a NULL pointer is passed for input, the
socket will only be able to transport data from kernel to userland, but not vice versa. The tasks performed
in netlink_kernel_create are summarized by the code flow diagram in Figure 12-36.

netlink_kernel_create

sock_create_lite

_ _netlink_create

netlink_insert

Store input function

Figure 12-36: Code flow diagram for
netlink_kernel_create (multicast
handling is omitted).

1. All required data structures need to be allocated, especially an instance of struct socket
and struct netlink_sock. sock_create_lite handles the first requirement, and allocating
netlink_sock is delegated to the auxiliary function __netlink_create.

2. If an input function is specified, it is stored in netlink_sock->netlink_rcv.

3. The new sock instance is inserted into the netlink hash via netlink_insert.

Consider, for instance, how the generic object model creates a netlink socket for the uevent mechanism
(refer to Section 7.4.2 on how to use this connection):

lib/kobject_uevent.c
static int __init kobject_uevent_init(void)
{

uevent_sock = netlink_kernel_create(&init_net, NETLINK_KOBJECT_UEVENT,
1, NULL, NULL, THIS_MODULE);

...
return 0;

}

Since uevent messages do not require any input from userland, it is not necessary to specify an input
function.

After the socket is created, the kernel can construct sk_buff instances and send them off with either
netlink_unicast or netlink_broadcast.

39There are some more parameters that are not necessary to consider in detail. groups gives the number of multicast groups, but
I will not discuss the associated possibilities any further. It is also possible to specify a locking mutex (cb_mutex) that protects a
netlink callback, but since I have also omitted to discuss this mechanism, you can likewise ignore this parameter. Usually, a NULL
pointer is specified as mutex argument, and the kernel falls back to a default locking solution.

815

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 816

Chapter 12: Networks

Naturally, things get more involved when bidirectional communication is allowed. Take, for example,
the audit subsystem, which can not only send messages to userspace, but also receive some in the inverse
direction. First of all, an input function is required when netlink_kernel_create is called:

kernel/audit.c
audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,

audit_receive, NULL, THIS_MODULE);

audit_receive is responsible to handle received messages stored in socket buffers. audit_receive is
just a wrapper that ensures correct locking and dispatches the real work to audit_receive_skb. Since all
receive functions follow a similar pattern, it is instructive to observe the code of this function:

kernel/audit.c
static void audit_receive_skb(struct sk_buff *skb)
{

int err;
struct nlmsghdr *nlh;
u32 rlen;

while (skb->len >= NLMSG_SPACE(0)) {
nlh = nlmsg_hdr(skb);

...
rlen = NLMSG_ALIGN(nlh->nlmsg_len);

...
if ((err = audit_receive_msg(skb, nlh))) {

netlink_ack(skb, nlh, err);
} else if (nlh->nlmsg_flags & NLM_F_ACK)

netlink_ack(skb, nlh, 0);
skb_pull(skb, rlen);

}
}

Multiple netlink messages can be contained in a single socket buffer, so the kernel needs to iterate over
all of them until no more payload is left. This is the purpose of the while loop. The general structure is to
process one message, remove the processed data with skb_pull,40 and process the next message. Since
NLMSG_SPACE(0) specifies the space required for the netlink header, without any payload, the kernel can
easily check if more messages wait to be processed by comparing the remaining length of the socket
buffer with this quantity.

For each message, the header is extracted with nlmsg_hdr, and the total length including padding is
computed with NLMSG_ALIGN. audit_receive_msg is then responsible to analyze the audit-specific con-
tents of the message, which does not concern us any further here. Once the data have been parsed, two
alternatives are possible:

1. An error has occurred during parsing. netlink_ack is used to send an acknowledgment
response that contains the erroneous message and the error code.

2. If the message requested to be acknowledged by setting the NLM_F_ACK flag, the kernel sends
the desired acknowledgment again by netlink_ack. This time the input message is not con-
tained in the reply because the error argument of netlink_ack is set to 0.

40To be precise, the function does not remove the data, but just sets the data pointer of the socket buffer accordingly. The effect is,
however, identical.

816

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 817

Chapter 12: Networks

12.12 Summary
Linux is often used to operate network servers, and consequently, its networking implementation is
powerful, comprehensive, and complex. This chapter discussed the general layered structure of the net-
working subsystem that allows for accommodating a large number of different protocols, and provides a
rich set of services.

After introducing the idea of sockets that establish the link between networking layer and userland, we
have discussed socket buffers, the fundamental in-kernel data structure for representation, and process-
ing of packets obtained and sent via networks. We then discussed how network devices are operated and
also explained how NAPI helps to ensure that they reach their full possible speed.

You have then seen how an IP packet travels through the network layer and how the transport layer
processes TCP and UDP packets. Ultimately, the packets end up or originate from the application layer,
and we have also explored the mechanisms behind this.

The chapter closed with a discussion of how networking can be initiated from within the kernel and
how the netlink mechanism allows for installing a high-speed communication link between kernel and
userland.

817

Mauerer runc12.tex V2 - 09/04/2008 5:30pm Page 818

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 819

System Calls

In the view of user programs, the kernel is a transparent system layer — it is always present but
never really noticed. Processes don’t know whether the kernel is running or not. Neither do they
know which virtual memory contents are currently in RAM or which contents have been swapped
out or perhaps not even read in. Nevertheless, processes are engaged in permanent interaction with
the kernel to request system resources, access peripherals, communicate with other processes, read
in files, and much more. For these purposes, they use standard library routines that, in turn, invoke
kernel functions — ultimately, the kernel is responsible for sharing resources and services fairly
and, above all, smoothly between requesting processes.

Applications therefore see the kernel as a large collection of routines that perform a wide variety
of system functions. The standard library is an intermediate layer to standardize and simplify the
management of kernel routines across different architectures and systems.

In the view of the kernel, the situation is, of course, a bit more complicated especially as there
are several major differences between user and kernel mode, some of which were discussed in
earlier chapters. Of particular note are the different virtual address spaces of the two modes and the
different ways of exploiting various processor features. Also of interest is how control is transferred
backward and forward between applications and the kernel, and how parameters and return values
are passed. This chapter discusses such questions.

As described in previous chapters, system calls are used to invoke kernel routines from within user
applications in order to exploit the special capabilities of the kernel. We have already examined the
implementation of a number of system calls from a wide range of kernel subsystems.

First, let’s take a brief look at system programming to distinguish clearly between library routines of
the standard library and the corresponding system calls. We then closely examine the kernel sources
in order to describe the mechanism for switching from userspace to kernel space. The infrastructure
used to implement system calls is described, and special implementation features are discussed.

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 820

Chapter 13: System Calls

13.1 Basics of System Programming
Principally, system programming involves work with the standard library that provides a wide range of
essential functions for developing applications. No matter what kind of applications they write, program-
mers have to know the basics of system programming. A simple program such as the classic hello.c
routine, which displays ‘‘Hello, world!‘‘ or a similar text on screen, makes indirect use of system routines
to output the necessary characters.

Of course, system programming need not always be done in C. There are other programming
languages — such as C++, Pascal, Java, or even the dreadful FORTRAN — which also support the more
or less direct use of routines from external libraries and are therefore also able to invoke standard library
functions. Nevertheless, it is usual to write system programs in C simply because this fits best into the
Unix concept — all Unix kernels are written in C, and Linux is no exception.

The standard library is not only a collection of interfaces to implement the kernel system calls; it also
features many other functions that are implemented fully in userspace. This simplifies the work of pro-
grammers, who are spared the effort of constantly reinventing the wheel. And the approximately 100 MiB
of code in the GNU C library must be good for something.

Because the general programming language trend is toward higher and higher levels of abstraction, the
real meaning of system programming is slowly being eroded. Why bother with system details when suc-
cessful programs can be built effortlessly with a few mouse clicks? A middle course is required. A short
Perl script that scans a text file for a certain string will hardly want to bother with the mechanisms that
open and read the text file. In this situation, a pragmatic view that somehow the data will be coaxed out of
the file is sufficient. On the other hand, databases with gigabytes or terabytes of data will certainly want
to know which underlying operating system mechanisms are used to access their files and raw data so
that the database code can be tuned to deliver maximum performance. Supplying a giant matrix in mem-
ory with specific values is a classic example of how program performance can be significantly boosted
by observing the internal structures of the operating system. The order in which values are supplied is
crucial if the matrix data are spread over several memory pages. Unnecessary paging can be avoided and
system caches and buffers can be put to best use depending on how the memory management subsystem
manages memory.

This chapter discusses techniques that are not (or at least only to a minor extent) abstracted from the
functions of the kernel — all the more so as we want to examine the internal structure of the kernel and
the architectural principles used, including the interfaces to the outside world.

13.1.1 Tracing System Calls
The following example illustrates how system calls are made using the wrapper routines of the standard
library:

#include<stdio.h>
#include<fcntl.h>
#include<unistd.h>
#include<malloc.h>

int main() {
int handle, bytes;
void* ptr;

820

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 821

Chapter 13: System Calls

handle = open("/tmp/test.txt", O_RDONLY);

ptr = (void*)malloc(150);

bytes = read(handle, ptr, 150);
printf("%s", ptr);

close(handle);
return 0;

}

The sample program opens /tmp/test.txt, reads the first 150 bytes, and writes them to standard
output — a very simple version of the standard Unix head command.

How many system calls does the program use? The only ones that are immediately visible are open,
read, and close (their implementation is discussed in Chapter 8). However, the print function is also
implemented by system calls in the standard library. It would, of course, be possible to find out which
system calls are used by reading the source code of the standard library, but this would be tedious. A
simpler option is to use the strace tool, which logs all system calls issued by an application and makes
this information available to programmers — this tool is indispensable when debugging programs. Nat-
urally, the kernel must provide special support for logging system calls as discussed in Section 13.3.3
(not surprisingly, support is also provided in the form of a system call (ptrace); our only interest is in its
output).

The following strace writes a list of all issued system calls to the file test.syscalls1:

wolfgang@meitner> strace -o log.txt ./shead

The contents of log.txt are more voluminous than you might have expected:

execve("./shead", ["./shead"], [/* 27 vars */]) = 0
uname(sys="Linux", node="jupiter", ...) = 0
brk(0) = 0x8049750
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x40017000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, st_mode=S_IFREG|0644, st_size=85268, ...) = 0
old_mmap(NULL, 85268, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40018000
close(3) = 0
open("/lib/i686/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200\302"..., 1024) = 1024
fstat64(3, st_mode=S_IFREG|0755, st_size=5634864, ...) = 0
old_mmap(NULL, 1242920, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x4002d000
mprotect(0x40153000, 38696, PROT_NONE) = 0
old_mmap(0x40153000, 24576, PROT_READ|PROT_WRITE, ..., 3, 0x125000) = 0x40153000
old_mmap(0x40159000, 14120, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x40159000
close(3) = 0
munmap(0x40018000, 85268) = 0
getpid() = 10604
open("/tmp/test.txt", O_RDONLY) = 3
brk(0) = 0x8049750

1strace has other options to specify exactly which data are saved; they are documented in the strace(1) manual page.

821

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 822

Chapter 13: System Calls

brk(0x8049800) = 0x8049800
brk(0x804a000) = 0x804a000
read(3, "A black cat crossing your path s"..., 150) = 109
fstat64(1, st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40018000
ioctl(1, TCGETS, B38400 opost isig icanon echo ...) = 0
write(1, "A black cat crossing your path s"..., 77) = 77
write(1, " -- Groucho Marx\n", 32) = 32
munmap(0x40018000, 4096) = 0
_exit(0) = ?

The trace log shows that the application makes a large number of system calls not explicitly listed in the
source code. Consequently, the output of strace is not easy to read. For this reason, all lines with a direct
equivalent in the C sources of the example are in italics. All other entries are generated by code added
automatically at program compilation time.

The additional system calls are generated by code that is needed as a framework for launching and
running the application — for example, the C standard library is dynamically mapped into the process
memory area. Other calls — old_mmap and unmap — are responsible for managing the dynamic memory
used by the application.

The three system calls used directly — open, read, and close — are translated into calls of the corre-
sponding kernel functions.2 Two further routines of the standard library make internal use of system
calls with different names to achieve the desired effect:

❑ malloc is the standard function for reserving memory in the process heap area. As mentioned in
Chapter 3, the malloc variant of the GNU library features an additional memory management
facility to make effective use of the memory space allocated by the kernel.

Internally, malloc executes the brk system call whose implementation is described in Chapter
3. The system call log shows that malloc executes the call three times as a result of its internal
algorithms — but each time with different arguments.

❑ printf first processes the passed arguments — in this case, a dynamic string — and displays the
results with the write system call.

Using the strace tool has a further advantage — the source code of the application being traced need
not be present to learn about its internal structure and how it functions.

Our small sample program shows clearly that there are strong dependencies between the application and
the kernel, as indicated by the repeated use of system calls. Even scientific programs that spend most of
their time number-crunching and rarely invoke kernel functions cannot manage without system calls. On
the other hand, interactive applications such as emacs and mozilla make frequent use of system calls.
The size of the log file for emacs is approximately 170 KiB for program launch alone (i.e., up to the end of
program initialization).

2The GNU standard library also includes a general routine that allows system calls to be executed by reference to their numbers if
no wrapper implementation is available.

822

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 823

Chapter 13: System Calls

13.1.2 Supported Standards
System calls are of special significance in all Unix look-alikes. Their scope and speed and their efficient
implementation play a major role in system performance. System calls are implemented extremely effi-
ciently in Linux, as demonstrated in Section 13.3. Of equal importance are the versatility and choice of
available routines to make the lives of programmers (of applications and of standard library functions)
easier and to facilitate program portability between the various Unix derivatives on source text level. In
the more than 25-year history of Unix, this has contributed to the emergence of standards and de facto
standards governing the uniformity of interfaces between the various systems.

The POSIX standard (whose acronym — Portable Operating System Interface for Unix — reveals its
purpose) has emerged as the dominant standard. Linux and the C standard library also make every
effort to comply with POSIX, which is why it is worthy of brief discussion here. Since publication of
the first documents at the end of the 1980s, the standard has expanded drastically in scope (the current
version fills four volumes3) and is now — in the opinion of many programmers — overlong and too
complex.

The Linux kernel is largely compatible with the POSIX-1003.1 standard. Naturally, new developments in
the standard take some time before they filter through into kernel code.

In addition to POSIX, there are other standards that are not based on the work of committees but are
rooted in the development of Unix and its look-alikes. In the history of Unix, two major lines of devel-
opment have produced two independent and autonomous systems — System V (which derives directly
from the original sources of AT&T) and BSD (Berkeley Software Distribution, developed at the Univer-
sity of California and now strongly represented in the marketplace under the names of NetBSD, FreeBSD,
and OpenBSD and the commercial offshoots, BSDI and MacOS X).

Linux features system calls from all three of the above sources — in a separate implementation, of course.
The code of competing systems is not used for legal and licensing reasons alone. For example, the three
well-known system calls listed below originate from the three different camps:

❑ flock locks a file to prevent parallel access by several processes and to ensure file consistency.
This call is prescribed by the POSIX standard.

❑ BSD Unix provides the truncate call to shorten a file by a specified number of bytes; Linux also
implements this function under the same name.

❑ sysfs gathers information on the filesystems known to the kernel and was introduced in System
V Release 4. Linux has also adopted this system call. However, the Linux developers might not
entirely agree with the System V designers about the true value of the call — at least, the source
code comment says Whee.. Weird sysv syscall.

Nowadays, the information is obtained much more easily by reading /proc/filesystems.

Some system calls are required by all three standards. For example, time, gettimeofday and
settimeofday exist in identical form in System V, POSIX, and 4.3BSD — and consequently in the
Linux kernel.

3The standard is available in electronic form at www.opengroup.org/onlinepubs/007904975/.

823

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 824

Chapter 13: System Calls

Similarly, some system calls were developed specifically for Linux and either don’t exist at all in other
look-alikes or have a different name. One example is the vm86 system call, which is of fundamental impor-
tance in implementing the DOS emulator on IA-32 processors. More general calls, such as nanosleep to
suspend process execution for very short periods of time, are also part of the Linux-specific repertoire.

In some cases, two system calls are implemented to resolve the same problem in different ways. Prime
examples are the poll and select system calls; the first was introduced in System V, the latter in 4.3BSD.
Ultimately, both perform the same function.

In conclusion, it’s worth noting that — in spite of the name — simply implementing the POSIX standard
does not produce a full Unix system. POSIX is nothing more than a collection of interfaces whose concrete
implementations are not mandated and need not necessarily be included in the kernel. Some operating
systems therefore fully implement the POSIX standard in a normal library to facilitate Unix application
porting despite their non-Unix design.4

13.1.3 Restarting System Calls
An interesting problem arises when system calls clash with signals. How are priorities assigned when
it is imperative to send a signal to a process while a system call is being executed? Should the signal
wait until the system call terminates, or should the call be interrupted so that the signal can be delivered
as quickly as possible? The first option obviously causes fewer problems and is the simpler solution.
Unfortunately, it only functions properly if all system calls terminate quickly and don’t make the process
wait for too long (as mentioned in Chapter 5, signals are always delivered when the process returns to
user mode after a system call). This is not always the case. System calls not only need a certain period of
time to execute, but, in the worst case, they also go to sleep (when, e.g., no data are available to read).
This seriously delays delivery of any signals that may have occurred in the meantime. Consequently,
such situations must be prevented at all costs.

If an executing system call is interrupted, which value does the kernel return to the application? In nor-
mal circumstances, there are only two situations: Either the call is successful or it fails — in which case
an error code is returned so that the user process can determine the cause of the error and react appropri-
ately. In the event of an interruption, a third situation arises: The application must be informed that the
system call would have terminated successfully, had it not been interrupted by a signal during execution.
In such situations, the -EINTR constant is used under Linux (and under other System V derivatives).

The downside of this procedure is immediately apparent. Although it is simple to implement, it forces
programmers of userspace applications to explicitly check the return value of all interruptible system
calls for -EINTR and, where this value is true, to restart the call repeatedly until it is no longer interrupted
by a signal. System calls restarted in this way are called restartable system calls, and the technique itself is
known as restarting.

This behavior was introduced for the first time in System V Unix. However, it is not the only way of com-
bining the rapid delivery of new signals and the interruption of system calls, as the approach adopted
in the BSD world confirms. Let us examine what happens in the BSD kernel when a system call is inter-
rupted by a signal.

The BSD kernel interrupts execution of the system call and switches to signal execution in user
mode. When this happens, the call does not issue a return value but is restarted automatically by

4More recent Windows versions include a library of this kind.

824

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 825

Chapter 13: System Calls

the kernel once the signal handler has terminated. Because this behavior is transparent to the user
application and also dispenses with repeated implementation of checks for the -EINTR return value
and call restarting, this alternative is much more popular with programmers than the System V
approach.

Linux supports the BSD variant by means of the SA_RESTART flag, which can be specified on a per-signal
basis when handler routines are installed (see Chapter 5). The mechanism proposed by System V is
used by default because the BSD mechanism also occasionally gives rise to difficulties, as the following
example taken from [ME02], page 229, shows.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

volatile int signaled = 0;

void handler (int signum) {
printf("signaled called\n");
signaled = 1;

}

int main() {
char ch;
struct sigaction sigact;
sigact.sa_handler = handler;
sigact.sa_flags = SA_RESTART;
sigaction(SIGINT, &sigact, NULL);

while (read(STDIN_FILENO, &ch, 1) != 1 && !signaled);
}

This short C program waits in a while loop until the user enters a character via standard input or until
the program is interrupted by the SIGINT signal (which can be sent using kill -INT or by pressing
CTRL-C). Let us examine the code flow. If the user hits a normal key that does not cause SIGINT to be
sent, read yields a positive return code, namely, the number of characters read.

The argument of the while loop must return a logically false value to terminate execution. This happens
if one of the two logical queries linked by && (and) is false — which is the case when

❑ A single key was pressed; read then returns 1 and the test to check that the return value is not
equal to 1 returns a logically false value.

❑ The signaled variable is set to 1 because the negation of the variable (!signaled) also returns a
logically false value.

These conditions simply mean that the program waits either for keyboard input or the arrival of the
SIGINT signal in order to terminate.

To apply System V behavior for the code as implemented by default under Linux, it is necessary to sup-
press setting of the SA_RESTART flag; in other words, the line sigact.sa_flags = SA_RESTART must be
deleted or commented out. Once this has been done, the program runs as described and can be termi-
nated either by pressing a key or sending SIGINT.

825

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 826

Chapter 13: System Calls

The situation is more interesting if read is interrupted by the SIGINT signal and BSD behavior is activated
by means of SA_RESTART, as in the sample program. In this case, the signal handler is invoked, signaled
is set to 1, and a message is output to indicate that SIGINT was received — but the program is not ter-
minated. Why? After running the handler, the BSD mechanism restarts the read call and again waits for
entry of a character. The !signaled condition of the while loop does not apply and is not evaluated. The
program can therefore no longer be terminated by sending the SIGNIT signal, although the code suggests
that this is so.

13.2 Available System Calls
Before going into the technical details of system call implementation by the kernel (and by the userspace
library), it is useful to take a brief look at the actual functions made available by the kernel in the form of
system calls.

Each system call is identified by means of a symbolic constant whose platform-dependent definition is
specified in <asm-arch/unistd.h>. Since not all system calls are supported on all architectures (some
combinations are meaningless), the number of available calls varies from platform to platform — roughly
speaking, there are always upward of 200 calls. As a result of changes to the kernel implementation of
system calls over time, some calls are now superfluous, and their numbers are no longer used — the
SPARC port (on 32-bit processors) boasts a large number of extinct calls that give rise to ‘‘gaps‘‘ in the
list of calls.

It is simpler for programmers to group system calls into functional categories as they are not interested
in their individual numbers — they are concerned only with the symbolic names and the meaning of the
calls. The following short list — which makes no claim to be complete — gives an overview of the various
categories and their most important system calls.

Process Management Processes are at the center of the system, so it’s not surprising that a large number
of system calls are devoted to process management. The functions provided by the calls range from
querying simple information to starting new processes:

❑ fork and vfork split an existing process into two new processes as described in Chapter 2.
clone is an enhanced version of fork that supports, among other things, the generation of
threads.

❑ exit ends a process and frees its resources.

❑ A whole host of system calls exist to query (and set) process properties such as
PID, UID, and so on.; most of these calls simply read or modify a field in the task
structure. The following can be read: PID, GID, PPID, SID, UID, EUID, PGID, EGID,
and PGRP. The following can be set: UID, GID, REUID, REGID, SID, SUID, and
FSGID.

System calls are named in accordance with a logical scheme that uses designations such as
setgid, setuid, and geteuid.

❑ personality defines the execution environment of an application and is used, for
instance, in the implementation of binary emulations.

❑ ptrace enables system call tracing and is the platform on which the above strace tool
builds.

826

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 827

Chapter 13: System Calls

❑ nice sets the priority of normal processes by assigning a number between −20 and 19 in
descending order of importance. Only root processes (or processes with the CAP_SYS_NICE
permission) are allowed to specify negative values.

❑ setrlimit is used to set certain resource limits, for example, CPU time or the maximum
permitted number of child processes. getrlimit queries the current limits (i.e., maximum
permitted values), and getrusage queries current resource usage to check whether the
process is still within the defined resource limits.

Time Operations Time operations are critical, not only to query and set the current system time, but also
to give processes the opportunity to perform time-based operations, as described in Chapter 15:

❑ adjtimex reads and sets time-based kernel variables to control kernel time behavior.

❑ alarm and setitimer set up alarms and interval timers to defer actions to a later time.
getitimer reads settings.

❑ gettimeofday and settimeofday get and set the current system time, respectively. Unlike
times, they also take account of the current time zone and daylight saving time.

❑ sleep and nanosleep suspend process execution for a defined interval; nanosleep defines
high-precision intervals.

❑ time returns the number of seconds since midnight on January 1, 1970 (this date is the
classic time base for Unix systems). stime sets this value and therefore changes the current
system date.

Signal Handling Signals are the simplest (and oldest) way of exchanging limited information between
processes and of facilitating interprocess communication. Linux supports not only classic sig-
nals common to all Unix look-alikes but also real-time signals in line with the POSIX standard.
Chapter 5 deals with the implementation of the signal mechanism.

❑ signal installs signal handler functions. sigaction is a modern, enhanced version that
supports additional options and provides greater flexibility.

❑ sigpending checks whether signals are pending for the process but are currently blocked.

❑ sigsuspend places the process on the wait queue until a specific signal (from a set of
signals) arrives.

❑ setmask enables signal blocking, while getmask returns a list of all currently blocked
signals.

❑ kill is used to send any signals to a process.

❑ The same system calls are available to handle real-time signals. However, their function
names are prefixed with rt_. For example, rt_sigaction installs a real-time signal han-
dler, and rt_sigsuspend puts the process in a wait state until a specific signal (from a set
of signals) arrives.

In contrast to classic signals, 64 different real-time signals can be handled on all
architectures — even on 32-bit CPUs. Additional information can be associated with
real-time signals, and this makes the work of (application) programmers a little easier.

Scheduling Scheduling-related system calls could be grouped into the process management category
because all such calls logically relate to system tasks. However, they merit a category of their
own due simply to the sheer number of manipulation options provided by Linux to parameterize
process behavior.

827

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 828

Chapter 13: System Calls

❑ setpriority and getpriority set and get the priority of a process and are therefore key
system calls for scheduling purposes.

❑ Linux is noted not only for supporting different process priorities, but also for pro-
viding a wide variety of scheduling classes to suit the specific time behavior and time
requirements of applications. sched_setscheduler and sched_getscheduler set and
query scheduling classes. sched_setparam and sched_getparam set and query additional
scheduling parameters of processes (currently, only the parameter for real-time priority
is used).

❑ sched_yield voluntarily relinquishes control even when CPU time is still available to the
process.

Modules System calls are also used to add and remove modules to and from the kernel, as described
in Chapter 7.

❑ init_module adds a new module.

❑ delete_module removes a module from the kernel.

Filesystem All system calls relating to the filesystem apply to the routines of the VFS layer discussed in
Chapter 8. From there, the individual calls are forwarded to the filesystem implementations that
usually access the block layer. System calls of this kind are very costly in terms of resources and
execution time.

❑ Some system calls are used as a direct basis for userspace utilities of the same name that
create and modify the directory structure: chdir, mkdir, rmdir, rename, symlink, getcwd,
chroot, umask, and mknod.

❑ File and directory attributes can be modified using chown and chmod.

❑ The following utilities for processing file contents are implemented in the standard library
and have the same names as the system calls: open, close, read and readv, write and
writev, truncate and llseek.

❑ readdir and getdents read directory structures.

❑ link, symlink, and unlink create and delete links (or files if they are the last element in a
hard link); readlink reads the contents of a link.

❑ mount and umount are used to attach and detach filesystems.

❑ poll and select are used to wait for some event.

❑ execve loads a new process in place of an old process. It starts new programs when used
in conjunction with fork.

Memory Management Under normal circumstances, user applications rarely or never come into contact
with memory management system calls because this area is completely shielded from the standard
library — by the malloc, balloc, and calloc functions in the case of C. Implementation is usually
programming language-specific because each language has different dynamic memory manage-
ment needs and often provides features like garbage collection that require sophisticated allocation
of the memory available to the kernel.

❑ In terms of dynamic memory management, the most important call is brk, which modifies
the size of the process data segment. Programs that invoke malloc or similar functions
(almost all nontrivial code) make frequent use of this system call.

828

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 829

Chapter 13: System Calls

❑ mmap, mmap2, munmap, and mremap perform mapping, unmapping, and remapping opera-
tions, while mprotect and madvise control access to and give advice about specific regions
of virtual memory.

mmap and mmap2 differ slightly by their parameters; refer to the manual pages for more
details. The GNU C library uses mmap2 by default; mmap is just a userland wrapper function
by now.

Depending on the malloc implementation, it can also be that mmap or mmap2 is used inter-
nally. This works because anonymous mappings allow installing mappings that are not
backed by a file. This approach allows for achieving more flexibility than by using brk.

❑ swapon and swapoff enable and disable (additional) swap space on external storage
devices.

Interprocess Communication and Network Functions Because ‘‘IPC and networks‘‘ are com-
plex issues, it would be easy to assume that a rich selection of system calls is available. As
Chapters 12 and 5 show, however, the opposite is true. Only two system calls are provided
to handle all possible tasks. However, a very large number of parameters is involved. The C
standard library spreads them over many different functions with just a few parameters so that
they are easier for programmers to handle. Ultimately, the functions are always based on the two
system calls:

❑ socketcall deals with network questions and is used to implement socket abstraction.
It manages connections and protocols of all kinds and implements a total of 17 different
functions differentiated by means of constants such as SYS_ACCEPT, SYS_SENDTO, and so
on. The arguments themselves must be passed as a pointer that, depending on function
type, points to a userspace structure holding the required data.

❑ ipc is the counterpart to socketcall and is used for process connections local to the com-
puter and not for connections established via networks. Because this system call need
implement ‘‘only‘‘ 11 different functions, it uses a fixed number of arguments — five in
all — to transfer data from userspace to kernel space.

System Information and Settings It is often necessary to query information on the running kernel and
its configuration and on the system configuration. Similarly, kernel parameters need to be set and
information must be saved to system log files. The kernel provides three further system calls to
perform such tasks:

❑ syslog writes messages to the system logs and permits the assignment of different pri-
orities (depending on message priority, userspace tools send the messages either to a
permanent log file or directly to the console to inform users of critical situations).

❑ sysinfo returns information on the state of the system, particularly statistics on memory
usage (RAM, buffer, swap space).

❑ sysctl is used to ‘‘fine-tune‘‘ kernel parameters. The kernel now supports an immense
number of dynamically configurable options that can be read and modified using the proc
filesystem, as described in Chapter 10.

System Security and Capabilities The traditional Unix security model — based on users, groups, and
an ‘‘omnipotent‘‘ root user — is not flexible enough for modern needs. This has led to the introduc-
tion of the capabilities system, which enables non-root processes to be furnished with additional
privileges and capabilities according to a fine-grained scheme.

829

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 830

Chapter 13: System Calls

In addition, the Linux security modules subsystem (LSM) provides a general interface to support
modules whose functions are invoked at various hooks in the kernel to perform security checks:

❑ capset and capget are responsible for setting and querying process capabilities.

❑ security is a system call multiplexer for implementing LSM.

13.3 Implementation of System Calls
In the implementation of system calls, not only the kernel source code that provides the required func-
tions is relevant but also the way in which the functions are invoked. Functions are not called in the same
way as normal C functions because the boundary between user and kernel mode is crossed. This raises
various problems that are handled by platform-specific assembly language code. This code establishes
a processor-independent state as quickly as possible to enable system calls to be implemented indepen-
dently of the underlying architecture. How parameters are passed between userspace and kernel space
must also be considered.

13.3.1 Structure of System Calls
Kernel code for implementing system calls is divided into two very different parts. The actual task to
be performed by the system call is implemented as a C routine that is virtually no different from the
remaining kernel code. The mechanism for calling the routine is packed with platform-specific features
and must take numerous details into consideration — so that ultimately implementation in assembly
language code is a must.

Implementation of Handler Functions
Let us first take a close look at what’s behind C implementation of the actual handler functions. These
functions are spread across the kernel because they are embedded in code sections to which they are most
closely related in terms of their purpose. For example, all file-related system calls reside in the fs/ kernel
subdirectory because they interact directly with the virtual filesystem. Likewise, all memory management
calls reside in the files of the mm/ subdirectory.

The handler functions for implementing system calls share several formal features:

❑ The name of each function is prefixed with sys_ to uniquely identify the function as a system
call — or to be more accurate, as a handler function for a system call. Generally, it is not neces-
sary to distinguish between handler function and system call. In the sections below, I do so only
where necessary.

❑ All handler functions accept a maximum of five parameters; these are specified in a parameter
list as in normal C functions (how parameters are supplied with values differs slightly from the
classic approach, as you will see shortly).

❑ All system calls are executed in kernel mode. Consequently, the restrictions discussed in
Chapter 2 apply, primarily that direct access to user mode memory is not permitted. Recall
that copy_from_user, copy_to_user, or other functions from this family must ensure that the
desired memory region is available to the kernel before doing the actual read/write operation.

Once the kernel has transferred control to the handler routine, it returns to completely neutral code that is
not dependent on a particular CPU or architecture. However, there are exceptions — for various reasons,

830

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 831

Chapter 13: System Calls

a small number of handler functions are implemented separately for each platform. When results are
returned, the handler function need take no special action; a simple return followed by a return value is
sufficient. Switching between kernel and user mode is performed by platform-specific kernel code with
which the handler does not come into contact. Figure 13-1 illustrates the chronological sequence.

Application Libc ApplicationLibc

Handler

KernelKernel

Userspace Kernelspace Userspace

Figure 13-1: Chronological sequence of a system call.

The above approach greatly simplifies the work of programmers because handler functions are imple-
mented in practically the same way as normal kernel code. Some system calls are so simple that they can
be implemented by a single line of C code. For example, the getuid system call to return the UID of the
current process is implemented as follows:

kernel/timer.c
asmlinkage long sys_getuid(void)
{

/* Only we change this so SMP safe */
return current->uid;

}

current is a pointer to the current instance of task_struct and is set automatically by the kernel. The
above code returns the uid element (current user ID) of task_struct. It couldn’t be simpler!

Of course, there are much more complicated system calls, some of which were discussed in preceding
chapters. Implementation of the handler function itself is always short and compact. It is usual to trans-
fer control to a more general kernel auxiliary function as soon as possible, as, for example, in the case
of read.

fs/read_write.c
asmlinkage ssize_t sys_read(unsigned int fd, char __user * buf, size_t count)
{

struct file *file;
ssize_t ret = -EBADF;
int fput_needed;

file = fget_light(fd, &fput_needed);
if (file) {

loff_t pos = file_pos_read(file);
ret = vfs_read(file, buf, count, &pos);
file_pos_write(file, pos);
fput_light(file, fput_needed);

}

return ret;
}

Here, the bulk of the work is done by vfs_read, as described in Chapter 8.

831

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 832

Chapter 13: System Calls

A third ‘‘type‘‘ of system call acts as a multiplexer. Multiplexers use constants to delegate system calls to
functions that perform very different tasks. A prime example is socketcall (discussed in Chapter 12),
which groups together all network-related calls.

net/socket.c
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{

unsigned long a[6];
unsigned long a0,a1;
int err;

...
switch(call)
{

case SYS_SOCKET:
err = sys_socket(a0,a1,a[2]);
break;

case SYS_BIND:
err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
break;

case SYS_CONNECT:
err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
break;

case SYS_LISTEN:
err = sys_listen(a0,a1);
break;

...
case SYS_RECVMSG:

err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
break;

default:
err = -EINVAL;
break;

}
return err;

}

Formally, only one void pointer is passed because the number of system call arguments varies according
to the multiplexing constant. The first task is therefore to determine the required number of arguments
and to fill the individual elements of the a[] array (this involves manipulating pointers and arrays and
is not discussed here). The call parameter is then referenced to decide which kernel function will be
responsible for further processing.

Regardless of their complexity, all handler functions have one thing in common. Each function dec-
laration includes the additional (asmlinkage) qualifier, which is not a standard element of C syntax.
asmlinkage is an assembler macro defined in <linkage.h>. What is its purpose? For most platforms, the
answer is very simple — it does nothing at all!

However, the macro is used in conjunction with the GCC enhancement (__attribute__) discussed
in Appendix C on IA-32 and IA-64 systems only in order to inform the compiler of the special calling
conventions for the function (examined in the next section).

832

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 833

Chapter 13: System Calls

Dispatching and Parameter Passing
System calls are uniquely identified by a number assigned by the kernel. This is done for practical reasons
that become clear when system calls are activated. All calls are handled by a single central piece of code
that uses the number to dispatch a specific function by reference to a static table. The parameters passed
are also handled by the central code so that parameter passing is implemented independently of the
actual system call.

Switching from user to kernel mode — and therefore to dispatching and parameter passing — is imple-
mented in assembly language code to cater for many platform-specific features. Owing to the very large
number of architectures supported, every detail cannot be covered, and our description is therefore
restricted to the widespread IA-32 architectures. The implementation approach is much the same on
other processors, even though assembler details may differ.

To permit switching between user and kernel mode, the user process must first draw attention to itself by
means of a special machine instruction; this requires the assistance of the C standard library. The kernel
must also provide a routine that satisfies the switch request and looks after the technical details. This
routine cannot be implemented in userspace because commands are needed that normal applications are
not permitted to execute.

Parameter Passing
Different platforms use different assembler methods to execute system calls.5 System call parameters
are passed directly in registers on all platforms — which handler function parameter is held in which
register is precisely defined. A further register is needed to define the system call number used during
subsequent dispatching to find the matching handler function.

The following overview shows the methods used by a few popular architectures to make system calls:

❑ On IA-32 systems, the assembly language instruction int $0x80 raises software interrupt 128.
This is a call gate to which a specific function is assigned to continue system call processing. The
system call number is passed in register eax, while parameters are passed in registers ebx, ecx,
edx, esi, and edi.6

On more modern processors of the IA-32 series (Pentium II and higher), two assembly language
instructions (sysenter and sysexit) are used to enter and exit kernel mode quickly. The way in
which parameters are passed and returned is the same, but switching between privilege levels is
faster.

To enable sysenter calls to be made faster without losing downward compatibility with older
processors, the kernel maps a memory page into the top end of address space (at 0x0xffffe000).
Depending on processor type, the system call code on this page includes either int 0x80 or
sysenter.

5The details are easy to find in the sources of the GNU standard library by referring to the filenamed sysdeps/unix/sysv/
linux/arch/syscall.S. The assembly language code required for the particular platform can be found under the syscall
label; this code provides a general interface for invoking system calls for the rest of the library.
6In addition to the 0x80 call gate, kernel implementation on IA-32 processors features two other ways of entering kernel mode and
executing system calls — the lcall7 and lcall27 call gates. These are used to perform binary emulation for BSD and Solaris because
these systems make system calls in native mode. They differ only slightly from the standard Linux method and offer little in the way
of new insight — which is why I do not bother to discuss them here.

833

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 834

Chapter 13: System Calls

Calling the code stored there (with call 0xffffe000) allows the standard library to automati-
cally select the method that matches the processor used.

❑ Alpha processors provide a privileged system mode (PAL, privileged architecture level) in which
various system kernel routines can be stored. The kernel employs this mechanism by including
in the PAL code a function that must be activated in order to execute system calls. call_pal
PAL_callsys transfers control flow to the desired routine. v0 is used to pass the system call
number, and the five possible arguments are held in a0 to a4 (note that register naming is more
systematic in recent architectures than in earlier architectures such as IA-32 . . .).

❑ PowerPC processors feature an elegant assembly language instruction called sc (system call).
This is used specifically to implement system calls. Register r3 holds the system call number,
while parameters are held in registers r4 to r8 inclusive.

❑ The AMD64 architecture also has its own assembly language instruction with the revealing name
of syscall to implement system calls. The system call number is held in the raw register, param-
eters in rdi, rsi, rdx, r10, r8, and r9.

Once the application program has switched to kernel mode with the help of the standard library, the
kernel is faced with the task of finding the matching handler function for the system call and supplying
it with the passed parameters. A table named sys_call_table, which holds a set of function pointers
to handler routines, is available for this purpose on all (!) platforms. Because the table is generated with
assembly language instructions in the data segment of the kernel, its contents differ from platform to
platform. The principle, however, is always the same: by reference to the system call number, the kernel
finds the appropriate position in the table at which a pointer points to the desired handler function.

System Call Table
Let us take a look at the sys_call_table of an Sparc64 system as defined in arch/sparc/kernel/
systlbs.S (System call tables for other systems can be found in a file often called entry.S in the cor-
responding directory for the processor type.)

arch/sparc64/kernel/systbls.S
sys_call_table64:
sys_call_table:
/*0*/ .word sys_restart_syscall, sparc_exit, sys_fork, sys_read, sys_write
/*5*/ .word sys_open, sys_close, sys_wait4, sys_creat, sys_link
/*10*/ .word sys_unlink, sys_nis_syscall, sys_chdir, sys_chown, sys_mknod
/*15*/ .word sys_chmod, sys_lchown, sparc_brk, sys_perfctr, sys_lseek
/*20*/ .word sys_getpid, sys_capget, sys_capset, sys_setuid, sys_getuid
/*25*/ .word sys_vmsplice, sys_ptrace, sys_alarm, sys_sigaltstack, sys_nis_syscall
/*30*/ .word sys_utime, sys_nis_syscall, sys_nis_syscall, sys_access, sys_nice

.word sys_nis_syscall, sys_sync, sys_kill, sys_newstat, sys_sendfile64
/*40*/ .word sys_newlstat, sys_dup, sys_pipe, sys_times, sys_nis_syscall

.word sys_umount, sys_setgid, sys_getgid, sys_signal, sys_geteuid
/*50*/ .word sys_getegid, sys_acct, sys_memory_ordering, sys_nis_syscall, sys_ioctl

.word sys_reboot, sys_nis_syscall, sys_symlink, sys_readlink, sys_execve
/*60*/ .word sys_umask, sys_chroot, sys_newfstat, sys_fstat64, sys_getpagesize

...
/*280*/ .word sys_tee, sys_add_key, sys_request_key, sys_keyctl, sys_openat

.word sys_mkdirat, sys_mknodat, sys_fchownat, sys_futimesat, sys_fstatat64
/*290*/ .word sys_unlinkat, sys_renameat, sys_linkat, sys_symlinkat, sys_readlinkat

.word sys_fchmodat, sys_faccessat, sys_pselect6, sys_ppoll, sys_unshare

834

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 835

Chapter 13: System Calls

/*300*/ .word sys_set_robust_list, sys_get_robust_list, sys_migrate_pages, sys_mbind,
sys_get_mempolicy

.word sys_set_mempolicy, sys_kexec_load, sys_move_pages, sys_getcpu, sys_epoll_pwait
/*310*/ .word sys_utimensat, sys_signalfd, sys_timerfd, sys_eventfd, sys_fallocate

The table definition is similar on IA-32 processors.

arch/x86/kernel/syscall_table_32.S
ENTRY(sys_call_table)

.long sys_restart_syscall /* 0 - old "setup()" system call, used for restarting */

.long sys_exit

.long sys_fork

.long sys_read

.long sys_write

.long sys_open /* 5 */

.long sys_close
...

.long sys_utimensat /* 320 */

.long sys_signalfd

.long sys_timerfd

.long sys_eventfd

.long sys_fallocate

The purpose of the .long statements is to align the table entries in memory.

The tables defined in this way have the properties of a C array and can therefore be processed using
pointer arithmetic. sys_call_table is the base pointer and points to the start of the array, that is, to
the zero entry in C terms. If a userspace program invokes the open system call, the number passed
is 5. The dispatcher routine adds this number to the sys_call_table base and arrives at the fifth entry
that holds the address of sys_open — this is the processor-independent handler function. Once the
parameter values still held in registers have been copied onto the stack, the kernel calls the handler
routine and switches to the processor-independent part of system call handling.

Because the kernel mode and user mode use two different stacks, as described in
Chapter 3, system call parameters cannot be passed on the stack as would normally
be the case. Switching between the stacks is performed either in
architecture-specific assembly language code that is called when kernel mode is
entered, or is carried out automatically by the processor when the protection level is
switched from user to kernel mode.

Return to User Mode
Each system call must inform the user application whether its routine was executed and with which
result. It does this by means of its return code. From the perspective of the application, a normal variable
is read using C programming means. However, the kernel, in conjunction with libc, must expend a little
more effort to make things just as simple for the user process.

Meaning of Return Values
Generally, the following applies for system call return values. Negative values indicate an error, and
positive values (and 0) denote successful termination.

835

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 836

Chapter 13: System Calls

Of course, neither programs nor the kernel itself operates with raw numbers but with symbolic
constants defined with the help of the pre-processor in include/asm-generic/errno-base.h and
include/asm-generic/errno.h.7 The file named <errno.h> contains several additional error codes, but
these are kernel-specific and are never visible to the user application. Error codes up to and including
511 are reserved for general errors; kernel-specific constants use the values above 512.

Because (not surprisingly) there are a very large number of potential errors, only a few constants are
listed below:

<asm-generic/errno-base.h>
#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */
#define ENXIO 6 /* No such device or address */
#define E2BIG 7 /* Argument list too long */
#define ENOEXEC 8 /* Exec format error */
#define EBADF 9 /* Bad file number */
#define ECHILD 10 /* No child processes */
...
#define EMLINK 31 /* Too many links */
#define EPIPE 32 /* Broken pipe */
#define EDOM 33 /* Math argument out of domain of func */
#define ERANGE 34 /* Math result not representable */

The ‘‘classic‘‘ errors that occur when working with Unix system calls are listed in errno-base.h. On the
other hand, errno.h contains more unusual error codes whose meanings are not immediately obvious
even to seasoned programmers. Examples such as EOPNOTSUPP — which stands for ‘‘Operation not sup-
ported on transport endpoint’’ — and ELNRNG — which means ‘‘Link number out of range’’ — are not
what might be classified as common knowledge. Some more examples:

<asm-generic/errno.h>
#define EDEADLK 35 /* Resource deadlock would occur */
#define ENAMETOOLONG 36 /* File name too long */
#define ENOLCK 37 /* No record locks available */
#define ENOSYS 38 /* Function not implemented */
...
#define ENOKEY 126 /* Required key not available */
#define EKEYEXPIRED 127 /* Key has expired */
#define EKEYREVOKED 128 /* Key has been revoked */
#define EKEYREJECTED 129 /* Key was rejected by service */

/* for robust mutexes */
#define EOWNERDEAD 130 /* Owner died */
#define ENOTRECOVERABLE 131 /* State not recoverable */

Although I just mentioned that error codes are always returned with a negative number, all codes shown
here are positive. It is a kernel convention that the numbers are defined as positive but are returned as

7SPARC, Alpha, PA-RISC, and MIPS architectures define their own versions of these files because they use different numeric error
codes from the remaining Linux ports. This is because of the fact that binary specifications for different platforms do not always use
the same magic constants.

836

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 837

Chapter 13: System Calls

a negative value by adding a sign. For example, if an operation were not permitted, a handler routine
would execute return -ENOPERM to yield the error code −1.

Let us examine the open system call with a particular focus on its return values (sys_open implementation
is discussed in Chapter 8). What can go wrong when a file is opened? Not much, you would think. But
the kernel finds nine ways of causing problems. For the individual sources of error, see the standard
library documentation (and, of course, the kernel sources). The most frequent system call error codes are
as follows:

❑ EACCES indicates that a file cannot be processed in the desired access mode — for example, a file
cannot be opened for write access if the write bit is not set in its mode string.

❑ EEXIST is returned if an attempt is made to create a file that already exists.

❑ ENOENT means that the desired file does not exist, and the flag to allow files that do not exist to be
created is not specified.

A positive number greater than zero is returned if the system call terminates successfully. As discussed
in Chapter 8, this is a file handle that is used to represent the file in all subsequent operations as well as
in the internal data structures of the kernel.

Linux uses the long data type to transfer results from kernel space to userspace; this is either 32 or 64
bits wide depending on processor type. One bit is used as the sign bit.8 This causes no problems for most
system calls, such as open. The positive values returned are usually so small that they fit into the range
provided by long.

Unfortunately, the situation is more complicated when returning large numbers that occupy the full
unsigned long space. This is the case with malloc and long if memory addresses are allocated at the top
of virtual memory space. The kernel then interprets the returned pointer as a negative number because it
overruns the positive range of signed long; this would be reported as an error even though the system
call terminated successfully. How can the kernel prevent such mishaps?

As noted above, the symbolic constants for error codes that reach userspace extend only up to 511 — in
other words, error codes returned in the range from −1 to −511. Consequently, all lower error codes are
excluded and are interpreted correctly — as very high return values of successful system calls.

All that now needs to be done to successfully terminate the system call is to switch back from kernel mode
to user mode. The result value is returned using a mechanism that functions similarly in the opposite
direction. The C function, in which the system call handler is implemented, uses return to place the
return code on the kernel stack. This value is copied into a specific processor register (eax on IA-32
systems, a3 on Alpha systems, etc.), where it is processed by the standard library and transferred to user
applications.

13.3.2 Access to Userspace
Even though the kernel does its best to keep kernel space and userspace separate, there are situations
in which kernel code has to access the virtual memory of user applications. Of course, this only makes
sense when the kernel is performing a synchronous action initiated by a user application — write and
read access by arbitrary processes not only serves no purpose, but may also produce risky results in the
code currently executing.

8Of course, 2’s complement notation is used to prevent errors where there are two zeros with different signs. See http://en
.wikipedia.org/wiki/Two%27s_complement for more information about this format.

837

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 838

Chapter 13: System Calls

The processing of system calls is, of course, a classic situation in which the kernel is busy with the syn-
chronous execution of a task assigned to it by an application. There are two reasons why the kernel has
to access the address space of user applications:

❑ If a system call requires more than six different arguments, they can be passed only with the help
of C structures that reside in process memory space. A pointer to the structures is passed to the
system call by means of registers.

❑ Larger amounts of data generated as a side effect of a system call cannot be passed to the user
process using the normal return mechanism. Instead, the data must be exchanged in defined
memory areas. These must, of course, be located in userspace so that the user application is able
to access them.

When the kernel accesses its own memory area, it can always be sure that there is a mapping between
the virtual address and a physical memory page. The situation in userspace is different, as described in
Chapter 3. Here, pages might be swapped out or not even be allocated.

The kernel may not therefore simply de-reference userspace pointers, but also must employ specific
functions to ensure that the desired area resides in RAM. To make sure that the kernel complies with this
convention, userspace pointers are labeled with the __user attribute to support automated checking by
C check tools.9

Chapter 3 discusses the functions used to copy data between userspace and kernel space. In most cases,
these will be copy_to_user and copy_from_user, but more variants are available.

13.3.3 System Call Tracing
The strace tool developed to trace the system calls of processes using the ptrace system call is described
in Section 13.1.1.

Implementation of the sys_ptrace handler routine is architecture-specific and is defined in
arch/arch/kernel/ptrace.c. Fortunately, there are only minor differences between the code of the
individual versions. I therefore provide a generalized description of how the routine works without
going into architecture-specific details.

Before examining the flow of the system call in detail, it should be noted that this call is needed because
ptrace — essentially a tool for reading and modifying values in process address space — cannot be used
directly to trace system calls. Only by extracting the desired information at the right places can trace
processes draw conclusions on which system calls have been made. Even debuggers such as gdb are
totally reliant on ptrace for their implementation. ptrace offers more options than are really needed to
simply trace system calls.

ptrace requires four arguments as the definition in the kernel sources shows10:

<syscalls.h>
asmlinkage long sys_ptrace(long request, long pid, long addr, long data);

9Linus Torvalds himself designed the sparse tool to find direct userspace pointer de-referencings in the kernel.
10<syscalls.h> contains the prototypes for all architecture-independent system calls whose arguments are identical on all
architectures.

838

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 839

Chapter 13: System Calls

❑ pid identifies the target process. The process identifier is interpreted with respect to the
namespace of the caller. Even though the way in which strace is handled suggests that process
tracing must be enabled right from the start, this is not true. The tracer program must ‘‘attach‘‘
itself to the target process by means of ptrace — and this can be done while the process is
already running (not only when the process starts).

strace is responsible for attaching to the process, usually immediately after the target program
is started with fork and exec.

❑ addr and data pass a memory address and additional information to the kernel. Their meanings
differ according to the operation selected.

❑ With the help of symbolic constants, request selects an operation to be performed by ptrace. A
list of all possible values is given on the manual page ptrace(2) and in <ptrace.h> in the kernel
sources. The available options are as follows:

❑ PTRACE_ATTACH issues a request to attach to a process and initiates tracing. PTRACE_DETACH
detaches from the process and terminates tracing. A traced process is always terminated
when a signal is pending. The options below enable ptrace to be stopped during a system
call or after a single assembly language instruction.

When a traced process is stopped, the tracer program is informed by means of a SIGCHLD
signal that waiting can take place using the wait function discussed in Chapter 2.

When tracing is installed, the SIGSTOP signal is sent to the traced process — this causes the
tracer process to be interrupted for the first time. This is essential when system calls are
traced, as demonstrated below by means of an example.

❑ PEEKTEXT, PEEKDATA, and PEEKUSR read data from the process address space. PEEKUSR reads
the normal CPU registers and any other debug registers used11 (of course, only the contents
of a single register selected on the basis of its identifier are read — not the contents of the
entire register set). PEEKTEXT and PEEKDATA read any words from the text or data segment
of the process.

❑ POKETEXT, POKEDATA, and PEEKUSR write values to the three specified areas of the moni-
tored process and therefore manipulate the process address space contents; this can be very
important when debugging programs interactively.

Because PTRACE_POKEUSR manipulates the debug registers of the CPU, this option supports
the use of advanced debugging techniques; for example, monitoring of events that halt
program execution at a particular point when certain conditions are satisfied.

❑ PTRACE_SETREGS and PTRACE_GETREGS set and read values in the privileged register set of
the CPU.

❑ PTRACE_SETFPREGS and PTRACE_GETFPREGS set and read registers used for floating-point
computations. These operations are also very useful when testing and debugging applica-
tions interactively.

❑ System call tracing is based on PTRACE_SYSCALL. If ptrace is activated with this option, the
kernel starts process execution until a system call is invoked. Once the traced process has
been stopped, wait informs the tracer process, which then analyzes the process address

11Because a process other than the traced process is running when the ptrace system call is invoked, the physical registers
of the CPU naturally hold the values of the tracer program and not those of the traced process. This is why the data of the
pt_regs instance discussed in Chapter 14 are used; these data are copied into the register set when the process is activated
after a task switch. Manipulating the data of this structure is tantamount to manipulating the registers themselves.

839

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 840

Chapter 13: System Calls

space using the above ptrace operations to gather relevant information on the system call.
The traced process is stopped for a second time after completion of the system call to allow
the tracer process to check whether the call was successful.

Because the system call mechanism differs according to platform, trace programs such
as strace must implement the reading of data separately for each architecture; this is
a tedious task that quickly renders source code for portable programs unreadable (the
strace sources are overburdened with pre-processor conditionals and are no pleasure
to read).

❑ PTRACE_SINGLESTEP places the processor in single-step mode during execution of the
traced process. In this mode, the tracer process is able to access the traced process after
each assembly language instruction. Again, this is a very popular application debugging
technique, particularly when attempting to track down compiler errors or other such
subtleties.

Implementation of the single-step function is strongly dependent on the CPU used — after
all, the kernel is operating on a machine-oriented level at this point. Nevertheless, a
uniform interface is available to the tracer process on all platforms. After execution of
the assembler function, a SIGCHLD signal is sent to the tracer, which gathers detailed
information on the process state using further ptrace options. This cycle is constantly
repeated — the next assembler instruction is executed after invoking ptrace with
the PTRACE_SINGLESTEP argument, the process is put to sleep, the tracer is informed
accordingly by means of SIGCHLD, and so on.

❑ PTRACE_KILL closes the traced process by sending a KILL signal.

❑ PTRACE_TRACEME starts tracing the current process. The parent of the current process auto-
matically assumes the role of tracer and must be prepared to receive tracing information
from its child.

❑ PTRACE_CONT resumes execution of a traced process without specifying special conditions
for stopping the process — the traced application next stops when it receives a signal.

System Call Tracing
The following short sample program illustrates the use of ptrace. ptrace attaches itself to a process and
checks system call usage; as such, it is a minimal replacement for strace.

/* Simple replacement for strace(1) */

#include<stdio.h>
#include<stdlib.h>
#include<signal.h>
#include<unistd.h>
#include<sys/ptrace.h>
#include<sys/wait.h>
#include<asm/ptrace.h> /* for ORIG_EAX */

static long pid;

int upeek(int pid, long off, long *res) {
long val;

val = ptrace(PTRACE_PEEKUSER, pid, off, 0);

840

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 841

Chapter 13: System Calls

if (val == -1) {
return -1;

}

*res = val;
return 0;

}

void trace_syscall() {
long res;

res = ptrace(PTRACE_SYSCALL, pid, (char*) 1, 0);
if (res < 0) {
printf("Failed to execute until next syscall: %d\n", res);

}
}

void sigchld_handler (int signum) {
long scno;
int res;

/* Find out the system call (system-dependent)...*/
if (upeek(pid, 4*ORIG_EAX, &scno) < 0) {
return;

}

/* ... and output the information */
if (scno != 0) {
printf("System call: %u\n", scno);

}

/* Activate tracing until the next system call */
trace_syscall();

}

int main(int argc, char** argv) {
int res;

/* Check the number of arguments */
if (argc != 2) {
printf("Usage: ptrace <pid>\n");
exit(-1);

}

/* Read the desired pid from the command-line parameters */
pid = strtol(argv[1], NULL, 10);
if (pid <= 0) {
printf("No valid pid specified\n");
exit(-1);

} else {
printf("Tracing requested for PID %u\n", pid);

}

/* Install handler for SIGCHLD */

841

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 842

Chapter 13: System Calls

struct sigaction sigact;
sigact.sa_handler = sigchld_handler;
sigaction(SIGCHLD, &sigact, NULL);

/* Attach to the desired process */
res = ptrace(PTRACE_ATTACH, pid, 0, 0);
if (res < 0) {
printf("Failed to attach: %d\n", res);
exit(-1);

} else {
printf("Attached to %u\n", pid);

}

for (;;) {
wait(&res);
if (res == 0) {

exit(1);
}

}
}

The program structure is roughly as follows:

❑ The PID of the traced program is read from the command line, and the usual checks are
carried out.

❑ A handler for the CHLD signal is installed because the kernel sends this signal to the tracer process
each time the traced program is interrupted.

❑ The tracer process attaches itself to the target application by means of the ptrace request
PTRACE_ATTACH.

❑ The main part of the tracer program consists of a simple endless loop that repeatedly invokes the
wait command to wait for the arrival of new CHLD signals.

This structure is not dependent on a particular processor type and can be used for all systems sup-
ported by Linux. However, the method by which the number of the system call invoked is determined
is very architecture-specific. The method shown works only on IA-32 systems because they keep the
number at a specific offset in the saved register set. This offset is held in the ORIG_EAX constant defined
in asm/ptrace.h. Its value can be read using PTRACE_PEEKUSER and must be multiplied by the factor of 4
because the registers on this architecture are 4 bytes wide.

Of course, the above would be implemented differently on other architectures. For details, see the system
call-relevant code in the kernel sources and the sources of the standard strace tool.

Our main goal is to illustrate how ptrace calls are used to check monitored processes. Once process
tracing has been started by means of PTRACE_ATTACH, the bulk of the work is delegated to the handler
function of the CHLD signal implemented in sigchld_handler. This function is responsible for peforming
the following tasks:

❑ Helping to find the number of the system call invoked using platform-dependent means.

The information found is output if the result is a system call number not equal to 0. Testing for
0 is necessary to ensure that only requests for system calls are logged but not the signals sent to
the traced process.

842

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 843

Chapter 13: System Calls

❑ Helping to resume program flow. The kernel must, of course, be informed that execution
will be stopped at the next system call; this is done using the ptrace request PTRACE_
SYSCALL.

Program flow is obvious once the ball is rolling. A system call requested by the traced process triggers
the ptrace mechanism in the kernel, which sends a CHLD signal to the tracer process. The handler of the
tracer process reads the required information — the number of the system call — and outputs it, again
using the ptrace mechanism. Execution of the traced process is resumed and interrupted again when a
system call is invoked.

But how is the ball set rolling? Somehow or other the handler function must be invoked for the first time
in order to log system call tracing. As noted above, the kernel also sends SIGCHLD signals to the tracer
process when a signal is sent to the traced process — in doing so, it invokes the same handler function acti-
vated when a system call occurs. The fact that the kernel automatically sends a STOP signal to the traced
process when tracing is initiated ensures that the handler function is invoked when tracing starts — even
if the process receives no other signals. This sets the ball — that is, system call tracing — rolling.

Kernel-Side Implementation
As expected, the handler function for the ptrace system call is called sys_ptrace. The architecture-
independent part of the implementation that is used for all except a handful of architectures can be
found in kernel/ptrace.c. The architecture-dependent part, that is, the function arch_ptrace, is located
in arch/arch/kernel/ptrace.c. Figure 13-2 shows the code flow diagram.

Yes

No

arch_ptrace Perform request specific operation

sys_ptrace

ptrace_get_task_struct

ptrace_attachPTRACE_ATTACH requested?

ptrace_check_attach

Figure 13-2: Code flow diagram for sys_ptrace.

The ptrace system call is dominated by its request parameter — this is immediately apparent in the
structure of its code. Preliminary work is carried out, primarily to determine the task_struct instance
of the passed PID using ptrace_get_task_struct. This basically uses find_task_by_vpid to find the
required instance of task_struct, but also prevents tracing of the init process — the ptrace operation
is aborted if a value of 1 is passed for pid.

Starting Tracing
Process task structures include several ptrace-specific elements that are needed below.

<sched.h>
struct task_struct {
...

843

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 844

Chapter 13: System Calls

unsigned int ptrace;
...

/* ptrace_list/ptrace_children forms the list of my children
* that were stolen by a ptracer. */
struct list_head ptrace_children;
struct list_head ptrace_list;

...
struct task_struct *real_parent; /* real parent process (when being debugged) */

...
};

If PTRACE_ATTACH is set, ptrace_attach establishes a link between the tracer process and the target
process. When this is done,

❑ The ptrace element of the target process is set to PT_TRACED.

❑ The tracer process becomes the parent process of the target process (the real parent process is
held in real_parent).

❑ The traced process is added to the ptrace_children list of the tracer using the ptrace_list task
structure element.

❑ A STOP signal is sent to the traced process.

If a different action from PTRACE_ATTACH was requested, ptrace_check_attach first checks whether
a tracer is attached to the process, and the code splits depending on the particular ptrace operation.
This is handled in arch_ptrace; the function is defined by every architecture and cannot be provided
by the generic code. However, this is not entirely true: Some requests can, in fact, be handled by
architecture-independent code, and they are handled in ptrace_request (from kernel/ptrace.c) called
by arch_ptrace. Only very simple requests are processed by this function. For example, PTRACE_DETACH
to detach a tracer from a process is one of them.

Usually, a large case structure that deals separately with each case (depending on the request
parameter) is employed for this purpose. I discuss only some important cases: PTRACE_ATTACH and
PTRACE_DETACH, PTRACE_SYSCALL, PTRACE_CONT as well as PTRACE_PEEKDATA and PTRACE_POKEDATA. The
implementation of the remaining requests follows a similar pattern.

All further tracing actions performed by the kernel are present in the signal handler code discussed in
Chapter 5. When a signal is delivered, the kernel checks whether the PT_TRACED flag is set in the ptrace
field of task_struct. If it is, the state of the process is set to TASK_STOPPED (in get_signal_to_deliver
in kernel/signal.c) in order to interrupt execution. notify_parent with the CHLD signal is then used
to inform the tracer process. (The tracer process is woken up if it happens to be sleeping.) The tracer
process then performs the desired checks on the target process as specified by the remaining ptrace
options.

Implementation of PTRACE_CONT and _SYSCALL
PTRACE_CONT resumes a traced process after it was suspended owing to delivery of a signal. The
kernel-side implementation of this function is strongly associated with PTRACE_SYSCALL (which
suspends a traced process not only after the arrival of a signal but also before and after system calls are
invoked).

844

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 845

Chapter 13: System Calls

Both are discussed in the same section because their code differs only slightly:

❑ When PTRACE_SYSCALL is used, the TIF_SYSCALL_TRACE flag is set in the task structure of the
monitored process.

❑ When PTRACE_CONT is used, the flag is removed using clear_tsk_thread_flag.

Both flag routines set the corresponding bit in the flags field of the thread_info instance of the process.

Once the flag has been set or removed, the kernel need only wake the traced process using
wake_up_process before resuming its normal work.

What are the effects of the TIF_SYSCALL_TRACE flag? Because invoking system calls is very hardware-
related, the effects of the flag extend into the assembly language source code of entry.S. If the flag is set,
the C function do_syscall_trace is invoked on system call completion — but only on IA-32, PPC, and
PPC64 systems. Other architectures use other mechanisms not described here.

Nevertheless, the effects of the flag are the same on all supported platforms. Before and after the execu-
tion of a system call by the monitored process, the process state is set to TASK_STOPPED, and the tracer is
informed accordingly by means of a CHLD signal. Required information can then be extracted from the
contents of registers or specific memory areas.

Stopping Tracing
Tracing is disabled using PTRACE_DETACH, which causes the central ptrace handler to delegate this task
to the ptrace_detach function in kernel/ptrace.c. The task itself comprises the following steps:

1. The architecture-specific hook ptrace_disable allows for performing any required
low-level operations to stop tracing.

2. The flag TIF_SYSCALL_TRACE is removed from the child’s thread flags.

3. The ptrace element of the task_struct instance is reset to 0, and the target process is
removed from the ptrace_children list of the tracer process.

4. The parent process is reset to the original task by overwriting task_struct->parent with
the value stored in real_parent.

The traced process is woken up with wake_up_process so that it can resume its work.

Reading and Modifying Target Process Data
PTRACE_PEEKDATA reads information from the data segment.12 The ptrace call requires two parameters
for the request:

❑ addr specifies the address to be read in the data segment.

❑ data accepts the associated result.

12Because memory management does not differentiate between text and data segments — both begin at different addresses but are
accessed in the same way — the information provided applies equally for PTRACE_PEEKTEXT.

845

Mauerer runc13.tex V2 - 09/04/2008 5:32pm Page 846

Chapter 13: System Calls

The read operation is delegated to the access_process_vm function that is implemented in mm/memory.c.
(It used to be located in kernel/ptrace.c, but the new location is clearly a better choice.)

This function uses get_user_pages to find the page matching the desired address in userspace memory.
A temporary memory location in the kernel is used to buffer the required data. After some clean-up
work, control is returned to the dispatcher.

Because the required data are still in kernel space, put_user must be used to copy the result to the
userspace location specified by the addr parameter.

The traced process is manipulated in a similar way by PTRACE_POKEDATA. (PTRACE_POKETEXT is used in
exactly the same way because again there is no difference between the two segments of virtual address
space.) access_process_vm finds the memory page with the required address. access_process_vm is
directly responsible for replacing existing data with the new values passed in the system call.13

13.4 Summary
One possible way to view the kernel is as a comprehensive library of things it can do for userland appli-
cations. System calls are the interface between an application and this library. By invoking a system call,
an application can request a service that the kernel then fulfills. This chapter first introduced you to the
basics of system programming, which led to how system calls are implemented within the kernel. In con-
trast to regular functions, invoking system calls requires more effort because a switch between the kernel
and user modes of the CPU must be performed. Since the kernel lives in a different portion of the virtual
address space from userland, you have also seen that some care is required when the kernel transfers
data from or to an application. Finally, you have seen how system call tracing allows for tracking the
behavior of programs and serves as an indispensable debugging tool in userspace.

System calls are a synchronous mechanism to change from user into kernel mode. The next chapter
introduces you to interrupts that require asynchronously changing between the modes.

13A Boolean parameter can be selected to specify whether data are read only (PTRACE_POKETEXT or PTRACE_POKEDATA) or are
to be replaced with a new value en passant.

846

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 847

Kernel Activities

Chapter 13 demonstrated that system execution time can be split into two large and different parts:
kernel mode and user mode. In this chapter, we investigate the various kernel activities and reach
the conclusion that a finer-grained differentiation is required.

System calls are not the only way of switching between user and system mode. As is evident from
the preceding chapters, all platforms supported by Linux employ the concept of interrupts to intro-
duce periodic interruptions for a variety of reasons. Two types of interrupt are distinguished:

❑ Hardware Interrupts — Are produced automatically by the system and connected periph-
erals. They support more efficient implementation of device drivers, but are also needed
by the processor itself to draw attention to exceptions or errors that require interaction
with the kernel code.

❑ SoftIRQs — Are used to effectively implement deferred activities in the kernel itself.

In contrast to other parts of the kernel, the code for handling interrupts and system call-specific
segments contains very strong interweaving between assembly language and C code to resolve
several subtle problems that C could not reasonably handle on its own. This is not a Linux-specific
problem. Regardless of their individual approach, most operating system developers try to hide
the low-level handling of such points as deeply as possible in the kernel sources to make them
invisible to the remaining code. Because of technical circumstances, this is not always possible, but
the interrupt handling layer has evolved over time to a state where high-level code and low-level
hardware interaction are separated as well and cleanly as possible.

Frequently, the kernel needs mechanisms to defer activities until a certain time in the future or to
place them in a queue for later processing when time is available. You have come across a num-
ber of uses for such mechanisms in earlier chapters. In this section, we take a closer look at their
implementation.

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 848

Chapter 14: Kernel Activities

14.1 Interrupts
Until kernel 2.4, the only commonality in the implementation of interrupts on the diverse platforms
supported by the Linux kernel used to be that they exist at all — but that’s where the similarity came
to an end. Lots of code (and lots of duplicated functionality) was spread across architecture-specific
components. The situation was improved considerably during the development of kernel 2.6 because
a generic framework for interrupts and IRQs was introduced. Individual platforms are now only
responsible to interact with the hardware on the lowest levels. Everything else is provided by
generic code.

Let’s start our discussion by introducing the most common types of system interrupts as our starting
point before focusing on how they function, what they do, and what problems they cause.

14.1.1 Interrupt Types
Generally, interrupt types can be grouped into two categories:

❑ Synchronous Interrupts and Exceptions — Are produced by the CPU itself and are directed at
the program currently executing. Exceptions may be triggered for a variety of reasons: because
of a programming error that occurred at run time (a classical example is division by zero), or
because — as the name suggests — an exceptional situation or an anomalous condition has
arisen and the processor needs ‘‘external‘‘ help to deal with it.

In the first case, the kernel must inform the application that an exception has arisen. It can use,
for example, the signaling mechanism described in Chapter 5. This gives the application an
opportunity to correct the error, issue an appropriate error message, or simply terminate.

An anomalous condition may not necessarily be caused directly by the process but must be
repaired with the help of the kernel. A possible example of this is a page fault that always occurs
when a process attempts to access a page of virtual address space that is not held in RAM. As
discussed in Chapter 4, the kernel must then interact with the CPU to ensure that the desired
data are fetched into RAM. The process can then resume at the point at which the exception
occurred. It does not even notice that there has been a page error because the kernel recovered
the situation automatically.

❑ Asynchronous interrupts — Are the classical interrupt type generated by peripheral devices
and occur at arbitrary times. Unlike synchronous interrupts, asynchronous interrupts are not
associated with a particular process. They can happen at any time, regardless of the activities the
system is currently performing.1

Network cards report the arrival of new packages by issuing an associated interrupt. Because
the data reach the system at an arbitrary moment in time, it is highly likely that some process
or other that has nothing to do with the data is currently executing. So as not to disadvantage
this process, the kernel must ensure that the interrupt is processed as quickly as possible by
‘‘buffering‘‘ data so that CPU time can be returned to the process. This is why the kernel needs
mechanisms to defer activities; these are also discussed in this chapter.

What are the common features of the two types of interrupt? If the CPU is not already in kernel mode, it
initiates a switch from user to kernel mode. There it executes a special routine called an interrupt service

1Because, as you will learn shortly, interrupts can be disabled, this statement is not totally correct. The system can at
least influence when interrupts do not occur.

848

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 849

Chapter 14: Kernel Activities

routine (ISR for short) or an interrupt handler. The purpose of this routine is to handle exception conditions
or anomalous situations — after all, the specific goal of an interrupt is to draw the attention of the kernel
to such changes.

A simple distinction between synchronous and asynchronous interrupts is not sufficient to fully describe
the features of these two types of interrupt. A further aspect needs to be considered. Many interrupts can
be disabled, but a few cannot. The latter category includes, for example, interrupts issued as a result of
hardware faults or other system-critical events.

Wherever possible, the kernel tries to avoid disabling interrupts because they are obviously detrimental
to system performance. However, there are occasions when it is essential to disable them to prevent the
kernel itself from getting into serious trouble. As you will see when we take a closer look at interrupt
handlers, major problems may arise in the kernel if a second interrupt occurs while a first interrupt is
being handled. If the kernel is interrupted while processing what is already critical code, the synchro-
nization problems discussed in Chapter 5 may arise. In the worst case scenario, this can provoke a kernel
deadlock that renders the entire system unusable.

If the kernel allows itself too much time to process an ISR when interrupts are disabled, it can (and
will) happen that interrupts are lost although they are essential for correct system operation. The kernel
resolves this problem by enabling interrupt handlers to be divided into two parts — a performance-
critical top half that executes with disabled interrupts, and a less important bottom half used later to
perform all less important actions. Earlier kernel versions included a mechanism of the same name
for deferring activities to a later time. However, this has been replaced by more efficient mechanisms,
discussed below.

Each interrupt has a number. If interrupt number n is assigned to a network card and m �= n is assigned to
the SCSI controller, the kernel is able to differentiate between the two devices and call the corresponding
ISR to perform a device-specific action. Of course, the same principle also applies for exceptions where
different numbers designate different exceptions. Unfortunately, owing to specific (and usually histori-
cal) design ‘‘features‘‘(the IA-32 architecture is a particular case in point), the situation is not always as
simple as just described. Because only very few numbers are available for hardware interrupts, they must
be shared by several devices. On IA-32 processors, the maximum number is usually 15, not a particularly
generous figure — especially considering that some interrupts are already permanently assigned to stan-
dard system components (keyboard, timers, etc.), thus restricting still further the number available for
other peripheral devices.

This procedure is known as interrupt sharing.2 However, both hardware support and kernel support
are needed to use this technique because it is necessary to identify the device from which an interrupt
originates. This is covered in greater detail in this chapter.

14.1.2 Hardware IRQs
The term interrupt has been used carelessly in the past to denote interrupts issued by the CPU as well as
by external hardware. Savvy readers will certainly have noticed that this is not quite correct. Interrupts
cannot be raised directly by processor-external peripherals but must be requested with the help of a
standard component known as an interrupt controller that is present in every system.

2Naturally, bus systems with a sophisticated overall design are able to dispense with this option. They provide so many interrupts for
hardware devices that there is no need for sharing.

849

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 850

Chapter 14: Kernel Activities

From the peripheral devices (or their slots) electronic lines lead to the component used to send interrupt
requests to the interrupt controller. After performing various electro-technical tasks, which are of no fur-
ther interest to us here, the controller forwards such requests to the interrupt inputs of the CPU. Because
peripheral devices cannot directly force interrupts but must request them via the above component, such
requests are known more correctly as IRQs, or interrupt requests.

Because, in terms of software, the difference between IRQs and interrupts is not all that great, the two
terms are often used interchangeably. This is not a problem as long as it is clear what is meant.

However, one important point concerning the numbering of IRQs and interrupts should not be over-
looked as it has an impact on software. Most CPUs make only a small extract from the whole range of
available interrupt numbers available for processing hardware interrupts. This range is usually in the
middle of the number sequence; for example, IA-32 CPUs provide a total of 16 numbers from 32 to 47.

As any reader who has configured an I/O card on an IA-32 system or has studied the contents of
/proc/interrupts knows, IRQ numbering of expansion cards starts at 0 and finishes at 15, provided the
classical interrupt controller 8256A is used. This means that there are also 16 different options but with
different numerical values. As well as being responsible for the electrical handling of the IRQ signals,
the interrupt controller also performs a ‘‘conversion‘‘ between IRQ number and interrupt number; with
the IA-32 system, this is the equivalent of simply adding 32. If a device issues IRQ 9, the CPU produces
interrupt 41; this must be taken into account when installing interrupt handlers. Other architectures use
other mappings between interrupt and IRQ numbers, but I will not deal with these in detail.

14.1.3 Processing Interrupts
Once the CPU has been informed of an interrupt, it delegates further handling to a software routine
that corrects the fault, provides special handling, or informs a user process of an external event. Because
each interrupt and each exception has a unique number, the kernel uses an array containing pointers to
handler functions. The associated interrupt number is found by referring to the array position, as shown
in Figure 14-1.

handle_page_fault

handle_whatever

n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Figure 14-1: Managing interrupt handlers.

Entry and Exit Tasks
As Figure 14-2 shows, interrupt handling is divided into three parts. First, a suitable environment in
which the handler function can execute must be set up; then the handler itself is called, and finally the
system is restored (in the view of the current program) to its exact state prior to the interrupt. The parts
that precede and follow invocation of the interrupt handler are known as the entry and exit path.

The entry and exit tasks are also responsible for ensuring that the processor switches from user mode to
kernel mode. A key task of the entry path is to make the switch from the user mode stack to the kernel

850

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 851

Chapter 14: Kernel Activities

mode stack. However, this alone is not sufficient. Because the kernel also uses CPU resources to execute
its code, the entry path must save the current register status of the user application in order to restore it
upon termination of interrupt activities. This is the same mechanism used for context switching during
scheduling. When kernel mode is entered, only part of the complete register set is saved. The kernel does
not use all available registers. Because, for example, no floating point operations are used in kernel code
(only integer calculations are made), there is no need to save the floating point registers.3 Their value
does not change when kernel code is executed. The platform-specific data structure pt_regs that lists all
registers modified in kernel mode is defined to take account of the differences between the various CPUs
(Section 14.1.7 takes a closer look at this). Low-level routines coded in assembly language are responsible
for filling the structure.

Interrupt
Handler

Scheduling
necessary?

Signals?

Restore registers

Deliver signals
to process

Activate
user stack

Switch to
kernel stack

Save registers

Interrupt

schedule

Figure 14-2: Handling an interrupt.

In the exit path the kernel checks whether

❑ the scheduler should select a new process to replace the old process.

❑ there are signals that must be delivered to the process.

Only when these two questions have been answered can the kernel devote itself to completing its regular
tasks after returning from an interrupt; that is, restoring the register set, switching to the user mode
stack, switching to an appropriate processor mode for user applications, or switching to a different
protection ring.4

Because interaction between C and assembly language code is required, particular care must be taken
to correctly design data exchange between the assembly language level and C level. The corresponding
code is located in arch/arch/kernel/entry.S and makes thorough use of the specific characteristics
of the individual processors. For this reason, the contents of this file should be modified as seldom as
possible — and then only with great care.

3Some architectures (e.g., IA-64) do not adhere to this rule but use a few registers from the floating comma set and save them each
time kernel mode is entered. The bulk of the floating point registers remain ‘‘untouched‘‘ by the kernel, and no explicit floating point
operations are used.
4Some processors make this switch automatically without being requested explicitly to do so by the kernel.

851

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 852

Chapter 14: Kernel Activities

Work in the entry and exit path of an interrupt is made even more difficult by the
fact that the processor may be in either user mode or kernel mode when an interrupt
arrives. This requires several additional technical modifications that, for reasons of
clarity, are not shown in Figure 14.2. (There is no need to switch between kernel
mode stack and user mode stack, and there is no need to check whether it is
necessary to call the scheduler or deliver signals.)

The term interrupt handler is used ambiguously. It is used to designate invocation of an ISR call by
the CPU, and combines the entry/exit path and the ISR itself. Of course, it would be more correct
to refer only to the routine that is executed between the entry path and the exit path and that is
implemented in C.

Interrupt Handlers
Interrupt handlers can encounter difficulties particularly when further interrupts occur while they
are executing. Although this can be prevented by disabling interrupts during processing by a
handler, this creates other problems such as missing important interrupts. Masking (the term used
to denote the selective disabling of one or more interrupts) can therefore only be used for short
periods.

ISRs must therefore satisfy two requirements:

1. Implementation (above all, when other interrupts are disabled) must consist of as little code
as possible to support rapid processing.

2. Interrupt handler routines that can be invoked during the processing of other ISRs must not
interfere with each other.

Whereas the latter requirement can be satisfied by intelligent programming and clever ISR design, it
is rather more difficult to fulfill the former. Depending on the specific interrupt, a fixed program must
be run to satisfy the minimum requirements for remedying the situation. Code size cannot therefore be
reduced arbitrarily.

How does the kernel resolve this dilemma? Not every part of an ISR is equally important. Generally, each
handler routine can be divided into three parts of differing significance:

1. Critical actions must be executed immediately following an interrupt. Otherwise, system
stability or correct operation of the computer cannot be maintained. Other interrupts must
be disabled when such actions are performed.

2. Noncritical actions should also be performed as quickly as possible but with enabled inter-
rupts (they may therefore be interrupted by other system events).

3. Deferrable actions are not particularly important and need not be implemented in the inter-
rupt handler. The kernel can delay these actions and perform them when it has nothing
better to do.

The kernel makes tasklets available to perform deferrable actions at a later time. I deal with tasklets in
more detail in Section 14.3.

852

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 853

Chapter 14: Kernel Activities

14.1.4 Data Structures
There are two facets to the technical implementation of interrupts — assembly language code, which
is highly processor-dependent and is used to process the relevant lower-level details on the particular
platform; and an abstracted interface, which is required by device drivers and other kernel code to install
and manage IRQ handlers. I focus on the second aspect. The countless details needed to describe the
functioning of the assembly language part are best left to books and manuals on processor architecture.

To respond to the IRQs of peripheral devices, the kernel must provide a function for each potential IRQ.
This function must be able to register and de-register itself dynamically. A static table organization is not
sufficient because modules may also be written for devices that interact with the rest of the system by
means of interrupts.

The central point at which information on IRQs is managed is a global array with an entry for each IRQ
number. Because array position and interrupt number are identical, it is easy to locate the entry associated
with a specific IRQ: IRQ 0 is at position 0, IRQ 15 at position 15, and so on; to which processor interrupt
the IRQs are ultimately mapped is of no relevance here.

The array is defined as follows:

kernel/irq/handle.c
struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {

[0 ... NR_IRQS-1] = {
.status = IRQ_DISABLED,
.chip = &no_irq_chip,
.handle_irq = handle_bad_irq,
.depth = 1,

...
}

};

Although an architecture-independent data type is used for the individual entries, the maximum pos-
sible number of IRQs is specified by a platform-dependent constant: NR_IRQS. This constant is for most
architectures defined in the processor-specific header file include/asm-arch/irq.h.5 Its value varies
widely not only between the different processors but also within processor families depending on which
auxiliary chip is used to help the CPU manage IRQs. Alpha computers support between 32 interrupts on
‘‘smaller‘‘ systems and a fabulous 2,048 interrupts on Wildfire boards; IA-64 processors always have 256
interrupts. IA-32 systems, in conjunction with the classical 8256A controller, provide a meager 16 IRQs.
This number can be increased to 224 using the IO-APIC (advanced programmable interrupt controller)
expansion that is found on all multiprocessor systems but that can also be deployed on UP machines.
Initially, all interrupt slots use handle_bad_irq as a handler function that just acknowledges interrupts
for which no specific handler function is installed.

More interesting than the maximum number of IRQs is the data type used for the array entries (in contrast
to the simple example above, it is not merely a pointer to a function). Before I get into the technical details,
I need to present an overview of the kernel’s IRQ-handling subsystem.

5The IA-32 architecture, however, uses /include/asm-x86/mach-type/irq_vectors_limits.h.

853

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 854

Chapter 14: Kernel Activities

The early versions of kernel 2.6 contained much platform-specific code to handle IRQs that was identical
in many points. Thus, a new, generic IRQ subsystem was introduced during further development of
kernel 2.6. It is able to handle different interrupt controllers and different types of interrupts in a unified
way. Basically, it consists of three abstraction layers as visualized in Figure 14-3:

1. High-Level Interrupt Service Routines (ISRs) — Perform all necessary work caused by the
interrupt on the device driver’s (or some other kernel component’s) side. If, for instance, a
device uses an interrupt to signal that some data have arrived, then the job of the high-level
ISR could be to copy the data to an appropriate place.

2. Interrupt Flow Handling — Takes care of handling the various differences between differ-
ent interrupt flow types like edge- and level triggering.

Edge-triggering means that hardware detects an interrupt by sensing a difference in potential
on the line. In level-triggered systems, interrupts are detected when the potential has a specific
value — the change in potential is not relevant.

From the kernel viewpoint, level-triggering is more complicated because, after each inter-
rupt, the line must be explicitly set to the potential that indicates ‘‘no interrupt.’’

3. Chip-Level Hardware Encapsulation — Needs to communicate directly with the underly-
ing hardware that is responsible to generate interrupts at the electronic level. This layer can
be seen as some sort of ‘‘device driver‘‘ for interrupt controllers.

Chip specific
functions

High-level
service routine

HardwareFlow
handling

Central IRQ
database

Figure 14-3: Various types of interrupt handlers and how they are
connected.

Let’s return to the technical side of the problem. The structure used to represent an IRQ descriptor is
(slightly simplified) defined as follows6:

<irq.h>
struct irq_desc {

irq_flow_handler_t handle_irq;
struct irq_chip *chip;

6Among some technical elements, support for message signaled interrupts (MSIs) has also been omitted. MSIs are an optional exten-
sion to the PCI standard and a required component of PCI express. They allow for sending an interrupt without using a physical pin
on some piece of hardware, but via a ‘‘message’’ on the PCI bus. Because the number of available pins on modern processors is not
unlimited, but pins are required for many purposes, they are a scarce resource. Hardware designers are thus looking for alternative
methods to send interrupts, and the MSI mechanism is one of them. It will gain increased importance in the future.
Documentation/MSI-HOWTO.txt in the kernel source tree contains some more information about this mechanism.

854

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 855

Chapter 14: Kernel Activities

void *handler_data;
void *chip_data;
struct irqaction *action; /* IRQ action list */
unsigned int status; /* IRQ status */

unsigned int depth; /* nested irq disables */
unsigned int irq_count; /* For detecting broken IRQs */
unsigned int irqs_unhandled;

...
const char *name;

} ____cacheline_internodealigned_in_smp;

In the view of the high-level code in the kernel, each IRQ is fully described by this structure. The three
abstraction layers introduced above are represented in the structure as follows:

❑ The flow-level ISR is provided by handle_irq. handler_data may point to some arbitrary, IRQ,
and handler function-specific data. handle_irq is called by the architecture-specific code when-
ever an interrupt occurs. The function is then responsible to use the controller-specific methods
provided in chip to perform the necessary low-level actions required to process the interrupt.
Default functions for various interrupt types are provided by the kernel. Examples for such han-
dler functions are discussed in Section 14.1.5.

❑ action provides a chain of actions that need to be executed when the interrupt occurs. This is
the place where device drivers for devices that are notified by the interrupt can place their spe-
cific handler functions. A special data structure is used to represent these actions, discussed in
Section 14.1.4.

❑ Flow handling and chip-specific operations are encapsulated in chip. A special data structure is
introduced for this purpose, covered in a moment. chip_data points to arbitrary data that may
be associated with chip.

❑ name specifies a name for the flow handler that is displayed in /proc/interrupts. This line is
usually either ‘‘edge’’ for edge-, or ‘‘ level’’ for level-triggered interrupts.

There are some more elements in the structure that need to be described. depth has two tasks. It can be
used to determine whether an IRQ line is enabled or disabled. A positive value indicates that the latter
is true, whereas 0 indicates an enabled line. Why are positive values used for disabled IRQs? Because
this allows the kernel to differentiate between enabled and disabled lines and also to repeatedly disable
one and the same interrupt. Each time code from the remaining part of the kernel disables an interrupt,
the counter is incremented by 1; each time the interrupt is enabled again, the counter is decremented
accordingly. Only when depth has returned to 0 may the IRQ be freed again by the hardware. This
approach supports the correct handling of nested disabling of interrupts.

An IRQ can change its status not only during handler installation but also at run time: status describes
the current status. The <irq.h> file defines various constants that describe the current IRQ line status.
Each constant stands for a set bit in a bit string, and several values can be set at the same time, providing
that they do not contradict each other.

❑ IRQ_DISABLED is used for an IRQ line disabled by a device driver. It instructs the kernel not to
enter the handler.

❑ During execution of an IRQ handler the state is set to IRQ_INPROGRESS. As with IRQ_DISABLED,
this prohibits the remaining kernel code from executing the handler.

855

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 856

Chapter 14: Kernel Activities

❑ IRQ_PENDING is active when the CPU has noticed an interrupt but has not yet executed the corre-
sponding handler.

❑ IRQ_MASKED is required to properly handle interrupts that occur during interrupt processing; see
Section 14.1.4.

❑ IRQ_PER_CPU is set when an IRQ can occur on a single CPU only. (On SMP systems this renders
several protection mechanisms against concurrent accesses superfluous.)

❑ IRQ_LEVEL is used on Alpha and PowerPC to differentiate level-triggered and edge-triggered
IRQs.

❑ IRQ_REPLAY means that the IRQ has been disabled but a previous interrupt has not yet been
acknowledged.

❑ IRQ_AUTODETECT and IRQ_WAITING are used for the automatic detection and configuration of
IRQs. I will not discuss this in more detail, but mention that the respective code is located in
kernel/irq/autoprobe.c.

❑ IRQ_NOREQUEST is set if the IRQ can be shared between devices and must thus not be exclusively
requested by a single device.

Using the current contents of status, it is easy for the kernel to query the status of a certain IRQ with-
out having to know the hardware-specific features of the underlying implementation. Of course, just
setting the corresponding flags does not produce the desired effect. Disabling an interrupt by setting the
IRQ_DISABLED flag is not possible. The underlying hardware must also be informed of the new state. Con-
sequently, the flags may be set only by controller-specific functions that are simultaneously responsible
for making the required low-level hardware settings. In many cases, this mandates the use of assembly
language code or the writing of magic numbers to magic addresses by means of out commands.

Finally, the fields irq_count and irq_unhandled of irq_desc provide some statistics that can be used
to detect stalled and unhandled, but permanently occurring interrupts. The latter ones are usually called
spurious interrupts. I will not discuss how this is done in more detail.7

IRQ Controller Abstraction
handler is an instance of the hw_irq_controller data type that abstracts the specific characteristics of
an IRQ controller for the architecture-independent part of the kernel. The functions it provides are used
to change the status of an IRQ, which is why they are also responsible for setting flag:

<irq.h>
struct irq_chip {

const char *name;
unsigned int (*startup)(unsigned int irq);
void (*shutdown)(unsigned int irq);
void (*enable)(unsigned int irq);
void (*disable)(unsigned int irq);

void (*ack)(unsigned int irq);
void (*mask)(unsigned int irq);
void (*mask_ack)(unsigned int irq);
void (*unmask)(unsigned int irq);
void (*eoi)(unsigned int irq);

7If you are interested in how this detection is performed, see the function note_interrupt in kernel/irq/spurious.c.

856

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 857

Chapter 14: Kernel Activities

void (*end)(unsigned int irq);
void (*set_affinity)(unsigned int irq, cpumask_t dest);

...
int (*set_type)(unsigned int irq, unsigned int flow_type);

...

The structure needs to account for all peculiarities of the different IRQ implementations that appear in the
kernel. Thus, a particular instance of the structure usually only defines a subset of all possible methods.

name holds a short string to identify the hardware controller. Possible values on IA-32 systems are ‘‘XT-
PIC‘‘ and ‘‘IO-APIC,’’ and the latter one is also used for most interrupts on AMD64 systems. On other
systems there is a colorful mix of values because many different controller types are available and in
widespread use.

The function pointers have the following meaning:

❑ startup refers to a function for the first-time initialization of an IRQ. In most cases, initialization
is limited to enabling the IRQ. As a result, the startup function is just a means of forwarding to
enable.

❑ enable activates an IRQ; in other words, it performs a transition from the disabled to the enabled
state. To this end, hardware-specific numbers must be written to hardware-specific points in I/O
memory or in the I/O ports.

❑ disable is the counterpart to enable and is used to deactivate an IRQ. shutdown completely
closes down an interrupt source. If this is not explicitly possible, the function is an alias for
disable.

❑ ack is closely linked with the hardware of the interrupt controller. In some models, the arrival
of an IRQ request (and therefore of the corresponding interrupt at the processor) must be explic-
itly acknowledged so that subsequent requests can be serviced. If a chipset does not issue this
request, the pointer can be supplied with a dummy function or a null pointer. ack_and_mask
acknowledges an interrupt, but masks it in addition afterward.

❑ end is called to mark the end of interrupt processing at the flow level. If an interrupt was dis-
abled during interrupt processing, it is the responsibility of this handler to re-enable it again.

❑ Modern interrupt controllers do not need much flow control from the kernel, but manage nearly
everything themselves out of the box. A single callback to the hardware is required when inter-
rupts are processed, and this callback is provided in eoi — end of interrupt.

❑ In multiprocessor systems, set_affinity can be used to declare the affinity of a CPU for spec-
ified IRQs. This allows IRQs to be distributed to certain CPUs (typically, IRQs on SMP systems
are spread evenly across all processors). This method has no relevance on single-processor sys-
tems and is therefore supplied with a null pointer.

❑ set_type allows for setting the IRQ flow type. This is mostly required on ARM, PowerPC, and
SuperH machines; other systems can do without and set set_type to NULL.

The auxiliary function set_irq_type(irq, type) is a convenience function to set the IRQ type
for irq. The types IRQ_TYPE_RISING and IRQ_TYPE_FALLING specify edge-triggered interrupts
that use the rising of falling flank, while IRQ_TYPE_EDGE_BOTH works for both flank types. Level-
triggered interrupts are denoted by IRQ_TYPE_LEVEL_HIGH and IRQ_TYPE_LEVEL_LOW — you will
have guessed that low and high signal levels are distinguished. IRQ_TYPE_NONE, finally, sets an
unspecified type.

857

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 858

Chapter 14: Kernel Activities

One particular example for an interrupt controller chip implementation is the IO-APIC on AMD64 sys-
tems. It is given by the following definition:

arch/x86/kernel/io_apic_64.c
static struct irq_chip ioapic_chip __read_mostly = {

.name = "IO-APIC",

.startup = startup_ioapic_irq,

.mask = mask_IO_APIC_irq,

.unmask = unmask_IO_APIC_irq,

.ack = ack_apic_edge,

.eoi = ack_apic_level,
#ifdef CONFIG_SMP

.set_affinity = set_ioapic_affinity_irq,
#endif
};

Note that the kernel defines the alias hw_interrupt_type for irq_chip; this is for compatibility with
previous versions of the IRQ subsystem. The name is, for instance, still in use on Alpha systems that
define the chip level operations for the i8259A standard interrupt controller as follows8:

arch/alpha/kernel/i8529.c
struct hw_interrupt_type i8259a_irq_type = {

.typename = "XT-PIC",

.startup = i8259a_startup_irq,

.shutdown = i8259a_disable_irq,

.enable = i8259a_enable_irq,

.disable = i8259a_disable_irq,

.ack = i8259a_mask_and_ack_irq,

.end = i8259a_end_irq,
};

As the code shows, only a subset of all possible handler functions are neecsssary to operate the device.

i8259A chips are also still present in many IA-32 systems. Support for this chipset has, however, already
been converted to the more modern irq_chip representation. The interrupt controller type used (and the
allocation of all system IRQs) can be seen in /proc/interrupts. The following example is from a (rather
unchallenged) quad-core AMD64 box:

wolfgang@meitner> cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

0: 48 1 0 0 IO-APIC-edge timer
1: 1 0 1 0 IO-APIC-edge i8042
4: 3 0 0 3 IO-APIC-edge
8: 0 0 0 1 IO-APIC-edge rtc
9: 0 0 0 0 IO-APIC-fasteoi acpi
16: 48 48 96720 50082 IO-APIC-fasteoi libata, uhci_hcd:usb1
18: 1 0 2 0 IO-APIC-fasteoi uhci_hcd:usb3, uhci_hcd:usb6,

ehci_hcd:usb7
19: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb5
21: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb2
22: 407287 370858 1164 1166 IO-APIC-fasteoi libata, libata, HDA Intel

8Using typename instead of name is also obsolete by now, but still supported for compatibility reasons.

858

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 859

Chapter 14: Kernel Activities

23: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb4, ehci_hcd:usb8
NMI: 0 0 0 0 Non-maskable interrupts
LOC: 2307075 2266433 2220704 2208597 Local timer interrupts
RES: 22037 18253 33530 35156 Rescheduling interrupts
CAL: 363 373 394 184 function call interrupts
TLB: 3355 3729 1919 1630 TLB shootdowns
TRM: 0 0 0 0 Thermal event interrupts
THR: 0 0 0 0 Threshold APIC interrupts
SPU: 0 0 0 0 Spurious interrupts
ERR: 0

Note that the chip name is concatenated with the flow handler name, which results, for instance,
in ‘‘IO-APIC-edge.’’ Besides listing all registered IRQs, the file also provides some statistics at
the bottom.

Handler Function Representation
An instance of the irqaction structure defined as follows exists for each handler function:

<interrupt.h>
struct irqaction {

irq_handler_t handler;
unsigned long flags;
const char *name;
void *dev_id;
struct irqaction *next;

}

The most important element in the structure is the handler function itself, which takes the form of the
handler pointer and is located at the beginning of the structure. The handler function is invoked by
the kernel when a device has requested a system interrupt and the interrupt controller has forwarded
this to the processor by raising an interrupt. We will look more closely at the meaning of the arguments
when we consider how to register handler functions. Note, however, that the type irq_handler_t clearly
distinguishes this handler type from flow handlers that are of type irq_flow_handler_t!

name and dev_id uniquely identify an interrupt handler. While name is a short string used to identify the
device (e.g., ‘‘e100,’’ ‘‘ncr53c8xx,’’ etc.), dev_id is a pointer to any data structure that uniquely identifies
the device among all kernel data structures — for example, the net_device instance of a network card.
This information is needed when removing a handler function if several devices share an IRQ and the
IRQ number alone is not sufficient to identify the device.

flags is a flag variable that describes some features of the IRQ (and associated interrupt) with the help
of a bitmap whose individual elements can, as usual, be accessed via predefined constants. The following
constants are defined in <interrupt.h>:

❑ IRQF_SHARED is set for shared IRQs and signals that more than one device is using an IRQ line.

❑ IRQF_SAMPLE_RANDOM is set when the IRQ contributes to the kernel entropy pool.9

❑ IRQF_DISABLED indicates that the IRQ handler must be executed with interrupts disabled.

❑ IRQF_TIMER denotes a timer interrupt.

9This information is used to generate relatively secure random numbers for /dev/random and /dev/urandom.

859

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 860

Chapter 14: Kernel Activities

next is used to implement shared IRQ handlers. Several irqaction instances are grouped into a linked
list. All elements of a linked list must handle the same IRQ number (instances for different numbers
are located at various positions in the irq_desc array). As discussed in Section 14.1.7, the kernel scans
the list when a shared interrupt is issued to find out for which device the interrupt is actually intended.
Particularly on laptops that integrate many different devices (network, USB, FireWire, sound card, etc.)
on a single chip (with just one interrupt), handler chains of this kind can consist of about five elements.
However, the desirable situation is that only a single device is registered for each IRQ.

Figure 14-4 shows an overview of the data structures described to illustrate how they interact. Because
one type of interrupt controller normally dominates on a system (there is nothing preventing the coex-
istence of multiple handlers, though), the handler elements of all irq_desc entries point to the same
instance of irq_chip.

irq_chip

irq_desc[]

struct
irqaction

action
chip next next next

next

next

next

action
chip

action
chip

.

.

.

action
chip

Figure 14-4: Data structures in IRQ management.

14.1.5 Interrupt Flow Handling
Now let’s examine how flow handling is implemented. The situation in this area was quite painful before
the interrupt rework in 2.6, and architecture-specific code was heavily involved in flow handling. Thank-
fully, the situation is now much improved, and a generic framework that accounts for nearly all available
hardware with only very few exceptions is available.

Setting Controller Hardware
First of all, I need to mention some standard functions that are provided by the kernel to register
irq_chips and set flow handlers:

<irq.h>
int set_irq_chip(unsigned int irq, struct irq_chip *chip);
void set_irq_handler(unsigned int irq, irq_flow_handler_t handle);
void set_irq_chained_handler(unsigned int irq, irq_flow_handler_t handle)
void set_irq_chip_and_handler(unsigned int irq, struct irq_chip *chip,

irq_flow_handler_t handle);
void set_irq_chip_and_handler_name(unsigned int irq, struct irq_chip *chip,

irq_flow_handler_t handle, const char
*name);

860

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 861

Chapter 14: Kernel Activities

❑ set_irq_chip associates an IRQ chip in the form of an irq_chip instance with a specific inter-
rupt. Besides picking the proper element from irq_desc and setting the chip pointer, the func-
tion also inserts default handler functions if no chip-specific implementation is supplied.

If a NULL pointer is given for the chip, then the generic ‘‘no controller’’ variant no_irq_chip,
which provides only no-op operations, is used.

❑ set_irq_handler and set_irq_chained_handler set the flow handler function for a given IRQ
number. The second variant is required to signal that the handler must deal with shared inter-
rupts. This enables the flags IRQ_NOREQUEST and IRQ_NOPROBE in irq_desc[irq]->status: the
first one because shared interrupts cannot be reserved for exclusive use, and the second one
because it is obviously a bad idea to use interrupt probing on lines where multiple devices are
present.

Both functions use __set_irq_handler internally, which performs some sanity checks and sets
irq_desc[irq]->handle_irq.

❑ set_chip_and_handler is a convenient shortcut used instead of calling the functions discussed
above one after another. The _name variant works identically, but allows for specifying a name
for the flow handler that is stored in irq_desc[irq]->name.

Flow Handling
Before discussing how flow handlers are implemented, we need to introduce the type used for them.
irq_flow_handler_t specifies the signature of IRQ flow handler functions:

<irq.h>
typedef void fastcall (*irq_flow_handler_t)(unsigned int irq,

struct irq_desc *desc);

Flow handlers get both the IRQ number and a pointer to the irq_handler instance that is responsible for
the interrupt. This information can then be used to implement proper flow handling.

Recall that different hardware requires different approaches to flow handling — edge- and level-
triggering need to be dealt with differently, for instance. The kernel provides several default flow
handlers for various types. They have one thing in common: Every flow handler is responsible to
call the high-level ISRs once its work is finished. handle_IRQ_event is responsible to activate the
high-level handlers; this is discussed this in Section 14.1.7. For now, let us examine how flow handling is
performed.

Edge-Triggered Interrupts
Edge-triggered interrupts are most common on the majority of today’s hardware, so I consider this
type first. The default handler is implemented in handle_edge_irq. The code flow diagram is shown in
Figure 14-5.

Edge-triggered IRQs are not masked when they are processed — in contrast to level-triggered IRQs,
there is no need to do so. This has one important implication for SMP systems: When an IRQ is handled
on one CPU, another IRQ with the same number can appear on another CPU that we denote as the second
CPU. This implies that the flow handler will be called once more while it is still running on the CPU
that triggered the first IRQ. But why should two CPUs be engaged with running the same IRQ handler
simultaneously? The kernel wants to avoid this situation: The handler should only be processed on a
single CPU. The initial portion of handle_edge_irq has to deal with this case. If the IRQ_INPROGRESS
flag is set, the IRQ is already being processed on another CPU. By setting the IRQ_PENDING flag, the

861

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 862

Chapter 14: Kernel Activities

kernel remembers that another IRQ needs to be served later. After masking the IRQ and sending an
acknowledgment to the controller via mask_ack_irq, processing can be aborted. The second CPU can
thus go back to work as usual, while the first CPU will handle the IRQ later.

Cancel processing

No handler, IRQ in progress or IRQ disabled Set IRQ_PENDING and IRQ_MASKED

Ite
ra

te
 a

s
lo

ng
 a

s
I
R
Q
_
P
E
N
D
I
N
G

is

 s
et

 a
nd

 IR
Q

is
 n

ot
 d

is
ab

le
d

Set IRQ_INPROGRESS

Remove IRQ_PENDING

Handle unmasking

handle_edge_irq

handle_IRQ_event

mask_ack_irq

chip->ack

Figure 14-5: Code flow diagram for handle_edge_irq.

Note that processing is also aborted if no ISR handler is available for the IRQ or if it is disabled. (Faulty
hardware might nevertheless generate the IRQ, so this case needs to be taken into account by the kernel.)

Now the proper work to handle the IRQ starts. After sending an acknowledgment to the interrupt con-
troller with the chip-specific function chip->ack, the kernel sets the IRQ_INPROGRESS flag. This signals
that the IRQ is being processed and can be used to avoid the same handler executing on multiple CPUs.

Let us assume that only a single IRQ needs to be processed. In this case, the high-level ISR handlers
are activated by calling handle_IRQ_event, and the IRQ_INPROGRESS flag can be removed afterward.
However, the situation is more complicated in reality, as the source code shows:

kernel/irq/chip.c
void fastcall
handle_edge_irq(unsigned int irq, struct irq_desc *desc)
{
...

desc->status |= IRQ_INPROGRESS;

do {
struct irqaction *action = desc->action;
irqreturn_t action_ret;

...
/*
* When another irq arrived while we were handling
* one, we could have masked the irq.
* Renable it, if it was not disabled in meantime.

862

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 863

Chapter 14: Kernel Activities

*/
if (unlikely((desc->status &

(IRQ_PENDING | IRQ_MASKED | IRQ_DISABLED)) ==
(IRQ_PENDING | IRQ_MASKED))) {

desc->chip->unmask(irq);
desc->status &= ~IRQ_MASKED;

}

desc->status &= ~IRQ_PENDING;
action_ret = handle_IRQ_event(irq, action);

} while ((desc->status & (IRQ_PENDING | IRQ_DISABLED)) == IRQ_PENDING);

Processing the IRQ runs in a loop. Suppose we are at the point right beneath the call to
handle_IRQ_event. While the ISR handlers for the first IRQ were running, a second IRQ could
have appeared as shown before. This is indicated by IRQ_PENDING. If the flag is set (and the IRQ has not
been disabled in the meantime), another IRQ is waiting to be processed, and the loop is started again
from the beginning.

In this case, however, the IRQ will have been masked. The IRQ must thus be unmasked with
chip->unmask and the IRQ_MASKED flag be removed. This guarantees that only one interrupt can occur
during the execution of handle_IRQ_event.

After removing the IRQ_PENDING flag — technically, one IRQ is still pending right now, but it is going to
be processed immediately — handle_IRQ_event can also serve the second IRQ.

Level-Triggered Interrupts
Level-triggered interrupts are a little easier to process than their edge-triggered relatives. This is
also reflected in the code flow diagram of the flow handler handle_level_irq, which is depicted in
Figure 14-6.

Abort processing

No ISR registered or IRQ disabled? Abort processing

Set IRQ_INPROGRESS

Remove IRQ_INPROGRESS

Irq not disabled? chip->unmask

handle_level_irq

mask_ack_irq

IRQ_INPROGRESS?

handle_IRQ_event

Figure 14-6: Code flow diagram for handle_level_irq.

Note that level-triggered interrupts must be masked when they are processed, so the first thing that
needs to be done is to call mask_ack_irq. This auxiliary function masks and acknowledges the IRQ by

863

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 864

Chapter 14: Kernel Activities

either calling chip->mask_ack or, if this is not available, chip->mask and chip->ack consecutively. On
multiprocessor systems, a race condition might occur such that handle_edge_irq is called although the
IRQ is already processed on another CPU. This can be detected by checking for the IRQ_INPROGRESS
flag, and the routine can immediately be left — the IRQ is already being processed on another CPU, in
this case.

If no handler is registered for the IRQ, processing can also be aborted — there is nothing to do. One more
reason to abort processing is when IRQ_DISABLED is set. Despite being disabled, broken hardware could
nevertheless issue the IRQ, but it can be ignored.

Then the proper processing starts. IRQ_INPROGRESS is set to signal that the IRQ is being processed, and
the actual work is delegated to handle_IRQ_event. This triggers the high-level ISRs, as discussed below.
The IRQ_INPROGRESS can be removed after the ISRs are finished.

Finally, the IRQ needs to be unmasked. However, the kernel needs to consider that an ISR could have
disabled the interrupt, and in this case, it needs to remain masked. Otherwise, the chip-specific unmask
function chip->unmask is used.

Other Types of Interrupts
Besides edge- and level-triggered IRQs, some more less common flow types are also possible. The kernel
also provides default handlers for them.

❑ Modern IRQ hardware requires only very little flow handling. Only one chip-specific function
needs to be called after IRQ processing is finished: chip->eoi. The default handler for this type
is handle_fasteoi_irq. It is basically identical with handle_level_irq, except that interaction
with the controller chip is only required at the very end.

❑ Really simple interrupts that require no flow control at all are managed by handle_simple_irq.
The function can also be used if a caller wants to handle the flow itself.

❑ Per-CPU IRQs, that is, IRQs that can only happen on one specific CPU of a multiprocessor sys-
tem, are handled by handle_percpu_irq. The function acknowledges the IRQ after reception
and calls the EOI routine after processing. The implementation is very simple because no locking
is required — the code can by definition only run on a single CPU.

14.1.6 Initializing and Reserving IRQs
In this section, we will turn our attention to how IRQs are registered and initialized.

Registering IRQs
Dynamic registration of an ISR by a device driver can be performed very simply using the data structures
described. The function had been implemented by platform-specific code before the interrupt rework in
2.6. Naturally, the prototype was identical on all architectures as this is an absolute prerequisite for
programming platform-independent drivers. Nowadays, the function is implemented by common code:

kernel/irq/manage.c
int request_irq(unsigned int irq,

irqreturn_t handler,
unsigned long irqflags, const char *devname, void *dev_id)

864

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 865

Chapter 14: Kernel Activities

Figure 14-7 shows the code flow diagram for request_irq.

Create irqaction instance

IRQF_SAMPLE_RANDOM set?

Place irqaction at the end of the queue

Non-shared IRQ?

Register in proc file system

handler->startup

request_irq

setup_irq

rand_initialize_irq

Figure 14-7: Code flow diagram for request_irq.

The kernel first generates a new instance of irqaction that is then supplied with the function parameters.
Of special importance is, of course, the handler function handler. All further work is delegated to the
setup_irq function that performs the following steps:

1. If IRQF_SAMPLE_RANDOM is set, the interrupt contributes to the kernel entropy source used for
the random number generator in /dev/random. rand_initialize_irq adds the IRQ to the
corresponding data structures.

2. The irqaction instance generated by request_irq is added to the end of the list of routines
for a specific IRQ number; this list is headed by irq_desc[NUM]->action. This is how the
kernel ensures that — in the case of shared interrupts — handlers are invoked in the same
sequence in which they were registered when an interrupt occurs.

3. If the installed handler is the first in the list for the IRQ number, the handler->startup ini-
tialization function is invoked.10 This is not necessary if handlers for the IRQ have already
been installed.

4. register_irq_proc generates the directory /proc/irq/NUM in the proc filesystem.
register_handler_proc generates proc/irq/NUM/name. The system is then able to see that
the corresponding IRQ channel is in use.

Freeing IRQs
The reverse scheme is adopted in order to free interrupts. First, the interrupt controller is informed
that the IRQ has been removed by means of a hardware-specific (chip->shutdown) function,11 and then
the relevant entries are removed from the general data structures of the kernel. The auxiliary function
free_irq assumes these tasks. While it has been an architecture-dependent function before the genirq
rework, it can today be found in kernel/irq/manage.c.

When an IRQ handler is required to remove a shared interrupt, the number alone is not sufficient to
identify the IRQ. In this case, it is necessary to also use the dev_id discussed above for purposes of

10If no explicit startup function is available, the IRQ is simply enabled by calling chip->enable instead.
11If no explicit shutdown function is available, the interrupt is simply disabled by chip->disable instead.

865

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 866

Chapter 14: Kernel Activities

unique identification. The kernel scans the list of all registered handlers until it finds a matching element
(with a matching dev_id). Only then can the entry be removed.

Registering Interrupts
The mechanisms discussed above are effective only for interrupts raised by an interrupt request from a
system peripheral. But the kernel must also take care of interrupts raised either by the processor itself or
by software mechanisms in an executing user process. In contrast to IRQs, the kernel need not provide
an interface for this kind of interrupt in order to dynamically register handlers. This is because the num-
bers used are made known at initialization time and do not change thereafter. Registering of interrupts,
exceptions, and traps is performed at kernel initialization time, and their reservations do not change at
run time.

The platform-specific kernel sources have very few commonalities, not surprising in view of the some-
times large technical differences. Even though the concepts behind some variants may be similar, their
concrete implementation differs strongly from platform to platform. This is because implementation must
walk a fine line between C and assembly language code in order to do justice to the specific features of a
system.

The greatest similarity between the various platforms is a filename. arch/arch/kernel/traps.c contains
the system-specific implementation for registering interrupt handlers.

The outcome of all implementations is that a handler function is invoked automatically when an interrupt
occurs. Because interrupt sharing is not supported for system interrupts, all that need be done is to
establish a link between the interrupt number and function pointer.

Generally, the kernel responds to interrupts in one of two ways.

❑ A signal is sent to the current user process to inform it that an error has occurred. On IA-32
and AMD64 systems, for example, a division by 0 is signaled by interrupt 0. The automatically
invoked assembly language routine divide_error sends the SIGPFE signal to the user process.

❑ The kernel corrects the error situation invisibly to the user process. This is the case on, for
example, IA-32 systems, where interrupt 14 is used to signal a page fault, which the kernel can
then correct by employing the methods described in Chapter 18.

14.1.7 Servicing IRQs
Once an IRQ handler has been registered, the handler routine is executed each time an interrupt occurs.
The problem again arises as to how to reconcile the differences between the various platforms. Owing
to the nature of things, the differences are not restricted to various C functions with platform-specific
implementations but start deep down in the domain of the manually optimized assembly language code
used for low-level processing.

Fortunately, several structural similarities between the individual platforms can be identified. For
example, the interrupt action on each platform comprises three parts, as discussed earlier. The entry
path switches from user mode to kernel mode, then the actual handler routine executes, and finally the
kernel switches back to user mode. Even though much assembly language code is involved, there are at
least some C fragments that are similar on all platforms. These are discussed below.

866

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 867

Chapter 14: Kernel Activities

Switching to Kernel Mode
The switch to kernel mode is based on assembly language code executed by the processor automatically
after every interrupt. The tasks of this code are described above. Its implementation can be found in
arch/arch/kernel/entry.S,12 which usually defines various entry points at which the processor sets
the flow of control when an interrupt occurs.

Only the most necessary actions are executed directly in assembly language code. The kernel attempts to
return to regular C code as quickly as possible because it is far easier to handle. To this end, an environ-
ment must be created that is compatible with the expectations of the C compiler.

Functions are called in C by placing the required data — return address and parameters — on the stack
in a certain order. When switching between user mode and kernel mode, it is also necessary to save the
most important registers on the stack so that they can be restored later. These two actions are performed
by platform-dependent assembly language code. On most platforms, control flow is then passed to the
C function do_IRQ,13 whose implementation is also platform-dependent, but which greatly simplifies
the situation. Depending on the platform, the function receives as its parameter either the processor
register

arch/arch/kernel/irq.c
fastcall unsigned int do_IRQ(struct pt_regs regs)

or the number of the interrupt together with a pointer to the processor register

arch/arch/kernel/irq.c
unsigned int do_IRQ(int irq, struct pt_regs *regs)

pt_regs is used to save the registers used by the kernel. The values are pushed one after another onto
the stack (by assembly language code) and are left there before the C function is invoked.

pt_regs is defined to ensure that the register entries on the stack coincide with the elements of the
structure. The values are not only saved for later, but can also be read by the C code. Figure 14-8
illustrates this.

register n

register 3
.
.

register 2
register 1

Kernel-Stack

Call
Frames

struct
pt_regs

Figure 14-8: Stack layout after entry
into kernel mode.

12The unified x86 architecture distinguishes between entry_32 for IA-32 and entry_64 for AMD64 systems.
13Exceptions are Sparc, Sparc64, and Alpha.

867

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 868

Chapter 14: Kernel Activities

Alternatively, the registers can also be copied to a location in address space that is not identical to the
stack. In this case, do_IRQ receives as its parameter a pointer to pt_regs, which does not change the fact
that the register contents have been saved and can be read by the C code.

The definition of struct pt_regs is platform-dependent because different processors provide different
register sets. The registers used by the kernel are held in pt_regs. Registers not listed here may be used
by user mode applications only. On IA-32 systems, pt_regs is typically defined as follows:

include/asm-x86/ptrace.h
struct pt_regs {

long ebx;
long ecx;
long edx;
long esi;
long edi;
long ebp;
long eax;
int xds;
int xes;
long orig_eax;
long eip;
int xcs;
long eflags;
long esp;
int xss;

};

PA-Risc processors, for instance, use a totally different set of registers:

include/asm-parisc/ptrace.h
struct pt_regs {

unsigned long gr[32]; /* PSW is in gr[0] */
__u64 fr[32];

unsigned long sr[8];
unsigned long iasq[2];
unsigned long iaoq[2];
unsigned long cr27;
unsigned long pad0; /* available for other uses */
unsigned long orig_r28;
unsigned long ksp;
unsigned long kpc;
unsigned long sar; /* CR11 */
unsigned long iir; /* CR19 */
unsigned long isr; /* CR20 */
unsigned long ior; /* CR21 */
unsigned long ipsw; /* CR22 */

};

The general trend in 64-bit architectures is to provide more and more registers, with the result that
pt_regs definitions are becoming larger and larger. IA-64 has, for example, almost 50 entries in pt_regs,
reason enough not to include the definition here.

868

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 869

Chapter 14: Kernel Activities

On IA-32 systems, the number of the raised interrupt is saved in the most significant 8 bits of orig_eax.
Other architectures use other locations. As mentioned above, some platforms even adopt the approach
of placing the interrupt number on the stack as a direct argument.

IRQ Stacks
The situation described above is only valid if the kernel uses the kernel stack to process IRQs. This need
not always be the case. The IA-32 architecture provides the configuration option CONFIG_4KSTACKS.14

If it is activated, the size of the kernel stack is reduced from 8 KiB to 4 KiB. Since the page size is 4 KiB
on this machine, the number of pages necessary to implement the kernel stack is reduced from two
to one. This makes life easier for the VM subsystem when a huge number of processes (or threads) is
active on the system because single pages are easier to find than two consecutive ones as required before.
Unfortunately, 4 KiB might not always be enough for the regular kernel work and the space required by
IRQ processing routines, so two more stacks come into play:

❑ A stack for hardware IRQ processing.

❑ A stack for software IRQ processing.

In contrast to the regular kernel stack that is allocated per process, the two additional stacks are allocated
per CPU. Whenever a hardware interrupt occurs (or a softIRQ is processed), the kernel needs to switch to
the appropriate stack.

Pointers to the additional stacks are provided in the following array:

arch/x86/kernel/irq_32.c
static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;

Note that the attribute __read_mostly does not refer to the stack itself, but to the pointer that points to
the appropriate place in memory. This is only manipulated when the stacks are initially allocated, but no
more during the system’s lifetime.

The data structure used for the stacks is not too complicated:

arch/x86/kernel/irq_32.c
union irq_ctx {

struct thread_info tinfo;
u32 stack[THREAD_SIZE/sizeof(u32)];

};

tinfo is used to store information about the thread that was running before the interruption occurred
(see Chapter 2 for more details). stack provides the stack space itself. STACK_SIZE is defined to 4,096
if 4-KiB stacks are enabled, so this guarantees the desired stack size. Note that since a union is used to
combine tinfo and stack[], the data structure fits into exactly one page frame. This also implies that the
thread information contained in tinfo is always available on the stack.

14The PowerPC and SuperH architectures provide the configuration option CONFIG_IRQSTACKS to enable separate stacks for IRQ
processing. Since the mechanism used there is similar, these cases are not discussed separately.

869

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 870

Chapter 14: Kernel Activities

Calling the Flow Handler Routine
How the flow handler routines are called differs from architecture to architecture; in the following,
how this is done is discussed for AMD64 and IA-32. Additionally, we also examine the old han-
dler mechanism that was the default before the IRQ subsystem rewrite, and is still used in some
places.

Processing on AMD64 Systems
Let us first turn our attention to how do_IRQ is implemented on AMD64 systems. This variant is simpler
as compared to IA-32, and many other modern architectures use a similar approach. The code flow
diagram is shown in Figure 14-9.

do_IRQ

set_irq_regs

set_irq_regs

irq_enter

generic_handle_irq

irq_exit

Figure 14-9: Code flow diagram
for do_IRQ. on AMD64 systems.

The prototype of the function is as follows:

arch/x86/kernel/irq_64.c
asmlinkage unsigned int do_IRQ(struct pt_regs *regs)

The low-level assembler code is responsible to pass the current state of the register set to the function,
and the first task of do_IRQ is to save a pointer to them in a global per-CPU variable using set_irq_regs
(the old pointer that was active before the interrupt occurred is preserved for later). Interrupt handlers
that require access to the register set can access them from there.

irq_enter is then responsible to update some statistics; for systems with dynamic ticks, the global
jiffies time-keeping variable is updated if the system has been in a tickless state for some time
(more about dynamic ticks follows in Section 15.5.). Calling the ISRs registered for the IRQ in
question is then delegated to the architecture-independent function generic_handle_irq, which calls
irq_desc[irq]->handle_irq to activate the flow control handler.

irq_exit is then responsible for some statistics bookkeeping, but also calls (assuming the kernel is not
still in interrupt mode because it is processing a nested interrupt) do_softirq to service any pend-
ing software IRQs. This mechanism is discussed in more detail in Section 14.2. Finally, another call to
set_irq_regs restores the pointer to struct regs to the setting that was active before the call. This
ensures that nested handlers work correctly.

870

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 871

Chapter 14: Kernel Activities

Processing on IA-32 Systems
IA-32 requires slightly more work in do_IRQ, as the code flow diagram in Figure 14-10 shows. We first
suppose that a single page frame is used for the kernel stack, that is, 4 KiB are available per process for
the kernel. This is configured if CONFIG_4KSTACKS is set. Recall that in this case a separate stack is used to
handle IRQ processing.

Switch stacks

Switch stacks back

No

Ye
s

do_IRQ

set_irq_regs

irq_enter

desc->handle_irq

desc->handle_irq

irq_exit

Stack switch necessary?

Figure 14-10: Code flow diagram for do_IRQ on IA-32
systems.

As in the AMD64 case, the functions set_irq_regs and irq_enter are called with the same purpose as
before. The kernel must switch to the IRQ stack. The current stack can be obtained by calling the auxiliary
function current_thread_info, which delivers a pointer to the thread_info instance currently in use.
Recall from above that this information is in a union with the current stack. A pointer to the appropriate
IRQ-stack can be obtained from hardirq_ctx as discussed above.

Two cases are possible:

1. The process is already using the IRQ stack because nested IRQs are processed. In this case,
the kernel can be lazy — nothing needs to be done because everything is already set up.
irq_desc[irq]->handle_irq can be called to activate the ISR stored in the IRQ database.

2. The current stack is not the IRQ stack (curctx != irqctx), and a switch between both is
required. In this case, the kernel performs the required low-level assembler operations to
switch between the stacks, calls irq_desc[irq]->handle_irq, and switches the stacks back.

Note that in both cases the ISR is called directly and not via a detour over generic_handle_irq as on
AMD64 systems.

The remaining work is done in the same way as on AMD64 systems. irq_exit handles some account-
ing and activates SoftIRQs, and set_irq_regs restores the register pointer to the state before the IRQ
happened.

871

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 872

Chapter 14: Kernel Activities

When stacks with 8-KiB size, that is, two page frames, are used, IRQ handling is simplified because a
potential stack switch does not need to be taken into account and irq_desc[irq]->handle_irq can be
called immediately in any case.

Old-Style Processing
In the discussion of how AMD64 calls the flow control handler, it was mentioned that the code ends up in
generic_handle_irq, which selects and activates the proper handle_irq function from the IRQ database
irq_desc. However, generic_handle_irq is a little more complicated in practice:

<irq.h>
static inline void generic_handle_irq(unsigned int irq)
{

struct irq_desc *desc = irq_desc + irq;

#ifdef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
desc->handle_irq(irq, desc);

#else
if (likely(desc->handle_irq))

desc->handle_irq(irq, desc);
else

__do_IRQ(irq);
#endif
}

Before the generic IRQ rework, the kernel used a colorful mixture of architecture-dependent approaches
to IRQ handling. Most important, there was no separation between flow handling and ISR han-
dling: Both tasks were performed simultaneously in a single architecture-specific routine usually
called __do_IRQ.

Modern code should activate the configuration option GENRIC_HARDIRQS_NO__DO_IRQ and implement
flow handling as shown in the preceding discussions. In this case, generic_handle_irq really boils
down to just calling irq_desc[irq]->handle_irq.

What if this option is not set? The kernel provides a default implementation of __do_IRQ that com-
bines flow handling for all interrupt types, and also calls the required ISRs.15 Basically, there are three
possibilities of how to use this function and implement flow handling:

1. Use generic flow handlers for some IRQs, and leave the handlers for others undefined. For
these, __do_IRQ is employed to handle both flow and high-level processing. It is required to
call generic_handle_IRQ from do_IRQ in this case.

2. Call __do_IRQ directly from do_IRQ. This bypasses the flow separation completely. Some
off-mainstream architectures like M32R, H8300, SuperH, and Cris still use this approach.

3. Handle IRQs in a completely architecture-dependent way without reusing any of the exist-
ing frameworks. Clearly, this is not the brightest idea — to say the least.

Since it is needless to say that the long-term goal for all architectures is to convert to the generic IRQ
framework, __do_IRQ is not discussed in detail.

15The implementation is based on the version used on IA-32 systems before the generic IRQ framework was introduced.

872

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 873

Chapter 14: Kernel Activities

Calling the High-level ISR
Recall from above that the various flow handler routines all have one thing in common: They employ
handle_IRQ_event to activate the high-level ISRs associated with a particular IRQ. The time has come to
examine this function a little more closly. The function requires the IRQ number and the action chain to
be passed as parameters:

kernel/irq/handle.c
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action);

handle_IRQ_event performs various actions:

❑ If IRQF_DISABLED was not set in the first handler function, the interrupts (for the current CPU)
are enabled with local_irq_enable_in_hardirq; in other words, the handlers can be inter-
rupted by other IRQs. However, depending on the flow type, it is possible that the IRQ just
processed is always masked out.

❑ The action functions of the registered IRQ handlers are invoked one after the other.

❑ If IRQF_SAMPLE_RANDOM is set for the IRQ, add_interrupt_randomness is called in order to use
the time of the event as a source for the entropy pool (interrupts are an ideal source if they occur
randomly).

❑ local_irq_disable disables the interrupts. Because enabling and disabling of interrupts
is not nested, it is irrelevant whether they were enabled or not at the start of processing.
handle_IRQ_event was called with interrupts disabled, and is also expected to leave again with
interrupts disabled.

With shared IRQs the kernel has no way of finding out which device raised the request. This is left
entirely to the handler routines that use device-specific registers or other hardware characteristics to find
the source. Routines not affected also recognize that the interrupt was not intended for them and return
control as quickly as possible. Neither is there any way that a handler routine can report to higher-level
code that the interrupt was intended for it or not. The kernel always executes all handler routines in turn,
regardless of whether the first or the last leads to success.

Nevertheless, the kernel can check whether any handler was found to be responsible for the IRQ.
irqreturn_t is defined as the return type of handler functions and boils down to a simple integer
variable. It accepts the value IRQ_NONE or IRQ_HANDLED, depending on whether the IRQ was serviced by
the handler routine or not.

During servicing of all handler routines, the kernel combines the results with a logical ‘‘or’’ operation.
This is how it is finally able to determine whether the IRQ was serviced or not.

kernel/irq/handle.c
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
{
...

do {
ret = action->handler(irq, action->dev_id);
if (ret == IRQ_HANDLED)

status |= action->flags;
retval |= ret;
action = action->next;

873

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 874

Chapter 14: Kernel Activities

} while (action);
...

return retval;
}

Implementing Handler Routines
Some important points must be noted when implementing handler routines. These greatly influence not
only the speed but also the stability of the system.

Restrictions
The main problem when implementing ISRs is that they execute in what is known as the interrupt context.
Kernel code can sometimes run both in the regular context and in the interrupt context. To distinguish
between these two variants and to design code accordingly, the kernel provides the in_interrupt func-
tion to indicate whether or not an interrupt is currently being serviced.

The interrupt context differs in three important points from the normal context in which the kernel
otherwise executes:

1. Interrupts are executed asynchronously; in other words, they can occur at any time. As a
result, the handler routine is not executed in a clearly defined environment with respect to
the reservation of userspace. This prohibits access to userspace and prevents above all the
copying of memory contents into and out of the userspace addresses.

For network drivers, for example, it is therefore not possible to forward data received
directly to the waiting application. After all, it is not certain that the application waiting for
the data is running at the time (this is, in fact, extremely unlikely).

2. The scheduler may not be invoked in the interrupt context. It is therefore impossible to sur-
render control voluntarily.

3. The handler routine may not go to sleep. Sleep states can only be broken when an external
event causes a state change and wakes the process. However, because interrupts are not
allowed in the interrupt context, the sleeping process would wait forever for the relieving
news. As the scheduler may also not be invoked, no other process can be selected to replace
the current sleeping process.

It is not, of course, enough simply to make sure that only the direct code of a handler routine
is free of possible sleeping instructions. All invoked procedures and functions (and proce-
dures and functions invoked by these, in turn) must be free of expressions that could go to
sleep. Checking that this is the case is not always trivial and must be done very carefully,
particularly if control paths have numerous branches.

Implementing Handlers
Recall that the prototype of ISR functions is specified by irq_handler_t. I have not shown the actual
definition of this typedef, but do so now:

<interrupt.h>
typedef irqreturn_t (*irq_handler_t)(int, void *);

irq specifies the IRQ number, and dev_id is the device ID passed when the handler is registered.
irqreturn_t is another typedef to a simple integer.

874

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 875

Chapter 14: Kernel Activities

Note that the prototype of ISRs was changed during the development of 2.6.19! Before, the arguments of
the handler routine also included a pointer to the saved registers:

<interrupt.h>
irqreturn_t (*handler)(int irq, void *dev_id, struct pt_regs *regs);

Interrupt handlers are obviously hot code paths, and time is very critical. Although most handlers do not
need the register state, time and stack space is required to pass a pointer to it to every ISR. Removing this
pointer from the prototype is thus a good idea.16

Handlers that need the register set can still access it. The kernel defines a global per-CPU array that stores
the registers, and get_irq_regs from >include/asm-generic/irq_regs.h> can be used to retrieve a
pointer to the pt_regs instance. This instance contains the register setting that was active when the
switch to kernel mode was made. The information is not used by normal device drivers but sometimes
comes in useful when debugging kernel problems.

Again we emphasize that interrupt handlers can only use two return values: IRQ_HANDLED if the IRQ was
handled correctly, or IRQ_NONE if the ISR did not feel responsible for the IRQ.

What are the tasks of a handler routine? To service a shared interrupt, the routine must first check
whether the IRQ is intended for it. If the peripheral device is of a more modern design, the hardware
offers a simple method of performing this check, usually by means of a special device register. If the
device has caused an interrupt, the register value is set to 1. In this case, the handler routine must restore
the value to its default (usually 0) and then start normal servicing of the interrupt. If it finds the value 0,
it can be sure that the managed device is not the source of the interrupt, and control can be returned to
the higher-level code.

If a device does not have a state register of this kind, the option of manual polling still remains. Each
time an interrupt occurs, the handler checks whether data are available for the device. If so, the data are
processed. If not, the routine is terminated.

A handler routine can, of course, be responsible for several devices at the same time, for example, two
network cards of the same type. If an IRQ is received, the same code is executed on both cards because
both handler functions point to the same position in the kernel code. If the two devices use different IRQ
numbers, the handler routine can differentiate between them. If they share a common IRQ, reference can
still be made to the device-specific dev_id field to uniquely identify each card.

14.2 Software Interrupts
Software interrupts enable the kernel to defer tasks. Because they function in a similar way to the inter-
rupts described above but are implemented fully in the software, they are logically enough known as
software interrupts or softIRQs.

The kernel is informed of an anomalous condition by means of a software interrupt, and the situation is
resolved at some later time by special handler routines. As already noted, the kernel services all pending
software interrupts at the end of do_IRQ so that regular activation is ensured.

16Since the patch that introduced the change had to change every ISR, it might well be the one to touch most files at a single blow
in the kernel history.

875

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 876

Chapter 14: Kernel Activities

From a more abstract view, software interrupts can therefore be described as a form of kernel activity
that is deferred to a later point in time. However, despite the clear similarities between hardware and
software interrupts, they are not always comparable.

The central component of the softIRQ mechanism is a table with 32 entries to hold elements of the
softirq_action type. This data type has a very simple structure and consists of two elements only:

<interrupt.h>
struct softirq_action
{

void (*action)(struct softirq_action *);
void *data;

};

Whereas action is a pointer to the handler routine executed by the kernel when a software interrupt
occurs, data accepts a nonspecified pointer to private data of the handler function.

The definition of the data structure is architecture-independent, as is the complete implementation of
the softIRQ mechanism. With the exception of processing activation, no processor-specific functions or
features are deployed; this is in clear contrast to normal interrupts.

Software interrupts must be registered before the kernel can execute them. The open_softirq function is
provided for this purpose. It writes the new softIRQ at the desired position in the softirq_vec table:

kernel/softirq.c
void open_softirq(int nr, void (*action)(struct softirq_action*), void *data)
{

softirq_vec[nr].data = data;
softirq_vec[nr].action = action;

}

data is used as a parameter each time the action softIRQ handler is called.

The fact that each softIRQ has a unique number immediately suggests that softIRQs are relatively scarce
resources that may not be used randomly by all manner of device drivers and kernel parts but must be
used judiciously. By default, only 32 softIRQs may be used on a system. However, this limit is not too
restrictive because softIRQs act as a basis for implementing other mechanisms that also defer work and
are better adapted to the needs of device drivers. The corresponding techniques (tasklets, work queues,
and kernel timers) are discussed below.

Only the central kernel code uses software interrupts. SoftIRQs are used at a few points only, but these
are all the more important:

<interrupt.h>
enum
{

HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,

876

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 877

Chapter 14: Kernel Activities

TASKLET_SOFTIRQ
SCHED_SOFTIRQ,

#ifdef CONFIG_HIGH_RES_TIMERS
HRTIMER_SOFTIRQ,

#endif
};

};

Two serve to implement tasklets (HI_SOFTIRQ and TASKLET_SOFTIRQ), two are used for send and receive
operations in networks (NET_TX_SOFTIRQ and NET_RX_SOFTIRQ, the source of the softIRQ mechanism
and its most important application), one is used by the block layer to implement asynchronous request
completions (BLOCK_SOFTIRQ), and one is used by the scheduler (SCHED_SOFTIRQ) to implement periodic
load balancing on SMP systems. When high-resolution timers are enabled, they also require a softIRQ
(HRTIMER_SOFTIRQ).

Numbering of the softIRQs produces a priority sequence, which does not affect the frequency of exe-
cution of individual handler routines or their priority with respect to other system activities, but does
define the sequence in which the routines are executed if several are marked as active or pending at the
same time.

raise_softirq(int nr) is used to raise a software interrupt (similarly to a normal interrupt). The num-
ber of the desired softIRQ is passed as a parameter.

This function sets the corresponding bit in the per-CPU variable irq_stat[smp_processor_id].__
softirq_pending. This marks the softIRQ for execution but defers execution. By using a processor-
specific bitmap, the kernel ensures that several softIRQs — even identical ones — can be executed on
different CPUs at the same time.

Providing raise_softirq was not called in the interrupt context, wakeup_softirqd is called to wake
the softIRQ daemon; this is one of the two alternative ways of launching the processing of softIRQs. The
daemon is discussed in more detail in Section 14.2.2.

14.2.1 Starting SoftIRQ Processing
There are several ways of starting softIRQ processing, but all come down to invoking the do_softirq
function. For this reason, let’s take a closer look at this function. Figure 14-11 shows the corresponding
code flow diagram that presents the essential steps.

The function first ensures that it is not in the interrupt context (meaning, of course, that a hardware
interrupt is involved). If it is, it terminates immediately. Because softIRQs are used to execute time-
uncritical parts of ISRs, the code itself must not be called within an interrupt handler.

With the help of local_softirq_pending, the bitmap of all softIRQs set on the current CPU is deter-
mined. If any softIRQ is waiting to be processed, then __do_softirq is called.

This function resets the original bitmap to 0; in other words, all softIRQs are deleted. Both actions take
place (on the current processor) with disabled interrupts to prevent modification of the bitmap as a
result of interference by other processes. Subsequent code, on the other hand, executes with interrupts

877

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 878

Chapter 14: Kernel Activities

enabled. This allows the original bitmap to be modified at any time during processing of the softIRQ
handlers.

The action functions in softirq_vec are invoked in a while loop for each enabled softIRQ.

local_softirq_pendung and restart limit not reached? Restart processing

New softIRQs activated? wakeup_softirqd

do_softirq

local_softirq_pending

__do_softirq

h->action

Figure 14-11: Code flow diagram for do_softirq.

Once all marked softIRQs have been serviced, the kernel checks whether new softIRQs have been marked
in the original bitmap in the meantime. At least one softIRQ not serviced in the previous cycle must
remain, and the number of restarts must not exceed MAX_SOFTIRQ_RESTART (usually set to 10). If this is
the case, the marked softIRQs are again processed in sequence. This operation is repeated until no new
unprocessed softIRQs remain after execution of all handlers.

Should softIRQs still remain after the MAX_SOFTIRQ_RESTART time of restarting the processing,
wakeup_softirqd is called to wake up the softIRQ daemon:

14.2.2 The SoftIRQ Daemon
The task of the softIRQ daemon is to execute softIRQs asynchronously to remaining kernel code. To this
end, each system processor is allocated its own daemon named ksoftirqd.

wakeup_softirqd is invoked at two points in the kernel to wake up the daemon:

❑ In do_softirq, as just mentioned.

❑ At the end of raise_softirq_irqoff. This funtion is called by raise_softirq internally, and
can also be used directly if the kernel has interrupts turned off at the moment.

The wake-up function itself can be dealt with in a few lines. A pointer to the task_struct of the softIRQ
daemon is read from a per-CPU variable by means of a few macros. If the current task state is not
already TASK_RUNNING, it is put back in the list of processes ready to run by means of wake_up_process
(see Chapter 2). Although this does not immediately start servicing of all pending software inter-
rupts, the daemon (which runs with priority 19) is selected as soon as the scheduler has nothing
better to do.

878

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 879

Chapter 14: Kernel Activities

The softIRQ daemons of the system are generated shortly after init is called at system startup using the
initcall mechanism described in Appendix D. After initialization, each daemon executes the following
endless loop17:

kernel/softirq.c
static int ksoftirqd(void * __bind_cpu)
...

while (!kthread_should_stop()) {
if (!local_softirq_pending()) {

schedule();
}

__set_current_state(TASK_RUNNING);

while (local_softirq_pending()) {
do_softirq();
cond_resched();

}
set_current_state(TASK_INTERRUPTIBLE);

}
...
}

Each time it is awakened, the daemon first checks whether marked softIRQs are pending, as otherwise
control can be passed to another process by explicitly invoking the scheduler.

If there are marked softIRQs, the daemon gets on with servicing them. In a while loop the two functions
do_softirq and cond_resched are invoked repeatedly until no marked softIRQS remain. cond_resched
ensures that the scheduler is called if the TIF_NEED_RESCHED flag was set for the current process (see
Chapter 2). This is possible because all functions execute with enabled hardware interrupts.

14.3 Tasklets
Software interrupts are the most effective way of deferring the performance of activities to a future
point in time. However, this deferral mechanism is very complicated to handle. Because softIRQs can
be serviced simultaneously and independently on several processors, the handler routine of one and
the same softIRQ can run on several CPUs at the same time. This represents a key contribution to the
effectiveness of the concept — network implementation is a clear winner on multiprocessor systems.
However, the handler routines must be designed to be fully reentrant and thread-safe. Alternatively,
critical areas must be protected with spinlocks (or with other IPC mechanisms; see Chapter 5), and this
requires a great deal of careful thought.

Tasklets and work queues are mechanisms for the deferred execution of work; their implementation is
based on softIRQs, but they are easier to use and therefore more suitable for device drivers (and also for
other general kernel code).

17kthread_should_stop() returns a true value if the softIRQ daemon is stopped explicitly. Since this happens only when a
CPU is removed from the system, I will not discuss this case. I also omit preemption handling for the sake of clarity.

879

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 880

Chapter 14: Kernel Activities

Before going into the technical details, a word of caution on the terminology used: For historical reasons,
the term bottom half is often used to mean two different things; first, it refers to the lower half of the code
of an ISR that performs no time-critical actions. Unfortunately, the mechanisms used in earlier kernel
versions to defer the execution of actions was also referred to as the bottom half, with the result that the
term is often used ambiguously. In the meantime, bottom halves no longer exist as a kernel mechanism.
They were discarded during the development of 2.5 and replaced with tasklets, a far better substitute.

Tasklets are ‘‘small tasks‘‘that perform mini jobs that would be wasted on full processes.

14.3.1 Generating Tasklets
Not surprisingly, the central data structure of each tasklet is called tasklet_struct and is defined as
follows:

<interrupt.h>
struct tasklet_struct
{

struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long);
unsigned long data;

};

From the perspective of a device driver, the most important element is func. It points to the address of a
function whose execution is to be deferred. data is passed as a parameter when the function is executed.

next is a pointer used to build a linked list of tasklet_struct instances. This allows several tasks to be
queued for execution.

state indicates the current state of the task — as for a genuine task. However, only two options are
available, each represented by a separate bit in state, which is why they can be set and removed inde-
pendently of each other:

❑ TASKLET_STATE_SCHED is set when the tasklet is registered in the kernel and scheduled for execu-
tion.

❑ TASKLET_STATE_RUN indicates that a tasklet is currently being executed.

The second state is only of relevance on SMP systems. It is used to protect tasklets against concurrent
execution on several processors.

The atomic counter count is used to disable tasklets already scheduled. If its value is not equal to 0, the
corresponding tasklet is simply ignored when all pending tasklets are next executed.

14.3.2 Registering Tasklets
tasklet_schedule registers a tasklet in the system:

<interrupt.h>
static inline void tasklet_schedule(struct tasklet_struct *t);

880

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 881

Chapter 14: Kernel Activities

If the TASKLET_STATE_SCHED bit is set, registration is terminated because the tasklet is already regis-
tered. Otherwise, the tasklet is placed at the start of a list whose list header is the CPU-specific variable
tasklet_vec. This list contains all registered tasklets and uses the next element for linking purposes.

The tasklet list is marked for processing once a tasklet has been registered.

14.3.3 Executing Tasklets
The most important part in the life of a tasklet is its execution. Because tasklets are implemented on top
of softIRQs, they are always executed when software interrupts are handled.

Tasklets are linked with the TASKLET_SOFTIRQ softIRQ. Consequently, it is sufficient to invoke
raise_softirq(TASKLET_SOFTIRQ) to execute the tasklets of the current processor at the next
opportunity. The kernel uses tasklet_action as the action function of the softIRQ.

The function first determines the CPU-specific list in which the tasklets marked for execution are linked.
It then redirects the list header to a local element, and thus removes all entries from the public list. They
are then processed one after the other in the following loop:

kernel/softirq.c
static void tasklet_action(struct softirq_action *a)
...

while (list) {
struct tasklet_struct *t = list;
list = list->next;

if (tasklet_trylock(t)) {
if (!atomic_read(&t->count)) {

if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
BUG();

t->func(t->data);
tasklet_unlock(t);
continue;

}
tasklet_unlock(t);

}
...

}
...
}

Executing tasklets in a while loop is similar to the mechanism used when handling softIRQs.

Because a tasklet can be executed on only one processor at a time, but other tasklets may run in parallel,
tasklet-specific locking is required. The state state is used as the locking variable. Before the handler
function of a tasklet is executed, the kernel uses tasklet_trylock to check whether the state of the
tasklet is TASKLET_STATE_RUN; in other words, whether it is already running on another processor of the
system:

<interrupt.h>
static inline int tasklet_trylock(struct tasklet_struct *t)
{

return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state);
}

881

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 882

Chapter 14: Kernel Activities

If the corresponding bit has not yet been set, it is set now.

If the count element is not equal to 0, the tasklet is regarded as deactivated. In this case, the code is not
executed.

Once both checks have been passed successfully, the kernel executes the handler function of the
tasklet with the corresponding function parameters by invoking t->func(t->data). Finally, the
TASKLET_SCHED_RUN bit of the tasklet is deleted using tasklet_unlock.

If new tasklets were queued for the current processor during execution of the tasklets, the softIRQ
TASKLET_SOFTIRQ is raised to execute the new tasklets as soon as possible. (Because the code needed
to do this is not particularly interesting, it is not included above.)

In addition to normal tasklets, the kernel uses a second kind of tasklet of a ‘‘higher‘‘ priority.
Its implementation is absolutely identical to that of normal tasklets except for the following
modifications:

❑ HI_SOFTIRQ is used as a softIRQ instead of TASKLET_SOFTIRQ; its associated action function is
tasklet_hi_action.

❑ The registered tasklets are queued in the CPU-specific variable tasklet_hi_vec. This is done
using tasklet_hi_schedule.

In this context, ‘‘higher priority‘‘ means that the softIRQ handler HI_SOFTIRQ is executed before all other
handlers — particularly before network handlers that account for the main part of software interrupt
activity.

Currently, mostly sound card drivers make use of this alternative because deferring actions too long can
impair the sound quality of audio output. But also network cards for high-speed transmission lines can
profit from this mechanism.

14.4 Wait Queues and Completions
Wait queues are used to enable processes to wait for a particular event to occur without the need for
constant polling. Processes sleep during wait time and are woken up automatically by the kernel when
the event takes place. Completions are mechanisms that build on wait queues and are used by the kernel
to wait for the end of an action. Both mechanisms are frequently used, primarily by device drivers, as
shown in Chapter 6.

14.4.1 Wait Queues
Data Structures

Each wait queue has a head represented by the following data structure:

<wait.h>
struct __wait_queue_head {

spinlock_t lock;
struct list_head task_list;

};
typedef struct __wait_queue_head wait_queue_head_t;

882

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 883

Chapter 14: Kernel Activities

Because wait queues can also be modified in interrupts, a spinlock named lock must be acquired before
the queue is manipulated (see Chapter 5). task_list is a doubly linked list used to implement what it’s
best at: queues.

The elements in the queue are instances of the following data structure:

<wait.h>
struct __wait_queue {

unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head task_list;

};

typedef struct __wait_queue wait_queue_t;

❑ flags has the value WQ_FLAG_EXCLUSIVE or it does not — other flags are not defined at the
moment. A set WQ_FLAG_EXCLUSIVE flag indicates that the waiting process would like to be
woken up exclusively (this is discussed in more detail shortly).

❑ private is a pointer to the task structure of the waiting process. The variable can basically point
to some arbitrary private data, but this is only seldom used in the kernel, so I will not discuss
these cases any further.

❑ func is invoked to wake the element.

❑ task_list is used as a list element to position wait_queue_t instances in a wait queue.

Wait queue use is divided into two parts:

1. To put the current process to sleep in a wait queue, it is necessary to invoke the wait_event
function (or one of its equivalents, discussed below). The process goes to sleep and relin-
quishes control to the scheduler.

The kernel invokes this function typically after it has issued a request to a block device to
transfer data. Because transfer does not take place immediately and there is nothing else to
do in the meantime, the process can sleep and therefore make CPU time available to other
processes in the system.

2. At another point in the kernel — in our example, after data have arrived from the block
device — the wake_up function (or one of its equivalents, discussed below) must be invoked
to wake the sleeping processes in the wait queue.

When processes are put to sleep using wait_event, you must always ensure that
there is a corresponding wake_up call at another point in the kernel.

Putting Processes to Sleep
The add_wait_queue function is used to add a task to a wait queue; this function delegates its work to
__add_wait_queue once the necessary spinlock has been acquired:

<wait.h>
static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
{

883

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 884

Chapter 14: Kernel Activities

list_add(&new->task_list, &head->task_list);
}

Nothing more need be done than to add the new task to the wait list using the standard list_add list
function.

add_wait_queue_exclusive is also available. It works in the same way as add_wait_queue but inserts
the process at the queue tail and also sets its flag to WQ_EXCLUSIVE (what is behind this flag is discussed
below).

Another method to put a process to sleep on a wait queue is prepare_to_wait. In addition to the param-
eters required by add_wait_queue, a task state is required as well:

kernel/wait.c
void fastcall
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{

unsigned long flags;

wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))

__add_wait_queue(q, wait);
...

set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);

}

After calling __add_wait_queue as discussed above, the kernel sets the current state of the process to the
state passed to prepare_to_wait.

prepare_to_wait_exclusive is a variant that sets the WQ_FLAG_EXCLUSIVE flag and appends the wait
queue element to the queue tail.

Two standard methods are available to initialize a wait queue entry:

1. init_waitqueue_entry initializes a dynamically allocated instance of wait_queue_t:

<wait.h>
static inline void init_waitqueue_entry(wait_queue_t *q,

struct task_struct *p)
{

q->flags = 0;
q->private = p;
q->func = default_wake_function;

}

default_wake_function is just a parameter conversion front end that attempts to wake the
process using the try_to_wake_up function described in Chapter 2.

884

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 885

Chapter 14: Kernel Activities

2. DEFINE_WAIT allows for creating a static instance of wait_queue_t that is automatically ini-
tialized:

<wait.h>
#define DEFINE_WAIT(name) \

wait_queue_t name = { \
.private = current, \
.func = autoremove_wake_function, \
.task_list = LIST_HEAD_INIT((name).task_list), \

}

autoremove_wake_function is now used to wake the process. The function not only calls
default_wake_function, but also removes the wait queue element from the wait queue.

add_wait_queue is normally not used directly. It is more common to use wait_event. This is a macro
that requires two parameters:

1. A wait queue to wait on.

2. A condition in the form of a C expression of the event to wait for.

All the macro needs to do is to ensure that the condition is not yet already fulfilled; in this case, pro-
cessing can be immediately stopped because there is nothing to wait for. The hard work is delegated to
__wait_event:

<wait.h>
#define __wait_event(wq, condition) \
do { \

DEFINE_WAIT(__wait); \
\

for (;;) { \
prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); \
if (condition) \

break; \
schedule(); \

} \
finish_wait(&wq, &__wait); \

} while (0)

After setting up the wait queue element with DEFINE_WAIT, the macro produces an endless loop. The
process is put to sleep on the wait queue using prepare_to_wait. Every time it is woken up, the kernel
checks if the specified condition is fulfilled, and exits the endless loop if this is so. Otherwise, control is
given to the scheduler, and the task is put to sleep again.

It is essential that both wait_event and __wait_event are implemented as macros — this allows for
specifying conditions given by standard C expressions! Since C does not support any nifty features like
higher-order functions, this behavior would be impossible (or at least very clumsy) to achieve using
regular procedures.

885

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 886

Chapter 14: Kernel Activities

When the condition if fulfilled, finish_wait sets the task state back to TASK_RUNNING and removes the
entry from the wait queue list.18

In addition to wait_event, the kernel defines several other functions to place the current process in a
wait queue. Their implementation is practically identical to that of sleep_on:

<wait.h>
#define wait_event_interruptible(wq, condition)
#define wait_event_timeout(wq, condition, timeout) { ... }
#define wait_event_interruptible_timeout(wq, condition, timeout)

❑ wait_event_interruptible uses the TASK_INTERRUPTIBLE task state. The sleeping process can
therefore be woken up by receiving a signal.

❑ wait_event_timeout waits for the specified condition to be fulfilled, but stops waiting after a
time-out specified in jiffies. This prevents a process from sleeping for ever.

❑ wait_event_interruptible_timeout puts the process to sleep so that it can be woken up by
receiving a signal. It also registers a time-out. Kernel nomenclature is usually not a place for
surprises!

Additionally the kernel defines a number of deprecated functions (sleep_on, sleep_on_timeout,
interruptible_sleep_on, and interruptible_sleep_on_timeout) that are deprecated and not
supposed to be used in new code anymore. They still sit around for compatibility purposes.

Waking Processes
The kernel defines a series of macros that are used to wake the processes in a wait queue. They are all
based on the same function:

<wait.h>
#define wake_up(x) __wake_up(x, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, NULL)
#define wake_up_nr(x, nr) __wake_up(x, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr, NULL)
#define wake_up_all(x) __wake_up(x, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0, NULL)
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
#define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)

__wake_up delegates work to __wake_up_common after acquiring the necessary lock of the wait queue
head.

kernel/sched.c
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,

int nr_exclusive, int sync, void *key)
{

wait_queue_t *curr, *next;
...

18However, some care is required when doing this because finished_wait is invoked from many places and the task could have
been removed by the wake-up function. However, the kernel manages to get everything right by careful manipulation of the list
elements.

886

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 887

Chapter 14: Kernel Activities

q selects the desired wait queue and mode specifies what state processes may have in order to be woken
up. nr_exclusive indicates how many tasks with a set WQ_FLAG_EXCLUSIVE are to be woken up.

The kernel then iterates through the sleeping tasks and invokes their wake-up function func:

kernel/sched.c
list_for_each_safe(curr, next, &q->task_list, task_list) {

unsigned flags = curr->flags;

if (curr->func(curr, mode, sync, key) &&
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)

break;
}

}

The list is scanned repeatedly until there are either no further tasks or until the number of exclusive
tasks specified by nr_exclusive has been woken up. This restriction is used to avoid a problem known
as the thundering herd. If several processes are waiting for exclusive access to a resource, it makes no
sense to wake all waiting processes because all but one will have to be put back to sleep. nr_exclusive
generalizes this restriction.

The most frequently used wake_up function sets nr_exclusive to 1 and thus makes sure that only one
exclusive task is woken up.

Recall from above that WQ_FLAG_EXCLUSIVE tasks are added to the end of the wait queue. This implemen-
tation ensures that in mixed queues all normal tasks are woken up first, and only then is the restriction
for exclusive tasks taken into consideration.

It is useful to wake all processes in a wait queue if the processes are waiting for a data transfer to ter-
minate. This is because the data of several processes can be read at the same time without mutual
interference.

14.4.2 Completions
Completions resemble the semaphores discussed in Chapter 5 but are implemented on the basis of
wait queues. What interests us is the completions interface. Two actors are present on the stage: One
is waiting for something to be completed, and the other declares when this completion has happened.
Actually, this is a simplification: An arbitrary number of processes can wait for a completion. To rep-
resent the ‘‘something’’ that the processes wait for to be completed, the kernel uses the following data
structure:

<completion.h>
struct completion {

unsigned int done;
wait_queue_head_t wait;

};

done allows for handling the situation in which an event is completed before some other process waits for
its completion. This is discussed below. wait is a standard wait queue on which waiting processes are
put to sleep.

887

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 888

Chapter 14: Kernel Activities

init_completion initializes a completion instance that was dynamically allocated, while
DECLARE_COMPLETION is the macro of choice to set up a static instance of the data structure.

Processes can be added to the list using wait_for_completion, where they wait (in exclusive sleep state)
until their request is processed by some part of the kernel. The function requires a completion instance
as a parameter:

<completion.h>
void wait_for_completion(struct completion *);
int wait_for_completion_interruptible(struct completion *x);
unsigned long wait_for_completion_timeout(struct completion *x,

unsigned long timeout);
unsigned long wait_for_completion_interruptible_timeout(

struct completion *x, unsigned long timeout);

Several refined variants are additionally available:

❑ Normally processes that wait for completion of an event are in an uninterruptible state, but
this can be changed if wait_for_completion_interruptible is used. The function returns
-ERESTARTSYS if the process was interrupted, and 0 otherwise.

❑ wait_for_completion_timeout waits for a completion event to occur, but provides an addi-
tional time-out in jiffies that cancels waiting after a defined time. This helps to prevent wait-
ing for an event indefinitely. If the completion is finished before the time-out occurs, then the
remaining time is returned as result, otherwise 0.

❑ wait_for_completion_interruptible_timeout is a combination of both variants.

Once the request has been processed by another part of the kernel, either complete or complete_all
must be invoked from there to wake the waiting processes. Because only one process can be removed
from the completions list at each invocation, the function must be invoked exactly n times for n wait-
ing processes. complete_all, on the other hand, wakes up all processing waiting for the completion.
complete_and_exit is a small wrapper that first applies complete and then calls do_exit to finish the
kernel thread.

<completion.h>
void complete(struct completion *);
void complete_all(struct completion *);

kernel/exit.c
NORET_TYPE void complete_and_exit(struct completion *comp, long code);

complete, complete_all, and complete_and_exit require a pointer to an instance of struct completion
as a parameter that identifies the completion in question.

Now what is the meaning of done in struct completion? Each time complete is called, the counter
is incremented by 1, and the wait_for functions only puts the caller to sleep if done is not equal to 0.
Effectively, this means that processes do not wait for events that are already completed. complete_all
works similarly, but sets the counter to the largest possible value (UINT_MAX/2 — half of the maximal
value of an unsigned integer because the counter can also assume negative values) such that processes
that call wait_ after the event has completed will never go to sleep.

888

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 889

Chapter 14: Kernel Activities

14.4.3 Work Queues
Work queues are a further means of deferring actions until later. Because they are executed in the user
context by means of daemons, the functions can sleep as long as they like — it does not matter at all to
the kernel. During the development of 2.5, work queues were designed as a replacement for the keventd
mechanism formerly used.

Each work queue has an array with as many entries as there are processors in the system. Each entry lists
tasks to be performed at a later time.

For each work queue, the kernel generates a new kernel daemon in whose context the deferred tasks are
performed using the wait queue mechanism just described.

A new wait queue is generated by invoking one of the functions create_workqueue or
create_workqueue_singlethread. While the first one creates a worker thread on all CPUs, the latter one
just creates a single thread on the first CPU of the system. Both functions use __create_workqueue_key
internally19:

kernel/workqueue.c
struct workqueue_struct *__create_workqueue(const char *name,

int singlethread)

The name argument indicates the name under which the generated daemon is shown in the process
list. If singlethread is set to 0, a thread is created on every CPU of the system, otherwise just on the
first one.

All tasks pushed onto wait queues must be packed into instances of the work_struct structure in which
the following elements are important in the view of the work queue user:

<workqueue.h>
struct work_struct;
typedef void (*work_func_t)(struct work_struct *work);

struct work_struct {
atomic_long_t data;
struct list_head entry;
work_func_t func;

}

entry is used as usual to group several work_struct instances in a linked list. func is a pointer to the
function to be deferred. It is supplied with a pointer to the instance of work_struct that was used to
submit the work. This allows the worker function to obtain the data element that can point to arbitrary
data associated with the work_struct.

19Another variant, create_freezable_workqueue, is available to create work queues that are friendly toward system hiberna-
tion. Since I do not discuss any mechanisms related to power management, I will also not discuss this alternative any further. Also
note that the prototype of __create_workqueue is simplified and does not contain parameters related to lock depth management
and power management.

889

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 890

Chapter 14: Kernel Activities

Why does the kernel use atomic_long_t as the data type for a pointer to some arbitrary data, and not
void * as usual? In fact, former kernel versions defined work_struct as follows:

<workqueue.h>
struct work_struct {
...

void (*func)(void *);
void *data;

...
};

data was represented by a pointer as expected. However, the kernel does use a little trick — which is
fairly on the edge of being dirty — to squeeze more information into the structure without spending
more memory. Because pointers are aligned on 4-byte boundaries on all supported architectures, the first
2 bits are guaranteed to be zero. They are therefore abused to contain flag bits. The remaining bits hold
the pointer information as usual. The following macros allow masking out the flag bits:

<workqueue.h>
#define WORK_STRUCT_FLAG_MASK (3UL)
#define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)

Currently only a single flag is defined: WORK_STRUCT_PENDING allows for finding out whether a delayable
work item is currently pending (if the bit is set) or not. The auxiliary macro work_pending(work) allows
for checking for the bit. Note that the atomic data type of data ensures that the bit can be modified
without concurrency problems.

To simplify declaring and filling a static instance of this structure, the kernel provides the
INIT_WORK(work, func) macro, which supplies an existing instance of work_struct with a delayed
function. If a data argument is required, it must be set afterward.

There are two ways of adding a work_queue instance to a work queue — queue_work and
queue_work_delayed. The first alternative has the following prototype:

kernel/workqueue.c
int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)

It adds work to the work queue wq; the work itself is performed at an undefined time (when the scheduler
selects the daemon).

To ensure that work queued will be executed after a specified time interval has passed since submission,
the work_struct needs to be extended with a timer. The solution is as obvious as can be:

<workqueue.h>
struct delayed_work {

struct work_struct work;
struct timer_list timer;

};

queue_delayed_work is used to submit instances of delayed_work to a work queue. It ensure that at least
one time interval specified (in jiffies) by delay elapses before the deferred work is performed.

890

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 891

Chapter 14: Kernel Activities

kernel/workqueue.c
int fastcall queue_delayed_work(struct workqueue_struct *wq,

struct delayed_work *dwork, unsigned long delay)

This function first generates a kernel timer whose time-out occurs in delayed jiffies. The associated
handler function then uses queue_work to add the work to the work queue in the normal way.

The kernel generates a standard wait queue named events. This queue can be used by all parts of the
kernel for which it is not worthwhile creating a separate work queue. The two functions below, whose
implementation I need not discuss in detail, must be used to place new work in this standard queue:

kernel/workqueue.c
int schedule_work(struct work_struct *work)
int schedule_delayed_work(struct delay_work *dwork, unsigned long delay)

14.5 Summary
The kernel can be activated synchronously or asynchronously. While the preceeding chapter discussed
how system calls are employed for synchronous activation, you have seen in this chapter that there is a
second, asynchronous activation method triggered from the hardware using interrupts.

Interrupts are used when the hardware wants to notify the kernel of some condition, and there are var-
ious ways that interrupts can be implemented physically. After discussing the different possibilities, we
have analyzed the generic data structures of the kernel that are employed to manage interrupts, and have
seen how to implement flow handling for various IRQ types. The kernel has to provide service routines
for IRQs, and some care is required to implement them properly. Most important, it is necessary to make
these handlers as fast as possible, and the work is therefore often distributed into a quick top half and a
slower bottom half that runs outside the interrupt context.

The kernel offers some means to defer actions until a later point in time, and I have discussed the cor-
responding possibilities in this chapter: SoftIRQs are the software equivalent to hardware IRQs, and
tasklets are built on this mechanism. While they enable the kernel to postpone work until later, they are
not allowed to go to sleep. This is, however, possible with wait queues and work queues, also examined
in this chapter.

891

Mauerer runc14.tex V2 - 09/04/2008 5:37pm Page 892

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 893

Time Management

All the methods of deferring work to a future point in time discussed in this book so far do not cover
one specific area — the time-based deferral of tasks. The different variants that have been discussed
do, of course, give some indication of when a deferred task will be executed (e.g., tasklets when
handling softIRQs), but it is not possible to specify an exact time or a time interval after which
a deferred activity will be performed by the kernel. The simplest kind of usage in this respect is
obviously the implementation of time-outs where the kernel on behalf of a userland process waits
a specific period of time for the arrival of an event — for example, 10 seconds for a user to press a
key as a last opportunity to cancel before an important operation is carried out. Other usages are
widespread in user applications.

The kernel itself also uses timers for various tasks, for example, when devices communicate with
associated hardware, often using protocols with chronologically defined sequences. A large number
of timers are used to specify wait timeouts in TCP implementation.

Depending on the job that needs to be performed, timers need to provide different characteristics,
especially with respect to the maximal possible resolution. This chapter discusses the alternatives
provided by the Linux kernel.

15.1 Overview
First of all, an overview of the subsystem that we are about to inspect in detail is presented.

15.1.1 Types of Timers
The timing subsystem of the kernel has grown tremendously during the development of 2.6. For
the initial releases, the timer subsystem consisted solely of what are now known as low-resolution
timers. Essentially, low-resolution timers are centered around a periodic tick which happens at
regular intervals. Events can be scheduled to be activated at one of these intervals. Pressure to
extend this comparatively simple framework came predominantly from two sources:

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 894

Chapter 15: Time Management

❑ Devices with limited power (i.e., laptops, embedded systems, etc.) need to use as little energy
as possible when there is nothing to do. If a periodic clock is running, there is, however, nearly
always something to do — the tick must be provided. But if no users for the tick are present, it
would basically not need to run. Nevertheless, the system needs to be brought from a low-power
state into a state with higher power consumption just to implement the periodic tick.

❑ Multimedia-oriented applications need very precise timekeeping, for instance, to avoid frame
skips in videos, or jumps during audio playback. This necessitated increasing the available
resolution.

Finding a good solution agreeable to all developers (and users!) who come into contact with time
management — and there is quite a large number of them — took many years and a good many
proposed patches. The current state is rather unusual because two rather distinct types of timers are
supported by the kernel:

❑ Classical timers have been available since the initial versions of the kernel. Their implementation
is located in kernel/timer.c. A resolution of typically 4 milliseconds is provided, but the value
depends on the frequency with which the machine’s timer interrupt is operated. These classical
timers are called low-resolution or timer wheel timers.

❑ For many applications, especially media-oriented ones, a timer resolution of several millisec-
onds is not good enough. Indeed, recent hardware provides means of much more precise timing,
which can achieve resolutions in the nanosecond range formally. During the development of
kernel 2.6, an additional timer subsystem was added allowing the use of such timer sources. The
timers provided by the new subsystem are conventionally referred to as high-resolution timers.

Some code for high-resolution timers is always compiled into the kernel, but the implementation
will only perform better than low-resolution timers if the configuration option HIGH_RES_TIMERS
is set. The framework introduced by high-resolution timers is reused by low-resolution timers
(in fact, low-resolution timers are implemented on top of the high-resolution mechanism).

Classical timers are bound by a fixed raster, while high-resolution clock events can essentially happen at
arbitrary times; see Figure 15-1. Unless the dynamic ticks feature is active, it can also happen that ticks
occur when no event expires. High-resolution events, in contrast, only occur when some event is due.

Time

Jiffie 1234 1235 1236 1237 1238 1239

Tick with
events

Tick w/o events

High resolution
event

Figure 15-1: Comparison between low- and high-resolution timers.

Why did the developers not choose the seemingly obvious path and improve the already existing timer
subsystem, but instead added a completely new one? Indeed, some people tried to pursue this strategy,
but the mature and robust structure of the old timer subsystem did not make it particularly easy to
improve while still being efficient — and without creating new problems. Some more thoughts on this
problem can be found in Documentation/hrtimers.txt.

894

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 895

Chapter 15: Time Management

Independent of the resolution, the kernel nomenclature distinguishes two types of timers:

❑ Time-outs — Represent events that are bound to happen after some time, but can and usually
will be canceled before. For example, consider that the network subsystem waits for an incoming
packet that is bound to arrive within a certain period of time. To handle this situation, a timer is
set that will expire after the time is over. Since packets usually arrive on time, chances are that
the timer will be removed before it will actually go off. Besides resolution is not very critical for
these types of timers. When the kernel allows an acknowledgment to a packet to be sent within
10 seconds, it does not really matter if the time-out occurs after 10 or 10.001 seconds.

❑ Timers — Are used to implement temporal sequences. For instance, a sound card driver could
want to issue some data to a sound card in small, periodic time intervals. Timers of this sort will
usually expire and require much better resolution than time-outs.

An overview of the building blocks employed to implement the timing subsystem is given in Figure 15-2.
Owing to the nature of an overview, it is not too precise, but gives a quick glance at what is involved in
timekeeping, and how the components interact with each other. Many details are left to the following
discussion.

Clock
sources

Timer
wheel

High-resolution
timers

Low-resolution
timers

Clock
events

Generic time & clockevents layer

Architecture specific code

Hardware clock chips

Process
accounting

Jiffies &
Global tick

per CPU system-wide

Figure 15-2: Overview of the components that build up the timing subsystem.

The raw hardware sits at the very bottom. Every typical system has several devices, usually implemented
by clock chips, that provide timing functionality and can serve as clocks. Which hardware is available
depends on the particular architecture. IA-32 and AMD64 systems, for instance, have a programmable
interrupt timer (PIT, implemented by the 8253 chip) as a classical clock source that has only a very mod-
est resolution and stability. CPU-local APICs (advanced programmable interrupt controllers), which were
already mentioned in the context of IRQ handling, provide much better resolution and stability. They are
suitable as high-resolution time sources, whereas the PIT is only good enough for low-resolution timers.

Hardware naturally needs to be programmed by architecture-specific code, but the clock source abstraction
provides a generic interface to all hardware clock chips. Essentially, read access to the current value of
the running counter provided by a clock chip is granted.

895

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 896

Chapter 15: Time Management

Periodic events do not comply with a free running counter very well, thus another abstraction is required.
Clock events are the foundation of periodic events. Clock events can, however, be more powerful. Some
time devices can provide events at arbitrary, irregular points in time. In contrast to periodic event devices,
they are called one-shot devices.

The high-resolution timer mechanism is based on clock events, whereas the low-resolution timer mecha-
nism utilizes periodic events that can either come directly from a low-resolution clock or from the high-
resolution subsystem. Two important tasks for which low-resolution timers assume responsibility are

1. Handle the global jiffies counter. The value is incremented periodically (or at least it looks
periodical to most parts of the kernel) and represents a particularly simple form of time
reference.1

2. Perform per-process accounting. This also includes handling classical low-resolution timers,
which can be associated with any process.

15.1.2 Configuration Options
Not only are there two distinct (but nevertheless related) timing subsystems in the kernel, but the situ-
ation is additionally complicated by the dynamic ticks feature. Traditionally, the periodic tick is active
during the entire lifetime of the kernel. This can be wasteful in systems where power is scarce, with lap-
tops and portable machines prime examples. If a periodic event is active, the system will never be able to
go into power-saving modes for long intervals of time. The kernel thus allows to configure dynamic ticks,2

which do not require a periodic signal. Since this complicates timer handling, assume for now that this
feature is not enabled.

Four different timekeeping scenarios can be realized by the kernel. While the number may not sound too
large, understanding the time-related code is not exactly simplified when many tasks can be implemented
in four different ways depending on the chosen configuration. Figure 15-3 summarizes the possible
choices.

High-res
Dynamic ticks

High-res
Periodic ticks

Low-res
Dynamic ticks

Low-res
Periodic ticks

Figure 15-3: Possible timekeeping
configurations that arise because of
high- and low-resolution timers and
dynamic/periodic ticks.

Computing all four possible combinations from two sets with two elements is certainly not complicated.
Nevertheless, it is important to realize that all combinations of low/high res and dynamic/periodic ticks
are valid and need to be accounted for by the kernel.

1Updating the jiffies value is not easy to categorize between low- and high-resolution frameworks because it can be performed by
both, depending on the kernel configuration. The fine details of jiffie updating are discussed in the course of this chapter.
2It is also customary to refer to a system with this configuration option enabled as a tickless system.

896

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 897

Chapter 15: Time Management

15.2 Implementation of Low-Resolution
Timers

Since low-resolution timers have been around in the kernel for many years and are used in hundreds of
places, their implementation is covered first. In the following, assume that the kernel is defined to work
with periodic ticks. The situation is more involved if dynamic ticks are in use, but that case is discussed
in Section 15.5.

15.2.1 Timer Activation and Process Accounting
As the time base for timers, the kernel uses the timer interrupt of the processor or any other suitable
periodic source. On IA-32 and AMD64 systems, the programmable interrupt timer (PIT) or the High
Precision Event Timer (HPET) can be employed for this purpose. Nearly all modestly modern systems
of this type are equipped with an HPET, and if one is available, it is preferred to the PIT.3 The interrupt
occurs at regular intervals — exactly HZ times per second. HZ is defined by an architecture-specific pre-
processor symbol in <asm-arch/param.h>. The assigned value can be configured at compile time via the
configuration option CONFIG_HZ.

HZ=250 is used as the default value for most machine types, especially on the ubiquitous IA-32 and
AMD64 architectures.

The HZ frequency is also defined (and used) when dynamic ticks are enabled
because it is the fundamental quantity for many timekeeping tasks. On a busy
system where something nontrivial (unlike the idle task) is always available to be
done, there is superficially no difference between dynamic and periodic ticks.
Differences only arise when there is little to do and some timer interrupts can be
skipped.

Higher HZ values will, in general, lead to better interactivity and responsiveness of the system, particu-
larly because the scheduler is called at each timer tick. As a drawback, more system work needs to be
done because the timer routines are called more often; thus the general kernel overhead will increase
with increasing HZ settings. This makes large HZ values preferable for desktop and multimedia systems,
whereas lower HZ values are better for servers and batch machines where interactivity is not much of a
concern.

Early kernels in the 2.6 series directly hooked into the timer interrupt to start timer activation and process
accounting, but this has been somewhat complicated by the introduction of the generic clock framework.
Figure 15-4 provides an overview of the situation on IA-32 and AMD64 machines.

The details differ for other architectures, but the principle is nevertheless the same. (How a particular
architecture proceeds is usually set up in time_init which is called at boot time to initialize the funda-
mental low-resolution timekeeping.) The periodic clock is set up to operate at HZ ticks per second. IA-32
registers timer_interrupt as the interrupt handler, whereas AMD64 uses timer_event_interrupt. Both
functions notify the generic, architecture-independent time processing layers of the kernel by calling the
event handler of the so-called global clock (see Section 15.3). Different handler functions are employed

3Using the HPET can be disabled with the kernel command-line option hpet=disable, though.

897

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 898

Chapter 15: Time Management

depending on which timekeeping model is used. In any case, the handler will set the ball rolling for
periodic low-resolution timekeeping by calling the following two functions:

❑ do_time is responsible for system-wide, global tasks: Update the jiffies value, and handle process
accounting. On a multiprocessor system, one particular CPU is selected to perform both tasks,
and all other CPUs are not concerned with them.

❑ update_process_times needs to be performed by every CPU on SMP systems. Besides pro-
cess accounting, it activates and expires all registered classical low-resolution timers and pro-
vides the scheduler with a sense of time. Since these topics merit a discussion of their own (and
are not so much related to the rest of this section), they are inspected in detail in Section 15.8.
Here we are only concerned with timer activation and expiration, which is triggered by calling
run_local_timers. The function, in turn, raises the softIRQ TIMER_SOFTIRQ, and the handler
function is responsible to run the low-resolution timers.

IRQ 0

timer_interrupt

do_timer_interrupt_hook

timer_event_interrupt

update_process_times

do_timer

event handler
of the global

clock

IA-32 AMD64

Figure 15-4: Overview of periodic low-resolution timer interrupts on
IA-32 and AMD64 machines.

First, consider do_time. The function performs as shown in Figure 15-5.

The global variable jiffies_64 (an integer variable with 64 bits on all architectures)4 is incremented by
1. All that this means is that jiffies_64 specifies the exact number of timer interrupts since the system
started. Its value is increased with constant regularity when dynamic ticks are disabled. If dynamic ticks
are active, more than one tick period can have passed since the last update.

4This is achieved on 32-bit processors by combining two 32-bit variables.

898

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 899

Chapter 15: Time Management

calc_load

do_time

jiffies_64++

update_times

update_wall_time

Figure 15-5: Code flow diagram for
do_time.

For historical reasons, the kernel sources also include another time base. jiffies is a variable of the
unsigned long type and is therefore only 4 bytes long on 32-bit processors, and this corresponds to 32
and not 64 bits. This causes a problem. After a longer system uptime, the counter reaches its maximum
value and must be reset to 0. Given a timer frequency of 100 Hz, this situation would arise after just less
than 500 days, and correspondingly earlier for higher HZ settings.5 When a 64-bit data type is used, the
problem never occurs because uptimes of 1012 days are a little utopian, even for a very stable kernel such
as Linux.

The kernel uses a trick to prevent efficiency losses when converting between the two different time bases.
jiffies and jiffies_64 match in their less significant bits and therefore point to the same memory
location or the same register. To achieve this, the two variables are declared separately, but the linker
script used to bind the final kernel binary specifies that jiffies equates to the 4 less significant bytes
of jiffies_64, where either the first or last 4 bytes must be used depending on the endianness of the
underlying architecture. The two variables are synonymous on 64-bit machines.

Caution: Times specified by jiffies and the jiffies variable itself require some special attention. The
peculiarities are discussed in Section 15.2.2 immediately below.

The remaining actions that must be performed at each timer interrupt are delegated by update_times:

❑ update_wall_time updates the wall time that specifies how long the system has already been
up and running. While this information is also roughly provided by the jiffies mechanism, the
wall clock reads the time from the current time source and updates the wall clock accordingly. In
contrast to the jiffies mechanism, the wall clock uses a human readable format (nanoseconds) to
represent the current time.

❑ calc_load updates the system load statistics that specify how many tasks have on average been
waiting on the run queue in a ready-to-run state during the last 1, 5, and, 15 minutes. This status
can be output using, for example, the w command.

5Most computers do not, of course, run uninterruptedly for so long, which is why the problem might appear to be somewhat
marginal at first glance. However, there are some applications — for instance, servers in embedded systems — in which uptimes of
this magnitude can easily be achieved. In such situations it must be ensured that the time base functions reliably.
During the development of 2.5, a patch was integrated to cause the jiffies value to wrap around 5 minutes after system boot. Potential
problems can, therefore, be found quickly without waiting for years for wraparound to occur.

899

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 900

Chapter 15: Time Management

15.2.2 Working with Jiffies
Jiffies provide a simple form of low-resolution time management in the kernel. Although the concept
is simple, some caveats apply when the variable is read or when times specified in jiffies need to be
compared.

Since jiffies_64 can be a composed variable on 32-bit systems, it must not be read directly, but may
only be accessed with the auxiliary function get_jiffies_64. This ensures that the correct value is
returned on all systems.

Comparing Times
To compare the temporal relation of events, the kernel provides several auxiliary functions that prevent
off-by-one errors if they are used instead of a home-grown comparisons (a, b, and c denote jiffie time
values for some events):

❑ timer_after(a,b) returns true if time a is after time b. time_before(a,b) will be true if time a
is before time b, as you will have guessed.

❑ time_after_eq(a,b) works like time_after, but also returns true if both times are identical.
time_before_eq(a,b) is the inverse variant.

❑ time_in_range(a,b,c) checks if time a is contained in the time interval denoted by [b, c]. The
boundaries are included in the range, so a may be identical to b or c.

Using these functions ensures that wraparounds of the jiffies counter are handled correctly. As a general
rule, kernel code should therefore never compare time values directly, but always use these functions.

Although there are fewer problems when 64-bit times as given by jiffies_64 are compared, the kernel
also provides the functions shown above for 64-bit times. Save for time_in_range, just append _64 to the
respective function name to obtain a variant that works with 64-bit time values.

Time Conversion
When it comes to time intervals, jiffies might not be the unit of choice in the minds of most programmers.
It is more conventional to think in milliseconds or microseconds for short time intervals. The kernel thus
provides some auxiliary functions to convert back and forth between these units and jiffies:

<jiffies.h>
unsigned int jiffies_to_msecs(const unsigned long j);
unsigned int jiffies_to_usecs(const unsigned long j);
unsigned long msecs_to_jiffies(const unsigned int m);
unsigned long usecs_to_jiffies(const unsigned int u);

The functions are self-explanatory. However, Section 15.2.3 shows that conversion functions between
jiffies and struct timeval and struct timespec, respectively, are also available.

15.2.3 Data Structures
Let us now turn our attention to how low-resolution timers are implemented. You have already seen that
processing is initiated by run_local_timers, but before this function is discussed, some prerequisites in
the form of data structures must be introduced.

900

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 901

Chapter 15: Time Management

Timers are organized on lists, and the following data structure represents a timer on a list:

<timer.h>
struct timer_list {

struct list_head entry;
unsigned long expires;

void (*function)(unsigned long);
unsigned long data;

struct tvec_t_base_s *base;
};

As usual, a doubly linked list is used to link registered timers with each other. entry is the list head. The
other structure items have the following meaning:

❑ function saves a pointer to the callback function invoked upon time-out.

❑ data is an argument for the callback function.

❑ expires specifies the time, in jiffies, at which the timer expires.

❑ base is a pointer to a base element in which the timers are sorted on their expiry time (discussed
in more detail shortly). There is a base element for each processor of the system; consequently,
the CPU upon which the timer runs can be determined using base.

The macro DEFINE_TIMER(_name, _function, _expires, _data) is provided to declare a static
timer_list instance.

Times are given in two formats in the kernel — as offsets or as absolute values. Both make use of jiffies.
While offsets are used when a new timer is installed, all kernel data structures use absolute values
because they can easily be compared with the current jiffies time. The expires element of timer_list
also uses absolute times and not offsets.

Because programmers tend to think in seconds rather than in HZ units when defining time intervals, the
kernel provides a matching data structure plus the option of converting into jiffies (and, of course,
vice versa):

<time.h>
struct timeval {

time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

The elements are self-explanatory. The complete time interval is calculated by adding the specified sec-
ond and microsecond values. The timeval_to_jiffies and jiffies_to_timeval functions are used to
convert between this representation and a jiffies value. These functions are implemented in <timer.h>.

Another possibility to specify times includes nanoseconds instead of microseconds:

<time.h>
struct timespec {

time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

901

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 902

Chapter 15: Time Management

Again auxiliary functions convert back and forth between jiffies and timespecs: timespec_to_jiffies
and jiffies_to_timespec.

15.2.4 Dynamic Timers
The kernel needs data structures to manage all timers registered in the system (these may be assigned
to a process or to the kernel itself). The structures must permit rapid and efficient checking for expired
timers so as not to consume too much CPU time. After all, such checks must be performed at each timer
interrupt.6

Mode of Operation
Before taking a closer look at the existing data structures and the implementation of the algorithms, let’s
illustrate the principle of timer management by reference to a simplified example, since the algorithm
used by the kernel is more complicated than might be expected at first glance. (This complexity brings
its rewards in the form of greater performance that could not be achieved with simpler algorithms and
structures.) Not only must the data structure hold all the information needed to manage timers,7 but it
must also be capable of being scanned easily at periodic intervals so that expired timers can execute and
then be removed. Figure 15-6 shows how timers are managed by the kernel.

tv1 tv2 tv3 tv4 tv5 tvec_base_t

struct timer_list

Figure 15-6: Data structures for managing timers.

The main difficulty lies in scanning the list for timers that are about to expire and that have just expired.
Because simply stringing together all timer_list instances is not satisfactory, the kernel creates different
groups into which timers are classified according to their expiry time. The basis for grouping is the main
array with five entries whose elements are again made up of arrays. The five positions of the main array
sort the existing timers roughly according to expiry times. The first group is a collection of all timers
whose expiry time is between 0 and 255 (or 28) ticks. The second group includes all timers with an expiry
time between 256 and 28+6 − 1 = 214 − 1 ticks. The range for the third group is from 214 to 28+2×6 − 1,
and so on. The entries in the main table are known as groups and are sometimes referred to as buckets.
Table 15-1 lists the intervals of the individual timer groups. I have used the bucket sizes for regular
systems as the basis of our calculations. The intervals differ on small systems with little memory.

Each group itself comprises an array in which the timers are sorted again. The array of the first group
consists of 256 elements, each position standing for a possible expires value between 0 and 256. If there

6Although the chosen data structure is well suited for the intended purpose, it is nevertheless too inefficient for high-resolution
timers that require even better organization.
7For the moment, ignore the additional data required for process-specific interval timers.

902

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 903

Chapter 15: Time Management

are several timers in the system with the same expires value, they are linked by means of a doubly
linked standard list (and via the entry element of timer_list).

Table 15-1: Interval Lengths for Timers

Group Interval

tv1 0 –255

tv2 28 = 256 –214 − 1

tv3 214 –220 − 1

tv4 220 –226 − 1

tv5 226 –232 − 1

The remaining groups also consist of arrays but with fewer entries, namely, 64. The array entries also
accept timer_list instances linked in a doubly linked list. However, each array entry no longer holds
just one possible value of expires but an entire interval. The length of the interval depends on the group.
While the second group permits 256 = 28 consecutive time values per array element, this figure is 214 in
the third group, 220 in the fourth, and 226 in the fifth and final group. Why these interval sizes make
sense will become clear when we consider how timers are executed in the course of time and how the
associated data structure is changed.

How are timers executed? The kernel is responsible primarily for looking after the first of the above
groups because this includes all timers due to expire shortly. For simplicity’s sake, let us assume that
each group has a counter that stores the number of an array position (actual kernel implementation is the
same in functional terms but is far less clearly structured as you will see shortly).

The index entry of the first group points to the array element that holds the timer_list instances of the
timers shortly due to be executed. The kernel scans this list every time there is a timer interrupt, executes
all timer functions, and increments the index position by 1. The timers just executed are removed from the
data structure. The next time a timer interrupt occurs, the timers at the new array position are executed
and deleted from the data structure, and the index is again incremented by 1, and so on. Once all entries
have been processed, the value of the index is 255. Because addition is modulo 256, the index reverts to
its initial position (position 0).

Because the contents of the first group are exhausted after at most 256 ticks, timers of the higher groups
must be pushed forward successively in order to replenish the first group. Once the index position of the
first group has reverted to its initial position, the group is replenished with all timers of a single array
entry of the second group. This explains the interval size selection in the individual groups. Because 256
different expiry times per array element are possible in the first group, the data of a single entry in the
second group are sufficient to replenish the complete array of the first group. The same applies for higher
groups. The data in an array element of the third group are sufficient to replenish the entire second group;
an element of the fourth group is sufficient for the entire third group, and an element of the fifth group is
sufficient for the entire fourth group.

903

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 904

Chapter 15: Time Management

The array positions of the higher groups are not, of course, selected randomly — the index entry again
has a role to play. However, the index entry value is no longer incremented by 1 after each timer tick but
only after each 256i−1 tick, where i stands for the number of the group.

Let’s examine this behavior by reference to a concrete example: 256 jiffies have expired since processing
of the first group was started, which is why the index is reset to 0. At the same time, the contents of the
first array element of the second group are used to replenish the data of the first group. Let us assume
that the jiffies system timer has the value 10,000 at the time of reset. In the first element of the second
group, there is a linked list of timers due to expire at 10,001, 10,015, 10,015, and 10,254 ticks. These are
distributed over array positions 1, 15, and 254 of the first group, and a linked list made up of two pointers
is created at position 15 — after all, both expire at the same time. Once copying is complete, the index
position of the second group is incremented by 1.

The cycle then starts afresh. The timers of the first group are processed one after the other until index
position 255 is reached. All timers in the second array element of the second group are used to replenish
the first group. When the index position of the second group has reached 63 (from the second group
onward the groups contain only 64 entries), the contents of the first element of the third group are used
to replenish the data of the second group. Finally, when the index of the third group has reached its
maximum value, data are fetched from the fourth group; the same applies for the transfer of data between
the fifth and the fourth groups.

To determine which timers have expired, the kernel need not scan through an enormous list of timers but
can limit itself to checking a single array position in the first group. Because this position is usually empty
or contains only a single timer, this check can be performed very quickly. Even the occasional copying of
timers from the higher groups requires little CPU time, because copying can be carried out efficiently by
means of pointer manipulation (the kernel is not required to copy memory blocks but need only supply
pointers with new values as is usually the case in standard list functions).

Data Structures
The contents of the above groups are generated by two simple data structures that differ minimally:

kernel/timer.c
typedef struct tvec_s {

struct list_head vec[TVN_SIZE];
} tvec_t;

typedef struct tvec_root_s {
struct list_head vec[TVR_SIZE];

} tvec_root_t;

While tvec_root_t corresponds to the first group, tvec_t represents higher groups. The two struc-
tures differ only in the size of the array elements; for the first group, TVR_SIZE is defined as 256. All
other groups use TVN_SIZE entries with a default value of 64. Systems where memory is scarce set the
configuration option BASE_SMALL; in this case, 64 entries are reserved for the first and 16 for all other
groups.

904

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 905

Chapter 15: Time Management

Each processor in the system has its own data structures for managing timers that run on it. A per-CPU
instance of the following data structure is used as the root element:

kernel/timer.c
struct tvec_t_base_s {
...

unsigned long timer_jiffies;
tvec_root_t tv1;
tvec_t tv2;
tvec_t tv3;
tvec_t tv4;
tvec_t tv5;

} ____cacheline_aligned_in_smp;

The elements tv1 to tv5 represent the individual groups; their function should be clear from the above
description. Of particular interest is the timer_jiffies element. It records the time (in jiffies) by which
all timers of the structure were executed. If, for example, the value of this variable is 10,500, the kernel
knows that all timers up to the jiffies value 10,499 have been executed. Usually, timer_jiffies is equal
to or 1 less than jiffies. The difference may be a little greater (with very high loading) if the kernel is
not able to execute timers for a certain period.

Implementing Timer Handling
Handling of all timers is initiated in update_process_times by invoking the run_local_timers function.
This limits itself to using raise_softirq(TIMER_SOFTIRQ) to activate the timer management softIRQ,
which is executed at the next opportunity.8 run_timer_softirq is used as the handler function of the
softIRQ; it selects the CPU-specific instance of struct tvec_t_base_s and invokes __run_timers.

__run_timers implements the algorithm described above. However, nowhere in the data structures
shown is the urgently required index position for the individual rough categories to be found! The kernel
does not require an explicit variable because all necessary information is contained in the timer_jiffies
member of base. The following macros are defined for this purpose:

kernel/timer.c
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

kernel/timer.c
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

The configuration option BASE_SMALL can be defined on small, usually embedded systems to save some
space by using a smaller number of slots than in the regular case. The timer implementation is otherwise
unaffected by this choice.

8Because softIRQs cannot be handled directly, it can happen that the kernel does not perform any timer handling for a few jiffies.
Timers can, therefore, sometimes be activated too late but can never be activated too early.

905

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 906

Chapter 15: Time Management

The index position of the first group can be computed by masking the value of base->timer_jiffies
with TVR_MASK.

int index = base->timer_jiffies & TVR_MASK;

Generally, the following macro can be used to compute the current index position in group N:

#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK

Doubting Thomases can easily convince themselves of the correctness of the bit operations by means of a
short Perl script.

The implementation produces exactly the results described above using the following code
(__run_timers is called by the abovementioned run_timer_softirq):

kernel/timer.c
static inline void __run_timers(tvec_base_t *base)
{

while (time_after_eq(jiffies, base->timer_jiffies)) {
struct list_head work_list;
struct list_head *head = &work_list;
int index = base->timer_jiffies & TVR_MASK;

...

If the kernel has missed a number of timers in the past, they are dealt with now by processing all pointers
that expired between the last execution point (base->timer_jiffies) and the current time (jiffies):

kernel/timer.c
if (!index &&

(!cascade(base, &base->tv2, INDEX(0))) &&
(!cascade(base, &base->tv3, INDEX(1))) &&

!cascade(base, &base->tv4, INDEX(2)))
cascade(base, &base->tv5, INDEX(3));

...

The cascade function is used to replenish the timer lists with timers from higher groups (although its
implementation is not discussed here, suffice it to say that it uses the mechanism described above).

kernel/timer.c
++base->timer_jiffies;
list_replace_init(base->tv1.vec + index, &work_list);

...

All timers located in the first group at the corresponding position for the timer_jiffies value (which
is incremented by 1 for the next cycle) are copied into a temporary list and therefore removed from the
original data structures.

All that need then be done is to execute the individual handler routines:

kernel/timer.c
while (!list_empty(head)) {

void (*fn)(unsigned long);

906

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 907

Chapter 15: Time Management

unsigned long data;

timer = list_entry(head->next,struct timer_list,entry);
fn = timer->function;
data = timer->data;

detach_timer(timer, 1);
fn(data);

}
}

...
}

Activating Timers
When new timers are installed, a distinction must be made as to whether they are required by the kernel
itself or by applications in userspace. First, let’s discuss the mechanism for kernel timers because user
timers also build on this mechanism.

add_timer is used to insert a fully supplied instance of timer_list into the structures just described
above:

<timer.h>
static inline void add_timer(struct timer_list *timer);

After checking several safety conditions (e.g., the same timer may not be added twice), work is delegated
to the internal_add_timer function whose task is to place the new timer at the right position in the data
structures.

The kernel must first compute the number of ticks after which time-out of the new timer will occur
because an absolute time-out value is specified in the data structure of new drivers. To compensate for
any missed timer handling calls, expires - base->timer_jiffies is used to compute the offset.

The group and the position within the group can be determined on the basis of this value. All that
now need be done is to add the new timer to the linked list. Because it is placed at the end of the list
and because the run_timer_list is processed from the beginning, a first-in, first-out mechanism is
implemented.

15.3 Generic Time Subsystem
Low-resolution timers are useful for a wide range of situations and deal well with many possible use
cases. This broadness, however, complicates support for timers with high resolution. Years of develop-
ment have shown that it is very hard to integrate them into the existing framework. The kernel therefore
supports a second timing mechanism.

While low-resolution timers are based on jiffies as fundamental units of time, high-resolution timers
use human time units, namely, nanoseconds. This is reasonable because high precision timers are mostly
required for userland applications, and the natural way for programmers to think about time is in human
units. And, most important, 1 nanosecond is a precisely defined time interval, whereas the length of one
jiffy tick depends on the kernel configuration.

907

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 908

Chapter 15: Time Management

High-resolution timers place more requirements on the architecture-specific code of the individual archi-
tectures than classical timers. The generic time framework provides the foundations for high-resolution
timers. Before getting into the details of high-resolution timers, let’s take a look into how high-precision
timekeeping is achieved in the kernel.

The core of the second timer subsystem of the kernel can be found in kernel/time/hrtimer.c. The
generic timekeeping code that forms the basis for high-resolution timers is located in several files in
kernel/time. After providing an overview of the mechanisms used, the new API that comes with high-
resolution timers is introduced, and then their implementation is examined in detail.

15.3.1 Overview
Figure 15-7 provides an overview of the generic time system that provides the foundation of high-
resolution timers.

CPU 0 CPU 1 CPU 2 CPU 3

tick device tick device tick device tick device

local tick

global
tick

local tick local tick local tick

Jiffies

Figure 15-7: Overview of the generic time subsystem.

First, let’s discuss the available components and data structures, the details of which will be covered
in the course of this chapter. Three mechanisms form the foundation of any time-related task in the
kernel:

1. Clock Sources (defined by struct clocksource) — Form the backbone of time manage-
ment. Essentially each clock source provides a monotonically increasing counter with Read
Only access for the generic kernel parts. The accurateness of different clock sources varies
depending on the capabilities of the underlying hardware.

2. Clock event devices (defined by struct clock_event_device) — Add the possibility of
equipping clocks with events that occur at a certain time in the future. Note that it is also
common to refer to such devices as clock event sources for historical reasons.

3. Tick Devices (defined struct tick_device) — Extend clock event sources to provide a
continuous stream of tick events that happen at regular time intervals. The dynamic tick
mechanism allows for stopping the periodic tick during certain time intervals, though.

908

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 909

Chapter 15: Time Management

The kernel distinguishes between two types of clocks:

1. A global clock is responsible to provide the periodic tick that is mainly used to update
the jiffies values. In former versions of the kernel, this type of clock was realized by
the programmable interrupt timer (PIT) on IA-32 systems, and on similar chips on other
architectures.

2. One local clock per CPU allows for performing process accounting, profiling, and last but
not least, high-resolution timers.

The role of the global clock is assumed by one specifically selected local clock. Note that high-resolution
timers only work on systems that provide per-CPU clock sources. The extensive communication required
between processors would otherwise degrade system performance too much as compared to the benefit
of having high-resolution timers.

The overall concept is complicated by problems that unfortunately arise on the two most widespread
platforms: AMD64 and IA-32 (the MIPS platform is also affected). Local clocks on SMP systems are based
on APIC chips. Unfortunately, these clocks only work properly dependent on the power-saving mode
they are in. For low-power modes (ACPI mode C3, to be precise), the local APIC timers are stopped,
and thus become useless as clock sources. A system-global clock that still works at this power man-
agement state is then used to periodically activate signals that look as if they would originate from the
original clock sources. The workaround is known as the broadcasting mechanism; more about this follow
in Section 15.6.

Since broadcasting requires communication between the CPUs, the solution is
slower and less accurate than proper local time sources; the kernel will
automatically switch back high-resolution to low-resolution mode.

15.3.2 Configuration Options
Timer implementation is influenced by several configuration symbols. Two choices are possible at com-
pile time:

1. The kernel can be built with or without support for dynamic ticks. If dynamic ticks are
enabled, the pre-processor constant CONFIG_NO_HZ is set.

2. High-resolution support can be enabled or disabled. The pre-processor symbol
CONFIG_HIGH_RES_TIMERS is enabled if support for them is compiled in.

Both are important in the following discussion of timer implementation. Recall that both choices are
independent of each other; this leads to four different configurations of the time and timer subsystems.

Additionally, each architecture is required to make some configuration choices. They cannot be influ-
enced by the user.

❑ GENERIC_TIME signals that the architecture supports the generic time framework.
GENERIC_CLOCKEVENTS states that the same holds for generic clock events. Since both are
necessary requirements for dynamic ticks and high-resolution timers, only architectures that

909

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 910

Chapter 15: Time Management

provide both are considered.9 Actually most widespread architectures have been updated to
support both options, even if some (for instance SuperH) do this only for certain time models.

❑ CONFIG_TICK_ONESHOT builds support for the one-shot mode of clock event devices. This is auto-
matically selected if high-resolution timers or dynamic ticks are enabled.

❑ GENERIC_CLOCKEVENTS_BROADCASTmust be defined if the architecture suffers from problems that
require broadcasting. Currently only IA-32, AMD64, and MIPS are affected.

15.3.3 Time Representation
The generic time framework uses the data type ktime_t to represent time values. Irregardless of the
underlying architecture, the type always resolves to a 64-bit quantity. This makes the structure conve-
nient to work with on 64-bit architectures as only simple integer operations are required for time-related
operations.

To reduce the effort on 32-bit machines, the definition ensures that the two 32-bit values are ordered
such that they can be directly interpreted as a 64-bit quantity without further ado — clearly this requires
sorting the fields differently depending on the processor’s endianness:

<ktime.h>
typedef union {

s64 tv64;
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)

struct {
ifdef __BIG_ENDIAN

s32 sec, nsec;
else

s32 nsec, sec;
endif

} tv;
#endif
} ktime_t;

If a 32-bit architecture provides functions that handle 64-bit quantities efficiently, it can set the config-
uration option KTIME_SCALAR — IA-32 is the only architecture that makes use of this possibility at the
moment. A separation into two 32-bit values is not performed in this case, but the representation of
kernel times as direct 64-bit quantities is used.

Several auxiliary functions to handle ktime_t objects are defined by the kernel. Among them are the
following:

❑ ktime_sub and ktime_add are used to subtract and add ktime_ts, respectively.

❑ ktime_add_ns adds a given number of nanoseconds to a ktime_t. ktime_add_us is another vari-
ant for microseconds. ktime_sub_ns and ktime_sub_us are also available.

❑ ktime_set produces a ktime_t from a given number of seconds and nanoseconds.

❑ Various functions of the type x_to_y convert between representation x and y, where the types
ktime_t, timeval, clock_t, and timespec are possible.

9Architectures that are currently migrating to the generic clock event framework can set GENERIC_CLOCKEVENTS_MIGR. This will
build the code, but not use it at run time.

910

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 911

Chapter 15: Time Management

Note that a direct interpretation of a ktime_t as a number of nanoseconds would be possible on 64-bit
machines, but can lead to problems on 32-bit machines. Thus, the function ktime_to_ns is provided
to perform the conversion properly. The auxiliary function ktime_equal is provided to decide if two
ktime_ts are identical.

To provide exchangeability with other time formats used in the kernel, some conversion functions are
available:

<ktime.h>
ktime_t timespec_to_ktime(const struct timespec ts)
ktime_t timeval_to_ktime(const struct timeval tv)
struct timespec ktime_to_timespec(const ktime_t kt)
struct timeval ktime_to_timeval(const ktime_t kt)
s64 ktime_to_ns(const ktime_t kt)
s64 ktime_to_us(const ktime_t kt)

The function names specify which quantity is converted into which, so there’s no need to add anything
further.

15.3.4 Objects for Time Management
Recall from the overview that three objects manage timekeeping in the kernel: clock sources, clock
event devices, and tick devices. Each of them is represented by a special data structure discussed in the
following.

Clock Sources
First of all, consider how time values are acquired from the various sources present in a machine. The
kernel defines the abstraction of a clock source for this purpose:

<clocksource.h>
struct clocksource {

char *name;
struct list_head list;
int rating;
cycle_t (*read)(void);
cycle_t mask;
u32 mult;
u32 shift;
unsigned long flags;

...
};

A human-readable name for the source is given in name, and list is a standard list element that connect
all available clock sources on a standard kernel list.

Not all clocks are of the same quality, and the kernel obviously wants to select the best possible one. Thus,
every clock has to (honestly) specify its own quality in rating. The following intervals are possible:

❑ A rating between 1 and 99 denotes a very bad clock that can only be used as a last resort or dur-
ing boot up, that is, when no better clock is available.

❑ The range 100–199 describes a clock that is fit for real use, but not really desirable if something
better can be found.

911

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 912

Chapter 15: Time Management

❑ Clocks with a rating between 300 and 399 are reasonably fast and accurate.

❑ Perfect clocks that are the ideal source get a rating between 400 and 499.

The best clock sources can currently be found on the PowerPC architecture where two clocks with a
rating of 400 are available. The time stamp counter (TSC) on IA-32 and AMD64 machines — usually the
most accurate device on these architectures — has a rating of 300. The best clocks on most architectures
have similar ratings. The developers do not exaggerate the performance of the devices and leave plenty
of space for improvement on the hardware side.

It does not come as a surprise that read is used to read the current cycle value of the clock. Note that
the value returned does not use any fixed timing basis for all clocks, but needs to be converted into a
nanosecond value individually. For this purpose, the field members mult and shift are used to multiply
or divide, respectively, the cycles value as follows:

<clocksource.h>
static inline s64 cyc2ns(struct clocksource *cs, cycle_t cycles)
{

u64 ret = (u64)cycles;
ret = (ret * cs->mult) >> cs->shift;
return ret;

}

Note that cycle_t is defined as an unsigned integer with 64 bits independent of the underlying platform.

If a clock does not provide time values with 64 bits, then mask specifies a bitmask to select the appropriate
bits. The macro CLOCKSOURCE_MASK(bits) constructs the proper mask for a given number of bits.

Finally, the field flags of struct clocksource specifies — you will have guessed it — a number of flags.
Only one flag is relevant for our purposes. CLOCK_SOURCE_CONTINUOUS represents a continuous clock,
although the meaning is not quite the mathematical sense of of ‘‘continuous.’’ Instead, it describes that
the clock is free-running if set to 1 and thus cannot skip. If it is set to 0, then some cycles might be lost;
that is, if the last cycle value was n, then the next value does not necessarily need to be n + 1 even if it was
read at the next possible moment. A clock must exhibit this flag to be usable for high-resolution timers.

For booting purposes and if nothing really better is available on the machine (which should never be the
case after bootup), the kernel provides a jiffies-based clock10:

kernel/time/jiffies.c
#define NSEC_PER_JIFFY ((u32)((((u64)NSEC_PER_SEC)<<8)/ACTHZ))

struct clocksource clocksource_jiffies = {
.name = "jiffies",
.rating = 1, /* lowest valid rating*/
.read = jiffies_read,
.mask = 0xffffffff, /*32bits*/
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
.shift = JIFFIES_SHIFT,

};

10Note that if the jiffy clock were used as the main clock source, then the kernel would be responsible to update the jiffies value
by some apt means, for instance, directly from the timer interrupt. Usually, architectures don’t do this. It, therefore, does not really
make sense to use this clock for tickless systems that emulate the jiffies layer via clock sources. In fact, using the jiffies clock source
is a nice way to crash dynamic tick systems, at least on kernel 2.6.24 . . .

912

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 913

Chapter 15: Time Management

At a first glance, it might not make much sense to first multiply by JIFFIES_SHIFT and then again divide
by the same value. Nevertheless, this bogosity is required because the NTP code does not work with zero
shifts.11 Also note that the jiffies clock has a rating of 1, which makes it definitely the worst clock in the
whole system.

The read routine for the jiffies clock is particularly simple: No hardware interaction is required. It suffices
to return the current jiffies value.

The time-stamp counter usually provides the best clock found on IA-32 and AMD64 machines:

arch/x86/kernel/tsc_64.c
static struct clocksource clocksource_tsc = {

.name = "tsc",

.rating = 300,

.read = read_tsc,

.mask = CLOCKSOURCE_MASK(64),

.shift = 22,

.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_MUST_VERIFY,

};

read_tsc uses some assembler code to read out the current counter value from hardware.

Working with Clock Sources
How can a clock be used? First of all, it must be registered with the kernel. The function
clocksource_register is responsible for this. The source is only added to the global clocksource_list
(defined in kernel/time/clocksource.c), which sorts all available clock sources by their rat-
ing. select_clocksource is called to select the best clock source. Normally this will pick the
clock with the best rating, but it is also possible to specify a preference from userland via
/sys/devices/system/clocksource/clocksource0/current_clocksource, which is used by the kernel
instead. Two global variables are provided for this purpose:

1. current_clocksource points to the clock source that is currently the best one.

2. next_clocksource points to an instance of struct clocksource that is better than the one
used at the moment. The kernel automatically switches to the best clock source when a new
best clock source is registered.

To read the clock, the kernel provides the following functions:

❑ __get_realtime_clock_ts takes a pointer to an instance of struct timespec as argument, reads
the current clock, converts the result, and stores in the timespec instance.

❑ getnstimeofday is a front-end for __get_realtime_clock_ts, but also works if no high-
resolution clocks are available in the system. In this case, getnstimeofday as defined in
kernel/time.c (instead of kernel/time/timekeeping.c) is used to provide a timespec that
fulfills only low-resolution requirements.

11The definition of NSEC_PER_JIFFY contains the pre-processor symbol ACTHZ. While HZ denotes the base low-resolution fre-
quency that can be selected at compile time, the frequency that the system actually provides will differ slightly because of hardware
limitations. ACTHZ stores the frequency at which the clock is actually running.

913

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 914

Chapter 15: Time Management

Clock Event Devices
Clock event devices are defined by the following data structure:

<clockchips.h>
struct clock_event_device {

const char *name;
unsigned int features;
unsigned long max_delta_ns;
unsigned long min_delta_ns;
unsigned long mult;
int shift;
int rating;
int irq;
cpumask_t cpumask;
int (*set_next_event)(unsigned long evt,

struct clock_event_device *);
void (*set_mode)(enum clock_event_mode mode,

struct clock_event_device *);
void (*event_handler)(struct clock_event_device *);
void (*broadcast)(cpumask_t mask);
struct list_head list;
enum clock_event_mode mode;
ktime_t next_event;

};

Recall that clock event devices allow for registering an event that is going to happen at a defined point
of time in the future. In comparison to a full-blown timer implementation, however, only a single event
can be stored. The key elements of every clock_event_device are set_next_event because it allows for
setting the time at which the event is going to take place, and event_handler, which is called when the
event actually happens.

Besides, the elements of clock_event_device have the following purpose:

❑ name is a human-readable representation for the event device. It shows up in /proc/timerlist.

❑ max_delta_ns and min_delta_ns specify the maximum or minimum, respectively, difference
between the current time and the time for the next event. Clocks work with individual frequen-
cies at which device cycles occur, but the generic time subsystem expects a nanosecond value
when the event shall take place. The auxiliary function clockevent_delta2ns helps to convert
one representation into the other.

Consider, for instance, that the current time is 20, min_delta_ns is 2, and max_delta_ns is 40 (of
course, the exemplary values do not represent any situation possible in reality). Then the next
event can take place during the time interval [22, 60] where the boundaries are included.

❑ mult and shift are a multiplier and a divider, respectively, used to convert between clock cycles
and nanosecond values.

❑ The function pointed to by event_handler is called by the hardware interface code (which usu-
ally is architecture-specific) to pass clock events on to the generic layers.

914

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 915

Chapter 15: Time Management

❑ irq specifies the number of the IRQ that is used by the event device. Note that this is only
required for global devices. Per-CPU local devices use different hardware mechanisms to emit
signals and set irq to −1.

❑ cpumask specifies for which CPUs the event device works. A simple bitmask is employed for this
purpose. Local devices are usually only responsible for a single CPU.

❑ broadcast is required for the broadcasting implementation that provides a workaround for non-
functional local APICs on IA-32 and AMD64 in power-saving mode. See Section 15.6 for more
details.

❑ rating allows — in analogy to the mechanism described for clock devices — comparison of
clock event devices by explicitly rating their accuracy.

❑ All instances of struct clock_event_device are kept on the global list clockevent_devices,
and list is the list head required for this purpose.

The auxiliary function clockevents_register_device is used to register a new clock event
device. This places the device on the global list.

❑ ktime_t stores the absolute time of the next event.

Each event device is characterized by several features stored as a bit string in features. A number of
constants in <clockchips.h> define possible features. For our purposes, two are of interest12:

❑ Clock event devices that support periodic events (i.e., events that are repeated over and over
again without the need to explicitly activate them by reprogramming the device) are identified
by CLOCK_EVT_FEAT_PERIODIC.

❑ CLOCK_EVT_FEAT_ONESHOT marks a clock capable of issuing one-shot events that happen exactly
once. Basically, this is the opposite of periodic events.

set_mode points to a function that allows for toggling the desired mode of operation between periodic
and one-shot mode. mode designates the current mode of operation. A clock can only be in either periodic
or one-shot mode at a time, but it can nevertheless provide the ability to work in both modes — actually,
most clocks allow both possibilities.

Generic code does not need to call set_next_event directly because the kernel provides the following
auxiliary function for this task:

kernel/time/clockevents.c
int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,

ktime_t now)

The (absolute) expiration time for the device dev is given in expires, while now denotes the current time.
Usually the caller will directly pass the result of ktime_get() for this parameter.

On IA-32 and AMD64 systems, the role of the global clock event device is initially assumed by the
PIT. The HPET takes over this duty once it has been initialized. To keep track of which device is used

12Recall that local APICs on IA-32 and AMD64 systems expose a problem: They stop working at certain power save levels. This prob-
lem is reported to the kernel by setting the ‘‘feature’’ CLOCK_EVT_FEAT_C3STOP, which should rather be named a mis-feature.

915

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 916

Chapter 15: Time Management

to handle global clock events on x86 systems, the global variable global_clock_event as defined in
arch/x86/kernel/i8253.c is employed. It points to the clock_event_device instance for the global
clock device that is currently in use.

Clock devices and clock event device are formally unconnected at the data structure level. However,
one particular hardware chip in the system provides capabilities that allow fulfillment of the require-
ments for both interfaces, so the kernel usually registers a clock device and a clock event device per
time hardware chip. Consider, for instance, the HPET device on IA-32 and AMD64 systems. The capa-
bilities as clock source are collected in clocksource_hpet, while hpet_clockevent is an instance of
clock_event_device. Both are defined in arch/x86/kernel/hpet.c. hpet_init first registers the clock
source and then the clock event device. This adds two time-management objects to the kernel, but only a
single piece of hardware is required.

Tick Devices
One particular important use of clock event devices is to provide periodic ticks — recall from Section 15.2
that ticks are, for instance, required to operate the classical timer wheel. A tick device is an extension of a
clock event device:

<tick.h>
struct tick_device {

struct clock_event_device *evtdev;
enum tick_device_mode mode;

}

enum tick_device_mode {
TICKDEV_MODE_PERIODIC,
TICKDEV_MODE_ONESHOT,

};

A tick_device is just a wrapper around struct clock_event_device with an additional field that
specifies which mode the device is in. This can either be periodic or one-shot. The distinction will be
important when tickless systems are considered; this is discussed further in Section 15.5. For now, it
suffices to see a tick device as mechanism to provides a continuous stream of tick events. These form the
basis for the scheduler, the classical timer wheel, and related components of the kernel.

Again, the kernel distinguishes global and local (per-CPU) tick devices. The local devices are collected
in tick_cpu_device (defined in kernel/time/tick-internal.h). Note that the kernel automatically
creates a tick device when a new clock event device is registered.

Several global variables are additionally defined in include/time/tick-internal.h:

❑ tick_cpu_device is a per-CPU list containing one instance of struct tick_device for each CPU
in the system.

❑ tick_next_period specifies the time (in nanoseconds) when the next global tick event will
happen.

❑ tick_do_timer_cpu contains the CPU number whose tick device assumes the role of the global
tick device.

❑ tick_period stores the interval between ticks in nanoseconds. It is the counterpart to HZ that
denotes the frequency at which ticks occur.

916

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 917

Chapter 15: Time Management

To set up a tick device, the kernel provides the function tick_setup_device. The prototype is as follows,
and the code flow diagram is depicted in Figure 15-813:

kernel/time/tick-common.c
static void tick_setup_device(struct tick_device *td,

struct clock_event_device *newdev, int cpu,
cpumask_t cpumask);

Initial setup? Assume global tick duties

Yes

No

No

Ye
s

Periodic mode?

Device requires broadcast? return

tick_setup_device

tick_setup_periodic

tick_setup_oneshot

tick_device_uses_broadcast

Figure 15-8: Code flow diagram for tick_setup_device.

The parameter td specifies the tick_device instance that is going to be set up. It is about to be equipped
with the clock event device newdev. cpu denotes the processor to which the device is associated, and
cpumask is a bitmask that allows for restricting the tick device to specific CPUs.

When the device is set up for the first time (i.e., if no clock event device is associated with the tick device),
the kernel performs two actions:

1. If no tick device has been chosen to assume the role as global tick device yet, then the cur-
rent device is selected, and tick_do_timer_cpu is set to the processor number to which the
current device belongs. tick_period, that is, the interval between ticks in nanoseconds, is
computed based on the value of HZ.

2. The tick device is set to work in periodic mode.

After assigning the event device to the tick device, the function is finished if broadcasting mode is active
(recall that this is used if the system is in a power-saving state where the local clocks don’t work; see
Section 15.6 for more details). Otherwise, the kernel needs to establish a periodic tick. How this is done
depends on whether the tick device runs in periodic or oneshot mode, and the work is correspondingly
delegated either to tick_setup_periodic or tick_setup_oneshot.

The fact that the tick device is in one-shot mode does not automatically mean that
dynamic ticks are enabled! Ticks in high-resolution mode are, for instance, always
implemented on top of one-shot timers.

13The function is automatically called if a new clock event device is registered that allows for creating a better tick device than the
previously available ones. Devices with a higher quality are favored, but not if the new and more accurate device does not support
one-shot mode, while the old device does provide this support.

917

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 918

Chapter 15: Time Management

Before discussing these functions, let us therefore consider which situations are faced by the kernel
depending on the selected configuration:

❑ A low-resolution system without dynamic ticks always uses a periodic tick. Support for one-shot
operations is not included in the kernel at all.

❑ Low-resolution systems with dynamic ticks use the tick device in one-shot mode.

❑ High-resolution systems always use one-shot mode independent of whether they work with
dynamic ticks or not.

All systems initially work in low-resolution mode and without dynamic ticks; they switch to a different
combination only later when the required hardware is initialized. I therefore focus on the low-resolution,
periodic tick case here. The more advanced options are discussed in Sections 15.4.5 (high-resolution
timers) and 15.5 (dynamic ticks). Some corrections are also required for broadcast mode; Section 15.6
covers them in more detail.

Before examining the low-resolution case without dynamic ticks, I would like to point out that
Figure 15-9 provides an overview of the tick handler functions that are used for the various possible
combinations. Note that which broadcast function is chosen for a system without dynamic ticks depends
on the mode of the underlying tick device. The details are given below.

HZ-based dynamic ticks

tick_handle_oneshot_broadcast
tick_handle_oneshot_broadcast

tick_handle_periodic_broadcast

tick_handle_periodic (low-res)

hrtimer_interrupt (high-res)

tick_nohz_handler (low-res)

hrtimer_interrupt (high-res)

broadcast

event_handler

Figure 15-9: Tick event and broadcast handler functions for all possible combinations of low- and
high-resolution mode, and with/without dynamic ticks.

Let us finally turn our attention to tick_setup_periodic. The code flow diagram is shown in
Figure 15-10.

Set event device to periodic mode

Set event device to one-shot mode

Program next clock event

Yes

No

tick_setup_periodic

tick_set_periodic_handler

Event device supports periodic events?

Figure 15-10: Code flow diagram for tick_setup_periodic.

918

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 919

Chapter 15: Time Management

Actually, the task is quite simple if the clock event device supports periodic events. In this
case, tick_set_periodic_handler installs tick_handle_periodic as handler function, and
clockevents_set_mode ensures that the clock event device runs in periodic mode.

If the event device does not support periodic events, then the kernel must make do with one-shot events.
clockevents_set_mode sets the event device to this mode, but additionally, the next event needs to be
programmed in manually using clockevents_program_event.

In both cases, the handler function tick_handle_periodic is called on the next event of the tick device.
(Recall that we focus on the low-res case without dynamic ticks here; other settings will use different
handler functions!) Before discussing the handler function, I need to introduce the auxiliary function
tick_periodic. It is responsible for handling the periodic tick on a given CPU required as an argument:

kernel/time/tick_common.c
static void tick_periodic(int cpu);

Figure 15-11 shows what is going on inside the function.

CPU responsible for global tick?

profile_tick

tick_periodic

do_timer

update_process_times

Figure 15-11: Code flow diagram for tick_periodic.

If the current tick device is responsible for the global tick, then do_timer is called. Recall that this function
is discussed in Section 15.2.1. Nevertheless, remember that do_timer is responsible to update the global
jiffies value that is used as the coarse-grained time base in many parts of the kernel.

update_process_times is called by every tick handler, as well as profile_tick. The first function is
discussed in Section 15.2.1. profile_tick is responsible for profiling, but the details are not discussed
here.

Let’s go back to the handler function. Things are again easier here if periodic events are in use:

kernel/tick/tick-common.c
void tick_handle_periodic(struct clock_event_device *dev)
{

int cpu = smp_processor_id();
ktime_t next;
tick_periodic(cpu);
if (dev->mode != CLOCK_EVT_MODE_ONESHOT)

return;
...

919

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 920

Chapter 15: Time Management

All the kernel needs to do is call tick_periodic. If the clock event device operates in one-shot mode, the
next tick event needs to be programmed:

kernel/tick/tick-common.c
...

/*
* Setup the next period for devices, which do not have
* periodic mode:
*/

next = ktime_add(dev->next_event, tick_period);
for (;;) {

if (!clockevents_program_event(dev, next, ktime_get()))
return;

tick_periodic(cpu);
next = ktime_add(next, tick_period);

}
}

Since tick_device->next_event contains the time of the current tick event, the time for the
next event can easily be computed by incrementing the value with the length of the interval
as specified in tick_period. Programming this event is then usually just a matter of calling
clockevents_program_event. Should this fail14 because the time for the next clock event lies already in
the past, then the kernel calls tick_periodic manually and tries again to reprogram the event until it
succeeds.

15.4 High-Resolution Timers
After having discussed the generic time framework, we are now ready to take the next step and dive
into the implementation of high-resolution timers. Two fundamental differences distinguish these timers
from low-resolution timers:

1. High-resolution (high-res) timers are time-ordered on a red-black tree.

2. They are independent of periodic ticks. They do not use a time specification based on jiffies,
but employ nanosecond time stamps.

Merging the high-resolution timer mechanism into the kernel was an interesting process in itself. After
the usual development and testing phase, kernel 2.6.16 contained the basic framework that provided
most of the implementation except one thing: support for high-resolution timers The classical imple-
mentation of low-resolution timers had, however, been replaced with a new foundation in this release. It
was based on the high-resolution timer framework, although the supported resolution was not any better
than before. Following kernel releases then added support for another class of timers that did actually
provide high-resolution capabilities.

This merge strategy is not only of historical interest: Since low-resolution timers are implemented on top
of the high-resolution mechanism, (partial) support for high-resolution timers will also be built into the
kernel even if support for them is not explicitly enabled! Nevertheless, the system will only be able to
provide timers with low-resolution capabilities.

14Note that 0 is returned on success, so !clockevents_program_event(...) checks for failure.

920

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 921

Chapter 15: Time Management

Components of the high-resolution timer framework that are not universally applicable, but
do really provide actual high-resolution capabilites are bracketed by the pre-processor symbol
CONFIG_HIGH_RES_TIMERS, and are only compiled in if high-resolution support is selected at compile
time. The generic part of the framework is always added to the kernel.

This means that even kernels that only support low resolution contain parts of the
high-resolution framework, which can sometimes lead to confusion.

15.4.1 Data Structures
High-resolution timers can be based on two different types of clocks (which are referred to as clock
bases). The monotonic clock starts at 0 when the system is booted (CLOCK_MONOTONIC). The other clock
(CLOCK_REALTIME) represents the real time of the system. The latter clock may exhibit skips if, for instance,
the system time is changed, but the monotonic clock runs, well, monotonously all the time.

For each CPU in the system, a data structure with both clock bases is available. Each clock base is
equipped with a red-black tree that sorts all pending high-resolution timers. Figure 15-12 summarizes
the situation graphically. Two clock bases (monotonic and real time) are available per CPU. All timers
are sorted by expiration time on a red-black tree, and expired timers whose callback handlers still need
to be executed are moved from the red-black tree to a linked list.

clock_base[0]

Red-black-tree

clock_base[1]

clock_base[0]

cb_pending

cb_pending

clock_base[1]

hrtimer_bases

Status info

active

first

first

active

first

active

active

first

CPU 1

Status infoCPU 2

struct hrtimer_clock_base

Expired timers pending
to be processed

struct
hrtimer

Callback pending
list

Figure 15-12: Overview of the data structures used to implement high-resolution timers.

A clock base is given by the following data structure:

<hrtimer.h>
struct hrtimer_clock_base {

struct hrtimer_cpu_base *cpu_base;
clockid_t index;
struct rb_root active;
struct rb_node *first;
ktime_t resolution;
ktime_t (*get_time)(void);

921

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 922

Chapter 15: Time Management

ktime_t (*get_softirq_time)(void);
ktime_t softirq_time;

#ifdef CONFIG_HIGH_RES_TIMERS
ktime_t offset;
int (*reprogram)(struct hrtimer *t,

struct hrtimer_clock_base *b,
ktime_t n);

#endif
};

The meaning of the fields is as follows:

❑ hrtimer_cpu_base points to the per-CPU basis to which the clock base belongs.

❑ index distinguishes between CLOCK_MONOTONIC and CLOCK_REALTIME.

❑ rb_root is the root of a red-black tree on which all active timers are sorted.

❑ first points to the timer that will expire first.

❑ Processing high-res timers is initiated from the high-resolution timer softIRQ HRTIMER_SOFTIRQ
as described in the next section. softirq_time stores the time at which the softIRQ was issued,
and get_softirq_time is a function to obtain this time. If high-resolution mode is not active,
then the stored time will be coarse-grained.

❑ get_time reads the fine-grained time. This is simple for the monotonic clock (the value delivered
by the current clock source can be directly used), but some straightforward arithmetic is required
to convert the value into the real system time.

❑ resolution denotes the resolution of the timer in nanoseconds.

❑ When the real-time clock is adjusted, a discrepancy between the expiration values of timers
stored on the CLOCK_REALTIME clock base and the current real time will arise. The offset field
helps to fix the situation by denoting an offset by which the timers needs to be corrected. Since
this is only a temporary effect that happens only seldomly, the complications need not be dis-
cussed in more detail.

❑ reprogram is a function that allows for reprogramming a given timer event, that is, changing the
expiration time.

Two clock bases are established for each CPU using the following data structure:

<hrtimer.h>
struct hrtimer_cpu_base {

struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES];
#ifdef CONFIG_HIGH_RES_TIMERS

ktime_t expires_next;
int hres_active;
struct list_head cb_pending;
unsigned long nr_events;

#endif
};

HRTIMER_MAX_CLOCK_BASES is currently set to 2 because a monotonic and a real-time clock exist as dis-
cussed above. Note that the clock bases are directly embedded into hrtimer_cpu_base and not referenced
via pointers! The remaining fields of the structure are used as follows:

922

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 923

Chapter 15: Time Management

❑ expires_next contains the absolute time of the next event that is due for expiration.

❑ hres_active is used as a Boolean variable to signal if high-resolution mode is active, or if only
low-resolution is available.

❑ When a timer expires, it is moved from the red-black tree to a list headed by cb_pending.15 Note
that the timers on this list still need to be processed. This will take place in the softIRQ handler.

❑ nr_events keeps track of the total number of timer interrupts.

he global per-CPU variable hrtimer_cpu_base contains an instance of struct hrtimer_base_cpu for
each processor in the system. Initially it is equipped with the following contents:

kernel/hrtimer.c
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
{

.clock_base =
{

{
.index = CLOCK_REALTIME,
.get_time = &ktime_get_real,
.resolution = KTIME_LOW_RES,

},
{

.index = CLOCK_MONOTONIC,

.get_time = &ktime_get,

.resolution = KTIME_LOW_RES,
},

}
};

Since the system is initialized in low-resolution mode, the achievable resolution is only KTIME_LOW_RES.
The pre-processor constant denotes the timer interval between periodic ticks with frequency HZ in
nanoseconds. ktime_get and ktime_get_real both obtain the current time by using getnstimeofday,
discussed in Section 15.3.

A very important component is still missing. How is a timer itself specified? The kernel provides the
following data structure for this purpose:

<hrtimer.h>
struct hrtimer {

struct rb_node node;
ktime_t expires;
int (*function)(struct hrtimer *);
struct hrtimer_base *base;
unsigned long state;

#ifdef CONFIG_HIGH_RES_TIMERS
enum hrtimer_cb_mode cb_mode;
struct list_head cb_entry;

#endif
};

15This requires that the timer is allowed to be executed in softIRQ context. Alternatively, timers are expired directly in the clock
hardware IRQ without involving the detour via the expiration list.

923

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 924

Chapter 15: Time Management

node is used to keep the timer on the red-black tree as mentioned above, and base points to the timer base.
The fields that are interesting for the timer’s user are function and expires. While the latter denotes the
expiration time, function is the callback employed when the timer expires. cb_entry is the list element
that allows for keeping the timer on the callback list headed by hrtimer_cpu_base->cb_pending. Each
timer may specify conditions under which it may or must be run. The following choices are possible:

<hrtimer.h>
/*
* hrtimer callback modes:
*
* HRTIMER_CB_SOFTIRQ: Callback must run in softirq context
* HRTIMER_CB_IRQSAFE: Callback may run in hardirq context
* HRTIMER_CB_IRQSAFE_NO_RESTART: Callback may run in hardirq context and
* does not restart the timer
* HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: Callback must run in hardirq context
* Special mode for tick emultation
*/

enum hrtimer_cb_mode {
HRTIMER_CB_SOFTIRQ,
HRTIMER_CB_IRQSAFE,
HRTIMER_CB_IRQSAFE_NO_RESTART,
HRTIMER_CB_IRQSAFE_NO_SOFTIRQ,

};

The comment explains the meaning of the individual constants well, and nothing need be added. The
current state of a timer is kept in state. The following values are possible16:

❑ HRTIMER_STATE_INACTIVE denotes an inactive timer.

❑ A timer that is enqueued on a clock base and waiting for expiration is in state
HRTIMER_STATE_ENQUEUED.

❑ HRTIMER_STATE_CALLBACK states that the callback is currently executing.

❑ When the timer has expired and is waiting on the callback list to be executed, the state is
HRTIMER_STATE_PENDING.

The callback function deserves some special consideration. Two return values are possible:

<hrtimer.h>
enum hrtimer_restart {

HRTIMER_NORESTART, /* Timer is not restarted */
HRTIMER_RESTART, /* Timer must be restarted */

};

Usually, the callback will return HRTIMER_NORESTART when it has finished executing. In this case, the
timer will simply disappear from the system. However, the timer can also choose to be restarted. This
requires two steps from the callback:

1. The result of the callback must be HRTIMER_RESTART.

16In a rare corner case, it is also possible that a timer is both in the states HRTIMER_STATE_ENQUEUED and
HRTIMER_STATE_CALLBACK. See the commentary in <hrtimer.h> for more information.

924

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 925

Chapter 15: Time Management

2. The expiration of the timer must be set to a future point in time. The callback function can
perform this manipulation because it gets a pointer to the hrtimer instance for the currently
running timer as function parameter. To simplify matters, the kernel provides an auxiliary
function to forward the expiration time of a timer:

<hrtimer.h>
unsigned long
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval);

This resets the timer so that it expires after now [usually now is set to the value returned by
hrtimer_clock_base->get_time()]. The exact expiration time is determined by taking the
old expiration time of the timer and adding interval so often that the new expiration time
lies past now. The function returns the number of times that interval had to be added to the
expiration time to exceed now.

Let us illustrate the behavior by an example. If the old expiration time is 5, now is 12,
and interval is 2, then the new expiration time will be 13. The return value is 4 because
13 = 5 + 4 × 2.

A common application for high-resolution timers is to put a task to sleep for a specified, short amount of
time. The kernel provides another data structure for this purpose:

<hrtimer.h>struct hrtimer_sleeper {
struct hrtimer timer;
struct task_struct *task;

};

An hrtimer instance is bundled with a pointer to the task in question. The kernel uses hrtimer_wakeup
as the expiration function for sleepers. When the timer expires, the hrtimer_sleeper can be derived
from the hrtimer using the container_of mechanism (note that the timer is embedded in struct
hrtimer_sleeper), and the associated task can be woken up.

15.4.2 Setting Timers
Setting a new timer is a two-step process:

1. hrtimer_init is used to initialize a hrtimer instance.

<hrtimer.h>
void hrtimer_init(struct hrtimer *timer, clockid_t which_clock,

enum hrtimer_mode mode);

timer denotes the affected high-resolution timer, clock is the clock to bind the timer to, and
mode specifies if absolute or relative time values (relative to the current time) are used. Two
constants are available for selection:
<hrtimer.h>
enum hrtimer_mode {

HRTIMER_MODE_ABS, /* Time value is absolute */
HRTIMER_MODE_REL, /* Time value is relative to now */

};

2. hrtimer_start sets the expiration time of a timer and starts it.

925

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 926

Chapter 15: Time Management

The implementation of both functions is purely technical and not very interesting, their code need not be
discussed in detail.

To cancel a scheduled timer, the kernel offers hrtimer_cancel and hrtimer_try_to_cancel. The dif-
ference between both functions is that hrtimer_try_to_cancel provides the extra return value −1 if
the timer if currently executing and thus cannot be stopped anymore. hrtimer_cancel waits until the
handler has executed in this case. Besides, both functions return 0 if the timer was not active, and 1 if it
was active, that is, if its status is either HRTIMER_STATE_ENQUEUED or HRTIMER_STATE_PENDING.

Restarting a canceled timer is done with hrtimer_restart:

<hrtimer.h>
int hrtimer_cancel(struct hrtimer *timer)
int hrtimer_try_to_cancel(struct hrtimer *timer)
int hrtimer_restart(struct hrtimer *timer)

15.4.3 Implementation
After having introduced all required data structures and components, let’s fill in the last missing pieces
by discussing the mechanisms of how high-resolution timers are expired and their callback function run.

Recall that parts of the high-resolution timer framework are also compiled into the kernel even if explicit
support for them is disabled. Expiring high-resolution timers is in this case driven by a clock with low-
resolution. This avoids code duplication because users of high-resolution timers need not supply an
extra version of their timing-related code for systems that do not have high-resolution capabilities. The
high-resolution framework is employed as usual, but operates with only low resolution.

Even if high-resolution support is compiled into the kernel, only low resolution will be available at boot
time, so the situation is identical to the one described above. Therefore, we need to take two possibili-
ties into account for how high-resolution timers are run: based on a proper clock with high-resolution
capabilities, and based on a low-resolution clock.

High-Resolution Timers in High-Resolution Mode
Let us first assume that a high-resolution clock is up and running, and that the transition to high-
resolution mode is completely finished. The general situation is depicted in Figure 15-13.

When the clock event device responsible for high-resolution timers raises an interrupt,
hrtimer_interrupt is called as event handler. The function is responsible to select all timers
that have expired and either move them to the expiration list (if they may be processed in softIRQ
context) or call the handler function directly. After reprogramming the clock event device so that an
interrupt is raised when the next pending timer expires, the softIRQ HRTIMER_SOFTIRQ is raised. When
the softIRQ executes, run_hrtimer_softirq takes care of executing the handler functions of all timers
on the expiration list.

Let’s discuss the code responsible to implement all this. First, consider the interrupt handler
hrtimer_interrupt. Some initialization work is necessary in the beginning:

kernel/hrtimer.c
void hrtimer_interrupt(struct clock_event_device *dev)
{

struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

926

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 927

Chapter 15: Time Management

struct hrtimer_clock_base *base;
ktime_t expires_next, now;

...
retry:

now = ktime_get();

expires_next.tv64 = KTIME_MAX;
base = cpu_base->clock_base;

...

Select expired
timers

Reprogram hardware for next event

Raise HRTIMER_SOFTIRQ

HRTIMER_SORTIRQ

run_hrtimer_softirq
Process pending
timers

hrtimer_interrupt

Move to expired list

Execute directly

High-resolution
clock interrupt

Figure 15-13: Overview of expiration of high-resolution timers with
high-resolution clocks.

The expiration time of the timer that is due next is stored in expires_next. Setting this to KTIME_MAX
initially is another way of saying that no next timer is available. The main work is to iterate over all clock
bases (monotonic and real-time).

kernel/hrtimer.c
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {

ktime_t basenow;
struct rb_node *node;
basenow = ktime_add(now, base->offset);

Essentially, basenow denotes the current time. base->offset is only non-zero when the real-time clock
has been readjusted, so this will never affect the monotonic clock base. Starting from base->first, the
expired nodes of the red-black tree can be obtained:

kernel/hrtimer.c
while ((node = base->first)) {

struct hrtimer *timer;

timer = rb_entry(node, struct hrtimer, node);
if (basenow.tv64 < timer->expires.tv64) {

ktime_t expires;

expires = ktime_sub(timer->expires,
base->offset);

927

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 928

Chapter 15: Time Management

if (expires.tv64 < expires_next.tv64)
expires_next = expires;

break;
}

If the next timer’s expiration time lies in the future, processing can be stopped by leaving the while loop.
The time of expiration is, however, remembered because it is later required to reprogram the clock event
device.

If the current timer has expired, it is moved to the callback list for later processing in the softIRQ if
this is allowed, that is, if HRTIMER_CB_SOFTIRQ is set. continue ensures that the code moves to the next
timer. Erasing the timer with __remove_timer also selects the next expiration candidate by updating
base->first. Additionally, this sets the timer state to HRTIMER_STATE_PENDING:

kernel/hrtimer.c
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {

__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);

list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
raise = 1;
continue;

}

Otherwise, the timer callback is directly executed in hard interrupt context. Note that this time
__remove_timer sets the timer state to HRTIMER_STATE_CALLBACK because the callback handler is
executed immediately afterward:

kernel/hrtimer.c
__remove_hrtimer(timer, base,

HRTIMER_STATE_CALLBACK, 0);
...

if (timer->function(timer) != HRTIMER_NORESTART) {
enqueue_hrtimer(timer, base, 0);

}
timer->state &= ˜HRTIMER_STATE_CALLBACK;

}
base++;

}

The callback handler is executed by timer->function(timer). If the handler requests to be restarted by
returning HRTIMER_RESTART, then enqueue_hrtimer fulfills this request. The HRTIMER_STATE_CALLBACK
flag can be removed once the handler has been executed.

When the pending timers of all clock bases have been selected, the kernel needs to reprogram the event
device to raise an interrupt when the next timer is due. Additionally, the HRTIMER_SOFTIRQ must be
raised if any timers are waiting on the callback list:

kernel/hrtimer.c
cpu_base->expires_next = expires_next;

/* Reprogramming necessary ? */
if (expires_next.tv64 != KTIME_MAX) {

if (tick_program_event(expires_next, 0))

928

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 929

Chapter 15: Time Management

goto retry;
}

/* Raise softirq ? */
if (raise)

raise_softirq(HRTIMER_SOFTIRQ);
}

Note that reprogramming fails if the next expiration date is already in the past — this can happen if timer
processing took too long. In this case, the whole processing sequence is restarted by jumping to the retry
label at the beginning of the function.

One more final step is necessary to complete one round of high-resolution timer handling: Run the
softIRQ to execute the pending callbacks. The softIRQ handler is run_hrtimer_softirq, and Figure 15-14
shows the code flow diagram.17

HRTIMER_RESTART

returned?

run_hrtimer_softirq

timer->function

enqueue_hrtimer

Ite
ra

te
 o

ve
r

al
l p

en
di

ng
 ti

m
er

s

Figure 15-14: Code flow diagram for run_hrtimer_softirq.

Essentially, the function iterates over the list of all pending timers. For each timer, the callback handler is
executed. If the timer requests to be restarted, then enqueue_hrtimer does the required mechanics.

High-Resolution Timers in Low-Resolution Mode
What if no high-resolution clocks are available? In this case, expiring high resolution timers is initiated
from the hrtimer_run_queues, which is called by the high-resolution timer softIRQ HRTIMER_SOFTIRQ
(since softIRQ processing is based on low-resolution timers in this case, the mechanism does not provide
any high-resolution capabilities naturally). The code flow diagram is depicted in Figure 15-15. Note that
this is a simplified version. In reality, the function is more involved because switching from low- to high-
resolution mode is started from this place. However, these problems will not bother us now; the required
extensions are discussed in Section 15.4.5.

Iterate over all bases

run_hrtimer_queue

hrtimer_run_queues

hrtimer_get_softirq_time

Figure 15-15: Code flow diagram for
hrtimer_run_queues.

17The corner case that a timer is rearmed on another CPU after the callback has been executed is omitted. This possibly requires
reprogramming the clock event device to the new expiration time if the timer is the first on the tree to expire.

929

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 930

Chapter 15: Time Management

The mechanism is not particularly complicated: After the coarse time is stored in the timer base by
hrtimer_get_softirq_time, the code loops over all clock bases (the monotonic and real-time clocks)
and processes the entries in each queue with run_hrtimer_queue.

First of all, the function checks if any timers must be processed (if hrtimer_cpu_base is a NULL pointer,
then no first timer exists, and thus nothing needs to be done):

kernel/hrtimer.c
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,

int index)
{

struct rb_node *node;
struct hrtimer_clock_base *base = &cpu_base->clock_base[index];

if (!base->first)
return;

if (base->get_softirq_time)
base->softirq_time = base->get_softirq_time();

...

Now the kernel has to find all timers that have expired and must be activated:

kernel/hrtimer.c
while ((node = base->first)) {

struct hrtimer *timer;
enum hrtimer_restart (*fn)(struct hrtimer *);
int restart;

timer = rb_entry(node, struct hrtimer, node);
if (base->softirq_time.tv64 <= timer->expires.tv64)

break;
...

fn = timer->function;
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);

...

Starting from the timer that is the first expiration candidate (base->first), the kernel checks if the timer
has already expired and calls the timer’s expiration function if this is the case. Recall that erasing the timer
with __remove_timer also selects the next expiration candidate by updating base->first. Additionally,
the flag HRTIMER_STATE_CALLBACK is set in the timer because the callback function is about to be executed:

kernel/hrtimer.c
restart = fn(timer);

timer->state &= ˜HRTIMER_STATE_CALLBACK;
if (restart != HRTIMER_NORESTART) {

enqueue_hrtimer(timer, base, 0);
}

}
}

930

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 931

Chapter 15: Time Management

When the handler has finished, the HRTIMER_STATE_CALLBACK flag can be removed again. If the timer
requested to be put back into the queue, then enqueue_hrtimer fulfills this request.

15.4.4 Periodic Tick Emulation
The clock event handler in high-resolution mode is hrtimer_interrupt. This implies that
tick_handle_periodic does not provide the periodic tick anymore. An equivalent functionality thus
needs be made available based on high-resolution timers. The implementation is (nearly) identical
between the situations with and without dynamic ticks. The generic framework for dynamic ticks is
discussed in Section 15.5; the required components are covered here only cursorily.

Essentially, tick_sched is a special data structure to manage all relevant information about periodic
ticks, and one instance per CPU is provided by the global variable tick_cpu_sched.

tick_setup_sched_timer is called to activate the tick emulation layer when the kernel switches to
high-resolution mode. One high-resolution timer is installed per CPU. The required instance of struct
hrtimer is kept in the per-CPU variable tick_sched:

<tick.h>
struct tick_sched {

struct hrtimer sched_timer;
...
}

The function tick_sched_timer is used as the callback handler. To avoid a situation in which all CPUs
are engaged in running the periodic tick handlers at the same time, the kernel distributes the acceleration
time as shown in Figure 15-16. Recall that the length of a tick period (in nanoseconds) is tick_period.
The ticks are spread across the first half of this period. Assume that the first tick starts at time 0. If the
system contains N CPUs, the remaining periodic ticks are started at times �, 2�, 3�, . . . The offset � is
given by tick_period/(2N).

CPU 0
CPU 1
CPU 2
CPU 3

CPU N

periodic
tick occurs

tick_period/2 tick_period time0

Figure 15-16: Distributing periodic tick handlers in high-resolution mode.

The tick timer is registered like every other regular high-resolution timer. The function displays some
similarities to tick_periodic, but is slightly more complicated. The code flow diagram is shown in
Figure 15-17.

If the CPU that is currently executing the timer is responsible to provide the global tick (recall that this
duty has already been distributed in low-resolution mode at boot time), then tick_do_update_jiffies64
computes the number of jiffies that have passed since the last update — in our case, this will always be

931

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 932

Chapter 15: Time Management

1 because I do not consider dynamic tick mode for now. The previously discussed function do_timer
is used to handle all duties of the global timer. Recall that this includes updating the global jiffies64
variable.

CPU responsible for global tick?

Set next tick after tick_period

return HRTIMER_RESTART

tick_sched_timer

tick_do_update_jiffies64

update_process_times

profile_tick

Figure 15-17: Code flow diagram for tick_sched_timer.

When the per-CPU periodic tick tasks have been performed in update_process_times (see Section 15.8)
and profile_tick, the time for the next event is computed, and hrtimer_forward programs the timer
accordingly. By returning HRTIMER_RESTART, the timer is automatically re-queued and activated when
the next tick is due.

15.4.5 Switching to High-Resolution Timers
High-resolution timers are not enabled from the very beginning, but can only be activated when suitable
high-resolution clock sources have been initialized and added to the generic clock framework. Low-
resolution ticks, however, are provided (nearly) from the very beginning. In the following, I discuss how
the kernel switches from low- to high-resolution mode.

The high-resolution queue is processed by hrtimer_run_queue when low-resolution timers are active.
Before the queues are run, the function provides checks if a clock event device suitable for high resolution
timers is present in the system. In this case, the switch to high resolution mode is performed:

kernel/hrtimer.c
void hrtimer_run_queues(void)
{
...

if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
if (hrtimer_switch_to_hres())

return;
...
}

tick_check_oneshot_change signalizes that high-resolution timers can be used if a clock that
supports one-shot mode and fulfills the resolution requirements for high-res timers, that is, if the flag
CLOCK_SOURCE_VALID_FOR_HRES is set. hrtimer_switch_to_hres performs the actual switch. The
required steps are summarized in Figure 15-18.

932

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 933

Chapter 15: Time Management

Set resolution in clock base

retrigger_next_event

hrtimer_switch_to_highres

tick_init_highres

tick_switch_to_oneshot(hrtimer_interrupt)

tick_setup_sched_timer

Figure 15-18: Code flow diagram for hrtimer_switch_to_hires.

tick_init_switch_to_highres is a wrapper function using tick_switch_to_oneshot to set the clock
event device to one-shot mode. Additionally, hrtimer_interrupt is installed as event handler. After-
ward the periodic tick emulation is activated with tick_init_highres as discussed above. Since the
resolution is now improved, this also needs to be reflected in the data structures:

kernel/hrtimer.c
static int hrtimer_switch_to_hres(void)
{
...

base->hres_active = 1;
base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

...
}

Finally, retrigger_next_event reprograms the clock event device to set the ball rolling. High-resolution
support is now active!

15.5 Dynamic Ticks
Periodic ticks have provided a notion of time to the Linux kernel for many of years. The approach is
simple and effective, but shows one particular deficiency on systems where power consumption does
matter: The periodic tick requires that the system is in an active state at a certain frequency. Longer
periods of rest are impossible because of this.

Dynamic ticks mend this problem. The periodic tick is only activated when some tasks actually do need
to be performed. Otherwise, it is temporarily disabled. Support for this technique can be selected at
compile time, and the resulting system is also referred to as a tickless system. However, this name is not
entirely accurate because the fundamental frequency HZ at which the periodic tick operates when it is
functional still provides a raster for time flow. Since the tick can be activated and deactivated according
to the current needs, the term dynamic ticks fits very well.

How can the kernel decide if the system has nothing to do? Recall from Chapter 2 that if no active tasks
are on the run queue, the kernel picks a special task — the idle task — to run. At this point, the dynamic
tick mechanism enters the game. Whenever the idle task is selected to run, the periodic tick is disabled

933

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 934

Chapter 15: Time Management

until the next timer will expire. The tick is re-enabled again after this time span, or when an interrupt
occurs. In the meantime, the CPU can enjoy a well-deserved sleep. Note that only classical timers need to
be considered for this purpose. High-resolution timers are not bound by the tick frequency, and are also
not implemented on top of periodic ticks.

Before discussing the dynamic tick implementation, let us note that one-shot clocks are a prerequisite for
them. Since a key feature of dynamic ticks is that the tick mechanism can be stopped and restarted as
necessary, purely periodic timers will fundamentally not suit the mechanism.

In the following, periodic ticks mean a tick implementation that does not use dynamic ticks. This must not
be confused with clock event devices that work in periodic mode.

15.5.1 Data Structures
Dynamic ticks need to be implemented differently depending on whether high- or low-resolution timers
are used. In both cases, the implementation is centered around the following data structure:

<tick.h>
struct tick_sched {

struct hrtimer sched_timer;
enum tick_nohz_mode nohz_mode;
ktime_t idle_tick;
int tick_stopped;
unsigned long idle_jiffies;
unsigned long idle_calls;
unsigned long idle_sleeps;
ktime_t idle_entrytime;
ktime_t idle_sleeptime;
ktime_t sleep_length;
unsigned long last_jiffies;
unsigned long next_jiffies;
ktime_t idle_expires;

};

The individual elements are used as follows:

❑ sched_timer represents the timer used to implement the ticks.

❑ The current mode of operation is stored in nohz_mode. There are three possibilities:

<tick.h>
enum tick_nohz_mode {

NOHZ_MODE_INACTIVE,
NOHZ_MODE_LOWRES,
NOHZ_MODE_HIGHRES,

};

NOHZ_MOD_INACTIVE is used if periodic ticks are active, while the other two constants indicate
that dynamic ticks are used based on low- and high-resolution timers, respectively.

❑ idle_tick stores the expiration time of the last tick before ticks are disabled. This is important
to know when ticks are enabled again because the next tick must appear at exactly the same
time as if ticks had never been disabled. The proper point in time can be computed by using the

934

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 935

Chapter 15: Time Management

value stored in idle_tick as basis. A sufficient number of tick intervals are added to obtain the
expiration time for the next tick.

❑ tick_stopped is 1 if periodic ticks are stopped, that is, if there is nothing tick-based currently to
do. Otherwise, the value is 0.

The remaining fields are used for bookkeeping:

❑ idle_jiffies stores the value of jiffies when periodic ticks were disabled.

❑ idle_calls counts how often the kernel has tried to deactivate periodic ticks. idle_sleeps
counts how often this actually succeeded. The values differ because the kernel does not deac-
tivate ticks if the next tick is only one jiffy away.

❑ idle_sleeptime stores the exact time (with the best current resolution) when periodic ticks were
last disabled.

❑ sleep_length stores how long the periodic tick will remain disabled, that is, the difference
between the time the tick was disabled and when the next tick is scheduled to happen.

❑ idle_sleeptime accumulates the total time spent with ticks deactivated.

❑ next_jiffies stores the jiffy value at which the next timer will expire.

❑ idle_expires stores when the next classical timer is due to expire. In contrast to the value above,
the resolution of the value is as good as possible and not in jiffies.

The statistical information gathered in tick_sched is exported to userland via /proc/timer_list.

tick_cpu_sched is a global per-CPU variable that provides an instance of struct tick_sched. This is
required because disabling ticks naturally works per CPU, not globally for the whole system.

15.5.2 Dynamic Ticks for Low-Resolution Systems
Consider the situation in which the kernel does not use high-resolution timers and provides only low res-
olution. How are dynamic ticks implemented in this scenario? Recall from above that the timer softIRQ
calls hrtimer_run_queues to process the high-resolution timer queue, even if only low resolution is avail-
able in the underlying clock event device. Again, I emphasize that this does not provide better resolution
for timers, but makes it possible to use the existing framework independent of the clock resolution.

Switching to Dynamic Ticks
hrtimer_run_queues calls tick_check_oneshot_change to decide if high-resolution timers can be acti-
vated. Additionally, the function checks if dynamic ticks can be enabled on low-resolution systems. This
is possible under two conditions:

1. A clock event device that supports one-shot mode is available.

2. high-resolution is not enabled.

If both are fulfilled, then tick_nohz_switch_to_nohz is called to activate dynamic ticks. However, this
does not ultimately enable dynamic ticks. If support for tickless systems was disabled at compile time, the
function is just an empty dummy function, and the kernel will remain in periodic tick mode. Otherwise,
the kernel proceeds as shown in Figure 15-19.

935

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 936

Chapter 15: Time Management

Set tick_sched->nohz_mode to NOHZ_MODE_LOWRES

Initialize tick timer and program next tick

tick_nohz->switch_to_nohz

tick_switch_to_oneshot(tick_nohz_handler)

Figure 15-19: Code flow diagram for tick_nohz_switch_to_nohz.

The most important change required for the transition to dynamic ticks is to set the clock event
device to one-shot mode, and to install an appropriate tick handler. This is done by calling
tick_switch_to_oneshot. The new handler is tick_nohz_handler, examined below.

Since the dynamic tick mode is now active, the nohz_mode field of the per-CPU instance of struct
tick_sched is changed to NOHZ_MODE_LOWRES. To get things going, the kernel finally needs to activate
the first periodic tick by setting the timer to expire at the point in time when the next periodic tick would
have been due.

The Dynamic Tick Handler
The new tick handler tick_nohz_handler needs to assume two responsibilities:

1. Perform all actions required for the tick mechanism.

2. Reprogram the tick device such that the next tick expires at the right time.

The code to satisfy these requirements looks as follows. Some initialization work is required to obtain the
per-CPU instance of struct tick_sched and the current time:

kernel/time/tick-sched.c
static void tick_nohz_handler(struct clock_event_device *dev)
{

struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
struct pt_regs *regs = get_irq_regs();
int cpu = smp_processor_id();
ktime_t now = ktime_get();

dev->next_event.tv64 = KTIME_MAX;

The role of the global tick device is as before assumed by one particular CPU, and the handler needs to
check if the current CPU is the responsible one. However, the situation is a bit more complicated with
dynamic ticks. If a CPU goes into a long sleep, then it cannot be responsible for the global tick anymore,
and drops the duty. If this is the case, the next CPU whose tick handler is called must assume the duty18:

kernel/time/tick-sched.c
if (unlikely(tick_do_timer_cpu == -1))

tick_do_timer_cpu = cpu;

18The case in which all processors sleep for longer than one jiffy is also possible. The kernel needs to consider this case as the dis-
cussion of tick_do_updates_jiffies64 shows below.

936

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 937

Chapter 15: Time Management

/* Check, if the jiffies need an update */
if (tick_do_timer_cpu == cpu)

tick_do_update_jiffies64(now);

update_process_times(user_mode(regs));
profile_tick(CPU_PROFILING);

If the CPU is responsible to provide the global tick, it is sufficient to call tick_do_update_jiffies64,
which takes care of everything required — details will follow in a moment. update_process_times and
profile_tick take over the duties of the local tick as you have seen several times before.

The crucial part is to reprogram the tick device. If the tick mechanism is stopped on the current CPU,
this is not necessary, and the CPU will go into a complete sleep. (Note that setting next_event.tv64
= KTIME_MAX ensures that the event device will not expire anytime soon, or never for practical
purposes.)

If ticks are active, then tick_nohz_reprogram sets the tick timer to expire at the next jiffy. The while loop
ensures that reprogramming is repeated until it succeeds if the processing should have taken too long
and the next tick lies already in the past:

kernel/time/tick-sched.c
/* Do not restart, when we are in the idle loop */
if (ts->tick_stopped)

return;

while (tick_nohz_reprogram(ts, now)) {
now = ktime_get();
tick_do_update_jiffies64(now);

}
}

Updating Jiffies
The global tick device calls tick_do_update_jiffies64 to update the global jiffies_64 variable, the
basis of low-resolution timer handling. When periodic ticks are in use, this is comparatively simple
because the function is called whenever a jiffy has passed. When dynamic ticks are enabled, the situation
can arise in which all CPUs of the system are idle and none provides global ticks. This needs to be taken
into account by tick_do_update_jiffies64. Let’s go directly to the code to see how:

kernel/time/tick-sched.c
static void tick_do_update_jiffies64(ktime_t now)
{
unsigned long ticks = 0;
ktime_t delta;

delta = ktime_sub(now, last_jiffies_update);

Since the function needs to decide if more than a single jiffy has passed since the last update, the differ-
ence between the current time and last_jiffies_update must be computed.

937

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 938

Chapter 15: Time Management

Updating the jiffies value is naturally only required if the last update is more than one tick period ago:

kernel/time/tick-sched.c
if (delta.tv64 >= tick_period.tv64) {

delta = ktime_sub(delta, tick_period);
last_jiffies_update = ktime_add(last_jiffies_update,

tick_period);

The most common case is that one tick period has passed since the last jiffy update, and the code shown
above handles this situation by increasing last_jifies_update correspondingly. This accounts for the
present tick.

However, it is also possible that the last update was more than one jiffy ago. Some more effort is required
in this case:

kernel/time/tick-sched.c
/* Slow path for long timeouts */
if (unlikely(delta.tv64 >= tick_period.tv64)) {

s64 incr = ktime_to_ns(tick_period);

ticks = ktime_divns(delta, incr);

last_jiffies_update = ktime_add_ns(last_jiffies_update,
incr * ticks);

}

The computation of ticks computes one tick less than the number of ticks that have been skipped, and
last_jiffies_updates is updated accordingly. Note that the offset by one is necessary because one tick
period was already added to last_jiffies_update at the very beginning. This way, the usual case (i.e.,
one tick period since the last update) runs fast, while more effort is required for the unusual case where
more than one tick period has passed since the last update.

Finally, do_timer is called to update the global jiffies value as discussed in Section 15.2.1:

kernel/time/tick-sched.c
do_timer(++ticks);

}
}

15.5.3 Dynamic Ticks for High-Resolution Systems
Since clock event devices run in one-shot mode anyway if the kernel uses high timer resolution, support
for dynamic ticks is much easier to implement than in the low-resolution case. Recall that the periodic tick
is emulated by tick_sched_timer as discussed above. The function is also used to implement dynamic
ticks. In the discussion in Section 15.4.4, I omitted two elements required for dynamic ticks:

1. Since CPUs can drop global tick duties, the handler needs to check if this has been the case,
and assume the duties:

kernel/time/tick-sched.c
#ifdef CONFIG_NO_HZ

if (unlikely(tick_do_timer_cpu == -1))
tick_do_timer_cpu = cpu;

#endif

938

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 939

Chapter 15: Time Management

This code is run at the very beginning of tick_sched_timer.

2. When the handler is finished, it is usually required to reprogram the tick device such that the
next tick will happen at the right time. If ticks are stopped, this is not necessary:

kernel/time/tick-sched.c
/* Do not restart, when we are in the idle loop */
if (ts->tick_stopped)

return HRTIMER_NORESTART;

Only a single change to the existing code is required to initialize dynamic tick mode in a high-resolution
regime. Recall that tick_setup_sched_timer is used to initialize the tick emulation layer for high-
resolution systems. If dynamic ticks are enabled at compile time, a short piece of code is added to the
function:

kernel/time/tick-sched.c
void tick_setup_sched_timer(void)
{
...
#ifdef CONFIG_NO_HZ

if (tick_nohz_enabled)
ts->nohz_mode = NOHZ_MODE_HIGHRES;

#endif
}

This announces officially that dynamic ticks are in use with high-resolution timers.

15.5.4 Stopping and Starting Periodic Ticks
Dynamic ticks provide the framework to defer periodic ticks for a while. What the kernel still needs to
decide is when ticks are supposed to be stopped and restarted.

A natural possibility to stop ticks is when the idle task is scheduled: This proves that a processor really
does not have anything better to do. tick_nohz_stop_sched_tick is provided by the dynamic tick
framework to stop ticks. Note that the same function is used independent of low and high resolution.
If dynamic ticks are disabled at compile time, the function is replaced by an empty dummy.

The idle task is implemented in an architecture-specific way, and not all architectures have been updated
to support disabling the periodic tick yet. At the time of writing, ARM, MIPS, PowerPC, SuperH, Sparc64,
IA-32, and AMD6419 turn off ticks in the idle task.

Integrating tick_nohz_stop_sched_tick is rather straightforward. Consider, for instance, the imple-
mentation of cpu_idle (which is run in the idle task) on ARM systems:

arch/arm/kernel/process.c
void cpu_idle(void)
{
...

/* endless idle loop with no priority at all */

19And user-mode Linux if you want to count that as a separate architecture.

939

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 940

Chapter 15: Time Management

while (1) {
...

tick_nohz_stop_sched_tick();
while (!need_resched())

idle();
...

tick_nohz_restart_sched_tick();
...

}
}

Other architectures differ in some details, but the general principle is the same. After calling
tick_nohz_stop_sched_tick to turn off ticks, the system goes into an endless loop that ends when a
process is available to be scheduled on the processor. Ticks are then necessary again, and are reactivated
by tick_nohz_restart_sched_tick.

Recall that a sleeping process waits for some condition to be fulfilled such that it switches into a runnable
state. A change of this condition is signaled by an interrupt — just suppose that the process has been
waiting for some data to arrive, and the interrupt notifies the system that the data are now available.
Since interrupts occur at random times from the kernel’s point of view, it can well happen that one is
raised during an idle period with ticks turned off. Two conditions can thus require restarting ticks:

1. An external interrupt make a process runnable, which requires the tick mechanism to
work.20 In this case, ticks need to be resumed earlier than initially planned.

2. The next tick event is due, and the clock interrupt signals that the time for this has come. In
this case, the tick mechanism is resumed as planned before.

Stopping Ticks
Essentially, tick_nohz_stop_sched_tick needs to perform three tasks:

1. Check if the next timer wheel event is more than one tick away.

2. If this is the case, reprogram the tick device to omit the next tick only when it is necessary
again. This automatically omits all ticks that are not required.

3. Update the statistical information in tick_sched.

Since many details require much attention to corner cases, the actual implementation of
tick_nohz_stop_sched_tick is rather bulky, so I consider a simplified version below.

First of all, the kernel needs to obtain the tick device and the tick_sched instance for the current CPU:

kernel/time/tick-sched.c
void tick_nohz_stop_sched_tick(void)
{

20To simplify matters, I ignore that tick_nohz_stop_sched_tick is also called from irq_exit if an interrupt has disturbed a
tickless interval, but did not change the state of the system such that any process became runnable. This also simplifies the discussion
of tick_nohz_stop_sched_tick because multiple subsequent invocations of the function need not be taken into account.
Additionally, I do not discuss that the jiffies value needs to be updated in irq_enter because interrupt handlers would otherwise
assume a wrong value. The function in charge for this is tick_nohz_update_jiffies.

940

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 941

Chapter 15: Time Management

unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
struct tick_sched *ts;
ktime_t last_update, expires, now, delta;
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
int cpu;

cpu = smp_processor_id();
ts = &per_cpu(tick_cpu_sched, cpu);

Some statistical information is updated. Recall that the meaning of these fields has already been described
in Section 15.5.1. The last jiffy update and the current jiffy value are stored in local variables:

kernel/time/tick-sched.c
now = ktime_get();

ts->idle_entrytime = now;
ts->idle_calls++;

last_update = last_jiffies_update;
last_jiffies = jiffies;

It only makes sense to deactivate ticks if the next periodic event is more than one tick away. The auxiliary
function get_next_timer_interrupt analyzes the timer wheel and discovers the jiffy value at which the
next event is due. delta_wheel then denotes how many jiffies away the next event is:

kernel/time/tick_sched.c
/* Get the next timer wheel timer */
next_jiffies = get_next_timer_interrupt(last_jiffies);
delta_jiffies = next_jiffies - last_jiffies;

If the next tick is at least one jiffy away (note that it can also be possible that some event is due in the
current jiffy), the tick device needs to be reprogrammed accordingly:

kernel/timer/tick-sched.c
/* Schedule the tick, if we are at least one jiffie off */
if ((long)delta_jiffies >= 1) {

ts->idle_tick = ts->sched_timer.expires;
ts->tick_stopped = 1;
ts->idle_jiffies = last_jiffies;

The meaning of the modified tick_sched fields has been discussed before.

If the current CPU had to provide the global tick, the task must be handed to another CPU. This is simply
achieved by setting tick_do_timer_cpu to −1. The next tick handler that will be activated on another
CPU then automatically takes the duties of the global tick source:

kernel/time/tick-sched.c
if (cpu == tick_do_timer_cpu)

tick_do_timer_cpu = -1;

ts->idle_sleeps++;

941

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 942

Chapter 15: Time Management

Finally, the tick device is reprogrammed to provide the next event at the proper point in time. While the
method to set the timer differs between high- and low-resolution mode, the code jumps to the label out
if programming is successful in both cases:

kernel/time/tick-sched.c
expires = ktime_add_ns(last_update, tick_period.tv64 *

delta_jiffies);
ts->idle_expires = expires;

if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
hrtimer_start(&ts->sched_timer, expires,

HRTIMER_MODE_ABS);
/* Check, if the timer was already in the past */
if (hrtimer_active(&ts->sched_timer))

goto out;
} else if(!tick_program_event(expires, 0))

goto out;

tick_do_update_jiffies64(ktime_get());
}
raise_softirq_irqoff(TIMER_SOFTIRQ);

out:
ts->next_jiffies = next_jiffies;
ts->last_jiffies = last_jiffies;
ts->sleep_length = ktime_sub(dev->next_event, now);

}

If reprogramming failed, then too much time was spent in processing, and the expiration date already
lies in the past. In this case, tick_do_update_jiffies_64 updates jiffies to the correct value, and the
timer softIRQ TIMER_SOFTIRQ is raised to process any pending timer-wheel timers. Note that the softIRQ
is also raised if some events are due in the current jiffy period.

Restarting Ticks
tick_nohz_restart_sched_tick is used to restart ticks. The code flow diagram is given by Figure 15-20.

Account idle time

Set tick_sched->tick_stopped = 0

Program next tick event

tick_nohz_restart_sched_tick

tick_do_update_jiffies64

Figure 15-20: Code flow diagram for
tick_nohz_restart_sched_tick.

Again, the implementation is complicated by various technical details, but the general principle is rather
simple. Our old acquaintance tick_do_updates_jiffies64 is called first. After correctly accounting the

942

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 943

Chapter 15: Time Management

idle time, tick_sched->tick_stopped is set to 0 because the tick is now active again. Finally, the next
tick event needs to be programmed. This is necessary because the idle time might have ended before the
expected time because of an external interrupt.

15.6 Broadcast Mode
On some architectures, clock event devices will go to sleep when certain power-saving modes are
active. Thankfully, systems do not have only a single clock event device, so another device that
still works can replace the stopped devices. The global variable tick_broadcast_device defined in
kernel/tick/tick-broadcast.c contains the tick_device instance for the broadcast device.

An overview of broadcast mode is given in Figure 15-21.

CPU 0 CPU 1 CPU 2 CPU 3

LAPIC

broadcast

LAPIC LAPIC LAPIC

tick_handle_periodic_broadcast

tick_do_broadcast

event_handler

HPET

IPI

IPI

non-functional

111 apic_timer
interrupt

Figure 15-21: Overview of the situation when broadcasting replaces
nonfunctional tick devices.

The APIC devices are not functional, but the broadcast event device still is. tick_handle_periodic_
broadcast is used as the event handler. It deals with both periodic and one-shot modes of the broadcast
device, so this need not concern us any further. The handler will be activated after each tick_period.

The broadcast handler uses tick_do_periodic_broadcast. The code flow diagram is shown in
Figure 15-22. The function invokes the event_handler method of the nonfunctional device on the
current CPU. The handler cannot distinguish if it was invoked from a clock interrupt or from the
broadcast device, and is thus executed as if the underlying event device were functional.

If there are more nonfunctional local tick devices, then tick_do_broadcast employs the broadcast
method of the first device in the list.21 For local APICs, the broadcast method is lapic_timer_broadcast.
It is responsible to send the inter-processor interrupt (IPI) LOCAL_TIMER_VECTOR to all CPUs that
are associated with nonfunctional tick devices. The vector has been set up by the kernel to call

21This is possible because at the moment the same broadcast handler is installed on all devices that can become nonfunctional.

943

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 944

Chapter 15: Time Management

apic_timer_interrupt. The result is that the clock event device cannot distinguish between IPIs and
real interrupts, so the effect is the same as if the device were still functional.

Determine affected CPUs

Current CPU in broadcast mask?

Remove CPU from mask

Call event_handler for current CPU

More CPUs in broadcast mask? Call broadcast method

tick_do_periodic_broadcast

tick_do_broadcast

Figure 15-22: Code flow diagram for tick_do_periodic_broadcast.

Inter-processor interrupts are slow, and thus the required accuracy and resolution for high-resolution
timers will not be available. The kernel therefore always switches to low-resolution mode if broadcasting
is required.

15.7 Implementing Timer-Related System
Calls

The kernel provides several system calls that involve timers; the most important ones are considered in
the following:

15.7.1 Time Bases
When timers are used, there are three options to distinguish how elapsed time is counted or in which time
base22 the timer resides. The kernel features the following variants that draw attention to themselves by
various signals when a time-out occurs:

❑ ITIMER_REAL measures the actual elapsed time between activation of the timer and time-out
in order to trigger the signal. In this case, the timer continues to tick regardless of whether the
system is in kernel mode or user mode or whether the application using the timer is currently
running or not. A signal of the SIGALRM type is sent when the timer times out.

❑ ITIMER_VIRTUAL runs only during the time spent by the owner process of the timer in user mode.
In this case, time spent in kernel mode (or when the processor is busy with another application)
is ignored. Time-out is indicated by the SIGVTALRM signal.

❑ ITIMER_PROF calculates the time spent by the process both in user and kernel mode — time
continues to elapse when a system call is executed on behalf of the task. Other processes of the
system are ignored. The signal sent at time-out is SIGPROF.

22Often also referred to as time domain.

944

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 945

Chapter 15: Time Management

As already suggested by its name, the primary use of this timer is in the profiling of applications
in which a search is made for the most compute-intensive fragments of a program so that these
can be optimized accordingly. This is an important consideration, particularly in scientific or
operating system-related applications.

The timer type — and the periodic interval length — must be specified when an interval timer is
installed. In our example, TTIMER_REAL is used for a real-time timer.

The behavior of alarm timers can be simulated with interval timers by selecting ITIMER_REAL as the timer
type and deinstalling the timer after the first time-out. Interval timers are therefore a generalized form of
alarm timers.

15.7.2 The alarm and setitimer System Calls
alarm installs timers of the ITIMER_REAL type (real-time timers), while setitimer is used to install not
only real-time, but also virtual and profiling timers. The system calls all end up in do_setitimer. The
implementation of both system calls rests on a common mechanism that is defined in kernel/itimer.c.
The implementation is centered around struct hrtimer, so if high-resolution support is available, the
corresponding advantages are automatically transferred into userland and not only available to the
kernel. Note that since alarm uses a timer of type ITIMER_REAL, the system calls can interfere with
each other.

The starting points of the system calls are, as usual, the two functions sys_alarm and sys_setitimer.
Both functions use the auxiliary function do_setitimer to actually implement the timer:

kernel/itimer.c
int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue)

Three parameters are required. which specifies the timer type, and can be ITIMER_REAL, ITIMER_VIRTUAL,
or ITIMER_PROF. value contains all relevant information about the new timer. If the timer replaces an
already existing one, then ovalue is employed to return the previously active timer description.

Specifying timer properties is simple:

<time.h>
struct itimerval {

struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

Essentially, timeval denotes the length of the periodic interval after which the timer expires. it_value
denotes the amount of time remaining until the timer expires next. All details are documented in the
manual page setitimer(2).

Extensions to the Task Structure
The task structure of each process contains a pointer to an instance of struct signal_struct that
includes several elements to accommodate information required for timers:

<sched.h>
struct signal_struct {
...

/* ITIMER_REAL timer for the process */

945

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 946

Chapter 15: Time Management

struct hrtimer real_timer;
struct task_struct *tsk;
ktime_t it_real_incr;

/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
cputime_t it_prof_expires, it_virt_expires;
cputime_t it_prof_incr, it_virt_incr;

...
}

Two fields are reserved for profiling and virtual timer type:

1. The time at which the next time-out is to occur (it_prof_expires and it_virt_expires).

2. The interval after which the timer is called (it_prof_incr and it_virt_incr).

real_timer is an instance of hrtimer (not a pointer to it) that is inserted in the other data structures of
the kernel and is used to implement real-time timers. The other two types of timer (virtual and profiling)
manage without this entry. tsk points to the task structure of the process for which the timers are set.
The interval for real timers is specified in it_real_incr.

It is therefore possible to have just three different timers of different kinds per process — given the existing
data structures, the kernel cannot manage more with the setitimer and alarm mechanism. For example,
a process can execute a virtual and a real-time timer at the same time, but not two real-time timers.

POSIX timers that are implemented in kernel/posix-timers.c provide an extension to this scheme
that allow more timers, but need not be discussed any further. Virtual and profiling timers are also
implemented on top of this framework.

Real-Time Timers
When installing a real-time (ITIMER_REAL) timer, it is first necessary to preserve the properties of a pos-
sibly existing old timer (they will be returned to userland once the new timer has been installed) and
cancel the timer with hrtimer_try_to_cancel. Installing a timer ‘‘overwrites‘‘ previous values.

The timer period is stored in the task-specific signal_struct->it_real_incr field (if this field is zero,
then the timer is not periodic, but only activated once), and hrtimer_start starts a timer that expires at
the desired time.

No handler routine is executed in userspace when a dynamic timer expires. Instead, a signal is gener-
ated that results in the invocation of a signal handler and thus indirectly to the invocation of a callback
function. How does the kernel ensure that the signal is sent, and how is the timer made periodic?

The kernel uses the callback handler it_real_fn, which is executed for all userspace real-time timers.
This function sends the SIGALRM signal to the process that installed the timer, but does not reinstall the
signal handler to make the signal periodic.

Instead, the timer is reinstalled when the signal is delivered in process context (in dequeue_signal,
to be precise). After forwarding the expiration time with hrtimer_forward, the timer is restarted with
hrtimer_restart.

What keeps the kernel from reactivating the timer immediately after it has expired? Earlier kernel ver-
sions did, in fact, choose this approach, but problems arise if high-resolution timers are active. A process

946

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 947

Chapter 15: Time Management

can choose a very short repetition interval that would cause timers to expire over and over — resulting in
excessive time spent in the timer code. Put less politely, one could also call this a denial-of-service attack,
and the current approach avoids this.

15.7.3 Getting the Current Time
The current time of the system needs to be known for two reasons: First, many operations rely on time
stamps — for instance, the kernel needs to record when a file was last changed or when some log infor-
mation was produced. Second, the absolute time — that is, the real time of the outside world — of the
system is needed to inform the user with a clock, for example.

While absolute accuracy is not too important for the first purpose as long as the time flow is continuous
(i.e., the time stamps of successive operations should follow their order), it is more essential for the second
purpose. Hardware clocks are notorious for being either fast, slow, or a random combination of both.
There are various methods to solve this problem, with the most common one in the age of networked
computers being synchronization with a reliable time source (e.g., an atomic clock) via NTP. Since this is
purely a userland issue, I won’t discuss it any further.

Two means are provided to obtain timing information:

1. The system call adjtimex. A small utility program of the same name can be used to quickly
display the exported information. The system call allows for reading the current kernel inter-
nal time. Other possibilities are documented in the associated manual page 2(adjtimex).

2. The device special file /dev/rtc. This source can be operated in various modes, but one of
them delivers the current date and time to the caller.

I focus on adjtimex in the following. The entry point is as usual sys_adjtimex, but after some prepara-
tions, the real work is delegated to do_adjtimex. The function is rather lengthy, but the portion required
for our purposes is quite compact:

kernel/time.c
int do_adjtimex(struct timex *txc)
{
...

do_gettimeofday(&txc->time);
...
}

The call to do_gettimeofday obtains the kernel’s internal time in the best possible resolution. The best
time source that was selected by the kernel as described in Section 15.4 is used for this purpose.

15.8 Managing Process Times
The task structure contains two elements related to process times that are important in our context:

<sched.h>
struct task_struct {
...

cputime_t utime, stime;
...
}

947

Mauerer runc15.tex V3 - 09/04/2008 5:39pm Page 948

Chapter 15: Time Management

update_process_times is used to manage process-specific time elements and is invoked from the
local tick.

As the code flow diagram in Figure 15-23 shows, four things need to be done:

1. account_process_tick uses either account_user_time or account_sys_time to update the
values for user or system CPU time consumed in the task structure (utime or stime, respec-
tively). The SIGXCPU signal is also sent at intervals of 1 second if the process has exceeded its
CPU limits specified by Rlimit.

2. run_local_timers activates and expires low-resolution timers. Recall that this was dis-
cussed in detail in Section 15.2.

3. scheduler_tick is a helper for the CPU scheduler as discussed in Chapter 2.

4. run_posix_cpu_timers initiates that the currently registered POSIX timers are run. This
includes running the abovementioned interval timers since their implementation is based on
POSIX CPU timers. Since these timers are otherwise not very interesting, their implementa-
tion is not covered in detail.

run_posix_cpu_timers

update_process_times

account_process_tick

run_local_timers

scheduler_tick

Figure 15-23: Code flow diagram for
update_process_times.

15.9 Summary
The kernel needs to keep track of time for various purposes, and there are also a good many aspects that
must be considered to solve the problem. In this chapter, first you were introduced to the general concept
of timekeeping and the difference between timers and time-outs. You have seen that the implementation
of timers and time-outs is based on hardware that can manage the time. Typically, each system contains
more than one component for this purpose, and you were introduced to the data structures that allow
for representing these components and sorting them by quality. Traditionally, the kernel relied on low-
resolution timers, but recent hardware progress and a rework of the timing subsystem have allowed the
introduction of a new class of high-resolution timers.

After a discussion of the implementation of high- and low-resolution timers, you were introduced to
the concept of dynamic ticks. Traditionally, a periodic timer tick was issued with HZ frequency, but this is
suboptimal for machines where power is scarce: When a system is idle and has nothing to do, the tick
is superfluous and can be temporarily disabled to allow components to enter deeper sleep states without
being woken up at periodic intervals. The dynamic tick mode allows for achieving exactly this.

Time is also relevant for userspace processes, and thus I finally discussed various system calls that are
available in this area.

948

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 949

Page and Buffer Cache
Performance and efficiency are two factors to which great importance is attached during kernel
development. The kernel relies not only on a sophisticated overall concept of interaction between
its individual components, but also on an extensive framework of buffers and caches designed to
boost system speed.

Buffering and caching make use of parts of system RAM to ensure that the most important and the
most frequently used data of block devices can be manipulated not on the slow devices themselves
but in main memory. RAM memory is also used to store the data read in from block devices so that
the data can be subsequently accessed directly in fast RAM when it is needed again rather than
fetching it from external devices.

Of course, this is done transparently so that the applications do not and cannot notice any difference
as to from where the data originate.

Data are not written back after each change but after a specific interval whose length depends
on a variety of factors such as the free RAM capacity, the frequency of usage of the data held in
RAM, and so on. Individual write requests are bundled and collectively take less time to perform.
Consequently, delaying write operations improves system performance as a whole.

However, caching has its downside and must be employed judiciously by the kernel:

❑ Usually there is far less RAM capacity than block device capacity so that only carefully
selected data may be cached.

❑ The memory areas used for caching are not exclusively reserved for ‘‘normal‘‘ application
data. This reduces the RAM capacity that is effectively available.

❑ If the system crashes (owing to a power outage, e.g.), the caches may contain data that have
not been written back to the underlying block device. Such data are irretrievably lost.

However, the advantages of caching outweigh the disadvantages to such an extent that caches are
permanently integrated into the kernel structures.

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 950

Chapter 16: Page and Buffer Cache

Caching is a kind of ‘‘reverse‘‘ swapping or paging operation (the latter are discussed in Chapter 18).
Whereas fast RAM is sacrificed for caching (so that there is no need for slow operations on block devices),
RAM memory is replaced virtually with slow block devices to implement swapping. The kernel must
therefore do its best to cater to both mechanisms to ensure that the advantages of the one method are not
canceled out by the disadvantages of the other — no easy feat.

Previous chapters discussed some of the means provided by the kernel for caching specific structures.
The slab cache is a memory-to-memory cache whose purpose is not to accelerate operations on slower
devices but to make simpler and more effective use of existing resources. The dentry cache is also used to
dispense with the need to access slow block devices but cannot be put to general use since it is specialized
to handle a single data type.

The kernel features two general caching options for block devices:

1. The page cache is intended for all operations in units of a page — and takes into account the
page size on the specific architecture. A prime example is the memory-mapping technique
discussed in many chapters. As other types of file access are also implemented on the basis
of this technique in the kernel, the page cache is responsible for most caching work for block
devices.

2. The buffer cache operates with blocks. When I/O operations are performed, the access units
used are the individual blocks of a device and not whole pages. Whereas the page size is the
same with all filesystems, the block size varies depending on the particular filesystem or its
settings. The buffer cache must therefore be able to handle blocks of different sizes.

While buffers used to be the traditional method to perform I/O operations with block
devices, they are nowadays in this area only supported for very small read operations
where the advanced methods are too bulky. The standard data structure used for block
transfers has become struct bio, which is discussed in Chapter 6. It is much more efficient
to perform block transfers this way because it allows for merging subsequent blocks in a
request together that speeds things up.

Nevertheless, buffers are still the method of choice to represent I/O operations on individual
blocks, even if the underlying I/O is performed with bios. Especially systems often have to
read metadata blockwise, and buffers are much easier to handle for this task than other more
powerful structures. All in all, buffers still have their own identity and are not around solely
for compatibility reasons.

In many scenarios, page and buffer caches are used in combination. For example, a cached page is divided
into various buffers during write operations so that the modified parts of the page can be more finely
grained. This has advantages when the data are written back because only the modified part of the page
and not the whole page need be transferred back to the underlying block device.

16.1 Structure of the Page Cache
As its name suggests, the page cache deals with memory pages that divide virtual memory and RAM
memory into small segments. This not only makes it easier for the kernel to manipulate the large address
space, but also supports a whole series of functions such as paging, demand loading, memory mapping,
and the like. The task of the page cache is to obtain some of the available physical page frames to speed
up the operations performed on block devices on a page basis. Of course, the way the page cache behaves

950

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 951

Chapter 16: Page and Buffer Cache

is transparent to user applications as they do not know whether they are interacting directly with a block
device or with a copy of their data held in memory — the read and write system calls return identical
results in both cases.

Naturally, the situation is somewhat different for the kernel. In order to support the use of cached pages,
anchors must be positioned at the various points in the code that interact with the page cache. The oper-
ation required by the user process must always be performed regardless of whether the desired page
resides in the cache or not. When a cache hit occurs, the appropriate action is performed quickly (this is
the very purpose of the cache). In the event of a cache miss, the required page must first be read from the
underlying block device, and this takes longer. Once the page has been read, it is inserted in the cache
and is, therefore, quickly available for subsequent access.

The time spent searching for a page in the page cache must be minimized to ensure that cache misses are
as cheap as possible — if a miss occurs, the compute time needed to perform the search is (more or less)
wasted. The efficient organization of the cached pages is, therefore, a key aspect of page cache design.

16.1.1 Managing and Finding Cached Pages
The problem of quickly fetching individual elements (pages) from a large data set (page cache) is not
specific to the Linux kernel. It has long been common to all areas of information technology and has
spawned many sophisticated data structures that have stood the test of time. Tree data structures of
various kinds are very popular, and Linux also opts for such a structure — known as a radix tree — to
manage the pages held in page caches.

Appendix C provides a more detailed description of this data structure. This chapter gives a brief
overview of how the individual pages are organized in the structure.

Figure 16-1 shows a radix tree in which various instances of a data structure (represented by squares) are
interlinked.1

height = 2
ptr =

P
t
r

Count
P
t
r

P
t
r

P
t
r

P
t
r

P
t
r

Count
P
t
r

P
t
r

P
t
r

P
t
r

P
t
r

Count
P
t
r

P
t
r

P
t
r

P
t
r

struct page

PAGECACHE_TAG_DIRTY
PAGECACHE_TAG_WRITEBACK

Figure 16-1: Example of a radix tree.

1The structure shown is simplified because the kernel makes use of additional tags in each node to hold specific information on the
pages organized in the node. This has no effect on the basic architecture of the tree.

951

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 952

Chapter 16: Page and Buffer Cache

The structure does not correspond to that of the binary or ternary search trees in general use. Neither
are radix trees balanced; in other words, there may be any number of height differences between the
branches of the tree. The tree itself consists of two different data structures and a further data structure to
represent the leaves and hold the useful data. Because memory pages must be organized, the leaves are
instances of the page structure in this case, a fact that is of no further importance in the implementation
of the tree. (The kernel sources do not define a particular data type but use a void pointer; this means
that radix trees could also be used for other purposes, although this is not done at present.)

The root of the tree is represented by a simple data structure that holds the height of the tree (the maxi-
mum number of levels to accommodate the nodes) and a pointer to the first node data structure of which
the tree is comprised.

The nodes are basically arrays. For the sake of simplicity, the nodes are shown with four elements
in the figure, but in the kernel sources, they actually have 2RADIX_TREE_MAP_SHIFT entries. Since
RADIX_TREE_MAP_SHIFT is typically defined as 6, each array has 64 elements — considerably more
than are shown in the figure. Small systems use a RADIX_TREE_MAP_SHIFT setting of 4 to save precious
memory.

The elements of the tree are addressed by means of a unique key consisting of a simple integer. The
details of the algorithm used to find elements by reference to their key are not discussed here. A descrip-
tion of the relevant code is given in Appendix C.

Enlarging the tree and deleting tree elements are kernel operations that require little effort, so mini-
mum time is lost in performing cache management operations. Their implementation is also described in
greater detail in Appendix C.

Observe from Figure 16-1 that the tree is equipped with two search tags. They allow for specifying if a
given page is dirty (i.e., the page contents are not identical with the data in the backing store) or if it is
currently being written back to the underlying block device. It is important that the tags are not only set
in the leaf elements, but also all the way up to the root element. If at least one pointer in level n + 1 has a
tag set, then the pointer on level n will also acquire the tag.

This allows the kernel to decide that one or more pages in a range have a tag bit set. The figure provides
an example: Since the dirty tag bit on the leftmost pointer in the first level is set, the kernel knows that
one or more of the pages associated with the corresponding second-level node have the dirty tag bit set.
If, on the other hand, a tag is not set for a pointer in the higher levels, then the kernel can be sure that
none of the pages in the lower levels has the tag.

Recall from Chapter 3 that each page as represented by an instance of struct page is equipped with a
set of flags. These also include dirty and writeback flags. The information in the radix tree tags therefore
only augments kernel knowledge. Page cache tags are useful to quickly determine if at least one page in
a region is dirty or under writeback without scanning all pages in the whole region. They are, however,
no replacement for the direct page flags.

16.1.2 Writing Back Modified Data
Thanks to the page cache, write operations are not performed directly on the underlying block device
but are carried out in memory where the modified data are first collected for subsequent transfer
to the lower kernel layer, where the write operations can be further optimized — as discussed in
Chapter 6 — to fully exploit the specific capabilities of the individual devices. Here we are interested

952

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 953

Chapter 16: Page and Buffer Cache

only in the situation as seen by the page cache, which is primarily concerned with one specific question:
at which point in time should the data be written back? This automatically includes the question as to how
often should writeback take place.

Understandably, there is no universally valid answer to this question as different systems with different
load conditions give rise to very different scenarios. For example, a server running overnight receives
very few requests to modify data so that the services of the kernel are seldom required. The same scenario
applies on personal computers when users take a break from work. However, the situation can change
suddenly when the server launches a huge FTP transfer or the PC user starts a lengthy compiler run
to process and produce large volumes of data. In both scenarios, the caches initially have very little to
write back, but then, from one moment to the next, they are required to frequently synchronize with the
underlying storage medium.

For these reasons, the kernel provides several parallel synchronization alternatives:

❑ Several special kernel daemons called pdflush run in the background and are activated
periodically — regardless of the current situation in the page cache. They scan the pages in the
cache and write back the data that have not been synchronized with the underlying block device
for a specific period.

Earlier kernel versions employed a userspace daemon named kudpated for this purpose, and
this name is still commonly used to describe this mechanism.

❑ A second operating mode of pdflush is activated by the kernel if the number of modified data
items in a cache has increased substantially within a short period.

❑ System calls are available to users and applications to instruct the kernel to write back all non-
synchronized data. The best known is the sync call because there is also a userspace tool of the
same name that builds on it.

The various mechanisms used to write back dirty data from the caches are discussed in Chapter 17.

To manage the various target objects that can be processed and cached in whole pages, the kernel uses
an abstraction of the ‘‘address space‘‘that associates the pages in memory with a specific block device (or
any other system unit or part of a system unit).

This type of address space must not be confused with the virtual and physical
address spaces provided by the system or processor. It is a separate abstraction of
the Linux kernel that unfortunately bears the same name.

Initially, we are interested in only one aspect. Each address space has a ‘‘host‘‘from which it obtains its
data. In most cases, these are inodes that represent just one file.2 Because all existing inodes are linked
with their superblock (as discussed in Chapter 8), all the kernel need do is scan a list of all superblocks
and follow their associated inodes to obtain a list of cached pages.

Usually, modifications to files or other objects cached in pages change only part and not the whole of the
page contents. This gives rise to a problem when data are synchronized; it doesn’t make sense to write

2Since the majority of cached pages result from file accesses, most host objects, indeed, represent a regular file. It is, however, also
possible that an inode host object stems from the pseudo-block device filesystem. In this case, the address space is not associated
with a single file, but with a whole block device or a partition thereof.

953

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 954

Chapter 16: Page and Buffer Cache

the entire page back to the block device because most of the page data in memory are still synchronized
with the data on the block device. To save time, the kernel divides each page in the cache into smaller
units known as buffers during write operations. When data are synchronized, the kernel is able to restrict
writeback to the smaller units that have actually been modified. As a result, the basically sound idea of
page caching is not compromised in any way.

16.2 Structure of the Buffer Cache
A page-oriented method has not always been used in the Linux kernel to bear the main caching burden.
Earlier versions included only the buffer cache to speed file operations and to enhance system perfor-
mance. This was a legacy of other Unix look-alikes with the same structure. Blocks from the underlying
block devices were kept in main memory buffers to make read and write operations faster. The imple-
mentation is contained in fs/buffers.c.

In contrast to pages in memory, blocks are not only (mostly) smaller but vary in size depending on the
block device in use (or on the filesystem, as demonstrated in Chapter 9).

As a result of the ever increasing trend toward generic file access methods implemented by means of
page-based operations, the buffer cache has lost much of its importance as a central system cache, and the
main caching burden is now placed firmly on the page cache. Additionally, the standard data structure
for block-based I/O is not a buffer anymore, but struct bio as discussed in Chapter 6.

Buffers are kept for small I/O transfers with block size granularity. This is often required by filesystems
to handle their metadata. Transfer of raw data is done in a page-centric fashion, and the implementation
of buffers is also on top of the page cache.3

The buffer cache consists of two structural units:

1. A buffer head holds all management data relating to the state of the buffer including informa-
tion on block number, block size, access counter, and so on, discussed below. These data are
not stored directly after the buffer head but in a separate area of RAM memory indicated by
a corresponding pointer in the buffer head structure.

2. The useful data are held in specially reserved pages that may also reside in the page cache.
This further subdivides the page cache as illustrated in Figure 16-2; in our example, the page
is split into four identically sized parts, each of which is described by its own buffer head.
The buffer heads are held in memory areas unrelated to the areas where the useful data are
stored.

This enables the page to be subdivided into smaller sections because no gaps arise as a result
of prefixing the buffer data with header data. As a buffer consists of at least 512 bytes, there
may be up to a maximum of MAX_BUF_PER_PAGE buffers per page; the constant is defined as
a function of the page size:

<buffer_head.h>
#define MAX_BUF_PER_PAGE (PAGE_CACHE_SIZE / 512)

3This contrasts kernels before and including the 2.2 series that used separate caches for buffers and pages. Having two distinct
caching possibilities requires enormous efforts to synchronize both, so the kernel developers chose to unify the caching scheme many
years ago.

954

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 955

Chapter 16: Page and Buffer Cache

If one of the buffers is modified, this has an immediate effect on the contents of the page (and
vice versa) so that there is no need for explicit synchronization of the two caches — after all,
both share identical data.

Page frame

buffer_head
b_this_page
b_data

Figure 16-2: Link between pages and buffers.

There are, of course, applications that access block devices using blocks rather than pages — reading
the superblock of a filesystem is one such example. A separate buffer cache is used to speed access of
this kind. The buffer cache operates independently of the page cache, not in addition to it. To this end,
buffer heads — the data structure is the same in buffer caches and page caches — are grouped together
in an array of constant size whose individual entries are managed on a least recently used basis. After
an entry has been used, it is placed at position 0 and the other entries are moved down accordingly;
this means that the entries most frequently used are located at the beginning of the array and those less
frequently used are pushed further back until they finally ‘‘drop‘‘off the array if they have not been used
for a lengthy period.

As the size of the array and therefore the number of entries in the LRU list are restricted to a fixed value
that does not change during kernel run time, the kernel need not execute separate threads to trim the
cache size to reasonable values. Instead, all it need do is remove the associated buffer from the cache
when an entry drops off the array in order to release memory for other purposes.

Section 16.5 discusses in detail the technical details of buffer implementation. Before this, it is necessary to
discuss the concept of address spaces because these are key to the implementation of cache functionality.

16.3 Address Spaces
Not only have caches progressed from a buffer orientation to a page orientation during the course of
Linux development, but also the way in which cached data are linked with their sources has been
replaced with a more general schema as compared to previous Linux versions. Whereas in the early
days of Linux and other Unix derivatives, inodes were the only objects that acted as the starting point
for obtaining data from cache contents, the kernel now uses much more general address spaces that estab-
lish the link between cached data and the objects and devices required to obtain the data. Although file
contents still account for much of the data in caches, the interfaces are so generalized that the caches are
also able to hold data from other sources in order to speed access.

955

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 956

Chapter 16: Page and Buffer Cache

How do address spaces fit into the structures of the page cache? They implement a translation mechanism
between two units:

1. Pages in main memory are allocated to each address space. The contents of these pages can
be manipulated by user processes or by the kernel itself using a variety of methods.

These data represent the contents of the cache.

2. The backing store specifies the sources from which the address space pages are filled. Address
spaces relate to the virtual address space of the processor and are a mapping of the segment
managed by the processor in virtual memory and the corresponding positions on a source
device (using a block device).

If a position in virtual memory that is not associated with a physical page in memory is
accessed, the kernel can refer to the address space structure to discover from where the data
must be read.

To support data transfer, each address space provides a set of operations (in the form of function pointers)
to permit interaction between the two sides of address space — for instance, to read a page from a block
device or filesystem, or to write back a modified page. The following section takes a close look at the data
structures used before examining the implementation of address space operations.

Address spaces are one of the most crucial data structures in the kernel. Their management has evolved
to one of the central issues faced by the kernel. Numerous subsystems (filesystems, swapping, synchro-
nization, caching) are centered around the concept of an address space. They can therefore be regarded
as one of the fundamental abstraction mechanisms of the kernel, and range in importance among the
traditional abstractions like processes and files.

16.3.1 Data Structures
The basis of an address space is the address_space structure, which is in slightly simplified form defined
as follows:

<fs.h>
struct address_space {

struct inode *host; /* owner: inode, block_device */
struct radix_tree_root page_tree; /* radix tree of all pages */
unsigned int i_mmap_writable;/* count VM_SHARED mappings */
struct prio_tree_root i_mmap; /* tree of private and shared mappings */
struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
unsigned long nrpages; /* number of total pages */
pgoff_t writeback_index;/* writeback starts here */
struct address_space_operations *a_ops; /* methods */
unsigned long flags; /* error bits/gfp mask */
struct backing_dev_info *backing_dev_info; /* device readahead, etc */
struct list_head private_list; /* ditto */
struct address_space *assoc_mapping; /* ditto */

} __attribute__((aligned(sizeof(long))));

❑ The link with the areas managed by an address space is established by means of a pointer to
an inode instance (of type struct inode) to specify the backing store and a root radix tree
(page_tree) with a list of all physical memory pages in the address space.

956

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 957

Chapter 16: Page and Buffer Cache

❑ The total number of cached pages is held in the nrpages counter variable.

❑ address_space_operations is a pointer to a structure that contains a list of function pointers to
specific operations for handling address spaces. Its definition is discussed below.

❑ i_mmap is the root element of a tree that holds all normal memory mappings of the inode (normal
in the sense that they were not created using the nonlinear mapping mechanism). The task of the
tree is to support finding all memory regions that include at least one page in a given interval,
and the auxiliary macro vma_prio_tree_foreach is provided for this purpose. Recall that the
purpose of the tree is discussed in Section 4.4.3. The details of tree implementation are of no
relevance to us at the moment — it is sufficient to know that all pages of the mapping can be
found on the tree and that the structure can be manipulated easily.

❑ Two further elements are concerned with the management of memory mappings:
i_mmap_writeable counts all mappings created with a set VM_SHARED attribute so that
they can be shared by several users at the same time. i_mmap_nonlinear is used to set up a list
of all pages included in nonlinear mappings (reminder: nonlinear mappings are generated by
skillful manipulation of the page tables under the control of the remap_file_pages system call).

❑ backing_dev_info is a pointer to a further structure that holds information on the associated
backing store.

Backing store is the name used for the peripheral device that serves as a ‘‘backbone‘‘ for the infor-
mation present in the address space. It is typically a block device:

<backing-dev.h>
struct backing_dev_info {

unsigned long ra_pages; /* max readahead in PAGE_CACHE_SIZE units */
unsigned long state; /* Always use atomic bitops on this */
unsigned int capabilities; /* Device capabilities */

...
};

ra_pages specifies the maximum number of pages to be read in anticipation (readahead). The
state of the backing store is stored in state. capabilities holds information on the backing
store — for example, whether the data in the store can be executed directly as is necessary in
ROM-based filesystems. However, the most important information in capabilities is whether
pages can be written back. This can always be done with genuine block devices but is not possi-
ble with memory-based devices such as RAM disks because there would be little point in writing
back data from memory to memory.

If BDI_CAP_NO_WRITEBACK is set, then synchronization is not required; otherwise, it is. Chapter 17
discusses the mechanisms used for this purpose in detail.

❑ private_list is used to interlink buffer_head instances which hold filesystem metadata (usu-
ally indirection blocks). assoc_mapping is a pointer to the associated address space.

❑ The flag set in flags is used primarily to hold information on the GFP memory area from
which the mapped pages originate. It can also hold errors that occur during asynchronous
input/output and that cannot therefore be propagated directly. AS_EIO stands for a general I/O
error, and AS_ENOSPC indicates that there is no longer sufficient space for an asynchronous write
operation.

Figure 16-3 sketches how address spaces are connected with various other parts of the kernel. Only the
most important links are shown in this overview; more details will be discussed in the remainder of this
chapter.

957

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 958

Chapter 16: Page and Buffer Cache

Super-
block

Block
device

Inode Address
space

Radix tree

Pages

Backing
device

information

Page cache

Readahead

Synchronization

Figure 16-3: Address spaces and their connection with central kernel data
structures and subsystems.

16.3.2 Page Trees
The kernel uses radix trees to manage all pages associated with an address space at least possible cost. A
general overview of trees of this kind was provided above; now the corresponding data structures in the
kernel are focused on.

As is clear from the layout of address_space, the radix_tree_root structure is the root element of every
radix tree:

<radix_tree_root.h>
struct radix_tree_root {

unsigned int height;
gfp_t gfp_mask;
struct radix_tree_node *rnode;

};

❑ height specifies the height of the tree, that is, the number of levels below the root. On the basis
of this information and the number of entries per node, the kernel is able to calculate quickly
the maximum number of elements in a given tree and to expand the tree accordingly if there is
insufficient capacity to accept new data.

❑ gfp_mask specifies the zone from which memory is to be allocated.

❑ rnode is a pointer to the first node element of the tree. The radix_tree_node date type discussed
below is used for this node.

958

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 959

Chapter 16: Page and Buffer Cache

Implementation
The nodes of a radix tree are essentially represented by the following data structure:

<lib/radix_tree.c>
#define RADIX_TREE_TAGS 2
#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
#define RADIX_TREE_TAG_LONGS \

((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)

struct radix_tree_node {
unsigned int height; /* Height from the bottom */
unsigned int count;
struct rcu_head rcu_head;
void *slots[RADIX_TREE_MAP_SIZE];
unsigned long tags[RADIX_TREE_TAGS][RADIX_TREE_TAG_LONGS];

};

The layout of this data structure is also very simple. slots is an array of void pointers that — depending
on the level in which the node is located — point to either data elements or further nodes. count holds the
number of used array entries in the node. The array is filled with entries starting at the top, and unused
entries have null pointers.

Each tree node can point to 64 further nodes (or leaves) as indicated in the definition of the slot array
in radix_tree_node. The direct consequence of this definition is that each node may have only an array
size that is a power of two. Also, the size of all radix elements may only be defined at compilation time
(of course, the maximum number of elements in a tree can change at run time). This behavior is rewarded
by speed gains.

Tagging

The information discussed so far — the address space and the page tree — does not, however, allow the
kernel to make a direct distinction between the clean and dirty pages of a mapping. This distinction is
essential when, for example, pages are to be written back to store changes permanently on the underlying
block device. Earlier kernel versions provided additional lists of dirty and clean pages in address_space.
In principle, the kernel could, of course, scan the entire tree and filter out the pages with the appropriate
state, but this is obviously very time-consuming. For this reason, each node of the radix tree includes
additional tagging information that specifies whether each page in the node has the property specified
in the tag. For example, the kernel uses a tag to label nodes with dirty pages. Nodes without this tag
can therefore be skipped during a scan for dirty pages. This approach is a compromise between simple,
unified data structures (no explicit lists are needed to hold pages with different states) and the option of
performing a quick search for pages with specific properties. Currently, two tags are supported:

1. PAGECACHE_TAG_DIRTY specifies whether a page is dirty.

2. PAGECACHE_TAG_WRITEBACK indicates that the page is being written back at the moment.

959

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 960

Chapter 16: Page and Buffer Cache

The tagging information is stored in a two-dimensional array (tags) that is a part of radix_tree_node.
The first array dimension distinguishes between the possible tags, and the second contains a sufficient
number of elements of unsigned longs so that there is a bit for each page that can be organized in the
node.

radix_tree_tag_set is used to set a flag for a specific page:

<radix-tree.h>
void *radix_tree_tag_set(struct radix_tree_root *root,

unsigned long index, unsigned int tag);

The kernel searches for the corresponding positions in the bit list and sets the bit to 1. When this is done,
the tree is scanned from top to bottom to update the information in all nodes.

In order to find all pages with a certain tag, the kernel still has to scan the entire tree, but this operation
can be accelerated by first filtering out all subtrees that contain at least one page for which the flag is set.
Again, this can be speeded up because the kernel does not check each bit one after the other but simply
checks whether at least one of the unsigned long variables in which the bits are stored is greater than 1:

lib/radix-tree.c
int radix_tree_tagged(struct radix_tree_root *root, int tag)
{

int idx;

if (!root->rnode)
return 0;

for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
if (root->rnode->tags[tag][idx])

return 1;
}
return 0;

}

Accessing Radix Tree Elements
The kernel also provides the following functions to process radix trees (they are all implemented in
lib/radix_tree.c):

<radix-tree.h>
int radix_tree_insert(struct radix_tree_root *, unsigned long, void *);
void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
void *radix_tree_delete(struct radix_tree_root *, unsigned long);

int radix_tree_tag_get(struct radix_tree_root *root,
unsigned long index, unsigned int tag);

void *radix_tree_tag_clear(struct radix_tree_root *root,
unsigned long index, unsigned int tag);

❑ radix_tree_insert adds a new element to a radix tree by means of a void pointer. The tree is
automatically expanded if too little capacity is available.

❑ radix_tree_lookup finds a radix tree element whose key — an integer — was passed to the
function as argument. The value returned is a void pointer that must be converted to the appro-
priate target data type.

960

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 961

Chapter 16: Page and Buffer Cache

❑ radix_tree_delete removes a tree element selected by means of its integer key. A pointer to the
deleted object is returned if deletion was successful.

❑ radix_tree_tag_get checks if a tag is present on a radix tree node. If the tag is set, the function
returns 1; otherwise, 0.

❑ radix_tree_tag_clear deletes a tag in a radix tree node. The change is propagated upward in
the tree; that is, if all elements on one level have no tags, then the bit is also removed in the next
higher level, and so on. The address of the tagged item is returned upon success.

These functions are implemented largely by shifting numbers as described in Appendix C.

To ensure that radix trees are manipulated very quickly, the kernel uses a separate slab cache that holds
instances of radix_tree_node for rapid allocation.

Caution: The slab cache stores only the data structures needed to create the tree.
This has nothing to do with the memory used for the cached pages, which is
allocated and managed independently.

Each radix tree also has a per-CPU pool of pre-allocated node elements to further speed the insertion
of new elements into the tree. radix_tree_preload is a container that ensures that at least one element
resides in this cache. The function is always invoked before an individual element is added to the radix
tree using radix_tree_insert (this is ignored in the following sections).4

Locking
Radix trees do not provide any form of protection against concurrent access in general. As usual in the
kernel, it is the responsibility of each subsystem that deploys radix trees to care for correction locking
or any other synchronization primitive, as discussed in Chapter 5. However, an exception is made for
several important read functions. This includes radix_tree_lookup to perform a lookup operation,
radix_tree_tag_get to obtain a tag on a radix tree node, and radix_tree_tagged to test whether any
items in the tree are tagged.

The first two functions can be called without subsystem-specific locking if they are embraced by
rcu_read_lock() . . . rcu_read_unlock(), while the third function does not require any lock at all.

rcu_head provides the required connection between radix tree nodes and the RCU implementation.
Notice that <radix-tree.h> contains more advice on how to implement proper synchronization for
radix trees, so I will not discuss the problem in more detail here.

16.3.3 Operations on Address Spaces
Address spaces connect backing stores with memory segments. Not only data structures but also func-
tions are needed to perform the transfer operations between the two. Because address spaces can be
used in various combinations, the requisite functions are not defined statically but must be determined
according to the particular mapping with the help of a special structure that holds function pointers to
the appropriate implementation.

4To be more accurate, the insert operations are embedded between radix_tree_preload() . . . and radix_tree_
preload_end(). The use of per-CPU variables means that kernel preemption (see Chapter 2) must be disabled and then
enabled again upon completion of the operation. This is currently the only task of radix_tree_preload_end.

961

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 962

Chapter 16: Page and Buffer Cache

As demonstrated when discussing struct address_space, each address space contains a pointer to an
address_space_operations instance that holds the above function list:

<fs.h>
struct address_space_operations {

int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage)(struct file *, struct page *);
int (*sync_page)(struct page *);

/* Write back some dirty pages from this mapping. */
int (*writepages)(struct address_space *, struct writeback_control *);

/* Set a page dirty */
int (*set_page_dirty)(struct page *page);

int (*readpages)(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages);

/*
* ext3 requires that a successful prepare_write() call be followed
* by a commit_write() call - they must be balanced
*/

int (*prepare_write)(struct file *, struct page *, unsigned, unsigned);
int (*commit_write)(struct file *, struct page *, unsigned, unsigned);

int (*write_begin)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);

int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);

/* Unfortunately this kludge is needed for FIBMAP. Don’t use it */
sector_t (*bmap)(struct address_space *, sector_t);
int (*invalidatepage) (struct page *, unsigned long);
int (*releasepage) (struct page *, gfp_t);
ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov,

loff_t offset, unsigned long nr_segs);
struct page* (*get_xip_page)(struct address_space *, sector_t,

int);
int (*migratepage) (struct address_space *,

struct page *, struct page *);
int (*launder_page) (struct page *);

};

❑ writepage and writepages write one or more pages of the address space back to the underlying
block device. This is done by delegating a corresponding request to the block layer.

The kernel makes a number of standard functions available for this purpose [block_write_
full_page and mpage_readpage(s)]; these are typically used instead of a manual implemen-
tation. Section 16.4.4 discusses the functions of the mpage_ family.

❑ readpage and readpages read one or more consecutive pages from the backing store into a
page frame. readpage and readpages are likewise not usually implemented manually but are

962

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 963

Chapter 16: Page and Buffer Cache

executed by standard functions of the kernel (mpage_readpage and mpage_readpages) that can
be used for most purposes.

Notice that the file argument of readpage is not required if the standard functions are used to
implement the desired functionality because the inode associated with the desired page can be
determined via page->mapping->host.

❑ sync_page performs synchronization of data that have not yet been written back to the back-
ing store. Unlike writepage, the function operates on block layer level and attempts to perform
pending write requests still held in buffers in this layer. In contrast, writepage operates on the
address space layer and simply forwards the data to the block layer without bothering about
active buffering there.

The kernel provides the standard function block_sync_page, which obtains the address space
mapping that belongs to the page in question and unplugs the block device queue to start I/O.

❑ set_page_dirty allows an address space to provide a specific method of marking a page as
dirty. However, this option is rarely used. In this case, the kernel automatically uses ccode__set_-
page_dirty_buffers to simultaneously mark the page as dirty on the buffer level and to add it to
the dirty_pages list of the current mapping.

❑ prepare_write and commit_write perform write operations triggered by the write system call.
To cater to the special features of journaling filesystems, this operation must be split into two
parts: prepare_write stores the transaction data in the journal, and commit_write performs the
actual write operation by sending the appropriate commands to the block layer.

When data are written, the kernel must ensure that the two functions are always invoked in pairs
and in the correct sequence as otherwise the journal mechanism serves no purpose.

It has by now become common practice that even non-journaling filesystems (like Ext2) split
writing into two parts.

Unlike writepage, prepare_ and commit_write do not directly initiate I/O
operations (in other words, they do not forward corresponding commands to the
block layer) but, in the standard implementation, make do with marking whole
pages or parts thereof as dirty; the write operation itself is triggered by a kernel
daemon that is provided for this purpose and that periodically checks the existing
pages.

❑ write_begin and write_end are replacements for prepare_write and commit_write.
While the intention of the functions is identical, the required parameters and espe-
cially the way in which locking of involved objects is handled have changed. Since
Documentation/filesystems/vfs.txt provides a detailed description of how the functions
operate, nothing more needs to be added here.

❑ bmap maps a logical block offset within an address space to a physical block number. This is usu-
ally straightforward for block devices, but since files are in general not represented by a linear
number of blocks on a device, the required information cannot be determined otherwise.

bmap is required by the swap code (see Section 18.3.3), the FIBMAP file ioctl, and internally by
some filesystems.

963

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 964

Chapter 16: Page and Buffer Cache

❑ releasepage prepares page release in journaling filesystems.

❑ invalidatepage is called if a page is going to be removed from the address space and buffers
are associated with it as signalized by the PG_Private flag.

❑ direct_IO is used to implement direct read and write access. This bypasses buffering in the
block layer and allows an application to communicate very directly with a block device. Large
databases make frequent use of this feature as they are better able to forecast future input and
output than the generic mechanisms of the kernel and can therefore achieve better results by
implementing their own caching mechanisms.

❑ get_xip_page is used for the execute-in-place mechanism that can launch executable code with-
out having to first load it into the page cache. This is useful on, for example, memory-based
filesystems such as a RAM disk or on small systems with little memory that can address ROM
areas containing filesystems directly via the CPU. As this mechanism is seldom used, it need not
be discussed at length.

❑ migrate_page is used if the kernel wants to relocate a page, that is, move contents of one page
onto another page. Since pages are often equipped with private data, it is not just sufficient to
copy the raw information from the old to the new page. Moving pages is, for instance, required
to support memory hotplugging.

❑ launder_page offers a last chance to write back a dirty page before it is freed.

Most address spaces do not implement all functions and therefore assign null pointers to some. In many
cases, the kernel’s default routines are invoked instead of the specific implementation of the individ-
ual address spaces. Below a few of the kernel’s address_space_operations are examined to give an
overview of the options available.

The Third Extended Filesystem defines the ext3_writeback_aops global variable, which is a filled
instance of address_space_operations. It contains the functions used in writeback mode:

fs/ext3/inode.c
static const struct address_space_operations ext3_writeback_aops = {

.readpage = ext3_readpage,

.readpages = ext3_readpages,

.writepage = ext3_writeback_writepage,

.sync_page = block_sync_page,

.write_begin = ext3_write_begin,

.write_end = ext3_writeback_write_end,

.bmap = ext3_bmap,

.invalidatepage = ext3_invalidatepage,

.releasepage = ext3_releasepage,

.direct_IO = ext3_direct_IO,

.migratepage = buffer_migrate_page,
};

The pointers that are not explicitly set are automatically initialized with NULL by the compiler.

At first sight, Ext3 appears to set a rather large number of function pointers to use its own implemen-
tations. However, this supposition is quickly disproved by looking at the definitions of ext2_... in the
kernel sources. Many functions consist of few lines and delegate work to the generic helper functions of
the kernel:

964

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 965

Chapter 16: Page and Buffer Cache

Function Standard implementation

ext3_readpage mpage_readpage
ext3_readpages mpage_readpages
ext3_writeback_writepage block_write_full_page
ext3_write_begin block_write_begin
ext3_writeback_write_end block_write_end
ext3_direct_IO blockdev_direct_IO

The functions of the address_space_operations structure and the generic helpers of the kernel use other
arguments so that a brief wrapper function is needed for purposes of parameter conversion. Otherwise,
in most cases, the pointers could point directly to the helper functions mentioned.

Other filesystems also use assignments of the address_space_operations instances that make direct or
indirect use of kernel standard functions.

The structure of the address_space_operations instance of the shared-memory filesystem is particularly
simple since only two fields need to be filled with non-NULL pointers:

mm/shmem.c
static struct address_space_operations shmem_aops = {

.writepage = shmem_writepage,

.set_page_dirty = __set_page_dirty_no_writeback,

.migratepage = migrate_page,
};

All that need be implemented is the marking of the page as dirty, page writeback, and page migration.
The other operations are not used to provide shared memory.5 With which backing store does the kernel
operate in this case? Memory from the shared-memory filesystem is totally independent of a specific
block device because all files of the filesystem are generated dynamically (e.g., by copying the contents
of a file from another filesystem, or by writing calculated data into a new file) and do not reside on any
original block device.

Memory shortage can, of course, also apply to pages that belong to this filesystem so that it is then
necessary to write the pages back to the backing store. Because there is no backing store in the real
sense, the swap area is used in its stead. Whereas normal files are written back to their filesystem on the
hard disk (or on any other block device) in order to free the used page frame, files of the shared-memory
filesystem must be stored in the swap area.

Since access to block devices need not always be made by way of filesystems but may also apply to raw
devices, there are address space operations to support the direct manipulation of the contents of block
devices (this kind of access is required, e.g., when creating filesystems from within userspace):

fs/block_dev.c
struct address_space_operations def_blk_aops = {

.readpage = blkdev_readpage,

.writepage = blkdev_writepage,

5If tmpfs, which is implemented on top of shared memory, is enabled, then readpage, write_begin, and write_end are also
implemented.

965

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 966

Chapter 16: Page and Buffer Cache

.sync_page = block_sync_page,

.write_begin = blkdev_write_begin,

.write_end = blkdev_write_end,

.writepages = generic_writepages,

.direct_IO = blkdev_direct_IO,
};

Again, it is clear that a large number of special functions are used to implement the requirements, but
they quickly lead to the kernel’s standard functions:

Block layer Standard function

blkdev_readpage block_read_full_page
blkdev_writepage block_write_full_page
blkdev_write_begin block_write_begin
blkdev_write_end block_write_end
blkdev_direct_IO __blockdev_direct_IO

The implementation of the address space operations for filesystems and raw access to block devices have
much in common in the kernel since both share the same helper functions.

16.4 Implementation of the Page Cache
The page cache is implemented on top of radix trees. Although the cache belongs to the most
performance-critical parts of the kernel and is widely used across all subsystems, the implementation is
astonishingly simple. Well-designed data structures are an essential ingredient for this.

16.4.1 Allocating Pages
page_cache_alloc is used to reserve the data structure of a new page to be added to the page cache. The
variant postfixed by _cold works identically, but tries to obtain a cache cold page:

<pagemap.h>
struct page *page_cache_alloc(struct address_space *x)
struct page *page_cache_alloc_cold(struct address_space *x)

Initially, the radix tree is left untouched because work is delegated to alloc_pages, which takes a page
frame from the buddy system (described in Chapter 3). However, the address space argument is required
to infer from which memory region that page must come.

Adding the new page to the page cache is a little more complicated and falls under the responsibility of
add_to_page_cache. Here, radix_tree_insert inserts the page instance associated with the page into
the radix tree of the address space involved:

mm/filemap.c
int add_to_page_cache(struct page *page, struct address_space *mapping,

pgoff_t offset, gfp_t gfp_mask)
{
...

error = radix_tree_insert(&mapping->page_tree, offset, page);

966

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 967

Chapter 16: Page and Buffer Cache

if (!error) {
page_cache_get(page);
SetPageLocked(page);
page->mapping = mapping;
page->index = offset;
mapping->nrpages++;

}
...

return error;
}

The index in the page cache and the pointer to the address space of the page are held in the correspond-
ing elements of struct page (mapping and index). Finally, the address space page count (nrpages) is
incremented by 1 because there is now one more page in the cache.

An alternative function named add_to_page_cache_lru with identical prototype is also available. This
first invokes add_to_page_cache to add a page to the address space-specific page cache before also
adding the page to the system’s LRU cache using the lru_cache_add function.

16.4.2 Finding Pages
Keeping all cached pages in a radix tree data structure is especially beneficial when the kernel needs to
decide if a given page is cached or not. find_get_page is provided for this purpose:

mm/filemap.c
struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
{

struct page *page;

page = radix_tree_lookup(&mapping->page_tree, offset);
if (page)

page_cache_get(page);
return page;

}

Life is easy for the page cache because all the hard work is done by the radix tree implementation:
radix_tree_lookup finds the desired page at a given offset, and page_cache_get increments the page’s
reference count if one was found.

However, pages will very often belong to a file. Unfortunately, positions in a file are specified as byte
offsets, not as offsets within the page cache. How can a file offset be converted into a page cache offset?

Currently, the granularity of the page cache is a single page; that is, the leaf elements of the page cache
radix tree are single pages. Future kernels might, however, increase the granularity, so assuming a page
size granularity is not valid. Instead, the macro PAGE_CACHE_SHIFT is provided. The object size for a page
cache element can be computed by 2PAGE_CACHE_SHIFT.

Converting between byte offsets in a file and page cache offsets is then a simple matter of dividing the
index by PAGE_CACHE_SHIFT:

index = ppos >> PAGE_CACHE_SHIFT;

967

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 968

Chapter 16: Page and Buffer Cache

ppos is a byte offset into a file, and index contains the corresponding page cache offset.

Two auxiliary functions are provided for convenience:

<pagemap.h>
struct page * find_or_create_page(struct address_space *mapping,

pgoff_t index, gfp_t gfp_mask);
struct page * find_lock_page(struct address_space *mapping,

pgoff_t index);

find_or_create_page does what the name promises — it looks up a page in the page cache and
allocates a fresh one if it is not there. The page is inserted into the cache and the LRU list by calling
add_to_page_cache_lru.

find_lock_page works like find_get_page, but locks the page.

Caution: If the page is already locked from some other part of the kernel, the function can sleep until the
page is unlocked.

It is also possible to search for more than one page. Here are the prototypes of the responsible auxiliary
functions:

<pagemap.h>
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,

unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,

unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,

int tag, unsigned int nr_pages, struct page **pages);

❑ find_get_pages returns up to nr_pages pages in the mapping starting from the page cache off-
set start. Pointers to the pages are placed on the array pages. The function does not guarantee
to return a continuous range of pages — there can be holes for non-present pages. The return
value is the number of pages that were found.

❑ find_get_pages_contig works similarly to find_get_pages, but the selected page range is
guaranteed to be continuous. The function stops to add pages to the page array when the first
hole is discovered.

❑ find_get_pages_tag operates like find_pages, but only selects pages that have a specific tag
set. Additionally, the index parameter points to the page cache index of the page that immedi-
ately follows the last page in the resulting page array.

16.4.3 Waiting on Pages
The kernel often needs to wait on pages until their status has changed to some desired value. The syn-
chronization implementation, for instance, sometimes wants to ensure that writing back a page has been
finished and the contents in memory are identical with the data on the underlying block device. Pages
under writeback have the PG_writeback bit set.

968

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 969

Chapter 16: Page and Buffer Cache

The function wait_on_page_writeback is provided to wait until the bit disappears:

<pagemap.h>
static inline void wait_on_page_writeback(struct page *page)
{

if (PageWriteback(page))
wait_on_page_bit(page, PG_writeback);

}

wait_on_page_bit installs a wait queue on which the process can sleep until the PG_writeback bit is
removed from the page flags.

Likewise, the need to wait for a page to become unlocked can arise. wait_on_page_locked is responsible
to handle this case.

16.4.4 Operations with Whole Pages
Modern block devices can — despite their name — transfer not just individual blocks but much larger
units of data in a single operation, thus boosting system performance. This is reflected by a strong ker-
nel focus on algorithms and structures that use pages as the elementary units of transfer between block
devices and memory. Buffer-by-buffer transfer acts as a substantial brake on performance when handling
complete pages. In the course of redesign of the block layer, BIOs were introduced during the develop-
ment of 2.5 as a replacement for buffers to handle transfers with block devices. Four new functions were
added to the kernel to support the reading and writing of one or more pages:

<mpage.h>
int mpage_readpages(struct address_space *mapping, struct list_head *pages,

unsigned nr_pages, get_block_t get_block);
int mpage_readpage(struct page *page, get_block_t get_block);
int mpage_writepages(struct address_space *mapping,

struct writeback_control *wbc, get_block_t get_block);
int mpage_writepage(struct page *page, get_block_t *get_block,

struct writeback_control *wbc);

The meaning of the parameters is evident from the preceding sections, the only exception being
writeback_control. As discussed in Chapter 17, this is an option for fine control of the writeback
operation.

Since the implementations of the four functions share much in common (their goal is always to construct
a suitable bio instance for transfer to the block layer), this discussion will be confined to examining just
the one specimen — mpage_readpages. The function expects nr_pages page instances as parameters
passed in a linked list. mapping is the associated address space, and get_block is, as usual, invoked to
find the matching block addresses.

The function iterates in a loop over all page instances:

fs/mpage.c
int
mpage_readpages(struct address_space *mapping, struct list_head *pages,

unsigned nr_pages, get_block_t get_block)

969

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 970

Chapter 16: Page and Buffer Cache

{
struct bio *bio = NULL;
unsigned page_idx;
sector_t last_block_in_bio = 0;
struct buffer_head map_bh;
struct pagevec lru_pvec;

clear_buffer_mapped(&map_bh);
for (page_idx = 0; page_idx < nr_pages; page_idx++) {

struct page *page = list_entry(pages->prev, struct page, lru);

Each loop pass first adds the page to the address space-specific cache before a bio request is created to
read the desired data for the block layer:

fs/mpage.c
list_del(&page->lru);
if (!add_to_page_cache_lru(page, mapping,

page->index, GFP_KERNEL)) {
bio = do_mpage_readpage(bio, page,

nr_pages - page_idx,
&last_block_in_bio, &map_bh,
&first_logical_block,
get_block);

} else {
page_cache_release(page);

}
}

The pages are installed both in the page cache and in the kernel’s LRU list using add_to_page_cache_lru.

When do_mpage_readpage builds the bio request, the BIO data of the preceding pages are also included
so that a combined request can be constructed. If several successive pages are to be read from the block
device, this can be done in a single request rather than submitting an individual request for each page.
Notice that the buffer_head passed to do_mpage_readpage is usually not required. However, if an
unusual situation is encountered (e.g., a page that contains buffers), then it falls back to using the old-
fashioned, blockwise read routines.

If, at the end of the loop, a BIO request is left unprocessed by do_mpage_readpage, it is now submitted:

fs/mpage.c
if (bio)

mpage_bio_submit(READ, bio);
return 0;

}

16.4.5 Page Cache Readahead
Predicting the future is generally accepted to be a rather hard problem, but from time to time, the kernel
cannot resist making a try nevertheless. Actually, there are situations where it is not too hard to say what
will happen next, namely, when a process is reading data from a file.

Usually pages are read sequentially — this is also an assumption made by most filesystems. Recall from
Chapter 9 that the extended filesystem family makes great effort to allocate adjacent blocks for a file such
that the head of a block device only needs to move as little as possible when data are read and written.

970

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 971

Chapter 16: Page and Buffer Cache

Consider the situation in which a process has read a file linearly from position A to position B. Then
this practice will usually continue for a while. It therefore makes sense to read ahead of B (say, until
position C) such that when requests for pages between B and C are issued from the process, the data are
already contained in the page cache.

Naturally readahead cannot be tackled by the page cache alone, but support by the VFS and mem-
ory management layers is required. In fact, the read-ahead mechanism was discussed in Sections 8.5.2
and 8.5.1. Recall that readahead is controlled from three places as far as the kernel is directly concerned6:

1. do_generic_mapping_read, a generic read routine in which most filesystems that rely on the
standard routines of the kernel to read data end up at some point.

2. The page fault handler filemap_fault, which is responsible to read missing pages for mem-
ory mappings.

3. __generic_file_splice_read, a routine invoked to support the splice system call that
allows for passing data between two file descriptors directly in kernel space, without the
need to involve userspace.7

The temporal flow of readahead routines on the source code level were discussed in Chapter 8, but it is
also instructive to observe the behavior from a higher level. Such a viewpoint is provided in Figure 16-4.
For the sake of simplicity, I restrict my consideration to do_generic_mapping_read in the following.

page accessed, but not present

Pages read by asynchronous readahead

asynchronous

async_readahead in background

PG_Readaheadfile_ra_state->start

file_ra_
state->size

page_cache_async_readahead

page_cache_sync_readahead

file_ra_state->
async_size

. . . .

Figure 16-4: Overview of the readahead mechanism and the required interplay
between VFS and page cache.

Suppose that a process has opened a file and wants to read in the first page. The page is not yet contained
in the page cache. Since typical users will not only read in a single page, but multiple sequential

6These are at least the places covered in this book. Readahead can also be influenced from userland with the madvise, fadvice,
and readahead system calls, but I will not discuss them any further.
7I do not discuss this system call anywhere in more detail, but refer you to the manual page splice(2) for more information.

971

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 972

Chapter 16: Page and Buffer Cache

pages, the kernel employs page_cache_sync_readahead to read in 8 pages in a row — the number
is just an example that does not comply with reality. The first page is immediately available for
do_generic_mapping_read.8 Pages selected to be read in before they are actually required are said to be
in a readahead window.

The process now continues to read in pages and behaves linearly as expected. When the sixth page
is accessed (notice that the page was already contained in the page cache before the process issued
a corresponding request), do_generic_mapping_read notices that the page was equipped with the
PG_Readahead bit in the synchronous read pass.9 This triggers an asynchronous operation that reads in
a number of pages in the background. Since two more pages are left in the page cache, there is no need
to hurry; thus a synchronous operation is not required. However, the I/O performed in the background
will ensure that the pages are present when the process makes further progress in the file. If the kernel
would not adopt this scheme, then readahead could only start after a process has experienced a page
fault. While the required page (and some more pages for readahead) could be then brought into the page
cache synchronously, this would introduce delays, which are clearly undesired.

This scheme is now repeated further. Since page_cache_async_read — which is responsible to issue the
asynchronous read request — has again marked a page in the readahead window with the PG_Readahead
bit, the kernel will start asynchronous readahead again when the process comes to this page, and so on.

So much for do_generic_readahead. The differences in how filemap_fault handles things are twofold:
Asynchronous, adaptive readahead is only performed if a sequential read hint is set. If no readahead hint
is given, then do_page_cache_readahead does a single-shot readahead without setting PG_Readahead,
and also without updating the file’s readahead state tracking information.

Several functions are used to implement the readahead mechanism. Figure 16-5 shows how they are
connected with each other.

VFS, Memory management

fadvise,madvise,
readahead system calls

ondemand_readahead ra_submit
do_page_cache_
readahead

force_page_cache_
readahead

page_cache_sync_readahead

_ _do_page_cache_readahed

Bring pages into page cache

page_cache_async_readahead

Figure 16-5: Functions used to implement readahead. Note that the figure shows the connections
between the functions, but is not a proper code flow diagram.

8Actually, the term synchronous as adopted by the kernel is a bit misleading here. No effort is made to wait on completion of the read
operation submitted by page_cache_sync_readahed, so it is not synchronous in the usual sense of the word. However, since
reading in one page is fast, chances are very good that the page will usually have arrived when page_cache_sync_readahead
returns to the caller. Nevertheless, the caller has to make precautions for the case in which the page is not yet available.
9Since the readahead state for each file is separately tracked, the kernel would essentially not require this special flag because the
corresponding information could also be obtained otherwise. However, it is required when multiple concurrent readers act on a file.

972

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 973

Chapter 16: Page and Buffer Cache

Reading pages into the page cache before they are actually required is simple from a technical point of
view and can easily be achieved with the framework introduced so far in this chapter. The challenge lies
in predicting the optimal size of the readahead window. For this purpose, the kernel keeps track of the
last setting for each file. The following data structure is associated with every file instance:

<fs.h>
struct file_ra_state {

pgoff_t start; /* where readahead started */
unsigned int size; /* # of readahead pages */
unsigned int async_size; /* do asynchronous readahead when

there are only # of pages ahead */
unsigned int ra_pages; /* Maximum readahead window */

...
loff_t prev_pos; /* Cache last read() position */

};

start denotes the position in the page cache where readahead was started, and size gives the size of
the readahead window. async_size represents the least number of remaining readahead pages. If only
this many pages are still available in the readahead window, then asynchronous readahead is initiated to
bring more pages into the page cache. The meaning of these values is also illustrated in Figure 16-4.

ra_pages denotes the maximum size of the readahead window. The kernel can decide to read in fewer
pages than specified by this value, but it will never read in more. Finally, prev_pos denotes the position
that was last visited in previous reads.

The offset is given as a byte offset into the file, not as a page offset into the page
cache! This allows filesystem code that does not know anything about page cache
offsets to aid the readahead mechanism.

The most important providers of this value are, however, do_generic_mapping_read and
filemap_fault.

The routine ondemand_readahead is responsible to implement readahead policy, that is, decide
how many pages will be read in before they are actually required. As Figure 16-5 shows, both
page_cache_sync_readahead and page_cache_async_readahead rely on this function. After deciding
on the size of the readahead window, ra_submit is called to delegate the technical aspects to
__do_page_cache_readahead. Here pages are allocated in the page cache and subsequently filled from
the block layer.

Before discussing ondemand_readahead, two helper functions must be introduced: get_init_ra_size
determines the initial readahead window size for a file, and get_next_ra_size computes the window for
subsequent reads, that is, when a previous readahead window exists. get_init_ra_size determines the
window size based on the number of pages requested from the process, and get_next_ra_size bases
the computation on the size of the previous readahead window. Both functions ensure that the size of
the readahead window does not exceed a file-specific upper limit. While the limit can be modified with
the fadvise system call, it is usually set to VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, which equates
to 32 pages on systems with a page size of 4 KiB. The results of both functions are shown in Figure 16-6.
The graph shows how the size of the initial readahead scales with request size, and also demonstrates
how the size of subsequent readahead operations scales depending on the size of the previous readahead

973

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 974

Chapter 16: Page and Buffer Cache

window. Mathematically speaking, the maximal readahead size is a fixed point of both functions. In
practical terms, this means that the readahead window can never grow beyond the maximally allowed
value, in this case, 32 pages.

5

10

15

20

25

30

5 10 15 20 25 30

W
in

do
w

 s
ize

Request size and last read readahead window, respectively

Initial window size
Next window size

Figure 16-6: How the kernel determines the readahead window depending on the
request size.

Let’s go back to ondemand_readahead, which has to set the readahead window with the help of these
auxiliary functions. Three cases are most essential:

1. The current offset is either at the end of the previous readahead window or at the end of the
interval that was synchronously read in. In both cases, the kernel assumes sequential read
access, and uses get_next_ra_size to compute the new window size as discussed.

2. If the readahead marker was hit, but the previous readahead state does not predict this, then
most likely two or more concurrent streams perform interleaved reads on the file — and
invalidate each other’s readahead state in the process. The kernel constructs a new reada-
head window that suits all readers.

3. If (among others) first read access on a file is performed or a cache miss has happened, a new
readahead window is set up with get_init_ra_size.

16.5 Implementation of the Buffer Cache
The buffer cache is used not only as an add-on to the page cache but also as an independent cache for
objects that are not handled in pages but in blocks.

974

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 975

Chapter 16: Page and Buffer Cache

16.5.1 Data Structures
Fortunately, the data structures for both types of cache — the independent buffer cache and the elements
used to support the page cache — are identical, and this greatly simplifies implementation. The principal
elements of the buffer cache are the buffer heads, whose basic characteristics are discussed above. The
buffer head definition in the kernel sources is as follows:

<buffer_head.h>
struct buffer_head {

unsigned long b_state; /* buffer state bitmap (see above) */
struct buffer_head *b_this_page;/* circular list of page’s buffers */
struct page *b_page; /* the page this bh is mapped to */

sector_t b_blocknr; /* start block number */
size_t b_size; /* size of mapping */
char *b_data; /* pointer to data within the page */

struct block_device *b_bdev;
bh_end_io_t *b_end_io; /* I/O completion */
void *b_private; /* reserved for b_end_io */

...
atomic_t b_count; /* users using this buffer_head */

};

Buffers, like pages, can have many states. The current state of a buffer head is held in the b_state ele-
ment that accepts the following selection of values (the full list of values is available as an enum called
bh_state_bits in include/linux/buffer_heads.h):

❑ The state is BH_Uptodate if the current data in the buffer match the data in the backing store.

❑ Buffers are labeled as BH_Dirty if their data have been modified and no longer match the data in
the backing store.

❑ BH_Lock indicates that the buffer is locked for further access. Buffers are explicitly locked dur-
ing I/O operations to prevent several threads from handling the buffers concurrently and thus
interfering with each other.

❑ BH_Mapped means that there is a mapping of the buffer contents on a secondary storage device, as
is the case with all buffers that originate from filesystems or from direct accesses to block devices.

❑ BH_New marks newly created buffers as new.

b_state is interpreted as a bitmap. Every possible constant stands for a position in
the bitmap. As a result, several values (BK_Lock and BH_Mapped, e.g.) can be active at
the same time — as also at many other points in the kernel.

BH_Uptodate and BH_Dirty can also be active at the same time, and this is often the
case. Whereas BH_Uptodate is set after a buffer has been filled with data from the
block device, the kernel uses BH_Dirty to indicate that the data in memory have
been modified but not yet been written back. This may appear to be confusing but
must be remembered when considering the information below.

975

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 976

Chapter 16: Page and Buffer Cache

Besides the above constants, a few additional values are defined in enum bh_state_bits. They are
ignored because they are either of little importance or are simply no longer used. They are retained
in the kernel sources for historical reasons and will disappear sooner or later.

The kernel defines the set_buffer_foo and get_buffer_foo functions to set and read the buffer state
bits for BH_Foo.

The buffer_head structure also includes further elements whose meanings are given below:

❑ b_count implements the usual access counter to prevent the kernel from freeing buffer heads
that are still in active use.

❑ b_page holds a pointer to a page instance with which the buffer head is associated when used in
conjunction with the page cache. If the buffer is independent, b_page contains a null pointer.

❑ As discussed above, several buffers are used to split the contents of a page into smaller units. All
buffer heads belonging to these units are kept on a singly linked, circular list using b_this_page
(the entry for the last buffer points to the entry for the first buffer to create a circular structure).

❑ b_blocknr holds the number of the block on the underlying block device, and b_size specifies
the size of the block. b_bdev is a pointer to the block_device instance of the block device. This
information uniquely identifies the source of the data.

❑ The pointer to the data in memory is held in b_data (the end position can be calculated from
b_size; there is therefore no need for an explicit pointer to this position, although a pointer was
used above for the sake of simplicity).

❑ b_end_io points to a routine that is automatically invoked by the kernel when an I/O operation
involving the buffer is completed (it is required by the BIO routines described in Chapter 6). This
enables the kernel to postpone further buffer handling until a desired input or output operation
has, in fact, been completed.

❑ b_private is a pointer reserved for private use by b_end_io. It is used primarily by journaling
filesystems. It is usually set to NULL if it is not needed.

16.5.2 Operations
The kernel must provide a set of operations so that the rest of the code can easily and efficiently exploit
the functionality of buffers. This section describes the mechanisms for creating and managing new buffer
heads.

Caution: These mechanisms make no contribution to the actual caching of data in memory, discussed in
later sections.

Before buffers can be used, the kernel must first create an instance of the buffer_head structure on which
the remaining functions act. As the new generation of new buffer heads is a frequently recurring task,
it should be performed as quickly as possible. This is a classical situation for the use of a slab cache as
described in Chapter 3.

Caution: When a slab cache is used, memory is allocated only for the buffer head.
The actual data are ignored when the buffer head is created and must be stored
elsewhere.

976

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 977

Chapter 16: Page and Buffer Cache

The kernel sources do, of course, provide functions that can be used as front ends to create and destroy
buffer heads. alloc_buffer_head generates a new buffer head, and free_buffer_head destroys an
existing head. Both functions are defined in fs/buffer.c. As you might expect, they essentially consist
of straightforward gymnastics with memory management functions and statistics accounting and need
not be discussed here.

16.5.3 Interaction of Page and Buffer Cache
Buffer heads become much more interesting when used in conjunction with the useful data that they are
to hold in memory. This section examines the link between pages and buffer heads.

Linking of Pages and Buffer Heads
How are buffers and pages interlinked? Recall that this approach was briefly discussed above. A page
is split into several data units (the actual number varies between architectures depending on page and
block size), but the buffer heads are held in a separate memory area that has nothing to do with the actual
data. The page contents are not modified by the interaction with buffers, as the latter simply provide a
new view of the page data.

The private element of struct page is required to support interaction between a page and buffers. It is
of type unsigned long and can therefore be used as a pointer to any positions in virtual address space
(the exact definition of page is given in Chapter 3):

<mm.h>
struct page {

...
unsigned long private; /* Mapping-private opaque data */
...

}

The private element can also be used for various other purposes that, depending on page use, need
have nothing to do with buffers.10 However, its predominant use is to link buffers and pages. In this
case, private points to the first buffer head used to split the page into smaller units. The various buffer
heads are linked in a cyclic list by means of b_this_page. In this list, each pointer points to the next
buffer, and the b_this_page element of the last buffer head points to the first buffer. This enables
the kernel to easily scan all buffer_head instances associated with the page, starting from the page
structure.

How is the association between the page and the buffer_head structures established? The kernel pro-
vides the create_empty_buffers and link_dev_buffers functions for this purpose, both of which
are implemented in fs/buffer.c. The latter serves to associate an existing set of buffer heads with a
page, whereas create_empty_buffers generates a completely new set of buffers for association with the
page. For example, create_empty_buffers is invoked when reading and writing complete pages with
block_read_full_page and __block_write_full_page.

create_empty_buffers first invokes alloc_page_buffers to create the required number of buffer heads
(this number varies according to page and block size). It returns a pointer to the first element of a singly

10If the page resides in the swap cache, an instance of swp_entry_t is also stored in the cache. If the page is not in use, the element
holds the order in the buddy system.

977

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 978

Chapter 16: Page and Buffer Cache

linked list in which each b_this_page element points to the next buffer. The only exception is the last
buffer, where b_this_page holds a null pointer:

fs/buffer.c
void create_empty_buffers(struct page *page,

unsigned long blocksize, unsigned long b_state)
{

struct buffer_head *bh, *head, *tail;

head = alloc_page_buffers(page, blocksize, 1);
...

The function then iterates over all buffer heads to set their state and generate a cyclic list:

fs/buffer.c
do {

bh->b_state |= b_state;
tail = bh;
bh = bh->b_this_page;

} while (bh);
tail->b_this_page = head;

...

The state of the buffers depends on the state of the data in the page in memory:

fs/buffer.c
if (PageUptodate(page) || PageDirty(page)) {

bh = head;
do {

if (PageDirty(page))
set_buffer_dirty(bh);

if (PageUptodate(page))
set_buffer_uptodate(bh);

bh = bh->b_this_page;
} while (bh != head);

}
attach_page_buffers(page, head);

}

set_buffer_dirty and set_buffer_uptodate set the corresponding flags BH_Dirty and BH_Uptodate,
respectively, in the buffer head.

The concluding invocation of attach_page_buffers associates the buffer with the page in two separate
steps:

1. The PG_private bit is set in the page flags to inform the rest of the kernel code that the
private element of the page instance is in use.

2. The private element of the page is equipped with a pointer to the first buffer head in the
cyclic list.

At first sight, setting the PG_Private flag would not appear to be a far-reaching action. However, it
is important because it is the only way that the kernel is able to detect whether a page has attached

978

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 979

Chapter 16: Page and Buffer Cache

buffers. Before the kernel launches any operations to modify or process buffers associated with a
page, it must first check whether buffers are actually present — this is not always the case. It provides
page_has_buffers(page) to do this by checking whether the flag is set. This function is called at very
large number of places in the kernel sources and is therefore worthy of mention.

Interaction
Setting up a link between pages and buffers serves little purpose if there are no benefits for other parts
of the kernel. As already noted, some transfer operations to and from block devices may need to be
performed in units whose size depends on the block size of the underlying devices, whereas many
parts of the kernel prefer to carry out I/O operations with page granularity as this makes things much
easier — especially in terms of memory management.11 In this scenario, buffers act as intermediaries
between the two worlds.

Reading Whole Pages in Buffers
Let us first look at the approach adopted by the kernel when it reads whole pages from a block device, as
is the case in block_read_full_page. Let’s discuss the sections of interest as seen by buffer implementa-
tion. Figure 16-7 shows the buffer-related function calls that make up block_read_full_page.

Nothing to do
Yes

No

1

block_read_full_page

!page_has_buffers? create_empty_buffers

get_block

lock_buffer

mark_buffer_async_read

submit_bh

buffer_uptodate?

Not mappedIte
ra

te
 o

ve
r

al
l b

uf
fe

rs

Iterate over all buffers
which were not uptodate

1

1

Figure 16-7: Code flow diagram for the buffer-related operations of
block_read_full_page.

block_read_full_page reads a full page in three steps:

1. The buffers are set up and their state is checked.

2. The buffers are locked to rule out interference by other kernel threads in the next step.

3. The data are transferred to the buffers.

The first step involves checking whether buffers are already attached to the page as this is not always
the case. If not, buffers are created using the create_empty_buffers function discussed a few sections

11I/O operations are usually more efficient if data are read or written in pages. This was the main reason for introducing the BIO
layer that has replaced the old concept based on buffer heads.

979

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 980

Chapter 16: Page and Buffer Cache

back. Thereafter, the buffers — whether just created or already in existence — are identified using
page_buffers before they are handled as described below. page_buffers simply translates the private
element of the page into a buffer_head pointer by means of pointer conversion because, by convention,
private points to the first buffer if buffers are attached to a page.

The main work of the kernel is to find out which buffers are current (their data match that on the block
device or may even be more up-to-date) and therefore need not be read, and which buffers hold invalid
data. To do this, the kernel makes use of the BH_Mapping and BH_Uptodate state bits, both of which may
be set or unset.

It iterates over all buffers attached to the page and performs the following checks:

1. If the buffer contents are up-to-date (this can be checked with buffer_uptodate), the kernel
continues to process the next buffer. In this case, the data in the page cache and on the block
device match, and an additional read operation is not required.

2. If there is no mapping (BH_Mapping is not set), get_block is invoked to determine the posi-
tion of the block on the block storage medium.

ext2_get_block and ext3_get_block, respectively, are used for this purpose on Ext2/Ext3
filesystems. Other filesystems use functions with similar names. Common to all alternatives
is that the buffer_head structure is modified so that it can be used to locate the desired block
in the filesystem. Essentially, this involves setting the b_bdev and b_blocknr fields because
they identify the desired block.

The actual reading of data from the block device is performed not by get_block but
later during the course of block_read_full_page.

After execution of get_block, the state of the buffer is BH_Mapped but not BH_Uptodate12.

3. A third situation is also possible. The buffer already has a mapping but is not up-to-date.
The kernel then need perform no other actions.

4. Once the individual combinations of BH_Uptodate and BH_Mapped have been distinguished,
the buffer is placed in a temporary array if it has a mapping but is not up-to-date. Processing
then continues with the page’s next buffer until no further buffers are available.

If all buffers attached to the page are up-to-date, the whole page can be set to this state using
SetPageUptodate. The function then terminates because all the data on the whole page now reside in
memory.

However, there are usually still buffers that have a mapping but do not reflect the current contents of the
block device. Reminder: Buffers of this kind are collected in an array that is used for the second and third
phases of block_read_full_page.

In the second phase, all buffers to be read are locked using lock_buffer. This prevents two kernel
threads from reading the same buffer at the same time and therefore interfering with each other.

12There is one other state in which a buffer is up-to-date but is not mapped. This state occurs when a file with gaps is read (as can
occur with the Second Extended Filesystem, e.g.). In this case, the buffer is filled with null bytes, but I shall ignore this scenario.

980

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 981

Chapter 16: Page and Buffer Cache

mark_buffer_async_read is also invoked to set end_buffer_async_read for b_end_io — this function
is invoked automatically when data transfer ends.

Actual I/O is triggered in the third phase in which submit_bh forwards all buffers to be read
to the block or BIO layer where the read operation is started. The function stored in b_end_io
(end_buffer_async_read in this case) is called when the read operation terminates. It iterates over all
the page’s buffers, checks their state, and sets the state of the entire page to up-to-date assuming all
buffers have this state.

As can be seen, the advantage of block_read_full_page is that it is necessary to read only those parts
of the page that are not up-to-date. However, if it is certain that the entire page is not up-to-date,
mpage_readpage is the better alternative as the buffer overhead is then superfluous.

Writing Whole Pages into Buffers

Not only reading but also writing of full pages can be divided into smaller buffer units. Only those parts
of a page that have actually been modified need be written back, not the whole page contents. Unfor-
tunately, from the buffer viewpoint, the implementation of write operations is much more complicated
than the read operations described above. I ignore the minor details of the (somewhat simplified) write
operations and focus on the key actions required of the kernel in my discussion below.

Figure 16-8 shows the code flow diagram for the error-free performance of the buffer-related operations
needed to write back dirty pages in the __block_write_full_page function (to simplify matters, I also
omit some seldom required corner cases that must be dealt with in reality).

_ _block_write_full_page

!page_has_buffers

!buffer_mapped && buffer_dirty get_block

lock_buffer

mark_buffer_async_write

SetPageWriteback

buffer_async_write submit_bh

buffer_mapped && buffer_dirty

create_empty_buffers

Figure 16-8: Code flow diagram for the buffer-related operations of
__block_write_full_page.

The writeback process is split into several parts, each of which repeatedly iterates over the singly linked
list of buffers attached to a page.

981

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 982

Chapter 16: Page and Buffer Cache

As usual, it is first necessary to check that buffers are actually attached to the page — this cannot be taken
for granted. As when a page is read, page_has_buffers is invoked to check whether buffers are present.
If not, they are created using create_empty_buffers.

The kernel then iterates a total of three times over the list of buffers, as shown in the code flow diagram:

1. The purpose of the first iteration is to create a mapping between the buffer and the block
device for all unmapped but dirty buffers. The function held in the get_block function
pointer is invoked to find the matching block of the block device for the buffer.

2. In the second iteration, all dirty buffers are filtered out; this can be checked by
test_clear_buffer_dirty — if the flag was set, it is deleted when the func-
tion is invoked because the buffer contents are due to be written back immedi-
ately.13 mark_buffer_async_write sets the BH_Async_Write state bit and assigns
end_buffer_async_write as the BIO completion handler to b_end_io.

At the end of this iteration, set_page_writeback sets the PG_writeback flag for the full
page.

3. In the third and final iteration, all buffers marked with BH_Async_Write in the previous
pass are forwarded to the block layer that performs the actual write operation by invoking
submit_bh, which submits a corresponding request to the block layer (by means of BIOs; see
Chapter 6).

When the write operation for a buffer terminates, end_buffer_async_write is invoked automatically to
check whether this also applies for all other buffers of the page. If so, all processes that are sleeping on
the queue associated with the page and that are waiting for this event are woken.

16.5.4 Independent Buffers
Buffers are used not only in the context of pages. In earlier versions of the Linux kernel, all caching was
implemented with buffers without resorting to page caching. The value of this approach has diminished
in successive versions, and nearly all importance has been attached to full pages. However, there are still
situations in which access to block device data is performed on the block level and not on the page level
in the view of higher-level code. To help speed up such operations, the kernel provides yet another cache
known as an LRU buffer cache discussed below.

This cache for independent buffers is not totally divorced from the page cache. Since RAM memory
is always managed in pages, buffered blocks must also be held in pages, with the result that there are
some points of contact with the page cache. These cannot and should not be ignored — after all, access
to individual blocks is still possible via the buffer cache without having to worry about the organization
of the blocks into pages.

Mode of Operation
Why LRU? As we know, this abbreviation stands for least recently used and refers to a general method
in which the elements of a set that are most frequently used can be managed efficiently. If an element is
frequently accessed, the likelihood is that it resides in RAM (and is therefore cached). Less frequently or
seldom used elements drop out of the cache automatically with time.

13At this point, the kernel must also call buffer_mapped to ensure that there is a mapping for the buffer. This is not the case if
there are holes in files, but then there is nothing to write back.

982

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 983

Chapter 16: Page and Buffer Cache

To make lookup operations faster, the kernel first scans the cache entries from top to bottom to find an
independent buffer each time a request is made. If an element contains the required data, the instance
in the cache can be used. If not, the kernel must submit a low-level request to the block device to get the
desired data.

The element last used is automatically placed at the first position by the kernel. If the element was already
in the cache, only the positions of the individual elements change. If the element was read from the block
device, the last element of the array ‘‘drops out‘‘ of the cache and can therefore be removed from memory.

The algorithm is very simple but nevertheless effective. The time needed to look up frequently used
elements is reduced because the element is automatically located at one of the top array positions. At the
same time, less used elements automatically drop out of the cache if they are not accessed for a certain
period. The only disadvantage of this approach is the fact that almost the full contents of the array need
to be repositioned after each lookup operation. This is time-consuming and can be implemented for small
caches only. Consequently, buffer caches have only a low capacity.

Implementation
Let us examine how the kernel implements the algorithm just described for the LRU cache.

Data Structures
As the algorithm is not complicated, it requires only relatively simple data structures. The starting point
of the implementation is the bh_lru structure which is defined as follows:

fs/buffer.c
#define BH_LRU_SIZE 8

struct bh_lru {
struct buffer_head *bhs[BH_LRU_SIZE];

};

static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};

It is defined in a C file and not in a header file — as usual, an indication for the rest of the kernel code
that the cache data structures should (and, besides, can!) not be addressed directly but by means of the
dedicated helper functions discussed below.

bhs is an array of pointers to buffer heads and is used as a basis for implementing the LRU algorithm
(eight entries are used as the pre-processor definition shows). The kernel uses DEFINE_PER_CPU to instan-
tiate an instance for each CPU of the system to improve utilization of the CPU caches.

The cache is managed and utilized by two public functions provided by the kernel: lookup_bh_lru
checks whether a required entry is present in the cache, and bh_lru_install adds new buffer heads to
the cache.

The function implementations hold no surprises since they merely implement the algorithm described
above.14 All they need do is select the corresponding array for the current CPU at the start of the action
using

14Or as aptly put by a comment in the kernel code: The LRU management algorithm is dopey-but-simple. Sorry.

983

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 984

Chapter 16: Page and Buffer Cache

fs/buffer.c
lru = &__get_cpu_var(bh_lrus);

Caution: If lookup_bh_lru fails, the desired buffer is not automatically read from the block device. This
is done by the following interface functions.

Interface Functions

Normal kernel code does not generally come into contact with either bh_lookup_lru or bh_lru_install
because these functions are encapsulated. The kernel provides generic routines for accessing individual
blocks, and these automatically cover the buffer cache, thus rendering explicit interaction with the cache
unnecessary. These routines include __getblk and __bread, which are implemented in fs/buffer.c.

Before discussing their implementation, it is best to describe not only what the two functions have in
common, but also how they differ. First, they both require the same parameters:

fs/buffer.c
struct buffer_head *
__getblk(struct block_device *bdev, sector_t block, int size)
{
...
}

struct buffer_head *
__bread(struct block_device *bdev, sector_t block, int size)
{
...
}

A data block is uniquely identified by the block_device instance of the desired block device, the sector
number (of type sector_t), and the block size.

The differences relate to the goals of the two functions. __bread guarantees that an up-to-date buffer is
returned; this entails, if necessary, read access to the underlying block device.

Invocations of __getblk always return a non-NULL pointer (i.e., a buffer head).15 If the data of the
desired buffer already reside in memory, the data are returned, but there is no guarantee as to what their
state will be — in contrast to __bread, it need not be up-to-date. In the second possible scenario, the
buffer does not yet exist in memory. In this case, __getblk ensures that the memory space required for
the data are reserved and that the buffer head is inserted in the LRU cache.

__getblk always returns a buffer head with the result that even senseless
requests — for non-existent sector addresses — are processed.

15There is one exception. The function returns a NULL pointer if the desired block size is less than 512 bytes, larger than a page, or
not a multiple of the hardware sector size of the underlying block device. However, a stack dump is also output at the same time
because an invalid block size is interpreted as a kernel bug.

984

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 985

Chapter 16: Page and Buffer Cache

The function __getblk
Figure 16-9 shows the code flow diagram for __getblk (this function is discussed first because it is
invoked by __bread).

Cache miss?

Null pointer?

_ _getblk

_ _find_get_block

_ _find_get_block_slow

bh_lru_install

touch_buffer

_ _getblk_slow

lookup_bh_lru

Figure 16-9: Code flow diagram for __getblk.

As the code flow diagram shows, there are two possible options when __getblk executes.
__find_get_block is invoked to find the desired buffer using the method described below. A
buffer_head instance is returned if the search is successful. Otherwise, the task is delegated to
__getblk_slow. As the name suggest, __getblk_slow yields the desired buffer but takes longer than
__find_get_block. However, this function is able to guarantee that a suitable buffer_head instance will
always be returned and that the space needed for the data will be reserved.

As already noted, the fact that a buffer head is returned does not mean that the
contents of the data area are correct. But because the buffer head itself is correct, it is
inserted in the buffer cache at the end of the function by means of bh_lru_install,
and touch_buffer calls the mark_page_accessed method (see Chapter 18) for the
page associated with the buffer.

The key issue is obviously the difference between __find_get_block and __getblk_slow, where the
main work of __getblk takes place.

The familiar lookup_bh_lru function is invoked at the start of __find_get_block to check whether the
required block is already present in the LRU cache.

If not, other means must be applied to continue the search. __find_get_block_slow attempts to find the
data in the page cache, and this can produce two different results:

❑ A null pointer is returned if the data are not in the page cache, if it is in the page cache but the
page does not have any attached buffers.

❑ The pointer to the desired buffer head is returned if the data are in the page cache and the page
also has attached buffers.

985

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 986

Chapter 16: Page and Buffer Cache

If a buffer head is found, __find_get_block invokes the bh_lru_install function to add it to the cache.
The kernel returns to __getblk after touch_buffer has been invoked to mark the page associated with
the buffer using mark_page_accessed (see Chapter 18).

The second code path implemented in __getblk_slow must be entered if __find_get_block returns a
null pointer. This path guarantees that at least the space required for the buffer head and data element is
reserved. Its implementation is relatively short:

fs/buffer.c
static struct buffer_head *
__getblk_slow(struct block_device *bdev, sector_t block, int size)
{

...
for (;;) {

struct buffer_head * bh;
int ret;

bh = __find_get_block(bdev, block, size);
if (bh)

return bh;

ret = grow_buffers(bdev, block, size);
if (ret < 0)

return NULL;
if (ret == 0)

free_more_memory();
}

}

Surprisingly, the first thing __getblk_slow does is to invoke __find_get_block — the function that has
just failed. If a buffer head is found, it is returned by the function. Of course, the function only succeeds
if another CPU has installed the desired buffer and created the corresponding data structures in memory
in the meantime. Although this is admittedly not very likely, it still has to be checked.

This rather strange behavior becomes clear when we examine the exact course of the function. It is, in
fact, an endless loop that repeatedly tries to read the buffer using __find_get_block. Obviously, the
code doesn’t content itself with doing nothing if the function fails. The kernel uses grow_buffers to try
to reserve memory for the buffer head and buffer data and to add this space to the kernel data structures:

1. If this is successful, __find_get_block is invoked again, and this returns the desired
buffer_head.

2. If the call to grow_buffers returns a negative result, this means that the block lies outside
the possible maximum addressable page cache range, and the loop is aborted because the
desired block does not physically exist.

3. If grow_buffers returns 0, then not enough memory was available to grow the buffers, and
the subsequent call to free_more_memory tries to fix this condition by trying to release more
RAM as described in Chapters 17 and 18.

This is why the functions are packed into an endless loop — the kernel tries again and again to create the
data structures in memory until it finally succeeds.

986

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 987

Chapter 16: Page and Buffer Cache

The implementation of grow_buffers is not especially lengthy. A few correctness checks are carried
out before work is delegated to the grow_dev_page function whose code flow diagram is shown in
Figure 16-10.

Create buffers

grow_dev_page

find_or_create_page

link_dev_buffers

init_page_buffers

Figure 16-10: Code flow diagram for
grow_dev_page.

The function first invokes find_or_create_page to a suitable page or generates a new page to hold the
buffer data.

Of course, this and other allocation operations will fail if insufficient memory is available. In this case,
the function returns a null pointer, thus causing the complete cycle to be repeated in __getblk_slow
until sufficient memory is available. This also applies for the other functions that are invoked so there is
no need to mention them explicitly.

If the page is already associated with a buffer of the correct size, the remaining buffer data (b_bdev and
b_blocknr) are modified by init_page_buffers. grow_dev_page then has nothing else to do and can be
exited.

Otherwise, alloc_page_buffers generates a new set of buffers that can be attached to the
page using the familiar link_dev_buffers function. init_page_buffers is invoked to fill the status
(b_status)and the management data (b_bdev, b_blocknr) of the buffer heads.

The function __bread
In contrast to the methods just described, __bread ensures that an up-to-date buffer is returned. The
function is not difficult to implement as it builds on __getblk:

fs/buffer.c
__bread(struct block_device *bdev, sector_t block, int size)
{

struct buffer_head *bh = __getblk(bdev, block, size);

if (likely(bh) && !buffer_uptodate(bh))
bh = __bread_slow(bh);

return bh;
}

The first action is to invoke the __getblk routine to make sure that memory is present for the buffer head
and data contents. A pointer to the buffer is returned if the buffer is already up-to-date.

987

Mauerer runc16.tex V2 - 09/04/2008 5:53pm Page 988

Chapter 16: Page and Buffer Cache

If the buffer data are not up-to-date, the rest of the work is delegated to __bread_slow — in other words,
to the slow path, as the name indicates. Essentially, this submits a request to the block layer to physically
read the data, and waits for the operation to complete. The buffer — which is now guaranteed to be filled
and current — is then returned.

Use in the Filesystem
When is it necessary to read individual blocks? There are not too many points in the kernel where this
must be done, but these are nevertheless of great importance. Filesystems in particular make use of the
routines described above when reading superblocks or management blocks.

The kernel defines two functions to simplify the work of filesystems with individual blocks:

<buffer_head.h>
static inline struct buffer_head *
sb_bread(struct super_block *sb, sector_t block)
{

return __bread(sb->s_bdev, block, sb->s_blocksize);
}

static inline struct buffer_head *
sb_getblk(struct super_block *sb, sector_t block)
{

return __getblk(sb->s_bdev, block, sb->s_blocksize);
}

As the code shows, the routines are used to read specific filesystem blocks found using a superblock, a
block number, and a block size.

16.6 Summary
Reading data from external storage devices like hard disks is much slower than reading data from RAM,
so Linux uses caching mechanisms to keep data in RAM once they have been read in, and accesses them
from there. Page frames are the natural units on which the page cache operates, and I have discussed in
this chapter how the kernel keeps track of which portions of a block device are cached in RAM. You have
been introduced to the concept of address spaces which allow for linking cached data with their source,
and how address spaces are manipulated and queried. Following that, I have examined the algorithms
employed by Linux to handle the technical details of bringing content into the page cache.

Traditionally, Unix caches used smaller units than complete pages, and this technique survived until
today in the form of the buffer cache. While the main caching load is handled by the page cache, there
are still some users of the buffer cache, and you have therefore also been introduced to the corresponding
mechanisms.

Using RAM to cache data read from a disk is one aspect of the interaction between RAM and disks, but
there’s also another side to the story: The kernel must also take care of synchronizing modified data in
RAM back to the persistent storage on disk; the next chapter will introduce you to the corresponding
mechanisms.

988

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 989

Data Synchronization
RAM memory and hard disk space are mutually interchangeable to a good extent. If a large amount
of RAM is free, the kernel uses part of it to buffer block device data. Conversely, disk space is used to
swap data out from memory if too little RAM is available. Both have one thing in common — data
are always manipulated in RAM before being written back (or flushed) to disk at some random
time to make changes persistent. In this context, block storage devices are often referred to as RAM
backing store.

Linux provides a variety of caching methods as discussed extensively in Chapter 16. However,
what was not discussed in that chapter is how data are written back from cache. Again, the kernel
provides several options that are grouped into two categories:

1. Background threads repeatedly check the state of system memory and write data
back at periodic intervals.

2. Explicit flushing is performed when there are too many dirty pages in system caches
and the kernel needs clean pages.

This chapter discusses these techniques.

17.1 Overview
There is a clear relationship between flushing, swapping, and releasing pages. Not only the state
of memory pages but also the size of free memory needs checking regularly. When this is done,
unused or seldom used pages are swapped out automatically but not before the data they hold
have been synchronized with the backing store to prevent data loss. In the case of dynamically
generated pages, the system swap areas act as the backing stores. The swap areas for pages mapped
from files are the corresponding sections in the underlying filesystems. If there is an acute scarcity
of memory, flushing of dirty data must be enforced in order to obtain clean pages.

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 990

Chapter 17: Data Synchronization

Synchronization between memory/cache and backing store is split into two conceptually different parts:

❑ Policy routines control when data are exchanged. System administrators can set various parame-
ters to help the kernel decide when to exchange data as a function of system load.

❑ The technical implementation deals with the hardware-related details of synchronization
between cache and backing store and ensures that the instructions issued by the policy routines
are carried out.

Synchronization and swapping must not be confused with each other. Whereas
synchronization simply aligns the data held in RAM and in the backing store,
swapping results in the flushing of data from RAM to free space for higher-priority
items. Before data are cleared from RAM, they are synchronized with the data in the
associated backing store.

The mechanisms for flushing data are triggered for different reasons and at different times:

❑ Periodic kernel threads scan the lists of dirty pages and pick some to be written back based on
the time at which they became dirty. If the system is not too busy with write operations, there is
an acceptable ratio between the number of dirty pages and the load imposed on the system by
the hard disk access operations needed to flush the pages.

❑ If there are too many dirty pages in the system as a result, for example, of a massive write opera-
tion, the kernel triggers further mechanisms to synchronize pages with the backing store until
the number of dirty pages returns to an acceptable level. What is meant by ‘‘too many dirty
pages‘‘ and ‘‘acceptable level‘‘ is a moot point, discussed below.

❑ Various components of the kernel require that data must be synchronized when a special event
has happened, for instance, when a filesystem is re-mounted.

The first two mechanisms are implemented by means of the kernel thread pdflush which exe-
cutes the synchronization code, while the third alternative can be triggered from many points in
the kernel.

Since the implementation of data synchronization consists of an unusually large number of intercon-
nected functions, an overview of what lies ahead of us precedes a detailed discussion of everything
in detail. Figure 17-1 show the dependence among the functions that constitute the implementation.
The figure is not a proper code flow diagram, but just shows how the functions are related to each
other and which code paths are possible. The diagram concentrates on synchronization operations
originating from the pdflush thread, system calls, and explicit requests from filesystem-related kernel
components.

The kernel can start to synchronize data from various different places, but all paths save one end
up in sync_sb_inodes. The function is responsible to synchronize all dirty inodes belonging to a
given superblock, and writeback_single_inode is used for each inode. Both the sync system call
and numerous generic kernel layers (like the partition code or the block layer) make use of this
possibility.

On the other hand, the need to synchronize the dirty inodes of all superblocks in the system can also
arise. This is especially required for periodic and forced writeback. When dirtying data in filesystem
code, the kernel additionally ensures that the number of dirty pages does not get out of hand by starting
synchronization before this happens.

990

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 991

Chapter 17: Data Synchronization

Block layer, partition
handling, fsync system
call, filesystems...

File systems

Forced
writeback

pdflush

Flushing synchronizationData integrity synchronization

Periodic
writeback

Pages were
dirtied

For a single superblock

For all superblocks

can place inodes on s_io
can place inodes on
os_more_io
can wait for inode to
become unlocked or for
writeback to be completed

(∗) (+)

(∗)
(+) (∗) (∼)

(∗) (∼)(∼)

_ _fsync_super

sync_inodes_sb

sys_sync

sync_blockdev

_ _sync_inodes

wb_kupdate background_
writeout

writeback_inodes

sync_sb_inodes

writeback_single_inode

write_inode

_ _sync_single_inode

balance_dirty_
pages

Figure 17-1: Overview of some functions involved in data synchronization.

Synchronizing all dirty inodes of a superblock is often much too coarse grained for filesystems. They
often require synchronizing a single dirty inode and thus use writeback_single_inode directly.

Even if the synchronization implementation is centered around inodes, this does not imply that the
mechanisms just work for data contained in mounted filesystems. Recall that raw block devices are
represented by inodes via the bdev pseudo-filesystem as discussed in Section 10.2.4. The synchronization
methods therefore also affect raw block devices in the same way as regular filesystem objects — good
news for everyone who wants to access data directly.

One remark on terminology: When I talk about inode synchronization in the following, I always mean
synchronization of both the inode metadata and the raw data managed by the inode. For regular files,
this means that the synchronization code’s aim is to both transfer time stamps, attributes, and the like, as
well as the contents of the file to the underlying block device.

17.2 The pdflush Mechanism
The pdflush mechanism is implemented in a single file: mm/pdflush.c. This contrasts with the frag-
mented implementation of the synchronization mechanisms in earlier versions.

991

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 992

Chapter 17: Data Synchronization

pdflush is started with the usual kernel thread mechanisms:

mm/pdflush.c
static void start_one_pdflush_thread(void)
{

kthread_run(pdflush, NULL, "pdflush");
}

start_one_pdflush starts a single pdflush thread — however, the kernel uses several threads at the
same time in general, as you will see below. It should be noted that a specific pdflush thread is not
always responsible for the same block device. Thread allocation may vary over time simply because the
number of threads is not constant and differs according to system load.

In fact, the kernel starts the specific number of threads defined in MIN_PDFLUSH_THREADS when it initial-
izes the pdflush subsystem. Typically, this number is 2 so that in a normally loaded system, two active
instances of pdflush appear in the task list displayed by ps:

wolfgang@meitner> ps fax
2 ? S< 0:00 [kthreadd]

...
206 ? S 0:00 _ [pdflush]
207 ? S 0:00 _ [pdflush]

...

There is a lower and an upper limit to the number of threads. MAX_PDFLUSH_THREADS specifies the
maximum number of pdflush instances, typically 8. The number of concurrent threads is held in the
nr_pdflush_threads global variable, but no distinction is made as to whether the threads are currently
active or sleeping. The current value is visible to userspace in /proc/sys/vm/nr_pdflush_threads.

The policy for when to create and destroy pdflush threads is simple. The kernel creates a new thread
if no idle thread has been available for 1 second. In contrast, a thread is destroyed if it has been idle for
more than 1 second. The upper and lower limits on the number of concurrent pdflush threads defined
in MIN_PDFLUSH_THREADS (2) and MAX_PDFLUSH_THREADS (8) are always obeyed.

Why is more than one thread required? Modern systems will be typically equipped with more than one
block device. If many dirty pages exist in the system, it is the kernel’s job to keep these devices as busy
as possible with writing back data. Queues of different block devices are independent of each other, so
data can be written in parallel. Data transfer rates are mainly limited by I/O bandwidth, not CPU power
on current hardware. The connection between pdflush threads and writeback queues is summarized
in Figure 17-2. The figure shows that a dynamically varying number of pdflush threads feeds the block
devices with data that must be synchronized with the underlying block devices. Notice that a block
device may have more than one queue that can transfer data, and that a pdflush thread may either serve
all queues or just a specific one.

Former kernel versions only employed a single flushing daemon (which was then called bdflush), but
this led to a performance problem: If one block device queue was congested because too many writeback
operations were pending, other queues for different devices could not be fed with new data anymore.
They remained idle, which can be a good thing on a summer vacation, but certainly not for block devices
if there is work to do. This problem is solved by the dynamical creation and destruction of pdflush kernel
threads, which allows for keeping many queues busy in parallel.

992

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 993

Chapter 17: Data Synchronization

Block
device

Pdflush threads Queues

Create &
destroy
threads

Order data integrity
or flushing writeback

Policy

1

3

2 Block
device

Block
device

Figure 17-2: Overview of the pdflush mechanism.

17.3 Starting a New Thread
The pdflush mechanism consists of two central components — a data structure to describe the work of
the thread and a strategy routine to help perform the work.

The data structure is defined as follows:

mm/pdflush.c
struct pdflush_work {

struct task_struct *who; /* The thread */
void (*fn)(unsigned long); /* A callback function */
unsigned long arg0; /* An argument to the callback */
struct list_head list; /* On pdflush_list, when idle */
unsigned long when_i_went_to_sleep;

};

As usual, the fact that the data structure is defined in a C header file instead of a header file indicates to
the kernel that the structure may be used only by internal code. Generic code uses other mechanisms to
access the kernel synchronization capabilities that are examined below:

❑ who is a pointer to the kernel thread task_struct instance used to represent the specific pdflush
instance in the process table.

❑ Several instances of pdflush_work can be grouped together in a doubly linked standard
list using the list list head. The kernel uses the global variable pdflush_list (defined in
mm/pdflush.c) to draw up a list of the work still to be done.

❑ The extraordinarily long when_i_went_to_sleep element stores the time in jiffies when
the thread last went to sleep. This value is used to remove superfluous pdflush threads
from the system (i.e., threads that are still in memory but have been idle for a longer
period).

❑ The fn function pointer (in conjunction with arg0) is the backbone of the structure. It holds the
function in which the actual work to be done is implemented. arg0 is passed as an argument
when the function is invoked.

By using different function pointers for fn, the kernel is able to incorporate a variety of synchro-
nization routines in the pdflush framework so that the right routine can be selected for the job
in hand.

993

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 994

Chapter 17: Data Synchronization

17.4 Thread Initialization
pdflush is used as a work procedure for kernel threads. Once generated, pdflush threads go to sleep and
wait until other parts of the kernel assign them tasks that are described in pdflush_work. Consequently,
the number of pdflush threads need not match the number of tasks to be performed. The generated
threads are on call and simply wait until the kernel decides to give them work to do.

The code flow diagram in Figure 17-3 shows how pdflush works.

Add to pdflush_list list

Create/destroy thread

my_work->fn

pdflush

__pdflush

set when_i_went_to_sleep

schedule

Figure 17-3: Code flow diagram for pdflush.

The start routine for generating a new pdflush thread is pdflush, but control flow is passed immediately
to __pdflush.1

In __pdflush, the worker function of the pdflush_work instance is set to NULL because the thread has not
been given a particular job to do. The global counter (nr_pdflush_threads) must also be incremented by
1 because a new pdflush thread has now been added to the system.

The thread then goes into an endless loop in which the following actions are performed:

❑ The pdflush_work instance of the thread is added to the global list pdflush_list (reminder: the
kernel is able to identify the thread by means of the who element).

❑ when_i_went_to_sleep is set to the current system time in jiffies to remember when the thread
started sleeping.

❑ schedule is invoked — this is the most important action. Because the status of the thread was
previously set to TASK_INTERRUPTIBLE, the thread now goes to sleep until woken by an external
event.

If the kernel requires a worker thread, it sets the worker function of a pdflush_work instance
in the global list and wakes the corresponding thread, which resumes work immediately after
schedule — but now with the fn worker function.

1All that happens in pdflush is that an instance of pdflush_work is generated; a pointer to it is passed to __pdflush_work
as a parameter. This is to stop the compiler from performing unfortunate optimizations on this variable. Additionally, the process
priority is set to 0, and the allowed CPUs are limited to the ones granted for the parent kthreadd.

994

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 995

Chapter 17: Data Synchronization

❑ The worker function is invoked with the stored argument so that it can set about its task.

❑ Upon termination of the worker function, the kernel checks whether there are too many or
too few worker threads. If no idle worker thread was available for longer than 1 second,2

start_one_pdflush_thread generates a new thread. If the sleepiest thread (which is at the end
of the pdflush_list list) has been asleep for more than 1 second, the current thread is removed
from the system by exiting the endless loop. In this case, the only clean-up action required
besides handling locking is to decrement nr_pdflush_threads — one pdflush thread less is
available.

17.5 Performing Actual Work
pdflush_operation assigns a worker function to a pdflush thread and wakes it up. If no thread is
available, −1 is returned; otherwise, a thread is removed from the list and woken. To simplify matters,
we have omitted the required locking in the code:

mm/pdflush.c
int pdflush_operation(void (*fn)(unsigned long), unsigned long arg0)
{

unsigned long flags;
int ret = 0;

if (list_empty(&pdflush_list)) {
ret = -1;

} else {
struct pdflush_work *pdf;

pdf = list_entry(pdflush_list.next, struct pdflush_work, list);
list_del_init(&pdf->list);
if (list_empty(&pdflush_list))

last_empty_jifs = jiffies;
pdf->fn = fn;
pdf->arg0 = arg0;
wake_up_process(pdf->who);

}
return ret;

}

pdflush_operation accepts two arguments that specify the worker function and its argument.

If the list pdflush_list is empty and thus no pdflush daemon can be awoken, an error code is returned.
If a sleeping pdflush instance is in the queue, it is removed and is no longer available to any other part
of the kernel. The values for the worker function and argument are assigned to the corresponding fields
of pdflush_work, and immediately thereafter the thread is woken with wake_up_process. Thanks to the
who element in pdflush_work, the kernel knows which process is meant.

To ensure that there are always enough worker threads, the kernel checks whether the pdflush_list
list is empty after removing the current instance, but before waking the thread. If it is, last_empty_jifs
is set to the current system time. When a thread terminates, the kernel uses this information to
check the period during which no surplus threads were available — it can then start a new thread as
described above.

2The time the pdflush_list list was last empty is noted in the global variable last_empty_jifs.

995

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 996

Chapter 17: Data Synchronization

17.6 Periodic Flushing
Now that you are familiar with the framework in which the pdflush mechanism operates, let’s move on
to describe the routines responsible for the actual synchronization of cache contents with the associated
backing store. Recall that two alternatives are available, one periodic and one enforced. First, let’s discuss
the periodic writeback mechanism.

In earlier kernel versions, a user mode application was used to perform periodic write operations. This
application was started at kernel initialization time and invoked a system call at regular intervals to
write back dirty pages. In the meantime, this not particularly elegant procedure was replaced with a
more modern alternative that does not take the long route via user mode and is therefore not only more
efficient but also more aesthetic.

What’s left of the earlier method is the name kupdate. The name appears as a component of some functions
and is often used to describe the flushing mechanism.

Two things are needed to periodically flush dirty cache data: the worker function that is executed with
the help of the pdflush mechanism, and code to regularly activate the mechanism.

17.7 Associated Data Structures
The wb_kupdate function in mm/page-writeback.c is responsible for the technical aspects of flushing. It
is based on the address space concept (discussed in Chapter 4) that establishes the relationship among
RAM, files or inodes, and the underlying block devices.

17.7.1 Page Status
wb_kupdate is based on two data structures that control how it functions. One of these structures is the
global array vm_stat, which enables the status of all system memory pages to be queried:

mm/vmstat.c
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];

The array holds a comprehensive collection of statistical information to describe the status of the memory
pages of each CPU; consequently, there is an instance of the structure for each CPU in the system. The
individual instances are grouped together in an array to simplify access.

The structure elements are simple, elementary numbers and therefore indicate only
how many pages have a specific status. Other means must be devised to find out
which pages these are. This issue is discussed below.

The following statistics are collected in vm_stat:

<mmzone.h>
enum zone_stat_item {

/* First 128 byte cacheline (assuming 64 bit words) */
NR_FREE_PAGES,
NR_INACTIVE,
NR_ACTIVE,
NR_ANON_PAGES, /* Mapped anonymous pages */

996

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 997

Chapter 17: Data Synchronization

NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
only modified from process context */

NR_FILE_PAGES,
NR_FILE_DIRTY,
NR_WRITEBACK,
/* Second 128 byte cacheline */
NR_SLAB_RECLAIMABLE,
NR_SLAB_UNRECLAIMABLE,
NR_PAGETABLE, /* used for pagetables */
NR_UNSTABLE_NFS, /* NFS unstable pages */
NR_BOUNCE,
NR_VMSCAN_WRITE,

#ifdef CONFIG_NUMA
/* Omitted: NUMA-specific statistics */

#endif
NR_VM_ZONE_STAT_ITEMS };

The meanings of the entries are easy to guess from their names. NR_FILE_DIRTY specifies the number
of file-based dirty pages, and NR_WRITEBACK indicates how many are currently being written back.
NR_PAGETABLE stores the number of pages used to hold the page tables, and NR_FILE_MAPPED specifies
how many pages are mapped by the page table mechanism (only the file-based pages are accounted for;
direct kernel mappings are not included). Finally, NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE
indicate how many pages are used for the slab cache described in Chapter 3 (despite their name, the con-
stants work also for the slub cache). The remaining entries consider special cases that are not interesting
for our purposes.

Note that the kernel not only keeps a global array to collect page statistics, but also provides the same
information resolved by memory zone:

<mmzone.h>
struct zone {
...

/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];

...
}

It is the job of memory management to keep the global and zone-specific arrays up-to-date. Of prime
interest at this point is how the information is used. To gain a status overview of the entire system, it
is necessary to combine the information in the array entries to obtain not only CPU-specific data but
the data of the overall system. The kernel provides the auxiliary function global_page_state, which
delivers the current value of a particular field of vm_stat:

<vmstat.h>
unsigned long global_page_state(enum zone_stat_item item)

Because the vm_stat arrays and their entries are not protected by a locking
mechanism, it may happen that the data change while global_page_state is
running. The result returned is not exact but an approximation. This is not a
problem because the figures are simply a general indication of how effectively work
is distributed. Minor differences between real data and returned data are acceptable.

997

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 998

Chapter 17: Data Synchronization

17.7.2 Writeback Control
A second data structure holds the various parameters that control writeback of dirty pages. Upper layers
use it to pass information about how writeback is to be performed to the lower layers (top to bottom
in Figure 17-1). However, the structure also allows for propagating status information in the reverse
direction (bottom to top):

<writeback.h>
/* A control structure which tells the writeback code what to do. */
struct writeback_control {

struct backing_dev_info *bdi; /* If !NULL, only write back this
queue */

enum writeback_sync_modes sync_mode;
unsigned long *older_than_this; /* If !NULL, only write back inodes

older than this */
long nr_to_write; /* Write this many pages, and decrement

this for each page written */
long pages_skipped; /* Pages which were not written */

loff_t range_start;
loff_t range_end;

unsigned nonblocking:1; /* Don’t get stuck on request queues */
unsigned encountered_congestion:1; /* An output: a queue is full */
unsigned for_kupdate:1; /* A kupdate writeback */
unsigned for_reclaim:1; /* Invoked from the page allocator */
unsigned for_writepages:1; /* This is a writepages() call */
unsigned range_cyclic:1; /* range_start is cyclic */

};

The meanings of the structure elements are as follows:

❑ bdi points to a structure of type backing_dev_info, which summarizes information on
the underlying storage medium. This structure is discussed briefly in Chapter 16. Two
things interest us here. First, the structure provides a variable to hold the status of the
writeback queue (this means, e.g., that congestion can be signaled if there are too many
write requests), and second, it allows RAM-based filesystems that do not have a (block
device) backing store to be labeled — writeback operations to systems of this kind make
no sense.

❑ sync_mode distinguishes between three different synchronization modes:

<writeback.h>
enum writeback_sync_modes {

WB_SYNC_NONE, /* Don’t wait on anything */
WB_SYNC_ALL, /* Wait on every mapping */
WB_SYNC_HOLD, /* Hold the inode on sb_dirty for sys_sync() */

};

To synchronize data, the kernel needs to pass a corresponding write request to the underlying
block device. Requests to block devices are asynchronous by nature. If the kernel wants to ensure
that the data have safely reached the device, it needs to wait for completion after the request has
been issued. This behavior is mandated with WB_SYNC_ALL. Waiting for writeback to complete is

998

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 999

Chapter 17: Data Synchronization

performed in __sync_single_inode discussed below; recall from Figure 17-1 that it sits at the
bottom of the mechanism, where it is responsible to delegate synchronization of a single inode to
the filesystem-specific methods. All functions that wait on inodes because WB_SYNC_ALL is set are
marked in Figure 17-1.

Notice that writeback with WB_SYNC_ALL set is referred to as data integrity writeback. If a sys-
tem crash happens immediately after writeback in this mode has been finished, no data are lost
because everything is synchronized with the underlying block devices.

If WB_SYNC_NONE is used, the kernel will send the request, but continue with the remaining syn-
chronization work immediately afterward. This mode is also referred to as flushing writeback.

WB_SYNC_HOLD is a special form used for the sync system call that works similarly to
WB_SYNC_NONE. The exact differences are subtle and are discussed in Section 17.15.

❑ When the kernel performs writeback, it must decide which dirty cache data need to be
synchronized with the backing store. It uses the older_than_this and nr_to_write elements
for this purpose. Data are written back if they have been dirty for longer than specified by
older_than_this.

older_than_this is defined as a pointer type, which is unusual for a single long
value. Its numeric value, which can be obtained by appropriate de-referencing, is of
interest. If the pointer is NULL, then age checking is not performed, and all objects
are synchronized irrespective of when they became dirty. Setting nr_to_write to 0
likewise disables any upper limit on the number of pages that are supposed to be
written back.

❑ nr_to_write can restrict the maximal number of pages that should be written back. The upper
bound for this is given by MAX_WRITEBACK_PAGES, which is usually set to 1,024.

❑ If pages were selected to be written back, functions from lower layers perform the required oper-
ations. However, they can fail for various reasons, for instance, because the page is locked from
some other part of the kernel. The number of skipped pages can be reported to higher layers via
the counter pages_skipped.

❑ The nonblocking flag specifies whether writeback queues block or not in the event of congestion
(more pending write operations than can be effectively satisfied). If they are blocked, the kernel
waits until the queue is free. If not, it relinquishes control. The write operation is then resumed
later.

❑ encountered_congestion is also a flag to signal to higher layers that congestion has occurred
during data writeback. It is a Boolean variable and accepts the values 1 or 0.

❑ for_kupdated is set to 1 if the write request was issued by the periodic mechanism. Otherwise,
its value is 0. for_reclaim and for_writepages are used in a similar manner: They are set if
the writeback operation was initiated from memory reclaim from the do_writepages function,
respectively.

❑ If range_cyclic is set to 0, the writeback mechanism is restricted to operate on the range given
by range_start and range_end. The limits refer to the mapping for which the writeback was
initiated.

If range_cyclic is set to 1, the kernel may iterate many times over the pages associated with a
mapping, thus the name of the element.

999

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1000

Chapter 17: Data Synchronization

17.7.3 Adjustable Parameters
The kernel supports the fine-tuning of synchronization by means of parameters. These can be set by
the administrator to help the kernel assess system usage and loading. The sysctl mechanism described
in Chapter 10 is used for this purpose, which means that the proc filesystem is the natural interface to
manipulate the parameters — they are located in /proc/sys/vm/. Four parameters can be set, all of which
are defined in mm/page-writeback.c3:

❑ dirty_background_ratio specifies the percentage of dirty pages at which pdflush starts peri-
odic flushing in the background. The default value is 10 so that the update mechanism kicks in
when more than 10 percent of the pages have changed as compared to the backing store.

❑ vm_dirty_ratio (the corresponding sysctl is dirty_ratio) specifies the percentage of dirty
pages (with respect to non-HIGHMEM memory) at which data flushing will be started. The default
value is 40.

Why is high memory excluded from the percentage? Older kernel versions before 2.6.20 did
not, in fact, distinguish between high and normal memory. However, if the ratio between high
memory and low memory is too large (i.e., if main memory is much more than 4 GiB on 32-bit
processors), the default settings for dirty_background_ratio and dirty_ratio were required
to be scaled back slightly when the writeback mechanism was initialized.

Retaining the default values would have necessitated an excessively large number of
buffer_head instances, and these would have had to be held in valuable low memory. By
excluding high memory from the calculation, the kernel does not deal with scaling anymore,
which simplifies matters somewhat.

❑ The interval between two invocations of the periodic flushing routine is defined in
dirty_writeback_interval (the corresponding sysctl is dirty_writeback_centisecs). The
interval is specified in hundredths of a second (also called centiseconds in the sources). The
default is 500, which equates to an interval of 5 seconds between invocations.

On systems where a very large number of write operations are performed, lowering this value
can have a positive effect, but increasing the value on systems with very few write operations
delivers only small performance gains.

❑ The maximum period during which a page may remain dirty is specified in dirty_expire_
interval (the sysctl is dirty_expire_centisecs). Again, the period is expressed is hun-
dredths of a second. The default value is 3,000, which means that a page may remain dirty for a
maximum of 30 seconds before it is written back at the next opportunity.

17.8 Central Control
The key periodic flushing component is the wb_kupdate procedure defined in mm/page-writeback.c. It
is responsible for dispatching lower-level routines to find the dirty pages in memory and synchronize
them with the underlying block device. As usual, our description is based on a code flow diagram as
shown in Figure 17-4.

The superblocks are synchronized right at the start of the function because this is essential to ensure
filesystem integrity. Incorrect superblock data result in consistency errors throughout the filesystem

3The name of the sysctls differs with the variables names for historical reasons.

1000

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1001

Chapter 17: Data Synchronization

and, in most cases, lead to loss of at least part of the data. This is why sync_supers, whose purpose is
described in more detail in Section 17.9, is invoked first.

wb_kupdate

sync_supers

global_page_state

writeback_inodes

Congested?

Reset writeback timer

congestion_wait

Figure 17-4: Code flow diagram of wb_kupdate.

Thereafter, ‘‘normal‘‘ dirty data are written back from the page cache. The kernel invokes the
global_page_state function to get a picture of the current status of all system pages in a page_state
instance. The key item of information is the number of dirty pages held in the NR_FILE_DIRTY element of
the vm_stats array.

This function then goes into a loop whose code is repeatedly executed until there are no dirty pages
in the system. After a writeback_control instance has been started to initiate non-blocking writeback
of MAX_WRITEBACK_PAGES pages (normally 1,024), writeback_inodes writes back the data that can be
reached via the inodes. This is quite a lengthy function so it is discussed separately in greater detail in
Section 17.10, but a couple of salient points are listed below:

❑ Not all dirty pages are written back — in fact, the number is restricted to MAX_WRITEBACK_PAGES.
Because inodes are locked during writeback, smaller groups of dirty pages are pro-
cessed to prevent overly long blocking of an inode that adversely affects system
performance.

❑ The number of pages actually written back is transferred between wb_kupdate and
writeback_inodes by subtracting the number of pages written back — which are therefore no
longer dirty — from the nr_to_write element of the writeback_control instance after each
writeback_inodes call.

When writeback_inodes terminates, the kernel repeats the loop until there are no more dirty pages in
the system.

The congestion_wait function is invoked if queue congestion occurs (the kernel detects this by means of
the set encountered_congestion element of the writeback instance). The function waits until congestion
has eased and then continues the loop as normal. Section 17.10 takes a closer look at how the kernel
defines congestion.

Once the loop has finished, wb_kupdate makes sure that the kernel invokes it again after the interval
defined by dirty_writeback_interval in order to guarantee periodic background flushing. Low-
resolution kernel timers as discussed in Chapter 15 are used for this purpose — in this particular case,
the timer is implemented by means of the global timer list wb_timer (defined in mm/page_writeback.c).

1001

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1002

Chapter 17: Data Synchronization

Usually, the interval between two calls of the wb_kupdate function is the value specified in
dirty_writeback_centisecs. However, a special situation arises if wb_kupdate takes longer than the
time specified in dirty_writeback_centisecs. In this case, the time of the next wb_kupdate call is
postponed until 1 second after the end of the current wb_kupdate call. This also differs from the normal
situation because the interval is not calculated as the time between the start of two successive calls but as
the time between the end of one call and the start of the next.

The ball is set rolling when the synchronization layer is initialized in page_writeback_init, where the
kernel first starts the timer. Initial values for the wb_timer variable — primarily the wb_timer_fn callback
function that is invoked when the timer expires — are set statically when the variable is declared in
mm/page-writeback.c. Logically, the timer expiry time changes over time and is reset at the end of each
wb_kupdate call, as just described.

The structure of the periodically invoked wb_timer_fn function is very simple as it consists only of a
pdflush_operation call by wb_kupdate. At this point, it is not necessary to reinitialize the timer because
this is done in wb_kupdate. The timer must be reset in one situation only — if no pdflush thread is
available, the next wb_timer_fn call is postponed by 1 second by the function itself. This ensures that
wb_kupdate is invoked regularly to synchronize cache data with block device data, even if the pdflush
subsystem is heavily loaded.

17.9 Superblock Synchronization
Superblock data are synchronized by a dedicated function called sync_supers to differentiate it from
normal synchronization operations. This and other functions relevant to superblocks are defined in
fs/super.c. Its code flow diagram is shown in Figure 17-5.

Superblock dirty?

Ite
ra

te
 o

ve
r a

ll
su

pe
rb

lo
ck

s write_sb->s_op->write_super

sync_supers

write_super

Figure 17-5: Code flow diagram for sync_supers.

Recall from Chapter 8 that the kernel provides the global list super_blocks to hold the super_block
instances of all mounted filesystems. As the code flow diagram shows, the initial task of sync_supers
is to iterate over all superblocks and to check whether they are dirty using the s_dirt element of
the superblock structure. If they are, the superblock data contents are written to the data medium by
write_super.

The write_super method included in the superblock-specific super_operations structure does the
actual writing. If the pointer is not set, superblock synchronization is not needed for the filesystem (this
is the case with virtual and RAM-based filesystems). For instance, the proc filesystem uses a null pointer.
Of course, normal filesystems on block devices, such as Ext3 or Reiserfs, provide appropriate methods
(e.g., ext3_write_super) to communicate with the block layer and write back relevant data.

1002

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1003

Chapter 17: Data Synchronization

17.10 Inode Synchronization
writeback_inodes writes back installed mappings by walking through the system inodes (for the sake
of simplicity, this is called inode writeback, but in fact not the inode but the dirty data associated with it
are written back). The function shoulders the main burden of synchronization because most system data
are provided in the form of address space mappings that make use of inodes. Figure 17-6 illustrates the
code flow diagram for writeback_inodes. The function is slightly more complicated in reality because
some more details and corner cases need to be handled properly. We consider a simplified variant that
nevertheless contains everything that is essential when inodes are written back.

Writeback limit reached?

Failed to write pages? Move to s_dirtyIte
ra

te
 o

ve
r

s
b
-
>
s
_
i
o

Ite
ra

te
 o

ve
r a

ll
su

pe
rb

lo
ck

s

Fill I/O list

Perform checks

Writeback limit reached?

writeback_inodes

sync_sb_inodes

__writeback_single_inode

break

break

Figure 17-6: Code flow diagram for writeback_inodes.

The function uses the data structures discussed in Chapter 8 to establish a link among superblocks,
inodes, and associated data.

17.10.1 Walking the Superblocks
When mappings are written back inode-by-inode, the initial path taken is via all system superblock
instances that represent the mounted filesystems. sync_sb_inodes is invoked for each instance in order
to write back the superblock inode data, as shown in the code flow diagram in Figure 17-6. Walking the
superblock list can be terminated by two different conditions:

1. All superblock instances have been scanned sequentially. The kernel has reached the end of
the list, and its work is therefore done.

2. The maximum number of writeback pages specified by the writeback_control instance
has been reached. Since writeback requires obtaining various important locks, the system
should not be disturbed for too long to make the inodes available for other parts of the
kernel again.

17.10.2 Examining Superblock Inodes
Once it has been established with the help of the superblock structure that the filesystem contains inodes
with dirty data, the kernel hands over to sync_sb_inodes, which synchronizes the dirty superblock
inodes. The code flow diagram is in Figure 17-6.

1003

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1004

Chapter 17: Data Synchronization

Great effort would be needed if the kernel were to run through the complete list of filesystem inodes each
time in order to differentiate between clean and dirty inodes. The kernel therefore implements a far less
costly option by placing all dirty inodes on the superblock-specific list super_block->s_dirty. Notice
that inodes on the list are reverse time-ordered. The later an inode was dirtied, the closer it is to the tail
of the list.

Two more list heads are additionally required to perform the synchronization of these inodes. The rele-
vant portion of the super_block structure is as follows:

<fs.h>
struct super_block {
...

struct list_head s_dirty; /* dirty inodes */
struct list_head s_io; /* parked for writeback */
struct list_head s_more_io; /* parked for more writeback */

...
}

All dirty inodes of the superblock are held in the s_dirty list — and are practically served up on a
platter to the synchronization mechanism. This list is updated automatically by the relevant code of the
VFS layer. s_io keeps all inodes that are currently under consideration of the synchronization code.

s_more_io contains inodes that have been selected for synchronization and were placed on s_io, but
could not be processed in one go. It would seem to be the simplest solution that the kernel puts such
inodes back to s_io, but this could starve newly dirtied inodes or lead to locking problems, so a second
list is introduced. All functions that place inodes on s_io or s_more_io are indicated in Figure 17-1.

The first task of sync_sb_inodes is to fill the s_io list. Two cases must be distinguished:

1. If the synchronization request did not originate from the periodic mechanism, then all inodes
on the dirty list are put onto the s_io list. If inodes are present on the more_io list, they are
placed at the end of the i_io list. The auxiliary function queue_io is provided to perform
both list operations. The behavior ensures that inodes from previous synchronization passes
still get consideration, but more recently dirtied inodes are preferred. This way, large dirtied
files cannot starve smaller files that were dirtied afterward.

2. If the periodic mechanism wb_kupdate has triggered synchronization, the s_io list is only
replenished with additional dirty inodes if it is completely empty. Otherwise, the kernel
waits until all members of s_io have been written back. There is no particular pressure for
the periodic mechanism to write back as many inodes as possible in the shortest amount of
time. Instead, it is more important to slowly but surely write out a constant stream of inodes.

If the writeback control parameter specifies an older_than_this criterion, only inodes marked dirty
within a specified minimum period into the past are included in the synchronization process. If the time
stored in this element is before the time held in the dirtied_when element of the mapping, the requisite
condition is not satisfied and the kernel does not move the inode from the dirty to the s_io list.

After the members of the s_io list have been selected, the kernel starts to iterate over the individual
elements.

1004

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1005

Chapter 17: Data Synchronization

Some checks ascertain that the inode is suitable for synchronization before actual writeback is performed:

❑ Purely memory-based filesystems like RAM disks or pseudo-filesystems or purely virtual filesys-
tems, respectively, do not require synchronization with an underlying block device. This is
signaled by setting BDI_CAP_NO_WRITEBACK in the backing_dev_info instance that belongs to
the filesystem’s mapping. If an inode of this type is encountered, processing can be aborted
immediately.

However, there is one filesystem whose metadata are purely memory-based and without phys-
ical backing store, but that cannot be skipped: the block device pseudo-filesystem bdev. Recall
from Chapter 10 that bdev is used to handle access to raw block devices or partitions thereof.
An inode is provided for each partition, and access to the raw device is handled via this inode.
While the inode metadata are important in memory, it does not make sense to store them any-
where permanently since they are just used to implement a uniform abstraction mechanism.
This, however, does not imply that the contents of the block device do not require synchro-
nization: Quite the opposite is true. Access to the raw device is as usual buffered by the page
cache, and any changes are reflected in the radix tree data structures. When modifications are
made on the contents of a block device, they go through the page cache. The pages must there-
fore be synchronized like all other pages in the page cache with the underlying hardware from
time to time.

The block device pseudo-filesystem bdev thus does not set BDI_CAP_NO_WRITEBACK. However,
no write_inode method is contained in the associated super_operations, so metadata syn-
chronization is not performed. Data synchronization, on the other hand, runs as for any other
filesystem.

❑ If the synchronization queue is congested (the BDI_write_congested bit is set in the sta-
tus field of the backing_dev_info instance) and non-blocking writeback was selected in
writeback_control, the congestion needs to be reported to the higher layers. This is done by
setting the encountered_congestion field in the writeback_control instance to 1.

If the current inode belongs to a block device, then the auxiliary function requeue_io is used to
move the inode from s_io to more_io. It is possible that different inodes of a block device are
backed by different queues, for instance, if multiple physical devices are combined into a single
logical device. The kernel therefore continues to process the other inodes on the s_io list in the
hope that they belong to different queues that are not congested.

If the current inode, however, stems from a regular filesystem, it can be assumed that
all other inodes are backed by the same queue. Since this queue is already congested, it
does not make sense to synchronize the other inodes, so the loop iteration is aborted. The
unprocessed inodes remain in the s_io list and are dealt with the next time sync_sb_inodes
is called.

❑ pdflush can be instructed via writeback_control to focus on a single queue. If a regular filesys-
tem inode that uses a different queue is encountered, processing can be aborted. If the inode
represents a block device, processing skips forward to the next inode on the s_io list for the
same reason as in the write congestion case.

❑ The current system time in jiffies is held in a local variable at the start of sync_sb_inodes. The
kernel now checks whether the time when the inode just processed was marked as dirty is after
the start time of sync_sb_inodes. If so, synchronization is aborted in its entirety. The unpro-
cessed inodes are again left on s_io.

1005

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1006

Chapter 17: Data Synchronization

❑ A further situation leads to termination of sync_sb_inodes. If a pdflush thread is already in
the process of writing back the processed queue (this is indicated by the BDI_pdflush bit of the
status element of backing_dev_info), the current thread lets the running pdflush thread pro-
cess the queue on its own.

Inode writeback may not be initiated until the kernel has ensured that the above conditions
are satisfied. As the code flow diagram in Figure 17-6 shows, the inode is written back using
__writeback_single_inode, examined below. It can happen that writing back pages does not succeed
for all pages that should be written back, for instance, because a page might be locked from another
part of the kernel, or connections for network filesystems might be unavailable. In this case, the inode is
moved back to the s_dirty list again, possibly updating the dirtied_when field unless the inode has
been re-dirtied while it was written out. The kernel will automatically retry to synchronize the data in
one of the next synchronization runs. Additionally, the kernel needs to make sure that the inverse time
ordering of all inodes on s_dirty is preserved. The auxiliary function redirty_tail takes care of this.

The process is repeated until one of the two conditions below is fulfilled:

1. All dirty inodes of the superblock have been written back.

2. The maximum number of page synchronizations (specified in nr_to_write) has been
reached. This is necessary to support the unit-by-unit synchronization described above.

The remaining inodes in s_io are processed the next time sync_sb_inodes is invoked.

17.10.3 Writing Back Single Inodes
As noted above, the kernel delegates synchronization of the data associated with an inode to
__writeback_single_inode. The corresponding code flow diagram is shown in Figure 17-7.

Inode locked?

Wait on inode

Move inode to s_more_io

Yes

No

__sync_single_inode

__writeback_single_inode

Data integrity writeback (WBC_SYNC_ALL set)?

do_writepages

return

Figure 17-7: Code flow diagram for __writeback_single_inode.

The function is essentially a dispatcher for __sync_single_inode, but is charged with the important
task of distinguishing whether a data integrity (WB_SYNC_ALL) or regular writeback is performed. This
influences how locked inodes are handled.

1006

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1007

Chapter 17: Data Synchronization

A set I_LOCK bit in the state element of the inode data structure indicates that the element is already
being synchronized by another part of the kernel — and therefore cannot be modified at the moment in
the current path. If a regular writeback is active, this is not much of a problem: The kernel can simply
skip the inode and place it on the s_more_io list, which guarantees that it will be reconsidered some time
later. Before returning to the caller, do_writepages is used to write out some of the data associated with
the inode since this can do no harm.4

The situation is more involved if a data integrity writeback is performed though. In this case, the kernel
does not skip the inode but sets up a wait queue (see Chapter 14) to wait until the inode is available again,
that is, until the I_SYNC bit is cleared. Notice that it is not sufficient to know that another part of the kernel
is already synchronizing the inode. This could be a regular writeback that does not guarantee that the
dirty data are actually written to disk. This is not what WB_SYNC_ALL is about: When the synchronization
pass completes, the kernel has to guarantee that all data have been synchronized, and waiting on the
inode is therefore essential.

Once the inode is available, the job is passed on to __sync_single_inode. This extensive function writes
back the data associated with the inode and also the inode metadata. Figure 17-8 shows the code flow
diagram.

Lock inode

a_ops->do_writepages or generic_write_pages

WB_SYNC_ALL set?

Unlock inode

Place inode on apt list

wake_up_inode

__sync_single_inode

do_writepages

write_inode s_op->write_inode

filemap_fdatawait

inode_sync_complete

Figure 17-8: Code flow diagram for __sync_single_inode.

1. First of all, the inode must be locked by setting the I_LOCK bit in the inode structure status
field. This prevents other kernel threads from processing the inode.

2. Synchronization of an inode consists of two parts: Synchronizing the data and synchronizing
the metadata.

4Actually, the call also does not have any benefit and will be removed in kernel 2.6.25, which was still under development when this
book was written. Since do_writepages is also called in __sync_single_inodes, the call is superfluous.

1007

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1008

Chapter 17: Data Synchronization

The actual write operation for the data is initiated in do_writepages. This function invokes
the writepages method of the corresponding address_space_operations structure if the
method exists and is not assigned a null pointer; for example, the ext3_writepages method
is invoked for the Ext3 filesystem.

If no method exists, the kernel invokes the generic_writepages function, which finds all
dirty pages of the mapping and sequentially writes them back using writepage from the
address space operations (note that in contrast to writepages, there is no s at the end of the
name) or mpage_writepage if the former does not exist.

3. write_inode writes back the metadata needed to manage the inode itself. The function is not
complicated; it simply checks whether the superblock operations associated with the inode
instance include the write_inode method (the block device filesystem does not provide one,
e.g.). If it exists, it is invoked to find the relevant data and write it back via the block layer.

Filesystems often choose to perform no actual writes to a block device, but just
submit a dirty buffer to the generic code. This needs to be dealt with in the sync
system call discussed below.

Note that calling write_inode is skipped if I_DIRTY_SYNC of I_DIRTY_DATASYNC is set
because this signals that only data, but not the metadata, require to be written back.

4. If the current synchronization aims at data integrity, that is, if WB_SYNC_ALL is set, then
filemap_fdatawait is used to wait until all pending write operations (which are usually
processed asynchronously) are performed. The function waits for write operations to
complete on a page-by-page basis. Pages currently written to their backing store have the
PG_writeback status bit set, which is automatically removed by the responsible block layer
code when the operation is complete. Therefore, the synchronization code just needs to wait
until the bit goes away.

The above steps complete inode synchronization, at least in the view of the filesystem (naturally, the block
layer still has a few things to do if filemap_fdatawait has not been called to await the results before), but
the layer structure of the kernel means that this is of no further relevance to us). The inode now needs to
be put back into the correct list, and the kernel must update the inode status if it has changed as a result
of synchronization. There are four different lists in which the inode can be inserted:

1. If the inode data have become dirty again in the meantime (i.e., if the I_DIRTY bit is set in the
status element), the inode is added to the s_dirty list of the superblock.

It is also placed in this list if not all dirty data of the mapping were written back — because,
for example, the number of pages specified by writeback control was too small to allow all
dirty pages to be processed in one go. In this case, the inode status is set to I_DIRTY_PAGES
so that synchronization of the metadata is skipped the next time __sync_single_inode is
invoked — these data have just been written back and are still intact.

2. If not all data of the mapping were written back, but pdflush was called from wb_kupdate,
the inode is placed on s_more_io and will be dealt with in later synchronization runs.

If not all data were written back and pdflush was not called from wb_kupdate, then the
inode is placed back on the dirty list. This avoids that one large dirty file that cannot be writ-
ten properly suspends other pending files for a long time or indefinitely. redirty_tail is
responsible to keep the inverse time ordering on s_dirty intact.

1008

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1009

Chapter 17: Data Synchronization

3. If the inode access counter (i_count) has a value greater than 1, the kernel inserts the inode
in the global inode_in_use list because it is still in use.

4. When the access counter drops to 0, the inode can be placed in the global list of unused inode
instances (inode_unused).

The i_list element of the inode is used as a list element in all the above situations.

The final step is to invoke wake_up_inode via the dispatcher inode_sync_complete. This function wakes
processes that were placed on the queue of inodes waiting to be written back but whose I_LOCK bit is
set. Because the inode is no longer needed by the current thread (and is therefore no longer locked),
the scheduler selects one of these processes to handle the inode. If the data have already been fully
synchronized, this process has nothing else to do. If dirty pages still need to be synchronized, the process
goes ahead and synchronizes them.

17.11 Congestion
I have used the term congestion a few times without precisely defining what it means. On an intuitive
level it is not difficult to understand — when a kernel block device queue is overloaded with read or
write operations, it doesn’t make sense to add further requests for communication with the block device.
It is best to wait until a certain number of requests have been processed and the queue is shorter before
submitting new read or write requests.

Below I examine how the kernel implements this definition on a technical level.

17.11.1 Data Structures
A double wait queue is needed to implement the congestion method. The definition is as follows:

mm/backing-dev.c
static wait_queue_head_t congestion_wqh[2] = {

__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])

};

The kernel provides two queues, one for input and one for output. Two pre-processor constants (READ
and WRITE) are defined in <fs.h> to allow access to the array elements and to clearly differentiate between
the two queues without the direct use of numbers.

The kernel makes a distinction between the directions in which data are transmitted
to the queue — in other words, between input and output. The data structure does
not differentiate between the various devices in the system. As you will see shortly,
the data structures of the block layer contain queue-specific information on possible
congestion.

Notice that the queues are not supposed to be manipulated directly with standard wait queue methods.
Instead, a number of auxiliary functions declared in <backing-dev.h> are provided by the kernel; they
are covered in the following discussion.

1009

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1010

Chapter 17: Data Synchronization

17.11.2 Thresholds
When does the kernel regard a queue as being congested and when does it give the ‘‘all clear‘‘? The
answer is surprisingly easy — a simple check is made to ascertain whether certain minimum and maxi-
mum limit values (or thresholds) for requests have been exceeded in a specific queue.

The kernel does not use fixed constants to do this. Instead, it defines the limit values in relation to the
system’s main memory because the number of block requests is scaled accordingly.

Recall from Chapter 6 that each block device is equipped with a request queue defined by struct
request. The fields that are interesting for our purposes are reproduced below:

<blkdev.h>
struct request_queue
{
...

unsigned long nr_requests; /* Max # of requests */
unsigned int nr_congestion_on;
unsigned int nr_congestion_off;
unsigned int nr_batching;

...
}

The nr_requests element is used to define the number of request structures per queue. Typ-
ically, this number is set to BLKDEV_MAX_RQ, which equates to 128 but can be changed using
/sys/block/<device>/queue/nr_requests. A lower bound on the number of requests is given by
BLKDEV_MIN_RQ, which equates to 4.

❑ nr_congestion_on denotes the limit value at which a queue is regarded as congested. There
must be fewer free request structures than specified by the value for this state to occur.

❑ nr_congestion_off (note the ‘‘off‘‘) also specifies a limit value at which a queue is regarded
as no longer congested. When there are more free requests than indicated by this number, the
kernel regards the queue as free.

The functions queue_congestion_on_threshold and queue_congestion_off_threshold are provided
to read the current threshold values. Although the functions are trivial, they must be used instead of
reading the values directly. Should the implementation change in future kernel versions, the user will
nevertheless be able to enjoy the same interface and will not require modifications.

The congestion thresholds are computed by blk_congestion_threshold:

block/ll_rw_blk.c
static void blk_queue_congestion_threshold(struct request_queue *q)

Figure 17-9 displays the congestion thresholds that are computed for a request queue with a given
length. The values for congestion_on and congestion_off differ slightly. This minor difference
(known as hysteresis in the kernel sources, a term borrowed from physics) prevents queues from
switching constantly between both states when the number of requests is close to the congestion
threshold.

1010

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1011

Chapter 17: Data Synchronization

 50

 100

 150

 200

 250

 60 80 100 120 140 160 180 200 220 240 260
nr_requests

congestion_on
congestion_off

nr_requests

Figure 17-9: Thresholds for the number of requests that turn congestion on and off,
respectively. The thresholds are obviously always smaller than the number of requests
that can maximally be queued.

17.11.3 Setting and Clearing the Congested State
The kernel provides two standard functions (declared in <blkdev.h>) to set queues to the congested
state and to clear this state: blk_set_queue_congested and blk_clear_queue_congested, respectively.
Both obtain the backing_dev_info for the queue under consideration and hand over the real work to
set_bdi_congested or clear_bdi_congested, respectively, in mm/backing-dev.c.

Two data structures are manipulated to change the state. First, the request queue of the block device
must be modified (you are familiar with the associated request_queue data structure from Chapter 6),
and second, note must be taken of the global congestion array (congestion_wqh).

blk_set_queue_congested is used to mark a queue as congested. Remarkably, it is invoked at only a
single point in the kernel — by get_request.5 As discussed in Chapter 6, the purpose of get_request
is to allocate a request instance for a queue or to fetch one from the appropriate cache. This is the
ideal place to check for congestion. If the number of request instances falls below the threshold,
set_queue_congested informs the remaining code that congestion has occurred.

5This is not entirely precise: It is also called from queue_request_store. But since this code path is only activated if the system
administrator changes the nr_requests field of a request queue via sysfs, I do not bother to discuss this possibility any further.

1011

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1012

Chapter 17: Data Synchronization

The implementation of set_bdi_congested is very simple. Only a single bit need be set in the request
queue — albeit a different bit depending on the direction of congestion:

block/backing-dev.c
void set_bdi_congested(struct backing_dev_info *bdi, int rw)
{

enum bdi_state bit;

bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
set_bit(bit, &bdi->state);

}

However, the kernel is also responsible for adding processes waiting on a congested queue to the
congestion_wqh wait queue. I describe how this is done shortly.

The function used to clear congestion on a queue is clear_queue_congested and is not much more
complicated. Again, it is invoked at just one point in the kernel6 by _freed_request, which is in the code
path originating from blk_put_request that returns request instances no longer needed to the kernel
cache. At this point, it is easy to check whether the number of free requests has exceeded the above
threshold for clearing congestion.

Once the congested bit for the desired direction has been deleted, a process waiting on the
congestion_wqh queue to perform I/O operations is woken by the wake_up function described in
Chapter 14. Recall that clear_queue_congested is just a front end for clear_bdi_congested:

block/ll_rw_blk.c
void clear_bdi_congested(struct backing_dev_info *bdi, int rw)
{

enum bdi_state bit;
wait_queue_head_t *wqh = &congestion_wqh[rw];

bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
clear_bit(bit, &bdi->state);

if (waitqueue_active(wqh))
wake_up(wqh);

}

17.11.4 Waiting on Congested Queues
Of course, it’s no use marking queues as congested and clearing them when the situation improves — the
kernel must also be able to wait until a queue is free again. You have already seen that a wait queue is
employed for this purpose, so it remains to discuss how processes are added to the wait queue.

The kernel uses the congestion_wait function for this purpose. It adds a process to the congestion_wqh
wait queue when congestion occurs. The function requires two parameters — the direction of data flow
(read or write operation) and a time out after which the process is always woken, even if the queue is still
congested. The time out is used to prevent excessively long periods of inactivity — after all, a queue may
be congested for quite some time.

6This again ignores the possibility that the system administrator fiddles with nr_requests of the queue.

1012

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1013

Chapter 17: Data Synchronization

mm/backing-dev.c
long congestion_wait(int rw, long timeout)
{

long ret;
DEFINE_WAIT(wait);
wait_queue_head_t *wqh = &congestion_wqh[rw];

prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
ret = io_schedule_timeout(timeout);
finish_wait(wqh, &wait);
return ret;

}

congestion_wait invokes some functions once the requisite data structures have been initialized:

❑ prepare_to_wait is used in conjunction with a time out to implement waiting for clearance of
congested queues. It puts the process in the TASK_UNINTERRUPTIBLE state and places it on the
appropriate wait queue.

❑ io_schedule_timeout implements the desired time out using the resources described in
Chapter 15. Control is passed to other processes until the time out expires.

Upon expiry of the time out (1 second is used for background synchronization), finish_wait is
invoked to remove the process from the wait queue so that work can continue.

17.12 Forced Writeback
The above mechanisms for writing back pages as a background activity function very well when system
load is not too high. The kernel is able to ensure that the number of dirty pages never gets out of hand and
that there is an adequate exchange of data between RAM and the underlying block devices. However, this
situation changes when the cached data of one or two processes quickly become dirty, thus necessitating
more synchronization operations than can be handled by normal methods.

When the kernel receives an urgent request for memory and cannot satisfy it because of the very large
number of dirty pages, it must try to transfer the page contents to the block device as quickly as possible
to free RAM for other purposes. The same methods are used as for flushing data in the background,
but in this case, synchronization is not initiated by periodic processes but is triggered explicitly by the
kernel — in other words, writeback is ‘‘forced.’’

The request for immediate synchronization may originate not only from the kernel but also from
userspace. The familiar sync command (and the corresponding sync system call) instructs the kernel to
flush all dirty data to the block devices. Other system calls also provided by the kernel for this purpose
are described in Section 17.14.

Synchronization is based on wakeup_pdflush, which is implemented in mm/page-writeback.c. The
number of pages to be flushed is passed as a parameter:

mm/page-writeback.c
int wakeup_pdflush(long nr_pages)
{

if (nr_pages == 0)

1013

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1014

Chapter 17: Data Synchronization

nr_pages = global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_UNSTABLE_NFS);

return pdflush_operation(background_writeout, nr_pages);
}

If the number of writeback pages is not explicitly restricted by passing the parameter 0, the kernel
invokes global_page_state to determine the system-wide number of (file-based) dirty pages in the
system. A pdflush thread is then activated but this time using the background_writeout function
and not wb_kupdate. Although the name of the former includes the word background, it is not used
to perform background synchronization in the intuitive sense; this is done by wb_kupdate. However,
background_writeout does not explicitly wait on pages to be written to the backing store, but just ini-
tiates a corresponding request, so the background term is justified. When, in contrast, data integrity
synchronization is performed (as is the case when the requests originate from a system call), the ker-
nel does explicitly wait until an issued write request is completed. This then definitely cannot be called
background synchronization anymore.

As already stated, as far as the technical aspects of synchronization are concerned, it is basically irrelevant
whether synchronization is initiated from the periodic mechanism or is requested explicitly. There are
only the following minor differences in detail between background_writepages and wb_kupdate:

❑ background_writepages does not require pages to have been dirty for any minimum period
of time before they can be written back. The technical implications are that the value of the
older_than_this element of writeback control is set to NULL.

❑ The superblocks are not synchronized in background_writepages because the corresponding
sync_supers call is missing.

❑ No timer is set to periodically restart the writeback mechanism.

More important are the places in the kernel at which flushing is initiated. Interestingly, wakeup_pdflush
is invoked with a non-zero argument at only two places in the kernel sources:

1. In free_more_memory, which is always used when there is insufficient memory to generate
page caches. In this case, the argument used is the fixed value of 1,024.

2. In try_to_free_pages, the page reclaim discussed in Chapter 18, which employs the
wakeup_pdflush method to write back dirty data in pages regarded as superfluous when
the caches were scanned. (When laptop mode is in use, try_to_free_pages also calls
wakeup_pdflush with a zero argument; see Section 17.13.)

All other calls write back all dirty pages; that is, there is no limit on the maximum number of pages.

Understandably, writeback of all dirty pages is a very costly and time-consuming action and
should therefore be used only with extreme care and at very few points in the kernel as indicated
below:

❑ When synchronization of dirty data was requested explicitly by the sync system call.

❑ When emergency synchronization or an emergency remount was requested using the magic
system request key.

❑ balance_dirty_pages also instructs background_writeout to write as many pages as possi-
ble. The function is called by the VFS layer when filesystems (or any other part of the kernel)

1014

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1015

Chapter 17: Data Synchronization

have created dirty pages on a mapping. If the number of dirty pages in the system becomes too
large, then background_writeout is used to start synchronizing. In contrast to all cases discussed
above, the pdflush thread may not operate on all queues of the system. Only the queue of the
backing device to which the dirtied page belongs is considered.

17.13 Laptop Mode
Laptop users have a natural tendency to reduce power consumption of their machines as much as
possible — this is because laptop batteries, on the other side, have a natural tendency to provide power
for n time units when n + k time units (with k > 0) are required to finish some really important work
far away from any power outlet. There are some points where pdflush can contribute. Hard disks are,
with today’s hardware, implemented by disks in the true sense of the word — alternatives in the form of
solid-state devices have started to appear on the horizon, but are still far from being widespread. A hard
disk needs to spin in order to be operational. This consumes power, and spinning down the hard disk
when it is not needed thus helps to decrease power consumption.

What is still worse than a spinning hard disk is, however, a hard disk that accelerates. This requires more
energy than a disk running at constant speed. The optimization goals of the kernel are therefore twofold:

1. Keep the disk spun down as long as possible. This can be satisfied by deferring write
requests longer than usual.

2. When accelerating the disk cannot be avoided, perform all pending write operations even
if these would still be delayed under normal circumstances.7 This helps to prevent the disk
from spinning up and down.

Essentially, disk operations need to be performed in bursts: If data must be read in from the
device, then all pending write operations can be performed since the device is now active
anyway.

To achieve these goals, the kernel offers a laptop mode that can be activated via /proc/sys/vm/laptop_
mode. The global variable laptop_mode acts as a Boolean indicator if laptop mode is currently active. User-
land daemons can, for instance, use this file to enable and disable laptop mode depending on whether the
device operates from a battery or a power supply. Notice that some documentation about this technique
is available in Documentation/laptop-mode.txt.

Laptop mode requires astonishingly few changes in the synchronization code:

❑ A new pdflush worker routine is used: laptop_flush just calls sys_sync to synchronize all dirty
data present in the system (the effect is identical to calling the sync system call). Since this will
generate a whole lot of disk I/O, it is essential to activate the thread only when it is known that
the disk is up and running.

When requests are processed, block devices use the standard function end_that_request_last
to signal that the last request in a series has been submitted. Since this ensures that a disk
is up and running, the function calls laptop_io_completion, which installs a timer on
laptop_mode_wb_timer that executes laptop_timer_fn 1 second from now.

7Read operations require spinning up the disk anyway, so there’s little that can be done here except to avoid useless reads.

1015

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1016

Chapter 17: Data Synchronization

laptop_timer_fn starts pdflush with laptop_flush as the worker function. This causes a full
synchronization to be performed.

❑ Recall from above that balance_dirty_pages activates a pdflush thread if the ratio of dirty
pages in memory becomes too high. In laptop mode, however, pdflush is started as soon as
some data have been written.

❑ try_to_free_pages is also slightly modified. If the routine decides to use a pdflush thread, then
the number of pages that may be written back is not limited. This makes sense because if the disk
needs to be spun up, then as much I/O as possible should be triggered.

Notice finally that laptop mode benefits from setting the values in /proc/sys/vm/dirty_writeback_
centisec /proc/sys/vm/dirty_expire_centisec to large values. This will delay write operations
longer than usual. When a write operation finally takes place, then the changes in laptop mode as
described above automatically ensure that the spinning disk is brought to good use.

17.14 System Calls for Synchronization
Control

The kernel synchronization mechanisms can be enabled from within userspace by various system calls to
ensure full or partial data integrity between memory and block devices. Three basic options are available:

1. The entire cache contents can be flushed using the sync system call; in certain circumstances,
this can be very time-consuming.

2. The contents of individual files (as well as the associated metadata of the inode) can be trans-
ferred to the underlying block device. The kernel provides the fsync and fdatasync system
calls for this purpose. Whereas sync is normally used in conjunction with the sync system
tool mentioned above, fsync and fdatasync are reserved for particular applications because
the files to be flushed are selected by means of the process-specific file descriptors introduced
in Chapter 8. There are therefore no generic userspace tools for writing back specific files.

3. msync is used to synchronize memory mappings.

17.15 Full Synchronization
As per kernel convention, the sync system call is implemented in sys_sync. Its code is held in
fs/buffer.c, and the associated code flow diagram is shown in Figure 17-10.

The routine is very simply structured and consists of a chain of function calls (via do_sync) starting with
wakeup_pdflush, which is invoked with the parameter 0. As described above, this triggers writeback of
all dirty pages in the system.

The next step is synchronization of the inode metadata by means of sync_inodes. This is the first time
we have come across this procedure that ensures that all inodes are written back. We take a closer look
at it below.

sync_supers iterates over all superblocks in the super_blocks list and calls super_block->write_super
if the routine exists. This triggers writing the superblock-specific information for each filesystem.

1016

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1017

Chapter 17: Data Synchronization

sync_filesystems synchronizes the mounted filesystems by iterating once more over the super_blocks
list and invoking the sync_fs superblock operations routine for each filesystem that is mounted in
Read/Write mode and provides a sync_fs method. The method is only called when explicit synchroniza-
tion via a system call is requested and gives individual filesystems the ability to hook into the process. The
Ext3 filesystem, for instance, uses the opportunity to start a commit of all currently running transactions.

wakeup_padflush(0)

sys_sync

do_sync

sync_inodes(0)

sync_supers

sync_filesystems(0)

sync_filesystems(1)

sync_inodes(1)

Figure 17-10: Code flow diagram for
sys_sync.

As the code flow diagram shows, sync_inodes and sync_filesystems are invoked twice, first with
the parameter 0 and then 1. The parameter specifies whether the functions are to wait until the write
operations are finished (1) or whether they are to execute asynchronously (0). Splitting the operation into
two passes allows the write operations to be initiated in the first pass. This triggers the synchronization
of dirty pages associated with inodes, and also uses write_inode to synchronize the metadata. However,
a filesystem implementation may choose just to dirty the buffers or pages that contain the metadata, but
not send an actual write request to the block device. Since sync_inodes iterates over all dirty inodes, the
small contributions from the individual metadata changes will pile up to a comparatively large amount
of dirty data.

The second pass is therefore required for two reasons:

1. The dirtied pages resulting from the calls to write_inode are written to disk (synchroniza-
tion of raw block devices ensures this). Since metadata changes need not be processed on a
piece-by-piece basis, the approach improves write performance.

2. The kernel now explicitly waits for all write operations to complete that have been
triggered — this is ensured because WB_SYNC_ALL is set in the second pass.

The two-pass behavior requires one change to sync_sb_inodes that I have not discussed yet. The second
pass wants to wait for all pages that have been submitted. This includes the pages submitted during the
first pass. Recall from our previous considerations (the overview in Figure 17-1 might be helpful here)
that the corresponding wait operations are issued in __sync_single_inode. However, the function only
sees inodes that have been present on one of the lists s_dirty, s_io, or s_more_io of the superblock

1017

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1018

Chapter 17: Data Synchronization

when sync_sb_inodes is called. If sync_sb_inodes were called with WB_SYNC_NONE in the first pass, then
the inodes would not be on any of these lists anymore, and waiting could not be performed!

For this purpose, the special writeback mode WB_SYNC_HOLD is introduced. It is nearly identical with
WB_SYNC_NONE. The important difference is that inodes that have been synchronized are not removed
from s_io in sync_sb_inodes, but are placed back onto the s_dirty list. Thus they are still visible in the
second pass and can be waited for. The block layer can, nevertheless, start to write out data in between
the passes.

The additional CPU time consumed by the redundant invocation of functions during the sync sys-
tem call is negligible compared to the time needed for the slow I/O operations and is therefore totally
acceptable.

17.15.1 Synchronization of Inodes
sync_inodes synchronizes all dirty inodes. Its code flow diagram is shown in Figure 17-11.

wait set?

sync_inodes

_ _sync_inode

_ _sync_inode

sync_inodes_sb(wait=0)

sync_inodes_sb(wait=1)

sync_blockdev

sync_blockdev

set_sb_syncing(0)

set_sb_syncing(0)

1

1

1 Iterate over the superblocks
of all filesystems mounted
inuserland

Figure 17-11: Code flow diagram for sync_inodes.

sys_sync is a front end that directs the real synchronization performed in __sync_inodes. Before
__sync_inodes is called, the kernel uses set_sb_syncing to set the s_syncing element of struct
super_block to 0 for all superblocks. This helps to avoid synchronization of superblocks from
multiple places.

The __sync_inodes function iterates over all superblocks and invokes several methods for each block.
The function has one parameter:

fs/fs-writeback.c
static void __sync_inodes(int wait)

wait is a Boolean variable that decides if the kernel should wait for write operations to finish or not.
Recall from above that this behavior is essential for the sync system call.

1018

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1019

Chapter 17: Data Synchronization

This is what __sync_inodes does:

❑ If the superblock is currently being synchronized from another part of the kernel (i.e., if
s_syncing of struct super_block is set), it is skipped. Otherwise, s_syncing is set to 1 to signal
that this superblock is being synchronized to other places in the kernel.

❑ sync_inodes_sb synchronizes all dirty inodes associated with the superblock. The current
page state is queried with get_page_state, and then the function creates an instance of
writeback_control. There, the value of nr_to_write (maximum number of pages to be
written) is set as follows:

fs/fs-writeback.c
unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);

wbc.nr_to_write = nr_dirty + nr_unstable +
(inodes_stat.nr_inodes - inodes_stat.nr_unused) +
nr_dirty + nr_unstable;
wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */

The computed value should usually suffice to cover all dirty pages of the system, but 50 percent
more is added. This ensures that absolutely all dirty pages of the inode are written back, but
avoids some concurrency problems that can appear if no limit is set on the number of pages that
may be written.

Thereafter, the familiar sync_sb_inodes function is invoked to call the low-level synchroniza-
tion routines of the various filesystems.

❑ The low-level synchronization routines of most filesystems simply mark buffers or pages as dirty
but do not perform actual writeback. For this reason, the kernel then invokes sync_blockdev
to synchronize all mappings of the block device on which the filesystem resides (in this step,
the kernel is not restricted to a specific filesystem). This ensures that the data are actually
written back.

17.15.2 Synchronization of Individual Files
The contents of individual files can be synchronized without the need to synchronize all the data in the
system. This option is used by applications that must ensure that the data they modify in memory are
always written back to the appropriate block device. Because normal write access operations first land in
cache, this option provides added safety for really important data (of course, another alternative would
be to use direct I/O operations that bypass the cache).

As already noted, several different system calls are available for this purpose:

1. fsync synchronizes the contents of a file and also writes the metadata associated with the
file’s inode back to the block device.

2. fdatasync writes back only the data contents and ignores the metadata.

3. sync_file_range is a comparatively new system call that was introduced in kernel 2.6.16. It
allows for controlling synchronization for precisely defined parts of open files. Essentially,
the implementation selects the desired pages for writeback and possibly awaits the result.
Since this is not too different from the methods employed for the above system calls, I will
not bother to discuss sync_file_range in detail.

1019

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1020

Chapter 17: Data Synchronization

The implementation of fsync and fdatasync differs only at a single point (to be more accurate, in a single
character):

fs/sync.c
asmlinkage long sys_fsync(unsigned int fd)
{

return __do_fsync(fd, 0);
}

asmlinkage long sys_fdatasync(unsigned int fd)
{

return __do_fsync(fd, 1);
}

The code flow diagram for the common function __do_fsync is shown in Figure 17-12.

filemap_fdatawait

Get file descriptor

__do_fsync

do_fsync

filemap_fdatawrite

file->f_op->fsync

Figure 17-12: Code flow diagram for
__do_sync.

Synchronization of a single file is relatively straightforward. fget is used to find the appropriate file
instance by reference to the file descriptor, and then work is delegated to three functions:

1. filemap_fdatawrite (via a detour over __filemap_fdatawrite and __filemap_
fdatawrite_range) first generates a writeback_control instance whose nr_to_write
value (maximum number of pages to be flushed) is set to double the number of pages of the
mapping to ensure that all pages are written back. Afterward, the familiar do_writepages
method invokes the low-level write routines of the filesystem in which the file is located.

2. The filesystem-dependent fsync function found using the file_operations structure of the
file is then invoked to write back the cached file data. This is where fsync and fdatasync
differ — fsync has a parameter to specify whether metadata are also to be flushed as well as
the regular caches. The parameter is set to 0 for fsync and to 1 for fdatasync.

3. Synchronization is then concluded by invoking filemap_fdatawait to wait for the end of
the write operation initiated in filemap_fdatawrite. This ensures that the asynchronous
write operations appear as synchronous to the user application because the system call does
not return control to userspace until writeback of the desired data has been completed in the
view of both the block layer and the filesystem layer.

1020

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1021

Chapter 17: Data Synchronization

The methods provided for file_operations->fsync are very similar for most filesystems. Figure 17-13
shows the code flow diagram for a generalized method.

{fs}_sync_inode

{fs}_sync_file

sync_mapping_buffers

fsync_buffers_list

ll_rw_block

osync_buffers_list

datasync set and Inode
in state l_DIRTY_DATASYNC?

Figure 17-13: Code flow diagram for f_op->fsync.

The code performs two tasks:

1. sync_mapping_buffers writes back all private inode buffers in the private_list of the
mapping instance. These normally hold indirection blocks or other internal filesystem data
that are not part of the inode management data but are used to manage the data themselves.

This function delegates work to fsync_mapping_buffers, which iterates over all buffers. The
buffer data are written to the block layer by the ll_rw_block function with which you are
familiar from Chapter 6. With the help of osync_buffers_list, the kernel then waits until
the write operations have been completed (the block layer also buffers write accesses) and
then ensures that synchronization of the associated metadata outside sync_buffers_list
appears as a synchronous operation.

2. fs_sync_inode writes back the inode management data (i.e., the data held directly in the
filesystem-specific inode structure). Note that the datasync argument of fsync must be
set to (0) to invoke the method. This is the one and only difference between fdatasync and
fsync.

Since writeback of inode management data is filesystem-specific, see Chapter 9.

17.15.3 Synchronization of Memory Mappings
The kernel provides the msync system call implemented in sys_msync to synchronize memory mappings
in part or in total:

mm/msync.c
asmlinkage long sys_msync(unsigned long start, size_t len, int flags)

start and len select an area in the user address space of a process whose mapped data are to be syn-
chronized with the underlying file.

1021

Mauerer runc17.tex V2 - 09/04/2008 5:51pm Page 1022

Chapter 17: Data Synchronization

The implementation of the system call is remarkably simple. As documented in the manual page
msync(2), the system call essentially distinguishes two modes. If MS_SYNC is set in the flags, then dirty
pages are written to disk synchronously, while MS_ASYNC is supposed to schedule dirty data for later
writeback.

The good news is that for MS_ASYNC, no work at all is required! Since the kernel tracks the state of dirty
pages, they will be synchronized at some point by the mechanisms described in this chapter anyway.

With MS_SYNC set, a little more work is necessary, and the code flow diagram in Figure 17-14 considers
this case solely.

Iterate
over all
vm_areas

sys_msync

find_vma

do_fsync

Figure 17-14: Code flow diagram
for sys_msync with the flag
MS_SYNC set.

find_vma finds the first vm_area instance in the selected area. vm_area->vm_file holds a pointer to the
file instance from which the mapped data originate (this is discussed in Chapter 4). Therefore, do_fsync
can be used to synchronize the file as described above.

The method is repeated for all intervals in the desired area. This is possible because the intervals are
linked by means of vm_area->next, as discussed in Chapter 4.

17.16 Summary
Data are persistently stored on block devices but modified in RAM. This makes it necessary to synchro-
nize the contents of both from time to time, and this chapter has introduced you to the corresponding
methods. There are several system calls that allow for explicitly requesting that some portions of memory
are written back to disk. Additionally, the kernel uses threads that perform the same job periodically to
ensure that not too much modified data exist in RAM. While it is a good thing to keep disks busy, the ker-
nel needs to ensure that not more information than the disk can handle is scheduled to be written back,
and this chapter has discussed the techniques used to avoid congestion of the block layer. Additionally,
some corrections are necessary for systems where power is scarce, and the policy changes in laptop mode
have also been examined.

You have been introduced to all technical aspects of how data are shuffled back and forth between block
devices and RAM by now. What is still lacking is the decision of which pages are supposed to be syn-
chronized or discarded from RAM once the kernel gets short on memory, which is the subject of the next
chapter.

1022

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1023

Page Reclaim
and Swapping

The available RAM memory in a computer is never enough to meet user needs or to always satisfy
memory-intensive applications. The kernel therefore enables seldom-used parts of memory to be
swapped out to block devices, effectively providing more main memory. This mechanism, which
is referred to as swapping or paging, is implemented transparently by the kernel for application pro-
cesses that automatically profit from it. Swapping, however, is not the only mechanism to evict
pages from memory. If a seldom-used page is backed by a block device (e.g., memory mappings
of files) then the modified pages need not be swapped out, but can be directly synchronized with
the block device. The page frame can be reused, and if the data are required again, it can be recon-
structed from the source. If a page is backed by a file but cannot be modified in memory (e.g., binary
executable data), then it can be discarded if it is currently not required. All three techniques, together
with the selection of policy for pages that experience little activity, go by the name of page reclaim.
Notice that pages allocated for the core kernel (i.e., not for caches) cannot be reclaimed because this
would complicate things more than it would benefit them.

Page reclaim is the cornerstone to one of the kernel’s fundamental decisions with respect to caching.
The size of caches is never fixed, and they can grow as necessary. The rationale behind this is simple:
RAM that is not used for something is simply wasted, so it should always be used to cache some-
thing. If, however, some important task requires memory that is filled by the caches, the kernel can
reclaim memory to support these needs. This Chapter describes how swapping and page reclaim are
implemented.

18.1 Overview
Synchronization of data with the underlying block device as described in the previous chapter
makes the situation easier for the kernel when the available RAM memory limit has been reached.
Writing back cached data allows some memory pages to be released in order to make RAM available
for more important functions. Since the data involved can be read in again from the block device as
and when required, this does take time, but no information is lost.

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1024

Chapter 18: Page Reclaim and Swapping

Naturally, this procedure also has its limits. At some time the point is reached where the caches and
buffers can no longer be shrunk. Furthermore, it does not work for pages whose content is generated
dynamically and that have no backing store.

As in typical systems (with the exception of some embedded or handheld PCs) considerably more
hard disk capacity is generally available than RAM memory space, the kernel — in conjunction with
the capability of the processor to manage virtual address spaces that are larger than the existing RAM
memory — can ‘‘commandeer’’ parts of the disk in order to use them as memory expansions. Since hard
disks are considerably slower than RAM memory, swapping is purely an emergency solution that keeps
the system running but at considerably reduced speed.

The term swapping originally referred to the swapping-out of an entire process — with all its data, pro-
gram code, and the like — and not to the page-by-page, selective exporting of process data to secondary
expanded RAM memory. While this strategy was adopted in very early versions of Unix, where it was
perhaps sometimes appropriate, such behavior is now inconceivable. The resultant latency times during
context switching would make interactive working not just sluggish but intolerably slow. However, a
distinction is not made between swapping and paging below. Both stand for the fine-grained swapping-
out of process data. This is now established usage of the terms not just amongst experts but also (and
above all) in the kernel sources.

Two questions must be answered when considering how to implement swapping and page reclaim in
the kernel:

1. According to what scheme should pages be reclaimed; that is, how does the kernel decide
which pages it should reclaim in order to ensure maximum possible benefit and least possi-
ble disadvantage?

2. How are pages that have been swapped out organized in the swap area, and how does the
kernel write pages to the swap area and read them in again later? How does it synchronize
pages with their backing device?

The question as to which memory pages are swapped out and which ones remain in RAM is crucial to
system performance. If the kernel selects a frequently used page, a page in memory is then briefly freed
for other purposes. However, because the original data are soon needed again, another page must be
swapped out to create a free page to hold the data that have just been swapped out and are now required
again. This is obviously not very efficient and must therefore be prevented.

18.1.1 Swappable Pages
Only a few kinds of pages may be swapped out to a swap area — all others have an alternative backing
storage on a block device that is used instead:

❑ Pages of the MAP_ANONYMOUS category that are not associated with a file (or are a mapping of
/dev/zero); for example, a process stack or memory area mapped anonymously using mmap.
(The reference manual on the GNU C standard library or the customary standard reference
works on system programming provide further information on mappings of this kind.)

❑ Private mappings of a process used to map files in which changes are not written to the under-
lying block device, as would normally be the case. As the file is no longer available as a backing
store in this case, the pages must be swapped out to the swap area if RAM memory becomes
scarce since the contents can no longer be restored from the file. The kernel (and therefore the C
standard library) uses the MAP_PRIVATE flag to create mappings of this type.

1024

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1025

Chapter 18: Page Reclaim and Swapping

❑ All pages that belong to the process heap and were reserved using malloc (and consequently
using the brk system call or ultimately an anonymous mapping); see Chapter 3

❑ Pages that are used to implement one of the interprocess communication mechanisms. These
include, for instance, shared memory pages that are used to exchange data between processes.

Memory pages used by the kernel itself are never swapped out. The reasons are obvious. The complexity
of the kernel code would increase dramatically. Since the kernel does not require very much memory as
compared to other user applications, the potential gain is too low to justify the additional effort.

Naturally, pages used to map peripherals to memory space cannot be swapped out either. This
would make no sense, especially as the pages are used only as a means of communication between the
application and the device and not for actually storing data persistently.

Even though it is not possible to swap out all page types, the kernel’s swapping
page reclaim must still cater to page types that are based on other backing stores.
The most frequent page types of this kind relate to data from files that are mapped
into memory. Ultimately, it is irrelevant which pages from which category are
written from RAM memory to backing store because the effect is always the
same — a page frame is freed to make space for more important data that must
reside in the RAM.

18.1.2 Page Thrashing
A further problem that may occur when performing swapping operations is page thrashing. As the term
implies, this involves intensive transfers between swap space and RAM memory; this boils down to
nothing more than the repeated backward and forward swapping of pages. This phenomenon tends to
increase as the number of system processes increases. It occurs when important data are swapped out
and are needed again very soon afterward.

The main problem that the kernel must address to prevent page thrashing is to determine the working
set of a process (in other words, the pages that are needed most frequently) as accurately as possible so
that the least important pages can be moved to the swap area or some other backing store and the really
important data can be kept in memory.

To do this, the kernel needs an appropriate algorithm to evaluate the importance of pages to the overall
system. On the one hand, pages must be evaluated as fairly as possible so that processes are not unduly
favored or disadvantaged. On the other hand, the algorithm must be implemented simply and efficiently
to ensure that not too much processing time is needed to select the pages to be swapped out.

The many CPU types provide different methods of supporting the kernel in this task that vary in their
level of sophistication. However, Linux is not able to use all methods as they are not always available on
simpler CPUs and may also be difficult to emulate. As usual, the lowest common denominator must be
found upon which the kernel can build its hardware-independent layers.

One particularly simple, but important trick that is completely independent of the processor’s abilities
is to keep a swap token in the system that is given to one single process that swaps in pages. The kernel
tries to avoid swapping out pages from this process, thus alleviating its situation by giving it some time
to, hopefully, finish a task. After some time, the swap token is passed to some other process that also
undergoes swapping and requires memory more exigent than the current token holder.

1025

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1026

Chapter 18: Page Reclaim and Swapping

18.1.3 Page-Swapping Algorithms
Over the last few decades, a whole host of algorithms has been developed for purposes of page swapping,
each of which has its own specific advantages and disadvantages. The general literature on operating sys-
tems includes detailed descriptions and analyses. Below, two techniques on which the Linux swapping
implementation is based are described.

Second Chance
Second chance is an algorithm that is extremely simple to implement and that features a minor modifi-
cation to a classical FIFO algorithm. A system’s pages are managed in a linked list. When a page fault
occurs, the newly referenced page is placed at the beginning of the list; this automatically moves the
existing pages back by one position. Since only a finite number of positions are available in the FIFO
queue, the system must reach its capacity limit at some point or other. When it does, the pages at the end
of the queue ‘‘drop off’’ the list and are swapped out. When they are needed again, the processor triggers
a page fault that causes the kernel to read the page data in again and to place the page at the start of
the list.

For obvious reasons, this procedure is not particularly smart. When pages are swapped out, no account is
taken of whether the pages are used frequently or rarely. After a given number of page faults (determined
by how many places there are in the queue), the page is written into the swap area. If it is required
frequently, it is read in again immediately — not to the benefit of system performance.

This situation can be improved by offering a page a second chance before it is swapped out. Each page is
assigned a special field containing a bit that is controlled by the hardware. When the page is accessed,
the bit is automatically set to 1. The software (kernel) is responsible for un-setting the bit.

When a page reaches the end of the list, the kernel does not immediately swap it out but first checks
whether the aforementioned bit is set. If it is, it is unset and the page is moved to the start of the FIFO
queue; in other words, it is treated like a new page that has been added to the system. If the bit is not set,
the page is swapped out.

Thanks to this extension, the algorithm does take minimum account of whether pages are used frequently
or not, but does not deliver the performance expected of state-of-the-art memory management. Never-
theless, the second chance algorithm is a good starting point when combined with other techniques.

LRU Algorithm
LRU is short for least recently used and refers to various algorithms that attempt to find least used pages
according to a similar scheme. This reverse approach avoids the need for more complex searching for
most used pages.

Clearly, pages frequently used over a short period in the recent past are likely to be used in the (near)
future. The LRU algorithm is based on the converse assumption that pages not used recently will not be
needed frequently in the immediate future. Such pages are therefore likely candidates for swap-out when
memory is scarce.

The fundamental LRU principle may be simple, but it is difficult to implement it appropriately. How
can the kernel mark or sort pages as simply as possible in order to estimate access frequency without

1026

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1027

Chapter 18: Page Reclaim and Swapping

requiring an inordinate amount of time to organize data structures? The simplest LRU variant uses a
(doubly) linked list with all the pages in the system. This list is resorted each time memory is accessed.
The page in question is found and moved to the start of the list. In the course of time, this results in a kind
of ‘‘equilibrium’’ in which frequently used pages are at the beginning of the list and least used pages are
right at the end (a similar algorithm is used to manage the buffer caches discussed in Chapter 16).

The algorithm works beautifully but can only be implemented effectively for a small number of elements.
This means that it cannot be used in its unadulterated form for memory management as this would be
far too costly in terms of system performance. Simpler implementations that consume less CPU time are
therefore required.

Special support by the processor makes implementation of the LRU algorithm significantly less costly.
Unfortunately, this support is available on few architectures and cannot be used by Linux; after all,
memory management should not be tailored to a specific processor type. A counter is then incremented
by 1 in each CPU period. After each page access, a further counter field for the page is set to the value
of the system counter. The processor itself must perform this action to ensure sufficient speed. If a page
fault occurs because a required page is no longer available, the operating system need only compare
the counters of all pages to ascertain which page was accessed the longest time ago. This technique still
necessitates searching through the list of all memory pages every time a page fault occurs but does not
require lengthy list operations after each memory access.

18.2 Page Reclaim and Swapping
in the Linux Kernel

This section summarizes the design decisions of the Linux page reclaim subsystem before considering
the technical aspects of implementation and examining how requirements are met.

Swapping out pages and all related actions do not appear to be very complicated when the situation
is viewed from the high ground without taking development details into consideration. Unfortunately,
the very opposite is the case. Hardly any part of the kernel entails as many technical difficulties as the
virtual memory subsystem, of which the implementation of swapping is a part. Not only a host of minor
hardware details but above all numerous interconnections in the kernel must be taken into account
if implementation is to succeed. Speed also plays a crucial role since system performance ultimately
depends on memory management performance. Not without reason is memory management one of the
hottest kernel development topics, which has given rise to countless discussions, flame wars, and rival
implementations.

When discussing the design of the swap subsystem, certain aspects come to mind as characterized by the
following questions:

❑ How should swap areas on block storage media be organized to ensure not only that pages
swapped out can be uniquely identified, but also that memory space is used as effectively as
possible to permit read and write operations at maximum speed?

❑ Which methods are available to enable the kernel to check when and how many pages
need to be swapped out in order to achieve the best possible balance between the provision of

1027

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1028

Chapter 18: Page Reclaim and Swapping

free page frames for upcoming needs and minimization of the time needed to perform swap
operations?

❑ According to which criteria should the pages be selected for swapping? In other words, which
page replacement algorithm should be used?

❑ How are page faults handled as effectively and quickly as possible, and how are pages returned
from a swap area to system RAM?

❑ Which data can be removed from the various system caches (from the inode or dentry cache,
e.g.) without a backing store because it can be reconstructed indirectly? This question is not, in
fact, directly related to the execution of swapping operations but concerns both the cache and
swap subsystems. However, as cache shrinking is initiated by the swap subsystem, this question
is addressed below in this chapter.

As I have demonstrated, not only are the technical details of paramount importance in achieving an
efficient and powerful implementation of the swap system, but the design of the overall system must
also support the best possible interaction between the various components to ensure that actions are
performed smoothly and harmoniously.

18.2.1 Organization of the Swap Area
Swapped-out pages are held either on a dedicated partition without a filesystem or in a file of fixed size in
an existing filesystem. As every system administrator knows, several such areas can be used in parallel.
It is also possible to assign priorities based on the speed of the various swap areas. These priorities can
then be adopted by the kernel when it uses the swap areas.

Each swap area is subdivided into a number of continuous slots, each of which is precisely the size of one
page frame in the system. On most processors this is still 4 KiB. However, larger pages are commonly
used on newer systems.

Basically, any page in the system can be accommodated in any slot of a swap area. However, the kernel
also uses a structuring method referred to as clustering to handle accesses to swap areas as quickly as
possible. Consecutive pages in the memory area of a process (or at least pages that are swapped out
consecutively) are written to the hard disk one after the other, with a particular cluster size — normally
256 pages. If no further memory space is available in the swap area for clusters of this size, the kernel
adds the pages at any positions that are currently free.

If several swap areas with the same priority are used, the kernel uses a round robin process
to ensure that they are utilized as uniformly as possible. If the swap areas have different priorities,
the kernel fills the ones with higher priority first before gradually moving on to the ones with
lower priority.

To keep track of which pages are where in which swap partition, the kernel must retain some data struc-
tures that hold this information in memory. The most important structure element is a bitmap that tracks
the used and free state of the slots in a swap area. Other elements yield data to support selection of the
slot to be used next and to help implement clustering.

Two userspace tools are available to create and enable swap areas; these are mkswap (for ‘‘formatting’’ a
swap partition/file) and swapon (for enabling a swap area). As these programs are crucial to a functioning
swap subsystem, they are described (and the system call for swapon) below.

1028

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1029

Chapter 18: Page Reclaim and Swapping

18.2.2 Checking Memory Utilization
Prior to swapping out pages, the kernel checks memory utilization to identify whether capacity is low.
As when synchronizing pages, the kernel uses a combination of two mechanisms:

1. A periodic daemon (kswapd) runs in the background and repeatedly checks current memory
utilization in order to initiate page swap-out when a particular threshold value is reached.
This method ensures that no swap storms occur in which a very large number of pages sud-
denly need to be swapped out; this would result in long wait times and must be prevented
on all accounts.

2. Nevertheless, the kernel must expect acute memory shortage whenever, for example, a large
memory area is allocated by the buddy system or when buffers are generated. If insufficient
RAM is available to satisfy the request for memory, the kernel must attempt to free space by
swapping out pages as quickly as possible. Swap-out in the event of an acute emergency is
part of direct reclaim.

The VM subsystem has only one option if a kernel request for memory cannot be satisfied even after
pages have been swapped out — the targeted termination of a process by means of the OOM (out of
memory) killer. Even if this sometimes entails severe losses, it is still better than a complete system crash,
which would otherwise result.

18.2.3 Selecting Pages to Be Swapped Out
The key question faced by the swapping subsystem is always the same. Which pages can be swapped
out to ensure maximum benefits at minimum cost to the system? The kernel uses a mixture of the ideas
discussed earlier and implements a rough-grained LRU method that makes use of only one hardware
feature — the setting of an accessed bit following a page access — because this function is available on
all supported architectures and can be emulated with little effort.

In contrast to the general algorithms, the LRU implementation of the kernel is based on two linked
lists that are referred to as the active and the inactive list (separate lists exist for each memory zone in
the system). As the two names imply, all the pages in active use are on the one list, while all inactive
pages that may be mapped into one or more processes but are not very frequently used are held on
the other. To distribute the pages between the lists, the kernel performs a regular balancing operation
that determines — by means of the above accessed bit — whether a page is regarded as active or inac-
tive, in other words, whether or not it is frequently accessed by the applications in the system. Transfers
between the two lists are possible in both directions. Pages can be transferred from active to inactive and
vice versa. However, transfer does not take place after every single page access but at longer intervals.

In the course of time, the least frequently used pages collect at the end of the inactive list. When there is a
memory shortage, the kernel selects these pages for swap-out. Since these pages have been little used so
far, the LRU principle dictates that this will prove least disruptive to system operation.

18.2.4 Handling Page Faults
All architectures on which Linux runs support the concept of page faults that are triggered when a page in
virtual address space is accessed but is not present in physical memory. The page fault instructs the kernel
to read the missing data from the swap area or from another backing store, possibly by first deleting other
pages to make space for the new data.

1029

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1030

Chapter 18: Page Reclaim and Swapping

Page fault handling is in two parts. First, strongly processor-dependent (assembler) code must be used
to intercept the page fault and query the associated data. Second, a system-independent part of code is
responsible for the further handling of the situation. Because of optimizations used by the kernel when
managing processes, it is not sufficient to simply search for the relevant page in the backing store and
load it into the RAM memory because the page fault may have been triggered for other reasons (see
Chapter 4). For example, copy-on-write pages may be involved; these are copied only when a write
access is executed after a process has forked. Page faults also occur with demand paging, where the
pages of a mapping are loaded only when actually needed. I ignore these problems here, however, and
focus on the situation in which a swapped-out page must be reloaded into memory.

Once again, there’s more to be done than just finding the page in the swap area. As access to the hard
disk is even slower than usual if the read head has to move to a new position (disk seek), the kernel uses
a readahead mechanism to guess which pages will be needed next and also includes these in the read
operation. Thanks to the clustering method mentioned above, the Read/Write head ideally only moves
forward and does not have to jump backward and forward when reading consecutive pages.

18.2.5 Shrinking Kernel Caches
Swapping out pages that belong to userspace applications is not the kernel’s only way of freeing memory
space. Shrinking numerous caches often results in good gains. Here, too, the kernel must naturally weigh
up the pros and cons by deciding which data are to be removed from caches and how far the memory
space available for this data may be shrunk without impairing system performance too much. As kernel
caches are generally not particularly huge, the kernel begins to shrink them only as a last resort.

As explained in previous chapters, the kernel provides various caches in numerous different areas. This
makes it very difficult to define a general scheme according to which caches can be shrunk because it is
difficult to asses the importance of the data they contain. For this reason, earlier kernel versions featured
numerous caches-specific functions to perform this task for the individual caches.

The methods of shrinking the various caches are still implemented separately today since the structures
of the individual variants differ too greatly to allow the adoption of a generally applicable shrinking
algorithm. However, a general framework is now available to manage the cache-shrinking methods.
Functions written to shrink caches are referred to as shrinkers in the kernel and can be registered dynam-
ically. When memory is scarce, the kernel invokes all registered shrinkers to obtain fresh memory.

18.3 Managing Swap Areas
Linux is relatively flexible in its support for swap areas. As we have already explained, it is possible
to manage several areas with different priorities, and these may be located both on local partitions and
in files of a predefined size. Swap partitions can also be added and removed dynamically in an active
system without the need for rebooting.

The technical differences between the various approaches are made as transparent as possible to
userspace. The modular structure of the kernel also means that the algorithms associated with swapping
can be of a generalized design where the differences between the approaches need only be addressed on
the lower technical levels.

18.3.1 Data Structures
As usual, the description begins with a presentation of the central data structures that form the backbone
of implementation and hold all the information and data needed by the kernel. The cornerstone of swap

1030

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1031

Chapter 18: Page Reclaim and Swapping

area management is the swap_info array defined in mm/swap-info.c; its entries store information on the
individual swap areas in the system1:

mm/swapfile.c
struct swap_info_struct swap_info[MAX_SWAPFILES];

The number of elements is defined statically in MAX_SWAPFILES at compilation time. The constant is
normally defined as 25 = 32.

The kernel uses the term swap file to refer not only to swap files but also to swap
partitions; the array therefore includes both types. As normally only one swap file is
used, the limitation to a specific number is of no relevance. Neither does this
number impose any kind of restriction on numerical calculations or other
memory-intensive programs because, depending on architecture, swap areas may
now have sizes in the gigabyte range. The restriction to 128 MiB in older versions
no longer applies.

Characterization of Swap Areas
struct swap_info_struct describes a swap area and is defined as follows:

<swap.h>
struct swap_info_struct {

unsigned int flags;
int prio; /* swap priority */
struct file *swap_file;
struct block_device *bdev;
struct list_head extent_list;
struct swap_extent *curr_swap_extent;
unsigned short * swap_map;
unsigned int lowest_bit;
unsigned int highest_bit;
unsigned int cluster_next;
unsigned int cluster_nr;
unsigned int pages;
unsigned int max;
unsigned int inuse_pages;
int next; /* next entry on swap list */

};

The main data on the swap state can be quickly queried with the help of the proc filesystem:

wolfgang@meitner> cat /proc/swaps
Filename Type Size Used Priority
/dev/hda5 partition 136512 96164 1
/mnt/swap1 file 65556 6432 0
/tmp/swap2 file 65556 6432 0

1During the development of kernel 2.6.18, the ability to migrate pages physically between NUMA nodes while keeping their virtual
addresses has been added. This requires using two swap_info entries to handle pages that are currently under migration, so the
number of possible swap files is reduced. The configuration option MIGRATION is required to include the page migration code. This
is, for instance, helpful on NUMA systems, where pages can be moved nearer to processors using them, or for memory hot remove.
Page migration, however, is not considered in detail in this book.

1031

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1032

Chapter 18: Page Reclaim and Swapping

A dedicated partition and two files are used to accommodate the swap areas in this example. The swap
partition has the highest priority and is therefore used preferentially by the kernel. Both files have
priority 0 and are used on the basis of a round robin process when no more space is available on the
partition with priority 0. (How it can nevertheless occur that there are data in the swap files although the
swap partition is not completely full, as indicated by the proc output, is explained below.)

What is the meaning of the various elements in the swap_info_struct structure? The first entries are
used to hold the classical management data required for swap areas:

❑ The state of the swap area can be described with various flags stored in the flags element.
SWP_USED specifies that the entry in the swap array is used. Since the array is otherwise filled
with zeros, a distinction can easily be made between used and unused elements. SWP_WRITEOK
specifies that the swap area may be written to. Both flags are set after a swap area has been
inserted into the kernel; the abbreviation for this state is SWP_ACTIVE.

❑ swap_file points to the file structure associated with the swap area (the layout and contents of
the structure are discussed in Chapter 8). With swap partitions, there is a pointer to the device
file of the partition on the block device (in our example, /dev/hda5). With swap files, this pointer
is to the file instance of the relevant file, that is, /mnt/swap1 or /tmp/swap2 in our example.

❑ bdev points to the block_device structure of the underlying block device.

Even if all swap areas in our example are located on the same block device (/dev/hda), all
three entries point to different instances of the data structure. This is because the two files are
on different partitions of the hard disk and the swap partition is a separate partition anyway.
Since, in structural terms, the kernel manages partitions essentially as if they were autonomous
block devices, this results in three different pointers to the three swap areas, although all are
located on the same disk.

❑ The relative priority of a swap area is held in the prio element. Since this is a signed data type,
both positive and negative priorities are possible. As already noted, the higher a swap partition’s
priority is, the more important the swap partition is.

❑ The total number of usable page slots, each of which can store a complete memory page, is held
in pages. For example, the swap partition in our sample mapping has space for 34,128 pages,
which, given a page size of 4 KiB in the IA-32 system used for the mapping, corresponds to a
memory volume of ≈ 128 MiB.

❑ max yields the total number of page slots that the swap area contains. In contrast to pages, not
just usable pages but all pages are counted here — including those that (owing to block device
faults, e.g.) are defective or are used for management purposes. Because defective blocks are
extremely rare on state-of-the-art hard disks (and swap partitions need not necessarily be created
in such an area), max is typically only 1 greater than pages, as is the case with all three swap areas
in the example above. There are two reasons for this one-page difference. First, the very first
page of a swap area is used by the kernel for identification purposes (after all, totally random
parts of the disk should not be overwritten with swap data). Second, the kernel also uses the first
slot to store state information, such as the size of the area and a list of defective section, and this
information must be permanently retained.

❑ swap_map is a pointer to an array of short integers (which is unsurprisingly referred to as swap
map in the following) that contains as many elements as there are page slots in the swap area.
It is used as an access counter for the individual slots to indicate the number of processes that
share the swapped-out pages.

❑ The kernel uses a somewhat unusual method to link the various elements in the swap list
according to priority. Since the data of the various areas are arranged in the elements of a linear

1032

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1033

Chapter 18: Page Reclaim and Swapping

array, the next variable is defined to create a relative order between the areas despite the fixed
array positions. next is used as an index for swap_info[]. This enables the kernel to track the
individual entries according to their priority.

But how is it possible to determine which swap area is to be used first? Since this area is not nec-
essarily located at the first array position, the kernel also defines the global variable swap_list
in mm/swapfile.c. It is an instance of the swap_list_t data type defined specifically for the pur-
pose of finding the first swap area:

<swap.h>
struct swap_list_t {

int head; /* head of priority-ordered swapfile list */
int next; /* swapfile to be used next */

};

head is an index into the swap_info[] array and is used to select the swap area with the highest
priority. The kernel works its way through the list to the swap areas with low priorities using
the next elements. next is used to implement a round robin process to uniformly fill multiple
swap areas with pages if the areas have the same priority. I return to this variable below when I
examine how the kernel selects swap pages.

Let us take a close look at the system’s mode of operation by reference to the example above. The
entry point is the first array entry that contains the swap area with the highest priority. The value
of head is therefore 0.

next specifies which swap area is used next. This need not always be the swap area with the
highest priority. If the latter is already full, next points to another swap area.

❑ In order to reduce search times when the complete swap area is scanned for a free slot, the ker-
nel manages the upper and lower limits of the search zone with the aid of the lowest_bit and
highest_bit elements. There are no free pages above or below these positions so it would be
pointless to search this area.

Although the names of the two variables end with _bit, they are not bit fields but
absolutely normal integers that are interpreted as indexes with regard to the linearly
arranged pages of a swap area.

❑ The kernel also provides two elements — cluster_next and cluster_nr — to implement the
cluster technique mentioned briefly above. The former specifies which slot of an existing cluster
in the swap area is to be used next, and cluster_nr indicates how many pages are still available
for use in the current cluster before it is necessary to start a new cluster, or (if not enough free
pages are available for a new cluster) that recourse is made to fine-grained allocation.

Extents for Implementing Non-Contiguous Swap Areas
The kernel uses the extent_list and curr_swap_extent elements to implement extents, which create
mappings between the swap slots that are assumed to be contiguous and the disk blocks of the swap file.
This is not necessary if partitions are used as the basis for swap space because the kernel can then rely
on the fact that the blocks on the disk are arranged linearly. Mapping between page slots and disk blocks
is therefore very simple. Starting from the position of the first block, it is only necessary to multiply a
constant offset by the required page number in order to obtain the required address, as illustrated in
Figure 18-1. In this case, just one swap_extent instance is needed. (Actually, this could also be dispensed
with, but its existence makes things easier for the kernel as it narrows the differences between partition
swap areas and file swap areas.)

1033

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1034

Chapter 18: Page Reclaim and Swapping

BA

.

start_page = 0
nr_pages = 3
start_block = A

start_page = 3
nr_pages = 10
start_block = B

start_page = 13
nr_pages = 7
start_block = C

start_page = 0
nr_pages = 270
start_block = 0

C

. . .

Figure 18-1: Extents for managing non-contiguous swap areas.

The situation is more complicated when files are used as the basis for swap memory because there is then
no guarantee that all blocks of the file are located sequentially on disk. Consequently, mapping between
page slots and disk blocks is more complex. Figure 18-1 illustrates this by means of an example.

A file consists of multiple sections located anywhere on the block device. (The lesser disk fragmentation
there is, the smaller the number of sections — after all, it is best if file data are kept as close together as
possible, as discussed in Chapter 9.) The extent_list list has the task of associating the scattered blocks
of the file with the linear page slots. In doing so, it should ensure two things — that as little memory
space as possible is used, and that search time is kept to a minimum.

It is not necessary to associate the page slot and block number for every page slot. It is sufficient to asso-
ciate the first block of a contiguous block group with the corresponding page slot and to note how many
blocks there are after the first block so that the file structure can be reproduced in a very compact manner.

Let us illustrate the procedure using the example above. As the figure shows, the first three contiguous
block groups consist of 3, 10, and 7 blocks. What happens when the kernel wants to read the data of the
sixth page slot? These data are not in the first block group as this block contains only slots 0 through 2.
The search terminates successfully at the second group, which contains slots 3 through 12 and logically
slot 6. The kernel must therefore determine the start block of the second group (using the extent list). The
group’s third member (which corresponds to the sixth page slot) can be found easily by twice adding
the page size to the start address as the offset.

The extent structure struct extent_list is defined to serve exactly this purpose:

<swap.h>
struct swap_extent {

struct list_head list;
pgoff_t start_page;
pgoff_t nr_pages;
sector_t start_block;

};

list is used to manage the members of the extent list on a doubly linked standard list. The other mem-
bers describe the data of a single, contiguous block group:

❑ The number of the first page slot in a block group is held in start_page.

❑ nr_pages specifies the number of pages that fit into the block group.

❑ start_block is the block number of the first block of the group on the hard disk.

1034

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1035

Chapter 18: Page Reclaim and Swapping

These lists can become extremely long. The two sample swap areas in files that each contain around
16,000 pages consist of, for example, 37 or even 76 block groups. The second extent mechanism
requirement — high search speed — is not always met by doubly linked lists since they may well
comprise hundreds of entries. It is, of course, extremely time-consuming to scan through such lists each
time the swap area is accessed.

The solution is relatively simple. An additional element called curr_swap_extent in swap_info_struct
is used to hold a pointer to the last element accessed in the extent list. Each new search starts from this
element. As access is often made to consecutive page slots, the searched block is generally found in this
or the next extent element.2

If the search by the kernel is not immediately successful, the entire extent list must be scanned element-
by-element until the entry for the required block is found.

18.3.2 Creating a Swap Area
New swap partitions are not created directly by the kernel itself. This task is delegated to a userspace
tool (mkswap) whose sources are in the util-linux-ng tool collection. Since creating a swap area is a
mandatory step that must be performed before swap memory can be used, let’s briefly analyze the mode
of operation of this utility.

The kernel need not provide any new system calls to support the creation of swap areas — after all,
it also does not provide any system calls to create regular filesystems, and this is clearly not a kernel
problem. The existing call variants for direct communication with block devices (or, in the case of a swap
file, with a file on a block device) are quite sufficient to organize the swap area in accordance with kernel
requirements.

mkswap requires just one argument — the name of the device file of the partition or file in which the swap
area is to be created.3 The following actions are performed:

❑ The size of the required swap area is divided by the page size of the machine concerned in order
to determine how many page frames can be accommodated.

❑ The blocks of the swap area are checked individually for read or write errors in order to find
defective areas. As the machine’s page size is used as the block size for swap areas, a defective
block always means that the swap area’s capacity is reduced by one page.

❑ A list with the addresses of all defective blocks is written to the first page of the swap area.

2A comment in the kernel sources notes that measurements have demonstrated that on average only 0.3 list operations are, in fact,
needed to create a mapping between a page slot and a block number.
3Other parameters such as the explicit size of the swap area or the page size can be specified. However, in most cases, this is point-
less because these data can be calculated automatically and reliably. The authors of mkswap do not have a high opinion of users
who make their own explicit specifications, as the source code shows:

if (block_count) {
/* this silly user specified the number of blocks explicitly */
...
}

1035

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1036

Chapter 18: Page Reclaim and Swapping

❑ To identify the swap area as such to the kernel (after all, it could simply be a normal partition
with filesystem data which, of course, may not be inadvertently overwritten if the administrator
uses an invalid swap area), the SWAPSPACE2 label is set to the end of the first page.4

❑ The number of available pages is also stored in the header of the swap area. This figure is calcu-
lated by subtracting the number of defective pages from the total number of available pages. 1
must also be subtracted from this number since the first page is used for state information and
for the list of defective blocks.

Although it may seem very important to deal with defective blocks when a swap
area is created, this activity can simply be skipped. In this case, mkswap does not
check the data area for errors and consequently does not write any data into the list
of defective blocks. Since the quality of today’s hardware means that very few
errors occur on block devices, an explicit check is normally not needed.

18.3.3 Activating a Swap Area
Interaction with userspace is required in order to notify the kernel that an area initialized with mkswap is
to be used as RAM expansion. The kernel provides the swapon system call for this purpose. As usual, it
is implemented in sys_swapon whose code resides in mm/swapfile.c.

Although sys_swapon is one of the kernel’s longer functions, it is not particularly complex. It performs
the following actions.

❑ In a first step, the kernel searches for a free element in the swap_info array. Initial values are
then assigned to the entry. If a block device partition provides the swap area, the associated
block_device instance is claimed with bd_claim. Recall from Chapter 6.5.2 that the function
claims a block device for a specific holder (in this case the swap implementation) and signalizes
to other parts of the kernel that the device is already attached to it.

❑ After the swap file (or swap partition) has been opened, the first page containing information on
bad blocks and the area size is read in.

❑ setup_swap_extents initializes the extent list. We examine this function in more detail below.

❑ As the last step, the new area is added to the swap list according to its priority. As described
above, the swap list is defined using the next elements of the swap_info_struct entries. Two
global variables are also updated:

❑ nr_swap_pages specifies the total number of swap pages currently available; it is incre-
mented by the relevant number of pages provided by the newly activated swap area since
the new pages are still completely unused.

❑ total_swap_pages yields the total number of swap pages, regardless of how many are used
and how many are still free. This value is also incremented by the number of swap pages in
the new swap area.

If no explicit priority is specified for the new area when the system call is invoked, the kernel uses the
lowest existing priority minus 1. According to this scheme, new swap areas are included in descending
priority unless the administrator intervenes manually.

4Earlier versions of the kernel used a different swap area format labeled SWAP-SPACE. This had certain disadvantages — above all,
the maximum size limits of 128 or 512 MiB depending on CPU type — and is now no longer supported by the kernel.

1036

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1037

Chapter 18: Page Reclaim and Swapping

Reading the Swap Area Characteristics
The characteristics of a swap area are held in the first page slot of the area. The kernel uses the following
structure to interpret these data:

<swap.h>
union swap_header {

struct
{

char reserved[PAGE_SIZE - 10];
char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */

} magic;
struct
{

char bootbits[1024]; /* Space for disklabel etc. */
__u32 version;
__u32 last_page;
__u32 nr_badpages;
unsigned char sws_uuid[16];
unsigned char sws_volume[16];
__u32 padding[117];
__u32 badpages[1];

} info;
};

The union allows identical data to be interpreted in different ways, as illustrated in Figure 18-2.

❑ The first 1,024 bytes are left free to create space for boot loaders that on some architectures must
be present at defined places on the hard disk. This enables swap areas to be positioned right at
the start of a disk on such architectures even though boot loader code is also located there.

❑ Details of the swap area version (version) then follow, plus the number of the last page
(nr_lastpage) and the number of unusable pages (nr_badpages). A list with the number
of unusable blocks follows after 117 integer filler entries, which can be used for additional
information in any new versions of the swap format. Even if formally this list has only one
element in the data structure, it has in reality nr_badpages members.

label and uuid allow associating a label and a UUID (Universally Unique Identifier) with a
swap partition. The kernel does not use these fields, but they are required by some userland
tools (the manual page blkid8 provides more information about the rationale behind these
identifiers).

“SWAPSPACE2”

struct info

struct swap_header

Figure 18-2: Layout of the swap header.

The reason why two data structures are used to analyze this information is historical (new information is
created only in areas that were not used by the old format — in other words, between the 1,024 reserved

1037

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1038

Chapter 18: Page Reclaim and Swapping

bytes at the start of the partition and the signature at the end), but is also partly because the kernel
must be able to handle different page sizes, and this is simpler if different structures are used. Since
information is located at the start and at the end of the first swap page, the space between must be filled
with a suitable number of empty filler elements — at least from the data structure’s viewpoint. However,
access to the swap signature at the bottom end of the page is easier if the fill space required is calculated
by simply deducting the length of the signature (10 characters) from the page size — which is specified by
PAGE_SIZE on all architectures. This yields the required position. When the upper elements are accessed,
it is only necessary to specify the definition of the upper part. From the viewpoint of the data structure,
the data that then follow are of no interest since they merely contain the list of bad blocks whose array
position addresses can be calculated very easily.

Creating the Extent List
setup_swap_extents is used to create the extent list. The associated code flow diagram is shown in
Figure 18-3.

Create single extent
Yes

add_swap_extent

add_swap_extent

inode->i_mapping->a_ops->bmapbmap

bmap

setup_swap_extents

Block device as swap area

No

Query first block number

Discontinuity? Start new extent
after discontinuity

Performs automatic clustering

Set swap information

Ite
ra

te
 o

ve
r a

ll
bl

oc
ks

 o
f t

he
 p

ag
e

Ite
ra

te
 o

ve
r a

ll
bl

oc
ks

of

 th
e

sw
ap

 a
re

a

Figure 18-3: Code flow diagram for setup_swap_extents.

The task of the procedure is simple when a swap partition rather than a swap file is used. It is then
guaranteed that all sectors are contained in a contiguous list; consequently, only a single entry is required
in the extent list. This entry is created using add_swap_extent and includes all blocks in the partition.

If the swap area is a file, the kernel is required to do a little more work since the blocks of the file must be
scanned individually to determine how blocks are assigned to sectors. The bmap function is used for this
purpose. It is part of the virtual filesystem and invokes the bmap function in the address space operations
of the specific filesystem. The various filesystem-specific implementations are of no interest to us here
since they all yield the same result — a sector number that specifies which hard disk sector belongs to a
given block number. The logical blocks of a file can be regarded as contiguous by the remainder of the
kernel. However, this is not the case for the associated sectors on the disk, as discussed in Chapter 9.

The algorithm for creating the mapping list is not particularly complicated. As swap areas are rarely
activated, the kernel need not concern itself with speed issues, which means that implementation is very
straightforward. The first step is to determine the sector address of the first block in the swap area by
means of bmap. This address serves as the starting point for further examination of the area.

1038

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1039

Chapter 18: Page Reclaim and Swapping

The kernel must then find and compare the sector addresses of all blocks in the area to ascertain
whether the blocks are contiguous. Discontinuity is established if this is not the case. The kernel first
performs the operation for the number of blocks that constitute a page. If their sector addresses are
consecutive, a linear area equivalent to one page is found on the disk. add_swap_extent inserts this
information in the extent data structure.

This whole operation is then repeated, this time starting at the address of the next file block whose sector
address had not yet been checked. Once the kernel has ascertained that the sectors of the blocks on this
page are also consecutive on the disk, add_swap_extent is again invoked to add this information to the
extent list.

If add_swap_extent were to add a new list element to the extent list each time it is invoked, it would
not be possible to merge contiguous areas larger than a single page. Consequently, add_swap_extent
automatically attempts to keep the list as compact as possible. When a new entry is added and its start
sector is immediately after the final sector of the last entry (or, expressed differently, when the sum of the
start_block and nr_pages elements of the last swap_extent element is equal to the start sector of the
new entry), one combined entry is automatically created to merge the data of both elements. This ensures
that the list comprises as few entries as possible.

But what happens when the kernel encounters a discontinuity? Since setup_swap_extents only checks
areas that are the size of one page, the current area can be completely discarded. It serves no purpose
because the minimum swapping unit is a full page. When a discontinuity is detected in the sectors, the
kernel restarts the search starting at the sector address of the next file block. This is repeated until the next
page is found that is mapped contiguously on the hard disk. If a new entry is then added to the extent
list using add_swap_extent, the end address of the old sector and the start address of the new sector no
longer match. This means that the two entries can no longer be merged and the kernel must create a new
list element.

The above procedure is repeated until all blocks in the swap area have been processed. Once this has
been done, the final step is to enter the number of usable pages in the relevant swap_info element.

18.4 The Swap Cache
Now that I have described the layout of the swap subsystem by reference to its data structures, let us
turn our focus in the following sections on the techniques employed by the kernel to write pages from
memory into a swap area and to read pages from the swap area back into memory.

The kernel makes use of a further cache, known as a swap cache, that acts as a liaison between the opera-
tion to select the pages to be swapped out and the mechanism that actually performs swapping. At first
sight, this seems a little peculiar. What’s the use of another swapping cache and what exactly needs to be
cached? The answers are given below.

Figure 18-4 shows how the swap cache interacts with the other components of the swap subsystem.

The swap cache is an agent between the page selection policy and the mechanism for transferring data
between memory and swap areas. These two parts interact via the swap cache. Input in one part triggers
corresponding actions in the other. Notice that the policy routines can, nevertheless, directly interact with
the writeback routines for pages that need not be swapped out, but can be synchronized.

1039

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1040

Chapter 18: Page Reclaim and Swapping

Page Reclaim
(Policy)

Swap Cache Writeback
Mechanism

Reverse
Mapping

Activation of Page Selection
(periodically or by pressure)

Figure 18-4: Interaction between the swap cache and
the other components of the swap subsystem.

Which data are kept in the swap cache? As the swap cache is simply another page cache built using
the structures discussed in Chapter 3, the answer is simple — memory pages. However, in contrast
to the other page caches in the system, its purpose is not to keep pages in RAM for performance reasons
although the associated data could also always be obtained from a block storage medium (this would run
totally counter to the swapping principle). Instead, the swap cache is used for the following, depending
on the ‘‘direction’’ of the swapping request (read or write):

❑ When pages are swapped out, the selection logic first selects a suitable seldom-used page frame.
This is buffered in the page cache, from where it is transferred to the page cache.

❑ If a page used simultaneously by several processes is swapped out, the kernel must set the page
entry in the directories of the process to point to the relevant position in the swap-out file. When
one of the processes accesses the data on the page, the page is swapped in again, and the page
table entry for this single process is set to the current memory address at which the page is now
located. However, this causes a problem. The entries of all other processes still point to the entry
in the swap-out file because, although it is possible to determine the number of processes that
share a page, it is not possible to identify which processes these are.

When shared pages are swapped in, they are therefore retained in the swap cache until all pro-
cesses have requested the page from the swap area and are all thus aware of the new position of
the page in memory. This situation is illustrated in Figure 18-5.

Without the aid of the swap cache, the kernel is not able to determine whether or not a shared
memory page has already been swapped back in, and this would inevitably result in redundant
reading of data.

The importance of the swap cache is not the same in both directions. It is far more important when pages
are swapped in than when they are swapped out. This asymmetry came about during the development
of 2.5 when the reverse mapping scheme (rmap) described in Chapter 4 was introduced. Recall that the
rmap mechanism finds all processes that share a page.5

5In earlier versions, shared memory pages could only be swapped out using the swap cache. Once the page had been removed from
the page tables of a single process, the kernel had to wait until the page had also been removed from the page tables of all other
processes before it could remove the data from memory; this required the systematic scanning of all system page tables. The pages
were kept in the swap cache in the meantime.

1040

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1041

Chapter 18: Page Reclaim and Swapping

Swap
Cache

A

B

C

Swap Area

Swap
Cache

A

B

C

Swap Area

Swap
Cache

A

B

C

Swap Area

Swap In
of A

Swap In
of B,C

Figure 18-5: Swapping a page in via the swap cache.

When a shared page is swapped out, rmap finds all processes that reference the data in the page. Conse-
quently, the relevant page table entries of all processes that reference the page can be updated to indicate
the new position in the swap area. This means that the page data can be swapped out immediately
without having to retain in the swap cache for a lengthy period.

18.4.1 Identifying Swapped-Out Pages
As discussed in Chapter 4, a memory page is identified on the basis of a virtual address using a system
of page tables to find the address of the associated page frame in RAM. This only works if the data are
actually present in memory; otherwise, there is no page table entry. It must also be possible to correctly
identify swapped-out pages; in other words, it must be possible to find the address of a memory page in
a swap area by reference to a given virtual address.

Swapped-out pages are marked in the page table by means of a special entry whose format depends on
the processor architecture used. Each system uses special coding to satisfy the particular requirements.

Common to all CPUs is that the following information is stored in the page table entry of a
swapped-out page:

❑ An indicator that the page has been swapped out.

❑ The number of the swap area in which the page is located.

❑ An offset that specifies the relevant page slot is also required to enable the page to be found
within the swap area.

The kernel defines an architecture-independent format that can be derived (by the processor-specific
code) from the architecture-dependent data and is used to identify pages in the swap area. The advantage
of this approach is clearly that all swapping algorithms can be implemented regardless of the hardware
used and need not be rewritten for each processor type. The only interface to the actual hardware are the
functions for converting between architecture-specific and architecture-independent representation.

1041

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1042

Chapter 18: Page Reclaim and Swapping

In the architecture-independent representation, the kernel must store both the identification (also referred
to as type) of the swap partition and an offset within this area in order to be able to uniquely identify a
page. This information is kept in a special data type called swap_entry_t, which is defined as follows:

<swap.h>
typedef struct {

unsigned long val;
} swp_entry_t;

Only one variable is used, although two different information items must be stored. The components of
the variable can be filtered out by selecting different areas, as illustrated in Figure 18-6.

0 27 32

6459

Offset Swap
Identifier

0

Figure 18-6: Components of an architecture-independent
swap identifier.

Why is just a single unsigned long variable used to formally store both items of information? First, all
systems supported so far are happily able to make do with the information provided in this way. And
second, the value held in the variable is also used as a search key for the radix tree that lists all swap
cache pages. Since the swap cache is merely a page cache that uses longs as a key, a swapped-out page
can be uniquely identified in this way.

As this situation may change in the future, the unsigned long value is not used directly but is hidden
in a structure. As the contents of a swap_entry_t value may only be accessed by special functions, the
internal representation may be modified in future versions without having to rewrite significant parts of
the swap implementation.

To ensure access to both information items in swap_entry_t, the kernel defines two constants for the bit
arrangement shown in Figure 18-6:

<swapops.h>
#define SWP_TYPE_SHIFT(e) (sizeof(e.val) * 8 - MAX_SWAPFILES_SHIFT)
#define SWP_OFFSET_MASK(e) ((1UL << SWP_TYPE_SHIFT(e)) - 1)

MAX_SWAPFILES_SHIFT has the value 5, regardless of platform. The length of unsigned long on 32-bit
architectures is 4; on 64-bit platforms, it is 8 bytes.

This special arrangement is relatively uninteresting for the rest of the kernel code. Much more important
are the functions that extract the individual components from the structure:

<swapops.h>
static inline unsigned swp_type(swp_entry_t entry)
{

return (entry.val >> SWP_TYPE_SHIFT(entry));
}

static inline pgoff_t swp_offset(swp_entry_t entry)
{

return entry.val & SWP_OFFSET_MASK(entry);
}

1042

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1043

Chapter 18: Page Reclaim and Swapping

Since swap_entry_t instances may never be manipulated directly, the kernel must provide a function
that generates a swap_entry_t from a given type/offset pair:

<swapops.h>
static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
{

swp_entry_t ret;

ret.val = (type << SWP_TYPE_SHIFT(ret)) |
(offset & SWP_OFFSET_MASK(ret));

return ret;
}

A few bit operations are used to pack the parameters in an unsigned long variable that is returned as the
content of a new swap_entry_t.

The kernel requires the ability to switch between the architecture-dependent and architecture-independent
representations, so the pte_to_swp_entry function is provided for this purpose:

<swapops.h>
static inline swp_entry_t pte_to_swp_entry(pte_t pte)
{

swp_entry_t arch_entry;

arch_entry = __pte_to_swp_entry(pte);
return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));

}

Conversion is performed in two steps. Starting with a page table entry that — as explained in
Chapter 4 — is represented by an instance of data type pte_t, the data it contains are converted to an
architecture-dependent swap_entry_t.

Even if the same data type is used in the processor-specific representation and in the
architecture-independent memory model, the way in which the bits are distributed
generally differs in the two variants.

__pte_to_swp_entry is an architecture-dependent function that is defined in the CPU-specific include file
<asm-arch/pgtable.h>. It gives the kernel the opportunity to extract the processor-specific information
in the page table. On many architectures, this can be achieved by means of a simple typecast that does
not change the content of the page table entry — just for a change, even the Sparc processors, which are
otherwise somewhat eccentric in this respect, do not call for anything special here.

In the second step, the information contained in the newly created swap_entry_t instance is converted to
the architecture-independent format, where usually a number of bits are devoted to management tasks,
for instance, to mark the identifier as swap entry in contrast to regular page table entries. The kernel is
again reliant on the help of the processor-specific code. All systems must feature the __swp_type and
__swp_offset functions (note the leading underscores that are absent in the architecture-independent
versions) that extract the type and offset from the machine-specific format and return the information in
the general format, which is then put together by swp_entry to create a new swap_entry_t.

1043

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1044

Chapter 18: Page Reclaim and Swapping

The number of bits used to address swap space locations in the architecture-independent format of a
swap entry will in general be larger than in the architecture-specific format. Because architectures are not
required to define the number of bits used for a swap offset in a constant visible to the public, the kernel
needs to employ a little trick to find the maximally addressable swap offset:

maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;

swp_entry(0, 0UL) specifies a swap offset with all bits set. The conversion to a page table entry and
then back to an architecture-independent format guarantees that only valid bits survive. The largest
addressable swap page number is obtained by picking the swap offset from the result.

18.4.2 Structure of the Cache
In terms of its data structures, the swap cache is nothing more than a page cache, as described in
Chapter 3. At the heart of its implementation is the swapper_space object, which groups together the
internal functions and list structures associated with the cache:

mm/swap_state.c
struct address_space swapper_space = {

.page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),

.tree_lock = RW_LOCK_UNLOCKED(swapper_space.tree_lock),

.a_ops = &swap_aops,

.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),

.backing_dev_info = &swap_backing_dev_info,
};

Although each system may have several swap areas, there is just one variable via
which the remaining kernel code accesses the swap cache. The pages are not
organized into different areas until the data are actually written back. In the view of
that part of the kernel that determines which pages are to be swapped out, there is
only one swap cache to which the appropriate instructions must be forwarded, and
this cache is represented by the swapper_space object mentioned above.

Since most of the fields are lists, they are initialized to their (empty) basic settings using suitable macros.
The meaning of the entries is discussed in Chapter 4.

The kernel provides a set of swap cache access functions that can be used by any kernel code involved
with memory management. They allow, for example, pages to be added to the swap cache or a search
to be made for pages in the cache. They constitute the interface between the swap cache and the page
replacement logic and are therefore used to issue commands to swap pages in or out without having to
worry about the technical details of how the data are subsequently transferred.

A set of functions is also provided to handle with the address space made available by the swap cache.
As is common with address spaces and therefore with page caches, these functions are grouped into
an address_space_operations instance that is associated with swapper_space by means of the aops
element. The functions constitute the ‘‘downward’’ interface of the swap cache; in other words, to the
data transfer implementation between the system’s swap areas and RAM memory. In contrast to the
function set mentioned earlier, these routines are not concerned with which pages are swapped out or in
or when this is done, but are responsible for the technical aspects of data transfer for the selected pages.

1044

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1045

Chapter 18: Page Reclaim and Swapping

swap_aops is defined as follows:

mm/page_io.c
static struct address_space_operations swap_aops = {

.writepage = swap_writepage,

.sync_page = block_sync_page,

.set_page_dirty = __set_page_dirty_nobuffers,
};

We will look at the significance and implementation of these functions more closely later on. Initially, it
is sufficient to outline what they do:

1. swap_writepage synchronizes dirty pages with the underlying block device. This is not done
to maintain consistency between RAM memory and the block device, as is the case for all
other page caches. Its purpose is to remove pages from the swap cache and to transfer their
data to a swap area. The function is therefore responsible for implementing data transfer
between RAM memory and the swap area on the disk.

2. Pages must be marked as ‘‘dirty’’ in the swap cache without having to allocate new
memory — a resource that is scarce enough anyway when swap-out mechanisms are used.
As discussed in Chapter 16, one possible procedure to mark pages as dirty is to create
buffers that enable the data to be written back chunk-by-chunk. However, additional
memory is needed to hold the buffer_head instances that store the required management
data. This is pointless as only complete pages in the swap cache are written back anyway.
The __set_page_dirty_nobuffers function is therefore used to mark pages as dirty; it sets
the PG_dirty flag but does not create buffers.

3. As with most other page caches, the standard implementation of the kernel
(block_sync_page) is used to synchronize pages in the swap area. This function
does nothing more than unplug to corresponding block queues. As far as the swap cache is
concerned, this means that all data transfer requests forwarded to the block layer are then
executed.

All ‘‘static’’ elements of the swap cache have been introduced, and the fundamentals upon which the
swapping implementation rests are in place. Before discussing how they are brought to use in live action,
let us briefly survey the functions that we will encounter in due course — there is a considerable number
of them. Figure 18-7 shows the most important ones and how they are connected.

The figure resembles the rough overview from Figure 18-4, but provides many more details. The general
structure introduced there can be immediately recognized. The individual functions that realize this
structure are discussed in the remainder of this chapter.

18.4.3 Adding New Pages
Adding new pages to the swap cache is a very simple matter because the appropriate page cache mech-
anisms are used. The standard methods reduce the requisite effort to invoking the add_to_page_cache
function described in Chapter 16. This function inserts the data structure of a given page into the corre-
sponding lists and trees of the swapper_space address space.

However, this does not constitute the whole of the task. The page is not only added to the swap cache,
but also requires space in one of the swap areas. Even though the data are not yet copied to hard disk at

1045

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1046

Chapter 18: Page Reclaim and Swapping

this point, the kernel must nevertheless consider which area it wants to select for the page and into which
slot it will be inserted. This decision must then be saved in the data structures of the swap cache.

Page fault management

Page Cache Management Reverse Mapping

do_swap_page

Architecture-specific
 page fault handler

swapin_readahead

read_swap_cache_async

_ _add_to_swap_cache

add_to_swap

Page Reclaim

Tranfer swap data
to swap space and
handle page tables

shrink_page_list

Zone scanning

try_to_unmap

try_to_unmap_one

swap_writepage

Figure 18-7: Overview of the most important functions that implement swapping and page reclaim. The
figure is not a proper code flow diagram and skips some intermediate functions.

Two kernel methods add pages to the swap cache but serve different purposes:

1. add_to_swap is invoked when the kernel wants to swap out a page actively; that is, when the
policy algorithm has determined that insufficient memory is available. The routine not only
adds the page to the swap cache (where it remains until its data are written to disk), but also
reserves a slot in one of the swap areas.

2. When a page shared by several processes (this can be determined by referring to the usage
counter in the swap area) is read in from the swap area, the page is retained in both the
swap area and the swap cache until it is either swapped out again or until it is swapped
in by all the processes that share it. The kernel implements this behavior by means of the
add_to_swap_cache function, which adds a page to the swap cache without performing oper-
ations on the swap areas themselves.

Reserving Page Slots
Before dealing with the implementation details of these two functions, we should examine how page
slots are reserved in swap areas. The kernel delegates this task to get_swap_page, which — when called
without parameters — returns the number of the page slot to be used next.

The function must first ensure that the system does, in fact, have swap areas — if so, the global variable
nr_swap_pages has a value greater than 0.

swap_list.next always yields the number of the swap area currently in use (if there is only one swap
area, it obviously always returns the same number). Logically, the kernel begins the search for a free page
slot in this area. scan_swap_map scans the page bitmap, making use of swap clustering — a technique
examined below.

If no free slot is found in the current swap area, the kernel checks the alternate slots. To do this, it runs
through the list of all swap areas until it finds a free slot. Naturally, searching is performed in line with
the priorities defined for each individual area by means of the next element of each swap_info[] entry.

1046

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1047

Chapter 18: Page Reclaim and Swapping

When the area with the lowest priority is reached, the kernel starts searching again from the beginning
(i.e., in the area with the highest priority). The search is terminated if no free entry is found after all swap
areas in the system have been traversed. The kernel is then not able to swap out the page, and this fact is
reported by returning the page number 0 to the calling code.

How are the slot bitmaps of the individual swap areas scanned? Empty entries are recognized because
their usage counters equal 0. scan_swap_map therefore scans the swap_map array of the relevant swap
partition for such entries, but this is made a little more difficult by swap clustering. A cluster consists of
SWAPFILE_CLUSTER contiguous entries into which pages are written sequentially. The kernel first deals
with the situation in which there is no free entry in the cluster. Since this is rarely the case, I postpone a
discussion of the appropriate code until later.6

mm/swapfile.c
static inline unsigned long scan_swap_map(struct swap_info_struct *si)
{

unsigned long offset, last_in_cluster;
...

if (unlikely(!si->cluster_nr)) {
/* Find new cluster*/

}

We assume that si->cluster_nr is greater than 0, indicating that the current cluster still has free slots
(recall that cluster_nr specifies the number of free slots in the current cluster). Once the kernel has
ensured that the current offset does not exceed the limit set by swap_info->highest_bit, it checks
whether the swap counter of the entry is 0 at the proposed position, indicating that the entry is available
for use:

mm/swapfile.c
...

si->cluster_nr--;
cluster:

offset = si->cluster_next;
if (offset > si->highest_bit)

lowest: offset = si->lowest_bit;
if (!si->highest_bit)

goto no_page;
if (!si->swap_map[offset]) {

if (offset == si->lowest_bit)
si->lowest_bit++;

if (offset == si->highest_bit)
si->highest_bit--;

si->inuse_pages++;
if (si->inuse_pages == si->pages) {

si->lowest_bit = si->max;
si->highest_bit = 0;

}
si->swap_map[offset] = 1;
si->cluster_next = offset + 1;

...
return offset;

}
...

6The implementation still includes a few explicit scheduler calls, not reproduced here. They are executed to minimize kernel latency
times when the kernel spends too long searching for a free swap slot.

1047

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1048

Chapter 18: Page Reclaim and Swapping

Once the entries for the lower and upper limits have been updated (if necessary), the kernel increments
the offset for the next search by 1 and uses the offset of the position just found.

If the proposed page is not free, the kernel iterates over the positions until it finds the first one that
is free:

mm/swapfile.c
...

while (++offset <= si->highest_bit) {
if (!si->swap_map[offset]) {

goto checks;
}

}
...

goto lowest;

no_page:
return 0;

}

If this also fails, the kernel jumps to the lowest label, thus restarting the search at the lower
limit of the free area. This does not produce an endless loop because highest_bit is set to 0 when
the last available page is allocated. As the previous code section shows, this is an abort condition for
the search.

We must now examine what happens if there is no current cluster. In this case, the kernel attempts to
open a new cluster. This presupposes that an empty section consisting of at least SWAPFILE_CLUSTER
empty slots is present in the swap area. As clusters do not require any particular alignment of their
starting position, the kernel starts searching from the lowest position as of which there are free entries
and which is defined by lowest_bit (the code shown is at the position of the /* Find new cluster */
comment inserted above):

mm/swapfile.c
si->cluster_nr = SWAPFILE_CLUSTER - 1;
if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)

goto lowest;

offset = si->lowest_bit;
last_in_cluster = offset + SWAPFILE_CLUSTER - 1;

/* Locate the first empty (unaligned) cluster */
for (; last_in_cluster <= si->highest_bit; offset++) {

if (si->swap_map[offset])
last_in_cluster = offset + SWAPFILE_CLUSTER;

else if (offset == last_in_cluster) {
si->cluster_next = offset-SWAPFILE_CLUSTER-1;
goto cluster;

}
}
goto lowest;

When there are not enough free slots to create a new cluster, the kernel branches to the lowest label and
starts an entry-by-entry search there.

1048

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1049

Chapter 18: Page Reclaim and Swapping

Starting at the current position, the kernel checks whether all subsequent slots — SWAPFILE_CLUSTER in
number — are free; this check is performed by the for loop within the if query. If the kernel finds an
allocated entry whose swap_map entry is greater than 0, the search for a free cluster is resumed at the
next slot position. This is repeated until a position is finally reached at which there is insufficient space to
create a cluster.

If the kernel is successful in its search for a new cluster, it jumps to the lowest label, as above.

Allocating Swap Space
After the policy routine has decided that a particular page needs to be swapped out, add_to_swap from
mm/filemap.c comes into play. This function accepts a struct page instance as parameter and forwards
the swap-out request to the technical part of swapping implementation.

As the code flow diagram in Figure 18-8 shows, this is not a very difficult task and consists basically of
three steps. After the get_swap_page routine mentioned above has reserved a page slot in one of the
swap areas, all that needs to be done is move the page into the swap area. This is the responsibility of
the __add_to_swap_cache function, which is very similar to the standard add_to_page_cache function
described in Chapter 16. The primary difference is that the PG_swapcache flag is set and the swap iden-
tifier swp_entry_t is stored in the private element of the page — it will be required to construct an
architecture-dependent page table entry when the page is actually swapped out. Additionally, the global
variable total_swapcache_pages is incremented to update the statistics. Nevertheless, as we would
expect of add_to_page_cache, the page is inserted in the radix tree set up by swapper_space.

add_to_swap

get_swap_page

SetPageUptodate

SetPageDirty

_ _add_to_swap_page_cache

Figure 18-8: Code flow diagram for
add_to_swap.

Finally, SetPageUpdate and SetPageDirty modify the page flags appropriately. Dirtying the page is
essential because the contents of the page are not yet contained in the swap area. Recall from Chapter 17
that pages in the page cache are synchronized with their underlying block device when they are dirty.
For a swap page, the underlying block device is the swap space, and synchronization is therefore (nearly)
equivalent to swapping the page out! What remains to be done after the page has been written to a swap
slot is updating the page table to reflect this.

But, otherwise, that’s it. Nothing more is required of the policy routines when pages are swapped out.
The rest of the work — particularly the transferring of data from memory to the swap area — is per-
formed by the address-space-specific operations associated with swapper_space. The implementation of
the routines is discussed below — as far as the policy is concerned, it is enough to know that the kernel
actually writes the data to the swap area and thus releases a page after add_to_swap has been invoked.
More details follow in the discussion of the shrink_page_list function.

1049

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1050

Chapter 18: Page Reclaim and Swapping

Caching Swap Pages
In contrast to add_to_swap, add_to_swap_cache adds a page to the swap cache, but requires that a page
slot has already been allocated for the page.

If a page already has a swap cache entry, why is it added to the swap cache? This is required when pages
are swapped in. Suppose that a page that was shared among many processes has been swapped out. When
the page is swapped in again, it is necessary to retain the data in the cache after the first page-in until all
processes have successively reclaimed the page. Only then can the page be deleted from the swap cache
because all user processes are then informed of the page’s new position in memory. The swap cache is
also used in this way when readahead is performed for swap pages; in this case, the pages read in have
not yet been requested because of a page fault but will most likely be shortly.

add_to_swap_cache is simple as the code flow diagram in Figure 18-9 shows. The basic task is to invoke
__add_to_swap_cache, which adds the pages to the swap cache in the same way as add_to_swap. How-
ever, swap_duplicate must be called beforehand to ensure that the page already has a swap entry. The
swap map count is also incremented by swap_duplicate; this signals that the page was swapped out
from more than one place.

add_to_swap_cache

swap_duplicate

_ _add_to_swap_cache

Figure 18-9: Code flow diagram of
add_to_swap_cache.

The main difference between add_to_swap and add_to_swap_cache is that the latter sets neither of the
page flags PG_uptodate nor PG_dirty. Essentially, this means that the kernel does not need to write
the page into the swap area — the contents of both are currently synchronized.7

18.4.4 Searching for a Page
lookup_swap_cache checks whether a page is located in the swap cache. Its implementation requires
only a few lines8:

mm/swap_state.c
struct page * lookup_swap_cache(swp_entry_t entry)
{

struct page *page;

page = find_get_page(&swapper_space, entry.val);

return page;
}

7Notice that kernel 2.6.25, which was under development when this book was written, will reshuffle the function names discussed
here slightly. add_to_swap_cache will be merged into its only caller read_swap_cache_async, and will not exist anymore.
__add_to_swap_cache, however, will take its place and will be renamed to add_to_swap_cache. The callers are updated
accordingly.
8Like many other swapping functions described in this chapter, the original function in the kernel sources includes a few short calls
to update the key statistics of the swapping subsystem. I will not include such calls in our discussion because they essentially deal
with simple manipulation of counters, which is not very interesting.

1050

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1051

Chapter 18: Page Reclaim and Swapping

This function yields the required page by reference to a swp_entry_t instance by scanning the
swapper_space address space using the familiar find_get_page function discussed in Chapter 16. As
for many other address space related tasks, all the hard work is done by the radix tree implementation!
Note that if the page is not found, the code returns a null pointer. The kernel must then fetch the data
from the hard disk.

18.5 Writing Data Back
Another part of the swapping implementation is the ‘‘downward’’ interface that is used to write page
data to a selected reserved position in the swap area (or, to be precise, that issues the appropriate request
to the block layer). As you have seen, this is done from the swap cache using the writepage address space
operation, which points to swap_writepage. Figure 18-10 shows the code flow diagram of the function
defined in mm/page_io.c.

swap_writepage

remove_exclusive_swap_page

get_swap_bio

map_swap_page

set_page_writeback

submit_bio

Set up bio instance

Figure 18-10: Code flow diagram for
swap_writepage.

As most of the work has been done by the above mechanisms, there is little left for swap_writepage to do.
The very first thing the kernel does is to invoke remove_exclusive_swap_page to check that the relevant
page is used by the swap cache but not by any other parts of the kernel. If this is true, the page is no
longer needed and can be removed from memory.

Before the kernel can write the page data, it requires a correctly filled instance of struct bio with
all the parameters needed for the block layer — as discussed in Chapter 6. This task is delegated to
get_swap_bio, which returns a finished bio instance.

Not only the destination block device and the length of the data to be written back, but more particularly,
the sector number, are required when the bio structure is filled. As discussed above in Section 18.3.1, it
is not always certain that a swap area is located in a contiguous area on disk. Consequently, extents are
used to create a mapping between the page slots and the available blocks. This extent list must now be
searched:

mm/page_io.c
sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
{

struct swap_extent *se = sis->curr_swap_extent;
struct swap_extent *start_se = se;

1051

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1052

Chapter 18: Page Reclaim and Swapping

for (; ;) {
struct list_head *lh;

if (se->start_page <= offset &&
offset < (se->start_page + se->nr_pages)) {

return se->start_block + (offset - se->start_page);
}
lh = se->list.next;
if (lh == &sis->extent_list)

lh = lh->next;
se = list_entry(lh, struct swap_extent, list);
sis->curr_swap_extent = se;

}
}

The search does not begin at the start of the list but at the list element last used. This is stored in
curr_swap_extent since in most cases, access is made to slots that are next to or at least close to each
other. The address can be calculated with the help of the same extent list element.

A page slot is held in a list element when the offset number — that is, the number of the searched page
slot — is equal to or greater than se->start_page but less than se->start_page + se->nr_pages. If
this does not apply, the list is searched sequentially until the matching element is found. As a matching
element must exist, the search can be performed in an endless loop that is terminated when the sector
number is returned.

Once the bio instance has been filled with the appropriate data, the PG_writeback flag must be set for
the page using SetPageWriteback before the write request is forwarded to the block layer by means of
bio_submit.

When the write request has been executed, the block layer invokes the end_swap_bio_write function
(which is based on the standard function end_page_writeback) to remove the PG_writeback flag from
the page structure.

Notice that writing the contents of a page to the page slot in the swap area is not sufficient to fully swap
out a page! Before a page can be considered to be completely removed from RAM, the page tables need
to be updated. The page table entry needs, on the one hand, to specify that the page is not in memory and
must, on the other hand, point to the location in the swap space. Since the change must be performed for
all current users of the page, this is an involved task discussed in Section 18.6.7.

18.6 Page Reclaim
Now that I have explained the technical details of writeback, let’s turn our attention to the second major
aspect of the swapping subsystem — the swap policy adopted to determine which pages can be swapped
out of RAM memory without seriously degrading the kernel’s performance. Since page frames are freed
by this and new memory is available for urgent needs, the technique is also called page reclaim.

In contrast to the previous sections concerning pages in the swap address space, this
section focuses on pages in any address space. The principles of the swap policy
apply for all pages without a backing store, regardless of whether their data are read
from a file or are generated dynamically. The only difference is the location to
which the data are written out when the kernel decides that the pages are to be

1052

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1053

Chapter 18: Page Reclaim and Swapping

removed from memory. This issue has no effect on whether a page is swapped out
or not. Some pages have a permanent backing store into which they can be brought,
while others must be put into the swap area (recall that Section 18.1.1 contains a
more refined characterization of pages that can be swapped out).

Implementation of the swap policy algorithm is one of the more complex parts of the kernel. This is due
not only to the latent question of maximum speed, but also and primarily to the multitude of special
situations that must be addressed. In the examples below, I concentrate on the most frequent situations
that account for the overwhelming share of the swapping subsystem’s work. For the sake of brevity, I
shall not discuss rare phenomena that are due largely to the interplay among the various processors on
SMP systems or to random coincidences on uniprocessor systems. A general overview of the interaction
between the individual components involved in swapping is much more important (and is complicated
enough on its own) than the detailed minutia of every swapping operation.

18.6.1 Overview
The general approach to implementation of the swap policy algorithms has been discussed above. The
following sections focus on the interaction of the swap policy functions and procedures and describe their
implementation in detail. Figure 18-11 shows a code flow diagram listing the most important methods
and illustrating how they are interlinked.

shrink_zone

shrink_inactive_list

shrink_page_list

try_to_free_pages

shrink_zones

Direct page reclaim

balance_pgdat

kswapd

balance_pgdat

kswapd

balance_pgdat

kswapd

Swap Daemons (one instance per NUMA node)

shrink_active_list

Figure 18-11: ‘‘Big picture’’ of the page reclaim implementation. Note that the figure is
not a proper code flow diagram but just displays the most important functions.

The diagram is another refinement of the overview shown in Figure 18-7. Page reclaim is triggered at two
points, as shown in the figure:

1. try_to_free_pages is invoked if the kernel detects an acute shortage of memory during an
operation. It checks all pages in the current memory zone and frees those least frequently
needed.

2. A background daemon named kswapd checks memory utilization at regular intervals and
detects impending memory shortage. It can be used to swap out pages as a preventive mea-
sure before the kernel discovers in the course of another operation that it does not have
enough memory.

1053

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1054

Chapter 18: Page Reclaim and Swapping

On NUMA machines, which do not share memory uniformly over all processors (see
Chapter 3), there is a separate kswapd daemon for each NUMA zone. Each daemon is
responsible for all memory zones in a NUMA zone.

On non-NUMA systems, there is just one instance of kswapd, which is responsible
for all main memory zones (non-NUMA zones). Recall that, for instance, IA-32 can
have up to three zones — ISA-DMA, normal memory, and high memory.

The paths of the two versions merge very quickly in the shrink_zone function. The remaining code of
the page reclaim subsystem is identical for both options.

Once the number of pages to be swapped out in order to provide the system with fresh memory has been
determined — using algorithms designed to deal with acute memory shortage in try_to_free_pages
and to regularly check memory utilization in the kswap daemon — the kernel must still decide which
specific pages are to be swapped out (and ultimately pass these from the policy part of the code to the
kernel routines responsible for writing the pages back to their backing store and adapting the page
table entries).

Recall from Chapter 3.2.1 that the kernel tries to categorize pages into two LRU lists: one for active pages,
and one for inactive pages. These lists are managed per memory zone:

<mmzone.h>
struct zone {
...

struct list_head active_list;
struct list_head inactive_list;

...
}

It is an essential job of the kernel to decide to which category a given page belongs, and a good proportion
of this chapter is devoted to answering this question.

The decision about how many pages and which pages are to be reclaimed is performed in the
following steps:

1. shrink_zone is the entry point for removing rarely used pages from memory and is called
from within the periodical kswapd mechanism. This method is responsible for two things:
It attempts to maintain a balance between the number of active and inactive pages in a
zone by moving pages between the active and inactive lists (using shrink_active_list).
It also controls the release of a selectable number of pages by means of shrink_cache.
shrink_zone acts as a go-between between the logic that defines how many pages of a zone
are to be swapped out and the decision as to which pages these are.

2. shrink_active_list is a comprehensive helper function used by the kernel to transfer
pages between the active and inactive page lists. The function is informed of the number
of pages to be transferred between the lists and then attempts to select the active pages
least used.

shrink_active_list is therefore essentially responsible for deciding which pages are sub-
sequently swapped out and which are not. In other words, this is where the policy part of
page selection is implemented.

1054

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1055

Chapter 18: Page Reclaim and Swapping

3. shrink_inactive_list removes a selectable number of inactive pages from the inactive
list of a given zone and transfers them to shrink_page_list, which then reclaims the
selected pages by issuing requests to the various backing stores to write data back in order
to free space in RAM.

If, for any reason, pages cannot be written back (some programs can explicitly prevent write-
back), shrink_inactive_list must put them back on the list of active or inactive pages.

18.6.2 Data Structures
Before analyzing these functions in detail, we need to discuss a few of the data structures used by the
kernel. They include page vectors, which — with the help of an array — can hold a specific number of
pages on which the same operation is performed. This is best done in ‘‘batch mode,’’ which is much
quicker than performing the same operation separately on each page. I also examine the LRU cache used
to place pages on the active or inactive list of a zone.

Page Vectors
The following structure is defined in the kernel to group several pages in a small array:

<pagevec.h>
struct pagevec {

unsigned nr;
int cold;
struct page *pages[PAGEVEC_SIZE];

};

This is simply an array with pointers to page instances that also allow the number of elements they con-
tain to be queried using the nr element. The page array itself provides space for PAGEVEC_SIZE pointers
to pages (the default value is 14).

The cold element is an addition that helps the kernel distinguish between hot and cold pages. Pages
whose data are held in one of the CPU caches are described as hot because their data can be accessed very
quickly. Pages not held in the cache are therefore cold. For the sake of simplicity, this property of memory
pages is ignored in the following descriptions.

Page vectors enable operations to be performed on a whole list of page structures; this is sometimes
quicker than performing operations on individual pages. Currently, the kernel provides functions that
are primarily concerned with releasing pages:

❑ pagevec_release decrements the usage counter of all pages in the vector batchwise. Pages
whose usage counter value reaches 0 — these are therefore no longer in use — are automati-
cally returned to the buddy system. If the page was on an LRU list of the system, it is removed
from the list, regardless of the value of its usage counter.

❑ pagevec_free returns the memory space occupied by a collection of pages to the buddy system.
The caller is responsible for ensuring that the usage counter is 0 — which indicates that the pages
are not in use anywhere else — and that they are not included on any LRU list.

❑ pagevec_release_nonlru is a further function for releasing pages that decrements the usage
counter of all pages of a given collection by 1. When the counter reaches 0, the memory

1055

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1056

Chapter 18: Page Reclaim and Swapping

occupied by the page is returned to the buddy system. In contrast to pagevec_release, this
function assumes that all pages in the vector are not on any LRU list.

All these functions expect a pagevec structure containing the pages to be processed as parameter. If the
vector is empty, all the functions return to the caller immediately.

There are also versions of the same functions with two preceding underscores (e.g., _ _pagevec_release).
These do not test whether the vector passed contains pages or not.

What is still lacking is a function to add pages to a page vector:

<pagevec.h>
static inline unsigned pagevec_add(struct pagevec *pvec, struct page *page)

pagevec_add adds a new page page to a given page vector pvec.

The implementation of the function is not considered in detail here as it is very straightforward and
reveals little of interest.

The LRU Cache
The kernel provides a further cache known as the LRU cache to speed up the addition of pages to the
system’s LRU lists. It makes use of page vectors to collect page instances and place them block-by-block
on the system’s active and inactive lists. The list is a hotspot in the kernel, but must be protected by
a spinlock. To keep lock contention low, new pages are not immediately added to the list, but are first
buffered on a per-CPU list:

mm/swap.c
static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };

The function to add new elements via this buffer is lru_cache_add. It provides a way of deferring the
addition of pages to the system’s LRU lists until a certain number of pages specified by PAGEVEC_SIZE
is reached:

mm/swap.c
void fastcall lru_cache_add(struct page *page)
{

struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);

page_cache_get(page);
if (!pagevec_add(pvec, page))

__pagevec_lru_add(pvec);
put_cpu_var(lru_add_pvecs);

}

Since the function accesses a CPU-specific data structure, it must prevent the kernel from interrupting
execution and resuming later on another CPU. This form of protection is enabled implicitly by invoking
get_cpu_var, which not only disables preemption, but also returns the per-CPU variable.

lru_cache_add first increments the count usage counter of the page instance as the page is now in the
page cache (and this is interpreted as usage). The page is then added to the CPU-specific page vector
using pagevec_add.

1056

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1057

Chapter 18: Page Reclaim and Swapping

pagevec_add returns the number of elements that are still free after the new page has been added.
__pagevec_lru_add is invoked if NULL is returned, which indicates that the page vector is now com-
pletely full after addition of the last element. This function places all pages in the page vector on the
inactive lists of the zone to which the individual pages belong (the pages may all be associated with
different zones). The PG_lru bit is set for each page because they are now contained on an LRU list. The
contents of the page vector are then deleted to make space for new pages in the cache.

If there are still free elements in the per-CPU list after pagevec_add added a page, the page instance is in
the page vector, but not yet on one of the system’s LRU lists.

lru_cache_add_active works in exactly the same way as lru_add_cache but is used for active rather
than inactive pages. It uses lru_add_pvecs_active as a buffer. When pages are transferred from the
buffer to the active list, not just the PG_lru bit, but additionally the PG_active bit, is set.

lru_cache_add is required only in add_to_page_cache_lru from mm/filemap.c and adds a page to
both the page cache and the LRU cache. This is, however, the standard function to introduce a new
page both into the page cache and the LRU list. Most importantly, it is used by mpage_readpages and
do_generic_mapping_read, the standard functions in which the block layer ends up when reading data
from a file or mapping.

Usually a page is first regarded as inactive and has to earn its merits to be considered active. However, a
selected number of procedures have a high opinion of their pages and invoke lru_cache_add_active to
place pages directly on the zone’s active list9:

❑ read_swap_cache_async from mm/swap_state.c; this reads pages from the swap cache.

❑ The page fault handlers __do_fault, do_anonymous_page, do_wp_page, and do_no_page; these
are implemented in mm/memory.c.

Understanding what is required to be promoted from an inactive to an active page is the subject of the
next section. This is directly related to operations that move pages from the active to the inactive list and
vice versa. Before these operations can be performed, it is necessary that the kernel transfer all pages
from the per-CPU LRU caches to the global lists; otherwise, pages could be missed by the page-moving
logics. The auxiliary function lru_add_drain is provided for this purpose.

Finally, Figure 18-12 summarizes the movements between the different lists graphically.

18.6.3 Determining Page Activity
The kernel must track not only whether a page is actually used by one or more processes, but also how
often it is accessed in order to assess its importance. As only very few architectures support a direct access
counter for memory pages, the kernel must resort to other means and has therefore introduced two page
flags named referenced and active. The corresponding bit values are PG_referenced and PG_active, and
the usual set of macros as discussed in Section 3.2.2 is available to set or receive the state. Recall that, for
instance, PageReferenced checks the PG_referenced bit, while SetPageActive sets the PG_active bit.

Why are two flags used for the page state? Suppose that only a single flag were used to determine
page activity — PG_active would lend itself to that rather well. When the page is accessed, the flag is

9The page migration code for NUMA systems, which is otherwise not covered in this book, is also a user of the function.

1057

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1058

Chapter 18: Page Reclaim and Swapping

set, but when is it going to be removed again? Either the kernel does not remove it automatically, but
then the page would remain in the active state forever even if it would only be used very little, or not at
all anymore. To remove the flag automatically after some specific time-out would require a huge number
of kernel timers because appropriate hardware support is not available on all CPUs supported by Linux.
Considering the large number of pages that are present in a typical system, this approach is also doomed
to fail.

CPU 1

CPU 0

lru_inactive lru_active

lru_add_pvecs lru_add_active_pvecs

1

1

3 234

SetPageActive

activate_page

shrink_active_list

_ _pagevec_lru_add

2 _ _pagevec_lru_add_active

3 SetPageLRU

4 SetPageActive

Figure 18-12: Page movements between the per-CPU page lists and
the global LRU lists. To simplify matters, only a single zone is used as
the basis of the global lists. Only the most important functions that
move pages between the active and inactive lists are shown.

Having two flags allows for implementing a more sophisticated approach to determining page activity.
The core idea is to use one flag to denote the current activity rating, and another one that signals if the
page has been recently referenced. Both bits need to be set in close cooperation. Figure 18-13 illustrates
the corresponding algorithm. Essentially the following steps are necessary:

1. If the page is deemed active, the PG_active flag is set; otherwise, not. The flag directly corre-
sponds to the LRU list the page is on, namely, the (zone-specific) inactive or active list.

2. Each time the page is accessed, the flag PG_referenced is set. The function responsible for
this is mark_page_accessed, and the kernel must make sure to call it appropriately.

3. The PG_referenced flag and information provided by reverse mapping are used to deter-
mine page activity. The crucial point is that the PG_referenced flag is removed each time an
activity check is performed. page_referenced is the function that implements this behavior.

4. Enter mark_page_accessed again. When it finds that the PG_accessed bit is already set when
it checks the page, this means that no check was performed by page_referenced. The calls

1058

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1059

Chapter 18: Page Reclaim and Swapping

to mark_page_accessed have thus been more frequent than the calls to page_referenced,
which implies that the page is often accessed. If the page is currently on the inactive list,
it is moved to the active list. Additionally, the PG_active bit is set, and PG_referenced is
removed.

5. A downward promotion is also possible. If the page is on the active list and receives
much attention, then PG_referenced is usually set. Once the page starts to experience
less activity, then two calls of page_referenced are required without intervention of
mark_page_accessed before it is put on the inactive list.

PageActive = 0 (inactive_list)

3

3

1 mark_page_accessed

2 page_referenced

3 shrink_active_list

4 activate_page

Move to
active list

Ref 1Ref 0

Move to
inactive list

1

4

1

22

PageActive = 1 (active_list)

Ref 1Ref 0

via 1

12

2

SetPageActive

ClearPageActive

Iru_cache_add Iru_cache_add_active

Figure 18-13: Overview of possible state transitions of a page with respect to PG_active and
PG_referenced, and the corresponding placement of the page on the active and inactive lists.

If a page is steadily accessed, then the calls of mark_page_accessed and page_referenced will essentially
average out, so the page remains on its current list.

A page that is not often accessed (and thus inactive) has none of the bits PG_active and PG_referenced
set. This means that two subsequent activity markings with mark_page_accessed (and without the inter-
ference of page_referenced in between) are required to move it from the inactive to the active list. The
same holds vice versa: A highly active page has both PG_active and PG_referenced set.

All in all, the solution ensures that pages do not bounce between the active and inactive lists too fast,
which would clearly be undesirable for a reliable estimation of the page’s activity level. The method is
a variation of the ‘‘second chance’’ approach discussed at the beginning of this chapter: Highly active
pages get a second chance before they are down-promoted to an inactive page, and highly inactive pages
require a second proof before they become active pages. This is combined with a ‘‘least recently used’’
method (or at least an approximation, because no exact usage count is available for the pages) to realize
page reclaim policy.

Note that while Figure 18-13 illustrates the most important state and list transitions, some more are still
possible. This is caused, on the one hand, by code not covered in this book (e.g., the page migration

1059

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1060

Chapter 18: Page Reclaim and Swapping

code). On the other hand, some changes are necessary to handle special cases, (e.g., the lumpy page
reclaim technique). These exceptions are discussed in the course of this chapter.

Several auxiliary functions are provided by the kernel to support moving pages between both LRU lists:

<mm_inline.h>
void add_page_to_active_list(struct zone *zone, struct page *page)
void add_page_to_inactive_list(struct zone *zone, struct page *page)

void del_page_from_active_list(struct zone *zone, struct page *page)
void del_page_from_inactive_list(struct zone *zone, struct page *page)

void del_page_from_lru(struct zone *zone, struct page *page)

The function names say it all, and the implementation is also a matter of simple list manipulation. The
only thing to note is that del_page_from_lru must be used if the current LRU list of the page is unknown
to the caller.

Moving pages from the active to the inactive list does, however, require more than just handling the list
entries. To promote an inactive page to the active list, activate_page is responsible. Without locking and
statistics accounting, the code looks as follows:

mm/swap.c
void fastcall activate_page(struct page *page)
{

struct zone *zone = page_zone(page);

if (PageLRU(page) && !PageActive(page)) {
del_page_from_inactive_list(zone, page);
SetPageActive(page);
add_page_to_active_list(zone, page);

}
}

This implements exactly the transition as discussed above.

Moving a page from the active to the inactive list is hidden within a larger function that is also respon-
sible to handle shrinking of caches in a wider context, shrink_active_list, discussed in Section 18.6.6.
Internally, the function relies on page_referenced. Besides handling the PG_referenced bit in the way
described above, the function is responsible to query how often the page is referenced from the page
table. This is mainly an application of the reverse mapping mechanism. page_referenced requires the
parameter is_locked, which declares whether the page under consideration is locked by the caller:

mm/rmap.c
int page_referenced(struct page *page, int is_locked)
{

int referenced = 0;
...

if (TestClearPageReferenced(page))
referenced++;

if (page_mapped(page) && page->mapping) {
if (PageAnon(page))

referenced += page_referenced_anon(page);

1060

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1061

Chapter 18: Page Reclaim and Swapping

else if (is_locked)
referenced += page_referenced_file(page);

else if (TestSetPageLocked(page))
referenced++;

else {
if (page->mapping)

referenced += page_referenced_file(page);
unlock_page(page);

}
}
return referenced;

}

The function sums up the number of references the page has received lately. If PG_referenced bit is set,
this is clearly a reference and counted accordingly. Note as per the previous discussion the bit is removed
if it was set.

If the page is mapped into some process address space, the references to the page must be determined
via the hardware-specific bits in the page table. Recall from Section 4.8 that page_referenced_anon
computes the number of accesses to a page in an anonymous mapping, while page_referenced_file
does the same for file-based mappings. On IA-32 and AMD64, for instance, this amounts to summing the
number of page table entries that point to the page in question and have the _PAGE_BIT_ACCESSED bit set,
which is automatically updated by the hardware.

page_referenced_file requires that the page is locked (to protect, e.g., against truncations that would
erase the mapping while the kernel is operating on it). If an unlocked page is passed to page_referenced,
the page is locked. Notice that the last else branch will be executed for an initially unlocked page because
TestSetPageLocked will return the value of the PG_locked bit before changing it to one. Should the page
have been locked from some other part of the kernel in the meantime, then it does not make sense to
wait until the lock is released. Instead, the reference counter is just incremented by 1 because at least the
process that initiated locking the page has accessed the page.

Note that page_referenced will (via page_referenced_one, employed by both page_referenced_file
and page_referenced_anon) also mark a page as referenced if the system currently undergoes swap-
ping and the page belongs to a particular process that holds the swap token — even if it has not been
accessed from somewhere. This prevents pages from this process from being reclaimed, and will increase
performance in situations with heavy swapping. See the details of this mechanism in Section 18.7.

Finally, there’s mark_page_accessed to consider. The implementation is straightforward:

mm/swap.c
void fastcall mark_page_accessed(struct page *page)
{

if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
activate_page(page);
ClearPageReferenced(page);

} else if (!PageReferenced(page)) {
SetPageReferenced(page);

}
}

This implements the state transitions illustrated in Figure 18-13. They are additionally summarized in
Table 18-1.

1061

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1062

Chapter 18: Page Reclaim and Swapping

Table 18-1: Swap Page States

Initial state Target state

Inactive, unreferenced Inactive, referenced

Inactive, referenced Active, unreferenced

Active, unreferenced Active, referenced

18.6.4 Shrinking Zones
The routines for shrinking zones are (among others) supplied with the following information by the other
parts of the kernel:

❑ The NUMA section and the memory zones it contains that are to be processed.

❑ The number of pages to be swapped out.

❑ The maximum number of pages that may be examined to find out if they are suitable for swap-
ping out before the operation is aborted.

❑ The priority assigned to the attempt to free pages. This is not a process priority in the classical
Unix sense, as this would make little sense in kernel mode anyway, but an integer that specifies
how urgently the kernel needs fresh memory. When pages are swapped out in the background
as a preventive measure, this need is not as immediate as when, for example, the kernel has
detected an acute memory shortage and urgently needs fresh memory to execute or complete
an action.

Page selection begins in shrink_zone. However, some more infrastructure must be introduced before we
can discuss the code.

Controlling Scanning
A special data structure that holds the parameters is used to control the scan operation. Notice that
the structure is not only used to pass instructions on how to proceed from the higher level functions
to the lower level ones, but is also used to propagate results in the inverse direction. This informs the
caller on how successful an operation was:

mm/vmscan.c
struct scan_control {

/* Incremented by the number of inactive pages that were scanned */
unsigned long nr_scanned;
/* This context’s GFP mask */
gfp_t gfp_mask;
int may_writepage;
/* Can pages be swapped as part of reclaim? */
int may_swap;

...
int swappiness;
int all_unreclaimable;
int order;

};

1062

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1063

Chapter 18: Page Reclaim and Swapping

The meanings of the elements are closely reflected in their variable names:

❑ nr_scanned reports to the caller how many inactive pages have been scanned and is used to
communicate between the various kernel functions involved in page reclaim.

❑ gfp_mask specifies allocation flags that are valid for the context in which the reclaim function is
invoked. This is important because it is sometimes necessary to allocate fresh memory during
page reclaim. If the context from which reclaim is initiated is not allowed to sleep, this con-
straint must, of course, be forwarded to all functions called; this is precisely what gfp_mask is
designed to do.

❑ may_writepage selects whether the kernel is allowed to write out pages to the backing store. Dis-
abling this opportunity is required sometimes when the kernel runs in laptop mode, as discussed
in Chapter 17.13.

❑ may_swap decides if swapping is allowed as part of the page reclaim endeavors. Swapping is
only forbidden in two cases: if page reclaim runs on behalf of the software suspend mechanism,
and if a NUMA zone explicitly disables swapping. These possibilities are not considered any
further in this book.

❑ swap_cluster_max is not actually related to swapping, but gives a threshold for the number
of pages per LRU list that are at least scanned in one page reclaim step. Usually, this is set to
SWAP_CLUSTER_MAX, defined to 32 per default.

❑ swappiness controls how aggressively the kernel tries to swap out pages; the value can range
between 0 and 100. Per default, vm_swappiness is used. The standard setting is 60, but this can
be tuned via /proc/sys/vm/swappiness. See the discussion in Section 18.6.6 for more details on
how this parameter is used.

❑ all_unreclaimable is used to report the unfortunate situation in which memory in all zones is
currently completely unreclaimable. This can happen, for example, if all pages are pinned by the
mlock system call.

❑ The kernel can actively try to reclaim page clusters of a given page order. The order denotes that
2order contiguous pages are supposed to be reclaimed.

Higher-order allocations consisting of more than a single page are complicated to reclaim espe-
cially when the system has been up and running for some time. The kernel uses the lumpy reclaim
trick — which could also well be called a dirty trick — to nevertheless satisfy such requests, as
discussed below.

Before discussing the page-reclaiming code, recall that struct zone as introduced a long time ago in
Chapter 3.2.2 contains numerous fields that will be required in the following:

<mmzone.h>
struct zone {
...

unsigned long nr_scan_active;
unsigned long nr_scan_inactive;
unsigned long pages_scanned;

...
/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];

...
}

1063

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1064

Chapter 18: Page Reclaim and Swapping

The kernel needs to scan the active and inactive lists to find pages that can be moved between the lists, or
that can be reclaimed from the inactive list. However, the complete lists are not scanned in each pass, but
only nr_scan_active elements on the active, and nr_scan_inactive on the inactive list. Since the kernel
uses an LRU scheme, the number is counted from the tail of the list. pages_scanned remembers how
many pages were scanned in the previous reclaim pass, and vm_stat provides statistical information
about the zone, for instance, the number of currently active and inactive pages. Recall that the statistical
elements can be accessed with the auxiliary function zone_page_state.

Implementation
After having introduced the required auxiliary data structures, let’s discuss how zone shrinking is ini-
tiated. shrink_zone expects an instance of scan_control as a parameter. This instance must be filled
with the appropriate values by the caller. Initially, the function is concerned with determining how many
active and inactive pages are to be scanned; it does this by referring to the current state of the processed
zone and to the passed scan_control instance:

mm/vmscan.c
static unsigned long shrink_zone(int priority, struct zone *zone,
struct scan_control *sc)
{

unsigned long nr_active;
unsigned long nr_inactive;
unsigned long nr_to_scan;
unsigned long nr_reclaimed = 0;

/*
* Add one to ‘nr_to_scan’ just to make sure that the kernel will
* slowly sift through the active list.
*/

zone->nr_scan_active +=
(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;

nr_active = zone->nr_scan_active;
if (nr_active >= sc->swap_cluster_max)

zone->nr_scan_active = 0;
else

nr_active = 0;

zone->nr_scan_inactive +=
(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;

nr_inactive = zone->nr_scan_inactive;
if (nr_inactive >= sc->swap_cluster_max)

zone->nr_scan_inactive = 0;
else

nr_inactive = 0;

Each time shrink_zone is called, the number of active and inactive pages that are to be scanned in this
pass is incremented by the value of nr_scan_active or nr_scan_inactive, which is scaled with the
current priority by means of a right shift, that is, approximately an integer division by 2priority. 1 is
always added to ensure that the counter is also incremented even if the bit-shift operation results in 0
over a lengthy period; this can happen with certain load situations. Adding 1 also ensures that, in this
situation too, the inactive zone is filled or the caches are shrunk at some time or other.

1064

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1065

Chapter 18: Page Reclaim and Swapping

If one of the values is greater than or equal to the maximum page number in a current swap cluster, the
value of the zone element is reset to 0, and the value of the local variable nr_active or nr_inactive is
retained; otherwise, the zone value remains the same, and the local variables are set to 0.

This behavior ensures that the kernel does not start further actions unless the number of active and
inactive pages to be scanned is greater than the threshold value specified by sc->swap_cluster_max, as
the next part of the function shows:

mm/vmscan.c
while (nr_active || nr_inactive) {

if (nr_active) {
sc->nr_to_scan = min(nr_active,

(unsigned long)sc->swap_cluster_max);
nr_active -= sc->nr_to_scan;
shrink_active_list(nr_to_scan, zone, sc, priority);

}

if (nr_inactive) {
sc->nr_to_scan = min(nr_inactive,

(unsigned long)sc->swap_cluster_max);
nr_inactive -= sc->nr_to_scan;
nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,

sc);
}

}
...

return nr_reclaimed;
}

The loop is not executed unless the threshold is exceeded for nr_active or nr_inactive. In the loop, the
kernel makes a distinction as to whether inactive, pages, active pages, or both are to be scanned:

❑ If active pages are to be scanned, the kernel uses shrink_active_list to move pages from the
active to the inactive LRU list. Naturally, the least used of the active pages are moved.

❑ Inactive pages can be removed directly from the caches by means of shrink_active_list.
The function tries to take the required number of pages to be reclaimed from the inactive
list. The number of pages for which this actually succeeded is returned.

The loop is terminated when sufficient pages of both categories have been scanned and the local counters
have reached 0.

Shrinking the LRU lists in shrink_active_list and shrink_inactive_list requires a means to select
pages from these lists, so an auxiliary function to perform this job must be introduced before we can
discuss them.

18.6.5 Isolating LRU Pages and Lumpy Reclaim
Both the active and inactive pages of a zone are kept on lists that need to be protected by a spinlock, to
be precise: by zone->lru_lock. To simplify matters, I have ignored this lock until now because it was
not essential for our purposes. Now we need to consider it, though. When operations with the LRU lists

1065

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1066

Chapter 18: Page Reclaim and Swapping

are performed, they need to be locked, and one problem arises: The page reclaim code belongs to the
hottest and most important paths in the kernel for many workloads, and lock contention is rather high.
Therefore, the kernel need to work outside the lock as often as possible.

One optimization is to place all pages that are about to be analyzed in shrink_active_list and
shrink_inactive_list on a local list, drop the lock, and proceed with the pages on the local list. Since
they are not present on any global zone-specific list anymore, no other part of the kernel except the
owner of the local list can touch them — the pages will not be affected by subsequent operations on the
zone lists. Taking the zone list lock to work with the local list of pages is therefore not required.

The function isolate_lru_pages is responsible for selecting a given number of pages from either the
active, or the inactive list. This is not very difficult: Starting from the end of the list — which is very
important because the oldest pages must be scanned first in an LRU algorithm! — a loop iterates over
the list, takes off one page in each step, and moves it to the local list until the desired number of pages is
reached. For each page, the PG_lru bit is removed because the page is now not on an LRU list anymore.10

So far for the simplest case. Reality, however, is slightly more involved because isolate_lru_pages also
implements the lumpy reclaim algorithm. What is the purpose of lumpy reclaim? It can be difficult to fulfill
higher-order allocation requests that require a continuous interval of physical RAM that consists of more
than one page — the more pages, the harder is the problem. When a system has been running for some
time, physical memory tends to become fragmented more and more. How can this problem be solved?
Consider Figure 18-14, which illustrates the kernel’s approach.11

struct page

LRU list

. .

0 5 10
Physical
page frames

15

Figure 18-14: The lumpy reclaim technique helps the
kernel reclaim larger continuous intervals of physical
RAM.

Assume that the kernel requires four page frames in a row. Unfortunately, the page frames belonging to
the pages that are currently on the LRU list are scattered in memory, and the largest continuous region
consists of two pages. To escape this situation, lumpy reclaim simply takes page frames that surround a
page frame belonging to one of the pages on the LRU list, the tag page. Not only the tag page, but also
the surrounding pages, are selected for reclaim. This way, four continuous page frames in a row can be
attempted to be freed. This does not yet guarantee that a block with four free pages will result because

10Besides, the function needs to acquire a reference on the page and also ensure that the reference count was zero before. Usually,
pages with zero reference count are in the buddy system, as discussed in Chapter 3.5. However, concurrency allows pages with zero
page count to live on the LRU list for a short amount of time.
11While lumpy reclaim is not exactly what computer science likes to teach, it works well in practice, and is above all very
simple — which is sometimes much more important to the kernel than looking good and elegant on paper.

1066

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1067

Chapter 18: Page Reclaim and Swapping

the selected page frames could very well be unreclaimable. However, an attempt has been made,
and the probability of reclaiming higher-order allocations is drastically increased with lumpy reclaim as
compared to the situation without this technique.

Naturally, there are some complications in practice, but these are best discussed directly with the source
code. The first part of isolate_lru_pages is not very interesting. As described above, a single page is
isolated from the LRU list under consideration:

mm/vmscan.c
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,

struct list_head *src, struct list_head *dst,
unsigned long *scanned, int order, int mode)

{
unsigned long nr_taken = 0;
unsigned long scan;

for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
struct page *page;
unsigned long pfn;
unsigned long end_pfn;
unsigned long page_pfn;
int zone_id;

/* Isolate a single LRU page */
...

if (!order)
continue;

The for loop iterates until the desired number of pages has been scanned. If no desired allocation order
is given in order, each loop pass continues after isolating a single page from the LRU list.

However, more work is required for lumpy page reclaim. Recall that page_to_pfn and pfn_to_page
allow converting between instances of struct page and the corresponding page frame number, and
vice versa:

mm/vmscan.c
zone_id = page_zone_id(page);
page_pfn = page_to_pfn(page);
pfn = page_pfn & ˜((1 << order) - 1);
end_pfn = pfn + (1 << order);
for (; pfn < end_pfn; pfn++) {

struct page *cursor_page;

Since it is desirable for the buddy system that higher allocation orders are order-aligned, the kernel
computes the appropriate page frame interval into which the page frame of the current tag page falls.
Consider, as in the example, that the tag page has page frame 6. The allocation order-aligned intervals
for second-order allocations are [0, 3], [4, 7], [8, 11], and so on. The kernel therefore needs to scan the page
frames 4 to 7, inclusive:

mm/vmscan.c
/* The target page is in the block, ignore it. */
if (unlikely(pfn == page_pfn))

continue;

1067

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1068

Chapter 18: Page Reclaim and Swapping

/* Avoid holes within the zone. */
if (unlikely(!pfn_valid_within(pfn)))

break;

cursor_page = pfn_to_page(pfn);
/* Check that we have not crossed a zone boundary. */
if (unlikely(page_zone_id(cursor_page) != zone_id))

continue;
switch (__isolate_lru_page(cursor_page, mode)) {
case 0:

list_move(&cursor_page->lru, dst);
nr_taken++;
scan++;

break;
...

default:
break;

}
}

*scanned = scan;
return nr_taken;

}

The kernel must ignore the target page — it is already contained in the set of selected pages. Processing
must be aborted if the computed interval crosses a memory zone boundary because mixed allocations
(e.g., mixing DMA memory with normal memory) are not allowed.

Notice that __isolate_lru_page has an extra parameter that allows for controlling the activity state of
pages that compose the new cluster. Three choices are possible:

mm/vmscan.c
#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */

The comments say it all — __isolate_lru_pages can be instructed to take only pages in an active state,
inactive state, or either of the two states. Since the pages are directly selected via their page frame num-
ber and not via an LRU list, all possibilities can arise. Note, however, that unused pages that are not part
of any LRU list are not accepted — the page flag PG_lru must be set. Otherwise, __lru_isolate_page
returns the error code -EINVAL. This is handled in the default branch of case, and page selection can
be aborted because the kernel cannot hope for a larger continuous interval because of the resulting
hole anymore.

18.6.6 Shrinking the List of Active Pages
Moving pages from the inactive list to the active list is one of the key actions in the implementation
of the policy algorithm for page reclaim because this is where the importance of the various pages
in the system (or, to be more precise, in the zone) is assessed. It therefore comes as no surprise

1068

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1069

Chapter 18: Page Reclaim and Swapping

that refill_inactive_zone is among the longer functions in the kernel. It performs the following
principal steps:

1. It copies the required number of pages defined by nr_pages from the active list to a tempo-
rary, local list using isolate_lru_pages.

2. It distributes the pages over the active and inactive lists according to their activity level.

3. It frees unimportant pages in bundles.

Figure 18-15 shows the code flow diagram for the first refill_inactive_zone step.

Compute Swap Parameters

refill_inactive_zone

Part2

lru_add_drain

isolate_lru_pages

Figure 18-15: Code flow diagram for
refill_inactive_zone (Part 1).

First of all, the kernel calculates a few parameters to define the aggressiveness and the behavior of the
page reclaim algorithm. Some statistical data are analyzed:

mm/vmscan.c
...

distress = 100 >> min(zone->prev_priority, priority);
mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +

global_page_state(NR_ANON_PAGES)) * 100) /
vm_total_pages;

mapped_ratio = (sc->nr_mapped * 100) / total_memory;
swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;

imbalance = zone_page_state(zone, NR_ACTIVE);
imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
imbalance *= (vm_swappiness + 1);
imbalance /= 100;
imbalance *= mapped_ratio;
imbalance /= 100;

swap_tendency += imbalance;
if (swap_tendency >= 100)

reclaim_mapped = 1;
...

1069

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1070

Chapter 18: Page Reclaim and Swapping

Four values, whose meanings are given below, are calculated12:

❑ distress is the key indicator as to how urgently the kernel needs fresh memory. It is calculated
using the prev_priority value for right-shifting the fixed value 100. prev_priority specifies
the priority with which the zone had to be scanned during the last try_to_free_pages run
until the required number of pages was freed. Notice that the lower prev_priority is, the higher
the priority. The shift operations produce the following distress values for various priorities:

Priority Distress

7 0
6 1
5 3
4 6
3 12
2 25
1 50
0 100

All priority values greater than 7 yield a distress factor of 0. While 0 ensures the kernel that
there is no problem at all, 100 indicates massive trouble.

❑ mapped_ratio indicates the ratio of mapped memory pages (not only used to cache data but also
explicitly requested by processes to store data) to the total available memory. The ratio is calcu-
lated by dividing the current number of mapped pages by the total number of pages available at
system start. The result is scaled to a percentage value by multiplying by 100.

❑ mapped_ratio is used only to calculate a further value that is called swap_tendency and — as its
name suggests — indicates the swap tendency of the system. You are already familiar with the
first two calculation variables. sc_swappiness is an additional kernel parameter that is usually
based on the setting in /proc/sys/vm/swappiness.

❑ If there is a large imbalance between the lengths of the active and inactive lists, the kernel allows
swapping and page reclaim to happen more easily than usual to balance the situation. However,
some effort is made that large imbalances do not have much influence at low swappiness values.

❑ The kernel now reduces all the information calculated so far to a truth value that answers the
following question: Are mapped pages to be swapped out or not?

If swap_tendency is greater than or equal to 100, mapped pages are also swapped out, and
reclaim_mapped is set to 1. Otherwise, the variable retains its default value of 0 so that pages are
only reclaimed from the page cache.

As vm_swappiness is added to swap_tendency, the administrator can enable the swapping of
mapped pages at any time regardless of the other system parameters by assigning the value of
100 to the variable.

The lru_add_drain procedure, which is invoked after the parameters have been calculated, distributes
the data currently held in the LRU cache to the system’s LRU lists. In contrast to lru_cache_add, touched
upon in Section 18.6.2, copying is performed when the temporary caches contain at least one element, not
only when they are completely filled.

12The individual formulas were derived heuristically and are designed to guarantee good performance in many different situations.

1070

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1071

Chapter 18: Page Reclaim and Swapping

Ultimately, the task of shrink_active_list is to move a specific number of pages in the list of active
pages in a zone back to the list of active or inactive pages in a zone. Three local lists, on which page
instances can be buffered, are created to enable the pages to be scanned:

❑ l_active and l_inactive hold pages that are to be put back on the list of active or inactive
pages of the zone at the end of the function.

❑ l_hold stores pages still to be scanned before it is decided to which list they are returned.

This task is delegated to isolate_lru_pages discussed just above. Recall that the function reads the
LRU list from tail to head, but arranges the pages in opposite order on the temporary local list. This is a
key point when implementing the LRU algorithm for page replacement. The seldom-used pages on the
active list automatically move to the rear. As a result, the kernel finds it very easy to scan the least-used
pages because they are located at the beginning of the l_hold list.

The second section of refill_inactive_list begins once the parameters have been calculated. In this
section, the individual pages are distributed to the l_active and l_inactive lists of the zone. Instead of
using a code flow diagram to show how this is done, let’s reproduce and discuss the relevant code:

mm/vmscan.c
...

while (!list_empty(&l_hold)) {
cond_resched();
page = lru_to_page(&l_hold);
list_del(&page->lru);
if (page_mapped(page)) {

if (!reclaim_mapped ||
(total_swap_pages == 0 && PageAnon(page)) ||
page_referenced(page, 0)) {

list_add(&page->lru, &l_active);
continue;

}
}
list_add(&page->lru, &l_inactive);

}
...

The code becomes more complex since we are getting to the very heart of page reclaim. The basic action is
represented by a loop that iterates over all elements of the l_hold list, which in the previous section was
filled with pages regarded as active. These pages must now be reclassified and placed on the l_active
and l_inactive lists.

page_mapped first checks whether the page is embedded in the pages tables of any process. This is
easy to do using the reverse mapping data structures. Recall from Chapter 4 that the information as
to whether the page is mapped in page tables is held in the _mapcount element of each page instance. If
the page is mapped by a single process, the counter value is 0; for non-mapped pages, it is −1. Logically,
page_mapped must therefore check whether page->_mapping is greater than or equal to 0.

If there is no mapping, the page is immediately placed on the list of inactive pages.

If page_mapped returns a true value indicating that the page is associated with at least one process,
it is a little more difficult to decide whether the page is important for the system. One of the

1071

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1072

Chapter 18: Page Reclaim and Swapping

following three conditions must apply before the page can be moved back to the start of the list of
active pages:

1. As discussed in Chapter 4.8.3, the reverse mapping mechanism provides the
page_referenced function to check the number of processes that have used a page since
the last check. This is done by referring to corresponding status bits of the hardware that are
held in the individual page table entries. Although the function returns the number of pro-
cesses, it is only necessary to know whether at least one process has accessed the page, that
is, whether the value returned is greater than 0. The condition is satisfied if this is the case.

2. reclaim_mapped is equal to 0; that is, mapped pages are not to be reclaimed.

3. The system has no swap area and the page just examined is registered as an anonymous
page (in this case, there is nowhere to swap the page out).

Recall that Section 18.6.3 discussed how the call to page_referenced and possibly moving the page to
the inactivity list afterward fit into the big picture of deeming a page active or inactive.

The kernel enters the third and final phase of refill_inactive_zone once all pages have been redis-
tributed from the zone-specific active list to the temporary local l_active and l_inactive lists. Again
there is no need for a separate code flow diagram.

The last step entails not only copying the data in the temporary lists to the corresponding LRU lists of the
processed zone, but also checking whether there are pages that are no longer used (their usage counters
are equal to 0) and can be returned to the buddy system.

To do this, the kernel iterates sequentially over all the pages that have accumulated in the local l_active
and l_inactive lists. It handles all the individual pages in the same way:

❑ Pages taken from the tail of the local lists zone->active_list or inactive_list are added to
the head of the zone-specific active or inactive LRU lists, respectively.

❑ The page instance is added to a page vector. When this is full, all its pages are transferred col-
lectively to __pagevec_release, which first decrements the usage counter by 1 and then returns
the memory space to the buddy system when the counter reaches 0.

All the kernel need do after placing the processed pages back on the zone-specific lists is update a few
variables relating to memory management statistics.

18.6.7 Reclaiming Inactive Pages
Up to now, the pages in a zone have been redistributed on LRU lists to find good candidates
for reclaim. However, their memory space has not been released. This final step is performed
by the shrink_inactive_list and shrink_page_list functions, which work hand-in-hand.
shrink_inactive_lists groups pages from zone->inactive_list into chunks, which benefits swap
clustering, while shrink_page_list passes the members on the resulting list downward and sends the
page to the associated backing store (which means the page is synchronized, swapped out, or discarded).
This apparently simple task, however, gives rise to a few problems, as you will see below.

Besides a list of pages and the usual shrink control parameter, shrink_page_list accepts another param-
eter that allows two modes of operations: PAGEOUT_IO_ASYNC for asynchronous and PAGEOUT_IO_SYNC

1072

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1073

Chapter 18: Page Reclaim and Swapping

for synchronous writeout. In the first case, writeout requests are handed to the block layer without fur-
ther ado, while in the second case, the kernel waits for the write operations to complete after issuing a
corresponding request.

Shrinking the Inactive List
As shrink_inactive_list is responsible only for removing pages from the zone->inactive_list
chunk-by-chunk, its implementation is not particularly complicated, as the code flow diagram in
Figure 18-16 shows.

Put back unfreeable
pages to LRU lists

Return number of reclaimed pages

Ite
ra

te
 u

nt
il

de
si

re
d

nu
m

be
r

of
 p

ag
es

 h
av

e
be

en
 re

cl
ai

m
ed

or
 th

e
m

ax
im

al
 n

um
be

r h
as

be
en

 p
ro

ce
ss

ed

Handle direct reclaim

shrink_page_list

isolate_lru_pages

lru_add_drain

shrink_cache

Figure 18-16: Code flow diagram for
shrink_cache.

The first step is to invoke the familiar lru_add_drain function to distribute the current content of the
LRU cache to the lists of active and inactive pages in the various zones. This is necessary to cover all
inactive pages currently present in the system.

A loop is then repeatedly executed until either the maximum permissible number of pages has been
scanned or the required number of pages has been written back. Both numbers are passed to the proce-
dure as a parameter.

Within the loop, the isolate_lru_pages function, as discussed in Section 18.6.5, is invoked to remove a
bundle of pages from the back of the list of inactive pages so that the most inactive pages are swapped
out by preference. The kernel essentially passes the finished list to shrink_page_list, which initiates
writing back the pages on the list. However, things are slightly complicated by lumpy writeback:

mm/vmscan.c
nr_taken = isolate_lru_pages(sc->swap_cluster_max,

&zone->inactive_list,
&page_list, &nr_scan, sc->order,
(sc->order > PAGE_ALLOC_COSTLY_ORDER)?

ISOLATE_BOTH : ISOLATE_INACTIVE);
nr_active = clear_active_flags(&page_list);
...
/* Handle page accounting */
...
nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

1073

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1074

Chapter 18: Page Reclaim and Swapping

Recall that isolate_lru_pages also picks pages adjacent to the page frame of a page on the free list
if lumpy reclaim is used. If the allocation order of the request that led to the current reclaim pass is
larger than the threshold order specified in PAGE_ALLOC_COSTLY_ORDER, lumpy reclaim is allowed
to use both active and inactive pages when picking pages surrounding the tag page. For small allocation
orders, only inactive pages may be used. The reason behind this is that larger allocations usually
cannot be satisfied if the kernel is restricted to inactive pages — the chance that an active page is
contained in large intervals is simply too big on a busy kernel. PAGE_ALLOC_COSTLY_ORDER is per
default set to 3, which means that the kernel considers allocations of 8 and more continuous pages as
complicated.

Although all pages on the inactive list are guaranteed to be inactive, lumpy reclaim can lead to active
pages on the result list of isolate_lru_pages. To account these pages properly, the auxiliary function
clear_active_flags iterates over all pages, counts the active ones, and clears the page flag PG_active
from any of them. Finally, the page list can be pushed onward to shrink_page_list for writeout. Notice
that the asynchronous mode is employed.

Notice that it is not certain that all pages selected for reclaim can actually be reclaimed.
shrink_page_list leaves such pages on the passed list and returns the number of pages for
which it succeeded to initiate writeout. This figure must be added to the total number of swapped-out
pages to determine when work may be terminated.

Direct reclaim requires one more step:

mm/vmscan.c
if (nr_freed < nr_taken && !current_is_kswapd() &&

sc->order > PAGE_ALLOC_COSTLY_ORDER) {
congestion_wait(WRITE, HZ/10);

...
nr_freed += shrink_page_list(&page_list, sc,

PAGEOUT_IO_SYNC);
}

If not all pages that were supposed to be reclaimed could have been reclaimed, that is, if nr_freed <
nr_taken, some pages on the list have been locked and could not be written out in asynchronous mode.13

If the kernel is performing the current reclaim pass in direct reclaim mode, that is, was not called from
the swapping daemon kswapd, and reclaims to fulfill a high-order allocation, then it first waits for any
congestion on the block devices to settle. Afterward, another writeout pass is performed in synchronous
mode. This has the drawback that higher-order allocations are somewhat delayed, but since they do not
happen so often, this is not an issue. Allocations smaller than PAGE_ALLOC_COSTLY_ORDER that arise much
more frequently are not disturbed.

Finally, the non-reclaimable pages must be returned to the LRU lists. Lumpy reclaim and failed writeout
attempts might have led to active pages on the local list, so both the active and the inactive LRU lists
are possible destinations. To preserve the LRU order, the kernel iterates over the local list from tail to
head. Depending on whether the page is active or not, it is returned to the start of the appropriate LRU
list using either add_page_to_active_list or add_page_to_inactive_list. Once again, the usage
counter of each page must be decremented by 1 because it was incremented accordingly at the start of
the procedure. The now familiar page vectors are used to ensure that this is done as quickly as possible
because they perform processing block-by-block.

13There can also be other reasons for this, for instance, a failed writeout, but the reason mentioned is the essential cause.

1074

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1075

Chapter 18: Page Reclaim and Swapping

Performing Page Reclaim
shrink_page_list takes a list of pages selected for reclaim and attempts to write back to the appro-
priate backing store. This is the last step performed by the policy algorithm — everything else is the
responsibility of the technical part of swapping. The shrink_page_list function forms the interface
between the kernel’s two subsystems. The associated code flow diagram is shown in Figure 18-17. Some
of the many corner cases this function has to deal with are ignored so that inessential details do not
obstruct the view on the essential principles of operation.

Check if page must be kept,
or is being written back

Anonymous page without swap slot?

page_mapped?

pageDirty?

shrink_page_list

Part 2 Part 3

Update statistics

Yes No

Ite
ra

te
 o

ve
r g

iv
en

 s
et

 o
f p

ag
es

try_to_unmap

add_to_swap

Figure 18-17: Code flow diagram for shrink_page_list (Part 1)

Here, too, the basic framework of the function is a loop that iterates over the various elements of the
page list until there are none left. As the pages are either passed permanently to the lower layers of the
swapping subsystem or are put on a second list if they cannot be reclaimed, it is certain that the loop will
be finished at some time or other and will not continue to run endlessly.

In each loop iteration, a page is selected from the page list (the list is processed from head to tail again).
First of all, the kernel must decide if the page must be kept. This can happen for the following reasons:

❑ The page is locked by some other part of the kernel. If this is the case, the page is not reclaimed;
otherwise, it is locked by the current path and will be reclaimed.

❑ The second condition is more complicated. The following code snippet shows the conditions
under which a page is not reclaimed, but returned to the active LRU list:

mm/vmscan.c
referenced = page_referenced(page, 1);
/* In active use or really unfreeable? Activate it. */
if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&

referenced && page_mapping_inuse(page))
/* Set PG_active flag and keep page */

page_referenced checks (as discussed above) if the page was recently referenced by any of
its users. This alone, however, is not sufficient to prevent reclaiming the page. Additionally,

1075

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1076

Chapter 18: Page Reclaim and Swapping

the allocation order for which the current reclaim pass works must be below or equal to
PAGE_ALLOC_COSTLY_ORDER, that is, less than or equal to eight pages. Besides, the page must
fulfill one of the following conditions:

❑ The page is mapped into a page table as checked by page_mapped — see Section 4.8.3 —
or is used in a user-mode virtual address space.

❑ The page is contained in the swap cache.

❑ The page is contained in an anonymous mapping.

❑ The page is mapped into userland via a file mapping. This case is not checked with the help
of page tables, but by mapping->i_mmap and mapping_i_map_nonlinear, which contain the
mapping information for regular and nonlinear mappings.

page_mapping_in_use checks for these conditions. Fulfilling any of them does not mean that
the page cannot be reclaimed at all — the pressure from high allocation orders that wait to be
fulfilled just needs to be large enough.

Recall that shrink_inactive_list can call shrink_page_list twice: first in asynchronous and then
in synchronous writeback mode. Therefore, it can happen that the considered page is currently under
writeback as indicated by the page flag PG_writeback. If the current pass requests synchronous write-
back, then wait_on_page_writeback is used to wait until all pending I/O operations on the page have
been finished.

If the page currently being considered by shrink_page_list is not associated with a backing store, then
the page has been generated anonymously by a process. When pages of this type must be reclaimed,
their data are written into the swap area. When a page of this type is encountered and no swap slot has
been reserved yet, add_to_swap is invoked to reserve a slot and add the page to the swap cache. At the
same time, the relevant page instance is provided with swapper_space (see Section 18.4.2) as a mapping
so that it can be handled in the same way as all other pages that already have a mapping.

If the page is mapped into the address tables of one or more processes (as before, checked using
page_mapped), the page table entries that point to the page must be removed from the page tables
of all processes that reference it. The rmap subsystem provides the try_to_unmap function for this
purpose; it unmaps the page from all processes that use it (we do not examine this function in detail
because its implementation is not particularly interesting). In addition, the architecture-specific
page table entries are replaced with a reference indicating where the data can now be found. This
is done in try_to_unmap_one. The necessary information is obtained from the page’s address space
structure, which contains all backing store data. It is important that two bits are not set in the new page
table entry:

❑ A missing _PAGE_PRESENT bit indicates that the page has been swapped out. This is important
when a process accesses the page: A page fault is generated, and the kernel needs to detect that
the page has been swapped out.

❑ A missing _PAGE_FILE bit indicates that the page is in the swap cache. Recall from Section 4.7.3
that page table entries used for nonlinear mappings also lack _PAGE_PRESENT, but can be distin-
guished from swap pages by a set _PAGE_FILE bit.

Clearing the page table entry with ptep_clear_flush delivers a copy of the previous page
table entry (PTE). If it contains the dirty bit, then the page was modified by some user during
the reverse mapping process. It needs to be synchronized with the backing store (in this case

1076

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1077

Chapter 18: Page Reclaim and Swapping

the swap space) in shrink_page_list afterward. Therefore the dirty bit is transferred from the
PTE to the page bit PG_dirty.

Let’s turn our attention back to shrink_page_list. What now follows is a series of queries that, depend-
ing on page state, trigger all the operations needed to reclaim the page.

PageDirty checks whether the page is dirty and must therefore be synchronized with the underlying
storage medium. This also includes pages that live in the swap address space. If the page is dirty, this
requires a few actions that are represented by Part 2 in Figure 18-17. They are better discussed by looking
at the code itself.

❑ The kernel ensures that the data are written back by invoking the writepage address space rou-
tine (which is called by the pageout helper function that supplies all the required arguments).
If the data were mapped from a file in the filesystem, a filesystem-specific routine handles the
appropriate synchronization, and swap pages are inserted in their assigned page slot using
swap_writepage.

❑ Depending on the result of pageout, different actions are required:

mm/vmscan.c
/* Page is dirty, try to write it out here */
switch (pageout(page, mapping, sync_writeback)) {
case PAGE_KEEP:

goto keep_locked;
case PAGE_ACTIVATE:

goto activate_locked;
case PAGE_SUCCESS:

if (PageWriteback(page) || PageDirty(page))
goto keep;

...
case PAGE_CLEAN:

; /* try to free the page below */
}

The sync_writeback parameter to pageout denotes the writeback mode in which
shrink_page_list is operating.

The most desirable return code is PAGE_CLEAN: The data are synchronized with the backing store
and the memory can be reclaimed — this happens in Part 3 of the code flow diagram.

If a write request was successfully issued to the block layer, then PAGE_SUCCESS is returned. In
asynchronous writeback mode, the page will usually still be under writeback when pageout
returns, and jumping to the label keep just keeps the page on the local page list, which is
returned to the shrink_list — they will be returned to the LRU lists there. Once the write oper-
ation has been performed, the page contents are synchronized with the backing store so that the
page is no longer dirty the next time shrink_list is invoked and can therefore be swapped out.

If the write operation was already finished when pageout returned, the data have been written
back, and the kernel can continue with Step 3.

If an error has occurred during writeback, the result is either PAGE_KEEP or PAGE_KEEP_ACTIVATE.
Both make the function keep the page on the aforementioned return list, but PAGE_KEEP_
ACTIVATE additionally sets the page state to PG_active (this can, e.g., happen if the page’s
address space does not provide a writeback method, which makes trying to synchronize the
page useless).

1077

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1078

Chapter 18: Page Reclaim and Swapping

Figure 18-18 shows the code flow diagram for the case that the page is not dirty. Keep in mind that the
kernel can also reach this path coming from Step 2.

Part 1

shrink_list

remove_mapping

try_to_release_page

_ _delete_from_swap_cache

swap_free

_ _remove_from_page_cache

Page has buffers?

Return pages to buddy system

Page in swap cache?
Yes

No

Figure 18-18: Code flow diagram for shrink_list (Part 3).

❑ try_to_release is invoked if the page has private data and buffers are therefore associated with
the page (this is typically the case with pages that contain filesystem metadata). This function
attempts either to release the page using the releasepage operation in the address space struc-
ture or, if there is no mapping, to free the data using try_to_free_buffers.

❑ The kernel then detaches the page from its address space. The auxiliary function
remove_mapping is provided for this purpose.

If the page is held in the swap cache, it is certain that the data are by now present both in the
swap space and in the swap cache. Since the page has been swapped out, the swap cache has
fulfilled its duty, and the page can be removed from there with __delete_from_swap_cache.
The kernel additionally uses swap_free to decrement the usage counter of the page in the swap
area. This is necessary to reflect the fact that there is no longer a reference to the page in the swap
cache.

❑ If the page is not in the swap cache, it is removed from the general page cache using
__remove_from_page_cache.

It is now guaranteed that the processed page is not present in the kernel’s data structures. Nevertheless,
the main issue has not been resolved — the RAM memory occupied by the page has not yet been freed.
The kernel does this in chunks using page vectors. The page to be freed is inserted in the local freed_pvec
page vector using pagevec_add. When this vector is full, all its elements are released collectively by
means of __pagevec_release_nonlru. As discussed in Section 18.6.2, the function returns the memory
space occupied by the pages to the buddy system. The memory reclaimed in this way can be used for
more important tasks — and this is precisely the purpose of swapping and page reclaim.

A few trivial points need to be cleared up once shrink_list has iterated over all the pages passed:

❑ The kernel’s swapping statistics are updated.

❑ The number of freed pages is returned as an integer result.

1078

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1079

Chapter 18: Page Reclaim and Swapping

18.7 The Swap Token
One of the methods to avoid page thrashing is the swap token, as briefly discussed in Section 18.1.2. The
method is simple but effective. When multiple processes swap pages concurrently, it can occur that most
of the time is spent writing the pages to disk and reading them in again, only to swap them out again
after a short interval. This way much of the available time is spent writing pages back and forth to disk,
but little progress is achieved. Clearly, this is a rare situation, but nevertheless a very frustrating one if
an interactive user sits on his chair and watches the activity on the hard disk, while nothing is actually
being achieved.

To prevent this situation, the kernel makes one and only one of the processes that currently swap in pages
the owner of the so-called swap token. The benefit of having the swap token is that pages of the holder
will not be reclaimed — or will, at least, be exempted from reclaim as well as possible. This allows any
swapped-in pages to remain in memory, and increases the chance that work is going to be finished.

Essentially, the swap token implements a sort of ‘‘superordinate scheduling’’ for processes that swap
in pages. (However, the results of the CPU scheduler are not modified at all!) As with every scheduler,
fairness between processes must be ensured, so the kernel guarantees that the swap token will be taken
away from one process after some time and passed on to another one. The original swap token proposal
(see Appendix F) uses a time-out after which the token is passed to the next process, and this strategy was
employed in kernel 2.6.9 when the swap token approach was first integrated. During the development
of kernel 2.6.20, a new scheme to preempt the swap token was introduced; how this works is discussed
below. It is interesting that the swap token implementation is very simple and consists of only roughly
100 lines — this proves once more that good ideas need not be complicated.

The swap token is implemented by a global pointer to the mm_struct of the process that is currently
owning the token14:

mm/thrash.h
struct mm_struct *swap_token_mm;
static unsigned int global_faults;

The global variable global_faults counts the number of calls to do_swap_page. Every time a page is
swapped in, this function is called (more about this in the next section), and the counter is increased. This
provides a possibility for deciding how often a process has tried to grab the swap token in contrast to
other processes in the system. Three fields in struct mm_struct are used to answer this question:

<mm_types.h>
struct mm_struct {
...

unsigned int faultstamp;
unsigned int token_priority;
unsigned int last_interval;

...
}

14Actually, the memory region could be shared among several processes, and the swap token is associated with a specific memory
region, not a specific process. The swap token could therefore belong to more than one process at a time in this sense. In reality,
it belongs to the specific memory region. To simplify matters, however, assume that just one single process is associated with the
memory region of the swap token.

1079

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1080

Chapter 18: Page Reclaim and Swapping

faultstamp contains the value of global_faults when the kernel tried to grab the token last.
token_priority is a swap-token-related scheduling priority that regulates access to the swap token, and
last_interval denotes the length of the interval (again in units of global_faults) during which the
process was waiting for the swap token.

The swap token is grabbed by calling grab_swap_token, and the meaning of the aforementioned values
will become clearer by inspecting the source code:

mm/thrash.c
void grab_swap_token(void)
{

int current_interval;
global_faults++;
current_interval = global_faults - current->mm->faultstamp;

...
/* First come first served */
if (swap_token_mm == NULL) {

current->mm->token_priority = current->mm->token_priority + 2;
swap_token_mm = current->mm;
goto out;

}
...

If the swap token is not assigned to any process yet, it can be grabbed without problems. Jumping to the
label out will just update the settings for faultstamp and last_interval as you will see below.

Naturally, things are slightly more involved if the swap token is currently held by some process. In this
case, the kernel has to decide if the new process should preempt the old one:

mm/thrash.c
if (current->mm != swap_token_mm) {

if (current_interval < current->mm->last_interval)
current->mm->token_priority++;

else {
if (likely(current->mm->token_priority > 0))

current->mm->token_priority--;
}
/* Check if we deserve the token */
if (current->mm->token_priority >

swap_token_mm->token_priority) {
current->mm->token_priority += 2;
swap_token_mm = current->mm;

}
} else {

/* Token holder came in again! */
current->mm->token_priority += 2;

}
...

Consider the simple case first: If the process requesting the swap token already has the token (the second
else branch), this means that it swaps in a lot of pages. Accordingly, the token priority is increased
because it is badly required.

If a different process holds the token, then the current task‘s token priority is increased if it has been
waiting longer for the token than the holder had to, or decreased otherwise. Should the current token

1080

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1081

Chapter 18: Page Reclaim and Swapping

priority exceed the priority of the holder, then the token is taken from the holder and given to the
requesting process.

Finally, the token time stamps of the current process need to be updated:

mm/thrash.c
out:

current->mm->faultstamp = global_faults;
current->mm->last_interval = current_interval;
return;

}

Notice that if a process cannot obtain the swap token, it still can swap in pages as required but will not be
protected from memory reclaim.

grab_swap_token is only called from a single place, namely, at the beginning of do_swap_page, which
is responsible for swapping-in pages. The token is grabbed if the requested page cannot be found in the
swap cache and needs to be read in from the swap area:

mm/memory.c
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
int write_access, pte_t orig_pte)
{
...

page = lookup_swap_cache(entry);
if (!page) {

grab_swap_token(); /* Contend for token _before_ read-in */
...

/* Read the page in */
...

}
...
}

put_swap_token must be employed to release the swap token for the current process when the mm_struct
of the current swap token is not required anymore. disable_token takes the token away forcefully.
This is necessary when swapping out is really necessary, and you will encounter the corresponding cases
below.

The key to the swap token implementation lies in the places where the kernel checks if the current
process is the owner of the swap token, and the consequences for the process if it has the swap token.
has_swap_token tests if a process has the swap token. The check is, however, only performed at a single
place in the kernel: when it checks if a page has been referenced (recall that this is one of the essential
ingredients to decide if a page is going to be reclaimed, and that page_referenced_one is a subfunction
of page_referenced, which is only called from there):

mm/rmap.c
static int page_referenced_one(struct page *page,

struct vm_area_struct *vma, unsigned int *mapcount)
{
...

/* Pretend the page is referenced if the task has the
swap token and is in the middle of a page fault. */

1081

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1082

Chapter 18: Page Reclaim and Swapping

if (mm != current->mm && has_swap_token(mm) &&
rwsem_is_locked(&mm->mmap_sem))

referenced++;
...
}

Two situations must be distinguished:

1. The memory region in which the page in question is located belongs to the task on whose
behalf the kernel is currently operating, and this task holds the swap token. Since the owner
of the swap token is allowed to do what it wants with its pages, page_referenced_one
ignores the effect of the swap token.

This means that the current holder of the swap token is not prevented from reclaiming
pages — if it wants to do so, then the page is really not necessary and can be reclaimed with-
out hindering its work.

2. The kernel operates on behalf of a process that does not hold the swap token, but operates
on a page that belongs to the address space of the swap token holder. In this case, the page is
marked as referenced and is therefore protected from being moved to the inactive list from
being reclaimed, respectively.

However, one more thing needs to be considered: While the swap token has a beneficial
effect on highly loaded systems, it affects loads with little swapping adversely. The ker-
nel therefore adds another check before it marks the page referenced, namely, if a certain
semaphore is held. The original swap token proposal requires enforcing the effect of the
swap token at the moment when a page fault is handled. Since this is not so easy to detect
in the kernel, the behavior is approximated by checking if the mmap_sem semaphore is held.
While this can happen for several reasons, it also happens in the page fault code, and this is
good enough as an approximation.

The probability is low that a page fault happens when the system requires only little or
no swapping. However, the probability increases if the corresponding swap pressure gets
higher. All in all, this means that the swap token mechanism is gradually being enforced
the more page faults there are in the system. This removes the negative impact of the swap
token on systems with little swapping activity but retains the positive effect on highly
loaded systems.

18.8 Handling Swap-Page Faults
While swapping pages out of RAM memory is a relatively complicated undertaking, swapping them in
is much simpler. As discussed in Chapter 4, the processor triggers a page fault when an attempt is made
to access a page that is registered in the virtual address space of the process but is not mapped into RAM
memory. This does not necessarily mean that a swapped-out page has been accessed. It is also possible,
for example, that an application has tried to access an address that is not reserved for it, or that a nonlinear
mapping is involved. The kernel must therefore first find out whether it is really necessary to swap in a
page; it invokes the architecture-specific function handle_pte_fault, as discussed in Section 4.11 to do
this by examining the memory management data structures.

1082

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1083

Chapter 18: Page Reclaim and Swapping

Although the kernel reclaims all pages in the same way regardless of their backing
store, this does not apply for the opposite direction. The method described here is
only for anonymously mapped data that are read from one of the system’s swap
areas. When a page belonging to a file mapping is not present, the mechanisms
discussed in Chapter 8 are responsible for providing the data.

18.8.1 Swapping Pages in
You already know from Chapter 4 that page faults as a result of accessing a swapped-out page are han-
dled by do_swap_page from mm/memory.c. As the associated code flow diagram in Figure 18-19 shows,
it is much easier to swap a page in than to swap it out, but it still involves more than just a simple read
operation.

do_swap_page

grab_swap_token

swapin_readahead

read_swap_cache_async

lock_page

mark_page_accessed

swap_free

page_add_rmap

lookup_swap_cache failed?

Figure 18-19: Code flow diagram for do_swap_page.

The kernel must not only check whether the requested page is still or already in the swap cache, but it
also uses a simple readahead method to read several pages from the swap area in a chunk to anticipate
future possible page faults.

As discussed in Section 18.4.1, the swap area and slot of a swapped-out page are held in the page
table entry (the actual representation differs from machine to machine). To obtain general values, the
kernel first invokes the familiar pte_to_swp_entry function to a swp_entry_t instance with machine-
independent values that uniquely identify the page.

On the basis of these data, lookup_swap_cache checks whether the required page is in the swap cache.
This applies if either the data have not yet been written or the data are shared and have already been
read earlier by another process.

1083

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1084

Chapter 18: Page Reclaim and Swapping

If the page is not in the swap cache, the kernel must not only cause the page to be read, but must also
initiate a readahead operation to read a few pages in anticipation:

❑ grab_swap_token grabs the swap token as described before.

❑ swapin_readahead is responsible to perform the readahead. As a result, read requests are issued
not only for the desired page but also for a few pages in the adjacent slots. This requires rela-
tively little effort but speeds things up considerably because processes very often access the data
they need from memory sequentially. When this happens, the corresponding pages will have
already been read into memory by the readahead mechanism.

❑ read_swap_cache_async is called once more for the presently required page. As the func-
tion name indicates, the read operation is asynchronous. However, the kernel uses a trick
to ensure that the required data have been read in before further work is commenced.
read_swap_cache_async locks the page before a read request is submitted to the block layer.
When the block layer has finished the data transfer, the page is unlocked. Therefore, it is
sufficient to call lock_page in do_swap_page to lock the page — the operation will have to
wait until the block layer unlocks the page. Unlocking the page from the block layer’s side is,
however, a confirmation that the read request has been completed.

I take a look at the implementation of these two actions below.

Once the page has been swapped in (if necessary), the following points must be addressed regardless of
whether the page came from the page cache or had to be read from a block device.

The page is first marked with mark_page_accessed so that the kernel regards it as accessed — recall the
state diagram in Figure 18-13 in this context. It is then inserted in the page tables of the process, and the
corresponding caches are flushed if necessary. Thereafter, page_add_anon_rmap is invoked to include
the page in the reverse mapping mechanism discussed in Chapter 4. The familiar swap_free function
then checks whether the slot in the swap area can be freed. This also ensures that the usage counter in
the swap data structure is decremented by 1. If the slot is no longer needed, the routine modifies the
lowest_bit or highest_bit fields of the swap_info instance provided the swap page is at one of its
two ends.

If the page is accessed in Read/Write mode, the kernel must conclude the operation by invoking
do_wp_page. This creates a copy of the page, adds it to the page tables of the process that caused the
fault, and decrements the usage counter on the original page by 1. These are the same steps performed
by the copy-on-write mechanism discussed in Chapter 4.

18.8.2 Reading the Data
Two functions read data from swap space into system RAM. read_swap_cache_async creates the nec-
essary preconditions and performs additional management tasks, and swap_readpage is responsible
for submitting the actual read request to the block layer. Figure 18-20 shows the code flow diagram for
read_swap_cache_async (assume that no errors occur during page allocation or because of race condi-
tions when reading in swapped-out pages).

find_get_page is first invoked to check whether the page is in the swap cache. This can be the case
because the readahead operations could have already provided the page. It’s good if the page is already
here because this simplifies things: The desired page can immediately be returned.

1084

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1085

Chapter 18: Page Reclaim and Swapping

Page in cache? Return page

read_swap_cache_async

find_get_page

alloc_page_vma

add_to_swap_cache

lru_cache_add_active

swap_readpage

Figure 18-20: Code flow diagram for read_swap_cache_async.

If the page is not found, page_alloc_vma (which ultimately reduces to alloc_page on non-NUMA
systems) must be called to allocate a fresh memory page to hold the data from the swap area. Requests
for memory made with alloc_pages enjoy high priority. For instance, the kernel attempts to swap out
other pages to provide fresh memory if not enough free space is available. Failure of this function —
indicated by the return of a NULL pointer — is very serious and results in immediate abortion of
swap-in. In this situation, the higher-level code instructs the OOM killer to close the least-important
process in the system that has a comparatively large number of memory pages in order to obtain
free memory.

If the page is successfully reserved (and this is usually the case because only very few users manage to
inadvertently load the system to such an extent that the OOM killer must be deployed), the kernel adds
the page instance to the swap cache using add_to_swap_cache and to the LRU cache (of the active pages)
using lru_cache_add_active. The page data are then transferred from the swap area to RAM memory
by means of swap_readpage.

swap_readpage initiates data transfer from hard disk to RAM memory once the necessary preconditions
have been satisfied. This is done in two short steps. get_swap_bio generates an appropriate BIO request
to the block layer, and submit_bio sends the request.

Two things require special attention:

❑ add_page_to_swap_cache automatically locks the page.

❑ swap_readpage instructs the block layer to call end_swap_bio_read when the page has been
completely read in. This sets the PG_uptodate flag if everything went well, and additionally
unlocks the page. This is important because the read operation is asynchronous. However, the
kernel can be sure that the page is filled with the required data when it is marked up-to-date and
unlocked.

18.8.3 Swap Readahead
As when reading files, the kernel also uses a readahead mechanism to read data from swap areas.
This ensures that data are read in anticipation so that future page-in requests can be satisfied quickly,
thus improving system performance. In contrast to the rather complicated file readahead method, the

1085

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1086

Chapter 18: Page Reclaim and Swapping

corresponding mechanism for the swapping subsystem mechanism is relatively simple, as the following
code demonstrates:

mm/memory.c
void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
{

int i, num;
struct page *new_page;
unsigned long offset;

/*
* Get the number of handles we should do readahead io to.
*/
num = valid_swaphandles(entry, &offset);
for (i = 0; i < num; offset++, i++) {

/* Ok, do the async read-ahead now */
new_page = read_swap_cache_async(swp_entry(swp_type(entry),

offset), vma, addr);
if (!new_page)

break;
page_cache_release(new_page);

}
lru_add_drain(); /* Push any new pages onto the LRU now */

}

The kernel invokes valid_swaphandles to calculate the number of readahead pages. Typically,
2page_cluster pages are read, where page_cluster is a global variable that is set to 2 for systems
with less than 16 MiB of memory and to 3 for all others. This produces a readahead window of four or
eight pages (/proc/sys/vm/page-cluster allows for tuning the variable from userspace, and to disable
swap-in readahead by setting it to zero). However, the value calculated by valid_swaphandles must be
reduced in the following situations:

❑ If the requested page is near the end of the swap area, the number of readahead pages must be
reduced to prevent reading beyond the area boundary.

❑ If the readahead window includes free or unused pages, the kernel reads only the valid data
before these pages.

read_swap_cache_async successively submits read requests for the selected pages to the block layer. If
the function returns a NULL pointer because no memory page could be allocated, the kernel aborts swap-
in because clearly no memory is available for further pages and the readahead mechanism is therefore
less important than the memory shortage prevailing in the system.

18.9 Initiating Memory Reclaim
In the implementation overview at the beginning of this chapter, I demonstrated that the page selection
and swap-out routines discussed so far are controlled by a further layer that decides when and how many
pages are reclaimed. This decision is redirected to two places — first to the kswapd daemon that attempts
to maintain optimal memory balance in the system when no too-memory-intensive applications are
running; and second to an emergency mechanism that kicks in when the kernel thinks it is nearly totally
out of memory.

1086

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1087

Chapter 18: Page Reclaim and Swapping

18.9.1 Periodic Reclaim with kswapd
kswapd is a kernel daemon that is activated by kswap_init each time the system is started and continues
to execute for as long as the machine is running:

mm/vmscan.c
int kswapd_run(int nid)
{

pg_data_t *pgdat = NODE_DATA(nid);
int ret = 0;

...
pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);

...
return ret;

}

static int __init kswapd_init(void)
{

pg_data_t *pgdat;

swap_setup();
for_each_node_state(nid, N_HIGH_MEMORY)

kswapd_run(nid);

return 0;
}

The code shows that a separate instance of kswapd is activated for each NUMA zone. On some machines,
this serves to enhance system performance as different speeds of access to various memory areas are
compensated. Non-NUMA systems use only a single kswapd, though.

More interesting is the execution of the kswapd daemon implemented in kswapd from mm/vmscan.c. Once
the necessary initialization work has been completed,15 the following endless loop is executed:

mm/vmscan.c
static int kswapd(void *p)
{

unsigned long order;
pg_data_t *pgdat = (pg_data_t*)p;
struct task_struct *tsk = current;
DEFINE_WAIT(wait);

...
current->reclaim_state = &reclaim_state;

tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
...

order = 0;
for (; ;) {

unsigned long new_order;

prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
new_order = pgdat->kswapd_max_order;
pgdat->kswapd_max_order = 0;

15On NUMA systems, set_cpus_allowed restricts execution of the daemon to processors associated with the memory zone.

1087

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1088

Chapter 18: Page Reclaim and Swapping

if (order < new_order) {
/*
* Don’t sleep if someone wants a larger ’order’
* allocation
*/

order = new_order;
} else {

schedule();
order = pgdat->kswapd_max_order;

}
finish_wait(&pgdat->kswapd_wait, &wait);

...
balance_pgdat(pgdat, 0, order);

}
return 0;

}

❑ prepare_wait places the task on a NUMA-zone-specific wait queue that is passed as parameter
to the daemon.

❑ The function keeps a record of the last allocation order for which node balancing was per-
formed. If the allocation order specified in kswapd_max_order is greater than the last value,
balance_pgdat is invoked to rebalance the node (I discuss this shortly). Otherwise, the kernel
transfers control to another function or to userspace by means of schedule.

If the kernel thinks it necessary to invoke the daemon out of sequence, it does so by means of
wake_up_interruptible.

As described in Chapter 14, finish_wait performs the necessary clean-up work after the task
has been woken.

❑ Following wakeup and after schedule, the kernel first rebalances the node and then the process
starts afresh. If the current allocation order is greater than that for which balancing was last per-
formed, balance_pgdat is invoked again with the larger parameter; otherwise the daemon goes
to sleep.

Figure 18-21 shows the code flow diagram for the balance_pgdat function defined in mm/vmscan.c. In
this function, the kernel decides how many memory pages are to be freed and forwards this information
to the shrink_zone function discussed above.

Determine parameters

Ite
ra

te
 o

ve
r a

ll
zo

ne
s

of
 th

e
no

de

Ite
ra

te
 o

ve
r d

ec
re

as
in

g
pr

io
rit

ie
s

Stop scanning

Highest priority?

balance_pgdat

disable_swap_token

shrink_zone

shrink_slab

congestion_waitPossible congestion?

All zones ok?

Figure 18-21: Code flow diagram for balance_pgdat.

1088

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1089

Chapter 18: Page Reclaim and Swapping

Once the kernel has finished all the required management work at the beginning of balance_pgdat (the
prime task is to create a swap_control instance), two nested loops are executed. The outer loop runs
backward through the integer variable priority starting at DEF_PRIORITY (typically declared as 12 in
mm/vmscan.c). This generates a priority for shrink_zone. A higher number corresponds to a lower priority;
this has a corresponding impact on calculation of page selection behavior in refill_inactive_zone.
By applying descending priorities, the kernel attempts to achieve its goal with the minimum of effort
and therefore with the minimum of system disruption. The inner loop iterates over all zones of the
NUMA node.

Before the inner loop is entered, the kernel must determine the zone (starting at ZONE_DMA) up to which
scanning is to be performed. To this end, the zones are traversed in descending order and their state
is checked using zone_watermark_ok (this function is discussed in detail in Chapter 3). If scanning
is performed with highest priority (i.e., priority 0), the swap token is disabled because preventing
pages from being swapped out to accelerate tasks is not desirable in situations that are desperate for
memory:

mm/vmscan.c
static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,

int order)
{
...

for (priority = DEF_PRIORITY; priority >= 0; priority--) {
int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
unsigned long lru_pages = 0;

/* The swap token gets in the way of swapout... */
if (!priority)

disable_swap_token();

all_zones_ok = 1;

/*
* Scan in the highmem->dma direction for the highest
* zone which needs scanning
*/
for (i = pgdat->nr_zones - 1; i >= 0; i--) {

struct zone *zone = pgdat->node_zones + i;

if (!populated_zone(zone))
continue;

if (zone_is_all_unreclaimable(zone) &&
priority != DEF_PRIORITY)

continue;

if (!zone_watermark_ok(zone, order, zone->pages_high,
0, 0)) {

end_zone = i;
break;

}
}
if (i < 0)

goto out;

1089

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1090

Chapter 18: Page Reclaim and Swapping

zone is the struct zone instance used to define the characteristic data of the memory zone. The layout
and meaning of the structure are discussed in Chapter 3. Three auxiliary functions are employed to find
a suitable zone:

❑ zone_is_all_unreclaimable checks for the flag ZONE_ALL_UNRECLAIMABLE. This is set if the
zone is full of pinned pages because, for instance, all have been locked with the system call
mlock. In this case, the zone need not be considered for page reclaim. The flag is automatically
removed when at least one page in the zone is returned to the buddy system layer.

❑ populated_zone checks if any pages are present in the zone at all.

❑ zone_watermark_ok checks if memory can still be taken from a zone. See Section 3.5.4, where I
have discussed this function.

zone->pages_high is the targeted value for the ideal number of free pages (low and minimum values
are defined by pages_low and pages_min).

As soon as a zone with an unacceptable status is found, the kernel branches to the scan label and starts
scanning. However, it may well be that all zones are in order, in which case the kernel need do nothing
and immediately jumps to the end of balance_pgdat.

All LRU pages in the zones to be scanned are determined before scanning starts:

mm/vmalloc.c
for (i = 0; i <= end_zone; i++) {

struct zone *zone = pgdat->node_zones + i;
lru_pages += zone_page_state(zone, NR_ACTIVE)

+ zone_page_state(zone, NR_INACTIVE);
}

...

As the code flow diagram shows, the kernel iterates over all zones. The direction goes from highmem to
DMA. Two functions must be invoked for each zone (zones that are unpopulated or where all pages that
are pinned are skipped):

❑ shrink_zone starts the mechanism for selecting and reclaiming RAM pages that was discussed
in Section 18.6.4.

❑ shrink_slab is invoked by the kernel to shrink caches for various data structures allocated
with the help of the slab system. Section 18.10 discusses this function. Although the page cache
accounts for the lion’s share of memory utilization, shrinking other caches — such as the dentry
or inode cache — can also achieve tangible effects.

If the kernel iterates over the zones and finds that they are all in an acceptable status, the outer loop
that iterates over all priorities can be terminated. Otherwise, the congestion_wait function discussed in
Chapter 17 is called if pages have been scanned and the scan priority is below DEF_PRIORITY - 2. This
prevents congestion of the block layer as a result of too many requests.

18.9.2 Swap-out in the Event of Acute Memory Shortage
The try_to_free_pages routine is invoked for rapid, unscheduled memory reclaim. Figure 18-22 shows
the code flow diagram for the function.

1090

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1091

Chapter 18: Page Reclaim and Swapping

Ite
ra

te
 o

ve
r a

ll
su

ita
bl

e
zo

ne
s

Enough pages
freed?

Ite
ra

te
 o

ve
r d

ec
re

as
in

g
pr

io
rit

ie
s

Determine number of pages on LRU list

Stop scanning

Pdflush required?

Possible congestion?

Highest priority?

try_to_free_pages

shrink_zone

shrink_zone

shrink_slab

wakeup_pdflush

blk_congestion_wait

Store priority

disable_swap_token

Figure 18-22: Code flow diagram for try_to_free_pages.

It is first necessary to determine the number of pages in the LRU cache as this information is required as
the parameter for subsequent functions. The kernel acquires this information as before in balance_pgdat.
Again, similar to before, the main part of try_to_free_pages is a large loop that runs through all priori-
ties from DEF_PRIORITY to 0. If the kernel operates with highest priority, then the swap token is disabled.

The decision as to how many pages are to be freed is delegated to shrink_zones implemented in
mm/vmscan.c.

The shrink_zones function is not the same as the shrink_zone function discussed
above — note the ‘‘s’’ at the end.

As in the kswapd mechanism, shrink_zones iterates over all zones of the current NUMA node and
invokes shrink_zone if this is possible. The kernel dispenses with the call if there are no pages in a zone,
if all pages in the zone are pinned, or if the current CPU is not permitted to act on the zone; but this is
very rare.

After the slab caches have been shrunk with shrink_slab — more on this in the next section — the
kernel must decide whether enough pages have been freed. If so, try_to_free_pages can be terminated
since the target has been reached (the kernel then jumps to the out label at the end of the function). In the
code excerpt below, nr_reclaimed indicates how many pages have been freed so far:

mm/vmscan.c
for (priority = DEF_PRIORITY; priority >= 0; priority--) {

......
total_scanned += sc.nr_scanned;
if (nr_reclaimed >= sc.swap_cluster_max) {

ret = 1;
goto out;

}

1091

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1092

Chapter 18: Page Reclaim and Swapping

...
if (total_scanned > sc.swap_cluster_max +

sc.swap_cluster_max / 2) {
wakeup_pdflush(laptop_mode ? 0 : total_scanned);
sc.may_writepage = 1;

}

/* Take a nap, wait for some writeback to complete */
if (sc.nr_scanned && priority < DEF_PRIORITY - 2)

congestion_wait(WRITE, HZ/10);
}

Depending on the number of pages freed, the kernel wakes the pdflush daemon to enable the periodic
writeback mechanism. Notice that the number of pages to be flushed is usually restricted to the number
of pages that were scanned. In laptop mode, however, the number of pages is unrestricted. As discussed
in Section 17.13, if the hard disk must be spun up from a power-saving state, then it is supposed to do as
much work as possible before it goes into a power-saving state again. congestion_wait is also invoked
to prevent congestion in the block layer by waiting until a few flushing operations have completed suc-
cessfully.

Finally, the priority of the successful pass is stored in the prev_priority element of the zone data struc-
ture as refill_inactive_zone uses this information to calculate the swap pressure.

18.10 Shrinking Other Caches
In addition to the page cache, the kernel manages other caches that are generally based on the slab (or
slub or slob, but we’ll use the term slab for all of them in the following) mechanism discussed in Chapter 3.

Slabs manage frequently required data structures to ensure that memory managed page-by-page by the
buddy system is used more efficiently and that instances of the data types can be allocated quickly and
easily as a result of caching.

Kernel subsystems that use their own caches of this type are able to register shrinker functions dynam-
ically with the kernel; these are called when memory is low to free some memory space already in use
(technically, there is no fixed association between slabs and shrinker functions, but currently there are no
other cache types for which shrinkers are used).

In addition to routines for registering and removing shrinker functions, the kernel must also provide
methods to initiate cache shrinking. These are closely examined in the following sections.

18.10.1 Data Structures
The kernel defines its own data structure to describe the characteristics of shrinker functions:

mm/vmscan.c
struct shrinker {

int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
int seeks; /* seeks to recreate an obj */

/* These are for internal use */
struct list_head list;
long nr; /* objs pending delete */

};

1092

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1093

Chapter 18: Page Reclaim and Swapping

❑ shrink is a pointer to the function invoked to shrink a cache. Every shrinker function must
accept two parameters — the number of memory pages to be examined and the memory
type — and return an integer number that indicates how many objects are still in the cache.

This differs from the kernel’s normal practice of returning the number of released
objects/pages.

If −1 is returned, the function could not perform any shrinking.

When the kernel wants to query the size of the cache, it passes 0 as nr_to_scan argument.

❑ seeks is a factor to adjust the cache weight in relation to the page cache. I examine this in more
detail when I discuss how caches are shrunk.

❑ All registered shrinkers are kept in a doubly linked standard list. list serves as the list element.

❑ nr is the number of elements to be freed by the shrinker function. The kernel uses this value to
enable the batch processing of objects for performance reasons.

18.10.2 Registering and Removing Shrinkers
register_shrinker is used to register a new shrinker:

mm/vmscan.c
void register_shrinker(struct shrinker *shrinker)

The function expects a shrinker instance where seek and shrink are set appropriately. Besides, the
function only ensures that shrinker is added to the global list shrinker_list.

At present, only a small number of shrinkers are present in the kernel. This includes the following:

❑ shrink_icache_memory shrinks the inode cache discussed in Chapter 8 and also manages
struct Inode objects.

❑ shrink_dcache_memory is responsible for the dentry cache also discussed in Chapter 8.

❑ mb_cache_shrink_fn shrinks a general cache for filesystem metadata (currently used to imple-
ment enhanced attributes in the Ext2 and Ext3 filesystems).

The remove_shrinker function removes shrinkers from the global list by reference to their shrinker
instance:

mm/vmscan.c
void remove_shrinker(struct shrinker *shrinker)

18.10.3 Shrinking Caches
shrink_slab is invoked to shrink all caches registered as shrinkable. The allocation mask that specifies the
required memory type and the number of pages scanned during page reclaim are passed to the function.
Essentially, it iterates over all shrinkers in shrinker_list:

mm/vmscan.c
static int shrink_slab(long scanned, unsigned int gfp_mask)
{

1093

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1094

Chapter 18: Page Reclaim and Swapping

struct shrinker *shrinker;
unsigned long ret = 0;

...
list_for_each_entry(shrinker, &shrinker_list, list) {

...

To achieve an even balance between page cache and shrinker cache shrinking, the number of cache
elements to be removed is calculated on the basis of the scanned value, which, in turn, is weighted with
the seek factor of the cache and the maximum number of elements that can be freed by the current
shrinker:

mm/vmscan.c
unsigned long long delta;
unsigned long total_scan;
unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);

delta = (4 * scanned) / shrinker->seeks;
delta *= max_pass;
do_div(delta, lru_pages + 1);
shrinker->nr += delta;

if (shrinker->nr > max_pass * 2)
shrinker->nr = max_pass * 2;

By convention, invoking the shrinker function with 0 as argument returns the number of objects in the
cache. The kernel also ensures that never more than half the entries in the cache are freed so that no
endless loop occurs.

The calculated number of objects to be freed is cumulated in shrinker->nr. Shrinking is triggered as
long as this value exceeds the SHRINK_BATCH threshold value (typically defined as 128):

mm/vmscan.c
total_scan = shrinker->nr;
shrinker->nr = 0;
while (total_scan >= SHRINK_BATCH) {

long this_scan = SHRINK_BATCH;
int shrink_ret;
int nr_before;

nr_before = (*shrinker->shrink)(0, gfp_mask);
shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
if (shrink_ret == -1)

break;
if (shrink_ret < nr_before)

ret += nr_before - shrink_ret;
mod_page_state(slabs_scanned, this_scan);
total_scan -= this_scan;

cond_resched();
}

shrinker->nr += total_scan;
}

...
}

1094

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1095

Chapter 18: Page Reclaim and Swapping

Objects are freed in chunks of 128 to ensure that the system is not blocked for too long. Between each
invocation of the shrinker function, cond_resched gives the kernel the opportunity to perform scheduling
so that latency does not become too high during cache shrinking.

18.11 Summary
One of the fundamental design decisions of the Linux kernel is that caches are usually never fixed in size,
but can grow dynamically until all available RAM is used. You have seen in this chapter that filling RAM
with information is a good thing because unused memory is a wasted resource, but that the kernel needs
to use a mechanism that allows for shrinking caches if memory is required for more urgent tasks. You
have been introduced to the mechanisms employed to judge whether pages are actively used or not. This
allows for evicting rarely used pages from memory, and depending on how the pages are used, they can
be discarded, synchronized, or swapped out. The last point implements the inverse of caching: A block
device can be used to extend the effectively available amount of memory at the cost of access speed.

The kernel uses two mechanisms to reclaim memory: A periodic daemon consistently monitors memory
usage and tries to keep the most active pages in RAM, but there are also routines that handle acute
memory pressure.

While page reclaim and swapping work on page-sized objects, the kernel also provides mechanisms to
shrink caches with smaller objects, and you have been introduced to the corresponding routines at the
end of this chapter.

1095

Mauerer runc18.tex V2 - 09/04/2008 6:05pm Page 1096

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1097

Auditing
Developers working on the kernel often have a natural interest to watch and inspect what is going
on inside the code. But they are not the only ones who would like to know what the kernel does.
System administrators, for instance, might want to observe which decisions the kernel has taken
and which actions were performed. This can be beneficial for a number of reasons, ranging from
increased security to postmortem forensic investigation of things that went wrong. It could, for
instance, be very interesting to not only observe that a wrong security decision caused by some
misconfiguration was made by the kernel, but also to know which process or users took advantage
of this. This chapter describes the methods provided by the kernel for this purpose.

19.1 Overview
Obviously, the surveillance needs of administrators differ considerably from those of developers.
While programmers are usually interested in comparatively low-level information, administrators
will tend to need a higher-level view: Which processes have opened network connections? Which
users have started programs? When did the kernel grant or refuse certain privileges?1 To answer
such questions, the kernel provides the audit subsystem.

While programmers will run their experiments on machines solely devoted to development, admin-
istrators face a different problem: The machines they have to monitor usually serve as production
machines. This places two crucial constraints on the audit mechanism:

❑ It must be possible to dynamically change the criteria that select the types of events to
be logged. In particular reboots or insertion and removal of kernel modules must not be
required.

❑ System performance must not degrade by a significant amount when auditing is in
use. Disabling the audit mechanism should also leave no negative impact on system
performance.

1This includes the ability to check if (and which) users were nosy enough to try peeking into files that they shouldn’t have
access to.

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1098

Chapter 19: Auditing

Kernel
rule

database

Netlink
connection

Userland
auditd auditctl

ru
le

de
fin

iti
on

s

au
di

t e
ve

nt
s

Figure 19-1: Overview of the audit
subsystem.

A sketch of the overall design of the audit subsystem is depicted in Figure 19-1. The kernel contains a
database with rules to specify the events that must be recorded. The database is filled from userland by
means of the auditctl tool. If a certain event happens and the kernel decides per the database that it
must be audited, a message is sent to the auditd daemon. The daemon can store the message in a log file
for further inspection. Communication between userland and the kernel (rule manipulation and message
transmission) is performed with the aid of a netlink socket (this connection mechanism was discussed
in Chapter 12). The kernel and userland parts of the audit mechanism are mutually dependent on each
other. Because the impact of audit on the kernel is minimal if only events are logged that appear with
comparatively low frequency, the implementation is also referred to as the lightweight auditing framework.

To further decrease the impact on system performance, the audit mechanism distinguishes between two
types of audit events, as follows:

❑ System call auditing allows recording whenever the kernel enters or leaves a system call.
Although additional constraints can be specified to limit the number of logged events (for
example, a restriction to a certain UID), system calls still happen with a rather high frequency,
so a certain impact on system performance is unavoidable if system call auditing is employed.

❑ All other types of events that are not directly connected with system calls are handled separately.
It is possible to disable auditing of system calls and to record only events of this type. This will
affect the system load only very little.

It is important to understand the difference (and relationship) between auditing and more canonical
techniques like system call tracing. If an audited process creates new children by forking, attributes
relevant to auditing are inherited. This allows audit trails to be generated, which are important to observe
the behavior of an application as a whole, or to track the actions of a certain user. In general, the audit
mechanism allows (trusted) applications to be traced in a more task-oriented manner (i.e., from a higher-
level point of view) than pure system call tracing (as implemented by ptrace) would allow. Various
hooks that produce audit events are distributed across the kernel, but nearly all parts of the kernel could
be extended with code to send specific audit messages.

Although audit is a fairly general mechanism, SELinux and AppArmor (a competitor to SELinux that
is not included in the official kernel source, but is, for instance, employed by OpenSUSE) are the most
notable users of the auditing features.

1098

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1099

Chapter 19: Auditing

19.2 Audit Rules
How is it possible to place constraints on the types of events for which an audit log record can be gen-
erated? This is done with the help of audit rules, and this chapter discusses their format and purpose.
However, you should also consult the manual pages that accompany the audit framework — especially
8(auditctl) — for more information. In general, an audit rule consists of the following components:

❑ The basic information is given by a filter/value pair. The filter denotes the kind of event to which
the rule belongs. Examples for possible values are entry for system call entrance or task for task
creation auditing.

❑ The value can either be NEVER or ALWAYS. Although the latter choice enables a rule, the first one
is used to suppress generation of audit events. This is meaningful because all rules for a given
filter type are stored in a list, and the first rule that matches is applied. By placing a NEVER rule in
front, this allows you to (temporarily) disable processing of rules that would normally generate
audit events.

The filters partition the set of auditable events into smaller classes, but these are nevertheless still very
broad. More constraints are required to select practicable subsets of events. This is possible by specifying
a number of field/comparator/value pairs. A field is a quantity that can be observed by the kernel. This
can, for instance, be a certain UID, a process identifier, a device number, or an argument to a system call.
comparator and value allow specifying conditions for the field. If these conditions are fulfilled, an audit log
event is issued; otherwise, it is not. The usual comparison operators (less than, less or equal, and so on)
can be employed. The method to feed new rules to the kernel is via the auditctl tool, which is in general
called as follows:

root@meitner # auditctl -a filter,action -F field=value

Observe, for instance, how it is possible to audit all events where the root user has created a new process:

root@meitner # auditctl -a task,always -F euid=0

When system calls are being audited, it is also possible (and highly advisable!) to restrict record gener-
ation to specific system calls. The following example instructs the kernel to log all events when the user
with UID 1000 fails to open a file:

root@meitner # auditctl -a exit,always -S open -F success=0 -F auid=1000

If the user tries to open /etc/shadow, but fails to provide the required credentials, the following log
record will be generated:

root@meitner # cat /etc/audit/audit.log
...
type=SYSCALL msg=audit(1201369614.531:1518950): arch=c000003e syscall=2

success=no exit=-13 a0=71ac78 a1=0 a2=1b6 a3=0 items=1 ppid=3900 pid=8358
auid=4294967295 uid=1000 gid=100 euid=1000 suid=1000 fsuid=1000 egid=100
sgid=100 fsgid=100 tty=pts0 comm="cat" exe="/usr/bin/cat" key=(null)

...

1099

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1100

Chapter 19: Auditing

19.3 Implementation
The audit implementation belongs to the very core of the kernel (the source is located directly in kernel/).
This stresses how much emphasis the kernel developers place on the framework. As with every code in
the core kernel directory, much care was taken to make it as compact, efficient, and clean as possible. The
code is basically distributed across three files:

❑ kernel/audit.c provides the core audit mechanism.

❑ kernel/auditsc.c implements system call auditing.

❑ kernel/auditfilter.c contains means to filter audit events.

Another file, kernel/audit_tree.c, contains data structures and routines that allow auditing of com-
plete directory trees. Since a rather large amount of code is required to implement this comparatively
small benefit, for simplicity’s sake this chapter does not discuss this possibility any further.

Detailed documentation of the log format used, usage descriptions for the associated tools, and so on
can be found on the developer’s website http://people.redhat.com/peterm/audit, and in the corre-
sponding manual pages. With this in mind, you can dive directly into the details of implementation in
this section!

As is the case for most parts of the kernel, understanding the data structures of the audit framework is a
big step toward understanding the implementation.

19.3.1 Data Structures
The audit mechanism uses data structures that fall into three main categories. First, processes need to be
instrumented with a per-task data structure that is especially important for system call auditing. Second,
audit events, filtering rules and so on need to be represented within the kernel. Third, a communication
mechanism with the userland utilities needs to be established.

Figure 19-2 illustrates the connection of the different data structures that form the core of the auditing
mechanism. The task structure is extended with an audit context that allows storing all data relevant
for a system call, and a database that contains all audit rules is established. The data structures used to
transfer audit data between kernel and userspace are not too interesting in this context, so they are not
included in the figure.

Extensions to task_struct
Every process in the system is represented by an instance of struct task_struct, as discussed in
Chapter 2. A pointer member of the structure is used to equip a process with an audit context as follows:

<sched.h>
struct task_struct {
...

struct audit_context *audit_context;
...
}

1100

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1101

Chapter 19: Auditing

audit_filter_list

Audit database

audit_context

task_struct

aux

struct audit_context

audit_aux_data

Figure 19-2: Data structures used by the audit mechanism.

Note that audit_context may well be a NULL pointer. This is because an instance of audit_context
is allocated only if system call auditing is requested for a specific process. If no auditing is to be
performed, it is unnecessary to expend memory on a superfluous data structure. The definition of
struct audit_context is as follows:

kernel/auditsc.c
/* The per-task audit context. */
struct audit_context {

int in_syscall; /* 1 if task is in a syscall */
enum audit_state state;
unsigned int serial; /* serial number for record */
struct timespec ctime; /* time of syscall entry */
uid_t loginuid; /* login uid (identity) */
int major; /* syscall number */
unsigned long argv[4]; /* syscall arguments */
int return_valid; /* return code is valid */
long return_code;/* syscall return code */
int auditable; /* 1 if record should be written */
int name_count;
struct audit_names names[AUDIT_NAMES];
char * filterkey; /* key for rule that triggered record */
struct dentry * pwd;
struct vfsmount * pwdmnt;
struct audit_context *previous; /* For nested syscalls */
struct audit_aux_data *aux;
struct audit_aux_data *aux_pids;

/* Save things to print about task_struct */
pid_t pid;
uid_t uid, euid, suid, fsuid;
gid_t gid, egid, sgid, fsgid;
unsigned long personality;
int arch;

...
};

1101

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1102

Chapter 19: Auditing

Most elements of the data structure are concisely described by their accompanying comments, and the
undocumented entries are as follows:

❑ state denotes the activity level of auditing. The possible states are given by audit_state,
namely: AUDIT_DISABLED (no system call recording), AUDIT_BUILD_CONTEXT (create an audit
context and always fill in system call data at system call entry), and AUDIT_RECORD_CONTEXT
(create an audit context, always fill in data at system call entry, and always write the audit
record at system call exit).2

AUDIT_DISABLED only makes sense when system call auditing was active at some time, but has
been stopped. If no auditing has been performed yet, then no audit_context is allocated and no
state is required.

❑ names enables you to store the data of up to AUDIT_NAMES (usually set to 20) filesystem objects
(the precise contents of this structure will be defined in a moment). name_count records how
many of the available slots are presently in use.

❑ audit_aux_data allows for storing auxiliary data in addition to the audit context (the associ-
ated data structure is also described in a moment.) Although aux is for general use, aux_pids
is employed to register the PIDs of processes that received a signal from a system call that was
audited.

Fields like pid, sgid, personality, and so on that are defined at the end of the structure reflect their
counterparts in task_struct. They are used to copy values from a given instance of task_struct so that
they are available without needing to hold a reference to the task_struct.

The need to store information about filesystem objects arises when system calls are being audited. The
following data structure provides a means to store this information:

kernel/auditsc.c
struct audit_names {

const char *name;
int name_len; /* number of name’s characters to log */
unsigned long ino;
dev_t dev;
umode_t mode;
uid_t uid;
gid_t gid;
dev_t rdev;
u32 osid;

};

The members describe the usual properties of filesystem objects, so this section does not bother with the
details. The array names from struct audit_context allows up to AUDIT_NAMES (usually set to 20) to
be stored.

The current audit state of a process is stored in the state field of audit_context. The kernel defines
audit rules that facilitate switching between different audit modes. The names of the actions, however,
differ from the constants used for state. The following excerpt from the rule processing state machine

2Another alternative (AUDIT_SETUP_CONTEXT) can also be found in the definition of enum audit_state, but it is currently
unused.

1102

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1103

Chapter 19: Auditing

describes the relationship between them (refer to Section 19.3.1 for more information on how to transmit
audit rules to the kernel):

kernel/auditsc.c
switch (rule->action) {
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
}

Auxiliary data can be attached to an audit_context instance with the help of audit_context->aux. The
kernel employs the following data structure:

kernel/auditsc.c
struct audit_aux_data {

struct audit_aux_data *next;
int type;

};

next implements a single linked list of aux_data instances, and type denotes the type of auxiliary data.
The purpose of audit_aux_data is to be embedded into a higher-level data structure that provides the
actual data. To illustrate this with an example, the following excerpt shows how audit information for
IPC objects is stored:

kernel/auditsc.c
struct audit_aux_data_ipcctl {

struct audit_aux_data d;
struct ipc_perm p;
unsigned long qbytes;
uid_t uid;
gid_t gid;
mode_t mode;
u32 osid;

};

Note that a struct audit_aux_data is located at the very beginning of audit_aux_data_ipc; the real
payload follows afterward. This allows for using generic methods for list traversal and manipulation.
Typecasts to the specific data type reveal the proper information.

Currently, the kernel defines auxiliary data structures for numerous object types:

❑ audit_aux_data_ipcctl (for auxiliary objects of type AUDIT_IPC and AUDIT_IPC_SET_PERM)

❑ audit_aux_data_socketcall (type AUDIT_SOCKETCALL)

❑ audit_aux_data_sockaddr (type AUDIT_SOCKADDR)

❑ audit_aux_data_datapath (type AUDIT_AVC_PATH)

❑ audit_aux_data_data_execve (type AUDIT_EXECVE)

❑ audit_aux_data_mq_{open,sendrewcv,notify,getsetattr} (types
AUDIT_MQ_{OPEN,SENDRECV,NOTIFY,GETSETATTR})

❑ audit_aux_data_fd_pair (type AUDIT_FD_PAIR)

1103

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1104

Chapter 19: Auditing

Since the general structure of all other auxiliary audit data structures is similar, this section doesn’t bother
with showing them explicitly. You can refer to kernel/auditsc.c for their definitions.

Records, Rules and Filtering
The fundamental data structure to format an audit record is defined as follows:

kernel/audit.c
struct audit_buffer {

struct list_head list;
struct sk_buff *skb; /* formatted skb ready to send */
struct audit_context *ctx; /* NULL or associated context */
gfp_t gfp_mask;

};

list is a list element that allows for storing the buffer on various lists. Since netlink sockets are used
to communicate between kernel and userland, a socket buffer of type sk_buff is used to encapsulate
messages. The connection with the audit context is realized by ctx (which may also be a NULL pointer if
no context exists because system call auditing is disabled), and gfp_mask finally determines from which
memory pool allocations are supposed to be satisfied.

Since audit buffers are frequently used, the kernel keeps a number of pre-allocated instances of
audit_buffer ready for use. audit_buffer_alloc and audit_buffer_free are responsible for
allocating and initializing new buffers respectively freeing them — handling the audit buffer cache
is implicitly performed by these functions. Their implementation is straightforward, so they are not
discussed any further here.

An audit rule that is transferred from userspace into the kernel is represented by the following data
structure3:

<audit.h>
struct audit_rule_data {

__u32 flags; /* AUDIT_PER_{TASK,CALL}, AUDIT_PREPEND */
__u32 action; /* AUDIT_NEVER, AUDIT_POSSIBLE, AUDIT_ALWAYS */
__u32 field_count;
__u32 mask[AUDIT_BITMASK_SIZE]; /* syscall(s) affected */
__u32 fields[AUDIT_MAX_FIELDS];
__u32 values[AUDIT_MAX_FIELDS];
__u32 fieldflags[AUDIT_MAX_FIELDS];
__u32 buflen; /* total length of string fields */
char buf[0]; /* string fields buffer */

};

First, flags denotes when the rule is supposed to be activated. The following choices are possible:

<audit.h>
#define AUDIT_FILTER_USER 0x00 /* Apply rule to user-generated messages */
#define AUDIT_FILTER_TASK 0x01 /* Apply rule at task creation (not syscall) */
#define AUDIT_FILTER_ENTRY 0x02 /* Apply rule at syscall entry */

3Previous kernel versions employed the slightly simpler struct audit_rule, which did not allow for non-integer or variable-
length string data fields. The structure still exists in the kernel to provide backward-compatibility with userspace, but must not be
used by new code.

1104

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1105

Chapter 19: Auditing

#define AUDIT_FILTER_WATCH 0x03 /* Apply rule to file system watches */
#define AUDIT_FILTER_EXIT 0x04 /* Apply rule at syscall exit */
#define AUDIT_FILTER_TYPE 0x05 /* Apply rule at audit_log_start */

When a rule matches, two actions (as denoted by action) can be performed. AUDIT_NEVER simply does
nothing, and AUDIT_ALWAYS generates an audit record.4

If system calls are audited, mask specifies with a bit field which system calls to include.

Field/value pairs are employed to specify conditions under which an audit rule applies. The field denotes
some quantity that identifies an object within the kernel, such as a process ID. The value argument,
together with some comparison operators (e.g., ‘‘less than,’’ ‘‘greater than,’’ and so on), specifies which
set of values the field is allowed to possess to trigger an audit event. One particular example could be
‘‘create an audit log for all events where a process with PID 0 opens a message queue.’’ The fields and
values arrays represent such pairs, and the operator flags are kept in fieldflags. field_count denotes
how many pairs are included in a rule. The possible fields values are listed in <audit.h>. There are
quite a few of them, so this section does not document them all in detail — the documentation that
accompanies the audit userland tools provides a much better reference. Usually, the constant names are
self-explanatory, as the following example demonstrates:

<audit.h>
#define AUDIT_PID 0
#define AUDIT_UID 1
#define AUDIT_EUID 2
#define AUDIT_SUID 3
...

The values array is only used for specifying numerical values, but this is not sufficient to create rules
that are restricted to filenames and other non-numerical quantities. A string argument can therefore
be appended behind struct audit_rule_data. It is accessible via the pseudo-array buf, and the string
length is denoted by buflen.

While struct audit_rule_data is employed to transmit rules from userspace to the kernel, two more
data structures are used to represent rules within the kernel itself. They are defined as follows:

kernel/audit.h
struct audit_field {

u32 type;
u32 val;
u32 op;

...
};

struct audit_krule {
int vers_ops;
u32 flags;
u32 listnr;
u32 action;
u32 mask[AUDIT_BITMASK_SIZE];
u32 buflen; /* for data alloc on list rules */

4AUDIT_POSSIBLE is still listed as another alternative, but it’s deprecated and not supposed to be used any more.

1105

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1106

Chapter 19: Auditing

u32 field_count;
char *filterkey; /* ties events to rules */
struct audit_field *fields;

...
};

The contents are similar to struct audit_rule_data, except that the data types employed can be manip-
ulated and traversed in a more convenient fashion. All rules are contained in an array pointed at by
fields, and each rule is represented by an instance of struct audit_field.

To convert between both audit rule representations, the kernel provides the auxiliary function
audit_rule_to_entry. Since the transformation is a somewhat mechanical process that does not provide
any special insights into how rules work, this section doesn’t bother to discuss the code in detail. All you
need to know here is that the routine takes an instance of struct audit_rule and converts it into an
instance of struct audit_entry, which is a container for audit_krule.

kernel/audit.h
struct audit_entry {

struct list_head list;
struct rcu_head rcu;
struct audit_krule rule;

};

This container allows for storing rules in filter lists. Six different filter lists are provided by
audit_filter_list.

kernel/auditsc.c
static struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {

LIST_HEAD_INIT(audit_filter_list[0]),
...

LIST_HEAD_INIT(audit_filter_list[5]),
};

Each list keeps all rules that are to be applied at one of the opportunities defined by the AUDIT_FILTER_
macros.

Note that new rules are added with audit_add_rule that is called when an appropriate request is sent
from the auditd daemon to the kernel. Since this routine is likewise rather technical and mostly uninter-
esting, this section does not cover it in detail.

19.3.2 Initialization
Initialization of the audit subsystem is performed by audit_init. In addition to setting up data struc-
tures, the function creates a netlink socket used for communication with the userland as follows:

kernel/audit.c
static int __init audit_init(void)
{
...
audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,

audit_receive, NULL, THIS_MODULE);
...
}

1106

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1107

Chapter 19: Auditing

The code snippet reveals that audit_receive is responsible for processing any received packets. It imple-
ments a dispatcher that is discussed later.

Note that there is a kernel command line parameter (audit) that can be set to either 0 or 1. The value is
stored in the global variable enable_audit during initialization. If it is set to 0, auditing is completely
disabled. When it is set to 1, auditing is enabled, but since no rules are supplied by default, no audit
events will be generated unless appropriate rules are given to the kernel.

There is also a kernel thread for the audit mechanism. Instead of starting the thread during subsystem
initialization, a slightly unconventional way has been chosen: As soon as the userspace daemon auditd
sends the first message, the kernel thread kaudit_task is started. The function executed by the thread
is kauditd_thread, which is responsible for sending already prepared messages from the kernel to the
userspace daemon. Note that this daemon is necessary because an audit event may end within an inter-
rupt handler, and since the netlink functions cannot be called from here, the finished audit records are
put on a queue and processed later by the kernel daemon that sends them back to userspace. Sending
and receiving is performed with a simple netlink operation and standard queue processing, as discussed
in Chapter 12.

19.3.3 Processing Requests
Userspace applications may (dependent on the usual security checks) issue requests to the audit sub-
system. Since the implementations of routines to satisfy such requests are rather similar, this section
discusses only the dispatching mechanism and an exemplary case.

audit_receive is called by the network subsystem whenever a new request arrives over the netlink
socket. The code flow diagram for the function can be found in Figure 19-3.

Discard bogus requests

netlink_ack

audit_receive

audit_receive_skb

audit_receive_msg

Figure 19-3: Code flow diagram for
audit_receive.

audit_receive handles the required locking and delegates the real work to audit_skb_receive. This
function iterates over the queue as long as there are outstanding requests. Requests with a bogus size are
discarded without further notice. Proper ones are forwarded to audit_receive_msg. An acknowledg-
ment is sent with netlink_ack if this is either explicitely requested (as indicated by thge NLM_F_ACK flag)
or if processing the request failed.

Observe from the code flow diagram in Figure 19-4 that audit_receive_message first uses
audit_netlink_ok to verify that the sender is allowed to perform the request. If the request was
authorized, the function verifies that the kernel daemon is already running. Should this not be the case
because no request has been sent before, kauditd is launched.

1107

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1108

Chapter 19: Auditing

audit_receive_msg

audit_netlink_ok

kauditd not running? Start kauditd

Dispatch by type

Figure 19-4: Code flow diagram for audit_receive_msg.

The remainder of the function is a dispatcher that calls specific processing functions selected by request
type after the required information has been extracted from the netlink message. As usual, the dispatcher
is implemented with a large case statement.

Let us focus our attention on one particular example of how to handle a request, namely how the kernel
adds new audit rules to the rule database. For requests of type AUDIT_ADD_RULE, the dispatcher delegates
further processing to audit_receive_filter, where the following piece of code is responsible for dealing
with the request:

kernel/auditfilter.c
switch (type) {
..

case AUDIT_ADD:
case AUDIT_ADD_RULE:

if (type == AUDIT_ADD)
entry = audit_rule_to_entry(data);

else
entry = audit_data_to_entry(data, datasz);

if (IS_ERR(entry))
return PTR_ERR(entry);

err = audit_add_rule(entry,
&audit_filter_list[entry->rule.listnr]);

audit_log_rule_change(loginuid, sid, "add", &entry->rule, !err);
...

break;
}

The request type AUDIT_ADD is supported only for backward compatibility, so it is not important in this
context. audit_data_to_entry was mentioned before: It takes an instance of struct audit_rule_data
that comes from userspace, and converts it into an instance of struct audit_krule — the kernel internal
representation of an audit rule. audit_add_rule, in turn, is responsible for placing the newly constructed
object on the appropriate audit rule list in audit_filter_list. Since adding audit rules is a decision
worth remembering, audit_log_rule_change prepares a corresponding audit log message that is sent to
the userland audit daemon.

19.3.4 Logging Events
With all the infrastructure in place, you can now take a look at how the actual auditing is implemented.
The process is split into three phases. First, the logging process needs to be started via audit_log_start.

1108

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1109

Chapter 19: Auditing

Afterwards, a log message is formatted with audit_log_format, and finally the audit log is closed with
audit_log_end and the message is queued for transmission to the audit daemon.

Audit Start
To start auditing, audit_log_start needs to be called. The associated code flow diagram can be seen in
Figure 19-5.

audit_log_start

Consider backlog and rate limit

audit_buffer_alloc

audit_get_stamp

audit_log_format

Figure 19-5: Code flow diagram for
audit_log_start.

Basically, the job of audit_log_start is to set up an instance of audit_buffer and return it to the caller;
but before this, the backlog limit and rate limit need to be considered.

The maximal length of the backlog queue (i.e., the queue where the finished audit records are stored)
is given by the global variable audit_backlog_limit. If this number is surpassed,5 audit_log_start
schedules a timeout and retries the operation afterward, hoping that the backlog has been reduced in the
meantime. Additionally, a rate check ensures that not more than a certain number of messages are sent
per second. The global variable audit_rate_limit) determines the maximal frequency. If this frequency
is surpassed, a message that indicates this condition is sent to the daemon and allocation is aborted. These
measures are necessary to avoid denial-of-service attacks, and to provide protection against audit events
that occur with too-high frequency.

If backlog and rate limits allow the creation of new audit buffers, audit_buffer_alloc is used to do
what its name says — allocate an audit_buffer instance. Before the buffer is returned to the caller,
audit_get_stamp provides a unique serial number, and an initial log message that contains the creation
time and the serial number is written to the buffer.

Writing Log Messages
audit_log_format is used to write a log message into a given audit buffer. The prototype of the function
is as follows:

kernel/audit.c
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)

As the prototype suggests, audit_log_format is — more or less — a variant of printk. The format string
given in fmt is evaluated and filled in with the parameters given by the va_args list, and the resulting
string is written into the data space of the socket buffer associated with the audit buffer.

5Note that audit records that are allocated without the __GFP_WAIT flag are considered more urgent. The backlog length threshold
at which they are prevented from being created is higher than for other allocation types.

1109

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1110

Chapter 19: Auditing

Closing the Audit Log
After all necessary log messages have been written to an audit buffer, audit_log_end needs to be called
to ensure that the audit log is sent to the userspace daemon. The code flow diagram for the function can
be found in Figure 19-6.

audit_log_end

Perform rate check

Enqueue socket buffer

audit_buffer_free

Figure 19-6: Code flow diagram for
audit_log_end.

After performing another rate check (if messages have been submitted too frequently, then the present
message is lost and a ‘‘rate limit exceeded’’ message is sent to the daemon instead), the socket buffer
associated with the audit buffer is put on a queue for later processing by kauditd:

kernel/audit.c
void audit_log_end(struct audit_buffer *ab)
{
...

struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
skb_queue_tail(&audit_skb_queue, ab->skb);
ab->skb = NULL;
wake_up_interruptible(&kauditd_wait);

...
}

Note that the kernel provides the convenience function audit_log, which can be used as an abbreviation
for the three aforementioned tasks (starting an audit log, writing messages, and ending the log). It has
the following prototype:

<audit.h>
struct audit_buffer *audit_log_start(struct audit_context *ctx,

gfp_t gfp_mask, int type,
const char *fmt, ...);

19.3.5 System Call Auditing
By now, all data structures and mechanisms required for system call auditing have been described, so
this section continues the description of the implementation. System call auditing is different from the
basic audit mechanism because it relies on an extension of the task structure with an audit context that
was introduced in a previous section.

Audit Context Allocation
First of all, you need to consider under which circumstances such contexts are allocated. Since this
is an expensive operation, it is only performed if system call auditing was explicitely enabled.

1110

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1111

Chapter 19: Auditing

If this is the case, copy_process (i.e., originating from the fork system call) is the place where
audit_alloc is called to allocate a new instance of struct audit_context. Figure 19-7 shows the code
flow diagram for audit_context.

audit_alloc

audit_filter_task

Filter result AUDIT_DISABLED? Finish without allocation

audit_alloc_context

Preserve login ID

set TIF_SYSCALL_AUDIT

Figure 19-7: Code flow diagram for audit_context.

First, audit_filter_task determines if system call auditing needs to be activated for the present task.
If the audit system is disabled completely, not even this needs to take place, so audit_alloc is left
immediately. The function applies the registered filters of type AUDIT_FILTER_TASK. If the verdict is
AUDIT_DISABLED, audit_alloc can return immediately without allocating an instance of audit_context
because no system call auditing is required (the rest of the audit code can check this easily — the
audit_context element of task_struct remains a NULL pointer in this case).

If system call auditing is desired, audit_alloc_context allocates a new instance of audit_context. The
routine prepares the instance with state set to the state given by the filter operation.

Finally, the kernel preserves the login UID of the currently running task (this is necessary to create audit
trails where the login UID is preserved over forks), as follows:

kernel/auditsc.c
int audit_alloc(struct task_struct *tsk)
{
...

/* Preserve login uid */
context->loginuid = -1;
if (current->audit_context)

context->loginuid = current->audit_context->loginuid;

tsk->audit_context = context;
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
return 0;

}

Additionally, the TIF_SYSCALL_AUDIT flag is set in the instance of task_struct that belongs to the
process. This is necessary for the low-level interrupt processing code to call the auditing functions at
interrupt entry and exit — otherwise, this step will be skipped for performance reasons.

Note that the call to audit_alloc originates from processing fork system calls, so the decision about
whether system call auditing needs to be enabled or not is made whenever a process creates a duplicate
of itself. This ensures that the check is performed for every task in the system.

1111

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1112

Chapter 19: Auditing

System Call Events
The audit subsystem is involved when a system call is entered and when a system call is
finished — audit_syscall_entry is called in the first case, and audit_syscall_exit is called in
the second case. To make this possible, support by the low-level, architecture-specific interrupt
processing code is required. This support is integrated into do_syscall_trace, which is called by the
low-level interrupt processing code whenever an interrupt occurs or when interrupt processing is
finished.6 For the IA-32 architecture, the implementation is done as follows:

arch/x86/kernel/ptrace_32.c
__attribute__((regparm(3)))
int do_syscall_trace(struct pt_regs *regs, int entryexit)
{
...

if (unlikely(current->audit_context) && !entryexit)
audit_syscall_entry(current, AUDIT_ARCH_I386, regs->orig_eax,

regs->ebx, regs->ecx, regs->edx, regs->esi);
...

if (unlikely(current->audit_context))
audit_syscall_exit(current, AUDITSC_RESULT(regs->eax),

regs->eax);
...
}

The code flow diagram for audit_syscall_entry is presented in Figure 19-8.

audit_syscall_entry

Build data structure for nested syscalls

Save syscall data in context

Filtering necessary?

audit_filter_syscall

Figure 19-8: Code flow diagram for
audit_syscall_entry.

If the actual system call happened during another system call that was audited, the possibility of linking
multiple audit contexts needs to be utilized by allocating a new audit context, connecting the previous
one with it, and using the freshly allocated context as previous one.

The system call number, the arguments passed to the system call (denoted by a1 . . . a4), and the sys-
tem architecture (such as AUDIT_ARCH_i386 for IA-32, or constants for other architectures defined in
<audit.h>) are stored in the audit context as follows:

kernel/auditsc.c
void audit_syscall_entry(struct task_struct *tsk, int arch, int major,

unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4)

6Additionally, the flag TIF_SYSCALL_AUDIT needs to be set for this. It is enabled in audit_alloc if the audit filter determines
that system call auditing needs to be activated for a task.

1112

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1113

Chapter 19: Auditing

{
...

context->arch = arch;
context->major = major;
context->argv[0] = a1;
context->argv[1] = a2;
context->argv[2] = a3;
context->argv[3] = a4;

...
}

Depending on the audit mode of the process, filtering needs to be applied by using audit_filter_list,
which applies all appropriate filters registered in the kernel as follows:

kernel/auditsc.c
state = context->state;
if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))

state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
if (likely(state == AUDIT_DISABLED))

return;

context->serial = 0;
context->ctime = CURRENT_TIME;
context->in_syscall = 1;
context->auditable = !!(state == AUDIT_RECORD_CONTEXT);

}

Note that context->dummy is set if auditing is enabled, but no audit rules are defined. In this case, filtering
is obviously unnecessary.

audit_syscall_exit

audit_log_exit

Activate context of previous syscall

audit_free_names

audit_free_aux

Yes

No

Nested system call?

Figure 19-9: Code flow diagram for audit_syscall_exit.

Let us now turn our attention to how system call exits are handled. The code flow diagram for
audit_syscall_exit is shown in Figure 19-9. The most important part is the call to audit_log_exit,
which (among other things) creates an audit record for the information contained in the audit context
as follows:

kernel/auditsc.c
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
{

audit_log_format(ab, "arch=%x syscall=%d",
context->arch, context->major);

...
if (context->return_valid)

1113

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1114

Chapter 19: Auditing

audit_log_format(ab, " success=%s exit=%ld",
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
context->return_code);

...
audit_log_format(ab,

" a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
" pid=%d auid=%u uid=%u gid=%u"
" euid=%u suid=%u fsuid=%u"
" egid=%u sgid=%u fsgid=%u",
context->argv[0],
context->argv[1],
context->argv[2],
context->argv[3],
context->name_count,
context->pid,
context->loginuid,
context->uid,
context->gid,
context->euid, context->suid, context->fsuid,
context->egid, context->sgid, context->fsgid);

...
}

The system call number, the system call return code, and some generic information about the process are
logged by the preceding code. Afterwards, audit_syscall_exit has to make sure that the previous audit
context (should one exist) is restored as the active context; additionally, several now-unused resources
need to be deallocated.

Access Vector Cache Auditing
A very prominent example where auditing is a rather crucial requirement is the SELinux access vector
cache. Granting or denying permissions is performed by the function avc_audit, which is called from
avc_has_perm, that is, whenever a permission query is passed to the security server. First, the function
needs to check if auditing is required for the current case (i.e., granting or denial is supposed to be audited
or not) as follows:

security/selinux/avc.c
void avc_audit(u32 ssid, u32 tsid,

u16 tclass, u32 requested,
struct av_decision *avd, int result, struct avc_audit_data *a)

{
struct task_struct *tsk = current;
struct inode *inode = NULL;
u32 denied, audited;
struct audit_buffer *ab;

denied = requested & ˜avd->allowed;
if (denied) {

audited = denied;
if (!(audited & avd->auditdeny))

return;
} else if (result) {

audited = denied = requested;

1114

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1115

Chapter 19: Auditing

} else {
audited = requested;
if (!(audited & avd->auditallow))

return;
}

...

If an audit message needs to be created, the basic information (granting or denial, the access vector in
question, and the task’s PID) is generated as follows:

security/selinux/avc.c
ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
if (!ab)

return; /* audit_panic has been called */
audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
avc_dump_av(ab, tclass,audited);
audit_log_format(ab, " for ");
if (a && a->tsk)

tsk = a->tsk;
if (tsk && tsk->pid) {

audit_log_format(ab, " pid=%d comm=", tsk->pid);
audit_log_untrustedstring(ab, tsk->comm);

}
...

avc_dump_av is used to display an access vector in human-readable form (this is a purely cosmetic con-
version). If auxiliary data are associated with the query, it is also put into the audit record. Afterwards
the record can be closed.

security/selinux/avc.c
if (a) {

switch (a->type) {
case AVC_AUDIT_DATA_IPC:

audit_log_format(ab, " key=%d", a->u.ipc_id);
break;

case AVC_AUDIT_DATA_CAP:
audit_log_format(ab, " capability=%d", a->u.cap);
break;

...
case AVC_AUDIT_DATA_NET:

/* Audit networking related information */
...

}
}
audit_log_format(ab, " ");
avc_dump_query(ab, ssid, tsid, tclass);
audit_log_end(ab);

}

Standard Hooks
Although it is sufficient to record only entry and exit for most system calls, some can provide more infor-
mation to the audit subsystem. Section 19.3.1 mentioned that the audit context provides the capability

1115

Mauerer runc19.tex V2 - 09/04/2008 6:07pm Page 1116

Chapter 19: Auditing

to store auxiliary data — this is used by several system calls. Since the method to realize this is nearly
identical for all cases, only sys_socketcall is shown as an example here. The following hook function is
used to allocate and fill in the auxiliary data:

kernel/auditsc.c
int audit_socketcall(int nargs, unsigned long *args)
{

struct audit_aux_data_socketcall *ax;
struct audit_context *context = current->audit_context;

if (likely(!context || context->dummy))
return 0;

ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
...

ax->nargs = nargs;
memcpy(ax->args, args, nargs * sizeof(unsigned long));

ax->d.type = AUDIT_SOCKETCALL;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;

}

If auditing system calls is disabled, then no audit context is allocated, so the routine can exit immediately.
Otherwise, an auxiliary context is added to the audit context.

Every time sys_socketcall is invoked, it calls audit_socketcall as follows:

net/socket.c
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{
...

err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
...
}

The remaining parts of sys_socketcall can use the auxiliary context to store specific socket-related
information that will be passed to the audit userspace tools.

19.4 Summary
Observing what is going on inside a system is interesting for a number of reasons, and this chapter
introduced you to one particular solution provided by the kernel for this purpose: Auditing is a low-
overhead mechanism that can be employed on stable production systems to obtain a comprehensive
set of information without impacting system performance too much. After introducing audit rules that
allow you to specify which information is interesting, the chapter discussed how the kernel gathers the
corresponding data and forwards it to userland.

1116

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1117

Architecture Specifics

One of the key benefits of the kernel is the fact that it is mostly architecture-independent. Because
the majority of the sources are written in C, the implemented algorithms are not tied to a par-
ticular CPU or computer family but can, in principle, be ported to on any platform with modest
effort — assuming that a suitable C compiler is available. Inevitably, the kernel must provide inter-
faces to the underlying hardware, perform various system-specific tasks that involve countless
details, and exploit the special functions of the processors used. These must generally be written
in an assembly language. However, there are also some architecture specific data structures that
are defined in C, so architecture-specific does not necessarily equate to assembler-specific. This
appendix describes some hardware-specific aspects of important Linux ports.

A.1 Overview
To facilitate extensibility on new architectures, the kernel strictly segregates architecture-dependent
and architecture-independent code. The include/asm-arch/ directory holds header files that contain
the definitions and prototypes for processor-specific elements of the kernel, whereas C and assem-
bler source codes that implement the machine-specific part of the kernel reside in arch/arch/.
Together these occupy on average between 1 and 3 MiB in the kernel sources of each architecture.
Although this represents a fair amount of code, it is nevertheless relatively compact for a complete
abstraction layer.

There are basically two categories of architecture-specific code:

❑ Components that are used and invoked exclusively by the architecture-specific parts of the
kernel. As far as the rest of the code is concerned, the location of this code and the functions
that are called are irrelevant.

❑ Interface functions that must be defined by every architecture as they are invoked by
architecture-independent code. For example, each port must provide a switch_to function
to take care of hardware-control details when switching between two processes. The
scheduler makes use of this function by deciding — regardless of the architecture — which
task runs next and then delegating the actual task switch to processor-specific code.

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1118

Appendix A: Architecture Specifics

Memory management also employs a variety of interface functions and definitions — to specify page
size or to update caches, for instance.

This chapter is designed to give a brief summary of how various system-specific tasks are performed on
the most popular architectures supported by the kernel. This is based on the fact that the kernel must
exploit a very large number of hardware features that differ from processor to processor and require
in-depth knowledge of the individual architectures. Considering that each processor family is typically
accompanied by a reference manual of a thousand pages or more to describe architectural subtleties and
oddities, this book cannot even begin to examine every little detail of importance to the kernel. Instead,
this chapter sketches out the rough structure that supports the Linux port to a specific architecture. This
book also describes various special features of some of the ports.

The build system takes into account the need to resort to architecture-specific defined mechanisms at
various points in the generic code. All processor-specific header files are located in include/asm-arch.
Once the kernel has been configured for a specific architecture, a symbolic link (named include/asm)
to the appropriate machine-specific directory is created; for example, this link would be include/asm
-> include/asm-alpha on an Alpha AXP system. This enables the kernel to link in architecture-specific
headers by means of #include<asm/file.h>.

This book gives only a brief overview of the standard headers that must be made available by the indi-
vidual ports and of the functions and definitions these headers must declare (and also implement). It
would require another entire book to cover the details of each architecture supported.

A.2 Data Types
The kernel makes a basic distinction between the following three elementary data types:

❑ Standard data types as used in every C program; for example, unsigned long, void *, and
char. The number of bits that these types have is not fixed by the C standard. Only various
inequalities are guaranteed; for instance, unsigned long has at least as many if not more bits
than int.

In terms of portability, it should be noted that the bit size of standard data types can differ
between architectures.

❑ Data types with a fixed number of bits. The kernel provides special integer data types with
names like u32 and s16 for unsigned (u) and signed (s) integers with a predefined number of
bits. The individual architectures must define the abbreviations in such a way that they can be
mapped (using typedef) to corresponding elementary data types.

❑ Subsystem-specific types that are never manipulated directly but always by specially written
functions. Converting the data type definition is easy, because all subsystems that use any of
these data types are never able to manipulate them directly but must delegate this task to the
specific subsystem. Only the standard manipulation functions need to be modified; the remain-
ing kernel parts remain unchanged.

Examples of subsystem-specific data types are pid_t for managing pids and sector_t for iden-
tifying sector numbers.

The data types with a fixed number of bits are defined in <asm-arch/types.h>.

1118

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1119

Appendix A: Architecture Specifics

The pre-processor constant __KERNEL__ must always be defined before the file is
linked into the kernel sources; otherwise, only data type names prefixed with a
double underscore are defined (for example, __u32) to prevent overlaps with
definitions in the userspace namespace.

A.3 Alignment
The alignment of data on certain memory addresses is necessary to make the best possible use of proces-
sor caches and to boost performance. Some architectures mandate that data types of a particular length
have a specific alignment. Even architectures that are able to handle random alignment can read and
write certain alignments faster than when access is unaligned. Alignment is typically on byte addresses
that are divisible without remainder by the byte length of the data type. In certain situations, the required
alignment may be a little larger. Relevant information is given in the architecture documentation of the
processor in question. The alignment of a data type on its own length is referred to as natural alignment.

It may be necessary to access non-aligned data types at some points in the kernel. The various architec-
tures must therefore define two macros for this purpose (in <asm-arch/unaligned.h>):

❑ get_unaligned(ptr) de-references a pointer at an unaligned memory location.

❑ put_unaligned(val, ptr) writes val to a memory location specified by ptr that is unaligned
(and not suitable for direct access).

These support access by, for example, copying the value to another memory location and accessing it
there. When the GCC organizes memory for structs or unions, it automatically selects the appropriate
alignment so that the programmer is not required to do this.

A.4 Memory Pages
Memory pages are 4 KiB in size on many but not all architectures. More modern processors also sup-
port sizes up to several MiB. The following macros must be defined in the architecture-specific file
asm-arch/page.h to indicate the page size used:

❑ PAGE_SHIFT specifies the binary logarithm of the page size. (The kernel implicitly assumes that
the page size can be represented as a power of 2, as is true on all architectures supported.)

❑ PAGE_SIZE specifies the size of a memory page in bytes.

❑ PAGE_ALIGN(addr) aligns any address on the page boundary.

Two standard operations on pages must also be implemented, generally by means of optimized assem-
bler commands:

❑ clear_page(start) deletes the page beginning at start by filling it with null bytes.

❑ copy_page(to, from) copies the page data at position from to position to.

The PAGE_OFFSET macro specifies the position in virtual address space where the physical pages are to be
mapped. On most architectures, this implicitly defines the size of the user address space or the division

1119

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1120

Appendix A: Architecture Specifics

of the entire address space into a kernel address space and a user address space. However, this does
not apply on all architectures. (Sparc is one such exception, because it has two separate address spaces
for the kernel and userspace. AMD64 is another exception, because its virtual address space has a non-
addressable hole in the middle.) As a result, the TASK_SIZE constant defined in asm-arch/process.h
must be used instead of PAGE_OFFSET to determine the size of userspace.

A.5 System Calls
The mechanism for issuing system calls to perform a controlled switch from userspace to kernel space
differs on all supported platforms. However, a standard file named <asm-arch/unistd.h> is responsible
for the following two aspects relevant to system calls:

❑ It defines pre-processor constants to link the descriptors of all system calls with symbolic
constants. The constants have names such as __NR_chdir and __NR_send. Because the individual
architectures do their best to remain compatible with the descriptors of the specific native
operating system (for example, OSF/1 on Alpha, or Solaris on Sparc), the numeric values differ
from architecture to architecture.

❑ It defines functions to invoke system calls from within the kernel itself. Generally, a
pre-processor mechanism is used for this purpose together with an inline assembler for
automatic generation.

A.6 String Processing
Operations on strings are performed at various points in the kernel and are therefore particularly time-
critical. Because many architectures provide special assembler commands to carry out the requisite tasks,
or because manually optimized assembler code executes faster than compiler-generated code, all archi-
tectures may define various string operations of their own in <asm-arch/string.h>:

❑ int strcmp(const char * cs,const char * ct) compares two strings, character by character.

❑ int strncmp(const char * cs,const char * ct,size_t count) is similar to strcmp but compares
a maximum of count characters.

❑ int strnicmp(const char *s1, const char *s2, size_t len) is similar to strncmp but compares
the individual characters regardless of case.

❑ char * strcpy(char * dest,const char *src) copies a null-terminated string from src to dest.

❑ char * strncpy(char * dest,const char *src,size_t count) is similar to strcpy but restricts
the maximum copy length to count bytes or characters.

❑ size_t strlcpy(char *dest, const char *src, size_t size) is similar to strncpy, but the des-
tination string is also null-terminated if the source string has more than size characters.

❑ char * strcat(char * dest, const char * src) adds src to dest.

❑ char * strncat(char *dest, const char *src, size_t count) is similar to strcat, but restricts
the operation to a maximum of count copied bytes.

❑ size_t strlcat(char *dest, const char *src, size_t count) is similar to strncat, but
restricts the length of the result (and not the number of copy operations) to count bytes.

1120

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1121

Appendix A: Architecture Specifics

❑ char * strchr(const char * s, int c) finds the first position in the string s at which the charac-
ter c occurs.

❑ char * strrchr(const char * s, int c) finds the last position in the string s at which the char-
acter c occurs.

❑ size_t strlen(const char * s) determines the length of a null-terminated string.

❑ size_t strnlen(const char * s, size_t count) is similar to strlen but restricts the operation
to a maximum length of count.

❑ size_t strspn(const char *s, const char *accept) calculates the length of the substring of s
which, consists entirely of characters in accept.

❑ size_t strcspn(const char *s, const char *reject) is similar to strspn, but calculates the
length of the substring of s that consists entirely of characters not in reject.

❑ char * strstr(const char * s1,const char * s2) searches s1 for the substring s2.

❑ char * strpbrk(const char * cs,const char * ct) searches for the first occurrence of a member
of the string (ct) in another string (cs).

❑ char * strsep(char **s, const char *ct) splits a string into tokens separated by ct.

The following operations act on general memory areas and not on strings:

❑ void * memset(void * s,int c,size_t count) fills count bytes with the value specified by c
starting at address s.

❑ memset_io does the same for I/O memory areas.

❑ char * bcopy(const char * src, char * dest, int count) copies an area of size count from src
to dest.

❑ memcpy_fromio does the same to copy an area of I/O address space to normal address space.

❑ void * memcpy(void * dest,const void *src,size_t count) is similar to bcopy but uses void
pointers as arguments to define the areas involved.

❑ void * memmove(void * dest,const void *src,size_t count) is similar to memcpy but also func-
tions with overlapping source and destination areas.

❑ int memcmp(const void * cs,const void * ct,size_t count) compares two areas of memory,
byte-by-byte.

❑ void * memscan(void * addr, int c, size_t size) scans the area specified by addr and size to
find the first occurrence of character c.

❑ void *memchr(const void *s, int c, size_t n) is similar to memscan but returns a null pointer
(and not a pointer to the first byte after the scanned area) if the desired element is not found.

All operations are replacement routines for the C standard library member of the same name that are
employed by userspace programs to perform the same tasks as in the kernel.

The __HAVE_ARCH_OPERATION macro must be set for each string operation that is defined as optimized
by an architecture; for instance, __HAVE_ARCH_MEMCPY must be set for memcpy. All nonimplemented
functions are replaced with architecture-independent standard operations that are implemented in
lib/string.c.

1121

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1122

Appendix A: Architecture Specifics

A.7 Thread Representation
The state of a running process is defined primarily by the contents of the processor registers. Processes
that are not currently running must keep this data in corresponding data structures from which the data
can be read and moved to the appropriate registers when the process is next activated by the scheduler.
The structures needed to do this are defined in the following files:

❑ <asm-arch/ptrace.h> provides the pt_regs structure to hold all registers that are placed on the
kernel stack when the process switches from user mode to space mode as a result of a system
call, an interrupt, or any other mechanism. The file also defines the sequence of the registers on
the stack by means of pre-processor constants. This is necessary when tracing a process in order
to read register values from the stack.

❑ <asm-arch/processor.h> accommodates the thread_struct structure used to describe all
other registers and all other task state information. This structure is typically split into further
processor-specific components.

❑ <asm-arch/thread.h> defines the thread_info structure (not to be confused with
thread_struct), which contains all task structure elements that the assembler code must access
to implement kernel entry and exit.

The definitions of pt_regs and thread_struct as they apply on the most popular architectures are
reproduced in the following sections to provide an overview of their register sets.

A.7.1 IA-32
The IA-32 architecture suffers permanent register shortage, so there is not much to save when kernel
mode is entered, as the following definition of pt_regs shows:

include/asm-x86/ptrace.h
struct pt_regs {

long ebx;
long ecx;
long edx;
long esi;
long edi;
long ebp;
long eax;
int xds;
int xes;
long orig_eax;
long eip;
int xcs;
long eflags;
long esp;
int xss;

};

What’s conspicuous here is that the orig_eax field contains an extra value in addition to the register
values. Its purpose is to store the system call number passed in the eax register when kernel mode is
entered. Because this register is also used to transfer the result into userspace, it must be modified during
the course of the system call. Nevertheless, it is still possible to determine the number of the system call
via orig_eax (if, for example, the process is traced using ptrace).

1122

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1123

Appendix A: Architecture Specifics

Newer versions of the architecture use a much larger register set, which the kernel saves only as needed.
Consequently, the corresponding elements are held in the thread_struct structure, as shown here:

include/asm-x86/processor_32.h
struct thread_struct {
/* cached TLS descriptors. */

struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
unsigned long esp0;
unsigned long sysenter_cs;
unsigned long eip;
unsigned long esp;
unsigned long fs;
unsigned long gs;

/* Hardware debugging registers */
unsigned long debugreg[8]; /* %%db0-7 debug registers */

/* fault info */
unsigned long cr2, trap_no, error_code;

/* floating point info */
union i387_union i387;

/* virtual 86 mode info */
struct vm86_struct __user * vm86_info;
unsigned long screen_bitmap;
unsigned long v86flags, v86mask, saved_esp0;
unsigned int saved_fs, saved_gs;

/* IO permissions */
unsigned long *io_bitmap_ptr;
unsigned long iopl;

/* max allowed port in the bitmap, in bytes: */
unsigned long io_bitmap_max;

};

Depending on the processor version, the coprocessor provides various register sets as specified in
i387_union:1

include/asm-x86/processor_32.h
union i387_union {

struct i387_fsave_struct fsave;
struct i387_fxsave_struct fxsave;
struct i387_soft_struct soft;

};

Old 80386 and 80486SX processors that do not have a hardware-based coprocessor employ kernel-
side software emulation whose state is held in i387_soft_struct. Machines whose coprocessors sup-
port only the classic registers (that is, eight 10-byte-wide floating-point registers) store their data in
i387_fsave_struct. Because most registers are never used alone but are always read or written to
block-by-block, the kernel puts them in a contiguous memory area provided in the structure by an array
of suitable size:

include/asm-x86/processor_32.h
struct i387_fsave_struct {

long cwd;
long swd;

1Coincidentally, the definition of i387_union for kernel 2.6.17 is located in line 387.

1123

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1124

Appendix A: Architecture Specifics

long twd;
long fip;
long fcs;
long foo;
long fos;
long st_space[20]; /* 8*10 bytes for each FP-reg = 80 bytes */
long status; /* software status information */

};

More recent processor versions use slightly wider registers and also support a second set of registers
known as XMM.

include/asm-x86/processor_32.h
struct i387_fxsave_struct {

u16 cwd;
u16 swd;
u16 twd;
u16 fop;
u64 rip;
u64 rdp;
u32 mxcsr;
u32 mxcsr_mask;
u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 128 bytes */
u32 padding[24];

} __attribute__ ((aligned (16)));

A.7.2 IA-64
In the design of IA-64, the designated successor of the aging IA-32 architecture, Intel has kept abreast of
the times and has given the processor a much bigger register set (with a more systematic name).

include/asm-ia64/processor.h
struct pt_regs {

/* The following registers are saved by SAVE_MIN: */
unsigned long b6; /* scratch */
unsigned long b7; /* scratch */

unsigned long ar_csd; /* used by cmp8xchg16 (scratch) */
unsigned long ar_ssd; /* reserved for future use (scratch) */

unsigned long r8; /* scratch (return value register 0) */
unsigned long r9; /* scratch (return value register 1) */
unsigned long r10; /* scratch (return value register 2) */
unsigned long r11; /* scratch (return value register 3) */

unsigned long cr_ipsr; /* interrupted task’s psr */
unsigned long cr_iip; /* interrupted task’s instruction pointer */
/*
* interrupted task’s function state; if bit 63 is cleared, it
* contains syscall’s ar.pfs.pfm:
*/
unsigned long cr_ifs;

1124

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1125

Appendix A: Architecture Specifics

unsigned long ar_unat; /* interrupted task’s NaT register (preserved) */
unsigned long ar_pfs; /* prev function state */
unsigned long ar_rsc; /* RSE configuration */
/* The following two are valid only if cr_ipsr.cpl > 0 || ti->flags & _TIF_MCA_INIT */
unsigned long ar_rnat; /* RSE NaT */
unsigned long ar_bspstore; /* RSE bspstore */

unsigned long pr; /* 64 predicate registers (1 bit each) */
unsigned long b0; /* return pointer (bp) */
unsigned long loadrs; /* size of dirty partition << 16 */

unsigned long r1; /* the gp pointer */
unsigned long r12; /* interrupted task’s memory stack pointer */
unsigned long r13; /* thread pointer */

unsigned long ar_fpsr; /* floating point status (preserved) */
unsigned long r15; /* scratch */

/* The remaining registers are NOT saved for system calls. */

unsigned long r14; /* scratch */
unsigned long r2; /* scratch */
unsigned long r3; /* scratch */

/* The following registers are saved by SAVE_REST: */
unsigned long r16; /* scratch */
unsigned long r17; /* scratch */
unsigned long r18; /* scratch */
unsigned long r19; /* scratch */
unsigned long r20; /* scratch */
unsigned long r21; /* scratch */
unsigned long r22; /* scratch */
unsigned long r23; /* scratch */
unsigned long r24; /* scratch */
unsigned long r25; /* scratch */
unsigned long r26; /* scratch */
unsigned long r27; /* scratch */
unsigned long r28; /* scratch */
unsigned long r29; /* scratch */
unsigned long r30; /* scratch */
unsigned long r31; /* scratch */

unsigned long ar_ccv; /* compare/exchange value (scratch) */

/*
* Floating point registers that the kernel considers scratch:
*/
struct ia64_fpreg f6; /* scratch */
struct ia64_fpreg f7; /* scratch */
struct ia64_fpreg f8; /* scratch */
struct ia64_fpreg f9; /* scratch */
struct ia64_fpreg f10; /* scratch */
struct ia64_fpreg f11; /* scratch */

};

1125

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1126

Appendix A: Architecture Specifics

The thread data strucure holds not only debug (dbr and ibr) and floating-point registers (fph), but,
additionally, kernel also stores information required for IA-32 emulation if this option is available in the
kernel configuration, as shown here:

include/asm-ia64/processor.h
struct thread_struct {

__u32 flags; /* various thread flags (see IA64_THREAD_*) */
/* writing on_ustack is performance-critical, so it’s worth spending 8 bits on it... */
__u8 on_ustack; /* executing on user-stacks? */
__u8 pad[3];
__u64 ksp; /* kernel stack pointer */
__u64 map_base; /* base address for get_unmapped_area() */
__u64 task_size; /* limit for task size */
__u64 rbs_bot; /* the base address for the RBS */
int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */

#ifdef CONFIG_IA32_SUPPORT
__u64 eflag; /* IA32 EFLAGS reg */
__u64 fsr; /* IA32 floating pt status reg */
__u64 fcr; /* IA32 floating pt control reg */
__u64 fir; /* IA32 fp except. instr. reg */
__u64 fdr; /* IA32 fp except. data reg */
__u64 old_k1; /* old value of ar.k1 */
__u64 old_iob; /* old IOBase value */
struct partial_page_list *ppl; /* partial page list for 4K page size issue */
/* cached TLS descriptors. */
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];

#endif /* CONFIG_IA32_SUPPORT */
#ifdef CONFIG_PERFMON

__u64 pmcs[IA64_NUM_PMC_REGS];
__u64 pmds[IA64_NUM_PMD_REGS];
void *pfm_context; /* pointer to detailed PMU context */
unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */

#endif
__u64 dbr[IA64_NUM_DBG_REGS];
__u64 ibr[IA64_NUM_DBG_REGS];
struct ia64_fpreg fph[96]; /* saved/loaded on demand */

};

IA-64 also features a performance monitoring subsystem. Additional registers must be saved if the kernel
is configured to interoperate with this subsystem.

A.7.3 ARM
ARM systems come in two versions because the processor is designed with 26-bit and 32-bit word
lengths. Because all of the more recent systems operate with 32 bits, only the corresponding definitions
for this machine type are included in this appendix.

The following definition of the pt_regs structure consists simply of an array to hold the values of all
registers manipulated in kernel mode:

include/asm-arm/ptrace.h
struct pt_regs {

long uregs[18];
};

1126

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1127

Appendix A: Architecture Specifics

The symbolic names of the registers and their positions within the array are defined by means of pre-
processor constants:

include/asm-arm/ptrace.h
#define ARM_cpsr uregs[16]
#define ARM_pc uregs[15]
#define ARM_lr uregs[14]
#define ARM_sp uregs[13]
#define ARM_ip uregs[12]
#define ARM_fp uregs[11]
#define ARM_r10 uregs[10]
#define ARM_r9 uregs[9]
#define ARM_r8 uregs[8]
#define ARM_r7 uregs[7]
#define ARM_r6 uregs[6]
#define ARM_r5 uregs[5]
#define ARM_r4 uregs[4]
#define ARM_r3 uregs[3]
#define ARM_r2 uregs[2]
#define ARM_r1 uregs[1]
#define ARM_r0 uregs[0]
#define ARM_ORIG_r0 uregs[17]

It is not necessary to save any floating-point registers because ARM processors provide only software
support for floating-point operations:

include/asm-arm/processor.h
struct thread_struct {

/* fault info */
unsigned long address;
unsigned long trap_no;
unsigned long error_code;

/* debugging */
struct debug_info debug;

};

However, machine instructions (in the form of their opcode) can be saved together with a memory
address for debugging purposes, as shown here:

include/asm-arm/processor.h
union debug_insn {

u32 arm;
u16 thumb;

};

struct debug_entry {
u32 address;
union debug_insn insn;

};

struct debug_info {
int nsaved;
struct debug_entry bp[2];

};

1127

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1128

Appendix A: Architecture Specifics

A.7.4 Sparc64
Sparc64 processors also make use of an array in the pt_regs structure to provide memory space for the
individual registers. The registers are named and space is allocated by means of pre-processor constants,
as follows:

include/asm-sparc64/ptrace.h
struct pt_regs {

unsigned long u_regs[16]; /* globals and ins */
unsigned long tstate;
unsigned long tpc;
unsigned long tnpc;
unsigned int y;
unsigned int fprs;

};

#define UREG_G0 0
#define UREG_G1 1
#define UREG_G2 2
#define UREG_G3 3
#define UREG_G4 4
#define UREG_G5 5
#define UREG_G6 6
#define UREG_G7 7
#define UREG_I0 8
#define UREG_I1 9
#define UREG_I2 10
#define UREG_I3 11
#define UREG_I4 12
#define UREG_I5 13
#define UREG_I6 14
#define UREG_I7 15
#define UREG_FP UREG_I6
#define UREG_RETPC UREG_I7

In contrast to other architectures, Sparc64 tries to store the registers that are not always saved in
thread_info instead of in thread_struct. As usual, the platform must be able to differentiate itself
from the other ports. If the kernel is not compiled with the spinlock debugging option, the structure
could be empty. However, owing to an (earlier) GCC error (that the authors of the Sparc port do not
greatly appreciate, as suggested by the following source code comment), the structure contains a dummy
element:

include/asm-sparc64/processor.h
/* The Sparc processor specific thread struct. */
/* XXX This should die, everything can go into thread_info now. */
struct thread_struct {
#ifdef CONFIG_DEBUG_SPINLOCK

/* How many spinlocks held by this thread.
* Used with spin lock debugging to catch tasks
* sleeping illegally with locks held.
*/

int smp_lock_count;
unsigned int smp_lock_pc;

1128

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1129

Appendix A: Architecture Specifics

#else
int dummy; /* f’in gcc bug... */

#endif
};

The memory location for saving the floating-point registers and the lazy state are held in thread_info as
shown here:

include/asm-sparc64/thread_info.h
struct thread_info {

/* D$ line 1 */
struct task_struct *task;
unsigned long flags;
__u8 cpu;
__u8 fpsaved[7];
unsigned long ksp;

/* D$ line 2 */
unsigned long fault_address;
struct pt_regs *kregs;
struct exec_domain *exec_domain;
int preempt_count;
__u8 new_child;

__u8 syscall_noerror;
__u16 __pad;

unsigned long *utraps;

struct reg_window reg_window[NSWINS];
unsigned long rwbuf_stkptrs[NSWINS];

unsigned long gsr[7];
unsigned long xfsr[7];

__u64 __user *user_cntd0;
__u64 __user *user_cntd1;
__u64 kernel_cntd0, kernel_cntd1;
__u64 pcr_reg;

__u64 cee_stuff;

struct restart_block restart_block;

struct pt_regs *kern_una_regs;
unsigned int kern_una_insn;

unsigned long fpregs[0] __attribute__ ((aligned(64)));
};

A.7.5 Alpha
As classic RISC machines, Alpha CPUs employ a large register set whose members are identified mainly
by numbers according to an orderly principle. As already noted, the Alpha architecture uses the PAL
(privileged architecture level) code to perform system tasks. This code is also used in the implementation of

1129

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1130

Appendix A: Architecture Specifics

system calls. The C or assembler code of the kernel need not save all registers listed in pt_regs because
some of them are automatically placed on the stack by PAL code routines. Those that need be are the
following:

include/asm-alpha/ptrace.h
struct pt_regs {

unsigned long r0;
unsigned long r1;
unsigned long r2;
unsigned long r3;
unsigned long r4;
unsigned long r5;
unsigned long r6;
unsigned long r7;
unsigned long r8;
unsigned long r19;
unsigned long r20;
unsigned long r21;
unsigned long r22;
unsigned long r23;
unsigned long r24;
unsigned long r25;
unsigned long r26;
unsigned long r27;
unsigned long r28;
unsigned long hae;

/* JRP - These are the values provided to a0-a2 by PALcode */
unsigned long trap_a0;
unsigned long trap_a1;
unsigned long trap_a2;

/* These are saved by PAL-code: */
unsigned long ps;
unsigned long pc;
unsigned long gp;
unsigned long r16;
unsigned long r17;
unsigned long r18;

};

This architecture likewise makes use of an empty thread_struct structure:

include/asm-alpha/processor.h
/* This is dead. Everything has been moved to thread_info. */
struct thread_struct { };

The contents of floating-point registers f0 to f31 are not held in thread_info, but instead are held on
the stack using the following structure (a few integer registers are saved as well as the floating-point
registers; normally, the former are not needed by the kernel):

include/asm-alpha/ptrace.h
struct switch_stack {

unsigned long r9;
unsigned long r10;
unsigned long r11;

1130

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1131

Appendix A: Architecture Specifics

unsigned long r12;
unsigned long r13;
unsigned long r14;
unsigned long r15;
unsigned long r26;
unsigned long fp[32]; /* fp[31] is fpcr */

};

The kernel defines the following structure to identify the position of the individual registers on the stack:

arch/alpha/kernel/ptrace.c
#define PT_REG(reg) \

(PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg))

#define SW_REG(reg) \
(PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \
+ offsetof(struct switch_stack, reg))

static int regoff[] = {
PT_REG(r0), PT_REG(r1), PT_REG(r2), PT_REG(r3),
PT_REG(r4), PT_REG(r5), PT_REG(r6), PT_REG(r7),
PT_REG(r8), SW_REG(r9), SW_REG(r10), SW_REG(r11),
SW_REG(r12), SW_REG(r13), SW_REG(r14), SW_REG(r15),
PT_REG(r16), PT_REG(r17), PT_REG(r18), PT_REG(r19),
PT_REG(r20), PT_REG(r21), PT_REG(r22), PT_REG(r23),
PT_REG(r24), PT_REG(r25), PT_REG(r26), PT_REG(r27),
PT_REG(r28), PT_REG(gp), -1, -1,
SW_REG(fp[0]), SW_REG(fp[1]), SW_REG(fp[2]), SW_REG(fp[3]),
SW_REG(fp[4]), SW_REG(fp[5]), SW_REG(fp[6]), SW_REG(fp[7]),
SW_REG(fp[8]), SW_REG(fp[9]), SW_REG(fp[10]), SW_REG(fp[11]),
SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]),
SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]),
SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]),
SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]),
SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]),
PT_REG(pc)

};

A.7.6 Mips
Mips processors use an array entry in pt_regs to store the main processor registers, as shown in the
following code. The 32-bit and 64-bit versions of the processor use practically the same structure:

include/asm-mips/ptrace.h
struct pt_regs {
#ifdef CONFIG_32BIT

/* Pad bytes for argument save space on the stack. */
unsigned long pad0[6];

#endif

/* Saved main processor registers. */
unsigned long regs[32];

/* Saved special registers. */

1131

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1132

Appendix A: Architecture Specifics

unsigned long cp0_status;
unsigned long hi;
unsigned long lo;
unsigned long cp0_badvaddr;
unsigned long cp0_cause;
unsigned long cp0_epc;

};

Because Mips processors do not necessarily have a numeric coprocessor, no floating-point registers may
need to be saved — just the status of the software emulation, as shown here:

include/asm-mips/processor.h
struct thread_struct {

/* Saved main processor registers. */
unsigned long reg16;
unsigned long reg17, reg18, reg19, reg20, reg21, reg22, reg23;
unsigned long reg29, reg30, reg31;

/* Saved cp0 stuff. */
unsigned long cp0_status;

/* Saved fpu/fpu emulator stuff. */
union mips_fpu_union fpu;

/* Saved state of the DSP ASE, if available. */
struct mips_dsp_state dsp;

/* Other stuff associated with the thread. */
unsigned long cp0_badvaddr; /* Last user fault */
unsigned long cp0_baduaddr; /* Last kernel fault accessing USEG */
unsigned long error_code;
unsigned long trap_no;
unsigned long mflags;
unsigned long irix_trampoline; /* Wheee... */
unsigned long irix_oldctx;
struct mips_abi *abi;

};

A.7.7 PowerPC
PowerPCs save most registers in an array held in pt_regs:

include/asm-powerpc/ptrace.h
struct pt_regs {

unsigned long gpr[32];
unsigned long nip;
unsigned long msr;
unsigned long orig_gpr3; /* Used for restarting system calls */
unsigned long ctr;
unsigned long link;
unsigned long xer;
unsigned long ccr;

#ifdef __powerpc64__
unsigned long softe; /* Soft enabled/disabled */

1132

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1133

Appendix A: Architecture Specifics

#else
unsigned long mq; /* 601 only (not used at present) */

/* Used on APUS to hold IPL value. */
#endif

unsigned long trap; /* Reason for being here */
/* N.B. for critical exceptions on 4xx, the dar and dsisr

fields are overloaded to hold srr0 and srr1. */
unsigned long dar; /* Fault registers */
unsigned long dsisr; /* on 4xx/Book-E used for ESR */
unsigned long result; /* Result of a system call */

};

Depending on the processor type, it may be necessary to consider whether the AltiVec extension (and
therefore an additional register set) is present when floating-point registers are saved. Debug registers
must also be saved on some system types:

include/asm-powerpc/processor.h
struct thread_struct {

unsigned long ksp; /* Kernel stack pointer */
#ifdef CONFIG_PPC64

unsigned long ksp_vsid;
#endif

struct pt_regs *regs; /* Pointer to saved register state */
mm_segment_t fs; /* for get_fs() validation */

#ifdef CONFIG_PPC32
void *pgdir; /* root of page-table tree */
signed long last_syscall;

#endif
#if defined(CONFIG_4xx) || defined (CONFIG_BOOKE)

unsigned long dbcr0; /* debug control register values */
unsigned long dbcr1;

#endif
double fpr[32]; /* Complete floating point set */
struct { /* fpr ... fpscr must be contiguous */

unsigned int pad;
unsigned int val; /* Floating point status */

} fpscr;
int fpexc_mode; /* floating-point exception mode */

#ifdef CONFIG_PPC64
unsigned long start_tb; /* Start purr when proc switched in */
unsigned long accum_tb; /* Total accumilated purr for process */

#endif
unsigned long vdso_base; /* base of the vDSO library */
unsigned long dabr; /* Data address breakpoint register */

#ifdef CONFIG_ALTIVEC
/* Complete AltiVec register set */
vector128 vr[32] __attribute((aligned(16)));
/* AltiVec status */
vector128 vscr __attribute((aligned(16)));
unsigned long vrsave;
int used_vr; /* set if process has used altivec */

#endif /* CONFIG_ALTIVEC */
};

1133

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1134

Appendix A: Architecture Specifics

A.7.8 AMD64
Even though the AMD64 architecture is very similar to its IA32 predecessor, a number of registers have
been added so that there are some differences as concerns the registers that must be saved during system
calls:

include/asm-x86/ptrace.h
struct pt_regs {

unsigned long r15;
unsigned long r14;
unsigned long r13;
unsigned long r12;
unsigned long rbp;
unsigned long rbx;

/* arguments: non interrupts/non tracing syscalls only save upto here*/
unsigned long r11;
unsigned long r10;
unsigned long r9;
unsigned long r8;
unsigned long rax;
unsigned long rcx;
unsigned long rdx;
unsigned long rsi;
unsigned long rdi;
unsigned long orig_rax;

/* end of arguments */
/* cpu exception frame or undefined */

unsigned long rip;
unsigned long cs;
unsigned long eflags;
unsigned long rsp;
unsigned long ss;

/* top of stack page */
};

The close ties between the two architectures are very apparent in the following thread_struct structure
which has almost exactly the same layout as in IA32:

include/asm-x86_64/processor.h
struct thread_struct {

unsigned long rsp0;
unsigned long rsp;
unsigned long userrsp; /* Copy from PDA */
unsigned long fs;
unsigned long gs;
unsigned short es, ds, fsindex, gsindex;

/* Hardware debugging registers */
unsigned long debugreg0;
unsigned long debugreg1;
unsigned long debugreg2;
unsigned long debugreg3;
unsigned long debugreg6;
unsigned long debugreg7;

/* fault info */

1134

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1135

Appendix A: Architecture Specifics

unsigned long cr2, trap_no, error_code;
/* floating point info */

union i387_union i387 __attribute__((aligned(16)));
/* IO permissions. the bitmap could be moved into the GDT, that would make

switch faster for a limited number of ioperm using tasks. -AK */
int ioperm;
unsigned long *io_bitmap_ptr;
unsigned io_bitmap_max;

/* cached TLS descriptors. */
u64 tls_array[GDT_ENTRY_TLS_ENTRIES];

} __attribute__((aligned(16)));

include/adm-x86/processor_64.h
union i387_union {

struct i387_fxsave_struct fxsave;
};

Formally, the i387_union used to save the floating-point registers has the same name as in IA32.
However, because AMD64 processors always have a math coprocessor, no software emulation needs to
be included.

A.8 Bit Operations and Endianness
The kernel frequently works with bit fields; for instance, when searching for a free slot in an allocation
bitmap. This section describes the facilities provided for bit operations. It also describes how endianness
questions are settled.

A.8.1 Manipulation of Bit Chains
Although some of the functions needed for bit manipulation are implemented in C, the kernel prefers
optimized assembler functions that are able to exploit the special features of the individual processors.
Because some operations are atomic, they cannot be implemented in assembler code. The architecture-
specific parts of the kernel must define the following functions in <asm-arch/bitops.h>:

❑ void set_bit(int nr, volatile unsigned long * addr) sets the bit at position nr; counting
begins at addr.

❑ int test_bit(int nr, const volatile unsigned long * addr) checks whether the specified bit
is set.

❑ void clear_bit(int nr, volatile unsigned long * addr) deletes the bit at position nr (count-
ing begins at addr).

❑ void change_bit(int nr, volatile unsigned long * addr) reverses the bit value at position nr
(counting begins at addr); in other words, a set bit is unset and vice versa.

❑ int test_and_set_bit(int nr, volatile unsigned long * addr) sets a bit and returns its for-
mer value.

❑ int test_and_clear_bit(int nr, volatile unsigned long * addr) deletes a bit and returns its
former value.

❑ int test_and_change_bit(int nr, volatile unsigned long* addr) reverses a bit value and
returns its former value.

1135

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1136

Appendix A: Architecture Specifics

All of these functions are executed atomically, because lock statements are integrated in the assembler
code. There are also non-atomic versions of these functions, which are prefixed with a double underscore
(for example, __set_bit).

A.8.2 Conversion between Byte Orders
Architectures supported by the kernel use one of two byte orders — little endian or big endian.
Some architectures are able to handle both, but one must be configured. The kernel must there-
fore provide functions to convert data between both orders. For device drivers, it is particularly
important that function versions are available to convert a specific byte order to the format used by
the host without the need for numerous #ifdef pre-processor statements. The kernel provides the
<byteorder/little_endian.h> and <byteorder/big_endian.h> files. The version for the current
processor is linked into <asm-arch/byteorder.h>.2

In order to implement the functions for converting between byte orders, the kernel needs efficient
ways of swapping bytes that can be optimized for each specific processor. C default functions are
defined in <byteoorder/swab.h>, but they can be overwritten by a processor-specific implementation.
__arch__swab16, __arch__swab32, and __arch__swab64 swap the bytes between the representations,
and therefore convert big endian to little endian and vice versa. __swab16p, __arch__swab32p, and
__arch__swab64p do the same for pointer variables. swab stands for swap bytes.

The __arch__operation pre-processor constant (__arch__swab16p, for example) must be set if an archi-
tecture provides an optimized version of one of these functions.

The following functions implement the conversion routines for little endian hosts as follows (note that
the conversion routines perform a null operation if they are executed on a number already in the relevant
format):

<byteorder/little_endian.h>
#define __constant_htonl(x) ((__force __be32)___constant_swab32((x)))
#define __constant_ntohl(x) ___constant_swab32((__force __be32)(x))
#define __constant_htons(x) ((__force __be16)___constant_swab16((x)))
#define __constant_ntohs(x) ___constant_swab16((__force __be16)(x))
#define __constant_cpu_to_le64(x) ((__force __le64)(__u64)(x))
#define __constant_le64_to_cpu(x) ((__force __u64)(__le64)(x))
#define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x))
#define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x))
#define __constant_cpu_to_le16(x) ((__force __le16)(__u16)(x))
#define __constant_le16_to_cpu(x) ((__force __u16)(__le16)(x))
#define __constant_cpu_to_be64(x) ((__force __be64)___constant_swab64((x)))
#define __constant_be64_to_cpu(x) ___constant_swab64((__force __u64)(__be64)(x))
#define __constant_cpu_to_be32(x) ((__force __be32)___constant_swab32((x)))
#define __constant_be32_to_cpu(x) ___constant_swab32((__force __u32)(__be32)(x))
#define __constant_cpu_to_be16(x) ((__force __be16)___constant_swab16((x)))
#define __constant_be16_to_cpu(x) ___constant_swab16((__force __u16)(__be16)(x))
#define __cpu_to_le64(x) ((__force __le64)(__u64)(x))
#define __le64_to_cpu(x) ((__force __u64)(__le64)(x))
#define __cpu_to_le32(x) ((__force __le32)(__u32)(x))

2The byte order for VAX systems used to be declared as 3412 in <byteorder/pdp_endian.h>. However, because the architec-
ture is not supported by the kernel, this was somewhat pointless, so the file was removed during the development of kernel 2.6.21.

1136

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1137

Appendix A: Architecture Specifics

#define __le32_to_cpu(x) ((__force __u32)(__le32)(x))
#define __cpu_to_le16(x) ((__force __le16)(__u16)(x))
#define __le16_to_cpu(x) ((__force __u16)(__le16)(x))
#define __cpu_to_be64(x) ((__force __be64)__swab64((x)))
#define __be64_to_cpu(x) __swab64((__force __u64)(__be64)(x))
#define __cpu_to_be32(x) ((__force __be32)__swab32((x)))
#define __be32_to_cpu(x) __swab32((__force __u32)(__be32)(x))
#define __cpu_to_be16(x) ((__force __be16)__swab16((x)))
#define __be16_to_cpu(x) __swab16((__force __u16)(__be16)(x))

The names of the functions indicate their purpose. For example, __be32_to_cpus converts a 32-bit big
endian value to the CPU-specific format, and __cpu_to_le64 converts the CPU-specific format to little
endian for a 64-bit value.

The functions for big endian hosts are implemented using the same means (only the conversions made
are different).

A.9 Page Tables
To simplify memory management and to provide a memory model that abstracts the differences between
the various architectures, the ports must offer functions to manipulate page tables and their entries. These
are declared in <asm-arch/pgtable.h>. Chapter 3 discusses the most interesting definitions in this file,
so there’s no need to repeat them here.

A.10 Miscellaneous
This section covers three additional architecture-specific topics, which don’t fit into any of the previous
categories.

A.10.1 Checksum Calculation
Calculating checksums for packets is a key aspect of communication via IP networks and takes consid-
erable time. If possible, each architecture should therefore employ manually optimized assembler code
to calculate the checksums. The code needed to do this is declared in <asm-arch/checksum.h>. Two
functions are of prime importance:

❑ unsigned short ip_fast_csum calculates the requisite checksum based on the IP header and the
header length.

❑ csum_partial calculates the checksum for a packet from the fragments that are received one
by one.

A.10.2 Context Switch
The hardware-dependent part of context switching takes place once the scheduler has decided to instruct
the current process to relinquish the CPU so that another process can run. For this purpose, all architec-
tures must provide the switch_to function or a corresponding macro with the following prototype in
<asm-arch/system.h>:

<asm-arch/system.h>
void switch_to(struct task_struct *prev, struct task_struct *next,

struct task_struct *last)

1137

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1138

Appendix A: Architecture Specifics

The function performs a context switch by saving the state of the process specified by prev and activating
the process designated by next.

Although the last parameter may initially appear to be superfluous, it is used to find the process that
was running immediately prior to the function return. Note that switch_to is not a function in the usual
sense because the system state can change in any number of ways between the start and end of the
function.

This can be best understood via an example in which the kernel switches from process A to process B.
prev points to A and next to B. Both are local variables in context A.

After process B has executed, the kernel switches to other processes and finally arrives at process X;
when this process ends, the kernel reverts to process A. Because process A was exited in the middle
of switch_to, execution resumes in the second half of the process. The local variables are retained (the
process is not allowed to notice that the scheduler has reclaimed the CPU in the meantime), so prev
points to A and next to B. However, this information is not sufficient to enable the kernel to establish
which process was running immediately prior to activation of A — although it is important to know this
at various points in the kernel. This is where the last variable comes in. The low-level assembler code
to implement context switching must ensure that last points to the task structure of the process that ran
last so that this information is still available to the kernel after a switch has been made to process A.

A.10.3 Finding the Current Process
The purpose of the current macro is to find a pointer to the task structure of the currently running
process. It must be declared by each architecture in <asm-arch/current.h>. The pointer is held in a
separate processor register that can be queried directly or indirectly using current. The registers reserved
by the individual architectures are listed in Table A-1.

Table A-1: Registers Holding Pointers to the Current task_struct or thread_info
Instance

Architecture Register Contents

IA-32 esp thread_info

IA-64 r13 task_struct

ARM sp thread_info

Sparc and Sparc64 g6 thread_info

Alpha r8 thread_info

Mips r28 thread_info

Note that the register is used for different purposes, depending on architecture. Some architectures use
it to store a pointer to the current task_struct instance, but most use it to hold a pointer to the cur-
rently valid thread_info instance. Since, on the latter architectures, thread_info contains a pointer

1138

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1139

Appendix A: Architecture Specifics

to the task_struct associated with the process, current can be implemented in a roundabout way as
demonstrated below for the Arm architecture:

include/asm-arm/current.h
static __always_inline struct task_struct * get_current(void)
{

return current_thread_info()->task;
}

#define current get_current()

The pointer to the current thread_info instance found using current_thread_info is stored in register
sp, as shown here:

include/asm-arm/thread_info.h
static inline struct thread_info *current_thread_info(void)
{

register unsigned long sp asm ("sp");
return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));

}

The AMD64 and IA-32 architectures are not included in Table A-1 because they adopt their own method
of finding the current process. Each CPU in the system has a per-processor private data area which holds
various interesting items of information. For AMD64, it is defined as follows:

include/asm-x86/pda.h
struct x8664_pda {

struct task_struct *pcurrent; /* 0 Current process */
unsigned long data_offset; /* 8 Per cpu data offset from linker

address */
unsigned long kernelstack; /* 16 top of kernel stack for current */

...
unsigned irq_call_count;
unsigned irq_tlb_count;
unsigned irq_thermal_count;
unsigned irq_threshold_count;
unsigned irq_spurious_count;

} ____cacheline_aligned_in_smp;

The segment selector register gs always points to the data structure, and elements of it can therefore be
simply addressed as offsets to the segment. This structure includes the pcurrent pointer that points to
the task_struct instance of the current process.

A.11 Summary
The largest part of the Linux kernel is written in architecture-independent C, and this is one of the pre-
requisites that enables Linux to be ported to a huge number of platforms. However, a small core of
hardware-specific data structures and functions must be provided by every platform. This appendix
explored some examples of definitions for a number of important architectures, and described the generic
mechanisms provided by the kernel to bridge differences between various platforms.

1139

Mauerer runapp01.tex V1 - 09/04/2008 6:08pm Page 1140

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1141

Working with the Source
Code

Over the years, Linux has grown from a minor hacker project to a gigantic system that effortlessly
competes with the largest and most complex software systems. As a result, developers must deal
with more than just the technical problems relating to how the kernel functions. The organization
and structure of the sources are also key issues whose importance should be not underestimated.
This appendix addresses the two most interesting questions in this context. How can the kernel
be configured so that the corresponding parts of the source can be selected not only for a given
architecture but also for a specific computer configuration? And how is the compilation process
controlled? The second question is of particular importance when the kernel is repeatedly compiled
for different configurations. Parts not involved in a configuration change obviously need not be
recompiled, and this can save a great deal of time.

Everyone concerned with the kernel sources is impressed by their sheer size. Because the prime pur-
pose of this book is to promote an understanding of the sources, this appendix examines various
methods that are best suited to browsing and analyzing the source code. These include predom-
inantly hypertext systems. This appendix also describes the options available to debug running
kernels and to provide an insight into their structures — both are useful aids to understanding. The
appendix delves into User-Mode Linux (UML), a kernel port that runs as a user process on a Linux
system and was incorporated into the official sources during the development of version 2.5. It also
discusses the debugging facilities available to analyze a kernel running on a real system — with all
the benefits of modern debuggers, including single-stepping through assembler statements.

B.1 Organization of the Kernel Sources
The source files are spread over a widely ramified network of directories to help keep track of
related kernel components. This is no easy task because it is not always clear to which category a
particular file belongs.

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1142

Appendix B: Working with the Source Code

The main kernel directory contains a number of subdirectories to roughly classify their contents. The key
kernel components reside in the following directories:

❑ The kernel directory contains the code for the components at the heart of the kernel. It accom-
modates only about 120 files, with a total of approximately 80,000 lines of code — a surprisingly
small number for a project of this size. Developers stress how important it is to not add to the
contents of this directory unless absolutely necessary — patches that modify the files in the
directory are handled with extreme care and are very often the subject of long and controversial
discussions before final acceptance.

❑ High-level memory management resides in mm/. The memory management subsystem comprises
around 45,000 lines of code and is about the same size as the kernel itself.

❑ The code needed to initialize the kernel is held in init/. It is discussed in AppendixD.

❑ The implementation of the System V IPC mechanism resides in ipc/, which was discussed in
Chapter 5.

❑ sound/ contains the drivers for sound cards. Because there are devices for many of the supported
buses, the directory includes bus-specific subdirectories with the corresponding driver sources.
Although they are kept in their own directory, the sound card drivers are not much different
from other device drivers.

❑ fs/ holds the source code for all filesystem implementations and takes up approximately 25 MiB
of space in the kernel sources.

❑ net/ contains the network implementation, which is split into a core section and a section to
implement the individual protocols. The network subsystem is 15 MiB in size and is one of the
largest kernel components.

❑ lib/ contains generic library routines that can be employed by all parts of the kernel, including
data structures to implement various trees and data compression routines.

❑ drivers/ occupies the lion’s share (130 MiB) of the space devoted to the sources. However, only
a few of its elements are found in the compiled kernel because, although Linux now supports
a huge number of drivers, only a few are needed for each system. The directory is further sub-
divided in accordance with varying strategies. It includes bus-specific subdirectories (such as
drivers/pci/) that group all drivers for accessory cards used with a specific bus type — the
drivers for the bus itself are also held in this directory. There are also a few category-specific sub-
directories, such as media/ and isdn/, that contain cards of the same category but for different
buses.

❑ include/ contains all header files with publicly exported functions. (If functions are only
used privately by a subsystem or are used in a single file only, the kernel inserts an include
file in the same directory as the C source code.) A distinction is made between two types
of include files — processor-dependent information is given in the subdirectory named
include/arch-arch/, and general architecture-independent definitions are provided in
include/linux/. A symbolic link (include/asm) to the directory appropriate to the architecture
is created when the kernel is configured. When the kernel sources are compiled, the header
search path of the C compiler is set so that files from include/linux can be linked in by
means of #include<file.h> — normally, this is only possible for the standard include files in
/usr/include/.

1142

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1143

Appendix B: Working with the Source Code

❑ crypto/ contains the files of the crypto layer (which is not discussed in this book). It includes
implementations of various ciphers that are needed primarily to support IPSec (encrypted IP
connection).

❑ The security/ directory is used for security frameworks and key management for cryptogra-
phy. For kernel 2.6.24, it contains only the SELinux security framework,1 but kernel 2.6.25, which
was still under development at the time of this writing, will also contain the SMACK framework.

❑ Documentation/ contains numerous text files to document various aspects of the kernel. How-
ever, some of this information is very old (documenting software is not the favorite pastime of
kernel developers).

❑ arch/ holds all architecture-specific files, both include files and C and Assembler sources.
There is a separate subdirectory for each processor architecture supported by the kernel. The
architecture-specific directories differ only slightly and are similar to the top-level directory of
the kernel in that they include subdirectories such as arch/mm/, arch/kernel, and so on.

❑ scripts/ contains all scripts and utilities needed to compile the kernel or to perform other useful
tasks.

The source size distribution among the various kernel components is illustrated in Figure B-1.

Initialization
IPC

Block Layer
Security Framework

Library Functions
Cryptographic Routines

Memory Management
Scripts

Core Kernel
Documentation
Sound Drivers

Networking
Filesystems
Header Files

Architecture-Specific Code
Device Drivers

0 20 40 60 80 100 120 140

Size [MiB]

Figure B-1: Distribution of code sizes among components found in the top-level directory of kernel
2.6.24.

1SELinux extends the classic DAC (discretionary access control) rights model of the kernel to include role-based access control options,
MAC (mandatory access control) and MLS (multilevel security). These special topics aren’t discussed here because their implementa-
tion is lengthy, the underlying concept is complex, and the options are available in only a small number of Linux distributions.

1143

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1144

Appendix B: Working with the Source Code

B.2 Configuration with Kconfig
As you know, the kernel must be configured prior to compilation. By referring to a list of options,
users can decide which functions they want to include in the kernel, which they want to compile as
modules, and which they want to leave out. With this in mind, developers must provide a system that
indicates which features are available. To this end, the kernel employs a configuration language known as
Kconfig, which is discussed throughout the remainder of this section.

The configuration language must address the following issues:

❑ Components can be permanently compiled into the kernel, compiled as modules, or simply
ignored (because it may not be possible to compile some components as modules in certain cir-
cumstances).

❑ There may be mutual dependencies between configuration options. In other words, some
options can be selected only in combination with one or more other options.

❑ It must be possible to show a list of alternative options from which users may select one. There
are also situations in which users are prompted to enter numbers (or similar values).

❑ It must be possible to arrange the configuration options hierarchically (in a tree structure).

❑ The configuration options differ from architecture to architecture.

❑ The configuration language should not be over-complicated because writing configuration
scripts is not exactly what most kernel programmers prefer to do.

The configuration information is spread throughout the entire source tree so that there is no need for a
gigantic, central configuration file that would be difficult to patch. There must be a configuration file in
each subdirectory whose code contains configurable options. The following subsection uses an example
to illustrate the proper syntax of a configuration file.

The following discussion deals only with the way in which the configuration options are specified. How
the options are implemented in the kernel sources is not important at the moment.

B.2.1 A Sample Configuration File
The syntax of the configuration files is not especially complicated as the following (slightly modified)
example taken from the USB subsystem shows:

drivers/usb/Kconfig
#
USB device configuration
#

menuconfig "USB support"
bool "USB support"
depends on HAS_IOMEM
default y
---help---

This option adds core support for Universal Serial Bus (USB).
You will also need drivers from the following menu to make use of it.

1144

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1145

Appendix B: Working with the Source Code

if USB_SUPPORT

config USB_ARCH_HAS_HCD
boolean
default y if USB_ARCH_HAS_OHCI
...
default PCI

config USB_ARCH_HAS_OHCI
boolean
ARM:
default y if SA1111
default y if ARCH_OMAP
PPC:
default y if STB03xxx
default y if PPC_MPC52xx
MIPS:
default y if SOC_AU1X00
more:
default PCI

config USB
tristate "Support for USB"
depends on USB_ARCH_HAS_HCD
---help---

Universal Serial Bus (USB) is a specification for a serial bus
subsystem which offers higher speeds and more features than the
traditional PC serial port. The bus supplies power to peripherals
...

source "drivers/usb/core/Kconfig"
source "drivers/usb/host/Kconfig"
...
source "drivers/usb/net/Kconfig"

comment "USB port drivers"
depends on USB

config USB_USS720
tristate "USS720 parport driver"
depends on USB && PARPORT
---help---

This driver is for USB parallel port adapters that use the Lucent
Technologies USS-720 chip. These cables are plugged into your USB
port and provide USB compatibility to peripherals designed with
parallel port interfaces.
...

source "drivers/usb/gadget/Kconfig"

endif # USB_SUPPORT

Figure B-2 illustrates how the defined tree structure is displayed on screen to enable users to select the
options they want.

1145

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1146

Appendix B: Working with the Source Code

Figure B-2: USB configuration structure screen.

menuconfig generates a menu item whose heading is given as a string — in this case USB support.
When users configure the kernel with make menuconfig or the graphical equivalent make xconfig or
make gconfig, this item appears as the root of a new subtree. The choice is stored in a variable, in this
case USB_SUPPORT, and two values are possible because the choice is Boolean, as indicated by bool. If
USB_SUPPORT is deselected, then no further customization options will appear in the configuration tree,
which is ensured by the if clause.

source enables further configuration files to be linked in (by convention, they are all named Kconfig).
Their contents are interpreted as if the text they contain were held in the configuration file into which
they are linked.

comment creates a comment in the list of configuration options. The comment text is displayed, but users
cannot make a selection.

The actual configuration options are specified with config. There is just one entry of this kind for each
option. The string following config is known as a configuration symbol and accepts the user selection.
Each option requires a type to define the kind of selection that users can make. In this case, the selection
type is tristate; that is, one of three options can be selected — ‘‘compiled in,‘‘ ‘‘modular,‘‘ or ‘‘do not

1146

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1147

Appendix B: Working with the Source Code

compile.‘‘ Depending on the choice made, the configuration symbol is assigned the value y, m, or n. In
addition to tristate, the kernel provides other selection types, which are discussed later in this section.

Configuration option dependencies are specified by depends on. Other configuration symbols are passed
to the statement as parameters, and they can be linked using the logical operators used in C (&& = ‘‘and‘‘,
|| = ‘‘or‘‘, and ! = ‘‘logical negation‘‘). The menu item is not displayed unless the specified precondition
is satisfied.

The --help--2 entry indicates that the text after it is help text that users can display if they are not sure
of the meaning of the configuration entry. The end of the help text is indicated by a change in indentation
so that the kernel knows it is again dealing with normal configuration statements.

Two configuration options are shown in the example. The first defines the USB configuration symbol
on which all other configuration entries depend. However, this choice is not displayed unless a host
controller for USB can be presented. This is dependent on the USB_ARCH_HAS_HCD configuration option
that may be either true or false. There are different ways of assigning a true value to the option — the
following two are shown in the example:

❑ Direct support is available for a host controller chipset (OHCI in the example).

❑ The PCI bus is supported (the PCI symbol has a true value).

Support for the OHCI chipset is available if USB_ARCH_HAS_OHCI is set. This is always the case when the
PCI bus is supported. However, various systems use the chipset without PCI support. These are explicitly
listed and include, for example, ARM-based machines and some PPC-based models.

The second configuration option (USS720) is dependent on two things. Support must be available not
only for USB, but also for the parallel port. Otherwise, the driver option is not even displayed.

As the example shows, there may be dependencies between comments as well as between configuration
options. The USB Port drivers entry is not displayed unless USB support is selected.

Generation of the configuration tree starts at arch/arch/Kconfig, which must first be read by the config-
uration files. All other Kconfig files are linked in recursively from there by means of source.

B.2.2 Language Elements of Kconfig
The previous example does not make full use of all options of the Kconfig language. This section provides
a systematic overview of all language features based on the documentation in the kernel sources.3

Menus
Menus are specified using the following command:

menu "string"
<attributes>

<configuration options>

endmenu

2The minus signs can be omitted; help is sufficient as a separator.
3This documentation can be found in Documentation/kbuild/kconfig-language.txt.

1147

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1148

Appendix B: Working with the Source Code

where string is the name of the menu. All entries between menu and endmenu are interpreted as subitems
of the menu and automatically inherit the dependencies of the menu item (these are added to the existing
dependencies of the subitems).

The keyword menuconfig is used to define a configuration symbol and a submenu together. Instead of
writing this:

menu "Bit bucket compression support"

config BIT_BUCKET_ZLIB
tristate "Bit bucket compression support"

you can also specify the shorter form as follows:

menuconfig BIT_BUCKET_ZLIB
tristate "Bit bucket compression support"

Another keyword, mainmenu, may occur only at the top of the configuration hierarchy (and then once
only) to specify a title for the entire hierarchy. The entry is therefore used only in arch/arch/Kconfig
because these files represent the starting point of the configuration hierarchy. For example, the version
for Sparc64 processors includes the following entry:

mainmenu "Linux/UltraSPARC Kernel Configuration"

Configuration Options
Configuration options are introduced by the keyword config that must be followed by a configuration
symbol.

config <symbol>
<type-name> "Description"
<attributes>

The type name indicates the option type. As mentioned earlier, the tristate type has one of the following
states: y, n, or m. Additional option types include the following:

❑ bool permits a Boolean query that returns either y or n — in other words, the entry may be
selected or not.

❑ string queries a string.

❑ hex and integer read hexadecimal and decimal numbers respectively.

The following syntax can be used instead of the type name:

config <symbol>
<type-name>
prompt "Description"

In functional terms, this is identical to the previous, shorter alternative.

1148

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1149

Appendix B: Working with the Source Code

The choice element must be used with the following syntax if users are required to select one of a group
of options:

choice
<attributes>

config <symbol_1>
<type-name>
<attributes>

...

config <symbol_n>
<type-name>
<attributes>

endchoice

Each configuration option has its own configuration symbol that has the value y if the option is selected
or n if not. choice selections are usually indicated by radio buttons in the configuration front ends, as
illustrated in Figure B-3.

The source code for the CPU selection shown in the figure looks like this (the help texts have been omitted
to improve readability):

choice
prompt "Processor family"
default M686 if X86_32

config M386
bool "386"
depends on X86_32 && !UML
---help---

This is the processor type of your CPU. This information is used for
optimizing purposes. In order to compile a kernel that can run on
all x86 CPU types (albeit not optimally fast), you can specify
"386" here.
...

config M486
bool "486"

config M586
bool "586/K5/5x86/6x86/6x86MX"

config M586TSC
bool "Pentium-Classic"

config M586MMX
bool "Pentium-MMX"

config M686
bool "Pentium-Pro"

1149

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1150

Appendix B: Working with the Source Code

config MPENTIUMII
bool "Pentium-II/Celeron(pre-Coppermine)"

...

config MGEODE_LX
bool "Geode GX/LX"

config MCYRIXIII
bool "CyrixIII/VIA-C3"

config MVIAC3_2
bool "VIA C3-2 (Nehemiah)"

...

endchoice

Figure B-3: CPU selection with choice elements on IA-32.

1150

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1151

Appendix B: Working with the Source Code

Attributes
Attributes are used to more precisely specify the effect of configuration options. The following excerpt
from the kernel sources makes use of attributes:

config SWAP
bool "Support for paging of anonymous memory (swap)"
depends on MMU & BLOCK
default y

depends on specifies that SWAP may be chosen only if the kernel is compiled for a system with MMU, and
if the block layer is compiled in. default indicates that y is selected by default — if users do not change
the setting, this value is automatically assigned to the SWAP symbol.

Before moving on to deal with how the dependency specification is used (described in the next subsec-
tion), take a look at the following attributes:

❑ default specifies the default setting for the config entry. For bool queries, the possible defaults
are y or n. m is a third alternative for tristate. Modified defaults must be specified for the other
option types: strings for string, and numbers for integer and hex.

❑ range limits the possible value range for numeric options. The first argument specifies the lower
limit; the second argument specifies the upper limit.

❑ select is used to automatically select other configuration options if the entry is selected using
the select statement. This reverse dependency mechanism can be used only with tristates and
bool.

❑ help and --help-- introduce help text, as demonstrated previously.

All these attributes may also be followed by an if clause, which specifies the conditions in which the
attribute applies. As with depends on, this is done by linking the symbols on which the attribute depends
by means of logical operators, as shown in the following (fictitious) example:

config ENABLE_ACCEL
bool "Enable device acceleration"
default n

...

config HYPERCARD_SPEEDUP
integer "HyperCard Speedup"
default 20 if ENABLE_ACCEL
range 1 20

Dependencies
As previously explained, entry dependencies can be specified in the form of logical clauses based on a
syntax similar to C. A dependency specification must be structured as follows:

depends [on] <expr>
<expr> ::= <Symbol>

<Symbol> ’=’ <Symbol>
<Symbol> ’!=’ <Symbol>

1151

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1152

Appendix B: Working with the Source Code

’(’ <expr> ’)’
’!’ <expr>
<expr> ’&&’ <expr>
<expr> ’||’ <expr>

The possible expressions are listed in the order in which they are interpreted. In other words, the expres-
sions listed first have a higher priority than those that follow.

The meaning of the operations is the same as in the C syntax: y = 2, n = 0, and m = 1. A menu item is not
visible unless the result of the dependency calculation is not 0.

A particular dependency is specified by ‘‘EXPERIMENTAL.’’ Drivers still in the experimental stage must be
labeled with this dependency (as a && logical operation if the driver has other dependencies of its own).
Because the kernel provides a configuration option in init/Kconfig to allow users to set the symbol to
y or n (Prompt for development and/or incomplete code/drivers), it is easy to remove drivers of this
kind from the configuration options for those users who crave stability. The string ‘‘(Experimental)’’
should appear at the end to indicate that the driver code is in fact experimental.

B.2.3 Processing Configuration Information
The configuration information is processed in following steps:

1. The kernel is first configured by the user. This presupposes that a list of all possible options
has been prepared and presented in text or graphical form (the available configurations are
already limited by the choice of architecture without the user having to intervene).

2. The user selection is then stored in a separate file to ensure that the information is retained
until the next (re)configuration and to make it available to the tools employed.

3. The selected configuration symbols must be present, both for the build system implemented
by a series of Makefiles and for pre-processor statements in the kernel sources.

There are various make destinations (make destconfig) to initiate kernel configuration. Each serves a
different purpose.

❑ menuconfig provides a console-driven front end, while xconfig and gconfig feature a graphical
user interface that builds on various X11 toolkits (Qt or GTK).

❑ oldconfig analyzes configuration options already stored in .config and issues prompts that
may have been added after a kernel update and have not yet been assigned to a selection.

❑ defconfig applies the default configuration defined by the architecture maintainer (the relevant
information is held in arch/arch/defconfig).

❑ allyesconfig creates a new configuration file in which all selections are set to y (where this is
supported). allmodconfig also sets all selections to y but uses m if this is a possible alternative.
allnoconfig generates a minimum configuration from which additional options not needed to
compile the key kernel components have been removed.

These three targets are used for test purposes when new kernel releases are being created. Nor-
mally, they cannot be sensibly used by end users.

1152

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1153

Appendix B: Working with the Source Code

All configuration options must analyze the configuration information in the diverse Kconfig files. The
resulting configuration must also be saved. The kernel sources provide the libkconfig library for this
purpose. It holds the routines needed to perform the appropriate tasks. (This appendix does not discuss
the implementation of the parser that employs the Bison and Flex parser and scanner generators. For
that, refer to the relevant sources in scripts/kconfig/zconf.y and zconf.l.)

The user-defined configuration options are held in .config, as shown in this example:

wolfgang@meitner> cat .config
#
Automatically generated make config: don’t edit
Linux kernel version: 2.6.24
Thu Mar 20 00:09:15 2008
#
CONFIG_64BIT=y
CONFIG_X86_32 is not set
CONFIG_X86_64=y
CONFIG_X86=y
CONFIG_GENERIC_TIME=y
...
#
General setup
#
CONFIG_EXPERIMENTAL=y
CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_LOCALVERSION="-default"
CONFIG_LOCALVERSION_AUTO is not set
...
CONFIG_PLIST=y
CONFIG_HAS_IOMEM=y
CONFIG_HAS_IOPORT=y
CONFIG_HAS_DMA=y
CONFIG_CHECK_SIGNATURE=y

All configuration symbols are prefixed with the CONFIG_ string. =y or =n is appended if the entry is set.
Options that are not set are commented out using a number sign (#).

The <config.h> file must be linked in to make the selected configuration visible in the kernel sources. In
turn, this file incorporates <autoconf.h> into the source text. The latter contains configuration informa-
tion in a form that the pre-processor can easily digest, as shown here:

<autoconf.h>
/*
* Automatically generated C config: don’t edit
* Linux kernel version: 2.6.24
* Thu Mar 20 00:09:26 2008
*/

#define AUTOCONF_INCLUDED
#define CONFIG_USB_SISUSBVGA_MODULE 1
#define CONFIG_USB_PHIDGETMOTORCONTROL_MODULE 1
#define CONFIG_VIDEO_V4L1_COMPAT 1

1153

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1154

Appendix B: Working with the Source Code

#define CONFIG_PCMCIA_FMVJ18X_MODULE 1
...
#define CONFIG_USB_SERIAL_SIERRAWIRELESS_MODULE 1
#define CONFIG_VIDEO_SAA711X_MODULE 1
#define CONFIG_SATA_INIC162X_MODULE 1
#define CONFIG_AIC79XX_RESET_DELAY_MS 15000
#define CONFIG_NET_ACT_GACT_MODULE 1
...
#define CONFIG_USB_BELKIN 1
#define CONFIG_NF_CT_NETLINK_MODULE 1
#define CONFIG_NCPFS_PACKET_SIGNING 1
#define CONFIG_SND_USB_AUDIO_MODULE 1
#define CONFIG_I2C_I810_MODULE 1
#define CONFIG_I2C_I801_MODULE 1

The configuration symbols are again prefixed with CONFIG_. Each option selected is defined as 1. Module
options (m) are likewise defined as 1, but the _MODULE string is also appended to the pre-processor symbol.
Configuration entries that are not selected are explicitly marked as undefined with undef. Numeric
values and character strings are replaced with the value selected by the user.

This enables queries (as they appear throughout this book) to be inserted in the source text. For example:

#ifdef CONFIG_SYMBOL
/* Code if SYMBOL is set */
#else
/* Code if SYMBOL is not set */
#endif

B.3 Compiling the Kernel with Kbuild
After the kernel has been configured, the sources must be compiled to generate the kernel image and
to obtain the module binaries. The kernel uses GNU Make to do this. It employs a complex system
of Makefiles to satisfy special requirements that arise when building kernels but not when building
normal applications. Deep insight into the box of make tricks is needed to fully understand how this
mechanism works, so this appendix doesn’t go into detail but simply examines system use from
the viewpoint of end users and kernel programmers (not from the viewpoint of Kbuild developers).
Documentation/kbuild/makefiles.txt contains the detailed system documentation on which this
section is partly based.

B.3.1 Using the Kbuild System
The help target was introduced during the development of 2.5 to display all make targets available to
users. It outputs a list of targets in which a distinction is made between architecture-dependent and
architecture-independent variants. On UltraSparc systems, for example, it displays the following list:

wolfgang@ultrameitner> make help
Cleaning targets:

clean - Remove most generated files but keep the config and
enough build support to build external modules

mrproper - Remove all generated files + config + various backup files

1154

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1155

Appendix B: Working with the Source Code

distclean - mrproper + remove editor backup and patch files

Configuration targets:
config - Update current config utilising a line-oriented program
menuconfig - Update current config utilising a menu based program
xconfig - Update current config utilising a QT based front-end
gconfig - Update current config utilising a GTK based front-end
oldconfig - Update current config utilising a provided .config as base
silentoldconfig - Same as oldconfig, but quietly
randconfig - New config with random answer to all options
defconfig - New config with default answer to all options
allmodconfig - New config selecting modules when possible
allyesconfig - New config where all options are accepted with yes
allnoconfig - New config where all options are answered with no

Other generic targets:
all - Build all targets marked with [*]

* vmlinux - Build the bare kernel
* modules - Build all modules

modules_install - Install all modules to INSTALL_MOD_PATH (default: /)
dir/ - Build all files in dir and below
dir/file.[ois] - Build specified target only
dir/file.ko - Build module including final link
rpm - Build a kernel as an RPM package
tags/TAGS - Generate tags file for editors
cscope - Generate cscope index
kernelrelease - Output the release version string
kernelversion - Output the version stored in Makefile
headers_install - Install sanitised kernel headers to INSTALL_HDR_PATH

(default: /home/wolfgang/linux-2.6.24/usr)
Static analysers

checkstack - Generate a list of stack hogs
namespacecheck - Name space analysis on compiled kernel
export_report - List the usages of all exported symbols
headers_check - Sanity check on exported headers

Kernel packaging:
rpm-pkg - Build the kernel as an RPM package
binrpm-pkg - Build an rpm package containing the compiled kernel

and modules
deb-pkg - Build the kernel as an deb package
tar-pkg - Build the kernel as an uncompressed tarball
targz-pkg - Build the kernel as a gzip compressed tarball
tarbz2-pkg - Build the kernel as a bzip2 compressed tarball

Documentation targets:
Linux kernel internal documentation in different formats:
htmldocs - HTML
installmandocs - install man pages generated by mandocs
mandocs - man pages
pdfdocs - PDF
psdocs - Postscript
xmldocs - XML DocBook

1155

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1156

Appendix B: Working with the Source Code

Architecture specific targets (sparc64):
* vmlinux - Standard sparc64 kernel

vmlinux.aout - a.out kernel for sparc64
tftpboot.img - Image prepared for tftp

make V=0|1 [targets] 0 => quiet build (default), 1 => verbose build
make V=2 [targets] 2 => give reason for rebuild of target
make O=dir [targets] Locate all output files in "dir", including .config
make C=1 [targets] Check all c source with $CHECK (sparse by default)
make C=2 [targets] Force check of all c source with $CHECK

Execute "make" or "make all" to build all targets marked with [*]
For further info see the ./README file

IA-32 and AMD64 systems provide different architecture-specific targets.

wolfgang@meitner> make help
Architecture specific targets (x86):
* bzImage - Compressed kernel image (arch/x86/boot/bzImage)

install - Install kernel using
(your) ~/bin/installkernel or
(distribution) /sbin/installkernel or
install to $(INSTALL_PATH) and run lilo

bzdisk - Create a boot floppy in /dev/fd0
fdimage - Create a boot floppy image
isoimage - Create a boot CD-ROM image

i386_defconfig - Build for i386
x86_64_defconfig - Build for x86_64

As the help text explains, all targets marked with * are compiled if make is invoked without arguments.

B.3.2 Structure of the Makefiles
The Kbuild mechanism makes use of the following components in addition to the .config file:

❑ The main Makefile (/path/to/src/Makefile) that generates the kernel itself and the modules by
recursively compiling the subdirectories in accordance with the configuration and by merging
the compilation results into the final product.

❑ The architecture-specific Makefile in arch/arch/Makefile that is responsible for the processor-
specific subtleties that must be observed during compilation — special compiler optimization
options, for instance. This file also implements all make targets specified in the architecture-
specific help discussed previously.

❑ scripts/Makefile.* that contain make rules relating to general compilation, module produc-
tion, the compilation of various utilities, and the removal of object files and temporary files from
the kernel tree.

❑ Various kernel source subdirectories that contain Makefiles that cater to the specific needs of a
driver or subsystem (and employ a standardized syntax).

1156

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1157

Appendix B: Working with the Source Code

The Main Makefile
The main Makefile is key to kernel compilation. It defines the call paths for the C compiler, linker, and so
on. The following distinction must be made between two toolchain alternatives:

❑ A toolchain to generate local programs that execute on the host that compiles the kernel.
Examples of such programs are the menuconfig binaries or tools for analyzing module symbols.

❑ A toolchain to generate the kernel itself.

The toolchains are usually identical. Differences arise only when a kernel is cross-compiled; in other
words, when a specific architecture is used to compile a kernel for a different architecture. This method
is applied if the target computer is either an embedded system with few resources (e.g., an ARM or MIPS
handheld device) or a very old and slow computer (a classic Sparc or m68 Mac). In this case, a cross-
compiler (and appropriate cross-binutils) must be available for the toolchain responsible for creating the
kernel so that the desired code can be generated.

The local tools are defined as follows:

wolfgang@meitner> cat Makefile
...
HOSTCC = gcc
HOSTCXX = g++
HOSTCFLAGS = -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer
HOSTCXXFLAGS = -O2
...

The kernel tools are defined as follows:

wolfgang@meitner> cat Makefile
...
CROSS_COMPILE=

AS = $(CROSS_COMPILE)as
LD = $(CROSS_COMPILE)ld
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
AR = $(CROSS_COMPILE)ar
NM = $(CROSS_COMPILE)nm
STRIP = $(CROSS_COMPILE)strip
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
AWK = awk
GENKSYMS = scripts/genksyms/genksyms
DEPMOD = /sbin/depmod
KALLSYMS = scripts/kallsyms
PERL = perl
CHECK = sparse

CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ -Wbitwise $(CF)
MODFLAGS = -DMODULE

1157

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1158

Appendix B: Working with the Source Code

CFLAGS_MODULE = $(MODFLAGS)
AFLAGS_MODULE = $(MODFLAGS)
LDFLAGS_MODULE = -r
CFLAGS_KERNEL =
AFLAGS_KERNEL =
...

The CROSS_COMPILE prefix that precedes a definition is normally left blank. It must be assigned an appro-
priate value (ia64-linux-, for example) if the kernel is to be compiled for a different architecture.4 As a
result, two different toolsets are used for the host and the target.

All other Makefiles may never use the names of the tools directly, but must always employ the variables
defined here.

The main Makefile declares the ARCH variable to indicate the architecture for which the kernel is compiled.
It contains a value that is automatically detected and that is compatible with the directory names in arch/.
For example, ARCH is set to i386 for IA-32 because the architecture-specific files reside in arch/i386/.

If the kernel is to be cross-compiled, ARCH must be modified accordingly. For example, the following
calls are required to configure and compile the kernel for ARM systems (assuming that the appropriate
toolchain is available):

make ARCH=arm menuconfig
make ARCH=arm CROSS_COMPILE=arm-linux-

In addition to these definitions, the Makefile includes the statements needed to descend recursively into
the individual subdirectories and to compile the files they contain with the help of the local Makefile.
This appendix doesn’t go into the implementation details of this mechanism because it involves a large
number of make subtleties.

Driver and Subsystem Makefiles
The Makefiles in the driver and subsystem directories are used to compile the correct files — in accor-
dance with the configuration in .config — and to direct the compilation flow to the required subdirec-
tories. The Kbuild framework makes the creation of such Makefiles relatively easy. Only the following
line is needed to generate an object file for permanent compilation into the kernel (regardless of the
configuration):

obj-y = file.o

By reference to the filename, Kbuild automatically detects that the source file is file.c and invokes the
C compiler with the appropriate options to generate the binary object file if it is not already present or if
the source file has been modified after generation of an old version of the object file. The generated file is
also automatically included when the kernel is linked by the linker.

This approach can also be adopted if there are several object files. The specified files must then be sepa-
rated by blanks.

4This can be set explicitly in the Makefile, specified by means of a shell variable in the environment, or passed as a parameter for
make.

1158

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1159

Appendix B: Working with the Source Code

If there is a choice of linking in kernel components or not (in other words, if configuration is controlled
by a bool query), the Makefile must react accordingly to the user’s selection. The configuration symbol
in the Makefile can be used for this purpose, as the following example taken from the Makefile in the
kernel/ directory illustrates:

obj-y = sched.o fork.o exec_domain.o panic.o printk.o profile.o \
exit.o itimer.o time.o softirq.o resource.o \
sysctl.o capability.o ptrace.o timer.o user.o user_namespace.o \
signal.o sys.o kmod.o workqueue.o pid.o \
rcupdate.o extable.o params.o posix-timers.o \
kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
hrtimer.o rwsem.o latency.o nsproxy.o srcu.o \
utsname.o notifier.o

obj-$(CONFIG_SYSCTL) += sysctl_check.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += time/
...
obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o
obj-$(CONFIG_SMP) += cpu.o spinlock.o
obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o
...
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_KALLSYMS) += kallsyms.o
obj-$(CONFIG_PM) += power/
...
obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
obj-$(CONFIG_MARKERS) += marker.o

The files that are always compiled are at the top of the list. The files below them are not compiled by
Kbuild unless their configuration symbol is set to y. For example, if module support is configured, the
corresponding line expands to the following:

obj-y += module.o

Note the use of += instead of a normal equal sign (=), which causes the object to be added to the target
obj-y.

If module support is not configured, the line expands as follows:

obj-n += module.o

All files of the target obj-n are ignored by the Kbuild system and are therefore not compiled.

The following line for power management is particularly interesting:

obj-$(CONFIG_PM) += power/

Here the target is not a file but a directory. If CONFIG_PM is set, Kbuild switches to the kernel/power/ file
during compilation and processes the Makefile that it contains.

1159

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1160

Appendix B: Working with the Source Code

Kbuild links all the object files of a directory that are contained in the target obj-y into an overall object
file built-in.o, which is subsequently linked into the finished kernel.5

Modules fit seamlessly into this mechanism, as the following Ext3 Makefile example demonstrates:

#
Makefile for the linux ext3-filesystem routines.
#

obj-$(CONFIG_EXT3_FS) += ext3.o

ext3-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o \
ioctl.o namei.o super.o symlink.o hash.o resize.o ext3_jbd.o

ext3-$(CONFIG_EXT3_FS_XATTR) += xattr.o xattr_user.o xattr_trusted.o
ext3-$(CONFIG_EXT3_FS_POSIX_ACL) += acl.o
ext3-$(CONFIG_EXT3_FS_SECURITY) += xattr_security.o

If the Ext3 filesystem is compiled as a module and CONFIG_EXT3_FS therefore expands to m, the standard
target obj-m stipulates that a file named ext3.o must be generated. The contents of this object file are
defined by a further explicit target called ext3-y.

The kernel employs indirect specification of the source files rather than direct specification in obj-m so
that additional features (whether enabled or not) can be taken into account. (The corresponding configu-
ration symbols in the Kconfig mechanism are described by a bool selection, and a tristate is used for
the main symbol CONFIG_EXT3_FS.)

If, for example, extended attributes are to be used, CONFIG_EXT3_FS_XATTR expands to y, and this pro-
duces the following line in the Makefile:

ext3-y += xattr.o xattr_user.o xattr_trusted.o

This links the additionally required object files into the object file and clearly indicates why the indirect
target ext3-y is used. If the following had been used, there would be two targets (obj-y and obj-m):

obj-$(CONFIG_EXT3_FS)} += xattr.o xattr_user.o xattr_trusted.o

As a result, the additional files would not be included in the standard Ext3 object.

Of course, the indirect approach also works when Ext3 is permanently compiled into the kernel.

B.4 Useful Tools
Many excellent tools are available to help programmers manage major software projects and keep
track of sources. They also render very good services in the Linux sector. This section describes
some of the helpers that facilitate work with the kernel. The selection of tools presented here is
purely subjective — they are my personal preferences, but countless alternatives are available on the
Internet.

5If the object files use initcalls (as discussed in Appendix D), the sequence in which the files are specified in obj-y is the order in
which the initcalls of the same category are invoked because the link sequence is identical to the sequence in obj-y.

1160

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1161

Appendix B: Working with the Source Code

B.4.1 LXR
LXR is a cross-referencing tool. It analyzes the kernel sources and generates a hypertext representation
in HTML for viewing in a browser. LXR lets users search on variables, functions, and other symbols, and
supports branching to their definitions in the source code as well as listing all points at which they are
used. This is useful when tracing code flow paths in the kernel. Figure B-4 shows how the source text is
displayed in the web browser.

Figure B-4: Linux source text as LXR-generated hypertext.

A web browser and a web server, preferably Apache, are needed to use LXR locally. The glimpse search
engine is also required to search the sources for random strings.

The canonical version of LXR can be downloaded from sourceforge.net/projects/lxr. Unfortunately,
this version has not seen any development for a number of years, and although the code works just fine,
it misses a number of features present in modern web applications.

1161

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1162

Appendix B: Working with the Source Code

A more experimental version of LXR that is actively maintained is available from the git repository
git://lxr.linux.no/git/lxrng.git. It provides more features than the variant described previously,
and can, for instance, employ proper databases like PostgreSQL to store the generated information about
the source code. The installation method for this experimental version is still in a constant flux, so this
appendix does not discuss how to install the software — for information about this version, refer to the
accompanying documentation.

Working with LXR
LXR provides the following functions for viewing kernel components:

❑ Directories of the source tree can be traversed and files can be selected by name using source
navigation.

❑ Kernel source files can be displayed in hypertext representation using file view.

❑ Positions at which symbols are defined or used can be found with an identifier search. Figure B-5
shows what the output of the vfs_follow_link function looks like.

Figure B-5: View of the information on schedule.

1162

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1163

Appendix B: Working with the Source Code

❑ The kernel source text can be scanned for any string using freetext search.

❑ File search enables users to search for files by name if they don’t know where those files are
located in the sources.

B.4.2 Patch and Diff
Kernel patches were the only way of tracking ongoing kernel development in the early days of Linux.
Patches still have an important role to play because git builds implicitly on diffs and patches, and patches
are the required form when changes are communicated to a mailing list.

patch and diff are complementary tools. Whereas diff analyzes the differences between two files or a
set of files, patch applies the differences held in a file generated by diff to an existing source text.

Unified Context Diffs
The following example illustrates the format used by diff to record the differences between two versions
of a file. It reflects a change made to the scheduler during the development of kernel 2.6.24.

diff -up a/include/linux/sched.h b/include/linux/sched.h
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -908,6 +908,7 @@ struct sched_entity {
u64 sum_exec_runtime;
u64 vruntime;
u64 prev_sum_exec_runtime;

+ u64 last_min_vruntime;

#ifdef CONFIG_SCHEDSTATS
u64 wait_start;

diff -up a/kernel/sched.c b/kernel/sched.c
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -1615,6 +1615,7 @@ static void __sched_fork(struct task_struct *p)
p->se.exec_start = 0;
p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0;

+ p->se.last_min_vruntime = 0;

#ifdef CONFIG_SCHEDSTATS
p->se.wait_start = 0;

@@ -6495,6 +6496,7 @@ static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
#ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq->rq = rq;
#endif
+ cfs_rq->min_vruntime = (u64)(-(1LL << 20));
}

void __init sched_init(void)
diff -up a/kernel/sched_fair.c b/kernel/sched_fair.c
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -243,6 +243,15 @@ static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
return period;

1163

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1164

Appendix B: Working with the Source Code

}

+static u64 __sched_vslice(unsigned long nr_running)
+{
+ u64 period = __sched_period(nr_running);
+
+ do_div(period, nr_running);
+
+ return period;
+}
+
/*
* Update the current task’s runtime statistics. Skip current tasks that
* are not in our scheduling class.

The first three lines of a diff contain the header information. This indicates which files were handled and
includes the time stamps of both files as a comparison criterion. The second line gives the name of the old
file version, and the third line, the name of the new file version. The first line lists the options with which
the diff utility was invoked. Here, the -up option is particularly important because it generates diffs
in the easy-to-read unified context format, which also includes the C function name to which the change
applies — all other formats are deprecated in the Linux kernel community.

diff compares two files line by line to find the differences between them. Isolated sections of the file
where differences are found are referred to as hunks. The preceding example consists of three hunks,
each of which is introduced by two symbols.6

Each hunk has a header to indicate the position in both files at which the difference occurs. The format of
the header is as follows:

@@ start_old,count_old start_new,count_new @@ C function

start_old specifies the line number in the old file to which the diff refers. count_old specifies the
number of lines over which the differences extend. start_new and count_new have the same meanings
but relate to the source file. The C function in which the code is contained is also recorded.

The lines following the hunk header indicate what has changed in the file. Lines prefixed with a plus
sign (+) are not present in the old file, and lines prefixed with a minus sign are destined for removal
from the old file. Lines without either sign are identical in both the new file and the old file. They are
used by patch as a context to move the patch up or down if the file to be patched does not fully match
the original file for which the patch was created. This is useful when, for example, another otherwise
orthogonal patch7 inserts new code at the start of a file and the patch position is therefore moved down.

Applying Patches
A patch is a collection of diffs that reside in a common file. For example, patches that contain the
differences between two kernel versions are made available at www.kernel.org for updating purposes.
It is then no longer necessary to download the entire source tree, thus saving time and bandwidth.

6If two files are totally different, diff creates a single large hunk that covers the whole file.
7Patches are referred to as orthogonal if they do not mutually influence each other; that is, if a patch changes only code segments that
do not affect other segments.

1164

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1165

Appendix B: Working with the Source Code

Patches are applied with the help of the patch tool, which is not especially difficult to handle. The fol-
lowing statement updates the kernel sources in /home/wolfgang/linux-2.6.23 from version 2.6.23 to
version 2.6.24:

wolfgang@meitner> cd /home/wolfgang
wolfgang@meitner> bzcat patch-2.6.24.bz2 | patch -p0

patch can not only apply patches but also remove them. This is an extremely useful feature when trou-
bleshooting because modifications can be selectively removed from the sources until a particular error
no longer occurs. This at least isolates the modification that gave rise to the error.8 The -R option must
be specified to ‘‘reverse‘‘ the patch. The following example reverses the kernel sources of version 2.6.24
back to version 2.6.23 by removing the preceding patch:

wolfgang@meitner> bzcat patch-2.6.24.bz2 | patch -R -p0

patch provides many other options, which are documented in detail on the patch(1) man page.

B.4.3 Git
Git is a relatively novel version control system on which the Linux kernel development model is based. A
large group of developers spread throughout the world are cooperating on a software product although
they are not in direct personal contact. They are working not with a central repository, on which classical
systems such as CVS build, but with a large number of subtrees that are synchronized with each other at
intervals in order to swap changes.

The first proper version control system employed by the kernel community was BitKeeper. However,
Linus Torvalds himself launched the development of an alternative tool because it was no longer possi-
ble to continue using BitKeeper due to various conflicts between BitMover (the company responsible for
BitKeeper), and sections of the kernel community. The conflicts revolve around the fact that BitKeeper is
not an open-source product (and is in no way free software in the GPL sense) but is sold under propri-
etary license. BitKeeper could be used free of charge for noncommercial purposes, but this right has been
revoked by BitMover, so the kernel community had to come up with a different solution — and indeed
it did.

The solution is a completely new version control system which goes by the name git. Git is designed as
a content tracker — it makes a kind of database layer available to enable changes to files to be archived.
Great importance is attached to the fact that necessary operations can be performed directly in the filesys-
tem with the help of regular files — no direct database back end is needed.

Git used to have a front end by the name of cogito. It was required for early versions of git to provide the
standard features of a version control system, and was easier to use than pure git. However, the former
deficiencies of git have by now been resolved, so cogito is not actively being developed anymore, and it’s
no longer required because git provides everything directly.

qgit and gitk are graphical front ends to handle git repositories. It greatly simplifies work for those
who do not use git regularly and are therefore not familiar with the numerous commands. The following
sections describe the shell commands and the graphical user interface.

8Notice that git also offers possibilities to automatize the search for erroneous patches via the git-bisect tool.

1165

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1166

Appendix B: Working with the Source Code

Git does not rank behind BitKeeper in terms of kernel developer productivity. Because it is a very useful
tool to track kernel development history, investigate errors, and carry out programming work, the focus
here is on its most important characteristics. However, if you are interested in detailed information on
the capabilities of git, refer to the documentation that comes with the product.

When working with git, it is very useful to create a clone of Linus Torvalds’s repository as it
contains the ‘‘official‘‘ kernel versions. The repository of developer version 2.6 is available at
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git. It can be cloned using
the following command:

wolfgang@meitner> git clone git://git.kernel.org/pub/scm/linux/kernel/git-torvalds/linux-2.6.git

Depending on the network connection, a file transfer initiated by this command takes between a few
minutes and several hours (with extremely slow modems).

The following sections deal with several important commands used to track kernel development his-
tory, although these represent only part of the git functionality. Further information can be obtained by
invoking the online help with git help. The help system provides an overview of available commands.
A detailed description of the individual commands can be requested by entering git help command.

Tracking Development History
Git employs commits to group development steps. When a new feature that requires modification of
several files is added to the kernel, the changes to all the files are concentrated in a commit that is applied
as a whole to a repository. Each commit includes a comment to indicate the purpose of the change. An
individual comment may also be added to each file in a commit.

Displaying Commits
The git log command displays all commits applied to a repository. For example:

wolfgang@meitner> git log
commit f1d39b291e2263f5e2f2ec5d4061802f76d8ae67
tree 29c33d63b3679103459932d43b8818abdcc7d3d5
parent fd60ae404f104f12369e654af9cf03b1f1047661
author Unicorn Chang <uchang@tw.ibm.com> Tue, 01 Aug 2006 12:18:07 +0800
committer Jeff Garzik <jeff@garzik.org> Thu, 03 Aug 2006 17:34:52 -0400

[PATCH] ahci: skip protocol test altogether in spurious interrupt code

Skip protocol test altogether in spurious interrupt code. If PIOS is receive
when it shouldn’t, ahci will raise protocol violation.

Signed-off-by: Unicorn Chang <uchang@tw.ibm.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>

commit c54772e751c0262073e85a7aa87f093fc0dd44f1
tree 5b6ef64c20ac5c2027f73a59bc7a6b4b21f0b63e
parent e454358ace657af953b5b289f49cf733973f41e4
author Brice Goglin <brice@myri.com> Sun, 30 Jul 2006 00:14:15 -0400
committer Jeff Garzik <jeff@garzik.org> Thu, 03 Aug 2006 17:31:10 -0400

[PATCH] myri10ge - Fix spurious invokations of the watchdog reset handler

1166

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1167

Appendix B: Working with the Source Code

Fix spurious invocations of the watchdog reset handler.

Signed-off-by: Brice Goglin <brice@myri.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>

commit e454358ace657af953b5b289f49cf733973f41e4
tree 62ab274bead7523e8402e7ee9d15a55e10a0914a
parent 817acf5ebd9ea21f134fc90064b0f6686c5b169d
author Brice Goglin <brice@myri.com> Sun, 30 Jul 2006 00:14:09 -0400
committer Jeff Garzik <jeff@garzik.org> Thu, 03 Aug 2006 17:31:10 -0400

[PATCH] myri10ge - Write the firmware in 256-bytes chunks

When writing the firmware to the NIC, the FIFO is 256-bytes long,
so we use 256-bytes chunks and a read to wait until the previous
write is done.

Signed-off-by: Brice Goglin <brice@myri.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>

...

Tracking the Development History of a Single File
The git log command also enables the development history of a specific file to be tracked across several
commits. It is invoked with a filename as its argument (if the filename is omitted, the development history
of the entire project is displayed). Instead of using the text listing, it is much more convenient, however,
to observe the history in a graphical front end. Figure B-6 shows the screen display generated by QGit, a
QT-based graphical to git.

It is also possible to inspect all changes that were introduced with a specific commit, as illustrated in
Figure B-7. This includes the affected files on the right, a description of the patch in the center, and the
patch itself below that.

The git fetch command transfers changes made in the parent repository to the local repository. It also
enables changes in other repositories to be transferred provided they originate from the same parent
repository as the local repository.

Developers with a particular interest in the progress of a specific part of the kernel for which development
is performed in an own git repository can integrate all changes that have not found their way into the
Torvalds sources in their local repository. For example:

wolfgang@meitner> git fetch git://foobar.frobnicate.org/exult.git

The main repository that serves as a template for the local clone is used if git fetch is invoked without
a repository name.

Incorporating Modifications
This section briefly describes a few other commands that are needed to make modifications to reposi-
tories. Before you make any changes, you should create a copy of the local repository for subsequent
synchronization with the upstream sources. Because git is able to use hard links to copy repositories
(providing that the copy and the original are located on the same filesystem), not much space or time is
needed to generate a development copy of a repository. Changes made to the copy are not transferred
automatically to the original unless explicitly initiated.

1167

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1168

Appendix B: Working with the Source Code

Figure B-6: File history displayed QGit.

The following input is required to clone the repository:

wolfgang@meitner> git clone /home/wolfgang/git-repos/linux-2.6 /home/wolfgang/linux-work

After you are done making your changes to the files, you can add comments and group them into a
commit using git commit. Note that git gui provides a graphical front end to create commits, which can
be used intuitively and does not require much explanation.

Exporting
Git features the git archive command to export the status of the complete repository at a given time.

Tags are important when a specific revision is exported from the repository. These tags are specially
marked points along the development time axis. In the Linux context, these points in time represent
the published versions of the kernel. For example, the tag for version 2.6.24 is v2.6.24. This symbolic
identifier can be used as an abbreviation for the usual combination of digits because it is much easier
to remember. The use of tags to identify releases is a Linus Torvalds convention for the Linux sources.
Tags can, of course, be used for many other purposes; for example, to mark the beginning or end of
far-reaching changes, or to identify interim versions.

1168

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1169

Appendix B: Working with the Source Code

Figure B-7: Inspecting commits with qgit.

The following input is necessary to export the entire source code of the named version into a separate
directory:

wolfgang@meitner> git archive --format=tar --prefix=linux-2.6.24/ v2.6.24

Because this will write the resulting tarball to the standard output, you might want to redirect the result
to a file.

git archive can also be used to generate different types of archives. A filename with the suffix .tar.gz,
.tgz, or .tar.bz2 must be used instead of the tar file shown here.

B.5 Debugging and Analyzing the Kernel
To gain an insight into what happens in the kernel, it is often practical not only to read the static source
code but also to take a close look at the kernel while it is running in order to track its dynamic processes.
Programmers are familiar with how this is done for normal C programs. Using debugging information
generated by the compiler and an external debugger, it is possible to step through program execution line

1169

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1170

Appendix B: Working with the Source Code

by line (or, if desired, assembler statement by assembler statement) to view and modify data structures,
and to halt program flow at any point. This can only be done using special features made available by
the kernel in the guise of the ptrace system call described in Chapter 13.

In contrast to normal C programs, the kernel has no runtime environment provided by an external
instance — the kernel itself is responsible for ensuring that this environment exists for user-space pro-
grams. Consequently, it is impossible to debug the kernel with classical means.

Nevertheless, there are various ways of applying debuggers to the kernel, as this section describes. Even
though debugging the kernel is slightly more complicated than debugging normal programs, the valu-
able results make the extra effort worthwhile.

B.5.1 GDB and DDD
GDB stands for GNU debugger, the default Linux debugger. It is included with every distribution as
a ready-made binary that can be loaded using the appropriate packet mechanism. Of course, you are
also free to compile the sources available at www.gnu.org (or on one of the many mirrors), although this
appendix does not discuss how this is done.

The debugger features very extensive options, and this appendix provides only a brief overview of their
use. A detailed description of GDB is available in the guide (in makeinfo format) that comes with the tool;
it can be viewed using info gdb, for example.

To debug a program (and in this respect, the kernel is no exception), the compiler must incorporate
special debug information in the binary file to yield all the necessary information on the relationship
between the binary file and the sourcecode. The -g option must be selected for gcc, as follows:

wolfgang@meitner> gcc -g test.c -o test

The size of the executable file grows considerably as a result of the debug symbols it contains.

-g must also be activated during compilation. In earlier versions the option had to be entered under
CFLAGS_KERNEL in the main Makefile. However, during development of 2.5, a separate option, Kernel
hacking->Compile the kernel with debug info,was built into the kernel configuration to do this auto-
matically. The Compile the kernel with frame pointers option included in the same menu should
also be selected at the same time because it enables the limit for activation records or stack frames (see
Appendix C) and therefore supplies the debugger with useful information.

GDB is able to do the following:

❑ Trace program execution line by line, in procedures and functions steps or in individual assem-
bler statements.

❑ Determine the type of all symbols used in the program.

❑ Display or manipulate the current values of symbols.

❑ De-reference pointers or access random memory locations of the program and read or modify
their values.

1170

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1171

Appendix B: Working with the Source Code

❑ Set breakpoints that halt the program when it reaches a given position in the source code and
then enable the debugger.

❑ Set watchpoints that halt the program when a given condition is satisfied — for example, when
the value of a variable is set to a predefined value.

The specific kernel debugging options that are available depend on the method used.

The command syntax for performing these operations is simple to learn and remember because it is based
on C. It is excellently explained in the GDB documentation.

Like most Unix tools, GDB is text-based. This has its benefits but also its downsides, particularly the fact
that it is not possible to visualize the relationship between data structures by means of graphical pointers.
Similarly, the GDB view on source text is not always ideal because only very short sections are displayed.

DDD — the Data Display Debugger — was developed to rectify these deficiencies and is now included in
all popular distributions. As a graphical tool for X11, it remedies the known disadvantages of GDB. DDD is
a user interface to GDB and therefore supports all features of the debugger. Because it is possible to type
in GDB commands directly, all options are available — not just those integrated into the graphical user
interface.

The DDD package comes with a very good guide, so this appendix doesn’t explain how to use it, particu-
larly because the user interface is very intuitive.

B.5.2 Local Kernel
The proc filesystem includes a file named kcore that contains an image of the current state of the kernel
in ELF core format (see Appendix E). Because GDB core files can be read and processed, they can be
used in conjunction with a kernel and its debug symbols to visualize data structures and read their
internal state. (GDB core files are typically used for postmortem analyses of userspace programs to find
out why they have crashed.)

DDD must be invoked with the name of the kernel image (including the debug symbols) and of the kcore
file as parameters:

wolfgang@meitner> ddd /home/wolfgang/linux-2.6.24/vmlinux /proc/kcore

This must be done as root user or the access permission to /proc/kcore must be changed to allow the
file to be read by the specific user. (There is a security risk if the access rights to /proc/kcore are not
sufficiently restrictive because it enables the user to modify the kernel memory.)

Even though, for obvious reasons, no breakpoints or similar items can be set for the running kernel, the
DDD is ideally suited to examine the data structures of the system, as Figure B-8 shows.

The starting points for such an examination are instances of data structures that are defined as global
variables of the kernel. Entering graph display proc_root instructs DDD to display the instance of type
proc_dir_entry declared in fs/proc_root.c. The other instances associated with the data structure by
means of pointers are opened by double-clicking.

1171

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1172

Appendix B: Working with the Source Code

Figure B-8: Examining data structures of the local kernel.

If no type information is present for a pointer (this is, frequently the case in doubly linked standard lists),
C-style typecasts can be specified in the GDB input field.

The Data->Detect Aliases option must be enabled to instruct DDD to detect pointers to the same memory
area and to redirect the arrows to an existing representation of the structure rather than inserting a new
graphic representation. This is the case in the previous example, as indicated by the parent pointers
that all (correctly) point to the same element. Note however that DDD is much slower than usual when it
operates in this mode.

The core files are not normally modified when they are processed by a debugger, so GDB does not notice
if any change is made to a value in kernel memory — changes are propagated via the kcore file. If the
memory contents that are relevant to a user change, the user must explicitly reload the core file with core
/proc/kcore. DDD automatically displays values that have changed against a yellow background so that
they are easy to recognize.

B.5.3 KGDB
Two machines connected via a network or a serial cable provide a better debugging setup with practically
all the same options as are available when debugging normal applications. The KGDB patch installs a

1172

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1173

Appendix B: Working with the Source Code

short stub code in the kernel to provide an interface to a debugger running on a second system. Because
GDB supports remote debugging, the kernel can make use of this form of debugging, which features
breakpoints, single-step processing, and the like.

KGDB is not included in kernel 2.6.24, but after long years of struggle, it will have been included in kernel
2.6.26 by the time you are reading this. Patches are also available for older kernel versions in case you
need KGDB support for them.

Once you have obtained a kernel with KGDB support, the configuration includes the new menu item
Kernel hacking->KGDB: kernel debugging with remote gdb that must be enabled. If the serial interface
is used for data transfer, the correct settings must be made for the particular hardware. Debug symbols
should, of course, also be included in the kernel binary.

Because KGDB is evolving rather dynamically at the time of this writing, you should refer to
Documentation/DocBook/kgdb.html (which can be generated with make htmldocs) for information on
how to connect gdb to a running kernel.

B.6 User-Mode Linux
UML (User-Mode Linux) is a port of Linux to Linux itself. The kernel runs on a Linux box as a userspace
process — a setup that is not without a certain beauty.

This facilitates many applications that would be difficult or impossible to implement with a classic Linux
kernel on genuine hardware, above all the ability to successively test new kernel features without the
need for dozens of time-consuming restarts.

UML also supports the use of debuggers, either of the built-in, console-based type or as external pro-
grams. This section briefly describes how DDD can be used in conjunction with UML to provide versatile
options for analyzing the kernel and its data structures. As with KGDB, breakpoints can be set and
variables can be changed in memory; however, only a single system is needed.

ARCH=um must be specified in the command line to indicate that the kernel is to be generated for UML and
not for the local processor (CROSS_COMPILE need not be set as would otherwise be necessary for genuine
cross-compilation.) For example:

wolfgang@meitner> make menuconfig ARCH=um
wolfgang@meitner> make linux ARCH=um

To compile UML on an AMD64 architecture, you also need to add SUBARCH=i386. The default configura-
tion of UML is a reasonable setup for most purposes and need not be modified.

The compilation result is an executable file called linux that is located in the main directory of the kernel
sources. This file contains Linux as a user process.

You can debug UML in the same way as a normal Linux process. As Figure B-9 shows, it is also possible
to set breakpoints.

UML offers many other options; for example, shared use of a filesystem with the host for ease of data
exchange, or a setup of network connections between the host and UML (and even between several UML

1173

Mauerer runapp02.tex V2 - 09/04/2008 6:09pm Page 1174

Appendix B: Working with the Source Code

processes). Refer to the UML documentation for a detailed description of these options. Also notice that
the designer of UML has written a book solely devoted to this topic[Dik06].

Figure B-9: Breakpoint in a running UML kernel.

B.7 Summary
The Linux kernel is a huge project, and in addition to improving the software, managing the comprehen-
sive code base is a challenging undertaking for its developers. This appendix introduced you to how the
kernel sources are organized, and which tools are employed to build a customized kernel binary (and
the associated modules) according to the user’s needs. In addition, this appendix described a selection of
useful tools that aid you in understanding the complex code base, allow for tracking the ongoing devel-
opment of the kernel, and help in finding and correcting errors using advanced debugging schemes.

1174

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1175

Notes on C
For more than 25 years, C has been the preferred programming language for implementing
operating systems of all kinds — including Linux. The major part of the kernel — with the
exception of a few assembly language segments — is programmed in C. Therefore, it is not possible
to understand the kernel without a mastery of C. This book assumes that you have already gained
sufficient experience with C in userspace programming. This appendix discusses little-used and
very specific aspects of C in kernel programming.

The kernel sources are especially designed for compilation with the GNU C compiler.1 This com-
piler is available for many architectures (far more than are supported by the kernel) and also
features numerous enhancements used by the kernel, as discussed in this appendix.

C.1 How the GNU C Compiler Works
In addition to using GNU enhancements to the C language, the kernel also relies on a number of
optimizations performed by the compiler when it generates assembler code from the C sources.
Because very close cooperation between the sources and the compiler is necessary at some points
in the kernel, this section provides a brief overview of the actions performed by the GNU Compiler
Collection (GCC) when it compiles a program and of the various techniques used. The following
information is, of course, of a summary nature. For detailed information, refer to the GCC Internals
manual provided with the compiler sources and available online at gcc.gnu.org.

1On IA-32 platforms, the proprietary compiler of Intel can also be used. It produces slightly better assembler code and makes
the kernel a fraction faster but does not provide the prime benefit of architecture independence. Because the Intel compiler
supports all GNU C enhancements used by the kernel, you do not need to modify the kernel code to support compilation
with the Intel compiler.

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1176

Appendix C: Notes on C

C.1.1 From Source Code to Machine Program
The work of compilers can be divided into several phases, as the following overview demonstrates:

❑ Preprocessing — All pre-processor actions are performed in this phase. Depending on the
compiler version, this phase is supported by an external utility (cpp) or by special library
functions — both are initiated automatically by the compiler. On completion of preprocessing,
there is only one (large) input file generated from the source file and all header files are included
using the #include directive. The compiler itself is then no longer required to take account of
the distributed structure of C programs over several files.

❑ Scanning and Parsing — The syntax of a programming language can be described by means
of grammatical rules that are similar to those of a natural language such as English but that
must understandably be much more restrictive. (Although the existence of several alternatives
to represent one and the same fact contribute greatly to the appeal and subtlety of a language,
ambiguity must be avoided at all costs in programming languages.) This phase usually com-
prises two closely linked tasks. The scanner analyzes the source text character-by-character and
looks for keywords of the programming language. The parser takes the input stream supplied by
the scanner and already abstracted from source text representation and checks that the structures
it detects are correct in terms of the grammar rules of the language. It also creates data structures
in computer memory that are a further abstraction of the source code and are designed for pro-
cessing by a computer (in contrast to the actual source code of the program that should be as
easy as possible to read and manipulate by human beings).

❑ Intermediate Code Generation — A further step along the path toward the final machine
code converts the parse tree (i.e., the data structure created in memory) set up by the
scanner and parser into another language known as the register transfer language (RTL).
This is a kind of assembly language for a hypothetical machine. This language can be
optimized — independently of the target processor for the most part. However, this does
not mean that the RTL code generated in this phase of the compilation process is the same
for all target processors. Depending on the architecture, a range of assembler statements are
available — and this fact must be taken into account during RTL generation.

The individual statements of the RTL are already on a very low level and are a step away from
the high-level C language on the path to the assembly language. Their main task is to manipulate
register values to support execution of the compiled program. There are, of course, also condi-
tional statements and other mechanisms to control program flow. However, this intermediate
code still includes various elements and structures common to higher-level programming lan-
guages (these are not specific to a particular language such as C, Pascal, etc.) that do not appear
in a pure assembly language.

❑ Optimization — The most compute-intensive phase of program compilation is optimization
of the intermediate code in the RTL language. The reasons why programs are optimized are
clear. But how is this done by the compiler? Because the mechanisms used are generally not
only complex but also sophisticated and even devious (subtle details must always be taken into
account), it would not be difficult to write a long tome on optimization techniques alone, and a
further one on their usage in the GCC. Nevertheless, this appendix illustrates at least some of
the techniques employed. All optimization options are based on ideas that initially appear to
be relatively simple. However, in practice (and in theory) they are difficult to implement. Such
options include, above all, the simplification of arithmetic expressions (algebraic rewriting of
terms into expressions that can be computed more efficiently and/or with a less-intensive use of
memory), elimination of dead code (parts of code that cannot be reached by the program flow),

1176

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1177

Appendix C: Notes on C

merging of repeated expressions and items of code in a program, rewriting of program flow into
a more efficient form, and so on — these are covered as individual topics in this appendix.

❑ Code generation — The last phase is concerned exclusively with the generation of the actual
assembler code for the target processor. However, this does not yet produce an executable
binary file, but instead, it produces a text file with assembler instructions that is converted
into binary machine code by further external programs (assemblers and possibly linkers). In
principle, the assembler code has the same form as the code of the final program but can still be
read by humans (not by machines) even if the power of the individual commands has reached
machine level.

To provide you with a general overview of the various compiler steps involved, this appendix uses a
classical example — the ‘‘Hello, World‘‘ program.

#include<stdio.h>

int main() {
printf("Hello, World!\n");
return 0;

}

The program does nothing more than output the line Hello, World! and is typically the first program
discussed in any C textbook. On IA-32 systems, the following assembler code is generated for further
processing by the assembler and linker:

.file "hello.c"

.section .rodata
.LC0:

.string "Hello, World!\n"

.text
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $.LC0, (%esp)
call printf
movl $0, %eax
leave
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

If you are already familiar with assembler programming, you may be surprised by the somewhat strange
form of the code. The GNU assembler employs the AT&T syntax instead of the more-widespread
and therefore better-known Intel/Microsoft variant. Of course, both alternatives implement the same
functionality but use different arrangements of source and destination registers and different forms of
constant addressing. Section C.1.7 provides a brief description of these syntax elements.

1177

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1178

Appendix C: Notes on C

The exact meaning of the individual assembler commands is of no concern here, because it is beyond
the scope of this appendix to provide a full introduction to assembler programming. Indeed, a separate
book would be needed for each architecture supported by the kernel. Of more importance is the structure
of the code generated. Constant strings are held in a separate section from which they are loaded when
they are passed to a function (printf in this case) or when they are generally needed. In assembler code,
functions (only main is used here) retain the same name as in C code.

The same initial code generates totally different assembler code on IA-64 systems (because the archi-
tecture is completely different), but the ultimate effect is identical to that of the code generated on IA-32
systems.

.file "hello.c"

.pred.safe_across_calls p1-p5,p16-p63

.section .rodata

.align 8
.LC0:

stringz "Hello, World!\n"
.text
.align 16
.global main#
.proc main#

main:
.prologue 14, 33
.save ar.pfs, r34
alloc r34 = ar.pfs, 0, 4, 1, 0
.vframe r35
mov r35 = r12
.save rp, r33
mov r33 = b0
.body
addl r14 = @ltoff(.LC0), gp
;;
ld8 r36 = [r14]
mov r32 = r1
br.call.sptk.many b0 = printf#
;;
mov r1 = r32
mov r14 = r0
;;
mov r8 = r14
mov ar.pfs = r34
mov b0 = r33
.restore sp
mov r12 = r35
br.ret.sptk.many b0
;;
.endp main#
.ident "GCC: (GNU) 3.1"

To give you an example of how this is handled by a non-Intel architecture, the following is the code
generated by the ARM variant:

.file "hello.c"

.section .rodata

.align 2

1178

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1179

Appendix C: Notes on C

.LC0:
.ascii "Hello, World!\n\000"
.text
.align 2
.global main
.type main,function

main:
@ args = 0, pretend = 0, frame = 0
@ frame_needed = 1, uses_anonymous_args = 0
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4
ldr r0, .L2
bl printf
mov r3, #0
mov r0, r3
ldmea fp, {fp, sp, pc}

.L3:
.align 2

.L2:
.word .LC0

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

How does the GCC obtain information on the capabilities and command options of the target processor?
The answer is that a machine description is present for each target architecture supported. This consists of
two parts and provides the desired information.

First, there is a file with instruction patterns whose structure is a mixture of LISP and RTL syntax.2

Some parts of this pattern can be supplied with values by the compiler when RTL code is gen-
erated. Restrictions can be placed on the possible values by defining various conditions or other
prerequisites. Generation of the actual code is performed by the output patterns that represent the
possible assembler instructions and are associated with the instruction patterns. The source files that
hold the instruction patterns for the individual systems are a very important part of the compiler
and are therefore correspondingly large. The statement list for IA-32 processors is about 14,000
lines long; the Alpha variant is 6,000 lines long; and approximately 10,000 lines are needed for the
Sparc family.

The instruction patterns are supplemented by C header files and macro definitions in which processor-
specific special situations that do not fit into the instruction patterns can be handled.3 It is necessary to
use C code, even if the target instruction cannot be implemented with a fixed string or simple macro
substitutions.

2LISP is a programming language whose origins lie in artificial intelligence. It is often used as a dynamic extension language for
application programs. Large parts of emacs are programmed in a LISP dialect, and the GIMP image manipulation program uses
the Scheme extension language (a simplified LISP variant). GUILE, a library developed by the GNU project, features simple options
for providing programs with a Scheme interpreter as an extension language.
3An explicit goal when developing the GCC was to rank performance higher than theoretic elegance. It would be possible to describe
processors solely with the help of the instruction pattern files, but this would entail a loss of performance and flexibility. The addi-
tional macro definitions do not contribute to the elegance of the overall system, but are a useful enhancement to help accomodate
the special features of the individual CPU types.

1179

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1180

Appendix C: Notes on C

The size of the additional macro and C files is similar to that of the actual instruction patterns (IA-32:
12,000 lines; Alpha: 9,000 lines; and Sparc: 12,000 lines). They constitute an important part of the CPU
definition and are essential for the generation of efficient code.

C.1.2 Assembly and Linking
At the end of the actual compilation process, the original C program has been translated into assembler
code, and the final steps along the path to binary code require little compiler effort because the assembler
and linker (often referred to as the ‘‘binder‘‘) do the rest of the work.

As compared to the task of the compiler, the work of the assembler is very simple. The individual assem-
bler statements (and their arguments) are translated into a special binary format that differs according
to processor type (each assembler command has its own binary code notation; on some systems, such as
IA-32, different binary forms may be available for a command depending on the argument types used). A
further task of the assembler is to accommodate constant data (such as fixed strings or numeric constants)
in the binary code. Usually the ELF format (described at length in Appendix E) is employed to arrange
the program and data in a binary file.

The linker must (among other things) adjust the branch addresses in the assembler code. Although
the assembler source text can still reference symbolic names (for example, the preceding assembler
code uses calls to the printf function defined in the standard library), the binary variant must
specify relative or absolute branch addresses; for instance, ‘‘skip the next 5 bytes‘‘ or ‘‘branch to
position x‘‘).

C.1.3 Procedure Calls
An interesting aspect in C not specifically associated with the use of the GNU compiler4 is the implemen-
tation of procedure and function calls. Because, at certain points, the kernel is responsible for ensuring
the interoperability of assembler and C code (in other words, C functions are called from within assem-
bler code), it is important to know the mechanisms behind function calls. This section describes these
mechanisms by reference to the IA-32 architecture, although the approach is generally similar on other
architectures.5

Let’s discuss the basic terms involved in procedure calls by reference to Figure C-1. The system
stack is a memory area at the end of the address space of a process. It grows from top to bottom
when elements are pushed on to it — this is contrary to the expected direction associated with the
word ‘‘grow‘‘. It is used to provide memory for the local variables of the function. It also supports
parameter-passing when functions are invoked. If nested procedures are called, the stack grows
from top to bottom and accepts new activation records that hold all data needed for one procedure.
The activation record of the procedure currently executing is delimited at the top by the frame
pointer and at the bottom by the stack pointer. While the upper boundary stays the same throughout
procedure execution, the lower boundary can be extended downward if necessary in order to create
more space.

4The call conventions of other compilers may differ in their details, but the underlying principle is always the same.
5A major exception is the IA-64 architecture, which adopts the concept of register windows to persuade programs that the size of the
register set is unlimited, a fact that can be exploited when implementing function calls. The resulting mechanism differs substantially
from the variant discussed here. Detailed information can be found in the processor-specific documentation on IA-64.

1180

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1181

Appendix C: Notes on C

Frame 1

Frame 2

Frame 3

Frame Pointer

Stack Pointer

Return Address

Old Frame Pointer

Local
Variable

Parameters for
Function Call

Stack

Frame 2 in Detail

Figure C-1: Activation records on the stack.

Figure C-1 also shows an enlargement of the second stack frame indicating its constituent parts, as
follows:

❑ At the top of the stack are the return address and the stored frame pointer value. While the
return address specifies the point in memory at which code flow resumes at the end of the pro-
cedure, the stored frame pointer holds the value of the frame pointer for the previous activation
record. After completion of the local procedure, this value can be used to reconstruct the stack
area available to the calling procedure — this is important when attempting to debug a stack
trace.

❑ The main part of the activation record is the memory space reserved for local variables of the
procedure. In C, these variables are also referred to as automatic variables.

❑ Values to be passed as parameters to another function when the function is invoked are stored at
the bottom of the stack.

All common architectures provide the following two stack manipulation commands:

❑ push places a value on the stack and decrements the stack pointer by the number of bytes in mem-
ory required by the value. The end of the stack is moved down to lower addresses.

❑ pop removes a value from the stack and increments the value of the stack pointer
accordingly — in other words, the end of the stack is moved up.

The following two commands are also provided to invoke and exit functions (with automatic return to
the calling procedure) — they also automatically manipulate the stack:

❑ call pushes the current value of the instruction pointer onto the stack and branches to the start
address of the function to be called.

❑ return pops the bottom value from the stack and branches to the specified address. Procedures
must be implemented so that return is the last command and the address placed on the stack by
call is at the bottom.

1181

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1182

Appendix C: Notes on C

A procedure call therefore consists of the following two steps:

1. Build a parameter list in the stack. The first argument to be passed to the called function is
placed last on the stack; this makes it possible to pass a varying number of arguments that
can be popped from the stack one after the other.

2. Invoke call, which causes the current value of the instruction pointer (pointing to the
instruction that follows call) to be pushed onto the stack and delegates code flow to the
invoked function.

The procedure called is responsible for managing the frame pointer and performs the following steps:

1. The previous frame pointer is pushed onto the stack, thus moving the stack pointer down.

2. The frame pointer is assigned the current value of the stack pointer and now marks the start
of the stack area for the function to be executed.

3. The code of the function is executed.

4. When the function terminates, the stored frame pointer is at the bottom of the stack. Its value
is popped from the stack and saved in the frame pointer that now again points to the start of
the stack area of the previous function. The return address saved when the function was
called is now located at the bottom end of the stack.

5. Invoking return causes the return address to be popped from the stack. The pro-
cessor branches to the return address, thus returning the code flow to the calling
function.

At first glance, this approach may seem a little confusing. To dispel any confusion, let’s consider the
following simple C example:

#include<stdio.h>

int add (int a, int b) {
return a+b;

}

int main() {
int a,b;
a = 3;
b = 4;
int ret = add(a,b);
printf("Result: %u\n", ret);

exit(0);
}

The following assembler code is generated on IA-32 systems — albeit with compiler optimization
switched off (which would produce much improved code but complicate the explanation). This example
uses Intel representation because it is easier to read and explain than the AT&T variant preferred by
the GCC. Line numbers are not usually included in assembler syntax, but they have been added here to
simplify the code explanation.

1182

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1183

Appendix C: Notes on C

<main>:
1: push ebp
2: mov ebp,esp
3: sub esp,0x18
4: mov eax,0x0

5: mov DWORD PTR [ebp-4],0x3
6: mov DWORD PTR [ebp-8],0x4
7: mov eax,DWORD PTR [ebp-8]
8: mov DWORD PTR [esp+4],eax
9: mov eax,DWORD PTR [ebp-4]
10: mov DWORD PTR [esp],eax
11: call <add>
12: mov DWORD PTR [ebp-12],eax
13: mov eax,DWORD PTR [ebp-12]

14: mov DWORD PTR [esp+4],eax
15: mov DWORD PTR [esp],0x0
16: call <printf>
17: mov DWORD PTR [esp],0x0
18: call <exit>

<add>:
19: push ebp
20: mov ebp,esp

21: mov eax,DWORD PTR [ebp+12]
22: add eax,DWORD PTR [ebp+8]

23: pop ebp
24: ret

main begins with the standard operations described previously to save the frame pointer that, on IA-32
systems, is held in the ebp register. The value is pushed onto the lowest position in the stack, and this
causes the stack pointer to be moved down automatically by 4 bytes — simply because 4 bytes are needed
to represent a pointer on IA-32 systems. The value of the stack pointer is then stored in the frame pointer
register using the mov statement. mov a, b copies the value in register b to register a. Line 2 therefore
causes the current value of the stack pointer to be copied into the frame pointer.

Line 3 subtracts 0x18 bytes from the stack pointer and moves it down, thus increasing the size of the stack
by 0x18 = 24. Line 4 initializes eax, a general-purpose register, with the value 0.

The local variables must now be placed on the stack. As the C code indicates, there are two variables,
a and b, for main. They are both integer variables and therefore each needs 4 bytes of memory. Because
the first 4 bytes of the stack hold the old value of the frame pointer, the compiler reserves the two 4-byte
areas below for the variables.

To assign the initial values to the reserved memory space, the compiler makes use of the pointer de-
referencing option of the processor. The DWORD PTR [ebp-4] statement in line 5 instructs the compiler
to reference the position in memory to which the value ‘‘frame pointers minus 4‘‘ points. The value 3 is
written to this position using mov. The compiler proceeds in the same way with the second local variable,
which is lower in the stack and is given the value 4.

1183

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1184

Appendix C: Notes on C

The local variables a and b must be used as arguments for the add procedure to be called. The compiler
builds the parameter list by placing the appropriate values at the end of the local stack — the first param-
eter is at the bottom, as already mentioned. The stack pointer is used to find the end of the stack. The
corresponding position in memory is determined by means of pointer de-referencing. This position is
supplied with the value in the eax register that was previously filled for both parameters with the value
of the local variables on the stack. Lines 7 and 8 set the second parameter (b), and lines 9 and 10 are
responsible for the first parameter (a). When reading the source code, it is important not to confuse the
very similar names esp and ebp.

Figure C-2 shows the status of the stack once the preceding operations have been carried out.

4

3

Old Frame Pointer

ebp–4

ebp

esp

ebp–8

ebp–12

esp+4

int b = 4

int a = 3

int ret

Frame Pointer

Stack Pointer

Arguments

Local
Variables

0
x

18
 =

 2
4

By
te

s

Figure C-2: Frame status prior to calling add.

add can now be invoked using the call command. (In a real program, an address would be given for
the function instead of the <add> placeholder on completion of relocation.) The command pushes the
previous value of the instruction pointer onto the stack and resumes the code flow at the beginning of
the add routine.

In accordance with convention, the routine starts by pushing the previous value of the frame pointer
onto the stack and assigning the value of the stack pointer to the frame pointer. This results in the stack
situation illustrated in Figure C-3 (only the parts relevant for add are shown).

4

3

Return Address

Old Frame Pointer

Arguments

ebp+8

esp, ebp

ebp+12

Figure C-3: Stack layout after calling add.

The procedure parameters are found by reference to the frame pointer. The compiler knows that
they are located directly at the end of the activation record of the calling function and that two 4-byte

1184

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1185

Appendix C: Notes on C

values are stored at the beginning of the active activation record. The variables are therefore accessed
by de-referencing ebp+8 and ebp+12. add is used to add both values, and the eax register is used as the
workspace. The value is left in the register so that the result can be passed to the calling function.

The following two actions are needed to return to the calling function:

❑ The stored frame pointer value is removed from the stack using pop and is written to the ebp
register. The top end of the stack is therefore reconstructed for main.

❑ ret pops the return address from the stack and goes there.

Because a further local variable (ret), in which the return value of add is stored, was created in main, the
value in the eax register must still be copied to the appropriate position in the stack.

The rest of the assembler code (lines 14 through 24) is concerned with calling the printf and exit library
functions in the usual way.

The use of frame pointers is not mandatory. They can just as easily be omitted, because func-
tionally equivalent code can be generated without them. This is the purpose of the gcc option
-omit-frame-pointer. Because each procedure then has two fewer assembler operations, the resulting
code is a little bit faster — this is why the kernel normally dispenses with frame pointers.

However, the downside is that it is no longer possible to create stack backtraces to reconstruct the call
sequence of functions. Because backtraces yield very useful information when debugging or decoding
kernel oopses (i.e., the emergency message generated when the kernel encounters a serious problem),
the option of adding frame pointers to code was introduced when 2.5 was developed. It is advisable to
enable this option unless maximum system performance is required.

C.1.4 Optimization
Optimization is an important functionality of compilers that enables fast code to be generated with-
out modifying the effect of the program. It frees programmers of the burden of performing micro-
optimization on their programs. Instead, they are able to concentrate on writing informative, easy-to-read
C code, which the compiler then automatically translates into the best possible assembler code. Unfortu-
nately, optimization is a very complex topic that requires not only a great deal of programming skill in
C and Assembler, but also a profound knowledge of mathematics and formal logics. For this reason, the
following sections give only a brief overview of the optimization features of the GCC.

Constant Simplification
Constant simplification is one of the most basic optimization techniques — which is why much faster and
much more compact code should not be expected. The name itself suggests the direction that optimiza-
tion takes, but what does simplification actually achieve? The best way to answer this is by examining a
short C example in which values are supplied to a number of variables.

int x,y;
x = 10;
y = x + 42;
const int z = y * 23;
printf("x, y, z: %d, %d, %d\n", x,y,z);

1185

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1186

Appendix C: Notes on C

Non-optimized assembler output looks like this:

.file "calc.c"

.section .rodata
.LC0:

.string "x, y, z: %d, %d, %d\n"

.text
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $40, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $10, -4(%ebp)
movl -4(%ebp), %eax
addl $42, %eax
movl %eax, -8(%ebp)
movl -8(%ebp), %edx
movl %edx, %eax
addl %eax, %eax
addl %edx, %eax
sall $3, %eax
subl %edx, %eax
movl %eax, -12(%ebp)
movl -12(%ebp), %eax
movl %eax, 12(%esp)
movl -8(%ebp), %eax
movl %eax, 8(%esp)
movl -4(%ebp), %eax
movl %eax, 4(%esp)
movl $.LC0, (%esp)
call printf
leave
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

The value of the individual assignments is not clear at the outset but must first be computed (by means of
addition and multiplication). The results achieved in the various program runs do not differ because the
same initial values are always used. If optimization is switched off, the C code is compiled into assembler
code in a relative straightforward way. Two computations are performed and three variables are supplied
with values. If optimization is switched on, an additional constant appears in the assembler output: the
exact result of the computation (which in this case is 1196).

The optimized assembler code looks like this:

.file "calc.c"

.section .rodata.str1.1,"aMS",@progbits,1
.LC0:

.string "x, y, z: %d, %d, %d\n"

1186

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1187

Appendix C: Notes on C

.text

.p2align 4,,15
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $1196, 12(%esp)
movl $52, 8(%esp)
movl $10, 4(%esp)
movl $.LC0, (%esp)
call printf
movl %ebp, %esp
popl %ebp
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

The computation is no longer made at runtime because the results are already known. However, faster
program execution6 is not the only benefit produced by this optimization step. The resulting code now
uses only one variable (z) because the two temporary variables (x and y) are superfluous. This not only
shortens execution time, but also saves storage space — a major consideration in large programs with a
large number of variables.

Loop Optimization
Code in loops may be executed repeatedly and therefore merits thorough optimization because speed
gains are particularly noticeable. If a loop is iterated 1,000 times and the runtime of the loop body is
shortened by one thousandth of a second as a result of optimization, total program runtime is one second
shorter. One second may not seem to be much. However, the benefits are best assessed by considering
very time-critical kernel actions such as task switching or long-running programs such as physical simu-
lation. While execution time in the latter case may differ by hours or even days, savings of fractions of a
second are a desirable goal in the former case — after all, task switches are performed at short intervals
(which are beyond human perception) to give the illusion of parallel program execution.

This optimization feature is not difficult to understand and, in technical terms, appears to be relatively
simple. This feature can be illustrated via the following short sample program:

int count;

for (count = 0; count < 3; count++) {
printf("Pass: %d\n", count);

}

The loop is iterated three times in succession and outputs the number of the current pass (0, 1, or 2).
What can be optimized here? The loop is implemented in assembler code by incrementing the count

6Note that compilation naturally takes longer when results are computed at compilation time. This is a common aspect of all opti-
mization efforts — execution speed is boosted at the expense of compilation speed. However, this is acceptable because compilation
is performed once only and execution takes place regularly.

1187

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1188

Appendix C: Notes on C

status variable at the end of the loop body and then checking its value. If it is less than 3, the loop is
restarted (a branch is made to the beginning of the loop body); otherwise, the code following the loop is
executed. Without optimization, the generated assembler code looks like this:

.file "loop.c"

.section .rodata
.LC0:

.string "Pass: %d\n"

.text
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $0, -4(%ebp)

.L2:
cmpl $2, -4(%ebp)
jle .L5
jmp .L3

.L5:
movl -4(%ebp), %eax
movl %eax, 4(%esp)
movl $.LC0, (%esp)
call printf
leal -4(%ebp), %eax
incl (%eax)
jmp .L2

.L3:
leave
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

If the number of loop passes is small, the code is often executed more quickly if the assembler code of
the loop body is written to the output file several times in succession. There is then no need to compare the
status variable with the end value, and the conditional branch can be dispensed with. If optimized loop
unrolling is used, the GCC generates the following code:

.file "loop.c"

.section .rodata.str1.1,"aMS",@progbits,1
.LC0:

.string "Pass: %d\n"

.text

.p2align 4,,15
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp

1188

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1189

Appendix C: Notes on C

subl $8, %esp
andl $-16, %esp
movl $0, 4(%esp)
movl $.LC0, (%esp)
call printf
movl $1, 4(%esp)
movl $.LC0, (%esp)
call printf
movl $2, 4(%esp)
movl $.LC0, (%esp)
call printf
movl %ebp, %esp
popl %ebp
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

It should be noted that if this method is used, the size of the program code generated can increase
drastically. The technical difficulty associated with this method is actually deciding whether to apply
optimization or not. The optimal number of loop passes for which an improvement is achieved depends
not only on the code in the loop body, but also on the processor type. The definition of corresponding
heuristics in the compiler is therefore difficult, although the result they produce is easy to understand.

Common Subexpression Elimination
This optimization feature involves enhancing recurring algebraic expressions in a program. However,
these are no longer static expressions that can be simplified by various manipulations. In this case, the
compiler searches for recurring subexpressions in a program section. If the variables used for computa-
tion purposes are unchanged, explicit recomputation can be skipped by reusing the result of the first
computation. In other words, this technique necessitates a search for frequently used or common subex-
pressions, some of which can be eliminated in order to optimize program code. Not surprisingly, the
technique is known as common subexpression elimination.7 The technique is best illustrated by reference to
the following short example:

int p,x,y,z;
scanf("%u", &x);
y = 42;

p = x*y;

if (x > 23) {
z = x*y;

}
else {

z = 61*x*y;
}

The recurring expression is obviously x*y. An analysis of program execution (usually referred to as pro-
gram flow analysis in technical documents and research papers) reveals that this expression must be
evaluated at least twice. The scanf statement reads the value for x from the console — that is, users

7To be strictly accurate, there are two different versions of this elimination technique. Which is used depends on whether the goal
of optimization is to shorten execution time or to reduce code size — each option employs different algorithms.

1189

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1190

Appendix C: Notes on C

can type in any value they want. The reason for using this unwieldy method instead of just assigning a
specific value to the x variable is simple. If the value of x is fixed, a further optimization feature can be
applied (called dead code elimination, as described in the next section). This would change the code so
that the optimization feature discussed here would no longer be needed.

When a value is assigned to z, the program distinguishes two cases that depend on the size of the value
stored in x. What is common to both cases is that the expression x*y is used in the assignment and, as
can be confirmed easily by humans, but with extreme difficulty by compilers, the variables used in both
branches of program flow do not change. The value previously computed as the assignment value for p
can therefore be reused. Again, the difficulty with this optimization feature lies not in the actual technical
replacement but in finding expressions that remain unchanged in all possible execution variants.

Dead Code Elimination
On first reading, the term ‘‘dead code elimination‘‘ sounds quite violent. On second reading, it seems
to be somewhat contradictory. After all, how can code that is already dead be eliminated? Only when
the term is examined for a third time does it become apparent that it refers to an optimization feature in
which program sections that can never execute are eliminated from code generation to reduce the size of
the assembler code.

How does dead code accumulate in a program? It would be normal to expect programmers to give some
thought as to how their programs should run. And why should they waste their time writing superfluous
program fragments? This is indeed true for simple programs, but the situation may well be different for
larger chunks of code that define a range of constants for specific program purposes. Elimination of
dead code is one of several important aspects when compiling C code for the architecture-independent
memory model discussed in detail in Chapter 3 (this model provides a uniform interface to the various
processors supported by the kernel). To understand how this optimization works take a look at the
following short example:

int x;
x=23;

if (x < 10) {
printf("x is less than 10!\n");

}
else {

printf("x is greater than or equal to 10!\n");
}

Without optimization, the following assembler code would be generated:

.file "dead.c"

.section .rodata
.LC0:

.string "x is less than 10!\n"

.align 32
.LC1:

.string "x is greater than or equal to 10!\n"

.text
.globl main

.type main,@function
main:

pushl %ebp

1190

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1191

Appendix C: Notes on C

movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $23, -4(%ebp)
cmpl $9, -4(%ebp)
jg .L2
movl $.LC0, (%esp)
call printf
jmp .L3

.L2:
movl $.LC1, (%esp)
call printf

.L3:
leave
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

Because the value of 23 assigned to x cannot change prior to the if query, the result of the query is
obvious — the second program branch (the else clause) always executes, and this renders explicit com-
putation to determine whether x is less than or greater than 23 superfluous. The code for the first query
is therefore a dead program section because it can never be reached. Therefore, the compiler need not
compile the corresponding statements. But there is also a further benefit because the string constant is
less than 10! no longer needs to be stored in the object file. In addition to speeding program execution,
optimization also reduces the size of the generated code. Omission of the character string from the object
file is a relatively new optimization feature only supported by GCC Version 3 and higher.

The optimized assembler code looks like this:

.file "dead.c"

.section .rodata.str1.32,"aMS",@progbits,1

.align 32
.LC1:

.string "x is greater than or equal to 10!"

.text

.p2align 4,,15
.globl main

.type main,@function
main:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $.LC1, (%esp)
call puts
movl %ebp, %esp
popl %ebp
ret

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.2.1"

1191

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1192

Appendix C: Notes on C

Once you understand this optimization feature, the use of scanf to read the x variable in the previous
example becomes clearer. If the value of x cannot change prior to the if query, dead code elimination
is also applied to this program. Alternatively, it would have been possible to declare the variable as
volatile. This informs the compiler that the value of the variable can be modified by uncontrollable
side effects (such as interrupts), and this suppresses some kinds of optimization — including dead code
elimination.

C.1.5 Inline Functions
Compared with other programming languages, function calls in C carry relatively little overhead but
still require a certain amount of CPU time that may be crucial in the case of very frequently used code
sections (or extremely time-critical segments such as interrupt handlers). To avoid having to split the
code into small sections and having to work with long functions, an earlier, widely adopted solution to
the problem is to employ macros. A function is replaced by a macro that the pre-processor automatically
copies into the ‘‘calling‘‘ function. The aesthetics of this approach are, of course, dubious, and the absence
of type checking for the procedure arguments (apart from a few unpleasant characteristics of the pre-
processor that must be noted when writing code) means that macros are not necessarily the method
of choice.

Inline functions implemented by the GCC offer an elegant alternative. The keyword inline is added
to a function. This causes the compiler to copy the code — such as a macro — to the position at which
the function is called. Type checking at compilation time is retained, as is done in regular function calls.
Functions can be transformed into inline functions simply by prefixing them with the keyword inline
like this:

inline int add (int a, int b) {
...

}

If the arguments are constant when an inline function is called, the compiler may be able to apply other
optimization options (e.g., dead code elimination or CSE) — these would not be possible with normal
function calls.

Of course, there is always a reverse side to the coin. If longer, frequently used chunks of code are declared
inline, the size of the generated binary code grows enormously, and this can give rise to problems, par-
ticularly in low-resource embedded systems.

In the meantime, inline functions have been included in the C99 standard, so they can now be translated
by other compilers. However, there are a number of small differences between the standard implemen-
tation and the GCC implementation, which are described in the GCC manual.

C.1.6 Attributes
Attributes supply compilers with more detailed information on the use of functions or variables. This
enables them to apply more precise optimization options in order to generate better code, or permits for-
mulations that would not be possible in normal C. A range of code output details can also be influenced.

GCC supports dozens of attributes for all possible purposes. These are described in the GCC documen-
tation. This section describes the attributes used by the kernel.

1192

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1193

Appendix C: Notes on C

Attributes are specified by prefixing the declaration of a variable or function with the keyword
__attribute__((list)) as follows:

int add (int a, int b) __attribute__((regparam(3));
struct xyy { } __attribute((__aligned__(SMP_CACHE_BYTES))

The following attributes are used in the kernel sources:

❑ noreturn is specified if a function does not return to the caller. Optimization contributes to
slightly better code (however, because functions that do not return usually cause programs to
abort, the fact that the code is better is of little relevance). This attribute is used primarily to pre-
vent compiler warnings about non-initialized variables that can occur in corresponding code.

In the kernel, this keyword is appropriate for functions that trigger a panic or stop the machine
once it has been shut down normally.

❑ regparam is an IA-32–specific directive that specifies that function arguments are to be passed
in registers and not on the stack as they usually would be. It requires a parameter to indicate the
maximum number of arguments that can be passed in this way — provided there are enough free
registers. Given the scarcity of registers in this architecture, this is never certain. The eax, edx,
and ecx registers are used for this purpose.

The kernel defines the following macros that use the attribute:

include/asm-x86/linkage_32.h
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))
#define FASTCALL(x) x __attribute__((regparm(3)))
#define fastcall __attribute__((regparm(3)))

FASTCALL is used — as the name clearly suggests — to invoke a function quickly.

asmlinkage identifies functions to be called from within assembler code. Because parameter
passing must be coded manually in this case (and are therefore not accessible to the compiler),
there must be no surprises as to how many parameters are to be passed in registers and how
many are to be passed on the stack — this is why the option of passing parameters in registers
must be explicitly disabled. The CPP_ASMLINKAGE keyword usually expands to an empty string
(the extern C keyword is inserted only if a C++ compiler is used to compile the kernel), which
instructs the compiler to use the C calling convention (the first argument is last on the stack)
instead of the C++ calling convention (the first argument is first on the stack).

On all architectures other than IA-32, the macros shown above are defined to expand to an
empty string.

❑ section allows the compiler to place variables and functions in other sections of the binary file
than would usually be the case (refer to Appendix E for a more detailed description of the binary
format). This is important when implementing the init and exit calls mentioned throughout this
book. The name of the section where the material is to be placed must be passed to the attribute
as a string parameter.

To define init calls, the compiler uses, for example, the following macro to place the functions in
sections named .initcall0.init and so on:

<init.h>
#define __define_initcall(level,fn,id) \

static initcall_t __initcall_##fn##id __attribute_used__ \
__attribute__((__section__(".initcall" level ".init"))) = fn

1193

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1194

Appendix C: Notes on C

❑ align specifies the minimum alignment of data — in other words, their alignment in memory.
The attribute requires an integer argument that must be divisible by the memory address (at
which the data are held) without a remainder. The unit used is bytes.

This attribute is important for the kernel because it allows maximum use to be made of CPU
caches by placing the key parts of a structure at the best place in memory.

The ____cacheline_aligned macro, for example, is defined as follows:

<cache.h>
#define __cacheline_aligned

__attribute__((__aligned__(SMP_CACHE_BYTES), \
__section__(".data.cacheline_aligned")))

Its purpose is to align data on the L1 cache of the processor even if the constant used suggests
that alignment is achieved only on multiprocessor systems. The preceding code implements
a generic version of the keyword, but individual architectures are free to provide their own
definitions:

A slightly stricter version of the macro looks like this:

<cache.h>
#define INTERNODE_CACHE_SHIFT L1_CACHE_SHIFT
#define ____cacheline_internodealigned_in_smp \

__attribute__((__aligned__(1 << (INTERNODE_CACHE_SHIFT))))

Alignment is based on the maximum possible L1 cache size for the underlying
architecture — regardless of whether the processor actually has an L1 cache of this size.
This means that the defined alignment yields maximum cache benefits but wastes more space,
which is why its use should be carefully considered.

C.1.7 Inline Assembler
When short assembler segments are to be inserted in C code, it is unpractical and cumbersome to create
a separate assembler file, translate it into binary code, and link it with the generated object code of the C
compiler. Therefore, GCC features a special option to integrate assembler code directly in C with the help
of special statements — the compiler assumes responsibility for joint code generation. Not only does this
method require less technical effort from the programmer, it has the added advantage that the machine
code generated from C code can be refined to interoperate with the assembler segment because the
compiler has more information about its structure than is the case when an assembler object file is linked.
The programmer does not need to guess in which register or at which point in memory any required
input parameters are held — this can be defined unambiguously by means of the interface between C
and the inline assembler.

Of course, inserting assembler code is a platform-specific affair, because the opcodes and registers used
differ between the individual processor architectures. Nevertheless, the mechanism that integrates the
statements in the C code is platform-independent.

The asm statement is employed to specify the assembler code itself and the registers used. Its syntax is as
follows (the equivalent __asm__ keyword may also be used instead of asm):

asm ("Assembler code";
: Output operand specification
: Input operand specification

1194

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1195

Appendix C: Notes on C

: Modified registers
);

On IA-32 systems, the assembler code itself must be given in AT&T notation (on all other platforms,
the preferred notation of the particular architecture is used). Input and output register specifications
establish which input parameters are supplied in registers (or in memory) and which registers or memory
positions are used to output values. To be more accurate, they define the various conditions for the
registers involved and therefore represent the interface to the C implementation that supplies the input
data and further processes the output data. By specifying all modified registers that are changed in the
assembler statements (although they are not part of the input and output specification), the compiler is
provided with additional information. For example, prior to execution of the assembler code, modified
registers may not be used by the compiler to store values that it needs to access later. Notice that the
original GCC documentation refers to ‘‘modified registers‘‘ as clobbered registers.

For the purposes of this appendix, it is sufficient to summarize the AT&T assembler syntax into the
following five rules:

❑ Registers are referenced by prefixing their name with a percent symbol. For example, to use reg-
ister eax, %eax must appear in the assembler code.

Two percent symbols must be specified in C source code in order to generate one
percent symbol in output that is forwarded to the assembler program.

❑ The source register is always specified before the destination register. For example, in mov state-
ments, this means that mov a, b copies the contents of register a into register b.

❑ The operand size is given by a suffix after the assembler statement. b stands for byte, l for long,
and w for word. To move a long value from register eax to register ebx on IA-32 systems, it is
therefore necessary to specify movl %eax, %ebx.

❑ Indirect memory references (de-referencing of pointers) are possible by including a register in
parentheses. For example, movl (%eax), %ebx moves the long value at the address in memory
pointed to by the value of register eax to the register ebx.

❑ offset(register) specifies that the register value is to be used together with an offset that is
added to its actual value. For example, 8(%eax) specifies that eax + 8 is to be used as an operand.
This notation is used primarily for memory access — for example, to specify offsets from the
stack or frame pointer in order to access certain local variables.

The following example illustrates the meaning of the input and output specifications:

int move() {
int a = 5;
int b;

asm ("movl %1, %%eax;
movl %%eax, %0;"
: "=r"(b) /* Output register */
: "r" (a) /* Input register */
: "%eax"); /* Modified registers */

printf("b: %u\n", b);
}

1195

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1196

Appendix C: Notes on C

This code copies the value in a to b — not a very demanding task. This could also have been formu-
lated as b = a to enable the compiler to generate equivalent or better code. The code makes use of an
input register, an output register, and a temporary register. While the input and output register are
selected by the compiler and are denoted as %1 and %0 in the assembler code (all the code does is to
define the conditions applied to the registers), the name of the temporary register must be specified
explicitly. This example uses eax. Recall that two percent symbols must be entered in the source code
in order to produce one percent symbol in the compiler output, which is why the register is given
as %%eax.

The example generates the following assembler output in AT&T syntax (only the relevant part of the
output is shown here.)

movl -4(%ebp), %edx
#APP

movl %edx, %eax;
movl %eax, %edx;

#NO_APP
movl %edx, %eax
movl %eax, -8(%ebp)

The assembler code generated by the asm statement is embedded between #APP and #NO_APP in the
compiler output.

The effect of the code is as anticipated. The compiler first copies the value of the local variable a
held at position ebp - 4 in the local activation record into a register (edx). The assembler code is
executed and copies the value (pointlessly) into register eax; it then copies the value of eax into output
register edx. The subsequent code is again generated by the compiler — it copies the result value of
the assembler code (via register eax) into the local target variable b located at position ebp - 8 in the
activation record.

Neither the assembler code nor the output generated by the compiler is particularly intelligent in this
example. If the GCC is requested to produce optimized code, it generates the following assembler
output:

movl $5, %edx
#APP

movl %edx, %eax;
movl %eax, %ecx;

#NO_APP

The local variables are now no longer stored on the stack (they are not needed there) but are held in
registers. edx is used for a and is initialized directly with the constant 5. b is held in register ecx. Both
registers can be used in user-specified assembler code and this dispenses with the need for unwieldy
copy operations between registers and the stack.

GCC cannot check whether correct assembler instructions for the specific platform
are used in the code part of asm, or whether the registers used are really suitable for
the particular application. This is the sole responsibility of the programmer.

1196

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1197

Appendix C: Notes on C

The input and output registers used are defined by means of constraints, which take the following form:

"constraint" (variable)

The previous example employs two constraints:

❑ "r" specifies that a register is to be used to represent the value of the given variable (a or b) in the
assembler code. Which register is used is left to the compiler and is not known to the program-
mer when the assembler code is written, which is why %0, %1, and so on are used to work with
the registers.

❑ "=r" specifies that an output operand in the form of a register is involved.

In general, constraints are used to indicate whether a value is located in memory or in a register, which
kinds of registers may be used, and so on. GCC supports a wide range of constraints, some of which are
architecture-dependent and some are not. For a full description, refer to the compiler documentation.
This section describes only the features relevant to the kernel.

The following architecture-independent constraints are used in the kernel:

❑ r indicates that a general-purpose register is used.

❑ m specifies that an address in memory is used.

❑ I and J define a constant within the range 0–31 or 0–64 on IA-32 systems. This can be used for
shift operations.

These constraints can be refined by using the following modifiers prefixed to the actual constraint:

❑ = specifies that the operand may only be written. The previous value is discarded and replaced
with the output value of the operation.

❑ + specifies that an operand may be read and written.

The next two examples demonstrate how the facilities of the inline assembler are used in the kernel. First,
the atomic setting of a bit in a unsigned long variable is performed by the following code:

include/asm-x86/bitops_32.h
static inline void set_bit(int nr, volatile unsigned long * addr)
{

__asm__ __volatile__(LOCK_PREFIX
"btsl %1,%0"
:"+m" (ADDR)
:"Ir" (nr));

}

bts stands for the assembler statement ‘‘bit test and set,’’ which queries the value of a given bit in a long
value, stores the value in the CF flag of the processor, and then sets the bit to one. Because long values
comprise 32 bits, the bit position can be specified by means of a constant in the range 0..31, which is
why the constraint type I is used. The position must also be specified in a register as required by the
architecture — in this case, the r constraint is used.

Because the processed data resides in memory and is modified by a write access, the constraint +m must
be used for the long value.

1197

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1198

Appendix C: Notes on C

The pre-processor constant LOCK_PREFIX is used to make the operation atomic. On single-processor
systems, this constant is empty because a single assembly statement that cannot be interrupted is used to
set the bit. On SMP systems, the constant expands to lock. This is a separate assembler statement, known
as a lock prefix, which prevents all other processors of the system from interfering with the following
statement, and thus makes it atomic.

Naturally, not only individual assembler statements are used in inline code. For example, atomic incre-
menting of an integer variable is a complex operation on Alpha CPUs as shown here:

include/asm-alpha/atomic.h
static __inline__ void atomic_add(int i, atomic_t * v)
{

unsigned long temp;
__asm__ __volatile__(
"1: ldl_l %0,%1\n"
" addl %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (v->counter)
:"Ir" (i), "m" (v->counter));

}

This appendix does not discuss why so much code is needed because that would necessitate an excursion
into the characteristics of Alpha processors. The sole aim of the example is to demonstrate that compar-
atively complicated operations that do not just use single assembler statements can be implemented in
inline assembler.

C.1.8 __builtin Functions
__builtin functions provide the compiler with additional options to perform more manipulations on
programs than would normally be possible in C without having to resort to the inline assembler.

Each architecture defines its own set of __builtin functions, which are described in detail in the GCC
documentation. A number of __builtin variants are common to all architectures and two of these are
used by the kernel.

❑ __builtin_return_address(0) yields the return address to which code flow is positioned at the
end of a function. As described previously, this information can also be extracted from the acti-
vation record. This is actually an architecture-specific task but the preceding __builtin function
makes a universal front-end available for it.

The argument specifies how many levels the function should work upward in the activation
records. 0 delivers the return address to which the function currently running will return, 1
yields the address to which the function that called the current function will return, and so on.

On some architectures (IA-64, for instance), there are basic difficulties in
determining activation records. For this reason, the function always returns the
value 0 for arguments larger than 0.

1198

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1199

Appendix C: Notes on C

❑ __builtin_expect(long exp, long c) helps the compiler optimize branch predictions. exp
specifies the result value of an expression that is computed, whereas c returns the expected
result — 0 or 1. As an example, take a look at the following if query:

if (expression) {
/* Yes */

}
else {
/* No */

}

If this is to be optimized, and it is expected that the condition will return the value 1 in most
cases, the __builtin_expect function can be used as follows:

if (__builtin_expect(expression, 1)) {
/* Yes */

}
else {
/* No */

}

The compiler influences the branch predictions of the processor in such a way that, by prefer-
ence, the first branch is computed in advance.

The kernel defines the following two macros to identify likely and unlikely branches in the code:

<compiler.h>
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

The double negation !! is used for two reasons:

❑ It enables the macros to be used with pointers that are implicitly converted into a truth
value.

❑ Truth values greater than zero (explicitly allowed in C) are standardized to 1 as expected
by __builtin_expect.

The macros are employed at many points in the kernel; for instance, in the implementation of the
slab allocator as follows:

mm/slab.c
if (likely(ac->avail < ac->limit)) {

STATS_INC_FREEHIT(cachep);
ac_entry(ac)[ac->avail++] = objp;
return;

} else {
STATS_INC_FREEMISS(cachep);
cache_flusharray(cachep, ac);
ac_entry(ac)[ac->avail++] = objp;

}

The example shows that __builtin_expect can be used not only for simple values, but also for
conditions that must first be evaluated.

1199

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1200

Appendix C: Notes on C

C.1.9 Pointer Arithmetic
Normally, pointers may be used for computations in C only if they have an explicit type; for example,
int * or long *. Otherwise, it is not possible to establish which increment steps are to be used. The
GNU compiler circumnavigates this restriction and supports arithmetic with void pointers and func-
tion pointers — these are also used by the kernel at various points. In both cases, the increment step
is 1 byte.

Interestingly, GCC had at least once support for a bit-addressable architecture — the Texas Instruments
34010 processor. Incrementing a pointer on this machine means that the memory position is advanced by
one bit, not one byte — a feature that did not quite become ubiquitous. While the pure existence of the
machine would most likely not be worth mentioning here, the fact that Andrew Morton — one of the key
persons for the development of the 2.6 kernel series — once wrote a real-time kernel for this processor
certainly does. You can download the source code from www.zip.com.au/~akpm/.

C.2 Standard Data Structures
and Techniques of the Kernel

In its C sources, the kernel adopts a number of methods and approaches that are essential to the program-
ming of operating systems but that are not normally used in C programs. This section discusses these
techniques, as well as standard data structures that are needed time and time again and are therefore
implemented as small, universal libraries.

C.2.1 Reference Counters
Instances of data structures required for a longer period are allocated by the kernel in its dynamic mem-
ory space. Once an instance is no longer needed, the allocated memory space can be returned to memory
management, as in normal C programs. This is not a problem if only one kernel component in a control
path is accessing the instance. In this case, it is easy to determine exactly when the memory space is no
longer needed. Complications arise when several processes or kernel threads access the same instance,
because they then share resources. The copy-on-write method and the shared usage of different process
resources by cloning tasks are examples of situations in which an instance of a data structure is needed
at several places. In this case, the kernel does not know when the data are no longer required and when
it can return the associated memory space.

To solve this problem, the kernel employs a technique used in the implementation of hard links. Data
structures are provided with a usage or reference counter which indicates at how many points in the kernel
the resource is in use. The usage counter is an atomic integer variable that is embedded somewhere in
the data structure and is usually named count, as in the following example:

struct shared {
...

atomic_t count;
...
}

The allocation routine distinguishes two cases. If no suitable instance is present, a new instance is created
and its usage counter is initialized to 1. If a suitable instance is present (which can be checked with the

1200

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1201

Appendix C: Notes on C

help of a hash table in which all existing instances are arranged), a pointer to the instance is returned
after the usage counter has been incremented.

The instance is not returned by simply freeing the memory space. Instead, this task is delegated to a
function that first checks whether the usage counter is greater than 1. If it is, the instance is still required
in other parts of the kernel, and the counter is decremented by 1. Only when the counter is decremented
to 0 (it is 1 when the function is started) can the memory space occupied by the data structure be returned
to memory management because the instance is no longer in use.

C.2.2 Pointer Type Conversions
A frequent source of error in the programming of portable C applications is the false assumption that
integer and pointer sizes can be typecast by means of type conversions, as in the following example:

int var;
void *ptr = &var;

printf("ptr before typecast: %p\n", ptr);

var = (int)ptr;
ptr = (void*)var;

printf("ptr after typecast: %p\n", ptr);

The program would seem to work if the same value is returned in both outputs. However, the perfidious
aspect of this example is that it functions correctly on 32-bit machines although it is actually incorrect. C
does not guarantee that pointer and integer variables have the same bit length, but it happens to be the
case on 32-bit systems where both integer and pointer variables require 4 bytes.

This no longer applies on 64-bit platforms where pointers require 8 bytes and integer variables still need
only 4 bytes. On IA-64 systems, the sample program would produce the following output:

wolfgang@64meitner> ./ptr
ptr before typecast: 0x9ffffffffffff930
ptr after typecast: 0xfffffffffffff930

The values cannot be typecast without loss. Because of careless 32-bit practice, this is a source of frequent
errors when converting programs to run on 64-bit architectures. The kernel source code must, of course,
be 64-bit clean if it is to execute on architectures of both word lengths.

According to the C standard, programs again cannot assume that pointers and unsigned long variables
can be typecast. However, because this is possible on all existing architectures, the kernel makes this
assumption a prerequisite and explicitly allows type conversion as shown here:

unsigned long var;
void* ptr;

var = (unsigned long)ptr;
ptr = (void*)var;

Because unsigned long variables are sometimes easier to handle than void pointers, they may be type-
cast. This is beneficial when, for example, it is necessary to examine parts of a compound data type. With

1201

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1202

Appendix C: Notes on C

normal pointer arithmetic, var++ would cause the value to be increased by sizeof(data type). If the
variable is cast into the unsigned long data type beforehand, the structure can be analyzed byte-by-byte
or its contents can be traversed (this can be very useful when extracting embedded substructures).

C.2.3 Alignment Issues
Let us now turn our attention to alignment issues.

Natural Alignment
Most modern RISC machines mandate that memory accesses are naturally aligned: The address at which
an elementary datum is stored must be divisible by the width of the data type. Consider, for instance,
a pointer that is 8 bytes wide on 64-bit architectures. Consequently these pointers must be stored at
addresses that are divisible by 8, so 24, 32, 800, and so on are valid addresses, whereas 30 and 25 are
not. This is not a problem for all ‘‘regular’’ operations because when memory is allocated in the kernel,
it will be allocated properly. The compiler additionally ensures that structures are padded to enforce
natural alignment, but if memory access on arbitrary, non-aligned locations is required, the following
two auxiliary functions must be employed:

❑ get_unaligned(ptr), which allows for reading an unaligned pointer.

❑ put_unaligned(val, ptr), which writes val to the unaligned memory location denoted by ptr.

Older architectures such as IA-32 handle unaligned access transparently, but most RISC machines do not,
so the functions must be used on all unaligned accesses to ensure portability.

Consider the following structure:

struct align {
char *ptr1;
char c;
char *ptr2;

};

On 64-bit systems, a pointer requires 8 bytes, while a char variable needs 1 byte. Although only 17 bytes
are stored in the structure, the size of this definition as reported by sizeof will be 24. This is because the
compiler ensures that the second pointer, ptr2, is correctly aligned by placing 7 fill bytes — which are
unused — after c. This is illustrated in Figure C-4.

0 ptr1 ptr2c Padding7 8 15 23

Figure C-4: The compiler automatically inserts padding
space into structures to make them fulfill alignment
requirements.

The padded bytes in the structure lend themselves naturally to be filled with useful information, so you
should try to arrange your structures accordingly.

If padding must be avoided because, for instance, a data structure is employed to exchange data with a
peripheral device that must receive a data structure exactly as it was defined, the attribute __packed can

1202

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1203

Appendix C: Notes on C

be specified in the structure definition to prevent the compiler from introducing pad bytes. Naturally,
the possibly unaligned components of this structure must then be accessed using the aforementioned
functions.

Bytes are always aligned by definition — their width is 1 byte, and every address is divisible by one.

Generic Alignment
Sometimes, it is necessary to fulfill additional alignment criteria besides natural alignment — such as
when a data structure must be aligned along cache lines, but there are numerous other applications in
the memory management implementation. The kernel provides the macro ALIGN(x,y) for this purpose:
It returns the minimum alignment required to align the datum x on y byte boundaries. Some examples of
how to use this macro were previously presented in Table 3-9.

C.2.4 Bit Arithmetic
Bit operations are part of the standard kernel repertoire and are frequently used in all subsystems. In
the past, operations of this kind were often employed in userspace programs because some things could
be done faster than with standard C resources. Now that the optimization mechanisms of compilers
have become more sophisticated, bit operations are hardly ever needed. However, as an extremely
performance-critical program, the kernel is an exception. Similarly, bit operations are able to achieve
certain effects that are not possible using other statements.

int numbers can be held in memory as a bit string with 32 entries. Similarly, unsigned long values can
be regarded as bit strings with 32 or 64 positions — depending on the word length of the processor.
However, by default, C provides no facilities for accessing the individual bits of a variable. This is why
the kernel has to resort to a number of tricks.

Two basic operations with integers are left and right shift, represented by the << and >> operators. The
argument specifies how many positions all bits in the string are to be moved left or right. For example, a
= a >> 3 moves all bits of a three positions to the right.

Because the n-th bit in a bit string has the value 2n and a shift operation moves all bit positions one
to the left or one to the right, the value of a bit changes to 2n±1. This is the equivalent of dividing or
multiplying the expression by 2. Likewise, an n-fold shift is the same as a division or multiplication by 2n

because this equates to n consecutive shift operations. Multiplication and division by the power of two
can therefore be replaced with bit shifts for integer numbers as the following example demonstrates (like
all other arithmetic operators, shift operators can also be used in the form <<= or >>= to link the shift with
assignment of a new value to the old variable):

int main() {
unsigned int val = 1;
unsigned int count;

for (count = 0; count <= 10; count++) {
printf("count, val: %u, %u\n", count, val);
val <<= 1;
}

}

1203

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1204

Appendix C: Notes on C

The program generates the following output:

wolfgang@meitner> ./shift
count, val: 0, 1
count, val: 1, 2
count, val: 2, 4
count, val: 3, 8
count, val: 4, 16
count, val: 5, 32
count, val: 6, 64
count, val: 7, 128
count, val: 8, 256
count, val: 9, 512
count, val: 10, 1024

C provides a range of bitwise operators to link two numbers, which are listed in Table C-1. The ~ operator
is also available to apply bitwise NOT to the individual bits of a number.

Table C-1: Operations for Bitwise Linking of Two Numbers

Operator Meaning

& Bitwise ‘‘AND‘‘

| Bitwise ‘‘OR‘‘

^ Bitwise ‘‘Exclusive OR‘‘ (XOR)

These operations can be used to query and manipulate the individual bits of a bit string without recourse
to special assembler commands of the processor. However, such commands are occasionally used by
Linux to manipulate a bit string quickly or atomically. The general concept includes using a mask to
select a specific bit. In this mask, all bits are set to 0 and only the bit to be selected has the value 1. The
desired bit is selected by ‘‘ANDing‘‘ the mask with the actual number. The following example builds a
mask to help test the fifth bit of a bit string:

int main() {
int val1 = 33;
int val2 = 18;

int mask = 1;
mask <<= 4;

if (val1 & mask) {
printf("Bit 5 in val1 is set\n");

}

if (val2 & mask) {
printf("Bit 5 in val2 is set\n");

}
}

1204

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1205

Appendix C: Notes on C

As expected, the program produces the following output:

wolfgang@meitner> ./bitmask
Bit 5 in val2 is set

It is, of course, possible to mask out not just one but several bits of a number by designing an appropriate
mask. If, for example, the last 5 bits of a number are to be analyzed, a mask can be designed in which the
first bit is moved to position 6 and then 1 is subtracted from the resulting number.

Bit position numbering begins at 0 as usual. The bits at positions 0 to 5 are equal to 1 as a result of
subtraction, while the bits at positions 6 to 31 are equal to 0.

The desired bits in a bit string can be selected by ANDing as shown here:

int main() {
unsigned int val = 49;
unsigned int res;

unsigned int mask = 1;
mask <<= 5;
mask -= 1; printf("mask: %u\n", mask);

res = val & mask;
printf("val, res: %u, %u\n", val, res);

}

The program generates the following output:

wolfgang@meitner> ./maskfive
mask: 31
val, res: 49, 17

A common programming error occurs when the operators && (logical AND) and &
(bitwise AND) are confused. Because the former checks only whether both
arguments are greater than 0 and the latter performs a bitwise comparison, they
return different results.

The following example illustrates the difference between both operations:

int main() {
int val1 = 4;
int val2 = 8;

if (val1 & val2) {
printf("And\n");

}

if (val1 && val2) {
printf("And and\n");

}
}

1205

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1206

Appendix C: Notes on C

The program produces the following output:

wolfgang@meitner> and
And and

Because both numbers have no matching bit values at any bit position, bitwise AND returns 0 as
its result.

If 4 and 5 are used as input instead, both operators return a true value because the bits at position 2 in
both numbers are equal to 1 — in any case, both are greater than 0 (for &&).

The moral of the story (and please excuse the word play) is that AND and AND AND8 are not always
the same.

Finally, notice that the kernel defines the auxiliary function DECLARE_BITMAP to create a bitmap with
sufficient space to store the number of bits given by the bits parameter:

<types.h>
#define DECLARE_BITMAP(name,bits) \

unsigned long name[BITS_TO_LONGS(bits)]

The macro automatically computes the required number of longs in the array such that sufficient space
for all bits is available.

C.2.5 Pre-Processor Tricks
Most programmers are familiar with the pre-processor. However, the kernel uses two constructions that
are not usually needed and are therefore worthy of discussion.

Macro arguments that occur within strings are normally not replaced. If a string is to be generated from
a parameter, it is necessary to use a special pre-processor function known as stringification. Arguments
within strings that are to be replaced with their macro parameters must be prefixed by a hash mark, as in
the following example:

#define warning(text)\
printf("Warning: " #text "\n")

If the macro is used as follows:

warning(foobar not found);

the pre-processor generates the following output:

printf("Warning: " "foobar not found" "\n");

If functions (whose names are to be specified in part by macro parameters) are defined with the help of
the pre-processor, it is necessary to make use of the (concatenation) capability of the pre-processor. This
is illustrated by the following example used in the kernel to define functions for port IO with various
data types. Two hash marks are used to merge two consecutive tokens into a compound token once all
pre-processor replacements have been carried out.

8Which reminds of the PL/I construct IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF;.

1206

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1207

Appendix C: Notes on C

include/asm-x86/io_32.h
#define BUILDIO(bwl,bw,type) \
static inline void out##bwl##_local(unsigned type value, int port) { \

__asm__ __volatile__("out" #bwl " %" #bw "0, %w1" : : "a"(value), "Nd"(port)); \
}

bwl accepts one of the three values b, l, or w depending on the data type for which the function is defined.
type specifies the corresponding C data type. The macro is called as follows to define char operations or
byte operations:

BUILDIO(b,b,char)

After processing by the pre-processor, the C file contains the following code (extra line breaks have been
added to improve readability):

static inline void outb_local(unsigned char value, int port) { _
_asm__ __volatile__("out" "b" " %" "b" "0, %w1"

:
: "a"(value), "Nd"(port));

}

C.2.6 Miscellaneous
There are three further items that do not fit into any of the previous categories.

Macros in the kernel very often include constructions of the following kind:

drivers/block/ataflop.c
#define FDC_WRITE(reg,val) \

do { \
dma_wd.dma_mode_status = 0x80 | (reg); \
udelay(25); \
dma_wd.fdc_acces_seccount = (val); \
MFPDELAY(); \

} while(0)

The do statement formally ensures that the code is executed just once when the macro is ‘‘called‘‘ and
does not alter the semantics as compared to a variant without an enclosing do loop. The advantage
of this construction becomes clear when the macro is used in if queries or similar language elements
as shown here:

if (condition)
FDC_WRITE(a,b);

At first reading, the code appears to be correct because single-line if bodies can — and in the kernel
usually are — used without braces. However, after macro expansion there would be a problem if the
enclosing do construction were not present:

if (condition)
dma_wd.dma_mode_status = 0x80 | (reg);
udelay(25);
dma_wd.fdc_acces_seccount = (val);
MFPDELAY();

1207

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1208

Appendix C: Notes on C

Only the first line is included in the if body. The remaining lines are executed regardless of condition
and this is not, of course, what was intended. Because structurally the do construction counts as a state-
ment, it ensures that all statements included in the macro are placed within the if body.

Further elements that cause some confusion when reading kernel sources are the C statements break and
continue. The following chunks of code can easily be confused:

unsigned int count;
for (count = 0; count < 5; count++) {

if (count == 2) {
continue;

}
printf("count: %u\n", count);

}

The code produces the following output when executed:

wolfgang@meitner> ./continue
count: 0
count: 1
count: 3
count: 4

The third loop pass is exited prematurely because of the continue statement. Nevertheless, the subse-
quent loop passes are still executed.

If continue is replaced with a break statement as shown in the following code, program behavior is
modified:

unsigned int count;
for (count = 0; count < 5; count++) {

if (count == 2) {
break;

}
printf("count: %u\n", count);

}

Program output is now as follows:

wolfgang@meitner> ./break
count: 0
count: 1

Again, the third loop pass is terminated. However, loop processing is not resumed, and the subsequent
code is executed. In other words, break completely terminates the loop.

A further stumbling block in C are the semantics of select queries, as the following example shows:

int var = 3;
switch (var) {
case 1:

1208

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1209

Appendix C: Notes on C

printf("one\n"); break;
case 2:

printf("two\n"); break;
case 3:

printf("three\n");
default:

printf("default\n");
}

The code generates the following output:

wolfgang@meitner> ./switch
three
default

Because the case statement for 3 does not include a break statement, code flow descends to the default
label, which under normal circumstances would not have been selected. Generally, switch statements
can be exited only by means of break statements (or at the end of the statement itself). Once a suitable
statement is found, the code descends until it reaches a corresponding statement — regardless of whether
it comes across further labels or not.

C.2.7 Doubly Linked Lists
Doubly linked lists appear in practically every larger data structure of the kernel. A number of general
functions and structures are therefore provided to implement such lists for a wide range of purposes.
Chapter 1 discussed the API needed to work with lists. This section describes its implementation, which
involves some interesting aspects of generic programming in C.

The starting point for linked lists is the following data structure that can be embedded in other data
structures:

<list.h>
struct list_head {

struct list_head *next, *prev;
};

The meaning of the elements is clear. next points to the next element, and prev points to the previous
element. The list is also organized cyclically — in other words, the predecessor of the first list element is
the last entry, and the successor of the last list element is the first entry.

Implementation of list functions is made more difficult by the following conditions:

❑ The list elements need not be at the beginning of a structure, but may be located anywhere in
the structure. Because list processing is supposed to function with any data types, this causes
problems if a selected element is to be typecast into the target data type.

❑ Several list elements can be used jointly in a structure so that they can be held in various lists.

1209

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1210

Appendix C: Notes on C

List function implementation is based on a container mechanism provided by the kernel to embed objects
in other objects. If structure A contains a substructure B, as in the following example, A is referred to as
the container of B:

struct A {
...

struct B {
} element;

...
} container;

When new elements are inserted in a list, the container property is not yet needed, as the following code
of list_add shows:

<list.h>
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/

static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)

{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;

}

/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/

static inline void list_add(struct list_head *new, struct list_head *head)
{

__list_add(new, head, head->next);
}

Elements are also deleted in the classical textbook style:

<list.h>
#define LIST_POISON1 ((void *) 0x00100100)
#define LIST_POISON2 ((void *) 0x00200200)

/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know

1210

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1211

Appendix C: Notes on C

* the prev/next entries already!
*/

static inline void __list_del(struct list_head * prev, struct list_head * next)
{

next->prev = prev;
prev->next = next;

}

/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is
* in an undefined state.
*/

static inline void list_del(struct list_head *entry)
{

__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;

}

The two LIST_POISON values in the next and prev pointers of the deleted entry are used for debugging
purposes in order to detect removed list elements in memory.

The most interesting aspects of list implementation are revealed by two questions: How is it possible to
iterate over the list elements, and how are entries removed from the list? In other words, how is their
data extracted, and how is the full structure that was saved — not only the list element — reconstructed?
Note this is not talking about deleting elements from the list.

The kernel provides the following macro to iterate over a list:

<list.h>
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/

#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \

prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))

All the preceding code resides in the loop head of the for loop. The body is not added until the macro
is used. The purpose of the list is to save, one after the other, pointers to all list elements of the
typeof(*pos) type in pos, and to make these available to the loop body.

A sample use of this routine is to iterate over all files (represented by struct file) that are associated
with a superblock (struct super_block) and are therefore included in a doubly linked list starting at the
superblock, as shown here:

struct super_block *sb = get_some_sb();
struct file *f;

1211

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1212

Appendix C: Notes on C

list_for_each_entry(f, &sb->s_files, f_list) {
/* Code for processing the elements in f */

}

To illustrate the work of list_for_each_entry, an overview of the essential elements of the file and
super_block structures involved is needed. Their important elements are as follows:

<fs.h>
struct file {

struct list_head f_list;
...

};

<fs.h>
struct super_block {

...
struct list_head s_files;
...

super_block->s_files serves as the starting point of a list in which elements of the file type are stored.
file->f_list is used as a list element to establish the link between the individual entries.

Iteration over the elements is split into the following two phases:

1. Finding the list_head instance of the next entry. This is not dependent on the concrete data
structure in the list. The kernel performs this task by de-referencing the next element of the
current entry and thus finding the position of the next list element.

The inserted prefetch statements supply information to the compiler on which elements
are to be transferred by preference from memory into one of the processor caches. When
iterating over a list, this is particularly useful for the next elements.

2. Finding the container element of the list elements. This contains the useful data and is found
by means of the list_entry macro, discussed below.

As a result of the cyclic nature of the list, the kernel easily detects when it has iterated over all elements.
The next element of the current entry then points to the start of the list specified by head.

list_entry is defined as follows:

<list.h>
#define list_entry(ptr, type, member) \

container_of(ptr, type, member)

ptr is a pointer to the list element, type specifies the type of the container element (struct file in the
example), and member defines which element of the container accepts the list elements (this element is
f_list in the example, because the list elements are stored in file->f_list).

1212

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1213

Appendix C: Notes on C

list_entry is implemented by means of the previously mentioned container mechanism. The following
definition of container_of may first appear to be somewhat confusing:

<kernel.h>
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/

#define container_of(ptr, type, member) ({ \
const typeof(((type *)0)->member) *__mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type,member));})

In this example, the offsetof macro expands as follows (some brackets have been omitted to improve
readability):

(size_t) &((struct file *)0)->f_list

The null ‘‘pointer‘‘ 0 is converted to a pointer to struct file by means of a typecast. This is allowed
because it does not de-reference the pointer. Consecutive execution of -> and the address-of operator &
(C operator precedence!) computes the offset that must be added to a pointer to an instance of the struct
file type in order to get to the f_list element. In the example, the element is directly at the beginning
of the structure, so the value 0 is returned. If the list head is at any other point in the data structure, the
function returns a positive offset. This is demonstrated in the following example:

struct test {
int a;
int b;
struct list_head *f_list;
int c;

};

long diff = (long)&((struct test*)0)->f_list;
printf("Offset: %ld\n", diff);

The program yields an offset of 8 bytes because the two integer variables, each of 4 bytes, must be skipped
to get to f_list.

If the following variant is used instead of the previous definition of struct test, the program returns an
offset of 0 as expected:

struct test {
struct list_head *f_list;
int a;
int b;
int c;

};

1213

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1214

Appendix C: Notes on C

Armed with this information, the container_of macro is able to set about extraction of the container
data structure. In the example, the code expands as follows:

const (struct file*) __mptr = (ptr);
(struct file *)((char *)__mptr - offset;

ptr points to the list_head instance in the container element. The kernel first creates a pointer __mptr
with the same value whose type is a pointer to the desired target data type — in this case, struct file.
Then the offset information previously computed is used to move __mptr so that it no longer points to the
list element but to the container element. To make sure that the requisite pointer arithmetic is performed
byte-by-byte, __mptr is converted into a char* pointer. However, this change is reversed during final
assignment after computation.

C.2.8 Hash Lists
The kernel also provides an adapted version of doubly linked lists that is especially suitable to implement
overflow lists in hash tables. In this case, the list elements are also embedded into other data structures,
but there is an asymmetry between the list head and the list elements:

<list.h>
struct hlist_head {

struct hlist_node *first;
};

struct hlist_node {
struct hlist_node *next, **pprev;

};

The list elements themselves are still doubly linked, but the list head is connected with the list by a
single pointer. The end of the list cannot be accessed in constant time any more, but this is usually never
required for hash lists anyway. Instead, the containing data structure becomes slightly smaller because
only one pointer instead of two is required. To manipulate hash lists, essentially the same API can be
used as for regular lists. The only difference is that list must be replaced by hlist — so list_add_head
will become hlist_add_head; list_del will become hlist_del. It’s all quite logical.

As for lists, it is possible to use the RCU mechanism to provide protection against concurrent access. If
this is desired, the hash list operations must be postfixed with _rcu — for instance, hlist_del_rcu to
delete a list element. See Chapter 5 for a description of the protection that the RCU mechanism offers.

C.2.9 Red-Black Trees
Red-black trees (RB trees) are used when implementing memory management in order to organize sorted
elements in a tree. RB trees are frequently used data structures in computer science because they offer a
good mix of speed and implementation complexity. This section describes some general properties of RB
trees and the data structures used in the kernel without discussing the implementation of the possible
tree operations. (which are covered in the classical textbooks on algorithms).

Red-black trees are binary trees characterized by the following properties:

❑ Each node is either red or black.

❑ Each leaf (or node at the edge of the tree) is black.

1214

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1215

Appendix C: Notes on C

❑ If a node is red, both children must be black. It therefore follows that there may be no two con-
secutive red nodes on any path from the root of the tree to any leaf, but there may be any number
of black nodes.

❑ The number of black nodes on a simple path from a node to a leaf is the same for all leaves.

One advantage of red-black trees is that all important tree operations (inserting, deleting, and
searching for elements) can be performed in O(log n) steps, where n is the number of elements in
the tree.

To represent the nodes of an RB tree, the data structure needs not only pointers to the children and a
field to hold the useful data, but also an element to hold color information. The kernel implements this
by means of the following definition:

<rbtree.h>
#define RB_RED 0
#define RB_BLACK 1

struct rb_node
{

unsigned long rb_parent_color;
int rb_color;
struct rb_node *rb_right;
struct rb_node *rb_left;

} __attribute__((aligned(sizeof(long))));

Although this is not directly visible in the definition, the kernel maintains an additional pointer
to the parent node. It is hidden in rb_parent_color: Only one bit is needed to represent two
colors, and this information is contained in the lowest bit of rb_parent_color. The rest of the
variable is used to hold the parent pointer. This is possible because pointers are on all architectures
at least aligned on 4-byte boundaries, so the two lowest-valued bits are guaranteed to be 0. It is,
however, essential that the kernel masks out the color information before de-referencing the pointer
as follows:

<rbtree.h>
#define rb_parent(r) ((struct rb_node *)((r)->rb_parent_color & ~3))

The color information must also be obtained with a special macro as shown here:

<rbtree.h>
#define rb_color(r) ((r)->rb_parent_color & 1)

Additionally, the kernel provides convenience functions that distinguish red and black nodes and allow
to set the node color as follows:

<rbtree.h>
#define rb_is_red(r) (!rb_color(r))
#define rb_is_black(r) rb_color(r)
#define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0)
#define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0)

The useful data associated with a node is not linked to it by means of a further element — instead,
the kernel uses the container mechanism (which you’ve seen in the context of list implementation) to

1215

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1216

Appendix C: Notes on C

implement the node as part of the useful data. The following macro is provided to get to the useful data
starting at a node:

<rbtree.h>
#define rb_entry(ptr, type, member) container_of(ptr, type, member)

To ensure that RB tree implementation is generally available and is not restricted to memory manage-
ment, the kernel provides only general standard functions for manipulating trees (rotation operations,
for example) — these are implemented in lib/rbtree.c.

For example, the Ext3 filesystem uses RB trees to sort directory entries in RAM. As already described,
data items are implemented as containers of the nodes.

fs/ext3/dir.c
struct fname {

__u32 hash;
__u32 minor_hash;
struct rb_node rb_hash;
struct fname *next;
__u32 inode;
__u8 name_len;
__u8 file_type;
char name[0];

};

Search and insert operations must be provided by all subsystems that use red-black trees. Searching
is performed in the same way as normal searches in an organized binary tree and can therefore be
implemented very easily. The insertion routine must place new elements in the tree as red leaves
(rb_link_node can be used to do this). The rb_insert_color standard function must then be invoked
to rebalance the tree so that it still complies with the previously described rules. <rbtree.h> includes
examples on which the functions to be provided can be based.

C.2.10 Radix Trees
The second tree implementation provided in library form in the kernel makes use of radix trees to orga-
nize data in memory. Radix trees differ from other trees because it is not necessary to compare the entire
key at every branch, but only part of the key with the stored value of the node when performing search
operations. This results in slightly different worst-case and average-case behavior than in other imple-
mentations, which are described in detail in the corresponding textbooks on algorithms. Also, radix trees
are not particularly difficult to implement, which adds to their attraction.

The node data structure is defined as follows in the kernel sources:

lib/radix-tree.c
#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)

struct radix_tree_node {
unsigned int height; /* Height from the bottom */
unsigned int count;
struct rcu_head rcu_head;

1216

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1217

Appendix C: Notes on C

void *slots[RADIX_TREE_MAP_SIZE];
unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];

};

slots is an array of pointers that, according to their position in the tree (i.e., the level on which the node
is located), point either to other nodes or to data elements. count indicates the number of occupied array
positions. The macros defined in the code segment specify statically how many array positions there are
in each node. By default, the kernel uses 26 = 64. Empty slots are given a null pointer.

Every tree node can be associated with tags that correspond to a set or an unset bit. Per node, a maximum
of RADIX_TREE_MAX_TAGS different tags are possible, the default setting is a meager 2. This is, however
sufficient for the page cache.

The RCU mechanism (described in Chapter 5) is used to allow lock-free radix tree lookups.

An array of unsigned longs is used to represent the tags, and RADIX_TREE_TAG_LONGS is computed
by the kernel such that sufficient storage space is available to hold the tags. A long array with
RADIX_TREE_MAX_TAGS*RADIX_TREE_TAG_LONGS contains enough bits to attach RADIX_TREE_MAX_TAGS
tags to each slot. The functions radix_tree_tag_set and radix_tree_tag_clear are provided to set
and clear tag bits, respectively. Notice that a tag is not only set in the leaf entry, but in every entry from
root to bottom.

The tree root is defined by the following data structure (notice that this definition is in a public visible
header file, in contrast to the definition of tree nodes):

<radix-tree.h>
struct radix_tree_root {

unsigned int height;
gfp_t gfp_mask;
struct radix_tree_node *rnode;

};

height specifies the current height of the tree, and rnode points to the first node. gfp_mask specifies the
memory area from which the required data structure instances of the tree are to be taken.

The maximum number of elements that can be stored in a tree can be derived directly from the tree
height — that is, from the number of node levels. The kernel provides the following function to compute
the height:

lib/radix-tree.c
static inline unsigned long radix_tree_maxindex(unsigned int height)
{

return height_to_maxindex[height];
}

height_to_maxindex is an array that stores the maximum number of elements for different tree heights.
The number is computed when the system is initialized as shown here:

lib/radix-tree.c
#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \

RADIX_TREE_MAP_SHIFT))

1217

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1218

Appendix C: Notes on C

lib/radix-tree.c
static __init unsigned long __maxindex(unsigned int height)
{

unsigned int width = height * RADIX_TREE_MAP_SHIFT;
int shift = RADIX_TREE_INDEX_BITS - width;

if (shift < 0)
return ~0UL;

if (shift >= BITS_PER_LONG)
return 0UL;

return ~0UL >> shift;
}

static __init void radix_tree_init_maxindex(void)
{

unsigned int i;

for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
height_to_maxindex[i] = __maxindex(i);

}

At runtime, only simple array lookup is needed, and this can be done very quickly. This is important
because the maximum number of elements for a given tree height needs to be computed frequently.

The elements contained in the tree are characterized by a descriptor that accepts continuous values from
0 up to the maximum number of elements that can currently be stored in the tree as follows:

radix_tree_insert is used to insert a new element in a radix tree as follows:

lib/radix-tree.c
static inline void *radix_tree_indirect_to_ptr(void *ptr)
{

return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
}

int radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)

{
struct radix_tree_node *node = NULL, *slot;
unsigned int height, shift;
int offset;
int error;

/* Make sure the tree is high enough. */
if (index > radix_tree_maxindex(root->height)) {

error = radix_tree_extend(root, index);
if (error)

return error;
}

slot = radix_tree_indirect_to_ptr(root->rnode)

height = root->height;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;

1218

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1219

Appendix C: Notes on C

offset = 0; /* uninitialised var warning */
while (height > 0) {

if (slot == NULL) {
/* Have to add a child node. */
if (!(slot = radix_tree_node_alloc(root)))

return -ENOMEM;
if (node) {

rcu_assign_pointer(node->slots[offset], slot);
node->count++;

} else
rcu_assign_pointer(root->rnode,

radix_tree_ptr_to_indirect(slot));
}

/* Go a level down */
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
node = slot;
slot = node->slots[offset];
shift -= RADIX_TREE_MAP_SHIFT;
height--;

}

if (slot != NULL)
return -EEXIST;

if (node) {
node->count++;
rcu_assign_pointer(node->slots[offset], item)

} else {
rcu_assign_pointer(root->rnode, item);

}

return 0;
}

If the descriptor of the element is larger than the current number of elements that can be processed, the
tree must be enlarged; this is described later in this section.

The code traverses the tree from top to bottom starting at the root, and the path is defined solely by the
key being searched. Depending on the position in the tree, certain parts of the key are selected to find
the matching entry in the slot array that leads to the next lower tree level. This corresponds exactly to
the characteristics of radix trees. The tree is traversed in order to allocate tree branches not yet present.
When this is done, the tree height does not change, because the tree can grow only in its width. The new
entry is inserted in the matching slot once the code has reached level 0. Since the tree is protected by the
RCU mechanism, the data pointers must not be assigned directly, but only via rcu_assign_pointer as
discussed in Chapter 5.

The height of the tree is modified by radix_tree_extend — which is called, if needed, at the start of the
function. It is defined as follows in the kernel sources:

lib/radix-tree.c
static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
{

1219

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1220

Appendix C: Notes on C

struct radix_tree_node *node;
unsigned int height;
int tag;

/* Figure out what the height should be. */
height = root->height + 1;
while (index > radix_tree_maxindex(height))

height++;

if (root->rnode == NULL) {
root->height = height;
goto out;

}

do {
if (!(node = radix_tree_node_alloc(root)))

return -ENOMEM;

/* Increase the height. */
node->slots[0] = radix_tree_indirect_to_ptr(root->rnode)

/* Propagate the aggregated tag info into the new root */
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {

if (root_tag_get(root, tag))
tag_set(node, tag, 0);

}

newheight = root->height+1;
node->height = newheight;
node->count = 1;
node = radix_tree_ptr_to_indirect(node);
rcu_assign_pointer(root->rnode, node);
root->height = newheight;

} while (height > root->height);
out:

return 0;
}

Depending on the new maximum index, it may be necessary to add more than one level to the tree.

The tree is expanded from the top because there is then no need to copy elements. An additional node
is inserted between the root and the previous top node for each new level. Because node branches are
allocated automatically when new elements are inserted, the kernel need not concern itself with this task.

The kernel provides the radix_tree_lookup function to find an element in a radix tree by reference to its
key as shown here:

lib/radix-tree.c
void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
{

unsigned int height, shift;
struct radix_tree_node *node, **slot;

1220

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1221

Appendix C: Notes on C

node = rcu_dereference(root->rnode);
if (node == NULL)

return NULL;

if (!radix_tree_is_indirect_ptr(node)) {
if (index > 0)

return NULL;
return node;

}
node = radix_tree_indirect_to_ptr(node);

height = node->height;
if (index > radix_tree_maxindex(height))

return NULL;

shift = (height-1) * RADIX_TREE_MAP_SHIFT;

do {
slot = (struct radix_tree_node **)

(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
node = rcu_dereference(*slot);
if (node == NULL)

return NULL;

shift -= RADIX_TREE_MAP_SHIFT;
height--;

} while (height > 0);

return node;
}

Logically, the algorithm for traversing the tree is identical to the one described previously for inserting
new elements. However, searching is a simple operation because the kernel need not concern itself with
allocating new branches. If a slot at any height in the tree has a null pointer and is therefore not present,
the element being searched is not in the tree. Consequently, work can be terminated immediately and a
null pointer can be returned.

C.3 Summary
C is a Spartan language, and one might be tempted at first glance to equate this with simplicity. However,
it is quite the opposite: Despite being frugal, C allows for many tricks of the trade that can be used for
good, but can likewise be abused to create unreadable and unmaintainable code. This chapter described
some of the more off-standard features of C that are required in kernel development to squeeze the last
percents of performance out of hardware. It also briefly introduced you to the internals of the GNU
C compiler, and showed you some optimization techniques. Additionally, the chapter described some
extensions to the C language that are heavily employed in kernel development.

Finally, this chapter covered some standard data structures that are used all over the kernel sources,
and that therefore must be implemented as generically as possible — which again requires you to utilize
some of the finer points of C.

1221

Mauerer app03.tex V1 - 09/04/2008 6:11pm Page 1222

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1223

System Startup

Like any other program, the kernel goes through a load and initialization phase before performing
its normal tasks. Although this phase is not particularly interesting in the case of normal applica-
tions, the kernel — as the central system layer — has to address a number of specific problems. The
boot phase is split into the following three parts:

❑ Kernel loading into RAM and the creation of a minimal runtime environment.

❑ Branching to the (platform-dependent) machine code of the kernel and system-specific ini-
tialization of the elementary system functions written in assembly language.

❑ Branching to the (platform-independent) part of the initialization code written in C, and
complete initialization of all subsystems with a subsequent switch to normal operation.

As usual, a boot loader is responsible for the first phase. Its tasks depend largely on what the par-
ticular architecture is required to do. Because in-depth knowledge of specific processor features
and problems is needed to understand all details of the first phase, the architecture-specific refer-
ence manual is a good source of information. The second phase is also very hardware-dependent.
Consequently, this appendix describes only some key areas of the IA-32 architecture.

In the third, system-independent phase, the kernel is already resident in memory and (on some
architectures) the processor has switched from boot mode to execution mode in which the kernel
then runs. On IA-32 machines, it is necessary to switch the processor from 8086 emulation, which is
immediately active at boot time, to protected mode to make the system 32-bit capable. Setup work is
also required on other architectures — for instance, it is often necessary to activate paging explicitly,
and central system components must be placed in a defined initial state so that work can begin. All
these tasks must be coded in assembly language and therefore are not the most inviting parts of the
kernel.

Concentrating on the third phase of startup allows for dispensing with many architecture-specific
trifles and has the added advantage that, generally speaking, the remaining sequence of operations
is independent of the particular platform on which the kernel runs.

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1224

Appendix D: System Startup

D.1 Architecture-Specific Setup on IA-32
Systems

Once the kernel has been loaded into physical memory using the bootloader (LILO, GRUB, etc.), the
setup assembler ‘‘function‘‘ in arch/x86/boot/header.S is invoked by switching the control flow to the
appropriate point in memory by means of a jump statement. This is possible because the setup function
is always at the same place in the object file.

The code performs the following tasks, which require a great deal of assembly code:

1. It checks whether the kernel was loaded to the correct position in memory. To do this, it
uses a 4-byte signature that is integrated in the kernel image and that must be located,
unchanged, at the correct position in RAM.

2. It determines how big system memory is.

3. It initializes the graphics card.

4. It moves the kernel image to a position in memory where it does not get in its own way dur-
ing subsequent decompression.

5. It switches the CPU to protected mode.

On completion of these tasks, the code branches to the startup_32 function (in arch/x86/boot/
compressed/head_32.S), which does the following:

1. It creates a provisional kernel stack.

2. It fills uninitialized kernel data with null bytes. The relevant area is between the _edata and
_end constants. When the kernel is linked, these constants are automatically supplied with
the correct values as generated for the kernel binary.

3. It calls the C routine decompress_kernel in arch/x86/boot/compressed/misc_32.c. This
decompresses the kernel and writes the uncompressed machine code to position 0x100000,1

directly after the first MiB of memory. Uncompressing is the first operation performed by
the kernel, as indicated by the screen messages Uncompressing Linux... and Ok, booting
the kernel.

The final part of processor-specific initialization is started by redirecting control flow to startup_32 in
arch/x86/kernel/head_32.S.

This is a different routine from the previously described startup_32 function and is
defined in a different file. The kernel need not concern itself with the fact that both
‘‘functions‘‘ have the same label because it branches directly to the appropriate
address, which is patched in by the assembler and is not associated with the
symbolic labels used in the source code.

1The address can differ if the kernel was built as a relocatable kernel, but this scenario is not relevant here.

1224

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1225

Appendix D: System Startup

This boot section is responsible for the following steps:

1. Activating paging mode and setting up a final kernel stack.

2. Filling the .bss segment located between __bss_start and __bss_stop with null bytes.

3. Initializing the interrupt descriptor table. However, the ignore_int dummy routine is
entered for all interrupts — the actual handlers are installed later.

4. Detecting the processor type. The cpuid statement can be used to recognize recent mod-
els. It returns information on the processor type and capabilities, but it does not distinguish
between 80386 and 80486 processors — this is done by means of various assembler tricks
that are neither important nor interesting.

Platform-specific initialization is now complete and the code branches to the start_kernel function.
Unlike the code described previously, this function is implemented as a normal C function and is there-
fore much easier to handle.

D.2 High-Level Initialization
start_kernel acts as a dispatcher function to perform both platform-independent and platform-
dependent tasks, all of which are implemented in C. It is responsible for invoking the high-level
initialization routines of almost all kernel subsystems. Users can recognize when the kernel enters
this initialization phase because one of the first things the function does is display the Linux banner on
screen. For example, the following message is displayed on one of the author’s systems:

Linux version 2.6.24-default (wolfgang@schroedinger) (gcc version 4.2.1 (SUSE
Linux)) #1 SMP PREEMPT Thu Mar 20 00:17:06 CET 2008

The message is generated early on in the boot operation but is not displayed
on-screen until the console system has been initialized. It is buffered in the
intervening period.

The number of screen outputs increases dramatically during the subsequent steps because the subsystems
being initialized display a wide range of status information on the console. This information is very
useful, particularly for troubleshooting.

The following sections deal extensively with start_kernel and cast light on the kernel startup process
after completion of the architecture-dependent phase.

D.2.1 Subsystem Initialization
Figure D-1 shows a code flow diagram to briefly illustrate the function’s tasks and goals.

The first step is to output the version message. The message text is held in the linux_banner global
variable defined in init/version.c. This is followed by a further architecture-specific initialization
step, which no longer deals with lower-level processor details but is written in C and which, on
most systems, has the primary task of setting the framework for initialization of high-level memory

1225

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1226

Appendix D: System Startup

management. The bulk of the initialization work — setting up the central data structures of the various
kernel subsystems — is performed in start_kernel once the command-line arguments passed to
the kernel at startup have been interpreted. This is a very comprehensive task because it involves
practically all subsystems. It is therefore broken down into a large number of short procedures, which
are described in the subsequent sections. The final step is to generate the idle process that the kernel calls
when it has absolutely nothing else to do. The init process is also started with PID 1 — this runs the
initialization routines of various subsystems and then starts /sbin/init as the first user space process.
This concludes kernel-side initialization.

Display version banner

Architecture-specfic, high-level setup for memory management

Evaluate command-line arguments

Initialize core data structures of most subsystems

Determine processor and system errors

Start idle process and init thread

start_kernel

Figure D-1: Code flow diagram for start_kernel.

Architecture-Specific Setup
As its name clearly suggests, setup_arch is an architecture-specific function. It performs setup tasks writ-
ten in C and concerns itself primarily with the initialization of various aspects of memory management.
For example, on most systems, it finalizes enabling of paging and sets up suitable data structures for ker-
nel mode. On some architectures with several variants (IA-64 and Alpha, for example), variant-specific
setup is performed at this point.

For simplicity’s sake, this section examines only the implementation of setup_arch for IA-32 systems as
touched upon briefly in Chapter 3. Figure D-2 shows the corresponding code flow diagram.

Determine position of kernel in memory

setup_arch

parse_early_param

setup_memory

paging_init

Figure D-2: Code flow diagram
for setup_arch on IA-32 systems.

1226

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1227

Appendix D: System Startup

First, the location of the kernel in physical and virtual memory is noted. This is done using constants
inserted by the linker when the kernel was compiled. These constants specify the start and end addresses
of the various segments as shown here (see also Appendix E):

arch/x86/kernel/setup_32.c
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = init_pg_tables_end + PAGE_OFFSET;

code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
bss_resource.start = virt_to_phys(&__bss_start);
bss_resource.end = virt_to_phys(&__bss_stop)-1;

parse_early_param performs partial interpretation of the command-line parameters. It does this only
for arguments relating to memory management setup; for example, the total size of available physi-
cal memory, or the position of specific ACPI and BIOS memory areas. Users can overwrite values that
the kernel has detected incorrectly. Armed with this information, setup_memory detects the number
of physical memory pages in the low-memory and high-memory areas. It also initializes the bootmem
allocator.

paging_init then sets up the kernel’s reference page table. This is used not only to map physical mem-
ory but also to manage the vmalloc areas, as discussed in Chapter 3. The new page table is enabled
by inserting the address of swapper_pg_dir — the variable in which the page table data structures are
saved — into the CR3 register of the processor.

The build_all_zonelists function (which was discussed in Chapter 3 and which is responsible for cre-
ating the memory management zone lists) is invoked by start_kernel to complete memory management
initialization and to put the bootmem allocator in control of the rest of the boot procedure.

Interpreting Command-Line Arguments
parse_args is invoked by parse_early_param in start_kernel and assumes responsibility for inter-
preting the command-line parameters passed to the kernel at boot time. The same inherent problem is
encountered as in userspace — a string containing key/value pairs in the form key1=val1 key2=val2
must be broken down into its constituent parts. The options set must be saved in the kernel or specific
responses must be triggered.

The kernel is faced with this parameter problem not only at boot time but also when modules are inserted.
It therefore makes good sense to use the same mechanism to solve the problem in order to avoid the
unnecessary duplication of code.

The binary file contains an instance of kernel_param for each kernel parameter — both in dynamically
loaded modules and in the static kernel binary. This instance is structured as follows:

<moduleparam.h>
/* Returns 0, or -errno. arg is in kp->arg. */
typedef int (*param_set_fn)(const char *val, struct kernel_param *kp);
/* Returns length written or -errno. Buffer is 4k (ie. be short!) */

1227

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1228

Appendix D: System Startup

typedef int (*param_get_fn)(char *buffer, struct kernel_param *kp);

struct kernel_param {
const char *name;
param_set_fn set;
param_get_fn get;
union {

void *arg;
const struct kparam_string *str;
const struct kparam_array *arr;

};
};

name gives the name of the parameter, and the set and get functions set and read the parameter value.
arg is an (optional) argument that is also passed to the preceding functions. As expected, it allows the
same function to be used for different parameters. The pointer can also be specifically interpreted as a
string or an array.

Parameters are registered with the kernel by the following macros: module_param, module_param_named,
and so on. They fill an instance of kernel_param with the appropriate values and write them to the
__param section of the binary file.

This greatly simplifies parameter interpretation at boot time. All that is needed is a loop that performs
the following actions until all parameters have been processed:

1. next_arg extracts the next name/value pair from the command line provided by the kernel
in the form of a text string.

2. parse_one runs through the list of all registered parameters, compares the value passed with
the name element of the kernel_param instances, and invokes the set function when a match
is found.

Initializing Central Data Structures and Caches
As a quick glance at the following kernel sources shows, the most substantial task of start_kernel is to
invoke subroutines to initialize almost all important kernel subsystems:

init/main.c
asmlinkage void __init start_kernel(void)
{
...

trap_init();
rcu_init();
init_IRQ();
pidhash_init();
sched_init();
init_timers();
hrtimers_init();
softirq_init();
timekeeping_init();
time_init();
profile_init();

...

1228

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1229

Appendix D: System Startup

early_boot_irqs_on();
local_irq_enable();

...
/*
* HACK ALERT! This is early. We’re enabling the console before
* we’ve done PCI setups etc, and console_init() must be aware of
* this. But we do want output early, in case something goes wrong.
*/

console_init();
...

mem_init();
kmem_cache_init();

...
calibrate_delay();
pidmap_init();
pgtable_cache_init();

...
vfs_caches_init(num_physpages);
radix_tree_init();
signals_init();
/* rootfs populating might need page-writeback */
page_writeback_init();

#ifdef CONFIG_PROC_FS
proc_root_init();

#endif
...

However, most functions are of little interest because all they do is call on the bootmem allocator to
reserve memory for data structure instantiation. The most important functions were covered in detail
in the subsystem-specific chapters, so the following simply summarizes the meaning of the individual
actions:

❑ trap_init and init_IRQ set the handlers for traps and IRQs — this is an architecture-specific
task. For instance, the following code is used on IA-32 systems to register trap handlers for error
messages returned by the processor:

arch/x86/kernel/traps_32.c
void __init trap_init(void)
{

set_trap_gate(0,÷_error);
set_intr_gate(1,&debug);
set_intr_gate(2,&nmi);
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_intr_gate(14,&page_fault);
set_trap_gate(15,&spurious_interrupt_bug);

1229

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1230

Appendix D: System Startup

set_trap_gate(16,&coprocessor_error);
set_trap_gate(17,&alignment_check);
set_trap_gate(19,&simd_coprocessor_error);

...
set_system_gate(SYSCALL_VECTOR,&system_call);

...
}

As the code shows, this is also where the interrupt used for system calls is defined as a system
gate (SYSCALL_VECTOR is set to 0x80).

The IRQ handlers are initialized similarly.

❑ sched_init initializes the data structures of the scheduler (for the main processor in this case)
and run queues are created.

❑ pidhash_init allocates the hash tables used by the PID allocator to manage free and assigned
PIDs.

❑ softirq_init registers the softIRQ queues for tasklets with normal and high priority
(TASKLET_SOFTIRQ and HI_SOFTIRQ).

❑ time_init reads the system time from the hardware clock. This is a processor-specific function
because different architectures use different mechanisms to read the clock.

❑ init_console initializes the system consoles. The early printk mechanism is also disabled on
systems that provide this facility to allow messages to be output to the console before it has been
fully initialized (on other systems, messages are buffered until the console is activated).

❑ page_address_init sets up the hash table that the Persistent Kernel Map (PKMap) mechanism
uses to determine the physical page address of a permanent kernel mapping by reference to a
given virtual address.

❑ mem_init disables the bootmem allocator (and performs a number of minor architecture-specific
actions that are of no concern), and kmem_cache_init initializes the slab allocator in a multistage
process described in detail in Chapter 3.

❑ calibrate_delay calculates the BogoMIPS value, which specifies how many empty loops the
CPU can run through per jiffy. The kernel requires this value to estimate the time needed for
some tasks that are performed with polling or busy waiting. The following code yields a good
approximation of the number of loops per jiffy and stores the result in loops_per_jiffy2:

init/calibrate.c
void __init calibrate_delay(void)
{

unsigned long ticks, loopbit;
int lps_precision = LPS_PREC;

loops_per_jiffy = (1<<12);

printk("Calibrating delay loop... ");
while (loops_per_jiffy <<= 1) {

/* wait for "start of" clock tick */

2It is also possible to preset the BogoMIPS value, but this prevents the kernel from doing one of the most important operations ever,
which would clearly be boring.

1230

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1231

Appendix D: System Startup

ticks = jiffies;
while (ticks == jiffies)

/* nothing */;
/* Go .. */
ticks = jiffies;
__delay(loops_per_jiffy);
ticks = jiffies - ticks;
if (ticks)

break;
}

/*
* Do a binary approximation to get loops_per_jiffy set to
* equal one clock (up to lps_precision bits)
*/

loops_per_jiffy >>= 1;
loopbit = loops_per_jiffy;
while (lps_precision-- && (loopbit >>= 1)) {

loops_per_jiffy |= loopbit;
ticks = jiffies;
while (ticks == jiffies)

/* nothing */;
ticks = jiffies;
__delay(loops_per_jiffy);
if (jiffies != ticks) /* longer than 1 tick */

loops_per_jiffy &= ~loopbit;
}

/* Round the value and print it */
printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",

loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ)) % 100,
loops_per_jiffy);

}
}

The following construction is particularly interesting (although in C, it would not normally make
sense or would produce an endless loop):

init/main.c
ticks = jiffies;
while (ticks == jiffies)

/* nothing */;

However, the loop does terminate at some point because the value of jiffies is incremented
by 1 in the interrupt handler routine at each tick of the system clock (which sleeps with the
frequency HZ). As a result, the condition in the while loops produces an incorrect value after a
certain time, thus causing the loop to terminate.

❑ pidmap_init allocates the array in which the free positions of the PID allocator are saved. It also
reserves the (unused) PID 0 for all PID types.

❑ fork_init allocates the task_struct slab cache (providing there is no architecture-specific
mechanism to generate and cache task_struct instances) and calculates the maximum number
of threads that can be generated.

1231

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1232

Appendix D: System Startup

❑ proc_caches_init initiates slab caches for the remaining data structures involved in the process
description. The following structures are considered: sighand, signal, files, fs, fs_struct,
and mm_struct.

❑ buffer_init generates a cache for buffer_heads and calculates the value of the
max_buffer_heads variable so that the buffer heads never use more than 10 percent of
the memory in ZONE_NORMAL.

❑ vfs_caches_init creates caches for various data structures needed by the virtual filesystem
(VFS) layer.

❑ radix_tree_init creates a slab cache for radix_tree_node instances needed by memory man-
agement.

❑ page_writeback_init initializes the flushing mechanism and, more specifically, defines the
limit value for dirty pages after which the mechanism comes into effect.

❑ proc_root_init initializes the inode cache of the proc filesystem, registers the process
filesystem (procfs) in the kernel, and generates the central filesystem entries — for example,
/proc/meminfo, /proc/uptime, /proc/version, and so on.

Searching for Known System Errors
Software is not the only thing that has bugs — mishaps also occur when implementing processors and,
as a result, chips do not function as they should. Fortunately, most error situations can be remedied with
workarounds. However, before workarounds can be put in place, the kernel needs to know whether a
particular processor does, in fact, have any bugs. This can be established using the architecture-specific
check_bugs function.

For instance, the following code is available for IA-32 systems:

arch/x86/kernel/cpu/bugs.c
static void __init check_bugs(void)
{

identify_boot_cpu();

check_config();
check_fpu();
check_hlt();
check_popad();
init_utsname()->machine[1] = ’0’ + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
alternative_instructions();

}

The last statement (alternative_instructions) also invokes a function that replaces certain assem-
bler instructions — depending on processor type — with faster, more modern alternatives. This enables
distributors to create kernel images that are capable of running on a wide variety of machines without
having to forgo more recent features.

For comparison of the CPU quality, here is the check_bugs routine of S390, Alpha, Extensa, H8300, v850,
FRV, Blackfin, Cris, PA-RISC, and PPC64:

static void check_bugs(void)

1232

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1233

Appendix D: System Startup

The S390 kernel is among the most confident ones, as you can see in the following code:

include/asm-s390/bugs.h
static inline void check_bugs(void)
{

/* s390 has no bugs ... */
}

Idle and init Thread
The last two actions of start_kernel are as follows:

1. rest_init starts a new thread that, after performing a few more initialization operations as
described the next step, ultimately calls the userspace initialization program /sbin/init.

2. The first, and formerly only, kernel thread becomes the idle thread that is called when the
system has nothing else to do.

rest_init is essentially implemented in just a few lines of code:

init/main.c
static void rest_init(void)
{

kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
kthreadd_task = find_task_by_pid(pid);
unlock_kernel();

...
schedule();
cpu_idle();

}

Once a new kernel thread named init (which will start the init task) and another thread named
kthreadd (which will be used by the kernel to start kernel daemons) have been started, the kernel
invokes unlock_kernel to unlock the big kernel lock and makes the existing thread the idle thread by
calling cpu_idle. Prior to this, schedule must be called at least once to activate the other thread.

The idle thread uses as little system power as possible (this is very important in embedded systems) and
relinquishes the CPU to runnable processes as quickly as possible. In addition, it handles turning off the
periodic tick completely if the CPU is idle and the kernel is compiled with support for dynamic ticks as
discussed in Chapter 15.

The init thread, whose code flow diagram is shown in Figure D-3, is in parallel existence with the idle
thread and kthreadd.

First, the current task needs to be registered as child_reaper for the global PID namespace. The kernel
makes it very clear what its intentions are:

init/main.c
static int __init kernel_init(void * unused)
{
...

1233

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1234

Appendix D: System Startup

/*
* Tell the world that we’re going to be the grim
* reaper of innocent orphaned children.
*/

init_pid_ns.child_reaper = current;
...
}

Register as child reaper

SMP initialization

Execute userspace initialization program

init

do_basic_setup

prepare_namespace

init_post

free_initmem

Figure D-3: Code flow diagram for init.

Up to now, the kernel has used just one of the several CPUs on multiprocessor systems, so it’s time to
activate the others. This is done in the following three steps:

1. smp_prepare_cpus ensures that the remaining CPUs are activated by executing their
architecture-specific boot sequences. However, the CPUs are not yet linked into the kernel
scheduling mechanism and are therefore still not available for use.

2. do_pre_smp_initcalls is — despite its name — a mix of symmetric multiprocessing and
uniprocessor initialization routines. On SMP systems, its primary task is to initialize the
migration queue used to move processes between CPUs as discussed in Chapter 2. It also
starts the softIRQ daemons.3

3. smp_init enables the remaining CPUs in the kernel so that they are available for use.

Driver Setup
The next init step is to start general initialization of drivers and subsystems using the do_basic_setup
function whose code flow diagram is shown in Figure D-4.

Some of the functions are quite extensive but not very interesting. They simply initialize further kernel
data structures already discussed in the chapters on the specific subsystems. driver_init sets up the data
structures of the general driver model, and init_irq_proc registers entries with information about IRQs

3To be precise, the kernel invokes a callback function that starts the daemons when a CPU is activated by the kernel. Suffice it to say
that ultimately an instance of the daemon is started for each CPU.

1234

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1235

Appendix D: System Startup

in the proc filesystem. init_workqueues generates the events work queue, and usermodehelper_init
creates the khelper work queue.

do_basic_setup

init_workqueues

usermodehelper_init

driver_init

init_irq_proc

do_initcalls

Figure D-4: Code flow diagram
for do_basic_setup.

Much more interesting is do_initcalls, which is responsible for invoking the driver-specific initializa-
tion functions. Because the kernel can be custom configured, a facility must be provided to determine the
functions to be invoked and to define the sequence in which they are executed. This facility is known as
the initcall mechanism and is discussed in detail later in this section.

The kernel defines the following macros to detect the initialization routines and to define their sequence
or priority:

<init.h>
#define __define_initcall(level,fn,id) \

static initcall_t __initcall_##fn##id __attribute_used__ \
__attribute__((__section__(".initcall" level ".init"))) = fn

#define pure_initcall(fn) __define_initcall("0",fn,0)

#define core_initcall(fn) __define_initcall("1",fn,1)
#define postcore_initcall(fn) __define_initcall("2",fn,2)
#define arch_initcall(fn) __define_initcall("3",fn,3)
#define subsys_initcall(fn) __define_initcall("4",fn,4)
#define fs_initcall(fn) __define_initcall("5",fn,5)
#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn) __define_initcall("6",fn,6)
#define late_initcall(fn) __define_initcall("7",fn,7)

The names of the functions are passed to the macros as parameters, as shown in the examples for
device_initcall(time_init_device) and subsys_initcall(pcibios_init). This generates an entry
in the .initcalllevel.init section. The initcall_t entry type is used and is defined as follows:

<init.h>
typedef int (*initcall_t)(void);

This is a pointer to functions that do not expect an argument and return an integer to indicate
their status.

1235

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1236

Appendix D: System Startup

The linker places initcall sections one after the other in the correct sequence in the binary file. The order
is defined in the architecture-independent file <include/asm-generic/vmlinux.lds.h>, as shown here:

<asm-generic/vmlinux.lds.h>
#define INITCALLS \

*(.initcall0.init) \
*(.initcall1.init) \
*(.initcall2.init) \
*(.initcall3.init) \
*(.initcall4.init) \
*(.initcall5.init) \
*(.initcallrootfs.init) \
*(.initcall6.init) \
*(.initcall7.init) \

This is how a linker file employs the specification (the linker script for Alpha processors is shown here,
but the procedure is practically the same on all other systems):

arch/alpha/kernel/vmlinux.lds.S...
.initcall.init : {

__initcall_start = .;
INITCALLS
__initcall_end = .;

}
...

The linker holds the start and end of the initcall range in the __initcall_start and __initcall_end
variables, which are visible in the kernel and whose benefits are described shortly.

The mechanism described defines only the call sequence of the different initcall
categories. The call sequence of the functions in the individual categories is defined
implicitly by the position of the specified binary file in the link process and cannot
be modified manually from within the C code.

Because the compiler and linker do the preliminary work, the task of do_initcalls is not all that com-
plicated as the following glance at the kernel sources shows:

init/main.c
static void __init do_initcalls(void)
{

initcall_t *call;
int count = preempt_count();

for (call = __initcall_start; call < __initcall_end; call++) {
...

char *msg;
int result;

if (initcall_debug) {
printk("calling initcall 0x%p\n", *call);

...

1236

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1237

Appendix D: System Startup

}

result = (*call)();
...

}

/* Make sure there is no pending stuff from the initcall sequence */
flush_scheduled_work();

}

Basically, the code iterates through all entries in the .initcall section whose boundaries are indicated
by the variables defined automatically by the linker. The addresses of the functions are extracted, and the
functions are invoked. Once all initcalls have been executed, the kernel uses flush_scheduled_work to
flush any remaining keventd work queue entries that may have been created by the routines.

Removing Initialization Data
Functions to initialize data structures and devices are normally needed only when the kernel is booted
and are never invoked again. To indicate this explicitly, the kernel defines the __init attribute, which
is prefixed to the function declaration as shown previously in the kernel source sections. The attribute is
defined as follows:

<init.h>
#define __init __attribute__ ((__section__ (".init.text"))) __cold
#define __initdata __attribute__ ((__section__ (".init.data")))

The kernel also enables data to be declared as initialization data by means of the __initdata attribute.

The linker writes functions labeled with __init or __initdata to a specific section of the binary file as
follows (linker scripts on other architectures are almost identical to the Alpha version shown here):

arch/alpha/kernel/vmlinux.lds.S
/* Will be freed after init */
. = ALIGN(PAGE_SIZE);
/* Init code and data */
__init_begin = .;
.init.text : {

_sinittext = .;
*(.init.text)
_einittext = .;

}
.init.data : {

*(.init.data)
}

. = ALIGN(16);

.init.setup : {
__setup_start = .;
*(.init.setup)
__setup_end = .;

}

. = ALIGN(8);

.initcall.init : {

1237

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1238

Appendix D: System Startup

__initcall_start = .;
INITCALLS
__initcall_end = .;

}
...

. = ALIGN(2 * PAGE_SIZE);
__init_end = .;
/* Freed after init ends here */

A few other sections are also added to the initialization section that includes, for example, the initcalls
discussed previously. However, for the sake of clarity, this appendix does not describe all data and
function types removed from memory by the kernel on completion of booting.

free_initmem is one of the last actions invoked by init to free kernel memory between __init_begin
and __init_end. The value of the variable is set automatically by the linker as follows:

arch/i386/mm/init.c
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{

unsigned long addr;

for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;

}
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);

}

void free_initmem(void)
{

free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));

}

Although this is an architecture-specific function, its definition is virtually identical on all supported
architectures. For brevity’s sake, only the IA-32 version is described. The code iterates through the indi-
vidual pages reserved by the initialization data and returns them to the buddy system using free_page.
A message is then output indicating how much memory was freed, usually around 200 KiB.

Starting Userspace Initialization
As its final action, init invokes init_post — which, in turn, launches a program that continues initial-
ization in userspace in order to provide users with a system on which they can work. Under Unix and
Linux, this task is traditionally delegated to /sbin/init. If this program is not available, the kernel tries a
number of alternatives. The name of an alternative program can be passed to the kernel by init=program
in the command line. An attempt is then made to start this program before the default options (the name

1238

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1239

Appendix D: System Startup

is held in execute_command when the command line is parsed). If none of the options functions, a kernel
panic is triggered because the system is unusable, as shown here:

init/main.c
static int noinline init_post(void)
{

if (execute_command) {
run_init_process(execute_command);
printk(KERN_WARNING "Failed to execute %s. Attempting "
"defaults...\n", execute_command);

}
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");
}

run_init_post sets up a minimal environment for the init process as follows:

init/main.c
static char * argv_init[MAX_INIT_ARGS+2] = { "init", NULL, };
char * envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, };

static void run_init_process(char *init_filename)
{

argv_init[0] = init_filename;
kernel_execve(init_filename, argv_init, envp_init);

}

kernel_execve is a wrapper for the sys_execve system call, which must be provided by each
architecture.

D.3 Summary
Booting the Linux kernel is a highly architecture-specific process, at least for the initial stages. This
chapter introduced you to some of the intricacies to get a kernel up and running on IA-32 systems. Addi-
tionally, this chapter discussed the higher-level startup process in which the kernel sets up the hardware
step-by-step until it can finally invoke the first userland process (usually /sbin/init) and can commence
its regular execution.

1239

Mauerer app04.tex V1 - 09/04/2008 6:12pm Page 1240

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1241

The ELF Binary Format

ELF stands for Executable and Linkable Format. It is the file format used for executable files, object files,
and libraries. It has long established itself as the standard format under Linux and has replaced the
a.out format of the early years. The particular benefit of ELF is that the same file format can be
used on practically all architectures supported by the kernel. This simplifies not only the creation
of userspace tools, but also programming of the kernel itself — for example, when it is necessary
to generate load routines for executable files. However, the fact that the file format is the same does
not mean that binary compatibility exists between the programs of different systems — between
FreeBSD and Linux, for instance, both of which use ELF as their binary format. Although both orga-
nize the data in their files in the same way, there are still differences in the system call mechanism
and in the semantics of the system calls. This is the reason why FreeBSD programs cannot run under
Linux without an intermediate emulation layer (the reverse is naturally also true). Understandably,
binary programs cannot be swapped between different architectures (for example, Linux binaries
compiled for Alpha CPUs cannot execute on Sparc Linux), because the underlying architectures
are totally different. However, thanks to ELF, the way in which information on programs and their
components is coded in the binary file is the same in all cases.

Linux employs ELF not only for userspace applications and libraries, but also to build modules. The
kernel itself is also generated in ELF.

ELF is an open format whose specification is freely available (also on the Web site associated with
this book). This appendix is structured in the same way as the specification and summarizes infor-
mation that is relevant.

E.1 Layout and Structure
As Figure E-1 shows, ELF files consist of various parts. Note that in this context, a distinction must
be made between link objects and executable files:

❑ In addition to a few bytes that identify the file as an ELF file, the ELF header holds infor-
mation on the file type and size or on the entry point at which program execution starts
when the file is loaded.

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1242

Appendix E: The ELF Binary Format

❑ The program header table provides the system with information on how the data of an
executable file is to be arranged in the virtual address space of a process. It also indicates
how many sections the file may contain, where they are located, and what purpose
they serve.

❑ The individual sections hold the various forms of data associated with a file; for example, the
symbol table, the actual binary code or fixed values such as strings, or numeric constants used
by the program.

❑ The section header table contains additional information on the individual sections.

Link View

Program
Header Table

Section 1
Section 2

. . .

Section n

Section
Header Table

ELF Header

Execution View

Program
Header Table

Segment 1

Segment 2

Section
Header Table

ELF Header Mandatory

Optional

. . .

Figure E-1: Basic layout of ELF files.

readelf is a useful tool for analyzing the structure of ELF files, as demonstrated in the following simple
program.

#include<stdio.h>

int add (int a, int b) {
printf("Numbers are added together\n");
return a+b;

}

int main() {
int a,b;
a = 3;
b = 4;
int ret = add(a,b);
printf("Result: %u\n");
exit(0);

}

Of course, this program is not necessarily the most useful of its kind, but it serves as a good example to
illustrate how an executable file and an object file are generated:

wolfgang@meitner> gcc test.c -o test
wolfgang@meitner> gcc test.c -c -o test.o

1242

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1243

Appendix E: The ELF Binary Format

file shows that the compiler has generated two ELF files — an executable file and a relocatable
object file.

wolfgang@meitner> file test
filetest: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked
(uses shared libs), not stripped
wolfgang@meitner> file test.o
test.o: ELF 32-bit LSB relocatable, Intel 80386, version 1, not stripped

E.1.1 ELF Header
Ths section uses readelf to examine the constituent elements of both files.1 First, consider the ELF
header:

wolfgang@meitner> readelf test
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2’s complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x80482d0
Start of program headers: 52 (bytes into file)
Start of section headers: 10148 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 6
Size of section headers: 40 (bytes)
Number of section headers: 29
Section header string table index: 26

There are four identification bytes at the top of the file. An ASCII code 0x7f character is followed by
the ASCII values of the characters E (0x45), L (0x4c), and F (0x46). This enables all ELF processing
tools to recognize that the file is of the desired format. There is also some information on the specific
architecture — in this case, a Pentium III system that is IA32-compatible. The class information (ELF32)
correctly indicates that this is a 32-bit machine (on Alphas, IA-64, Sparc64, and other 64-bit platforms, the
value in this field would be ELF64).

The file type is EXEC, meaning that the file is executable. The version field enables a distinction to be
made between the various revisions of the ELF standard. However, because version 1 is still current,
this feature is not needed at the moment. Also included is information on the size and index positions of
various constituents of the ELF file (discussed in more detail later). Because the size of the sections may
vary from program to program, the corresponding data must be supplied in the header.

1The program has more command-line options than those shown here. They are documented on the manual page readelf(1) and
can be displayed using readelf-help.

1243

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1244

Appendix E: The ELF Binary Format

Which fields differ if you look at an object file instead of an executable file? For the sake of simplicity, this
appendix deals only with the following fields displayed by readelf:

wolfgang@meitner> readelf -h test.o
...

Type: REL (Relocatable file)
...

Start of program headers: 0 (bytes into file)
...

Size of program headers: 0 (bytes)
Number of program headers: 0

...

The file type is shown as REL. In other words it is a relocatable file whose code can be moved to any
position.2 The file has no program header table because this is not needed for link objects — for this
reason, all sizes are set to 0:

E.1.2 Program Header Table
The following is the program header table in an executable file (object files have no such table):

wolfgang@meitner> readelf -l test

Elf file type is EXEC (Executable file)
Entry point 0x80482d0
There are 6 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x000c0 0x000c0 R E 0x4
INTERP 0x0000f4 0x080480f4 0x080480f4 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0x0046d 0x0046d R E 0x1000
LOAD 0x000470 0x08049470 0x08049470 0x00108 0x0010c RW 0x1000
DYNAMIC 0x000480 0x08049480 0x08049480 0x000c8 0x000c8 RW 0x4
NOTE 0x000108 0x08048108 0x08048108 0x00020 0x00020 R 0x4

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version

.gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata
03 .data .eh_frame .dynamic .ctors .dtors .jcr .got .bss
04 .dynamic
05 .note.ABI-tag

Six sections are listed under Program Headers — these constitute the final program in memory. Infor-
mation on size and position in virtual and physical address space,3 flags, access authorizations, and

2In particular, this means that relative branch addresses must be used instead of absolute addresses in assembly language code.
3The physical address information is ignored because this information is allocated dynamically by the kernel depending on which
physical page frames are mapped onto the corresponding positions in virtual address space. This information is of relevance only on
systems that have no MMU and therefore no virtual memory — on small embedded processors, for instance.

1244

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1245

Appendix E: The ELF Binary Format

alignment is provided for each section. A type is also specified to describe the section more precisely. The
sample program includes five different types with the following meanings:

❑ PHDR holds the program header table in memory.

❑ INTERP specifies which interpreter must be called once the program has been mapped from the
executable file into memory. In this context, interpreter does not mean that the contents of the
binary file must be interpreted by a further program, as is the case with Java byte code and with
the Java Virtual Machine (JVM). It refers to a program that satisfies unresolved references by
linking additional libraries.

Normally, /lib/ld-linux.so.2, /lib/ld-linux-ia-64.so.2 and so on, is used to insert the
required dynamic libraries in virtual address space. The C standard library libc.so must be
mapped for almost all programs, and various libraries are added to is, such as GTK, the mathe-
matical library, libjpeg, and many more.

❑ LOAD denotes a section that is mapped from the binary file into virtual address space. It holds
constant data (such as strings), the object code of the program, and so on.

❑ DYNAMIC sections hold information used by the dynamic linker (i.e., by the interpreter specified
in INTERP).

❑ NOTE holds proprietary information, which is not relevant to the current topic.

The various segments in virtual address space are filled with the data of specific sections in the ELF file.
The second part of the readelf output therefore specifies which sections are loaded into which segment
(Section to Segment Mapping).

These are not segments as used in IA32 processors to implement different isolated
ranges of virtual address space but are simply address space areas.

Other platforms adopt basically the same approach, but different sections are mapped into the individual
areas depending on the particular architecture, as the following IA-64 example shows:

wolfgang@meitner> readelf -l test_ia64
Elf file type is EXEC (Executable file)
Entry point 0x40000000000004e0
There are 7 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x4000000000000040 0x4000000000000040

0x0000000000000188 0x0000000000000188 R E 8
INTERP 0x00000000000001c8 0x40000000000001c8 0x40000000000001c8

0x0000000000000018 0x0000000000000018 R 1
[Requesting program interpreter: /lib/ld-linux-ia64.so.2]

LOAD 0x0000000000000000 0x4000000000000000 0x4000000000000000
0x00000000000009f0 0x00000000000009f0 R E 10000

LOAD 0x00000000000009f0 0x60000000000009f0 0x60000000000009f0
0x0000000000000270 0x0000000000000280 RW 10000

DYNAMIC 0x00000000000009f8 0x60000000000009f8 0x60000000000009f8

1245

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1246

Appendix E: The ELF Binary Format

0x00000000000001a0 0x00000000000001a0 RW 8
NOTE 0x00000000000001e0 0x40000000000001e0 0x40000000000001e0

0x0000000000000020 0x0000000000000020 R 4
IA_64_UNWIND 0x00000000000009a8 0x40000000000009a8 0x40000000000009a8

0x0000000000000048 0x0000000000000048 R 8

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_r

.rela.IA_64.pltoff .init .plt .text .fini .rodata .opd

.IA_64.unwind_info .IA_64.unwind
03 .data .dynamic .ctors .dtors .jcr .got .IA_64.pltoff .sdata .sbss .bss
04 .dynamic
05 .note.ABI-tag
06 .IA_64.unwind

Notwithstanding the fact that 64-bit addresses are used, it is also apparent that a further section of the
IA_64_UNWIND type has been added. This section stores unwind information that is used to analyze stack
frames (if, for example, a backtrace is to be generated) because, for architecture-specific reasons, this
cannot be done on IA-64 systems by simply analyzing the stack contents.4 The exact meanings of the
various sections are discussed next.

The segments can overlap, as the readelf output for IA-32 shows. Segment 02 of
type LOAD extends from 0x08048000 to 0x8048000 + 0x0046d = 0x0804846d. It contains
the .note.ABI-tag segment. However, the same area in virtual address space is
used to implement segment 06 (of the NOTE type) that extends from 0x08048108 to
0x08048108 + 0x00020 = 0x08048128 and therefore lies within segment 02. This
behavior is explicitly allowed by the standard.

E.1.3 Sections
The contents of segments are described by specifying the sections whose data are to be copied into the
segments. A further table known as a section header table is used to manage the sections of a file, as shown
in Figure E-1. Again, readelf can be used to display the sections of a file, like this:

wolfgang@meitner> readelf -S test.o
There are 10 section headers, starting at offset 0x114:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .text PROGBITS 00000000 000034 000065 00 AX 0 0 4
[2] .rel.text REL 00000000 000374 000030 08 8 1 4

4IA-64 uses register stacks to store the local variables of a procedure. The processor automatically reserves a window in the compre-
hensive processor register set for this purpose. Depending on requirements, parts of these registers can be swapped out into memory
transparently to the program. Because the size of the register stacks is different for each procedure and different registers may be
swapped out depending on the call chain, a backtrace can no longer be generated by simply running backward through the stack
frames by means of the frame pointers, as is possible in most other architectures. IA-64 machines require the saved unwind infor-
mation.

1246

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1247

Appendix E: The ELF Binary Format

[3] .data PROGBITS 00000000 00009c 000000 00 WA 0 0 4
[4] .bss NOBITS 00000000 00009c 000000 00 WA 0 0 4
[5] .rodata PROGBITS 00000000 00009c 000025 00 A 0 0 1
[6] .comment PROGBITS 00000000 0000c1 000012 00 0 0 1
[7] .shstrtab STRTAB 00000000 0000d3 000041 00 0 0 1
[8] .symtab SYMTAB 00000000 0002a4 0000b0 10 9 7 4
[9] .strtab STRTAB 00000000 000354 00001d 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

The specified offset (in this case, 0x114) refers to the binary file. The section information need not be
copied into the final process image created in virtual address space for executable files. Nevertheless, the
information is always present in the binary file.

Each section is assigned a type that defines the semantics of the section data. The most important values
in the example are PROGBITS (information that the program must interpret; binary code, for example5),
SYMTAB (symbol table), and REL (relocation information). STRTAB is used to store strings relevant to the
ELF format but not directly linked with the program; for example, symbolic names of sections such as
.text or .comment.

The section size and its offset within the binary file are specified for each section. The address field can
be used to specify at which position in virtual space the section is to be loaded. However, because the
example deals with a link object, the destination address is not defined and is therefore represented by
the value 0. Flags indicate how the individual sections may be accessed or how they are to be handled.
The A flag is of particular interest because it governs whether section data are to be copied into virtual
address space when the file is loaded.

Although the names of sections are freely selectable,6 Linux (and all other Unix look-alikes that use ELF)
features a number of standard sections, some of which are mandatory. There is always a section named
.text that holds the binary code, and therefore the program information linked with the file. .rel.text
holds relocation information (which is discussed later in this appendix) for the text section.

Executable files contain additional information, as shown here:

wolfgang@meitner> readelf -S test
There are 29 section headers, starting at offset 0x27a4:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .interp PROGBITS 080480f4 0000f4 000013 00 A 0 0 1
[2] .note.ABI-tag NOTE 08048108 000108 000020 00 A 0 0 4
[3] .hash HASH 08048128 000128 000030 04 A 4 0 4
[4] .dynsym DYNSYM 08048158 000158 000070 10 A 5 1 4
[5] .dynstr STRTAB 080481c8 0001c8 00005e 00 A 0 0 1
[6] .gnu.version VERSYM 08048226 000226 00000e 02 A 4 0 2

5The binary code of a program is often referred to as text but what is meant is, of course, binary information as used for machine
code.
6Sections whose names begin with a dot are used by the system itself. If an application wants to define its own sections, they should
not start with a dot so that conflicts with system section names are avoided.

1247

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1248

Appendix E: The ELF Binary Format

[7] .gnu.version_r VERNEED 08048234 000234 000020 00 A 5 1 4
[8] .rel.dyn REL 08048254 000254 000008 08 A 4 0 4
[9] .rel.plt REL 0804825c 00025c 000018 08 A 4 b 4
[10] .init PROGBITS 08048274 000274 000018 00 AX 0 0 4
[11] .plt PROGBITS 0804828c 00028c 000040 04 AX 0 0 4
[12] .text PROGBITS 080482d0 0002d0 000150 00 AX 0 0 16
[13] .fini PROGBITS 08048420 000420 00001e 00 AX 0 0 4
[14] .rodata PROGBITS 08048440 000440 00002d 00 A 0 0 4
[15] .data PROGBITS 08049470 000470 00000c 00 WA 0 0 4
[16] .eh_frame PROGBITS 0804947c 00047c 000004 00 WA 0 0 4
[17] .dynamic DYNAMIC 08049480 000480 0000c8 08 WA 5 0 4
[18] .ctors PROGBITS 08049548 000548 000008 00 WA 0 0 4
[19] .dtors PROGBITS 08049550 000550 000008 00 WA 0 0 4
[20] .jcr PROGBITS 08049558 000558 000004 00 WA 0 0 4
[21] .got PROGBITS 0804955c 00055c 00001c 04 WA 0 0 4
[22] .bss NOBITS 08049578 000578 000004 00 WA 0 0 4
[23] .stab PROGBITS 00000000 000578 0007b0 0c 24 0 4
[24] .stabstr STRTAB 00000000 000d28 001933 00 0 0 1
[25] .comment PROGBITS 00000000 00265b 00006c 00 0 0 1
[26] .shstrtab STRTAB 00000000 0026c7 0000dd 00 0 0 1
[27] .symtab SYMTAB 00000000 002c2c 000450 10 28 31 4
[28] .strtab STRTAB 00000000 00307c 0001dd 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

In contrast to the 10 sections of object files, executable files have 29 sections, not all of which are relevant
to the topic at hand. The following sections are of particular relevance:

❑ .interp holds the filename of the interpreter as an ASCII string.

❑ .data holds initialized data that is part of the normal program data and can be modified at pro-
gram run time (for example, pre-initialized structures).

❑ .rodata holds read-only data that can be read but not modified. For example, the compiler packs
all static strings that occur in printf statements into this section.

❑ .init and .fini hold code for process initialization and termination. These sections are usually
added automatically by the compiler and are not checked by the application programmer.

❑ .hash is a hash table that permits rapid access to all symbol table entries without performing a
linear search across all table elements.

The address fields of the sections (for executable files) hold valid values because the code must be
mapped to certain defined positions in virtual address space. (Under Linux, the memory area above
0x08000000 is used for applications.)

E.1.4 Symbol Table
The symbol table is an important part of each ELF file, because it holds all (global) variables and functions
implemented or used by a program. Symbols are referred to as undefined if a program references a symbol
that is not defined in its own code (in the example, the printf function that is included in the C standard
library). References of this kind must be resolved during static linking with other object modules or

1248

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1249

Appendix E: The ELF Binary Format

libraries or by means of dynamic linking at load time (using ld-linux.so). The nm tool generates a list of
all symbols defined and used by a program, as shown here:

wolfgang@meitner> nm test.o
00000000 T add

U exit
0000001a T main

U printf

The left column shows the symbol value — the object file position at which the symbol definition is
located. The example includes two different symbol types — functions defined in the text segment (as
indicated by the abbreviation T) and undefined references indicated by a U. Logically, the undefined
references do not have a symbol value.

Many more symbols appear in executable files. However, because most are generated automatically by
the compiler and are used for internal purposes of the runtime system, the following example shows only
the elements that also appeared in the object file:

wolfgang@meitner> nm test
08048388 T add

U exit@@GLIBC_2.0
080483a2 T main

U printf@@GLIBC_2.0

exit and printf remain undefined, but in the meantime, information has been added indicating the
earliest version of the GNU standard library from which the functions must be taken (in the example, no
version earlier than 2.0 may be used, which means that the program does not function with Libc5 and
Libc47). The add and main symbols defined by the program have been moved to fixed positions in virtual
address space (their code was mapped to these positions when the file was loaded).

How is the symbol table mechanism implemented in ELF? The following three sections are used to accept
the relevant data:

❑ .symtab establishes the link between the name of a symbol and its value. However, the symbol
name is not coded directly as a string but indirectly as a number that is used as an index into a
string array.

❑ .strtab holds the string array.

❑ .hash holds a hash table that helps find symbols quickly.

Expressed in simple terms, each entry in the .symtab section consists of two elements — the position of
the name in the string table and the associated value. (As you will see next, the real situation is a little
more complicated, because more information needs to be considered for each entry.)

E.1.5 String Tables
Figure E-2 shows how string tables are implemented to manage strings for ELF files.

7The version numbering seems rather strange but is correct. Libc4 and Libc5 were special C standard libraries for Linux — Glibc 2.0
was the first cross-system variant of the library that replaced the old versions.

1249

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1250

Appendix E: The ELF Binary Format

0

10

20

0 1

\0 \0a d d H y p e r

s ep a c s \0 m a i

n \0

2 3 4 5 6 7 8 9

Figure E-2: String table for ELF files.

The first byte of the table is a null byte, followed by strings separated by null bytes.

To reference a string, a position must be specified that is an index into the array. This selects all characters
before the next null byte (if the position of a null byte is used as an index, this corresponds to an empty
string). This supports the (very limited) use of substrings by allowing not just the start position but any
position in the middle of a string to be selected as an index.

.strtab is not the only string table found by default in an ELF file. .shstrtab is used to hold the text
names of the individual sections (.text, for example) in the file.

E.2 Data Structures in the Kernel
The ELF file format is used at two points in the kernel. First, it is used to handle executable files and
libraries, and then to implement modules. Different code is used at each of these points to read and
manipulate data, but both instances make use of the data structres introduced in this section. The basis is
the header file <elf.h>, in which the specifications of the standard are implemented virtually unchanged.

E.2.1 Data Types
Because ELF is a processor- and architecture-independent format, it cannot rely on a specific word length
or data alignment (little or big endian) — at least not for elements of the file that need to be read and
understood on all systems. (Machine code, as occurs in the .text segment, is stored as a representation
of the host system so that no unwieldy conversion operations are needed.) For this reason the kernel
defines a number of data types that have the same bit number on all architectures, as shown here:

<elf.h>
/* 32-bit ELF base types. */
typedef __u32 Elf32_Addr;
typedef __u16 Elf32_Half;
typedef __u32 Elf32_Off;
typedef __s32 Elf32_Sword;
typedef __u32 Elf32_Word;

/* 64-bit ELF base types. */
typedef __u64 Elf64_Addr;
typedef __u16 Elf64_Half;
typedef __s16 Elf64_SHalf;
typedef __u64 Elf64_Off;
typedef __s32 Elf64_Sword;
typedef __u32 Elf64_Word;
typedef __u64 Elf64_Xword;
typedef __s64 Elf64_Sxword;

1250

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1251

Appendix E: The ELF Binary Format

Because the architecture-specific code must always clearly define integer data types with their sign and
bit number, the data types required by the ELF standard can be implemented as direct typedefs with
little effort.

E.2.2 Headers
A separate data structure for 32-bit and 64-bit systems is available for the various headers in ELF format:

ELF Header
On 32-bit architectures, the identification header is represented by the following data structure:

<elf.h>
typedef struct elf32_hdr{

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry; /* Entry point */
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

The entries have the following meanings:

❑ e_ident accepts 16 (EI_NIDENT) bytes represented by the char data type on all architectures. The
first four bytes hold a null byte and the letters E, L, and F, as discussed previously. A number of
other bit positions have specific meanings.

❑ EI_CLASS (4) identifies the class of the file to distinguish between 32-bit and 64-bit files.
Currently, defined values are therefore ELFCLASS32 and ELFCLASS64.8

❑ EI_DATA (5) specifies which endian the format uses. ELFDATA2LSB stands for least significant
byte (and therefore, little endian), and ELFDATA2MSB stands for most significant byte (and
therefore, big endian).

❑ EI_VERSION (6) indicates the file version of the ELF header (this version is potentially inde-
pendent of the data section version). Currently, only EV_CURRENT — which corresponds to
the first version — is permitted.

❑ As of EI_PAD (7), the identification part of the header is padded with null bytes because the
remaining positions are not needed (at the moment).

❑ e_type distinguishes between the various ELF file types listed in Table E-1.

8In this case, and many other cases, the ELF standard defines constants that stand for ‘‘undefined‘‘ or ‘‘invalid.’’ For the sake of sim-
plicity, they are not included in this description.

1251

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1252

Appendix E: The ELF Binary Format

Table E-1: ELF File Types

Value Meaning

ET_REL Relocatable file (object file)

ET_EXEC Executable file

ET_DYN Dynamic library

ET_CORE Core dump

❑ e_machine specifies the required architecture for the file. Table E-2 lists the various options
available and supported by Linux. Note that every architecture needs to define the function
elf_check_arch, which is used by the generic code to ensure that the ELF file that is loaded
is indeed the right one for the architecture.

❑ e_version holds version information to distinguish between ELF variants. However, at the
moment only version 1 of the specification is defined. It is represented by EV_CURRENT.

❑ e_entry gives the entry point in virtual memory. This is where execution begins once the pro-
gram has been loaded and mapped into memory.

❑ e_phoff holds the offset at which the program header table is located in the binary file.

❑ e_shoff holds the offset at which the section header table is located.

❑ e_flags can hold processor-specific flags. Currently, these are not used by the kernel.

❑ e_ehsize specifies the header size in bytes.

❑ e_phentsize specifies the size, in bytes, of an entry in the program header table (all entries are
the same size).

❑ e_phnum specifies the number of entries in the program header table.

❑ e_shentsize specifies the size, in bytes, of an entry in the section header table (all entries are the
same size).

❑ e_shnum specifies the number of entries in the section header table.

❑ e_shstrndx holds the index position of the string table containing the section names in the
header table.

A 64-bit data structure is defined in the same way. The only difference is that the corresponding 64-bit
data types are used in place of their 32-bit equivalents, thus making the header a little larger. However,
the first 16 bytes are identical in both variants. Both architecture types are able to recognize ELF files for
machines with different word lengths by reference to these bytes, as shown here:

<elf.h>
typedef struct elf64_hdr {

unsigned char e_ident[16]; /* ELF "magic number" */
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */

1252

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1253

Appendix E: The ELF Binary Format

Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;

} Elf64_Ehdr;

Table E-2: Architectures Supported by ELF

Value Architecture

EM_SPARC 32-bit Sparc

EM_SPARC32PLUS 32-bit Sparc (‘‘v8 Plus‘‘)

EM_SPARCV9 64-bit Sparc

EM_386 and ELF_486 IA-32

EM_IA_64 IA-64

EM_X86_64 AMD64

EM_68K Motorola 68k

EM_MIPS Mips

EM_PARISC Hewlet-Packard PA-Risc

EM_PPC PowerPC

EM_PPC64 PowerPC 64

EM_SH Hitachi SuperH

EM_S390 IBM S/390

EM_S390_OLD Former interim value for S390

EM_CRIS Axis Communications Cris

EM_V850 NEC v850

EM_H8_300H Hitachi H8/300H

EM_ALPHA Alpha AXP

EM_M32R Renseas M32R

EM_H8_300 Renseas H8/300

EM_FRV Fujitsu FR-V

1253

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1254

Appendix E: The ELF Binary Format

Program Header
The program header table consists of several entries that are handled in the same way as the entries of an
array (the number of entries is specified by e_phnum in the ELF header). A separate structure is defined
as a data type for the entries. On 32-bit systems, it has the following contents:

<elf.h>
typedef struct elf32_phdr{

Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

The meaning of the elements is as follows:

❑ p_type indicates what kind of segment the current entry describes. The following constants are
defined for this purpose:

❑ PT_NULL indicates an unused segment.

❑ PT_LOAD is used for loadable segments that are mapped from the binary file into memory
before the program can be executed.

❑ PT_DYNAMIC indicates that the segment contains information for the dynamic linker (dis-
cussed in Section E.2.6).

❑ PT_INTERP indicates that the current segment specifies the program interpreter used for
dynamic linking. Usually, this is ld-linux.so as previously mentioned.

❑ PT_NOTE specifies a segment that may contain additional proprietary compiler information.

Two further variants (PT_LOPROC and PT_HIGHPROC) are defined for processor-specific purposes
but are not used by the kernel.

❑ p_offset gives the offset (in bytes from the beginning of the binary file) at which the data of the
segment described resides.

❑ p_vaddr gives the position in virtual address space to which the data of the segment is mapped
(for segments of the PT_LOAD type). Systems that support physical but not virtual addressing use
the information stored in p_paddr instead.

❑ p_filesz specifies the size (in bytes) of the segment in the binary file.

❑ p_memsz specifies the size (in bytes) of the segment in virtual address space. Size differences as
compared with the physical segments are compensated by truncating data or padding with null
bytes.

❑ p_flags holds flags to define access permissions to the segment. PF_R gives read permission,
PF_W gives write permission, and PF_X gives execute permission.

❑ p_align specifies how the segment is to be aligned in memory and in the binary file (the p_vaddr
and p_offset addresses must be modulo p_align). A p_align value of 0x1000 = 4096 means,
for example, that the segment must be aligned on 4 KiB pages.

1254

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1255

Appendix E: The ELF Binary Format

As you can see in the following code, a similar data structure is defined for 64-bit architectures. The only
difference as compared to the 32-bit variant is that other data types are used. Nevertheless, the meaning
of the entries is the same:

<elf.h>
typedef struct elf64_phdr {

Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset; /* Segment file offset */
Elf64_Addr p_vaddr; /* Segment virtual address */
Elf64_Addr p_paddr; /* Segment physical address */
Elf64_Xword p_filesz; /* Segment size in file */
Elf64_Xword p_memsz; /* Segment size in memory */
Elf64_Xword p_align; /* Segment alignment, file & memory */

} Elf64_Phdr;

Section Header
The section header table is implemented by means of an array in which each entry contains a section. The
individual sections form the contents of the segments defined in the program header table. The following
data structure represents a section:

<elf.h>
typedef struct {

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

The elements have the following meanings:

❑ sh_name specifies the name of the section. Its value is not the string itself but an index into the
section header string table.

❑ sh_type specifies the section type. The following section types are available:

❑ SH_NULL indicates that the section is not used. Its data are ignored.

❑ SH_PROGBITS holds program-specific information whose format is undefined and is irrele-
vant to this discussion.

❑ SH_SYMTAB holds a symbol table whose structure is discussed in Section E.2.4. SH_DYNSYM
also holds a symbol table. The difference between these two types is discussed later in this
appendix.

❑ SH_STRTAB indicates a section that contains a string table.

❑ SH_RELA and SHT_RELA hold relocation sections whose structure is discussed in
Section E.2.5.

1255

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1256

Appendix E: The ELF Binary Format

❑ SH_HASH defines a section that holds a hash table so that entries in symbol tables can be
found more quickly (as mentioned previously).

❑ SH_DYNAMIC holds information on dynamic linking, as discussed in Section E.2.6.

The type values SHT_HIPROC, SHT_LOPROC, SHT_HIUSER, and SHT_LOUSER also exist. They are
reserved for processor- and application-specific purposes and are of no further interest here.

❑ sh_flags indicate the following: whether the section can be written to (SHF_WRITE), whether vir-
tual memory is to be reserved (SHF_ALLOC), and whether the section contains executable machine
code (SHF_EXECINSTR).

❑ sh_addr specifies the position in virtual address space to which the section is to be mapped.

❑ sh_offset specifies the position in the file at which the section begins.

❑ sh_size specifies the size of the section in bytes.

❑ sh_link references another section header table entry that is interpreted differently according to
section type. This is discussed in more detail in the next bulleted list.

❑ sh_info is used in conjunction with sh_link. Again, its exact meaning is discussed in the next
bulleted list.

❑ sh_addralign specifies how the section data are to be aligned in memory.

❑ sh_entsize specifies the size, in bytes, of the entries of the section if they are all of the same
size — such as in a symbol table.

sh_link and sh_info are used with different meanings depending on section type, as described here:

❑ Sections of the SHT_DYMAMIC type use sh_link to reference the string table employed by the
section data. sh_info is not used and is therefore set to 0.

❑ Hash tables (sections of the SHT_HASH type) use sh_link to reference the symbol table whose
entries are hashed. sh_info is not used.

❑ Relocation sections of the SHT_REL and SHT_RELA type use sh_link to reference the associated
symbol table. sh_info holds the index of the section in the section header table to which the
relocations refer.

❑ sh_link specifies which string table is used for symbol tables (SHT_SYMTAB and SHT_DYNSYM), and
sh_info indicates the index position in the symbol table immediately after the last local symbol
(of the STB_LOCAL type).

As usual, there is a separate data structure for 64-bit systems but its contents do not differ from those of
the 32-bit variant, as you can see here:

<elf.h>
typedef struct elf64_shdr {

Elf64_Word sh_name; /* Section name, index in string tbl */
Elf64_Word sh_type; /* Type of section */
Elf64_Xword sh_flags; /* Miscellaneous section attributes */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Size of section in bytes */
Elf64_Word sh_link; /* Index of another section */

1256

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1257

Appendix E: The ELF Binary Format

Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */

} Elf64_Shdr;

The ELF standard defines a number of sections with fixed names. These are used to perform standard
tasks needed in most object files. All names begin with a dot to distinguish them from user-defined or
non-standard sections. The most important standard sections are as follows:

❑ .bss holds uninitialized data sections of the program that are padded with null bytes before the
program begins to run.

❑ .data contains initialized program data — for instance, pre-initialized structures that were filled
with static data at compilation time. These data can be changed during program run time.

❑ .rodata holds read-only data that is used by the program but cannot be modified — strings, for
example.

❑ .dynamic and .dynstr hold the dynamic information discussed at the end of this appendix.

❑ .interp holds the name of the program interpreter in the form of a string.

❑ .shstrtab contains a string table that defines section names.

❑ .strtab holds a string table that contains primarily the strings required for the symbol table.

❑ .symtab holds the symbol table of the binary file.

❑ .init and .fini hold machine instructions that are executed to initialize or terminate the pro-
gram. The contents of these sections are usually generated automatically by the compiler and its
auxiliary tools in order to create a suitable runtime environment.

❑ .text holds the main machine instructions that make up the actual program.

E.2.3 String Tables
The format of string tables was discussed previously in Section E.1.5. Because their format is very
dynamic, the kernel is not able to provide a fixed data structure but must analyze the existing data
‘‘manually.’’

E.2.4 Symbol Tables
Symbol tables hold all the information needed to find program symbols, assign values to them, and
relocate them. As already noted, a special section type holds symbol tables. The tables themselves consist
of entries whose format is defined by the following data structure:

<elf.h>
typedef struct elf32_sym{

Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

1257

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1258

Appendix E: The ELF Binary Format

The primary task of a symbol is to associate a string with a value. For example, the printf symbol
represents the address of the printf function in virtual address space where the function machine code
resides. Symbols may also have absolute values that are interpreted, for example, as numeric constants.

The exact purpose of a symbol is defined by st_info, which is divided into two parts (how the bits
are divided between the two parts is not relevant to this discussion). The following information is
defined:

❑ The binding of the symbol. This determines the visibility of a symbol and allows the following
three different settings:

❑ Local symbols (STB_LOCAL), which are visible only within the object file and are not visible to
other parts of the program when combined. There is no problem if several object files of a
program define symbols with the same names. As long as they are all local symbols, they
do not interfere with each other.

❑ Global symbols (STB_GLOBAL), which are visible within the object file in which they are
defined and can also be referenced by all other object files that make up the program. Each
global symbol may be defined only once within a program; otherwise, the linker would
report an error.

Undefined references that point to a global symbol are supplied with the symbol position
during relocation. If undefined references to global symbols cannot be satisfied, program
execution or static binding is rejected.

❑ Weak symbols (STB_WEAK), which are also visible to the entire program, but can have multi-
ple definitions. If a global symbol and a local symbol have the same name in a program, the
global symbol is automatically given precedence.

Programs are statically or dynamically linked even if a weak symbol remains
undefined — in this case, the value 0 is assigned.

❑ The symbol type is selected from a number of alternatives, of which only the following three
are relevant to the current topic (a description of the other alternatives is provided in the ELF
standard):

❑ STT_OBJECT indicates that the symbol is associated with a data object such as a variable, an
array, or a pointer.

❑ STT_FUNC is used when the symbol is associated with a function or a procedure.

❑ STT_NOTYPE means that the symbol type is not specified. It is used for undefined references.

The Elf32_Sym structure includes other elements in addition to st_name, st_value, and st_info. Their
meanings are as follows:

❑ st_size specifies the size of the object; for example, the length of a pointer or the number of
bytes contained in a struct object. Its value can be set to 0 if the size is not known.

❑ st_other is not used in the current version of the standard.

❑ st_shndx holds the index of a section (in the section header table) with which the symbol is
bound — it is usually defined in the code of this section. However, the following two values
have special meanings:

1258

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1259

Appendix E: The ELF Binary Format

❑ SHN_ABS specifies that the symbol has an absolute value that will not change because of
relocation.

❑ SHN_UNDEF identifies undefined symbols that must be resolved by external sources (such as
other object files or libraries).

As expected, there is a 64-bit variant of the symbol table that — with the exception of the data types
used — has the same contents as its 32-bit counterpart, as you can see here:

<elf.h>
typedef struct elf64_sym {

Elf64_Word st_name; /* Symbol name, index in string tbl */
unsigned char st_info; /* Type and binding attributes */
unsigned char st_other; /* No defined meaning, 0 */
Elf64_Half st_shndx; /* Associated section index */
Elf64_Addr st_value; /* Value of the symbol */
Elf64_Xword st_size; /* Associated symbol size */

} Elf64_Sym;

readelf can also be used to find all symbols in the symbol table of a program. The following five entries
are especially important for the test.o object file (the other elements are generated automatically by the
compiler and are not relevant to this discussion):

wolfgang@meitner> readelf -s test.o
Num: Value Size Type Bind Vis Ndx Name

...
1: 00000000 0 FILE LOCAL DEFAULT ABS test.c

...
7: 00000000 26 FUNC GLOBAL DEFAULT 1 add
8: 00000000 0 NOTYPE GLOBAL DEFAULT UND printf
9: 0000001a 75 FUNC GLOBAL DEFAULT 1 main

10: 00000000 0 NOTYPE GLOBAL DEFAULT UND exit

The name of the source file is stored as an absolute value — it is constant and is not changed by reloca-
tions. The local symbol uses the STT_FILE type to link an object file with the name of its source file.

The two functions defined in the file — main and add — are stored as global symbols of the STT_FUNC
type. Both symbols refer to segment 1, which is the file text segment that holds the machine code of the
two functions.

The printf and exit symbols are undefined references with index UND. Therefore, they must be associ-
ated with functions in the standard library (or in some other library that defines symbols with this name)
when the program is linked. Because the compiler does not know which type of symbol is involved, the
symbol type is STT_NOTYPE.

E.2.5 Relocation Entries
Relocation is the process by which undefined symbols in ELF files are associated with valid values. In the
standard example (test.o), this means that undefined references to printf and add must be replaced
with the addresses at which the appropriate machine code is located in the virtual address space of the
process. Replacement must be performed at all points in the object file where one of the symbols is used.

1259

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1260

Appendix E: The ELF Binary Format

The kernel is not involved in symbol replacement in userspace programs because all replacement opera-
tions are carried out fully by external tools. The situation is different for kernel modules, as demonstrated
in Chapter 7. Because the kernel receives the raw data of a module in the exact same form as it is stored
in the binary file, the kernel itself is responsible for relocation.

A special table with relocation entries is present in each object file to identify where relocation must be
performed. Each table entry holds the following information:

❑ An offset that specifies the position of the entry to be modified.

❑ A reference to the symbol (as an index into a symbol table) that supplies the data to be inserted
in relocation positions.

To illustrate how relocation information is used, let’s revisit the test.c test program described previ-
ously. First, all relocation entries in the file are displayed using readelf as follows:

wolfgang@meitner> readelf -r test.o
Relocation section ’.rel.text’ at offset 0x374 contains 6 entries:
Offset Info Type Sym.Value Sym. Name

00000009 00000501 R_386_32 00000000 .rodata
0000000e 00000802 R_386_PC32 00000000 printf
00000046 00000702 R_386_PC32 00000000 add
00000050 00000501 R_386_32 00000000 .rodata
00000055 00000802 R_386_PC32 00000000 printf
00000061 00000a02 R_386_PC32 00000000 exit

The information in the Offset column is used when the machine code references functions or symbols
whose position in virtual address space is not clear when the program is run or when test.o is linked
to produce an executable file. The assembly language code of main has a number of function calls at
the offsets 0x46 (add), 0xe and 0x55 (printf), and 0x61 (exit) — these can be rendered visible using the
objdump tool. The relevant lines are shown in italics in the following output:

wolfgang@meitner> objdump — disassemble test.o
...
0000001a <main>:

1a: 55 push %ebp
1b: 89 e5 mov %esp,%ebp
1d: 83 ec 18 sub $0x18,%esp
20: 83 e4 f0 and $0xfffffff0,%esp
23: b8 00 00 00 00 mov $0x0,%eax
28: 29 c4 sub %eax,%esp
2a: c7 45 fc 03 00 00 00 movl $0x3,0xfffffffc(%ebp)
31: c7 45 f8 04 00 00 00 movl $0x4,0xfffffff8(%ebp)
38: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
3b: 89 44 24 04 mov %eax,0x4(%esp,1)
3f: 8b 45 fc mov 0xfffffffc(%ebp),%eax
42: 89 04 24 mov %eax,(%esp,1)
45: e8 fc ff ff ff call 46 <main+0x2c>
4a: 89 45 f4 mov %eax,0xfffffff4(%ebp)
4d: c7 04 24 17 00 00 00 movl $0x17,(%esp,1)
54: e8 fc ff ff ff call 55 <main+0x3b>
59: c7 04 24 00 00 00 00 movl $0x0,(%esp,1)
60: e8 fc ff ff ff call 61 <main+0x47>

1260

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1261

Appendix E: The ELF Binary Format

Once the addresses of the printf and add functions have been determined, they must be inserted at the
specified offsets in order to generate executable code that runs correctly.

Data Structures
For technical reasons, there are two different types of relocation information that are, unfortunately,
represented by slightly different data structures. The first type refers to normal relocation. The relocation
table entries in a SHT_REL type section are defined by the following data structure:

<elf.h>
typedef struct elf32_rel {

Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

While r_offset specifies the position of the entry to be relocated, r_info supplies not only a position in
the symbol table but also additional information on the type of relocation (as described shortly). This is
achieved by splitting the value into two parts (exactly how is not important here).

The alternative type — known as a relocation entry with a constant addend — may occur only in sections
of the SHT_RELA type. The entries of such sections are defined by the following data structure:

<elf.h>
typedef struct elf32_rela{

Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

The r_offset and r_info fields of the first relocation type are supplemented by an r_addend element
that holds a value known as an addend. When the relocation value is computed, this value is treated
differently depending on relocation type.

Notice that the addend value is also present when elf32_rel is used. Although it is not explicitly
held in the data structure, the linker uses the value located at the memory position where the computed
relocation size is to be inserted as the addend. The purpose of this value is illustrated in the following
example.

There are functionally equivalent 64-bit data structures for both relocation types:

<elf.h>
typedef struct elf64_rel {

Elf64_Addr r_offset; /* Location at which to apply the action */
Elf64_Xword r_info; /* Index and type of relocation */

} Elf64_Rel;

<elf.h>
typedef struct elf64_rela {

Elf64_Addr r_offset; /* Location at which to apply the action */
Elf64_Xword r_info; /* Index and type of relocation */
Elf64_Sxword r_addend; /* Constant addend used to compute value */

} Elf64_Rela;

1261

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1262

Appendix E: The ELF Binary Format

Since they are very similar to their 32-bit counterparts, they need no extra description.

Relocation Types
The ELF standard defines a large number of relocation types, and there is a separate set for each sup-
ported architecture. Most of the types are used when dynamic libraries or location-independent code are
generated. On some platforms — particularly on IA-32 platforms — it is also necessary to compensate for
many design errors or historical ballast. Fortunately, the kernel, which is interested only in the relocation
of modules, makes do with just the following two relocation types:

❑ PC-relative relocation

❑ Absolute relocation

PC-relative relocation generates relocation entries that point to addresses in memory that are defined
relative to the program counter (PC).9 These are needed primarily for subroutine calls. The alternative
form of relocation generates absolute addresses, as the name clearly suggests. Typically, these are used
to refer to data in memory that is already known at compilation time — for instance, string constants.

On IA-32 systems the two relocation types are represented by the R_386_PC32 constant (PC-relative
relocation) and the R_386_32 constant (absolute relocation). The relocation result is computed as follows:

R_386_32 :Result = S + A

R_386_PC32 :Result = S − P + A

A stands for the addend value that, on IA-32 architecture, is supplied implicitly by the memory contents
of the relocation position. S is the value of the symbol held in the symbol table, and P stands for the relo-
cation position offset — in other words, the position in the binary file to which the computed data are
to be written. If the addend value is 0, absolute relocations simply insert the value of the symbol in the
symbol table at the relocation position. In PC-relative relocations, however, the difference between sym-
bol position and relocation position is computed — in other words, a computation is made to determine
how many bytes the symbol is from the relocation position.

In both cases, the addend value is added and therefore produces a linear displacement of the result.

Example of Relative Displacements
The test file test.o includes the following call statement:

45: e8 fc ff ff ff call 46 <main+0x2c>

e8 is the opcode of the call statement and 0xffffffffc (little endian notation!) is the value passed to the
statement as a parameter. Because IA-32 uses normal relocations instead of add relocations, this value
is the addend value. Therefore, 0xfffffffc is not the final address, but must first run through the relo-
cation process. In decimal terms, 0xfffffffc corresponds to the value −4, but it should be noted that 2’s
complement notation is used to represent signed integers.

9Reminder: The program counter is a special processor register that defines the position of the processor in the machine code during
program execution.

1262

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1263

Appendix E: The ELF Binary Format

The objdump tool does not show the argument of the call statement on the right
side, but it automatically recognizes that a relocation entry refers to the
corresponding memory position (which is why this information is inserted).

As the relocation table shows, relocation position 46 is an add function call.

00000046 00000702 R_386_PC32 00000000 add

Because the sections of the binary file are moved to their final position in memory before relocation takes
place, the position of add in memory is already known. For example, if add is positioned at 0x08048388,
the main function should be at position 0x080483a2 — this means that the relocation position to which
the relocation result is to be written is at 0x80483ce.

The relocation result is computed by applying the formula for PC-relative relocation:

Result = S − P + A

= 0x08048388 − 0x80483ce + (−4)

= 134513544 − 134513614 − 4

= −74

The result corresponds to the code in the executable file test, as can be confirmed using objdump.

80483cd: e8 b6 ff ff ff call 8048388 <add>

0xffffffb6 corresponds to the decimal number −74 (this can easily be checked, assuming that little endian
notation and 2’s complement notation are taken into account). The symbolic representation on the right
side of the output of objdump does not show the relative branch address, but it converts the relative
address into an absolute value to make it easier for programmers to find the corresponding position in
the machine code.

At first glance, the result appears to be incorrect. As you have already seen, the machine code of the add
statement is 70 bytes (0x46), not 74 bytes, before the relocation position. The displacement by 4 bytes is
owing to the addend value. Why does the compiler set this value to -4 when generating the object file
test.o instead of leaving it at 0? The reason has to do with the way in which IA-32 processors work.
The program counter always points to the statement that follows the statement currently executing — and
is therefore 4 bytes ‘‘too big‘‘if the processor computes the absolute branch address from the relative
address in the machine code. Consequently, the compiler must deduct 4 bytes from the relative branch
address to obtain the correct position in the program.

Absolute relocations adopt the same scheme. However, computation is simpler because it is only neces-
sary to combine the destination address of the desired symbol with the addend value.

E.2.6 Dynamic Linking
ELF files that must be linked dynamically with libraries in order to run are of little interest to the kernel.
All references in modules can be resolved by means of relocations while dynamic linking of userspace
programs is performed entirely by ld.so in userspace. Therefore, this appendix only touches upon the
meaning of the dynamic sections.

1263

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1264

Appendix E: The ELF Binary Format

The following two sections are used to hold data required by the dynamic linker:

❑ .dynsym holds a symbol table with all symbols resolved by means of external references.

❑ .dynamic holds an array with elements of the Elf32_Dyn type — these supply the data described
in the following paragraphs.

The contents of .dynsym can be queried using readelf, as shown here:

wolfgang@meitner> readelf — syms test
Symbol table ’.dynsym’ contains 7 entries:

Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 08049474 0 OBJECT GLOBAL DEFAULT 15 __dso_handle
2: 0804829c 206 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (2)
3: 080482ac 47 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.0 (2)
4: 080482bc 257 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.0 (2)
5: 08048444 4 OBJECT GLOBAL DEFAULT 14 _IO_stdin_used
6: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

...

The contents include not only a number of symbols added automatically when the executable file is
generated, but also the print and exit functions used in the machine code. @GLIBC_2.0 specifies that
at least version 2.0 of the GNU standard library must be used in order to resolve the references.

The data type of the array entries in the .dynamic section is defined in the kernel as follows, but is not
used at all because the information is interpreted in userspace:

<elf.h>
typedef struct dynamic{

Elf32_Sword d_tag;
union{
Elf32_Sword d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

d_tag is used to distinguish between various tags that specify the type of information described by the
entry. d_un holds either a virtual address or an integer that is interpreted differently depending on the
particular tag.

The most important tags are as follows:

❑ DT_NEEDED specifies which dynamic libraries are needed to execute the program. d_un points to
a string table entry with the name of the library.

Only the C standard library is required for the test.c test application, as the following readelf
test shows:

wolfgang@meitner> readelf — dynamic test
Dynamic segment at offset 0x480 contains 20 entries:
Tag Type Name/Value

0x00000001 (NEEDED) Shared library: [libc.so.6]
...

1264

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1265

Appendix E: The ELF Binary Format

Real programs, such as the emacs editor, need a significantly larger number of dynamic libraries
in order to run:

wolfgang@meitner> readelf — dynamic /usr/bin/emacs
Dynamic segment at offset 0x1ea6ec contains 36 entries:
Tag Type Name/Value

0x00000001 (NEEDED) Shared library: [libXaw3d.so.7]
0x00000001 (NEEDED) Shared library: [libXmu.so.6]
0x00000001 (NEEDED) Shared library: [libXt.so.6]
0x00000001 (NEEDED) Shared library: [libSM.so.6]
0x00000001 (NEEDED) Shared library: [libICE.so.6]
0x00000001 (NEEDED) Shared library: [libXext.so.6]
0x00000001 (NEEDED) Shared library: [libtiff.so.3]
0x00000001 (NEEDED) Shared library: [libjpeg.so.62]
0x00000001 (NEEDED) Shared library: [libpng.so.2]
0x00000001 (NEEDED) Shared library: [libz.so.1]
0x00000001 (NEEDED) Shared library: [libm.so.6]
0x00000001 (NEEDED) Shared library: [libungif.so.4]
0x00000001 (NEEDED) Shared library: [libXpm.so.4]
0x00000001 (NEEDED) Shared library: [libX11.so.6]
0x00000001 (NEEDED) Shared library: [libncurses.so.5]
0x00000001 (NEEDED) Shared library: [libc.so.6]
0x0000000f (RPATH) Library rpath: [/usr/X11R6/lib]
...

❑ DT_STRTAB holds the position of the string table in which the names of all dynamic libraries and
symbols required for the dynamic section reside.

❑ DT_SYMTAB holds the position of the symbol table in which all information required for the
dynamic section reside.

❑ DT_INIT and DT_FINI hold the addresses of the functions that are called to initialize and termi-
nate the program.

E.3 Summary
The binary code in executable files is arranged according to the ELF standard on most architectures
supported by Linux. This appendix has introduced you to the details of this layout. The format is impor-
tant not only for userland applications, but also for kernel modules. After providing you with a general
overview about ELF, this chapter discussed the in-kernel data structures that are required by the module
loader, and that provide a convenient way to examine various features of the ELF file format.

1265

Mauerer runapp05.tex V1 - 09/04/2008 6:13pm Page 1266

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1267

The Kernel
Development Process

This book has given you lots of information about concepts, algorithms, data structures, and code.
Clearly these form the very core of Linux development, and that is what the kernel is all about. But
there’s another side of Linux that should not pass by unnoticed: the community that develops the
kernel, the way it works, and how people interact. This aspect is interesting because the kernel is
one of the largest and most complex open source projects in existence, and it’s a role model for dis-
tributed, decentralized development on a gigantic scale. The purpose of this appendix is to provide
an overview about numerous technical and social aspects of kernel development. Additionally, it
talks about the relationship between the Linux kernel and academia.

F.1 Introduction
The kernel sources (in the main README file) describe the development community as a ‘‘loosely-
knit team of hackers across the Net,’’ and although both the number of people involved in kernel
development and their professional affiliations have changed from the beginning until now, this
statement has always been true. Openness is a direct outcome of this: Most communication among
developers takes place on mailing lists and can be read by anyone who is interested in how an oper-
ating system evolves. One particularly important point is that developers from many companies
that fiercely compete against each other in many aspects (the companies, not the developers . . .)
closely cooperate in kernel development. Non-technical people, in particular, can often just stand
by in amazement. And actually, this is quite a remarkable feat!

Not too much needs to be said about the essential principles of Linux kernel development nowa-
days. Although creating an open source operating system that could actually be used for something
appeared to be a crazy idea only 15 years ago, at least most technical people got quite used to it. One
essential difference between Linux kernel development in contrast to classical development models
is that there are no fixed formal rules of how things have to work. There are established practices,
but they are seldom formalized in documents. There is no development road map, and no single
centralized repository. There are, however, important repositories and important developers. This
can be an advantage in many cases, because development gets more dynamic and flexible than with
fixed rigid structures, but it also makes things harder if you are new to the area.

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1268

Appendix F: The Kernel Development Process

Many of the topics discussed in this appendix are also addressed in the kernel source itself. A number of
files in Documentation/ relate to the style and mechanics of the development process. Coverage there is
quite comprehensive, so this appendix is just an overview of the essential ideas.

F.2 Kernel Trees and the Structure
of Development

The Linux kernel is a very dynamic piece of software, and one of the most striking aspects of its develop-
ment is that there is no development version! At least there’s no explicit, long-term development version
that’s managed by Linus Torvalds.

This used to be different in former times. Traditionally, kernel development was split into two different
branches. One branch contained stable kernel releases that were supposed to be used on production
systems, and they were identified by an even minor release number. Kernel branches 2.0, 2.2, and 2.4
were stable branches (with 2.0.x, 2.2.x, and 2.4.x being individual releases within that series), while 2.1,
2.3, and 2.5 were development releases — again with 2.5.x and so on as individual versions. The basic
idea of this approach was to allow new features and experimental patches to undergo a good deal of
testing and improvement, and once enough new features had been added and things had stabilized and
were perceived to be usable in practice, a new stable tree was opened. Ideally, distributors would then
pick the kernels from this release branch and integrate it into their distributions.

Unfortunately, things have not quite worked this way. A development cycle required years before a
new stable series could be opened, and this is a very large interval in the IT world. When a new piece
of hardware comes out, buyers do not usually want to wait for several years before the kernel picks
up support for it — or at least the kernel that most people use, the stable series. The same goes not just
for device drivers, but also for most new features. Therefore, distributors did port new features from
the development series back into their stable branch. And because every distribution has its own taste
about what is necessary and required, a different selection of features was back-ported, which led to
distribution kernels diverging more and more from each other.

Since kernel series 2.6, a new development policy has been employed. There is only a single kernel
series, and the separation into stable and development trees does not exist anymore. Instead, a number
of more experimentally oriented kernel trees are used to test new features initially, and after a stabi-
lization and test period, they are directly merged into the main kernel series. The 2.6 tree is managed
by Linus Torvalds, who — as you might have heard — was the initial creator of Linux and set the ball
rolling. Kernels from this tree are usually referred to as vanilla kernels, to distinguish them from kernels
adapted by distributions based on their needs, or various experimental trees. The kernel series is denoted
as mainline.

Trees other than the main tree are conventionally identified by a postfix added to the version number. The
most important tree besides mainline is 2.6-mm, which is managed by Andrew Morton, and most patches
go through this tree before they are accepted into mainline 2.6. Many other subsystem-specific trees exist,
and they usually focus on one particular aspect of the kernel: 2.6-net focuses on networking, and 2.6-rt
contains work related to real-time issues and interactivity problems, to just name two examples. There’s
also a -stable release that is used to incorporate important bug fixes for problems that appear after a
formal kernel release has taken place. Kernel trees come and go for various reasons: Developers might
have lost their interest to maintain them, or the reason for the tree might have vanished because the
problem it was concerned with has been solved by some means.

1268

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1269

Appendix F: The Kernel Development Process

F.2.1 The Command Chain
All active components of the kernel have a maintainer who cares about development in a particular area.
Many maintainers, especially for larger components, are employed by various Linux vendors, but some
still work in their free time. A maintainer’s responsibility can range from controlling a single device
driver over some piece of infrastructure such as the kernel object mechanism to complete subsystems
such as the whole networking code, the block layer, or all code in arch/ for a specific architecture. Main-
tainers are listed in the top-level MAINTAINERS file that comes with the kernel and contains several pieces
of information, as you can see here:

MAINTAINERS
IA64 (Itanium) PLATFORM
P: Tony Luck
M: tony.luck@intel.com
L: linux-ia64@vger.kernel.org
W: http://www.ia64-linux.org/
T: git kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git
S: Maintained

In addition to the name of the maintainer and his (or her, but usually the former — kernel
development is not an actual hotbed of emancipation) e-mail contact, this file provides a
mailing list on which development in the respective area is discussed. Usually it’s much
preferred to ask questions and discuss things on this mailing list than to directly interact
with the maintainer. If the code is managed in a public-accessible version control repos-
itory, the location of the repository is specified — in this case, it’s a git repository that is
the preferred source code management system for many kernel developers (as discussed
in Appendix 2). Finally, the entry may specify a web page that contains information about
the subsystem, and the maintenance status. In principle, the entry can distinguish between
paid and unpaid tending of subsystems with the states Supported and Maintained, but this
can often be a philosophical question. More important is the distinction between actively
maintained parts compared to code without a maintainer (Orphan), old and obsolete code
(Obsolete), and parts that receive little attention but are not completely unmaintained
(Odd Fixes).

Having maintainers for individual parts of the kernel that range from small portions such as drivers to
complete subsystems creates a loose hierarchy among developers. But again, there is no formal authority
that would determine this hierarchy — it all depends on the people who actually contribute code and
how much they trust each other. When code gets into the kernel, the usual (but not the only) way is to
traverse this hierarchy from bottom to top. A fix or new feature for a piece of code typically first goes
to the device- or subsystem-specific mailing list or the respective maintainer, and then progresses to
maintainers of higher levels, who pass it on to Andrew Morton’s -mm tree,1 from which it might finally be
merged into the vanilla kernel tree. This process is often referred to as merging upstream. However, that’s
only one possibility, and rules are by no means fixed.

F.2.2 The Development Cycle
One of the foremost reasons why an explicit development kernel series was abandoned was
the desire to accelerate the rate at which new features become available for production kernels

1To reduce the number of merge conflicts in the -mm tree that can arise when new code is incompatible with other new code, another
development series named -next is supposed to sort such issues out before any new code gets into the -mm tree.

1269

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1270

Appendix F: The Kernel Development Process

without having to be back-ported by distribution vendors. This goal has clearly been reached: The
intervals between releases in the 2.6 series are roughly 70 to 110 days long, which means that a
new kernel comes out every couple of months. Many aspects of how development works have
been illuminated by a study published by the Linux Foundation [KHCM], and updates on that
study appear loosely on www.lwn.net. One particularly interesting observation of this study is that
progress in the vanilla kernel proceeds in bursts, which is intentional, but it took some time until
everything worked out properly. Consider Figure F-1, which illustrates the temporal flow of changes to
the kernel.

0.100

2.105

4.105

6.105

8.105

1.106

1.106

12 13 14 15 16 17 18 19 20 21 22 23 24

lin

es
 a

ffe
ct

ed

Kernel Release 2.6.x

Changes

Figure F-1: Rate of change in the vanilla kernel. An open merge window leads to a rapid
burst of changes, followed by a stabilization period with a considerably smaller change
rate.

After a new kernel has been released, Linus Torvalds opens a merge window that is kept open
during a short period, typically two weeks. New code is supposed to go in only during this
period. Although there can be exceptions to the rule, this policy is usually enforced quite
strictly. The rate of changes is rather drastic during this time. This period of fervent activity
ends when the merge window is closed and release candidate kernels are prepared. Release
candidates provide oppurtunities for testing how all changes interact as well as identify-
ing and fixing bugs. The rate of changes declines rapidly, because fixes are often very short
patches that are as important as the initial feature submission. Once things have stabilized, a
new kernel version is released. The behavior is detailed in Figure F-2, which shows a close-up
inspection of the development progress between kernel 2.6.21 and 2.6.24. Notice that a loga-
rithmic scale is employed on the y axis. While the first release candidate contains one million
changes(!), the number then drops to around 10,000 for the next releases, and even further until the
final release.

1270

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1271

Appendix F: The Kernel Development Process

1.107

1.106

1.105

1.104

1.103

21 22 23 24

lin

es
 a

ffe
ct

ed
 (l

og
ar

ith
m

ic
 s

ca
le

)

Kernel Release 2.6.x

Changes

Figure F-2: Detailed inspection of the rate of change during the development of kernel
version 2.6.22 to 2.6.24. Note that a logarithmic scale is employed on the y axis.

Figure F-3 takes a slightly different look at the stabilization process by considering the changes made to
individual kernel releases and release candidates cumulatively. The merge window is nicely visible by a
rapid change in slope, followed by flat plateaus that mark the stabilization period.2

A word of warning: Measuring the productivity of software projects is always hard in terms of pure num-
bers, especially when these numbers are just based on added and removed lines of code. For example, it
does not make much sense to first introduce vast amounts of code just to remove them later, although this
would rate high in the approach chosen here. Nevertheless, the comparatively simple method presented
here allows you to gain a good intuitive understanding of how the development process is organized. It
should also be noted that such results can be obtained very easily because the full kernel development
history is available in git repositories — it should not be difficult for you to analyze your own area of
interest in the kernel sources with similar methods.

New features do not drop out of the blue sky — they have usually seen a long development history before
they are considered for acceptance into the mainline kernel. How development happens in this phase
strongly depends on the particular subsystem and the involved maintainers. Code that has been dis-
cussed for years before it is accepted into mainline is not uncommon. The Reiser filesystem, for instance,
took a very long time before all issues that many developers had with it were resolved. Sometimes it
takes a considerable amount of pushing to get work accepted into the vanilla kernel, but sometimes

2This way of presenting the data was inspired by Jonathan Corbet’s Kernel Report talk which you can enjoy during many Linux
related conferences and similar occasions. Some conference web sites, such as linux.conf.au, offer a video of the talk.

1271

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1272

Appendix F: The Kernel Development Process

things work much smoother. The Ext4 filesystem is, for instance, developed in close integration with the
vanilla kernel, and the evolving code was present in the mainline from the very beginning to receive
wide testing. Actually, the code base started out as a copy of Ext3 and was then successively modified to
integrate many new ideas and improvements.

1.107

1.107

9.106

8.106

7.106

6.106

5.106

4.106

3.106

2.106

1.106

12 13 14 15 16 17 18 19 20 21 22 23 24

lin

es
 a

ffe
ct

ed

Kernel Release 2.6.x

Insertions
Deletions

Both

Figure F-3: Cumulative changes in the development of the Linux kernel. The effect of the
merge window and the following stabilization period emerge very clearly.

F.2.3 Online Resources
There are numerous web sites devoted to Linux kernel development which provide useful information.
Because of the web’s rapidly changing structure, it does not really make sense to present a comprehensive
survey here, since most links will tend to become outdated rather quickly. However, relying only on
your favorite search engine to grab useful links about kernel development is also not the easiest path to
success, especially when it comes to judging relevance and quality of the results. Therefore, the following
list presents a selection of some fine links that are among the author’s personal favorites (naturally, this
selection is subjectively biased, but it’s a good starting point):

❑ The current kernel source code as well as many essential userspace tools are available from
www.kernel.org. Numerous git source code repositories are listed on git.kernel.org.

❑ www.lwn.net is the premier source for regular, weekly updates on the kernel development
process. And these updates are not just for the kernel. Interesting news about all aspects of
Linux development and related events in the IT community are collected on this site, and
well-researched articles provide insightful updates on the state of the art of various projects.

1272

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1273

Appendix F: The Kernel Development Process

Content is provided free of charge one week after it has been published initially, but the most
current information is available to subscribers only. Since the fee is small, I highly recommend
that you subscribe as soon as possible!3

❑ Full-scale change logs of the kernel can easily take a number of megabytes in size. Although
they meticulously register every commit that was accepted since the last release, it is practically
not possible to get a broad overview of what has happened in kernel development. Thankfully,
www.linuxnewbies.net provides less-detailed change logs that put more emphasis on the big
picture than small individual details.

❑ The Linux Foundation provides a ‘‘weather forecast’’ service that tries to predict which patches
and features are going to be accepted into future kernel versions. This is as close to a road map as
the Linux kernel can get, and provides valuable information on the direction that development
is heading in. The URL is www.linux-foundation.org/en/Linux_Weather_Forecast.

F.3 The Structure of Patches
Kernel developers expect that good patches fulfill certain fixed criteria. Although this puts more
load onto the preparer of a patch, it makes things much easier for maintainers, reviewers, and
testers because less time is required to understand individual changes if they all follow iden-
tical conventions. The kernel includes detailed instructions on how to prepare patches, which
can be found in Documentation/SubmittingPatches. This section summarizes the essential
points, but be sure to read the whole SubmittingPatches document before you send code to
any maintainer or mailing list. Further advice is given in Andrew Morton’s ‘‘The Perfect Patch’’
document, available on www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt, and on the web site
linux.yyz.us/patch-format.html.

First and foremost, it is essential to break larger changes into pieces that are easier to digest than a single
patch that touches 10 million files across 50,000 subdirectories. A patch should do one logical change
to the source code, even if that means that more than one patch in a patch series changes the same file.
Ideally, patches should be stackable — that is, it should be possible to apply them independent of each
other. However, owing to the nature of changes, this is not always possible, and in this case, the correct
temporal ordering of the patches should be documented.

In principle, patch series can be created by hand using diff and patch as described in
Appendix 2. This can become quite tedious after a while, but the quilt toolbox available on
http://savannah.nongnu.org/projects/quilt provides some relief here by automating most of the
process of managing patch stacks.

F.3.1 Technical Issues
As for the technical format of a patch, notice that a unified patch that includes information on the C
functions being changed is required. Such a patch can be generated using diff -up. If the patch adds
new files or concerns files in multiple subdirectories, then diff -uprN must be used to account for these
cases. Appendix 2 discusses what the resulting patch looks like and which information it contains.

3And, no, I have no commercial interests nor any relation to LWN whatsoever. But the site is just awesome.

1273

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1274

Appendix F: The Kernel Development Process

Coding Style
The kernel has some coding style requirements, which are defined in Documentation/CodingStyle.
Although not all developers agree about each requirement in this file, many are very sensitive about
coding-style violations. Having a common coding style is a good thing. The kernel contains vast amounts
of code, and digging through patches and files that use all different conventions can become a real nui-
sance. Thankfully, the kernel displays less-religious zeal about coding style than other projects, but there
is a clear opinion on what is not the ultimate fashionable style, as you can see in the following documen-
tation snippet:

Documentation/CodingStyle
First off, I’d suggest printing out a copy of the GNU coding standards,
and NOT read it. Burn them, it’s a great symbolic gesture.

But what do developers expect? The essential points are as follows:

❑ Different levels are always one tab apart, and one tab is always eight spaces long. This might
seem quite excessive for programmers who’ve had much exposure to userland code before, but
this is different in the kernel world. Naturally, code will tend to shift quickly to the right side
of the screen after a few indentation levels, but this serves as a warning sign: Code that needs
too many levels of indention should usually be replaced with something cleaner, or be split into
functions, and then the problem will automatically go away.

Large indentations often cause strings and procedure arguments to exceed the 80-column
boundary, and they must be sensibly broken into chunks. You have seen numerous examples of
this all over the book.

In addition to the aforementioned reasons, many kernel developers tend to have rather unusual
working practices, and long hacking sessions are not uncommon. After having written tons
of beautiful code three days in a row without a break, vision tends to get blurred, and large
indentations do definitely help in this situation (along with copious amounts of caffeinated
beverages).

❑ Opening braces are put last on the line they are contained in, and closing braces are put first on
their line. When a control statement is continued (as for else branches, or while conditionals
in do loops), the continuation statement is not put on a new line, but after the closing brace. If a
block contains only a single statement, no extra braces are necessary. In fact, they are even dis-
couraged (just think of how much typing you will save over your whole life by this convention).

Functions follow a separate convention: The opening and closing brackets are both on
separate lines.

The following code contains examples for the above rules:

kernel/sched.c
static void __update_rq_clock(struct rq *rq)
{

u64 prev_raw = rq->prev_clock_raw;
u64 now = sched_clock();

...
if (unlikely(delta < 0)) {

clock++;
rq->clock_warps++;

} else {
/*

1274

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1275

Appendix F: The Kernel Development Process

* Catch too large forward jumps too:
*/
if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {

if (clock < rq->tick_timestamp + TICK_NSEC)
clock = rq->tick_timestamp + TICK_NSEC;

else
clock++;

rq->clock_overflows++;
} else {

if (unlikely(delta > rq->clock_max_delta))
rq->clock_max_delta = delta;

clock += delta;
}

}

rq->prev_clock_raw = now;
rq->clock = clock;

}

❑ No surrounding space should be used inside parentheses, so if (condition) is frowned upon,
while if (condition) will be universally loved. Keywords like if are followed by a space,
whereas function definitions and functions calls are not. The preceding code excerpt also con-
tains examples of these rules.

❑ Constants should be represented by macros or elements in enum enumerations, and their names
should be in all capital letters.

❑ Functions should typically not be longer than one screen (i.e., 24 lines). Longer code should be
broken into multiple functions, even if the resulting auxiliary functions will have only a single
caller.

❑ Local variable names should be short (and firm), and not tell the story of a complete novel like
OnceUponATimeThereWasACounterWhichMustBeIntializedWithZero. You can also use tmp,
which also protects you from breaking your fingers during interaction with the keyboard.

Global identifiers should tell a little more about themselves because they are visible in all con-
texts. prio_tree_remove is a fine name for a global function, whereas cur and ret are only apt
for local variable names. Names composed of multiple expressions should use underscores to
separate the constituents, and not employ mixed lower/uppercase letters.

❑ Typedefs are considered to be an incarnation of the devil because they hide the actual definition
of an object, so they should usually not be employed. It might save the creator of a patch some
typing, but will make reading harder for all other developers.

However, sometimes it is necessary to hide the definition of a data type, such as when a quantity
must be implemented differently depending on the underlying architecture, but common code
should not notice this. For instance, consider the atomic_t type used for atomic counters, or
the various page table elements like pte_t, pud_t, and so on. They must not be accessed and
modified directly, but only via special auxiliary functions, so their definition must not be visible
to generic code.

All these rules and more are discussed in depth in the coding style document Documentation/
CodingStyle, together with the rationale behind them (including the all-important rule number 17:
Don’t re-invent the wheel!) Accordingly, it does not make sense to repeat the information in the

1275

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1276

Appendix F: The Kernel Development Process

coding style here — the document comes with every kernel, so go and enjoy it there! Besides, when
reading through the kernel sources, you will familiarize with the desired style very quickly.

The following two utilities can help to obey the desired coding style:

❑ Lindent, located in the kernel’s scripts/ directory, feeds GNU indent with command-line
options to re-indent a file according to the indentation settings preferred by the kernel.

❑ checkpatch.pl, likewise located in the scripts/ directory of the kernel source tree, scans a
patch for violations of the coding style and can provide appropriate diagnostics.

Portability
The kernel runs across a wide range of architectures, and these differ widely in the various restrictions
they impose on C code. One of the prerequisites for new code is that it is portable and will run on all
supported architectures as far as this is possible in principle. This book has previously covered the dif-
ferences between architectures and ways to circumvent those differences. Here is a reminder of some
important issues that must be considered when code is written for the kernel:

❑ Use proper locking to ensure that your code runs safe in multiprocessor environments. Thanks
to the preemptible kernel, this is also important on uniprocessor systems.

❑ Always write code that is neutral with respect to endianess. Your code must function on both
little and big endian machines.

❑ Do not assume that page frames are 4 KiB in size, but employ PAGE_SIZE instead.

❑ Do not assume any specific bit widths for any data type. When a fixed number of bits is required,
always use explicitely sized types like u16, s64, and so on. However, you can always assume that
sizeof(long) == sizeof(void *).

❑ Do not use floating point calculations.

❑ Keep in mind that the stack size is fixed and limited.

Documenting Code
In addition to documenting patch submissions, it is also important to document your code — especially
functions that can be called from other subsystems or drivers. The kernel uses the following special form
of C comments for this purpose:

fs/char_dev.c
/**
* register_chrdev() - Register a major number for character devices.
* @major: major device number or 0 for dynamic allocation
* @name: name of this range of devices
* @fops: file operations associated with this devices
*
* If @major == 0 this functions will dynamically allocate a major and return
* its number.
*
* If @major > 0 this function will attempt to reserve a device with the given
* major number and will return zero on success.
*
* Returns a -ve errno on failure.

1276

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1277

Appendix F: The Kernel Development Process

*
* The name of this device has nothing to do with the name of the device in
* /dev. It only helps to keep track of the different owners of devices. If
* your module name has only one type of devices it’s ok to use, for example, the name
* of the module here.
*
* This function registers a range of 256 minor numbers. The first minor number
* is 0.
*/
int register_chrdev(unsigned int major, const char *name,
const struct file_operations *fops)
...

Notice that the comment line starts with two asterisks. This identifies the comment as a kerneldoc com-
ment. Functions prefixed by such comments will be included in the API reference, which can be created
with make htmldocs and similar commands. Variable names must be prefixed with the @ sign and will be
formatted accordingly in the generated output. The comment should include the following:

❑ A description of the parameters that specifies what the function does (as opposed to how the func-
tion does this).

❑ The possible return codes and their meanings.

❑ Any limitations of the function, the range of valid parameters, and/or any special considerations
that must be taken into account.

F.3.2 Submission and Review
This section describes two important social components of kernel development: Submitting patches to
mailing lists, and the subsequent review process.

Preparing Patches for a Mailing List
Most patches are submitted to the mailing list of the respective subsystem before they are considered
for inclusion into any kernel tree — unless you are a top-notch kernel contributor who submits patches
directly to Linus or Andrew (in which case, you would probably not be reading this anyway . . .). Again,
there are some conventions that should be obeyed as described here:

❑ Subject lines start with [PATCH], and the rest of the subject should give a concise description of
what the patch is all about. A good subject is very important because it is not only used on the
mailing list, but in the case of an acceptance, it will appear in the git change logs.

❑ If a patch is not supposed to be applied directly, or if it requires more discussion, it can be
marked with an additional identifier such as [RFC].

❑ Larger changes should be split up into multiple patches with one logical change per patch.
Likewise, you should send only one patch per e-mail. Each should be numbered as [PATCH
m/N], where m is a counter and N is the total number of patches . [PATCH 0/N] should contain an
overview about the follow-up patches.

❑ A more detailed description of each patch should be contained in the e-mail body. Again, this
text will not get lost after the patch is integrated, but will find its way into the git repository
where it serves to document the changes.

1277

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1278

Appendix F: The Kernel Development Process

❑ The code itself should be directly present in the e-mail, without using any form of base64
encoding, compression, or other fancy tricks. Attachments are also not particularly favored, and
the preferred way is to include the code directly. Any material that should be included in the
description but is not supposed to go into the repository must be separated from the patch by
three dashes on a single line.

Naturally, the code should not be line-wrapped by the e-mail client as there are rumors that
compilers sometimes have a very hard time accepting randomly wrapped code. And after all
that has been said, a remark that HTML e-mails are inappropriate is likely superfluous.

Below the e-mail subject lines of the submission of an experimental patch are shown. They obey all the
conventions discussed before:

[PATCH 0/4] [RFC] Verification and debugging of memory initialisation Mel Gorman (Wed Apr 16 2008
- 09:51:19 EST)

[PATCH 1/4] Add a basic debugging framework for memory initialisation Mel Gorman (Wed Apr 16
2008 - 09:51:32 EST)

[PATCH 2/4] Verify the page links and memory model Mel Gorman (Wed Apr 16 2008 - 09:51:53 EST)
[PATCH 3/4] Print out the zonelists on request for manual verification Mel Gorman (Wed Apr 16

2008 - 09:52:22 EST)
[PATCH 4/4] Make defencive checks around PFN values registered for memory usage Mel Gorman (Wed

Apr 16 2008 - 09:52:37 EST)

Notice that the four messages containing the actual code have been posted as replies to the first, intro-
ductory message. This allows many mailer clients to group the posts, which makes it easier to recognize
the patches as one entity.

Take a look at the contents of the first mail:

This patch creates a new file mm/mm_init.c which memory initialisation should
be moved to over time to avoid further polluting page_alloc.c. This patch
introduces a simple mminit_debug_printk() function and an (undocumented)
mminit_debug_level command-line parameter for setting the level of tracing
and verification that should be done.

Signed-off-by: Mel Gorman <mel@xxxxxxxxx>

mm/Makefile | 2 +-
mm/internal.h | 9 +++++++++
mm/mm_init.c | 40 ++
mm/page_alloc.c | 16 ++++++++++------
4 files changed, 60 insertions(+), 7 deletions(-)

(PATCH)

After an overview about the code, the diff statistics produced by diffstat are attached. These allow to
quickly identify how many changes a patch introduces in terms of added and deleted lines, and where
these changes are bound to happen. This statistical information is interesting for discussion of the code,
but has no purpose in long-term changelogs (after all, the information can be generated from the patch),
so it is placed after a three-dash line. This is followed by the patch as generated by diff, but as this is not
relevant to this discussion, it is not reproduced here.

1278

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1279

Appendix F: The Kernel Development Process

Origin of Patches
The description also contains a signed-off line, which identifies who wrote the patch, and serves as a bona
fide statement that the author has the right to publish the code as open source, usually covered by the
GNU General Public License (GPL), version 2.

Multiple persons can sign off a patch, even if they are not direct authors of the code. This signals that
the signer has reviewed the patch, is intimately acquainted with the code, and believes to the best of his
knowledge that it will work as announced and not cause data corruption, set your laptop on fire, or do
other nasty things. It also tracks the path a patch has made through the developer hierarchy before it
finally ended up in the vanilla kernel. Maintainers are heavily involved in signing off, because they have
to review a fair amount of code that they have not written themselves for inclusion in their subsystems.

Only real names will be accepted for signed-off-lines — pseudonyms and fictitious names must not be
used. Formally, signing off a patch means that the signer can certify the following:

Documentation/SubmittingPatches
Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Signing patches off was introduced to kernel development at a rather late stage, essentially as a reaction
to a claim by a ‘‘three-letter company’’ that for various reasons assumed the impression that they would
own all the code of the kernel, and therefore all Linux users should give them all their money. Naturally,
some developers did not quite agree with this point of view, including Linus Torvalds himself:4

Some of you may have heard of this crazy company called SCO (aka "Smoking
Crack Organization") who seem to have a hard time believing that open

4Accusing people of smoking crack is, by the way, not completely uncommon on the Linux kernel mailing list, where conversations
can sometimes be rough.

1279

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1280

Appendix F: The Kernel Development Process

source works better than their five engineers do. They’ve apparently made
a couple of outlandish claims about where our source code comes from,
including claiming to own code that was clearly written by me over a
decade ago.

In fact, this case is mostly history now, and people (with the possible exception of the CEO of the afore-
mentioned company) are universally convinced that a simple first-fit allocator whose copyright you might
possibly own is not quite a complete Unix kernel . . . Nevertheless, thanks to Signed-off-by tags, it is
now possible to precisely identify who wrote which patch.

There are also two weaker forms of marking patches:

❑ Acked-by means that a developer is not directly involved with the patch, but nevertheless deems
it correct after some review.

This does not necessarily imply that the ACK-ing developer has worked through the
complete patch, but may just indicate compliance with the parts that touch the
respective field of competence.

If, for instance, an architecture maintainer acknowledges a patch that looks fine with
respect to all changes performed in the arch/xyz directory, but that also contains
code in fs/ that fries all strings composed of an odd number of chars in files that
start with an M, you cannot blame the ACK-ing developer for this.

However, it’s highly unlikely that this will ever happen, because architecture
maintainers are all very good at what they do, and would detect the subversive
wickedness of the patch already by the smell of the file — this example just serves to
explain the concept.

❑ CC is used to signify that a person has at least been informed about the patch, so he should
theoretically be aware of the patch’s existence, and had a chance to object.

During the development of kernel 2.6.25, a discussion arose, about the value of code review and how
credit should be given to reviewers and one solution to which people agreed was to introduce the
Reviewed-By patch tag. The tag states the following:

Documentation/SubmittingPatches
Reviewer’s statement of oversight

By offering my Reviewed-by: tag, I state that:

(a) I have carried out a technical review of this patch to
evaluate its appropriateness and readiness for inclusion into
the mainline kernel.

(b) Any problems, concerns, or questions relating to the patch
have been communicated back to the submitter. I am satisfied
with the submitter’s response to my comments.

(c) While there may be things that could be improved with this
submission, I believe that it is, at this time, (1) a
worthwhile modification to the kernel, and (2) free of known
issues which would argue against its inclusion.

1280

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1281

Appendix F: The Kernel Development Process

(d) While I have reviewed the patch and believe it to be sound, I
do not (unless explicitly stated elsewhere) make any
warranties or guarantees that it will achieve its stated
purpose or function properly in any given situation.

Another new tag introduced in this context is Tested-by, which — you guessed it — states that the patch
has been tested by the signer, and that the test has left enough of the machine to add a Tested-by tag to
the patch.

F.4 Linux and Academia
Writing an operating system is not an easy task — as I’m sure you’ll agree, it is one of the most involved
challenges for software engineers. Many of the developers participating in the creation of the Linux kernel
are among the most knowledgeable in their field, given that Linux is one of the best operating systems
available. Academic degrees are not uncommon among developers, and computer science degrees are
surely not underrepresented degrees.5

Operating systems are also the subject of active academic research. As with every other research field,
there’s a certain amount of theory that goes along with OS research, and this is just natural — you can-
not tackle all problems in a practical way. In contrast to many other research areas that are concerned
with fundamental problems, however, OS research works on inherently practical problems, and should
therefore have an impact on practical things. What is OS research good for if it does not help to improve
operating systems? And because an operating system is an inherently practical product (who, after all,
would need a theoretical operating system? Hypothetical computers certainly have no use for an operat-
ing system, and even less do real computers require a theoretical OS), the outcome of OS research has to
influence practice. People working on loop quantum gravity might be exempted from having to consider
the practical impact of their work, but this is certainly not the case for OS research.

With this in mind, one could expect that Linux and the academic community are closely associated, but
unfortunately, this is not the case. Quoting academic work in the kernel sources is a rare occurrence, and
seeing the kernel being quoted in research papers is also not something that happens every day.

This is especially astonishing because the academic world used to have a close affiliation with Unix,
particularly with the Berkeley System Distribution (BSD) family. It’s fair to say that BSD is the product of
academic research, and for a long time, academia was the driving force behind this project.

A study published by the Linux Foundation [KHCM] has shown that contributions from academia
account for 0.8 percent of all changes in recent kernel versions. Considering that a large number of ideas
circulate in the academic community, this ratio is astonishingly low, and it would be worthwhile to
improve the situation — for the benefit of both the kernel and academia. Open source is all about sharing
things, and sharing good ideas is also a worthy goal.

Linux had a slightly bumpy start in its relations with academia. One of Linus Torvalds’s initial moti-
vations to write Linux was his dissatisfaction with Minix, a simple teaching operating system designed
to educate students. This led to a famous debate between Torvalds and Andrew Tanenbaum, the cre-
ator of Minix. Tanenbaum suggested that Linux was obsolete because its design would not comply with

5Notice that I did not perform any quantitative analysis on this, but the curricula vitae of many developers are readily available on
the Internet that support this suspicion (as does common sense.)

1281

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1282

Appendix F: The Kernel Development Process

what the academic world envisioned to be suitable for future operating systems, and his arguments were
collected in a Usenet newsgroup posting titled ‘‘Linux is obsolete.’’ This, naturally, caused Linus Torvalds
to reply, and one of his statements was the following:

Re 2: your job is being a professor and researcher: That’s one hell of a
good excuse for some of the brain-damages of minix.

Although it was soon admitted that the message was a little rash, it reflects the attitude that is sometimes
displayed by the kernel community toward academic research. Real-world operating systems and OS
research are perceived as things that don’t quite fit together.

This may indeed be true sometimes: Much academic research is not supposed to be integrated into real-
world products, especially when it is concerned with fundamental issues. But as mentioned previously,
there are also practical components of research, and these could often help to improve the kernel. Unfor-
tunately, OS researchers and OS implementors have somewhat lost connection with each other, and Rob
Pike, a member of the former Unix team at Bell Labs, has gone so far as to make the pessimistic claim
that systems software research is irrelevant.6

Contributing code to the kernel is hard for researchers for many reasons, one of which is that they have
to take many different operating systems into account. It is already hard to keep up with the pace of
Linux kernel development, but it is virtually impossible to chase all important operating systems in use
today. Therefore, researchers usually cannot provide more than proof-of-concept implementations of
their ideas. Integrating these into the kernel requires some effort from both communities. Consider, for
instance, the integration of the swap token mechanism into the kernel. This was proposed in research as
discussed in the next section, but has been implemented for the kernel by Rik van Riel, a kernel developer
working in the area of memory management. The approach has proved to be quite successful, and could
well serve as a role model for further collaboration.

Interaction between both communities is complicated by the following two aspects of kernel
development:

❑ Many developers do not consider proposals without concrete code, and refuse to discuss the
issue any further.

❑ Even if code is submitted to the mailing lists, a good part of the work will start only after the
initial submission. Adaption of proposed code to a specific system is not highly credited in
academia, so researchers have a natural tendency to avoid this step.

Ultimately, this leads to the conclusion that the interface between kernel development and academic
research ideally requires one individual from each side collaborating with each other. If this is not possi-
ble, then it is a definitive advantage and surely worth the effort if researchers try to adapt to the culture
of kernel development as much as possible.

F.4.1 Some Examples
This section presents some examples of when research results have been turned into kernel code and
could help to improve particular aspects of Linux. Note that the presented selection is naturally not

6See www.cs.bell-labs.com/who/rob/utah2000.pdf. Since Pike also claims that the only progress in the operating sys-
tem area comes from Microsoft, I certainly don’t believe all his claims, but the talk nevertheless contains many noteworthy and valid
ideas.

1282

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1283

Appendix F: The Kernel Development Process

comprehensive, and the impact of academic research would be really negligible if it ever could be. It is
primarily used to highlight that both worlds can benefit from each other.

❑ The swap token as discussed in Chapter 18 was first described in the paper ‘‘Token-Ordered
LRU: An Effective Replacement Policy and its Implementation in Linux Systems’’ by S. Jiang and
X. Zhang (Performance Evaluation, Vol. 60, Issue 1–4, 2005). Subsequently, it was implemented
in kernel 2.6.9 by Rik van Riel. Interestingly, the paper extended kernel 2.2.14 to demonstrate
the usefulness of the approach, but the corresponding code was never included in the mainline
kernel.

❑ The slab allocator as discussed in Chapter 3 is directly based on a paper that describes the imple-
mentation of the slab system in Solaris: ‘‘The Slab Allocator: An Object-Caching Kernel Memory
Allocator,’’ Proceedings of the Summer 1994 USENIX Conference.

❑ The techniques of the anticipatory I/O scheduler (which was mentioned in Chapter 6, but not
discussed in detail) were first presented in ‘‘Anticipatory Scheduling: A Disk Scheduling Frame-
work to Overcome Deceptive Idleness in Synchronous I/O,’’ 18th ACM Symposium on Operat-
ing Systems Principles, 2001.

❑ As discussed in Chapter 18, Linux employs a variant of the least-recently used technique to
identify active pages and distinguish them from inactive pages. The paper ‘‘CLOCK-Pro:
An Effective Improvement of the CLOCK Replacement’’ by S. Jiang, F. Chen, and X. Zhang
(Proceedings of 2005 USENIX Annual Technical Conference) describes a page-replacement
algorithm that not only prioritizes pages based on the time of their last access, but also
incorporates the frequency with which pages are accessed. Patches have been designed by
Rik van Riel and Peter Zijlstra, and the method has also been considered as a possible merge
candidate (see www.lwn.net/Articles/147879/). The reason why you have read nothing
about this technique in the preceeding chapters is simple: The patches have not yet made it into
mainline. They are, however, examples of how Linux developers do sometimes actively try to
integrate research results into the kernel.

The ideas presented in these papers have been directly integrated into the Linux kernel as direct exten-
sions of existing code. Some examples of older papers that have had an indirect influence on the kernel
include the following:

❑ The generic structure of the block layer that acts as a level of indirection between filesystems
and disks is described in ‘‘The Logical Disk: A New Approach to Improving File Systems,’’ by
W. de Jonge, M. F. Kaashoeck, and W. C. Hsieh. Essentially, it describes techniques to decouple
blocks on physical disks from logical disks as observed by the operating system, and this builds
the fundament for the logical volume manager and the device mapper.

❑ Many key concepts of the extended filesystem family originate from other filesystems, and one
particular example is the paper ‘‘A Fast File System for UNIX’’ by M. K. McKusick, W. N. Joy,
S. J. Leffler, and R. S. Fabry (ACM Transactions on Computer Systems, 1984). It describes the
use of multiple possible block sizes on disk, and introduces the idea of mapping a logical
sequence of data to a sequential series of blocks on disk.

Tracking the indirect influence of older papers is naturally much harder than seeing ideas from research
being directly integrated. The more generic an idea is, the more ubiquitous it will become if it prevails,
and the harder it becomes to recognize the idea as such. At some point, it will have been absorbed into
the field, and be indistinguishable from common knowledge. Or would you deem it necessary to quote
any paper on the fact that computers tend to work with binary digits?

1283

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1284

Appendix F: The Kernel Development Process

Essentially, most core ideas of the Unix operating system are also present in Linux. Many of these ideas
are today ubiquitous, but were new at the time Unix was invented. This includes, for instance, the idea
that nearly everything can be represented by a file as discussed in Chapter 8. Namespaces are another
example for a technology that does indirectly stem from academic research: They were introduced as an
integral part of Plan 9 — the successor to Unix co-developed by some of the inventors of Unix — many
years before they were adopted into the mainline kernel.7 The /proc filesystem is also modeled by the
example of Plan 9.

Many other fundamental ideas of Unix appear as integral parts of Linux without being recognized
as research results, but this is not the direct concern of this section. However, it is interesting to observe
where many concepts of Linux have their roots, such as in Vahalia’s highly recommended technical
discussion of Unix internals for many flavors of the system [Vah96]. The account by Salus [Sal94] illu-
minates the history of Unix, and allows for understanding why many things are designed the way
they are.

F.4.2 Adopting Research
The preceding examples demonstrate that it is possible to integrate research results with the Linux kernel.
But considering the magnitude of OS research, and the number of results integrated into the kernel, there
seem to be some obstacles to transferring results from one world into another. One essential factor is
that each community functions quite differently from each other. To my knowledge this point has not
received the consideration it deserves (at least not in writing); therefore, this section highlights some of
the essential differences.

Notice that the kernel sources contain some interesting information on how the kernel developers deal
with project management issues in Documentation/ManagementStyle. The document also addresses
some of the questions discussed here.

Different Communities
Software development and OS research seem to be dry and purely technical to many people, but both
have an enormous social component: The acceptance of any work is based on its acceptance in the com-
munity, which is nothing else than acceptance by individual developers and researchers. This requires
that individuals judge the contributions of other individuals, and as most readers will agree, this is
always a difficult thing in a world of colorful, different, and sometimes complicated characters. In an
ideal world, judgment would be solely based on objective criteria, but this is not the case in reality:
People are only human, and sympathy, personal tastes, acquaintances, dislikes, bias, and the ability to
communicate with each other play a crucial role.

One approach to this problem is to simply ignore it — pretend that we live in an ideal world where
judgment is done on a purely technical and objective level, and all problems automatically disappear.
This solution is adopted astonishingly often, especially in ‘‘official’’ statements.

7Notice that Plan 9 was not developed at a ‘‘classical’’ academic institution, but at the research division of Bell Labs, which is nowa-
days affiliated with Lucent Technologies. However, the methodology used is very similar to that of academic institutions: Papers are
published about Plan 9, talks are held, and conferences are organized. Therefore, this appendix subsumes it under the same category
as academia. The web site cm.bell-labs.com/plan9 contains more information about Plan 9.

1284

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1285

Appendix F: The Kernel Development Process

But even if the problem is acknowledged, it is not easy to solve. Consider how decisions are often made
in the research community to decide if a work is worthwhile (and should be credited by being admitted
to a conference, or published in a paper) or not:

1. After research results have (hopefully) been obtained, they are written up in a paper and
submitted to a journal (or conference, or similar, but this discussion will focus on publication
for simplicity’s sake).

2. The paper is submitted to one or more referees who have to evaluate the work. They have to
judge correctness, validity, and scientific importance, and can point to weaknesses or things
that should be improved. Usually reviewers are anonymous, and should not be directly
related with the author personally or professionally.

3. Depending on the referee’s appraisal, the editor can decide to reject or accept the paper. In
the latter case, the editor may require the author to incorporate improvements suggested
by the referees. Another round of peer review may take place after the improvements have
been made.

Usually, the identity of authors is known to the referee, but not vice versa.

Work is considered worthwhile in the kernel community if it is included into some official tree. The way
to achieve such an inclusion goes essentially along these lines:

❑ Code is submitted to an appropriate mailing list.

❑ Everyone on the mailing list can request changes to the code, and desired improvements are
discussed in public.

❑ The code is adapted to the desires of the community. This can be tricky because there are often
orthogonal opinions as to what constitutes an improvement and what will deteriorate the code.

❑ The code is re-submitted, and discussion starts anew.

❑ Once the code has achieved the desired form and a consensus is reached, it is integrated into
official trees.

Notice that it is possible for people with high and long-standing reputations in their fields (which is,
again, a social factor) to shortcut the process in both areas, but these cases are not of interest here.

There are similarities between the academic and kernel development communities, and both have their
strengths and weaknesses. For example, there are some important differences between the review process
in each community:

❑ Reviewing code for the kernel is not a formalized process, and there is no central authority to
initiate code review. Review is performed completely voluntarily and uncoordinated — if no
one is interested in the submitted code, the mailing lists can remain silent.

Although review in the academic world is usually also performed voluntarily and without pay-
ment, it is impossible for submissions to be completely ignored. Papers are guaranteed to get
some feedback, although it can be very superficial.

❑ The identities of the submitter and reviewer are known to each other in the kernel world, and
both can interact directly. In the academic world, this is usually not the case, and conversation

1285

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1286

Appendix F: The Kernel Development Process

between the author and reviewer is mediated by the editor. Additionally, only a few rounds of
exchanging arguments between the author and reviewers are possible before the editor decides
to either accept or reject a submission.

❑ The result of a review is only known to the submitter, referees, and editor in the academic world.
Usually the whole review process is public in the kernel world, and can be read by everyone.

In both worlds, reviewers can pass harsh criticism to the submitter. In the academic world, formulations
in the inverse direction are usually chosen with much more care, while this depends on the identity of
the submitter and reviewer in the kernel world.

Critique is certainly valuable and essential to improve the quality of any work, but receiving critique is
a complicated matter. How this is handled is another important difference between kernel development
and the academic world.

Harassing people verbally in various creative, and often insulting, ways has become a trademark of some
kernel developers — and the corresponding statements are publically available on the Internet. This
poses a serious problem, because nobody likes to be insulted in public, and developers can be driven
away by this fairly quickly. This concern is shared by several leading Linux developers, but because all
people on the mailing lists are grown-ups, it is not possible to solve this problem in any other form than
appealing for more fairness, which is not always accepted.

Receiving a harsh critique by an anonymous referee in the academic world is certainly not particularly
enjoyable, but it is much easier to be accused of having failed in private than in public.

As you can see from the following documentation excerpt, kernel developers do not strive for complete
political correctness as a means of solving this problem:

Documentation/ManagementStyle
The option of being unfailingly polite really doesn’t exist. Nobody will
trust somebody who is so clearly hiding his true character.

Pulling each other’s legs can be a good thing, and is something of an intellectual challenge when properly
employed. But it’s also very easy to overdo it and end up with insulting accusations, which nobody likes
to receive but unfortunately, everyone should be prepared for in the kernel world.

While the review process of the kernel world can be considerably more challenging socially than the
academic counterpart, it also tends to be much more effective, taken that people are not driven away
by the approach: Patches on the kernel mailing list usually go through many iterations before they are
deemed to be acceptable, and in each iteration step remaining problems are identified by reviewers and
can be changed by the authors. Because the goal of the kernel is to be the best in the world, it is important
that only really good code is integrated. Such code is usually not created from the very beginning, but
only after a period of improvement and refinement. The whole point of the review process is to generate
the best possible code, and this often succeeds in practice.

The effect of review on academic papers is usually different. If a submission is rejected by one journal,
it will certainly be revised by the authors to address the shortcomings. However, readers are invited to
judge on their own how big the probability is that really substantial revisions are made considering that
on the one hand, there is considerable pressure to publish as many papers as possible for gaining sci-
entific reputation, and on the other hand, there are a large number of different (possibly less-renowned)
journals to which the work can alternatively be submitted — and that these journals rely as their economic

1286

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1287

Appendix F: The Kernel Development Process

foundation on submissions by authors who pay(!) for being published. This is different with kernel code:
Either you get code into the kernel, or a considerable amount of effort has been wasted.8 This naturally
provides a large incentive to put effort into improving the code.

Although the approaches employed by the academic and kernel communities to assess and ensure the
quality of submissions are similar at first glance, there are numerous differences between them. Different
cultures can be a considerable barrier for the exchange of ideas and code between both worlds, and
should be taken into account when it comes to a collaboration between kernel and academia.

F.5 Summary
As one of the largest open source efforts in the world, the Linux kernel is not just interesting from a
technological perspective, but also because a novel and unique way of distributed development across the
whole world and between otherwise competing companies is employed. This appendix described how
the process is organized, and what the requirements for contribution are. It also analyzed the connection
between kernel development and academic research. In this appendix, you learned how the two worlds
interact, how differences can arise from different ‘‘cultures,’’ and how these are best bridged.

8It is surely possible to maintain code out-of-tree, and this has proven useful in many cases, but the final and most rewarding goal
for developers (and their employers!) is nevertheless to get work into the mainline kernel.

1287

Mauerer runbapp06.tex V1 - 09/04/2008 6:14pm Page 1288

Mauerer runbref.tex V2 - 09/04/2008 6:15pm Page 1289

References

[BBD+01] Michael Beck, Harald Böhme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus, and
Dirk Verworrner. Linux-Kernelprogrammierung. Addison-Wesley, 2001.

[BC05] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly, 3rd edition,
2005.

[Ben05] Christian Benvenuti. Understanding Linux Network Internals. O’Reilly, 2005.

[BH01] Thomas Beierlein and Olaf Hagenbruch, editors. Taschenbuch Mikroprozessortechnik.
Fachbuchverlag Leipzig, 2001.

[Bon94] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator.
Usenix proceedings, 1994. Electronic document, available on www.usenix.org/
publications/library/proceedings/bos94/full_papers/bonwick.ps.

[Cox96] Alan Cox. Network buffers and memory management. Linux Journal, 1996. Available
on www.linuxjournal.com/article.php?sid=1312.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers.
O’Reilly, 3rd edition, 2005.

[CTT] Rémy Card, Theodore Ts’o, and Stephen Tweedie. Design and Implementation of the Second
Extended Filesystem. Available on e2fsprogs.sourceforge.net/ext2intro.html.

[Dik06] Jeff Dike. User Mode Linux. Prentice Hall, 2006.

[Fri02] Æleen Frisch. Essential System Administration. O’Reilly, 2002.

[GC94] Benny Goodheart and James Cox. The Magic Garden Explained. Prentice Hall, 1994.

[Grü03] Andreas Grünbacher. POSIX Access Control Lists on Linux, Usenix 2003 technical
conference, freenix track. Usenix, 2003. Available on http://www.usenix.org/
events/usenix03/tech/freenix03/full_papers/gruenbacher/gruenbacher.ps.

Mauerer runbref.tex V2 - 09/04/2008 6:15pm Page 1290

References

[GWS94] Simson Garfinkel, Daniel Weise, and Steven Strassmann, editors. The Unix-Haters
Handbook. IDG Books, Programmers Press, 1994. Available on http://www.simson.net/
ref/ugh.pdf.

[Her03] Helmut Herold. Linux-Unix-Systemprogrammierung. Addison-Wesley, 2003.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture. Academic Press, 4th

edition, 2006.

[KH07] Greg Kroah-Hartman. Linux Kernel in a Nutshell. O’Reilly, 2007.

[KHCM] Greg Kroah-Hartman, Jonathan Corbet, and Amanda McPherson. Linux Kernel
Development. Electronic document available on http://www.linux-foundation.org/
publications/linuxkerneldevelopment.php.

[Knu97] Donald E. Knuth. Fundamental Algorithms. Addison-Wesley, 3rd edition, 1997.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. C Programming Language. Prentice Hall,
2nd edition, 1988.

[Lov05] Robert Love. Linux Kernel Development. Sams, 2005.

[Lov07] Robert Love. Linux System Programming. O’Reilly, 2007.

[LSM+01] Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich
Drepper. The GNU C Library Reference Manual. GNU Project, 2001.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.4 BSD Operating System. Addison-Wesley, 1996.

[MD03] Hans-Peter Messmer and Klaus Dembowski. PC Hardwarebuch. Addison-Wesley, 2003.

[ME02] David Mosberger and Stephane Eranian. IA-64 Linux Kernel. Prentice Hall, 2002.

[Mil] David S. Miller. Cache and TLB Flushing under Linux. Electronic document, available in the
kernel sources as Documentation/cachetlb.txt.

[MM06] Richard McDougall and James Mauro. Solaris Internals. Prentice Hall, 2006.

[Moca] Patrick Mochel. The kobject Infrastructure. Available in the kernel sources as
Documentation/kobject.txt.

[Mocb] Patrick Mochel. The Linux Kernel Device Model. Electronic document, available in the kernel
sources in Documentation/driver-model/.

[Nut01] Gary J. Nutt. Operating Systems: A Modern Perspective. Addison-Wesley, 2001.

[PH07] David A. Patterson and John L. Hennessy. Computer Organization and Design. Morgan
Kaufmann, 3rd edition, 2007.

[QK06] Jürgen Quade and Eva-Katharina Kunst. Linux-Treiber entwickeln. DPunkt Verlag, 2006.

[Sal94] Peter H. Salus. A Quarter Century of UNIX. Addison-Wesley, 1994.

[Sch94] Curt Schimmel. UNIX Systems for Modern Architectures. Addison-Wesley, 1994.

1290

Mauerer runbref.tex V2 - 09/04/2008 6:15pm Page 1291

References

[SFS05] Claudia Salzberg Rodriguez, Gordon Fischer, and Steven Smolski. The Linux Kernel Primer.
Prentice Hall, 2005.

[SGG07] Abraham Silberschatz, Peter Bear Galvin, and Peter Gagne. Operating System Concepts.
John Wiley & Sons, 2007.

[Sin] Amit Singh. Max OS X Internals. Addison-Wesley.

[SR05] W. Richard Stevens and Stephen A. Rago. Advanced Programming in the UNIX Environment.
Addison-Wesley, 2nd edition, 2005.

[Sta99] William Stallings. Computer Organization and Architecture. Prentice Hall, 1999.

[Ste94] W. Richard Stevens. TCP/ IP Illustrated I. The Protocols. Addison-Wesley, 1994.

[Ste00] W. Richard Stevens. Programmieren von UNIX- Netzwerken. Hanser, 2000.

[Swe06] Dominic Sweetman. See MIPS Run. Morgan Kaufmann, 2006.

[Tan02] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 2002.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2007.

[TW06] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems: Design and
Implementation. Prentice Hall, 2006.

[Vah96] Uresh Vahalia. Unix Internals. Prentice Hall, 1996.

[Ven08] Sreekrishnan Venkateswaran. Essential Linux Device Drivers. Prentice Hall, 2008.

[WPR+01] Klaus Wehrle, Frank Pählke, Hartmut Ritter, Daniel Müller, and Marc Bechler. Linux
Netzwerkarchitektur. Addison-Wesley, 2001.

[WPR+04] Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Müller, and Marc Bechler. Linux
Networking Architecture. Prentice Hall, 2004.

1291

Mauerer runbref.tex V2 - 09/04/2008 6:15pm Page 1292

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1293

In
de

x

Index

A
abstraction

address space and, 956
architecture and, 1117
clock sources and, 895
kernel and, 28
memory mappings and, 13
virtual address space and, 289
virtual filesystem and, 519–520,

708
academia, role in kernel development,

1281–1282
access control lists. See ACLs (access

control lists)
access vector cache, SELinux,

1114–1115
accessing devices. See device access
ACLs (access control lists), 722–732

data structures (Ext3), 726–727
data structures (generic), 722–724
implementing (Ext2), 731–732
implementing (Ext3), 726
implementing (generic), 722
inode initialization (Ext3), 727–729
modifying (Ext3), 730–731
overview of, 722
permission-checking (Ext3), 731–732
permission-checking (generic), 724–726
retrieving (Ext3), 729–730
switching between on-disk and in-memory

representation (Ext3), 726–727
active connections, TCP, 793–794
active memory regions, registering,

186–188

active pages
determining page activity, 1057–1062
selecting pages to be swapped out, 1029
shrinking list of, 1068–1072

address resolution protocol (ARP), 778
address space, 955–966
AMD64 systems, 188–191
caching and, 955–966
data structures, 956–958
division of, 176–181
Ex2 operations, 610–611, 637
I/O, 395
maximum size of, 7–8
operations on, 961–966
page trees and, 958–961
PCI bus and, 455
privilege levels and, 8–10

addresses, netlink, 811
advanced programmable interrupt

controllers (APICs)
broadcast mode and, 943
overview of, 895

alarm system calls, timer-related, 945
algorithms
page-swapping, 1026–1027
scheduler and, 37

aliases, module names, 495
alignment, C programming, 1202–1203
generic, 1203
natural, 1119, 1202–1203
overview of, 1202

_alloc_pages, buddy system, 223
allocation control, page selection, 225–231

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1294

allocation macros, buddy system

allocation macros, buddy system, 220–222
allocation masks, buddy system, 205,

216–220
allocation of physical memory, 13–16

allocation order, 135
alternatives to slab allocator, 258–259
boot process and, 195–197
bootmem allocator, 191–193
buddy system, 14–15, 204–205, 215–216
disabling bootmem allocator, 197
discontiguous pages in the kernel and,

244–245
initialization and, 195–197
macros, 220–222
masks, 216–220
memory areas, 248–250
overview of, 113
page selection and, 225–231
slab allocator. See slab allocator
slab cache, 15
slub allocator, 150
swapping and page reclaim, 15–16
types of allocators, 191

Alpha systems, 1129–1131
already_uses, testing module relationships,

489–490
AMD64 systems

address space setup, 188–191
architecture of, 1134–1135
clock sources, 912
initialization of memory management,

169
initializing of, 194
interrupt flow handling, 870
memory management, 134
registering active memory regions,

187–188
system calls and, 834
timers for, 897

anonymous pages
page faults, 339
reverse mapping and, 324–325

APICs (advanced programmable interrupt
controllers)

broadcast mode and, 943
overview of, 895

application layer, 799–808
creating sockets, 805–807
data structures for sockets,

799–803
in network reference models, 736
overview of, 799
receiving data, 807–808
sending data, 808
socketcallsystem call, 804–805
sockets and files, 803–804

architecture
alignment of data and, 1119
Alpha systems, 1129–1131
AMD64 systems, 1134–1135
architecture-specific setup,

1226–1227
ARM systems, 1126–1127
bit chain manipulation, 1135–1136
checksums, 1137
context switches, 1137–1138
conversion to/from byte orders (little endian

or big endian), 1136–1137
current macro, for finding current process,

1138–1139
data types, 1118–1119
ELF supported, 1253
IA-32 systems, 1122–1124
IA-64 systems, 1124–1126
memory pages, 1119–1120
Mips systems, 1131–1132
overview of, 1117–1118
page tables, 1137
PowerPC systems, 1132–1133
Sparc64 systems, 1128–1129
string processing, 1120–1121
summary, 1139
system calls, 1120
thread representation, 1122

1294

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1295

In
de

xbacking stores

architecture, for initialization of memory
management

address space division, 176–181
address space setup, 188–191
hot-n-cold cache, 183–186
initialization steps, 172–175
kernel setup, 169–172
overview of, 169
paging, 175–176
registering active memory regions,

186–188
virtual address space division, 181–183

architecture-independence/dependence
CPUs and, 13, 150
data types, 853, 1250
high-level initialization and, 1225
kbuild system and, 1154
kernel and, 1043–1044, 1117
memory management and, 160
page flags, 151
page tables, 154
swapping and, 1042
system calls, 65, 838

arithmetic
bit operations, 1203–1206
pointers (ptr), 1200

ARM systems, 1126–1127
ARP (address resolution protocol), 778
array cache, 262
assembly, in C programming

inline assembler, 1194–1198
overview of, 1180

asynchronous interrupts, 848
asynchronous reading, VFS, 574
atomic operations

on integers, 352–353
overview of, 351

atomic_t data types, 352–353
atomicity, locks ensuring, 359
attributes

C programming, 1192–1194
Kconfig configuration, 1151

attributes, sysfs filesystem, 693–695
data structures, 693–694
declaring new, 694–695

audit rules, 1099
audit trails, 1098
auditctltool, 1098
auditing, 1097–1116
access vector cache, 1114–1115
audit rules, 1099
closing audit logs, 1110
context allocation and, 1110–1111
data structures, 1100
implementing, 1100
initializing, 1106–1107
logging events, 1108–1109
overview of, 1097–1098
processing requests, 1107–1108
records, rules, and filtering,

1104–1106
standard hooks, 1115–1116
starting, 1109
summary, 1116
system call events, 1112–1114
system calls for, 1110
task_struct data structure, 1100–1104
writing log messages, 1109

author information, modules and,
495

automatic expirations, of mounts, 563
automatic loading, modules
benefits of, 506–507
kmod for, 480–483, 507–508

auxiliary functions, fragmentation of
memory and, 205–207

B
backing stores
address space pages and, 956–957
RAM and, 989
reading data from, 297

1295

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1296

big endian formats

big endian formats
conversion to/from, 1136–1137
data types, 26
numeric values and, 739–740

big kernel lock (BKL), 361–362
binary formats

handlers, 81–82
interpreting, 83
Linux supported, 82
modules, 19–20, 491–492
red-black trees, 299
rewriting binary code into absolute values,

498–499
BIOs (block-based I/O)

buffers and, 954
creating requests, 432–436
handling block device transfers, 969–970
overview of, 430–431
submitting requests, 432

bit operations
architecture of, 1135–1136
in C programming, 1203–1206

BKL (big kernel lock), 361–362
block allocation, Ex2

creating new reservations, 626–628
handling pre-allocation, 621–626
indirection and, 619–621
pre-allocation mechanism, 606–608

block devices
accessing, 397
adding disks and partitions to system,

423–425
BIOs and, 430–431
buffer cache. See buffer cache
cache options, 950
core properties, 415–417
executing requests, 437–438
generic hard disks and partitions, 417–420
handling block device transfers, 969–970
I/O scheduling, 438–441
iotcl system, 441–442
kernel request structure for, 427–430

opening block device files, 425–427
operations, 420
overview of, 412–413
page cache and. See page cache
proc filesystem and, 644
queue plugging, 436–437
registering, 406
representing, 413–415
request queues, 421–423
submitting requests, 432–436
types of peripheral devices, 17–18

block-based filesystems, 586
block-based I/O. See BIOs (block-based

I/O)
blocks, 586. See also data blocks
boot process
data structures, 191–192
disabling bootmem allocator, 197
initializing, 192–194
interface to kernel, 195–197
overview of, 191
releasing initialization data, 197–199

bootmem allocator
disabling, 197
overview of, 191–193

_bread function, LRU buffer cache, 987–988
break statements, C programming,

1208–1209
bridges, connecting PCI buses, 394
broadcast mode, time management and,

943–944
buckets, timer data structures, 902–904
buddy system
_alloc_pages, 223
allocation macros, 220–222
allocation masks, 216–220
allocation of physical memory, 14–15
allocator API, 215–216
avoiding fragmentation, 201
data structures of buddy allocator,

204–205

1296

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1297

In
de

xC programming

global variables and auxiliary functions for
page mobility groups, 205–207

grouping pages by mobility, 201–203
initializing mobility-based grouping,

207–208
managing data structure creation, 210–213
_rmqueue helper function, 234–240
structure of, 199–201

buffer cache, 974–988
data structures, 975–976
defined, 950
implementing, 974
independent buffers, 982
linking buffers and pages, 977–979
LRU. See LRU (least recently used) cache
operations, 976–977
overview of, 20
reading whole pages into buffers, 979–981
structure of, 954–955
summary, 988
writing whole pages into buffers, 981–982

buffer head
elements, 976
linking pages and, 977–979
operations, 976–977
structural units of buffer cache, 954–955

buffers, 954–955
_builtin functions, C programming

language, 1198–1200
bulk transfers, USB (Universal Serial Bus),

465–466
bus number, identifying PCI devices, 455
bus systems

generic driver model, 449
I/O architecture and, 392–394
overview of, 448
PCI bus. See PCI (peripheral component

interconnect)
registration procedures, 452–454
representation of buses, 451–452
representation of devices, 449–451
USB bus. See USB (Universal Serial Bus)

buses
device control via, 396
peripherals connected to CPU via, 393
registration of, 452
representation of, 451–452

byte order
conversion to/from (little endian or big

endian), 1136–1137
data types, 26–27

C
C programming, 1175–1221
assembly and linking, 1180
attributes, 1192–1194
bit operations, 1203–1206
break and continue statements,

1208–1209
_builtin functions, 1198–1200
common subexpression elimination

technique, 1189–1190
data types, 1118
dead code elimination technique,

1190–1192
doubly linked lists, 1209–1214
Ex2 and, 586–588
GCC (GNU Compiler Collection), 1175
generic alignment, 1203
hash lists, 1214
inline assembler, 1194–1198
inline functions, 1192
Linux making use of, 1–2
loop optimization, 1187–1189
macros, 1207–1208
natural alignment, 1202–1203
optimization, 1185
pointer arithmetic, 1200
pointer type conversions, 1201–1202
pre-processor tricks, 1206–1207
procedure calls, 1180–1185
radix trees, 1216–1221
red-black trees, 1214–1216

1297

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1298

C programming (continued)

C programming (continued)
reference counters, 1200–1201
simplification as optimization technique,

1185–1187
source code to machine program process,

1176–1180
summary, 1221

caches/caching
block devices options, 950
buffer cache. See buffer cache
comparing page cache and buffer cache, 20
freeing memory by reducing kernel cache,

1030
hot-n-cold pages, 183–186
initializing during system startup,

1228–1232
page cache. See page cache
pros/cons of, 949
shrinking, 1092–1095
slab cache. See slab cache
swap cache. See swap cache

call table, system calls, 834–835
canonical addresses, 189
central control, data synchronization,

1000–1002
CFS (completely fair scheduling), 106–117

data structures, 106–107
handling new tasks, 116–117
handling periodic tick, 114–115
latency tracking, 110–111
overview of, 38, 106
queue manipulation, 112–113
selecting next task, 113–114
virtual clock, 107–110
wake-up preemption, 115–116

character devices
accessing, 397
block devices compared with, 412–413
opening device files, 409–411
range database for, 404–405
reading from/writing to device files, 412

registering, 405–406
representing, 409
standard file operations, 407–408
types of peripheral devices, 17–18

checksums
calculating, 1137
module methods, 512–513

chicken-and-egg problem, slab allocator,
270

child processes
resource management, 443
task relationships, 62

chip-level hardware encapsulation,
interrupts handlers, 854

classes, scheduler, 89–91
classic directory allocation, Ex2, 634
classical mutexes, 362–363
classical timers. See low-resolution timers
cleanup functions, modules, 492–493
clock bases, 921
clock event devices
defining, 914–916
overview of, 896, 908

clock sources, 911–913
abstraction and, 895
defining, 911–913
overview of, 908
working with, 913

clone

executing system calls and, 65
process duplication with, 64

clone

overview of, 47
PID (process identification) and, 54

code
code generation compiler phase,

1175–1176
coding styles and, 1274–1276
dead code elimination, 1190
documenting, 1276–1277
spinlock protection and, 354–355

1298

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1299

In
de

xcumulative acknowledgement scheme, TCP

command chain, kernel development
process and, 1269

command-line arguments, system startup,
1227–1228

commits, git log displaying, 1166–1167
common subexpression elimination, C

optimization, 1189–1190
communication functions, network,

808–810
community participation, kernel

development and, 1284–1287
completely fair scheduling. See CFS

(completely fair scheduling)
completions, semaphores compared with,

887–888
computational priorities, scheduler, 94–96
configuration

Kconfig. See Kconfig
PCI devices, 456
processing configuration information,

1152–1154
time management, 896
time subsystem, 909–910
USB devices, 464

congested state, setting/clearing,
1011–1012

congestion
overview of, 1009
setting/clearing congested state,

1011–1012
thresholds, 1010–1011
waiting on congested queues,

1012–1013
connection termination, TCP, 797–798
connections, netlink, 813–814
containers, grouping processes in, 48
context switching

architecture, 1137–1138
audit context allocation, 1110–1111
Lazy FPU mode and, 105–106
multitasking and, 102–105

continue statements, C programming,
1208–1209

control groups, scheduling and, 126
control transfers, USB (Universal Serial

Bus), 465
controller hardware settings, 860–861
copy_process function, 68–75
copy-on-write (COW) technique
overview of, 64–65
page faults, 339

core dumps, binary functions, 83
core scheduler
interaction with generic scheduler,

86–87
scheduler implementation and, 99–101
SMP scheduling and, 125–126

counters
atomic operations on integer counters,

352–353
per-CPU counters, 364–365
race conditions and, 348–349

COW (copy-on-write) technique
overview of, 64–65
page faults, 339

CPUs
interaction of address space with,

13
locks for controlling interprocess

communication, 347
MMU (memory management unit),

12
multitasking and, 35
per-CPU cache, 148
per-CPU counters, 364–365
scheduler fairness and, 84–85

CRC checksums methods, modules,
512–513

critical sections, IPC (inter-process
communication), 349–350

cumulative acknowledgement scheme,
TCP, 794

1299

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1300

current

current

macro for finding current process,
1138–1139

system calls, 71

D
daemons. See kernel threads
data, application layer, 807–808

receiving, 807–808
sending, 808

data, module
organizing in memory, 499–500
transferring, 500

data, network layer, 790–791
data block sections, 588
data blocks

allocation. See block allocation, Ex2
block groups, 587
defined, 588
finding, 615–616
fragmentation, 591
group descriptors, 597–599
indirection and, 588–591
overview of, 413
removing, 636
requesting new, 616–619
size of, 590
superblocks, 592–597

Data Display Debugger (DDD), 1171–1172
data integrity writeback, 999
data structures, auditing, 1100
data structures, data synchronization

congestion, 1009
overview of, 996
page status data structure, 996–997
parameters, 1000
writeback control data structure, 998–999

data structures, device drivers
block devices, 415–417
character device range database, 404–405
device database, 403–404

hard disks and partitions, 417–419
I/O schedulers, 438–439
PCI bus, 458
request structure for block devices,

427–430
data structures, ELF
data types, 1250–1251
headers, 1251
overview of, 1250
program header, 1254–1255
section header, 1255–1257
string table, 1257
symbol table, 1257–1259

data structures, Ex2, 592–608
directories and files, 601–604
group descriptors, 597–599
inodes, 599–601
in memory, 604–606
pre-allocation mechanism,

606–608
superblocks, 592–597

data structures, Ex3
Ex3, 639–642
Ext3 ACLs, 726–727
Ext3 extended attributes, 714–716

data structures, extended attributes and
ACLs

ACLs (access control lists), 722–724
VFS extended attributes, 709–710

data structures, initialization of memory
management

node and zone initialization, 163–169
overview of, 162
prerequisites, 162
system start, 162–163

data structures, IPC
message queues, 377–380
signal handling, 383–386

data structures, kernel activities
interrupts, 853–856
IRQ management, 860
wait queues, 882–883

1300

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1301

In
de

xdata synchronization

data structures, memory management
architecture-independent page flags,

151–153
boot process, 191–192
buddy allocator, 204–205
definition of struct page, 149–151
hot-n-cold pages, 146–148
initialization of memory management,

162
memory zones, 140–144
node management, 138–140
nodes, 213–215
page frames, 148–149
page tables, 154–161
slab allocator, 266–270
vmalloc, 245–246
zone watermarks, 144–146
zones, 208–213

data structures, modules, 489–491
data structures, network

application layer, for sockets,
799–803

netlink, 811
network devices, 755–759

data structures, page and buffer cache
address spaces, 956–958
buffer cache, 975–976
LRU buffer cache, 983–984

data structures, page reclaim
cache shrinkers, 1092
page reclaim, 1055–1057
swap areas, 1030–1031

data structures, proc filesystem, 652
data structures, process management

CFS class, 106–107
load weights, 96
PID (process identification), 55–59
real-time scheduling class,

118–119
scheduler, 86–87
scheduling entities, 92–93
SMP scheduling, 122–124

data structures, sysfs, 690–695
attributes, 693–695
directory entries, 690–693
opening files, 698–702

data structures, system startup,
1225–1226

data structures, time management
dynamic ticks, 934
dynamic timers, 904–905
high-resolution timers, 921–925
low-resolution timers, 900–902

data structures, virtual process memory
demand paging and, 298
priority search trees, 302
regions, 300–302
reverse mapping, 323–324
struct mm_struct, 298
trees and lists, 299
virtual process memory, 303–304

data synchronization
central control, 1000–1002
congestion, 1009–1013
data structures, 996
forced writeback, 1013–1015
full synchronization. See full

synchronization
inodes, 1003
laptop mode and, 1015–1016
overview of, 989–991
page status data structure, 996–997
parameters, 1000
pdflush mechanism, 991–993
periodic flushing, 996
starting new thread, 993
summary, 1022
superblock inodes, 1003–1006
superblocks, 1002
system calls for managing, 1016
thread initialization, 994–995
working with pdflush_operation, 995
writeback control data structure, 998–999
writing back single inodes, 1006–1009

1301

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1302

data types

data types, 25–27
access to userspace and, 27
alignment of data, 1119
atomic_t, 352–353
byte order, 26–27
ELF, 1250–1251
kernel architecture and, 1118–1119
overview of, 25
per-CPU variables, 27
type definitions, 26

databases
character device ranges, 404–405
devices, 403–404

datagrams, UDP
netlink support for, 810
sockets for, 744–745

DDD (Data Display Debugger), 1171–1172
dead code elimination, C optimization,

1190–1192
debugfs, 687–688
debugging kernel, 1169–1173

DDD (Data Display Debugger), 1171–1172
examining local kernel, 1171–1172
GDB (Gnu debugger), 1170–1172
KGDB, 1172–1173
overview of, 1169–1170

defragmentation, of IP packets, 772–773
demand allocation

page faults, 337–339
userspace page faults, 336

demand paging
data structures and, 298
defined, 297
page faults, 337–339
userspace page faults, 336

dentry cache. See directory entry cache
dependencies

Kconfig, 1151–1152
modules, 476–478, 488–489

depmod tool, for dependencies, 478
destination unreachable message, UDP,

785–787

development cycles, 1269–1272. See also
kernel development process

device access, 397–406
addressing using IOCTL, 400–401
character devices, block devices, and other

devices, 397
device files and, 397
dynamic creation of device files, 399–400
identifying device files, 397–399
major and minor numbers for representing,

401–402
network cards and other system devices,

401
overview of, 397
registering character and block devices,

403–406
device drivers
block devices. See block devices
bus system and. See bus systems
character devices. See character devices
device access and. See device access
device filesystem and. See device files
generic driver model, 449
I/O architecture for. See I/O (input/output)

architecture
Makefile for, 1158–1160
overview of, 391
PCI driver functions, 461
PCI driver registration, 462–463
PCI drivers, 457
peripheral devices and, 17–18
registering, 454
resource reservation and. See resource

reservations
summary, 471
system startup, 1234–1237
USB drivers, 466–468

device files
device access and, 397
dynamic creation of, 399–400
Ex2, 604
file elements in inodes, 406–407

1302

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1303

In
de

xdynamic ticks

filesystems and, 406
identifying, 397–399
opening for block devices, 425–427
opening for character devices, 409–411
random access files and, 524
standard file operations for block devices,

408–409
standard file operations for character

devices, 407–408
device ID, PCI devices, 456
device model, representation of devices,

449
device number, identifying PCI devices,

455
device special files. See device files
devices

accessing system devices, 401
block devices. See block devices
character devices. See character devices
clock event devices. See clock event

devices
PCI, 456
registering bus devices, 453
representation of bus devices,

449–451
tick devices. See tick devices
USB, 464–465

devices, network
data structures for, 755–759
registering, 759–760
representation of, 755

diff tool, 1163–1164
Dijkstra, E. W., 350
direct reclaim, 1029
directories, Ex2

classic directory allocation, 634
creating/deleting inodes, 628–630
deleting inodes, 634–636
registering inodes, 630–634
representation of, 601–604

directories, proc
general system information, 648–650

network information, 650–651
system control parameters, 651–652

directories, sysfs
entries, 690–693
traversing, 703

directories, VFS
directory information, 540–541
directory trees, 549–552

directory entry cache
cache organization, 544–545
operations, 545–546
overview of, 542
standard functions, 546–547
structure of, 542–544

disk-based filesystems, 520
distributed applications, race conditions

and, 349
do_execve function, 79–83
do_follow_link function, 569–570
do_fork

copy_process function and, 68–75
implementing, 66–67

do_lookup function, 568
documenting code, in kernel development,

1276–1277
domain scheduling, scheduler, 123,

126–127
double indirection, 590
doubly linked lists, C programming,

1209–1214
dynamic linking, ELF, 1263–1265
dynamic ticks, 933–943
configuration options and, 896
data structures, 934
for high-resolution systems, 938–939
for low-resolution systems, 935
overview of, 933–934
stopping/starting periodic ticks,

939–943
switching to, 935–936

1303

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1304

dynamic ticks (continued)

dynamic ticks (continued)
tick handler for, 936–937
updating jiffies, 937–938

dynamic timers, 902–907
activating, 907
data structures, 904–905
implementing handling, 905–907
mode of operation, 902–904
overview of, 902

E
echo client, sockets and, 740–741
echo server, sockets and, 742–744
edge-trigger interrupts, 861–863
elevators. See I/O (input/output)

schedulers
ELF (Executable and Linkable Format),

1241–1265
architectures supported by, 1253
binary format handlers, 81–82
binary structure of modules, 491–492
creating layout of virtual process address

space, 294–296
data structures, 1250
data types, 1250–1251
dynamic linking, 1263–1265
file types, 1252
header, 1243–1244
header data structure, 1251
layout and structure of, 1241–1243
overview of, 1241
program header data structure, 1254–1255
program header table, 1244–1246
relocation entries, 1259–1263
section header data structure, 1255–1257
sections of, 1246–1248
string table data structure, 1257
string tables, 1249–1250
summary, 1265
symbol table, 1248–1249
symbol table data structure, 1257–1259

end points, USB devices, 465
enhanced machine, kernel as, 2
entities, schedulable, 88
entries, proc
creating/registering, 660–663
finding, 663
representing, 652–654

entries, sysfs directory, 690–693
entry tasks, interrupts, 850–852
error codes, page faults, 332
errors, searching for system errors,

1232–1233
Essential Linux Device Drivers

(Vankateswaran), 391
established state, TCP, 786–787
Ethernet frames, 746
event logs. See logging events
Ex2. See second extended filesystem (Ex2)
Ex3. See third extended filesystem (Ex3)
exceptions
exception fixup, kernel page faults, 341
interrupt types, 848

exec

COW (copy-on-write) technique and, 64
overview of, 6, 47

Executable and Linkable Format. See ELF
(Executable and Linkable Format)

executable files, 81
execve, starting new programs, 79–83
exit system calls, 83
exit tasks, interrupts, 850–852
expansion buses
device files for accessing, 397
expansion hardware, 392
I/O memory and, 445
types of buses, 396

exporting symbols, modules, 493–494
Ext2. See second extended filesystem (Ex2)
extended attributes (xattrs), 707–732
ACLs. See ACLs (access control lists)
data structures (Ext3), 714–716
data structures (VFS), 709–710

1304

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1305

In
de

xfilesystems

generic handler functions, 713–714
implementing in Ext2, 721–722
interface to VFS, 708
listing in Ext3, 720–721
overview of, 707–708
retrieving in Ext3, 716–719
setting in Ext3, 719–720
summary, 732
system calls, 710–712

extended filesystems, 585
second. See second extended filesystem

(Ex2)
third. See third extended filesystem (Ex3)

F
fallback lists, nodes, 138
family relationships, task, 62–63
fast path, TCP connections, 795
fast userspace mutexes (futexes), 357
FAT file system, inodes and, 528
fault mechanism, VFS, 576–578
field/comparator/value pairs, in auditing,

1099
file descriptors

defined, 521
VFS, 532–536

file model, VFS, 521
file operations, 565–572

block devices, 408–409
character devices, 407–408
do_follow_link, 569–570
do_lookup, 568–569
file representation and, 525–526
finding inodes, 565–567
opening, 570–571
overview of, 537–540, 565
reading/writing, 571–572
sockets, 803–804

file pointers, 524
file-based mapping, 324–325
files

device. See device files
diff for comparing versions of, 1163
ELF types, 1252
full synchronization, 1019–1021
git log tracking development history of,

1167
LXR cross-referencing tool for finding, 1163
LXR cross-referencing tool for viewing, 1162
operations for accessing sockets, 803–804
patch as collection of diffs on, 1164
as a universal interface, 524–525

files, Ex2, 601–604
creating/deleting inodes, 628–630
deleting inodes, 634–636
operations, 610–611
registering inodes, 634–636
size of, 590

files, proc filesystem
operations, 679–680
processing, 668–671

files, sysfs
opening, 698–702
read/write operations, 702–703

files, VFS
increasing initial limits, 536
opening, 570–571
operations, 537–540, 565
read/write operations, 571–572
representation of, 525–526
standard functions, 572–573

filesystems
debugfs, 687–688
device files and, 406
devices. See device files
Ex2. See second extended filesystem (Ex2)
Ex3. See third extended filesystem (Ex3)
extended attributes. See extended

attributes (xattrs)
kernel supported, 519
libfs for writing, 684–686
LRU (least recently used) cache and, 988

1305

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1306

filesystems (continued)

filesystems (continued)
overview of, 18, 644
proc . See proc filesystem
pseudo filesystems, 563–564, 689
registering, 548–549
sequential file interface, 680
simple, 680
sysfs. See sysfs filesystem
system calls for managing, 828
types of, 520
virtual. See VFS (virtual filesystem)
without persistent storage, 643–644
writing sequential file handlers, 681–684

fill bytes, 263–264
filters, audit, 1106
filter/value pairs, in auditing, 1099
fine-grained locking, 365–366
finite state machine, 788
Firewire (IEEE1394), 392, 393
first-fit allocator, 191
fixed mapping, address space division, 177,

179–181
flags

page flags, 151–153
process-specific, 70

flow handling, 860–864
calling flow handler routines, 870–872
controller hardware settings, 860–861
edge-trigger interrupts, 861–863
interrupts, 861–864
interrupts handlers, 854
level-triggered interrupts, 863–864
overview of, 860–864

flushing
mechanism for, 990
pages, 989
periodic, 996

forced writeback, 1013–1015
fork

COW (copy-on-write) technique and, 64–65
executing system calls and, 65
overview of, 6, 47

PID (process identification) and, 54
process duplication with, 63–64
scheduler and, 102

forwarding packets, network layer, 774–775
fragmentation, network layer packets, 776
fragmentation, of memory
avoiding, 201
data structure of buddy allocator and,

204–205
Ex2, 584, 591
global variables and auxiliary functions and,

205–207
grouping pages by mobility, 201–203
initializing mobility-based grouping,

207–208
memory management and, 15
virtual movable zone, 208–209

frames
Ethernet, 746
TCP/IP reference model, 735

freeing memory, 250–251
freetext search, LXR cross-referencing tool,

1163
fs_struct, 540–541
full synchronization. See also data

synchronization
individual files, 1019–1021
inodes, 1018–1019
memory mappings, 1021–1022
overview of, 1016–1018

function number, identifying PCI
devices, 455

functions, PID manipulation, 59–61
futexes (fast userspace mutexes), 357

G
GCC (GNU Compiler Collection), 1175
GCC Internals, 1175
GDB (GNU debugger), 1170–1172
general module information, 494–496
General Public License (GNU), 473–474

1306

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1307

In
de

xhigh-resolution timers

generic alignment, C programming, 1203
generic read routine, VFS, 573–574
generic scheduler, 86–87
generic time subsystem. See time

subsystem
genksym tool, 512–513
get free pages. See GFP (get free pages)
_getblk function, 985–987
GFP (get free pages)

allocation macros, 220–222
allocation masks, 216–220
reserving pages, 222–223

GiB, units of measurements, 7
Git tool, 1165–1169

exporting complete repository with,
1168–1169

incorporating modifications with,
1167–1168

overview of, 1165–1166
tracking development history with,

1166–1167
global clocks, 909
Global IDs, types of PIDs, 55
global variables, fragmentation of memory

and, 205–207
GNU (General Public License), 473–474
GNU Compiler Collection (GCC), 1175
GNU debugger (GDB), 1170–1172
GNU project, 1
gotos, scheduler and, 84
grandchild processes, task relationships, 62
grandparent processes, task relationships,

62
group and domain scheduling, 126–127
group descriptors

defined, 588
Ex2, 597–599

group leader, thread groups and, 54
group scheduling

priority scheduling, 88
schedulable entities and, 126

groups, timer data structures, 902–904

H
handler functions
extended attributes (xattrs), 713–714
system calls, 830–832

handles (atomic), Ex3, 639
hard disks
adding to system, 425
generic, 417–420

hard links, 522
hard real-time processes, process priorities,

36
hardware interrupts
IRQs, 849–850
overview of, 847

hardware IRQs, 849–850
hash lists, C programming, 1214
header, ELF
data structure for, 1251
elements of, 1243–1244

heap
binary format handlers, 82
managing, 327–329

heavy-weight processes. See UNIX processes
helper functions
for page selection, 223–225
_rmqueue helper function, 234–240

High Precision Event Timer (HPET), 897
high-level initialization, system startup,

1225
high-level ISRs, 854
highmem capacity, memory mappings, 256
highmem pages, 134, 430
high-resolution timers, 920–933
data structures, 921–925
dynamic ticks and, 938–939
implementing in high-resolution mode,

926–929
implementing in low-resolution mode,

929–931
kernel, 16

1307

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1308

high-resolution timers (continued)

high-resolution timers (continued)
overview of, 920–921
periodic tick emulation, 931–932
setting, 925–926
switching to, 932–933
types of timers, 894

high-speed interfaces, for packet reception,
763–765

hooks, auditing, 1115–1116
hooks, netfilter

activating, 783
functions, 779–781
table of, 781–783

host adapters, USB and, 465
host-to-network layer, in network reference

models, 735
hot-n-cold pages

initialization of cache for, 183–186
overview of, 146–148
refilling cache, 277–279

hotplugging
modules and, 19, 508–511
overview of, 18–20

hotspots, locks and, 366
HPET (High Precision Event Timer), 897
hypertext, LXR cross-referencing tool,

1161–1163
HZ frequencies, timers and, 897

I
IA-32 systems

architecture of, 1122–1124
clock sources, 912
initialization of memory management and,

169
initializing, 193–194
interrupt flow handling, 871–872
memory management, 134
registering active memory regions, 187
setting up architecture, 172–175
system calls and, 833

system startup, 1224–1225
timers for, 897

IA-64 systems, 1124–1126
identifier search, LXR cross-referencing

tool, 1162
identifiers, process. See PID (process

identification)
IEEE (International Organization of

Electrical Engineers)
Ethernet standards, 746
IEEE1394 (Firewire), 392, 393

implementation strategies, OSs (operating
systems), 3

inactive pages
determining page activity, 1057–1062
reclaiming, 1072–1074
selecting pages to be swapped out, 1029

independent buffers, 982
indirection
block allocation and, 619–621
double indirection, 589–590
Ex2, 588–591
finding data blocks, 615–616
reading/generating indirection blocks, 615
requesting new data blocks, 616–619
simple indirection, 588–590
triple indirection, 590–591

Industrial Standard Architecture (ISA), 393
init

initialization process, 4–5
system startup, 1233–1234

initialization
AMD64 systems, 194
auditing, 1106–1107
boot process, 192–194
high-level, 1225
IA-32 systems, 193–194
inodes, 727–729
mobility-based grouping, 207–208
modules, 492–493, 496
nodes, 163–169
page tables, 175–176

1308

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1309

In
de

xinterfaces

proc filesystem, 655–657
releasing initialization data during boot

process, 197–199
removing initialization data, 1237–1238
slab allocator, 270–271
subsystem, 1225–1226
threads, 994–995
userspace, 1238–1239
zones, 163–169

initialization of memory management,
161–199

address space division, 176–181
address space setup on AMD64, 188–191
architecture overview, 169
boot process, 191–194
data structure set up, 162
data structures, 191–192
disabling bootmem allocator, 197
hot-n-cold cache, 183–186
interface to kernel, 195–197
kernel setup, 169–172
nodes and zones, 163–169
overview of, 161–162
paging, 175–176
prerequisites, 162
registering active memory regions,

186–188
releasing initialization data, 197–199
setting up architecture, 172–175
system start, 162–163
virtual address space division, 181–183

inline assembler, C programming,
1194–1198

inline functions, C programming, 1192
in-memory representation (Ext3), ACLs,

726–727
inode bitmaps, 588
inode initialization (Ext3), ACLs, 727–729
inode tables, 588
inode writeback

single inodes, 1006–1009
superblock inodes, 1003–1006

inodes
block devices, 416
data synchronization, 1003
defined, 521
device file elements in, 406–407
file representation and, 525–526
full synchronization, 1018–1019
lists, 531–532
lookup mechanism for finding, 565–568
operations, 529–531
overview of, 522
proc filesystem, 654–655, 668
VFS filesystem, 527–529

inodes, Ex2
allocating, 634
classic directory allocation, 634
creating/deleting, 628–630
deleting, 634–636
operations, 610–611
Orlov allocation, 630–634
overview of, 599–601
registering, 630

input/output. See I/O (input/output)
inserting regions, 309–310
instruction patterns, C programming, 1179
integers
atomic operations on, 352–353
data types, 1118

interface functions, LRU buffer cache, 984
interface index, network devices, 760
interfaces
debugfs programming interface, 687–688
files as a universal interface, 524–525
high-speed interfaces for packet reception,

763–765
iotcl (input output control interface),

400–401, 441–442
kernel, 195–197
netlink programming, 814–816
parallel, 394
POSIX. See POSIX (Portable Operating

System Interface for UNIX)

1309

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1310

interfaces (continued)

interfaces (continued)
SCSI, 392, 393
sequential files, 680
serial, 394
USB, 464
VFS programming interface, 523–524
VFS xattrs, 708

International Organization for
Standardization (ISO), 734–735

International Organization of Electrical
Engineers (IEEE)

Ethernet standards, 746
IEEE1394 (Firewire), 392, 393

Internet layer, 735. See also network layer
Internet Protocol. See IP (Internet Protocol)
inter-process communication. See IPC

(inter-process communication)
inter-process interrupt (IPIs), 943
interrupt context, 9
interrupt controllers, 849
interrupt handlers

calling high-level ISR, 872–873
entry and exit paths, 850
flow handling, 860–864
function representation, 859–860
illustration of handling an interrupt, 851
implementing handler routines, 873–874
requirements of, 852
types of, 854

interrupt requests. See IRQs (interrupt
requests)

interrupt service routine (ISR). See interrupt
handlers

interrupts, 848–875
calling flow handler routines, 870–872
calling high-level ISR, 872–873
controller hardware settings, 860–861
data structures, 853–856
entry and exit tasks, 850–852
flow handling, 860–864
freeing IRQs, 865–866
handler functions, 859–860

hardware, 847
hardware IRQs, 849–850
implementing handler routines, 873–874
interacting with peripherals, 396
interrupt handlers, 852
IRQ controller abstraction, 856–859
IRQ stacks, 869
masking, 852
PCI supported, 457
proc filesystem, 650
processing, 850
registering, 866
registering IRQs, 864–865
servicing IRQs, 866–867
sharing, 849
switching between user and kernel mode

and, 40–41
types, 848–849
USB interrupt transfers, 466

I/O (input/output) architecture, 391–396
bus systems, 392–394
device control via buses, 396
expansion hardware and, 392
interaction with peripherals, 394–396
overview of, 391–392

I/O (input/output) memory
functions for accessing I/O memory areas,

447
managing, 445–446
resource reservation management,

442
I/O (input/output) ports
functions for accessing, 448
resource reservations, 442, 446–448

I/O (input/output) schedulers, 438–441
data structure for, 438–439
managing request queues, 439–440
properties, 440–441

iotcl (input output control interface)
system

device addressing and, 400–401
implementation of, 441–442

1310

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1311

In
de

xkernel, introduction to

IP (Internet Protocol)
address format, 736
IPv4, 769–771
IPv6, 783–785
packets. See packets, network layer
versions of, 736

IPC (inter-process communication)
critical sections and, 349–350
locking mechanisms. See locking

mechanisms
namespace for, 50
overview of, 347
pipes and sockets, 389–390
race conditions and, 348–349
semaphores for resolving, 350
signals. See signals
summary, 390
system calls for managing, 375, 829
System V. See System V

ipc system call, 375
IPIs (inter-process interrupt), 943
iptables, 779
IPv4, network layer and, 769–771
IPv6, network layer and, 783–785
IRQs (interrupt requests)

defined, 850
freeing, 865–866
handlers in packet reception, 765–767
hardware IRQs, 849–850
high-speed interfaces and, 763–764
IRQ controller abstraction, 856–859
IRQ stacks, 869
registering, 864–865
servicing, 866–867
softIRQ handler, 767–768
status values, 855–856

ISA (Industrial Standard Architecture), 393
ISO (International Organization for

Standardization), 734–735
isochronous transfers, USB, 466
ISR (interrupt service routine). See interrupt

handlers

J
JBD (journaling block device), 639
jiffies

time bases and, 899
time measurement in kernel, 15–16
updating, 937–938
working with, 900

journal mode, Ex3, 638
journaling block device (JBD), 639
journals, Ex3, 637–638

K
Kbuild
compiling the kernel, 1154–1156
driver and subsystem Makefiles,

1158–1160
main Makefile, 1157–1158
structure of Makefiles, 1156

Kconfig
attributes, 1151
configuration options, 1148–1150
configuration with, 1143
dependencies, 1151–1152
language elements, 1147
menu specification, 1147–1148
sample configuration file, 1143–1147

kernel, introduction to
address spaces and privilege levels, 7–11
allocation of physical memory, 13–16
caching, 20
data types, 25–27
device drivers, block, and character devices,

17–18
filesystems, 18
list handling, 20–22
modules and hotplugging, 18–20
networks, 18
object management and reference counting,

22–25
ongoing evolution of, 27–28
overview of, 3–4

1311

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1312

kernel, introduction to (continued)

kernel, introduction to (continued)
page tables, 11–13
processes, task switching, and

scheduling, 4
pros/cons of, 28–29
summary, 33
system calls, 17
tasks of, 2–3
timing, 16
Unix processes, 4–7

kernel daemons. See kernel threads
kernel development process

academia and, 1281–1282
coding styles, 1274–1276
command chain, 1269
community processes, 1284–1287
development cycle, 1269–1272
documenting code, 1276–1277
examples of improvements to Linux,

1282–1284
online resources and, 1272–1273
overview of, 1267–1268
patches and, 1273
portability, 1276
submission and review processes,

1277–1281
summary, 1287
technical issues and, 1273
tree structure and, 1268

kernel mode, 847–891
calling flow handler routines, 870–872
calling high-level ISR, 872–873
completions, 887–888
controller hardware settings, 860–861
data structures, 853–856
entry and exit tasks, 850–852
flow handling, 861–864
freeing IRQs, 865–866
handler function representation, 859–860
hardware IRQs, 849–850
implementing handler routines, 873–874
interrupt flow handling, 860

interrupt handlers, 852
interrupt types, 848–849
IRQ controller abstraction, 856–859
IRQ stacks, 869
overview of, 847
preemptive multitasking and, 40–41
privilege levels and, 8–10
processing interrupts, 850
registering interrupts, 866
registering IRQs, 864–865
servicing IRQs, 866–867
softIRQ daemon, 878–879
software interrupts (softIRQs), 875–877
starting softIRQ processing, 877–878
summary, 889–891
switching between user and kernel mode,

833, 867–869
tasklets, 879–882
wait queues, 882–887
work queues, 889–891

kernel page faults, 341–343
kernel preemption
overview of, 41
scheduler, 127–131

kernel space
copying data between userspace and,

344–345
defined, 11
divisions of virtual address space,

7–8
kernel threads, 77–79
address spaces and, 9–10
implementing, 78–79
tasks performed by, 77
types of, 77–78

kfree

freeing memory, 259
freeing objects, 280
general caches and, 283
implementing, 285

KGDB, 1172–1173
KiB, units of measurements, 7

1312

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1313

In
de

xlocking mechanisms

kmalloc

general caches and, 283
implementing, 283–285
overview of, 259
slab allocator and, 264

kmap, 251–255
kmod, 480–483, 507–508
kobjects

generic kernel objects, 22–24
sets of objects, 24–25
sysfs filesystem and, 690

kswapd, 1053, 1087–1090
ktime, 910–911
kupdate, 996–997

L
LANANA (Linux assigned name and numbers

authority), 398–399
language elements, Kconfig, 1147
laptop mode, data synchronization,

1015–1016
latency

CFS class and latency tracking,
110–111

low latency and kernel, 131–132
layer model, in kernel, 745–747
layout, ELF, 1241–1243
layout, PCI bus, 455–457
Lazy FPU mode, 105–106
lazy TLB handling

context switching and, 103
overview of, 78

least recently used cache. See LRU (least
recently used) cache

least recently used (LRU) algorithm,
1026–1027

level-triggered interrupts, 863–864
libfs

pseudo filesystems and, 689
writing filesystems with, 684–686

library, kernel as, 3

licenses, module
overview of, 495
querying, 500–501

life-cycle processes, 38–40
lightweight auditing framework, 1098
light-weight processes. See threads
linked computers, networks, 734
linked lists, doubly linked lists, 1209–1214
linking, in C programming, 1180
linking buffers and pages, 977–979
links, between filesystem objects, 522–523
Linux assigned name and numbers authority

(LANANA), 398–399
Linux Device Drivers (Corbet), 391
Linux Gerätetreiber (Quade and Kunst), 391
Linux security modules (LSM), 830
list element, 21
list handling
overview of, 20–21
standard functions, 21–22

list head, 21
listen state, TCP, 786–787
lists
data structures, 299
RCU protected, 358–359

little endian formats
conversion to/from, 1136–1137
data types, 26–27
numeric values and, 739–740

load weights, computing, 96–98
loading modules
load_module, 497–498
overview of, 496
system call for, 496–497

local clocks, 909
local IDs, types of PIDs, 55
lock contention, 365–366
lock ordering, 366
locking mechanisms, 351–366
atomic operations on integers, 352–353
BKL (big kernel lock), 361–362
interprocess communication and, 347

1313

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1314

locking mechanisms (continued)

locking mechanisms (continued)
lock contention and fine-grained locking,

365–366
memory and optimization barriers,

359–361
mutexes, 362–364
overview of, 351–352
per-CPU counters, 364–365
radix trees, 961
RCU (read-copy update), 357–359
reader/writers locks, 361
semaphores, 355–357
spinlocks, 353–355

logging events
closing logs, 1110
Ex3 log records, 639
overview of, 1108–1109
starting, 1109
writing log messages, 1109

lookup mechanisms
do_follow_link function, 569–570
do_lookup function, 568
for finding inodes, 565–568

loops, C optimization, 1187–1189
low latency, scheduler, 131–132
low-resolution timers, 897–907

data structures, 900–902
dynamic ticks and, 935
dynamic timers. See also dynamic timers
jiffies, 900
overview of, 897
timer activation and process accounting,

897–899
types of timers, 894

LRU (least recently used) algorithm,
1026–1027

LRU (least recently used) cache
_bread function, 987–988
data structures, 983–984
filesystems and, 988
_getblk function, 985–987
interface functions, 984

isolating LRU pages, 1065–1068
mode of operation, 982–983
overview of, 982
page reclaim data structures, 1056–1057

LSM (Linux security modules), 830
lumpy reclaim technique, 1065–1068
LXR cross-referencing tool, 1161–1163
overview of, 1161–1162
working with, 1162–1163

M
MAC addresses, TCP/IP reference model,

735
macros, C programming, 1207–1208
main scheduler, 100–101
mainline kernels, 1268
maintainers, in kernel development

command chai, 1269
major numbers
device representation, 401–402
opening device files and, 411
representation of character and block

devices, 398
Makefiles
driver and subsystem Makefiles,

1158–1160
main Makefile, 1157–1158

malloc, 256
mappings, memory. See memory mappings
masking interrupts, 852
masking signals, 381
masquerading, 778
memory addresses, alignment of data and,

1119
memory and optimization barriers, in IPC,

359–361
preemption mechanisms, 360
reorder instructions, 359–360

memory management, 133–288
architecture-independent page flags,

151–153

1314

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1315

In
de

xmodules

checking memory utilization prior to
swapping, 1029

definition of struct page, 149–151
hot-n-cold pages, 146–148
initialization. See initialization of memory

management
I/O memory, 445–446
memory zones, 140–144
node management, 138–140
organization in NUMA/UMA model,

136–138
overview of, 133–136
page frames, 148–149
page tables. See page tables
physical memory. See physical memory
processor cache and TLB control, 285–287
slab allocator. See slab allocator
summary, 287–288
swap-out for acute shortage, 1090–1092
system calls for managing, 828
zone watermarks, 144–146

memory mappings
abstraction and, 13
address spaces, 312–314
alternatives to vmalloc, 250
creating, 314–317
full synchronization, 1021–1022
I/O memory mapping, 395
kernel, 251
mapping functions without highmem

capacity, 256
nonlinear mappings, 318–322
persistent kernel mappings, 251–255
principle of, 297–298
reading from, 574–576
removing, 317–318
reverse mapping, 322–327
temporary kernel mappings, 255–256
virtual process memory, 314
vmalloc . See vmalloc

memory pages, kernel architecture and,
1119–1120

memory reclaim, 1086–1092
menu specification, Kconfig, 1147–1148
merge window, kernel development and,

1270
merging regions, 308–309
merging upstream, 1269
message format, netlink, 812–813
message queues, System V, 376–380
data structures for, 377–380
FIFO (first in first out) ordering, 377
functional principle of, 376–377
overview of, 376

MiB, units of measurements, 7
microkernels, implementation strategies, 3
migration threads
code flow diagram for, 124–125
SMP systems and, 123

Minix system, 584
minor numbers
device representation, 401–402
opening device files and, 411
representation of character and block

devices, 398
Mips systems, 1131–1132
mke2fs tool, 608–610
MMU (memory management unit)
CPUs, 12
virtual memory support, 290

mobility-based grouping, 207–208
modinfo tool, 478–479
modprobe tool, 480–481
modules, 473–517
adding/removing, 474–475
aliases, 481–482
automatic loading, 480–483, 507–508
binary structure of, 491–492
binary-only, 19–20
as compensation for disadvantages of

monolithic kernels, 3
CRC checksums methods, 512–513
dependencies, 476–477
exporting symbols, 493–494

1315

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1316

modules (continued)

modules (continued)
finding section addresses, 499
function of, 18–19
general module information, 494–496
hotplugging, 19, 508–511
initialization and cleanup functions,

492–493
inserting/deleting, 483
kmod for automatic loading, 507–508
licenses, 495
linking into modules and the kernel,

513–515
loading, 496–498
manipulating data structures, 489–491
organizing data in memory, 499–500
overview of, 473–474
querying module information, 478–480
querying module license, 500–501
relationships between, 488–489
removing, 505–506
representation of, 483–488
resolving references and relocation,

501–505
rewriting section addresses into absolute

values, 498–499
summary, 517
system calls for loading, 496–497
system calls for managing, 828
transferring data, 500
unresolved references and, 475–476
version control, 511–512, 515–516

modutils tool collection
depmod tool, 478
modinfo tool, 478
modprobe tool, 480–481

monolithic kernels, implementation
strategies, 3

mount points, 550
mounting/unmounting

automatic expirations of mounts, 563
directory trees, 549–552
Ex2 filesystem, 612–614

mount structures, 549–552
proc filesystem, 657–659
shared subtrees and, 558–562
sysfs filesystem, 695–697
system calls for mount system, 556–558
system calls for unmount system, 562–563

multitasking
context switching and, 102–105
kernel and processor and, 35
preemptive, 37

multithreading, 76
mutexes, 362–364
classical, 362–363
futexes (fast userspace mutexes), 357
overview of, 362
RT (real-time) mutexes, 363–364
semaphores compared with, 356

mutual exclusion, critical sections and, 349

N
named pipes
Ex2, 604
random access files and, 524
VFS, 521

namespaces
concepts, 47–49
implementation of, 50–52
methods for establishing, 49
network, 747–749
PID (process identification) and, 55–56
UNIX processes, 7
user namespace, 53–54
UTS namespace, 52–53
VFS, 541–542

NAPI (new API)
high-speed interfaces and, 764–765
implementing old API on top of, 768
IRQ handlers, 766–767
packet reception at network access layer,

760–763
poll functions, 765–766

1316

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1317

In
de

xnetworks

NAT (Network address translation), 778
natural alignment

C programming, 1202–1203
overview of, 1119

nefilter
activating hook functions, 783
hook functions, 779–781
overview of, 778–779
scanning hook table, 781–783

netlink, 810–816
data structures, 811
message format, 812–813
overview of, 810–811
programming interface, 814–816
protocol family, 811–812
protocol-specific operations, 814
specifying addresses, 811
tracking netlink connections, 813–814

network access layer, 754–768
data structures for network devices,

755–759
high-speed interfaces for packet reception,

763–765
IRQ handlers in packet reception, 765–768
old API and NAPI and, 768
overview of, 754
poll functions in packet reception,

765–766
receiving packets, 760
registering network devices, 759–760
representation of network devices, 755
sending packets, 768
traditional method for packet reception,

760–763
transition from network layer to, 775–776

Network address translation (NAT), 778
network byte order, numeric values and,

739
network cards, 401
network devices

accessing network cards, 401
data structures for, 755–759

registering, 759–760
representation of, 755

network filesystems, 520–521
network information, proc filesystem,

650–651
network layer, 768–785
activating hook functions, 783
defragmentation of packets, 772–773
fragmentation of packets, 776
hook functions, 779–781
hook table, 781–783
IPv4, 769–771
IPv6, 783–785
local delivery to transport layer, 773
netfilter, 778–779
in network reference models, 735–736
overview of, 768–769
packet forwarding, 774–775
receiving packets, 771–772
routing, 777–778
sending packets, 775
transition to network access layer,

775–776
networks, 733–817
application layer. See application layer
creating sockets, 738–740
data management using socket buffers,

750–754
datagram sockets, 744–745
echo client, 740–741
echo server, 742–744
kernel communication functions, 808–810
layer model in kernel, 745–747
linked computers, 734
namespaces, 747–749
netlink mechanism. See netlink
network access layer. See network access

layer
network layer. See network layer
networking from within kernel, 808
overview of, 733–734
socket buffers, 749–750

1317

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1318

networks (continued)

networks (continued)
sockets and, 18, 738, 740
summary, 817
TCP/IP reference model, 734–737
transport layer. See transport layer

new API. See NAPI (new API)
Newton-Raphson technique, 267
nodes

creating data structures for, 213–215
fallback lists, 138
initialization functions, 163–169
initializing data structures for, 209–210
managing, 138–139
radix trees, 959
RAM memory divided into, 136
state management, 139–140

nonlinear mappings
getting, 341
memory mappings, 318–322
vm_area_struct and, 304

non-uniform memory access. See NUMA
(non-uniform memory access)

NUMA (non-uniform memory access)
buddy system and, 215
machine options for memory management,

134–136
node and zone initialization, 163–169
overview of, 136–138
prerequisites for initialization of memory

and, 162
zone-specific data and, 147

O
object management, 22–25

generic kernel objects, 22–24
operations, 22
reference counting and, 25
sets of objects, 24–25

objects
time management, 911
VFS, 547–548

objects, slab allocator
allocating, 276–279
freeing, 280–282
object poisoning, 265

offsets, virtual address space and, 12
on-disk and in-memory representation

(Ext3), ACLs, 726–727
one-shot clock event devices, 896, 917
online resources, for kernel development,

1272–1273
open source licenses, Linux, 473–474
Open Systems Interconnection (OSI),

734–735
operating systems (OSs), implementation

strategies, 3
operations, 565–572
address spaces, 961–966
block devices, 408–409, 420
buffer cache, 976–977
character devices, 407–408
dentry cache, 545–546
device files, 407
do_follow_link, 569–570
do_lookup, 568–569
file representation and, 525–526
inodes, 529–531, 565–567
integer counters, 352–353
netlink, 814
not mixing classic and atomic, 352
opening, 570–571
overview of, 565
overview of file operations, 537–540
page cache, 969–970
proc files, 679–680
reading/writing, 571–572
socket buffers, 752
sockets, 803–804

operations, Ex2
address space, 637
allocating data blocks, 619–621
allocating inodes, 630–634
classic directory allocation, 634

1318

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1319

In
de

xpage cache

creating inodes, 628–630
creating new reservations, 626–628
deleting inodes, 634–636
finding data blocks, 615–616
handling pre-allocation, 621–626
mounting/unmounting, 612–614
overview of, 610–611
registering inodes, 630
removing data blocks, 636
requesting new data blocks, 616–619

operations, sysfs
directory traversal, 703
opening files, 698–702
overview of, 697–698
read/write, 702–703

operations, VFS, 548–564
automatic expirations of mounts, 563
mount structures, 549–552
mount system calls, 556–558
registering filesystems, 548–549
shared subtrees, 558–562
superblock management, 552–556
unmount system calls, 562–563

optimization, C programming
common subexpression elimination

technique, 1189–1190
dead code elimination technique,

1190–1192
loop optimization, 1187–1189
overview of, 1185
simplification, 1185–1187

optimization, compiler phases and, 1175
optimization and memory barriers, IPC,

359–361
preemption mechanisms, 360
reorder instructions, 359–360

ordered mode, Ex3, 638
Orlov allocation, 630–634
OSI (Open Systems Interconnection),

734–735
OSs (operating systems), implementation

strategies, 3

P
packet command carriers, 429
packet filtering, netfilter, 778
packet forwarding, network layer, 774–775
packet mangling, 778
packets, network access layer
high-speed interfaces for packet reception,

763–765
IRQ handlers in packet reception, 765–768
old API and NAPI and, 768
poll functions in packet reception, 765–766
receiving, 760
sending, 768
traditional method for packet reception,

760–763
packets, network layer
defragmentation of, 772–773
forwarding, 774–775
fragmentation of, 776
local delivery to transport layer, 773
receiving, 771–772
routing, 777–778
sending, 775
transition to network access layer,

775–776
PAE (page address extension), 134
page cache, 950–954, 966–974
address spaces and, 956
allocating pages, 966–967
defined, 950
finding pages, 967–968
implementing, 966
linking buffers and pages, 977–979
managing/finding cached pages, 951–952
overview of, 20
readahead, 970–974
reading whole pages into buffers, 979–981
structure of, 950–951
summary, 988
waiting on pages, 968–969

1319

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1320

page cache (continued)

page cache (continued)
whole page operations, 969–970
writing back modified data, 952–953
writing whole pages into buffers, 981–982

page faults. See also swap-page faults
allocation of physical memory, 16
anonymous pages, 339
correcting userspace page faults, 336–337
COW (copy-on-write) technique, 339
defined, 64
demand allocation/paging, 337–339
handling, 289, 330–336, 1029–1030
kernel page faults, 341–343
nonlinear mappings, 341

page flags, 151–153
page frames

allocation control for page selection,
225–231

allocation of discontiguous pages in the
kernel, 244–245

architecture-independent page flags,
151–153

defined, 11
definition of struct page and, 149–151
freeing pages, 240–244
grouping pages by mobility, 201–203
helper functions for page selection,

223–225
hot-n-cold pages, 146–148
linking buffers and pages, 955
overview of, 148–149
page tables and, 154
removing selected pages, 231–234
reserving, 222–223
zones and, 138

page global directory (PGD), 12
page middle directory (PMD), 12
page reclaim

activating swap areas, 1036–1039
allocation of physical memory, 16
characterization of swap areas, 1031–1033
controlling scanning, 1062–1064

creating swap areas, 1035–1036
data structures, 1055–1057
data structures for swap areas, 1030–1031
designing page reclaim and swap

subsystem, 1027–1028
determining page activity, 1057–1062
extents for non-contiguous swap areas,

1033–1035
freeing memory by reducing cache, 1030
handling page faults, 1029–1030
implementing zone shrinking, 1064–1065
isolating LRU pages and lumpy reclaim,

1065–1068
managing swap areas, 1030–1039
memory reclaim, 1086–1092
memory utilization and, 1029
overview of, 1052–1055
performing, 1075–1078
questions to answer when, 1024
reclaiming inactive pages, 1072–1074
selecting pages to be swapped out, 1029
shrinking caches/caching, 1092–1095
shrinking list of active pages, 1068–1072
shrinking zones and, 1062
swap areas. See swap areas
swap cache. See swap cache
writing data back, 1051–1052

page slots, reserving in swap areas,
1046–1049

page status, data synchronization
structures, 996–997

page table entry. See PTE (page table entry)
page tables
breaking down virtual addresses, 154–156
creating/manipulating entries, 161
data structures, 154
defined, 12
format of, 156–158
functions for analyzing page table entries,

157
initialization functions, 175–176

1320

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1321

In
de

xpermissions

mapping virtual address space to physical
address space, 11–13

memory management, 1137
overview of, 153–154
PTE-specific entries, 158–161

page thrashing, 1025
page trees. See also radix trees

address spaces, 958–961
address spaces and, 958–961

page vectors, page reclaim data structures,
1055–1056

pages
physical. See page frames
virtual address spaces, 11

page-swapping algorithms, 1026–1027
paging. See swapping
PAL (privileged architecture level)

Alpha CPUs, 1129
system calls and, 834

parallel interfaces, 394
parameters

data synchronization, 1000
system calls for passing, 833–834

parent processes
task relationships, 62
tree structure for resource management,

443
parse trees, 1175
parsing, compiler phases, 1175
partitions

adding to system, 423–425
addressing via device files, 398
generic, 417–420

passive connections, TCP, 792–793
patch tool, 1164–1165
patches

development trees and, 1268
origin of, 1279–1281
overview of, 1273
submitting to mailing list for review,

1277–1278
path length, indirection, 616

PCI (peripheral component interconnect),
454–463

address space, 455
configuration information, 456
data structures, 458
device management, 459–461
driver functions, 461
implementing in kernel, 457
layout of, 455–457
overview of, 393, 454–455
registering drivers, 462–463
representation of buses, 458–459

pdflush mechanism
components of, 993
overview of, 991–993
performing work with, 995
thread initialization, 994

per-CPU cache. See hot-n-cold pages
per-CPU counters, 364–365
per-CPU variables, 27
periodic flushing, data synchronization, 996
periodic scheduler, 99–100
periodic ticks
CFS class, 114–115
dynamic ticks compared with, 934
emulation in high-resolution timers,

931–932
handler for, 936–937
stopping/starting, 939–943

peripheral component interconnect. See PCI
(peripheral component interconnect)

peripherals
buses for connecting CPUs to, 393
I/O memory mapping and, 395
I/O ports for interacting with, 393–394
polling and interrupts and, 395–396
types of peripheral devices, 17–18

permissions
ACLs (access control lists) and, 724–726
Ext3, 731–732
IPC permissions, 376
VFS, 578–581

1321

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1322

persistent mappings

persistent mappings
address space division, 177, 179
kernel memory mappings, 251–255

persistent sockets, Ex2, 604
PGD (page global directory), 12
physical address space, 188
physical memory, 199–256

allocation control for page selection,
225–231

allocation macros, 220–222
allocation masks, 216–220
allocation of, 13–16
allocation of discontiguous pages in the

kernel, 244–245
alternatives to vmalloc, 250
avoiding fragmentation, 201
buddy system allocator API, 215–216
creating data structures, 210–213
creating vm_area, 247–248
data structure of buddy system, 204–205
data structures for each node, 213–215
data structures of vmalloc, 245–246
freeing memory, 250–251
freeing pages, 240–244
global variables and auxiliary functions,

205–207
grouping pages by mobility, 201–203
helper functions for page selection,

223–225
initializing mobility-based grouping,

207–208
initializing zone and node data structures,

209–210
kernel mappings, 251
mapping functions without highmem

capacity, 256
mapping virtual address space to, 10–11
memory areas, 248–250
page tables and, 11–13
persistent kernel mappings, 251–255
removing selected pages, 231–234
reserving pages, 222–223

_rmqueue helper function, 234–240
structure of buddy system, 199–201
temporary kernel mappings, 255–256
virtual movable zone, 208–209
vmalloc, 245

physical structure, Ex2, 585–588
PID (process identification)
fork mechanism and, 6
functions for manipulating, 59–61
generating unique, 61–62
managing, 55–59
selecting process-specific data by, 668
types of identifiers, 54–55

pid allocator, 55
pipes, IPC (inter-process communication),

389
PIT (programmable interrupt timer)
ADM64 systems and, 897
overview of, 895

PMD (page middle directory), 12
pointers (ptr)
arithmetic with, 1200
RCU protected, 357–358
type conversion, 1201–1202

policies, scheduler, 36, 88–89
poll functions, in packet reception,

765–766
polling, interacting with peripherals,

395–396
portability, kernel development and,

1276
Portable Operating System Interface for

UNIX. See POSIX (Portable Operating
System Interface for UNIX)

ports. See I/O (input/output) ports
POSIX (Portable Operating System Interface

for UNIX)
real-time scheduling class supported by

Linux, 117–118
signal handling and, 386
system calls, 17
system calls and, 821–822

1322

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1323

In
de

xprocesses

PowerPC systems
architecture of, 1132–1133
clock sources, 912
system calls and, 834

pre-allocation
handling in Ex2, 621–626
mechanism for, 606–608

preemption counters, 128
preemption mechanisms, IPC, 360
preemptive multitasking

defined, 37
overview of, 40–41

preprocessing, in compiler phases, 1175
pre-processor tricks, C programming,

1206–1207
prerequisites, initialization of memory

management, 162
presentation layer, in OSI model, 736
priorities, scheduler

computational, 94–96
kernel representation of, 93–94
load weights and, 96–98
overview of, 93

priority inheritance, 363
priority inversion, 95, 363
priority scheduling, 84

defined, 99
processes, 36–38, 88

priority search trees
overview of, 302
representing, 304–305

private mounts, 559
privilege levels, address spaces and, 8–10
privileged architecture level (PAL)

Alpha CPUs, 1129
system calls and, 834

proc filesystem, 644–680
content categories, 644–645
creating/registering proc entities, 660–663
data structures, 652
file operations, 679–680
finding proc entities, 663

general system information, 648–650
initialization functions, 655–657
inodes, 654–655
mounting, 657–659
network information, 650–651
overview of, 643–644
processing files, 668–671
process-specific data, 645–648
reading/writing information, 664–666
representation of proc entries, 652–654
selecting process-specific information by

PID, 668
self directory, 666–668
sysctls data structures, 673–677
sysctls registration, 678–679
sysctls static tables, 677–678
system control parameters, 651–652
system controls, 671–672
task-related information, 666
using sysctls, 672–673

procedure calls, C programming,
1180–1185

processes
containers for, 48
family relationships, 62–63
finding current, 1138–1139
groups, 54
identifying. See PID (process identification)
implementation of namespaces, 50–52
interprocess communication. See IPC

(inter-process communication)
life-cycle of, 38–40
managing, 35–36, 826–827
namespaces, 47–49
prioritizing, 36–38
representation of, 41–47
resource limits, 46
scheduling. See schedulers
states, 38–40
summary, 132
system calls. See system calls
task relationships, 62–63

1323

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1324

processes (continued)

processes (continued)
task switching and scheduling, 4
time management for, 947–948
types of, 47
UNIX processes, 4–7
user namespace, 53–54
UTS namespace, 52–53
wait queues for putting to sleep, 883–886
wait queues for waking, 886–887

process-specific data, proc filesystem
overview of, 645–648
selecting by PID, 668

program header, ELF
data structure for, 1254–1255
overview of, 1242
table for, 1244–1246

programmable interrupt timer (PIT)
ADM64 systems and, 897
overview of, 895

programming interfaces
debugfs, 687–688
netlink, 814–816
VFS, 523–524

programs, system calls starting new, 79–83
properties

block device core properties, 415–417
I/O schedulers, 440–441
real-time scheduling class, 118

proprietary hardware, USB and, 465
protected mode, initialization of memory

and, 169
protocols, netlink

protocol family, 811–812
protocol-specific operations, 814

pseudo filesystems, 563–564, 689
PTE (page table entry)

creating/manipulating entries, 161
defined, 12
elements, 158–161
functions for analyzing, 157

functions for processing
architecture-dependent state of
memory, 160

ptrace, 840–846

Q
quadratic hashing, 634
queries
module information, 478–480
module licenses, 500–501

queue plugging, block devices, 436–437
queues
request queues. See request queues
run queues. See run queues
waiting on congested, 1012–1013
work queues, 889–891

R
race conditions, IPC, 348–349
radix trees
address spaces and, 958
C programming and, 1216–1221
elements, 960–961
example of, 951–952
locking, 961
nodes, 959
tags, 959–960

RAM. See also physical memory
allocation of, 13–16, 133–134
backing stores and, 989
Ex2 data structures in memory, 604–606
I/O memory and, 445
page cache and, 950
page reclaim. See page reclaim
page tables and, 154

random access files, 524
RB (red-black) trees
as binary search trees, 299
C programming and, 1214–1216
data structures, 85

1324

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1325

In
de

xregistration

RCU (read-copy update), 357–359
core API and, 357–358
list operations, 358–359
overview of, 357

read memory barrier, 359
readahead

algorithms, 413
page cache, 970–974
swap-page faults and, 1085–1086

read-copy update. See RCU (read-copy
update)

readelf tool, 1242
readers, RCU and, 358
reader/writers locks

IPC locks, 361
overview of, 351

read/write operations
asynchronous reading, 574
block devices, 421–423
character devices, 412
generic read routine, 573–574
proc filesystem, 664–666
reading from mappings, 574–576
sysfs filesystem, 702–703
VFS files, 571–572
whole pages into buffers, 979–982

real-time (RT) mutexes, 363–364
real-time scheduling class, 117–121

data structures, 118–119
operations, 119–121
overview of, 117–118
properties, 118

real-time timers, 946–947
receiving packets

high-speed interfaces for packet reception,
763–765

IRQ handlers in packet reception, 765–768
network access layer, 760
network layer, 771–772
poll functions in packet reception, 765–766
traditional method, 760–763
transport layer, 795–796

records, audit record formats, 1104
red zoning, slab allocator and, 265
red-black (RB) trees
as binary search trees, 299
C programming and, 1214–1216
data structures, 85

reference counters
C programming language, 1200–1201
object management and, 25

references
handling unresolved references for

modules, 475–476
relationships between modules, 488–489
resolving references and relocation,

501–505
unresolved, 514

regions
associating virtual addresses with,

306–308
creating, 310–312
inserting, 309–310
merging, 308–309
overview of, 306
representing, 300–302

register transfer language (RTL), 1175,
1179

registration
active memory regions, 186–188
block devices, 406
bus system, 452–454
cache shrinkers, 1092
character devices, 405–406
filesystems, 548–549
inodes (Ex2), 630–636
interrupts, 866
IRQs, 864–865
network devices, 759–760
PCI drivers, 462–463
proc entries, 660–663
sysctls, 678–679
sysfs subsystems, 704–706
tasklets, 880–881

1325

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1326

Reiserfs

Reiserfs, 528
relationships, between modules, 488–489
relative addresses, relocatable files and,

475
releasing pages, 989
relocatable modules, 475
relocation entries, ELF, 1259–1263

data structures, 1261–1262
overview of, 1259–1261
relative displacement example, 1262–1263
relocation types, 1262

reorder instructions, memory and
optimization barriers and, 359–360

Request for Comments (RFCs), 737
request management queues, block

devices, 413–415
request queues

block devices, 421–423
hardware characteristics of, 424
I/O scheduler managing, 439–440
queue plugging, 436–437

reservations, creating in Ex2, 626–628
resource limits (rlimit), 45–47

overview of, 45–46
process-specific, 46–47

resource manager, kernel as, 2
resource reservations

I/O memory and, 445–446
I/O ports and, 446–448
overview of, 442
requesting/releasing resources, 444
tree data structure for managing, 442–444

return values, system calls, 835–837
reverse mapping, 322–327

benefits of, 289
creating, 324–325
data structures, 323–324
overview of, 322–323
swap cache and, 1040
using, 325–326

review process, kernel development and,
1277–1281

RFCs (Request for Comments), 737
RISC machines, 1129
rlimit (resource limits), 45–47
overview of, 45–46
process-specific, 46–47

.rmb(), 359
_rmqueue helper function, buddy system,

234–240
ROM, 445
routing, 777–778
routing tables, 774
RT (real-time) mutexes, 363–364
RTL (register transfer language), 1175,

1179
rules, audit, 1104–1106
run queues
defined, 85
manipulating, 112–113
overview of, 91–92
scheduling domains and, 123

running state, processes, 38–39
rwlock_t, 361

S
SBus, 393
scan operations, shrinking zones and,

1062–1064
scanning, compiler phases, 1175
sched.h, 41–43
schedulable entities, 88, 126
schedule function, 84
schedulers
CFS class. See CFS (completely fair

scheduling)
computational priorities, 94–96
context switching and, 102–105
data structures, 86–87
elements in task structure of processes

and, 87–89
enhancements, 121
entity data structure, 92–93

1326

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1327

In
de

xsemaphores. See also mutexes

fork mechanism and, 102
group and domain scheduling, 126–127
I/O schedulers, 438–441
kernel preemption and, 127–131
Lazy FPU mode and, 105–106
load weights in prioritization, 96–98
low latency and, 131–132
main scheduler, 100–101
overview of, 83–86
periodic scheduler, 99–100
priorities and, 93
process scheduling, 4, 16
real-time scheduling class. See real-time

scheduling class
representation of priorities in kernel, 93–94
run queues, 91–92
scheduling domains, 123, 126–127
SMP scheduling, 121–126
system calls for managing, 827–828
tasks of, 36
types of, 37–38

scheduling classes
operations performed by, 90–91
overview of, 87

scheduling entities
CFS (completely fair scheduling) and, 38
data structure of, 92–93

SCSI (Small Computer System Interface)
expansion buses, 392
overview of, 393

search tags, 952
second chance algorithm, page-swapping,

1026
second extended filesystem (Ex2),

584–637
ACLs (access control lists) and, 732
address space operations, 637
allocating data blocks, 619–621
classic directory allocation, 634
creating filesystem, 608–610
creating reservations, 626–628
creating/deleting inodes, 628–630

data structures, 592
data structures in memory, 604–606
deleting inodes, 634–636
directories and files, 601–604
extended attributes, 721–722
finding data blocks, 615–616
fragmentation and, 591
group descriptors, 597–599
handling pre-allocation, 621–626
indirection, 588–591
inodes, 599–601
introduction to, 583–584
mounting/unmounting, 612–614
operations, 610–611
Orlov allocation of inodes, 630–634
overview of, 584–585
physical structure, 585–588
pre-allocation mechanism, 606–608
registering inodes, 630
removing data blocks, 636
requesting new data blocks, 616–619
summary, 642
superblocks, 592–597

section addresses, modules
finding, 499
rewriting binary code into absolute values,

498–499
section header, ELF
data structure for, 1255–1257
overview of, 1242
table for, 1246–1248

sections, ELF, 1242, 1246–1248
sectors, 413
segmentation faults, 64
self directory, proc filesystem, 666–668
semaphores. See also mutexes
completions compared with, 887
kernel space, 355–357
overview of, 351
reader/writers locks, 361
resolving IPC problems with, 350
userspace. See semaphores, System V

1327

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1328

semaphores, System V

semaphores, System V
data structures, 369–375
IPC permissions, 376
overview of, 367–369
system calls, 375

sending packets
network access layer, 768
network layer, 775
transport layer, 796–797

sending signals, 387–388
sequential file interface

connecting with VFS, 684
overview of, 680
writing sequential file handlers, 681–684

serial interfaces, 394
session layer, in OSI model, 736
sessions, process groups combined in, 54
setitimer system call, 945
shared libraries, 83
shared mappings, 301
shared memory, System V, 380–381
shared mounts, 558
shared subtrees, VFS, 558–562
shrinkers, cache

data structures, 1092
registering/removing, 1092
shrinking caches with, 1093–1095

sibling processes, tree structures for
resource management, 443

signals
data structures for signal handling,

383–386
default actions for standard, 385
implementing signal handlers, 382–383
overview of, 381–389
processing signal queue, 388–389
sending, 387–388
system calls for implementing signal

handling, 386–387
system calls for managing signal handling,

827
simple file system, 680–689

simplification, C optimization techniques,
1185–1187

single indirect blocks, 590
slab allocator, 256–285
allocating objects, 276–279
alternative allocators to, 258–259
chicken-and-egg problem, 270
creating caches, 271–276
data structures for implementing, 266–270
destroying caches, 283
fineness of cache structure and, 261–262
fineness of slab structure and, 262–265
freeing objects, 280–282
general caches, 283–285
growing the cache, 279–280
implementing, 265
initializing, 270–271
memory management in kernel and,

259–261
overview of, 256–258
principle of, 261

slab cache
allocation of physical memory, 15
buffer head and, 976
creating, 271–276
destroying, 283
fineness of cache structure, 261–262
general caches, 283–285
growing, 279–280
processor cache and TLB control,

285–287
shrinking, 1092

slave mounts, 558
sleeping state, processes, 38–39
slob allocator
alternatives to slab allocator, 258
shrinking slob cache, 1092

slow path, TCP connections, 795
slub allocator
allocation of physical memory, 150
alternatives to slab allocator, 258
shrinking slub cache, 1092

1328

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1329

In
de

xsparse superblock technique

Small Computer System Interface (SCSI)
expansion buses, 392
overview of, 393

SMP scheduling, 121–126
core scheduler changes, 125–126
extensions to data structures, 122–124
migration thread, 124–125
overview of, 121–122

SMP systems
system start, 163
timers and, 898

socket buffers
data management elements, 753–754
operations on, 752
overview of, 749–750
pointers for managing protocol headers,

750–753
socketcall system call, 804–806
sockets

creating, 738–740
data management using socket buffers,

750–754
datagram sockets, 744–745
echo client, 740–741
echo server, 742–744
Ex2, 604
IPC, 389–390
networks and, 18
TCP and, 790
UDP and, 786–787
using, 740

sockets, application layer
creating, 805–807
data structures, 799–803
socketcall system call, 804–806
sockets and files, 803–804

soft links, 523
soft real-time processes, 36
softIRQs

completions, 887–888
handler for, 767–768
overview of, 847, 875–877

softIRQ daemon, 878–879
starting softIRQ processing, 877–878
tasklets, 879–882
wait queues, 882–887
work queues, 889–891

software I/O mapping, 445
source code
attributes, 1151
configuration options, 1148–1150
DDD (Data Display Debugger), 1171–1172
debugging and analyzing the kernel,

1169–1170
dependencies, 1151–1152
diff tool, 1163–1164
examining local kernel, 1171–1172
GDB (Gnu debugger), 1170–1172
Git tool, 1165–1169
kbuild for compiling the kernel,

1154–1156
Kconfig for configuring, 1143
KGDB, 1172–1173
language elements of kconfig, 1147
LXR cross-referencing tool, 1161–1163
Makefiles component, 1156–1160
menu specification, 1147–1148
online resources for kernel development,

1272–1273
organization of, 1141–1143
overview of, 1141
patch tool, 1164–1165
phases in translating to machine code,

1176–1180
processing configuration information,

1152–1154
sample configuration file, 1143–1147
summary, 1174
tools for working with, 1160
UML (User-Mode Linux), 1173–1174

source navigation, LXR cross-referencing
tool, 1162

Sparc64 systems, 1128–1129
sparse superblock technique, 587

1329

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1330

spinlock_t

spinlock_t, 354
spinlocks, 353–355

data structures for, and use of,
354–355

kernel preemption and, 128
overview of, 351
protecting code sections with, 353
reader/writers locks, 361
semaphores compared with, 356

standard functions, VFS, 572–581
asynchronous reading, 574
fault mechanism, 576–578
generic read routine, 573–574
overview of, 572–573
permission-checking, 578–581
reading from mappings, 574–576

starting tracing, system calls, 843
states, process, 38–40
stopping tracing, system calls, 845
strace, 821–822, 838–840
streams, file communication and, 524
string processing, kernel architecture and,

1120–1121
string tables, ELF

data structure for, 1257
overview of, 1249–1250

stringification, 1206
struc pid, 56–57
struct file, 534–535
struct mm_struct, 298
struct module, 483–488
struct page

definition of, 149–151
page frames and, 148–149

struct upid, 56–57
subexpressions, common subexpression

elimination, 1189–1190
submission process, kernel development

and, 1277–1281
submitting requests, block devices,

432–436
subnets, TCP/IP reference model, 736

subsystems
data types, 1118
Makefile for, 1158–1160
sysfs, 704–706
system startup, 1225–1226

superblocks
data synchronization, 1002
defined, 588
Ex2, 592–597, 612
inodes, 1003–1006
managing, 552–556
sparse superblock technique, 587

swap areas
activating, 1036
characterization of, 1031–1033
creating, 1035–1036
data structures for, 1030–1031
extents for non-contiguous, 1033–1035
extents list for, 1038–1039
managing, 1030–1039
organization of, 1028
reading swap area characteristics,

1037–1038
swap cache
adding new pages to, 1045–1046
allocating swap space, 1049
caching swap pages, 1050
identifying swapped-out pages, 1041–1044
overview of, 1039–1041
reserving page slots, 1046–1049
searching for a swap pages, 1050–1051
structure of, 1044–1045

swap tokens
overview of, 1079–1082
page thrashing and, 1025

swap_writepage function, 1051–1052
swap-page faults, 1082–1086
overview of, 1082
readahead, 1085–1086
reading the data, 1084–1085
swapping, 1082–1086
swapping pages in, 1083–1084

1330

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1331

In
de

xsystem calls

swapped-out pages, identifying, 1041–1044
swapping

activating swap areas, 1036–1039
allocation of physical memory, 15
characterization of swap areas, 1031–1033
creating swap areas, 1035–1036
data structures for swap areas, 1030–1031
designing page reclaim and swap

subsystem, 1027–1028
extents for non-contiguous swap areas,

1033–1035
freeing memory by reducing cache, 1030
handling page faults, 1029–1030
managing swap areas, 1030–1039
memory utilization and, 1029
overview of, 1023–1024
page thrashing and, 1025
pages, 989
page-swapping algorithms, 1026–1027
questions to answer when, 1024
selecting pages to be swapped out,

1029
swap-page faults, 1082–1086
synchronization compared with, 990
types of swappable pages, 1024–1025

switch_to, 104
symbol tables, ELF

data structure for, 1257–1259
overview of, 1248–1249

symbolic links, 522–523, 603
symbols

exporting symbols, 493–494
resolving, 502–505

synchronization of data. See data
synchronization

synchronous interrupts, 848
synchronous reads, 578–581
sysctls

data structures, 673–677
overview of, 671–672
parameters, 651–652
registering, 678–679

static tables, 677–678
using, 672–673

sysfs filesystem, 689–706
attributes, 693–695
data structures, 690
directory entries, 690–693
directory traversal, 703
file and directory operations, 697–698
mounting/unmounting, 695–697
opening files, 698–702
overview of, 643–644, 689–690
populating, 704
read/write operations, 702–703
registering subsystems, 704–706
summary, 706

system buses, 396
system calls, 63–83, 819–846
access to userspace and, 837–838
available, 826–830
call tables and, 834–835
categories of, 17
copying processes (copy_process function),

68–75
COW (copy-on-write) technique and, 64–65
data synchronization and, 1016
do_fork implementation, 66–67
executing, 65–66
exiting processes, 79–83
extended attributes (xattrs) and, 710–712
fork for process duplication, 63–64
handler functions, 830–832
kernel architecture and, 1120
loading modules, 496–497
mount system, 556–558
overview of, 63, 819
parameter passing, 833–834
ptrace, 840–846
restarting, 824–826
return values and, 835–837
signal handling and, 386–387
socketcall, 804–806
standards supported, 823–824

1331

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1332

system calls (continued)

system calls (continued)
starting new programs, 79–83
strace, 838–840
structure of, 830
summary, 846
switching between user and kernel mode, 9
system programming and, 820
thread generation, 75–77
threads and, 77–79
timer-related, 944–947
tracing and, 820–822, 843, 845
unmount, 562–563
VFS files, 538–539
VFS programming interface and, 523–524

system calls, for auditing, 1110–1116
access vector cache auditing, 1114–1115
audit context allocation, 1110–1111
standard hooks, 1115–1116
system call events, 1112–1114

system controls. See sysctls
system devices, accessing, 401
system errors, searching for, 1232–1233
system information
proc filesystem, 648–650
system calls for managing, 829

system management, kernel issues related
to, 35–36

system programming, 820
system security, 829–830
system settings, 829
system startup, 1223–1239

architecture-specific setup, 1226–1227
command-line arguments, 1227–1228
driver setup, 1234–1237
high-level initialization, 1225
IA-32 systems, 1224–1225
init thread, 1233–1234
initialization functions, 162–163
initializing central data structures and

caches, 1228–1232
overview of, 1223
removing initialization data, 1237–1238

searching for system errors, 1232–1233
subsystem initialization, 1225–1226
summary, 1239
userspace initialization, 1238–1239

system trace. See tracing system calls
System V
interprocess communication and, 347
IPC mechanisms, 366–367
IPC permissions, 376
message queues, 376–380
overview of, 366
semaphore data structures, 369–375
semaphore system calls, 375
semaphore use, 367–369
shared memory, 380–381

T
tags, radix trees, 959–960
tags, search tags, 952
task switching
processes and, 4
scheduler and, 87
scheduler policy compared with, 36

task_struct data structure
code listing, 41–43
exit_state element, 44
extension for auditing, 1100–1104
resource limits, 45–47
sections of, 44
state element, 44

tasklets, 879–882
executing, 881–882
generating, 880
overview of, 879–880
registering, 880–881

tasks
elements in process task structure, 87–89
proc filesystem, 666
process management and, 62–63
relating task structures to namespaces,

59–62

1332

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1333

In
de

xtime subsystem

tasks, CFS class
handling new tasks, 116–117
selecting next task, 113–114

TCP (Transmission Control Protocol)
active connections, 793–794
connection termination, 797–798
overview of, 787–788
passive connections, 792–793
receiving packets, 795–796
receiving TCP data, 790–791
sending packets, 796–797
TCP headers, 788–789
three-way handshake, 791–792
transmitting packets, 794
UDP compared with, 744–745

TCP/IP reference model, 734–737
technical issues, kernel development and,

1273
telnet tool, 737
temporary kernel mappings, 255–256
text segment, binary format handlers, 82
TGID (thread group ID), 54
third extended filesystem (Ex3), 637–642

concepts, 638–639
data structures, 639–642
data structures for ACLs, 726–727
implementing ACLs, 726
inode initialization, 727–729
introduction to, 583–584
listing extended attributes, 720–721
log records, handles, and transactions, 639
modifying ACLs, 730–731
overview of, 637–638
permission-checking, 731–732
retrieving ACLs, 729–730
retrieving extended attributes, 716–719
setting extended attributes, 719–720
summary, 642
switching between on-disk and in-memory

representation, 727
writeback mode, 964

thread group ID (TGID), 54

threads
data synchronization, 993
initializing, 994–995
program execution and, 6–7
representation of, 1122
system calls generating, 75–77

three-way handshake, TCP, 791–792
thresholds, congestion, 1010–1011
tick devices
overview of, 908
time subsystem, 916–920

tickless systems, 933
ticks
dynamic ticks. See dynamic ticks
periodic. See periodic ticks

time bases, 944–945
time management, 893–984
broadcast mode and, 943–944
configuration options, 896
dynamic ticks. See dynamic ticks
dynamic timers. See dynamic timers
generic time subsystem. See time

subsystem
getting current time, 947
high-resolution timers. See high-resolution

timers
implementing timer-related system calls,

944–947
kernel and, 16
low-resolution timers. See low-resolution

timers
managing process times, 947–948
overview of, 893
representation of time, 910–911
summary, 948
system calls, 827
types of timers, 893–896

time ordering, 359–360
time stamp counter (TSC), 912
time subsystem, 907–920
clock event devices, 914–916
clock sources, 911–913

1333

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1334

time subsystem (continued)

time subsystem (continued)
configuration options, 909–910
objects for time management, 911
overview of, 907–909
representation of time, 910–911
tick devices, 916–920

time-based deferral of tasks, 893
time-outs, 895
timer wheel timers. See low-resolution

timers
timers

dynamic. See dynamic timers
high-resolution. See high-resolution timers
low-resolution. See low-resolution timers
setting, 925–926
types of, 893–896

TLB (Translation Lookaside Buffer)
defined, 13
processor cache and, 285–287

tools
DDD (Data Display Debugger),

1171–1172
debugging and analyzing the kernel,

1169–1170
diff tool, 1163–1164
examining local kernel, 1171–1172
GDB (Gnu debugger), 1170–1172
Git tool, 1165–1169
KGDB, 1172–1173
LXR cross-referencing tool, 1161–1163
overview of, 1160
patch tool, 1164–1165

tracing system calls, 820–822
ptrace, 840–846
starting tracing, 843
stopping tracing, 845
strace, 838–840

traditional method, receiving packets,
760–763

transactions, Ex3
overview of, 639
saving in journal, 638

Translation Lookaside Buffer (TLB)
defined, 13
processor cache and, 285–287

Transmission Control Protocol. See TCP
(Transmission Control Protocol)

transmitting packets, TCP, 794
transparent proxy, 778
transport layer, 785–799
active connections, 793–794
connection termination, 797–798
local delivery from network layer,

773
overview of, 736, 785
passive connections, 792–793
receiving packets, 795–796
receiving TCP data, 790–791
sending packets, 796–797
TCP, 787–788
TCP headers, 788–789
three-way handshake, 791–792
transmitting packets, 794
UPD, 785–787

trees
data structures, 299
kernel development process and,

1268
representation of device tree, 468–471
resource reservation management,

442–444
USB, 464, 468–471
VFS directory trees, 549–552
VFS shared subtrees, 558–562

triple indirection, 590
TSC (time stamp counter), 912
type definitions, data types, 26

U
UDP (User Datagram Protocol)
datagram sockets, 744–745
overview of, 785–787

UID (user identification), 47–48

1334

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1335

In
de

xVFS (virtual filesystem)

UMA (uniform memory access)
buddy system and, 215
machine options for memory management,

134–136
node and zone initialization, 163–169
overview of, 136–138
prerequisites for initialization of memory

and, 162
UML (User-Mode Linux), 1173–1174
uname system, 47
unbindable mounts, 559
unbounded priority inversion, 363
uniform memory access. See UMA (uniform

memory access)
units of measurements, conventions for,

7
Universal Serial Bus. See USB (Universal

Serial Bus)
UNIX processes, 4–7

fork and exec mechanisms, 6
init program, 4–6
namespaces, 7
threads, 6–7

UNIX Timesharing System (UTS) namespace
overview of, 52–53
running kernel an, 50

unresolved references, modules, 475–476
USB (Universal Serial Bus)

driver management, 466–468
expansion buses, 392
features and mode of operation,

463–466
hotplugging and, 509–510
overview of, 393, 463
representation of device tree, 468–471

User Datagram Protocol (UDP)
datagram sockets, 744–745
overview of, 785–787

user identification (UID), 47–48
user mode

preemptive multitasking and, 40–41
privilege levels and, 8–10

switching between user and kernel mode,
833

system call return values and, 835–837
user namespace, 53–54
userland
defined, 11
virtual address space, 289

User-Mode Linux (UML), 1173–1174
userspace
copying data between kernel and, 344–345
correcting userspace page faults, 336–337
data type access to, 27
defined, 11
divisions of virtual address space, 7–8
initialization, 1238–1239
semaphores. See semaphores, System V
system calls accessing, 837–838

UTS (UNIX Timesharing System) namespace
overview of, 52–53
running kernel an, 50

V
vanilla kernels, 1268
vendor ID, configuring PCI devices, 456
version control, modules
elementary, 495–496
functions, 515–516
overview of, 511–512

vfork

executing system calls and, 65
process duplication with, 64

VFS (virtual filesystem), 519–581
associated files, 532–536
asynchronous reading, 574
automatic expirations of mounts, 563
common file model, 521
components of, 525
connecting sequential files, 684
connecting with, 689
dentry cache organization, 544–545
dentry operations, 545–546

1335

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1336

VFS (virtual filesystem) (continued)

VFS (virtual filesystem) (continued)
dentry standard functions, 546–547
dentry structure, 542–544
device files and, 406
directory entry cache, 542
directory information, 540–541
do_follow_link function, 569–570
do_lookup function, 568
fault mechanism, 576–578
file descriptors, 532–536
file operations, 537–540, 565
file representation, 525–526
files as a universal interface, 524–525
filesystem and superblock information,

526–527
filesystem types, 520
generic read routine, 573–574
inode lists, 531–532
inode operations, 529–531
inode structure, 527–529
inodes generally, 522
interface for extended attributes (xattrs) to,

708
links, 522–523
lookup mechanism for finding inodes,

565–568
mounting/unmounting directory trees,

549–552
namespaces, 541–542
opening files, 570–571
overview of, 18, 519–520
permission-checking, 578–581
programming interface, 523–524
pseudo filesystems, 563–564
reading from mappings, 574–576
read/write operations, 571–572
registering filesystems, 548–549
shared subtrees, 558–562
standard functions, 572–573
summary, 581
superblock information, 526–527
superblock management, 552–556

system calls for mount system, 556–558
system calls for unmount system, 562–563
type of filesystems, 520
working with VFS objects, 547–548

virtual address space
breaking down into parts, 154–156
defined, 7
division of, 181–183
mapping physical memory to, 10–11
page tables and, 11–13
setting up address space for AMD64

systems, 188–189
virtual address space, for processes
associating virtual addresses with regions,

306–308
creating layout, 294–296
layout of, 290–294
mapping, 312–314
overview of, 290

virtual clocks
CFS (completely fair scheduling) operations

and, 107–110
run queues and, 85–86

virtual filesystems
proc filesystem. See proc filesystem
VFS. See VFS (virtual filesystem)

virtual memory maps (VMMs), 190
virtual movable zone, 208–209
virtual process memory, 289–345
address spaces, mapping, 312–314
anonymous pages, 339
associating virtual addresses with regions,

306–308
copying data between kernel and

userspace, 344–345
correcting page faults, 336–337
COW (copy-on-write) technique and,

339
creating layout of address space, 294–296
creating memory mappings, 314–317
creating regions, 310–312
data structures, 298, 303–304

1336

Mauerer bindex.tex V1 - 09/05/2008 9:44am Page 1337

In
de

xzones, of memory

demand allocation/paging, 337–339
heap management, 327–329
inserting regions, 309–310
kernel page faults, 341–343
layout of address space, 290–294
memory mappings, 297–298, 314
merging regions, 308–309
nonlinear mappings, 318–322, 341
operations on regions, 306
overview of, 4, 289–290
page cache and, 950
page fault handling, 330–336
priority search trees, 302
regions, 300–302
removing memory mappings,

317–318
representing priority trees, 304–305
reverse mapping, 322–327
summary, 345
trees and lists, 299
virtual address space, 290

vm_area

allocating memory areas,
248–250

creating, 247–248
vm_area_struct

nonlinear mappings and, 304
regions as instances of, 299–300
representing priority trees, 304–305

vmalloc

address space division, 177–179
allocating memory areas, 248–250
alternatives to, 250
creating vm_area, 247–248
data structures, 245–246
freeing memory, 250–251

overview of, 245
VMMs (virtual memory maps) and, 190

VMMs (virtual memory maps), 190

W
wait queues, 882–887
congestion and, 1009
data structures, 882–883
putting processes to sleep, 883–886
waking processes, 886–887

waiting state, processes, 38–39
wake-up preemption, CFS class, 115–116
work queues, 889–891
write operations. See read/write operations
writeback
allocation of physical memory, 16
control structure, 998–999
Ex3, 638, 964
forced, 1013–1015
page cache and, 952–953
page reclaim and, 1051–1052
single inodes, 1006–1009

writers, RCU and, 358

Z
‘‘zombie state’’, processes, 39–40
zone modifiers, 216–218
zones, of memory
calculating watermarks, 144–146
data structures for, 209–210
implementing shrinking, 1064–1065
initialization functions, 163–169
overview of, 136–138, 140–144
shrinking, 1062
virtual movable zone, 208–209

1337

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 1 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

	Home Page

