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Introduction

UNi1x is simple and coherent, but it takes a genius
(or at any rate a programmer) to understand

and appreciate the simplicity.

— Dennis Ritchie

Note from the authors: Yes, we have lost our minds.
Be forewarned: You will lose yours too.
— Benny Goodheart & James Cox

UNix is distinguished by a simple, coherent, and elegant design — truly remarkable features that have
enabled the system to influence the world for more than a quarter of a century. And especially thanks
to the growing presence of Linux, the idea is still picking up momentum, with no end of the growth
in sight.

Uni1x and Linux carry a certain fascination, and the two quotations above hopefully capture the spirit of
this attraction. Consider Dennis Ritchie’s quote: Is the coinventor of UNix at Bell Labs completely right
in saying that only a genius can appreciate the simplicity of UN1x? Luckily not, because he puts himself
into perspective immediately by adding that programmers also qualify to value the essence of UNIX.

Understanding the meagerly documented, demanding, and complex sources of Unix as well as of Linux
is not always an easy task. But once one has started to experience the rich insights that can be gained from
the kernel sources, it is hard to escape the fascination of Linux. It seems fair to warn you that it’s easy
to get addicted to the joy of the operating system kernel once starting to dive into it. This was already
noted by Benny Goodheart and James Cox, whose preface to their book The Magic Garden Explained
(second quotation above) explained the internals of UN1ix System V. And Linux is definitely also capable
of helping you to lose your mind!

This book acts as a guide and companion that takes you through the kernel sources and sharpens your
awareness of the beauty, elegance, and — last but not least — esthetics of their concepts. There are, how-
ever, some prerequisites to foster an understanding of the kernel. C should not just be a letter; neither
should it be a foreign language. Operating systems are supposed to be more than just a ““Start” button, and
a small amount of algorithmics can also do no harm. Finally, it is preferable if computer architecture is not
just about how to build the most fancy case. From an academic point of view, this comes closest to the
lectures “’Systems Programming,” ““Algorithmics,” and ““Fundamentals of Operating Systems.” The pre-
vious edition of this book has been used to teach the fundamentals of Linux to advanced undergraduate
students in several universities, and I hope that the current edition will serve the same purpose.

Discussing all aforementioned topics in detail is outside the scope of this book, and when you consider
the mass of paper you are holding in your hands right now (or maybe you are not holding it, for this
very reason), you'll surely agree that this would not be a good idea. When a topic not directly related to
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the kernel, but required to understand what the kernel does, is encountered in this book, I will briefly
introduce you to it. To gain a more thorough understanding, however, consult the books on computing
fundamentals that I recommend. Naturally, there is a large selection of texts, but some books that I found
particularly insightful and illuminating include C Programming Language, by Brian W. Kernighan and
Denis M. Ritchie [KR88]; Modern Operating Systems, by Andrew S. Tanenbaum [Tan07] on the basics of
operating systems in general; Operating Systems: Design and Implementation, by Andrew S. Tanenbaum and
Albert S. Woodhull [TW06] on UNix (Minix) in particular; Advanced Programming in the Unix Environment,
by W. Richard Stevens and Stephen A. Rago [SR05] on userspace programming; and the two volumes
Computer Architecture and Computer Organization and Design, on the foundations of computer architecture
by John L. Hennessy and David A. Patterson [HP06, PH07]. All have established themselves as classics
in the literature.

Additionally, Appendix C contains some information about extensions of the GNU C compiler that are
used by the kernel, but do not necessarily find widespread use in general programming.

When the first edition of this book was written, a schedule for kernel releases was more or less nonexis-
tent. This has changed drastically during the development of kernel 2.6, and as I discuss in Appendix F,
kernel developers have become pretty good at issuing new releases at periodic, predictable intervals. I
have focused on kernel 2.6.24, but have also included some references to 2.6.25 and 2.6.26, which were
released after this book was written but before all technical publishing steps had been completed. Since a
number of comprehensive changes to the whole kernel have been merged into 2.6.24, picking this release
as the target seems a good choice. While a detail here or there will have changed in more recent kernel
versions as compared to the code discussed in this book, the big picture will remain the same for quite
some time.

In the discussion of the various components and subsystems of the kernel, I have tried to avoid over-
loading the text with unimportant details. Likewise, I have tried not to lose track of the connection with
source code. It is a very fortunate situation that, thanks to Linux, we are able to inspect the source of a
real, working, production operating system, and it would be sad to neglect this essential aspect of the
kernel. To keep the book’s volume below the space of a whole bookshelf, I have selected only the most
crucial parts of the sources. Appendix F introduces some techniques that ease reading of and working
with the real source, an indispensable step toward understanding the structure and implementation of
the Linux kernel.

One particularly interesting observation about Linux (and UNIx in general) is that it is well suited to
evoke emotions. Flame wars on the Internet and heated technical debates about operating systems may be
one thing, but for which other operating system does there exist a handbook (The Unix-Haters Handbook,
edited by Simson Garfinkel et al. [GWS94]) on how best to hate it? When I wrote the preface to the first
edition, I noted that it is not a bad sign for the future that a certain international software company
responds to Linux with a mixture of abstruse accusations and polemics. Five years later, the situation
has improved, and the aforementioned vendor has more or less officially accepted the fact that Linux has
become a serious competitor in the operating system world. And things are certainly going to improve
even more during the next five years. . . .

Naturally (and not astonishingly), I admit that I am definitely fascinated by Linux (and, sometimes, am
also sure that I have lost my mind because of this), and if this book helps to carry this excitement to the
reader, the long hours (and especially nights) spent writing it were worth every minute!

Suggestions for improvements and constrictive critique can be passed to wm@linux-kernel.net, or via

www . wrox . com. Naturally, I'm also happy if you tell me that you liked the book!
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What This Book Covers

This book discusses the concepts, structure, and implementation of the Linux kernel. In particular, the
individual chapters cover the following topics:

Q

Q

Chapter 1 provides an overview of the Linux kernel and describes the big picture that is investi-
gated more closely in the following chapters.

Chapter 2 talks about the basics of multitasking, scheduling, and process management, and
investigates how these fundamental techniques and abstractions are implemented.

Chapter 3 discusses how physical memory is managed. Both the interaction with hardware and
the in-kernel distribution of RAM via the buddy system and the slab allocator are covered.

Chapter 4 proceeds to describe how userland processes experience virtual memory, and the
comprehensive data structures and actions required from the kernel to implement this view.

Chapter 5 introduces the mechanisms required to ensure proper operation of the kernel on
multiprocessor systems. Additionally, it covers the related question of how processes can com-
municate with each other.

Chapter 6 walks you through the means for writing device drivers that are required to add sup-
port for new hardware to the kernel.

Chapter 7 explains how modules allow for dynamically adding new functionality to the kernel.

Chapter 8 discusses the virtual filesystem, a generic layer of the kernel that allows for supporting
a wide range of different filesystems, both physical and virtual.

Chapter 9 describes the extended filesystem family, that is, the Ext2 and Ext3 filesystems that are
the standard workhorses of many Linux installations.

Chapter 10 goes on to discuss procfs and sysfs, two filesystems that are not designed to store
information, but to present meta-information about the kernel to userland. Additionally, a num-
ber of means to ease writing filesystems are presented.

Chapter 11 shows how extended attributes and access control lists that can help to improve sys-
tem security are implemented.

Chapter 12 discusses the networking implementation of the kernel, with a specific focus on IPv4,
TCP, UDP, and netfilter.

Chapter 13 introduces how systems calls that are the standard way to request a kernel action
from userland are implemented.

Chapter 14 analyzes how kernel activities are triggered with interrupts, and presents means of
deferring work to a later point in time.

Chapter 15 shows how the kernel handles all time-related requirements, both with low and high
resolution.

Chapter 16 talks about speeding up kernel operations with the help of the page and buffer
caches.

Chapter 17 discusses how cached data in memory are synchronized with their sources on persis-
tent storage devices.

Chapter 18 introduces how page reclaim and swapping work.

XXix
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0  Chapter 19 gives an introduction to the audit implementation, which allows for observing in
detail what the kernel is doing.

O  Appendix A discusses peculiarities of various architectures supported by the kernel.

a Appendix B walks through various tools and means of working efficiently with the kernel
sources.

0O  Appendix C provides some technical notes about the programming language C, and also
discusses how the GNU C compiler is structured.

O  Appendix D describes how the kernel is booted.

(]

Appendix E gives an introduction to the ELF binary format.

O  Appendix F discusses numerous social aspects of kernel development and the Linux kernel
community.

XXX



Introduction and Overview

Operating systems are not only regarded as a fascinating part of information technology, but are
also the subject of controversial discussion among a wide public.! Linux has played a major role
in this development. Whereas just 10 years ago a strict distinction was made between relatively

simple academic systems available in source code and commercial variants with varying perfor-
mance capabilities whose sources were a well-guarded secret, nowadays anybody can download
the sources of Linux (or of any other free systems) from the Internet in order to study them.

Linux is now installed on millions of systems and is used by home users and professionals alike
for a wide range of tasks. From miniature embedded systems in wristwatches to massively parallel
mainframes, there are countless ways of exploiting Linux productively. And this makes the sources
so interesting. A sound, well-established concept (UN1x) melded with powerful innovations and a
strong penchant for dealing with problems that do not arise in academic teaching systems — this is
what makes Linux so fascinating.

This book describes the central functions of the kernel, explains its underlying structures, and exam-
ines its implementation. Because complex subjects are discussed, I assume that the reader already
has some experience in operating systems and systems programming in C (it goes without saying
that I assume some familiarity with using Linux systems). I touch briefly on several general concepts
relevant to common operating system problems, but my prime focus is on the implementation of the
Linux kernel. Readers unfamiliar with a particular topic will find explanations on relevant basics in
one of the many general texts on operating systems; for example, in Tanenbaum’s outstanding

11t is not the intention of this book to participate in ideological discussions such as whether Linux can be regarded as a
full operating system, although it is, in fact, just a kernel that cannot function productively without relying on other com-
ponents. When I speak of Linux as an operating system without explicitly mentioning the acronyms of similar projects
(primarily the GNU project, which despite strong initial resistance regarding the kernel reacts extremely sensitively when
Linux is used instead of GNU/Linux), this should not be taken to mean that I do not appreciate the importance of the
work done by this project. Our reasons are simple and pragmatic. Where do we draw the line when citing those involved
without generating such lengthy constructs as GNU/IBM/RedHat/HP/KDE/Linux? If this footnote makes little sense, refer to
www.gnu.org/gnu/linux-and-gnu.html, where you will find a summary of the positions of the GNU project.

After all ideological questions have been settled, I promise to refrain from using half-page footnotes in the rest of this book.
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introductions ([TW06] and [Tan07]). A solid foundation of C programming is required. Because the
kernel makes use of many advanced techniques of C and, above all, of many special features of the GNU
C compiler, Appendix C discusses the finer points of C with which even good programmers may not
be familiar. A basic knowledge of computer structures will be useful as Linux necessarily interacts very
directly with system hardware — particularly with the CPU. There are also a large number of introduc-
tory works dealing with this subject; some are listed in the reference section. When I deal with CPUs
in greater depth (in most cases I take the IA-32 or AMD64 architecture as an example because Linux is
used predominantly on these system architectures), I explain the relevant hardware details. When I dis-
cuss mechanisms that are not ubiquitous in daily live, I will explain the general concept behind them,
but expect that readers will also consult the quoted manual pages for more advice on how a particular
feature is used from userspace.

The present chapter is designed to provide an overview of the various areas of the kernel and to illustrate
their fundamental relationships before moving on to lengthier descriptions of the subsystems in the
following chapters.

Since the kernel evolves quickly, one question that naturally comes to mind is which version is cov-
ered in this book. I have chosen kernel 2.6.24, which was released at the end of January 2008. The
dynamic nature of kernel development implies that a new kernel version will be available by the time
you read this, and naturally, some details will have changed — this is unavoidable. If it were not the
case, Linux would be a dead and boring system, and chances are that you would not want to read

the book. While some of the details will have changed, concepts will not have varied essentially. This is
particularly true because 2.6.24 has seen some very fundamental changes as compared to earlier versions.
Developers do not rip out such things overnight, naturally.

1.1 Tasks of the Kernel

On a purely technical level, the kernel is an intermediary layer between the hardware and the software.
Its purpose is to pass application requests to the hardware and to act as a low-level driver to address
the devices and components of the system. Nevertheless, there are other interesting ways of viewing the
kernel.

O  The kernel can be regarded as an enhanced machine that, in the view of the application, abstracts
the computer on a high level. For example, when the kernel addresses a hard disk, it must decide
which path to use to copy data from disk to memory, where the data reside, which commands
must be sent to the disk via which path, and so on. Applications, on the other hand, need only
issue the command that data are to be transferred. How this is done is irrelevant to the appli-
cation — the details are abstracted by the kernel. Application programs have no contact with
the hardware itself 2 only with the kernel, which, for them, represents the lowest level in the
hierarchy they know — and is therefore an enhanced machine.

0  Viewing the kernel as a resource manager is justified when several programs are run concurrently
on a system. In this case, the kernel is an instance that shares available resources — CPU time,
disk space, network connections, and so on — between the various system processes while at the
same time ensuring system integrity.

2The CPU is an exception since it is obviously unavoidable that programs access it. Nevertheless, the full range of possible instruc-
tions is not available for applications.
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Q  Another view of the kernel is as a library providing a range of system-oriented commands. As is
generally known, system calls are used to send requests to the computer; with the help of the C
standard library, these appear to the application programs as normal functions that are invoked
in the same way as any other function.

1.2 Implementation Strategies

Currently, there are two main paradigms on which the implementation of operating systems is based:

1. Microkernels — In these, only the most elementary functions are implemented directly
in a central kernel — the microkernel. All other functions are delegated to autonomous
processes that communicate with the central kernel via clearly defined communication
interfaces — for example, various filesystems, memory management, and so on. (Of
course, the most elementary level of memory management that controls communication
with the system itself is in the microkernel. However, handling on the system call level is
implemented in external servers.) Theoretically, this is a very elegant approach because
the individual parts are clearly segregated from each other, and this forces programmers
to use “clean” programming techniques. Other benefits of this approach are dynamic
extensibility and the ability to swap important components at run time. However, owing
to the additional CPU time needed to support complex communication between the
components, microkernels have not really established themselves in practice although they
have been the subject of active and varied research for some time now.

2. Monolithic Kernels — They are the alternative, traditional concept. Here, the entire code
of the kernel — including all its subsystems such as memory management, filesystems, or
device drivers — is packed into a single file. Each function has access to all other parts of
the kernel; this can result in elaborately nested source code if programming is not done with
great care.

Because, at the moment, the performance of monolithic kernels is still greater than that of microkernels,

Linux was and still is implemented according to this paradigm. However, one major innovation has been
introduced. Modules with kernel code that can be inserted or removed while the system is up-and-running
support the dynamic addition of a whole range of functions to the kernel, thus compensating for some of
the disadvantages of monolithic kernels. This is assisted by elaborate means of communication between
the kernel and userland that allows for implementing hotplugging and dynamic loading of modules.

1.3 Elements of the Kernel

This section provides a brief overview of the various elements of the kernel and outlines the areas we will
examine in more detail in the following chapters. Despite its monolithic approach, Linux is surprisingly
well structured. Nevertheless, it is inevitable that its individual elements interact with each other; they
share data structures, and (for performance reasons) cooperate with each other via more functions than
would be necessary in a strictly segregated system. In the following chapters, I am obliged to make
frequent reference to the other elements of the kernel and therefore to other chapters, although I have
tried to keep the number of forward references to a minimum. For this reason, I introduce the individual
elements briefly here so that you can form an impression of their role and their place in the overall
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concept. Figure 1-1 provides a rough initial overview about the layers that comprise a complete Linux
system, and also about some important subsystems of the kernel as such. Notice, however, that the
individual subsystems will interact in a variety of additional ways in practice that are not shown in the
figure.

| Applications |
Userspace
: t etworking™> Z aios o>
| C Library | Ay
_)
f s> T Chieystems >
Devi A A
Z | divere v v
Kernel space ') Memory mgmt | Process mgmt
| Hardware | Architecture specific code

Figure 1-1: High-level overview of the structure of the Linux kernel and the
layers in a complete Linux system.

1.3.1 Processes, Task Switching, and Scheduling

Applications, servers, and other programs running under UNIx are traditionally referred to as processes.

Each process is assigned address space in the virtual memory of the CPU. The address spaces of the indi-
vidual processes are totally independent so that the processes are unaware of each other — as far as each
process is concerned, it has the impression of being the only process in the system. If processes want to

communicate to exchange data, for example, then special kernel mechanisms must be used.

Because Linux is a multitasking system, it supports what appears to be concurrent execution of several
processes. Since only as many processes as there are CPUs in the system can really run at the same
time, the kernel switches (unnoticed by users) between the processes at short intervals to give them the
impression of simultaneous processing. Here, there are two problem areas:

1.  The kernel, with the help of the CPU, is responsible for the technical details of task switch-
ing. Each individual process must be given the illusion that the CPU is always available. This
is achieved by saving all state-dependent elements of the process before CPU resources are
withdrawn and the process is placed in an idle state. When the process is reactivated, the
exact saved state is restored. Switching between processes is known as task switching.

2.  The kernel must also decide how CPU time is shared between the existing processes. Impor-
tant processes are given a larger share of CPU time, less important processes a smaller share.
The decision as to which process runs for how long is known as scheduling.

1.3.2 Unix Processes

Linux employs a hierarchical scheme in which each process depends on a parent process. The kernel
starts the init program as the first process that is responsible for further system initialization actions
and display of the login prompt or (in more widespread use today) display of a graphical login interface.
init is therefore the root from which all processes originate, more or less directly, as shown graphically
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by the pstree program. init is the top of a tree structure whose branches spread further and further
down.

wolfgang@meitner> pstree

init-+-acpid
| -bonobo-activati
| -cron
| -cupsd
| -2* [dbus-daemon]
| -dbus-launch
| -dcopserver
| -dhcped
|-esd
| -ethl
| -events/0
| -gam_server
| -gconfd-2
| -gdm---gdm-+-X
| '-startkde-+-kwrapper
| '-ssh-agent
| ~-gnome-vEs-daemo
| -gpg-agent
| -hald-addon-acpi
| -kaccess
| -kded
| -kdeinit-+-amarokapp---2*[amarokapp]

| -evolution-alarm

|

| | -kinternet
| |-kio_file

| | -klauncher
| | -konqueror
| | -konsole---bash-+-pstree
| | '-xemacs
| | -kwin

| | -nautilus

| '-netapplet
| -kdesktop

| -kgpg

| -khelper

| -kicker

| -klogd

| -kmix

| -knotify

| -kpowersave

| -kscad

| -ksmserver

| -ksoftirgd/0

| ~kswapd0

| -kthread-+-aio/0

| |-ata/0

| | -kacpid

| | -kblockd/0

| | ~kgameportd
| | -khubd
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| | -kseriod
| | -2* [pdflush]
| '-reiserfs/0

How this tree structure spreads is closely connected with how new processes are generated. For this
purpose, UNIX uses two mechanisms called fork and exec.

1. fork — Generates an exact copy of the current process that differs from the parent process
only in its PID (process identification). After the system call has been executed, there are two
processes in the system, both performing the same actions. The memory contents of the ini-
tial process are duplicated — at least in the view of the program. Linux uses a well-known
technique known as copy on write that allows it to make the operation much more efficient
by deferring the copy operations until either parent or child writes to a page — read-only
accessed can be satisfied from the same page for both.

A possible scenario for using fork is, for example, when a user opens a second browser win-
dow. If the corresponding option is selected, the browser executes a fork to duplicate its
code and then starts the appropriate actions to build a new window in the child process.

2. exec— Loads a new program into an existing content and then executes it. The memory
pages reserved by the old program are flushed, and their contents are replaced with new
data. The new program then starts executing.

Threads

Processes are not the only form of program execution supported by the kernel. In addition to heavy-weight
processes — another name for classical UNIx processes — there are also threads, sometimes referred to as
light-weight processes. They have also been around for some time, and essentially, a process may consist of
several threads that all share the same data and resources but take different paths through the program
code. The thread concept is fully integrated into many modern languages — Java, for instance. In simple
terms, a process can be seen as an executing program, whereas a thread is a program function or routine
running in parallel to the main program. This is useful, for example, when Web browsers need to load
several images in parallel. Usually, the browser would have to execute several fork and exec calls to
generate parallel instances; these would then be responsible for loading the images and making data
received available to the main program using some kind of communication mechanisms. Threads make
this situation easier to handle. The browser defines a routine to load images, and the routine is started
as a thread with multiple strands (each with different arguments). Because the threads and the main
program share the same address space, data received automatically reside in the main program. There is
therefore no need for any communication effort whatsoever, except to prevent the threads from stepping
onto their feet mutually by accessing identical memory locations, for instance. Figure 1-2 illustrates the
difference between a program with and without threads.

[[] Address Space
—> Control Flow

W/0 Threads With Threads
Figure 1-2: Processes with and without threads.
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Linux provides the clone method to generate threads. This works in a similar way to fork but enables a
precise check to be made of which resources are shared with the parent process and which are generated
independently for the thread. This fine-grained distribution of resources extends the classical thread
concept and allows for a more or less continuous transition between thread and processes.

Namespaces

During the development of kernel 2.6, support for namespaces was integrated into numerous subsystems.
This allows different processes to have different views of the system. Traditionally, Linux (and UNIx in
general) use numerous global quantities, for instance, process identifiers: Every process in the system is
equipped with a unique identifier (ID), and this ID can be employed by users (or other processes) to refer
to the process — by sending it a signal, for instance. With namespaces, formerly global resources are
grouped differently: Every namespace can contain a specific set of PIDs, or can provide different views
of the filesystem, where mounts in one namespace do not propagate into different namespaces.

Namespaces are useful; for example, they are beneficial for hosting providers: Instead of setting up
one physical machine per customer, they can instead use containers implemented with namespaces to
create multiple views of the system where each seems to be a complete Linux installation from within
the container and does not interact with other containers: They are separated and segregated from each
other. Every instance looks like a single machine running Linux, but in fact, many such instances can
operate simultaneously on a physical machine. This helps use resources more effectively. In contrast to
full virtualization solutions like KVM, only a single kernel needs to run on the machine and is responsible
to manage all containers.

Not all parts of the kernel are yet fully aware of namespaces, and I will discuss to what extent support is
available when we analyze the various subsystems.

1.3.3 Address Spaces and Privilege Levels

Before we start to discuss virtual address spaces, there are some notational conventions to fix. Through-
out this book I use the abbreviations KiB, MiB, and GiB as units of size. The conventional units KB, MB,
and GB are not really suitable in information technology because they represent decimal powers (10°,
10°, and 10%) although the binary system is the basis ubiquitous in computing. Accordingly KiB stands
for 21°, MiB for 22°, and GiB for 230 bytes.

Because memory areas are addressed by means of pointers, the word length of the CPU determines the
maximum size of the address space that can be managed. On 32-bit systems such as [IA-32, PPC, and
m68k, these are 232 = 4 GiB, whereas on more modern 64-bit processors such as Alpha, Sparc64, IA-64,
and AMD64, 2% bytes can be managed.

The maximal size of the address space is not related to how much physical RAM is actually available,
and therefore it is known as the virtual address space. One more reason for this terminology is that every
process in the system has the impression that it would solely live in this address space, and other pro-
cesses are not present from their point of view. Applications do not need to care about other applications
and can work as if they would run as the only process on the computer.

Linux divides virtual address space into two parts known as kernel space and userspace as illustrated in
Figure 1-3.
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232 respectively 264
Kernel-
space
TASK_SIZE
Userspace
0

Figure 1-3: Division of virtual
address space.

Every user process in the system has its own virtual address range that extends from 0 to TASK_SIZE.
The area above (from TASK_STZE to 232 or 24) is reserved exclusively for the kernel — and may not be
accessed by user processes. TASK_SIZE is an architecture-specific constant that divides the address space
in a given ratio — in IA-32 systems, for instance, the address space is divided at 3 GiB so that the virtual
address space for each process is 3 GiB; 1 GiB is available to the kernel because the total size of the virtual
address space is 4 GiB. Although actual figures differ according to architecture, the general concepts do
not. I therefore use these sample values in our further discussions.

This division does not depend on how much RAM is available. As a result of address space virtualization,
each user process thinks it has 3 GiB of memory. The userspaces of the individual system processes are
totally separate from each other. The kernel space at the top end of the virtual address space is always
the same, regardless of the process currently executing.

Notice that the picture can be more complicated on 64-bit machines because these tend to use less than
64 bits to actually manage their huge principal virtual address space. Instead of 64 bits, they employ

a smaller number, for instance, 42 or 47 bits. Because of this, the effectively addressable portion of the
address space is smaller than the principal size. However, it is still larger than the amount of RAM that
will ever be present in the machine, and is therefore completely sufficient. As an advantage, the CPU can
save some effort because less bits are required to manage the effective address space than are required
to address the complete virtual address space. The virtual address space will contain holes that are not
addressable in principle in such cases, so the simple situation depicted in Figure 1-3 is not fully valid. We
will come back to this topic in more detail in Chapter 4.

Privilege Levels

The kernel divides the virtual address space into two parts so that it is able to protect the individual
system processes from each other. All modern CPUs offer several privilege levels in which processes can
reside. There are various prohibitions in each level including, for example, execution of certain assembly
language instructions or access to specific parts of virtual address space. The IA-32 architecture uses a
system of four privilege levels that can be visualized as rings. The inner rings are able to access more
functions, the outer rings less, as shown in Figure 1-4.

Whereas the Intel variant distinguishes four different levels, Linux uses only two different modes —
kernel mode and user mode. The key difference between the two is that access to the memory area above
TASK_SIZE — that s, kernel space — is forbidden in user mode. User processes are not able to manipulate
or read the data in kernel space. Neither can they execute code stored there. This is the sole domain
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of the kernel. This mechanism prevents processes from interfering with each other by unintentionally
influencing each other’s data.

——> Less
Privileges

Kernel-

mode

>
Figure 1-4: Ring system of privilege levels.

The switch from user to kernel mode is made by means of special transitions known as systerm calls; these
are executed differently depending on the system. If a normal process wants to carry out any kind of
action affecting the entire system (e.g., manipulating I/O devices), it can do this only by issuing a request
to the kernel with the help of a system call. The kernel first checks whether the process is permitted to
perform the desired action and then performs the action on its behalf. A return is then made to user mode.

Besides executing code on behalf of a user program, the kernel can also be activated by asynchronous
hardware interrupts, and is then said to run in interrupt context. The main difference to running in process
context is that the userspace portion of the virtual address space must not be accessed. Because interrupts
occur at random times, a random userland process is active when an interrupt occurs, and since the
interrupt will most likely be unconnected with the cause of the interrupt, the kernel has no business
with the contents of the current userspace. When operating in interrupt context, the kernel must be more
cautious than normal; for instance, it must not go to sleep. This requires extra care when writing interrupt
handlers and is discussed in detail in Chapter 2. An overview of the different execution contexts is given
in Figure 1-5.

Besides normal processes, there can also be kernel threads running on the system. Kernel threads are also
not associated with any particular userspace process, so they also have no business dealing with the
user portion of the address space. In many other respects, kernel threads behave much more like regular
userland applications, though: In contrast to a kernel operating in interrupt context, they may go to sleep,
and they are also tracked by the scheduler like every regular process in the system. The kernel uses them
for various purposes that range from data synchronization of RAM and block devices to helping the
scheduler distribute processes among CPUs, and we will frequently encounter them in the course of this
book.

Notice that kernel threads can be easily identified in the output of ps because their names are placed
inside brackets:

wolfgang@meitner> ps fax

PID TTY STAT TIME COMMAND
27 S< 0:00 [kthreadd]
37 S< 0:00 _ [migration/0]
4 S< 0:00 _ [ksoftirqgd/0]
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5 ? S< 0:00 _ [migration/1]
6 2 S< 0:00 _ [ksoftirqgd/1]
7 ? S< 0:00 _ [migration/2]
8 2 S< 0:00 _ [ksoftirqgd/2]
9 2 S< 0:00 _ [migration/3]
10 2 S< 0:00 _ [ksoftirqgd/3]
11 2 S< 0:00 _ [events/0]
12 2 S< 0:00 _ [events/1]
13 2 S< 0:00 _ [events/2]
14 » S< 0:00 _ [events/3]
15 ? S< 0:00 _ [khelper]
15162 ? S< 00 _ [jfsCommit]
15163 2 S< 0:00 _ [jfsSync]
Kernel <« -
Must not be
<« <«
Usar accessed
System call Return from l@ Interrupt (<) Arrows indicate that
system call CPU executes here

Figure 1-5: Execution in kernel and user mode. Most of the time, the CPU executes
code in userspace. When the application performs a system call, a switch to kernel
mode is employed, and the kernel fulfills the request. During this, it may access the
user portion of the virtual address space. After the system call completes, the CPU
switches back to user mode. A hardware interrupt also triggers a switch to kernel
mode, but this time, the userspace portion must not be accessed by the kernel.

On multiprocessor systems, many threads are started on a per-CPU basis and are restricted to run on
only one specific processor. This is represented by a slash and the number of the CPU that are appended
to the name of the kernel thread.

Virtual and Physical Address Spaces

10

In most cases, a single virtual address space is bigger than the physical RAM available to the system. And
the situation does not improve when each process has its own virtual address space. The kernel and CPU
must therefore consider how the physical memory actually available can be mapped onto virtual address
areas.

The preferred method is to use page tables to allocate virtual addresses to physical addresses. Whereas
virtual addresses relate to the combined user and kernel space of a process, physical addresses are used
to address the RAM actually available. This principle is illustrated in Figure 1-6.

The virtual address spaces of both processes shown in the figure are divided into portions of equal size
by the kernel. These portions are known as pages. Physical memory is also divided into pages of the
same size.
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Figure 1-6: Virtual and physical addresses.

The arrows in Figure 1-6 indicate how the pages in the virtual address spaces are distributed across the
physical pages. For example, virtual page 1 of process A is mapped to physical page 4, while virtual
page 1 of process B is mapped to the fifth physical page. This shows that virtual addresses change their
meaning from process to process.

Physical pages are often called page frames. In contrast, the term page is reserved for pages in virtual
address space.

Mapping between virtual address spaces and physical memory also enables the otherwise strict sep-
aration between processes to be lifted. Our example includes a page frame explicitly shared by both
processes. Page 5 of A and page 1 of B both point to the physical page frame 5. This is possible because
entries in both virtual address spaces (albeit at different positions) point to the same page. Since the ker-
nel is responsible for mapping virtual address space to physical address space, it is able to decide which
memory areas are to be shared between processes and which are not.

The figure also shows that not all pages of the virtual address spaces are linked with a page frame. This
may be because either the pages are not used or because data have not been loaded into memory because
they are not yet needed. It may also be that the page has been swapped out onto hard disk and will be
swapped back in when needed.

Finally, notice that there are two equivalent terms to address the applications that run on behalf of the
user. One of them is userland, and this is the nomenclature typically preferred by the BSD community for
all things that do not belong to the kernel. The alternative is to say that an application runs in userspace. It
should be noted that the term userland will always mean applications as such, whereas the term userspace
can additionally not only denote applications, but also the portion of the virtual address space in which
they are executed, in contrast to kernel space.

1.3.4 Page Tables

Data structures known as page tables are used to map virtual address space to physical address space. The
easiest way of implementing the association between both would be to use an array containing an entry
for each page in virtual address space. This entry would point to the associated page frame. But there is
a problem. IA-32 architecture uses, for example, 4 KiB pages — given a virtual address space of 4 GiB,
this would produce an array with a million entries. On 64-bit architectures, the situation is much worse.
Because each process needs its own page tables, this approach is impractical because the entire RAM of
the system would be needed to hold the page tables.

11
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As most areas of virtual address spaces are not used and are therefore not associated with page frames, a
far less memory-intensive model that fulfills the same purpose can be used: multilevel paging.

To reduce the size of page tables and to allow unneeded areas to be ignored, the architectures split each
virtual address into multiple parts, as shown in Figure 1-7 (the bit positions at which the address is split
differ according to architecture, but this is of no relevance here). In the example, I use a split of the virtual
address into four components, and this leads to a three-level page table. This is what most architectures
offer. However, some employ four-level page tables, and Linux also adopts four levels of indirection. To
simplify the picture, I stick to a three-level variant here.

Virtual
PGD PMD PTE Offset Address
+ gl \+A
+ A +
Global Page Middle Page Page Table Page Frame
Table Table

Figure 1-7: Splitting a virtual address.

The first part of the virtual address is referred to as a page global directory or PGD. It is used as an index
in an array that exists exactly once for each process. Its entries are pointers to the start of further arrays
called page middle directories or PMD.

Once the corresponding array has been found by reference to the PGD and its contents, the PMD is used
as an index for the array. The page middle directory likewise consists of pointers to further arrays known
as page tables or page directories.

The PTE (or page table entry) part of the virtual address is used as an index to the page table. Mapping
between virtual pages and page frames is achieved because the page table entries point to page frames.

The last part of the virtual address is known as an offset. It is used to specify a byte position within the
page; after all, each address points to a uniquely defined byte in address space.

A particular feature of page tables is that no page middle tables or page tables need be created for areas of
virtual address space that are not needed. This saves a great deal of RAM as compared to the single-array
method.

Of course, this method also has a downside. Each time memory is accessed, it is necessary to run through
the entire chain to obtain the physical address from the virtual address. CPUs try to speed up this process
in two ways:

1. A special part of the CPU known as a memory management unit (MMU) is optimized to per-
form referencing operations.
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2. The addresses that occur most frequently in address translation are held in a fast CPU cache
called a Translation Lookaside Buffer (TLB). Translation is accelerated because the address data
in the cache are immediately available without needing to access the page tables and there-
fore the RAM.

While caches are operated transparently on many architectures, some require special
attention from the kernel, which especially implies that their contents must be invalidated
whenever the contents of the page tables have been changed. Corresponding calls must be
present in every part of the kernel that manipulates page tables. If the kernel is compiled for
an architecture that does not require such operations, it automatically ensures that the calls
are represented by do-nothing operations.

Interaction with the CPU

The IA-32 architecture uses a two-level-only method to map virtual addresses to physical addresses.
The size of the address space in 64-bit architectures (Alpha, Sparc64, IA-64, etc.) mandates a three-level
or four-level method, and the architecture-independent part of the kernel always assumes a four-level
page table.

The architecture-dependent code of the kernel for two- and three-level CPUs must therefore emulate the
missing levels by dummy page tables. Consequently, the remaining memory management code can be
implemented independently of the CPU used.

Memory Mappings

Memory mappings are an important means of abstraction. They are used at many points in the kernel and
are also available to user applications. Mapping is the method by which data from an arbitrary source
are transferred into the virtual address space of a process. The address space areas in which mapping
takes place can be processed using normal methods in the same way as regular memory. However, any
changes made are transferred automatically to the original data source. This makes it possible to use
identical functions to process totally different things. For example, the contents of a file can be mapped
into memory. A process then need only read the contents of memory to access the contents of the file,
or write changes to memory in order to modify the contents of the file. The kernel automatically ensures
that any changes made are implemented in the file.

Mappings are also used directly in the kernel when implementing device drivers. The input and output
areas of peripheral devices can be mapped into virtual address space; reads and writes to these areas are
then redirected to the devices by the system, thus greatly simplifying driver implementation.

1.3.5 Allocation of Physical Memory

When it allocates RAM, the kernel must keep track of which pages have already been allocated and which
are still free in order to prevent two processes from using the same areas in RAM. Because memory
allocation and release are very frequent tasks, the kernel must also ensure that they are completed as
quickly as possible. The kernel can allocate only whole page frames. Dividing memory into smaller
portions is delegated to the standard library in userspace. This library splits the page frames received
from the kernel into smaller areas and allocates memory to the processes.

13
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The Buddy System

14

Numerous allocation requests in the kernel must be fulfilled by a continuous range of pages. To quickly
detect where in memory such ranges are still available, the kernel employs an old, but proven technique:
The buddy system.

Free memory blocks in the system are always grouped as two buddies. The buddies can be allocated
independently of each other; if, however, both remain unused at the same time, the kernel merges them
into a larger pair that serves as a buddy on the next level. Figure 1-8 demonstrates this using an example
of a buddy pair consisting initially of two blocks of 8 pages.
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Figure 1-8: The buddy system.

All buddies of the same size (1, 2, 4, 8, 16, ... pages) are managed by the kernel in a special list. The
buddy pair with two times 8 (16) pages is also in this list.

If the system now requires 8 page frames, it splits the block consisting of 16 page frames into two buddies.
While one of the blocks is passed to the application that requested memory, the remaining 8 page frames
are placed in the list for 8-page memory blocks.

If the next request requires only 2 contiguous page frames, the block consisting of 8 blocks is split into
2 buddies, each comprising 4 page frames. One of the blocks is put back into the buddy lists, while the
other is again split into 2 buddies consisting of 2 blocks of two pages. One is returned to the buddy
system, while the other is passed to the application.
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When memory is returned by the application, the kernel can easily see by reference to the addresses
whether a buddy pair is reunited and can then merge it into a larger unit that is put back into the buddy
list — exactly the reverse of the splitting process. This increases the likelihood that larger memory blocks
are available.

When systems run for longer periods — it is not unusual for servers to run for several weeks or even
months, and many desktop systems also tend to reach long uptime — a memory management problem
known as fragmentation occurs. The frequent allocation and release of page frames may lead to a situation
in which several page frames are free in the system but they are scattered throughout physical address
space — in other words, there are no larger contiguous blocks of page frames, as would be desirable for
performance reasons. This effect is reduced to some extent by the buddy system but not completely
eliminated. Single reserved pages that sit in the middle of an otherwise large continuous free range can
eliminate coalescing of this range very effectively. During the development of kernel 2.6.24, some effec-
tive measures were added to prevent memory fragmentation, and I discuss the underlying mechanisms
in more detail in Chapter 3.

The Slab Cache

Often the kernel itself needs memory blocks much smaller than a whole page frame. Because it cannot use
the functions of the standard library, it must define its own, additional layer of memory management that
builds on the buddy system and divides the pages supplied by the buddy system into smaller portions.
The method used not only performs allocation but also implements a generic cache for frequently used
small objects; this cache is known as a slab cache. It can be used to allocate memory in two ways:

1.  For frequently used objects, the kernel defines its own cache that contains only instances of
the desired type. Each time one of the objects is required, it can be quickly removed from the
cache (and returned there after use); the slab cache automatically takes care of interaction
with the buddy system and requests new page frames when the existing caches are full.

2. For the general allocation of smaller memory blocks, the kernel defines a set of slab caches
for various object sizes that it can access using the same functions with which we are familiar
from userspace programming; a prefixed k indicates that these functions are associated with
the kernel: kmalloc and kfree.

While the slab allocator provides good performance across a wide range of workloads, some scalability
problems with it have arisen on really large supercomputers. On the other hand of the scale, the overhead
of the slab allocator may be too much for really tiny embedded systems. The kernel comes with two drop-
in replacements for the slab allocator that provide better performance in these use cases, but offer the
same interface to the rest of the kernel such that it need not be concerned with which low-level allocator
is actually compiled in. Since slab allocation is still the standard methods of the kernel, I will, however,
not discuss these alternatives in detail. Figure 1-9 summarizes the connections between buddy system,
slab allocator, and the rest of the kernel.

Swapping and Page Reclaim

Swapping enables available RAM to be enlarged virtually by using disk space as extended memory.
Infrequently used pages can be written to hard disk when the kernel requires more RAM. Once the data
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are actually needed, the kernel swaps them back into memory. The concept of page faults is used to make
this operation transparent to applications. Swapped-out pages are identified by a special entry in the
page table. When a process attempts to access a page of this kind, the CPU initiates a page fault that is
intercepted by the kernel. The kernel then has the opportunity to swap the data on disk into RAM. The
user process then resumes. Because it is unaware of the page fault, swapping in and out of the page is

totally invisible to the process.
Generic kernel
code

Slab allocator

| Buddy allocator 0O Small boxes indicate

OO0 ooo page frames

Figure 1-9: Page frame allocation is performed
by the buddy system, while the slab allocator
is responsible for small-sized allocations and
generic kernel caches.

Page reclaim is used to synchronize modified mappings with underlying block devices — for this reason,
it is sometimes referred to simply as writing back data. Once data have been flushed, the page frame
can be used by the kernel for other purposes (as with swapping). After all, the kernel data structures
contain all the information needed to find the corresponding data on the hard disk when they are again
required.

3.6 Timing

The kernel must be capable of measuring time and time differences at various points — when scheduling
processes, for example. Jiffies are one possible time base. A global variable named jiffies_64 and its
32-bit counterpart jiffies are incremented periodically at constant time intervals. The various timer
mechanisms of the underlying architectures are used to perform these updates — each computer archi-
tecture provides some means of executing periodic actions, usually in the form of timer interrupts.

Depending on architecture, jiffies is incremented with a frequency determined by the central constant
HZ of the kernel. This is usually on the range between 1,000 and 100; in other words, the value of jiffies
is incremented between 1,000 and 100 times per second.

Timing based on jiffies is relatively coarse-grained because 1,000 Hz is not an excessively large fre-
quency nowadays. With high-resolution timers, the kernel provides additional means that allows for
keeping time in the regime of nanosecond precision and resolution, depending on the capabilities of
the underlying hardware.

It is possible to make the periodic tick dynamic. When there is little to do and no need for frequent periodic
actions, it does not make sense to periodically generate timer interrupts that prevent the processor from
powering down into deep sleep states. This is helpful in systems where power is scarce, for instance,
laptops and embedded systems.
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1.3.7 System Calls

System calls are the classical method of enabling user processes to interact with the kernel. The POSIX
standard defines a number of system calls and their effect as implemented on all POSIX-compliant sys-
tems including Linux. Traditional system calls are grouped into various categories:

0  Process Management — Creating new tasks, querying information, debugging
0  Signals — Sending signals, timers, handling mechanisms

Q  Files — Creating, opening, and closing files, reading from and writing to files, querying infor-
mation and status

Q  Directories and Filesystem — Creating, deleting, and renaming directories, querying informa-
tion, links, changing directories

0  Protection Mechanisms — Reading and changing UIDs/GIDs, and namespace handling

Q  Timer Functions — Timer functions and statistical information

Demands are placed on the kernel in all these functions. They cannot be implemented in a normal user
library because special protection mechanisms are needed to ensure that system stability and/or security
are not endangered. In addition, many calls are reliant on kernel-internal structures or functions to yield
desired data or results — this also dictates against implementation in userspace. When a system call is
issued, the processor must change the privilege level and switch from user mode to system mode. There
is no standardized way of doing this in Linux as each hardware platform offers specific mechanisms.
In some cases, different approaches are implemented on the same architecture but depend on processor
type. Whereas Linux uses a special software interrupt to execute system calls on IA-32 processors, the
software emulation (iBCS emulator) of other UNIx systems on IA-32 employs a different method to
execute binary programs (for assembly language aficionados: the 1call7 or 1call27 gate). Modern
variants of IA-32 also have their own assembly language statement for executing system calls; this was
not available on old systems and cannot therefore be used on all machines. What all variants have in
common is that system calls are the only way of enabling user processes to switch in their own incentive
from user mode to kernel mode in order to delegate system-critical tasks.

1.3.8 Device Drivers, Block and Character Devices

The role of device drivers is to communicate with I/O devices attached to the system; for example, hard
disks, floppies, interfaces, sound cards, and so on. In accordance with the classical UNIx maxim that
“everything is a file,” access is performed using device files that usually reside in the /dev directory and
can be processed by programs in the same way as regular files. The task of a device driver is to support
application communication via device files; in other words, to enable data to be read from and written to
a device in a suitable way.

Peripheral devices belong to one of the following two groups:

1. Character Devices — Deliver a continuous stream of data that applications read sequen-
tially; generally, random access is not possible. Instead, such devices allow data to be read
and written byte-by-byte or character-by-character. Modems are classical examples of char-
acter devices.

17
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2. Block Devices — Allow applications to address their data randomly and to freely select the
position at which they want to read data. Typical block devices are hard disks because appli-
cations can address any position on the disk from which to read data. Also, data can be read
or written only in multiples of block units (usually 512 bytes); character-based addressing, as
in character devices, is not possible.

Programming drivers for block devices is much more complicated than for character devices
because extensive caching mechanisms are used to boost system performance.

1.3.9 Networks

Network cards are also controlled by device drivers but assume a special status in the kernel because
they cannot be addressed using device files. This is because data are packed into various protocol layers
during network communication. When data are received, the layers must be disassembled and analyzed
by the kernel before the payload data are passed to the application. When data are sent, the kernel must
first pack the data into the various protocol layers prior to dispatch.

However, to support work with network connections via the file interface (in the view of applications),
Linux uses sockets from the BSD world; these act as agents between the application, file interface, and
network implementation of the kernel.

1.3.10 Filesystems

Linux systems are made up of many thousands or even millions of files whose data are stored on hard
disks or other block devices (e.g., ZIP drives, floppies, CD-ROMs, etc.). Hierarchical filesystems are used;
these allow stored data to be organized into directory structures and also have the job of linking other
meta-information (owners, access rights, etc.) with the actual data. Many different filesystem approaches
are supported by Linux — the standard filesystems Ext2 and Ext3, ReiserFS, XFS, VFAT (for reasons of
compatibility with DOS), and countless more. The concepts on which they build differ drastically in part.
Ext2 is based on inodes, that is, it makes a separate management structure known as an inode available
on disk for each file. The inode contains not only all meta-information but also pointers to the associated
data blocks. Hierarchical structures are set up by representing directories as regular files whose data
section includes pointers to the inodes of all files contained in the directory. In contrast, ReiserFS makes
extensive use of tree structures to deliver the same functionality.

The kernel must provide an additional software layer to abstract the special features of the various low-
level filesystems from the application layer (and also from the kernel itself). This layer is referred to as
the VFES (virtual filesystem or virtual filesystem switch). It acts as an interface downward (this interface must
be implemented by all filesystems) and upward (for system calls via which user processes are ultimately
able to access filesystem functions). This is illustrated in Figure 1-10.

1.3.11 Modules and Hotplugging

Modules are used to dynamically add functionality to the kernel at run time — device drivers, filesys-
tems, network protocols, practically any subsystem® of the kernel can be modularized. This removes
one of the significant disadvantages of monolithic kernels as compared with microkernel variants.

3With the exception of basic functions, such as memory management, which are always needed.

18



Chapter 1: Introduction and Overview

Modules can also be unloaded from the kernel at run time, a useful aspect when developing new kernel
components.

Applications and Libc

v4 System calls
| Virtual file system |

vA vA vA
| Ban | | xs | | ProcFs | = CWarious subsystems>
vA vA
|| Page cache ilBuffercache||
vA

| Block layer |i| Device drivers| = 8 Hard disks

Figure 1-10: Overview of how the virtual filesystem layer,
filesystem implementations, and the block layer
interoperate.

Basically, modules are simply normal programs that execute in kernel space rather than in userspace.
They must also provide certain sections that are executed when the module is initialized (and terminated)
in order to register and de-register the module functions with the kernel. Otherwise, module code has
the same rights (and obligations) as normal kernel code and can access all the same functions and data as
code that is permanently compiled into the kernel.

Modules are an essential requisite to support for hotplugging. Some buses (e.g., USB and FireWire) allow
devices to be connected while the system is running without requiring a system reboot. When the sys-
tem detects a new device, the requisite driver can be automatically added to the kernel by loading the
corresponding module.

Modules also enable kernels to be built to support all kinds of devices that the kernel can address without
unnecessarily bloating kernel size. Once attached hardware has been detected, only the requisite modules
are loaded, and the kernel remains free of superfluous drivers.

A long-standing issue in the kernel community revolves around the support of binary-only modules,
that is, modules for which no source code is available. While binary-only modules are omnipresent

on most proprietary operating systems, many kernel developers see them (at least!) as an incarnation
of the devil: Since the kernel is developed as open-source software, they believe that modules should
also be published as open source, for a variety of both legal and technical reasons. There are, indeed,
strong arguments to support this reasoning (and besides, I also follow these), but they are not shared by
some commercial companies that tend to think that opening up their driver sources would weaken their
business position.

It is currently possible to load binary-only modules into the kernel, although numerous restrictions apply
for them. Most importantly, they may not access any functions that are explicitly only made available to
GPL-licensed code. Loading a binary-only module taints the kernel, and whenever something bad occurs,
the fault is naturally attributed to the tainting module. If a kernel is tainted, this will be marked on crash
dumps, for instance, and kernel developers will be very unsupportive in solving the issue that led to

the crash — since the binary module could have given every part of the kernel a good shaking, it cannot
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be assumed that the kernel still works as intended, and support is better left to the manufacturer of the
offending module.

Loading binary-only modules is not the only possibility for tainting a kernel. This happens also when,
for instance, the machine has experienced certain bad exceptions, when a SMP system is built with CPUs
that do not officially support multiprocessing by their specification, and other similar reasons.

3.12 Caching

The kernel uses caches to improve system performance. Data read from slow block devices are held

in RAM for a while, even if they are no longer needed at the time. When an application next accesses
the data, they can be read from fast RAM, thus bypassing the slow block device. Because the kernel
implements access to block devices by means of page memory mappings, caches are also organized into
pages, that is, whole pages are cached, thus giving rise to the name page cache.

The far less important buffer cache is used to cache data that are not organized into pages. On traditional
UNix systems, the buffer cache serves as the main system cache, and the same approach was used by
Linux a long, long time ago. By now, the buffer cache has mostly been superseded by the page cache.

3.13 List Handling

A recurring task in C programs is the handling of doubly linked lists. The kernel too is required to handle
such lists. Consequently, I will make frequent mention of the standard list implementation of the kernel
in the following chapters. At this point, I give a brief introduction to the list handling API.

Standard lists as provided by the kernel can be used to link data structures of any type with each other.
It is explicitly not type-safe. The data structures to be listed must contain an element of the 1ist_head
type; this accommodates the forward and back pointers. If a data structure is to be organized in several
lists — and this is not unusual — several 1ist_head elements are needed.

<list.h>
struct list_head {

struct list_head *next, *prev;
Y

This element could be placed in a data structure as follows:

struct task_struct {
.struct list_head run_list;
i
The starting point for linked lists is again an instance of 1ist_head that is usually declared and initial-
ized by the LIST_HEAD (1ist_name) macro. In this way, the kernel produces a cyclic list, as shown in

Figure 1-11. It permits access to the first and last element of a list in O(1), that is, in always the same,
constant time regardless of the list size.
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Figure 1-11: Doubly linked standard list.

struct list_headis called a list element when it is held in a data structure. An element that serves as the
starting point for a list is called a list head.

Pointers that connect head and tail elements of a list tend to clutter up images and
often obstruct the principal intention of a figure, namely, to briefly summarize the
connections of various kernel data structures. I thus usually omit the connection
between list head and list tail in figures. The above list is in the remainder of this
book therefore represented as shown in Figure 1-12. This allows for concentrating
on the essential details without having to waste space for irrelevant list pointers.

—> —> —>
-« -« -«

Figure 1-12: Simplified illustration of a doubly
linked list. Notice that the connection between
list head and list tail is not displayed, although
it is present in kernel memory.

There are several standard functions for handling and processing lists. We will come across them again
and again in the following chapters (the data type of their arguments is struct list_head).

H]
a

(]

list_add(new, head) inserts new right after the existing head element.

list_add_tail (new, head) inserts new right before the element specified by head. If the list head
is specified for head, this causes the new element to be inserted at the end of the list because of
the cyclic nature of the list (this gives the function its name).

list_del (entry) deletes an entry from a list.
list_empty (head) checks if a list is empty, that is, if it does not contain any elements.

list_splice(list, head) combines two lists by inserting the list in 1ist after the head element
of an existing list.

list_entry must be used to find a list element; at first glance, its call syntax appears to be quite
complicated: 1ist_entry (ptr, type, member). ptr is a pointer to the 1ist_head instance of the
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data structure, type is its type, and member is the element name used for the list element. The
following sample call would be needed to find a task_struct instance of a list:

struct task_struct = list_entry(ptr, struct task_struct, run_list)

Explicit type specification is required because list implementation is not type-safe. The list ele-
ment must be specified to find the correct element if there are data structures that are included
in several lists.*

list_for_each(pos, head) must be used to iterate through all elements of a list. pos indicates
the current position in the list, while head specifies the list head.

struct list_head *p;

list_for_each(p, &list)
if (condition)
return list_entry(p, struct task_struct, run_list);
return NULL;

1.3.14 Object Management and Reference Counting

All over the kernel, the need to keep track of instances of C structures arises. Despite the fact that these
objects will be used in the most varying forms, some operations are very similar across subsystems — just
consider reference counting. This leads to code duplication. Since this is a bad thing, the kernel has
adopted generic methods to manage kernel objects during the development of 2.5. The framework is,
however, not just required to prevent code duplication. It also allows for providing a coherent view on
objects managed by different parts of the kernel, and this information can be brought to good use in
many parts of the kernel, for instance, for power management.

The generic kernel object mechanism can be used to perform the following operations on objects:

Q

a
a
a

Reference counting
Management of lists (sets) of objects
Locking of sets

Exporting object properties into userspace (via the sysfs filesystem)

Generic Kernel Objects

The following data structure that is embedded in other data structures is used as a basis.

<kobject.h>
struct kobject {

Y

const char * k_name;
struct kref kref;
struct list_head entry;
struct kobject * parent;
struct kset * kset;
struct kobj_type * ktype;
struct sysfs_dirent * sd;

4Even if there is only one list element in the structure, this entry is used to find the correct start address of the instance by means of
pointer arithmetic; the address is translated into the required data type by means of type conversion. I deal with this in more detail
in the appendix on C programming.
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It is essential that kobjects are not linked with other data structures by means of
pointers but are directly embedded. Managing the kernel object itself amounts to
managing the whole containing object this way. Since struct kobject is embedded
into many data structures of the kernel, the developers take care to keep it small.
Adding a single new element to this data structure results in a size increase of many
other data structures. Embedded kernel objects look as follows:

struct sample {
struct kobject kobj;

¥

The meanings of the individual elements of struct kobject are as follows:

0  k_name is a text name exported to userspace using sysfs. Sysfs is a virtual filesystem that allows
for exporting various properties of the system into userspace. Likewise sd supports this connec-
tion, and I will come back to this in Chapter 10.

Q  kref holds the general type struct kref designed to simplify reference management. I discuss
this below.

0  entryisastandard list element used to group several kobjects in a list (known as a set in this
case).

0  ksetis required when an object is grouped with other objects in a set.

0  parent is a pointer to the parent element and enables a hierarchical structure to be established
between kobjects.

0  ktype provides more detailed information on the data structure in which a kobject is
embedded. Of greatest importance is the destructor function that returns the resources of the
embedding data structure.

The similarity between the name kobject and the object concept of, well, object-oriented languages
like C++ or Java is by no means coincidental: The kobject abstraction indeed allows for using object-
oriented techniques in the kernel, but without requiring all the extra mechanics (and bloat, and overhead)
of C++.

Table 1-1 lists the standard operations provided by the kernel to manipulate kobject instances, and
therefore effectively act on the embedding structure.

The layout of the kref structure used to manage references is as follows:

<kref.h>
struct kref {
atomic_t refcount;

Y

refcount is an atomic data type to specify the number of positions in the kernel at which an object is
currently being used. When the counter reaches 0, the object is no longer needed and can therefore be
removed from memory.
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Table 1-1: Standard Methods for Processing kobjects

Function Meaning

kobject_get, kobject_put Increments or decrements the reference counter of a kobject

kobject_ (un)register Registers or removes obj from a hierarchy (the object is added to the
existing set (if any) of the parent element; a corresponding entry is cre-
ated in the sysfs filesystem).

kobject_init Initializes a kobject; that is, it sets the reference counter to its initial
value and initializes the list elements of the object.

kobect_add Initializes a kernel object and makes it visible in sysfs

kobject_cleanup Releases the allocated resources when a kobject (and therefore the
embedding object) is no longer needed

Encapsulation of the single value in a structure was chosen to prevent direct manipulation of the value.
kref_init must always be used for initialization. If an object is in use, kref_get must be invoked
beforehand to increment the reference counter. kref_put decrements the counter when the object is no
longer used.

Sets of Objects

In many cases, it is necessary to group different kernel objects into a set — for instance, the set of all
character devices or the set of all PCI-based devices. The data structure provided for this purpose is
defined as follows:

<kobject.h>
struct kset {

struct kobj_type * ktype;
struct list_head list;
struct kobject kobj;

struct kset_uevent_ops * uevent_ops;

Y

Interestingly, the kset serves as the first example for the use of kernel objects. Since the management
structure for sets is nothing other than a kernel object, it can be managed via the previously discussed
struct kobj. Indeed, an instance is embedded via kobj. It has nothing to do with the kobjects collected
in the set, but only serves to manage the properties of the kset object itself.

The other members have the following meaning;:

0  ktype points to a further object that generalizes the behavior of the kset.
0 1listis used to build a list of all kernel objects that are a member of the set.

0 uevent_ops provides several function pointers to methods that relay information about the state
of the set to userland. This mechanism is used by the core of the driver model, for instance, to
format messages that inform about the addition of new devices.

24



Chapter 1: Introduction and Overview

Another structure is provided to group common features of kernel objects. It is defined as follows:

<kobject.h>
struct kobj_type {

struct sysfs_ops * gsysfs_ops;
struct attribute ** default_attrs;

Y

Note that a kobj_type is not used to collect various kernel objects — this is already managed by ksets.
Instead, it provides an interface to the sysfs filesystem (discussed in Section 10.3). If multiple objects
export similar information via the filesystem, then this can be simplified by using a single ktype to pro-
vide the required methods.

Reference Counting

Reference counting is used to detect from how many places in the kernel an object is used. Whenever one
part of the kernel needs information contained in one object, it increments the reference count, and when
it does not need the information anymore, the count is decremented. Once the count has dropped to 0,
the kernel knows that the object is not required anymore, and that it is safe to release it from memory.
The kernel provides the following data structure to handle reference counting:

<kref.h>
struct kref {

atomic_t refcount;
Y

The data structure is really simple in that it only provides a generic, atomic reference count. “Atomic”
means in this context that incrementing and decrementing the variable is also safe on multiprocessor
systems, where more than one code path can access an object at the same time. Chapter 5 discusses the
need for this in more detail.

The auxiliary methods kref_init, kref_get, and kref_put are provided to initialize, increment, or
decrement the reference counter. This might seem trivial at a first glance. Nevertheless, it helps to avoid
excessive code duplication because such reference counts together with the aforementioned operations
are used all over the kernel.

Although manipulating the reference counter this way is safe against concurrency
issues, this does not imply that the surrounding data structure is safe against
concurrent access! Kernel code needs to employ further means to ensure that access
to data structures does not cause any problems when this can happen from multiple
processors simultaneously, and I discuss these issues in Chapter 5.

Finally, notice that the kernel contains some documentation related to kernel objects in Documentation/
kobject. txt.

1.3.15 Data Types

Some issues related to data types are handled differently in the kernel in comparison to userland
programs.
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Type Definitions

The kernel uses typedef to define various data types in order to make itself independent of architecture-
specific features because of the different bit lengths for standard data types on individual processors.
The definitions have names such as sector_t (to specify a sector number on a block device), pid_t (to
indicate a process identifier), and so on, and are defined by the kernel in architecture-specific code in such
a way as to ensure that they represent the applicable value range. Because it is not usually important to
know on which fundamental data types the definitions are based, and for simplicity’s sake, I do not
always discuss the exact definitions of data types in the following chapters. Instead, I use them without
further explanation — after all, they are simply non-compound standard data types under a different
name.

typedef’d variables must not be accessed directly, but only via auxiliary functions
that I introduce when we encounter the type. This ensures that they are properly
manipulated, although the type definition is transparent to the user.

At certain points, the kernel must make use of variables with an exact, clearly defined number of bits —
for example, when data structures need to be stored on hard disk. To allow data to be exchanged between
various systems (e.g., on USB sticks), the same external format must always be used, regardless of how
data are represented internally in the computer.

To this end, the kernel defines several integer data types that not only indicate explicitly whether they
are signed or unsigned, but also specify the exact number of bits they comprise. __s8 and __u8 are, for
example, 8-bit integers that are either signed (__s8) or unsigned (__u8). __ulé and __sl6, _ u32 and
__s32,and __u64 and __s64 are defined in the same way.

Byte Order

To represent numbers, modern computers use either the big endian or little endian format. The format
indicates how multibyte data types are stored. With big endian ordering, the most significant byte is
stored at the lowest address and the significance of the bytes decreases as the addresses increase. With
little endian ordering, the least significant byte is stored at the lowest address and the significance of
the bytes increases as the addresses increase (some architectures such as MIPS support both variants).
Figure 1-13 illustrates the issue.

Byte : 0 ¢ 1 i 2 i 3
{=a} char

Ute {57 ifegs]l i shon
{[ 07 ][ 8=15 |:[16-23][24=31] int
0-7 char

o an | o7 ]; | short

1[24=31]:[16-23]:[ 815 |:[ 07 | int
Figure 1-13: Composition of elementary data
types depending on the endianness of the
underlying architecture.

26



Chapter 1: Introduction and Overview

The kernel provides various functions and macros to convert between the format used by the CPU and
specific representations: cpu_to_le64 converts a 64-bit data type to little endian format, and 1e64_to_cpu
does the reverse (if the architecture works with little endian format, the routines are, of course, no-ops;
otherwise, the byte positions must be exchanged accordingly). Conversion routines are available for all
combinations of 64, 32, and 16 bits for big and little endian.

Per-CPU Variables

A particularity that does not occur in normal userspace programming is per-CPU variables. They are
declared with DEFINE_PER_CPU (name, type), where name is the variable name and type is the data type
(e.g., int[3], struct hash, etc.). On single-processor systems, this is not different from regular variable
declaration. On SMP systems with several CPUs, an instance of the variable is created for each CPU. The
instance for a particular CPU is selected with get_cpu (name, cpu), where smp_processor_id (), which
returns the identifier of the active processor, is usually used as the argument for cpu.

Employing per-CPU variables has the advantage that the data required are more likely to be present
in the cache of a processor and can therefore be accessed faster. This concept also skirts round several
communication problems that would arise when using variables that can be accessed by all CPUs of a
multiprocessor system.

Access to Userspace

At many points in the source code there are pointers labeled __user; these are also unknown in userspace
programming. The kernel uses them to identify pointers to areas in user address space that may not be
de-referenced without further precautions. This is because memory is mapped via page tables into the
userspace portion of the virtual address space and not directly mapped by physical memory. Therefore
the kernel needs to ensure that the page frame in RAM that backs the destination is actually present — I
discuss this in further detail in Chapter 2. Explicit labeling supports the use of an automatic checker tool
(sparse) to ensure that this requirement is observed in practice.

1.3.16 ... and Beyond the Infinite

Although a wide range of topics are covered in this book, they inevitably just represent a portion of
what Linux is capable of: It is simply impossible to discuss all aspects of the kernel in detail. I have
tried to choose topics that are likely to be most interesting for a general audience and also present a
representative cross-section of the whole kernel ecosystem.

Besides going through many important parts of the kernel, one of my concerns is also to equip you
with the general idea of why the kernel is designed as it is, and how design decisions are made by
interacting developers. Besides a discussion of numerous fields that are not directly related to the
kernel (e.g., how the GNU C compiler works), but that support kernel development as such, I have
also included a discussion about some nontechnical but social aspects of kernel development in
Appendix F.

Finally, please note Figure 1-14, which shows the growth of the kernel sources during the last couple
of years.

Kernel development is a highly dynamical process, and the speed at which the kernel acquires new
features and continues to improve is sometimes nothing short of miraculous. As a study by the Linux
Foundation has shown [KHCM], roughly 10,000 patches go into each kernel release, and this massive
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amount of code is created by nearly 1,000 developers per release. On average, 2.83 changes are integrated
every hour, 24 hours a day, and 7 days a week! This can only be handled with mature means of source
code management and communication between developers; I come back to these issues in Appendices B
and F.
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Figure 1-14: Evolution of the core kernel distribution’s size during the last years.

-4 Why the Kernel Is Special

The kernel is an amazing place — but after all, it is just a big C program with some assembler portions
(and a drop or two of black magic added sometimes). So what makes the kernel so fascinating? Several
factors contribute to this. First and foremost, the kernel is written by the best programmers in the world,
and this shows in the code. It is well structured, written with meticulous attention for detail, and contains
clever solutions all over the place. In one word: It is code as it ought to be. This, however, does not mean
that the kernel is the product of a textbook-style programming methodology: While it employs cleanly
designed abstractions to keep the code modular and manageable, it’s the mix with the other face of the
kernel that makes the code so interesting and unique: If it need be, the kernel does not back off from
reusing bit positions in a context-dependent manner, overloading structure elements multiple times,
squeezing yet another storage bit out of the aligned portion of pointers, using gotos freely, and numer-
ous other things that would make any structured programmer scream miserably in agony and pain.
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Techniques that would be unthinkable in many textbook solutions can not only be good, but are simply
required for a proper real-world working kernel. It’s the small path that keeps the balance between these
totally opposite faces of the kernel that makes the whole thing so interesting, challenging, and fun!

Having praised the kernel sources, there are a number of more sober issues distinct from userland
programs:

QO  Debugging the kernel is usually harder than debugging userland programs. While for the latter
a multitude of debuggers exist, this is much harder to realize for the kernel. There are various
mechanisms to employ debuggers in kernel development as discussed in Appendix B, but these
require more effort than their userland counterparts.

Q  The kernel provides numerous auxiliary functions that resemble the standard C library found in
userspace, but things are much more frugal in the kernel domain.

Q  Errors in userland applications lead to a segmentation fault or a core dump, but kernel errors
will take the whole system down. Or, what is even worse: They will keep the kernel happily
running, but manifest themselves in a weird system crash hours after the error occurred. Because
debugging in kernel space is harder than for userland applications as mentioned above, it is
essential that kernel code receives more thought and judicious consideration than userland code
before it is brought into use.

O It must be taken into account that many architectures on which the kernel runs do not support
unaligned memory access without further ado. This also affects portability of data structures
across architectures because of padding that is inserted by the compiler. This issue is discussed
further in Appendix C.

Q  All kernel code must be protected against concurrency. Owing to the support of multiprocessor
machines, Linux kernel code must be both reentrant and thread-safe. That is, routines must allow
being executed simultaneously, and data must be protected against parallel access.

QO  Kernel code must work both on machines with little and big endianness.

0  Most architectures do not allow performing floating-point calculations in the kernel without
further ado, so you need to find a way to do your calculations with integer types.

You will see how to deal with these issues in the further course of this book.

1.5 Some Notes on Presentation

Before we start to dive right into the kernel, I need to make some remarks on how I present the material,
and why I have chosen my particular approach.

Notice that this book is specifically about understanding the kernel. Examples of how to write code have
intentionally and explicitly been left out, considering that this book is already very comprehensive and
voluminous. The works by Corbet et al. [CRKHO05], Venkateswaran [Ven08], and Quade/Kunst [QK06]
fill in this gap and discuss how to create new code, especially for drivers, by countless practical examples.
While I discuss how the kernel build system, which is responsible to create a kernel that precisely suits
your needs works, I won't discuss the plethora of configuration options in detail, especially because they
are mostly concerned with driver configuration. However, the book by Kroah-Hartman [KHO07] can be
a valuable aid here.
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Usually I start my discussion with a general overview about the concepts of the topic that I am going
to present, and then go down to data structures and their interrelation in the kernel. Code is usually
discussed last, because this requires the highest level of detail. I have chosen this top-down approach
because it is in our opinion the most accessible and easiest way to understand the kernel. Notice that it
would also be possible to discuss things from the bottom up, that is, start deep down in the kernel and
then work slowly up to the C library and userspace level. Notice, however, that presenting something
in inverse order does not automatically make it better. In my experience, more forward references are
required for a bottom-up than for a top-down strategy, so I stick to the latter throughout this book.

When I directly present C source code, I sometimes take the liberty to rewrite it slightly to highlight more
important elements and remove less important “’due diligence”” work. For example, it is very important
for the kernel to check the return value of every memory allocation. While allocations will succeed in
nearly almost all cases, it is essential to take care of cases in which not enough memory is available for a
particular task. The kernel has to deal with this situation somehow, usually by returning an error return
code to userspace if a task is performed as a response to a request by an application, or by omitting a
warning message to the system log. However, details of this kind will in general obstruct the view of
what is really important. Consider the following code, which sets up namespaces for a process:

kernel/nsproxy.c
static struct nsproxy *create_new_namespaces (unsigned long flags,
struct task_struct *tsk, struct fs_struct *new_f£fs)
{
struct nsproxy *new_nsp;
int err;

new_nsp = clone_nsproxy (tsk->nsproxy) ;
if (!new_nsp)
return ERR_PTR (-ENOMEM) ;

new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, new_£fs);
if (IS_ERR(new_nsp->mnt_ns)) {

err = PTR_ERR (new_nsp->mnt_ns) ;

goto out_ns;

new_nsp->uts_ns = copy_utsname(flags, tsk->nsproxy->uts_ns);
if (IS_ERR(new_nsp->uts_ns)) {

err = PTR_ERR (new_nsp->uts_ns) ;

goto out_uts;

}

new_nsp->ipc_ns = copy_ipcs(flags, tsk->nsproxy->ipc_ns);
if (IS_ERR(new_nsp->ipc_ns)) {

err = PTR_ERR (new_nsp->ipc_ns);

goto out_ipc;

return new_nsp;
out_ipc:
if (new_nsp->uts_ns)
put_uts_ns (new_nsp->uts_ns) ;
out_uts:
if (new_nsp->mnt_ns)
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put_mnt_ns (new_nsp->mnt_ns) ;
out_ns:
kmem_cache_free (nsproxy_cachep, new_nsp) ;
return ERR_PTR (err) ;

What the code does in detail is irrelevant right now; I come back to this in the following chapter. What
is essential is that the routine tries to clone various parts of the namespace depending on some flags that
control the cloning operation. Each type of namespace is handled in a separate function, for instance, in
copy_mnt_ns for the filesystem namespace.

Each time the kernel copies a namespace, errors can occur, and these must be detected and passed

on to the calling function. Either the error is detected directly by the return code of a function, as for
clone_nsproxy, or the error is encoded in a pointer return value, which can be detected using the
ERR_PTR macro, which allows for decoding the error value (I also discuss this mechanism below). In many
cases, it is not sufficient to just detect an error and return this information to the caller. It is also essen-
tial that previously allocated resources that are not required anymore because of the error are released
again. The standard technique of the kernel to handle this situation is as follows: Jump to a special label
and free all previously allocated resources, or put down references to objects by decrementing the refer-
ence count. Handling such cases as this is one of the valid applications for the goto statement. There are
various possibilities to describe what is going on in the function:

Q  Talk the reader directly through the code in huge step-by-step lists:

1. create new namespace calls clone_nsproxy. If this fails, return - ENOMEYM; otherwise,
continue.

2. create_new_namespace then calls copy_mnt_ns. If this fails, obtain the error value encoded
in the return value of copy_mnt_ns and jump to the label out_ns; otherwise, proceed.

3. create_new namespace then calls copy utsname. If this fails, obtain the error value
encoded in the return value of copy_utsname and jump to the label out_ns; otherwise,
proceed.

4.

While this approach is favored by a number of kernel texts, it conveys only little information

in addition to what is directly visible from the source code anyway. It is appropriate to discuss
some of the most complicated low-level parts of the kernel this way, but this will foster an under-
standing of neither the big picture in general nor the code snippet involved in particular.

0  Summarize what the function does with words, for instance, by remarking that “create_new_
namespaces is responsible to create copies or clones of the parent namespaces.” We use this
approach for less important tasks of the kernel that need to be done somehow, but do not pro-
vide any specific insights or use particularly interesting tricks.

Q  Use a flow diagram to illustrate what is going on in a function. With more than 150 code flow
diagrams in this book, this is one of my preferred ways of dealing with code. It is important to
note that these diagrams are not supposed to be a completely faithful representation of the opera-
tion. This would hardly simplify matters. Consider Figure 1-15, which illustrates how a faithful
representation of copy_namespaces could look. It is not at all simpler to read than the source
itself, so there is not much purpose in providing it.
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Figure 1-15: Example of a faithful, but unclear and convoluted code flow diagram.

Instead I employ code flow diagrams that illustrate the essential tasks performed by a function.
Figure 1-16 shows the code flow diagram that I would have employed instead of Figure 1-15.

| copy_namespaces I

] clone_nsproxy'

—
—
|

Figure 1-16: Example of the style
of code flow diagrams used in
this book. They allow
immediately catching all
essential actions without being
distracted by nonessential
standard tasks.

The diagram omits several things, but this is on purpose, and also essential. By looking at the
figure, you will not see every detail of the function implementation, but you will instead imme-
diately realize that the kernel uses a specific routine to create a clone of each namespace, and
the function names provide a sufficient hint of which namespace is copied. This is much more
important!
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Handling error return codes is something that we assume goes without saying, and so we will
not pay particular attention to it. This does not imply that it is not an important thing to do, and
in fact it is: Linux would be a lousy kernel if it did not handle this issue properly. But handling
errors also obfuscates most operations without introducing any new insights, and does not make
it easier to understand the general principles of the kernel, so it’s usually better to sacrifice some
thoroughness for clarity. The kernel sources are always available for all the gory details!

Q  Itis also often important to discuss kernel code directly if it is packed with important deci-
sions, and I do so when I deem it necessary. However, I often take the liberty of omitting less
interesting or purely mechanical parts, so don’t be astonished if the code presented in the book
sometimes differs slightly from the code seen in the kernel.

With respect to the source code, this book is self-contained, but it certainly helps if it is not read on a
desolate island, but next to a computer where the Linux source code is available and can be inspected.
Besides that, being on a desolate island is not much fun anyway.

Since I base many machine-specific examples on IA-32 and AMD64, some words about these terms
are in order. “IA-32" includes all Intel-compatible CPUs such as Pentium, Athlon, and so on. AMD64
also includes the Intel variant EM64T. For the sake of simplicity, I use only the abbreviations IA-32 and
AMD64 in this book. Since Intel undoubtedly invented IA-32 and AMD came up first with the 64-bit
extensions, this seems a fair compromise. It is also interesting to note that starting with kernel 2.6.23,
both architectures are unified to the generic x86 architecture within the Linux kernel. This makes the
code easier to maintain for the developers because many elements can be shared between both variants,
but nevertheless still distinguishes between 32- and 64-bit capabilities of the processors.

1.6 Summary

The Linux kernel is one of the most interesting and fascinating pieces of software ever written, and I hope
this chapter has succeeded in whetting your appetite for the things to come in the following chapters,
where I discuss many subsystems in detail. For now, I have provided a bird’s eye view of the kernel to
present the big picture of how responsibilities are distributed, which part of the kernel has to deal with
which problems, and how the components interact with each other.

Since the kernel is a huge system, there are some issues related to the presentation of the complex mate-
rial, and I have introduced you to the particular approach chosen for this book.
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Process Management
and Scheduling

All modern operating systems are able to run several processes at the same time — at least, this
is the impression users get. If a system has only one processor, only one program can run on it at
a given time. In multiprocessor systems, the number of processes that can truly run in parallel is
determined by the number of physical CPUs.

The kernel and the processor create the illusion of multitasking — the ability to perform several
operations in parallel — by switching repeatedly between the different applications running on the
system at very rapid intervals. Because the switching intervals are so short, users do not notice the
intervening brief periods of inactivity and gain the impression that the computer is actually doing
several things at once.

This kind of system management gives rise to several issues that the kernel must resolve, the most
important of which are listed below.

0  Applications must not interfere with each other unless this is expressly desired. For
example, an error in application A must not be propagated to application B. Because Linux
is a multiuser system, it must also be ensured that programs are not able to read or modify
the memory contents of other programs — otherwise, it would be extremely easy to access
the private data of other users.

QO  CPU time must be shared as fairly as possible between the various applications, whereby
some programs are regarded as more important than others.

I deal with the first requirement — memory protection — in Chapter 3. In the present chapter,

I focus my attention on the methods employed by the kernel to share CPU time and to switch
between processes. This twofold task is split into two parts that are performed relatively indepen-
dently of each other.
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The kernel must decide how much time to devote to each process and when to switch to the next
process. This begs the question as to which process is actually the next. Decisions of this kind are
not platform-dependent.

When the kernel switches from process A to process B, it must ensure that the execution envi-
ronment of B is exactly the same as when it last withdrew processor resources. For example, the
contents of the processor registers and the structure of virtual address space must be identical.

This latter task is extremely dependent on processor type. It cannot be implemented with C only,
but requires help by pure assembler portions.

Both tasks are the responsibility of a kernel subsystem referred to as the scheduler. How CPU time is allo-
cated is determined by the scheduler policy, which is totally separate from the task switching mechanism
needed to switch between processes.

2.1 Process Priorities

Not all processes are of equal importance. In addition to process priority, with which most readers will
be familiar, there are different criticality classes to satisfy differing demands. In a first coarse distinction,
processes can be split into real-time processes and non-real-time processes.
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Hard real-time processes are subject to strict time limits during which certain tasks must be com-
pleted. If the flight control commands of an aircraft are processed by computer, they must be
forwarded as quickly as possible — within a guaranteed period of time. For example, if an air-
craft is on its landing approach and the pilot wants to pull up the nose, it serves little purpose
if the computer forwards the command a few seconds later. By this time, the aircraft may well
be buried — nose first — in the ground. The key characteristic of hard real-time processes is that
they must be processed within a guaranteed time frame. Note that this does not imply that the
time frame is particularly short. Instead, the system must guarantee that a certain time frame is
never exceeded, even when unlikely or adverse conditions prevail.

Linux does not support hard real-time processing, at least not in the vanilla kernel. There are,
however, modified versions such as RTLinux, Xenomai, or RATI that offer this feature. The
Linux kernel runs as a separate “process’ in these approaches and handles less important soft-
ware, while real-time work is done outside the kernel. The kernel may run only if no real-time
critical actions are performed.

Since Linux is optimized for throughput and tries to handle common cases as fast as possible,
guaranteed response times are only very hard to achieve. Nevertheless quite a bit of progress
has been made during the last years to decrease the overall kernel latency, that is, the time
that elapses between making a request and its fulfillment. The efforts include the preemptible
kernel mechanism, real-time mutexes, and the new completely fair scheduler discussed in
this book.

Soft real-time processes are a softer form of hard real-time processes. Although quick results are
still required, it is not the end of the world if they are a little late in arriving. An example of a
soft real-time process is a write operation to a CD. Data must be received by the CD writer at a
certain rate because data are written to the medium in a continuous stream. If system loading is
too high, the data stream may be interrupted briefly, and this may result in an unusable CD, far
less drastic than a plane crash. Nevertheless, the write process should always be granted CPU
time when needed — before all other normal processes.
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0 Most processes are normal processes that have no specific time constraints but can still be classified
as more important or less important by assigning priorities to them.

For example, a long compiler run or numerical calculations need only very low priority because
it is of little consequence if computation is interrupted occasionally for a second or two — users
are unlikely to notice. In contrast, interactive applications should respond as quickly as possible
to user commands because users are notoriously impatient.

The allocation of CPU time can be portrayed in much simplified form as in Figure 2-1. Processes are
spread over a time slice, and the share of the slice allocated to them corresponds to their relative impor-
tance. The time flow in the system corresponds to the turning of the circle, and the CPU is represented by
a “scanner” at the circumference of the circle. The net effect is that important processes are granted more
CPU time than less important processes, although all eventually have their turn.

AL

Figure 2-1: Allocation of CPU time by means of
time slices.

In this scheme, known as preemptive multitasking, each process is allocated a certain time period during
which it may execute. Once this period has expired, the kernel withdraws control from the process and
lets a different process run — regardless of the last task performed by the previous process. Its runtime
environment — essentially, the contents of all CPU registers and the page tables — is, of course, saved
so that results are not lost and the process environment is fully reinstated when its turn comes around
again. The length of the time slice varies depending on the importance of the process (and therefore
on the priority assigned to it). Figure 2-1 illustrates this by allocating segments of different sizes to the
individual processes.

This simplified model does not take into account several important issues. For example, processes may
not be ready to execute at certain times because they have nothing to do. Because it is essential to use
CPU time as profitably as possible, such processes must be prevented from executing. This is not evident
in Figure 2-1 because it is assumed that all processes are always ready to run. Also ignored is the fact
that Linux supports different scheduling classes (completely fair scheduling between processes, and real-
time scheduling), and these must also be taken into consideration during scheduling. Neither is there an
option to replace the current process with an important process that has become ready to run.

Note that process scheduling causes very fervid and excited discussion among kernel developers, espe-
cially when it comes to picking the best possible algorithm. Finding a quantitative measure for the quality
of a scheduler is a very hard — if not impossible — task. It is also a very challenging task for a sched-
uler to fulfill the requirements imposed by the many different workloads that Linux systems have to
face: Small embedded systems for automated control usually have very different requirements than large
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number crunchers, while these in turn differ considerably from multimedia systems. In fact, the scheduler
code has seen two complete rewrites in recent years:

1. During the development series 2.5, a so-called O(1) scheduler replaced the previous sched-
uler. One particular property of this scheduler was that it could perform its work in constant
time independent of the number of processes that were running on a system. The design
broke quite radically with the previously employed scheduling architecture.

2.  The completely fair scheduler was merged during the development of kernel 2.6.23. The new
code again marked a complete departure from previous principles by abandoning, for
instance, many heuristics that were required in previous schedulers to ensure that
interactive tasks would respond quickly. The key feature of this scheduler is that it tries
to resemble ideal fair scheduling as close as possible. Besides, it cannot only schedule
individual tasks, but works with more general scheduling entities. This allows, for instance,
for distribution the available time between all processes of different users, and then among
the processes of each user.

I discuss the implementation of this scheduler below in detail.

Before we concern ourselves with how scheduling is implemented in the kernel, it is useful to discuss the
states that a process may have.

2.2 Process Life Cycle

A process is not always ready to run. Occasionally, it has to wait for events from external sources
beyond its control — for keyboard input in a text editor, for example. Until the event occurs, the process
cannot run.

The scheduler must know the status of every process in the system when switching between tasks; it
obviously doesn’t make sense to assign CPU time to processes that have nothing to do. Of equal impor-
tance are the transitions between individual process states. For example, if a process is waiting for data
from a peripheral device, it is the responsibility of the scheduler to change the state of the process from
waiting to runnable once the data have arrived.

A process may have one of the following states:

QO  Running — The process is executing at the moment.

O  Waiting — The process is able to run but is not allowed to because the CPU is allocated to
another process. The scheduler can select the process, if it wants to, at the next task switch.

0  Sleeping — The process is sleeping and cannot run because it is waiting for an external event.
The scheduler cannot select the process at the next task switch.

The system saves all processes in a process table — regardless of whether they are running, sleeping, or
waiting. However, sleeping processes are specially ““marked’ so that the scheduler knows they are not
ready to run (see how this is implemented in Section 2.3). There are also a number of queues that group
sleeping processes so that they can be woken at a suitable time — when, for example, an external event
that the process has been waiting for takes place.
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Figure 2-2 shows several process states and transitions.

@ ®
Running —@>| Waiting | Sleeping
®

Y
Stopped

@

Figure 2-2: Transitions between process states.

Let’s start our examination of the various transitions with a queued runnable process; the process is
ready to run but is not allowed to because the CPU is allocated to a different process (its state is therefore
“waiting’). It remains in this state until the scheduler grants it CPU time. Once this happens, its state
changes to “running” (path 4).

When the scheduler decides to withdraw CPU resources from the process — I deal with the possible rea-
sons why shortly — the process state changes from “running” to “waiting’ (path 2), and the cycle starts
anew. There are, in fact, two “’sleeping’” states that differ according to whether they can be interrupted
by signals or not. At the moment, this difference is not important, but it is of relevance when we examine
implementation more closely.

If the process has to wait for an event, its state changes (path 1) from “running’ to “sleeping.” However,
it cannot change directly from “sleeping’ to “running’’; once the event it was waiting for has taken place,
the process changes back to the “waiting”* state (path 3) and then rejoins the normal cycle.

Once program execution terminates (e.g., the user closes the the application), the process state changes
from “running’ to “stopped” (path 5).

A special process state not listed above is the “zombie”’state. As the name suggests, such processes are

defunct but are somehow still alive. In reality, they are dead because their resources (RAM, connections
to peripherals, etc.) have already been released so that they cannot and never will run again. However,
they are still alive because there are still entries for them in the process table.

How do zombies come about? The reason lies in the process creation and destruction structure under
UNix. A program terminates when two events occur — first, the program must be killed by another
process or by a user (this is usually done by sending a SIGTERM or SIGKILL signal, which is equivalent
to terminating the process regularly); second, the parent process from which the process originates must
invoke or have already invoked the wait4 (read: wait for) system call when the child process terminates.
This confirms to the kernel that the parent process has acknowledged the death of the child. The system
call enables the kernel to free resources reserved by the child process.

A zombie occurs when only the first condition (the program is terminated) applies but not the second
(wait4). A process always switches briefly to the zombie state between termination and removal of its
data from the process table. In some cases (if, e.g., the parent process is badly programmed and does
not issue a wait call), a zombie can firmly lodge itself in the process table and remain there until the next
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2.

reboot. This can be seen by reading the output of process tools such as ps or top. This is hardly a problem
as the residual data take up little space in the kernel.

2.1 Preemptive Multitasking

The structure of Linux process management requires two further process state options — user mode and
kernel mode. These reflect the fact that all modern CPUs have (at least) two different execution modes,
one of which has unlimited rights while the other is subject to various restrictions — for example, access
to certain memory areas can be prohibited. This distinction is an important prerequisite for creating
locked ““cages,” which hold existing processes and prevent them from interfering with other parts of the
system.

Normally the kernel is in user mode in which it may access only its own data and cannot therefore inter-
fere with other applications in the system — it usually doesn’t even notice that there are other programs
besides itself.

If a process wants to access system data or functions (the latter manage the resources shared between all
processes, e.g., filesystem space), it must switch to kernel mode. Obviously, this is possible only under
control — otherwise all established protection mechanisms would be superfluous — and via clearly
defined paths. Chapter 1 mentioned briefly that “system calls”” are one way to switch between modes.
Chapter 13 discusses the implementation of such calls in depth.

A second way of switching from user mode to kernel mode is by means of interrupts — switching is
then triggered automatically. Unlike system calls, which are invoked intentionally by user applications,
interrupts occur more or less arbitrarily. Generally, the actions needed to handle interrupts have nothing
to do with the process executing when the interrupt occurred. For example, an interrupt is raised when
an external block device has transferred data to RAM, although these data may be intended for any
process running on the system. Similarly, incoming network packages are announced by means of an
interrupt. Again, it is unlikely that the inbound package is intended for the process currently running.
For this reason, Linux performs these actions in such a way that the running process is totally unaware
of them.

The preemptive scheduling model of the kernel establishes a hierarchy that determines which process
states may be interrupted by which other states.

O  Normal processes may always be interrupted — even by other processes. When an important
process becomes runnable — for example, an editor receives long-awaited keyboard input — the
scheduler can decide whether to execute the process immediately, even if the current process is
still happily running. This kind of preemption makes an important contribution to good interac-
tive behavior and low system latency.

Q  If the system is in kernel mode and is processing a system call, no other process in the system
is able to cause withdrawal of CPU time. The scheduler is forced to wait until execution of the
system call has terminated before it can select another process. However, the system call can be
suspended by an interrupt.!

O Interrupts can suspend processes in user mode and in kernel mode. They have the highest prior-
ity because it is essential to handle them as soon as possible after they are issued.
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One option known as kernel preemption was added to the kernel during the development of kernel 2.5.
This option supports switches to another process, if this is urgently required, even during the execution
of system calls in kernel mode (but not during interrupts). Although the kernel attempts to execute
system calls as quickly as possible, the time needed may be too long for some applications that are reliant
on constant data streams. Kernel preemption can reduce such wait times and thus ensure “smoother’
program execution. However, this is at the expense of increased kernel complexity because many data
structures then need to be protected against concurrent access even on single-processor systems. This
technique is discussed in Section 2.8.3.

2.3 Process Representation

All algorithms of the Linux kernel concerned with processes and programs are built around a data struc-
ture named task_struct and defined in include/sched.h. This is one of the central structures in the
system. Before we move on to deal with the implementation of the scheduler, it is essential to examine
how Linux manages processes.

The task structure includes a large number of elements that link the process with the kernel subsystems
which I discuss below. I therefore make frequent reference to later chapters because it is difficult to
explain the significance of some elements without detailed knowledge of them.

The task structure is defined as follows — in simplified form:

<sched.h>

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;

unsigned long flags; /* per process flags, defined below */
unsigned long ptrace;
int lock_depth; /* BKL lock depth */

int prio, static_prio, normal_prio;
struct list_head run_list;

const struct sched_class *sched_class;
struct sched_entity se;

unsigned short ioprio;

unsigned long policy;
cpumask_t cpus_allowed;
unsigned int time_slice;

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ ACCT)
struct sched_info sched_info;
#endif

struct list_head tasks;

/*
* ptrace_list/ptrace_children forms the list of my children
* that were stolen by a ptracer.

*/

struct list_head ptrace_children;
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struct list_head ptrace_list;
struct mm_struct *mm, *active_mm;

/* task state */
struct linux_binfmt *binfmt;
long exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */

unsigned int personality;
unsigned did_exec:1;

pid_t pid;
pid_t tgid;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->parent->pid)
*/
struct task_struct *real_parent; /* real parent process (when being debugged) */
struct task_struct *parent; /* parent process */
/*

* children/sibling forms the list of my children plus the
* tasks I'm ptracing.

*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */

/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;

struct completion *vfork_done; /* for vfork() */
int _ user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */

unsigned long rt_priority;

cputime_t utime, stime, utimescaled, stimescaled;;

unsigned long nvcsw, nivesw; /* context switch counts */

struct timespec start_time; /* monotonic time */

struct timespec real_start_time; /* boot based time */

/* mm fault and swap info: this can arguably be seen as either
mm-specific or thread-specific */

unsigned long min_flt, maj_flt;

cputime_t it_prof_expires, it_virt_expires;
unsigned long long it_sched_expires;
struct list_head cpu_timers[3];

/* process credentials */
uid_t uid,euid, suid, fsuid;
gid_t gid,egid, sgid, fsgid;
struct group_info *group_info;
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
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unsigned keep_capabilities:1;
struct user_struct *user;

char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task comm (which lock
it with task_lock())
- initialized normally by flush_old_exec */
/* file system info */
int link_count, total_link_count;
/* ipc stuff */
struct sysv_sem sysvsem;
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespace */
struct nsproxy *nsproxy;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;

sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
struct sigpending pending;

unsigned long sas_ss_sp;
size_t sas_ss_size;

int (*notifier) (void *priv);
void *notifier_data;
sigset_t *notifier_mask;

#ifdef CONFIG_SECURITY
void *security;
#endif
/* Thread group tracking */
u32 parent_exec_id;

u32 self_exec_id;

/* journalling filesystem info */
void *journal_info;

/* VM state */
struct reclaim_state *reclaim_state;

struct backing dev_info *backing dev_info;
struct io_context *io_context;

unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
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Admittedly, it is difficult to digest the amount of information in this structure. However, the structure
contents can be broken down into sections, each of which represents a specific aspect of the process:

Q

a
]

State and execution information such as pending signals, binary format used (and any emulation
information for binary formats of other systems), process identification number (pid), pointers to
parents and other related processes, priorities, and time information on program execution (e.g.,
CPU time).

Information on allocated virtual memory.

Process credentials such as user and group ID, Capalbilities,2 and so on. System calls can be used
to query (or modify) these data; I deal with these in greater detail when describing the specific
subsystems.

Files used: Not only the binary file with the program code but also filesystem information on all
files handled by the process must be saved.

Thread information, which records the CPU-specific runtime data of the process (the remaining
fields in the structure are not dependent on the hardware used).

Information on interprocess communication required when working with other applications.

Signal handlers used by the process to respond to incoming signals.

Many members of the task structure are not simple variables but pointers to other data structures
examined and discussed in the following chapters. In the present chapter, I consider some elements
of task_struct that are of particular significance in process management implementation.

state specifies the current state of a process and accepts the following values (these are pre-processor
constants defined in <sched.h>):

Q

a
a

TASK_RUNNING means that a task is in a runnable state. It does not mean that a CPU is actually
allocated. The task can wait until it is selected by the scheduler. This state guarantees that the
process really is ready to run and is not waiting for an external event.

TASK_INTERRUPTIBLE is set for a sleeping process that is waiting for some event or other. When
the kernel signals to the process that the event has occurred, it is placed in the TASK_RUNNING
state and may resume execution as soon as it is selected by the scheduler.

TASK_UNINTERRUPTIBLE is used for sleeping processes disabled on the instructions of the kernel.
They may not be woken by external signals, only by the kernel itself.

TASK_STOPPED indicates that the process was stopped on purpose — by a debugger, for example.

TASK_TRACED is not a process state per se — it is used to distinguish stopped tasks that are cur-
rently being traced (using the ptrace mechanism) from regular stopped tasks.

The following constants can be used both in the task state field of struct task_struct, but also in the
field exit_state, which is specifically for exiting processes.

a
a

EXIT_ZOMBIE is the zombie state described above.

EXIT_DEAD is the state after an appropriate wait system call has been issued and before the task
is completely removed from the system. This state is only of importance if multiple threads issue
wait calls for the same task.
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Linux provides the resource limit (rlimit) mechanism to impose certain system resource usage limits on
processes. The mechanism makes use of the rlimarray in task_struct, whose elements are of the struct
rlimit type.

<resource.h>

struct rlimit {
unsigned long rlim_cur;
unsigned long rlim max;

}

The definition is purposely kept very general so that it can accept many different resource types.

Q  rlim_cur is the current resource limit for the process. It is also referred to as the soft limit.

0 rlim max is the maximum allowed value for the limit. It is therefore also referred to as the
hard limit.

The setrlimit system call is used to increase or decrease the current limit. However, the value specified
in r1im_max may not be exceeded. getrlimits is used to check the current limit.

The limitable resources are identified by reference to their position in the r1im array, which is why the
kernel defines pre-processor constants to associate resource and position. Table 2-1 lists the possible
constants and their meanings. Textbooks on system programming provide detailed explanations on
best use of the various limits in practice, and the manual page setrlimit(2) contains more detailed
descriptions of all limits.

The numeric values differ between architectures because Linux tries to establish
binary compatibility with the specific native Unix systems.

Because the limits relate to very different parts of the kernel, the kernel must check that the limits are
observed in the corresponding subsystems. This is why we encounter rlimit time and time again in later
chapters of this book.

If a resource type may be used without limits (the default setting for almost all resources), RLIM_INFINITY
is used as the value for r1im_max. Exceptions are, among others:
Q  The number of open files (RLIMIT_NOFILE, limited to 1,024 by default).

Q  The maximum number of processes per user (RLIMIT_NPROC), defined as max_threads/2.
max_threads is a global variable whose value specifies how many threads may be generated so
that an eighth of available RAM is used only for management of thread information, given a
minimum possible memory usage of 20 threads.

The boot-time limits for the init task are defined in INIT RLIMITS in include/asm-generic-resource.h

Notice that kernel 2.6.25, which was still under development when this book was written, will contain
one file per process in the proc filesystem, which allows for inspecting the current rlimit values:

wolfgang@meitner> cat /proc/self/limits
Limit Soft Limit Hard Limit Units
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Max cpu time unlimited unlimited ms

Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8388608 unlimited bytes
Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes unlimited unlimited processes
Max open files 1024 1024 files
Max locked memory unlimited unlimited bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals unlimited unlimited signals
Max msgqueue size unlimited unlimited bytes
Max nice priority 0 0

Max realtime priority 0 0

Max realtime timeout unlimited unlimited us

Table 2-1: Process-Specific Resource Limits.

Constant

Meaning

RLIMIT_CPU

RLIMIT_FSIZE

RLIMIT_DATA

RLIMIT_STACK

RLIMIT_CORE

RLIMIT_RSS

RLIMIT_NPROC

RLIMIT_NOFILE

RLIMIT MEMLOCK

RLIMIT_AS

RLIMIT_LOCKS

RLIMIT_SIGPENDING

RLIMIT MSGQUEUE

RLIMIT_NICE

RLIMIT_RTPRIO

Maximum CPU time in milliseconds.
Maximum file size allowed.

Maximum size of the data segment.
Maximum size of the (user mode) stack.
Maximum size for core dump files.

Maximum size of the resident size set; in other words, the maximum number of
page frames that a process uses. Not used at the moment.

Maximum number of processes that the user associated with the real UID of a
process may own.

Maximum number of open files.

Maximum number of non-swappable pages.

Maximum size of virtual address space that may be occupied by a process.
Maximum number of file locks.

Maximum number of pending signals.

Maximum number of message queues.

Maximum nice level for non-real-time processes.

Maximum real-time priority.
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Most of the code to generate the information is already present in kernel 2.6.24, but the final connection
with /proc will only be made in the following kernel release.

2.3.1 Process Types

A classical UNIx process is an application that consists of binary code, a chronological thread (the com-
puter follows a single path through the code, no other paths run at the same time), and a set of resources
allocated to the application — for example, memory, files, and so on. New processes are generated using
the fork and exec system calls:

0  fork generates an identical copy of the current process; this copy is known as a child process. All
resources of the original process are copied in a suitable way so that after the system call there
are two independent instances of the original process. These instances are not linked in any way
but have, for example, the same set of open files, the same working directory, the same data in
memory (each with its own copy of the data), and so on.3

0  execreplaces a running process with another application loaded from an executable binary file.
In other words, a new program is loaded. Because exec does not create a new process, an old
program must first be duplicated using fork, and then exec must be called to generate an addi-
tional application on the system.

Linux also provides the clone system call in addition to the two calls above that are available in all UN1x
flavors and date back to very early days. In principle, clone works in the same way as fork, but the new
process is not independent of its parent process and can share some resources with it. It is possible to
specify which resources are to be shared and which are to be copied — for example, data in memory,
open files, or the installed signal handlers of the parent process.

clone is used to implement threads. However, the system call alone is not enough to do this. Libraries are
also needed in userspace to complete implementation. Examples of such libraries are Linuxthreads and
Next Generation Posix Threads.

2.3.2 Namespaces

Namespaces provide a lightweight form of virtualization by allowing us to view the global properties of
a running system under different aspects. The mechanism is similar to zones in Solaris or the jail mech-
anism in FreeBSD. After a general overview of the concept, I discuss the infrastructure provided by the
namespace framework.

Concept

Traditionally, many resources are managed globally in Linux as well as other UNix derivatives. For
instance, all processes in the system are conventionally identified by their PID, which implies that a
global list of PIDs must be managed by the kernel. Likewise, the information about the system returned
by the uname system call (which includes the system name and some information about the kernel) is the
same for all callers. User IDs are managed in a similar fashion: Each user is identified by a UID number
that is globally unique.

3In Section 2.4.1, you will see that Linux does use the copy-on-write mechanism to not copy memory pages of the forked process
until the new process performs a write access to the pages — this is more efficient than blindly copying all memory pages immedi-
ately on execution of fork. The link between the memory pages of the parent and child process needed to do this is visible to the
kernel only and is transparent to the applications.
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Global identifiers allow the kernel to selectively grant or deny certain privileges. While the root user
with UID 0 is essentially allowed to do anything, higher user IDs are more confined. A user with PID n
may, for instance, not kill processes that belong to user m # n. However, this does not prevent users from
seeing each other: User 1 can see that another user m is also active on the machine. This is no problem: As
long as users can only fiddle with their own processes, there is no reason why they should not be allowed
to observe that other users have processes as well.

There are cases, though, where this can be undesired. Consider that a web provider wants to give full
access to Linux machines to customers, including root access. Traditionally, this would require setting
up one machine per customer, which is a costly business. Using virtualized environments as provided
by KVM or VMWare is one way to solve the problem, but does not distribute resources very well: One
separate kernel is required for each customer on the machine, and also one complete installation of the
surrounding userland.

A different solution that is less demanding on resources is provided by namespaces. Instead of using
virtualized systems such that one physical machine can run multiple kernels — which may well be from
different operating systems — in parallel, a single kernel operates on a physical machine, and all previ-
ously global resources are abstracted in namespaces. This allows for putting a group of processes into a
container, and one container is separated from other containers. The separation can be such that members
of one container have no connection whatsoever with other containers. Is is, however, also possible to
loosen the separation of containers by allowing them to share certain aspects of their life. For instance,
containers could be set up to use their own set of PIDs, but still share portions of filesystems with each
other.

Namespaces essentially create different views of the system. Every formerly global resource must be
wrapped up in a container data structure, and only tuples of the resource and the containing namespace
are globally unique. While the resource alone is enough inside a given container, it does not provide a
unique identity outside the container. An overview of the situation is given in Figure 2-3.

Consider a case in which three different namespaces are present on the system. Namespaces can be
hierarchically related, and I consider this case here. One namespace is the parent namespace, which has
spawned two child namespaces. Assume that the containers are used in a hosting setup where each
container must look like a single Linux machine. Each of them therefore has its own init task with PID
0, and the PIDs of other tasks are assigned in increasing order. Both child namespaces have an init task
with PID 0, and two processes with PIDs 2 and 3, respectively. Since PIDs with identical values appear
multiple times on the system, the numbers are not globally unique.

While none of the child containers has any notion about other containers in the system, the parent is
well informed about the children, and consequently sees all processes they execute. They are mapped
to the PID range 4 to 9 in the parent process. Although there are 9 processes on the system, 15 PIDs are
required to represent them because one process can be associated with more than one PID. The “right”
one depends on the context in which the process is observed.

Namespaces can also be non-hierarchical if they wrap simpler quantities, for instance, like the UTS
namespace discussed below. In this case, there is no connection between parent and child namespaces.

Notice that support for namespaces in a simple form has been available in Linux for quite a long time
in the form of the chroot system call. This method allows for restricting processes to a certain part of
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Parent
namespace

Child
namespaces

Figure 2-3: Namespaces can be related in a hierarchical order.
Each namespace has a parent from which it originates, and a
parent can have multiple children.

the filesystem and is thus a simple namespace mechanism. True namespaces do, however, allow for
controlling much more than just the view on the filesystem.

New namespaces can be established in two ways:

1. When anew process is created with the fork or clone system call, specific options control if
namespaces will be shared with the parent process, or if new namespaces are created.

2. The unshare system call dissociates parts of a process from the parent, and this also includes
namespaces. See the manual page unshare (2) for more information.

Once a process has been disconnected from the parent namespace using any of the two mechanisms
above, changing a — from its point of view — global property will not propagate into the parent names-
pace, and neither will a change on the parent side propagate into the child, at least for simple quantities.
The situation is more involved for filesystems where the sharing mechanisms are very powerful and
allow a plethora of possibilities, as discussed in Chapter 8.

Namespaces are currently still marked as experimental in the standard kernel, and development to make
all parts of the kernel fully namespace-aware are still going on. As of kernel 2.6.24, the basic framework is,
however, set up and in place.4 The file Documentation/namespaces/compatibility-1list.txt provides
information about some problems that are still present in the current state of the implementation.

4This, however, does not imply that the approach was only recently developed. In fact, the methods have been used in production
systems over many years, but were only available as external kernel patches.
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Implementation

The implementation of namespaces requires two components: per-subsystem namespace structures that
wrap all formerly global components on a per-namespace basis, and a mechanism that associates a given
process with the individual namespaces to which it belongs. Figure 2-4 illustrates the situation.

UTS Namespace
0

struct nsprox
Tasks proxy

uts_namespc
user_namespc
mnt_namespc

struct task_struct

User Namespace
0

struct task_struct struct nsproxy

uts_namespc
user_namespc
mnt_namespc

Y

L]

struct task_struct

Figure 2-4: Connection between processes and hamespaces.

Formerly global properties of subsystems are wrapped up in namespaces, and each process is associated
with a particular selection of namespaces. Each kernel subsystem that is aware of namespaces must
provide a data structure that collects all objects that must be available on a per-namespace basis. struct
nsproxy is used to collect pointers to the subsystem-specific namespace wrappers:

<nsproxy.h>

struct nsproxy {
atomic_t count;
struct uts_namespace *uts_ns;
struct ipc_namespace *ipc_ns;
struct mnt_namespace *mnt_ns;
struct pid_namespace *pid_ns;
struct user_namespace *user_ns;
struct net *net_ns;

Y

Currently the following areas of the kernel are aware of namespaces:

QO  The UTS namespace contains the name of the running kernel, and its version, the underlying
architecture type, and so on. UTS is a shorthand for UNix Timesharing System.

0  All information related to inter-process communication (IPC) is stored in struct
ipc_namespace.
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Q  The view on the mounted filesystem is given in struct mnt_namespace.

(]

struct pid_namespace provides information about process identifiers.

0  struct user_namespace is required to hold per-user information that allows for limiting
resource usage for individual users.

0  struct net_ns contains all networking-related namespace parameters. There is, however, still
quite a lot of effort required to make this area fully aware of namespaces as you will see in
Chapter 12.

Iintroduce the contents of the individual namespace containers when I discuss the respective subsystem.
In this chapter, we will be concerned about UTS and user namespaces. Since fork can be instructed to
open a new namespace when a new task is created, appropriate flags to control the behavior must be
provided. One flag is available for each individual namespace:

<sched.h>

#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
#define CLONE_NEWIPC 0x08000000 /* New ipcs */

#define CLONE_NEWUSER 0x10000000 /* New user namespace */
#define CLONE_NEWPID 0x20000000 /* New pid namespace */
#define CLONE_NEWNET 0x40000000 /* New network namespace */

Each task is associated with his own view of the namespaces:

<sched.h>
struct task_struct {

/* namespaces */
struct nsproxy *nsproxy;

}

Because a pointer is used, a collection of sub-namespaces can be shared among multiple processes. This
way, changes in a given namespace will be visible in all processes that belong to this namespace.

Notice that support for namespaces must be enabled at compile time on a per-namespace basis. Generic
support for namespaces is, however, always compiled in. This allows the kernel to avoid using different
code for systems with and without namespaces. By providing a default namespace that is associated with
every process unless specified differently, the namespace-aware code can always be used, but the results
will be identical to a situation in which all properties are global and not wrapped up in namespaces if no
active support for namespaces is compiled in.

The initial global namespace is defined by init_nsproxy, which keeps pointers to the initial objects of
the per-subsystem namespaces:

<kernel/nsproxy.c>
struct nsproxy init_nsproxy = INIT_NSPROXY (init_nsproxy) ;

<init_task.h>

#define INIT_NSPROXY (nsproxy) { \
.pid_ns = &init_pid_ns, \
.count = ATOMIC_INIT (1), \
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.uts_ns = &init_uts_ns, \
.mnt_ns = NULL, \

INIT _NET NS (net_ns) \
INIT_IPC_NS(ipc_ns) \
.user_ns = &init_user_ns, \

The UTS Namespace

The UTS namespace can be handled with particularly little effort because it only has to manage simple
quantities and does not require a hierarchical organization. All relevant information is collected in an
instance of the following structure:

<utsname.h>
struct uts_namespace {

struct kref kref;

struct new_utsname name;
Y

kref is an embedded reference counter that can be used to track from how many places in the kernel
an instance of struct uts_namespace is used (recall that Chapter 1 provides more information about
the generic framework to handle reference counting). The information proper is contained in struct
new_utsname:

<utsname.h>

struct new_utsname {
char sysname[65];
char nodename[65];
char release[65];
char version[65];
char machine([65];
char domainname[65];

Y

The individual strings store the name of the system (Linux...), the kernel release, the machine
name, and so on. The current values can be determined using the uname tool, but are also visible in
/proc/sys/kernel/:

wolfgang@meitner> cat /proc/sys/kernel/ostype
Linux

wolfgang@meitner> cat /proc/sys/kernel/osrelease
2.6.24

The initial settings are stored in init_uts_ns:

init/version.c
struct uts_namespace init_uts_ns = {

.name = {
.sysname = UTS_SYSNAME,
.nodename = UTS_NODENAME,
.release UTS_RELEASE,
.version = UTS_VERSION,
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.machine = UTS_MACHINE,
.domainname = UTS_DOMAINNAME,
},
Y

The pre-processor constants are defined on various places across the kernel. UTS_RELEASE is, for instance,
set in <utsrelease.h>, which is dynamically generated at build time by the top-level Makefile.

Notice that some parts of the UTS structure cannot be changed. For instance, it would not make sense to
exchange sysname by anything else than Linux. It is, however, possible to change the machine name, for
example.

How does the kernel go about creating a new UTS namespace? This falls under the responsibility of
the function copy_utsname. The function is called when a process is forked and the flag CLONE_NEWUTS
specifies that a new UTS namespace is to be established. In this case, a copy of the previous instance

of uts_namespace is generated, and a corresponding pointer is installed into the nsproxy instance of the
current task. Nothing more is required! Since the kernel makes sure to always operate on the task-specific
uts_namespace instance whenever a UTS value is read or set, changes for the current process will not be
reflected in the parent, and changes in the parent will also not propagate toward the children.

The User Namespace

The user namespace is handled similarly in terms of data structure management: When a new user
namespace is requested, a copy of the current user namespace is generated and associated with the
nsproxy instance of the current task. However, the representation of a user namespace itself is slightly
more complex:

<user_namespace.h>

struct user_namespace {
struct kref kref;
struct hlist_head uidhash_table[UIDHASH_SZ];
struct user_struct *root_user;

Y

As before, kref is a reference counter that tracks in how many places a user_namespace instance is
required. For each user in the namespace, an instance of struct user_struct keeps track of the individ-
ual resource consumption, and the individual instances are accessible via the hash table uidhash_table.

The exact definition of user_struct is not interesting for our purposes. It suffices to know that some sta-
tistical elements like the number of open files or processes a user has are kept in there. What is much more
interesting is that each user namespace accounts resource usage for its users completely detached from
other namespaces — including accounting for the root user. This is possible because a new user_struct
both for the current user and the root is created when a user namespace is cloned:

kernel/user_namespace.c
static struct user_namespace *clone_user_ns (struct user_namespace *old_ns)
{

struct user_namespace *ns;

struct user_struct *new_user;

ns = kmalloc (sizeof (struct user_namespace), GFP_KERNEL) ;
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ns->root_user = alloc_uid(ns, 0);

/* Reset current->user with a new one */
new_user = alloc_uid(ns, current->uid);

switch_uid(new_user) ;
return ns;

}

alloc_uidis a helper function that allocates an instance of user_struct for a user with a given UID in
the current namespace if none exists yet. Once an instance has been set up for both root and the current
user, switch_uid ensures that the new user_struct will be used to account resources from now on. This
essentially works by setting the user element of struct task_struct to the new user_struct instance.

Notice that if support for user namespaces is not compiled in, cloning a user namespace is a null opera-
tion: The default namespace is always used.

2.3.3 Process Identification Numbers

UNIxX processes are always assigned a number to uniquely identify them in their namespace. This number
is called the process identification number or PID for short. Each process generated with fork or clone is
automatically assigned a new unique PID value by the kernel.

Process Identifiers
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Each process is, however, not only characterized by its PID but also by other identifiers. Several types are
possible:

O  All processes in a thread group (i.e., different execution contexts of a process created by call-
ing clone with CLONE_THREAD as we will see below) have a uniform thread group id (TGID). If a
process does not use threads, its PID and TGID are identical.

The main process in a thread group is called the group leader. The group_leader element of the
task structures of all cloned threads points to the task_struct instance of the group leader.

0 Otherwise, independent processes can be combined into a process group (using the setpgrp sys-
tem call). The pgrp elements of their task structures all have the same value, namely, the PID of
the process group leader. Process groups facilitate the sending of signals to all members of the
group, which is helpful for various system programming applications (see the literature on sys-
tem programming, e.g., [SR05]). Notice that processes connected with pipes are contained in a
process group.

0 Several process groups can be combined in a session. All processes in a session have the same
session ID which is held in the session element of the task structure. The SID can be set using
the setsid system call. It is used in terminal programming but is of no particular relevance to us
here.

Namespaces add some additional complexity to how PIDs are managed. Recall that PID namespaces are
organized in a hierarchy. When a new namespace is created, all PIDs that are used in this namespace
are visible to the parent namespace, but the child namespace does not see PIDs of the parent name-
space. However this implies that some tasks are equipped with more than one PID, namely, one per
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namespace they are visible in. This must be reflected in the data structures. We have to distinguish
between local and global IDs:

Q  Global IDs are identification numbers that are valid within the kernel itself and in the initial
namespace to which the init tasks started during boot belongs. For each ID type, a given global
identifier is guaranteed to be unique in the whole system.

Q  Local IDs belong to a specific namespace and are not globally valid. For each ID type, they are
valid within the namespace to which they belong, but identifiers of identical type may appear
with the same ID number in a different namespace.

The global PID and TGID are directly stored in the task struct, namely, in the elements pid and tgia:

<sched.h>
struct task_struct {

pid_t pid;
pid_t tgid;

}

Both are of type pid_t, which resolves to the type __kernel_pid_t; this, in turn, has to be defined by
each architecture. Usually an int is used, which means that 23? different IDs can be used simultaneously.

The session and process group IDs are not directly contained in the task structure itself, but in the struc-
ture used for signal handling. task_struct->signal->__session denotes the global SID, while the
global PGID is stored in task_struct->signal->_ pgrp. The auxiliary functions set_task_sessionand
set_task_pgrp are provided to modify the values.

Managing PIDs

In addition to these two fields, the kernel needs to find a way to manage all local per-namespace quanti-
ties, as well as the other identifiers like TID and SID. This requires several interconnected data structures
and numerous auxiliary functions that are discussed in the following.

Data Structures
Below I use the term ID to refer to any process identifier. I specify the identifier type explicitly (e.g., TGID
for ““thread group identifier’””) where this is necessary.

A small subsystem known as a pid allocator is available to speed up the allocation of new IDs. Besides,
the kernel needs to provide auxiliary functions that allow for finding the task structure of a process by
reference to an ID and its type, and functions that convert between the in-kernel representation of IDs
and the numerical values visible to userspace.

Before I introduce the data structures required to represent IDs themselves, I need to discuss how PID
namespaces are represented. The elements required for our purposes are as follows:

<pid_namespace.h>
struct pid_namespace {

struct task_struct *child_reaper;
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int level;
struct pid_namespace *parent;
Y

In reality, the structure also contains elements that are needed by the PID allocator to produce a stream
of unique IDs, but these do not concern us now. What is interesting are the following elements:

0  Every PID namespace is equipped with a task that assumes the role taken by init in the global
picture. One of the purposes of init is to call wait4 for orphaned tasks, and this must likewise
be done by the namespace-specific init variant. A pointer to the task structure of this task is
stored in child_reaper.

0  parentisa pointer to the parent namespace, and level denotes the depth in the namespace hier-
archy. The initial namespace has level 0, any children of this namespace are in level 1, children
of children are in level 2, and so on. Counting the levels is important because IDs in higher levels
must be visible in lower levels. From a given level setting, the kernel can infer how many IDs
must be associated with a task.

Recall from Figure 2-3 that namespaces are hierarchically related. This clarifies the above definitions.
PID management is centered around two data structures: struct pid is the kernel-internal representation

of a PID, and struct upid represents the information that is visible in a specific namespace. The definition
of both structures is as follows:

<pid.h>
struct upid {
int nr;
struct pid_namespace *ns;
struct hlist_node pid_chain;
Y
struct pid

{
atomic_t count;
/* lists of tasks that use this pid */
struct hlist_head tasks[PIDTYPE_MAX];
int level;
struct upid numbers[1];

Y

Since these and some other data structures are comprehensively interconnected, Figure 2-5 provides an
overview about the situation before I discuss the individual components.

As for struct upid, nr represents the numerical value of an ID, and ns is a pointer to the namespace to
which the value belongs. All upid instances are kept on a hash table to which we will come in a moment,
and pid_chain allows for implementing hash overflow lists with standard methods of the kernel.

The definition of struct pid is headed by a reference counter count. tasks is an array with a hash
list head for every ID type. This is necessary because an ID can be used for several processes. All
task_struct instances that share a given ID are linked on this list. PIDTYPE_MAX denotes the number of
ID types:
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<pid.h>

enum pid_type

{
PIDTYPE_PID,
PIDTYPE_PGID,
PIDTYPE_SID,
PIDTYPE_MAX

struct task_struct

mode }pids []
. fids [2]
struct pid
(@ pID_TYPE_PID }pids (3]

(:)PID_TYPE_PGID task_struct task_struct

(3 PID_TYPE_SID tasks

®©EE

struct upid

} numbers[level]

level n +1 entries

levetO .~ | | /[~ N\ &
mvd1f E /’pld_ hask struct upid \\
\ : i
level 2 \ —{ 1 1]
R struct pid_namespace \ /!
PID namespace Hashed by pid and namespace

Figure 2-5: Overview of data structures used to implement a namespace-aware representation of IDs.

Notice that thread group IDs are not contained in this collection! This is because the thread group ID is
simply given by the PID of the thread group leader, so a separate entry is not necessary.

A process can be visible in multiple namespaces, and the local ID in each namespace will be different.
level denotes in how many namespaces the process is visible (in other words, this is the depth of the
containing namespace in the namespace hierarchy), and numbers contains an instance of upid for each
level. Note that the array consists formally of one element, and this is true if a process is contained only
in the global namespace. Since the element is at the end of the structure, additional entries can be added

to the array by simply allocating more space.
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Since all task structures that share an identifier are kept on a list headed by tasks, a list element is
required in struct task_struct:

<sched.h>
struct task_struct ({

/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX] ;

i
The auxiliary data structure pid_link permits linking of task structures on the lists headed from
struct pid:

<pid.h>

struct pid_link

{
struct hlist_node node;
struct pid *pid;

Y

pid points to a pid instance to which the task belongs, and node is used as list element.

A hash table is used to find the pid instance that belongs to a numeric PID value in a given
namespace:

kernel/pid.c
static struct hlist_head *pid_hash;

hlist_head is a kernel standard data element used to create doubly linked hash lists (Appendix C
describes the structure of such lists and introduces several auxiliary functions for processing them).

pid_hashis used as an array of hlist_heads. The number of elements is determined by the RAM con-
figuration of the machine and lies between 2* = 16 and 2!? = 4,096. pidhash_init computes the apt size
and allocates the required storage.

Suppose that a new instance of struct pid has been allocated and set up for a given ID type type. It is
attached to a task structure as follows:

kernel/pid.c
int fastcall attach_pid(struct task_struct *task, enum pid_type type,
struct pid *pid)
{
struct pid_link *1link;

link = &task->pids[typel;
link->pid = pid;
hlist_add_head_rcu(&link->node, &pid->tasks[type]);

return 0;

}

A connection is made in both directions: The task structure can access the pid instance via
task_struct->pids[type] ->pid. Starting from the pid instance, the task can be found by iterating over
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the tasks[type] list. hlist_add_head_rcu is a standard function to traverse a list that additionally
ensures as per the RCU mechanism (see Chapter 5) that the iteration is safe against race conditions that
could arise when other kernel components manipulate the list concurrently.

Functions

The kernel provides a number of auxiliary functions to manipulate and scan the data structures described
above. Essentially the kernel must be able to fulfill two different tasks:

1.

2.

Given a local numerical ID and the corresponding namespace, find the task structure that is
described by this tuple.

Given a task structure, an ID type, and a namespace, obtain the local numerical ID.

Let us first concentrate on the case in which a task_struct instance must be converted into a numerical
ID. This is a two-step process:

1.

Obtain the pid instance associated with the task structure. The auxiliary functions task_pid,
task_tgid, task_pgrp, and task_session are provided for the different types of IDs. This is
simple for PIDs:

<sched.h>
static inline struct pid *task_pid(struct task_struct *task)

{
return task->pids[PIDTYPE_PID].pid;

}

Obtaining a TGID works similarly because it is nothing other than the PID of the tread group
leader. The element to grab is task->group_leader->pids [PIDTYPE_PID] .pid.

Finding out a process group ID requires using PIDTYPE_PGID as array index. However, it
must again be taken from the pid instance of the process group leader:

<sched.h>
static inline struct pid *task_pgrp(struct task_struct *task)

{
return task->group_leader->pids[PIDTYPE_PGID] .pid;

}

Once the pid instance is available, the numerical ID can be read off from the uid information
available in the numbers array in struct pid:

kernel/pid.c
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{

struct upid *upid;

pid_t nr = 0;

if (pid && ns->level <= pid->level) {
upid = &pid->numbers[ns->level];
if (upid->ns == ns)
nr = upid->nr;
}

return nr;
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Because a parent namespace sees PIDs in child namespaces, but not vice versa, the kernel
has to ensure that the current namespace level is less than or equal to the level in which the
local PID was generated.

It is also important to note that the kernel need only worry about generating global PIDs:
All other ID types in the global namespace will be mapped to PIDs, so there is no need to
generate, for instance, global TGIDs or SIDs.

Instead of using pid_nr_ns in the second step, the kernel could also employ one of these auxiliary
functions:

0  pid_vnr returns the local PID seen from the namespace to which the ID belongs.

0  pid_nr obtains the global PID as seen from the init process.

Both rely on pid_nr_ns and automatically select the proper level: 0 for the global PID, and pid->level
for the local one.

The kernel provides several helper functions that combine the described steps:

kernel/pid.c

pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
pid_t task_tgid_nr ns(struct task_struct *tsk, struct pid_namespace *ns)
pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
pid_t task_session_nr_ns(struct task _struct *tsk, struct pid_namespace *ns)

Their meaning is obvious from the function names, so we need not add anything further.

Now let us turn our attention to how the kernel can convert a numerical PID together with the namespace
into a pid instance. Again two steps are required:

1. To determine the pid instance (the in-kernel representation of a PID) given the local numer-
ical PID of a process and the associated namespace (the userspace representation of a PID),
the kernel must employ a standard hashing scheme: First, the array index in pid_hash is
computed from the PID and namespace pointers,® and then the hash list is traversed until
the desired element has been found. This is handled by the auxiliary function £ind_pid_ns:

kernel/pid.c
struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)

Instances of struct upid are kept on the hash, but since these are directly contained in
struct pid, the kernel can infer the desired information using the container_of mechanism
(see Appendix C).

2. pid_task extracts the first task_struct instance that is queued on the list
pid->tasks|[type].

These two steps are performed by the auxiliary function find_task_by_pid)_type_ns:

kernel/pid.c
struct task_struct *find_task_by_pid_type_ns(int type, int nr,
struct pid_namespace *ns)

5For this purpose, the kernel uses multiplicative hashing with a prime number that is in a golden ratio to the largest number that
can be represented in a machine word. For details, refer to [Knu97].
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{
return pid_task(find_pid_ns(nr, ns), type);
}

Some simpler auxiliary functions build on the most general £ind_task_by_pid_type_ns:

a find_task_by pid_ns(pid_t nr, struct pid_namespace *ns) finds a task_struct instance
given a numerical PID and the namespace of the task.

0  find_task_by_vpid(pid_t vnr) finds a task by its local numerical PID.

a find_task_by_pid(pid_t nr) finds a task by its global numerical PID.

find_task_by_pid is required at many points in the kernel sources because a large number of process-
specific operations (e.g., sending a signal using kil1) identify their target process by means of its PID.

Generating Unique PIDs

In addition to managing PIDs, the kernel is also responsible for providing a mechanism to generate
unique PIDs that have not yet been assigned. In this case, the differences between the various PID
types can be ignored because unique numbers need only be generated for PIDs in the classical UNIx
sense. All other identifiers can be derived from the PID, as we will see when discussing fork and clone
below. In the sections that follow, the term PID once again refers to the classical UN1x process identifier
(PIDTYPE_PID).

To keep track of which PIDs have been allocated and which are still free, the kernel uses a large bitmap
in which each PID is identified by a bit. The value of the PID is obtained from the position of the bit in
the bitmap.

Allocating a free PID is then restricted essentially to looking for the first bit in the bitmap whose value is
0; this bit is then set to 1. Conversely, freeing a PID can be implemented by “toggling” the corresponding
bit from 1 to 0. These operations are implemented using

kernel/pid.c
static int alloc_pidmap(struct pid_namespace *pid_ns)

to reserve a PID, and

kernel/pid.c
static fastcall void free_pidmap (struct pid_namespace *pid_ns, int pid)

to free a PID. How they are implemented does not concern us here, but naturally, they must work on a
per-namespace basis.

When a new process is created, it may be visible in multiple namespaces. For each of them a local PID
must be generated. This is handled in alloc_pid:

kernel/pid.c
struct pid *alloc_pid(struct pid_namespace *ns)
{

struct pid *pid;

enum pid_type type;

int i, nr;
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struct pid_namespace *tmp;
struct upid *upid;

tmp = ns;
for (i = ns->level; 1 >= 0; 1i--) {

nr = alloc_pidmap (tmp) ;

pid->numbers[i].nr = nr;
pid->numbers[i].ns = tmp;
tmp = tmp->parent;

}

pid->level = ns->level;

Starting at the level of the namespace in which the process is created, the kernel goes down to the initial,
global namespace and creates a local PID for each. All upids that are contained in struct pid are filled
with the newly generated PIDs. Each upid instance must be placed on the PID hash:

kernel/pid.c
for (i = ns->level; 1 >= 0; 1i--) {
upid = &pid->numbers[i];
hlist_add_head_rcu(&upid->pid_chain,

&pid_hash([pid_hashfn (upid->nr, upid->ns)]);
}

return pid;

2.3.4 Task Relationships

In addition to the relationships resulting from ID links, the kernel is also responsible for managing the
““family relationships’ established on the basis of the Unix model of process creation. The following
terminology is used in this context:

Q  If process A forks to generate process B, A is known as the parent process and B as the child
6
process.

If process B forks again to create a further process C, the relationship between A and C is
sometimes referred to as a grandparent and grandchild relationship.

Q  If process A forks several times therefore generating several child processes By, B, ..., By, the
relationship between the B; processes is known as a siblings relationship.

Figure 2-6 illustrates the possible family relationships graphically.

The task_struct task data structure provides two list heads to help implement these relationships:

<sched.h>
struct task_struct ({

struct list_head children; /* list of my children */

6Unlike natural families, a process has only one parent.
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struct list_head sibling; /* linkage in my parent's children list */

0  childrenis the list head for the list of all child elements of the process.

0  siblingsis used to link siblings with each other.

Parent prcess

S —— > Children [

Child prcess

[ sibling (oot sibling sibling lg----

Figure 2-6: Family relationships between processes.

New children are placed at the start of the siblings list, meaning that the chronological sequence of
forks can be reconstructed.”

2.4 Process Management System Calls

In this section, I discuss the implementation of the fork and exec system call families. Normally, these
calls are not issued directly by applications but are invoked via an intermediate layer — the C standard
library — that is responsible for communication with the kernel.

The methods used to switch from user mode to kernel mode differ from architecture to architecture.

In Appendix A, I describe at length the mechanisms used to switch between these two modes and also
explain how parameters are exchanged between userspace and kernel space. For the time being, it is
sufficient to regard the kernel as a “program library” used by the C standard library as mentioned briefly
in Chapter 1.

2.4.1 Process Duplication

The traditional UNix system call to duplicate a process is fork. However, it is not the only call imple-
mented by Linux for this purpose — in fact, there are three:

7Kernel versions before 2.6.21 had three helper functions: younger_sibling, older_sibling, and eldest_child, which
gave some aid in accessing the described lists and their elements. They were used to produce debugging output, which had, how-
ever, not proved very useful, so it was removed. Patch author Ingo Molnar noticed that the corresponding code was among the
oldest elements of the kernel and noted this accordingly. This led another well-known developer to sign off the patch as Linus
'snif' Torvalds ...
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1. forkis the heavy-weight call because it creates a full copy of the parent process that then
executes as a child process. To reduce the effort associated with this call, Linux uses the copy-
on-write technique, discussed below.

2. vforkis similar to fork but does not create a copy of the data of the parent process. Instead,
it shares the data between the parent and child process. This saves a great deal of CPU time
(and if one of the processes were to manipulate the shared data, the other would notice auto-
matically).

vfork is designed for the situation in which a child process just generated immediately exe-
cutes an execve system call to load a new program. The kernel also guarantees that the
parent process is blocked until the child process exits or starts a new program.

Quoting the manual page vfork (2), it is “rather unfortunate that Linux revived this specter
from the past.” Since fork uses copy-on-write, the speed argument for vfork does not really
count anymore, and its use should therefore be avoided.

3.  clone generates threads and enables a decision to be made as to exactly which elements are
to be shared between the parent and the child process and which are to be copied.

Copy on Write

The kernel uses the copy-on-write technique (COW) to prevent all data of the parent process from being
copied when fork is executed. This technique exploits the fact that processes normally use only a fraction
of their pages in memory.? When fork is called, the kernel would usually create an identical copy of each
memory page of the parent process for the child process. This has two very negative effects:

1. A large amount of RAM, a scarce resource, is used.

2. The copy operation takes a long time.

The negative impact is even greater if the application loads a new program using exec immediately after
process duplication. This means, in effect, that the preceding copy operation was totally superfluous as
the process address space is reinitialized and the data copied are no longer needed.

The kernel can get around this problem by using a trick. Not the entire address space of the process but
only its page tables are copied. These establish the link between virtual address space and physical pages
as described briefly in Chapter 1 and at length in Chapters 3 and 4. The address spaces of parent and
child processes then point to the same physical pages.

Of course, parent and child processes must not be allowed to modify each other’s pages,” which is why
the page tables of both processes indicate that only read access is allowed to the pages — even though
they could be written to in normal circumstances.

Providing that both processes have only read access to their pages in memory, data sharing between the
two is not a problem because no changes can be made.

As soon as one of the processes attempts to write to the copied pages, the processor reports an access error
to the kernel (errors of this kind are called page faults). The kernel then references additional memory
management data structures (see Chapter 4) to check whether the page can be accessed in Read and
Write mode or in Read mode only — if the latter is true, a segmentation fault must be reported to the
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process. As you see in Chapter 4, the actual implementation of the page fault handler is more complicated
because other aspects, such as swapped-out pages, must also be taken into account.

The condition in which a page table entry indicates that a page is ““Read Only” although normally it
would be writable allows the kernel to recognize that the page is, in fact, a COW page. It therefore creates
a copy of the page that is assigned exclusively to the process — and may therefore also be used for write
operations. How the copy operation is implemented is not discussed until Chapter 4 because extensive
background knowledge of memory management is required.

The COW mechanism enables the kernel to delay copying of memory pages for as long as possible
and — more importantly — to make copying unnecessary in many cases. This saves a great deal of time.

Executing System Calls

The entry points for the fork, vfork, and clone system calls are the sys_fork, sys_vfork, and sys_clone
functions. Their definitions are architecture-dependent because the way in which parameters are passed
between userspace and kernel space differs on the various architectures (see Chapter 13 for further infor-
mation). The task of the above functions is to extract the information supplied by userspace from the
registers of the processors and then to invoke the architecture-independent do_fork function responsible
for process duplication. The prototype of the function is as follows.

kernel/fork.c

long do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int _ _user *child_tidptr)

The function requires the following arguments:

0O  Aflagset(clone_flags) to specify duplication properties. The low byte specifies the signal num-
ber to be sent to the parent process when the child process terminates. The higher bytes hold
various constants discussed below.

Q  The start address of the user mode stack (start_stack) to be used.

Q A pointer to the register set holding the call parameters in raw form (regs). The data type used
is the architecture-specific struct pt_regs structure, which holds all registers in the order in
which they are saved on the kernel stack when a system call is executed (more information is
provided in Appendix A).

Q  The size of the user mode stack (stack_size). This parameter is usually unnecessary and
set to 0.

QO  Two pointers to addresses in userspace (parent_tidptr and child_tidptr) that hold the TIDs
of the parent and child processes. They are needed for the thread implementation of the NPTL
(Native Posix Threads Lilbrary) library. I discuss their meaning below.

The different fork variants are distinguished primarily by means of the flag set. On most architectures,'?
the classical fork call is implemented in the same way as on IA-32 processors.

10Exception: Sparc(64) systems that access do_fork via sparc_do_fork. TA-64 kernels only provide a single system call,
sys_clone2, which is used to implement fork, vfork, and clone in userspace. Both sys_clone2 and sparc_do_fork
eventually rely on do_fork.
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arch/x86/kernel/process_32.c
asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork (SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
}

The only flag used is SIGCHLD. This means that the SIGCHLD signal informs the parent process once the
child process has terminated. Initially, the same stack (whose start address is held in the esp register on
IA-32 systems) is used for the parent and child processes. However, the COW mechanism creates a copy
of the stack for each process if it is manipulated and therefore written to.

If do_fork was successful, the PID of the newly created task is returned as the result of the system call.
Otherwise the (negative) error code is returned.

The implementation of sys_vfork differs only slightly from that of sys_fork in that additional flags are
used (CLONE_VFORK and CLONE_VM whose meaning is discussed below).

sys_clone is also implemented in a similar way to the above calls with the difference that do_fork is
invoked as follows:

arch/x86/kernel/process_32.c
asmlinkage int sys_clone(struct pt_regs regs)
{
unsigned long clone_flags;
unsigned long newsp;
int _ user *parent_tidptr, *child_tidptr;

clone_flags = regs.ebx;

newsp = regs.ecx;

parent_tidptr = (int __user *)regs.edx;

child_tidptr = (int _ _user *)regs.edi;

if (!newsp)

newsp = regs.esp;

return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);

}

The clone flags are no longer permanently set but can be passed to the system call as parameters in
various registers. Thus, the first part of the function deals with extracting these parameters. Also, the
stack of the parent process is not copied; instead, a new address (newsp) can be specified for it. (This is
required to generate threads that share the address space with the parent process but use their own stack
in this address space.) Two pointers (parent_tidptr and child_tidptr) in userspace are also specified
for purposes of communication with thread libraries. Their meaning is discussed in Section 2.4.1.

Implementation ofdo_fork
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All three fork mechanisms end up in do_fork in kernel/fork.c (an architecture-independent function),
whose code flow diagram is shown in Figure 2-7.

do_fork begins with an invocation of copy_process, which performs the actual work of generating a
new process and reusing the parent process data specified by the flags. Once the child process has been
generated, the kernel must carry out the following concluding operations:
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do_fork'
—{copy_process ]
—>| Determine PID

—>| Initialize vEork completion handler (only with CLONE_vVFORK) and ptrace flags

—>| wake_up_new_task I

—>| CLONE_VFORK Set? |—’| wait_for_completion I

Figure 2-7: Code flow diagram for do_fork.

Since fork returns the PID of the new task, it must be obtained. This is complicated because the
fork operation could have opened a new PID namespace if the flag CLONE_NEWPID was set. If
this is the case, then task_pid_nr_ns is required to obtain the PID that was selected for the new
process in the parent namespace, that is, the namespace of the process that issued fork.

If the PID namespace remains unchanged, calling task_pid_vnr is enough to obtain the local
PID because old and new processes will live in the same namespace.

kernel/fork.c
nr = (clone_flags & CLONE_NEWPID) °?
task_pid_nr_ns(p, current->nsproxy->pid_ns)
task_pid_vnr (p);

If the new process is to be monitored with Ptrace (see Chapter 13), the SIGSTOP signal is sent to
the process immediately after generation to allow an attached debugger to examine its data.

The child process is woken using wake_up_new_task; in other words, the task structure is added
to the scheduler queue. The scheduler also gets a chance to specifically handle newly started
tasks, which, for instance, allows for implementing a policy that gives new tasks a good chance
to run soon, but also prevents processes that fork over and over again to consume all CPU time.

If a child process begins to run before the parent process, this can greatly reduce copying effort,
especially if the child process issues an exec call after fork. However, keep in mind that enqueu-
ing a process in the scheduler data structures does not mean that the child process begins to
execute immediately but rather that it is available for selection by the scheduler.

If the vEfork mechanism was used (the kernel recognizes this by the fact that the CLONE_VFORK
flag is set), the completions mechanism of the child process must be enabled. The vfork_done
element of the child process task structure is used for this purpose. With the help of the
wait_for_completion function, the parent process goes to sleep on this variable until the child
process exits. When a process terminates (or a new application is started with execve), the
kernel automatically invokes complete (vfork_done). This wakes all processes sleeping on it. In
Chapter 14, I discuss the implementation of completions in greater detail.

By adopting this approach, the kernel ensures that the parent process of a child process gener-
ated using vfork remains inactive until either the child process exits or a new process is exe-
cuted. The temporary inactivity of the parent process also ensures that both processes do not
interfere with each other or manipulate each other’s address space.
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Copying Processes

In do_fork the bulk of the work is done by the copy_process function, whose code flow diagram is
shown in Figure 2-8. Notice that the function has to handle the main work for the three system calls fork,
vfork, and clone.

copy_processl
—>| Check flags

—>| dup_task_struct I

—>| Check resource limits |

—>| Initialize task structure |

—>| sched_fork

—>| Copy/share process components |

R
R
)

_’I copy_namespaces I

copy_thread

—>| Set IDs, task relationships, etc. |

Figure 2-8: Code flow diagram for copy_process.

Because the kernel has to deal with a large number of special and very specific situations, let’s restrict our
description to a slightly simplified version of the function so as not to lose sight of the most important
aspects in a myriad of details.

Quite a number of flags control the behavior of process duplication. They are all well documented in
the clone (2) man page, and instead of repeating them here, I advise you to just take a look into it — or,
for that matter, any good text on Linux systems programming. More interesting is that there are some
flag combinations that do not make sense, and the kernel has to catch these. For instance, it does not
make sense to request creation of a new namespace (CLONE_NEWNS), on the one hand, but also express the
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desire to share all filesystem information with the parent (CLONE_FS). It's not complicated to catch this
combination and return an error code:

kernel/fork.c

static struct task_struct *copy_process (unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid)

int retval;
struct task_struct *p;
int cgroup_callbacks_done = 0;

if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR (-EINVAL) ;

This is also a good place to recall from the introduction that Linux sometimes has to return a pointer if
an operation succeeds, and an error code if something fails. Unfortunately, the C language only allows
a single direct return value per function, so any information about possible errors has to be encoded
into the pointer. While pointers can in general point to arbitrary locations in memory, each architecture
supported by Linux has a region in virtual address space that starts from virtual address 0 and goes at
least 4 KiB far where no senseful information can live. The kernel can thus reuse this pointer range to
encode error codes: If the return value of fork points to an address within the aforementioned range,
then the call has failed, and the reason can be determined by the numerical value of the pointer. ERR_PTR
is a helper macro to perform the encoding of the numerical constant -EINVAL (invalid operation) into a
pointer.

Some further flag checks are required:

0O  When a thread is created with CLONE_THREAD, signal sharing must be activated with
CLONE_SIGHAND. Individual threads in a thread group cannot be addressed by a signal.

0  Shared signal handlers can only be provided if the virtual address space is shared between par-
ent and child (cLoNE_vM). Transitive thinking reveals that threads, therefore, also have to share
the address space with the parent.

Once the kernel has established that the flag set does not contradict itself, dup_task_struct is used to
create an identical copy of the task structure of the parent process. The new task_struct instance for the
child can be allocated at any point in kernel memory that happens to be free (see Chapter 3, in which the
allocation mechanisms used for this purpose are described).

The task structures for parent and child differ only in one element: A new kernel mode stack is allocated
for the new process. A pointer to it is stored in task_struct->stack. Usually the stack is stored in a
union with thread_info, which holds all required processor-specific low-level information about the
thread.

<sched.h>
union thread_union {

struct thread_info thread_info;

unsigned long stack[THREAD_SIZE/sizeof (long)];
Y

69



Chapter 2: Process Management and Scheduling

70

In principle, individual architectures are, however, free to store whatever they like in the stack pointer

if they signal this to the kernel by setting the pre-processor constant __HAVE_THREAD_FUNCTIONS. In this

case, they must provide their own implementations of task_thread_info and task_stack_page, which
allows for obtaining the thread information and the kernel mode stack for a given task_struct instance.
Additionally, they must implement the function setup_thread_stack that is called in dup_task_struct
to create a destination for stack. Currently, only IA-64 and m68k do not rely on the default methods of

the kernel.

On most architectures, one or two memory pages are used to hold an instance of thread_union. On
IA-32, two pages are the default setting, and thus the available kernel stack size is slightly less than

8 KiB because part is occupied by the thread_info instance. Note, though, that the configuration option
4KSTACKS decreases the stack size to 4 KiB and thus to one page. This is advantageous if a large number
of processes is running on the system because one page per process is saved. On the other hand, it can
lead to problems with external drivers that often tend to be “’stack hogs,” for example, use too much
stack space. All central parts of the kernel that are part of the standard distribution have been designed
to operate smoothly also with a stack size of 4 KiB, but problems can arise (and unfortunately have in the
past) if binary-only drivers are required, which often have a tendency to clutter up the available stack
space.

thread_info holds process data that needs to be accessed by the architecture-specific assembly language
code. Although the structure is defined differently from processor to processor, its contents are similar to
the following on most systems.

<asm-arch/thread_info.h>
struct thread_info {

struct task_struct *task; /* main task structure */

struct exec_domain *exec_domain; /* execution domain */

unsigned long flags; /* low level flags */

unsigned long status; /* thread-synchronous flags */
_u32 cpu; /* current CPU */

int preempt_count; /* 0 => preemptable, <0 => BUG */
mm_segment_t addr_limit; /* thread address space */

struct restart_block restart_block;

0  taskis a pointer to the task_struct instance of the process.

0  exec_domain is used to implement execution domains with which different ABIs (Application
Binary Interfaces) can be implemented on a machine type (e.g., to run 32-bit applications on an
AMD64 system in 64-bit mode).

0  flags can hold various process-specific flags, two of which are of particular interest to us:

0  TIF_SIGPENDING is set if the process has pending signals.
0  TIF_NEED_RESCHED indicates that the process should be or would like to be replaced with
another process by the scheduler.

Other possible constants — some hardware-specific — which are, however, hardly ever used,
are available in <asm-arch/thread_info.h>.

0  cpu specifies the number of the CPU on which a process is just executing (important on multi-
processor systems — very easy to determine on single-processor systems).
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Q

preempt_count is a counter needed to implement kernel preemption, discussed in Section 2.8.3.

addr_limit specifies up to which address in virtual address space a process may use. As already
noted, there is a limit for normal processes, but kernel threads may access the entire virtual
address space, including the kernel-only portions. (This does not represent any kind of restric-
tion on how much RAM a process may allocate.) Recall that I have touched on the separation
between user and kernel address space in the Introduction, and will come back to the details in
Section 4.

restart_block is needed to implement the signal mechanism (see Chapter 5).

Figure 2-9 shows the relationship between task_struct, thread_info and the kernel stack. When a
particular component of the kernel uses too much stack space, the kernel stack will crash into the thread
information, and this will most likely lead to severe failures. Besides, this can also lead to wrong informa-
tion when an emergency stack trace is printed, so the kernel provides the function kstack_end to decide
if a given address is within the valid portion of the stack or not.
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Figure 2-9: Relationship between task_struct, thread_info, and the
kernel stack of a process.

dup_task_struct copies the contents of task_struct and thread_info instances of the parent process,
but the stack pointer is set to the new thread_info instance. This means that the task structures of
parent and child processes are absolutely identical at this point except for the stack pointer. The child
will, however, be modified in the course of copy_process.

There are also two symbols named current and current_thread_info that are defined as macros or
functions by all architectures. Their meanings are as follows:

Qa

current_thread_info delivers a pointer to the thread_info instance of the process currently
executing. The address can be determined from the kernel stack pointer because the instance is
always located at the top of the stack.!' Because a separate kernel stack is used for each process,
the process to stack assignment is unique.

current specifies the address of the task_struct instance of the current process. This function
appears very frequently in the sources. The address can be determined using get_thread_info:
current = current_thread_info()->task.

HThe pointer to the kernel stack is usually held in a specially reserved register. Some architectures, especially 1A-32 and AMD64,
use a different solution discussed in Section A.10.3.
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Let us return to copy_process. After dup_task_struct has succeeded, the kernel checks if the maximam
number of processes allowed for a particular user are exceeded with the creation of the new task:

kernel/fork.c
if (atomic_read (&p->user->processes) >=
p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
p->user != current->nsproxy->user_ns->root_user)
goto bad_fork_ free;

The per-user resource counters for the user owning the current process are kept in an instance of
user_struct that is accessible via task_struct->user, and the number of processes currently held
by a particular user is stored in user_struct->processes. If this value exceeds the limit set by rlimit,
task creation is aborted — unless the current user is assigned special capabilities (CAP_SYS_ADMIN or
CAP_SYS_RESOURCE) or is the root user. Checking for the root user is interesting: Recall from above that
each PID namespace has its own root user. This must now be taken into account in the above check.

If resource limits do not prevent process creation, the interface function sched_fork is called to give
the scheduler a chance to set up things for the new task. Before the introduction of the CFQ scheduler
in kernel 2.6.23, this was more complicated because the remaining time slice of the parent had to be
distributed between parent and child. Since the new scheduler does not require time slices anymore,
things are a lot simpler now. Essentially, the routines initialize statistical fields and on multi-processor
systems probably re-balance the available processes between the CPUs if this is necessary. Besides, the
task state is set to TASK_RUNNING — which is not really true since the new process is, in fact, not yet
running. However, this prevents any other part of the kernel from trying to change the process state from
non-running to running and scheduling the new process before its setup has been completely finished.

A large number of copy_xyz routines are then invoked to copy or share the resources of specific kernel
subsystems. The task structure contains pointers to instances of data structures that describe a sharable or
cloneable resource. Because the task structure of the child starts out as an exact copy of the parent’s task
structure, both point to the same resource-specific instances initially. This is illustrated in Figure 2-10.

Suppose we have two resources: res_abc and res_def. Initially the corresponding pointers in the task
structure of the parent and child process point to the same instance of the resource-specific data structure
in memory.

If CLONE_ABC is set, then both processes will share res_abc. This is already the case, but it is additionally
necessary to increment the reference counter of the instance to prevent the associated memory space from
being freed too soon — memory may be relinquished to memory management only when it is no longer
being used by a process. If either parent or child modifies the shared resource, the change will be visible
in both processes.

If CLONE_ABC is not set, then a copy of res_abc is created for the child process, and the resource counter
of the new copy is initialized to 1. Consequently, if parent or child modifies the resource, then changes
will not propagate to the other process in this case.

As a general rule, the fewer the number of CLONE flags set, the less work there is to do. However, this
gives parent and child processes more opportunities to mutually manipulate their data structures — and
this must be taken into consideration when programming applications.
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task_struct (parent) res abc task_struct (child)

s

res_def

!CLONE_ABC

Figure 2-10: When a new thread is created, resources of the parent can either be shared or copied.

Deciding if a resource can be cloned or must be copied is done through numerous helper routines — one
for each resource. It is not my intention here to discuss the (rather uninteresting) implementations of the
various copy_xyz functions, but I summarize their effects below. I will introduce the data structures asso-
ciated with every process component when I discuss the respective subsystem in detail in the following
chapters.

Q

Q

copy_semundo uses the System V semaphores of the parent process if COPY_SYSVSEM is set (see
Chapter 5).

copy_£files uses the file descriptors of the parent process if CLONE_FILES is set. Otherwise, a new
files structure is generated (see Chapter 8) that contains the same information as the parent
process. This information can be modified independently of the original structure.

copy_£s uses the filesystem context (task_struct->fs) of the parent process if CLONE_FS is set.
This is an f£s_struct type structure that holds, for example, the root directory and the current
working directory of the process (see Chapter 8 for detailed information).

copy_sighand uses the signal handlers of the parent process (task_struct->sighand) if
CLONE_SIGHAND or CLONE_THREAD is set. Chapter 5 discusses the struct sighand_struct
structure used in more detail.

copy_signal uses the non-handler-specific part of signal handling (task_struct->signal, see
Chapter 5) together with the parent process if CLONE_THREAD is set.

copy_mnm causes the parent process and child process to share the same address space if copy_mm
is set. In this case, both processes use the same instance of mm_struct (see Chapter 4) to which
task_struct->mm points.

If copy_mm is not set, it does not mean that the entire address space of the parent process is
copied. The kernel does, in fact, create a copy of the page tables but does not copy the actual
contents of the pages. This is done using the COW mechanism only if one of the two processes
writes to one of the pages.

copy_namespaces has special call semantics. It is used to set up namespaces for the child
process. Recall that several CLONE_NEWxyz flags control which namespaces are shared with the
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parent. However, the semantics are opposite to all other flags: If CLONE_NEWxyz is not specified,
then the specific namespace is shared with the parent. Otherwise, a new namespace is generated.
copy_namespace is a dispatcher that executes a copy routine for each possible namespace. The
individual copy routines, however, are not too interesting because they essentially copy data or
make already existing instances shared by means of reference counter management, so I will not
discuss their implementation in detail.

0  copy_threadis — in contrast to all other copy operations discussed here — an architecture-
specific function that copies the thread-specific data of a process.

Thread-specific in this context does not refer to any of the cLONE flags or to the fact
that the operation is performed for threads only and not for full processes. It simply
means that all data that contribute to the architecture-specific execution context are
copied (the term thread is used with more than one meaning in the kernel).

What is important is to fill the elements of task_struct->thread. This is a structure of the
thread_struct type whose definition is architecture-dependent. It holds all registers (plus other
information) needed by the kernel to save and restore process contents during low-level switch-
ing between tasks.

Intimate knowledge of the various CPUs is needed to understand the layout of the individual
thread_struct structures. A full discussion of these structures is beyond the scope of this book.
However, Appendix A includes some information relating to the contents of the structures on
several systems.

Back in copy_process, the kernel must fill in various elements of the task structure that differ between
parent and child. These include the following:

The various list elements contained in task_struct, for instance, sibling and children.
0  The interval timer elements cpu_timers (see Chapter 15).

Q  The list of pending signals (pending) discussed in Chapter 5.

After allocating a new pid instance for the task with the mechanisms described before, they are stored in
the task structure. For threads, the thread group ID is the same as that of the forking process:

kernel/fork.c
p->pid = pid_nr(pid);
p->tgid = p->pid;
if (clone_flags & CLONE_THREAD)
p->tgid = current->tgid;

Recall that pid_nr computes the global numerical PID for a given pid instance.

For regular processes, the parent process is the forking process. This is different for threads: Since they
are seen as the second (or third, or fourth,...) line of execution within the generating process, their parent
is the parent’s parent. This is easier to express in code than in words:

kernel/fork.c
if (clone_flags & (CLONE_PARENT\CLONE_THREAD))
p->real_parent = current->real_ parent;
else
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p->real_parent = current;
p->parent = p->real_parent;

Regular processes that are not threads can trigger the same behavior by setting CLONE_PARENT. Another
correction is required for threads: The thread group leader of a regular process is the process itself. For a
thread, the group leader is the group leader of the current process:

kernel/fork.c
p->group_leader = p;

if (clone_flags & CLONE_THREAD) ({
p->group_leader = current->group_leader;
list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group) ;

}

The new process must then be linked with its parent process by means of the children list. This is
handled by the auxiliary macro add_parent. Besides, the new process must be included in the ID data
structure network as described in Section 2.3.3.

kernel/fork.c
add_parent (p) ;

if (thread_group_leader(p)) {
if (clone_flags & CLONE_NEWPID)
p->nsproxy->pid_ns->child_reaper = p;

set_task_pgrp(p, task _pgrp_nr(current));

set_task_session(p, task_session_nr (current));

attach_pid(p, PIDTYPE_PGID, task_pgrp(current));

attach_pid(p, PIDTYPE_SID, task_session(current));
}

attach_pid(p, PIDTYPE_PID, pid);

return p;

}

thread_group_leader checks only whether pid and tgid of the new process are identical. If so, the
process is the leader of a thread group. In this case, some more work is necessary:

0  Recall that processes in a process namespace that is not the global namespace have their own
init task. If a new PID namespace was opened by setting CLONE_NEWPID, this role must be
assumed by the task that called clone.

QO  The new process must be added to the current task group and session. This allows for bringing
some of the functions discussed above to good use.

Finally, the PID itself is added to the ID network. This concludes the creation of a new process!

Special Points When Generating Threads

Userspace thread libraries use the clone system call to generate new threads. This call supports flags
(other than those discussed above) that produce certain special effects in the copy_process (and in the
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associated invoked functions). For the sake of simplicity, I omitted these flags above. However, it should
be remembered that the differences between a classical process and a thread in the Linux kernel are
relatively fluid and both terms are often used as synonyms (thread is also frequently used to mean the
architecture-dependent part of a process as mentioned above). In this section, I concentrate on the flags
used by user thread libraries (above all, NPTL) to implement multithreading capabilities.

Q

CLONE_PARENT_SETTID copies the PID of the generated thread to a point in userspace specified in
the clone call (parent_tidptr, the pointer is passed to clone)!?:

kernel/fork.c
if (clone_flags & CLONE_PARENT SETTID)
put_user (nr, parent_tidptr);

The copy operation is performed in do_fork before the task structure of the new thread is initial-
ized and before its data are created with the copy operations.

CLONE_CHILD_SETTID first causes a further userspace pointer (child_tidptr) passed to clone to
be stored in the task structure of the new process.

kernel/fork.c
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;

The schedule_tail function invoked when the new process is executed for the first time copies
the current PID to this address.

kernel/schedule.c
asmlinkage void schedule_tail (struct task_struct *prev)

{

if (current->set_child_tid)
put_user (task_pid_vnr (current), current->set_child_tid);

}

CLONE_CHILD_CLEARTID has the initial effect in copy_process that the userspace pointer
child_tidptr is stored in the task structure — but this time in a different element.

kernel/fork.c
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;

When the process terminates,’® 0 is written to the address defined in clear child tid.}*

kernel/fork.c
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
if (tsk->clear_child_tid
&& atomic_read (&mm->mm_users) > 1) {
u32 _ user * tidptr = tsk->clear_child_tid;
tsk->clear_child_tid = NULL;

put_user (0, tidptr);

2put_user is used to copy data between kernel address space and user address space as discussed in Chapter 4.

130r, more accurately, when it automatically frees its memory management data structures using mm_release at process
termination.

14 The condition mm->mm_users > 1 means that the memory management data structure must be used by at least one other process
in the system. The current process is therefore a thread in the classical sense — it takes its address space from another process and
has just one control flow.
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sys_futex (tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);

}
In addition, sys_futex, a fast userspace mutex, is used to wake processes waiting for this event,

namely, the end of the thread.

The above flags can be used from within userspace to check when threads are generated and destroyed
in the kernel. CLONE_CHILD_SETTID and CLONE_PARENT_SETTID are used to check when a thread is gen-
erated; CLONE_CHILD_CLEARTID is used to pass information on the death of a thread from the kernel to

userspace. These checks can genuinely be performed in parallel on multiprocessor systems.

2.4.2 Kernel Threads

Kernel threads are processes started directly by the kernel itself. They delegate a kernel function to a
separate process and execute it there in “parallel” to the other processes in the system (and, in fact, in
parallel to execution of the kernel itself).!> Kernel threads are often referred to as (kernel) daemons. They
are used to perform, for example, the following tasks:

Q  To periodically synchronize modified memory pages with the block device from which the pages
originate (e.g., files mapped using mmap).

Q  To write memory pages into the swap area if they are seldom used.
0O  To manage deferred actions.

Q  Toimplement transaction journals for filesystems.
Basically, there are two types of kernel thread:

QO  Type 1 — The thread is started and waits until requested by the kernel to perform a specific
action.

QO  Type 2 — Once started, the thread runs at periodic intervals, checks the utilization of a specific
resource, and takes action when utilization exceeds or falls below a set limit value. The kernel
uses this type of thread for continuous monitoring tasks.

The kernel_thread function is invoked to start a kernel thread. Its definition is architecture-specific, but
it always uses the same prototype.

<asm-arch/processor.h>
int kernel_thread(int (*fn) (void *), void * arg, unsigned long flags)

The function passed with the £n pointer is executed in the generated thread, and the argument specified
in arg is automatically passed to the function.'® cLONE flags can be specified in flags.

The first task of kernel_thread is to construct a pt_regs instance in which the registers are supplied
with suitable values, as would be the case with a regular fork system call. Then the familiar do_fork
function is invoked.

p = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);

150n multiprocessor systems, the processes genuinely execute in parallel; on single-processor systems, the scheduler simulates par-
allel execution.
16 Arguments allow the function to be used for different purposes by indicating what needs to be done.
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Because kernel threads are generated by the kernel itself, two special points should be noted:

1. They execute in the supervisor mode of the CPU, not in the user mode (see Chapter 1).

2. They may access only the kernel part of virtual address space (all addresses above
TASK_SIZE) but not the virtual user area.

Recall from above that the two pointers to mm_structs are contained in the task structure:

<sched.h>
struct task_struct ({

struct mm_struct *mm, *active_mm;

}

The total virtual address space of a system is separated into two parts on most machines: The lower
portion is accessible by userland programs, and the upper part is reserved for the kernel. When the kernel
is running on behalf of a userland program to serve a system call, for instance, the userspace portion of
the virtual address space is described by the mm_struct instance pointed to by mm (the exact content of this
structure is irrelevant for now, but is discussed in Chapter 4). Every time the kernel performs a context
switch, the userland portion of the virtual address space must be replaced to match the then-running
process.

This provides some room for optimization, which goes by the name lazy TLB handling: Since kernel
threads are not associated with any particular userland process, the kernel does not need to rearrange
the userland portion of the virtual address space and can just leave the old setting in place. Since any
userland process can have been running before a kernel thread, the contents of the userspace part are
essentially random, and the kernel thread must not modify it. To signalize that the userspace portion
must not be accessed, mm is set to a NULL pointer. However, since the kernel must know what is currently
contained in the userspace, a pointer to the mm_struct describing it is preserved in active_mm.

Why are processes without an mm pointer called lazy TLB processes? Suppose that the process that runs
after a kernel thread is the same process that has run before. In this case, the kernel does not need to
modify the userspace address tables, and the information in the translation lookaside buffers is still
valid. A switch (and a corresponding clearance of TLB data) is only required when a different userland
process from before executes after the kernel thread.

Notice that when the kernel is operating in process context, mm and active_mm have identical values.

A kernel thread can be implemented in one of two ways. The older variant — which is still in use in some
places in the kernel — is to pass a function directly to kernel_thread. The function is then responsible to
assist the kernel in the transformation into a daemon by invoking daemonize. This results in the following
actions:

1.  The function frees all resources (e.g., memory context, file descriptors, etc.) of the user pro-
cess as whose child the kernel thread was started because otherwise these would be pinned
until the end of the thread — this is not desirable because daemons usually run until the sys-
tem is shut down. As each daemon operates only in the address area of the kernel, it does
not even need these resources.
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2.  daemonize blocks the receipt of signals.

3.  initisused as the parent process of the daemon.

The more modern possibility to create a kernel thread is the auxiliary function kthread_create.

kernel/kthread.c

struct task_struct *kthread_create(int (*threadfn) (void *data),
void *data,
const char namefmt[],

2)

The function creates a new kernel thread with its name given by namefmt. Initially, the thread will be
stopped. To start it, wake_up_process needs to be used. After this, the thread function given in threadfn
will be called with data as argument.

As an alternative, the macro kthread_run (which uses the same arguments as kthread_create) will call
kthread_create to create the new thread, but will wake it up immediately. A kernel thread can also be
bound to a particular CPU by using kthread_create_cpu instead of kthread_create.

Kernel threads appear in the system process list but are enclosed in square brackets in the output of ps
to differentiate them from normal processes.

wolfgang@meitner> ps fax

PID TTY STAT TIME COMMAND
27 S< 0:00 [kthreadd]
32 S< 0:00 _ [migration/0]
4 2 S< 0:00 _ [ksoftirgd/0]
5 ? S< 0:00 _ [migration/1]
6 2 S< 0:00 _ [ksoftirgd/1l]
52 ? S< 0:00 _ [kblockd/3]

55 2 S< 0:00 _ [kacpid]

56 ? S< 0:00 _ [kacpi_notify]

If a kernel thread is bound to a particular CPU, the CPU’s number is noted after the slash.

2.4.3 Starting New Programs

New programs are started by replacing an existing program with new code. Linux provides the execve
system call for this purpose.!”

Implementation of execve

The entry point of the system call is the architecture-dependent sys_execve function. This function
quickly delegates its work to the system-independent do_execve routine.

kernel/exec.c
int do_execve (char * filename,
char __user *_ user *argv,

17There are other exec variants with different names in the C standard library, but ultimately all are based on execve. As in the
above sections, exec is often used to refer to any of these variants.
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char _ _user *_ user *envp,
struct pt_regs * regs)

Not only the register set with the arguments and the name of the executable file (filename) but also
pointers to the arguments and the environment of the program are passed as in system programming.'®
The notation is slightly clumsy because argv and envp are arrays of pointers, and both the pointer to
the array itself as well as all pointers in the array are located in the userspace portion of the virtual
address space. Recall from the Introduction that some precautions are required when userspace memory
is accessed from the kernel, and that the __user annotations allow automated tools to check if everything
is handled properly.

Figure 2-11 shows the code flow diagram for do_execve.

do_execve I
| Open excutatle e
> bprm_init I

—>| init_new_context I

—’| _ _bprm mm_init I

—>| prepare_binprm I

—>| Copy environment and arguments |

—>| search_binary_handler I

Figure 2-11: Code flow diagram for
do_execve.

First, the file to be executed is opened; in other words — as described in Chapter 8 — the kernel finds the
associated inode and generates a file descriptor that is used to address the file.

bprm_init then handles several administrative tasks: mm_alloc generates a new instance of mm_struct to
manage the process address space (see Chapter 4). init_new_context is an architecture-specific function
that initializes the instance, and __bprm_mm_init sets up an initial stack.

Various parameters of the new process (e.g., euid, egid, argument list, environment, filename, etc.) that
are subsequently passed to other functions are, for the sake of simplicity, combined into a structure of
type linux_binprm. prepare_binprmis used to supply a number of parent process values (above all, the
effective UID and GID); the remaining data — the argument list — are then copied manually into the
structure. Note that prepare_binprm also takes care of handling the SUID and SGID bits:
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8argv includes all arguments passed to the program in the command line (for 1s -1 /usr/bin these are, e.g., -1 and

/usr/bin). The environment encompasses all environment variables defined at program execution time. In most shells, a list of
these variables can be output using set.
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fs/exec.c
int prepare_binprm(struct linux_binprm *bprm)

{

bprm->e_uid = current->euid;
bprm->e_gid = current->egid;

1f (! (bprm->file->f_ vfsmnt->mnt_flags & MNT_NOSUID)) {
/* Set-uid? */

if (mode & S_ISUID) {

bprm->e_uid = inode->i_uid;

}

/* Set-gid? */

/*

* If setgid is set but no group execute bit then this

* is a candidate for mandatory locking, not a setgid

* executable.

*/

if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
bprm->e_gid = inode->i_gid;

}

}

After making sure that MNT_NOSUID is not set for the mount from which the file originates, the kernel
checks if the SUID or SGID bit is set. The first case is simple to handle: If S_ISUID is set, then the effective
UID gets the same value as the inode (otherwise, the process’s effective UID is used). The SGID case is
similar, but the kernel must additionally make sure that the execute bit is also set for the group.

Linux supports various organization formats for executable files. The standard format is ELF (Executable
and Linkable Format), which I discuss at length in Appendix E. Other alternatives are the variants shown
in Table 2-2 (which lists the names of the corresponding 1inux_binfmt instances in the kernel).

Even though many binary formats can be used on different architectures (ELF was designed explicitly to
be as system-independent as possible), this does not mean that programs in a specific binary format are
able to run on multiple architectures. The assembler statements used still differ greatly from processor to
processor and the binary format only indicates how the different parts of a program — data, code, and
so on — are organized in the executable file and in memory.

search_binary_handler is used at the end of do_execve to find a suitable binary format for the particular
file. Searching is possible because each format can be recognized by reference to special characteristics
(usually a “magic number’ at the beginning of the file). The binary format handler is responsible for
loading the data of the new program into the old address space. Appendix E describes the steps needed
to do this when the ELF format is used. Generally, a binary format handler performs the following
actions:

Q  Itreleases all resources used by the old process.

Q It maps the application into virtual address space. The following segments must be taken into
account (the variables specified are elements of the task structure and are set to the correct values
by the binary format handler):
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Q  The text segment contains the executable code of the program. start_code and end_code
specify the area in address space where the segment resides.

Q  The pre-initialized data (variables supplied with a specific value at compilation time) are
located between start_data and end_data and are mapped from the corresponding seg-
ment of the executable file.

Q  The heap used for dynamic memory allocation is placed in virtual address space; start_brk
and brk specify its boundaries.

Q  The position of the stack is defined by start_stack; the stack grows downward automati-
cally on nearly all machines. The only exception is currently PA-Risc. The inverse direction
of stack growth must be noted by the architecture by setting the configuration symbol
STACK_GROWSUP.

0  The program arguments and the environment are mapped into the virtual address space
and are located between arg_start and arg_end and env_start and env_end, respec-
tively.

0  The instruction pointer of the process and some other architecture-specific registers are set so
that the main function of the program is executed when the scheduler selects the process.

How the ELF format populates the virtual address space will be discussed in more detail in Section 4.2.1.

Table 2-2: Binary Formats Supported by Linux.

Name Meaning

flat_format The flat format is used on embedded CPUs without a memory manage-
ment unit (MMU). To save space, the data in the executable can also be
compressed (if zlib support is available in the kernel).

script_format This is a dummy format used to run scripts using the she-bang mechanism.
By looking at the first line of the file, the kernel knows which interpreter to
use and starts the appropriate application (e.g., Perl for #! /usr/bin/perl).

misc_format This is also a dummy format used to start applications requiring an external
interpreter. In contrast to the #! mechanism, the interpreter need not be
specified explicitly but is determined by reference to special file identifiers
(suffix, header, etc.). This format is used, for example, to execute Java byte
code or to run Windows programs with wine.

elf_ format This is a machine- and architecture-independent format for 32 and 64 bits.
It is the standard format under Linux.

elf fdpic_format ELF format with special features for systems without an MMU.
irix_format ELF format with Irix-specific features.

som_format HP-UX-specific format used on PA-Risc machines.

aout_format a.out is the former standard format for Linux used before ELF was intro-

duced. It is rarely used today because it is too inflexible.
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Interpreting Binary Formats

Each binary format is represented in the Linux kernel by an instance of the following (simplified) data
structure:

<binfmts.h>
struct linux_binfmt {
struct linux_binfmt * next;
struct module *module;
int (*load_binary) (struct linux_binprm *, struct pt_regs * regs);
int (*load_shlib) (struct file *);
int (*core_dump) (long signr, struct pt_regs * regs, struct file * file);
unsigned long min_coredump; /* minimal dump size */

Y

Each binary format must provide three functions:

1. 1cad binary to load normal programs.
2. load_shlib to load a shared library, that is, a dynamic library.

3.  core_dump to write a core dump if there is a program error. This dump can subsequently be
analyzed using a debugger (e.g., gdb) for troubleshooting purposes. min_coredump is a lower
bound on the core file size from which a coredump will be generated (usually, this is the size
of a single memory page).

Each binary format must first be registered in the kernel using register_binfmt. The purpose of this
function is to add a new binary format to a linked list whose list head is represented by the formats
global variable from fs/exec.c. The linux_binfmt instances are linked with each other by means of
their next element.

2.4.4 Exiting Processes

Processes must terminate with the exit system call. This gives the kernel the opportunity to free the
resources used by the processes to the systern.19 The entry point for this call is the sys_exit function
that requires an error code as its parameter in order to exit the process. Its definition is architecture-
independent and is held in kernel/exit.c. Its implementation is not particularly interesting because it
immediately delegates its work to do_exit.

Suffice it to say that the implementation of this function consists essentially of decrementing reference
counters and returning memory areas to memory management once the reference counter has reverted
to 0 and the corresponding structure is no longer being used by any process in the system.

2.5 Implementation of the Scheduler

A unique description of each process is held in memory and is linked with other processes by means of
several structures. This is the situation facing the scheduler, whose task is to share CPU time between
the programs to create the illusion of concurrent execution. As discussed above, this task is split into two
different parts — one relating to the scheduling policy and the other to context switching.

Yexit can be called explicitly by the programmer. However, the compiler automatically adds a corresponding call to the end of
the main function (or to the main function used by the particular language).
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5.1 Overview

The kernel must provide a method of sharing CPU time as fairly as possible between the individual
processes while at the same time taking into account differing task priorities. There are many ways of
doing this, and all have their pros and cons, which we need not discuss here (see [Tan07] for an overview
of potential approaches). Our focus is on the solution adopted in the Linux kernel.

The schedule function is the starting point to an understanding of scheduling operations. It is defined in
kernel/sched.c and is one of the most frequently invoked functions in the kernel code. The implemen-
tation of the scheduler is obscured a little by several factors:

0O On multiprocessor systems, several details (some very subtle) must be noted so that the sched-
uler doesn’t get under its own feet.

O  Not only priority scheduling but also two other soft real-time policies required by the Posix stan-
dard are implemented.

0 gotos are used to generate optimal assembly language code. These jump backward and forward
in the C code and run counter to all principles of structured programming. However, this feature
can be beneficial if it is used with great care, and the scheduler is one example where gotos make
sense.

In the following overview, I consider the completely fair scheduler and neglect real-time tasks for now.
I come back to them later. An outstanding feature of the Linux scheduler is that it does not require the
concept of time slices, at least not in the traditional way. Classical schedulers compute time slices for
each process in the system and allow them to run until their time slice is used up. When all time slices of
all processes have been used up, they need to be recalculated again. The current scheduler, in contrast,
considers only the wait time of a process — that is, how long it has been sitting around in the run-queue
and was ready to be executed. The task with the gravest need for CPU time is scheduled.

The general principle of the scheduler is to provide maximum fairness to each task in the system in terms
of the computational power it is given. Or, put differently, it tries to ensure that no task is treated unfairly.
Now this clearly sounds good, but what do fair and unfair with respect to CPU time mean? Consider an
ideal computer that can run an arbitrary number of tasks in parallel: If N processes are present on the
system, then each one gets £ of the total computational power, and all tasks really execute physically
parallel. Suppose that a task requires 10 minutes to complete its work. If 5 such tasks are simultaneously
present on a perfect CPU, each will get 20 percent of the computational power, which means that it will
be running for 50 instead of 10 minutes. However, all 5 tasks will finish their job after exactly this time
span, and none of them will have ever been inactive!

This is clearly not achievable on real hardware: If a system has only a single CPU, at most one process can
be run simultaneously. Multitasking is only achieved by switching back and forth between the tasks with
high frequency. For users, who think considerably more slowly than the switching frequency, this creates
the illusion of parallel executing, but in reality, it is not. While more CPUs in the system improve the
situation and allow perfect parallel execution of a small number of tasks, there will always be situations
in which fewer CPUs than processes that are to be run are available, and the problem starts anew.

If multitasking is simulated by running one process after another, then the process that is currently
running is favored over those waiting to be picked by the scheduler — the poor waiting processes are
being treated unfairly. The unfairness is directly proportional to the waiting time.
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Every time the scheduler is called, it picks the task with the highest waiting time and gives the CPU to
it. If this happens often enough, no large unfairness will accumulate for tasks, and the unfairness will be
evenly distributed among all tasks in the system.

Figure 2-12 illustrates how the scheduler keeps track of which process has been waiting for how long.
Since runnable processes are queued, the structure is known as the run queue.

Time ordered
..................... . Red-black tree

Q@

Real clock Virtual clock
E EREREN :
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_lllll_m OO0 OO O] Runqueue
| picked ! _

. torun; decreasing

wait time
Figure 2-12: The scheduler keeps track of the
waiting time of the available processes by sorting
them in a red-black tree.

All runnable tasks are time-ordered in a red-black tree, essentially with respect to their waiting time. The
task that has been waiting for the CPU for the largest amount of time is the leftmost entry and will be
considered next by the scheduler. Tasks that have been waiting less long are sorted on the tree from left
to right.

If you are not familiar with red-black trees, suffice it to know here that this data structure allows for
efficient management of the entries it contains, and that the time required for lookup, insertion, and dele-
tion operations will only moderately rise with the number of processes present in the tree.?’ Red-black
trees are available as a standard data structure of the kernel, and Appendix C provides more information
about them. Besides, a discussion of such trees can be found in every textbook on data structures.

Besides the red-black tree, a run queue is also equipped with a virtual clock.?! Time passes slower on
this clock than in real time, and the exact speed depends on the number of processes that are currently
waiting to be picked by the scheduler. Suppose that four processes are on the queue: Then the virtual
clock will run at one-quarter of the speed of a real clock. This is the basis to determine how much CPU
time a waiting process would have gotten if computational power could be shared in a completely fair
manner. Sitting on the run queue for 20 seconds in real time amounts to 5 seconds in virtual time. Four
tasks executing for 5 seconds each would keep the CPU occupied for 20 seconds in real time.

2070 be precise: Time complexity is O(log 1), where 1 is the number of elements in the tree. This is worse than for the old scheduler,
which was famous for being an O(1) scheduler, that is, its run time was independent of the number of processes it had to deal with.
However, the slow-down caused by the linear-logarithmic dependency of the new scheduler is negligible unless a huge number of
processes is simultaneously runnable. In practice, such a situation does not occur.

2INotice that the kernel really used the concept of a virtual clock for the scheduling mechanism in kernel 2.6.23, but currently com-
putes the virtual time a little differently. Since the method is easier to understand with virtual clocks, I will stick to this now and
discuss how the virtual clock is emulated when I discuss the scheduler implementation.
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Suppose that the virtual time of the run queue is given by fair_clock, while the waiting time of a process
is stored in wait_runtime. To sort tasks on the red-black tree, the kernel uses the difference fair_clock -
wait_runtime. While fair_clock is a measure for the CPU time a task would have gotten if scheduling
were completely fair, wait_runtime is a direct measure for the unfairness caused by the imperfection of
real systems.

When a task is allowed to run, the interval during which it has been running is subtracted from
wait_runtime. This way, it will move rightward in the time-ordered tree at some point, and another
process will be the leftmost one — and is consequently selected to run. Notice, however, that the virtual
clock in fair_clock will increase when the task is running. This effectively means that the share of
CPU time that the task would have received in a perfectly fair system is deducted from the time spent
executing on the real CPU. This slows degradation of unfairness: Decrementing wait_runtime is
equivalent to lowering the amount of unfairness received by the task, but the kernel must not forget
that some portion of the time used to lower the unfairness would have belonged to the process in a
completely fair world anyway. Suppose again that four processes sit on the run queue, and that a process
has been waiting for 20 real seconds. Now it is allowed to run for 10 seconds: wait_runtime is afterward
10, but since the process would have gotten 10/4 = 2 seconds of this time span anyway, effectively only
8 time units account for the potentially new position on the run queue.

Unfortunately, this strategy is complicated by a number of real-world issues:

Q  Different priority levels for tasks (i.e., nice values) must be taken into account, and more impor-
tant processes must get a higher share of CPU time than less important ones.

0  Tasks must not be switched too often because a context switch, that is, changing from one task to
another, has a certain overhead. When switching happens too often, too much time is spent with
exchanging tasks that is not available for effective work anymore.

On the other hand, the time that goes by between task switches must not be too long because
large unfairness values could accumulate in this case. Letting tasks run for too long can also lead
to larger latencies than desired for multimedia systems.

We will see how the scheduler tackles these problems in the following discussion.

A good way to understand scheduling decisions is to activate scheduler statistics at compile time. This
will generate the file /proc/sched_debug, which contains information on all aspects of the current state
of the scheduler.

Finally, note that the Documentation/ directory contains some files that relate to various aspects of the
scheduler. Keep in mind, however, that some of them still relate to the old O(1) scheduler and are there-
fore outdated!

5.2 Data Structures

The scheduler uses a series of data structures to sort and manage the processes in the system. How the
scheduler works is closely linked with the design of these structures. Several components interact with
each other in many ways, and Figure 2-13 provides a first overview of the connections.

Scheduling can be activated in two ways: either directly if a task goes to sleep or wants to yield the
CPU for other reasons, or by a periodic mechanism that is run with constant frequency and that checks
from time to time if switching tasks is necessary. I denote these two components generic scheduler or core
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scheduler in the following. Essentially, the generic scheduler is a dispatcher that interacts with two other
components:

1.  Scheduling classes are used to decide which task runs next. The kernel supports different
scheduling policies (completely fair scheduling, real-time scheduling, and scheduling of the
idle task when there is nothing to do), and scheduling classes allow for implementing these
policies in a modular way: Code from one class does not need to interact with code from
other classes.

When the scheduler is invoked, it queries the scheduler classes which task is supposed to
run next.

2.  After a task has been selected to run, a low-level task switch must be performed. This requires
close interaction with the underlying CPU.

[l
CPU
TTTTT

Main Periodic Context
scheduler scheduler switch

i Select task

Scheduler
7 A v % classes
i) = o R

Figure 2-13: Overview of the components of the
scheduling subsystem.

Every task belongs to exactly one of the scheduling classes, and each scheduling class is responsible to
manage their tasks. The generic scheduler itself is not involved in managing tasks at all; this is completely
delegated to the scheduler classes.

Elements in the Task Structure
There are several scheduling-relevant elements in the task structure of each process.

<sched.h>
struct task_struct {

int prio, static_prio, normal_prio;
unsigned int rt_priority;

struct list_head run_list;
const struct sched_class *sched_class;
struct sched_entity se;

unsigned int policy;

cpumask_t cpus_allowed;
unsigned int time_slice;
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Not all processes on a system are equally important: Less urgent tasks should receive less atten-
tion, while important work should be done as quickly as possible. To determine the importance
of a particular task, it is equipped with a relative priority.

However, the task structure employs three elements to denote the priority of a process: prio
and normal_prio indicate the dynamic priorities, static_prio the static priority of a process.
The static priority is the priority assigned to the process when it was started. It can be modified
with the nice and sched_setscheduler system calls, but remains otherwise constant during the
process’ run time.

normal_priority denotes a priority that is computed based on the static priority and the
scheduling policy of the process. Identical static priorities will therefore result in different
normal priorities depending on whether a process is a regular or a real-time process. When a
process forks, the child process will inherit the normal priority.

However, the priority considered by the scheduler is kept in prio. A third element is required
because situations can arise in which the kernel needs to temporarily boost the priority of a pro-
cess. Since these changes are not permanent, the static and normal priorities are unaffected by
this. How the three priorities depend on each other is slightly subtle, and I discuss this in detail
below.

rt_priority denotes the priority of a real-time process. Note that this does not replace the pre-
viously discussed values! The lowest real-time priority has value 0, whereas the highest priority
is 99. Higher values correspond to higher priorities. The convention used here is different from
the convention used for nice values.

sched_class denotes the scheduler class the process is in.

The scheduler is not limited to schedule processes, but can also work with larger entities. This
allows for implementing group scheduling: This way, the available CPU time can first be dis-
tributed between general process groups (e.g., all processes can be grouped according to their
owner), and the assigned time is then again distributed within the group.

This generality requires that the scheduler does not directly operate on processes but works with
schedulable entities. An entity is represented by an instance of sched_entity.

In the simplest case, scheduling is performed on a per-process level, and this is the case we con-
centrate on initially. Since the scheduler is designed to work on schedulable entities, each process
must look to it like such an entity. se therefore embeds an instance of sched_entity on which
the scheduler operates in each task struct (notice that se is not a pointer because the entity is
embedded in the task!).

policy holds the scheduling policy applied to the process. Linux supports five possible values:

0  SCHED_NORMAL is used for normal processes on which our description focuses. They are
handled by the completely fair scheduler. SCHED_BATCH and SCHED_IDLE are also handled
by the completely fair scheduler but can be used for less important tasks. SCHED_BATCH
is for CPU-intensive batch processes that are not interactive. Tasks of this type are disfa-
vored in scheduling decisions: They will never preempt another process handled by the
CF scheduler and will therefore not disturb interactive tasks. The class is well suited for
situations in which the static priority of a task is not desired to be decreased with nice, but
when the task should nevertheless not influence the interactivity of a system.

SCHED_IDLE tasks will also be of low importance in the scheduling decisions, but this time
because their relative weight is always minimal (this will become clear when I discuss how
the kernel computes task weights that reflect their priority).
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Note that SCHED_IDLE is, despite its name, not responsible to schedule the idle task. The
kernel provides a separate mechanism for this purpose.

Q  ScHED_RR and SCHED_FIFO are used to implement soft real-time processes. SCHED_RR imple-
ments a round robin method, while SCHED_FIFO uses a first in, first out mechanism. These
are not handled by the completely fair scheduler class, but by the real-time scheduler class,
which is discussed in Section 2.7 in greater length.

The auxiliary function rt_policy is used to decide if a given scheduling policy belongs to the
real-time class (SCHED_RR and SCHED_FIFO) or not. task_has_rt_policy determines this prop-
erty for a given task.

kernel/sched.c
static inline int rt_policy(int policy)
static inline int task_has_rt_policy(struct task_struct *p)

0  cpus_allowedis a bit field used on multiprocessor systems to restrict the CPUs on which a pro-

cess may run.22

O  run_listand time_slice are required for the round-robin real-time scheduler, but not for the
completely fair scheduler. run_list is a list head used to hold the process on a run list, while
time_slice specifies the remaining time quantum during which the process may use the CPU.

The T1F_NEED_RESCHED flag discussed above is just as important for the scheduler as the specific sched-
uler elements held in the task structure. If this flag is set for an active process, the scheduler knows that
the CPU is to be withdrawn from the process — either voluntarily or by force — and granted to a new

process.

Scheduler Classes

Scheduler classes provide the connection between the generic scheduler and individual scheduling
methods. They are represented by several function pointers collected in a special data structure. Each
operation that can be requested by the global scheduler is represented by one pointer. This allows for cre-
ation of the generic scheduler without any knowledge about the internal working of different scheduler
classes.

Without extensions required for multiprocessor systems (I will come back to these later), the structure
looks as follows:

<sched.h>
struct sched_class {
const struct sched_class *next;

void (*enqueue_task) (struct rg *rg, struct task_struct *p, int wakeup);
void (*dequeue_task) (struct rg *rqg, struct task struct *p, int sleep);
void (*yield_task) (struct rg *rq);

void (*check_preempt_curr) (struct rg *rg, struct task_struct *p);

struct task_struct * (*pick_next_task) (struct rqg *rq);
void (*put_prev_task) (struct rg *rqg, struct task_struct *p);

22The bitmap can be set using the sched_setaffinity system call.
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20

void (*set_curr_task) (struct rqg *rq);
void (*task_tick) (struct rg *rqg, struct task_struct *p);
void (*task_new) (struct rg *rqg, struct task_struct *p);

Y

An instance of struct sched_class must be provided for each scheduling class. Scheduling classes are
related in a flat hierarchy: Real-time processes are most important, so they are handled before completely
fair processes, which are, in turn, given preference to the idle tasks that are active on a CPU when there
is nothing better to do. The next element connects the sched_class instances of the different scheduling
classes in the described order. Note that this hierarchy is already set up at compile time: There is no
mechanism to add new scheduler classes dynamically at run time.

The operations that can be provided by each scheduling class are as follows:

0 enqueue_task adds a new process to the run queue. This happens when a process changes from
a sleeping into a runnable state.

0 dequeue_task provides the inverse operation: It takes a process off a run queue. Naturally, this
happens when a process switches from a runnable into an un-runnable state, or when the kernel
decides to take it off the run queue for other reasons — for instance, because its priority needs to
be changed.

Although the term run queue is used, the individual scheduling classes need not represent their
processes on a simple queue. In fact, recall from above that the completely fair scheduler uses a
red-black tree for this purpose.

0O  When a process wants to relinquish control of the processor voluntarily, it can use the
sched_yield system call. This triggers yield_task to be called in the kernel.

0  check_preempt_curr is used to preempt the current task with a newly woken task if this is
necessary. The function is called, for instance, when a new task is woken up with
wake_up_new_task.

0 pick_next_task selects the next task that is supposed to run, while put_prev_task is called
before the currently executing task is replaced with another one. Note that these operations are
not equivalent to putting tasks on and off the run queue like enqueue_task and dequeue_task.
Instead, they are responsible to give the CPU to a task, respectively, take it away. Switching
between different tasks, however, still requires performing a low-level context switch.

0  set_curr_taskis called when the scheduling policy of a task is changed. There are also some
other places that call the function, but they are not relevant for our purposes.

0  task_tickis called by the periodic scheduler each time it is activated.
O new_task allows for setting up a connection between the fork system call and the scheduler.

Each time a new task is created, the scheduler is notified about this with new_task.

The standard functions activate_task and deactivate_task are provided to enqueue and dequeue a
task by calling the aforementioned functions. Additionally, they keep the kernel statistics up to date.

kernel/sched.c
static void enqueue_task(struct rg *rqg, struct task_struct *p, int wakeup)
static void dequeue_task(struct rg *rqg, struct task_struct *p, int sleep)

When a process is registered on a run queue, the on_rqg element of the embedded sched_entity instance
is set to 1, otherwise to 0.
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Besides these, the kernel defines the convenience method check_preempt_curr to call the
check_preempt_curr method of the scheduling class that is associated with a given task:

kernel/sched.c
static inline void check_preempt_curr(struct rg *rqg, struct task_struct *p)

Userland applications do not directly interact with scheduling classes. They only know of the constants
SCHED_xyz as defined above. It is the kernel’s job to provide an appropriate mapping between these con-
stants and the available scheduling classes. SCHED_NORMAL, SCHED_BATCH, and SCHED_IDLE are mapped
to fair_sched_class, while SCHED_RR and SCHED_FIFO are associated with rt_sched_class. Both
fair_sched_class and rt_sched_class are instances of struct sched_class that represent, respec-
tively, the completely fair and the realtime scheduler. The contents of these instances will be shown
when I discuss the respective scheduler classes in detail.

Run Queues

The central data structure of the core scheduler that is used to manage active processes is known as the
run queue. Each CPU has its own run queue, and each active process appears on just one run queue. It is
not possible to run a process on several CPUs at the same time.??

The run queue is the starting point for many actions of the global scheduler. Note, however, that pro-
cesses are not directly managed by the general elements of the run queue! This is the responsibility of
the individual scheduler classes, and a class-specific sub-run queue is therefore embedded in each run

queue.?*

Run queues are implemented using the following data structure. To simplify matters, I have omitted
several statistical elements that do not directly influence the work of the run queue, and also the elements
required on multiprocessor systems.

kernel/sched.c
struct rqg {
unsigned long nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
struct load_weight load;

struct cfs_rg cfs;
struct rt_rqg rt;

struct task_struct *curr, *idle;
u64 clock;
Y

0  nr_running specifies the number of runnable processes on the queue — regardless of their pri-
ority or scheduling class.

BHowever, threads originating from the same process can execute on different processors as task management makes no important
distinction between processes and threads.

24For readers familiar with earlier versions of the kernel, it might be interesting to know the scheduler class run queues replace the
lists of active and expired tasks that were utilized by the previous O(1) scheduler.
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0  load provides a measure for the current load on the run queue. The queue load is essentially
proportional to the number of currently active processes on the queue, where each process is
additionally weighted by its priority. The speed of the virtual per-run queue clock is based on
this information. Since computing the load and other related quantities is an important com-
ponent of the scheduling algorithm, I devote Section 2.5.3 below to a detailed discussion of the
mechanisms involved.

0 cpu_load allows for tracking the load behavior back into the past.

0  cfsand rt are the embedded sub-run queues for the completely fair and real-time scheduler,
respectively.

O  curr points to the task structure of the process currently running.

0  idle points to the task structure of the idle process called when no other runnable process is
available — the idle thread.

0 clock and prev_raw_clock are used to implement the per-run queue clock. The value of clock
is updated each time the periodic scheduler is called. Additionally, the kernel provides the stan-
dard function update_rg_clock that is called from many places in the scheduler that manipulate
the run queue, for instance, when a new task is woken up in wakeup_new_task.

All run queues of the system are held in the runqueues array, which contains an element for each CPU in
the system. On single-processor systems, there is, of course, just one element because only one run queue
is required.

kernel/sched.c
static DEFINE_PER_CPU_SHARED_ALIGNED (struct rg, rungqueues);

The kernel also defines a number of convenient macros, which are self-explanatory.

kernel/sched.c

#define cpu_rqg(cpu) (&per_cpu (runqueues, (cpu)))
#define this_rqgl() (&__get_cpu_var (runqueues) )
#define task_rqg(p) cpu_rg(task_cpu(p))

#define cpu_curr (cpu) (cpu_rg(cpu) ->curr)

Scheduling Entities

Since the scheduler can operate with more general entities than tasks, an appropriate data structure is
required to describe such an entity. It is defined as follows:

<sched.h>

struct sched_entity {
struct load_weight load; /* for load-balancing */
struct rb_node run_node;
unsigned int on_rqg;

u6b4d exec_start;

u64d sum_exec_runtime;

u64 vruntime;

ub4 prev_sum_exec_runtime;
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The structure can contain many more statistical elements if support for scheduler statistics has been
compiled into the kernel, and also has some more elements if group scheduling is enabled. The part
that is interesting for us right now, however, boils down to what you see above. The meaning of the
individual elements is as follows:

0  load specifies a weight for each entity that contributes to the total load of the queue. Comput-
ing the load weight is an important task of the scheduler because the speed of the virtual clock
required for CFS will ultimately depend on it, so I discuss the method in detail in Section 2.5.3.

0  run_node is a standard tree element that allows the entity to be sorted on a red-black tree.

(]

on_rq denotes whether the entity is currently scheduled on a run queue or not.

0  When a process is running, the consumed CPU time needs to be recorded for the completely
fair scheduler. sum_exec_runtime is used for this purpose. Tracking the run time is done
cumulatively, in update_curr. The function is called from numerous places in the scheduler, for
instance, when a new task is enqueued, or from the periodic tick. At each invocation, the
difference between the current time and exec_start is computed, and exec_start is updated to
the current time. The difference interval is added to sum_exec_runtime.

The amount of time that has elapsed on the virtual clock during process execution is accounted
in vruntime.

O When a process is taken off the CPU, its current sum_exec_runtime value is preserved in
prev_exec_runtime. The data will later be required in the context of process preemption.
Notice, however, that preserving the value of sum_exec_runtime in prev_exec_runtime
does not mean that sum_exec_runtime is reset! The old value is kept, and sum_exec_runtime
continues to grow monotonically.

Since each task_struct has an instance of sched_entity embedded, a task is a schedulable entity.
Notice, however, that the inverse statement is not true in general: A schedulable entity need not nec-
essarily be a task. However in the following we are concerned only with task scheduling, so for now we
can equate scheduling entities and tasks. Keep in mind that this is not true in general, though!

2.5.3 Dealing with Priorities

Priorities are deceptively simple from the userspace point of view: After all, they seem to be just a range
of numbers. The in-kernel reality is unfortunately somewhat different, and comparatively much effort is
required to work with priorities.

Kernel Representation of Priorities

The static priority of a process can be set in userspace by means of the nice command, which internally
invokes the nice system call.”> The nice value of a process is between —20 and +19 (inclusive). Lower
values mean higher priorities. Why this strange range was chosen is shrouded in history.

The kernel uses a simpler scale ranging from 0 to 139 inclusive to represent priorities internally. Again,
lower values mean higher priorities. The range from 0 to 99 is reserved for real-time processes. The nice
values [—20,4+19] are mapped to the range from 100 to 139, as shown in Figure 2-14. Real-time processes
thus always have a higher priority than normal processes can ever have.

Bgetpriority is an alternative system call for setting process priority. It is able to modify not only the priority of an individual
thread but also the priorities of all threads in a thread group or of all processes of a specific user, selected by means of the UID.
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‘ Higher Priority

- —20 Nice +19
| Realtime | Normal |
0 99 100 139
Figure 2-14: Kernel priority scale.

The following macros are used to convert between the different forms of representation (MAX_RT_PRIO
specifies the maximum priority of real-time processes, and MAX_PRIO is the maximal priority value for
regular processes):

<sched.h>

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO
#define MAX_PRIO (MAX_RT_PRIO + 40)
#define DEFAULT_PRIO (MAX_RT_ PRIO + 20)

kernel/sched.c

#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE (prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE (p) PRIO_TO_NICE( (p)->static_prio)

Computing Priorities

94

Recall that it is not sufficient to consider just the static priority of a process, but that three priorities
must be taken into account: dynamic priority (task_struct->prio), normal priority
(task_struct->normal_prio), and static priority (task_struct->static_prio). These priorities
are related to each other in interesting ways, and in the following I discuss how.

static_prio is the starting point of the calculations. Assume that it has been already set and that the
kernel now wants to compute the other priorities. This is done by a one-liner:

p->prio = effective_prio(p);
The auxiliary function effective_prio performs the following operations:

kernel/sched.c
static int effective_prio(struct task_struct *p)

{
p->normal_prio = normal_prio(p);
/*
* If we are RT tasks or we were boosted to RT priority,
keep the priority unchanged. Otherwise, update priority
to the normal priority:

*
*
*/
if (!rt_prio(p->prio))
return p->normal_prio;
return p->prio;

}

First of all, the normal priority is computed and stored in normal_priority. This side effect allows for
setting both prio and normal_prio with a single function invocation. Another helper function, rt_prio,
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checks if the normal priority is in the real-time range, that is, smaller than RT_RT_PRIO. Notice that the
check is not related to any scheduling class, but only to the numerical value of the priority.

Assume for now that we are dealing with a regular process that is not subjected to real-time scheduling.
In this case, normal_prio just returns the static priority. The effect is then simple: All three priority values
have the same value, namely, that of the static priority!

Things are different for real-time tasks, however. Observe how the normal priority is computed:

kernel/sched.c
static inline int normal_prio(struct task_struct *p)

{

int prio;

if (task_has_rt_policy(p))

prio = MAX_RT_PRIO-1 - p->rt_priority;
else

prio = __normal_prio(p);
return prio;

}

The normal priority needs to be computed differently for regular tasks and real-time tasks. The compu-
tation performed in __normal_prio is only valid for a regular task. Real-time tasks, instead, compute the
normal priority based on their rt_priority setting. Because higher values of rt_priority denote higher
real-time priorities, this runs counter to the kernel-internal representation of priorities, where lower val-
ues mean higher priorities. The proper in-kernel priority value is therefore given by MAX_RT_PRIO-1 -
p->rt_priority. Notice that this time, the detection of a real-time task is, in contrast to effective_prio,
not based on any priority, but on the scheduling policy set in the task_struct.

What does __normal_priority do? The function is really simple; it just returns the static priority:

kernel/sched.c
static inline int _ normal_prio(struct task_struct *p)
{
return p->static_prio;
}

Now one can certainly wonder why an extra function is used for this purpose. There is a historical reason:
Computing the normal priority in the old O(1) scheduler was a much trickier business. Interactive tasks
had to be detected and their priority boosted, while non-interactive tasks had to be penalized to obtain
good interactive behavior of the system. This required numerous heuristic calculations that either did
the job well — or failed at it. The new scheduler, thankfully, does not require such magical calculations
anymore.

However, one question remains: Why does the kernel base the real-time check in effective_prio on the
numerical value of the priority instead of using task_has_rt_policy? This is required for non-real-time
tasks that have been temporarily boosted to a real-time priority, which can happen when RT-Mutexes

: 26
are in use.

26Real-time mutexes allow for protection of dangerous parts of the kernel against concurrent access by multiple processors. However,
a phenomenon called priority inversion, in which a process with lower priority executes even though a process with higher priority
is waiting for the CPU, can occur. This can be solved by temporarily boosting the priority of processes. Refer to the discussion in
Section 5.2.8 for more details about this problem.
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Finally, Table 2-3 summarizes the result of the calculations for different types of tasks.

Table 2-3: Computing Priorities for Various Task Types.

Task type / priority static_prio normal prio prio
Non-real-time task static_prio static_prio static_prio
Priority-boosted non-real-time task  static_prio static_prio prio as before
Real-time task static_prio MAX_RT_PRIO-1-rt_priority prio as before

p->prio is set with the method shown above when a newly created task is woken up with
wake_up_new_task, and when the static priority was changed using the nice system call.

Notice that when a process forks off a child, the current static priority will be inherited from the parent.
The dynamic priority of the child, that is, task_struct->prio, is set to the normal priority of the parent.
This ensures that priority boosts caused by RT-Mutexes are not transferred to the child process.

Computing Load Weights

The importance of a task is not only specified by its priority, but also by the load weight stored in
task_struct->se.load. set_load_weight is responsible to compute the load weight depending on
the process type and its static priority.

The load weight is contained in the data structure load_weight:

<sched.h>

struct load_weight ({
unsigned long weight, inv_weight;
Y

The kernel not only keeps the load itself, but also another quantity that can be used to perform divisions
by the weight.?”

The general idea is that every process that changes the priority by one nice level down gets 10 percent
more CPU power, while changing one nice level up gives 10 percent CPU power less. To enforce this
policy, the kernel converts priorities to weight values. Let’s first see the table:

kernel/sched.c

static const int prio_to_weight[40] = {
/* =20 */ 88761, 71755, 56483, 46273, 36291,
/* =15 */ 29154, 23254, 18705, 14949, 11916,
/* =10 */ 9548, 7620, 6100, 4904, 3906,
/* =5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
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27Since a normal long is used, the kernel cannot directly store 1/weight, but has to resort to a technique that allows for performing
the division with a multiplication and bit shifting. The details are not of interest here, however.
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/* 5 %/ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,

Y

The array contains one entry for each nice level in the range [0,39] as used by the kernel. The multiplier
between the entries is 1.25. To see why this is required, consider the following example. Two processes
A and B run at nice level 0, so each one gets the same share of the CPU, namely, 50 percent. The weight
for a nice 0 task is 1,024 as can be deduced from the table. The share for each task is % = 0.5, that
is, 50 percent as expected.

If task B is re-niced by one priority level, it is supposed to get 10 percent less CPU share. In other words,
this means that A will get 55 percent and B will get 45 percent of the total CPU time. Increasing the
priority by 1 leads to a decrease of its weight, which is then 1,024/1.25 ~ 820. The CPU share A will
get now is therefore 101024 ~ 0.55, whereas B will have % ~ (.45 — a 10 percent difference as
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Figure 2-15: Relation between static priority and load for regular and real-time processes.

The code that performs the conversion also needs to account for real-time tasks. These will get double
of the weight of a normal task. SCHED_IDLE tasks, on the other hand, will always receive a very small
weight:

kernel/sched.c

#define WEIGHT_IDLEPRIO 2
#define WMULT_IDLEPRIO (1 << 31)
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static void set_load_weight (struct task_struct *p)
{
if (task_has_rt_policy(p)) {
p->se.load.weight = prio_to_weight[0] * 2;
p->se.load.inv_weight = prio_to_wmult[0] >> 1;

return;
}
/*
* SCHED_IDLE tasks get minimal weight:
*/

if (p->policy == SCHED_IDLE) {
p->se.load.weight = WEIGHT_ IDLEPRIO;
p->se.load.inv_weight = WMULT_IDLEPRIO;
return;

}

p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
}

The kernel not only computes the weight itself, but also stores the value required for division. Notice that
allowing 10 percent more CPU time per priority change leads to an exponential behavior of the weight
(and the related CPU times), which is illustrated in Figure 2-15. The upper inset in the figure shows the
graph for a restricted region of regular priorities. The lower inset employs a logarithmic scale on the y
axis. Note that the function is discontinuous at the transition point from regular to real-time processes.

Recall that not only processes, but also run queues are associated with a load weight. Every time a process
is added to a run queue, the kernel calls inc_nr_running. This not only ensures that the run queue keeps
track of how many processes are running, but also adds the process weight to the weight of the run
queue:

kernel/sched.c
static inline void update_load_add(struct load_weight *1w, unsigned long inc)
{

lw->weight += inc;

}

static inline void inc_load(struct rg *rqg, const struct task_struct *p)
{

update_load_add(&rg->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rqg *rq)
{

rg->nr_running++;

inc_load(rqg, p);
}

Corresponding functions (dec_nr_running, dec_load, and update_load_sub) are called when a process
is removed from the run queue.
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2.5.4 Core Scheduler

As mentioned above, scheduler implementation is based on two functions — the periodic scheduler and
the main scheduler function. These distribute CPU time on the basis of the priorities of the available
processes; this is why the overall method can also be referred to as priority scheduling — although this is
a very general term, naturally. I discuss how priority scheduling is implemented in this section.

The Periodic Scheduler

The periodic scheduler is implemented in scheduler_tick. The function is automatically called by the
kernel with the frequency Hz if system activity is going on. If no processes are waiting to be scheduled, the
tick can also be turned off to save power on computers where this is a scarce resource, for instance, lap-
tops or small embedded systems. The mechanism underlying periodic actions is discussed in Chapter 15.
The function has two principal tasks.

1. To manage the kernel scheduling-specific statistics relating to the whole system and to the
individual processes. The main actions performed involve incrementing counters and are of
no particular interest to us.

2.  To activate the periodic scheduling method of the scheduling class responsible for the cur-
rent process.

kernel/sched.c

void scheduler_tick(void)

{
int cpu = smp_processor_id();
struct rg *rg = cpu_rg(cpu) ;
struct task_struct *curr = rg->curr;

__update_rqg_clock(rqg)
update_cpu_load(rq) ;

The first part of the function deals with updating the run queue clock. This is delegated to
__update_rg_clock, which essentially advances the clock time stamp of the current instance of struct
rqg. The function has to deal with some oddities of hardware clocks, but these are not relevant for our
purposes. update_cpu_load then deals with updating the cpu_load[] history array of the run queue.
This essentially shifts the previously stored load values one array position ahead, and inserts the present
run queue load into the first position. Additionally, the function introduces some averaging to ensure
that the contents of the load array do not exhibit large discontinuous jumps.

Thanks to the modular structure of the scheduler, the main work is really simple, as it can be completely
delegated to the scheduler-class-specific method:

kernel/sched.c
if (curr != rg->idle)
curr->sched_class->task_tick(rqg, curr);

}

How task_tick is implemented depends on the underlying scheduler class. The completely fair sched-
uler, for instance, will in this method check if a process has been running for too long to avoid large
latencies, but I discuss this in detail below. Readers familiar with the old time-slice-based scheduling
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method should be aware, however, that this is not equivalent to an expiring time slice — they do not
exist anymore in the completely fair scheduler.

If the current task is supposed to be rescheduled, the scheduler class methods set the TIF_NEED_RESCHED
flag in the task structure to express this request, and the kernel fulfills it at the next opportune moment.

The Main Scheduler

The main scheduler function (schedule) is invoked directly at many points in the kernel to allocate the
CPU to a process other than the currently active one. After returning from system calls, the kernel also
checks whether the reschedule flag TIF_NEED_RESCHED of the current process is set — for example, the
flag is set by scheduler_tick as mentioned above. If it is, the kernel invokes schedule. The function then
assumes that the currently active task is definitely to be replaced with another task.

Before I discuss schedule in detail, I need to make one remark that concerns the __sched prefix. This is
used for functions that can potentially call schedule, including the schedule function itself. The declara-
tion looks as follows:

void _ sched some_function(...) {
schedule () ;

}

The purpose of the prefix is to put the compiled code of the function into a special section of the object file,
namely, . sched. text (see Appendix C for more information on ELF sections). This information enables
the kernel to ignore all scheduling-related calls when a stack dump or similar information needs to be
shown. Since the scheduler function calls are not part of the regular code flow, they are of no interest in
such cases.

Let’s come back to the implementation of the main scheduler schedule. The function first determines the
current run queue and saves a pointer to the task structure of the (still) active process in prev.

kernel/sched.c

asmlinkage void __sched schedule(void)

{
struct task_struct *prev, *next;
struct rg *rq;
int cpu;

need_resched:
cpu = smp_processor_id();
rq = cpu_rqg(cpu);
prev = rg->curr;

As in the periodic scheduler, the kernel takes the opportunity to update the run queue clock and clears
the reschedule flag TIF_NEED_RESCHED in the task structure of the currently running task.

kernel/sched.c

__update_rqg_clock(rq);
clear_tsk_need_resched (prev) ;
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Again thanks to the modular structure of the scheduler, most work can be delegated to the scheduling
classes. If the current task was in an interruptible sleep but has received a signal now, it must be promoted
to a running task again. Otherwise, the task is deactivated with the scheduler-class-specific methods
(deactivate_task essentially ends up in calling sched_class->dequeue_task):

kernel/sched.c
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
unlikely(signal_pending (prev)))) {
prev->state = TASK_RUNNING;
} else {
deactivate_task(rg, prev, 1);

}

put_prev_task first announces to the scheduler class that the currently running task is going to be
replaced by another one. Note that this is 1ot equivalent to taking the task off the run queue, but provides
the opportunity to perform some accounting and bring statistics up to date. The next task that is sup-
posed to be executed must also be selected by the scheduling class, and pick_next_task is responsible
to do so:

prev->sched_class->put_prev_task(rqg, prev);
next = pick_next_task(rqg, prev);

It need not necessarily be the case that a new task has been selected. If only one task is currently able to
run because all others are sleeping, it will naturally be left on the CPU. If, however, a new task has been
selected, then task switching at the hardware level must be prepared and executed.

kernel/sched.c
if (likely(prev != next)) {
rg->curr = next;
context_switch(rqg, prev, next);

context_switch is the interface to the architecture-specific methods that perform a low-level context
switch.

The following code checks if the reschedule bit of the current task is set, and the scheduler jumps to the
label described above and the search for a new process recommences:

kernel/sched.c
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched;

}

Notice that the above piece of code is executed in two different contexts: When no context switch has
been performed, it is run directly at the end of the schedule function. If, however, a context switch
has been performed, the current process will stop running right before this point — the new task has
taken over the CPU. However, when the previous task is reselected to run later on, it will resume its
execution directly at this point. Since prev will not point to the proper process in this case, the current
thread needs to be found via current by test_thread_flag.
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Interaction with fork

Whenever a new process is created using the fork system call or one of its variants, the scheduler gets a
chance to hook into the process with the sched_fork function. On a single-processor system, the function
performs essentially three actions: Initialize the scheduling-related fields of the new process, set up data
structures (this is rather straightforward), and determine the dynamic priority of the process:

kernel/sched.c
/*
* fork()/clone()-time setup:
*/
void sched_fork(struct task_struct *p, int clone_flags)

{

/* Initialize data structures */

/*
* Make sure we do not leak PI boosting priority to the child:
*/
p->prio = current->normal_prio;
if (!rt_prio(p->prio))
p->sched_class = &fair_sched_class;

}

By using the normal priority of the parent process as the dynamic priority of the child, the kernel ensures
that any temporary boosts of the parent’s priority are not inherited by the child. Recall that the dynamic
priority of a process can be temporarily modified when RT-Mutexes are used. This effect must not be
transferred to the child. If the priority is not in the real-time range, the process will always start out in the
completely fair scheduling class.

When a new task is woken up using wake_up_new_task, a second opportunity for the scheduler to inter-
act with task creation presents itself: The kernel calls the task_new function of the scheduling class. This
gives an opportunity to enqueue the new process into the run queue of the respective class.

Context Switching

Once the kernel has selected a new process, the technical details associated with multitasking must
be dealt with; these details are known collectively as context switching. The auxiliary function
context_switch is the dispatcher for the required architecture-specific methods.

kernel/sched.c

static inline void

context_switch(struct rg *rqg, struct task_struct *prev,
struct task_struct *next)

{

struct mm_struct *mm, *oldmm;
prepare_task_switch(rg, prev, next);

mm = next->mm;
oldmm = prev->active_mm;
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Immediately before a task switch, the prepare_arch_switch hook that must be defined by every archi-
tecture is called from prepare_task_switch. This enables the kernel to execute architecture-specific code
to prepare for the switch. Most supported architectures (with the exception of Sparc64 and Sparc) do not
use this option because it is not needed.

The context switch proper is performed by invoking two processor-specific functions:

1.

switch_mm changes the memory context described in task_struct->mm. Depending on the
processor, this is done by loading the page tables, flushing the translation lookaside buffers
(partially or fully), and supplying the MMU with new information. Because these actions go
deep into CPU details, I do not intend to discuss their implementation here.

switch_to switches the processor register contents and the kernel stack (the virtual user
address space is changed in the first step, and as it includes the user mode stack, it is not
necessary to change the latter explicitly). This task also varies greatly from architecture to
architecture and is usually coded entirely in assembly language. Again, I ignore implemen-
tation details.

Because the register contents of the userspace process are saved on the kernel stack when
kernel mode is entered (see Chapter 14 for details), this need not be done explicitly during
the context switch. And because each process first begins to execute in kernel mode (at that
point during scheduling at which control is passed to the new process), the register contents
are automatically restored using the values on the kernel stack when a return is made to
userspace.

Remember, however, that kernel threads do not have their own userspace memory context and exe-
cute on top of the address space of a random task; their task_struct->mm is NULL. The address space
“borrowed”” from the current task is noted in active_mm instead:

kernel/sched.c
if (unlikely (!mm)) {

} else

next->active_mm = oldmm;
atomic_inc (&oldmm->mm_count) ;
enter_lazy tlb(oldmm, next);

switch_mm(oldmm, mm, next);

enter_lazy_tlb notifies the underlying architecture that exchanging the userspace portion of the virtual
address space is not required. This speeds up the context switch and is known as the lazy TLB technique.

If the previous task was a kernel thread (i.e., prev->mm is NULL), its active_mm pointer must be reset to
NULL to disconnect it from the borrowed address space:

kernel/sched.c

if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
rg->prev_mm = oldmm;
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Finally, the task switch is finished with switch_to, which switches the register state and the stack — the
new process will be running after the call:

kernel/sched.c
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);

barrier () ;

/*

* this_rqg must be evaluated again because prev may have moved
* CPUs since it called schedule(), thus the 'rg' on its stack
* frame will be invalid.

*/

finish_task_switch(this_rq(), prev);

}

The code following after switch_to will only be executed when the current process is selected to run
next time. finish_task_switch performs some cleanups and allows for correctly releasing locks, which,
however, we will not discuss in detail. It also gives individual architectures another possibility to hook
into the context switching process, but this is only required on a few machines. The barrier statement is
a directive for the compiler that ensures that the order in which the switch_to and finish_task_switch
statements are executed is not changed by any unfortunate optimizations (see Chapter 5 for more details).

Intricacies of switch_to

The interesting thing about finish_task_switch is that the cleanups are performed for the task that has
been active before the running task has been selected for execution. Notice that this is not the task that
has initiated the context switch, but some random other task in the system! The kernel must find a way
to communicate this task to the context_switch routine, and this is achieved with the switch_to macro.
It must be implemented by every architecture and has a very unusual calling convention: Two variables
are handed over, but in three parameters! This is because not only two, but three processes are involved
in a context switch. The situation is illustrated in Figure 2-16.

next =B } .
Before switch_to
Kernel mode next=B next=G0 next=A _p_rfz\_/__/_-\
stack prev=A prev=B prev=_C prev=_C } After switch_to returns
Process A B C A
A=switch_to(AB) C=switch_to(C,A)

B=switch_to(B,C)
Figure 2-16: Behavior of the prev and next variables during context switches.

Suppose that three processes A, B, and C are running on the system. At some point in time, the kernel
decides to switch from A to B, then from B to C, and then from C back to A again. Before each switch_to
call, the pointers next and prev located on the stacks of the individual processes are set such that prev
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points to the currently running process, while next points to the process that will be running next. To
perform the switch from prev to next, the first two arguments are completely sufficient for switch_to.
For process A, prev points to A and next points to B.

A problem arises when A is selected to execute again. Control will return to the point after switch_to,
and if the stack were restored to the exact state it had before the switch, prev and next would still point
to the same values as before the switch — namely, next=B and prev=A. In this situation, the kernel would
not know that process C has actually run before process A.

Therefore, the low-level task switch routine must feed the previously executing task to context_switch
when a new task is selected. Since control flow comes back to the middle of the function, this cannot be
done with regular function return values, and that is why a three-parameter macro is used. However, the
conceptional effect is the same as if switch_to were a function of two arguments that would return a
pointer to the previously executing process. What switch_to essentially does is

prev = switch_to(prev,next)

where the prev value returned is not the prev value used as the argument, but the process that executed
last in time. In the above example, process A would feed switch_to with A and B, but would obtain
prev=C as result. How the kernel implements this behavior depends on the underlying architecture, but
it is obvious that the kernel can reconstruct the desired information by considering the kernel mode
stacks of both processes — which are naturally simultaneously available to the kernel, which can access
all memory at will.

Lazy FPU Mode

Because the speed of context switching plays a major role in system performance, the kernel uses a trick
to reduce the CPU time needed. Floating-point registers (and other extended registers not used by the
kernel; e.g., the SSE2 registers on IA-32 platforms) are not saved unless they are actually used by the
application and are not restored unless they are required. This is known as the lazy FPU technique. Its
implementation differs from platform to platform because assembly language code is used, but the basic
principle is always the same. It should also be noted that, regardless of platform, the contents of the
floating-point registers are not saved on the process stack but in its thread data structure. I illustrate this
technique by means of an example.

For the sake of simplicity, let us assume this time that there are only two processes, A and B, on the
system. Process A is running and uses floating-point operations. When the scheduler switches to process
B, the contents of the floating-point registers of A are saved in the thread data structure of the process.
However, the values in these registers are not immediately replaced with the values for process B.

If B does not perform any floating-point operations during its time slice, A sees its former register con-
tents when it is next activated. The kernel is therefore spared the effort of explicitly restoring register
values, and this represents a time-saving.

If, however, B does perform floating-point operations, this fact is reported to the kernel so that it can
fill the registers with the appropriate values from the thread data structure. Consequently, the kernel
saves and restores floating-point register contents only when needed and wastes no time on superfluous
operations.
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2.6 The Completely Fair Scheduling Class

All information that the core scheduler needs to know about the completely fair scheduler is contained
in fair sched_class:

kernel/sched_fair.c

static const struct sched_class fair_sched _class = {
.next = &idle_sched_class,
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,

.check_preempt_curr = check_preempt_wakeup,

.pick_next_task = pick_next_task_fair,
.put_prev_task = put_prev_task_fair,

.set_curr_task = set_curr_task_ fair,
.task_tick = task_tick_fair,
.task_new = task_new_fair,

Y

We have seen in the previous discussion when these functions are called by the main scheduler and will
examine in the following how they are implemented for CFS.

2.6.1 Data Structures

First, I need to introduce how the CFS run queue looks. Recall that an instance is embedded into each
per-CPU run queue of the main scheduler:

kernel/sched.c

struct cfs_rqg {
struct load_weight load;
unsigned long nr_running;

u64 min_vruntime;

struct rb_root tasks_timeline;
struct rb_node *rb_leftmost;

struct sched_entity *curr;

The individual elements have the following meaning:

O  nr_running counts the number of runnable processes on the queue, and load maintains the
cumulative load values of them all. Recall that you have already encountered the load calcu-
lation in Section 2.5.3.

0 min_vruntime tracks the minimum virtual run time of all processes on the queue. This value
forms the basis to implement the virtual clock associated with a run queue. The name is slightly
confusing because min_vruntime can actually be bigger than the vruntime setting of the leftmost
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tree element as it needs to increase monotonically, but I will come back to this when I discuss
how the value is set in detail.

0  tasks_timeline is the base element to manage all processes in a time-ordered red-black tree.
rb_leftmost is always set to the leftmost element of the tree, that is, the element that deserves
to be scheduled most. The element could, in principle, be obtained by walking through the red-
black tree, but since usually only the leftmost element is of interest, this speeds up the average
time spent searching the tree.

Q  curr points to the schedulable entity of the currently executing process.

2.6.2 CFS Operations

Let us now turn our attention to how the scheduling methods provided by the CF scheduler are imple-
mented.

The Virtual Clock

I discussed in the Introduction that the completely fair scheduling algorithm depends on a virtual clock
that measures the amount of time a waiting process would have been allowed to spend on the CPU on
a completely fair system. However, no virtual clock can be found anywhere in the data structures! This
is because all required information can be inferred from the existing real-time clocks combined with the
load weight associated with every process. All calculations related to the virtual clock are performed in
update_curr, which is called from various places in the system including the periodic scheduler. The
code flow diagram in Figure 2-17 provides an overview of what the function does.

update_curr'
——*L__update_currl

| Update physical and virtual run time of the process |

| Update min_vruntime of the CFS queue |

——+iSetrq—>exec7start|

Figure 2-17: Code flow diagram for update_curr.

First of all, the function determines the currently executing process of the run queue and also obtains the
real clock value of the main scheduler run queue, which is updated at each scheduler tick (rg_of is an
auxiliary function to determine the instance of struct rq that is associated with a CFS run queue):

static void update_curr (struct cfs_rqg *cfs_rq)

{
struct sched_entity *curr = cfs_rg->curr;
u6d now = rg_of(cfs_rq)->clock;
unsigned long delta_exec;

if (unlikely(!curr))
return;
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If no process is currently executing on the run queue, there is obviously nothing to do. Otherwise, the
kernel computes the time difference between the last update of the load statistics and now, and delegates
the rest of the work to __update_curr.

kernel/sched_fair.c
delta_exec = (unsigned long) (now - curr->exec_start);

_ update_curr(cfs_rqg, curr, delta_exec);
curr->exec_start = now;

}

Based on this information, __update_curr has to update the physical and virtual time that the current
process has spent executing on the CPU. This is simple for the physical time. The time difference just
needs to be added to the previously accounted time:

kernel/sched_fair.c
static inline void
__update_curr (struct cfs_rg *cfs_rqg, struct sched_entity *curr,
unsigned long delta_exec)
{
unsigned long delta_exec_weighted;
u64 vruntime;

curr->sum_exec_runtime += delta_exec;

The interesting thing is how the non-existing virtual clock is emulated using the given information. Once
more, the kernel is clever and saves some time in the common case: For processes that run at nice level
0, virtual and physical time are identical by definition. When a different priority is used, the time must
be weighted according to the load weight of the process (recall that Section 2.5.3 discussed how process
priority and load weight are connected):

kernel/sched_fair.c
delta_exec_weighted = delta_exec;
if (unlikely(curr->load.weight != NICE_O0_LOAD)) {
delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
&curr->load) ;

}

curr->vruntime += delta_exec_weighted;

Neglecting some rounding and overflow checking, what calc_delta_fair does is to compute the value
given by the following formula:

NICE_O_LOAD

delta_exec_weighted = delta_exec X -
curr->load.weight

The inverse weight values mentioned above can be brought to good use in this calculation. Recall that
more important tasks with higher priorities (i.e., lower nice values) will get larger weights, so the virtual
run time accounted to them will be smaller. Figure 2-18 illustrates the connection between real and virtual
time for various priorities. One can also see from the formula that the virtual and physical time are
identical for nice 0 tasks with priority 120, that is, if current->load.weight is NICE_0_LOAD. Notice that
the inset in Figure 2-18 uses a double logarithmic plot to show a wider range of priorities.
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Figure 2-18: Relation between real and virtual time for processes depending on their
priority/nice level.

Finally, the kernel needs to set min_vruntime. Care is taken to ensure that the value is increasing mono-
tonically.

kernel/sched_fair.c

}

/*
* maintain cfs_rg->min_vruntime to be a monotonically increasing
* value tracking the leftmost vruntime in the tree.
*/
if (first_fair(cfs_rq)) {
vruntime = min_vruntime (curr->vruntime,
__pick_next_entity(cfs_rqg)->vruntime) ;
} else
vruntime = curr->vruntime;

cfs_rg->min_vruntime =
max_vruntime (cfs_rg->min_vruntime, vruntime) ;

first_fair is a helper function that checks if the tree has a leftmost element, that is, if any process is
waiting on the tree to be scheduled. If so, the kernel obtains its vruntime, which is the smallest of all
elements in the tree. If no leftmost element is in the tree because it is empty, the virtual run time of the
current process is used instead. To ensure that the per-queue min_vruntime is monotonic increasing, the
kernel sets it to the larger of both values. This means that the per-queue min_vruntime is only updated if
it is exceeded by the vruntime of one of the elements on the tree. With this policy, the kernel ensures that
min_vrtime can only increase, but never decrease.
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One really crucial point of the completely fair scheduler is that sorting processes on the red-black tree is
based on the following key:

kernel/sched_fair.c
static inline s64 entity_key(struct cfs_rqg *cfs_rqg, struct sched_entity *se)
{

return se->vruntime - cfs_rg->min_vruntime;

}

Elements with a smaller key will be placed more to the left, and thus be scheduled more quickly. This
way, the kernel implements two antagonistic mechanisms:

1. When a process is running, its vrunt ime will steadily increase, so it will finally move right-
ward in the red-black tree.

Because vruntime will increase more slowly for more important processes, they will also
move rightward more slowly, so their chance to be scheduled is bigger than for a less impor-
tant process — just as required.

2. If a process sleeps, its vruntime will remain unchanged. Because the per-queue
min_vruntime increases in the meantime (recall that it is monotonic!), the sleeper will be
placed more to the left after waking up because the key got smaller.?8

In practice, both effects naturally happen simultaneously, but this does not influence the interpretation.
Figure 2-19 illustrates the different movement mechanisms on the red-black tree graphically.

min_vruntime 4
-— A Value increases

—) (_
vruntime ¥ vruntime 4 ¥ Value decreases
Position in the red-
black tree (more to
the left is better)
Figure 2-19: Influence of the per-entity and
per-queue virtual times on the placement of
processes in the red-black tree.

Latency Tracking

The kernel has a built-in notion of what it considers a good scheduling latency, that is, the interval
during which every runnable task should run at least once.?’ It is given in sysct1_sched_latency, which
can be controlled via /proc/sys/kernel/sched_latency_ns and defaults to, respectively, 20,000,000 ns
(nanoseconds) and 20 ms (milliseconds). A second control parameter, sched_nr_latency, controls the
number of active processes that are at most handled in one latency period. If the number of active pro-
cesses grows larger than this bound, the latency period is extended linearly. sched_nr_latency can be
indirectly controlled via sysctl_sched_min_granularity, which can be set via /proc/sys/kernel/
sched_min_granularity_ns. The default value is 4,000,000 ns, that is, 4 ms, and sched_nr_latency is

28This is slightly different for short sleepers, but I consider this situation when I discuss the exact mechanism.
29Caution: This has nothing to do with time slices, which were used by the old scheduler!
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computed as sysctl_sched_latency/sysctl_sched _min_granularity each time one of the values is
changed.

__sched_period determines the length of the latency period, which is usually just
sysctl_sched_latency, but is extended linearly if more processes are running. In this case, the
period length is

nr_running

sysctl_sched_latency X .
sched_nr_latency

Distribution of the time among active processes in one latency period is performed by considering the rel-
ative weights of the respective tasks. The slice length for a given process as represented by a schedulable
entity is computed as follows:

kernel/sched_fair.c
static u64 sched_slice(struct cfs_rg *cfs_rqg, struct sched_entity *se)

{

u64d slice = _ sched_period(cfs_rg->nr_running) ;

slice *= se->load.weight;
do_div(slice, cfs_rg->load.weight);

return slice;

}

Recall that the run queue load weight accumulates the load weights of all active processes on the queue.
The resulting time slice is given in real time, but the kernel sometimes also needs to know the equivalent
in virtual time.

kernel/sched_fair.c

static u64 __sched_vslice(unsigned long rg weight, unsigned long nr_running)
{

u64 vslice = __sched_period(nr_running) ;

vslice *= NICE_O_LOAD;
do_div(vslice, rg weight);

return vslice;

}

static u64 sched_vslice(struct cfs_rqg *cfs_rq)
{
return __sched_vslice(cfs_rg->load.weight, cfs_rg->nr_running) ;

}

Recall that a real-time interval time for a process with a given weight has the length

. NICE_O0_LOAD
time X —
weight

and this is also used to transfer the latency interval portion.

Now we have everything in place to discuss the various methods that must be implemented by CFS to
interact with the global scheduler.
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2.6.3 Queue Manipulation

Two functions are available to move elements to and from the run queue: enqueue_task_fair and
dequeue_task_fair. Let us concentrate on placing new tasks on the run queue first.

Besides pointers to the generic run queue and the task structure in question, the function accepts one
more parameter: wakeup. This allows for specifying if the task that is enqueued has only recently been
woken up and changed into the running state (wakeup is 1 in this case), or if it was runnable before
(wakeup is 0 then). The code flow diagram for enqueue_task_fair is shown in Figure 2-20.

|enqueue_task_fair|

| Already on runqueue? l—»%‘

| engueue_entity I

| [spsare cur

—>| Task has been woken up? |

place_entity

| enqgueue_sleeper I

—|se != cfs_rq—>curr|—>|__enqueue_entityl

Figure 2-20: Code flow diagram for enqueue_task_fair.

If the task is already on the run queue as signaled by the on_rqg element of struct sched_entity, noth-
ing needs to be done. Otherwise, the work is delegated to enqueue_entity, where the kernel takes the
opportunity to update the statistics with updater_curr.

If the task has recently been running, its virtual run time is still valid, and (unless it is currently executing)
it can be directly included into the red-black tree with __enqueue_entity. This function requires some
mechanics to handle the red-black tree, but it can rely on standard methods of the kernel (see Appendix C
for more information) and is thus not very interesting. The essential point is that the process is placed at
the proper position, but this has already been ensured before by setting the vruntime field of the process,
and by the constant min_vruntime updates performed by the kernel for the queue.

If the process has been sleeping before, the virtual run time of the process is first adjusted in
place_entity30:

kernel/sched_fair.c
static void
place_entity(struct cfs_rqg *cfs_rqg, struct sched_entity *se, int initial)

30Note that the real kernel sources will execute portions of the code depending on outcomes of sched_feature queries. The CF
scheduler supports some “configurable” features, but they can only be turned on and off in debugging mode — otherwise, the set
of features is fixed. I will therefore ignore the feature selection mechanism and consider only those that are always compiled in and
active.
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u64d vruntime;
vruntime = cfs_rg->min_vruntime;

if (initial)
vruntime += sched_vslice_add(cfs_rqg, se);

if (!'initial) {
vruntime -= sysctl_sched_latency;
vruntime = max_vruntime (se->vruntime, vruntime);

}

se->vruntime = vruntime;

}

The function distinguishes between two cases depending on the value of initial. This parameter is only
set if a new task is added to the system, but that’s not the case here: initial is zero (I will come back to
the other case when I discuss task_new_fair below).

Since the kernel has promised to run all active processes at least once within the current latency
period, the min_vruntime of the queue is used as the base virtual time, and by subtracting
sysctl_sched_latency, it is ensured that the newly awoken process will only run after the current
latency period has been finished.

However, if the sleeper has accumulated a large unfairness as indicated by a large se_vruntime value,
the kernel must honor this. If se->vruntime is larger than the previously computed difference, it is kept
as the vruntime of the process, which leads to a leftward placement on the red-black tree — recall that
large vruntime values are good to schedule early!

Let us go back to enqueue_entity: After place_entity has determined the proper virtual run time for
the process, it is placed on the red-black tree with __enqueue_entity. I have already noted before that
this is a purely mechanical function that uses standard methods of the kernel to sort the task into the
red-black tree.

2.6.4 Selecting the Next Task

Selecting the next task to run is performed in pick_next_task_fair. The code flow diagram is shown in
Figure 2-21.

If no tasks are currently runnable on the queue as indicated by an empty nr_running counter,
there is little to do and the function can return immediately. Otherwise, the work is delegated to
pick_next_entity.

If a leftmost task is available in the tree, it can immediately be determined using the first_fair helper
function, and __pick_next_entity extracts the sched_entity instance from the red-black tree. This is
done using the container_of mechanism because the red-black tree manages instances of rb_node that
are embedded in sched_entitys.

Now the task has been selected, but some more work is required to mark it as the running task. This is
handled by set_next_entity.
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kernel/sched_fair.c
static void
set_next_entity(struct cfs_rqg *cfs_rqg, struct sched_entity *se)
{
/* 'current' is not kept within the tree. */
if (se->on_rq) {
_ dequeue_entity(cfs_rqg, se);

pick_next_task_ fair I

No processes running? |—’ returnl

pick_next_entity I

|—>| Leftmost task in red-black tree available? |

| __pick next_entity I

| set_next_entity I

Figure 2-21: Code flow diagram for pick_next_task_fair.

The currently executing process is not kept on the run queue, so __dequeue_entity removes it from
the red-black tree, setting the leftmost pointer to the next leftmost task if the current task has been the
leftmost one. Notice that in our case, the process has been on the run queue for sure, but this need not be
the case when set_next_entity is called from different places.

Although the process is not contained in the red-black tree anymore, the connection between process and
run queue is not lost, because curr marks it as the running one now:

kernel/sched_fair.c
cfs_rg->curr = se;
se->prev_sum_exec_runtime = se->sum_exec_runtime;

}

Because the process is now the currently active one, the real time spent on the CPU will be charged
to sum_exec_runtime, so the kernel preserves the previous setting in prev_sum_exec_runtime. Note
that sum_exec_runtime is not reset in the process. The difference sum_exec_runtime - prev_sum_
exec_runtime does therefore denote the real time spent executing on a CPU.

2.6.5 Handling the Periodic Tick

This aforementioned difference is important when the periodic tick is handled. The formally responsible
function is task_tick_fair, but the real work is done in entity_tick. Figure 2-22 presents the code flow
diagram.
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entity_ tick

update_curr

More than one process running? |

|‘—"’|Check_preempt_tickl

|—>| Latency limit exceeded? |

L e

Figure 2-22: Code flow diagram for entity tick.

First of all, the statistics are — as always — updated using update_curr. If the nr_running counter of
the queue indicates that fewer than two processes are runnable on the queue, nothing needs to be done.
If a process is supposed to be preempted, there needs to be at least another one that could preempt it.
Otherwise, the decision is left to check_preempt_tick:

kernel/sched_fair.c
static void
check_preempt_tick(struct cfs_rqg *cfs_rqg, struct sched_entity *curr)
{
unsigned long ideal_runtime, delta_exec;

ideal_runtime = sched_slice(cfs_rqg, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime)

resched_task(rg of (cfs_rq)->curr) ;

}

The purpose of the function is to ensure that no process runs longer than specified by its share of

the latency period. This length of this share in real-time is computed in sched_slice, and the real-
time interval during which the process has been running on the CPU is given by sum_exec_runtime

- prev_sum_exec_runtime as explained above. The preemption decision is thus easy: If the task has been
running for longer than the desired time interval, a reschedule is requested with resched_task. This sets
the TIF_NEED_RESCHED flag in the task structure, and the core scheduler will initiate a rescheduling at the
next opportune moment.

2.6.6 Wake-up Preemption

When tasks are woken up in try_to_wake_up and wake_up_new_task, the kernel uses
check_preempt_curr to see if the new task can preempt the currently running one. Notice that

the core scheduler is not involved in this process! For completely fair handled tasks, the function check_
preempt_wakeup performs the desired check.
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The newly woken task need not necessarily be handled by the completely fair scheduler. If the new task
is a real-time task, rescheduling is immediately requested because real-time tasks always preempt CFS
tasks:

kernel/sched_fair.c
static void check_preempt_wakeup (struct rg *rqg, struct task_struct *p)
{

struct task_struct *curr = rg->curr;

struct cfs_rqg *cfs_rqg = task_cfs_rqg(curr);

struct sched_entity *se = &curr->se, *pse = &p->se;

unsigned long gran;

if (unlikely(rt_prio(p->prio))) {
update_rqg clock(rq) ;
update_curr (cfs_rq) ;
resched_task (curr) ;
return;

The most convenient cases are SCHED_BATCH tasks — they do not preempt other tasks by definition.

kernel/sched.c
if (unlikely (p->policy == SCHED_BATCH) )
return;

When a running task is preempted by a new task, the kernel ensures that the old one has at least
been running for a certain minimum amount of time. The minimum is kept in sysctl_sched_
wakeup_granularity, which crossed our path before. Recall that it is per default set to 4 ms. This refers
to real time, so the kernel first needs to convert it into virtual time if required:

kernel/sched_fair.c

gran = sysctl_sched_wakeup_granularity;
if (unlikely(se->load.weight != NICE_O_LOAD))
gran = calc_delta_fair(gran, &se->load);

If the virtual run time of the currently executing task (represented by its scheduling entity se) is larger
than the virtual run time of the new task plus the granularity safety, a rescheduling is requested:

kernel/sched_fair.c
if (pse->vruntime + gran < se->vruntime)
resched_task (curr) ;

}

The added “buffer” time ensures that tasks are not switched too frequently so that not too much time is
spent in context switching instead of doing real work.

2.6.7 Handling New Tasks

The last operation of the completely fair scheduler that we need to consider is the hook function that
is called when new tasks are created: task_new_fair. The behavior of the function is controllable with
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the parameter sysctl_sched_child_runs_first. As the name might suggest, it determined if a newly
created child process should run before the parent. This is usually beneficial, especially if the child per-
forms an exec system call afterward. The default setting is 1, but this can be changed via /proc/sys/
kernel/sched_child_runs_first

Initially, the function performs the usual statistics update with update_curr and then employs the pre-
viously discussed place_entity:

kernel/sched_fair.c
static void task_new_fair(struct rqg *rg, struct task_struct *p)

{
struct cfs_rg *cfs_rqg = task_cfs_rqg(p);
struct sched_entity *se = &p->se, *curr = cfs_rg->curr;
int this_cpu = smp_processor_id() ;

update_curr (cfs_rq) ;
place_entity(cfs_rqg, se, 1);

In this case, place_entity is, however, called with initial set to 1, which amounts to computing the
initial vruntime with sched_vslice_add. Recall that this determines the portion of the latency interval
that belongs to the process, but converted to virtual time. This is the scheduler’s initial debt to the process.

kernel/sched_fair.c
if (sysctl_sched_child_runs_first && curr->vruntime < se->vruntime) {
swap (curr->vruntime, se->vruntime);

}

enqueue_task_fair(rqg, p, 0);
resched_task (rg->curr) ;
}

If the virtual run time of the parent (represented by curr) is less than the virtual run time of the child, this
would mean that the parent runs before the child — recall that small virtual run times favor left positions
in the red-black tree. If the child is supposed to run before the parent, the virtual run times of both need
to be swapped.

Afterward, the child is enqueued into the run queue as usual, and rescheduling is requested.

2.7 The Real-Time Scheduling Class

As mandated by the POSIX standard, Linux supports two real-time scheduling classes in addition to
“normal’’ processes. The structure of the scheduler enables real-time processes to be integrated into the
kernel without any changes in the core scheduler — this is a definitive advantage of scheduling classes.!

Now is a good place to recall some of the facts discussed a long time ago. Real-time processes can be iden-
tified by the fact that they have a higher priority than normal processes — accordingly, their static_prio
value is always lower than that of normal processes, as shown in Figure 2-14. The rt_task macro is

31The completely fair scheduler needs to be aware of real-time processes in the wake-up preemption code, but this requires only very
little effort.
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provided to establish whether a given task is a real-time process or not by inspecting its priority, and
task_has_rt_policy checks if the process is associated with a real-time scheduling policy.

2.7.1 Properties

Real-time processes differ from normal processes in one essential way: If a real-time process exists in the
system and is runnable, it will always be selected by the scheduler — unless there is another real-time
process with a higher priority.

The two available real-time classes differ as follows:

O Round robin processes (SCHED_RR) have a time slice whose value is reduced when they run if they
are normal processes. Once all time quantums have expired, the value is reset to the initial value,
but the process is placed at the end of the queue. This ensures that if there are several SCHED_RR
processes with the same priority, they are always executed in turn.

Q  First-in, first-out processes (SCHED_FIFO) do not have a time slice and are permitted to run as long
as they want once they have been selected.

It is evident that the system can be rendered unusable by badly programmed real-time processes — all
that is needed is an endless loop whose loop body never sleeps. Extreme care should therefore be taken
when writing real-time applications.®?

2.7.2 Data Structures

The scheduling class for real-time tasks is defined as follows:

kernel/sched-rt.c

const struct sched_class rt_sched_class = {
.next = &fair_ sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,

.check_preempt_curr = check_preempt_curr_rt,

.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_ rt,

.set_curr_task = set_curr_task_rt,
.task_tick = task_tick_rt,
Y

The implementation of the real-time scheduler class is simpler than the completely fair scheduler. Only
roughly 250 lines of code compared to 1,100 for CFS are required!

The core run queue also contains a sub-run queue for real-time tasks as embedded instance of struct
rt_rq:

32Notice that this situation will be eased with the introduction of real-time group scheduling in kernel 2.6.25, which was still under
development when this book was written.
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kernel/sched.c
struct rqg {

t_rq rt;
}

The run queue is very straightforward — a linked list is sufficient®:

kernel/sched.c

struct rt_prio_array {
DECLARE_BITMAP (bitmap, MAX_RT PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_ RT_PRIO];

Y

struct rt_rqg {
struct rt_prio_array active;

Y

All real-time tasks with the same priority are kept in a linked list headed by active.queue[prio], and
the bitmap active.bitmap signals in which list tasks are present by a set bit. If no tasks are on the list,
the bit is not set. Figure 2-23 illustrates the situation.

]
]

N

v N

0 o 0

Increasing prio
[e[ofofe]ofo]e]

Figure 2-23: Run queue of the
real-time scheduler.

The analog of update_cur for the real-time scheduler class is update_curr_rt: The function keeps track
of the time the current process spent executing on the CPU in sum_exec_runtime. All calculations are
performed with real times; virtual times are not required. This simplifies things a lot.

2.7.3 Scheduler Operations

To enqueue and dequeue tasks is simple: The task is placed or respectively removed from the appropriate
list selected by array->queue + p->prio, and the corresponding bit in the bitmap is set if at least one task
is present, or removed if no tasks are left on the queue. Notice that new tasks are always queued at the
end of each list.

The two interesting operations are how the next task is selected and how preemption is handled. Con-
sider pick_next_task_rt, which handles selection of the next task first. The code flow diagram is shown

in Figure 2-24.

33SMP systems require some more elements for load balancing, but these do not concern us here.
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|pick_next_task_rt|

|sched_find_first_bit|

|Setse.exec_start|

Figure 2-24: Code flow diagram for
pick_next_task rt.

sched_find_first_bit is a standard function that finds the first set bit in active.bitmap — this means
that higher real-time priorities (which result in lower in-kernel priorities) are handled before lower real-
time priorities. The first task on the selected list is taken out, and se.exec_start is set to the current
real-time clock value of the run queue — that’s all that is required.

The implementation of the periodic tick is likewise simple. SCHED_FIFO tasks are easiest to handle: They
can run as long as they like and must pass control to another task explicitly by using the yield system
call:

kernel/sched.c
static void task_tick_rt(struct rg *rqg, struct task_struct *p)

{

update_curr_rt(rq);

/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;

If the current process is a round robin process, its time slice is decremented. When the time quantum

is not yet exceeded, nothing more needs to be done — the process can keep running. Once the counter
reverts to 0, its value is renewed to DEF_TIMESLICE, which is set to 100 * Hz / 1000, that is, 100 ms. If the
task is not the only task in its list, it is requeued to the end. Rescheduling is requested as usual by setting
the TIF_NEED_RESCHED flag with set_tsk_need_resched:

kernel/sched-rt.c
if (--p->time_slice)
return;

p->time_slice = DEF_TIMESLICE;

/*

* Requeue to the end of queue if we are not the only element
* on the queue:

*/

if (p->run_list.prev != p->run_list.next) {
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requeue_task_rt(rqg, p);
set_tsk need_resched(p);

The sched_setscheduler system call must be used to convert a process into a real-time process. This call
is not discussed at length because it performs only the following simple tasks:

Q  Itremoves the process from its current queue using deactivate_task.
Q  Itsets the real-time priority and the scheduling class in the task data structure.

O It reactivates the task.

If the process was not previously on any run queue, only the scheduling class and the new priority value
need be set; deactivation and reactivation are unnecessary.

Note that changing the scheduler class or priority is only possible without constraints if the
sched_setscheduler system call is performed by a process with root rights (or, equivalently, the
capability cap_sys_NICE). Otherwise, the following conditions apply:

Q  The scheduling class can only be changed from SCHED_NORMAL to SCHED_BATCH or Vice versa. A
change to SCHED_FIFO is impossible.

Q  Only the priority of processes with the same UID or EUID as the EUID of the caller can be
changed. Additionally, the priority may only be decreased, but not increased.

2.8 Scheduler Enhancements

So far, we have only considered scheduling on real-time systems — naturally, Linux can do slightly
better. Besides support for multiple CPUs, the kernel also provides several other enhancements that
relate to scheduling, discussed in the following sections. Notice, however, that these enhancements add
much complexity to the scheduler, so I will mostly consider simplified situations that illuminate the
essential principle, but do not account for all boundary cases and scheduling oddities.

2.8.1 SMP Scheduling

On multiprocessor systems, the kernel must consider a few additional issues in order to ensure good
scheduling:

Q  The CPU load must be shared as fairly as possible over the available processors. It makes little
sense if one processor is responsible for three concurrent applications while another has only the
idle task to deal with.

Q  The affinity of a task to certain processors in the system must be selectable. This makes it possible,
for example, to bind a compute-intensive application to the first three CPUs on a 4-CPU system
while the remaining (interactive) processes run on the fourth CPU.
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0  The kernel must be able to migrate processes from one CPU to another. However, this option
must be used with great care because it can severely impair performance. CPU caches are the
biggest problem on smaller SMP systems. For really big systems, a CPU can be located literally
some meters away from the memory previously used, so access to it will be very costly.

The affinity of a task to particular CPUs is defined in the cpus_allowed element of the task structure
specified above. Linux provides the sched_setaffinity system call to change this assignment.

Extensions to the Data Structures

The scheduling methods that each scheduler class must provide are augmented by two additional func-
tions on SMP systems:

<sched.h>
struct sched_class {

#ifdef CONFIG_SMP
unsigned long (*load_balance) (struct rg *this_rqg, int this_cpu,
struct rg *busiest, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio);

int (*move_one_task) (struct rqg *this_rqg, int this_cpu,
struct rg *busiest, struct sched_domain *sd,
enum cpu_idle_type idle);
#endif

}

Despite their names, the functions are, however, not directly responsible to handle load balancing. They
are called by the core scheduler code whenever the kernel deems rebalancing necessary. The scheduler
class-specific functions then set up an iterator that allows the generic code to walk through all processes
that are potential candidates to be moved to another queue, but the internal structures of the individual
scheduler classes must 1ot be exposed to the generic code because of the iterator. 1oad_balance employs
the generic function 1oad_balance, while move_one_task uses iter_move_one_task. The functions serve
different purposes:

0  iter_move_one_task picks one task off the busy run queue busiest and moves it to the run
queue of the current CPU.

O  load_balanceis allowed to distribute multiple tasks from the busiest run queue to the current
CPU, but must not move more load than specified by max_load_move.

How is load balancing initiated? On SMP systems, the scheduler_tick periodic scheduler function
invokes the trigger_load_balance function on completion of the tasks required for all systems as
described above. This raises the SCHEDULE_SOFTIRQ softIRQ (the software analog to hardware interrupts;
see Chapter 14 for more details), which, in turn, guarantees that run_rebalance_domains will be run in
due time. This function finally invokes load balancing for the current CPU by calling rebalance_domains.
The time flow is illustrated in Figure 2-25.

122



Chapter 2: Process Management and Scheduling

To perform rebalancing, the kernel needs some more information. Run queues are therefore augmented
with additional fields on SMP systems:

kernel/sched.c

struct rg {

#ifdef CONFIG_SMP
struct sched_domain *sd;
/* For active balancing */
int active_balance;
int push_cpu;
/* cpu of this runqueue: */
int cpu;

struct task_struct *migration_thread;

struct list_head migration_gueue;
#endif

Timer tick

———>1scheduler_tick|

Raise
|-——-|trigger_load_balance SCHEDULE_ SOFTIRQ

<::> — |run_rebalance_domainsI————————ﬁ rebalance_domainsl

SoftIRQ
Figure 2-25: Time flow for initiation of load balancing on SMP systems.

Run queues are CPU-specific, so cpu denotes the processor to which the run queue belongs. The ker-
nel provides one migration thread per run queue to which migration requests can be posted — they are
kept on the list migration_queue. Such requests usually originate from the scheduler itself, but can also
become necessary when a process is restricted to a certain set of CPUs and must not run on the one it is
currently executing on anymore. The kernel tries to balance run queues periodically, but if this fails to
be satisfactory for a run queue, then active balancing must be used. active_balance is set to a nonzero
value if this is required, and cpu notes the processor from which the request for active balancing initiates.

Furthermore, all run queues are organized in scheduling domains. This allows for grouping CPUs that
are physically adjacent to each other or share a common cache such that processes should preferably
be moved between them. On “normal” SMP systems, however, all processors will be contained in one
scheduling domain. I will therefore not discuss this structure in detail, but only mention that it contains
numerous parameters that can be set via /proc/sys/kernel/cpux/domainy. These include the minimal
and maximal time interval after which load balancing is initiated, the minimal imbalance for a queue
to be re-balanced, and so on. Besides, the structure also manages fields that are set at run time and that
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allow the kernel to keep track when the last balancing operation has been performed, and when the next
will take place.

So what does load_balance do? The function checks if enough time has elapsed since the last
re-balancing operation, and initiates a new re-balancing cycle if necessary by invoking load_balance.
The code flow diagram for this function is shown in Figure 2-26. Notice that I describe a simplified
version because the SMP scheduler has to deal with a very large number of corner cases that obstruct the
view on the essential actions.

load_balance I

—’| find_busiest_cpu I

—>| More than one process on busiest queue? |
|—>| move_tasks I—>| class->load_balance I
—>| Balancing failed? |—>| Wake up migration task |

Figure 2-26: Code flow diagram for 1oad_balance.

First of all, the function has to identify which queue has most work to do. This task is delegated to
find_busiest_queue, which is called for a specific run queue. The function iterates over the queues

of all processors (or, to be precise, of all processors in the current scheduling group) and compares their
load weights. The busiest queue is the queue with the largest value found in the end.

Once find_busiest_queue has identified a very busy queue, and if at least one task is running on this
queue (load balancing will otherwise not make too much sense), a suitable number of its tasks are
migrated to the current queue using move_tasks. This function, in turn, invokes the scheduler-class-
specific 1oad_balance method.

When selecting potential migration candidates, the kernel must ensure that the process in question

0  is not running at the moment or has just finished running because this fact would cancel out the
benefits of the CPU caches currently filled with the process data.

0  may execute on the processor associated with the current queue on the grounds of its CPU affin-
ity.

If balancing failed (e.g., because all tasks on the remote queue have a higher kernel-internal priority
value, i.e., a lower nice priority), the migration thread that is responsible for the busiest run queue is
woken up. To ensure that active load balancing is performed that is slightly more aggressive than the
method tried now, load_balance sets the active_balance flag of the busiest run queue and also notes
the CPU from which the request originates in rgq->cpu.

The Migration Thread

The migration thread serves two purposes: It must fulfill migration requests originating from the sched-
uler, and it is used to implement active balancing. This is handled in a kernel thread that executes
migration_thread. The code flow diagram for the function is shown in Figure 2-27.
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migration_thread I

—> —| rg->active_balance set? |

active_load_balance I

No migration
requests? move_one_task

| [crass—-
@ move_one_task

Get migration
request

—I __migrate_task I

(@ lterate over all
scheduler classes

Figure 2-27: Code flow diagram for migration_thread.

migration_thread runs an infinite loop and sleeps when there is nothing to do. First of all, the function
checks if active balancing is required, and if this is the case, active_load_balance is called to satisfy this
request. The function tries to move one task from the current run queue to the run queue of the CPU that
initiated the request for active balancing. It uses move_one_task for this purpose, which, in turn, ends
up calling the scheduler-class specific move_one_task functions of all scheduler classes until one of them
succeeds. Note that these functions try to move processes more aggressively than load_balance. For
instance, they do not perform the previously mentioned priority comparison, so they are more likely to
succeed.

Once the active load balancing is finished, the migration thread checks if any migration requests from the
scheduler are pending in the migrate_req list. If none is available, the thread can reschedule. Otherwise,
the request is fulfilled with _ migrate_task, which performs the desired process movement directly
without further interaction with the scheduler classes.

Core Scheduler Changes

Besides the additions discussed above, some changes to the existing methods are required in the core
scheduler on SMP systems. While numerous small details change all over the place, the most important
differences as compared to uniprocessor systems are the following:

0O  When a new process is started with the exec system call, a good opportunity for the sched-
uler to move the task across CPUs arises. Naturally, it has not been running yet, so there can-
not be any negative effects on the CPU cache by moving the task to another CPU. sched_exec
is the hook function invoked by the exec system call, and the code flow diagram is shown in
Figure 2-28.

sched_balance_self picks the CPU that is currently least loaded (and on which the process
is also allowed to run). If this is not the current CPU, then sched_migrate_task forwards an
according migration request to the migration thread using sched_migrate_task.

Q  The scheduling granularity of the completely fair scheduler scales with the number of CPUs.
The more processors present in the system, the larger the granularities that can be employed.
Both sysctl_sched_min_granularity and sysctl_sched_latency for sysctl_sched_min_
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granularity are multiplied by the correction factor 1 + log,(nr_cpus), where nr_cpus repre-
sents the number of available CPUs. However, they must not exceed 200 ms. sysctl_sched_
wakeup_granularity is also increased by the factor, but is not bounded from above.

sched_exec

sched_balance_selfl

New CPU selected? F———>|sched_migrate_taskl

Figure 2-28: Code flow diagram for sched_exec.

2.8.2 Scheduling Domains and Control Groups

In the previous discussion of the scheduler code, we have often come across the situation that the sched-
uler does not deal directly with processes, but with schedulable entities. This allows for implementing
group scheduling: Processes are placed into different groups, and the scheduler is first fair among these
groups and then fair among all processes in the group. This allows, for instance, granting identical shares
of the available CPU time to each user. Once the scheduler has decided how much time each user gets,
the determined interval is then distributed between the users” processes in a fair manner. This naturally
implies that the more processes a user runs, the less CPU share each process will get. The amount of time
for the user in total is not influenced by the number of processes, though.

Grouping tasks between users is not the only possibility. The kernel also offers control groups, which
allow — via the special filesystem cgroups — creating arbitrary collections of tasks, which may even be
sorted into multiple hierarchies. The situation is illustrated in Figure 2-29.

Schedulable
entity
Oooood
O task
~o 7 .
~o / \
~o / \
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\\-}/ ) L \\‘

Figure 2-29: Overview of fair group scheduling: The available CPU time is first distributed fairly
among the scheduling groups, and then between the processes in each group.

To reflect the hierarchical situation within the kernel, struct sched_entity is augmented with an ele-
ment that allows for expressing this hierarchy:

<sched.h>
struct sched_entity {

#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *parent;

#endif
}
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This substructure of scheduling entities must be considered by all scheduling-class-related operations.
Consider, for instance, how the code to enqueue a task in the completely fair scheduler really looks:

kernel/sched_fair.c
static void enqueue_task_fair(struct rg *rqg, struct task_struct *p, int wakeup)
{

struct cfs_rqg *cfs_rq;

struct sched_entity *se = &p->se;

for_each_sched_entity(se) {
if (se->on_rq)
break;
cfs_rqg = cfs_rg of(se);
enqueue_entity(cfs_rqg, se, wakeup);
wakeup = 1;

}

for_each_sched_entity traverses the scheduling hierarchy defined by the parent elements of
sched_entity, and each entity is enqueued on the run queue.

Notice that for_each_sched_entity will resolve to a trivial loop that executes the code contained in the
loop body exactly once when support for group scheduling is not selected, so the behavior described in
the previous discussion is regained.

2.8.3 Kernel Preemption and Low Latency Efforts

Let us now turn our attention to kernel preemption, which allows for a smoother experience of the sys-
tem, especially in multimedia environments. Closely related are low latency efforts performed by the
kernel, which I will discuss afterward.

Kernel Preemption

As described above, the scheduler is invoked before returning to user mode after system calls or at
certain designated points in the kernel. This ensures that the kernel, unlike user processes, cannot be
interrupted unless it explicitly wants to be. This behavior can be problematic if the kernel is in the middle
of a relatively long operation — this may well be the case with filesystem, or memory-management-
related tasks. The kernel is executing on behalf of a specific process for a long amount of time, and other
processes do not get to run in the meantime. This may result in deteriorating system latency, which users
experience as “sluggish’’ response. Video and audio dropouts may also occur in multimedia applications
if they are denied CPU time for too long.

These problems can be resolved by compiling the kernel with support for kernel preemption. This allows
not only userspace applications but also the kernel to be interrupted if a high-priority process has some
things to do. Keep in mind that kernel preemption and preemption of userland tasks by other userland
tasks are two different concepts!

Kernel preemption was added during the development of kernel 2.5. Although astonishingly few
changes were required to make the kernel preemptible, the mechanism is not as easy to implement
as preemption of tasks running in userspace. If the kernel cannot complete certain actions in a single
operation — manipulation of data structures, for instance — race conditions may occur and render the
system inconsistent. The same problems arise on multiprocessor systems discussed in Chapter 5.
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The kernel may not, therefore, be interrupted at all points. Fortunately, most of these points have already
been identified by SMP implementation, and this information can be reused to implement kernel pre-
emption. Problematic sections of the kernel that may only be accessed by one processor at a time are
protected by so-called spinlocks: The first processor to arrive at a dangerous (also called critical) region
acquires the lock, and releases the lock once the region is left again. Another processor that wants to
access the region in the meantime has to wait until the first user has released the lock. Only then can it
acquire the lock and enter the dangerous region.

If the kernel can be preempted, even uniprocessor systems will behave like SMP systems. Consider that
the kernel is working inside a critical region when it is preempted. The next task also operates in kernel
mode, and unfortunately also wants to access the same critical region. This is effectively equivalent to
two processors working in the critical region at the same time and must be prevented. Every time the
kernel is inside a critical region, kernel preemption must be disabled.

How does the kernel keep track of whether it can be preempted or not? Recall that each task in the system
is equipped with an architecture-specific instance of struct thread_info. The structure also includes a
preemption counter:

<asm-arch/thread_info.h>
struct thread_info {

int preempt_count; /* 0 => preemptable, <0 => BUG */
}

The value of this element determines whether the kernel is currently at a position where it may be inter-
rupted. If preempt_count is zero, the kernel can be interrupted, otherwise not. The value must not be
manipulated directly, but only with the auxiliary functions dec_preempt_count and inc_preempt_count,
which, respectively, decrement and increment the counter. inc_preempt_count is invoked each time
the kernel enters an important area where preemption is forbidden. When this area is exited, dec_
preempt_count decrements the value of the preemption counter by 1. Because the kernel can enter some
important areas via different routes — particularly via nested routes — a simple Boolean variable would
not be sufficient for preempt_count. When multiple dangerous regions are entered one after another, it
must be made sure that all of them have been left before the kernel can be preempted again.

The dec_preempt_count and inc_preempt_count calls are integrated in the synchronization opera-
tions for SMP systems (see Chapter 5). They are, in any case, already present at all relevant points of
the kernel so that the preemption mechanism can make best use of them simply by reusing the existing
infrastructure.

Some more routines are provided for preemption handling:

0  preempt_disable disables preemption by calling inc_preempt_count. Additionally, the com-
piler is instructed to avoid certain memory optimizations that could lead to problems with the
preemption mechanism.

0 preempt_check_resched checks if scheduling is necessary and does so if required.

0  preempt_enable enables kernel preemption, and additionally checks afterward if rescheduling
is necessary with preempt_check_resched.

0  preempt_disable_no_resched disables preemption, but does not reschedule.
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At some points in the kernel, the protection by the normal SMP synchronization
methods is not sufficient. This happens, for instance, when per-CPU variables are
modified. On a real SMP system, this requires no form of protection because only
one processor can by definition operate with the variable — every other CPU in the
system has its own instance and does not need to fiddle with the instance of the
current processor. However, kernel preemption would allow that two different code
paths on the same processor would access the variable quasi-concurrently, which
would have the same result as if two independent processors would manipulate the
value. Preemption must therefore be explicitly disabled in these situations using
manual incovations of preempt_disable and preempt_disable.

Note, however, that the get_cpu and put_cpu functions mentioned in the
Introduction will automatically disable kernel preemption, so no extra precautions
are necessary if per-CPU variables are accessed using this mechanism.

How does the kernel know if preemption is required? First of all, the TIF_NEED_RESCHED flag must
be set to signalize that a process is waiting to get CPU time. This is honored by preempt_
check_resched:

<preempt.h>
#define preempt_check_resched() \
do { \
if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) \
preempt_schedule(); \
} while (0)

Recall that the function is called when preemption is re-enabled after it had been disabled, so this

is a good time to check if a process wants to preempt the currently executing kernel code. If this

is the case, it should be done as quickly as possible — without waiting for the next routine call of the
scheduler.

The central function for the preemption mechanism is preempt_schedule. The simple desire that the ker-
nel be preempted as indicated by TIF_NEED_RESCHED does not yet guarantee that this is possible — recall
that the kernel could currently still be inside a critical region, and must not be disturbed. This is checked
by preempt_reschedule:

kernel/sched.c
asmlinkage void __sched preempt_schedule (void)
{
struct thread_info *ti = current_thread_info();
/*
* If there is a non-zero preempt_count or interrupts are disabled,
* we do not want to preempt the current task. Just return..
*/
if (unlikely(ti->preempt_count || irgs_disabled()))
return;

If the preemption counter is greater than 0, then preemption is still disabled, and consequently the kernel
may not be interrupted — the function terminates immediately. Neither is preemption possible if the
kernel has disabled hardware IRQs at important points where processing must be completed in a single
operation. irgs_disabled checks whether interrupts are disabled or not, and if they are disabled, the
kernel must not be preempted.
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The following steps are required if preemption is possible:

kernel/sched.c
do {
add_preempt_count (PREEMPT_ACTIVE) ;

schedule() ;

sub_preempt_count (PREEMPT_ACTIVE) ;
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
} while (unlikely(test_thread_flag(TIF_NEED_RESCHED))) ;

Before the scheduler is invoked, the value of the preemption counter is set to PREEMPT_ACTIVE. This sets
a flag bit in the preemption counter that has such a large value that it is never affected by the regular
preemption counter increments as illustrated by Figure 2-30. It indicates to the schedule function that
scheduling was not invoked in the normal way but as a result of a kernel preemption. After the kernel
has rescheduled, code flow returns to the current task — possibly after some time has elapsed, because
the preempting task will have run in between — the flag bit is removed again.

I:I Preemption counter |

PREEMPT_ACTIVE

Figure 2-30: The per-process preemption
counter.

Iignored the implications of this flag for schedule before, so I have to discuss it now. Recall that the
scheduler deactivates a task with deactivate_task if it is not in a runnable state at the moment. In fact,
this operation is skipped if the scheduling was initiated via the preemption mechanism as can be seen if
PREEMPT_ACTIVE is set in the preemption counter:

kernel/sched.c
asmlinkage void __sched schedule(void) {

if (prev->state && ! (preempt_count() & PREEMPT ACTIVE)) {
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
unlikely (signal_pending (prev)))) {
prev->state = TASK_RUNNING;
} else {
deactivate_task(rqg, prev, 1);

}

}
This ensures that the next task is selected as quickly as possible without the hassle of deactivating the

current one. If a high-priority task is waiting to be scheduled, it will be picked by the scheduler class and
will be allowed to run.
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This method is only one way of triggering kernel preemption. Another possibility to activate preemption
is after a hardware IRQ has been serviced. If the processor returns to kernel mode after handling the IRQ
(return to user mode is not affected), the architecture-specific assembler routine checks whether the value
of the preemption counter is 0 — that is, if preemption is allowed — and whether the reschedule flag

is set — exactly as in preempt_schedule. If both conditions are satisfied, the scheduler is invoked, this
time via preempt_schedule_irq to indicate that the preemption request originated from IRQ context.
The essential difference between this function and preempt_schedule is that preempt_schedule_irqgis
called with IRQs disabled to prevent recursive calls for simultaneous IRQs.

As a result of the methods described in this section, a kernel with enabled preemption is able to replace
processes with more urgent ones faster than a normal kernel could.

Low Latency
Naturally, the kernel is interested in providing good latency times even if kernel preemption is not
enabled. This can, for instance, be important in network servers. While the overhead introduced by
kernel preemption is not desired in such an environment, the kernel should nevertheless respond to
important events with reasonable speed. If, for example, a network request comes in that needs to be
serviced by a daemon, then this should not be overly long delayed by some database doing heavy I/O
operations. I have already discussed a number of measures offered by the kernel to reduce this problem:
scheduling latency in CFS and kernel preemption. Real-time mutexes as discussed in Chapter 5 also aid
in solving the problem, but there is one more scheduling-related action that can help.

Basically, long operations in the kernel should not occupy the system completely. Instead, they should
check from time to time if another process has become ready to run, and thus call the scheduler to select
the process. This mechanism is independent of kernel preemption and will reduce latency also if the
kernel is built without explicit preemption support.

The function to initiate conditional rescheduling is cond_resched. It is implemented as follows:

kernel/sched.c
int _ sched cond_resched(void)

{
if (need_resched() && ! (preempt_count() & PREEMPT_ACTIVE))
__cond_resched() ;
return 1;
}
return 0;

}

need_resched checks if the TIF_NEED_RESCHED flag is set, and the code additionally ensures that the ker-
nel is not currently being preempted already® and rescheduling is thus allowed. Should both conditions
be fulfilled, then __cond_resched takes care of the necessary details to invoke the scheduler.

How can cond_resched be used? As an example, consider the case in which the kernel reads in memory
pages associated with a given memory mapping. This could be done in an endless loop that terminates
after all required data have been read:

for (;:)
/* Read in data */
if (exit_condition)
continue;

34 Additionally, the function also makes sure that the system is completely up and running, which is, for instance, not the case if the
system has not finished booting yet. Since this is an unimportant corner case, I have omitted the corresponding check.
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If a large number of read operations is required, this can consume a sizeable amount of time. Since the
process runs in kernel space, it will not be deselected by the scheduler as in the userspace case, taken that
kernel preemption is not enabled. This can be improved by calling cond_resched in every loop iteration:

for (;;)

cond_resched () ;

/* Read in data */

if (exit_condition)

continue;

The kernel has been carefully audited to find the longest-running functions, and calls to cond_resched
have been put in the appropriate places. This ensures higher responsiveness even without explicit kernel
preemption.

Following a long-time tradition for Unix kernels, Linux has supported task states for both interruptible
and uninterruptible sleeps. During the 2.6.25 development cycle, however, another state was added:
TASK_KILLABLE.? Tasks in this state are sleeping and do not react to non-fatal signals, but can — in
contrast to TASK_UNINTERRUPTIBLE — be killed by fatal signals. At the time of writing, almost all places
in the kernel that would provide apt possibilities for killable sleeps are still waiting to be converted to the
new form.

The scheduler has seen a comparatively large number of cleanups during the development of kernels
2.6.25 and 2.6.26. A new feature added during this period is real-time group scheduling. This means that
real-time tasks can now also be handled by the group scheduling framework introduced in this chapter.

Additionally, the scheduler documentation was moved into the dedicated directory Documentation/
scheduler/, and obsolete files documenting the old O(1) scheduler have been removed. Documentation
on real-time group scheduling can be found in Documentation/scheduler/sched-rt-group. txt.

2.9 Summary

Linux is a multiuser and multitasking operating system, and thus has to manage multiple processes from
multiple users. In this chapter, you have learned that processes are a very important and fundamental
abstraction of Linux. The data structure used to represent individual processes has connections with
nearly every subsystem of the kernel.

You have seen how Linux implements the traditional fork/exec model inherited from UNIx to create
new processes that are hierarchically related to their parent, and have also been introduced to Linux-
specific extensions to the traditional UN1x model in the form of namespaces and the clone system call.
Both allow for fine-tuning how a process perceives the system, and which resources are shared between
parent and child processes. Explicit methods that enable otherwise separated processes to communicate
are discussed in Chapter 5.

Additionally, you have seen how the available computational resources are distributed between pro-
cesses by the scheduler. Linux supports pluggable scheduling modules, and these are used to implement
completely fair and POSIX soft real-time scheduling policies. The scheduler decides when to switch
between which tasks, and is augmented by architecture-specific routines to implement the context switch-

ing proper.
Finally, I have discussed how the scheduler must be augmented to service systems with multiple CPUs,

and how kernel preemption and low-latency modifications make Linux handle time-constrained situa-
tions better.

35Ac’fually, TASK_KILLABLE is not a completely new task state, but an extension to TASK_UNINTERRUPTIBLE. The effect is, how-
ever, identical.
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Memory Management

Memory management is one of the most complex and at the same time most important parts of the
kernel. It is characterized by the strong need for cooperation between the processor and the kernel
because the tasks to be performed require them to collaborate very closely. Chapter 1 provided a
brief overview of the various techniques and abstractions used by the kernel in the implementation
of memory management. This chapter examines the technical aspects of implementation in detail.

3.1 Overview

Memory management implementation covers many areas:

0  Management of physical pages in memory.
The buddy system to allocate memory in large chunks.
The slab, slub, and slob allocators to allocate smaller chunks of memory.

The vmalloc mechanism to allocate non-contiguous blocks of memory.

U U 0 O

The address space of processes.

As we know, the virtual address space of the processor is in general divided into two parts by
the Linux kernel. The lower and larger part is available to user processes, and the upper part is
reserved for the kernel. Whereas the lower part is modified during a context switch (between two
user processes), the kernel part of virtual address space always remains the same. On IA-32 systems,
the address space is typically divided between user processes and the kernel in a ratio of 3 : 1;
given a virtual address space of 4 GiB, 3 GiB would be available to userspace and 1 GiB for the
kernel. This ratio can be changed by modifying the relevant configuration options. However, this
has advantages only for very specific configurations and applications. For purposes of our further
investigations, I assume a ratio of 3 : 1 for now, but will come back to different ratios later.

The available physical memory is mapped into the address space of the kernel. Accesses with virtual
addresses whose offset to the start of the kernel area does not exceed the size of the available RAM
are therefore automatically associated with physical page frames. This is practical because memory
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allocations in the kernel area always land in physical RAM when this scheme is adopted. However,
there is one problem. The virtual address space portion of the kernel is necessarily smaller than the
maximum theoretical address space of the CPU. If there is more physical RAM than can be mapped
into the kernel address space, the kernel must resort to the highmem method to manage “’super
fluous” memory. On IA-32 systems, up to 896 MiB of RAM can be managed directly; anything
above this figure (up to a maximum of 4 GiB) can only be addressed by means of highmem.

4 GiB is the maximum memory size that can be addressed on 32-bit systems (232 = 4 GiB). If a trick
is used, modern IA-32 implementations — Pentium PRO and higher — can manage up to 64 GiB of
memory if PAE mode is enabled. PAE stands for page address extension and provides additional bits
for memory pointers. However, not all 64 GiB can be addressed at the same time, only sections of 4 GiB
each.

Because most memory management data structures can only be allocated in the range between 0 and

1 GiB, there is a practical limit to the maximum memory size and this is less than 64 GiB. The exact
value varies according to kernel configuration. For example, it is possible to allocate third-level page table
entries in highmem to reduce the load on the normal zone.

Because 1A-32 systems with memory in excess of 4 GiB are a rarity and the 64-bit architecture AMD64
that has for all practical purposes replaced 1A-32 offers a much cleaner solution to this problem, I won't
bother discussing the second highmem mode here.

Highmem mode is not required on 64-bit machines because the available address space is gigantic, even
if physical addressing is limited to a smaller number of bits, for example, 48 or 52. Given that exactly the
same was thought of the 4-GiB address space on 32-bit systems just a few years ago, one could argue
that it would merely seem to be a matter of time before the limits of 64-bit systems are reached, although
16 EiB should suffice for some time. But you never know ... .

The use of highmem pages is problematic only for the kernel itself. The kernel
must first invoke the kmap and kunmap functions discussed below to map the
highmem pages into its virtual address space before it can use them — this is not
necessary with normal memory pages. However, for userspace processes, it makes
absolutely no difference if the pages are highmem or normal pages because they are
always accessed via page tables and never directly.

There are two types of machine that manage physical memory in different ways:

1. UMA machines (uniform memory access) organize available memory in a contiguous fashion
(possibly with small gaps). Each processor (in a symmetric multiprocessor system) is able to
access each memory area equally quickly.

2. NUMA machines (non-uniform memory access) are always multiprocessor machines. Local
RAM is available to each CPU of the system to support particularly fast access. The proces-
sors are linked via a bus to support access to the local RAM of other CPUs — this is naturally
slower than accessing local RAM.

Examples of such systems are Alpha-based WildFire servers and NUMA-Q machines
from IBM.
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Figure 3-1 illustrates the difference between the two approaches.

Memory Memory Memory Memory
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Figure 3-1: UMA and NUMA systems.

A mix of both machine types with discontiguous memory is also possible. Such a mix would then
represent a UMA system whose RAM is not contiguous but has large holes. Here it is often helpful

to apply the principles of NUMA organization to make memory access simpler for the kernel. In

fact, the kernel distinguishes three configuration options — FLATMEM, DISCONTIGMEM, and SPARSEMEM.
SPARSEMEM and DISCONTIGMEM serve practically the same purpose, but in the view of developers, differ in
the quality of their code — SPARSEMEM is regarded as more experimental and less stable but does feature
performance optimizations. Discontiguous memory is presumed to be more stable, but is not prepared
for new features like memory hotplugging.

In the following sections, we restrict ourselves largely to FLATMEM because this memory organization type
is used on most configurations and is also usually the kernel default. The fact that we do not discuss
the other options is no great loss because all memory models make use of practically the same data
structures.

Real NUMA systems will set the configuration option CONFIG_NUMA, and the memory management
codes will differ between the two variants. Since the flat memory model will not make sense on NUMA
machines, only discontiguous and sparse memory will be available. Notice that the configuration option
NUMA_EMU allows AMD64 systems with a flat memory to enjoy the full complexities of NUMA systems by
splitting the memory into fake NUMA zones. This can be useful for development when no real NUMA
machine is available — for some reason, these tend to be rather costly.

This book focuses on the UMA case, and does not consider cONFIG_NUMA. This does not mean

that the NUMA data structures can be completely neglected. Since UMA systems can choose

the configuration option CONFIG_DISCONTIGMEM if their address space contains large holes, then more
than one memory node can also be available on systems that do not employ NUMA techniques
otherwise.

Figure 3-2 summarizes the various possible choices for the configuration options related to memory
layout.

Notice that we will come across the term allocation order quite often in the following discussion. It denotes
the binary logarithm of the number of pages that are contained in a memory region. An order 0 allocation
consists of one page, an order two allocation of 2! = 2 pages, an order three allocation of 22 = 4 pages,
and so on.
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///// Address space without holes

Figure 3-2: Overview of possible memory setups for flat, sparse, and
discontiguous memory on UMA and NUMA machines.

3.2 Organization in the (N)UMA Model

The various architectures supported differ greatly in terms of how they manage memory. Owing to the

intelligent design of the kernel and, in some cases, intervening compatibility layers, these differences are
so well concealed that generic code can usually ignore them. As discussed in Chapter 1, a major issue is
the varying number of indirection levels for page tables. A second key aspect is the division into NUMA
and UMA systems.

The kernel uses identical data structures for machines with uniform and non-uniform memory access so
that the individual algorithms need make little or no distinction between the various forms of memory
arrangement. On UMA systems, a single NUMA node is introduced to help manage the entire system
memory. The other parts of memory management are led to believe that they are working with a pseudo-
NUMA system.

3.2.1 Overview

Before we look at the data structures used to organize memory in the kernel, we need to define a few
concepts because the terminology is not always easy to understand. Let’s first consider NUMA systems.
This will enable us to show that it is very easy to reduce them to UMA systems.

Figure 3-3 is a graphic illustration of the memory partitioning described below (the situation is somewhat
simplified, as you will see when we examine the data structures closely).

First, RAM memory is divided into nodes. A node is associated with each processor of the system and is
represented in the kernel by an instance of pg_data_t (these data structures are defined shortly).

Each node is split into zones as further subdivisions of memory. For example, there are restrictions as
to the memory area that can be used for DMA operations (with ISA devices); only the first 16 MiB are
suitable. There is also a highmem area that cannot be mapped directly. Between these is the “normal”
memory area for universal use. A node therefore comprises up to three zones. The kernel introduces the
following constants to distinguish between them.
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Figure 3-3: Memory partitioning in NUMA systems.

The kernel introduces the following constants to enumerate all zones in the system:

<mmzone.h>
enum zone_type {
#ifdef CONFIG_ZONE_DMA

ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
ZONE_DMA32,
#endif

ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM

ZONE_HIGHMEM,
#endif

ZONE_MOVABLE,

MAX_NR_ZONES

Q  zoNE_bMA for DMA-suitable memory. The size of this region depends on the processor type. ON
IA-32 machines, the limit is the classical 16 MiB boundary imposed by ancient ISA devices. But
also, more modern machines can be affected by this.

QO  zoNE_DMA32 for DMA-suitable memory in a 32-bit addressable area. Obviously, there is only a
difference between the two DMA alternatives on 64-bit systems. On 32-bit machines, this zone
is empty; that is, its size is 0 MiB. On Alphas and AMD64 systems, for instance, this zone ranges
from 0 to 4 GiB.

O  ZONE_NORMAL for normal memory mapped directly in the kernel segment. This is the only zone
guaranteed to be possible present on all architectures. It is, however, not guaranteed that the
zone must be equipped with memory. If, for instance, an AMD64 system has 2 GiB of RAM, then
all of it will belong to ZONE_DMA32, and ZONE_NORVMAL will be empty.

0  zONE_HIGHMEM for physical memory that extends beyond the kernel segment.
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Depending on the compile-time configuration, some zones need not be considered.
64-bit systems, for instance, do not require a high memory zone, and the DMA32 zone
is only required on 64-bit systems that also support 32-bit peripheral devices that
can only access memory up to 4 GiB.

The kernel additionally defines a pseudo-zone ZONE_MOVABLE, which is required when efforts are made to
prevent fragmentation of the physical memory. We will look closer into this mechanism in Section 3.5.2.

MAX_NR_ZONES acts as an end marker if the kernel wants to iterate over all zones present in the system.

Each zone is associated with an array in which the physical memory pages belonging to the
zone — known as page frames in the kernel — are organized. An instance of struct page with the
required management data is allocated for each page frame.

The nodes are kept on a singly linked list so that the kernel can traverse them.

For performance reasons, the kernel always attempts to perform the memory allocations of a process on
the NUMA node associated with the CPU on which it is currently running. However, this is not always
possible — for example, the node may already be full. For such situations, each node provides a fallback
list (with the help of struct zonelist). The list contains other nodes (and associated zones) that can be
used as alternatives for memory allocation. The further back an entry is on the list, the less suitable it is.

What's the situation on UMA systems? Here, there is just a single node — no others. This node is shown
against a gray background in the figure. Everything else is unchanged.

3.2.2 Data Structures

Now that I have explained the relationship between the various data structures used in memory man-
agement, let’s look at the definition of each.

Node Management
pg_data_t is the base element used to represent a node and is defined as follows:

<mmzone.h>
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES] ;
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
struct page *node_mem_map;
struct bootmem_data *bdata;

unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
struct pglist_data *pgdat_next;
wait_queue_head_t kswapd_wait;
struct task_struct *kswapd;
int kswapd_max_order;
} pg_data_t;

138



Chapter 3: Memory Management

0  node_zones is an array that holds the data structures of the zones in the node.

0  node_zonelists specifies alternative nodes and their zones in the order in which they are used
for memory allocation if no more space is available in the current zone.

d  The number of different zones in the node is held in nr_zones.

0  node_mem_map is a pointer to an array of page instances used to describe all physical pages of the
node. It includes the pages of all zones in the node.

Q  During system boot, the kernel needs memory even before memory management has been ini-
tialized (memory must also be reserved to initialize memory management). To resolve this prob-
lem, the kernel uses the boot memory allocator described in Section 3.4.3. bdata points to the
instance of the data structure that characterizes the boot memory allocator.

0  node_start_pfnis the logical number of the first page frame of the NUMA node. The page
frames of all nodes in the system are numbered consecutively, and each frame is given a number
that is globally unique (not just unique to the node).

node_start_pfnis always 0 in a UMA system because there is only one node whose first page
frame is therefore 0. node_present_pages specifies the number of page frames in the zone and
node_spanned_pages the size of the zone in page frames. This value need not necessarily be the
same as node_present_pages because there may be holes in the zone that are not backed by a
real page frame.

0  node_idis a global node identifier. All NUMA nodes in the system are numbered starting
from 0.

0  pgdat_next links the nodes in the system on a singly linked list whose end is indicated, as usual,
by a null pointer.

O  kswapd_wait is the wait queue for the swap daemon needed when swapping frames out of the
zone (Chapter 18 deals with this at length). kswapd points to the task structure of the swap dae-
mon responsible for the zone. kswapd_max_order is used in the implementation of the swapping
subsystem to define the size of the area to be freed and is currently of no interest.

The association between the node and the zones it contains and the fallback list shown in Figure 3-3 is
established by means of arrays at the beginning of the data structure.

These are not the usual pointers to arrays. The array data are held in the node struc-
ture itself.

The zones of the node are held in node_zones [MAX_NR_ZONES]. The array always has three entries, even
if the node has fewer zones. If the latter is the case, the remaining entries are filled with null elements.

Node State Management
If more than one node can be present on the system, the kernel keeps a bitmap that provides state infor-
mation for each node. The states are specified with a bitmask, and the following values are possible:

<nodemask.h>
enum node_states {

N_POSSIBLE, /* The node could become online at some point */
N_ONLINE, /* The node is online */
N_NORMAL_MEMORY, /* The node has regular memory */

#ifdef CONFIG_HIGHMEM
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N_HIGH_MEMORY, /* The node has regular or high memory */
#else
N_HIGH_MEMORY = N_NORMAL_MEMORY,
#endif
N_CPU, /* The node has one or more cpus */
NR_NODE_STATES
Y

The states N_POSSIBLE, N_ONLINE, and N_CPU are required for CPU and memory hotplugging, but these
features are not considered in this book. Essential for memory management are the flags N_HIGH_MEMORY
and N_NORMAL_MEMORY. While the first one announces that the zone is equipped with memory that may
be either regular or high memory, N_NORMAL_MEMORY is only set if non-highmem memory is present

on a node.

Two auxiliary functions are provided to set or clear, respectively, a bit in the bit-field or a specific node:

<nodemask.h>
void node_set_state(int node, enum node_states state)
void node_clear_state(int node, enum node_states state)

Additionally, the macro for_each_node_state(__node, __state) allows for iterating over all nodes
that are in a specific state, and for_each_online_node (node) iterates over all active nodes.

If the kernel is compiled to support only a single node, that is, using the flat memory model, the node
bitmap is not present, and the functions to manipulate it resolve to empty operations that simply do
nothing.

Memory Zones
The kernel uses the zones structure to describe a zone. It is defined as follows:
<mmzone.h>
struct zone ({
/* Fields commonly accessed by the page allocator */
unsigned long pages_min, pages_low, pages_high;

unsigned long lowmem_reserve [MAX_NR_ZONES] ;

struct per_cpu_pageset pageset[NR_CPUS];

/*
* free areas of different sizes
*/
spinlock_t lock;
struct free_area free_area[MAX_ORDER] ;

ZONE_PADDING (_padl_)

/* Fields commonly accessed by the page reclaim scanner */

spinlock_t lru_lock;

struct list_head active_list;

struct list_head inactive_list;

unsigned long nr_scan_active;

unsigned long nr_scan_inactive;

unsigned long pages_scanned; /* since last reclaim */
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unsigned long flags; /* zone flags, see below */

/* Zone statistics */
atomic_long_t vm_stat [NR_VM_ZONE_STAT_ITEMS] ;

int prev_priority;

ZONE_PADDING (_pad2_)
/* Rarely used or read-mostly fields */

wait_queue_head_t * wait_table;
unsigned long wait_table_hash_nr_entries;
unsigned long wait_table_bits;

/* Discontig memory support fields. */

struct pglist_data *zone_pgdat;
unsigned long zone_start_pfn;
unsigned long spanned_pages; /* total size, including holes */
unsigned long present_pages; /* amount of memory (excluding holes) */
/*
* rarely used fields:
*/
char *name;
} cacheline_maxaligned_in_smp;

The striking aspect of this structure is that it is divided into several sections separated by ZONE_PADDING.
This is because zone structures are very frequently accessed. On multiprocessor systems, it commonly
occurs that different CPUs try to access structure elements at the same time. Locks (examined in
Chapter 5) are therefore used to prevent them interfering with each, and giving rise to errors and
inconsistencies. The two spinlocks of the structure — zone->lock and zone->1ru_lock — are often
acquired because the kernel very frequently accesses the structure.!

Data are processed faster they are is held in a cache of the CPU. Caches are divided into lines, and
each line is responsible for various memory areas. The kernel invokes the ZONE_PADDING macro to
generate “padding’ that is added to the structure to ensure that each lock is in its own cache line.
The compiler keyword __cacheline _maxaligned_in_smp is also used to achieve optimal cache
alignment.

The last two sections of the structure are also separated from each other by padding. As neither includes
a lock, the primary aim is to keep the data in a cache line for quick access and thus to dispense with the
need for loading the data from RAM memory, which is a slow process. The increase in size due to the
padding structures is negligible, particularly as there are relatively few instances of zone structures in
kernel memory.

What is the meaning of the structure elements? Since memory management is a complex and comprehen-
sive part of the kernel, it is not possible to cover the exact meaning of all elements at this point — a good
part of this and of following chapters will be devoted to understanding the associated data structures
and mechanisms. What I can provide, however, is an overview that gives a taste of the problems I am
about to discuss. A large number of forward references is nevertheless unavoidable.

1The locks are therefore known as hotspots. In Chapter 17, some tricks that are used by the kernel to reduce the pressure on these
hotspots are discussed.
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Q

pages_min, pages_high, and pages_low are “watermarks’‘used when pages are swapped out.
The kernel can write pages to hard disk if insufficient RAM memory is available. These three
elements influence the behavior of the swapping daemon.

Q  If more than pages_high pages are free, the state of the zone is ideal.

Q  If the number of free pages falls below pages_1low, the kernel begins to swap pages out onto
the hard disk.

Q  If the number of free pages falls below pages_min, the pressure to reclaim pages is
increased because free pages are urgently needed in the zone. Chapter 18 will discuss
various means of the kernel to find relief.

The importance of these watermarks will mainly show in Chapter 18, but they also come into
play in Section 3.5.5.

The lowmem_reserve array specifies several pages for each memory zone that are reserved for
critical allocations that must not fail under any circumstances. Each zone contributes accord-
ing to its importance. The algorithm to calculate the individual contributions is discussed in
Section 3.2.2.

pageset is an array to implement per-CPU hot-n-cold page lists. The kernel uses these lists to
store fresh pages that can be used to satisfy implementations. However, they are distinguished
by their cache status: Pages that are most likely still cache-hot and can therefore be quickly
accessed are separated from cache-cold pages. The next section discusses the struct per_
cpu_pageset data structure used to realize this behavior.

free_area is an array of data structures of the same name used to implement the buddy system.
Each array element stands for contiguous memory areas of a fixed size. Management of free
memory pages contained in each area is performed starting from free_area.

The employed data structures merit a discussion of their own, and Section 3.5.5 covers the imple-
mentation details of the buddy system in depth.

The elements of the second section are responsible for cataloging the pages used in the zone
according to activity. A page is regarded as active by the kernel if it is accessed frequently; an
inactive page is obviously the opposite. This distinction is important when pages need to be
swapped out. If possible, frequently used pages should be left intact, but superfluous inactive
pages can be swapped out without impunity.

The following elements are involved:

0  active_list collects the active pages, and inactive_list the inactive pages (page
instances).

QO  nr_scan_active and nr_scan_inactive specify how many active and inactive pages are
to be scanned when reclaiming memory.

0  pages_scanned specifies how many pages were unsuccessfully scanned since the last time
a page was swapped out.

0  flags describes the current status of the zone. The following flags are allowed:

<mmzone.h>

typedef enum {
ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
ZONE_RECLAIM LOCKED, /* prevents concurrent reclaim */
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ZONE_OOM_LOCKED, /* zone 1s in OOM killer zonelist */
} zone_flags_t;

It is also possible that none of these flags is set. This is the normal state of the zone.
ZONE_ALL_UNRECLAIMABLE is a state that can occur when the kernel tries to reuse some
pages of the zone (page reclaim, see Chapter 18), but this is not possible at all because

all pages are pinned. For instance, a userspace application could have used the mlock
system call to instruct the kernel that pages must not be removed from physical memory,
for example, by swapping them out. Such a page is said to be pinned. If all pages in a
zone suffer this fate, the zone is unreclaimable, and the flag is set. To waste no time, the
swapping daemon scans zones of this kind very briefly when it is looking for pages to
reclaim.?

On SMP systems, multiple CPUs could be tempted to reclaim a zone concurrently. The
flag ZONE_RECLAIM_LOCKED prevents this: If A CPU is reclaiming a zone, it set the flag. This
prevents other CPUs from trying.

ZONE_OOM_LOCKED is reserved for an unfortunate situation: If processes use up so much
memory that essential operations cannot be completed anymore, then the kernel will try
to select the worst memory eater and kill it to obtain more free pages. The flag prevents
multiple CPUs from getting into their way in this case.

The kernel provides three auxiliary functions to test and set zone flags:

<mmzone.h>

void zone_set_flag(struct zone *zone, zone_flags_t flag)

int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
void zone_clear_flag(struct zone *zone, zone_flags_t flag)

zone_set_flagand zone_clear_flag set and clear a certain flag, respectively. zone_test_
and_set_flag first tests if a given flag is set and does so if not. The old state of the flag is
returned to the caller.

0  vm_stat keeps a plethora of statistical information about the zone. Since most of the infor-
mation kept in there will not make much sense at the moment, a detailed discussion is
deferred to Section 17.7.1. For now, it suffices to know that the information is updated from
places all over the kernel. The auxiliary function zone_page_state allows for reading the
information in vm_stat:

<vmstat.h>

static inline unsigned long zone_page_state(struct zone *zone,
enum zone_stat_item item)

item can, for instance, be NR_ACTIVE or NR_INACTIVE to query the number of active and
inactive pages stored on active_list and inactive_list discussed above. The number of
free pages in the zone is obtained with NR_FREE_PAGES.

0  prev_priority stores the priority with which the zone was scanned in the last scan oper-
ation until sufficient page frames were freed in try_to_free_pages (see Chapter 17). As
you shall also see in Chapter 17, the decision as to whether mapped pages are swapped out
depends on this value.

2However, scanning cannot be totally dispensed with because the zone may contain reclaimable pages again at some time
in the future. If so, the flag is removed and the kswapd daemon treats the zone again like any other zone.
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[l wait_table,wait_table_bits, and wait_table_hash_nr_entries implement a wait queue
for processes waiting for a page to become available. While the details of this mechanism are
shown in Chapter 14, the intuitive notion holds pretty well: Processes queue up in a line to wait
for some condition. When this condition becomes true, they are notified by the kernel and can
resume their work.

0  The association between a zone and the parent node is established by zone_pgdat, which points
to the corresponding instance of pg_list_data.

O  zone_start_pfnis the index of the first page frame of the zone.

0  The remaining three fields are rarely used, so they’ve been placed at the end of the data struc-
ture.

name is a string that holds a conventional name for the zone. Three options are available at
present: Normal, DMA, and HighMem.

spanned_pages specifies the total number of pages in the zone. However, not all need be usable
since there may be small holes in the zone as already mentioned. A further counter (present_
pages) therefore indicates the number of pages that are actually usable. Generally, the value of
this counter is the same as that for spanned_pages.

Calculation of Zone Watermarks

Before calculating the various watermarks, the kernel first determines the minimum memory space
that must remain free for critical allocations. This value scales nonlinearly with the size of the available
RAM. It is stored in the global variable min_free_kbytes. Figure 3-4 provides an overview of the scaling
behavior, and the inset — which does not use a logarithmic scale for the main memory size in contrast to
the main graph — shows a magnification of the region up to 4 GiB. Some exemplary values to provide a
feeling for the situation on systems with modest memory that are common in desktop environments are
collected in Table 3-1. An invariant is that not less than 128 KiB but not more than 64 MiB may be used.
Note, however, that the upper bound is only necessary on machines equipped with a really satisfactory
amount of main memory.3 The file /proc/sys/vm/min_free_kbytes allows reading and adapting the
value from userland.

Filling the watermarks in the data structure is handled by init_per_zone_pages_min, which is invoked
during kernel boot and need not be started explicitly.*

setup_per_zone_pages_min sets the pages_min, pages_low, and pages_high elements of struct zone.
After the total number of pages outside the highmem zone has been calculated (and stored in 1owmem_
pages), the kernel iterates over all zones in the system and performs the following calculation:

mm/page_alloc.c
void setup_per_zone_pages_min (void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;

3In practice, it will be unlikely that such an amount of memory is installed on a machine with a single NUMA node, so it will be
hard to actually reach the point where the cutoff is required.

4The functions are not only called from here, but are also invoked each time one of the control parameters is modified via the proc
filesystem.
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for_each_zone (zone) {
u6d tmp;

tmp = (ubd)pages_min * zone->present_pages;
do_div (tmp, lowmem_pages) ;
if (is_highmem(zone)) {

int min_pages;

min_pages =
if (min_pages < SWAP_CLUSTER_MAX)
min_pages = SWAP_CLUSTER_MAX;
(min_pages > 128)
min_pages = 128;
zone->pages_min = min_pages;
} else {
zone->pages_min =

if

tmp;

zone->pages_low = zone->pages_min +
zone->pages_high = zone->pages_min +

(tmp >> 2
(tmp >>

25000 T

zone->present_pages / 1024;

)
1);

3500 T T T T T T T T
3000
2500
20000 [
2000
1500

15000 |1000

0 1 1 1 1 1 1 1 1 //
0 500 1000 1500 2000 2500 3000 3500 4Q00
Zone memory [MiB]

Pages of 4 KiB

10000

5000

0 1 1

pages_high
/pages_min

100
Zone memory [GiB]

Figure 3-4: Minimum memory size for critical allocations and zone wate

1000

rmarks depending

on the main memory size of a machine (pages_min is nothing other than

min_free_kbytes in units of pages).
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Table 3-1: Correlation between Main Memory Size and Minimum Memory Available
for Critical Allocations.

Main memory Reserve
16 MiB 512 KiB
32 MiB 724 KiB
64 MiB 1024 KiB
128 MiB 1448 KiB
256 MiB 2048 KiB
512 MiB 2896 KiB
1024 MiB 4096 KiB
2048 MiB 5792 KiB
4096 MiB 8192 KiB
8192 MiB 11584 KiB
16384 MiB 16384 KiB

init_per_zone_pages_min I

| setup_per_zone_pages_min I

setup_per_zone_lowmem reserve I

Figure 3-5: Code flow diagram for
init_per_ zone_pages_min.

The lower bound for highmem zones, SWAP_CLUSTER_MAX, is an important quantity for the whole page
reclaim subsystem as discussed in Chapter 17. The code there often operates batchwise on page clusters,
and SWAP_CLUSTER_MAX defines the size of such clusters. Figure 3-4 shows the outcome of the calcula-
tions for various main memory sizes. Since high memory is not very relevant anymore these days (most
machines with large amounts of RAM use 64-bit CPUs), I have restricted the graph to show the outcomes
for regular zones.

Computing lowmem_reserve is done in setup_per_zone_lowmem_reserve. The kernel iterates over all
nodes of the system and calculates the minimum reserve for each zone of the node by dividing the total
number of page frames in the zone by sysctl_lowmem_reserve_ratio[zone]. The default settings for
the divisor are 256 for low memory and 32 for high memory.

Hot-N-Cold Pages

The pageset element of struct zone is used to implement a hot-n-cold allocator. The kernel refers to
a page in memory as hot if it is in a CPU cache and its data can therefore be accessed quicker than if
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it were in RAM. Conversely, a cold page is not held in cache. As each CPU has one or more caches on
multiprocessor systems, management must be separate for each CPU.

Even though a zone belongs to a specific NUMA node and is therefore associated
with a specific CPU, the caches of other CPUs may include pages from this zone —
ultimately, each processor can access all pages in the system, albeit at different
speeds. The zone-specific data structure must therefore cater not only for the CPU
associated with the NUMA node of the zone but also for all other CPUs in the
system.

pageset is an array that holds as many entries as the maximum possible number of CPUs that the system
can accommodate.

<mmzone.h>
struct zone {

struct per_cpu_pageset pageset[NR_CPUS];
Y

NR_CPUS is a configurable pre-processor constant defined at compilation time. Its value is always 1 on
uniprocessor systems, but on a kernel compiled for SMP systems, it may be between 2 and 32 (or 64 on
64-bit systems).

The value does not reflect the number of CPUs actually present in a system but the
maximum number of CPUs supported by the kernel.

The array elements are of type per_cpu_pageset, which is defined as follows:

<mmzone.h>
struct per_cpu_pageset {

struct per_cpu_pages pcpl2]; /* 0: hot. 1: cold */
} _ cacheline_aligned_in_smp;

The structure consists of an array with two entries, the first to manage hot and the second to manage cold
pages.

The useful data are held in per_cpu_pages.®

<mmzone.h>
struct per_cpu_pages {

int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
int batch; /* chunk size for buddy add/remove */

struct list_head list; /* the list of pages */
Y

5Kernel 2.6.25, which was still under development when this book was written, will replace the separate lists for hot and cold pages
by a single list. Hot pages will be kept at the beginning, while cold pages will be placed at the end. The change was introduced after
measurements had shown that having two separate lists would not provide substantial benefits compared to a single list.
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Whereas count keeps a record of the number of pages associated with the element, high is a watermark.
If the value of count exceeds high, this indicates that there are too many pages in the list. No explicit
watermark for low fill states is used: When no elements are left, the list is refilled.

list is a doubly linked list that holds the per-CPU pages and is handled using standard methods of the
kernel.

If possible, the per-CPU caches are not filled with individual pages but with multipage chunks. batch is
a guideline to the number of pages to be added in a single pass.

Figure 3-6 illustrates graphically how the data structures of the per-CPU cache are filled on a dual-
processor system.

Hot pages
cPUO high = 96 batch = 16
count=16 Cold pages
high = 32 batch = 16 s I:' :I I:‘
count = 36
high =96 batch =16
CPU1 count = 36
high =96 batch =16

Figure 3-6: Per-CPU cache on a dual-processor system.

How watermarks are calculated and how the cache data structures are initialized are discussed in more
detail in Section 3.4.2.

Page Frames

Page frames represent the smallest unit of system memory, and an instance of struct page is created for
each page in RAM. Kernel programmers take care to keep this structure as small as possible because the
memory of systems even with a moderate RAM configuration is broken down into a very large number
of pages. For instance, an IA-32 system working with a standard page size of 4 KiB has around 100,000
pages given a main memory size of 384 MiB. Although this memory size is certainly not excessively large
for today’s standards, the number of pages is already considerable.

This is why the kernel makes great efforts to keep struct page as small as possible. The sheer number
of pages in a typical system causes even small changes in the structure to lead to a large increase in the
amount of physical memory required to keep all page instances.

Keeping the structure small is not exactly simplified by the ubiquity of pages: They are used in many
parts of memory management, and for varying applications. While one part of the kernel absolutely
depends on a specific piece of information being available in struct page, this could be useless for
another part, which itself depends a different piece of information, which could again be completely
useless for the other part, and soon ... .

A C union lends itself naturally as a remedy for this problem, even if clarity of struct page is not
increased at first. Consider an example: A physical page can be mapped into the virtual address space via
page tables from multiple places, and the kernel wants to keep track of how many places map the page.
For this end, a counter in struct page counts the number of mappings. If a page is used by the slub
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allocator (a means to subdivide complete pages into into smaller portions, see Section 3.6.1), then it is
guaranteed to be only used by the kernel and not from somewhere else, so the map count information is
superfluous. Instead, the kernel can reinterpret the field to denote how many small memory objects into
which a page is subdivided are in use. The double interpretation looks as follows in the data structure
definition:

<mm_types.h>
struct page {

union {
atomic_t _mapcount; /* Count of ptes mapped in mms,
* to show when page is mapped
* & limit reverse map searches.
*/
unsigned int inuse; /* SLUB: Nr of objects */

}

Note that atomic_t and unsigned int are two different data types — the first allows for changing values
atomically, that is, safe against concurrent access, while the second is a classical integer. atomic_t pro-
vides 32 bits,® and an integer also provides this many bits on each architecture supported by Linux. Now
it could be tempting to “’simplify”” the definition as follows:

struct page {
atomic_t counter;

}

This would be bad style, though, and is completely unacceptable to the kernel developers. The slub code
does not need atomicity to access its object counter, and this should also be reflected in the data type.
And, most importantly, readability of the code will suffer in both subsystems. While _mapcount and
inuse provide a clear and concise description of what the element is about, counter could mean almost
everything.

Definition of page
The structure is defined as follows:

<mm.h>
struct page {
unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */
atomic_t _count; /* Usage count, see below. */
union {

atomic_t _mapcount; /* Count of ptes mapped in mms,
* to show when page is mapped
* & limit reverse map searches.
*/

6Before kernel 2.6.3, this was not true. The Sparc architecture could only provide 24 bits for atomic manipulation, so the generic code
for all architecture needed to stick to this limit. Luckily, this problem has been resolved now by improvements in the Sparc specific
code.
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unsigned int inuse;
Y
union {
struct {

unsigned long private;

struct address_space *mapping; /

Y

struct kmem cache *slab;
struct page *first_page;
Y

union {

/* SLUB: Nr of objects */

~
*

Mapping-private opaque data:

usually used for buffer_heads
if PagePrivate set; used for

swp_entry_t if PageSwapCache;
indicates order in the buddy

system if PG_buddy is set.

*

~

If low bit clear, points to
inode address_space, or NULL.
If page mapped as anonymous
memory, low bit is set, and
it points to anon_vma object:
see PAGE_MAPPING_ANON below.

E I I

~

/* SLUB: Pointer to slab */
/* Compound tail pages */

pgoff_t index; /* Our offset within mapping. */
void *freelist; /* SLUB: freelist req. slab lock */

Y

struct list_head lru;

#if defined (WANT_PAGE_VIRTUAL)

void *virtual;

#endif /* WANT_PAGE_VIRTUAL */

Y

/* Pageout list, eg. active_list
* protected by zone->1lru_lock !
*/

/* Kernel virtual address (NULL if
not kmapped, ie. highmem) */

The elements slab, freelist, and inuse are used by the slub allocator. We do not need to be concerned
with these special arrangements, and they are not used if support for the slub allocator is not compiled
into the kernel, so I omit them in the following discussion to simplify matters.

Each page frame is described by this structure in an architecture-independent format that does not
depend on the CPU type used. Besides the slub elements, the page structure includes several other ele-
ments that can only be explained accurately in the context of kernel subsystems discussed elsewhere. I
shall nevertheless provide an overview of the contents of the structure, even though this means referenc-
ing later chapters.

Q

Q
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flags stores architecture-independent flags to describe page attributes. I discuss the different

flag options below.

_count is a usage count indicating the number of references to this page in the kernel. When its
value reaches 0, the kernel knows that the page instance is not currently in use and can therefore
be removed. If its value is greater than 0, the instance should on no account be removed from
memory. If you are not familiar with reference counters, you should consult Appendix C for

further information.
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0  _mapcount indicates how many entries in the page table point to the page.

0  1Iruis alist head used to keep the page on various lists that allow grouping the pages into
different categories, most importantly active and inactive pages. Especially the discussion in
Chapter 18 will come back to these lists.

Q  The kernel allows for combining multiple adjacent pages into a larger compound page. The first
page in the cluster is called the head page, while all other pages are named tail page. All tail pages
have first_page set to point to the head page.

0  mapping specifies the address space in which a page frame is located. index is the offset within
the mapping. Address spaces are a very general concept used, for example, when reading a file
into memory. An address space is used to associate the file contents (data) with the areas in
memory into which the contents are read. By means of a small trick,” mapping is able to hold not
only a pointer, but also information on whether a page belongs to an anonymous memory area
that is not associated with an address space. If the bit with numeric value 1 is set in mapping, the
pointer does not point to an instance of address_space but to another data structure (anon_vma)
that is important in the implementation of reverse mapping for anonymous pages; this struc-
ture is discussed in Section 4.11.2. Double use of the pointer is possible because address_space
instances are always aligned with sizeof (long); the least significant bit of a pointer to this
instance is therefore 0 on all machines supported by Linux.

The pointer can be used directly if it points normally to an instance of address_space. If the trick
involving setting the least significant bit to 1 is used, the kernel can restore the pointer by means
of the following operation:

anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON)

0  private is a pointer to “private’ data ignored by virtual memory management. The pointer can
be employed in different ways depending on page usage. It is mostly used to associate the page
with data buffers as described in the following chapters.

Q  virtualis used for pages in the highmem area, in other words, for pages that cannot be directly
mapped into kernel memory. virtual then accepts the virtual address of the page.

As the pre-processor statement #1ifdef {WANT_PAGE_VIRTUAL} shows, the virtual element is
only part of struct page if the corresponding pre-processor constant is defined. Currently, this
is only the case for a few architectures, namely, Motorola m68k, FRV, and Extensa.

All other architectures adopt a different scheme of addressing virtual pages. At the heart of this
is a hash table used to find the address of all highmem pages. Section 3.5.8 deals with the appro-
priate techniques in more detail. Handling the hash table requires some mathematical operations
that are slow on the aforementioned machines, so they chose the direct approach.

Architecture-Independent Page Flags

The different attributes of a page are described by a series of page flags stored as bits in the flags
element of struct page. The flags are independent of the architecture used and cannot therefore
provide CPU- or machine-specific information (this information is held in the page table itself as is
shown below).

Not only are the individual flags defined with the help of the pre-processor in page-flags.h, but also
macros are generated to set, delete, and query the flags. In doing so, the kernel conforms to a universal

7The trick borders on the unscrupulous but helps save space in one of the most frequently needed kernel structures.
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naming scheme; for example, the PG_locked constant defines the bit position in flags to specify whether
a page is locked or not. The following macros are available to manipulate the bit:

Q

0O 000

pageLocked queries whether the bit is set.

SetPageLocked sets the PG_locked bit, regardless of its previous state.
TestSetPageLocked sets the bit, but also returns its old value.
ClearPageLocked deletes the bit regardless of its previous state.

TestClearPageLocked deletes the bit and returns its old value.

There is an identical set of macros to perform the operations shown on the appropriate bit for the other
page flags. The macros are implemented atomically. Although some of them are made up of several state-
ments, special processor commands are used to ensure that they act as if they were a single statement;
that is, they cannot be interrupted as this would result in race conditions. (Chapter 14 describes how race
conditions arise and how they can be prevented.)

Which page flags are available? The following list includes the most important flags (again, their mean-
ings become clear in later chapters):

Q

PG_locked specifies whether a page is locked. If the bit is set, other parts of the kernel are not
allowed to access the page. This prevents race conditions in memory management, for example,
when reading data from hard disk into a page frame.

PG_error is set if an error occurs during an I/O operation involving the page.

PG_referenced and PG_active control how actively a page is used by the system. This infor-
mation is important when the swapping subsystem has to select which page to swap out. The
interaction of the two flags is explained in Chapter 18.

PG_uptodate indicates that the data of a page have been read without error from a block device.

PG_dirty is set when the contents of the page have changed as compared to the data on hard
disk. For reasons of performance, pages are not written back immediately after each change. The
kernel therefore uses this flag to note which pages have been changed so that they can be flushed
later.

Pages for which this flag has been set are referred to as dirty (generally, this means that the data
in RAM and the data on a secondary storage medium such as a hard disk have not been synchro-
nized).

PG_1ru helps implement page reclaim and swapping. The kernel uses two least recently used
lists® to distinguish between active and inactive pages. The bit is set if the page is held on one
of these lists. There is also a PG_active flag that is set if the page is on the list of active pages.
Chapter 18 discusses this important mechanism in detail.

PG_highmem indicates that a page is in high memory because it cannot be mapped permanently
into kernel memory.

PG_private must be set if the value of the private element in the page structure is non-NULL.
Pages that are used for I/O use this field to subdivide the page into buffers (see Chapter 16 for
more information), but other parts of the kernel find different uses to attach private data to a

page.

8Frequently used entries are automatically in the foremost positions on this type of list, whereas inactive entries are always moved
toward the end of the list.
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0  pPG_writebackis set for pages whose contents are in the process of being written back to a block
device.

0  pG_slabis set for pages that are part of the slab allocator discussed in Section 3.6.

0  PG_swapcache is set if the page is in the swap cache; in this case, private contains an entry of
type swap_entry_t (further details are provided in Chapter 18).

O  When the available amount of memory gets smaller, the kernel tries to periodically reclaim pages,
that is, get rid of inactive, unused pages. Chapter 18 discusses the details. Once the kernel has
decided to reclaim a specific page, this is announced by setting the PG_reclaim flag.

a PG_buddy is set if the page is free and contained on the lists of the buddy system, that is, the core
of the page allocation mechanism.

0  PG_compound denotes that the page is part of a larger compound page consisting of multiple
adjacent regular pages.

A number of standard macros are defined to check if a page has a specific bit is set, or to manipulate a
bit. Their names follow a certain pattern:

a PageXXX (page) checks if a page has the PG_xxx bit set. For instance, pageDirty checks for the
PG_dirty bit, while PageActive checks for PG_active, and so on.

O  To set a bit if it is not set and return the previous value, SetPagexxx is provided.
0  ClearPagexxx unconditionally deletes a specific bit.

a TestClearPageXXX clears a bit if it is set, but also returns the previously active value.

Notice that these operations are implemented atomically. Chapter 5 discusses what this means in more
detail.

Often it is necessary to wait until the state of a page changes, and then resume work. Two auxiliary
functions provided by the kernel are of particular interest for us:

<pagemap.h>
void wait_on_page_locked(struct page *page);
void wait_on_page_writeback (struct page *page)

Assume that one part of the kernel wants to wait until a locked page has been unlocked.
wait_on_page_locked allows for doing this. While how this is technically done is discussed in
Chapter 14, it suffices to know here that after calling the function, the kernel will go to sleep if the page
is locked. Once the page becomes unlocked, the sleeper is automatically woken up and can continue
its work.

wait_on_page_writeback works similarly, but waits until any pending writeback operations in which
the data contained in the page are synchronized with a block device — a hard disk, for instance — have
been finished.

3.3 Page Tables

Hierarchically linked page tables are used to support the rapid and efficient management of large address
spaces. The principle behind this approach and the benefits it brings as compared to linear addressing
are discussed in Chapter 1. Here we take a closer look at the technical aspects of implementation.
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Recall that page tables are used to establish an association between the virtual address spaces of user
processes and the physical memory of the system (RAM, page frames). The structures discussed so far
serve to describe the structure of RAM memory (partitioning into nodes and zones) and to specify the
number and state (used or free) of the page frames contained. Page tables are used to make a uniform
virtual address space available to each process; the applications see this space as a contiguous memory
area. The tables also map the virtual pages used into RAM, thus supporting the implementation of shared
memory (memory shared by several processes at the same time) and the swapping-out of pages to a block
device to increase the effective size of usable memory without the need for additional physical RAM.

Kernel memory management assumes four-level page tables — regardless of whether this is the case
for the underlying processor. The best example where this assumption is not true is IA-32 systems. By
default, this architecture uses only a two-level paging system — assuming the PAE extensions are not
used. Consequently, the third and fourth levels must be emulated by architecture- specific code.

Page table management is split into two parts, the first architecture-dependent, the second architecture-
independent. Interestingly, all data structures and almost all functions to manipulate them are defined in
architecture-specific files. Because there are some big differences between CPU-specific implementations
(owing to the various CPU concepts used), I won’t go into the low-level details for the sake of brevity.
Extensive knowledge of the individual processors is also required, and the hardware documentation for
each processor family is generally spread over several books. Appendix A describes the IA-32 architec-
ture in more detail. It also discusses, at least in summary form, the architecture of the other important
processors supported by Linux.

The descriptions of data structures and functions in the following sections are usually based on the
interfaces provided by the architecture-dependent files. The definitions can be found in the header files
include/asm-arch/page.hand include/asm-arch/pgtable.hreferred to in abbreviated form as page.h
and pgtable.h below. Since AMD64 and IA-32 are unified into one architecture but exhibit a good many
differences when it comes to handling page tables, the definitions can be found in two different files:
include/asm-x86/page_32.h and include/asm-x86/page_64.h, and similar for pgtable_xX.h. When
aspects relating to a specific architecture are discussed, I make explicit reference to the architecture. All
other information is equally valid for all architectures even if the definitions of the associated structures
are architecture-specific.

3.3.1 Data Structures

In C, the void* data type is used to specify a pointer to any byte positions in memory. The number of bits
required differs according to architecture. All common processors (including all those on which Linux
runs) use either 32 or 64 bits.

The kernel sources assume that void* and unsigned long have the same number of bits so that they can
be mutually converted by means of typecasts without loss of information. This assumption — expressed
formally as sizeof (void*) == sizeof (unsigned long) — is, of course, true on all architectures sup-
ported by Linux.

Memory management prefers to use variables of type unsigned long instead of void pointers because
they are easier to handle and manipulate. Technically, they are both equally valid.

Breakdown of Addresses in Memory

Addresses in virtual memory are split into five parts as required by the structure of the four-level
page tables (four table entries to select the page and an index to indicate the position within the page).
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Not only the length but also the way in which the address is split are different on the individual
architectures. The kernel therefore defines macros to break down the address into its individual
components.

|< BITS_PER_LONG >|
[ PeD | PUD | PvD |  PTE | offset |
PAGE_SHIFT

PMD_SHIFT >|

|< PUD_SHIFT 4>‘
I< PGDIR_SHIFT >|

Figure 3-7: Breakdown of a virtual address.

Figure 3-7 shows how the positions of the address elements are defined by bit shifts. BITS_PER_LONG
specifies the number of bits used for an unsigned long variable and therefore also for a generic pointer
to virtual address space.

At the end of each pointer there are several bits to specify the position within the selected frame page.
The number of bits required is held in PAGE_SHIFT.

PMD_SHIFT specifies the total number of bits used by a page and by an entry in the last level of the page
tables. This number can be subtracted from PAGE_SHIFT to determine the number of bits required by
an entry in the last hierarchy level of the page table. More important is the fact that the value indicates
the size of the partial address space managed by an entry in the middle page table, namely, 2PP—SHIFT
bytes.

PUD_SHIFT adds together the bit lengths of PAGE_OFFSET and PMD_SHIFT, whereas PGDIR_SHIFT combines
the bit lengths of PAGE_OFFSET, PUD_SHIFT, and PMD_SHIFT with the bit number of an entry in the page
middle directory. The value is the binary logarithm of the size of the partial address space that can be
addressed via an entry in the page global directory.

The number of pointers that can be stored in the various directories of the page table is also deter-
mined by macro definitions. PTRS_PER_PGD specifies the number of entries in the page global directory,
PTRS_PER_PMD the number in the page middle directory, PTRS_PER_PUD the number in the page upper
directory, and PTRS_PER_PTE the number in the page table entry.

Architectures with two-level page tables define PTRS_PER_PMD and PTRS_PER_PUD as
1. This persuades the remaining parts of the kernel that they are working with
four-level page translation although only two pages are used — the page middle
and page upper directories are effectively eliminated because they have only a
single entry. Because only a very few systems use a four-level page table, the kernel
uses the header file include/asm-generic/pgtable-nopud.h to hold all the declara-
tions needed to simulate the presence of a fourth page table. The header file
include/asm-generic/pgtable-nopmd.his also available to simulate the presence
of a third page table level on systems with two-level address translation.
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The size of the address area that can be addressed with pointers of n-bit length is 2" bytes. The kernel
defines additional macro variables to hold the values calculated so that it is unnecessary to repeat the
calculations time and time again. The variables are defined as follows:

#define PAGE_SIZE (1UL << PAGE_SHIFT)
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)

The value 2" is easily calculated in the binary system by shifting a bit n positions to the left starting from
position 0. The kernel uses this ““trick’”” at many places. Those of you unfamiliar with bit arithmetic will
find relevant explanations in Appendix C.

include/asm-x86/pgtable_64.h
#define PGDIR_SHIFT 39
#define PTRS_PER_PGD 512

#define PUD_SHIFT 30
#define PTRS_PER_PUD 512

#define PMD_SHIFT 21
#define PTRS_PER_PMD 512

The macros PTRS_PER_XXX specify how many pointers (i.e., different values) a given directory entry can
represent. Since AMD64 employs 9 bits for each directory, 2° = 512 pointers fit into each.

The kernel also needs a means of extracting the individual components from a given address. The kernel
uses the bitmasks defined below to do this.
#define PAGE_MASK

PAGE_SIZE-1))

(~( )
#define PUD_MASK (~(PUD_SIZE-1))
#define PMD_MASK (~(PMD_SIZE-1))
#define PGDIR_MASK (~(PGDIR_SIZE-1))

The masks are applied on a given address by simple bitwise addition.

Format of Page Tables
The size of the entries in the page tables has been established by the above definitions but not
their structure. The kernel provides four data structures (defined in page.h) to represent the entry
structures.
0 pgd_t for entries of the global directory.
0  pud_t for entries of the page upper directory.
QO  pmd_t for entries of the page middle directory.
0  pte_t for direct page table entries.
The standard functions to analyze page table entries are listed in Table 3-2. (Depending on architecture,

some functions are implemented as macros and others as inline functions; I make no distinction between
the two below.)
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Table 3-2: Functions for Analyzing Page Table Entries.

Function

Description

pgd_val
pud_val
pmd_val
pte_val
pgprot_val

__pgd
__pud
__pmd
__pte
__pgprot

pgd_index
pud_index
pmd_index
pte_index

pgd_present
pud_present
pmd_present
pte_present

pgd_none
pud_none
pmd_none
pte_none

pgd_clear
pud_clear
pmd_clear
pte_clear

pgd_bad
pud_bad
pmd_bad

pmd_page
pud_page
pte_page

Convert a variable of type pte_t and so on to an unsigned long number.

Do the reverse of pdg_val and so on: They convert an unsigned long number into
a variable of type pdg_t and so on.

Yield the address of the next-level table starting from a memory pointer and a
page table entry.

Check whether the _PRESENT bit of the corresponding entry is set. This is the case
when the page or page table addressed is in RAM memory.

Do the logical reverse of the xxx_present functions. If they return a true value,
the searched page is not in RAM.

Delete the passed page table entry. This is usually done by setting it to zero.

Check whether entries of the page middle, upper, and global directories are
invalid. They are used for safety purposes in functions that receive input param-
eters from the outside where it cannot be assumed that the parameters are valid.

Return the address of the page structure holding the data on the page or the
entries of the page middle directories.

How do the of fset functions work? Let us consider pmd_of fset as an example. It requires as parameter
an entry from the page global directory (src_pgd) and an address in memory. It returns an element from
one of the page middle directories.

src_pmd = pmd_offset (src_pgd, address);
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PAGE_ALIGN is another standard macro that must be defined by each architecture (typically in page.h). It
expects an address as parameter and “rounds’’ the address so that it is exactly at the start of the next page.
If the page size is 4,096, the macro always returns an integer multiple of this size; PAGE_ALIGN(6000) =
8192 = 2x 4,096, PAGE_ALIGN (0x84590860) = 0x84591000 = 542,097 x 4,096. The alignment of addresses
to page boundaries is important to ensure that best use is made of the cache resources of the processor.

Although C structures are used to represent entries in page tables, most consist of just a single
element — typically unsigned long — as an example of AMD64 architecture shows:?

include/asm-x86_64/page.h

typedef struct { unsigned long pte; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pud; } pud_t;
typedef struct { unsigned long pgd; } pgd_t

structs are used instead of elementary types to ensure that the contents of page table elements are
handled only by the associated helper functions and never directly. The entries may also be constructed
of several elementary variables. In this case, the kernel is obliged to use a struct.!

The virtual address is split into several parts that are used as an index into the page
table in accordance with the familiar scheme. The individual parts are therefore less
than 32 or 64 bits long, depending on the word length of the architecture used. As
the excerpt from the kernel sources shows, the kernel (and therefore also the
processor) uses 32- or 64-bit types to represent entries in the page tables (regardless
of table level). This means that not all bits of a table entry are required to store the
useful data — that is, the base address of the next table. The superfluous bits are
used to hold additional information. Appendix A describes the structure of the page
tables on various architectures in detail.

PTE-Specific Entries

Each final entry in the page table not only yields a pointer to the memory location of the page, but also
holds additional information on the page in the superfluous bits mentioned above. Although these data
are CPU-specific, they usually provide at least some information on page access control. The following
elements are found in most CPUs supported by the Linux kernel:

0 _PAGE_PRESENT specifies whether the virtual page is present in RAM memory. This need not
necessarily be the case because pages may be swapped out into a swap area as noted briefly in
Chapter 1.

The structure of the page table entry is usually different if the page is not present in memory
because there is no need to describe the position of the page in memory. Instead, information is
needed to identify and find the swapped-out page.

9The definitions for IA-32 are similar. However, only pte_t and pgd_t, which are defined as unsigned long, make an effective
contribution. I use the code example for AMD64 because it is more regular.

10When TA-32 processors use PAE mode, they define pte_t as, for example, typedef struct { unsigned long pte_low,
pte_high; }. 32 bits are then no longer sufficient to address the complete memory because more than 4 GiB can be managed in
this mode. In other words, the available amount of memory can be larger than the processor’s address space.

Since pointers are, however, still only 32 bits wide, an appropriate subset of the enlarged memory space must be chosen for userspace
applications that do still only see 4 GiB each.
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0  _PAGE_ACCESSED is set automatically by the CPU each time the page is accessed. The kernel reg-
ularly checks the field to establish how actively the page is used (infrequently used pages are
good swapping candidates). The bit is set after either read or write access.

0  _PAGE_DIRTY indicates whether the page is ““dirty,” that is, whether the page contents have been
modified.
O  _PAGE_FILE has the same numerical value as _PAGE_DIRTY, but is used in a different context,

namely, when a page is not present in memory. Obviously, a page that is not present cannot
be dirty, so the bit can be reinterpreted: If it is not set, then the entry points to the location of
a swapped-out page (see Chapter 18). A set _PAGE_FILE is required for entries that belongs to
nonlinear file mappings which are discussed in Section 4.7.3.

O  If _PAGE_USER is set, userspace code is allowed to access the page. Otherwise, only the kernel is
allowed to do this (or when the CPU is in system mode).

Q  _PAGE_READ, PAGE_WRITE, and _PAGE_EXECUTE specify whether normal user processes are
allowed to read the page, write to the page, or execute the machine code in the page.

Pages from kernel memory must be protected against writing by user processes.

There is, however, no assurance that even pages belonging to user processes can be written to,
for example, if the page contains executable code that may not be modified — either intention-
ally or unintentionally.

Architectures that feature less finely grained access rights define the _PAGE_RW constant to allow
or disallow read and write access in combination if no further criterion is available to distinguish
between the two.

Q  IA-32 and AMD64 provide _PAGE_BIT NX to label the contents of a page as not executable (this
protection bit is only available on IA-32 systems if the page address extensions for addressing
64 GiB memory are enabled). It can prevent, for example, execution of code on stack pages that
can result in security gaps in programs because of intentionally provoked buffer overflows
if malicious code has been introduced. The NX bit cannot prevent buffer overflow but can
suppress its effects because the process refuses to run the malicious code. Of course, the
same result can also be achieved if the architectures themselves provide a good set of access
authorization bits for memory pages, as is the case with some (unfortunately not very common)
processors.

Each architecture must provide two things to allow memory management to modify the additional bits
in pte_t entries — the data type __pgprot in which the additional bits are held, and the pte_modify
function to modify the bits. The above pre-processor symbols are used to select the appropriate entry.

The kernel also defines various functions to query and set the architecture-dependent state of memory
pages. Not all functions can be defined by all processors because of lack of hardware support for a given
feature.

0  pte_present checks if the page to which the page table entry points is present in memory. This
function can, for instance, be used to detect if a page has been swapped out.

0  pte_dirty checks if the page associated with the page table entry is dirty, that is, its contents
have been modified since the kernel checked last time. Note that this function may only be called
if pte_present has ensured that the page is available.

0  pte_write checks if the kernel may write to the page.
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0  pte_fileis employed for nonlinear mappings that provide a different view on file contents by
manipulating the page table (this mechanism is discussed in more detail in Section 4.7.3). The
function checks if a page table entry belongs to such a mapping.

pte_file may only be invoked if pte_present returns false; that is, the page asso-
ciated with the page table entry is not present in memory.

Since the generic code relies on pte_file, it must also be defined if an architecture does not sup-
port nonlinear mappings. In this case, the function always returns 0.

A summary of all functions provided to manipulate PTE entries can be found in Table 3-3.

Table 3-3: Functions for Processing the Architecture-Dependent State of a Memory
Page

Function Description
pte_present Is the page present?
pte_read May the page be read from within userspace?

pte_write
pte_exec
pte_dirty
pte_file
pte_young
pte_rdprotect
pte_wrprotect
pte_exprotect
pte_mkread
pte_mkwrite
pte_mkexec
pte_mkdirty
pte_mkclean
pte_mkyoung

pte_mkold

May the page be written to?

May the data in the page be executed as binary code?

Is the page dirty; that is, have its contents been modified?
Does the PTE belong to a nonlinear mapping?

Is the access bit (typically _PAGE_ACCESS) set?

Removes read permission for the page.

Deletes write permission for the page.

Removes permission to execute binary data in the page.

Sets read permission.

Sets write permission.

Permits execution of page contents.

Marks the page as dirty.

“Cleans” the page; that is, usually deletes the _PAGE_DIRTY bit.
Sets the accessed bit — _PAGE_ACCESSED on most architectures.

Deletes the accessed bit.
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The functions often appear in groups of three to set, delete, and query a specific attribute, for instance,
write permission for a page. The kernel assumes that access to page data can be regulated in three dif-
ferent ways — by means of write, read, and execution permission. (Execution permission indicates that
page binary data may be executed as machine code in the same way as programs are executed.) How-
ever, this assumption is a little too optimistic for some CPUs. IA-32 processors support only two control
modes to allow reading and writing. In this case, the architecture-dependent code tries to emulate the
desired semantics as best it can.

3.3.2 Creating and Manipulating Entries

Table 3-4 lists all functions for creating new page table entries.

Table 3-4: Functions for Creating New Page Table Entries

Function Description
1k ote Creates a pte entry; a page instance and the desired page access permissions must
- be passed as parameters.
fe bage Yields the address of the page instance belonging to the page described by the
prebag page table entry.
pgd_alloc
pud_alloc Reserve and initialize memory to hold a complete page table (not just a single
pmd_alloc entry).
pte_alloc
pgd_free
pud_free .
ond_free Free the memory occupied by the page table.
pte_free
set_pgd
t d .
serpu Set the value of an entry in a page table.
set_pmd
set_pte

The functions in the table must be implemented by all architectures to enable memory management code
to create and destroy page tables.

3.4 Initialization of Memory Management

In the context of memory management, initialization can have multiple meanings. On many CPUs, it is
necessary to explicitly set the memory model suitable for the Linux kernel, for example, by switching
to protected mode on IA-32 systems, before it is possible to detect the available memory and register it
with the kernel. In the course of initialization, it is also necessary to set up the data structures of memory
management, and much more. Because the kernel needs memory before memory management is fully
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initialized, a simple additional form of memory management is used during the boot process and is
discarded thereafter.

As the CPU-specific parts of memory management initialization employ many minor, subtle details of
the underlying architecture that reveal little of interest about the structure of the kernel and are simply
best practices in assembly language programming, let’s concern ourselves in this section only with ini-
tialization work on a higher level. The key aspect is initialization of the pg_data_t data structure (and its
subordinate structures) introduced in Section 3.2.2 because this is already machine-independent.

The primary purpose of the aforementioned processor-specific operations whose details we will ignore is
to investigate how much memory is available in total and how it is shared between the individual nodes
and zones of the system.

3.4.1 Data Structure Setup

Initialization of the data structures is launched from within the start_kernel global start routine that is
executed after kernel loading to render the various subsystems operational. As memory management is
a very important kernel component, it is initialized almost immediately after architecture-specific setup,
which is responsible for the technical details of detecting memory and establishing how it is distributed
in the system (Section 3.4.2 deals briefly with the implementation of system-dependent initialization on
IA-32 systems). At this point, an instance of pgdat_t has been generated for each system memory mode
to hold information on how much memory there is in the node and how it is distributed over the node
zones. The architecture-specific NODE_DATA macro implemented on all platforms is used to query the
pgdat_t instance associated with a NUMA node by reference to the number of the instance.

Prerequisites

Since the majority of systems have just one memory node, only systems of this type are examined below.
What is the situation on such systems? To ensure that memory management code is portable (so that it
can be used on UMA and NUMA systems alike), the kernel defines a single instance of pg_data_t (called
contig_page_data) in mm/page_alloc.c to manage all system memory. As the file pathname suggests,
this is not a CPU-specific implementation; in fact, it is adopted by most architectures. The implementation
of NODE_DATA is now even simpler.

<mmzone.h>
#define NODE_DATA (nid) (&contig_page_data)

Although the macro has a formal parameter for selecting a NUMA node, the same data are always
returned — there is just one pseudo-node.

The kernel can also rely on the fact that the architecture-dependent initialization code has set the
numnodes variable to the number of nodes present in the system. This number is 1 on UMA systems
because only one (formal) node is present.

At compilation time, pre-processor statements select the correct definitions for the particular
configuration.

System Start

Figure 3-8 shows a code flow diagram for start_kernel. It includes only the system initialization func-
tions associated with memory management.
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start_kernel I
— [z oo

—’| setup_per_cpu_areas I

—>| build_all_ zonelists I

> mem_init

—’| setup_per_cpu_pageset I

Figure 3-8: Kernel initialization in the
view of memory management.

Let’s take a closer look at the functions invoked in the sections below after first summarizing their tasks
as follows:

0  setup_archis an architecture-specific set-up function responsible for, among other things, ini-
tialization of the boot allocator.

0O  On SMP systems, setup_per_cpu_areas initializes per-CPU variables defined statically
in the source code (using the per_cpu macro) and of which there is a separate copy for each
CPU in the system. Variables of this kind are stored in a separate section of the
kernel binaries. The purpose of setup_per_cpu_areas is to create a copy of these data for each
system CPU.

This function is a null operation on non-SMP systems.
0  build_all_zonelists sets up the node and zone data structures (see below).

0  mem_init is another architecture-specific function to disable the bootmem allocator and perform
the transition to the actual memory management functions, as discussed shortly.

0  kmem_cache_init initializes the in-kernel allocator for small memory regions.

0  setup_per_cpu_pageset allocates memory for the first array element of the pageset arrays from
struct zone mentioned above. Allocating the first array element means, in other words, for the
first system processor. All memory zones of the system are taken into account.

The function is also responsible for setting the limits for the hot-n-cold allocator discussed at
length in Section 3.5.3.

Notice that the pageset arrays members of other CPUs on SMP systems will be initialized when
they are activated.

Node and Zone Initialization

build_all_zonelists builds the data structures required to manage nodes and their zones. Interest-
ingly, it can be implemented by the macros and abstraction mechanisms introduced above regardless of
whether it runs on a NUMA or UMA system. This works because the executed functions are available in
two flavors: one for NUMA systems and one for UMA systems.

Since this little trick is often used by the kernel, I will briefly discuss it. Suppose that a certain task
must be performed differently depending on the compile-time configuration. One possibility would
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be using two different functions and select the proper one each time it is called with some pre-processor
conditionals:

void do_something () {

#ifdef CONFIG_WORK_HARD
do_work_fast () ;
#else
do_work_at_your_leisure() ;
#endif

}

Since this requires using the pre-processor each time the function is called, this approach is consid-
ered bad style by the kernel developers. A much more elegant solution is to define the function itself
differently depending on the chosen configuration:

#ifdef CONFIG_WORK_HARD
void do_work() {
/* Get going, fast! */

}

#else
void do_work() {
/* Relax, take it easy */

}
#endif

Notice that the same name is employed for both implementations because they can never be active
at the same time. Calling the proper function is now not more complicated than calling a regular
function:

void do_something () {

do_work () ; /* Work hard or not, depending on configuration /*

}

Clearly, this variant is much more readable and is always preferred by the kernel developers (in fact,
patches using the first style will have a very hard time getting into the mainline kernel, if at all).

Let us go back to setting up the zone lists. The portion of build_all_zonelists that is currently of
interest to us (there is some more work to do for the page group mobility extensions to the page allocator,
but I will discuss this separately below) delegates all work to __build_all_zonelists, which, in turn,
invokes build_zonelists for each NUMA node in the system.

mm/page_alloc.c
static int _ build_all_zonelists(void *dummy)

{

int nid;
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for_each_online node(nid) {
pg_data_t *pgdat = NODE_DATA (nid) ;

build_zonelists (pgdat) ;

}
return 0;

}

for_each_online_node iterates over all active nodes in the system. As UMA systems have only one
node, build_zonelists is invoked just once to create the zone lists for the whole of memory. NUMA
systems must invoke the function as many times as there are nodes; each invocation generates the zone
data for a different node.

build_zonelists expects as parameter a pointer to a pgdat_t instance containing all existing information
on the node memory configuration and holding the newly created data structures.

On UMA systems, NODE_DATA returns the address of contig_page_data.

The task of the function is to establish a ranking order between the zones of the node currently being
processed and the other nodes in the system; memory is then allocated according to this order. This is
important if no memory is free in the desired node zone.

Let us look at an example in which the kernel wants to allocate high memory. It first attempts to find a
free segment of suitable size in the highmem area of the current node. If it fails, it looks at the regular
memory area of the node. If this also fails, it tries to perform allocation in the DMA zone of the node. If it
cannot find a free area in any of the three local zones, it looks at other nodes. In this case, the alternative
node should be as close as possible to the primary node to minimize performance loss caused as a result
of accessing non-local memory.

The kernel defines a memory hierarchy and first tries to allocate “cheap’ memory. If this fails, it gradually
tries to allocate memory that is “‘more costly” in terms of access and capacity.

The high memory (highmem) range is cheapest because no part of the kernel depends on memory allo-
cated from this area. There is no negative effect on the kernel if the highmem area is full — and this is
why it is filled first.

The situation in regular memory is different. Many kernel data structures must be held in this area and
cannot be kept in highmem. The kernel is therefore faced with a critical situation if regular memory is
completely full — as a result, memory is not allocated from this area until there is no free memory in the
less critical highmem area.

Most costly is the DMA area because it is used for data transfer between peripherals and the system.
Memory allocation from this area is therefore a last resort.

The kernel also defines a ranking order among the alternative nodes as seen by the current memory
nodes. This helps determine an alternative node when all zones of the current node are full.

The kernel uses an array of zonelist elements in pg_data_t to represent the described hierarchy as a
data structure.
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<mmzone.h>
typedef struct pglist_data {

struct zonelist node_zonelists[MAX_ ZONELISTS];
} pg_data_t;

#define MAX_ ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_ NR_ZONES)
struct zonelist ({

struct zone *zones[MAX_ZONES_PER_ZONELIST + 11]; // NULL delimited
Y

The node_zonelists array makes a separate entry available for every possible zone type. This entry
contains a fallback list of type zonelist whose structure is discussed below.

Because the fallback list must include all zones of all nodes, it consists of MAX_NUMNODES * MAX_NZ_ZONES
entries, plus a further element for a null pointer to mark the end of the list.

The task of creating a fallback hierarchy is delegated to build_zonelists, which creates the data struc-
tures for each NUMA node. It requires as parameter a pointer to the relevant pg_data_t instance. Before
I discuss the code in detail, let us recall one thing mentioned above. Since we have restricted our dis-
cussion to UMA systems, why would it be necessary to consider multiple NUMA nodes? Indeed, the
code shown below will be replaced with a different variant by the kernel if CONFIG_NUMA is set. However,
it is possible that an architecture selects the discontiguous or sparse memory option on UMA systems.
This can be beneficial if the address space contains large holes. The memory “blocks” created by such
holes can best be treated using the data structures provided by NUMA. This is why we have to deal with
them here.

A large external loop first iterates over all node zones. Each loop pass looks for the zone entry for the i-th
zone in the zonelist array in which the fallback list is held.

mm/page_alloc.c
static void __init build_zonelists(pg_data_t *pgdat)
{

int node, local_node;

enum zone_type i,3;

local_node = pgdat->node_id;
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zonelist *zonelist;

zonelist = pgdat->node_zonelists + 1i;

j = build_zonelists_node(pgdat, zonelist, 0, j);

The array element of node_zonelists is addressed by means of pointer manipulation, a perfectly legal
practice in C. The actual work is delegated to build_zonelist_node. When invoked, it first generates the
fallback order within the local node.
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mm/page_alloc.c

static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
int nr_zones, enum zone_type zone_type)

{

struct zone *zone;

do {
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
zonelist->zones [nr_zones++] = zone;
}
zone_type--;

} while (zone_type >= 0);
return nr_zones;

}

The fallback list entries are ordered by means of the zone_type parameter that specifies the zone from
which memory is best taken and is calculated using highest_zone as shown. Recall that it can have one
of the following values: ZONE_HIGHMEM, ZONE_NORMAL, ZONE_DMA, or ZONE_DMA32. nr_zone denotes the
position in the fallback list at which filling new entries starts. The caller has passed 0 since there is no
entry in the list yet.

The kernel then iterates over all zones from costly to less costly. In each step, populated_zone ensures
that zone->present_pages is greater than 0 for the selected zone; that is, whether there are pages in the
zone. If so, a pointer to the zone instance previously determined is added at the current position within
the zone list zonelist->zones. The current position in the zone list is held in nr_zone.

At the end of each step, the zone type is decremented by 1; in other words, it is set to a more costly zone
type. For example, if the start zone is ZONE_HIGHMEM, decrementing by 1 ensures that the next zone type
used is ZONE_NORMAL.

Consider a system with the zones ZONE_HIGHMEM, ZONE_NORMAL, and ZONE_DMA. In the first run of
build_zonelists_node, the following assignments are made:

zonelist->zones[0] = ZONE_HIGHMEM;
zonelist->zones|[1] = ZONE_NORMAL;
zonelist->zones[2] = ZONE_DMA;

Figure 3-9 illustrates this for the case in which a fallback list for node 2 of a system is successively filled.
There are a total of four nodes in the system (numnodes = 4); k = ZONE_HIGHMEM also applies.

A =Node 0 0=DMA
B = Node 1 1 = Normal

| c2 | c1 | o | D2 | D1 | Do I gzmggzg 2 = Highmem
c2 | cx | co | b2 | b1 | po | A2 | a1 | a0 | B2 | BL | BO
c2lc1t [coloe o [ oo fm | a[a0]m [m]so]
NULL

Figure 3-9: Successive filling of the fallback list.
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After the first step, the allocation targets in the list are highmem, followed by normal memory and finally
the DMA zone of the second node.

The kernel must then establish the order in which the zones of the other nodes in the system are used as
fallback targets.

mm/page_alloc.c
static void __init build_zonelists (pg_data_t *pgdat)
{

for (node = local_node + 1; node < MAX_NUMNODES; node++) {
j build_zonelists_node (NODE_DATA (node), zonelist, j, 1);

}
for (node = 0; node < local_node; node++) {

j = build_zonelists_node (NODE_DATA (node), zonelist, Jj, 1);
}

zonelist->zones[j] = NULL;

The first loop successively iterates over all nodes with a higher number than the node being processed. In
our example, there are four nodes numbered 0, 1,2, and 3 and therefore only node number 3 is left. New
entries are added to the fallback list by build_zonelists_node. This is where the meaning of j comes
into play. After the fallback targets in the local node had been found, the value of the variable was 3;
this is used as the starting position for the new entries. If node number 3 also consists of three zones, the
situation after invocation of build_zonelists is as shown in the second step of Figure 3-9.

The second for loop then generates the entries for all nodes with lower numbers than the current node.
In our example, these nodes have the numbers 0 and 1. If three zones are also present in these nodes, the
fallback list situation is as shown in the lower part of Figure 3-9.

The number of entries in the fallback list is never known exactly because the zone configurations may be
different in the various nodes of the system. The last entry is therefore assigned a null pointer to explicitly
mark the end of the list.

For any node m of a total number of N nodes, the kernel always selects the order m,m +1,m +
2,...,N,0,1,...,m—1 for the fallback nodes. This ensures that no node is overused (as compared, e.g.,

to an unchanging fallback list independent of ).

Figure 3-10 shows the fallback lists built for the third node in a system with four nodes.

DMA|Cl|CO|D1|D0|Al|A0|Bl|BO|NULLI

N0rm3||c2|c1|c0|D2|D1|D0|A2|A1|A0|32|Bl|B0|NULL|

HighMem | co | DO | A0 | B2 |NULLI

Figure 3-10: Finished fallback lists.

168



Chapter 3: Memory Management

Section 3.5.5 discusses the implementation of the buddy system that makes use of the fallback lists gen-
erated here.

3.4.2 Architecture-Specific Setup

The initialization of memory management on IA-32 systems is in some aspects a very subtle undertaking
that must overcome a few historical obstacles associated with the processor architecture. These include,
for example, switching the processor from normal mode to protected mode to grant the CPU access to the
32-bit world — a legacy from the days when compatibility with 16-bit 8086 processors was important.
Similarly, paging is not enabled by default and must be activated manually, which, for instance, involves
fiddling with the cr0 register of the processor. However, these subtleties are of no interest to us; you are
referred to the appropriate reference manuals.

Notice that our focus on the IA-32 architecture does not mean that the things discussed in

the following will be completely disconnected from all other architectures supported by the kernel.
Quite the opposite is the case: Even if many details will be unique to the IA-32 architecture, many
other architectures do things in a similar way. It’s just necessary to choose one particular architecture as
an example, and since IA-32 has not only been around for quite some time, but was also the architecture
initially supported by Linux, this is reflected in the kernel’s general design. Although there is a clear
tendency of the kernel toward 64-bit platforms, many aspects can still be traced to its IA-32 roots.

Another reason why we pick the IA-32 architecture as an example is for practical purposes: Since the
address space is only 4 GiB large, all addresses can be described with comparatively compact hexadec-
imal numbers, which are simply easier to read and work with than the long values required by 64-bit
architectures.

Interestingly, the IA-32 architecture does not exist as a separate architecture starting with kernel 2.6.24
anymore! It was merged with the AMD64 architecture to form a new, unified x86 architecture. Although
both are now constrained to the single architecture-specific directory arch/x86, a good many differences
still remain. This is why many files are available in two variants: file_32.c for IA-32, and file_64.c for
AMD64. The existence of two different files for each subarchitecture is something that is only temporarily
tough. Future development will ensure that finally a single file will contain code for both architectures.

Since the unified architecture promotes the AMD64 architecture (even more) to one of the most
important architectures supported by the kernel, I will also consider how architecture-specific

details differ for AMD64 compared to IA-32. Owing to the large number of architectures supported by
the kernel, it is not possible to discuss the specific details for all of them here. Considering one 32- and
one 64-bit architecture in the following will, however, provide the taste of how Linux does things in both
worlds, and lay the fundamentals to understand the approaches by other architectures.

Arrangement of the Kernel in Memory

Before discussing the individual memory initialization operations, we need to examine the situation in
RAM after the boot loader has copied the kernel into memory and the assembler part of the initialization
routines has completed. I concentrate on the default case in which the kernel is loaded to a fixed position
in physical RAM that is determined at compile time.

It is also possible to configure the initial position of the kernel binary in physical RAM if the crash dump
mechanism is enabled. Additionally, some embedded systems will require this ability. The configuration
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option PHYSICAL_START determines the position in RAM in this case, subjected to physical alignment
specified by the configuration option PHYSICAL_ALIGN.

Additionally, the kernel can be built as a relocatable binary, and the physical start address given at compile
time is completely ignored in this case. The boot loader can decide where to put the kernel. Since both
options are either only required in corner cases or are still considered experimental, I will not discuss
them any further.

Figure 3-11 shows the lowest megabytes of physical RAM memory in which the various parts of the
kernel image reside.

0x1000 0x100000.

0x0 4 (4 KiB) (1 MiB) g _end

I< 640 KiB >| _text _etext _edata
0x9e800

E First page frame VA Kernel text |:|Avai|ab|e
@ ROM & Kernel data m:m Initialization data

Figure 3-11: Arrangement of the Linux kernel in RAM memory.

The figure shows the first megabytes of physical memory — how much is exactly required depends on
how big the kernel binary is. The first 4,096 KiB — the first page frame — are omitted because they are
often reserved for the BIOS. The next 640 KiB would be usable in principle, but are again not used for
kernel loading. The reason is that this area is immediately followed by an area reserved for the system
into which various ROM ranges are mapped (typically the system BIOS and the graphic card ROM). It
is not possible to write to these areas. However, the kernel should always be loaded into a contiguous
memory range, and this would be possible only for kernels smaller than 640 KiB if the start address of
RAM memory were used as the start position for the kernel image.

To resolve these problems, IA-32 kernels use 0x100000 as the start address; this corresponds to the start
of the first megabyte in RAM memory. There is sufficient contiguous memory at this point to hold the
entire kernel.

The memory occupied by the kernel is split into several sections whose bounds are held in variables.

0  _text and _etext are the start and end address of the text section that contains the compiled
kernel code.

0  The data section in which most kernel variables are kept is located between _etext and _edata.

Q  Initialization data no longer needed after the kernel boot process is finished (among others, e.g.,
the BSS segment that contains all static global variables initialized to 0) are held in the last
section, which extends from _edata to _end. Once kernel initialization has completed, most of
the data can be removed from memory leaving more space for applications. The interval is split
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into smaller subintervals to control what can be removed and what cannot, but this is not of
importance for our purposes now.

Although the variables used to define section bounds are defined in the kernel source code
(arch/x86/kernel/setup_32.c), no values are assigned to them at this point. This is simply not
possible. How can the compiler know at compilation time how large the kernel will be? The exact value is
only established when the object files are linked, and it is then patched into the binary file. This action is
controlled by arch/arch/vmlinux.1d.s (for IA-32, the file is arch/x86/vmlinux_32.1d.S), where
the kernel memory layout is also defined.

The exact value varies according to kernel configuration as each configuration has text and data sections
of different sizes — depending on which parts of the kernel are enabled and which are not used. Only
the start address (_text) is always the same.

Each time the kernel is compiled, a file named System.map is generated and stored in the source base
directory. Besides the addresses of all other (global) variables, procedures, and functions defined in the
kernel, this file also includes the values of the constants shown in Figure 3-11,

wolfgang@meitner> cat System.map
ééiOOOOO A _text
ééé81ecd A _etext
é64704eo A _edata

c04c3f44 A _end

All values have the offset 0xc0000000, which is the start address of the kernel
segment if the standard 3 : 1 split between user and kernel address space is chosen.
The addresses are virtual addresses because RAM memory is mapped into the
virtual address space as a linear mapping starting at this address. The correspond-
ing physical addresses are obtained by subtraction from 0xC0000000.

/proc/iomen also provides information on the sections into which RAM memory is divided.

wolfgang@meitner> cat /proc/iomem
00000000-0009e7ff : System RAM
0009e800-0009ffff : reserved
000a0000-000bffff : Vvideo RAM area
000c0000-000c7f£ff : Video ROM
000£0000-000f£ffff : System ROM
00100000-17ceffff : System RAM
00100000-00381lecc : Kernel code
00381lecd-004704df : Kernel data

The kernel image begins above the first megabyte (0x00100000). The size of the code is approximately
2.5 MiB, and the data section accounts for about 0.9 MiB.
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The same information is also available for AMD64 systems. Here the kernel starts 2 MiB after the first

page frame, and physical memory is mapped into the virtual address space from 0xff££££££80000000
onward. The relevant entries in System.map are as follows:

wolfgang@meitner> cat System.map
fEEfE£££80200000 A _text

fEEEff££8041fc6f A _etext
fEffff£f££8056c060 A _edata

fEfff£f££8077548c A _end
This information is also contained in /proc/iomenm for the running kernel:

root@meitner # cat /proc/iomem

00100000-cff7ffff : System RAM
00200000-0041fc6e : Kernel code
0041£fc6f-0056c05f : Kernel data
006b6000-0077548b : Kernel bss

Initialization Steps

Which system-specific steps must the kernel perform once it has been loaded into memory and the assem-
bler parts of initialization have been completed? Figure 3-12 shows a code flow diagram of the individual
actions.

setup_arch I

—>| machine_specific_memory_ setup I

—>| parse_early_ param I

e
paging_init

pagetable_init

—>| zone_sizes_init I

| add_active_range I

| free_area_init_nodes I

Figure 3-12: Code flow diagram for memory
initialization on IA-32 systems.
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The figure includes only those function calls associated with memory management. All others are
unimportant in this context and are therefore omitted. Recall that setup_arch is invoked from within
start_kernel, as already noted in Section 3.4.1.

machine_specific_memory_setup is first invoked to create a list with the memory regions occupied by
the system and the free memory regions. Because the way in which this information is obtained differs
slightly between the ““subarchitectures” of the TA-32 family,'! the kernel provides a machine-specific
function that is defined in include/asm-x86/mach-type/setup.c. type can then stand for default,
voyager, or visws; I discuss only the default situation.

A map provided by the BIOS and showing the individual memory regions is used in this case.

These are not the same regions as in the NUMA concept but are areas occupied by
system ROM, for example, or by ACPI functions.

When the system is booted, the regions found are displayed by the kernel function print_memory_map.
wolfgang@meitner> dmesg

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009e800 (usable)

BIOS-e820: 000000000009e800 00000000000a0000 (reserved)
BIOS-e820: 00000000000c0000 00000000000cc000 (reserved)
BIOS-e820: 0000000000048000 0000000000100000 (reserved)
BIOS-e820: 0000000000100000 0000000017c£0000 (usable)

BIOS-e820: 0000000017c£0000 0000000017c££000 (ACPI data)
BIOS-e820: 0000000017c££000 0000000017d00000 (ACPI NVS)
BIOS-e820: 0000000017400000 0000000017e80000 (usable)

BIOS-e820: 0000000017e80000 0000000018000000 (reserved)
BIOS-e820: 00000000££800000 00000000££c00000 (reserved)
BIOS-e820: 00000000£££00000 0000000100000000 (reserved)

If this information is not provided by the BIOS (this may be the case on some older machines), the kernel
itself generates a table to mark memory in the ranges 0-640 KiB and 1 MiBend as usable.

The kernel then analyzes the command line with parse_cmdline_early, concentrating on arguments like
mem=XXX [KkmM], highmem=XXX [kKmM], Or memmap=XXX [KkmM] " " @XXX [KkmM] arguments. The administrator
can overwrite the size of available memory or manually define memory areas if the kernel calculates
an incorrect value or is provided with a wrong value by the BIOS. This option is only of relevance on
older computers. highmem= permits overwriting of the highmem size value detected. It can be used on
machines with a very large RAM configuration to limit available RAM size — as it sometimes yields
performance gains.

HThere are not only “normal” TA-32 computers but also custom products of Silicon Graphics and NCR that, although they consist
mainly of standard components, take a different approach to some things — including memory detection. Because these machines
are either very old (Voyager from NCR) or not in widespread use (Visual Workstation from SGI), I won’t bother with their oddities.
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The next major step is performed in setup_memory of which there are two versions; one for systems with
contiguous memory (in arch/x86/kernel/setup_32.c)and one for machines with discontiguous mem-
ory (in arch/x86/mm/discontig_32.c). They both have the same effect although their implementations

differ.

QO  The number of physical pages available (per node) is determined.

QO  The bootmem allocator is initialized (Section 3.4.3 describes the implementation of the allocator
in detail).

0  Various memory areas are then reserved, for instance, for the initial RAM disk needed when
running the first userspace processes.

paging_init initializes the kernel page tables and enables paging since it is not active by default on
IA-32 machines.'? Execute Disable Protection is also enabled if supported by the processor and if the ker-
nel was compiled with PAE support; unfortunately, the feature is otherwise not available. By calling
pagetable_init, the function also ensures that the direct mapping of physical memory into the kernel
address space is initialized. All page frames in low memory are directly mapped to the virtual memory
region above PAGE_OFFSET. This allows the kernel to address a good part of the available memory with-
out having to deal with page tables anymore. More details about paging_init and the whole mechanism
behind it are discussed below.

Calling zone_sizes_init initializes the pgdat_t instances of all nodes of the system. First a com-
paratively simple list of the available physical memory is prepared using add_active_range. The
architecture-independent function free_are_init_nodes then uses this information to prepare the
full-blown kernel data structures. Since this is a very important step that has numerous implications for
how the kernel manages page frames at run time, it is discussed in more detail in Section 3.5.3.

Notice that the memory-related initialization sequence is quite similar on AMD64 machines, as the code
flow diagram in Figure 3-13 shows.

The basic memory setup does not require any machine-type-specific handling, but can always be
done with setup_memory_region. Information about the available RAM is given by the so-called

E820 map supplied from the BIOS. After parsing the command-line options relevant for the

early boot process, a simple list of the available memory is created by add_active called from
e820_register_active_region, which, in turn, just walks over the information provided by parsing the
E820 map above.

The kernel then calls init_memory_mapping to directly map the available physical memory into the vir-
tual address space portion of the kernel starting from PAGE_OFFSET. contig_initmem_init is responsible
to activate the bootmem allocator.

The last function in the list, paging_init, is actually a misnomer: It does not initialize paging, but has
to deal with some set-up routines for sparse memory systems that are not interesting for our purposes.
The important thing, however, is that the function also calls free_area_init_nodes, which is as in the
IA-32 case responsible to initialize the data structures required to manage physical page frames by the
kernel. Recall that this is an architecture-independent function and relies on the information provided
by add_active_range as mentioned above. A detailed discussion of how free_area_init_nodes sets up
memory follows in Section 3.5.3.

12 All addresses are interpreted linearly if paging is not explicitly enabled.
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setup_arch I
—’| setup_memory_region I

—>| parse_early param I

—>| e820_register_active_region I

|—’| add_active_range I

—>| init_memory_ mapping I

—’| contig_initmem_init I

paging_init
| free_area_init_nodes I

Figure 3-13: Code flow diagram for memory
initialization on AMD64 systems.

Initialization of Paging

paging_init is responsible for setting up the page tables that can be used only by the kernel and are not
accessible in userspace. This has far-reaching effects on the way in which access to memory is regulated
between normal applications and the kernel itself. It is therefore important to explain the purpose of the
function before looking closely at its implementation.

As noted in Chapter 1, on IA-32 systems the kernel typically divides the total available virtual
address space of 4 GiB in a ratio of 3 : 1. The lower 3 GiB are available for user-mode applications,
and the upper gigabyte is reserved exclusively for the kernel. Whereas the current system context is
irrelevant when assigning the virtual address space of the kernel, each process has its own specific
address space.

The major reasons for this division are as follows:

0O  When execution of a user application switches to kernel mode (this always happens when, e.g.,
a system call is used or a periodic timer interrupt is generated), the kernel must be embedded in
a reliable environment. It is therefore essential to assign part of the address space exclusively to
the kernel.

Q  The physical pages are mapped to the start of the kernel address space so that the kernel can
access them directly without the need for complicated page table operations.

If all physical pages were mapped into the address space accessible to userspace processes, this would
lead to serious security problems if several applications were running on the system. Each application
would then be able to read and modify the memory areas of other processes in physical RAM. Obviously
this must be prevented at all costs.

While the virtual address portion employed for userland processes changes with every task switch, the
kernel portion is always the same. The situation is summarized in Figure 3-14.
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Figure 3-14: Connection between virtual and physical
address space on IA-32 processors.

Division of Address Space

Division of address space in a ratio of 3 : 1 is only an approximate reflection of the situation in the kernel
as the kernel address space itself is split into various sections. Figure 3-15 graphically illustrates the

situation.

high_memory \ / VMALLOC_START / VMALLOC_END
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Mapping of all _§ 2 =

physical page VMALLOC =) 3

frames a g 2

\ 8 MiBI | |l /
Y _PAGE_OFFSET PKMAP_BASE
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Figure 3-15: Division of the kernel address space on IA-32 systems.

The figure shows the structure of the page table entries used to manage the fourth
gigabyte of virtual address space. It indicates the purpose of each area of virtual
address space, and this has nothing to do with the assignment of physical RAM.

The first section of the address space is used to map all physical pages of the system into the virtual
address space of the kernel. Because this address space begins at an offset of 0xC0000000 — the fre-
quently mentioned 3 GiB — each virtual address x corresponds to the physical address x — 0xC0000000,
and is therefore a simple linear shift.

As the figure shows, the direct mapping area extends from 0xC0000000 to the high_memory address whose
exact value I discuss shortly. As intimated in Chapter 1, there is a problem with this scheme. Because the
virtual address space of the kernel comprises only 1 GiB, a maximum of 1 GiB of RAM memory can be
mapped. The fact that the maximum memory configuration on IA-32 systems (without PAE) can be up
to 4 GiB raises the question of what to do with the remaining memory.

Here’s the bad news. The kernel cannot map the whole of physical memory at once if it is larger
than 896 MiB.!3 This value is even less than the previously stated maximum limit of 1 GiB because

131t would also be possible to get rid of the split completely by introducing two 4 GiB address spaces, one for the kernel and one for
each userspace program. However, context switches between kernel and user mode are more costly in this case.
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the kernel must reserve the last 128 MiB of its address space for other purposes which I explain
shortly. Adding these 128 MiB to the 896 MiB of direct RAM mapping results in a total virtual kernel
address space of 1,024 MiB = 1 GiB. The kernel uses the two frequently employed abbreviations
“normal” and “highmem“to distinguish between pages that can be mapped directly and those
than cannot.

The kernel port must provide two macros for each architecture to translate between physical and virtual
addresses in the identity-mapped part of virtual kernel memory (ultimately this is a platform-dependent
task).!*

QO  _ pa(vaddr) returns the physical address associated with the virtual address vaddr.

Q  _ va(paddr) yields the virtual address corresponding to the physical address paddr.

Both functions operate with void pointers and with unsigned longs because both data types are equally
valid for the representation of memory addresses.

Caution: The functions are not valid to deal with arbitrary addresses from the virtual address space, but
only work for the identity-mapped part! This is why they can usually be implemented with simple linear
transformations and do not require a detour over the page tables.

IA-32 maps the page frames into the virtual address space starting from PAGE_OFFSET, and correspond-
ingly the following simple transformation is sufficient:

include/asm-x86/page_32.h
#define _ pa(x) ((unsigned long) (x)-PAGE_OFFSET)
#define _ va(x) ((void *) ((unsigned long) (x)+PAGE_OFFSET))

For what purpose does the kernel use the last 128 MiB of its address space? As Figure 3-15 shows, it is
put to three uses:

1. Virtually contiguous memory areas that are not contiguous in physical memory can be
reserved in the vmalloc area. While this mechanism is commonly used with user processes,
the kernel itself tries to avoid non-contiguous physical addresses as best it can. It usually
succeeds because most of the large memory blocks are allocated for the kernel at boot time
when RAM is not yet fragmented. However, on systems that have been running for longer
periods, situations can arise in which the kernel requires physical memory but the space
available is not contiguous. A prime example of such a situation is when modules are loaded
dynamically.

2.  Persistent mappings are used to map non-persistent pages from the highmem area into the
kernel. Section 3.5.8 takes a close look at this topic.

3. Fixmaps are virtual address space entries associated with a fixed but freely selectable page
in physical address space. In contrast to directly mapped pages that are associated with
RAM memory by means of a fixed formula, the association between a virtual fixmap address
and the position in RAM memory can be freely defined and is then always observed by the
kernel.

14The kernel places only two conditions on the functions that must remain as invariants; x| < xp = __va(x1) < __va(xp) must be
valid (for any physical addresses x;), and __va(__pa(x)) = x must be valid for any addresses x within the direct mapping.
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Two pre-processor symbols are important in this context: _ VMALLOC_RESERVE sets the size of the vmalloc
area, and MAXMEM denotes the maximum possible amount of physical RAM that can be directly addressed
by the kernel.

The splitting of memory into the individual areas is controlled by means of the constants shown in Figure
3-15. The constants may have different values depending on the kernel and system configuration. The
bound of the direct mappings is specified by high_memory.

arch/x86/kernel/setup_32.c
static unsigned long _ init setup_memory (void)

{

#ifdef CONFIG_HIGHMEM

high_memory = (void *) _ va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else

high_memory = (void *) _ va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif

}

max_low_pfn specifies the number of memory pages present on systems with less than 896 MiB. The
value is also limited upwards to the maximum number of pages that fit in 896 MiB (the exact calculation is
given in £ind_max_low_pfn). If highmem support is enabled, high_memory indicates the bound between
two memory areas, which is always at 896 MiB.

There is a gap with a minimum size of VMALLOC_OFFSET between the direct mapping of all RAM pages
and the area for non-contiguous allocations.

include/asm-x86/pgtable_32.h
#define VMALLOC_OFFSET (8*1024*1024)

This gap acts as a safeguard against any kernel faults. If out of bound addresses are accessed (these are
unintentional accesses to memory areas that are no longer physically present), access fails and an excep-
tion is generated to report the error. If the vmalloc area were to immediately follow the direct mappings,
access would be successful and the error would not be noticed. There should be no need for this addi-
tional safeguard in stable operation, but it is useful when developing new kernel features that are not yet
mature.

VMALLOC_START and VMALLOC_END define the start and end of the vmalloc area used for physically non-
contiguous kernel mappings. The values are not defined directly as constants but depend on several
parameters.

include/asm-x86/pgtable_32.h

#define VMALLOC_START (((unsigned long) high_memory + \
2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))

#ifdef CONFIG_HIGHMEM

# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
#else

# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
#endif
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The start address of the vmalloc area depends on how much virtual address space memory is used for
the direct mapping of RAM (and therefore on the high_memory variable defined above). The kernel also
takes account of the fact that there is a gap of at least VMALLOC_OFFSET between the two areas and that the
vmalloc area begins at an address divisible by vMALLOC_OFFSET. This results in the offset values shown
in Table 3-5 for different memory configuration levels between 128 and 135 MiB; the offsets start a new
cycle at 136 MiB.

Table 3-5: vmaLroc_orrseTr Values for Different RAM Sizes

Memory (MiB) Offset (MiB)
128 8

129 15

130 14

131 13

132 12

133 11

134 10

135 9

Where the vmalloc area ends depends on whether highmem support is enabled — if it is not, no space is
needed for persistent kernel mappings because the whole of RAM memory can be permanently mapped.
Depending on configuration, the area therefore ends either at the start of the persistent kernel mappings
or at the start of the fixmap area; two pages are always left as a safety gap to the vmalloc area.

The start and end of the persistent kernel mappings are defined as follows:

include/asm-x86/highmem.h
#define LAST_PKMAP 1024
#define PKMAP_BASE ( (FIXADDR_BOOT_START - PAGE_SIZE* (LAST_PKMAP + 1)) & PMD_MASK )

PKMAP_BASE defines the start address (the calculation is made relative to the fixmap area using some
constants that are discussed shortly). LAST_PKMAP defines the number of pages used to hold the

mappings.

The last memory section is occupied by fixed mappings. These are addresses that point to a random location
in RAM memory. In contrast to linear mapping at the start of the fourth gigabyte, the correlation between
virtual address and position in RAM memory is not preordained with this type of mapping but can be
freely defined, even though it cannot be changed later. The fixmap area fills the virtual address space
right up to its top end.
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include/asm-x86 /fixmap_32.h
#define __FIXADDR_TOP O0xf££££000

#define FIXADDR_TOP ((unsigned long)__ FIXADDR_TOP)
#define _ FIXADDR_SIZE (__end_of_permanent_fixed_addresses << PAGE_SHIFT)
#define FIXADDR_START (FIXADDR_TOP - _ FIXADDR_SIZE)

The advantage of fixmap addresses is that at compilation time, the address acts like a constant whose
physical address is assigned when the kernel is booted. Addresses of this kind can be de-referenced faster
than when normal pointers are used. The kernel also ensures that the page table entries of fixmaps are
not flushed from the TLB during a context switch so that access is always made via fast cache memory.

A constant is created for each fixmap address and must appear in the enum list called fixed_addresses.

include/asm-x86/fixmap_32.h
enum fixed_addresses {
FIX_ HOLE,
FIX_VDSO,
FIX_DBGP_BASE,
FIX_EARLYCON_MEM_BASE,
#ifdef CONFIG_X86_LOCAL_APIC
FIX_APIC_BASE, /* local (CPU) APIC) — required for SMP or not */
#endif

#ifdef CONFIG_HIGHMEM
FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */
FIX_KMAP_END = FIX_KMAP_BEGIN+ (KM_TYPE_NR*NR_CPUS)-1,

#endif

FIX_WP_TEST,
__end_of_fixed_addresses
Y

The kernel provides the fix_to_virt function to calculate the virtual address of a fixmap constant.

include/asm-x86/fixmap_32.h
static _ _always_inline unsigned long fix_to_virt(const unsigned int idx)

{
if (idx >= _ _end_of_fixed_addresses)
_ this_fixmap_does_not_exist();

return __ fix to_virt (idx);

}

The if query is totally removed by compiler optimization mechanisms — this is possible because the
function is defined as an inline function, and only constants are used in the query. Such optimization is
necessary because otherwise fixmap addresses would be no better than normal pointers. A formal check
is made to ensure that the required fixmap address is in the valid area. __end_of_fixed_adresses is
the last element of fixed_addresses and defines the maximum possible number. The pseudo-function
__this_fixmap_does_not_exist (for which no definition exists) is invoked if the kernel accesses an
invalid address. When the kernel is linked, this leads to an error message indicating that no image can
be generated because of undefined symbols. Consequently, kernel faults of this kind are detected at
compilation time and not when the kernel is running.
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When a valid fixmap address is referenced, the comparison in the if query yields a positive value. Since
both comparison objects are constants, the query need not be executed and is therefore removed.

__fix_to_virtis defined as a macro. Owing to the inline property of fix_to_virt, it is copied directly
to the point in the code where the fixmap address query is executed. This macro is defined as follows:

include/asm-x86/fixmap_32.h
#define __ fix_to_virt(x) (FIXADDR_TOP - ((x) << PAGE_SHIFT))

Starting at the top (and not from the bottom as usual), the kernel goes back n pages to determine the virtual
address of the n-th fixmap entry. As, once again, only constants are used in this calculation, the compiler
is able to compute the result at compilation time. The address in RAM at which the corresponding virtual
address is located has not yet been occupied as a result of the above division of memory.

The association between the fixmap address and physical page in memory is established by
set_fixmap (fixmap, page_nr) and set_fixmap_nocache (Whose implementation is not discussed).
They simply associate the corresponding entry in the page tables with a page in RAM. Unlike
set_fixmap, set_fixmap_nocache disables hardware caching for the page involved as this is sometimes
necessary.

Notice that some other architectures also provide fixmaps, including AMD64.

Alternative Division

Dividing virtual address space in a 3 : 1 ratio is not the only option. Relatively little effort is needed to
select a different division because all bounds are defined by constants in the sources. For some purposes
it may be better to split the address space symmetrically, 2 GiB for user address space and 2 GiB for
kernel address space. __PAGE_OFFSET must then be set to 0x80000000 instead of the typical default of
0xC0000000. This division is useful when the system performs tasks that require a large amount of mem-
ory for the kernel but little for the user processes (such tasks are rare). As any change to how memory
is divided requires recompilation of all userspace applications, the configuration statements include no
option to split memory differently, although this would be easy to do in principle.

Basically, it is possible to split memory by manually modifying the kernel sources, but the kernel offers
some default splitting ratios. _ PAGE_OFFSET is then defined as follows:

include/asm-x86/page_32.h
#define _ PAGE_OFFSET # ((unsigned long)CONFIG_PAGE_OFFSET)

Table 3-6 collects all possibilities for splitting the virtual address space and the resulting maximal amount
of RAM that can be mapped.

Splitting the kernel in ratios other than 3 : 1 can make sense in specific scenarios, for instance, for
machines that mainly run code in the kernel — think about network routers. The general case, however,
is best served with a 3 : 1 ratio.

Splitting the Virtual Address Space

paging_init is invoked on IA-32 systems during the boot process to split the virtual address space as
described above. The code flow diagram is shown in Figure 3-16.
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Table 3-6: Different Splitting Ratios for the 1A-32 Virtual Address Space, and the
Resulting Maximum Identity-Mapped Physical Memory.

Ratio CONFIG_PAGE_OFFSET MAXMEM(MiB)
3:1 0xC0000000 896
~3:1 0xB0000000 1152
2:2 0x80000000 1920
~2:2 0x78000000 2048
1:3 0x40000000 2944

paging_init I

—| PAE enabled?

—’| pagetable_init I

—>| Use PSE, PGE extensions if possible ‘

—>| kernel physical_mapping_init I

—>1 Initialize fixmaps

_’| permanent_kmaps_init I

—>| __flush_all_tlb I

Figure 3-16: Code flow diagram for paging init.

pagetable_init first initializes the page tables of the system using swapper_pg_dir as a basic (this
variable was previously used to hold the provisional data). Two extensions available on all modern
IA-32 variants are then enabled (only a few very old Pentium implementations do not support these).

Q  Support for large memory pages. The size of specially marked pages is 4 MiB instead of the usual
4 KiB. This option is used for kernel pages because they are never swapped out. Increasing the
page size means that fewer page table entries are needed, and this has a positive impact on the
translation lookaside buffers (TLBs), which are then less burdened with kernel data.

Q  If possible, kernel pages are provided with a further attribute (_PAGE_GLOBAL) that is why the
__PAGE_GLOBAL bit is activated in the _ PAGE_KERNEL and __PAGE_KERNEL_EXEC variables. These
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variables specify the flags set for the kernel itself when pages are allocated; these settings are
therefore automatically transferred to the kernel pages.

The TLB entries of pages with a set _PAGE_GLOBAL bit are not flushed from the TLBs during con-
text switches. Since the kernel is always present at the same location in the virtual address space,
this enhances system performance, a welcome effect as kernel data must be made available as
quickly as possible.

Mapping of the physical pages (or of the first 896 MiB, as discussed above) into virtual address
space as of PAGE_OFFSET is done with the help of kernel physical_mapping_init. The kernel
successively scans all relevant entries of the various page directories and sets the pointers to the correct
values.

Then the areas for fixmap entries and the persistent kernel mappings are set up. Again, this equates to
filling the page tables with appropriate values.

Once page table initialization with pagetable_init has been concluded, the cr3 register is supplied with
a pointer to the page global directory used (swapper_pg_dir). This is necessary to activate the new page
tables. Reassigning the cr3 register has exactly this effect on IA-32 machines.

The TLB entries must also be flushed because they still contain boot memory allocation data.
__flush_all_tlb does the necessary work. In contrast to TLB flushes during context switches, pages
with a _PAGE_GLOBAL bit are also flushed.

kmap_init initializes the global variable kmap_pte. The kernel uses this variable to store the page table
entry for the area later used to map pages from the highmem zone into kernel address space. Besides,
the address of the first fixmap area for highmem kernel mappings is stored in the global variable
kmem_vstart.

Initialization of the Hot-n-Cold Cache

I have already mentioned the per-CPU (or hot-n-cold) cache in Section 3.2.2.. Here we deal with the
initialization of the associated data structures and the calculation of the “watermarks”used to control
cache filling behavior.

zone_pcp_init is responsible for initializing the cache. The kernel calls the function from
free_area_init_nodes, which is, in turn, invoked during boot on both IA-32 and AMD64.

mm/page_alloc.c
static __devinit void zone_pcp_init (struct zone *zone)
{

int cpu;

unsigned long batch = zone_batchsize (zone) ;

for (cpu = 0; cpu < NR_CPUS; cpu++) {
setup_pageset (zone_pcp (zone, cpu), batch);
}
if (zone->present_pages)
printk (KERN_DEBUG " %s zone: %1lu pages, LIFO batch:%lu\n",
zone->name, zone->present_pages, batch);
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Once the batch size (which is the basis for calculating the minimum and maximum fill level) has

been determined with zone_batchsize, the code iterates over all CPUs in the system and invokes
setup_pageset to fill the constants of each per_cpu_pageset instance. The zone_pcp macro used when
this function is invoked selects the pageset instance of the zone associated with the CPU currently being
examined.

Let us take a closer look at how the watermark is calculated.

mm/page_alloc.c
static int _ devinit zone_batchsize(struct zone *zone)

{
int batch;

batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;

batch /= 4;
if (batch < 1)
batch = 1;
batch = (1 << (fls(batch + batch/2)-1)) - 1;

return batch;

}

The code calculates batch so that it corresponds to roughly 25 percent of a thousandth of the pages
present in the zone. The shift operation also ensures that the value calculated has the form 2" — 1 because
it has been established empirically that this minimizes cache aliasing effects for most system loads. f1s
is a machine-specific operation to yield the last set bit of a value. Note that this alignment will cause the
resulting values to deviate from 25 percent of one-thousandth the zones pages. The maximal deviation
arises for that case batch = 22. Since 22 + 11 — 1 = 32, £1s will find bit 5 as last set bit in the number, and
1 << 5 -1 = 31. Because the deviation will usually be smaller, it can be neglected for all practical purposes.

The batch size does not increase when the memory in the zone exceeds 512 MiB. For systems with a page
size of 4,096 KiB, for instance, this limit is reached when more than 131,072 pages are present. Figure 3-17
shows how the batch size evolves with the number of pages present in a zone.

The batch value makes sense when we consider how batch is used to calculate the cache limits in
setup_pageset.

mm/page_alloc.c
inline void setup_pageset (struct per_cpu_pageset *p, unsigned long batch)

{

struct per_cpu_pages *pcp;
memset (p, 0, sizeof (*p));

pcp = &p->pcpl0]; /* hot */
pcp->count = 0;

pcp->high = 6 * batch;

pcp->batch = max(1UL, 1 * batch);
INIT_LIST_HEAD (&pcp->list);
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pcp = &p->pcpll]; /* cold*/
pcp->count = 0;

pcp->high = 2 * batch;

pcp->batch = max(1UL, batch/2);
INIT_LIST_HEAD (&pcp->list);
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Figure 3-17: Batch sizes dependent on the amount of memory present (left-hand side) on the zone for
various page sizes. The graph on the right-hand side shows the dependency against the number of pages
present in a zone.

As the lower limit used for hot pages is 0 and the upper limit is 6 *batch, the average number of pages in
the cache will be around 4 *batch because the kernel tries to not let the caches drain too much. batch*4,
however, corresponds to a thousandth of the total number of zone pages (this is also the reason why
zone_batchsize tried to optimize the batch size for 25 percent of one-thousandth of the total pages). The
size of the L2 cache on IA-32 processors is in the range between 0.25 and 2 MiB, so it makes no sense to
keep much more memory in a hot-n-cold cache than would fit into this space. As a rule of thumb, the
cache size is one-thousandth of the main memory size; consider that current systems are equipped with
between 1 and 2 GiB of RAM per CPU, so the rule is reasonable. The computed batch size will thus likely
allow that the pages on the hot-n-cold cache fit into the CPU’s L2 cache.

The watermarks of the cold list are slightly lower because cold pages not held in the cache are used only
for actions that are not performance-critical (such actions are, of course, in the minority in the kernel,).
Only double of the batch value is used as the upper limit.

The pcp->batch size determines how many pages are used at once when the list needs to be refilled. For
performance reasons, a whole chunk of pages rather than single pages is added to the list.

The number of pages in each zone is output at the end of zone_pcp_init together with the calculated
batch sizes as shown in the boot logs (for a system with 4 GiB of RAM in the example below).

root@meitner # dmesg | grep LIFO
DMA zone: 2530 pages, LIFO batch:0
DMA32 zone: 833464 pages, LIFO batch:31
Normal zone: 193920 pages, LIFO batch:31
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Registering Active Memory Regions

Inoted above that initialization of the zone structures is an extensive task. Luckily this task is identical on
all architectures. While kernel versions before 2.6.19 had to set up the required data structures on a per-
architecture basis, the approach has become more modular in the meantime: The individual architectures
only need to register a very simple map of all active memory regions, and generic code then generates
the main data structures from this information.

Notice that individual architectures can still decide to set up all data structures on their own without
relying on the generic framework provided by the kernel. Since both IA-32 and AMD64 let the kernel do
the hard work, I will not discuss this possibility any further. Any architecture that wants to enjoy the pos-
sibilities offered by the generic framework must set the configuration option ARCH_POPULATES_NODE_MAP.
After all active memory regions are registered, the rest of the work is then performed by the generic
kernel code.

An active memory region is simply a memory region that does not contain any holes. add_active_range
must be used to register a region in the global variable early_node_map.

mm/page_alloc.c
static struct node_active_region _ meminitdata early node_map [MAX_ACTIVE_REGIONS] ;
static int _ _meminitdata nr_nodemap_entries;

The number of currently registered regions is denoted by nr_nodemap_entries. The maximal number
of distinct regions is given by MAX_ACTIVE_REGIONS. The value can be set by the architecture-specific
code using CONFIG_MAX_ACTIVE_REGIONS. If not, the kernel allows for registering 256 active regions per
default (or 50 regions per NUMA node if it is running on a system with more than 32 nodes). Each region
is described by the following data structure:

<mmzone.h>

struct node_active_region {
unsigned long start_pfn;
unsigned long end_pfn;
int nid;

Y

start_pfnand end_pfn denote the first and last page frame in a continuous region, and nid is the NUMA
ID of the node to which the memory belongs. UMA systems naturally set this to 0.

An active memory region is registered with add_active_range:

mm/page_alloc.c
void _ _init add_active_range (unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)

When two adjacent regions are registered, then add_active_regions ensures that they are merged to a
single one. Besides, the function does not present any surprises.

Recall from Figures 3-12 and 3-13 that the function is called from zone_sizes_init on IA-32 systems,

and in e820_register_active_regions on AMD64 systems. Thus I will briefly discuss these
functions.
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Registering Regions on I1A-32

Besides calling add_active_range, the function zone_sizes_init stores the boundaries of the different
memory zones in terms of page frames.

arch/x86/kernel/setup_32.c

void _ init zone_sizes_init(void)

{
unsigned long max_zone_pfns[MAX_NR_ZONES] ;
memset (max_zone_pfns, 0, sizeof (max_zone_pfns));
max_zone_pfns[ZONE_DMA] =

virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;

max_zone_pfns [ZONE_NORMAL] = max_low_pfn;

#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
add_active_range (0, 0, highend pfn);

#else
add_active_range (0, 0, max_low_pfn);

#endif

free_area_init_nodes (max_zone_pfns) ;

}

MAX_DMA_ADDRESS is the highest suitable memory address for DMA operations. The constant is
declared as PAGE_OFFSET+0x1000000. Recall that the physical pages are mapped into the virtual
starting from PAGE_OFFSET, and the first 16 MiB — hexadecimal 0x1000000 — are suitable for DMA
operations. Conversion with virt_to_phys yields the address in physical memory, and shifting
right by PAGE_SHIFT bits effectively divides this figure by the page size and produces the number
of pages that can be used for DMA. Unsurprisingly, the result is 4,096 since IA-32 uses pages

of 4 KiB.

max_low_pfn and highend_pfn are global constants to specify the highest page number in the low
(usually < 896 MiB if 3 : 1 split of the address space is used) and high memory ranges that were
filled before.

Notice that free_area_init_nodes will combine the information in early_mem_map and max_zone_pfns:
The active ranges for each memory region are selected, and architecture-independent data structures are
constructed.

Registering Regions on AMD64

Registering the available memory is split between two functions on AMD64. The active memory regions
are registered as follows:

arch/x86/kernel/e820_64.c
e820_register_active_regions(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long ei_startpfn;
unsigned long ei_endpfn;
int 1i;
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for (i = 0; 1 < e820.nr_map; i++)
if (e820_find_active_region(&e820.map[i],
start_pfn, end_pfn,
&ei_startpfn, &ei_endpfn))
add_active_range (nid, ei_startpfn, ei_endpfn);

}

Essentially the code iterates over all regions provided by the BIOS and finds the active region for each
entry. This is interesting because add_active_range is potentially called multiple times in contrast to the
IA-32 variant.

Filling in max_zone_pfns is handled by paging_init:

arch/x86/mm/init_64.c

void __init paging_init (void)

{
unsigned long max_zone_pfns[MAX_NR_ZONES] ;
memset (max_zone_pfns, 0, sizeof (max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;

max_zone_pfns [ZONE_NORMAL] = end_pfn;

free_area_init_nodes (max_zone_pfns) ;

}

The page frame boundaries for the 16- and 32-bit DMA regions are stored in pre-processor symbols that
translate the 16 MiB and 4 GiB ranges into page frames:

include/asm-x86/dms_64.h
/* 16MB ISA DMA zone */
#define MAX DMA_PFN ((16*1024*1024) >> PAGE_SHIFT)

/* 4GB broken PCI/AGP hardware bus master zone */
#define MAX_DMA32_PFN ((4UL*1024*1024*1024) >> PAGE_SHIFT)

end_pfn is the largest page frame number detected. Since AMD64 does not require high memory, the
corresponding entry in max_zone_pfns remains NULL.

Address Space Setup on AMD64

The address space setup on AMD64 systems is easier than for IA-32 in some respects, but unfortunately
also harder in others. While having a 64-bit virtual address space allows for avoiding oddities like high
memory, things are complicated by another factor: The address space spanned by 64 bits is so large
that there are currently simply no applications that would require this. Current implementations there-
fore implement a smaller physical address space that is only 48 bits wide. This allows for simplifying and
speeding up address translation without losing flexibility: 2*® bits still allows addressing 256 TiB, or
256 x 1,024 GiB — which is plenty even for Firefox!

While the physical address space is restricted to 48 bits, addressing the virtual address space is still per-
formed with 64-bit pointers, and the space therefore has to span 64 bits formally. This raises a problem,
though: Some parts of the virtual address space cannot be addressed because effectively only 48 bits can
be handled.
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Since future hardware implementations might support larger physical address spaces, it is not possible
to simply to remap the subset that is not addressable to a different subset of the address space. Suppose
that any program would rely on pointers into the unimplemented address space to be remapped to some
part of the regular address space. Next-generation processors that implement more physical address bits
would lead to a different behavior and thus break all existing code.

Clearly, accessing the unimplemented regions must be hindered by the processor. One possibility to
enforce this would be to forbid use of all virtual addresses larger than the physical address space. This,
however, is not the approach chosen by the hardware designers. Their solution is based on a sign extension
approach, which is illustrated in Figure 3-18.

64
cernel 2 Higher ox FFFF  FFFF  FFFF  FFFF Bits [0,46] arbitrary
GINEISPACE | gt [47, 63] not set
ox FFFF 8000 0000 0000

Non-canonical area

Lower 0x 0000 7FFF FFFF FFFF | Bits [0,46] arbitrary
half [47, 63] not set

Userspace
0

Figure 3-18: Possible virtual versus implemented physical address
space on AMD64 machines.

The first 47 bits of a virtual address, that is, [0, 46], can be arbitrarily set. Bits in the range [47, 63], however,
always need to have the same value: Either all are 0, or all are 1. Such addresses are called canonical. They
divide the total address space into three parts: a lower half, a higher half, and a forbidden region in
between. Together both portions form an address space that spans exactly 2% bits. The address space for
the lower half is [0x0, 0x0000 7FFF FFFF FFFF], while the subset for the top half is [0xFFF 800 0000 0000,
0xFFFF FFFF FFFF FFFF]. Notice that 0x0000 7FFF FFFF FFFF is a binary number with the lower 47 bits set
to 1 and all other bits not set, so it is the last address before the non-addressable region. Similarly, 0xFFFF
8000 0000 0000 has the bits [48,63] set and is thus the first valid address in the higher half.

Partitioning the virtual address space into two parts is nothing the kernel is afraid of: It actually relies
on a separation of the address space into kernel and user parts on most architectures.!® The separation
enforced by the AMD64 therefore lends itself naturally to implement the separation between user and
kernel address space. Figure 3-19 shows how the Linux kernel lays out the virtual address space on
AMD64 machines. !¢

The complete lower half of the accessible address space is used as userspace, while the complete upper
half is reserved for the kernel. Since both spaces are huge, no fiddling with splitting ratios and the like is
required.

The kernel address space starts with a guard hole to prevent incidental access on the non-canonical
portion of the address space that would result in a general protection exception raised by the processor.
Physical pages are identity-mapped into kernel space starting from PAGE_OFFSET. 2% bits (as specified by
MAXMEM) are reserved for physical page frames. This amounts to 16 TiB of memory.

15There are also machines that allow a different approach. UltraSparc processors provide different virtual address spaces for user
and kernel space per default, so a separation of one address space into two components is not required.
16The kernel sources contain some documentation about the address space layout in Documentation/x86_64/mm. txt.
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include/asm-x86/pgtable_64.h
#define _ AC(X,Y) (X##Y)
#define _AC(X,Y) __AC(X,Y)

#define _ PAGE_OFFSET _AC(0xff££810000000000, UL)
#define PAGE_OFFSET __ PAGE_OFFSET
#define MAXMEM _AC(Ox3fffffffffff, UL)
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Figure 3-19: Organization of the virtual address space on AMD64 systems. The image is not drawn to
scale, naturally.

Note that _Ac is used to mark a given constant with a suffix. _Ac(17,UL) becomes (17UL), for instance,
which makes the constant an unsigned long. This can be handy in C code, but is not allowed in assembler
code, where the _AC macro directly resolves to the given value without postfix.

Another guard hole is placed between the identity-mapped region and the area for vmalloc area, which
lies between VMALLOC_START and VMALLOC_END:

include/asm-x86/pgtable_64.h
#define VMALLOC_START _AC (0xfff££c20000000000, UL)
#define VMALLOC_END _AC(Oxffffelffffffffff, UL)

The virtual memory map (VMM) area immediately behind the vmalloc area is 1 TiB in size. It is only
useful on kernels that use the sparse memory model. Converting between virtual and physical page
frame number via pfn_to_page and page_to_pfn can be costly on such machines because all holes in
the physical address space must be taken into account. Starting with kernel 2.6.24, a simpler solution is
offered by generic code in mm/sparse-memmap. c: The page tables for the VMM area are set up such that
all struct page instances located in physical memory are mapped into the area without any holes. This
provides a virtually contiguous area in which only the active memory regions are included. The MMU
therefore automatically aids the translation between virtual and physical numbers that does not need to
be concerned with holes anymore. This accelerates the operation considerably.

Besides simplifying the translation between physical and virtual page numbers, the technique also has
benefits for the implementation of the auxiliary functions virt_to_page and page_address, because the

required calculations are likewise simplified.

The kernel text is mapped into the region starting from __START_KERNEL_MAP, with a compile-time con-
figurable offset given by CONFIG_PHYSICAL_START. Setting the offset is required for a relocatable kernel,
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but it is ensured that the resulting address __START_KERNEL is aligned with __ KERNEL_ALIGN. The region
reserved for the kernel binary is KERNEL_TEXT_SIZE, currently defined to 40 MiB.

include/asm-x86/page_64.h

#define _ PHYSICAL_START CONFIG_PHYSICAL_START

#define _ KERNEL_ALIGN 0x200000

#define _ START KERNEL (__START_KERNEL_map + __ PHYSICAL_START)
#define __ START KERNEL_map _AC(Oxfff£££££80000000, UL)

#define KERNEL_TEXT_SIZE (40%1024*1024)

#define KERNEL_TEXT_ START _AC(Oxfff£f£f£££80000000, UL)

Finally, some space to map modules into must be provided, and this is in the region from MODULES_VADDR
to MODULES_END:

include/asm-x86/pgtable_64.h

#define MODULES_VADDR _AC (Oxfffffff£88000000, UL)
#define MODULES_END _AC (Oxfffffffff£f£f00000, UL)
#define MODULES_LEN (MODULES_END - MODULES_VADDR)

The available amount of memory is computed in MODULES_LEN; currently, this amounts to approximately
1,920 MiB.

3.4.3 Memory Management during the Boot Process

Although memory management is not yet initialized, the kernel needs to reserve memory during the
boot process so that it can create various data structures. A bootmem allocator that assigns memory in the
early boot phase is used to do this.

Obviously, what is required is a system that focuses on simplicity rather than on performance and univer-
sality. Kernel developers therefore decided to implement a first-fit allocator as the simplest conceivable
way of managing memory in the boot phase.

A bitmap with (at least) as many bits as there are physical pages present in the system is used to manage
pages. Bit value 1 indicates a used page and 0 a free page.

When memory needs to be reserved, the allocator scans the bitmap bit by bit until it finds a posi-
tion big enough to hold a sufficient number of contiguous pages, literally the first-best or first-fit
position.

This procedure is not very efficient because the bit chain must be scanned right from the start for each
allocation. It cannot therefore be used for memory management once the kernel has been fully initialized.
The buddy system (used in conjunction with the slab, slub, or slob allocator) is a far better alternative, as
discussed in Section 3.5.5.

Data Structures

Even the first-fit allocator has to manage some data. The kernel provides an instance of the bootmem_data
structure (for each node in the system) for this purpose. Of course, the memory needed for the struc-
ture cannot be reserved dynamically but must already be allocated to the kernel at compilation time.

191



Chapter 3: Memory Management

Reservation is implemented in a CPU-independent way on UMA systems (NUMA systems employ
architecture-specific solutions). The bootmem_data structure is defined as follows:

<bootmem.h>
typedef struct bootmem_data {

unsigned long node_boot_start;
unsigned long node_low_pfn;
void *node_bootmem_map;
unsigned long last_offset;
unsigned long last_pos;
unsigned long last_success;

struct list_head list;

} bootmem_data_t;

When I use the term page below, I always mean a physical page frame.

Q

Q

node_boot_start holds the number of the first page in the system; this is zero for most architec-
tures.

node_low_pfn is the number of the last page of the physical address space that can be managed
directly; in other words, it is the end of ZONE_NORMAL.

node_bootmem_map is a pointer to the memory area in which the allocation bitmap is stored. On
IA-32 systems, the memory area immediately following the kernel image is used for this pur-
pose. The corresponding address is held in the _end variable, which is automatically patched
into the kernel image during linking.

last_pos is the number of the page last allocated. last_offset is used as an offset within the
page if not all of the page memory was requested. This enables the bootmem allocator to assign
memory areas that are smaller than a complete page (the buddy system cannot do this).

last_success specifies the point in the bitmap at which allocation was last successful and is
used as the starting point for new reservations. Although this makes the first-fit algorithm a little
faster, it is still no real substitute for more sophisticated techniques.

Systems with discontinuous memory can require more than one bootmem allocator. This is typ-
ically the case on NUMA machines that register one bootmem allocator per node, but it would,
for instance, also be possible to register one bootmem allocator for each continuous memory
region on systems where the physical address space is interspersed with holes.

A new boot allocator is registered with init_bootmem_core, and the list of all registered alloca-
tors is headed by the global variable bdata_list.

On UMA systems, the single bootmem_t instance required is called contig_bootmem_data. It is associated
with contig_page_data by means of the bdata element.

mm/page_alloc.c
static bootmem_data_t contig bootmem_data;
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };

Initialization

Initializing the bootmem allocator is an architecture specific process that additionally depends on
the memory layout of the machine in question. As discussed above, IA-32 uses setup_memory,
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which calls setup_bootmem_allocator to initialize the bootmem allocator, whereas AMD64 uses
contig_initmem_init.

The code flow diagram in Figure 3-20 illustrates the individual steps involved in the initialization of the
bootmem allocator on IA-32 systems, and the corresponding diagram for AMD64 is shown in Figure 3-21.

Determine usable low memory page frames |

setup_bootmem_allocator I

> init_bootmem

_’| register_bootmem_ low_pages I

—>| reserve_bootmem (bootmap, bootmap_size) I

—>| Call reserve_bootmem 10 reserve special regions |

Figure 3-20: Initialization of the bootmem allocator on IA-32 machines.

contig_initmem I

—’| bootmem_ bootmap_pages I

—>| Find suitable memory area |

> init_bootmem

—’| register_bootmem with_active_regions I

—>| reserve_bootmem (bootmap,bootmap_size) I

Figure 3-21.: Initialization of the bootmem allocator on
AMD64 machines.

Initialization for IA-32

setup_memory analyzes the detected memory regions to find the maximal page frame number in the low
memory region; high memory is of no use for the bootmem allocator because it is too complicated to
handle. The global variable max_low_pfn holds the number of the highest mappable page. The kernel
reports the amount of memory found in its boot logs.

wolfgang@meitner> dmesg

OMB HIGHMEM available.
511MB LOWMEM available.
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Based on this information, setup_bootmem_allocator is then responsible to initiate all necessary steps to
initialize the bootmem allocator. It first invokes the generic function init_bootmem, which itself is a front
end for init_bootmem_ core.

The purpose of init_bootmem_core is to perform the first initialization step of the bootmem allocator.
The previously detected range of low-memory page frames is entered in the responsible bootmem_data_t
instance, in this case, contig_bootmem_data. All pages are initially marked as used in the bitmap
contig_bootmemdata->node_bootmem_map. Because init_bootmem_core is an architecture-independent
function, it cannot yet know which pages are available for use and which are not. Some need special
handling for architectural reasons, for example, page 0 on IA-32 systems. Some are already used, for
instance, by the kernel image. The pages that can actually be used must be explicitly marked by the
architecture-dependent code.

This marking is done with two architecture-specific functions: register_bootmem_low_pages frees
all potentially usable memory pages by setting the corresponding bits in the bitmap to 0 so that the
pages are marked as unused. IA-32 systems are supported in this task by the BIOS, which provides
the kernel with a list of all usable memory areas — the e820 map — at an earlier point during
initialization.

Since the bootmem allocator requires some memory pages to manage the reservation bitmap, these must
be reserved first by calling reserve_bootmem.

However, there are still more regions that are already in use and must be marked accordingly. For
this purpose, reserve_bootmem registers the corresponding pages after the event. The exact number
of regions that must be registered depends highly on the kernel configuration. It is, for instance,
required to reserve the zeroth page because this page is a special BIOS page on many machines
that is required for some machine-specific functions to work properly. Other reserve_bootmem calls
reserve configuration-dependent memory areas, for ACPI data or SMP boot-time configurations, for
instance.

Initialization for AMD64

While the technical details of bootmem initialization differ on AMD64, the general structure is rather
similar to the IA-32 case. This time contig_initmen is the responsible dispatcher.

First of all, bootmem_bootmap_bitmap computes the number of pages required for the bootmem
bitmap. Using the information provided by the BIOS in the 820 map, this allows — as on IA-
32 — for finding a continuous memory region of suitable size that is populated with proper
RAM pages.

This information is then filled into the architecture-independent bootmem data structure using
init_bootmem. As before, the function marks all pages as reserved, and the free pages must now
be selected. free_bootmem_with_active_regions can once more use the information in the e820
map to free all memory regions that were reported as usable by the BIOS. Finally, a single call to
reserve_bootmen is sufficient to register the space required for the bootmem allocation bitmap.
In contrast to IA-32, it is not required to reserve space for legacy information on magical places
in memory.
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Interface to the Kernel
Allocating Memory

The kernel provides a variety of functions for reserving memory during initialization. The following
functions are available on UMA systems:

a alloc_bootmem(size) and alloc_bootmem_pages (size) reserve memory whose size is
expressed by size in ZONE_NORMAL; data are aligned so that memory begins either at an ideal
position for the L1 cache or on a page boundary.

Even though the name alloc_bootmem pages suggests that the required size is
specified in page units, _pages refers only to the alignment of the data.

a alloc_bootmem_low and alloc_bootmem_low_pages operate in the same ways as the above
functions but take the area zONE_DMA that is suitable for DMA operations as their source. Con-
sequently, the functions should only be used when DMA memory is required.

Basically the same API applies for NUMA systems, but the suffix _node is appended to the function
name. As compared with the UMA functions, an additional parameter is required to specify which node
is used for memory reservation.

These functions are all front ends for __alloc_bootmem, which delegates the real work to
__alloc_bootmem_nopanic. Since more than one bootmem allocator can be registered (recall
that they are all kept in a global list), __alloc_bootmem_core iterates over all of them until one
succeeds.

On NUMA systems, __alloc_bootmem_node is used to implement the API functions. First, work is passed
on to __alloc_bootmem_core to try the allocation on the specific bootmem allocator of the node. If this
fails, the function falls back to __alloc_bootmem, which tries all nodes.

mm/bootmem.c
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
unsigned long goal)

__alloc_bootmem requires three parameters to describe a request: size is the size of the desired memory
area, align indicates the alignment of the data, and goal specifies the start address at which the search
for a suitable free area is to begin. The front ends use the function as follows:

<bootmem.h>
#define alloc_bootmem(x) \

__alloc_bootmem( (x), SMP_CACHE_BYTES, _ pa(MAX_DMA_ADDRESS))
#define alloc_bootmem_low(x) \

__alloc_bootmem( (x), SMP_CACHE_BYTES, 0)
#define alloc_bootmem_pages (x) \

__alloc_bootmem( (x), PAGE_SIZE, __ pa(MAX_DMA_ADDRESS))
#define alloc_bootmem_low_pages (x) \

__alloc_bootmem((x), PAGE_SIZE, 0)
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The desired allocation size (x) is forwarded unchanged to __alloc_bootmem, but there are two options
for alignment in memory: SMP_CACHE_BYTES aligns the data on most architectures so that they are ideally
positioned in the L1 cache (despite its name the constant is, of course, also defined on uniprocessor
systems). PAGE_SIZE aligns the data on the page boundaries. The latter alignment is ideal for allocating
one or more complete pages, but the former produces better results when parts of pages are allocated.

The distinction between low and normal memory is made by means of the start address. Searches for
DMA-suitable memory begins at the address 0, whereas requests for normal memory with RAM are
processed from MAX_DMA_ADDRESS upward (__pa translates the memory address into a page number).

__alloc_bootmem_core is a relatively extensive function (efficiency is not required during booting) that I
won't discuss in detail as the main thing it does is to implement the first-fit algorithm already described.
However, the allocator has been enhanced to permit reservation not only of complete memory pages but
also smaller parts thereof.

The function performs the following (outline) actions:

1. Starting at goal, the page bitmap is scanned for a free area to satisfy the allocation request.

2.  If the page found immediately follows the last allocated page held in bootmem data->
last_pos, the kernel checks by reference to bootmem_data->last_offset whether the
required memory (including the space needed to align the data) can be allocated in the last
page or can at least start there.

3.  The bits of the newly allocated pages in the block bitmap are set to 1. The number of the last
page allocated is also stored in bootmem_data->last_pos. If the page is not fully allocated,
the appropriate offset is held in bootmem_data->last_offset; otherwise, this value is set
to 0.

Releasing Memory

The kernel provides the free_bootmem function to free memory. It requires two parameters — the start
address and the size of the area to be freed. The name of the equivalent function on NUMA systems is
not surprisingly free_bootmem_node; it expects an additional parameter to define the appropriate node.

<bootmem.h>
void free_bootmem(unsigned long addr, unsigned long size);
void free_bootmem_node (pg_data_t *pgdat,

unsigned long addr,

unsigned long size);

Both versions delegate their work to __free_bootmem_core. Only whole pages can be freed because
the bootmem allocator does not keep any information about page divisions. The kernel uses
__free_bootmem_core to first calculate the pages whose contents are fully held in the area to be freed.
Pages whose contents are only held in part in this area are ignored. The corresponding entries in the
page bitmap are set to 0 to conclude page freeing.

This procedure conceals the risk that a page is not freed if parts of its contents are returned in successive
requests. If the first half of a page and at some time later the second half of the same page are freed,
the allocator has no way of knowing that the entire page is no longer in use and can therefore be freed.
The page simply remains “in use,”” although this is not the case. Nevertheless, this is not a big problem
because free_bootmen is very rarely used. Most memory areas allocated during system initialization are
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intended for basic data structures that are needed throughout kernel run time and are therefore never
relinquished.

Disabling the Bootmem Allocator

The bootmem allocator must be disabled once system initialization has progressed so far that the buddy
system allocator can assume responsibility for memory management; after all, memory cannot be man-
aged by two allocators at the same time. Disabling is done by free_all_bootmem on UMA systems and
by free_all_bootmem_node on NUMA systems. Both need to be invoked by the architecture-specific
initialization code after the buddy system has been set up.

The page bitmap of the bootmem allocator is first scanned, and every unused page is freed. The interface
to the buddy system is the __free_pages_bootmem function that is invoked for each freed page. The
function relies internally on the standard function __free_page. It enables the pages to be incorporated
in the data structures of the buddy system, where they are managed as free pages and are available for
allocation.

Once the page bitmap has been fully scanned, the memory space it occupies must also be removed.
Thereafter, only the buddy system can be used for memory allocation.

Releasing Initialization Data

Many kernel code chunks and data tables are needed only during the system initialization phase. For
example, it is not necessary to keep data structure initialization routines in kernel memory for per-
manently linked drivers. They are no longer needed once the structures have been set up. Similarly,
hardware databases that drivers need to detect their devices are no longer required once the associated
devices have been identified.!”

The kernel provides two “attributes”” (__init and __initcall) to label initialization functions and
data. These must be placed before the function or data declarations. For instance, the probing rou-
tine of the (fictitious ... ) network card HyperHopper2000 is no longer used once the system has been
initialized.

int _ _init hyper_ hopper_probe(struct net_device *dev)

The __init attribute is inserted between the return type and name in the function declaration.

Data sections can likewise be labeled as initialization data. For example, the fictitious network card driver
requires a few strings in the system initialization phase only; thereafter the strings can be discarded.

static char search_msg[] _ initdata = "%s: Desperately looking for HyperHopper at address %x...";
static char stilllooking msg[] __initdata = "still searching...";

static char found msg[] __initdata = "found.\n";

static char notfound msg[] _ _initdata = "not found (reason = %d)\n";

static char couldnot_msg[] __initdata = "%s: HyperHopper not found\n";

__init and __initdata cannot be implemented using normal C means so that the kernel once again
has to resort to special GNU C compiler statements. The general idea behind the implementation of

17 At least for compiled-in data and devices that are not hotpluggable. If devices are added to the system dynamically, the data tables
cannot, of course, be discarded as they may be required later.
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initialization functions is to keep the data in a specific part of the kernel image that can be completely
removed from memory when booting has finished. The following macros are defined with this
in mind:

<init.h>
#define __init __attribute_  ((__section__ (".init.text"))) _ cold
#define _ initdata __attribute_ ((__section__ (".init.data")))

__attribute__is a special GNU C keyword to permit the use of attributes. The __section__ attribute is
used to instruct the compiler to write the subsequent data or function into the respective .init.data and
.init.text sections of the binary file (those of you unfamiliar with the structure of ELF files are referred
to Appendix E). The prefix __cold also instructs the compiler that paths leading to the function will be
unlikely, that is, that the function won’t be called very often, which is usually the case for initialization
functions.

The readelf tool can be used to display the individual sections of the kernel image.

sections vmlinux
starting at offset 0x2c304c8:

wolfgang@meitner> readelf —
There are 53 section headers,

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[ 0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0

[ 1] .text PROGBITS fEEEE£££80200000 00200000
000000000021fc6f 0000000000000000 AX 0 0 4096

[ 2] __ex_table PROGBITS fEEEEFE£8041£c70 0041£c70
0000000000003e50 0000000000000000 A 0 0 8

[ 3] .notes NOTE fEffff£££80423ac0 00423acO
0000000000000024 0000000000000000 AX 0 0 4

[28] .init.text PROGBITS fEEEFFE££80670000 00870000
000000000002026e 0000000000000000 AX 0 0 1

[29] .init.data PROGBITS fEEEFFf££80690270 00890270
000000000000c02e 0000000000000000 WA 0 0 16

To release initialization data from memory, it is not necessary for the kernel to know the nature of the
data — which data and functions are held in memory and what purpose they serve is totally irrelevant.
The only information of relevance is the addresses in memory at which the data and functions begin
and end.

Because this information is not available at compilation time, it is patched in when the kernel is linked.
I'have already mentioned this technique at other places in this chapter. To support it, the kernel defines
the variable pair __init_beginand __init_end, whose names reveal their meanings.

free_initmenm is responsible for freeing the memory area defined for initialization purposes and return-
ing the pages to the buddy system. The function is called right at the end of the boot process immediately
before init starts the first process in the system. The boot logs include a message indicating how much

memory was freed.
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wolfgang@meitner> dmesg

Freeing unused kernel memory: 308k freed

In comparison with today’s typical main memory sizes, the approximately 300 KiB freed are not gigantic
but are a significant contribution. The removal of initialization data is important, particularly on hand-
held or embedded systems, which, by their very nature, make do with little memory.

3.5 Management of Physical Memory

Responsibility for memory management is assumed by the buddy system once kernel initialization has
been completed. The buddy system is based on a relatively simple but nevertheless surprisingly powerful
algorithm that has been with us for almost 40 years. It combines two key characteristics of a good memory
allocator — speed and efficiency.

3.5.1 Structure of the Buddy System

An instance of struct page is available for each physical page of memory (a page frame) in the sys-
tem. Each memory zone is associated with an instance of struct zone that holds the central array for
managing buddy data.

<mmzone.h>
struct zone {

/*

* free areas of different sizes

*/

struct free_area free_area [MAX_ORDER] ;

i
free_area is an auxiliary data structure we have not yet met. It is defined as follows:

<mmzone.h>

struct free_area {
struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;

Y

nr_free specifies the number of free page blocks in the current area (counting is page by page for the
zeroth area, by two-page pairs for order 1, by sets of four pages for order 2, etc.). free_list is used to
link page lists. As discussed in Chapter 1, the page lists contain contiguous memory areas of the same
size. While the definition provides more than one page list, I ignore this fact for a moment and come back
to why there are different lists below.

The order is a very important term in buddy systems. It describes the quantified units in which memory
can be allocated. The size of a memory block is 2°4¢", where order may extend from 0 to MAX_ORDER.
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<mmzone.h>

#ifndef CONFIG_FORCE_MAX_ZONEORDER

#define MAX_ ORDER 11

#else

#define MAX_ ORDER CONFIG_FORCE_MAX_ ZONEORDER
#endif

#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))

The typical value of this constant is 11, which means that the maximum number of pages that can be
requested in a single allocation is 2!! = 2,048. However, this value can be changed manually if the
FORCE_MAX_ZONEORDER configuration option is set by the architecture-specific code. For example, the
gigantic address spaces on IA-64 systems allow for working with MAX_ORDER = 18, whereas ARM or v850
systems use smaller values such as 8 or 9. This, however, is not necessarily caused by little memory sup-
ported by the machine, but can also be because of memory alignment requirements. Or, as the Kconfig
configuration file for the V850 architecture puts it:

arch/v850/Kconfig
# The crappy-ass zone allocator requires that the start of allocatable
# memory be aligned to the largest possible allocation.
config FORCE_MAX_ZONEORDER
int
default 8 if V850E2_SIM85E2C || V850E2_FPGA85SE2C

The indices of the individual elements of the free_areal] array are also interpreted as order parameters
and specify how many pages are present in the contiguous areas on a shared list. The zeroth array ele-
ment lists sections with one page (20 = 1), the first lists page pairs (2! = 2), the third manages sets of 4
pages, and so on.

How are the page areas linked? The 1ist element of the first page in the block is used to keep the blocks
in a list. As a result, there is no need to introduce a new data structure to group pages that are physically
contiguous — otherwise, they wouldn’t be in a block. Figure 3-22 illustrates the situation graphically.

—» next
SEEEEEE prev
E]struct page

MAX_ORDER

Figure 3-22: Linking blocks in the buddy system.

The buddies need not be linked with each other. If a block is broken down into two blocks of half the size
during allocation, the kernel automatically adds the unused half to the list of next smaller blocks. If, at
some point in the future, both blocks are not in use after memory has been freed, their addresses can be
referenced to automatically determine whether they are buddies. This minimal administrative effort is a
major advantage of the buddy system.
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Memory management based on the buddy system is concentrated on a single memory zone of a node,
for instance, the DMA or high-memory zone. However, the buddy systems of all zones and nodes are
linked via the allocation fallback list. Figure 3-23 illustrates this relationship.

When a request for memory cannot be satisfied in the preferred zone or node, first another zone in the
same node, and then another node is picked to fulfill the request.

Fallback
list

Figure 3-23: Relationship between buddy system and memory zones/nodes.

Finally, note that information about the current state of the buddy system is available in
/proc/buddyinfo:

wolfgang@meitner> cat /proc/buddyinfo

Node 0, zone DMA 3 5 7 4 6 3 3 3 1 1
Node 0, zone DMA32 130 546 695 271 107 38 2 2 1 4 479
Node 0, zone Normal 23 6 6 8 1 4 3 0 0

The number of free entries per allocation order is printed for each zone, and the order increases from left
to right. The information shown above is taken from an AMD64 system with 4 GiB of RAM.

3.5.2 Avoiding Fragmentation

In the simplified explanation given in the Introduction, one doubly linked list was sufficient to satisfy all
the needs of the buddy system. This has, indeed, been the situation until kernel 2.6.23. During the devel-
opment of the kernel 2.6.24, the buddy system has, however, seen the integration of patches disputed
among the kernel developers for an unusually long amount of time. Since the buddy system is one of the
most venerable components of the kernel, changes are not accepted lightly.

Grouping Pages by Mobility

The basic principle of the buddy system has been discussed in the Introduction, and the scheme has,
indeed, worked very well during the last couple of years. However, there is one issue that has been a
long-standing problem with Linux memory management: After systems have been up and running for
longer times, physical memory tends to become fragmented. The situation is depicted in Figure 3-24.
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Figure 3-24: Fragmentation of physical memory.

Assume that the memory consists of 60 pages — clearly, this is not going to be the key component

to the next supercomputer, but is fair enough for the sake of example. The free pages are scattered
across the address space on the left-hand side. Although roughly 25 percent of the physical mem-
ory is still unallocated, the largest continuous free area is only a single page. This is no problem for
userspace applications: Since their memory is mapped over page tables, it will always appear continu-
ous to them irrespective of how the free pages are distributed in physical memory. The right-hand side
shows the situation with the same number of used and free pages, but with all free pages located in a
continuous area.

Fragmentation is, however, a problem for the kernel: Since (most) RAM is identity-mapped into the
kernel’s portion of the address space, it cannot map an area larger than a single page in this scenario.
While many kernel allocations are small, there is sometimes the need to allocate more than a single page.
Clearly, the situation on the right-hand side, where all reserved and free pages are in continuous regions,
would be preferable.

Interestingly, problems with fragmentation can already occur when most of the memory is still unallo-
cated. Consider the situation in Figure 3-25. Only 4 pages are reserved, but the largest contiguous area
that can be allocated is 8 pages because the buddy system can only work that allocation ranges that are
powers of 2.

HEEEEEEEEEEEEENZ7EEERZ7ENZEEERZEEE
0 7 15 23 31

Figure 3-25: Memory fragmentation where few reserved pages
prevent the allocation of larger contiguous blocks.

I have mentioned that memory fragmentation only concerns the kernel, but this is only partially true:
Most modern CPUs provide the possibility to work with huge pages whose page size is much bigger
than for regular pages. This has benefits for memory-intensive applications. When bigger pages are
used, the translation lookaside buffer has to handle fewer entries, and the chance of a TLB cache miss is
reduced. Allocating huge pages, however, requires free contiguous areas of physical RAM!

Fragmentation of physical memory has, indeed, belonged to the weaker points of Linux for an unusually
long time span. Although many approaches have been suggested, none could satisfy the demanding
needs of the numerous workloads that Linux has to face without having too great an impact on others.
During the development of kernel 2.6.24, means to prevent fragmentation finally found their way into
the kernel. Before I discuss their strategy, one point calls for clarification: Fragmentation is also known
from filesystems, and in this area the problem is typically solved by defragmentation tools: They analyze
the filesystem and rearrange the allocated blocks such that larger continuous areas arise. This approach
would also be possible for RAM, in principle, but is complicated by the fact that many physical pages
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cannot be moved to an arbitrary location. Therefore, the kernel’s approach is anti-fragmentation: Try to
prevent fragmentation as well as possible from the very beginning.

How does anti-fragmentation work? To understand the approach, we must be aware that the kernel
distinguishes three different types of reserved pages:

Q  Non-movable pages have a fixed position in memory and cannot be moved anywhere else. Most
allocations of the core kernel fall into this category.

Q  Reclaimable pages cannot be moved directly, but they can be deleted and their contents regener-
ated from some source. Data mapped from files fall into this category, for instance.

Reclaimable pages are periodically freed by the kswapd daemon depending on how often
they are accessed. This is a complicated process that merits a detailed discussion of its own:
Chapter 18 that describes page reclaim in detail. In the meanwhile, it suffices to know that the
kernel will take care of removing reclaimable pages when they start to use up too much RAM.

It is also possible to initiate page reclaim when there is an acute shortage of memory, that is,
when an allocation has failed. You will see further below when the kernel deems it necessary to
do so.

Q  Mowvable pages can be moved around as desired. Pages that belong to userspace applications fall
into this category. They are mapped via page tables. If they are copied into a new location, the
page table entries can be updated accordingly, and the application won’t notice anything.

A page has a certain mobility depending into which of the three categories it falls. The anti-fragmentation
technique used by the kernel is based on the idea of grouping pages with identical mobility together.
Why does this approach help to reduce fragmentation? Recall from Figure 3-25 that a page that cannot
be moved somewhere else can prevent continuous allocations in an otherwise nearly completely empty
RAM area. By distributing pages onto different lists depending on their mobility, this situation is pre-
vented. For instance, a non-movable page cannot be located in the middle of a block of movable pages
and effectively prevent any larger part of the block from being used.

Imagine that most of the free pages in Figure 3-25 belong to the reclaimable category, while the reserved
pages are non-movable. If the pages had been collected on two different lists, the situation might, how-
ever, look as shown in Figure 3-26. It is still hard to find a large continuous free space for non-movable
pages, but much easier for reclaimable pages.

Reclaimable LTI T T T TI T IIIIITIT]
pages

Un-movablepages [ DI WA T T T AT AT 1]
Figure 3-26: Memory fragmentation is reduced by
grouping pages together depending on their
mobility.

Note, however, that the memory is not partitioned into different mobility regions from the very
beginning. They will be populated at run time. A second approach of the kernel does partition the
memory into regions for movable and non-movable allocations, and I will discuss how this works below.
Such a partitioning, however, is not essential for the approach described here.
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Data Structure

Although the anti-fragmentation technique used by the kernel is highly effective, it has astonishingly little
impact on code and data structures of the buddy allocator. The kernel defines some macros to represent
the different migrate types:

<mmzone.h>

#define MIGRATE_UNMOVABLE 0

#define MIGRATE_RECLAIMABLE 1

#define MIGRATE_MOVABLE 2

#define MIGRATE_RESERVE 3

#define MIGRATE_ISOLATE 4 /* can't allocate from here */
#define MIGRATE_TYPES 5

The types MIGRATE_UNMOVABLE, MIGRATE_RECLAIMABLE, and MIGRATE_MOVABLE have already been intro-
duced. MIGRATE_RESERVE provides an emergency memory reserve if an allocation request cannot be
fulfilled from the mobility-specific lists (it is filled during initialization of the memory subsystem with
setup_zone_migrate_reserve, but I will not go into detail about this). MIGRATE_ISOLATE is a special
virtual zone that is required to move physical pages across NUMA nodes. On large systems, it can be
beneficial to bring physical pages closer to the CPUs that use them most. MIGRATE_TYPES, finally, is also
not a zone, but just denotes the number of migrate types.

The core adjustment to the buddy system data structures is that the free list is broken into a MIGRATE_TYPE
number of lists:

<mmzone.h>

struct free_area {
struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;

Y

nr_free counts the number of free pages on all lists, but a specific free list is provided for each migrate
type. The macro for_each_migratetype_order (order, type) can be used to iterate over the migrate
types of all allocation orders.

What happens if the kernel cannot fulfill an allocation request for a given migrate type? A similar problem
has already occurred before, namely, when we considered what happens when an allocation cannot

be fulfilled from a specific NUMA zone. The kernel proceeds similarly as in this case by providing a
fallback list regulating which migrate types should be used next if a request cannot be fulfilled from the
desired list:

mm/page_alloc.c

/*

* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted

*/

static int fallbacks[MIGRATE_TYPES] [MIGRATE_TYPES-1] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE },

/* Never used */
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The data structure is mostly self-explanatory: When the kernel wants to allocate un-movable pages, but
the corresponding list is empty, then it falls back to reclaimable pages, then to movable pages, and finally
to the emergency reserve.

Global Variables and Auxiliary Functions

While page mobility grouping is always compiled into the kernel, it only makes sense if enough memory
that can be distributed across multiple migrate lists is present in a system. Since on each migrate list a
suitable amount of memory should be present, the kernel needs a notion of “suitable.”” This is provided
by the two global variables pageblock_order and pageblock_nr_pages. The first denotes an allocation
order that is considered to be “large,” and pageblock_nr_pages denotes the corresponding number of
pages for this allocation order. Usually the the page order is selected to be the order of huge pages if such
are provided by the architecture:

<pageblock-flags.h>
#define pageblock_order HUGETLB_PAGE_ORDER

On the IA-32 architecture, huge pages are 4 MiB in size, so each huge page consists of 1,024 regular pages
and HUGETLB_PAGE_ORDER is defined to be 10. The IA-64 architecture, in contrast, allows varying regular
and huge page sizes, so the value of HUGETLB_PAGE_ORDER depends on the kernel configuration.

If an architecture does not support huge pages, then the second highest allocation order is taken as a
large order:

<pageblock-flags.h>
#define pageblock_order (MAX_ORDER-1)

Page migration will not provide any benefits if each migrate type cannot at least be equipped with one
large page block, so the feature is turned off by the kernel if too little memory is available. This is checked
in the function build_all_zonelists, which is used to initialize the zone lists. If not enough memory is
available, the global variable page_group_by_mobility is set to 0, otherwise to 1.18

How does the kernel know to which migrate type a given allocation belongs? As you will see

in Section 3.5.4, details about each memory allocation are specified by an allocation mask. The kernel
provides two flags that signal that the allocated memory will be movable (__GFP_MOVABLE) or reclaimable
(__GFP_RECLAIMABLE). If none of these flags is specified, the allocation is assumed to be non-movable.
The following auxiliary function converts between allocation flags and their corresponding migrate

types:

<gfp.h>
static inline int allocflags_to_migratetype(gfp_t gfp_flags)
{
if (unlikely (page_group_by_mobility disabled))
return MIGRATE_UNMOVABLE;

/* Group based on mobility */
return (((gfp_flags & _ GFP_MOVABLE) != 0) << 1) |
((gfp_flags & __GFP_RECLAIMABLE) != 0);
}

18Note that systems not only with little memory but also with extremely large page sizes can be affected by this since the check is
performed on a pages-per-list basis.
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If page mobility has been disabled, all pages will be kept in the unmovable zone. Otherwise, the return
value of the function can be directly used as an array index in free_area.free_list.

Finally, note that each memory zone provides a special field that allows for tracking properties of page
blocks with pageblock_nr_pages pages. Since this is currently only used by the page mobility code, I
have not introduced this feature before:

<mmzone.h>
struct zone {

unsigned long *pageblock_flags;
}

During initialization, the kernel automatically ensures that for each page block group in the zone, suf-
ficient space is available in pageblock_flags to store NR_PAGEBLOCK_BITS bits. Currently, 3 bits are
required to denote the migrate type of the page range:

<pageblock-flags.h>
/* Macro to aid the definition of ranges of bits */
#define PB_range (name, required_bits) \

name, name ## _end = (name + required_bits) - 1

/* Bit indices that affect a whole block of pages */

enum pageblock_bits {
PB_range (PB_migrate, 3), /* 3 bits required for migrate types */
NR_PAGEBLOCK_BITS

Y

set_pageblock_migratetype is responsible to set the migrate type for a page block headed by page:

mm/page_alloc.c
void set_pageblock_migratetype (struct page *page, int migratetype)

The migratetype argument can be constructed by the auxiliary function allocflags_to_migratetype
introduced above. Notice that it is essential that the migrate type of a page is always preserved and not
just available when the page is located in the buddy system. When memory is released, the pages must
be put back to the proper migrate list, and this is only possible because the required information can be
obtained with get_pageblock_migratetype.

Finally, notice that the current state of page distribution across the migrate lists can be found in
/proc/pagetypeinfo:

wolfgang@meitner> cat /proc/pagetypeinfo

Page block order: 9
Pages per block: 512
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Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
Node 0, zone DMA, type Unmovable 0 0 1 1 1 1 1 1 1 1 0
Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone DMA, type Movable 3 5 6 3 5 2 2 2 0 0 0
Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 0 1
Node 0, zone DMA, type <NULL> 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone DMA32, type Unmovable 44 37 29 1 2 0 1 1 0 1 0
Node 0, zone DMA32, type Reclaimable 18 29 3 4 1 0 0 0 1 1 0
Node 0, zone DMA32, type Movable 0 0 191 111 68 26 21 13 7 1 500
Node 0, zone DMA32, type Reserve 0 0 0 0 0 0 0 0 0 1 2
Node 0, zone DMA32, type <NULL> 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Unmovable 1 5 1 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Movable 1 4 0 0 0 0 0 0 0 0 0
Node 0, zone Normal, type Reserve 11 13 7 8 3 4 2 0 0 0 0
Node 0, zone Normal, type <NULL> 0 0 0 0 0 0 0 0 0 0 0
Number of blocks type Unmovable Reclaimable Movable Reserve <NULL>

Node 0, zone DMA 1 0 6 1 0

Node 0, zone DMA32 13 18 2005 4 0

Node 0, zone Normal 22 10 351 1 0

Initializing Mobility-Based Grouping

During the initialization of the memory subsystem, memmap_init_zone is responsible to handle the page
instances of a memory zone. The function does some standard initializations that are not too interesting,
but one thing is essential: All pages are initially marked to be movable!

mm/page_alloc.c
void _ _meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{
struct page *page;
unsigned long end_pfn = start_pfn + size;
unsigned long pfn;

for (pfn = start_pfn; pfn < end_pfn; pfn++) {

if ((pfn & (pageblock nr_pages-1))
set_pageblock_migratetype (page, MIGRATE_MOVABLE) ;

}

As discussed in Section 3.5.4, the kernel favors large page groups when pages must be “’stolen” from

different migrate zones from those the allocation is intended for. Because all pages initially belong to the

movable zone, stealing pages is required when regular, unmovable kernel allocations are performed.
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Naturally, not too many movable allocations will have been performed during boot, so chances are
good that the allocator can pick maximally sized blocks and transfer them from the movable to the non-
movable list. Because the blocks have maximal size, no fragmentation is introduced into the movable
zone!

All in all, this avoids situations in which kernel allocations that are done during boot (and which
often last for the whole system uptime) are spread across the physical RAM such that other allo-
cation types are fragmented — one of the most important goals of the page mobility grouping
framework.

The Virtual Movable Zone

Grouping pages by mobility order is one possible method to prevent fragmentation of physical
memory, but the kernel additionally provides another means to fight this problem: the virtual
zone ZONE_MOVABLE. The mechanism has even found its way into the kernel during the devel-
opment of kernel 2.6.23, one release before the mobility grouping framework was merged. In
contrast to mobility grouping, the ZONE_MOVABLE feature must be explicitly activated by the
administrator.

The basic idea is simple: The available physical memory is partitioned into one zone used for movable
allocations, and one zone used for non-movable allocations. This will automatically prevent any non-
movable pages from introducing fragmentation into the movable zone.

This immediately raises the question of how the kernel is supposed to decide how the available memory
will be distributed between the two competitors. Clearly, this asks too much of the poor kernel, so the
system administrator has to make the decision. After all, a human can predict much better which sce-
narios the machine will handle and what the expected distribution of allocations into the various types
will be.

Data Structures

The kernelcore parameter allows for specifying the amount of memory used for non-movable allo-
cations, that is, for allocations that can neither be reclaimed nor migrated. The remaining memory is
used for movable allocations. After parsing the parameter, the result is stored in the global variable
required_kernelcore.

It is also possible to use the parameter movablecore to control the amount of memory that is used for
movable memory. The size of required_kernelcore will be computed accordingly. If wise guys specify
both parameters simultaneously, the kernel computes required_kernelcore as before, and takes the
larger one of the computed and specified value.

Depending on the architecture and the kernel configuration, the new zone ZONE_MOVABLE is located above
the high-memory or regular-memory zone:

<mmzone.h>
enum zone_type {

ZONE_NORMAL

#ifdef CONFIG_HIGHMEM
ZONE_HIGHMEM,
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#endif
ZONE_MOVABLE,
MAX_NR_ZONES
Y

In contrast to all other zones in the system, ZONE_MOVABLE is not associated with any memory range that
is of significance to the hardware. Indeed, the zone is filled with memory taken from either the highmem
or the regular zone, and accordingly we call ZONE_MOVABLE a virtual zone in the following.

The auxiliary function £ind_zone_movable_pfns_for_nodes is used to compute the amount of mem-
ory that goes into ZONE_MOVABLE. If neither the kernelcore nor movablecore parameter was specified,
find_zone_movable_pfns_for_nodes leaves ZONE_MOVABLE empty, and the mechanism is not active.

Two things must be considered with respect to how many pages are taken from a physical zone and used
for ZONE_MOVABLE:

Q  The memory for non-movable allocations is spread evenly across all memory nodes.

QO  Only memory from the highest zone is used. On 32-bit systems with much memory, this will
usually be ZONE_HIGHMEY, but for 64-bit systems, ZONE_NORVMAL or ZONE_DMA32 will be used.

The actual computation is rather lengthy, but not very interesting, so I do not consider it in detail. What
matters are the results:

Q  The physical zone from which pages for the virtual zone ZONE_MOVABLE are taken is stored in the
global variable movable_zone.

Q  For each node, the page frame in the movable zone from which onward the memory belongs to
ZONE_MOVABLE is in zone_movable_pfn[node_id].

mm/page_alloc.c
unsigned long _ meminitdata zone_movable_pfn[MAX_NUMNODES] ;

The kernel ensures that these pages will be used to satisfy allocations that fall into the responsibility of
ZONE_MOVABLE.

Implementation

How are the data structures described so far brought to use? As with the page migration approach,
allocation flags play a crucial role. They are discussed below in Section 3.5.4 in more detail. Here, it
suffices to say that all movable allocations must specify both __ GFP_HIGHMEM and __ GFP_MOVABLE.

Since the kernel determines the zone from which an allocation is fulfilled by the allocation flags, it
can select ZONE_MOVABLE when the said flags are set. This is the only change required to integrate
ZONE_MOVABLE into the buddy system! The rest is done by generic routines that work on all zones,
discussed below.

3.5.3 Initializing the Zone and Node Data Structures

Until now, we have only seen how the kernel detects the available memory in the system in the
architecture-specific code. The association with higher-level structures — zones and nodes — needs to
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be constructed from this information. Recall that architectures are required to established the following

information during boot:

Q  The page frame boundaries of the various zones in the system as stored in the max_zone_pfn
array.
Q  The distribution of page frames across nodes as stored in the global variable early_node_map.

Managing Data Structure Creation

Starting with kernel 2.6.10, a generic framework was provided to transfer this information into the node
and zone data structures expected by the buddy system; before this, each architecture had to set up the
structures on its own. Today;, it suffices to set up the aforementioned simple structures and leave the hard
work to free_area_init_nodes. Figure 3-27 shows an overview of the process, and Figure 3-28 shows

the code flow diagram for free_area_init_nodes.

7 Architecture-specific )

/ initialization \

! ( Fillin Set max page
\ | early_node_map

frame numbers

pg data_t pg data_t

for zones
(max_zone_pfns) L

Generic representation
of nodes and zones

free_area_init_nodes |

Figure 3-27: Overview of the interplay between architecture-specific and
generic kernel code for setting up node and zone data memory management

data structures.
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T — —

Determine zone
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—| check_for_regular_memory I

Figure 3-28: Code flow diagram for
free area init_ nodes.
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free_area_init_nodes first has to analyze and rewrite the information provided by the architecture-
specific code. Among others, the numbers of the lowest and highest page frames that can be used — in
contrast to the principal boundaries specified in zone_max_pfn and zone_min_pfn — need to be obtained
for each zone. Two global arrays are used to store the information:

mm/page_alloc.c
static unsigned long _ meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES] ;
static unsigned long _ meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]

First of all, however, free_area_init_nodes sorts the entries in early_node_map by their first page frame
start_pfn.

mm/page_alloc.c
void __init free_area_init_nodes (unsigned long *max_zone_pfn)

{
unsigned long nid;
enum zone_type 1;

/* Sort early node_map as initialisation assumes it is sorted */
sort_node_map () ;

Sorting the entries makes life easier for the following tasks, but is not particularly complicated, so it is
not required to inspect sort_node_map further. Just note that the kernel provides a generic heap sort
implementation in 1ib/sort.c that is employed by the function.

The information passed to free_area_init_nodes in max_zone_pfn records the maximal page frame
numbers that can be contained in each zone. free_area_init_nodes prepares a more convenient
representation of this information by providing page frame intervals of the form [low, high] for
each zone in the aforementioned global variables (I omit initialization of these variables with

zero bytes):

mm/page_alloc.c
arch_zone_lowest_possible_pfn[0] = find min_pfn_with_active_regions();
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];

for (i = 1; 1 < MAX NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
arch_zone_highest_possible_pfn[i] =
max (max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);

}

The auxiliary function find_min_pfn_with_active_regions is used to find the smallest regis-
tered usable page frame for the lowest registered zone. This need not necessarily be ZONE_DMa,
but can, for instance, also be ZONE_NORMAL if the machine does not require DMA memory. The
maximum page frame for the smallest zone can be directly taken from the information provided by
max_zone_pfn.
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The intervals for the other zones are then constructed in a straightforward manner: The smallest page
frame for the n-th zone is the largest page frame of the previous (1 — 1) zone. The largest page frames for
the current zone are already available in max_zone_pfn.

mm/page_alloc.c
arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;

/* Find the PFNs that ZONE_MOVABLE begins at in each node */
find_zone_movable_pfns_for_nodes (zone_movable_pfn) ;

Since ZONE_MOVABLE is a virtual zone and not associated with real hardware zones, the zone bound-
aries are always set to zero. Recall from above that it only exists if any of the kernel command-line
parameter kernelcore or movablecore was specified. The movable zone for each node starts above a
certain page frame number of a specific zone for each node. The corresponding numbers are computed
in find_zone_movable_pfns_for_nodes.

Some information about the determined page frame intervals is proudly presented to the user. This
includes, for instance, the following (the output is taken on an AMD64 system with 4 GiB of RAM):

root@meitner # dmesg

Zone PFN ranges:
DMA 0 -> 4096
DMA32 4096 -> 1048576
Normal 1048576 -> 1245184

The remaining portion of free_area_init_nodes iterates over all nodes to set up the data structures
for each.

mm/page_alloc.c
/* Print information about zones */

/* Initialise every node */
for_each_online_node (nid) {
pg_data_t *pgdat = NODE_DATA (nid) ;
free_area_init_node(nid, pgdat, NULL,
find_min_pfn_for_node(nid), NULL);

/* Any memory on that node */

if (pgdat->node_present_pages)
node_set_state(nid, N_HIGH_MEMORY) ;

check_for_regular_memory (pgdat) ;

}

The code iterates over all active nodes and delegates setting up the data structures for each to
free_area_init_node. The function requires the first available page frame as a parameter, and
find_min_pfn_for_node extracts this information from the early_node_map array.
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If the node is equipped with memory as indicated by the node_present_pages field, this is
reflected in the node bitmap by setting the N_HIGH_MEMORY flag. Recall from Section 3.2.2 that the
flag — despite its name — only signals that either regular or high memory is present on the node, so
check_for_regular_memory checks if pages in any zone below zZONE_HIGHMEM are present and sets the
flag N_NORMAL_MEMORY in the node bitmap accordingly.

Creating Data Structures for Each Node

Once the zone boundaries have been determined, free_area_init_nodes creates the data structures for
the individual zones iteratively by calling free_area_init_node. Several helper functions are required
for this purpose.

calculate_node_totalpages first calculates the total number of pages in the node by summing up the
pages in the individual zones. In the case of contiguous memory, this could be done in zones_size_init,
but calculate_zone_totalpages also takes holes in the zone into account. The number of pages found
for each node is output in a short message when the system is booted. The example below is taken from
a UMA system with 512 MiB of RAM.

wolfgang@meitner> dmesg

On node 0 totalpages: 131056

alloc_node_mem_map is responsible for initializing a simple but nevertheless very important data struc-
ture. As noted above, there is an instance of struct page for every physical memory page in the system.
Initialization of this structure is performed by alloc_node_mem_map.

mm/page_alloc.c
static void __init_refok alloc_node_mem_map (struct pglist_data *pgdat)
{
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
return;

if (!pgdat->node_mem_map) {
unsigned long size, start, end;
struct page *map;

start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
end = ALIGN(end, MAX_ORDER_NR_PAGES) ;

size = (end - start) * sizeof(struct page);
map = alloc_remap (pgdat->node_id, size);
if (!map)

map = alloc_bootmem_node (pgdat, size);
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
}

if (pgdat == NODE_DATA(0))
mem_map = NODE_DATA (0)->node_mem_map;
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Empty nodes with no pages can obviously be skipped. If the memory map has not already been set up
by architecture-specific code (this can happen, e.g., on IA-64 systems), then the memory required for
all instances of struct page associated with the node must be allocated. Individual architectures can
provide a specific function for this purpose. This is, however, currently only the case for IA-32 with a
discontiguous memory configuration. On all other configurations, the regular boot memory allocator is
used to perform the allocation. Notice that the code aligns the memory map with the maximal allocation
order of the buddy system because this is required for all calculations to work properly.

A pointer to this space is held not only in the pglist_data instance but also in the global variable
mem_map — providing the node just examined is the zeroth node of the system (always the case on a
system with just one memory node). mem_map is a global array that we will come across frequently in our
description of memory management.

mm/memory.c
struct page *mem_map;

The heavy work involved in the initialization of zone data structures is carried out by
free_area_init_core, which iterates over all zones of the node one after the other.

mm/page_alloc.c
static void __init free_area_init_core(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
enum zone_type J;
int nid = pgdat->node_id;
unsigned long zone_start_pfn = pgdat->node_start_pfn;

for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + J;
unsigned long size, realsize, memmap_pages;

size = zone_spanned_pages_in_node(nid, j, zones_size);
realsize = size - zone_absent_pages_in_node(nid, j,
zholes_size);

The true size of the zone is obtained by correcting the number of spanned pages with the number of
holes. Both quantities are computed by two helper functions, which I will not bother to discuss in more
detail. Their complexity naturally depends on the memory model and configuration options chosen, but
ultimately all variants do not provide any unexpected surprises.

mm/page_alloc.c
if (!is_highmem_idx(3)
nr_kernel_pages += realsize;

nr_all_pages += realsize;

zone->spanned_pages = size;
zone->present_pages = realsize;

zone->name = zone_names|[j];

zone->zone_pgdat = pgdat;
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/* Initialize zone fields to default values,
* and call helper functions */

}

The kernel uses two global variables to keep track of how many pages are present in the system:
nr_kernel_pages counts all identity mapped pages, while nr_all_pages also includes high-memory

pages.

The task of the remaining part of free_area_init_core is to initialize the list heads of the zone struc-
ture and to initialize the various structure members to 0. Of particular interest are two helper functions
invoked:

a zone_pcp_init initializes the per-CPU caches for the zone as discussed extensively in the next
section.

Q init_currently_empty_zone initializes the free_area lists and sets all page instances of pages
belonging to the zone to their initial defaults. memmap_init_zone as discussed above is invoked
to initialize the pages of the zone. Also recall that all pages are attributed to MIGRATE_MOVABLE in
the beginning.

Additionally, the free lists are initialized in zone_init_free_lists:

mm/page_alloc.c
static void _ _meminit zone_init_free_lists(struct pglist_data *pgdat,
struct zone *zone, unsigned long size)
{
int order, t;
for_each _migratetype_order (order, t) {
INIT _LIST HEAD(&zone->free_arealorder].free_list[t]);
zone->free_arealorder] .nr_free = 0;

The number of free pages (nr_free) is still currently defined as 0, and this obviously does not reflect
the true situation. The correct value is not set until the bootmem allocator is disabled and normal buddy
allocation comes into effect.

3.5.4 Allocator API

As far as the interface to the buddy system is concerned, it makes no difference whether a NUMA or

a UMA architecture is used as the call syntax is the same for both. Common to all functions is the fact
that pages can only be allocated in integer powers of 2. For this reason, the desired memory size is not
specified as parameter as it would be in the malloc function of the C standard library or in the bootmem
allocator. Instead, the order of the allocation must be specified, and this causes the buddy system to
reserve 2°79€T pages in memory. Finer-grained allocation in the kernel is only possible with the help
of the slab allocator (or alternatively, the slub or slob allocators), which builds on the buddy system
(Section 3.6 gives further details).

a alloc_pages (mask, order) allocates 20der pages and returns an instance of struct page to rep-

resent the start of the reserved block. alloc_page (mask) is a shorter notation for order = 0 if
only one page is requested.
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0  get_zeroed_page (mask) allocates a page and returns a page instance but fills the page with
zeros (with all other functions, page contents are undefined after allocation).

a __get_free_pages (mask, order) and __get_free_page (mask) work in the same way as the
above functions but return the virtual address of the reserved memory chunk instead of a page
instance.

0  get_dma_pages (gfp_mask, order) allows for obtaining pages suitable for DMA.

If allocation fails because insufficient memory is free to satisfy the request, all the above functions
return either a null pointer (alloc_pages and alloc_page) or the value 0 (get_zeroed_page,
__get_free_pages, and __get_free_page). The kernel must therefore check the result returned after
every allocation attempt. This practice is not different from any well-designed userland applications, but
neglecting the check in the kernel will lead to much more severe failures.

The kernel provides other memory management functions in addition to the buddy system functions.
They build on layers that are used as a basis by the buddy system but do not belong to the buddy allocator
itself. These functions are vmalloc and vmalloc_32, which use page tables to map discontiguous memory
into kernel address space so that it appears to be contiguous. There is also a set of functions of the kmalloc
type to reserve memory areas smaller than a complete page. Their implementation is discussed separately
in later sections of this chapter.

Four slightly different functions are defined to return pages no longer needed in memory to the kernel.

a free page (struct page*) and free pages (struct page*, order) return one or 2°rder pages
to memory management. The start of the memory area is indicated by means of a pointer to the
first page instance of the area.

0 _ free page(addr) and __free_pages (addr, order) operate in the same way as the functions
just mentioned but use a virtual memory address instead of a page instance to select the memory
area to be returned.

Allocation Masks

What is the meaning of the mask parameter that is mandatory for all functions? As we know from
Section 3.2.1, Linux divides memory into zones. The kernel provides what is known as zone modifiers
(defined in the least significant 4 bits of a mask) to specify the zone from which the pages are to be taken
for purposes of memory allocation.

<gfp.h>

/* Zone modifiers in GFP_ZONEMASK (see linux/mmzone.h - low three bits) */
#define _ GFP_DMA ((__force gfp_t)0x01u)

#define _ GFP_HIGHMEM ((__force gfp_t)0x02u)

#define _ GFP_DMA32 ((__force gfp_t)0x04u)

#define _ GFP_MOVABLE ((__force gfp_t)0x100000u) /* Page is movable */

These constants are familiar from Section 3.4.1 in which the creation of fallback lists is discussed. The
abbreviation GFP stands for get free pages. __GFP_MOVABLE does not represent a physical memory zone, but
instructs the kernel that an allocation should be fulfilled from the special virtual zone ZONE_MOVABLE.

216



Chapter 3: Memory Management

Interestingly, there is no __GFP_NORMAL constant, although the main burden of allocation falls on this
zone. The kernel takes account of this fact by providing a function that calculates the highest memory
zone compatible with the given allocation flags. Allocations can then be made from this zone and from
those below it.

mm/page_alloc.c
static inline enum zone_type gfp_zone(gfp_t flags)
{
#ifdef CONFIG_ZONE_DMA
if (flags & __ GFP_DMA)
return ZONE_DMA;
#endif
#ifdef CONFIG_ZONE_DMA32
if (flags & _ GFP_DMA32)
return ZONE_DMA32;
#endif
if ((flags & (__GFP_HIGHMEM | __ GFP_MOVABLE)) ==
(__GFP_HIGHMEM ‘ __ GFP_MOVABLE) )
return ZONE_MOVABLE;
#ifdef CONFIG_HIGHMEM
if (flags & __ GFP_HIGHMEM)
return ZONE_HIGHMEM;
#endif
return ZONE_NORMAL;

Because the way in which the zone modifiers are interpreted may not immediately appear to be intuitive,
Table 3-7 shows an example of the function results when the zones for DMA and DMAS32 are identical.
Assume that the __GFp_MOVABLE modifier is not set in the following;:

If both __GFP_DMA and __GFP_HIGHMEM are 1ot set, ZONE_NORMAL is first scanned, followed by zoNE_DMA. If
__GFP_HIGHMEM is set and __GFP_DMA is not set, the result is that all three zones are scanned starting with
ZONE_HIGHMEM. If _ GFP_DMA is set, it is irrelevant to the kernel whether _ GFP_HIGHMEM is set or not. Only
ZONE_DMA is used in both cases. This is reasonable because the simultaneous use of _ GFP_HIGHMEM and
__GFp_DMA makes no sense. Highmem is never DMA-suitable.

Table 3-7: Correlation between Zone Modifiers and Zones Scanned

Modifier Zones scanned

Empty ZONE_NORMAL, ZONE_DMA

__GFP_DMA ZONE_DMA

__GFP_DMA & _ GFP_HIGHMEM ZONE_DMA

__GFP_HIGHMEM ZONE_HIGHMEM, ZONE_NORMAL,
ZONE_DMA
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Setting __GFP_MOVABLE will not influence the kernel’s decision unless it is specified together
with ___GFp_HIGHMEM. In this case, the special virtual zone zONE_MOVABLE will be used to satisfy
a memory request. This behavior is essential for the anti-fragmentation strategy of the kernel as
outlined.

A few flags can be set in the mask in addition to the zone modifiers. Figure 3-29 shows the layout of the
mask and the constants associated with the bit positions. __GFp_DMA32 appears several times because it
may be located at different places.
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Figure 3-29: Layout of a GFP mask.

In contrast to the zone modifiers, the additional flags do not limit the RAM segments from which
memory can be allocated, but they do alter the behavior of the allocator. For example, they modify
how aggressively a search is made for free memory. The following flags are defined in the kernel

#define _ GFP_ZERO
#define _ GFP_NOMEMALLOC
#define _ GFP_HARDWALL

force gfp_t)0x8000u)/* Return zeroed page on success */
(__force gfp_t)0x10000u) /* Don't use emergency reserves */
(__force gfp_t)0x20000u) /* Enforce hardwall cpuset memory allocs */

sources:

<gfp.h>
/* Action modifiers - doesn't change the zoning */
#define _ GFP_WAIT ((__force gfp_t)0x10u) /* Can wait and reschedule? */
#define _ GFP_HIGH ((__force gfp_t)0x20u) /* Should access emergency pools? */
#define __ GFP_IO ((__force gfp_t)0x40u) /* Can start physical I0? */
#define __ GFP_FS ((__force gfp_t)0x80u) /* Can call down to low-level FS? */
#define _ GFP_COLD ((__force gfp_t)0x100u) /* Cache-cold page required */
#define __ GFP_NOWARN ((__force gfp_t)0x200u) /* Suppress page allocation failure warning */
#define _ GFP_REPEAT ((__force gfp_t)0x400u) /* Retry the allocation. Might fail */
#define _ GFP_NOFAIL ((__force gfp_t)0x800u) /* Retry for ever. Cannot fail */
#define __ GFP_NORETRY ((__force gfp_t)0x1000u)/* Do not retry. Might fail */
#define __ GFP_NO_GROW ((__force gfp_t)0x2000u)/* Slab internal usage */
#define __ GFP_COMP ((__force gfp_t)0x4000u)/* Add compound page metadata */

((

(

(

#define _ GFP_THISNODE ((__ force gfp_t)0x40000u)/* No fallback, no policies */
#define _ GFP_RECLAIMABLE ((__force gfp_t)0x80000u) /* Page is reclaimable */
#define _ GFP_MOVABLE ((__force gfp_t)0x100000u) /* Page is movable */
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Some of the constants shown are used only in rare situations, so I won’t discuss them. The meanings of
the most important constants are as follows:

Q

__GFP_WAIT indicates that the memory request may be interrupted; that is, the scheduler is free
to select another process during the request, or the request can be interrupted by a more impor-
tant event. The allocator is also permitted to wait for an event on a queue (and to put the process
to sleep) before memory is returned.

__GFP_HIGH is set if the request is very important, that is, when the kernel urgently needs mem-
ory. This flag is always used when failure to allocate memory would have massive consequences
for the kernel resulting in a threat to system stability or even a system crash.

Despite the similarity in name, _ GFP_HIGH has nothing to do with __ GFP_HIGHMEM
and must not be confused with it.

__GFP_I0 specifies that the kernel can perform I/O operations during an attempt to find fresh
memory. In real terms, this means that if the kernel begins to swap out pages during memory
allocation, the selected pages may be written to hard disk only if this flag is set.

__GFP_FS allows the kernel to perform VES operations. This must be prevented in kernel layers
linked with the VFS layer because interactions of this kind could cause endless recursive calls.

__GFP_COLD is set if allocation of a “cold”” page that is not resident in the CPU cache is required.

__GFP_NOWARN suppresses a kernel failure warning if allocation fails. There are very few occa-
sions when this flag is useful.

__GFP_REPEAT automatically retries a failed allocation but stops after a few attempts.
__GFP_NOFAIL retries the failed allocation until it succeeds.

__GFP_ZERO returns a page filled with zero bytes if allocation succeeds.

__GFP_HARDWALL is meaningful on NUMA systems only. It limits memory allocation to the nodes
associated with the CPUs assigned to a process. The flag is meaningless if a process is allowed to
run on all CPUs (this is the default). It only has an explicit effect if the CPUs on which a process
may run are limited.

__GFP_THISNODE also only makes sense on NUMA systems. If the bit is set, then fallback to other
nodes is not permitted, and memory is guaranteed to be allocated on either the current node or
on an explicitly specified node.

__GFP_RECLAIMABLE and __GFP_MOVABLE are required by the page mobility mechanism.
As their names indicate, they mark that the allocated memory will be reclaimable or mov-
able, respectively. This influences from which sublist of the freelist the page or pages will
be taken.

As the flags are used in combination and hardly ever on their own, the kernel classifies them into groups
containing appropriate flags for a variety of standard situations. If at all possible, one of the follow-
ing groups should always be used for memory allocation outside of memory management itself. (This
requirement is reinforced by the fact that the names of the predefined groups do not begin with a double
underscore — the usual convention for internal data and definitions in the kernel sources.)
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<gfp.h>

#define GFP_ATOMIC (__GFP_HIGH)

#define GFP_NOIO (__GFP_WAIT)

#define GFP_NOFS (__GFP_WAIT | __GFP_IO)

#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | _ GFP_FS)

#define GFP_USER (__GFP_WAIT | __GFP_IO | _ GFP_FS | __ GFP_HARDWALL)

#define GFP_HIGHUSER (__ GFP_WAIT | _ GFP_IO | __GFP_FS | _ GFP_HARDWALL | \

__GFP_HIGHMEM)

#define GFP_HIGHUSER_MOVABLE  (__GFP_WAIT | __GFP_IO | _GFP_FS | \
__GFP_HARDWALL | __ GFP_HIGHMEM | \
__GFP_MOVABLE)

#define GFP_DMA __GFP_DMA

#define GFP_DMA32 __GFP_DMA32

0  The meaning of the first three combinations is clear. GFP_ATOMIC is used for atomic allocations
that may not be interrupted on any account and may also draw on the ““emergency reserves” of
memory. GFP_NOIO and GFP_NOFS explicitly exclude I/O operations and access to the VFS layer,
respectively, but may be interrupted because __GFP_WAIT is set.

0  GFP_KERNEL and GFP_USER are the default settings for kernel and user allocations, respectively.
Their failure is not an immediate threat to system stability. GFP_KERNEL is far and away the most
frequently used flag in the kernel sources.

0  GFP_HIGHUSERis an extension of GFP_USER that is also used on behalf of userspace. It also permits
the use of high-memory areas that can no longer be mapped directly. There is no disadvantage
to using highmem pages because the address space of user processes is always organized by
means of nonlinear page table assignments. GFP_HIGHUSER_MOVABLE is similar to GFP_HIGHUSER
in purpose, but allocations will be satisfied from the virtual zone ZONE_MOVABLE.

O  crp_DMA is used for DMA allocations and is currently a simple synonym for __GFP_DMa;
GFP_DMA32 is likewise a synonym for __ GFP_GMA32.

Allocation Macros

Through the use of flags, zone modifiers, and the various allocation functions, the kernel offers a very
flexible system of memory reservation. Nevertheless, all interface functions can be traced back to a single
base function (alloc_pages_node).

alloc_page and __get_free_page that reserve a single page are defined with the help of macros, as is
alloc_pages.

<gfp.h>
#define alloc_page (gfp_mask) alloc_pages (gfp_mask, 0)

#define _ get_free_page (gfp_mask) \
__get_free_pages ((gfp_mask),0)

<mm.h>
#define _ get_dma_pages (gfp_mask, order) \
__get_free_pages((gfp_mask) | GFP_DMA, (order))

Neither is the implementation of get_zeroed_page particularly difficult. alloc_pages used with the
__GFP_ZERO flag reserves a page already filled with null bytes — only the address of the memory area
associated with the page need be returned.
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The clear_page standard function that must be implemented by all architectures helps alloc_pages fill
pages with null bytes.'

__get_free_pages accesses alloc_pages, while alloc_pages, in turn, resorts to alloc_pages_node:

<gfp.h>
#define alloc_pages (gfp_mask, order) \
alloc_pages_node (numa_node_id (), gfp_mask, order)

mm/page_alloc.c
fastcall unsigned long _ get_free_pages(gfp_t gfp_mask, unsigned int order)
{

struct page * page;

page = alloc_pages(gfp_mask, order) ;

if (!page)

return 0;
return (unsigned long) page_address (page) ;

}

In this case, a proper function is used instead of a macro because the page instance returned

by alloc_pages still remains to be translated into a memory address using the helper function
page_address. At this point it is enough for us to know that the function yields the linear memory
address of a page associated with the passed page instance. This is problematic with highmem pages, so
I discuss the details of the function in Section 3.5.7.

The unification of all API functions to a common base function — alloc_pages — is thus complete.
Figure 3-30 shows the relationships among the various functions in a graphical overview.

alloc_page get_zeroed_page __get_free_page __get_dma_pages

get_free_pages

/

alloc_pages

}

alloc_pages_node

Figure 3-30: Relationships among the allocation functions of the buddy
system.

page_cache_alloc and page_cache_alloc_cold are also convenience functions to yield cache-warm
and cache-cold pages, respectively, by setting the __GFP_coLD modifier accordingly.

Similarly, the memory-freeing functions can be reduced to a central function (__free_pages) invoked
with different parameters:

<gfp.h>
#define _ free_page(page) _ free_pages((page), 0)
#define free_page(addr) free_pages((addr),0)

190f course, pages could be filled with zeros by generic processor-independent code, but most CPUs feature special commands that
do this much faster.
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The relationship between free_pages and __free_pages is established by means of a function instead of
a macro because the virtual address must first be converted to a pointer to struct page.

mm/page_alloc.c
void free_pages (unsigned long addr, unsigned int order)

{
if (addr '= 0) {
_ free_pages(virt_to_page(addr), order);

}

virt_to_page converts virtual memory addresses to pointers to page instances. Basically, this is the
reverse of the page_address helper function introduced above.

Figure 3-31 summarizes the relationships among the various memory-freeing functions in a graphical
overview.

free_page

free_pages __free_page

N

__free_pages

Figure 3-31: Relationships
among the memory-freeing
functions of the buddy

system.

3.5.5 Reserving Pages

All API functions lead back to alloc_pages_node, which is a kind of “launch pad” for central implemen-
tation of the buddy system.

<gfp.h>
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
unsigned int order)
{
if (unlikely(order >= MAX_ORDER) )
return NULL;

/* Unknown node is current node */
if (nid < 0)
nid = numa_node_id() ;

return __alloc_pages (gfp_mask, order,
NODE_DATA (nid) ->node_zonelists + gfp_zone (gfp_mask)) ;

}

Just a simple check is carried out to ensure that no overly large memory chunk is allocated. If a neg-
ative node ID (which does not exist) is specified, the kernel automatically uses the ID that belongs to
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the currently executing CPU. Work is then delegated to __alloc_pages to which an appropriate set
of parameters is passed. Notice that gfp_zone is used to select the zone from which the allocation is
supposed to be fulfilled. This is an important detail that can easily be missed!

The kernel sources refer to this __alloc_pages as the “heart of the buddy system’ because it deals
with the essential aspects of allocation. Since a heart is an important thing to have, I shall introduce the
function in detail below.

Selecting Pages

Let us therefore turn our attention to how page selection works.

Helper Functions

First, we need to define some flags used by the functions to control behavior when various watermarks
are reached.

mm/page_alloc.c

#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
#define ALLOC_HARDER 0x10 /* try to alloc harder */

#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */

#define ALLOC_CPUSET 0x40 /* check for correct cpuset */

The first flags indicate which watermark applies when the decision is made as to whether pages can be
taken or not. By default (that is, there is no absolute need for more memory because of pressure exerted
by other factors), pages are taken only when the zone still contains at least zone->pages_high pages.
This corresponds to the ALLOC_WMARK_HIGH flag. ALLOC_WMARK_MIN or _LOW must be set accordingly in
order to use the low (zone->pages_low) or minimum (zone->pages_min) setting instead. ALLOC_HARDER
instructs the buddy system to apply the allocation rules more generously when memory is urgently
needed; ALLOC_HIGH relaxes these rules even more when highmem is allocated. Finally, ALLOC_CPUSET
tells the kernel to note that memory must be taken only from the areas associated with the CPUs that the
current process is allowed to use — of course, this option only makes sense on NUMA systems.

The flag settings are applied in the zone_watermark_ok function, which checks whether memory can still
be taken from a given zone depending on the allocation flags set.

mm/page_alloc.c
int zone_watermark_ ok (struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
/* free_pages my go negative - that's OK */
long min = mark
long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
int o;

if (alloc_flags & ALLOC_HIGH)

min -= min / 2;
if (alloc_flags & ALLOC_HARDER)
min -= min / 4;
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if (free_pages <= min + z->lowmem_reserve[classzone_idx])
return 0;

for (o = 0; o < order; o++) {
/* At the next order, this order's pages become unavailable */
free_pages -= z->free_areal[o].nr_free << o;

/* Require fewer higher order pages to be free */
min >>= 1;

if (free_pages <= min)
return 0;
}
return 1;

}

Recall that zone_per_state allows for accessing the per-zone statistics. In this case, the number of free
pages is obtained.

Once the ALLOC_HIGH and ALLOC_HARDER flags have been interpreted (they reduce the minimum mark by
a half or quarter of the current value, which makes the allocation effectively try hard or even harder), the
function checks whether the number of free pages is less than the desired minimum plus the emergency
reserve specified in lowmem_reserve. If not, the code iterates over all orders less than the current order
and subtracts all pages in the current zone from free_pages (the o-fold left shift is necessary because
nr_free stores the free page blocks). At the same time, the required number of free pages is halved for
each zone. The allocation is freed if the kernel establishes that not enough pages are present after iterating
over all low-memory zones.

get_page_from_freelist is another important helper function used by the buddy system. It refers to the
flags set and the allocation order to decide whether allocation can be made; if so, it initiates actual page
allocation.?

mm/page_alloc.c

static struct page *

get_page_from_freelist (gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, int alloc_flags)

struct zone **z;

struct page *page NULL;

int classzone_idx = zone_idx(zonelist->zones[0]);
struct zone *zone;

/*

* Scan zonelist, looking for a zone with enough free.

* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/

z = zonelist->zones;

do {

zone = *z;

20Notice that NUMA systems use a zone list cache that accelerates scanning through the zones. Although the cache is not active on
UMA systems, it has some influence on the code below that I have removed for the sake of simplicity.
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if ((alloc_flags & ALLOC_CPUSET) &&
lcpuset_zone_allowed_softwall (zone, gfp_mask))
continue;

if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {

unsigned long mark;

if (alloc_flags & ALLOC_WMARK_MIN)
mark = zone->pages_min;

else if (alloc_flags & ALLOC_WMARK_LOW)
mark = zone->pages_low;

else
mark = zone->pages_high;

if (!zone_watermark ok (zone, order, mark,

classzone_idx, alloc_flags))

continue;

A pointer to the fallback list is passed as parameter to the function. This list determines the order in
which the other zones (and nodes) of the system are scanned if no pages are free in the desired zone. The
layout and meaning of this data structure are discussed extensively in Section 3.4.1.

The subsequent do loop does more or less exactly what would intuitively be expected as the simplest
way of finding a suitable free memory block — it iterates over all zones of the fallback list. First of all,
the ALLOC_* flags are interpreted (cpuset_zone_allowed_softwall is another helper function to check
whether the given zone belongs to the allowed CPUs for the process). zone_watermark_ok then checks
each zone to find out if enough pages are present and attempts to allocate a contiguous memory block. If
one of these two conditions is not met — either there are not enough free pages or the request cannot be
satisfied with contiguous pages — the next zone in the fallback list is checked in the same way.

If the zone is suitable for the current request, buf fered_rmqueue tries to remove the desired number of
pages from it:

mm/page_alloc.c

page = buffered_rmqueue(*z, order, gfp_mask);

if (page) {
zone_statistics(zonelist, *z);
break;
}
} while (*(++z) !'= NULL);

return page;

}

We take a closer look at buffered_rmqueue in Section 3.5.4. If page removal was successful, the page(s)
can be returned to the caller. Otherwise, the loop starts anew, and the next best zone is selected.

Allocation Control

As mentioned above, __alloc_pages is the main function of the buddy system. Now that we have dealt
with all preparatory work and described all possible flags, we turn our attention to the relatively complex
implementation of the function that is one of the lengthier parts of the kernel. Complexity arises above
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all when too little memory is available to satisfy a request or when available memory is slowly running
out. If sufficient memory is available, the necessary work is quickly done as the start of the code shows.

mm/page_alloc.c

struct page * fastcall

__alloc_pages (gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist)

const gfp_t wait = gfp_mask & __ GFP_WAIT;
struct zone **z;

struct page *page;

struct reclaim_state reclaim_state;
struct task_struct *p = current;

int do_retry;

int alloc_flags;

int did_some_progress;

might_sleep_if (wait);

restart:
z = zonelist->zones; /* the list of zones suitable for gfp_mask */

if (unlikely(*z == NULL)) {
/*
* Happens if we have an empty zonelist as a result of
* GFP_THISNODE being used on a memoryless node
*/
return NULL;

page = get_page_from_freelist (gfp_mask|__GFP_HARDWALL, order,
zonelist, ALLOC_WMARK_LOW | ALLOC_CPUSET) ;
if (page)
goto got_pg;

In the simplest scenario, allocation of a fresh memory area involves a single invocation of
get_page_from_freelist to return the required number of pages (which is handled by the code at the
label got_pg).

The first memory allocation attempt is not particularly aggressive. A failure to find memory in any of the
zones means that there isn’t much memory left but requires more than a moderate increase in effort from
the kernel to find more memory (the big guns are brought out later).

mm/page_alloc.c

for (z = zonelist->zones; *z; z++)
wakeup_kswapd (*z, order);

alloc_flags = ALLOC_WMARK_MIN;

if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
alloc_flags |= ALLOC_HARDER;

if (gfp_mask & __ GFP_HIGH)
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alloc_flags |= ALLOC_HIGH;
if (wait)
alloc_flags |= ALLOC_CPUSET;

page = get_page_from_freelist (gfp_mask, order, zonelist, alloc_flags);
if (page)
goto got_pg;

}

The kernel again iterates over all zones in the fallback list and invokes the wakeup_kswapd each time. As
its name suggests, this function wakes the kswapd daemon responsible for swapping out pages. The task
of the swapping daemons is complex and is therefore described in a separate chapter (Chapter 18). All
you need note here is that fresh memory can be obtained by, for example, shrinking kernel caches and
page reclaim, that is, writing back or swapping out rarely used pages. Both measures are initiated by the
daemon.

Once the swapping daemon has been woken, the kernel starts a new attempt to find a suitable memory
chunk in one of the zones. This time it goes about its search more aggressively by adjusting the allocation
flags to more promising values for the particular situation. In doing so, it reduces the watermark to its
minimum value. ALLOC_HARDER is set for real-time processes and for calls with __GFP_WAIT that may not
go to sleep. A further call of get_page_from_freelist with a changed set of flags tries to obtain the
desired pages.

If this also fails, the kernel resorts to more drastic measures:

mm/page_alloc.c
rebalance:
if (((p->flags & PF_MEMALLOC) || unlikely(test_thread flag(TIF_MEMDIE)))
&& !'in_interrupt()) {
if (!(gfp_mask & __ GFP_NOMEMALLOC)) {
nofail_alloc:
/* go through the zonelist yet again, ignoring mins */
page = get_page_from_ freelist (gfp_mask, order,
zonelist, ALLOC_NO_WATERMARKS) ;
if (page)
goto got_pg;
if (gfp_mask & __ GFP_NOFAIL) {
congestion_wait (WRITE, HZ/50);
goto nofail_alloc;

}

goto nopage;

If PF_MEMALLOC is set or if the TIF_MEMDIE flag is set for the task (in both cases, the kernel must not

be in the interrupt context). get_page_from_freelist tries once more to obtain the desired pages,

but this time, watermarks are completely ignored because ALLOC_NO_WATERMARKS is set. Whereas the
PF_MEMALLOC condition usually only applies when the call for more memory originates from the allocator
itself, TIF_MEMDIE is set when a thread has just been hit by the OOM killer.
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The search can come to an end here for two reasons:

1. _ crp_NoMEMALLOC is set. This flag prohibits using the emergency reserve (which can well
be if the watermarks are ignored), so calling get_page_from_freelist without obeying the
watermarks is forbidden. The kernel can do nothing more than fail ultimately in this case by
jumping to the noopage label, where the failure is reported to the user with a kernel message,
and a NULL pointer is returned to the caller.

2. get_page_from freelist fails despite watermarks being ignored. In this case, the search
is also aborted and terminates with an error message. However, if _ GFP_NOFAIL is set, the
kernel goes into an endless loop (implemented by branching back to the nofail_alloc label)
to first wait (by means of congestion_wait) for the end of “’congestion’ in the block layer,
which can arise when pages are reclaimed (see Chapter 18). Allocation is then attempted
again until it succeeds.

If PF_MEMALLOC is not set, the kernel still has some more options to try, but these require going sleep. This
is necessary to allow kswapd to make some progress.

The kernel now enters on a slow path where time-consuming operations begin. A prerequisite is that the
_ Grp_wAIT flag is set in the allocation mask because the subsequent actions can put the process to sleep.

mm/page_alloc.c

/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;

cond_schedule() ;

Recall that wait is 1 if the bit is set, and 0 otherwise. If this flag is not set, allocation is aborted at this
point. Before further attempts are made, the kernel provides the opportunity of rescheduling by means

of cond_resched. This prevents too much time being spent searching for memory so that other tasks are
left unfulfilled.

The paging mechanism provides an as-yet-unused option for swapping rarely used pages out to a block
medium to create more space in RAM. However, this option is very time-consuming and can sleep.
try_to_free_pages is the respective helper function that attempts to find pages that are currently not
urgently needed and can therefore be swapped out. It is invoked after the pF_MEMALLOC flag has been set
for the task to indicate to the remaining kernel code that all subsequent memory allocations are needed
in the search for memory.

mm/page_alloc.c
/* We now go into synchronous reclaim */
p->flags |= PF_MEMALLOC;
did_some_progress = try_ to_free_pages(zonelist->zones, order, gfp_mask);

p->flags &= ~PF_MEMALLOC;

cond_resched () ;
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The call is framed by code that sets the above pF_MEMALLOC flag. It may be necessary for
try_to_free_pages to allocate new memory for its own work. As this additional memory is

needed to obtain fresh memory (a rather paradoxical situation), the process should, of course, enjoy
maximum priority in terms of memory management from this point on — this is achieved by setting the
above flag.

Recall that only a few lines ago, a very aggressive attempt at memory allocation was tried conditioned on
PF_MEMALLOC being set.

Besides, setting the flag ensures that try_to_free_pages is not called recursively because __alloc_pages
will already have aborted before if PF_MEMALLOC is set.

try_to_free_pages is itself a lengthy and complex function whose implementation I won't discuss
here. Instead, see Chapter 18, which includes a detailed description of the underlying mechanism. At the
moment, it is sufficient to know that the function selects pages not recently in very active use and writes
them to the swap area to free space in RAM memory. The number of freed pages by try_to_free_pages
is returned as the result.

try_to_free_pages acts only on the node containing the desired zone. All other
nodes are ignored.

If more than one page is to be allocated, pages from the per-CPU cache are brought back into the buddy
system:

mm/page_alloc.c
if (order != 0)
drain_all_local_pages();

How this is technically done is not of relevance here, so it is not necessary to discuss drain_all_
local_pages in detail.

The next kernel action — could it be any different — is to invoke get_page_from_freelist to attempt
allocation again if some pages could be freed by try_to_free_pages:

mm/page_alloc.c
if (likely(did_some_progress)) {
page = get_page_from_freelist (gfp_mask, order,
zonelist, alloc_flags);
if (page)
goto got_pg;
} else if ((gfp_mask & _ GFP_FS) && ! (gfp_mask & _ GFP_NORETRY)) {

If the kernel may perform calls that affect the VFS layer and is not hindered by GFp_NORETRY, the out-of-
memory (OOM) killer is invoked:

mm/page_alloc.c
/* The OOM killer will not help higher order allocs so fail */
if (order > PAGE_ALLOC_COSTLY_ORDER) {
clear_zonelist_oom(zonelist);
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goto nopage;
}

out_of_memory (zonelist, gfp_mask, order);
goto restart;

}

Without going into the details of implementation, note that out_of_memory picks one task that the kernel
deems particularly guilty of reserving all the memory — and kills it. This, hopefully, will lead to a good
number of free pages, and the allocation is retried by jumping to the label restart. However, it is unlikel
that killing a process will immediately lead to a continuous range of more than 2PAGE_COSTLY_ORDER
pages (wWhere PAGE_COSTLY_ORDER_PAGES is usually set to 3), so the kernel spares one innocent task’s life
if such a big allocation was requested, does not perform out-of-memory killing, and admits failure by
jumping to nopage.

What happens if _ GFP_NORETRY is set or the kernel is not allowed to use operations that might affect the
VES layer? In this case, the size of the desired allocation comes in:

mm/page_alloc.c

do_retry = 0;
if (! (gfp_mask & __ GFP_NORETRY)) {
if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
(gfp_mask & __ GFP_REPEAT))
do_retry = 1;
if (gfp_mask & _ GFP_NOFAIL)
do_retry = 1;
}
if (do_retry) {
congestion_wait (WRITE, HZ/50);
goto rebalance;
}
nopage:
if (!(gfp_mask & __ GFP_NOWARN) && printk_ratelimit()) {
printk (KERN_WARNING "%s: page allocation failure."
" order:%d, mode:0x%x\n",
p->comm, order, gfp_mask);
dump_stack() ;
show_mem () ;
}
got_pg:
return page;

}

The kernel goes into an endless loop if the allocation size is less than 2PAGE_ALLOC_COSTLY_ORDER _ g

pages, or the __ GFP_REPEAT flag is set. GFP_NORETRY must naturally not be set in both cases since the
caller does not like to retry the allocation in this case. The kernel branches back to the rebalance label
that introduces the slow path and remains there until a suitable memory chunk is finally found — with
reservations of this size, the kernel can assume that the endless loop won't last all that long. Beforehand,
the kernel invokes congestion_wait to wait for the block layer queues to free up (see Chapter 6) so that
it has a chance to swap pages out.

The kernel also goes into the above endless loop if the desired allocation order is greater than 3 but the
__GFP_NOFAIL flag is set — the flag does not allow failing on any account.
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If this is not the case, the kernel gives up and can do nothing more than return a NULL pointer to the user,
and print a warning message that a memory request could not be fulfilled.

Removing the Selected Pages

Two things remain to be done once the kernel has found a suitable zone with sufficient free pages for
the allocation. First, it must be checked whether the pages are contiguous (up to now it only knows how
many free pages there are). And second, the pages must be removed from the free_lists in the buddy
fashion, and this may make it necessary to break up and rearrange memory regions.

The kernel delegates this work to buf fered_rmqueue as discussed in the previous section. Figure 3-32
shows the essential steps of the function.

| buffered_rmqueue I

L

order ==(? Yos Fill in per-CPU cache if necessary |

N
Appropriate page found? |—>es Remove page
o prep_new_page
=

Return Nul1 pointer |

No

> prep_new_page

Figure 3-32: Code flow diagram for buffered_rmqueue.

The kernel performs optimization if only a single page is to be allocated, that is, if the allocation order
is 0 because 2° = 1. The page is not taken directly from the buddy system but from the per-CPU page
cache (recall that this cache provides a CPU-local list of cache-hot and cache-cold pages; the required

data structures are described in Section 3.2.2).

As usual, some variables need to be set up first:

mm/page_alloc.c
static struct page *
buffered_rmgueue (struct zone *zone, int order, gfp_t gfp_flags)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & _ GFP_COLD) ;
int migratetype = allocflags_to_migratetype (gfp_flags);

If GFP_coLD is set in the allocation flags, then a cache-cold page must be taken from the per-CPU allocator
if any exists. The double negation ensures that cold is either 0 or 1.2 It is also essential to determine the

21pf just gfp_flags & __GFP_COLD were used, then the numerical value of cold would be the bit value of __GFP_COLD if the
flag is set. This would not allow using cold as an index into a binary array.
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migrate list from the allocation flags. The previously introduced function allocflags_to_migratetype
(see Section 3.5.2) comes in handy here.

When only a single page is desired, the kernel tries to speed up the request with the help of the per-CPU
cache. If the cache is empty, the kernel takes the opportunity to check the cache fill level.

mm/page_alloc.c
again:
if (order == 0) {
struct per_cpu_pages *pcp;

page = NULL;
pcp = &zone_pcp(zone, get_cpu())->pcplcold];
if (!pcp->count)
pcp->count = rmqueue_bulk(zone, 0,
pcp->batch, &pcp->list);
if (unlikely (!pcp->count))
goto failed;

Once the appropriate (i.e., hot or cold) per-CPU list for the current processor has been selected,
rmqueue_bulk is invoked to refill the cache. I won’t reproduce the function here as it simply removes
pages from the normal buddy system and adds them to the cache. However, it is important to note that
buffered_rmqgueue stores the migrate type of the page in the private element of struct page. This will
become important when pages are taken off the cache:

mm/page_alloc.c
/* Find a page of the appropriate migrate type */
list_for_each_entry(page, &pcp->list, lru)
if (page_private(page) == migratetype)
break;

/* Allocate more to the pcp list if necessary */
if (unlikely (&page->1lru == &pcp->list)) {
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, &pcp->list, migratetype);
page = list_entry(pcp->list.next, struct page, 1lru);
}

list_del (&page->1ru) ;
pcp->count--
} else {
page = __rmgueue (zone, order);
if (!page)
goto failed;

The kernel iterates over all pages on the per-CPU cache and checks if the page of the desired migrate
type is available. This need not be the case if the cache has been refilled by a previous call with pages of a
different migrate type. If no suitable page is found, some more pages with the currently desired migrate
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type are added to the cache, and one page is removed from the per-CPU list and processed further
below.

If more than one page is to be allocated (as handled in the else branch), the kernel calls __rmqueue to
select a suitable page block from the zone’s buddy lists. If necessary, the function automatically breaks
down larger blocks and puts unused parts back in the lists (how this is done is described below). Caution:
It can be the case that there are enough free pages in the zone to satisfy the allocation request, but that
the pages are not contiguous. In this case, __rmqueue fails, and a NULL pointer is returned.

Since all failures are handled by jumping to the label failed, it is guaranteed that page points to a
valid sequence of pages once the kernel gets to the current point. Before the pointer can be returned,
prep_new_page has to prepare the pages for life in the kernel (note that the function returns a positive
value if something is wrong with the selected pages; in this case, the allocation is restarted from the
beginning):

mm/page_alloc.c
if (prep_new_page (page, order, gfp_flags))
goto again;
return page;
failed:

return NULL;

prep_new_page performs several checks on the pages to ensure that they leave the allocator in a perfect
state — this means, in particular, that the page must not be in use in existing mappings and no incorrect
flags like PG_locked or PG_buddy may be set because this would imply that the page is in use somewhere
else and should not be on the free list. Normally, however, no error should occur because this would
imply a kernel error elsewhere. The function also sets the following default flags used for each new page:

mm/page_alloc.c
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1 << PG_referenced | 1 << PG_arch 1 |
1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);

The meanings of the individual bits are given in Section 3.2.2. prep_new_page is also invoked to set the
reference counters of the first page instance involved to the initial value of 1. Besides, some more work is
required depending on the page flags:

mm/page_alloc.c
if (gfp_flags & __GFP_ZERO)
prep_zero_page (page, order, gfp_flags);

if (order && (gfp_flags & _ GFP_COMP))
prep_compound_page (page, order) ;

return 0;
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Q If _ GFP_ZERO is set, prep_zero_page fills the page with zero bytes using an efficient,
architecture-specific function.

Q  If _ GFp_coMP is set and more than one page has been requested, the kernel must group the
pages into compound pages. The first page is called the head page, while all other pages are called
tail pages. The structure of compound pages is shown in Figure 3-33.

All pages are identified as compound pages by the PG_compound bit. The private elements of
the page instance of all pages — even the head page itself — point to the head page. Besides,
the kernel needs to store information on how to free the compound page. This requires both a
function to free the page and information on how many pages compose the compound page.
The LRU list element of the first tail page is abused for this purpose: A pointer to a destructor
function is thus kept in 1ru.next, while the allocation order is stored in 1ru.prev. Notice that
the 1ru element cannot be used for this purpose because it is required if the compound page is
to be kept on a kernel list.

Why is this information required? The kernel can combine multiple adjacent physical pages to a
so-called huge-TLB page. When a userland application works with large chunks of data, many
processors allow using huge-TLB pages to keep the data in memory. Since the page size of a
huge-TLB page is larger than the regular page size, this reduces the amount of information that
must be stored in the translation lookaside buffer (TLB), that, in turn, reduces the probability of
a TLB cache miss — and thus speeds things up.?? However, huge-TLB pages need to be freed
differently than compound pages composed of multiple regular pages, so an explicit destructor
is required. free_compound_pages is used for this purpose. The function essentially determines
the page order stored in 1ru.prev and frees the pages one after another when the compound
page is freed.

The auxiliary function prep_compound_page is used to arrange the described structure.

2" pages
A
L, )
struct

C PG_compound \PG_compound )\ PG_compound PG_compound page

private "private “private “private

Iru.next Iru.next~

Iru.prev Iru.prev \

&: free_compound_page
n

Figure 3-33: Higher-order allocations generate compound pages in which the
individual pages are linked.

The ___rmgueue Helper Function

The kernel uses the __rmgueue function (whose purpose is evident from the preceding description),
which acts as a gatekeeper to penetrate into the innermost core of the buddy system:

mm/page_alloc.c
static struct page *__rmgueue(struct zone *zone, unsigned int order,
int migratetype)

22Huge-TLB pages are created at boot time and kept in a special cache. The kernel parameter hugepages allows for specifying
how many huge-TLB pages are to be created, and applications can request them via the special filesystem hugetlbfs. The library
libhugetlbfs allows userland applications to use huge-TLB pages without direct interference with this filesystem.
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struct page *page;
page = __rmgueue_smallest (zone, order, migratetype);

if (unlikely(!page))
page = __rmqueue_fallback(zone, order, migratetype);

return page;

}

By reference to the desired allocation order, the zone from which the pages are to be removed, and
the migrate type, __rmqueue_smalles scans the page lists until it finds a suitable contiguous chunk of
memory. When it does this, buddies can be split as described in Chapter 1. Should the desired migrate
list not be able to satisfy the request, then other migrate lists are tried as an emergency measure in
__rmqueue_fallback

The implementation of __rmqueue_smallest is not very long. Essentially, it consists of a loop that iterates

over the list of migrate-type-specific free pages list of the zone in ascending order until an appropriate
entry is found.

mm/page_alloc.c
static struct page *__rmqueue_smallest (struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
struct free_area * area;
struct page *page;

/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) ({
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;

page = list_entry(area->free_list[migratetype] .next,

struct page, 1lru);
list_del (&page->1ru) ;
rmv_page_order (page) ;
area->nr_free--;
__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
expand (zone, page, order, current_order, area, migratetype);
return page;

return NULL;

The search begins at the entry for the desired allocation order. Smaller areas are of no use because the
pages allocated must be contiguous. Recall that all pages of a given allocation order are again subdivided
into migrate-type-specific lists, and the proper one is selected.
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Checking for a suitable chunk of memory is very simple: If an element is present in the examined list, it
can be used because it contains as many contiguous pages as needed. Otherwise, the kernel selects the
next higher allocation order and continues the search there.

Once a memory chunk has been removed from the list with 1ist_del, its removal must be noted by
decrementing the nr_free element of struct free_area by 1. The per-zone statistics of the current
zone must also be updated accordingly with __mod_zone_page_state. rmv_page_order is a helper func-
tion that deletes the PG_buddy bit from the page flags — the page is not contained in the buddy system
anymore — and sets the private element of struct page to 0.

If the memory chunk to be allocated is smaller than the selected range of contiguous pages, that is, if the
pages stem from a higher allocation order than required because no suitable smaller block was available,
it must be split into smaller segments in accordance with the principles of the buddy system. This is done
by the expand function.

mm/page_alloc.c

static inline struct page *

expand (struct zone *zone, struct page *page,
int low, int high, struct free_area *area)
int migratetype)

unsigned long size = 1 << high;

while (high > low) {
area--;
high--;
size >>= 1;
list_add(&pagelsize].lru, &area->free_list[migratetypel);
area->nr_free++;
set_page_order (&pagel[sizel]l, high);
}
return page;

}

This function uses a whole range of parameters. The meanings of page, zone, and area are obvious. index
specifies the index position of the buddy pair in the allocation bitmap, 1ow is the desired allocation order,
and high indicates the order from which the memory found was taken. migratetype sticks to its name
and denotes the migrate type.

It is best to look at the code step-by-step to understand how it works. Let us assume the following sit-
uation: A block with order = 3 is to be allocated. There is no block of this size in RAM, so the kernel
selects a block with order = 5 instead. For the sake of simplicity, this is located at index = 0. The function
is therefore invoked with the following parameters.

expand (page, index=0, low=3,high=5, area)

Figure 3-34 illustrates the steps described below that are needed to split the page (the previous contents
of the free_area lists are not shown, only the new pages).

1. The value of size is initialized to 2M&" = 25 = 32. The allocated memory area has already
been removed from the free_area list in __rmqueue and is therefore shown with dashed
lines in Figure 3-34.

2.  In the first loop pass, the kernel switches to the migrate-type-specific free_area list with the
next smaller memory units, namely, area=4. Analogously, the area size reduces to size=16
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(calculated by size >> 1). The front half of the initial area is inserted in the free_area list for
order=4.

mem_map | ] |

Tpage

Figure 3-34: Steps performed by expand when splitting a memory area.

Only the first page instance of a memory area is needed by the buddy system for
management purposes; the size of the area is derived automatically from the list in
which the page is located.

3.

The index of the rear memory area with size = 16 can be calculated by adding size to index,
thus skipping the next 16 bits in the allocation bitmap. Because all page instances are in lin-
ear succession in memory, the pointer to page must also be increased by 16 to arrive at the
corresponding page instance. The position of the page pointer is indicated by an arrow in
Figure 3-34.

The next loop pass places the first half of the remaining 16 units on the free_area list with
size=8. Both index and page are then increased by 8 units. The function has now arrived at
the desired size unit, and the page pointer can be returned as the result. From the figure, it
is evident that the last 8 pages of the original area of 32 pages are used; all other pages are in
the appropriate free_area lists of the buddy system.
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The kernel always uses the migrate-type-specific free_area list and does not change the migrate type of
any page during the process.

The set_page_order helper function invoked in each step is responsible for setting the private flag of
the first instance of struct page in each block to the order currently being processed and for assigning
the PG_buddy bit to the page. This indicates that the block is managed by the buddy system.

If no contiguous memory area is available on the migrate-type-specific list, __rmqueue_smallest returns
a NULL pointer. The kernel then tries to fulfill the request using other migrate lists based on the fallback
order. The task is delegated to __rmqueue_fallback. Recall from Section 3.5.2 that the fallback order
for migrate types is defined in the fallbacks array. First of all, the function iterates once again over the
various allocation order lists:

mm/page_alloc.c
static struct page *__rmqueue_fallback(struct zone *zone, int order,
int start_migratetype)

{

struct free_area * area;

int current_order;

struct page *page;

int migratetype, 1i;

/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;
--current_order) {
for (1 = 0; 1 < MIGRATE_TYPES - 1; i++) {
migratetype = fallbacks[start_migratetype] [1];

However, not just the desired migrate type, but also different migrate types as specified in the fallback list
are considered. Notice that the function iterates from large to small allocation orders! This is done contrary
to the usual strategy, because the kernel wants to take a maximally big block out of foreign allocation
lists if this cannot be avoided. If smaller blocks were favored, this would introduce fragmentation into
the other zone because blocks of different migrate types would be mixed, and this is clearly undesired.

The special zone MIGRATE_RESERVE contains emergency reservations and requires special treatment,
discussed below. If the free list for the currently considered migrate type contains free page blocks, the
request can be satisfied from there:

mm/page_alloc.c
/* MIGRATE_RESERVE handled later if necessary */
if (migratetype == MIGRATE_RESERVE)
continue;

area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;

page = list_entry(area->free_list[migratetype] .next,
struct page, 1lru);
area->nr_free--;

238



Chapter 3: Memory Management

Recall that migrate lists are the basis for the page mobility approach that is used to keep memory frag-
mentation as low as possible. Low memory fragmentation means that larger contiguous page blocks are
available even after the system has been running for a longer time. As discussed in Section 3.5.2, the
notion of how big a larger block is given by the global variable pageblock_order, which defines the order
for a large block.

If it is required to break a block of free pages from another migration list, the kernel has to choose what
to do with the remaining pages. If the rest itself qualifies as a large block, it makes sense to transfer the
whole block to the migrate list of the allocation type to mitigate fragmentation.

The kernel is more aggressive about moving free pages from one migrate list to another if an allocation

is performed for reclaimable memory. Allocations of this type often appear in bursts, for instance, when
updatedb is running, and could therefore scatter many small reclaimable portions across all migrate lists.
To avoid this situation, remaining pages for MIGRATE_RECLAIMABLE allocations are always transferred to
the reclaimable migrate list.

The kernel implements the described policy as follows:
mm/page_alloc.c

* If breaking a large block of pages, move all free
* pages to the preferred allocation list. If falling
* back for a reclaimable kernel allocation, be more
* agressive about taking ownership of free pages

if (unlikely(current_order >= (pageblock_order >> 1)) ||
start_migratetype == MIGRATE_RECLAIMABLE) {
unsigned long pages;
pages = move_freepages_block(zone, page,
start_migratetype) ;

/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)))
set_pageblock_migratetype (page,
start_migratetype) ;

migratetype = start_migratetype;

move_freepages tries to move the complete page block with 2Pageblock_order nages in which the current

allocation is contained to the new migrate list. However, only free pages (i.e., those with the PG_buddy bit
set) are moved. Additionally, move_freepages also obeys zone boundaries, so the total number of pages
can be smaller than a complete large page block. If, however, more than one-half of a large page block is
free, then set_pageblock_migratetype claims the complete block (recall that the function always works
on groups with pageblock_nr_pages pages).

Finally, the kernel can remove the page block from the list, and use expand to place the unused parts of a
larger block back on the buddy system.

mm/page_alloc.c

/* Remove the page from the freelists */
list_del (&page->1ru) ;
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rmv_page_order (page) ;
__mod_zone_page_state(zone, NR_FREE_PAGES,
- (1UL << order));

expand (zone, page, order, current_order, area, migratetype);
return page;

Notice that the new migrate type is used by expand if the kernel has decided to change it before. Other-
wise, the remainders are put back onto their original migrate list.

Finally, one more scenario must be considered: What if the allocation cannot be satisfied despite all page
orders and all migrate types have been taken into account? In this case, the kernel can try to fulfill the
allocation from the MIGRATE_RESERVE list, which serves as a last resort:

mm/page_alloc.c
/* Use MIGRATE_RESERVE rather than fail an allocation */
return __ rmgueue_smallest (zone, order, MIGRATE_RESERVE) ;

3.5.6 Freeing Pages

__free_pages is the base function used to implement all functions of the kernel API. Its code flow dia-
gram is shown in Figure 3-35.

. Yes
| Single page? |—>| free_hot_page I
O|_>
=
| _ _free_pages_ok I—’| __free_one_page I

Figure 3-35: Code flow diagram for __free_pages.

__free_pages first establishes whether a single page or a larger contiguous block is to be freed. If a single
page is freed, it is not returned to the buddy system but is placed in the per-CPU cache — in the warm list
for all pages that are highly likely to reside in the CPU cache. For this purpose, the kernel provides the
free_hot_page helper function, which is a parameter conversion function for free_hot_cold_page that
is invoked in turn.

If free_hot_cold_page determines that the number of pages in the per-CPU cache exceeds the limit
set by pcp->count, a whole batch of pages — whose size is specified by pcp->batch — is returned

to the buddy system. This strategy is known as lazy coalescing. It prevents large numbers of wasteful
coalescing operations that would be carried out if single pages were returned to the buddy system and
then immediately split to satisfy subsequent allocation requests. The free_pages_bulk function is used
to return pages to the buddy system.
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If the lazy coalescing limit is not exceeded, the page is simply kept on the per-CPU cache. However, it
is important that the private element be set to the migrate type of the page. As described, this allows
allocations fulfilled from the per-CPU cache to pick only pages of the proper migrate type.

If more than one page is freed, then __free_pages delegates work (after a detour that is not interesting
for our purposes) to __free_pages_ok and finally to __free_one_page. Despite the name, the function
not only handles freeing of single pages, but also takes compound pages into account.

mm/page_alloc.c
static inline void __ free_one_page (struct page *page,
struct zone *zone, unsigned int order)

This function is the cornerstone of memory freeing. The relevant area is added to the appropriate
free_area list of the buddy system. When buddy pairs are freed, the function coalesces them into a
contiguous area that is then placed in the next higher free_area list. If this reunites a further buddy
pair, it is also coalesced and moved to a higher list. This procedure is repeated until all possible buddy
pairs have been coalesced and the changes have been propagated upward as far as possible.

However, this doesn’t answer the question as to how the kernel knows that both parts of a buddy pair
are located on the list of free pages. To place a page group back into the buddy system, the kernel must
be able to compute two things: the address of the potential buddy and the index of the combined page
group if both buddies can be recombined. Two auxiliary functions are provided for this purpose:

mm/page_alloc.c
static inline struct page *

page_find_buddy (struct page *page, unsigned long page_idx, unsigned int order)
{

~

unsigned long buddy_ idx = page_idx (1 << order);
return page + (buddy_idx - page_idx);
}

static inline unsigned long
__ find_combined_index (unsigned long page_idx, unsigned int order)
{
return (page_idx & ~(1 << order));
}

It is advantageous to remember that the operator ~ performs a bitwise XOR operation. The calculations
performed by the function will be clarified by an example immediately.

First, we need to introduce one more helper function, though. The page index of the buddy is not enough.
The kernel must also ensure that all pages, belonging to the buddy are free and thus contained in the
buddy system to be able to merge both pairs:

mm/page_alloc.c
static inline int page_is_buddy (struct page *page, struct page *buddy,
int order)

{
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if

(PageBuddy (buddy)

&& page_order (buddy) == order)

{

return 1;
}
return 0;

}

If the first page of the buddy group is in the buddy system, then the PG_buddy bit of the corresponding
struct page instance is set. This, however, is not sufficient to reunite two buddies: When freeing a page
group with 20798 pages, the kernel must ensure that 2°79€T pages of the second buddy are contained
in the buddy system. This is easy to check because the page order of the free group is stored in the first
private element of the struct page instance of a free group, and page_order reads this value. Note that
page_is_buddy is slightly more complicated in reality because it needs to account for memory holes, but
this is omitted to simplify matters.

Table 3-8: Calculations When a Page is Placed Back into the Buddy System.

order page_idx buddy index - page_index _ find combined_index
0 10 1 10
1 10 -2 8
2 8 4 8
3 8 -8 0

The following code determines whether a buddy pair can be coalesced:

mm/page_alloc.c
static inline void __free_one_page(struct page *page,
struct zone *zone, unsigned int order)
{
int migratetype = get_pageblock_migratetype (page) ;
while (order < MAX ORDER-1) {
unsigned long combined_idx;
struct page *buddy;

buddy =

__page_find_buddy (page, page_idx,

if

(!'page_is_buddy (page, buddy,

order))

order) ;

break;

/* Move the buddy up one level.

*/

list_del (&buddy->1ru) ;

zone->free_area[order] .nr_free--;

rmv_page_order (buddy) ;

combined_idx = _ find_combined_index (page_idx, order) ;
page = page + (combined_idx - page_idx) ;

page_idx = combined_idx;

order++;
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The routine tries to free a page group of order order. Because it is possible not only that the current group
can be merged with its direct buddy, but also that higher-order buddies can be merged, the kernel needs
to find the maximal allocation order for which this is possible.

The action of the code is best understood by means of an example. Imagine that an order 0 allocation, that
is, a single page, is freed, and let this page have the page index 10. The required calculations are found in
Table 3-8, and Figure 3-36 visualizes the process step-by-step. We assume that page 10 is the last missing
link that allows for coalescing two buddies of order 3 to form a new range of order 4.

0 7 8 10 15
order 4 [TTTTTTITTPATTTITT I ] ni=0
/ . ci=0
order 3 [TPATTTTIpi=8—"> pydgy=0
. ci=8
order 2 LLPA 1pi=8—> pygay =12
. ci=8
order 1 A Jpi=10—> pygay -8
pi=10
order 0 pi=10—> ci=10
buddy = 11

||:| empty page [l used page returned page

Figure 3-36: Returning a page into the buddy system can cause
higher-order allocations to be coalesced. pi stands for page_index,
while ci denotes combined index.

The first loop pass finds page number 11 as the buddy for page 10. Since not the page number of the
buddy, but a pointer to the corresponding page instance is required, the difference buddy_idx - page_idx
is of relevance: It denotes the difference between the current page and its buddy, and adding it to the page
pointer will deliver a pointer to the page instance of the buddy.

This pointer is required by page_is_buddy to check if the buddy is free. As per Figure 3-36, this is
luckily the case, so the buddies can be combined. This requires that page number 11 is temporarily
removed from the buddy system because it will be reintegrated as part of a larger block later.
The page instance is taken off the free list, and rmv_page_order clears the PG_buddy flag and the
private data.

Computing the index of the combined group in _ find_combined_index delivers 10, because the
2-page buddy block starts at this page number. At the end of each loop step, the page pointer
is set to point to the first page in the new buddy group, but in this case, nothing needs to be
modified.

The next loop pass works similarly, but now for order=1; that is, the kernel tries to combine two 2-
page buddies into a 4-page group. The buddy of the [10, 11] page group starts at page number 8, so the
difference buddy_index - page_index is negative. Naturally, there’s nothing preventing a buddy from
being on the left-hand side of the current page group. The combined index of the merged group is 8, so
the page pointer has to be updated accordingly after page_is_buddy has ensured that all pages of the
new buddy (i.e., pages 8 and 9) are contained in the buddy system.
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The loop continues until the order 4. This page group cannot be merged with its buddy because the
buddy is not empty, as the figure shows. Consequently, page_is_buddy does not allow for merging the
two regions, and the loop is left.

Finally, the 2* = 16 page region must now be placed on the free lists of the buddy system. This is not
very complicated:

mm/page_alloc.c
set_page_order (page, order);
list_add(&page->1ru,
&zone->free_area[order].free_list[migratetype]);
zone->free_area[order] .nr_free++;

}

Notice that the allocation order of the page group is preserved in the private element of the first page
instance of the group. This way the kernel knows that not only page 0, but also the whole range [0, 15], is
free and in the buddy system.

3.5.7 Allocation of Discontiguous Pages in the Kernel

Physically contiguous mappings are best for the kernel for the reasons given above, but they cannot
always be used successfully. When a larger chunk of memory is allocated, it may be that it is not available
in a contiguous block despite all efforts made to avoid this situation. This is not a problem in userspace
because normal processes are designed to use the paging mechanism of the processor even though this
is costly in terms of speed and TLBs.

The same technique can also be applied in the kernel. As discussed in Section 3.4.2, the kernel reserves a
chunk of its virtual address space so that it can set up contiguous mappings in them.

As Figure 3-37 shows, a memory zone for the management of discontiguous memory on 1A-32 follows
the direct mapping of the first 892 MiB of RAM after an intervening safety gap of 8 MiB. This segment
has all the properties of a linear address space; the pages assigned to it can be located anywhere in RAM
memory. This is achieved by modifying the kernel page tables responsible for this area.

Protection gap

Direct physical
page mappings

8 MiB

vmalloc-Areas

Figure 3-37: vmalloc area in the kernel’s virtual address space on I1A-32
systems.

A self-contained area separated from the other areas by a memory page is assigned to each vmalloc
allocation. Like the boundary between direct mappings and the vmalloc area, the purpose of this is to
safeguard against incorrect memory access operations; these occur only as a result of kernel faults and
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should be reported by a system error message rather than allowing the data of other kernel parts to be
overwritten unnoticed. Because this separation is made in virtual address space, no valuable real memory
pages are wasted.

Reserving Memory with vmalloc

vmalloc is the interface function used by the kernel code to request memory that is not necessarily con-
tiguous in physical memory but is always linear in virtual memory.

<vmalloc.h>
void *vmalloc (unsigned long size);

Just one parameter is required to specify the size of the required memory area — in contrast to the func-
tions discussed earlier, the size unit is not pages but bytes, as is common in userspace programming.

The best-known example of vmalloc use is in the module implementation of the kernel. Because modules
can be loaded at any time, there is no guarantee — particularly if the system has been up and running for
a long time — that sufficient contiguous memory will be available for the sometimes voluminous module
data. This problem can be circumvented by using vmalloc if sufficient memory can be pieced together
from smaller chunks.

vmalloc is also invoked at about 400 other places in the kernel, particularly in device and sound drivers.

Because the memory pages used for vmalloc must in any case be actively mapped in kernel address
space, it is obviously preferable to use pages from zONE_HIGHMEM for this purpose. This allows the
kernel to conserve the more valuable lower zones without incurring any added disadvantages. For
this reason, vmalloc (along with the mapping functions discussed in Section 3.5.8) is one of the few
occasions when the kernel is able to use highmem pages for its own purposes (and not for userspace
applications).

Data Structures

When it manages the vmalloc area in virtual memory, the kernel must keep track of which sections
are in use and which are free. To this end, it defines a data structure to hold all used sections in a
linked list.

The kernel uses an important data structure called vm_area_struct to manage the
virtual address space contents of a userspace process. Despite the similarity of name
and purpose, these two structures must not be confused.

<vmalloc.h>

struct vm_struct {
struct vm_struct *next;
void *addr;
unsigned long size;
unsigned long flags;
struct page **pages;
unsigned int nr_pages;
unsigned long phys_addr;
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There is an instance of the structure in kernel memory for each area allocated with vmalloc. The meanings
of the structure elements are as follows:

0 addr defines the start address of the allocated area in virtual address space; size indicates the
size of the area. A complete allocation plan of the vmalloc area can be drawn up on the basis of
this information.

0  flags stores the — almost inevitable — flag set associated with the memory section. It is used
only to specify the memory area type and currently accepts one of the three values below.
0 vM_ALLOC specifies that the area was created by vmalloc.

0  vM_MAP is set to indicate that an existing collection of pages was mapped into the contigu-
ous virtual address space.

O  vM_IOREMAP indicates that an (almost) random physical memory area was mapped into the
vmalloc area; this is an architecture-specific operation.
Section 3.5.7 shows how the latter two values are employed.

0 pages is a pointer to an array of page pointers. Each element represents the page instance of a
physical page mapped into virtual address space.

nr_pages specifies the number of entries in pages and therefore the number of memory pages
involved.

0 phys_addr is required only if physical memory areas described by a physical address are
mapped with ioremap. This information is held in phys_addr.

0  next enables the kernel to hold all sections in the vmalloc area on a singly linked list.
Figure 3-38 shows an example of how the structure is used. Three physical pages whose (fictitious) posi-

tions in RAM are 1,023, 725 and 7,311 are mapped one after the other. In the virtual vmalloc area, the
kernel sees them as a contiguous memory area starting at the VMALLOC_START + 100.

1023 725 7311

addr=VMALLOC_START+100
size=3*PAGE_SIZE | @ \ | | I

e vmalloc-Area:

pages=
Y PAGE_OFFSET
]
\ 4
mem_map |__—|
725 1023 7311

Figure 3-38: Mapping physical pages into the vmalloc area.
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Creating a vim_area

Before a new virtual memory area can be created, it is necessary to find a suitable location for it. A linked
list with instances of vm_area manages the sections already created in the vmalloc area. The global

variable vmlist defined in mm/vmalloc is the list head.

mm/vmalloc.c
struct vm_struct *vmlist;

The kernel provides the get_vm_area helper function in mm/vmalloc; it acts as a parameter-preparation
front end for __get_vm_area. In turn, the latter function is a frontend for __get_vm_area_node that does
the actual work. On the basis of the size information for the area, the function tries to find a suitable place

in the virtual vmalloc space.

As a safety gap of 1 page (guard page) is inserted between each vmalloc area, the kernel first increases

the size specification by the appropriate amount.

mm/vmalloc.c
struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,

unsigned long start, unsigned long end, int node)

{

struct vm_struct **p, *tmp, *area;
size = PAGE_ALIGN (size);

/*

* We always allocate a guard page.
*/

size += PAGE_SIZE;

The start and end parameters are set to VMALLOC_START and VMALLOC_END, respectively, by the calling

functions.
A loop then iterates over all elements of the vmlist list to find a suitable entry.

mm/vmalloc.c
for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
if ((unsigned long)tmp->addr < addr) {
if ((unsigned long) tmp->addr + tmp->size >= addr)
addr = ALIGN(tmp->size +
(unsigned long) tmp->addr, align);
continue;

if ((size + addr) < addr)
goto out;
if (size + addr <= (unsigned long) tmp->addr)
goto found;
addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
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if (addr > end - size)
goto out;

The kernel finds a suitable position if size+addr is less than the start address of the area just examined
(held in tmp->addr). The new list element is then initialized with the appropriate values and is added to
the vmlist linked list.

mm/vmalloc.c

found:
area->next = *p;
*p = area;

area->flags = flags;
area->addr = (void *)addr;
area->size = size;
area->pages = NULL;
area->nr_pages = 0;
area->phys_addr = 0;

return area;

}

A null pointer is returned to indicate failure if no suitable memory area is found.
The remove_vm_area function removes an existing area from the vmalloc address space.

<vmalloc.h>
struct vm_struct *remove_vm_area (void *addr) ;

The function expects as a parameter the virtual start address of the area to be removed. To find the area,
the kernel must successively scan the list elements of vmlist until it finds a match. The corresponding
vm_area instance can then be removed from the list.

Allocating a Memory Area

Allocation of a non-continuous memory area is initiated by vmalloc. This is simply a front-end function
to supply __vmalloc with suitable parameters and to directly invoke _ vmalloc_node. The associated
code flow diagram is shown in Figure 3-39.

Implementation is divided into three parts. First, get_vm_area finds a suitable area in the vmalloc
address space. Then individual pages are allocated from physical memory, and finally, these pages are
mapped contiguously into the vmalloc area — and VM allocation is done.

The full code need not be reproduced here because it is riddled with boring safety checks.?> What is
interesting is the allocation of the physical memory area (ignore the possibility that there may not be
enough physical pages available).

23This, however, does not mean that you should avoid safety checks in your own code!
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mm/vmalloc.c
void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
pgprot_t prot, int node)

{

for (i = 0; i < area->nr_pages; i++) {
if (node < 0)
area->pages|[i] = alloc_page (gfp_mask) ;

else
area->pages|[i] = alloc_pages_node(node, gfp_mask, 0);

if (map_vm_area(area, prot, &pages))
goto fail;
return area->addr;

get_vm_area_nodel

_vmalloc_area_nodel

Allocate memory for
| page instances

——4alloc_pages_node|

Allocate as many
pages as necessary

Return address

|

Figure 3-39: Code flow diagram for vmalloc.

If an explicit node is specified from which the pages are to be allocated, the kernel invokes
alloc_pages_node. Otherwise, pages are taken from the current node using alloc_page.

The pages are removed from the buddy system of the relevant node; when this is done, vmalloc sets
gfp_mask to GFP_KERNEL | __ GFP_HIGHMEM — the kernel instructs memory management to take the pages
from ZONE_HIGHMEM if possible. The reasons for this were given above: Pages from the lower-memory
areas are more valuable and should therefore not be wasted for vmalloc allocations that could just as

well be satisfied with high-memory pages.

Memory is taken from the buddy system, and gfp_mask is set to GFP_KERNEL | __GFP_HIGHMEM so that the
kernel instructs memory management to take the pages from ZONE_HIGHMEM if possible. We have already

seen the reasons.
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Memory is not allocated from the buddy system in a single chunk but page-by-page.
This is a key aspect of vmalloc. If it were certain that a contiguous allocation could
be made, there would be no need to use vmalloc. After all, the whole purpose of the
function is to reserve large memory chunks even though they may not be
contiguous owing to fragmentation of the available memory. Splitting the allocation
into the smallest possible units — in other words, individual pages — ensures that
vmalloc will still work even when physical memory is fragmented.

The kernel invokes map_vm_area to map the scattered physical pages contiguously into the virtual
vmalloc area. This function iterates over the reserved physical pages and allocates the required number
of entries in the various page directories and in the page tables.

Some architectures require flushing of the CPU caches after the page tables have been modified. The
kernel therefore invokes the flush_cache_vmap whose definition is architecture-specific. Depending
on CPU type, this includes the required low-level assembler statements to flush the cache, an invoca-
tion of flush_cache_all (if there is no function to flush selective virtually mapped areas), or an empty
procedure if the CPU is not reliant on cache flushing, as is the case with IA-32.

Alternative Mapping Methods

Besides vmalloc, there are other ways of creating virtually contiguous mappings. All are based on the
__vmalloc function discussed above or make use of a very similar mechanism (not discussed here).

O vmalloc_32 works in the same way as vmalloc but ensures that the physical memory used can
always be addressed by means of regular 32-bit pointers. This is important if an architecture can
address more memory than would normally be possible on the basis of its word length; this is
the case, for example, on IA-32 systems with enabled PAE.

0  vmap uses a page array as its starting point to create a virtually contiguous memory area. In con-
trast to vmalloc, the physical memory location is not allocated implicitly but must be passed
ready-made to the function. Mappings of this kind can be recognized by the vM_wvaP flag in their
vm_map instance.

Q  Unlike all mapping methods described above, ioremap is a processor-specific function that must
be implemented on all architectures. It enables a chunk taken from the physical address space
used by the system buses for I/O operations to be mapped into the address space of the kernel.

This function is used predominantly in device drivers to make the address areas used for com-
munication with the peripherals available to the rest of the kernel (and, of course, to itself).

Freeing Memory

Two functions return memory to the kernel — vfree for areas allocated by vmalloc and vmalloc_32,
and vunmap for mappings created using vmap or ioremap. Both lead back to __vunmap.

mm/vmalloc.c
void __vunmap (void *addr, int deallocate_pages)

addr indicates the start address of the area to be freed, and deallocate_pages specifies whether the
physical pages associated with the area are to be returned to the buddy system. vfree sets the parameter
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to 1, whereas vunmap sets it to 0 because in this case only the mappings are removed but the associ-
ated physical pages are not returned to the buddy system. Figure 3-40 shows the code flow diagram for
___vunmap.

__vunmap I
| _ _remove_vm_area I
—| deallocate_pages set? l—‘r|__free_pages|—‘

| Free kernel data structures |

Figure 3-40: Code flow diagram for __vunmap.

It is not necessary to explicitly state the size of the area to be freed because this can be derived from
the information in vmlist. The first task of _ vunmap is therefore to scan this list in __remove_vm_area
(invoked by remove_vm_area after completion of locking) in order to find the associated entry.

The vm_area instance found is used by unmap_vm_area to remove the entries no longer needed from
the page tables. In the same way as when memory is reserved, the function works its way through the
various hierarchy levels of page management, but this time removes the entries involved. It also updates
the CPU caches.

If the __vunmap function parameter deallocate_pages is set to a true value (in vfree), the kernel iterates
over all elements of area->pages in which there are pointers to the page instances of the physical pages
involved. __free_page is invoked for each entry to return the page to the buddy system.

Finally, the kernel data structures used to manage the memory area must be returned.

3.5.8 Kernel Mappings

Although the vmalloc family of functions can be used to map pages from the highmem area into the
kernel (these are then not usually directly visible in kernel space), this is not the actual purpose of these
functions. It is important to underline this fact because the kernel provides other functions for the explicit
mapping of ZONE_HIGHMEM pages into kernel space, and these are unrelated to the vmalloc mechanism;
this is, therefore, a common source of confusion.

Persistent Kernel Mappings

The kmap function must be used if highmem pages are to be mapped into kernel address space for a
longer period (as a persistent mapping). The page to be mapped is specified by means of a pointer to page
as the function parameter. The function creates a mapping when this is necessary (i.e., if the page really
is a highmem page) and returns the address of the data.
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This task is simple if highmem support is not enabled. In this case, all pages can be accessed directly so
it is only necessary to return the page address; there is no need to create a mapping explicitly.

The situation is more complicated if highmem pages are actually present. As with vmalloc, the
kernel must first establish an association between the highmem pages and the addresses at which
they are mapped. An area in virtual address space must also be reserved to map the pages, and
finally, the kernel must keep track of which parts of the virtual area are already in use and which are
still free.

Data Structures

As discussed in Section 3.4.2, the IA-32 kernel reserves a region that follows on from the vmalloc area
and extends from PKMAP_BASE to FIXADDR_START. This area is used for persistent mappings. The schemes
used by different architectures are similar.

pkmap_count (defined in mm/highmem.m) is an integer array with LAST_PKMAP positions that contain an
entry for each page that can be persistently mapped. It is, in fact, a usage counter for the mapped pages
with slightly unusual semantics. The number of users in the kernel is not counted, but the number of
users plus 1. If the value of the counter is 2, the mapped page is used at just one point in the kernel. The
counter value 5 indicates that there are four users. Expressed more generally, the counter value # stands
for n — 1 users in the kernel.

As with classic usage counters, 0 means that the associated page is not in use. Counter value 1 has a
special meaning. The page associated with the position has already been mapped but cannot be used
because the TLB of the CPU has not been updated and access would either fail or be directed to an
incorrect address.

The kernel makes use of the following data structure to create the association between the page instances
of the physical pages and their position in the virtual memory area:

mm/highmem.c

struct page_address_map {
struct page *page;
void *virtual;
struct list_head list;

Y

This structure is used to create the page—> virtual mapping (hence the name of the structure). page
holds a pointer to the page instance in the global mem_map array, and virtual specifies the allocated
position in the kernel virtual address space.

For ease of organization, the mappings are kept in a hash table where the 1ist element is used to set up
an overflow list to handle hash collisions.

The hash table is implemented by means of the page_address_htable array, not discussed further here.
The hash function is page_slot from mm/highmen.c, which determines the page address on the basis
of the page instance. page_address is the front-end function to determine the address of a given page
instance using the data structures just described:
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mm/highmem.c
void *page_address (struct page *page)

Figure 3-41 outlines the interplay between the above data structures.

struct page_address_ma X
O page- R e Virtual address space LAST
—P page_address_map->virtual 0 1 ) DRMAD

..... » page_address_map->page

LAST_
PKMAP

pkmap_count

page_address_htable

Figure 3-41: Data structures for managing persistent mappings.

Finding Page Addresses

page_address first checks whether the passed page instance is in normal memory or high memory. If the
former applies, the page address can be calculated from the position of page in the mem_map array. In the
latter case, the above hash table is referenced to find the virtual address.

Creating a Mapping

The kmap function must be used to create a mapping by means of a page pointer.? It is only a front end
to establish whether the desired page really is in highmem. If not, the address yielded by page_address
is returned as the result. Otherwise, the kernel delegates work to kmap_high, which is defined as follows:

mm/highmem.c
void fastcall *kmap_high(struct page *page)
{

unsigned long vaddr;

vaddr = (unsigned long)page_address (page) ;
if (!vaddr)

vaddr = map_new_virtual (page) ;
pkmap_count [PKMAP_NR (vaddr) ] ++;
return (void*) vaddr;

24This function resides not only in arch/x86/mm/highmem_32.c but also in include/asm-ppc/highmem.h and
include/asm-sparc/highmem.h with practically the same definition.
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The page_address function discussed above first checks whether the page is already mapped. If it does
not return a valid address, the page must be mapped using map_new_virtual. The function performs the
following main steps:

1. The pkmap_count array is scanned backward from the last used position (held in the global
variable last_pkmap_nr) until a free position is found. If no position is free, the function
sleeps until another part of the kernel performs an unmapping.

When the maximum index of pkmap_count is reached, the search begins at position 0. In this
case, the flush_all_zero_pkmaps function is also invoked to flush the caches (you will see
this shortly).

2.  The page tables of the kernel are modified so that the page is mapped at the desired position.
However, the TLB is not updated.

3.  The usage counter for the new position is set to 1. As stated above, this means that the page
is reserved but cannot be used because the TLB entries are not current.

4, set_page_address adds the page to the data structures of the persistent kernel mappings.

The function returns the virtual address of the newly mapped page as its result.

On architectures that do not require high-memory pages (or if CONFIG_HIGHMEM is not set), a generic
version of kmap is used to return only the page address without changing anything in virtual memory.

<highmem.h>
static inline void *kmap (struct page *page)
{

might_sleep();

return page_address (page) ;

}

Unmapping
Pages mapped with kmap must be unmapped using kunmap when they are no longer needed. As usual,
this function first checks whether the relevant page (identified by means of its page instance) is actually
in high memory. If so, work is delegated to kunmap_high from mm/highmen.c, whose main task is to
decrement the counter at the corresponding position in the pkmap_count array (I won't discuss the
details).

This mechanism can never reduce the counter value to less than 1; this means that
the associated page is not freed. This is because of the additional usage counter
increment required to ensure correct handling of the CPU cache as discussed above.

The flush_all_zero_pkmaps also mentioned above is key to the final freeing of a mapping; it is always
invoked when the search for a free position in map_new_virtual starts from the beginning. It is responsi-
ble for three actions:

1. flush_cache_kmaps performs a flush on the kernel mappings (on most architectures that
require explicit flushing, the complete CPU cache is flushed using flush_cache_all)
because the global page tables of the kernel are changed.?

25This is a very costly operation that fortunately is not required on many processor architectures. In this case, it is defined
as a null operation as described in Section 3.7.
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2. pkmap_count is scanned in full. Entries with counter value 1 are set to 0, and the associated
entry is deleted from the page table, thus finally removing the mapping.

3.  Finally, all TLB entries present for the PKMAP area are flushed using the flush_t1b_kernel
range function.

Temporary Kernel Mappings

The kmap function just described must not be used in interrupt handlers because it can sleep. If there are
no free positions in the pkmap array, it goes to sleep until the situation improves. The kernel therefore
provides an alternative mapping function that executes atomically and is logically named kmap_atomic.
A major advantage of this function is that it is faster than a normal kmap. However, it must not be used
in code that can potentially go to sleep. It is therefore ideal for short code sections that quickly require a
temporary page.

The definition of kmap_atomic is architecture-specific for IA-32, PPC, and Sparc32, but the three imple-
mentations differ only in very minor details. Their prototype is identical.

void *kmap_atomic (struct page *page, enum km_type type)

page is a pointer to the management structure of the highmem page, and type defines the type of map-
ping required.?

<asm-arch/kmap_types.h>

enum km_type {
KM_BOUNCE_READ,
KM_SKB_SUNRPC_DATA,

KM_PTEO,
KM_PTEL,

KM_SOFTIRQL,
KM_TYPE_NR
Y

The fixmap mechanism discussed in Section 3.4.2 makes the memory needed to create atomic mappings
available in the kernel address space. An area that can be used to map highmem pages is set up between
FIX_KMAP_BEGIN and FIX_KMAP_END in the fixed_addresses array. The exact position is calculated on
the basis of the CPU currently active and the desired mapping type.

idx = type + KM_TYPE_NR*smp_processor_id();
vaddr = _ fix to_virt (FIX_KMAP_BEGIN + idx);

In the fixmap area, there is a “window”’for each processor in the system. It contains just one entry for each
mapping type, as demonstrated in Figure 3-42 (KM_TYPE_NR is not a separate type but simply indicates
how many entries there are in km_type). This arrangement makes it clear why functions may not block
when they use kmap_atomic. If they did, another process could create a mapping of the same type behind
their backs and overwrite the existing entries.

26The contents of the structure differ according to architecture, but the differences are so insignificant that they are not worth
describing.
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Figure 3-42: Mapping high-memory pages by means of fixed mappings.

Once the appropriate index has been calculated using the formula specified above and the associated
fixmap address has been found, all the kernel need do is modify the page tables accordingly and flush
the TLBs to put the changes into effect.

The kunmap_atomic function unmaps an existing atomic mapping from virtual memory by reference to
its type and virtual address simply by deleting the corresponding entry in the page tables.

Mapping Functions on Machines without Highmem

Many architectures do not support high memory because they don’t need it — 64-bit architectures head
this list. However, to permit use of the above functions without having to constantly distinguish between
highmem and non-highmem architectures, the kernel defines several macros that implement compatible
functions in normal memory (these are also used when highmem support is disabled on highmem-
capable machines).

<highmem.h>
#ifdef CONFIG_HIGHMEM
#else
static inline void *kmap (struct page *page)
{
might_sleep();
return page_address (page) ;

}

#define kunmap (page) do { (void) (page); } while (0)

#define kmap_atomic (page, idx) page_address (page)
#define kunmap_atomic (addr, idx) do { } while (0)
#endif

3.6 The Slab Allocator

Every C programmer is familiar with malloc and all its related functions in the standard library; they are
frequently invoked by most programs to reserve a few bytes of memory.

The kernel must also frequently allocate memory but cannot resort to the standard library functions.
The buddy system resources described above support the allocation of memory in pages, but this unit is
much too big. If space is needed for a string with 10 characters, reserving a full page with 4 KiB or more
is not only wasteful but absolutely unacceptable. The obvious solution is to split the memory in a page
into smaller units that can then hold large numbers of small objects.
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To this end, it is necessary to introduce new management mechanisms that place a greater overhead
on the kernel. To minimize the impact of this extra burden on system performance, the implementation
of the management layer should be as compact as possible so that there is little noticeable effect on the
caches and TLBs of the processor. At the same time, the kernel must ensure that memory is utilized
speedily and efficiently. Not only Linux but look-alikes and all other operating systems face this prob-
lem. Over the course of time, some good solutions and some bad solutions have been proposed and are
described in the general operating system literature (e.g., [Tan07]).

One such proposal — slab allocation — has proved to be very efficient for many workloads.
It was devised and implemented for Solaris 2.4 by Jeff Bonwick, a Sun employee. Because
he publicly documented his method [Bon94], it was also possible to implement a version
for Linux.

The provision of smaller memory blocks is not the only task of the slab allocator. Owing to its structure,
it also serves as a cache for objects that are frequently allocated and then released. By setting up a slab
cache, the kernel is able to keep a store of objects at the ready for subsequent use, even in an initialized
state, if so desired. For instance, the kernel must frequently generate new instances of struct fs_struct
to manage the filesystem data associated with a process (see Chapter 8). The memory blocks occupied
by instances of this type are reclaimed just as often (when a process terminates). In other words, the
kernel tends to allocate and release sizeof {£s_struct} memory blocks with great regularity. The slab
allocator keeps the returned memory blocks on an internal list and does not immediately give them back
to the buddy system. A recently returned block is then used when a new request is received for a fresh
instance of the object. This has two advantages. First, handling time is shorter because the kernel need
not apply the buddy system algorithms. Second, because the memory blocks are still “fresh,” there is a
strong probability that they are still in one of the CPU caches.

The slab allocator also has two further benefits:

Q  Calls to the buddy system are operations that have a considerable impact on the data and
instruction caches of the system. The more the kernel wastes these resources, the less they
are available for userspace processes. The more lightweight slab allocator dispenses with the
need for calls to the buddy system wherever possible and helps prevent undesirable cache
“‘contamination.”

0  Data stored in pages delivered directly by the buddy system is always clustered around
addresses divisible by powers of 2 (many other allocation methods that divide pages into
smaller blocks share this characteristic). This has a negative impact on CPU cache utilization
because some cache lines are overused owing to this kind of address distribution and others
are almost empty. This disadvantage can be even more drastic on multiprocessor systems if
different memory addresses are transferred on different buses because some buses may be
congested, while others are little used.

By means of slab coloring, the slab allocator is able to distribute objects uniformly to achieve uni-
form cache utilization, as demonstrated below.

That frequently used kernel objects are kept in the CPU cache is a desired effect. The earlier
comment that the large cache and TLB footprints of the buddy system are negative in terms
of the slab allocator related to the fact that unimportant data land in the CPU cache and
important data are displaced — a situation that should naturally be prevented.
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The term color is used in the metaphorical sense. It has nothing to do with colors
but represents a certain offset by which the objects in the slab are shifted to place
them in a different cache line.

Where does the name slab allocator come from? The objects managed in each cache are combined into
larger groups covering one or more contiguous page frames. Such groups are called slabs; each cache
consists of several such slabs.

3.6.1 Alternative Allocators

Although the slab allocator works well for many possible workloads, there are naturally situations in
which it fails to provide optimal performance. Problems arise when slab allocation is used on machines
that range on the borders of the current hardware scale: tiny embedded systems and large, massively
parallel systems equipped with huge amounts of RAM. In the second case, the large amount of metadata
required by the slab allocator can become a problem: developers have reported that many gigabytes of
memory are required only for the slab data structures on large systems. For embedded systems, the total
footprint and complexity of slab allocation can simply be too much.

To cope with such situations, two drop-in replacements for the slab allocator were added during the
development of kernel 2.6:

O  The slob allocator is especially optimized for low code size. It is centered around a simple linked
lists of blocks (thus its name). To allocate memory, a likewise simple first-fit algorithm is used.

With only roughly 600 lines, the total footprint of the slob allocator is very small. Naturally, it
is not the most efficient allocator in terms of speed and is definitely not designed to be used on
large-scale systems.

Q  The slub allocator tries to minimize the required memory overhead by packing page frames into
groups and to manage these groups by overloading unused fields in struct page. While this
certainly does not simplify the definition of this structure, as you have seen before, the effort is
justified by the better performance of slub in contrast to slab on large machines.

Since slab allocation is the default option used by most kernel configurations, alternative allocators are
not discussed in detail. It is, however, important to emphasize that the rest of the kernel need not be
concerned about which low-level allocator is chosen. The visible front end is identical for all allocators.
Each must implement a certain set of functions for memory allocation and caching:

O kmalloc, __kmalloc, and kmalloc_node as general (node-specific) allocation functions.

O  kmem_cache_alloc, kmem_cache_alloc_node as (node-specific) providers of specific kernel
caches.

The behavior of these functions is included in the following discussion of the slab allocator. Using these
standard functions, the kernel can provide further convenience functions that do not require specific
knowledge about how memory is managed internally — for instance, kcalloc to allocate memory for
arrays, or kzalloc to allocate a memory region that is filled with zero bytes. The situation is illustrated
in Figure 3-43.

Regular kernel code just needs to include slab.h to enjoy all standard kernel functions for memory
allocation. The build system will ensure that the allocator chosen at compile time is used to fulfill the
desired requests.
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Figure 3-43: Connection between the
buddy system, general-purpose
allocators, and the interface to
generic kernel code.

3.6.2 Memory Management in the Kernel

The general allocation and freeing functions of the kernel have similar names to their equivalents in the
C standard library and are employed in exactly the same way.

O  kmalloc(size, flags) reserves a memory area of size bytes and returns a void pointer to the
start of the area. If insufficient memory is available (a very improbable situation in the kernel but
one that must always be catered for), a null pointer is the result.

The flags argument specifies the area from which memory is to be selected using the GFP_ con-
stants discussed in Section 3.5.4, for example, GFp_DMA for a DM A-suitable memory area.

0  kfree{*ptr} frees the memory area pointed at by *ptr.
In contrast to the situation in userspace programming, the kernel also includes the percpu_alloc and

percpu_free functions to reserve and free the desired memory area for each system CPU (and not specif-
ically for the CPU currently active).?”

kmalloc is used at thousands of places in the kernel sources, but the pattern is always the same. The
memory area reserved with kmalloc is converted to the correct type by means of a typecast and is then
assigned to a pointer variable.

info = (struct cdrom_info *) kmalloc (sizeof (struct cdrom_info), GFP_KERNEL) ;

The task of setting up and using caches is not especially difficult from the programmer’s point of view. A
suitable cache must first be created with kmem_cache_create, then the objects it contains can be allocated

270lder kernel versions have used the functions alloc _percpu and free_percpu for this purpose, but since these functions do
not support CPU hotplugging, they are only supported for compatibility reasons and should not be used in new code.
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and freed using kmem_cache_alloc and kmem_cache_£free. The slab allocator is automatically responsible
for interaction with the buddy system to reserve the required pages.

Alist of all active caches is held in /proc/slabinfo (the output below omits a few less important columns
for reasons of space).?

wolfgang@meitner> cat /proc/slabinfo
slabinfo - version: 2.1

# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables
<limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail>
nf_conntrack_expect 0 0 224 18 1 : tunables 0 0 0 : slabdata 0 0 0
UDPV6 16 16 960 4 1 : tunables 0 0 O slabdata 4 4 0
TCPvV6 19 20 1792 4 2 tunables 0 0 O slabdata 5 5 0
xfs_inode 25721 25725 576 7 1 tunables 0 0 O slabdata 3675 3675 0
xfs_efi_item 44 44 352 11 1 tunables 0 0 O slabdata 4 0
xfs_efd_item 44 44 360 11 1 tunables 0 0 O

slabdata 4 4 0

kmalloc-128 795 992 128 32 1 tunables 0 0 O slabdata 31 31 0
kmalloc-64 19469 19584 64 64 1 tunables 0 0 O slabdata 306 306 0
kmalloc-32 2942 2944 32 128 1 tunables 0 0 0 slabdata 23 23 0
kmalloc-16 2869 3072 16 256 1 tunables 0 0 0 slabdata 12 12 0
kmalloc-8 4075 4096 8 512 1 tunables 0 0 0 slabdata 8 8 0
kmalloc-192 2940 3276 192 21 1 tunables 0 0 0 slabdata 156 156 0
kmalloc-96 754 798 96 42 1 tunables 0 0 0 slabdata 19 19 0

The file columns contain the following information in addition to a string that identifies each cache (and
also ensures that no identical caches are created):
O Number of active objects in the cache.
Total number of objects in the cache (used and unused).
Size of the managed objects in bytes.
Number of objects in a slab.
Pages per slab.

Number of active slabs.

U 000U Oo

Object number allocated when the kernel decides to make more memory available to a cache. (A
larger memory block is allocated in one chunk so that the required interaction with the buddy
system is worthwhile.) This value is also used as the block size when shrinking the cache.

28 Additional information on slab allocator statistics is output if the CONFIG_DEBUG_SLAB option is set at compilation time.
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In addition to easily identified cache names such as unix_sock (for domain sockets, i.e., objects of type
struct unix_sock), there are other fields called kmalloc-size. (Machines that provide DMA memory
also include caches for DMA allocations, but these are not present in the above example.) These are the
basis of the kmalloc function in which the kernel provides slab caches for various memory sizes that, with
few exceptions, are in power-of-2 steps between 2° = 32 (for machines with 4 KiB page size), respective
64 (for all other machines), and 2% bytes. The upper bound can also be considerably smaller and is set by
KMALLOC_MAX_SIZE, which, in turn, is computed based on the page size of the system and the maximally
allowed allocation order:

<slab.h>
#define KMALLOC_SHIFT HIGH ((MAX ORDER + PAGE_SHIFT - 1) <= 25 ? \
(MAX_ORDER + PAGE_SHIFT - 1) : 25)

#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
#define KMALLOC_MAX ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)

Each time kmalloc is invoked, the kernel finds the most suitable cache and allocates one of its objects to
satisfy the request for memory as best it can (if no cache fits exactly, larger objects are always allocated
but never smaller objects).

The difference between the slab allocator and cache outlined above quickly disappears in the concrete
implementation, so much so that both terms are used synonymously in the further course of the book.
Section 3.6.5 looks at the details of kmalloc after discussing the implementation of the slab allocator.

3.6.3 The Principle of Slab Allocation

The slab allocator is made up of a closely interwoven network of data and memory structures that is not
easy to untangle at first sight. It is therefore important to obtain an overview of the relationships between
the structures before moving on to examine the implementation.

Basically, the slab cache consists of the two components shown in Figure 3-44: a cache object to hold the
management data and slabs to hold the managed objects.

Each cache is responsible for just one object type, instances of struct unix_sock, for example, or general
buffers. The number of slabs in each cache varies according to the number of pages used, the object size,
and the number of objects managed. Section 3.6.4 goes into the details of how cache sizes are calculated.

All caches in the system are also kept in a doubly linked list. This gives the kernel the opportunity to
traverse all caches one after the other; this is necessary, for example, when shrinking cache memory
because of an impending memory shortage.

Fine Structure of the Cache

If we look more closely at the cache structure, we note further details of importance. Figure 3-45 provides
an overview of the cache components.
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Figure 3-45: Fine structure of a slab cache.

Besides management data (such as the number of used and free objects or flag registers), the cache struc-
ture includes two elements of special significance:

0 A pointer to an array in which the last freed objects can be kept for each specific CPU.
Q  Three list heads per memory node under which slabs can be listed. The first list contains full

slabs, the second partially free slabs, and the third free slabs.

The cache structure points to an array that contains as many entries as there are CPUs in the system.
Each element is a pointer to a further structure known as an array cache, which contains the management
data for the particular system CPU (and not for the cache as a whole). The memory area immediately
following the management data contains an array with pointers to as-yet-unused objects in the slabs.

The per-CPU pointers are important to best exploit the CPU caches. The LIFO principle (last in, first out)
is applied when objects are allocated and returned. The kernel assumes that an object just returned is still
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in the cache and allocates it again as quickly as possible (in response to the next request). Only when the
per-CPU caches are empty are free objects from the slabs used to refill them.

This results in a three-level hierarchy for object allocation within which both the allocation cost and the
negative impact of the operation on caches and TLBs rise from level to level:

1. Per-CPU objects in the CPU cache.
2. Unused objects from an existing slab.

3.  Unused objects from a new slab just reserved using the buddy system.

Fine Structure of Slabs

Objects are not listed continuously in slabs but are distributed according to a rather complicated scheme.
Figure 3-46 illustrates the details.
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Figure 3-46: Fine structure of a slab.

The size used for each object does not reflect its exact size. Instead, the size is rounded to fulfill certain
alignment criteria. Two alternatives are possible:

0  Using the flag SLAB_HWCACHE_ALIGN at slab creation time, the slab user can request that objects
are aligned to hardware cache lines. The alignment is then performed along the value returned
by cache_line_size, which returns the processor-specific size of the L1 cache.

If objects are smaller than half of the cache line size, then more than one object is fit into one
cache line.

Q  If alignment along hardware cache lines is not requested, then the kernel ensures that objects are
aligned with BYTES_PER_WORD — the number of bytes needed to represent a void pointer.

On 32-bit processors, 4 bytes are required for a void pointer. Consequently, for an object with 6 bytes,
8 =2 x 4 bytes are needed, and objects with 15 bytes require 16 = 4 x 4 bytes. The superfluous bytes are
referred to as fill bytes.
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Fill bytes speed access to the objects in a slab. Memory access is faster on almost all architectures if aligned
addresses are used. This compensates for the disadvantage of higher memory requirements entailed by
the use of fill bytes.

The management structure holding all the management data (and the list element to link with the
cache lists) is located at the start of each slab. It is immediately followed by an array that includes
an (integer) entry for each object in the slab. The entries are only of significance if the associated
object is not allocated. In this case, it specifies the index of the next free object. Because the number
of the free object with the lowest number is also stored in the management structure at the start of
the slab, the kernel is easily able to find all objects currently available without having to use linked
lists or other complicated associations.” The last array entry is always an end marker with the value
BUFCTL_END.

Figure 3-47 illustrates the situation graphically.
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Figure 3-47: Management of the free objects in a
slab.

In most cases, the size of the slab area (minus the management head) is not divisible by the (possibly
padded) object size without a remainder. Consequently, a little superfluous memory is available to
the kernel and is used to give the slab a “color’ in the form of an offset as described above. The slab
members of a cache are given different offsets to position the data in different cache lines with the
result that the free memory at the start and end of a slab varies. When the offset is calculated, the ker-
nel must take other alignment factors into account, for instance, alignment of the data on the L1 cache
(discussed below).

The management data can be positioned either on the slab itself or in an external memory area allocated
using kmalloc.>® Which alternative the kernel selects depends on the size of the slab and of the objects
used. The corresponding selection criteria are discussed shortly. The association between the manage-
ment data and slab memory is easy to establish because the slab header contains a pointer to the start of
the slab data area (regardless of whether it is on-slab or off-slab).

Figure 3-48 shows the situation when the data are not on the slab itself (as it is in Figure 3-46) but in
external memory.

And finally, the kernel needs a way of identifying the slab (and therefore the cache in which an object
resides) by reference to the object itself. On the basis of an object’s physical memory address, it is not
difficult to find the associated page and therefore the matching page instance in the global mem_map
array. As we already know, the page structure includes a 1ist element used to manage the page in

2The original implementation of the slab allocator in the SunOS operating system kernel uses a linked list to keep track of the free
objects.

30This requires special precautions when the kmalloc caches are initialized because obviously kmalloc cannot be invoked there
yet. This and other chicken-and-egg problems of slab initialization are discussed below.
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various lists. As this is not necessary for pages on the slab cache, the pointers can be used for other
purposes:

O  page->list.next points to the management structure of the cache in which the page resides.

0  page->list.prev points to the management structure of the slab on which the page is held.

Management
area

—E OB

Figure 3-48: Slab with external
(off-slab) slab header.

Setting or reading this information is concealed behind the set_page_slab and get_page_slab, respec-
tively, _cache functions to lower the hack value of this convention.

mm/slab.c

void page_set_cache(struct page *page, struct kmem_cache *cache)
struct kmem_cache *page_get_cache(struct page *page)

void page_set_slab(struct page *page, struct slab *slab)
struct slab *page_get_slab(struct page *page)

Additionally, the kernel sets the page flag PG_SLAB for each physical page, that is allocated for the slab
allocator.

3.6.4 Implementation

Various data structures are used to implement the slab allocator as described above. Although this does
not appear to be difficult, the code is not always easy to read or understand. This is because many mem-
ory areas need to be manipulated using pointer arithmetic and type-casting — not necessarily one of the
areas of C famed for its clarity. The code is also pervaded with pre-processor statements because the slab
system features numerous debugging options. 3! Some of these are listed below:

0O  Red Zoning — An additional memory area filled with a known byte pattern is placed at the start
and end of each object. If this pattern is overwritten, programmers will note when analyzing
kernel memory that their code accesses memory areas that don’t belong to them.

0  Object Poisoning — Objects are filled with a predefined pattern when a slab is created and
freed. If it is noted at object allocation that this pattern is changed, programmers know that
unauthorized access has already taken place.

For the sake of simplicity and to focus attention on the big picture rather than minor details, let’s restrict
our description below to a “pure’ slab allocator that doesn’t make use of the above options.

31The CONFIG_DEBUG_SLAB configuration option must be set at compilation time to enable debugging. However, this significantly
slows allocator performance.
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Data Structures

Each cache is represented by an instance of the kmem_cache structure defined in mm/slab.c. The structure
is not normally visible at other points of the kernel because it is defined in a C header and not in a
header file. This is because users of the cache need not know in detail how the cache is implemented. It is
sufficient to regard slab caches as mechanisms for the efficient creation and release of objects of a specific
type by means of a set of standard functions.

The contents of the structure are as follows:
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mm/slab.c

struct kmem_cache {

/* 1) per-cpu data, touched during every alloc/free */
struct array_cache *array[NR_CPUS];

/* 2) Cache tunables. Protected by cache_chain_mutex */
unsigned int batchcount;
unsigned int limit;
unsigned int shared;

unsigned int buffer_size;
u32 reciprocal_buffer_ size;
/* 3) touched by every alloc & free from the backend */

unsigned int flags; /* constant flags */
unsigned int num; /* # of objs per slab */

/* 4) cache_grow/shrink */
/* order of pgs per slab (2”"n) */
unsigned int gfporder;

/* force GFP flags, e.g. GFP_DMA */
gfp_t gfpflags;

size_t colour; /* cache colouring range */
unsigned int colour_off; /* colour offset */
struct kmem_cache *slabp_cache;

unsigned int slab_size;

unsigned int dflags; /* dynamic flags */

/* constructor func */
void (*ctor) (struct kmem_cache *, void *);

/* 5) cache creation/removal */
const char *name;

struct list_head next;

/* 6) statistics */

struct kmem_list3 *nodelists[MAX NUMNODES] ;
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This lengthy structure is divided into multiple parts as indicated by the comments in the kernel sources.

32

The initial elements are concerned with CPU-specific data accessed by the kernel during each allocation,
touched upon in Section 3-46.

Q

Qa

array is a pointer to an array with an entry for each CPU in the system. Each entry contains a
further pointer to an instance of the array_cache structure discussed below.

batchcount specifies the number of objects to be taken from the slabs of a cache and added to the
per-CPU list if it is empty. It also indicates the number of objects to be allocated when a cache is
grown.

limit specifies the maximum number of objects that may be held in a per-CPU list. If this value
is exceeded, the kernel returns the number of objects defined in batchcount to the slabs (if the
kernel then shrinks the caches, memory is returned from the slabs to the buddy system).

buffer_size specifies the size of the objects managed in the cache.®

Suppose that the kernel has a pointer to an element in a slab and wants to determine the corre-
sponding object index. The easiest way to do this is to divide the offset of the pointer compared
to the start of the slab area by the object size. Consider, for example, that a slab area starts at
memory location 100, each object requires 5 bytes, and the object in question is located at mem-
ory position 115. The offset between the slab start and the object is 115 — 100 = 15, so the object
index is 15/5 = 3. Unfortunately, divisions are slow on some older machines.

Since multiplications are much faster on these machines, the kernel uses the so-called
Newton-Raphson technique, which requires only multiplications and bit shifts. While the
mathematical details are not interesting for our purposes (they can be found in any standard
textbook), we need to know that instead of computing ¢ = A/B, the kernel can also employ ¢

= reciprocal_divide (A, reciprocal_value (B)) — both functions are provided as library
routines. Since the object size in a slab is constant, the kernel can store the recpirocal value of
buffer_sizein recpirocal_buffer_size, which can be used later when the division must be
computed.

The kernel provides an instance of array_cache for each system processor. This structure is defined as

follows:

mm/slab.c
struct array_cache {

Y

unsigned int avail;
unsigned int limit;
unsigned int batchcount;
unsigned int touched;
spinlock_t lock;

void *entryl[];

321f slab debugging is enabled, another part with statistical information gathered by the kernel concludes the structure.
331f slab debugging is enabled, the buffer size can differ from the object size because extra padding (in addition to the padding used
to align the objects properly) is introduced per element. In this case, a second variable denotes the real size of the object.
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The meanings of batchcount and limit are as given above. The values of kmem_cache_s
are applied (normally unchanged) as defaults for the per-CPU values used for cache refill or
emptying.

avail holds the number of elements currently available. touched is set to 1 when an element is removed
from the cache, whereas cache shrinking causes touched to be set to 0. This enables the kernel to establish
whether a cache has been accessed since it was last shrunk and is an indicator of the importance of the
cache. The last element is a dummy array without an entry to facilitate access to the cache elements
following each array_cache instance in memory.

The third and fourth parts of kmem_cache contain all the variables needed to manage the slabs and are
required when the per-CPU caches are filled or emptied.

Qa

nodelists is an array that contains an entry for each possible node in the system. Each entry
holds an instance of struct kmem_list3 that groups the three slab lists (full, free, partially free)
together in a separate structure discussed below.

The element must be placed at the end of the structure. While it formally always has
MAX_NUMNODES entries, it is possible that fewer nodes are usable on NUMA machines. The array
thus requires fewer entries, and the kernel can achieve this at run time by simply allocating less
memory than the array formally requires. This would not be possible if nodelists were placed
in the middle of the structure.

On UMA machines, this is not much of a concern because only a single node will ever be
available.

flags is a flag register to define the global properties of the cache. Currently, there is only one
flag bit. CFLGS_OFF_SLAB is set when the management structure is stored outside the slab.

objsize is the size of the objects in the cache, including all fill bytes added for alignment
purposes.

num holds the maximum number of objects that fit into a slab.

free_limit specifies the upper limit of free objects in a cache after it has been shrunk (if there is
no reason to shrink the cache during normal operation, the number of free objects may exceed
this value).

The list heads to manage the slab lists are kept in a separate data structure defined as follows:
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mm/slab.c
struct kmem_list3 {

struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;

struct list_head slabs_free;

unsigned long free_objects;

unsigned int free_limit;

unsigned int colour_next; /* Per-node cache coloring */
spinlock_t list_lock;

struct array_cache *shared; /* shared per node */
struct array_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */
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The meanings of the first three list heads are clear from the explanations in the above sections.
free_objects indicates the total number of free objects in all slabs of slabs_partial and slabs_free.

free_touched indicates whether the cache is active or not. When an object is taken from the cache, the
kernel sets the value of this variable to 1; when the cache is shrunk, the value is reset to 0. However, the
kernel only shrinks a cache if free_touched has been set to 0 beforehand, because the value 1 indicates that
another part of the kernel has just taken objects from the cache and thus it is not advisable to shrink it.

This variable applies for the whole cache unlike the per-CPU touched element.

next_reap defines a time interval that the kernel must allow to elapse between two attempts to shrink
the cache. The idea is to prevent degradation of system performance due to frequent cache shrinking
and growing operations as can happen in certain load situations. This technique is only used on NUMA
systems and will thus not concern us any further.

free_limit specifies the maximum number of unused objects permitted on all slabs.

The structure is concluded by pointers to array_cache instances that are either shared per node or origi-
nate from other nodes. This is of relevance on NUMA machines but, for the sake of simplicity, this won't
be discussed in detail.

The third part of kmem_cache contains all variables needed to grow (and shrink) the cache.

0  gfporder specifies the slab size as a binary logarithm of the number of pages, or, expressed dif-
ferently, the slab comprises 29TPOTder pages,

0  The three colour elements hold all relevant data for slab coloring.

colour specifies the maximum number of colors and colour_next the color to use for the

next slab created by the kernel. Note, however, that this value is specified as an element of
kmem_list3. colour_off is the basic offset multiplied by a color value to obtain the absolute
offset. This is again required for NUMA machines — UMA systems could keep colour_next in
struct kmem_cache. Placing the next color in a node-specific structure, however, allows coloring
slabs added on the same node sequentially, which is beneficial for the local caches.

Example: If there are five possible colors (0,1, 2, 3,4) and the offset unit is 8 bytes, the kernel can
use the following offset values: 0 x 8 =0,1 x 8 =8,2 x 8§ = 16,3 x 8 =24 and 4 x 8 = 32 bytes.

Section 3.6.4 examines how the kernel determines the possible settings for slab colors. Besides,
note that the kernel sources, in contrast to this book, spell colour properly, at least from the British
point of view.

Q  If the slab head is stored outside the slab, slabp_cache points to the general cache from which
the required memory is taken. If the slab head is on-slab, slabp_cache contains a null pointer.

Q  dflagsis a further set of flags that describe the ““dynamic properties” of the slab, but currently
no flags are defined.

0  ctorisa pointer to a constructor function that is invoked when objects are created. This method
is well known in object-oriented languages such as C++ and Java. Former kernel versions did
offer the ability to specify an additional destructor function, but since this opportunity was not
used, it has been dropped during the development of kernel 2.6.22.
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The fifth and last part (statistics fields that are of no further interest for our purposes) of struct
kmem_cache consists of two further elements:

0  name is a string containing a human-readable name for the cache. It is used, for example, to list
the available caches in /proc/slabinfo.

0 nextisastandard list element to keep all instances of kmem_cache on the global list cache_chain.

Initialization

At first sight, initialization of the slab system does not appear to be especially complicated because the
buddy system is already fully enabled and no other particular restrictions are imposed on the kernel.
Nevertheless, there is a chicken-and-egg problem because of the structure of the slab allocator.

To initialize the slab data structures, the kernel needs memory blocks that are much smaller than a com-
plete page and are therefore best allocated by kmalloc. And here’s the crux: kmalloc only functions if the
slab system is already enabled.

To be more accurate, the problem lies with the initialization of the per-CPU caches for kmalloc. Before
these caches can be initialized, kmalloc must be available to reserve the required memory space, and
kmalloc itself is just in the process of being initialized. In other words, kmalloc can only be initialized
once kmalloc has been initialized — an impossible scenario. The kernel must therefore resort to a few
tricks.

The kmem_cache_init function is used to initialize the slab allocator. It is invoked during the kernel
initialization phase (start_kernel) once the buddy system is enabled. However, on multiprocessor
systems, the boot CPU is running and the other CPUs are not yet initialized. kmem_cache_init employs
a multistep process to activate the slab allocator step-by-step:

1. kmem cache_init creates the first slab cache in the system to generate memory for instances
of kmem_cache. To this end, the kernel uses mainly static data created at compilation time; in
fact, a static data structure (initarray_cache)is used as a per-CPU array. The name of this
cache is cache_cache.

2. xmem cache_init then initializes the general caches that serve as a source for kmalloc. For
this purpose, kmem_cache_create is invoked for each cache size required. The function first
needs only the cache_cache cache already created; however, when the per-CPU caches are
to be initialized, the function must resort to kmalloc, and this is not yet possible.

To resolve this problem, the kernel uses the g_cpucache_up variable, which can accept one
of four values (NONE, PARTIAL_AC, PARTIAL_L3, or FULL) to reflect the state of kmalloc initial-
ization.

Initially the state of the kernel is NONE. When the smallest kmalloc cache (which provides
memory blocks of 32 bytes on machines with 4 KiB memory pages; if other page sizes are
used, the smallest allocation size is 64 bytes; the exact definition of existing sizes is given
in Section 3.6.5) is initialized, a static variable is again used for the per-CPU cache data.

34Chicken-and-egg problems are encountered where something cannot happen until a second thing does, and the second thing cannot
happen until the first does. For example, B must be present in order to initialize A, but A must be present to initialize B. It's the age-
old question of which came first, the chicken or the egg?

If you are a scientist, you can also use the term causality dilemma, which expresses exactly the same, but sounds much more
educated ... .
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The state in g_cpucache_up is then set to PARTIAL_AC, meaning that array_cache instances
can be allocated immediately. If the initialized size is also sufficient to allocate kmem_list3
instances, the state immediately changes to PARTIAL_L3. Otherwise, this only happens when
the next larger cache has been initialized.

The per-CPU data of the remaining kmalloc caches can now be created with kmalloc as an
instance of arraycache_init, as only the smallest kmalloc area is needed for this purpose.

mm/slab.c
struct arraycache_init {

struct array_cache cache;

void * entries[BOOT_CPUCACHE_ENTRIES];
Y

3. In the last step of kmem_cache_init, all statically instantiated elements of the data struc-
tures used up to present are replaced with dynamically allocated version created using
kmalloc. The state of g_cpucache_up is now FULL, indicating that the slab allocator is ready
for use.

Creating Caches

kmem_cache_create must be invoked to create a new slab cache. This function requires a large set of
parameters.

mm/slab.c

struct kmem_cache *

kmem_cache_create (const char *name, size_t size, size_t align,
unsigned long flags,
void (*ctor) (struct kmem_cache *, void *)

Besides a human-readable name that subsequently appears in /proc/slabinfo, the function requires the
size of the managed objects in bytes, an offset used when aligning data (align, in almost all cases 0), a
set of flags in flags, and constructor/destructor functions in ctor and dtor.

Creation of a new cache is a lengthy procedure, as the code flow diagram for kmem_cache_create in
Figure 3-49 shows.

Several parameter checks are carried out to ensure that no invalid specifications are used (e.g., an object
size with fewer bytes than a processor word, a slab without name, etc.) before the first important step is
carried out — calculation of the required alignment. First, the object size is rounded up to a multiple of
the word length of the processor used:

mm/slab.c
kmem_cache_t *
kmem_cache_create (...) {

if (size & (BYTES_PER_WORD-1)) {
size += (BYTES_PER_WORD-1);
size &= ~(BYTES_PER_WORD-1);
}

Object alignment (in align) is typically also based on the processor word length. However, if the
SLAB_HWCACHE_ALIGN flag is set, the kernel aligns the data as recommended by the architecture-specific
function cache_line_size. It also attempts to pack as many objects as possible in a cache line by halving
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the alignment factor as long as this is possible for the given object size. As a result, 2, 4, ... objects fit into
a cache line instead of a single object.

mm/slab.c
/* 1) arch recommendation: */
if (flags & SLAB_HWCACHE_ALIGN) ({
/* Default alignment: as specified by the arch code.
* Except if an object is really small, then squeeze multiple
* objects into one cacheline.
*/
ralign = cache_line_size();
while (size <= ralign/2)
ralign /= 2;
} else {
ralign = BYTES_PER_WORD;

kmem_cache_create I

—>| Sanity checks

—>| Calculate alignment |

—>| Allocate cache structure |

—>| Determine where to store slab head

—>| calculate_slab_order I

\—{ Compute cache size iteratively with cache_estimate

Compute colors
—’| enable_cpucache '—’| do_tune_cpucache I

—>| Insert cache in cache_chain |

Figure 3-49: Code flow diagram for kmem_cache_create.

The kernel also takes account of the fact that some architectures require a minimum boundary for
the alignment of data as defined by ARCH_SLAB_MINALIGN; the alignment required by users is also
accepted.

mm/slab.c
/* 2) arch mandated alignment */
if (ralign < ARCH_SLAB_MINALIGN) {
ralign = ARCH_SLAB_MINALIGN;

/* 3) caller mandated alignment */
if (ralign < align) {
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ralign = align;
}
/* 4) Store it. */
align = ralign;

A new instance of struct kmem_cache is allocated once the data alignment has been calculated (a separate
slab cache named cache_cache is provided to perform allocation).

The decision as to whether to store the slab head on-slab or off-slab (see Section 3.6.3) is relatively simple.
If the object size is more than one-eighth of a page frame, the head is stored off-slab, otherwise on the
slab itself.

mm/slab.c
if (size >= (PAGE_SIZE>>3))
/*
* Size is large, assume best to place the slab management obj
* off-slab (should allow better packing of objs).
*/
flags |= CFLGS_OFF_SLAB;

size = ALIGN(size, align);

The slab header can also be stored off-slab for smaller objects by explicitly setting CFLGS_OFF_SLAB in the
kmem_cache_create call.

Finally, the object size is increased until it corresponds to the alignment calculated above.

Up to now we have only defined the size of the objects but not of the slab. In the next step, an attempt is
therefore made to find a suitable number of pages that is neither too small nor too big. Too few objects on
a slab increase administrative overhead and render the method less efficient, while overlarge slab areas
are detrimental to the buddy system.

The kernel tries to find the ideal slab size in an iterative process implemented in calculate_slab_order.
Based on the given object size, cache_estimate calculates the number of objects, the wasted space, and
the space needed for coloring for a specific number of pages. The function is invoked in a loop until the
kernel is satisfied with the results.

By systematic trial and error, cache_estimate finds a slab arrangement that can be described by the
following elements: size is the object size, gfp_order the order for page allocation, num the number of
objects on the slab, and wastage the space that is ““wasted” with this order and is therefore no longer
available for useful data (of course, wastage < size always applies; otherwise, another object could be
fitted on the slab). head specifies how much space is required for the slab head. This layout corresponds
to the following formula:

PAGE_SIZE<<gfp_order = head + num*size + left_over

If the slab head is stored off-slab, the value of head is 0 because no space need be reserved for head. If it
is stored on-slab, the value is calculated as follows:

head = sizeof (struct slab) + num*sizeof (kmem_bufctl_t)
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As discussed in Section 3.6.3, each slab head is followed by an array with as many entries as there are
objects on the slab. The kernel refers to this array to find the position of the next free object. The data

type used to do this is kmem_bufctl_t, which is nothing more than an ordinary unsigned int variable
appropriately abstracted by typedef.

The number of objects num is used to calculate the head size; this is needed to determine the number

of objects in a slab — and is another example of the chicken-and-egg problem. The kernel solves this
problem by systematically incrementing the number of objects to check whether a given configuration
still fits in the available space.

cache_estimate is repeatedly invoked in a while loop, and each time the available gfp_order is incre-
mented by 1 — thus doubling the slab size each time starting with a single page frame. The kernel
terminates the loop and is satisfied with the result if one of the following conditions applies:

0 8*left_over is less than the size of the slab; that is, less than one-eighth of the space is wasted.

0  gfp_order is greater than or equal to the value stored in slab_break_gfp_order.
slab_break_gfp_order has the value BREAK_GFP_ORDER_LO = 1 if the machine has less
than 32 MiB of main memory; otherwise, its value is BREAK_GFP_ORDER_HI = 2.

O  The management head is stored off-slab, and the number of objects is greater than the value
stored in offslab_limit.offslab_limit specifies the maximum number of kmem_bufctl_t
instances that can be held together with an instance of struct slabin a memory block reserved
with kmalloc. If the number of objects in a slab exceeds this value, it is no longer possible to
reserve the required space, with the result that gfp_order is decremented by 1, the data are
recalculated, and the loop is exited.

Of course, the kernel always makes sure that there is space for at least one object on the slab, as a cache
with no objects makes little sense.

The size of the slab head is rounded to ensure that the entry immediately following the head is properly
aligned.

mm/slab.c

slab_size = ALIGN (cachep->num*sizeof (kmem_bufctl_t)
+ sizeof (struct slab), align);

ALIGN (x,y) is a standard macro provided by the kernel that computes the required space that is sufficient
to store the object x, but is additionally an integer-valued multiple of align. Table 3-9 provides some
exemplary alignment calculations.

If sufficient free space is available to store the slab head on-slab although it should actually be stored
off-slab, the kernel gladly makes use of the opportunity. The CFLGS_OFF_SLAB is deleted, and the head is
stored on the slab despite the earlier decision to do the opposite or despite the default setting.
The following steps are performed to color the slab:

mm/slab.c

cachep->colour_off = cache_line_size();
/* Offset must be a multiple of the alignment. */
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if (cachep->colour_off < align)
cachep->colour_off = align;
cachep->colour = left_over/cachep->colour_off;

The kernel uses the size of an L1 cache that can be determined using the architecture-specific
cache_line_size function as an offset. It must also be ensured that the offset is a multiple of the
alignment used — otherwise, the alignment effect would be lost.

Table 3-9: Examplary Calculations of the Alighment on 4- and 8-Byte Boundaries

Object size x Alignment y ALIGN(x,y)
1 4 8
4 4 8
5 8 8
8 8 8
9 12 16
12 12 16
13 16 16
16 16 16
17 20 24
19 20 24

The color of the slab (i.e., the number of potential offset values) is calculated by dividing the
free space on the slab (known as the left_over) by the color offset (colour_off) without a
remainder.

For example, on an older IA-32 machine, the kernel produces the following results for
a cache that manages 256-byte objects aligned on the hardware cache with SLAB_HWCACHE_
ALIGN:

Q 15 objects are managed on a slab (num = 15).
QO  One pageis used (gfp_order = 0).

O  There are five possible colors (colour = 5), and an offset of 32 bytes is used for each color
(colour_off =32).

O The slab head is stored on-slab.
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Now that we have dealt with the slab arrangement, there are still two more things to do when creating a
new slab cache in kmem_cache_create:

0  The per-CPU caches must be generated. This task is delegated to enable_cpucache (the layout
and structure of these caches are described in Section 3.6.4). First, the kernel defines the number
of object pointers in the cache depending on the object size:

0 < size < 256 :120 objects
256 < size < 1024 :54 objects
1024 < size < PAGE_SIZE :24 objects
PAGE_SIZE < size :8 objects

size > 131072 :1 object

Allocation of the required memory for each processor — an instance of array_cache and an
array of pointers to objects with the calculated number of elements — as well as initialization of
the data structures is delegated to do_tune_cpucache. A particularly interesting aspect is that
the batchcount field is always set to half the calculated number of objects in the cache.

This regulates the number of objects processed in one go when a cache is filled.

QO  To conclude initialization, the initialized kmem_cache instance is added to a globally linked list
whose list head (cache_chain) is defined in mm/slab.c.

Allocating Objects

kmem_cache_alloc is invoked to obtain objects from a specific cache. Like all malloc functions, it yields
either a pointer to the reserved memory area or a null pointer if allocation fails. The function requires two
parameters — the cache from which the object is to be obtained and a flag variable to accurately describe
the allocation characteristics.

<slab.h>
void *kmem_cache_alloc (kmem_cache_t *cachep, gfp_t flags)

Any of the GFP_ values mentioned in Section 3.5.4 can be specified for the flags.3®

As the code flow diagram in Figure 3-50 shows, kmem_cache_alloc is based on the internal function
__cache_alloc that requires the same parameters and can be invoked without further ado (this structure
was adopted to merge the implementation of kmalloc and kmem_cache_alloc as quickly as possible, as
demonstrated in Section 3.6.5). However, __cache_allloc is also only a front-end function to perform all
necessary locking operations. The actual work is delegated to cache_alloc (with four underscores),
as shown in Figure 3-50 (actually, the function do_cache_alloc stands between __cache_alloc and
__ cache_alloc, but is only required on NUMA systems).

The figure clearly shows that work can follow one of two paths; the first, which is the more frequent and
more convenient of the two, is taken if there are free objects in the per-CPU cache. However, if all objects
are in use, the cache must be refilled, and in the worst-case scenario, this means that a new slab must be
created.

35Notice that the kernel used to provide a differently named set of constants (SLAB_ATOMIC, SLAB_DMA, etc.) with the same
numerical values. These have been dropped during the development of kernel 2.6.20 and cannot be used anymore.
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| kmalloc I | kmem_cache_alloc I

[ |

| ____cache_alloc I

| Ja
| Object in per-CPU Cache Take object from cache |—| Return object
Nein

—| cache_alloc_refill I

Find object and take
it from the cache

Insufficient space in available slabs? |—| cache_grOW|

| Return object

Figure 3-50: Code flow diagram for kmem_cache_alloc.

Selecting a Cached Object

cache_alloc can check relatively easily if an object is in the per-CPU cache, as the following code
excerpt shows:

mm/slab.c

static inline void *__ cache_alloc (kmem_cache_t *cachep, gfp_t flags)
{
ac = ac_data(cachep) ;
if (likely(ac-»avail)) {
ac->touched = 1;
objp = ac->entry[--ac->availl;
}
else {

objp = cache_alloc_refill (cachep, flags);
}

return objp;

cachep is a pointer to the kmem_cache_t instance of the cache used. The ac_data macro yields the asso-

ciated array_cache instance for the currently active CPU by returning cachep->array [smp_processor_
id()].

As the objects in memory immediately follow the array_cache instance, the kernel can access them
easily with the help of the dummy array at the end of the structure without the explicit need for pointer
arithmetic. The object is removed from the cache by decrementing ac->avail.

Refilling the Per-CPU Cache

The workload is heavier when there are no more objects in the per-CPU cache. The refill operations
needed in this situation are located in cache_alloc_refill, which is invoked when the allocation cannot
be satisfied directly from the per-CPU cache.
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The kernel must now find array_cache->batchcount unused objects to refill the per-CPU cache by
first scanning the list of all partially free slabs (slabs_partial) and then taking all free objects one after
another by slab_get_obj until no more objects are free in the relevant slab. The kernel then performs the
same procedure on all other slabs in the slabs_partial list. If this finds the desired number of objects, the
kernel iterates over the slabs_free list of all unused slabs. When objects are taken from a slab, the kernel
must also ensure that it places them on the correct slab list (slabs_full or slabs_partial, depending
on whether the slab was totally emptied or still contains some objects). The above is implemented by the
following code:

mm/slab.c
static void *cache_alloc_refill (kmem_cache_t *cachep, gfp_t flags)
{

while (batchcount > 0) {

/* Select list from which slabs are to be taken
(first slabs_partial, then slabs_free) */

slabp = list_entry(entry, struct slab, list);

while (slabp->inuse < cachep->num && batchcount--) {
/* get obj pointer */
ac->entrylac->avail++] = slab_get_obj (cachep, slabp,
node) ;

}
check_slabp (cachep, slabp) ;

/* move slabp to correct slabp list: */
list_del (&slabp->1list);
if (slabp->free == BUFCTL_END)
list_add(&slabp->list, &l13->slabs_full);
else
list_add(&slabp->list, &l3->slabs_partial);

The key to removing one slab element after another is in slab_get_obj:

mm/slab.c
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
int nodeid)

{
void *objp = index_to_obj (cachep, slabp, slabp->free);
kmem_bufctl_t next;

slabp->inuse++;
next = slab_bufctl (slabp) [slabp->free];

slabp->free = next;

return objp;
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Recall from Figure 3-47 that the kernel uses an interesting system to keep track of free entries: The index
of the free object that is currently under consideration is stored in slabp->free, and the index of the next
free object, is kept in the management array.

Obtaining the object that belongs to a given index is a matter of some simple pointer manipulation per-
formed in index_to_obj. slab_bufctl is a macro that yields a pointer to the kmem_bufctl array after

slabp.

Let us return to cache_alloc_grow. If no free object is found although all slabs have been scanned, the
cache must be enlarged using cache_grow. This is a costly operation examined in the next section.

Growing the Cache

Figure 3-51 shows the code flow diagram for cache_grow.

cache_grow I

—>| Compute offset and next color |

—’| kmem_getpages '—>| alloc_pages_node I

> alloc_slabmgt
—>| Set page pointer
| cache_init_objs I

—>| Add slab to cache |

Figure 3-51: Code flow diagram for cache_grow.

The arguments of kmem_cache_alloc are passed to cache_grow. It is also possible to specify an explicit
node from which the fresh memory pages are to be supplied.

The color and offset are first calculated:

mm/slab.c

static int cache_grow(struct kmem_cache *cachep,
gfp_t flags, int nodeid, void *objp)

{

13 = cachep->nodelists[nodeid];

offset = 13->colour_next;

13->colour_next++;

if (13->colour_next >= cachep->colour)
13->colour_next = 0;

offset *= cachep->colour_off;
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The kernel restarts counting at 0 when the maximum number of colors is reached; this automatically
results in a zero offset.

The required memory space is allocated page-by-page by the buddy system using the kmem_getpages
helper function. The sole purpose of this function is to invoke the alloc_pages_node function discussed
in Section 3.5.4 with the appropriate parameters. The PG_slab bit is also set on each page to indicate
that the page belongs to the buddy system. When a slab is used to satisfy short-lived or reclaimable
allocations, the flag __GFP_RECLAIMABLE is passed down to the buddy system. Recall from Section 3.5.2
that this is important to allocate the pages from the appropriate migrate list.

The allocation of the management head for the slab is not very exciting. The relevant alloc_slabmgmt
function reserves the required space if the head is stored off-slab; if not, the space is already reserved on
the slab. In both situations, the colouroff, s_mem, and inuse elements of the slab data structure must be
initialized with the appropriate values.

The kernel then establishes the associations between the pages of the slab and the slab or cache structure
by invoking slab_map_pages. This function iterates over all page instances of the pages newly allo-
cated for the slab and invokes page_set_cache and page_set_slab for each page. These two functions
manipulate (or misuse) the 1ru element of a page instance as follows:

mm/slab.c
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)

{

page->lru.next = (struct list_head *)cache;
}
static inline void page_set_slab(struct page *page, struct slab *slab)
{

page->lru.prev = (struct list_head *)slab;

}

cache_init_objs initializes the objects of the new slab by invoking the constructor for each object assum-
ing it is present. (As only a very few parts of the kernel make use of this option, there is normally little
to do in this respect.) The kmem_bufct1 list of the slab is also initialized by storing the value i 4- 1 at array
position i: because the slab is as yet totally unused, the next free element is always the next consecutive
element. As per convention, the last array element holds the constant BUFCTL_END.

The slab is now fully initialized and can be added to the slabs_free list of the cache. The number of new
objects generated is also added to the number of free objects in the cache (cachep->free_objects).

Freeing Objects

When an allocated object is no longer required, it must be returned to the slab allocator using
kmem_cache_free. Figure 3-52 shows the code flow diagram of this function.

kmem_cache_free immediately invokes __cache_free and forwards its arguments unchanged.
(Again the reason is to prevent code duplication in the implementation of kfree, as discussed in
Section 3.6.5.)

As with allocation, there are two alternative courses of action depending on the state of the per-CPU

cache. If the number of objects held is below the permitted limit, a pointer to the object in the cache is
stored.
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kmem_cache_free I
L]

Y .
Space in per-CPU array available? |i>| Include object into cache

=}
=
cache_flush_array I

|—> free_block

| Move remaining cache entries upward |

Figure 3-52: Code flow diagram for kmem_cache_free.

mm/slab.c
static inline void __ cache_free (kmem_cache_t *cachep, void *objp)

{

if (likely(ac-»avail < ac->1limit)) {
ac->entrylac->avail++] = objp;

return;

} else {
cache_flusharray (cachep, ac);
ac->entrylac->avail++] = objp;

}

If not, some objects (the exact number is given by array_cache->batchcount) must be moved from the
cache back into the slabs starting with the array elements with the lowest numbers — because the cache
implementation applies the LIFO principle, these are objects that have been in the array longest and
whose data are therefore least likely still to be held in the CPU cache.

Implementation is delegated to cache_flusharray. In turn, this function invokes free_block to move
the objects from the cache to their original slabs and shifts the remaining objects in the cache to the start
of the array. For example, if there is space for 30 objects in the cache and the batchcount is 15, the objects
at positions 0 to 14 are moved back into the slabs. The remaining objects numbered 15 to 29 are shifted
upward in the cache so that they now occupy positions 0 to 14.

Moving objects from the cache back onto the slabs is instructive, so it's well worth taking a closer look
at free_block. The arguments required by this function are the kmem_cache_t instance of the cache, a
pointer to an array consisting of pointers to the objects in the cache, an integer to indicate the number of
objects in the array, and the node whose memory is just being processed.

The function iterates over all objects in objpp after the number of unused objects in the cache data struc-
ture has been updated.

mm/slab.c
static void free_block (kmem_cache_t *cachep, void **objpp, int nr_objects,
int node)
{
int 1i;
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struct kmem list3 *13;

for (i = 0; i < nr_objects; i++) {
void *objp = objpplil;
struct slab *slabp;

The following operations must be performed for each object:

mm/slab.c
slabp = virt_to_slab(objp)
13 = cachep->nodelists([node];
list_del (&slabp->1list);
slab_put_obj (cachep, slabp, objp, node);
slabp->inuse--;
13->free_objects++;

Before it can be established to which slab an object belongs, it is first necessary to invoke virt_to_page
to find the page in which the object is located. The association with the slab is determined using
page_get_slab as discussed above.

The slab is (temporarily) removed from the lists of the cache. slab_put_obj is used to reflect this action
in the freelist: The first object to be used for allocation purposes is the one just removed, and the next
object in the list is the one that was previously first.

Thereafter, the slab is reinserted in the linked lists of the cache:

mm/slab.c

/* fixup slab chains */
if (slabp->inuse == 0) {
if (13->free_objects > 13->free_limit) {
13->free_objects -= cachep->num;
slab_destroy(cachep, slabp);
} else {
list_add(&slabp->1list, &13->slabs_free);
}
} else {
list_add(&slabp->list, &l3->slabs_partial);
}

The slab is normally placed on the slabs_free list if, after deletion, all objects in the slab are unused
(slab->inuse == 0).

Exception: The number of free objects in the cache is above the predefined limit cachep->free_limit.
In this case, the complete slab is returned to the buddy system using slab_destroy.

The slab is inserted into the slabs_partial list of the cache if it contains both used and unused
objects.
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Destroying Caches

The kmem_cache_destroy function must be invoked to destroy a complete cache in which there are
only unused objects. This function is needed primarily when removing modules that want to return all
memory space allocated to them.3

Since the implementation itself reveals nothing new, we will confine ourselves to outlining the main steps
needed to remove a cache:

Q  The slabs on the slabs_free list are scanned successively. The destructor is first invoked for
each object on each slab, and then the slab memory space is returned to the buddy system.
Q  The memory space for the per-CPU caches is freed.

[  The data are removed from the cache_cache list.

3.6.5 General Caches

The kmalloc and kfree functions must be used to allocate and free memory in the classic sense rather
than objects. These are the kernel equivalents to the malloc and free functions from the C standard
library in userspace.?”

I have already noted several times that kmalloc and kfree are implemented as slab allocator front-ends
and mimic the semantics of malloc/free as best they can. We can therefore deal with their implementa-
tion succinctly.

Implementation of kmalloc

The base of kmalloc is an array that groups slab caches for memory areas of graded sizes. The array
entries are instances of the cache_sizes data structure that is defined as follows:

<slab_def.h>

struct cache_sizes {
size_t cs_size;
kmem_cache_t *cs_cachep;
kmem_cache_t *cs_dmacachep;

#ifdef CONFIG_ZONE_DMA

struct kmem_cache *cs_dmacachep;
#endif
}

size specifies the size of the memory area for which the entry is responsible. There are two slab caches
for each size, one of which supplies DMA-suitable memory.

The statically defined malloc_sizes array groups the available sizes essentially using powers of 2
between 2° = 32 and 2% = 131,072, depending on the setting of KMALLOC_MAX_SIZE as discussed above.

36This is not mandatory. If a module wants to obtain persistent memory that is preserved between unloading a module and reload-
ing the next time (assuming, of course, that the system is not rebooted in the meantime), it can retain a cache so that the data it
contains are available for reuse.

37Use of printk, kmalloc and kfree in userspace programs is an unmistakable sign of too much contact with kernel
programming.
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CACHE (16384)
CACHE (32768)
CACHE (65536)
CACHE (131072)
#1if KMALLOC_MAX_SIZE >= 262144
CACHE (262144)

mm/slab.c
static struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#1f (PAGE_SIZE == 4096)
CACHE (32)
#endif
CACHE (64)
#if L1_CACHE_BYTES < 64
CACHE (96)
#endif
CACHE (128)
#if L1_CACHE_BYTES < 128
CACHE (192)
#endif
CACHE (256)
CACHE (512)
CACHE (1024)
CACHE (20438)
CACHE (4096)
CACHE (8192)
(
(
(

#endif

#1if KMALLOC_MAX_SIZE >= 524288
CACHE (524288)

#endif

#if KMALLOC_MAX_SIZE >= 33554432
CACHE (33554432)
CACHE (ULONG_MAX)

There is always a cache for allocations up to the maximum size that can be represented in an unsigned
long variable. However, this cache (in contrast to all others) is not filled with elements in advance; this
allows the kernel to ensure that each giant allocation is satisfied with freshly allocated memory pages. As
allocations of this size can request the entire memory of the system, a corresponding cache would not be
particularly useful. However, this kernel approach makes sure that very large allocation requests can be
satisfied if sufficient memory is available.

The pointers to the corresponding caches are not initially filled. They are assigned their correct value
when initialization is performed with kmem_cache_init.

kmalloc from <slab_def.h> first checks whether a constant is specified as the memory size; in this case,
the required cache can be determined statically at compilation time, and this delivers speed gains. If not,
__kmalloc is invoked to find the cache of matching size. The function is a parameter-conversion front
end for _do_kmalloc:

mm/slab.c
void *__do_kmalloc(size_t size, gfp_t flags)
{

kmem_cache_t *cachep;
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cachep = _ find_general_cachep(size, flags);

if (unlikely (ZERO_OR_NULL_PTR (cachep)))
return NULL;

return _ cache_alloc(cachep, flags);

}

Once _ find_general_cachep has found a suitable cache (it iterates over all possible kmalloc sizes
to find a matching cache), the heavy work is delegated to the _ cache_alloc function discussed
above.

Implementation of kfree

kfree is likewise easy to implement:

mm/slab.c
void kfree(const void *objp)
{
kmem_cache_t *c;
unsigned long flags;

if (unlikely (ZERO_OR_NULL_PTR (objp)))
return;

c = virt_to_cache(objp));

__cache_free(c, (void*)objp);

}

kfree hands over the actual work to the __cache_free function also discussed above once the cache
associated with the memory pointer has been found.

3.7 Processor Cache and TLB Control

Caches are crucial in terms of overall system performance, which is why the kernel tries to exploit them
as effectively as possible. It does this primarily by skillfully aligning kernel data in memory. A judicious
mix of normal functions, inline definitions, and macros also helps extract greater performance from the

processor. The compiler optimizations discussed in Appendix C also make their contribution.

However, the above aspects affect the cache only indirectly. Use of the correct alignment for a data
structure does indeed have an effect on the cache but only implicitly — active control of the processor
cache is not necessary.

Nevertheless, the kernel features some commands that act directly on the cache and the TLB of the pro-
cessor. However, they are not intended to boost system efficiency but to maintain the cache contents in a
consistent state and to ensure that no entries are incorrect and out-of-date. For example, when a mapping
is removed from the address space of a process, the kernel is responsible for removing the corresponding
entries from the TLBs. If it failed to do so and new data were added at the position previously occupied
by the mapping, a read or write operation to the virtual address would be redirected to the incorrect
location in physical memory.

The hardware implementation of caches and TLBs differs significantly from architecture to architecture.

The kernel must therefore create a view on TLBs and caches that takes adequate account of the different
approaches without neglecting the specific properties of each architecture.
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O  The meaning of the translation lookaside buffer is abstracted to refer to a mechanism that translates
a virtual address into a physical address.?

0  The kernel regards a cache as a mechanism that provides rapid access to data by reference to a
virtual address without the need for a request to RAM memory. There is not always an explicit
difference between data and instruction caches. The architecture-specific code is responsible for
any differentiation if its caches are split in this manner.

It is not necessary for each processor type to implement every control function defined by the kernel. If a
function is not required, its invocation can be replaced with an empty operation (do {} while (0)) that is
optimized away by the compiler. This is very frequently the case with cache-related operations because,
as above, the kernel assumes that addressing is based on virtual addresses. The resultant problems do
not occur in physically organized caches so that it is not usually necessary to implement the cache control
functions.

The following functions must be made available (even if only as an empty operation) by each CPU-
specific part of the kernel in order to control the TLBs and caches®:

QO  flush_tlb_all and flush_cache_all flush the entire TLB/cache. This is only required when the
page tables of the kernel (and not of a userspace process) are manipulated because a modification
of this kind affects not only all processes but also all processors in the system.

a flush_tlb_mm(struct mm_struct *mm) and £lush_cache_mnm flush all TLB/cache entries belong-
ing to the address space mm.

[l flush_tlb_range (struct vm_area_struct *vma, unsigned long start, unsigned long end)
and flush_cache_range (vma, start, end) flush all entries from the TLB/cache between the
start and end virtual addresses in the address range vma->vm_mm.

a flush_tlb_page(struct vm_area_struct *vma, unsigned long page) and
flush_cache_page (vma, page) flush all entries from the TLB/cache whose virtual addresses are
in an interval that begins at page and consists of PAGE_SIZE bytes.

a update_mmu_cache (struct vm_area_struct *vma, unsigned long address, pte_t pte) is
invoked after a page fault has been handled. It inserts information in the memory management
unit of the processor so that the entry at the virtual address address is described by the page
table entry pte.

This function is needed only if there is an external MMU. Typically, the MMU is integrated into
the processor, but MIPS processors, for example, have external MMUs.

The kernel makes no distinction between data and instruction caches. If a distinction is required, the
processor-specific code can reference the vi1_EXEC flag in vm_area_struct->flags to ascertain whether
the cache contains data or instructions.

The flush_cache_ and flush_tlb_ functions very often occur in pairs; for instance, when the address
space of a process is duplicated using fork.

kernel/fork.c
flush_cache_mm(oldmm) ;

38Whether TLBs are the only hardware resource for doing this or whether other alternatives (e.g., page tables) are provided is irrele-
vant.
39The following description is based on the documentation by David Miller [Mil] in the kernel sources.
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/* Manipulate page tables */
flush_tlb_mm(oldmm) ;

The sequence of operations — cache flushing, memory manipulation, and TLB flushing — is important
for two reasons:

Q  If the sequence were reversed, another CPU in a multiprocessor system could take the wrong
information from the process table after the TLBs have been flushed but before the correct infor-
mation is supplied.

0  Some architectures require the presence of ““virtual-to-physical” transformation rules in the TLB
when the cache is flushed (caches with this property are referred to as strict). flush_t1b_mm must
execute after £lush_cache_mm to guarantee that this is the case.

Some control functions apply specifically to data caches (flush_dcache_ ... ) or instruction caches
(flush_icache_... ).

a flush_dcache_page (struct page *page) helps prevent alias problems that arise if a cache may
contain several entries (with different virtual addresses) that point to the same page in memory.
It is always invoked when the kernel writes to a page in the page cache or when it wants to read
data from a page that is also mapped in userspace. This routine gives each architecture in which
alias problems can occur an opportunity to prevent such problems.

a flush_icache_range (unsigned long start, unsigned long end) is invoked when the kernel
writes data to kernel memory (between start and end) for subsequent execution. A standard
example of this scenario is when a module is loaded into the kernel. The binary data are first
copied to RAM and are then executed. flush_icache_range ensures that data and instruction
caches do not interfere with each other if implemented separately.

a flush_icache_user_range (*vma, *page, addr, len) is a special function for the ptrace mecha-
nism. It is needed to propagate changes to the address space of a traced process.

It is beyond the scope of this book to discuss the implementation details of the cache and TLB control
functions. Too much background knowledge on the structure of the underlying processor (and

the subtle problems involved) would be required for a full understanding of the implementation
details.

3.8 Summary

This chapter has discussed many aspects of memory management. Our focus lies on physical memory
management, but the connection between virtual and physical memory via page tables has also been cov-
ered. Although the architecture-specific details in this area differ greatly among the various architectures
supported by Linux, an architecture-independent set of data structures and functions allows generic code
to manipulate the page tables. However, some architecture-specific code is required before the generic
view is enabled, and this code runs during the boot process.

Once the kernel is up and running, memory management is handled by two layers: The buddy system
is responsible for the management of physical page frames, while the slab allocator must handle small
allocations and provides an in-kernel equivalent to the malloc function family known from userland
programming.
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The buddy system is centered around the idea of splitting and recombining larger continuous blocks of
pages. When a continuous area becomes free, the kernel notices this automatically, and can use it once the
need for a corresponding allocation arises. Since this is unfortunately not sufficient to prevent fragmen-
tation of physical memory after longer uptimes in a satisfactory manner, recent kernels have acquired
anti-fragmentation techniques that allow grouping pages by their mobility, on the one hand, and aug-
ment the kernel with a new virtual memory zone, on the other hand. Both help to avoid fragmentation
by essentially decreasing the chance that coalescing of larger regions is prohibited by allocated blocks in
their middle.

The slab allocator is implemented on top of the buddy system. It does not only allow to allocate small
chunks of memory for arbitrary use, but additionally offers the possibility to create specific caches for
often used data structures.

Initializing memory management is challenging because the data structures employed by the subsystem
itself also require memory, which must be allocated from somewhere. We have seen how the kernel
solves the situation by introducing a very simple boot memory allocator that is shut down after the
proper allocation routines function fully.

While we have mostly focused on physical memory here, the next chapter will discuss how the virtual
address space is managed by the kernel.
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The virtual address space of userland processes is an important abstraction of Linux: It allows the
same view of the system to each running process, and this makes it possible for multiple processes
to run simultaneously without interfering with the memory contents of the others. Additionally, it
allows various advanced programming techniques like memory mappings. In this chapter, I will
discuss how these concepts are realized in the kernel. This also requires an examination of the
connection between page frames of the available physical RAM and pages in all virtual process
address spaces: The reverse mapping technique helps to track which virtual pages are backed by
which physical page, and page fault handling allows filling the virtual address space with data from
block devices on demand.

4.1 Introduction

All the memory management methods discussed in the preceding chapter were concerned either
with the organization of physical memory or management of the virtual kernel address space. This
section examines the methods required by the kernel to manage the virtual user address space. For
a variety of reasons, some of which are given below, this is more complex than managing kernel
address space:

Q  Each application has its own address space that is segregated from all other applications.

Q  Usually only a few sections of the large linear address space available to each userspace
process are actually used, and they may also be some distance from each other. The kernel
needs data structures to efficiently manage these (randomly) spread sections.

0  Only the smallest part of the address space is directly associated with physical pages. Infre-
quently used parts are linked with pages only when necessary.

Q  The kernel has trust in itself, but not in user processes. For this reason, each operation to
manipulate user address space is accompanied by various checks to ensure that programs
cannot acquire more rights than are due to them and thus endanger system stability and
security.
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0  The fork-exec model used under UNIx to generate new processes (described in Chapter 2)
is not very powerful if implemented carelessly. The kernel must therefore concentrate on
managing user address spaces as efficiently as possible by resorting to a few tricks.

Most of the ideas discussed below are based on the assumption that the system has a memory management
unit (or MMU) that supports the use of virtual memory. This is, in fact, the situation on all “normal”’
processors. However, during the development of Linux 2.5, three architectures that do not provide an
MMU were added to the kernel sources — V850E, H8300, and m68knommu. Another one (blackfin)
was added during the development of kernel 2.6.22. Some of the functions examined below are not
available on these CPUs, and the interface to the outside returns error messages because the underlying
mechanisms are not implemented in the kernel and cannot be implemented owing to the lack of processor
support. The information below covers only machines with MMU. I do not deal with the oddities and
modifications needed for MMU-less architectures.

4.2 Virtual Process Address Space

The virtual address space of each process starts at address 0 and extends to TASK_SIZE - 1; the kernel
address space begins above this. On IA-32 systems with 232 = 4 GiB, the total address space is usually
split in a 3:1 ratio on which we focus in the information below. The kernel is assigned 1 GiB, while 3 GiB
is available to each userspace process. Other ratios are possible but yield benefits only on very specific
configurations and with certain work loads, as discussed above.

A very important aspect relating to system integrity is that user programs may access only the lower part
of the overall address space but not the kernel part. Neither is it possible for a user process to manipulate
parts of the address space of another process without previous ““agreement,” simply because these parts
are invisible to it.

The contents of the virtual address space portion of the kernel are always the same regardless of which
user process is currently active. Depending on hardware, this is achieved either by manipulating the page
tables of user processes so that the upper part of the virtual address space always appears to be identical
or by instructing the processor itself to provide a separate address space for the kernel, which is mapped
above each user address space. Recall that this is visualized in Figure 1-3 in the Introduction.

The virtual address space is made up of many sections of varying sizes that serve different purposes and
must be handled differently. For example, in most cases, it is not permitted to modify the text segment,
but it must be possible to execute its contents. On the other hand, it must be possible to modify the
contents of a text file mapped into the address space but not to execute such contents as this doesn’t
make sense — it’s just data and not machine code.

4.2.1 Layout of the Process Address Space

The virtual address space is populated by a number of regions. How they are distributed is architecture-
specific, but all approaches have the following elements in common:

O  The binary code of the code currently running. This code is normally referred to as text and the
area of virtual memory in which it is located as a text segment.!

Q  The code of dynamic libraries used by the program.

I This is not the same as a hardware segment, which is featured in some architectures and acts as a separate address space. It is simply
the linear address space area used to hold the data.
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The heap where global variables and dynamically generated data are stored.
The stack used to hold local variables and to implement function and procedure calls.

Sections with environment variables and command-line arguments.

U 0 U DO

Memory mappings that map the contents of files into the virtual address space.

Recall from Chapter 2 that each process in the system is equipped with an instance of struct mm_struct
that can be accessed via the task structure. This instance holds memory management information for the
process:

<mm_types.h>
struct mm_struct {

unsigned long (*get_unmapped_area) (struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags);

unsigned long mmap_base; /* base of mmap area */
unsigned long task_size; /* size of task vm space */

unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;

}

The start and end of the virtual address space area consumed by the executable code are marked by
start_code and end_code. Similarly, start_data and end_data mark the region that contains initialized
data. Notice that the size of these areas does not change once an ELF binary has been mapped into the
address space.

The start address of the heap is kept in start_brk, while brk denotes the current end of the heap area.
While the start is constant during the lifetime of a process, heap size and thus the value of brk will vary.

The position of the argument list and the environment is described by arg_start and arg_end, respec-
tively, env_start and env_end. Both regions reside in the topmost area of the stack.

mmap_base denotes the starting point for memory mappings in the virtual address space, and get_
unmapped_area is invoked to find a suitable place for a new mapping in the mmap area.

task_size — variable names don’t lie — stores the task size of the corresponding process. For native
applications, this will usually be TASK_sI1zE. However, 64-bit architectures are often binary-compatible
with their predecessors. If a 32-bit binary is executed on a 64-bit machine, then task_size describes the
effective task size visible to the binary.

The individual architectures can influence the layout of the virtual address space by several configuration
options:

Q  If an architecture wants to choose between different possibilities for how the mmap area is

arranged, it needs to set HAVE_ARCH_PICK_MMAP_LAYOUT and provide the function arch_
pick_mmap_layout.
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0  When a new memory mapping is created, the kernel needs to find a suitable place for it unless
a specific address has been specified by the user. If the architecture wants to choose the proper
location itself, it must set the pre-processor symbol HAVE_ARCH_UNMAPPED_AREA and define the
function arch_get_unmapped_area accordingly.

0O  New locations for memory mappings are usually found by starting the search from lower mem-
ory locations and progressing toward higher addresses. The kernel provides the default func-
tion arch_get_unmapped_area_topdown to perform this search, but if an architecture wants
to provide a specialized implementation, it needs to set the pre-processor symbol HAVE_ARCH_
GET_UNMAPPED_AREA.

Q  Usually, the stack grows from bottom to top. Architectures that handle this differently need to
set the configuration option CONFTG_STACK_GROWSUP.? In the following, only stacks that grow
from top to bottom are considered.

Finally, we need to consider the task flag PF_RANDOMIZE. If it is set, the kernel does not choose fixed
locations for stack and the starting point for memory mappings, but varies them randomly each time a
new process is started. This complicates, for instance, exploiting security holes that are caused by buffer
overflows. If an attacker cannot rely on a fixed address where the stack can be found, it will be much
harder to construct malicious code that deliberately manipulates stack entries after access to the memory
region has been gained by a buffer overflow.

Figure 4-1 illustrates how the aforementioned components are distributed across the virtual address
space on most architectures.

TASK_SIZE
A T STACK_TOP-randomized_variable
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mm->mmap_base (TASK_UNMAPPED_SIZE)

A Heap
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Figure 4-1: Composition of the linear process address space.

2Currently only PA-Risc processors require this option. The constants in the kernel thus have a slight tendency toward a sit-
uation where the stack grows from downward, albeit the PA-Risc code is not quite satisfied with that, as we can read in
include/asm-parisc/a.out.h:

/* XXX: STACK_TOP actually should be STACK_BOTTOM for parisc. * prumpf *\

The funny thing is that “prumpf” is not a grumpy sign of discontent, but an abbreviation for a developer, Philipp Rumpf :-)
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How the text segment is mapped into the virtual address space is determined by the ELF standard (see
Chapter E for more information about this binary format). A specific starting address is specified for
each architecture: IA-32 systems start at 0x08048000, leaving a gap of roughly 128 MiB between the
lowest possible address and the start of the text mapping that is used to catch NULL pointers. Other
architectures keep a similar hole: UltraSparc machines use 0x100000000 as the starting point of the text
segment, while AMD64 uses 0x0000000000400000. The heap starts directly above the text segment and
grows upward.

The stack starts at STACK_TOP, but the value is decremented by a small random amount if PF_RANDOMIZE
is set. STACK_TOP must be defined by each architecture, and most set it to TASK_SIZE — the stack starts at
the highest possible address of the user address space. The argument list and environment of a process
are stored as initial stack elements.

The region for memory mappings starts at mm_struct->mmap_base, which is usually set to TASK_
UNMAPPED_BASE, needing to be defined by every architecture. In nearly all cases, TASK_SIzE/3 is

chosen. Note that the start of the mmap region is not randomized if the default kernel approach
is used.

Using the described address space layout works very well on machines that provide a large virtual
address space. However, problems can arise on 32-bit machines. Consider the situation on IA-32: The
virtual address space ranges from 0 to 0xC0000000, so 3 GiB are available for each user process. TASK_
UNMAPPED_BASE starts at 0x4000000, that is, at 1 GiB. Unfortunately, this implies that the heap can only
consume roughly 1 GiB before it crashes right into the mmap area, which is clearly not a desirable
situation.

The problem is caused by the memory mapping region that is located in the middle of the virtual address
space. This is why a new virtual address space layout for IA-32 machines (in addition to the classical
one, which can still be used) was introduced during the development of kernel 2.6.7. It is illustrated in
Figure 4-2.

TASK_SIZE
774 STACK_TOP-randomized_variable

NI 4,1,/4/4 2] m Gap
already used

} Random offset
mm->mmap_base

8><0804 80000
Figure 4-2: Layout of the virtual address space on IA-32

machines when the mmap region is expanded from
top to bottom.
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The idea is to limit the maximal stack size to a fixed value. Since the stack is bounded, the region into
which memory mappings are installed can then be started immediately below the end of the stack. In
contrast to the classical approach, it now expands from fop to bottom. Since the heap is still located in the
lower region of the virtual address space and grows upward, both mmap region and heap can expand
until there is really no portion of the virtual address space left. To ensure that the stack does not collide
with the mmap region, a safety gap is installed between both.

4.2.2 Creating the Layout

The address space of a task is laid out when an ELF binary is loaded with 1oad_elf_binary — recall that
the function is used by the exec system call. Loading an ELF file is cluttered with numerous technical
details that are not interesting for our purposes, so the code flow diagram in Figure 4-3 concentrates on
the steps required to set up the virtual memory region.

load_elf_binaryl

| Set PF_RANDOMIZE if required |

|arch_pick_mmap_layoutl

|setup_arg_pages|

Figure 4-3: Code flow diagram for
load_elf binary.

Address space randomization is enabled if the global variable randomize_va_space is set to 1. This is
usually the case, but is disabled for Transmeta CPUs because it has a negative speed impact on such
machines. Besides, the user can use /proc/sys/kernel/randomize_va_space to disable the feature.

The address space layout is selected in arch_pick_mmap_layout. If the architecture does not provide
a specific function, the kernel’s default routine sets up the address space as shown in Figure 4-1. It is,
however, more interesting to observe how IA-32 chooses between the classical and the new alternative:

arch/x86/mm/mmap_32.c
void arch_pick_mmap_layout (struct mm_struct *mm)
{
/*
* Fall back to the standard layout if the personality
* bit is set, or if the expected stack growth is unlimited:
*/
if (sysctl_legacy_va_layout |
(current->personality & ADDR_COMPAT LAYOUT) ||
current->signal->rlim[RLIMIT_STACK].rlim_cur == RLIM_INFINITY)

mm->mmap_base = TASK _UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
mm->unmap_area = arch_unmap_area;

} else {
mm->mmap_base = mmap_base (mm) ;
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mm->get_unmapped_area = arch_get_unmapped_area_topdown;
mm->unmap_area = arch_unmap_area_topdown;

}

The old layout is chosen if the user has explicitly instructed to do so via /proc/sys/kernel/legacy_
va_layout, if a binary that was compiled for a different Unix flavor that requires the old layout is exe-
cuted, or — most importantly — the stack may grow infinitely. This makes it difficult to find a bound for
the stack below which the mmap region can start.

In the classical case, the start of the mmap area is at TASK_UNMAPPED_BASE, which resolves to 0x4000000,
and the standard function arch_get_unmapped_area (despite its name, the function is not necessarily
architecture-specific, but there’s also a standard implementation available in the kernel) is used to grow
new mappings from bottom to top.

When the new layout is used, memory mappings grow from top to bottom. The standard function
arch_get_unmapped_area_topdown (which I will not consider in detail) is responsible for this. More
interesting is how the base address for memory mappings is chosen:

arch/x86/mm/mmap_32.c
#define MIN_GAP (128%*1024*1024)
#define MAX_GAP (TASK_SIZE/6*5)

static inline unsigned long mmap_base (struct mm_struct *mm)

{
unsigned long gap = current->signal->rlim[RLIMIT_STACK].rlim_cur;
unsigned long random_factor = 0;

if (current->flags & PF_RANDOMIZE)
random_factor = get_random_int() % (1024*1024);

if (gap < MIN_GAP)
gap = MIN_GAP;
else if (gap > MAX_GAP)
gap = MAX_GAP;

return PAGE_ALIGN(TASK_SIZE - gap - random_factor);
}

The lowest possible stack location that can be computed from the maximal stack size can be used as the
start of the mmap area. However, the kernel ensures that the stack spans at least 128 MiB. Additionally,
it is ensured that at least a small portion of the address space is not taken up by the stack if a gigantic
stack limit is specified.

If address space randomization is requested, the position is modified by a random offset of maximally
1 MiB. Additionally, the kernel ensures that the region is aligned along the page frame size because this
is required by the architecture.

At a first glance, one could assume that life is easier for 64-bit architectures because they should not have

to choose between different address layouts — the virtual address space is so large that collisions of heap
and mmap region are nearly impossible.
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However, the definition of arch_pick_mmap_layout for the AMDé64 architecture shows that another
complication arises:

arch/x86_64/mmap.c
void arch_pick_mmap_layout (struct mm_struct *mm)
{
#ifdef CONFIG_IA32_EMULATION
if (current_thread_info()->flags & _TIF_IA32)
return ia32_pick_mmap_layout (mm) ;
#endif
mm->mmap_base = TASK_UNMAPPED_BASE;
if (current->flags & PF_RANDOMIZE) {
/* Add 28bit randomness which is about 40bits of address space
because mmap base has to be page aligned.
or ~1/128 of the total user VM
(total user address space is 47bits) */
unsigned rnd = get_random_int () & Oxfffffff;
mm->mmap_base += ((unsigned long)rnd) << PAGE_SHIFT;
}
mm->get_unmapped_area = arch_get_unmapped_area;
mm->unmap_area = arch_unmap_area;

If binary emulation for 32-bit applications is enabled, any process that runs in compatibility mode
should see the same address space as it would encounter on a native machine. Therefore, ia32_pick_
mmap_layout is used to lay out the address space for 32-bit applications. The function is an identical copy
of arch_pick_mmap_layout for IA-32 systems, as discussed above.

The classic layout for virtual address space is always used on AMD64 systems so that there is no need
to distinguish between the various options. Address space randomization is performed by shifting the
otherwise fixed mmap_base if the PF_RANDOMIZE flag is set.

Let us go back to load_elf_binary. Finally, the function needs to create the stack at the appropriate
location:

<fs/binfmt_elf.c>
static int load_elf_binary(struct linux_ binprm *bprm, struct pt_regs *regs)

{

retval = setup_arg_pages (bprm, randomize_stack_top (STACK_TOP),
executable_stack) ;

The standard function setup_arg_pages is used for this purpose. I will not discuss it in detail because it is
only technical. The function requires the top of the stack as a parameter. This is given by the architecture-
specific constant STACK_TOP, but randomize_stack_top ensures that the address is changed by a random
amount if address space randomization is required.
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4.3 Principle of Memory Mappings

Because the total virtual address space of all user processes is substantially larger than the available RAM
memory, only the most frequently used elements can be associated with a physical page frame. This

is not a problem because most programs occupy only a small part of the memory actually available to
them. Let’s look at the situation in which a file is manipulated by a text editor. Typically, the user is only
bothered with the end of the file so although the complete file is mapped into memory, only a few pages
are actually used to store the data at the end of the file. As for the beginning of the file, the kernel need
only keep the information in address space about where on the disk to find the data and how to read
them when they are required.

The situation is similar with the text segment — only part of it is always needed. If we stay with the
example of the text editor, only the code for the central editing function is required. Other parts — the
Help system or the obligatory Web and e-mail client common to all programs — are only loaded when
explicitly required by the user.?

The kernel must provide data structures to establish an association between the regions of the virtual
address space and the places where the related data are located. In the case of a mapped text file, for
example, the virtual memory area must be associated with the area on the hard disk in which the filesys-
tem has stored the contents of the file. This is illustrated in Figure 4-4.

Virtual File on hard disk
address space

Figure 4-4: Mapping a file into virtual memory.

Of course, I have shown the situation in simplified form because file data are not generally stored con-
tiguously on hard disk but are distributed over several smaller areas (this is discussed in Chapter 9). The
kernel makes use of the address_space data structure* to provide a set of methods to read data from

a backing store — from a filesystem, for example. address_spaces therefore form an auxiliary layer to
represent the mapped data as a contiguous linear area to memory management.

Allocating and filling pages on demand is known as demand paging. It is based on interaction between the
processor and the kernel using a variety of data structures as shown in Figure 4-5.

3T assume that all program parts reside in a single, large binary file. Of course, program parts can also be loaded at the explicit
request of the program itself, but I do not discuss this here.
4Unfortunately, the names for the virtual address space and the address space indicating how the data are mapped are identical.
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Figure 4-5: Interaction of data structures during demand paging.

O A process tries to access a memory address that is in user address space but cannot be resolved
using the page tables (there is no associated page in RAM memory).

0  The processor then triggers a page fault that is forwarded to the kernel.

O  The kernel runs through the process address space data structures responsible for the area in
which the fault occurred to find the appropriate backing store or to establish that access was,
indeed, incorrect.

Q A physical page is allocated and filled with the requisite data from the backing store.
O  The physical page is incorporated into the address space of the user process with the help of the

page tables, and the application resumes.

These actions are transparent to user processes; in other words, the processes don’t notice whether a page
is actually available or must first be requested by means of demand paging.

4.4 Data Structures

Recall that struct mm_struct is important — it provides all necessary information to lay out a task in
memory as discussed before. Additionally, it includes the following elements for management of all
memory regions in the virtual address space of a user process.

<mm_types.h>
struct mm_struct {

struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */

}

The following sections discuss the meanings of the entries.
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4.4.1 Trees and Lists

Each region is described by an instance of vm_area_struct, and the regions of a process are sorted in
two ways:

1. Onasingly linked list (starting with mm_struct->mmap).

2. In a red-black tree whose root element is located in mm_rb.

mmap_cache is a cache for the region last handled; its meaning will become clear in Section 4.5.1.

Red-black trees are binary search trees whose nodes also have a color (red or black). They exhibit all the
properties of normal search trees (and can therefore be scanned very efficiently for a specific element).
The red-black property also simplifies re-balancing.> Readers unfamiliar with this concept are referred
to Appendix C, which deals extensively with the structure, properties, and implementation of red-black
trees.

The start and end addresses describe each region in virtual user address space. The existing regions
are included in the linked list in ascending order of start address. Scanning the list to find the region
associated with a particular address is a very inefficient operation if there are a very large number of
regions (as is the case with data-intensive applications). The individual instances of vm_area_struct are
therefore also managed in a red-black tree, which speeds up scanning considerably.

To add a new region, the kernel first searches the red-black tree for the region immediately preceding the
new region. With its help, it can add the new region to the tree and also to the linear list without having
to explicitly scan the list (the algorithm used by the kernel to add new regions is discussed at length in
Section 4.5.3). Finally, the situation in memory is illustrated in Figure 4-6. Notice that the representation
of the tree is only symbolic and does not reflect the real layout, which is more complicated.

struct
task_struct
struct
mm_struct
mm > Manage vim_area_structs

associated with a process
T T T T T T T~ ~< []struct vmm_area_struct

mmap e ~o

~N
mmap_rb Red_Black >

tree |

Figure 4-6: Association of vim_area_struct instances with the virtual process space of a
process.

5All important tree operations (add, delete, find) can be performed in O(logn), where n is the number of elements in the tree.
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4.4.2 Representation of Regions

Each region is represented by an instance of vm_area_struct, which is defined (in simplified form) as
follows:

<mm_types.h>
struct vm_area_struct {

struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */

/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, listed below. */

struct rb_node vm_rb;

/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap prio tree, or
* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.
*/
union {
struct {
struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;
} vm_set;

struct raw_prio_tree_node prio_tree_node;
} shared;

/*

* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma

* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.

*/
struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */

/* Function pointers to deal with this struct. */
struct vm_operations_struct * vm_ops;

/* Information about our backing store: */

unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
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The individual elements have the following meanings:

a
a
a

vm_mn is a back-pointer to the mm_struct instance to which the region belongs.
vm_start and vm_end specify the virtual start and end addresses of the region in userspace.

The linear linking of all vm_area_struct instances of a process is achieved using vm_next,
whereas incorporation in the red-black tree is the responsibility of vm_rb.

vm_page_prot stores the access permissions for the region in the constants discussed in
Section 3.3.1, which are also used for pages in memory.

vm_flags is a set of flags describing the region. I discuss the flags that can be set below.

A mapping of a file into the virtual address space of a process is uniquely determined by the
interval in the file and the corresponding interval in memory. To keep track of all intervals asso-
ciated with a process, the kernel uses a linked list and a red-black tree as described above.

However, it is also necessary to go the other way round: Given an interval in a file, the kernel
sometimes needs to know all processes into which the interval is mapped. Such mappings are
called shared mappings, and the C standard library, which is used by nearly every process in the
system, is a prime example of why such mappings are necessary.

To provide the required information, all vm_area_struct instances are additionally managed
in a priority tree, and the elements required for this are contained in shared. As you can easily
imagine from the rather complicated definition of this structure member, this is a tricky business,
which is discussed in detail in Section 4.4.3 below.

anon_vma_node and anon_vma are used to manage shared pages originating from anonymous
mappings. Mappings that point to the same pages are held on a doubly linked list, where
anon_vma_node acts as the list element.

There are several of these lists, depending on how many sets of mappings there are that share
different physical pages. The anon_vma element serves as a pointer to the management structure
that is associated with each list and comprises a list head and an associated lock.

vm_ops is a pointer to a collection of methods used to perform various standard operations on
the region.

<mm.h>
struct vm_operations_struct {
void (*open) (struct vm_area_struct * area);
void (*close) (struct vm_area_struct * area);
int (*fault) (struct vm_area_struct *vma, struct vm_fault *vmf);
struct page * (*nopage) (struct vm_area_struct * area, unsigned long
address, int *type);

Q  openand close are invoked when a region is created and deleted, respectively. They are
not normally used and have null pointers.

O  However, fault is very important. If a virtual page is not present in an address space, the
automatically triggered page fault handler invokes this function to read the corresponding
data into a physical page that is mapped into the user address space.

Q  nopage is the kernel’s old method to respond to page faults that is less flexible than fault.
The element is still provided for compatibility reasons, but should not be used in new code.
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Q

vm_pgof fset specifies an offset for a file mapping when not all file contents are to be mapped
(the offset is 0 if the whole file is mapped).

The offset is not expressed in bytes but in multiples of PAGE_SIZE. On a system with
pages of 4 KiB, an offset value of 10 equates to an actual byte offset of 40,960. This is
reasonable because the kernel only supports mappings in whole-page units, and
smaller values would make no sense.

Q

vm_£ile points to the file instance that describes a mapped file (it holds a null pointer if the
object mapped is not a file). Chapter 8 discusses the contents of the file structure at length.

Depending on mapping type, vm_private_data can be used to store private data that are not
manipulated by the generic memory management routines. (The kernel ensures only that the
element is initialized with a null pointer when a new region is created.) Currently, only a few
sound and video drivers make use of this option.

vm_flags stores flags to define the properties of a region. They are all declared as pre-processor constants
in <mm. h>.

Q

Q

0O 00 0

VM_READ, VM_WRITE, VM_EXEC, and VM_SHARED specify whether page contents can be
read, written, executed, or shared by several processes.

VM_MAYREAD, VM_MAYWRITE, VM_MAYEXEC, and VM_MAYSHARE determine whether
the vi_* flags may be set. This is required for the mprotect system call.

VM_GROWSDOWN and vM_GROWSUP indicate whether a region can be extended downward

or upward (to lower/higher virtual addresses). Because the heap grows from bottom to
top, VM_GROWSUP is set in its region; VM_GROWSDOWN is set for the stack, which grows from top
to bottom.

VM_SEQ_READ is set if it is likely that the region will be read sequentially from start to end;
VIM_RAND_READ specifies that read access may be random. Both flags are intended as “prompts”
for memory management and the block device layer to improve their optimizations (e.g., page
readahead if access is primarily sequential. Chapter 8 takes a closer look at this technique).

If vM_DONTCOPY is set, the relevant region is not copied when the fork system call is executed.
VIM_DONTEXPAND prohibits expansion of a region by the mremap system call.
VM_HUGETLB is set if the region is based on huge pages as featured in some architectures.

VIM_ACCOUNT specifies whether the region is to be included in the calculations for the overcommit
features. These features restrict memory allocations in various ways (refer to Section 4.5.3 for
more details).

4.4.3 The Priority Search Tree

Priority search trees are required to establish a connection between a region in a file and all virtual address
spaces into which the region is mapped. To understand how this connection is established, we need to
introduce some data structures of the kernel, which will be discussed in more detail and within a more
general context in the following chapters.
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Additional Data Structures

Every open file (and every block device, because these can also be memory-mapped via device special
files) is represented by an instance of struct file. This structure, in turn, contains a pointer to an address
space object as represented by struct address_space. This object is the basis of the priority search tree
(prio tree) by which the connection between mapped intervals and the address spaces into which these are
mapped is established. The definition of both structures is as follows (I only show the elements required
for our purposes here):

<fs.h>
struct address_space {
struct inode *host; /* owner: inode, block_device */

struct prio_tree_root i_mmap; /* tree of private and shared mappings */
struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */

}

<fs.h>
struct file {

struct address_space *f_mapping;
}

Additionally, each file and each block device are represented by an instance of struct inode. In contrast
to struct file, which is the abstraction for a file opened by the open system call, the inode represents
the object in the filesystem itself.

<fs.h>
struct inode {

struct address_space *i_mapping;
}

Notice that only mapped file intervals are discussed below although, it is also possible to map different
things, for instance, direct intervals in raw block devices, without a detour over filesystems. When a file is
opened, the kernel sets file->f_mapping to inode->i_mapping. This allows multiple processes to access
the same file without directly interfering with the other processes: inode is a file-specific data structure,
while file is local to a given process.

These data structures are connected with each other, and Figure 4-7 provides an overview about the
situation in memory. Notice that the representation of the tree is only symbolic and does not reflect the
actual, complicated tree layout.

Given an instance of struct address_space, the kernel can infer the associated inode, which, in turn,
allows for access to the backing store on which the file data are stored. Usually, the backing store will be a
block device; the details are discussed in Chapter 9. Section 4.6 and Chapter 16 are devoted to discussing
more about address spaces. Here it suffices to know that the address space is the base element of a
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priority tree that contains all vm_area_struct instances describing the mapping of an interval of the
file associated with the inode into some virtual address space. Since each instance of struct vm_area
contains a pointer to the mm_struct of the process to which it belongs, the desired connection is set up!
Note that vm_area_structs can also be associated with an address space via a doubly linked list headed
by i_mmap_nonlinear. This is required for nonlinear mappings, which I neglect for now. I will come back
to them in Section 4.7.3, though.

struct inode

- - Backing
i_mapping|<€> 8 device

struct | []struct vm_area_struct
file

i_mapping
struct mm_struct
address_space
host
1 mma mm_struct
struct i_mmap nonlinear
file —[Mmap_
mm_struct
i_mapping Manage vimn_area_structs
associated with a file

Figure 4-7: Tracking the virtual address spaces into which a given interval of a file is mapped with
the help of a priority tree.

Recall that Figure 4-6 shows how vm_area_struct instances are organized in a linked list and a red-black
tree. It is important to realize that these are the same vm_area_struct instances that are managed in the

prio tree. While keeping vm_area_structs in two or more data structures at the same time is no problem
for the kernel at all, it is nearly impossible to visualize. Therefore, keep in mind that a given instance of

struct vm_area can be contained in two data structures: One establishes a connection between a region

in the virtual address space of a process to the data in the underlying file, and one allows for finding all

address spaces that map a given file interval.

Representing Priority Trees

Priority trees allow for management of the vm_area_struct instances that represent a particular interval
of the given file. This requires that the data structure cannot only deal with overlapping, but also with
identical file intervals. The situation is illustrated in Figure 4-8: Two processes map the region [7,12] of a
file into their virtual address space, while a third process maps the interval [10, 30].

Managing overlapping intervals is not much of a problem: The boundaries of the interval provide a
unique index that allows for storing each interval in a unique tree node. I will not discuss in detail
how this is implemented by the kernel because it rather similar to radix trees (see Appendix C for more
details). It suffices to know that if intervals B, C, and D are completely contained in another interval A,
then A will be the parent element of B, C, and D.

However, what happens if multiple identical intervals must be included in the prio tree? Each prio
tree node is represented by the raw_prio_tree_node instance, which is directly included in each
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vm_ area_struct instance. Recall, however, that it is in a union with a vm_set. This allows for associating
a list of vm_sets (and thus vm_area_structs) with a prio tree node. Figure 4-9 illustrates the situation in
memory.

Process 1 | | Process 2

File | | |
7 //10 12//30

/7 7

| Process 3 |

Figure 4-8: Multiple processes can map identical or
overlapping regions of a file into their virtual address
space.

prio_tree_root

raw_prio_tree_node

raw_prio_  vm_set

tree node vm_set vm_set vm_set

Figure 4-9: Interrelation of data structures in the
management of shared identical mappings.

When an interval is inserted into the prio tree, the kernel proceeds as follows:

Q

When the vm_area_struct instance is linked into the prio tree as a node, prio_tree_node is
used to establish the necessary associations. To check whether there is a vm_area_struct in
the tree, the kernel exploits the fact that the parent element of vm_set coincides with the last
structure element of prio_tree_node — the data structures are coordinated accordingly. Since
parent is not used within vm_set, the kernel can use parent != NULL to check whether the cur-
rent vim_area_struct member is in a tree.

The definition of prio_tree_node also ensures that the head element of vmset does not overlap
with prio_tree_node so that both can be used together, although they are actually combined in
aunion.

The kernel therefore uses vm_set .head to point to the first element on the list of vm_area_struct
instances that belong to a shared mapping.

If the above list of shared mappings contains a vm_area_struct, vim_set.list is used as the list
head to list all regions affected.

Section 4.5.3 discusses the technical details of how the kernel goes about inserting new regions.
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4.5 Operations on Regions

The kernel provides various functions to manipulate the regions of a process. Creating and deleting
regions (and finding a suitable memory location for a new region) are standard operations needed when
setting up or removing a mapping. The kernel is also responsible for performing optimizations when
managing the data structures, as shown in Figure 4-10.

Figure 4-10: Operations on regions.

0  When a new region is added immediately before or after an existing region (and therefore also
between two existing regions), the kernel merges the data structures involved into a single
structure — but, of course, only if the access permissions for all the regions involved are identical
and contiguous data are mapped from the same backing store.

Q  If a deletion is made at the start or end of a region, the existing data structure must be truncated
accordingly.

Q  If aregion between two other regions is deleted, the existing data structure is reduced in size, and
a new data structure is created for the resultant new region.

A further important standard operation is the search for a region associated with a specific virtual address
in userspace. Before explaining the optimizations mentioned above, let’s discuss the helper function used
to do this.

4.5.1 Associating Virtual Addresses with a Region

By reference to a virtual address, £ind_vma finds the first region in user address space whose end is after
the given address and therefore satisfies the addr < vm_area_struct->vm_end condition. As parameters,
the function requires not only the virtual address (addr) but also a pointer to the mm_struct instance of
the relevant process whose address space is to be scanned.

<mm/mmap.c>
struct vm_area_struct * find_vma (struct mm_struct * mm, unsigned long addr)

{

struct vm_area_struct *vma = NULL;

if (mm) {
/* Check the cache first. */
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/* (Cache hit rate is typically around 35%.) */

vma = mm->mmap_cache;

if (! (vma && vma->vm_end > addr && vma->vm_start <= addr)) {
struct rb_node * rb_node;

rb_node = mm->mm_rb.rb_node;
vma = NULL;

while (rb_node) {
struct vm_area_struct * vma_tmp;

vma_tmp = rb_entry(rb_node,
struct vm_area_struct, vm_rb);

if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
break;
rb_node = rb_node->rb_left;
} else
rb_node = rb_node->rb_right;
}
if (vma)
mm->mmap_cache = vma;

}
return vma;

}

The kernel first checks whether the region last processed and now held in mm->mmap_cache contains the
required address — that is, whether its end is after the required address and its start is before. If so, the
kernel does not execute the if block and immediately returns the pointer to the region.

If not, the red-black tree must be searched step by step. rb_node is the data structure used to represent
each node in the tree. rb_entry enables the “useful data’ (in this case, an instance of vm_area_struct)
to be removed from the node.
The root element of the tree is located in mm->mm_rb.rb_node. If the end address of the associated region
is less than the required address and the start address is greater than the required address, the kernel has
found the appropriate element and can exit the while loop to return a pointer to the vim_area_struct
instance. Otherwise, the search is resumed at the

Q  left child if the end address of the current region is after the required address,
or at the

Q  right child if the end address of the region is before the required address.

As the root elements of the tree have null pointers as child elements, it is easy for the kernel to decide
when to terminate the search and return a null pointer as an error message.

If a suitable region is found, a pointer to it is stored in mmap_cache because there is a strong likelihood
that the next £ind_vma call will search for a neighboring address in the same region.
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find_vma_intersection is another helper function to establish whether an interval bounded by start_
addr and end_addr is fully within an existing region. It builds on find_vma and is easily implemented as
follows:

<mm.h>

static inline

struct vm_area_struct * find_vma_intersection(struct mm_struct * mm,
unsigned long start_addr,
unsigned long end_addr)

struct vm_area_struct * vma = find_vma (mm, start_addr) ;

if (vma && end_addr <= vma->vm_start)
vma = NULL;
return vma;

4.5.2 Merging Regions

When a new region is added to the address space of a process, the kernel checks whether it can be merged
with one or more existing regions as shown in Figure 4-10.

vm_merge merges a new region with the surrounding regions if this is possible. It requires numerous
Pparameters.

mm/mmap.c

struct vm_area_struct *vma_merge(struct mm_struct *mm,
struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t pgoff, struct mempolicy *policy)

pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
struct vm_area_struct *area, *next;

mn is the address space instance of the relevant process and prev the region immediately before the new
region. rb_parent is the parent element of the region in the red-black search tree.

addr, end, and vm_flags describe the start, end, and flags of the new region as their names suggest. If
the region belongs to a file mapping, file contains a pointer to the file instance that identifies the file.
pgoff specifies the offset of the mapping within the file data. Since policy is required on NUMA systems
only, I won’t discuss it further.

The technical details of implementation are very straightforward. A check is first made to ascertain
whether the end address of the predecessor region corresponds to the start address of the new region.
If so, the kernel must then check that the flags and the mapped file are identical for both regions, that
the offsets of file mappings are such that a contiguous region results, that both regions do not con-
tain anonymous mappings, and that both regions are mutually compatible.® This is done using the

6The regions cannot be merged if two file mappings follow each other without a hole but map non-contiguous sections of the file.
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can_vma_merge_after helper function. The work of merging a region with its predecessor region looks
like this:

mm/mmap.c
if (prev && prev->vm_end == addr &&
can_vma_merge_after (prev, vm_flags,
anon_vma, file, pgoff)) {

If it can, the kernel then checks whether the successor region can and must be merged.

mm/mmap.c

/*
* QOK, it can. Can we now merge in the successor as well?
*/
if (next && end == next->vm_start &&
can_vma_merge_before (next, vm_flags,
anon_vma, file, pgoff+pglen) &&
is_mergeable_anon_vma (prev->anon_vma,
next->anon_vma)) {
vma_adjust (prev, prev->vm_start,
next->vm_end, prev->vm_pgoff, NULL) ;
} else

vma_adjust (prev, prev->vm_start,
end, prev->vm_pgoff, NULL) ;
return prev;

The first difference as compared to the previous case is that can_vma_merge_before is used instead of
can_vma_merge_after to check whether the two regions can be merged. If both the predecessor and the
successor region can be merged with the current region, it must also be ensured that the anonymous
mappings of the predecessor can be merged with those of the successor before a single region consisting
of all three regions can be created.

In both cases, the helper function vma_adjust is invoked to perform final merging; it appropriately
modifies all data structures involved — the priority tree and the vm_area_struct instances — as well as
deallocating the instances of these structures that are no longer needed.

4.5.3 Inserting Regions

insert_vm_struct is the standard function used by the kernel to insert new regions. The actual work is
delegated to two helper functions, as the code flow diagram in Figure 4-11 shows.

find_vma_prepare is first invoked to obtain the information listed below by reference to the start address
of the new region and of the address space involved (mm_struct).

QO  The vm_area_struct instance of the preceding address space.
Q  The parent node (in the red-black tree) in which the node for the new region is held.
Q  The leaf node (of the red-black tree) that contains the region itself.
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|insert_vm_struct I

find_vma _preparel

vma_link

__vma_link_list

Figure 4-11: Code flow diagram for
insert_wvm_struct.

It’s common knowledge that C permits functions to return just one variable — consequently, the above
function returns only a pointer to the successor region as its direct result; the remaining information is
supplied by means of pointer arguments.

The information found is sufficient to incorporate the new region into the existing data structures
of the process using vma_link. After some preparatory work, the function delegates the real
work to insert_vm_struct, which performs three insert operations as the code flow diagram

shows.
O  _ vma_link_list puts the new region on the linear list of regions of the process; only the prede-
cessor and successor region found using find_vma_prepare are needed to do this.”
O  _ vma_link_rb links the new region into the data structures of the red-black tree, as the name
suggests.
U  __anon_vma_linkadds the vm_area_struct instance to the linked list of anonymous mappings

discussed above.

Finally, _ vma_link_file links the relevant address_space and the mapping in the case of file mappings
and also adds the region to the prio tree using vma_prio_tree_insert, which handles multiple identical
regions as described above.

4.5.4 Creating Regions

Before a new memory region can be inserted into the data structures, the kernel must establish where
there is enough free space in virtual address space for a region of a given size. This job is assigned to the
get_unmapped_area helper function.

7If there is no predecessor region because the new region is the new start region or because no regions are defined for the address
space, the information in the red-black tree is used to set the pointers correctly.
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mm/mmap.c

unsigned long

get_unmapped_area (struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)

The arguments are self-explanatory. The implementation of the function is of no further interest as the
actual work is delegated to the architecture-specific helper function stored in the mm_struct instance of
the current process.8

Recall from Section 4.2 that different mapping functions are used depending on the layout of the virtual
process address space. Here I consider the standard function arch_get_unmapped_area that is employed
on most systems.

arch_get_unmapped_area first has to check whether the MaP_FIXED flag is set, indicating that the map-
ping is to be created at a fixed address. If so, the kernel ensures only that the address satisfies alignment
requirements (page-by-page) and that the interval is fully within the available address space.

If no desired area was specified, the kernel tries to find a suitable section in the virtual memory area of the
process by invoking arch_get_unmapped_area. If a particular preferred (as opposed to a fixed) address
is specified, the kernel checks whether the region overlaps with an existing region. If not, the address can
be returned as the target.

mm/mmap.c
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)

{

struct mm_struct *mm = current->mm;

if (addr) {
addr = PAGE_ALIGN (addr) ;
vma = find_vma (mm, addr);
if (TASK_SIZE - len >= addr &&
(lvma || addr + len <= vma->vm_start))
return addr;

Otherwise, the kernel must try to find a free area of the right size by iterating over the available regions
of the process. In doing so, it checks whether a cached area from previous scans could be used.

mm/mmap.c
if (len > mm->cached_hole_size) {
start_addr = addr = mm->free_area_cache;
} else {
start_addr = addr = TASK_UNMAPPED_BASE;
mm->cached_hole_size = 0;

8Files can also be equipped with a special-purpose mapping function. This is, for instance, used by the frame-buffer code to allow
direct manipulation of the video memory when a frame-buffer device file is mapped into memory. However, because the kernel gen-
erally uses the standard implementation, I won’t bother to discuss other more specific routines.
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The actual iteration begins either at the address of the last “hole” in the virtual address space or at the
global start address TASK_UNMAPPED_BASE.

mm/mmap.c
full_search:

for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
/* At this point: (!vma || addr < vma->vm_end). */
if (TASK_SIZE - len < addr) {
/*

* Start a new search - just in case we missed
* some holes.
*/
if (start_addr != TASK_UNMAPPED_BASE) {
addr = TASK_UNMAPPED_BASE;
start_addr = addr;
mm->cached_hole_size = 0;
goto full_search;
}
return -ENOMEM;

if (!vma || addr + len <= vma->vm_start) {
/*
* Remember the place where we stopped the search:
*/

mm->free_area_cache = addr + len;
return addr;
}
if (addr + mm->cached_hole_size < vma->vm_start)
mm->cached_hole_size = vma->vm_start - addr;
addr = vma->vm_end;

}

If the search continues to the end of the user address space (TASK_SIZE) and no suitable area is found, the
kernel returns an -ENOMEM error that must be forwarded to userspace for processing by the relevant appli-
cation, as it indicates that insufficient virtual address space memory is available to satisfy the request. If
memory is found, its virtual start address is returned.

The version for top-down allocation, arch_get_unmapped_area_topdown, progresses similarly, but the
search direction is, of course, reversed. We need not bother with the details of implementation here.

4.6 Address Spaces

Memory mappings of files can be regarded as mappings between two different address spaces to simplify
the work of (system) programmers. One address space is the virtual memory address space of the user
process, the other is the address space spanned by the filesystem.

When the kernel creates a mapping, it must create a link between the address spaces to support com-
munication between the two — in the form of read and write requests. The vm_operations_struct
structure with which we are familiar from Section 4.4.2 is first used to do this. It provides an operation to
read pages not yet in physical memory although their contents have already been mapped there.
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However, the operation has no information on the mapping type or on its properties. As there are numer-
ous kinds of file mappings (regular files on different filesystem types, device files, etc.), more information
is required. In fact, the kernel needs a more detailed description of the address space of the data source.

The address_space structure mentioned briefly above is defined for this purpose and contains additional
information on a mapping. Recall that the connection between files, address spaces, and inodes has been
shown in Figure 4-7. Some of the data structures involved are explained in future chapters, and thus their
relationships are not dealt with here; let us simply state that each file mapping has an associated instance
of address_space.

Neither is the exact definition of struct address_space relevant at this point; it is discussed in more
detail in Chapter 16. Here it is sufficient to know that each address space has a set of address space
operations held as function pointers in the structure shown below (only the most important entries are
reproduced).

<fs.h>

struct address_space_operations {
int (*writepage) (struct page *page, struct writeback_control *wbc) ;
int (*readpage) (struct file *, struct page *);

/* Write back some dirty pages from this mapping. */
int (*writepages) (struct address_space *, struct writeback_control *);

/* Set a page dirty. Return true if this dirtied it */
int (*set_page_dirty) (struct page *page) ;

int (*readpages) (struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages) ;

}i
A detailed description of the structure can also be found in Chapter 16.

0  readpage reads a single page from the underlying block medium into RAM memory; readpages
performs the same task for several pages at once.

0  writepage writes the contents of a page from RAM memory back to the corresponding location
on a block device to permanently save changes.

0  set_page_dirty indicates that the contents of a page have been changed and no longer match
the original contents on the block device.

How is the link between vm_operations_struct and address_space established? There is no static
link to assign an instance of each structure to the other structure. Nevertheless, both are linked by the
standard implementations that the kernel provides for vm_operations_struct and that are used by
almost all filesystems.

mm/filemap.c

struct vm_operations_struct generic_file_vm_ops = {
.fault = filemap_fault,

}i
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The implementation of filemap_fault uses the readpage method of the underlying mapping and there-
fore adopts the above address_space concept, as you will see in the concept description in Chapter 8.

4.7 Memory Mappings

Now that we are familiar with the data structures and address space operations related to memory
mappings, we move on in this section to examine the interaction between the kernel and the applications
when mappings are created. As we know, the C standard library features the mmap function to install
mappings. Two system calls — mmap and mmap2 — are provided on the kernel side. Some architectures
implement both versions [e.g., IA-64, and Sparc(64)], others only the first (AMDG64) or only the second
(IA-32). Both have the same set of parameters.

asmlinkage unsigned long sys_mmap{2} (unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags, unsigned long fd,
unsigned long off)

Both calls create a mapping of length len at position pos in the virtual user address space whose access
permissions are defined in prot. flags is a flag set used to set a number of parameters. The relevant file
is identified by means of its file descriptor in fd.

The difference between mmap and mmap2 lies in the meaning of the offset (o££). In both calls, it indicates
the point in the file at which mapping is to begin. For mmap, the position is specified in bytes, whereas
the unit used by mmap2 is pages (PAGE_SIZE) — this enables file sections to be mapped even if the file is
larger than the address space available.

Typically, the C standard library provides only a single function for the creation of memory mappings
by applications. This function call is then translated internally to the system call appropriate to the archi-
tecture.

The munmap system call is invoked to remove a mapping. There is no need for a munmap2 system call
because no file offset is required — just the virtual address of the mapping.

4.7.1 Creating Mappings

The call syntax for mmap and mmap2 has already been introduced above, so I only need briefly list the most
important flags that can be set:

O  MAP_FIXED specifies that no other address than the one given may be used for the mapping. If
this flag is not set, the kernel is free to change the desired address if, for example, a mapping
already resides there (the existing mapping would otherwise be overwritten).

0  MAP_SHARED must be used when an object (usually a file) is to be shared between several pro-
cesses.

0  MAP_PRIVATE creates a private mapping that is separated from the contents of the source — write
operations on the mapped region have no effect on the data in the file.

0 MAP_ANONYMOUS creates an anonymous mapping that is not associated with any data source — the
fd and off parameters are ignored. This type of mapping can be used to allocate malloc-like
memory for applications.
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A combination of PROT_EXEC, PROT_READ, PROT_WRITE, and PROT_NONE values can be used to define access
permission in prot. Not all combinations are implemented for all processors, with the result that the
region may be granted more rights than those specified. Although the kernel does its best to set the
desired mode, it can only guarantee that the access permissions set are not more restrictive than those
specified.

For the sake of simplicity, the description below deals only with sys_mmap2 (sys_mmap behaves in a very
similar way on most other architectures: all arrive in the do_mmap_pgoff function discussed below). In
line with the convention discussed in Chapter 13, the function serves as the entry point for the mmap2
system call and immediately delegates work to do_mmap2. There the kernel references the file descriptor
to find the file instance with all the characteristic data of the file being processed (Chapter 8 examines
this data structure more closely). The remaining work is delegated to do_mmap_pgof£.

do_mmap_pgoff is an architecture-independent function defined in mm/mmap . c. Figure 4-12 shows the asso-
ciated code flow diagram.

| get_unmapped_area I

Compute flags

mmap_region

j!

—>| find_ vma_prepare I

—>| Already existing region? I—’| do_munmapl

—>| Check memory limits |

—>| Create a new vm_area_struct |

—>| file—>f_op—>mmap|

—>| VM_LOCKED set? |—>| make_pages_presentl

—>| Return start address of mapping|

Figure 4-12: Code flow diagram for do_mmap_pgoff.

do_mmap_pgoff used to be one of the longest functions in the kernel. It is now effectively split into two
parts, which are, however, still rather voluminous. One part has to thoroughly check the parameters

of the user application, and the second part has to take a very large number of special situations and
subtleties into consideration. As the latter make no valuable contribution to a general understanding of
the mechanism involved, we look only at a representative standard situation — mapping of a regular file
with MAP_SHARED — to avoid bloating our description, and the code flow diagram also applies just for
this case.

315



Chapter 4: Virtual Process Memory

The get_unmapped_area function described in Section 4.5.4 is first invoked to find a suitable area for
the mapping in the virtual address space. Recall that the application may specify a fixed address for the
mapping, suggest an address, or leave the choice of address to the kernel.

calc_vm_prot_bits and calc_vm_flag_bits combine the flags and access permission constants speci-
fied in the system call in a joint flag set that is easier to handle in the subsequent operations (the MAP_ and
PROT_ flags are “translated”into flags with the prefix vn_).

mm/mmap.c
vm_flags = calc_vm_prot_bits(prot) | calc_vm flag bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

What is most interesting is that the kernel includes the value of def_flags in the flag set after removing it
from the mm_struct instance of the currently running process. def_flags has the value 0 or vi1_LOCK. The
former brings about no change to the resulting flag set, whereas vM_LOCK means that pages subsequently
mapped in cannot be swapped out (the implementation of swapping is discussed in Chapter 18). To set
the value of def_flags, the process must issue the mlockall system call, which uses the mechanism
described above to prevent all future mappings from being swapped out, even if this was not requested
explicitly by means of the vi1_LOCK flag at creation time.

After the arguments have been checked and all required flags have been set up, the remaining work is
delegated to mmap_region. The £ind_vma_prepare function with which we are familiar from Section 4.5.3
is invoked to find the vm_area_struct instances of the predecessor and successor areas and the data for
the entry in the red-black tree. If a mapping already exists at the specified mapping point, it is removed
by means of do_munmap (as described in the section below).

vm_enough_memory is invoked? if either the MAP_NORESERVE flag is not set or the value of the kernel
parameter sysctl_overcommi t_memory'? is set to OVERCOMMIT NEVER, that is, when overcommiting is
not allowed. The function chooses whether to allocate the memory needed for the operation. If it selects
against, the system call terminates with -ENOMEM.

9Using security_vm_enough_memory, which calls __vm_enough_memory over varying paths depending on the security
framework in use.
Wgysctl_overcommit_memory can be set with the help of the /proc/sys/vm/overcommit_memory. Currently there are
three overcommit options. 1 allows an application to allocate as much memory as it wants, even more than is permitted by the
address space of the system. 0 means that heuristic overcommitting is applied with the result that the number of usable pages is
determined by adding together the pages in the page cache, the pages in the swap area, and the unused page frames; requests for
allocation of a smaller number of pages are permitted. 2 stands for the strictest mode, known as strict overcommitting, in which the
permitted number of pages that can be allocated is calculated as follows:

allowed = (totalram pages - hugetlb) * sysctl_overcommit_ratio / 100;
allowed += total_swap_pages;

Here sysctl_overcommit_ratio is a configurable kernel parameter that is usually set to 50. If the total number of pages used
exceeds this value, the kernel refuses to perform further allocations.

Why does it make sense to allow an application to allocate more pages than can ever be handled in principle? This is sometimes
required for scientific applications. Some tend to allocate huge amounts of memory without actually requiring it — but, in the opinion
of the application authors, it seems good to have it just in case. If the memory will, indeed, never be used, no physical page frames
will ever be allocated, and no problem arises.

Such a programming style is clearly bad practice, but unfortunately this is often no criterion for the value of software. Writing clean
code is usually not rewarding in the scientific community outside computer science. There is only immediate interest that a program
works for a given configuration, while efforts to make programs future-proof or portable do not seem to provide immediate benefits
and are therefore often not valued at all.
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Once the kernel has granted the desired memory, the following steps are taken:

1. Allocation and initialization of a new vm_area_struct instance that is inserted in the
list/tree data structures of the process.

2.  Creation of the mapping with the file-specific function file->f_op->mmap. Most filesystems
use generic_file_mmap for this purpose; all it does is set the vm_ops element of the mapping
to generic_file_vm_ops.

vma->vm_ops = &generic_file_vm_ops;

The definition of generic_file_vm_ops is given in Section 4.5.3. Its key element is filemap_
fault, which is invoked when an application accesses the mapped area but the correspond-
ing data are not yet in RAM memory. filemap_fault enlists the help of low-level routines of
the underlying filesystem to fetch the desired data and — transparently to the application —
read them into RAM memory. In other words, the mapped data are not read in immediately
when the mapping is created but only when they are actually needed.

Chapter 8 takes a closer look at the implementation of filemap_fault.

If vM_LOCKED is set — either explicitly with system call flags or implicitly by means of the mlockall
mechanism — the kernel invokes make_pages_present to successively scan the pages of the mapping
and to trigger a page fault for each so that their data are read in. Of course, this means that the perfor-
mance gain of deferred reading is lost, but the kernel makes sure that the pages are always in memory
after a mapping has been created — after all, the vM_LOCKED flag prevents them from being swapped out,
so they must be first in.

The start address of the new mapping is then returned to conclude the system call.

do_mmap_pgoff performs several checks (not described in detail here) at various points in addition to the
actions described above. If one of the checks fails, the operation is terminated, and the system call returns
to userspace with an error code.

O  Accounting — The kernel keeps statistics on the number of pages a process uses for mappings.
As it is possible to limit process resources, the kernel must always ensure that the permitted
value is not exceeded. There is also a maximum number of mappings per process.

0  Extensive security and plausibility checks must be carried out to prevent the applications from
setting invalid parameters or parameters that could threaten system stability. For example, no
mappings may be created that are larger than the virtual address space or extend beyond the
boundaries of virtual address space.

4.7.2 Removing Mappings

The munmap system call, which requires two parameters — the start address and length of the area to be
unmapped, must be used to remove an existing mapping from virtual address space. sys_munmap is the
entry point for the system call; it delegates its work in the usual way to the do_munmap function defined
in mm_mmap . c. (Further implementation information is shown in the associated code flow diagram in
Figure 4-13.)
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do_munmapl
—[Finma orer
—>| Split region? |—>| split_vmal

()

—>| Another split necessary? |—>| split_vma I

—>| detach_vmas_to_be_unmapped I

—>| unmap_region

—>| remove_vma_list I

Figure 4-13: Code flow diagram for do_munmap.

The kernel must first invoke £ind_vma_prev to try to find the vm_area_struct instance for the region to
be unmapped. This function operates in exactly the same way as £ind_vma discussed in Section 4.5.1, but
it not only finds the vm_area_struct matching the address, but also returns a pointer to the predecessor
region.

If the start address of the area to be unmapped is not precisely at the start of the region found by
find_vma_prev, only part but not the whole of the mapping is unmapped. Before the kernel does this,
it must first divide the existing mapping into several parts. The front part of the mapping that is not to
be unmapped is first split off by split_vma. This is a helper function I won’t bother discussing because
all it does is perform standard operations on familiar data structures. It simply allocates a new instance
of vm_area_struct, fills it with the data of the old region, and adjusts the boundaries. The new region is
inserted into the data structures of the process.

The same procedure is repeated for the rear part of the mapping if the old region is not to be unmapped
right up to its end.

The kernel then invokes detach_vmas_to_be_unmapped to draw up a list of all regions to be unmapped.
Because an unmapping operation can involve any area of address space, it may well be that several suc-
cessive regions are affected. The kernel has ensured that only complete regions are affected by splitting
the areas at the start and the end.

detach_vmas_to_be_unmapped iterates over the linear list of vm_area_struct instances until the whole
area is covered. The vm_next element of the structures is briefly “‘misused”to link the regions to be
unmapped with each other. The function also sets the mmap cache to NULL, thus invalidating it.

Two final steps follow. First, unmap_region is invoked to remove all entries from the page tables associ-
ated with the mapping. When this is done, the kernel must also make sure that the relevant entries are
removed from the translation lookaside buffer or are rendered invalid. Second, the space occupied by
the vm_area_struct instances is freed with remove_vma_1list to finally remove the mapping from the
kernel.
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4.7.3 Nonlinear Mappings

As just demonstrated, normal mappings map a continuous section from a file into a likewise continuous
section of virtual memory. If various parts of a file are mapped in a different sequence into an otherwise
contiguous area of virtual memory, it is generally necessary to use several mappings, which is more
costly in terms of resources (particularly in vm_area_structs). A simpler way of achieving the same
result'! is to use nonlinear mappings as introduced during the development of 2.5. The kernel features a
separate system call specifically for this purpose.

mm/fremap.c
long sys_remap_file_pages (unsigned long start, unsigned long size,
unsigned long prot, unsigned long pgoff, unsigned long flags)

The system call allows for rearranging pages in a mapping such that the order in memory is not identical
with the order in the file. This is achieved without moving the memory contents around, but is instead
performed by manipulating the page tables of the process.

sys_remap_file_pages enables an existing mapping at position pgoff and with a size of size to be
moved to a new position in virtual memory. start identifies the mapping whose pages are to be moved,
and thus must fall into the address of an already existing mapping. It also specifies the new position into
which the pages identified by pgoff and size are supposed to be moved.

If a nonlinear mapping is swapped out, the kernel must ensure that the offsets are still present when the
mapping is swapped back in again. The information needed to do this is stored in the page table entries
of the pages swapped out and must be referenced when they are swapped back in, as we shall see below.
But how is the information encoded? Two components are used:

1. Thevm_ area_struct instances of all installed nonlinear mappings are stored in a list headed
by the i_mmap_nonlinear element of struct address_space. The individual vm_area_
structs on the list can employ shared.vm_set.1list as list element because a nonlinear
VMA will not be present on the standard prio tree.

2. The page table entries for the region in question are populated with special entries. These
are constructed such that they look like PTEs of pages that are not present, but contain
additional information identifying them as PTEs for nonlinear mappings. When the page
described by the PTE is accessed, a page fault is generated, and the correct page can be
read in.

Naturally, page table entries cannot be modified at will, but must adhere to conventions imposed by the
underlying architecture. To create nonlinear PTEs, help by the architecture-specific code is required, and
three functions must be defined:

1. pgoff_to_pte takes a file offset encoded as a page number and encodes it into a format that
can be stored in a page table.

2. pte_to_pgoff can decode a file offset encoded in a page table.

HEven though there appears to be very little need for this, there are various large databases that use operations of this kind to rep-
resent data transactions.
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3. pte_file(pte) checks if a given page table entry is used to represent a nonlinear mapping.
This especially allows for distinguishing a page table entry of a nonlinear mapping from a
page table entry for a regular swapped-out page when a page fault occurs.

The pre-processor constant PTE_FILE_MAX_BITS denotes how many bits of a page table entry can be
used to store a file offset. Since this constant will usually be smaller than the word size of the processor
because some status bits in the PTE are required by the architecture and to distinguish it from swap-PTEs,
the range of a file that can be remapped is, in general, smaller than the maximally possible file size.

Since the layout of non-present page table entries is not plagued by any historical oddities on IA-64,
the way nonlinear PTEs are implemented is particularly clean, so I present it as an example, which is
illustrated in Figure 4-14.

include/asm-ia64/pgtable.h
#define PTE_FILE_MAX BITS 61
#define pte_to_pgoff (pte) ((pte_val(pte) << 1) >> 3)

#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE })
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Figure 4-14: Representing
nonlinear mappings in page
table entries on I1A-64
systems.

Swap identifiers are 64 bits long. Bit 0 must be zero because the page is not present, and bit 1 represents
_PAGE_FILE to indicate that the entry belongs to a nonlinear mapping in contrast to a swap specifier. The
last bit, that is, 63, is reserved for the _PAGE_PROTNONE bit.12 Consequently, this leaves 61 bits raw capacity
to represent the nonlinear page offset.

pte_to_pgoff first extracts the value stored in the page table entry with pte_val as provided by the
architecture-specific code. Performing one left-shift and two right-shifts is a simple method to extract the
bits at position [2,62]. When a PTE representing a nonlinear mapping is constructed, the kernel needs to
shift the offset into the bit range starting at bit 2, and must additionally ensure that _PTE_FILE is set to
identify it as a nonlinear mapping in contrast to a regular swapped-out identifier.

The essential steps of sys_remap_file_pages are summarized in the code flow diagram in Figure 4-15.

12A page with this bit set was marked as completely inaccessible by the mmap system call. While such pages do not need to be
backed by a physical page frame (they are not accessible, so what should be read from or written to the page?), the kernel never-
theless has to mark somehow that they must not be accessed, and the aforementioned bit provides this capability.
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sys_remap_file_pagesl

—>| Check flags and sizes |

—>| VM_NONLINEAR notset? |

| Set VM_NONLINEAR |

|vma_prio_tree_remove|

|vma_nonlinear_insert|

——*|populate_rangel

——>|MAP_NONBLOCKnOtSM?f——+|make_pages_presentl

Figure 4-15: Code flow diagram for sys_remap_file_pages.

After all flags have been checked and the kernel has ensured that the range to be remapped is valid, the
vm_area_struct instance of the target region is selected by find_vma. If the destination has not been
nonlinearly remapped before, the flag VM_NONLINEAR is not set in vm_area_struct->vm_flags. In this
case, the linear mapping has to be removed from the prio tree with vma_prio_tree_remove, and it is
inserted into the list of nonlinear mappings using vma_nonlinear_insert.

The crucial step is to install the modified page table entries. The auxiliary routine populate_range is
responsible for this:

mm/fremap.c

static int populate_range(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long size, pgoff_t pgoff)
{

int err;

The mapping is described by vma. The region starting currently at page offset pgoff with length length
is to be remapped to address addr. Since this can involve multiple pages, the kernel needs to iterate over
all of them and install new page table entries with install_file_pte:

mm/fremap.c
do {
err = install_file_pte(mm, vma, addr, pgoff, vma->vm_page_prot) ;
if (err)
return err;

size -= PAGE_SIZE;
addr += PAGE_SIZE;
pgoff++;

} while (size);

return 0;
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install_file_pte first removes any existing page table entry with zap_file pte and then constructs
a new entry using the helper function pgoff_to_pte, which encodes a given file offset into a format
suitable for a PTE:

mm/fremap.c
static int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long pgoff, pgprot_t prot)
{
pte_t *pte;

if (!pte_none(*pte))
zap_pte(mm, vma, addr, pte);

set_pte_at (mm, addr, pte, pgoff_to_pte(pgoff));

}

The final step in sys_remap_file_pages is to read in the pages of the mapping if this is desired (it can be
prevented by setting the flag MAP_NONBLOCK). This is done using make_present_pages, which acts as if a
page fault would have occurred for each single page in the mapping, and triggers reading the data from
the underlying block device.

4.8 Reverse Mapping

The data structures already discussed enable the kernel to establish a link between a virtual and a physi-
cal address (via the page tables) and between a memory region of a process and its virtual page addresses.
What is still missing is a link between a physical page and the processes to which the page belongs (or,
to be more accurate, to the page table entries of all processes that use the page). This is the very link that
is needed when swapping pages out (see Chapter 18) in order to update all processes that use the page
because the fact that the page has been swapped out must be noted in their page tables.

In this context, it is necessary to distinguish between two similar terms:

1. When a page is mapped, it is associated with a process but need not necessarily be in
active use.

2.  The number of references to a page indicates how actively the page is used. In order to deter-
mine this number, the kernel must first establish a link between a page and all its users and
must then resort to a few tricks to find out how actively the page is used.

The first task is therefore to create a link between a page and all points at which it is mapped. To do this,
the kernel uses a few additional data structures and functions and adopts a reverse mapping approach.'®

All mapping actions described above are concerned only with virtual pages, and there was therefore no
need (and no way) to create reverse mappings. The discussion of how the kernel handles page faults and

13Reverse mappings were first introduced during the development of kernel 2.5. They were available as separate patches for 2.4 but
had never been included in the standard sources. Swapping-out of shared pages is much more complicated and inefficient without
this mechanism because the shared page had to be kept in a special cache until the kernel had chosen separately (and independently)
to swap the page out for all processes involved. The implementation of the reverse mapping algorithm was also heavily revised dur-
ing the development of kernel 2.6.
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assigns physical pages to hold mapping data in Section 4.10 notes that there is then a need for reverse
mapping.

4.8.1 Data Structures

The kernel uses lean data structures to minimize management overhead for reverse mappings. The page
structure (discussed in Section 3.2.2) contains a single element to implement reverse mapping.

mm.h
struct page {

atomic_t _mapcount; /* Count of ptes mapped in mms,
* to show when page is mapped
* & limit reverse map searches.
*/

Y

_mapcount indicates at how many points the page is shared. The original value of the counter is —1. It is
assigned the value 0 when the page is inserted in the reverse mapping data structures and is incremented
by 1 for each additional user. This enables the kernel to check quickly how many users are using the page
in addition to the owner.

Obviously, this isn’t much help because the purpose of reverse mapping is to find all points at which the
physical page is used by reference to a given page instance. Consequently, two other data structures have
a role to play:

1. The priority search tree in which each region belonging to a non-anonymous mapping is
embedded

2.  The linked lists of anonymous areas that lead back to the same pages in memory

The elements needed to generate both data structures are integrated in vm_area_struct — these are the
shared union as well as anon_vma_node and anon_vma. To refresh the reader’s memory, I reproduce the
corresponding section from vm_area_struct below.

mm.h
struct vm_area_struct {

/*

* For areas with an address space and backing store,

* linkage into the address_space->i_mmap prio tree, or

* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.

*/
union {
struct {
struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;
} vm_set;

struct raw_prio_tree_node prio_tree_node;
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} shared;

/*
* A file's MAP_PRIVATE vma can be
* list, after a COW of one of the
* can only be in the i_mmap tree.
* or brk vma (with NULL file) can
*/

struct list_head anon_vma_node;

struct anon_vma *anon_vma;

/*
/*

}

The trick employed by the kernel when implementing reverse mapping is not to store a direct link

between a page and the associated users but only the association between a page and the region in which
the page is located. All other regions in which the page is included (and therefore all users) can be found
by means of the data structures just mentioned. This method is also known as object-based reverse mapping
because no direct link between page and user is stored; instead, a further object (the regions in which the

page is located) is interposed between the two.

in both i_mmap tree and anon_vma
file pages. A MAP_SHARED vma

An anonymous MAP_PRIVATE, stack
only be in an anon_vma list.

Serialized by anon_vma->lock */
Serialized by page_table_lock */

4.8.2 Creating a Reverse Mapping

When a reverse mapping is created, it is necessary to distinguish between two alternatives — anonymous
pages and pages with file-based mappings. This is understandable because the data structures used to

manage both alternatives also differ.

The information below only covers working with page instances to be inserted into
the reverse mapping scheme. Other parts of the kernel are responsible for adding
the relevant vm_area_structs to the data structures discussed above (priority tree
and anon list); for example, by invoking vma_prio_tree_insert that is used
(directly or indirectly) at several places in the kernel.

Anonymous Pages

There are two ways of inserting an anonymous page into the reverse mapping data structures. page_
add_new_anon_rmap must be invoked for new anonymous pages. page_add_anon_rmap is the right option
for pages that are already reference-counted. The only difference between these alternatives is that the
former sets the mapping counter page->_mapcount to 0 (reminder: the initial value of _mapcount is 0
for newly initialized pages), and the latter increments the counter by 1. Both functions then merge into

page_set_anon_rmap.

mm/rmap.c

void page_set_anon_rmap (struct page *page,
struct vm_area_struct *vma, unsigned long address)

{

struct anon_vma *anon_vma =

anon_vma = (void *)
page->mapping =

page->index =
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The address of the anon_vma list head is stored in the mapping element of the page instance after PAGE_
MAPPING_ANON has been added to the pointer. This enables the kernel to distinguish between anony-
mous pages and pages with a regular mapping by checking whether the least significant bit is 0 (if
PAGE_MAPPING_ANON is not set) or 1 (if PAGE_MAPPING_ANON is set) as discussed above. Recall that this
trick is valid because the lowest-order bit of a page pointer is guaranteed to be zero because of alignment
requirements.

Pages with a File-Based Mapping

Work is even simpler for pages of this type, as the following code excerpt shows:

mm/rmap.c
void page_add_file_rmap (struct page *page)
{
if (atomic_inc_and_test (&page->_mapcount))
__inc_zone_page_state(page, NR_FILE_MAPPED) ;
}

Basically, all that needs to be done is to increment the _mapcount variable atomically and update the
per-zone statistics.

4.8.3 Using Reverse Mapping

The real benefits of reverse mapping do not become clear until Chapter 18, which examines the imple-
mentation of swapping. There we will see that the kernel defines the try_to_unmap function, which
is invoked to delete a specific physical page from the page tables of all processes by which the page is
used. It is apparent that this is only possible with the data structures just described. Nevertheless, the
implementation is influenced by many details of the swap layer, and this is why I won’t go into how
try_to_unmap works at this point.

page_referenced is an important function that puts the data structures of the reverse mapping scheme
to good use. It counts the number of processes that have actively used a shared page recently by accessing
it — this is different from the number of regions into which the page is mapped. Whereas the second
quantity is mostly static, the first changes rapidly if the page is in active use.

The function is a multiplexer that invokes page_referenced_anon for anonymous pages or page_
referenced_file for pages from a file-based mapping. Both try to establish at how many places
a page is used, but each adopts a different approach owing to the different underlying data
structures.

Let’s first look at the version for anonymous pages. We first need the page_lock_anon_vma helper
function to find the associated list of regions by reference to a specific page instance (by reading the
information discussed in the previous section from the data structure).

<mm/rmap.c>
static struct anon_vma *page_lock_anon_vma (struct page *page)
{

struct anon_vma *anon_vma = NULL;

unsigned long anon_mapping;

anon_mapping = (unsigned long) page->mapping;
if (! (anon_mapping & PAGE_MAPPING_ANON) )
goto out;
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if (!page_mapped (page))
goto out;

anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON) ;

return anon_vma;

}

Once the code has ensured that the page->mapping pointer actually points to an anon_vma instance using
the by-now-familiar trick (the least significant bit of the pointer must be set), page_mapped checks whether
the page has been mapped at all (page->_mapcount must then be greater than or equal to 0). If so, the
function returns a pointer to the anon_vma instance associated with the page.

page_referenced_anon makes use of this knowledge as follows:

mm/rmap.c
static int page_referenced_anon (struct page *page)
{

unsigned int mapcount;

struct anon_vma *anon_vma;

struct vm_area_struct *vma;

int referenced = 0;

anon_vma = page_lock_anon_vma (page) ;
if (!anon_vma)
return referenced;

mapcount = page_mapcount (page) ;
list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)
break;

return referenced;

}

Once the matching anon_vma instance has been found, the kernel iterates over all regions in the list
and invokes page_referenced_one for each one to return the number of places at which the page is
used (some corrections are required when the system is swapping pages in and out, but these are not of
interest here and are discussed in Section 18.7). The results are added together for all pages before the
total is returned.'

page_referenced_one performs its task in two steps:

1. It finds the page table entry that points to the page. This is possible because not only the
page instance but also the associated vm_area_struct is passed to page_referenced_one.
The position in virtual address space at which the page is mapped can be determined from
the latter variable.

14The kernel terminates its work when the number of references reaches the number of mappings held in mapcount as it makes no
sense to continue searching. page_referenced_one automatically decrements the mapcount counter passed for each referenced
page.
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2. It checks whether the _PAGE_ACCESSED bit is set in the page table entry and then deletes the
bit. This flag is set on each access to the page by the hardware (with the additional support
of the kernel if required by the particular architecture). The reference counter is incremented
by 1 if the bit is set; otherwise, it is left unchanged. As a result, frequently used pages have
a high number of references, and the opposite is true for rarely used pages. The kernel is
therefore able to decide immediately whether a page is important based on the number of
references.

The approach adopted for checking the number of references for pages with file-based mapping is
similar.

mm/rmap.c
static int page_referenced_file(struct page *page)

{
mapcount = page_mapcount (page) ;

vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
== (VM_LOCKED|VM_MAYSHARE)) {
referenced++;
break;
}
referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)
break;

return referenced;

The kernel invokes vm_prio_tree_foreach to iterate over all elements of the priority tree that store a
region where the relevant page is included. As above, page_referenced_one is invoked for each page in
order to collect all references. If a page is locked into memory (with vM_LOCKED) and may be shared by
processes (VM_MAYSHARE), the reference value is increased further because pages of this kind should not
be swapped out and are therefore given a bonus.

4.9 Managing the Heap

Managing the /ieap — the memory area of a process used to dynamically allocate variables and data — is
not directly visible to application programmers because it relies on various helper functions of the stan-
dard library (the most important of which is malloc) to reserve memory areas of any size. The classic
interface between malloc and the kernel is the brk system call that expands/shrinks the heap. Recent
malloc implementations (such as those of the GNU standard library) now use a combined approach that
operates with brk and anonymous mappings. This approach delivers better performance and certain
advantages when returning larger allocations.
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The heap is a contiguous memory area that grows from bottom to top when expanded. The mm_struct
structure already mentioned includes the start and the current end address (start_brk and brk) of the
heap in virtual address space.

<mm_types.h>
struct mm_struct {

unsigned long start_brk, brk, start_stack;
Y

The brk system call expects just a single parameter to specify the new end address of the heap in virtual
address space (it can, of course, be smaller than the previous value if the heap is to be shrunk).

As usual, the entry point for the implementation of the brk system call is the sys_brk function, whose
code flow diagram is shown in Figure 4-16.

| Check resource limits |

| Align brk value per page |

No

| Increase of brk value?

Return new brk value |

Yes

——+|find_vma_intersectionl

]

—>| Return new brk value |

Figure 4-16: Code flow diagram for sys_brk.

The brk mechanism is not another independent kernel concept but is implemented on the basis of anony-
mous mappings to reduce internal overhead. Many of the functions to manage memory mappings
discussed in the preceding sections can therefore be reused to implement sys_brk.

After it has been checked that the new desired address for brk is actually within the heap limits, the first
important action of sys_brk is to align the request to page size.

mm/mmap.c
asmlinkage unsigned long sys_brk(unsigned long brk)
{

unsigned long rlim, retval;

unsigned long newbrk, oldbrk;

struct mm_struct *mm = current->mm;
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newbrk = PAGE_ALIGN (brk) ;
oldbrk = PAGE_ALIGN (mm->brk) ;

This code ensures that the new (and, as a precaution, the old) value of brk is a multiple of the system
page size. In other words, a page is the smallest memory area that can be reserved with brk.!>

do_munmap, with which we are familiar from Section 4.7.2, is invoked when it is necessary to shrink
the heap.

<mm/mmap.c>
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
if (!do_munmap (mm, newbrk, oldbrk-newbrk))
goto set_brk;
goto out;

If the heap is to be enlarged, the kernel must first check whether the new size is outside the limit set as
the maximum heap size for the process. find_vma_intersection then checks whether the enlarged heap
would overlap with an existing mapping of the process; if so, it returns without doing anything.

<mm/mmap.c>
/* Check against existing mmap mappings. */
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
goto out;

Otherwise, the actual work of enlarging the heap is delegated to do_brk. The new value of mm->brk is
always returned regardless of whether it is larger, smaller, or unchanged as compared to the old value.

<mm/mmap.c>
/* Ok, looks good - let it rip. */

if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
goto out;
set_brk:
mm->brk = brk;
out:

retval = mm->brk;
return retval;

}

We need not discuss do_brk separately as essentially it is a simplified version of do_mmap_pgoff and
reveals no new aspects. Like the latter, it creates an anonymous mapping in user address space but omits
some safety checks and the handling of special situations to improve code performance.

151t is therefore essential to interpose a further allocator function in userspace to split the page into smaller areas; this is the task of
the C standard library.
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4.10 Handling of Page Faults

The association between virtual and physical memory is not established until the data of an area are
actually needed. If a process accesses a part of virtual address space not yet associated with a page in
memory, the processor automatically raises a page fault that must be handled by the kernel. This is one
of the most important and complex aspects of memory management simply because a myriad of details
must be taken into account. For example, the kernel must ascertain the following:

0O  Was the page fault caused by access to a valid address from the user address space, or did the
application try to access the protected area of the kernel?

O  Does a mapping exist for the desired address?
QO  Which mechanism must be used to obtain the data for the area?

Figure 4-17 shows an initial overview of the potential paths the kernel may follow when handling page
faults.

Kernel or User-

space address?
Kernel User
Kernel mode? |—C— Segmentation Fault | Mapping exists? |
Yes No
Yes — — :
| Sufficient privileges? | | Segmentation Fault |
Synchronize with Yes No

reference page table -
| Handle request | | Segmentation Fault |

Demand Paging/Allocation,
Swapping or COW

Figure 4-17: Potential options for handling page faults.

As demonstrated below, the individual actions are much more complicated because the kernel must not
only guard against malicious access from userspace but must also take note of many minor details; on
top of this, it must not allow the page handling operations to degrade system performance unnecessarily.

The implementation of page fault handling varies from processor to processor. Because the CPUs employ
different memory management concepts, the details of page fault generation also differ. Consequently,

the handler routines in the kernel are located in the architecture-specific source code segments.

We confine ourselves below to a detailed description of the approach adopted on the IA-32 architecture.
Implementation on most other CPUs is at least similar.

An assembler routine in arch/x86/kernel/entry_32.S serves as the entry point for page faults but
immediately invokes the C routine do_page_fault from arch/x86/mm/fault_32.c. (A routine of the
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same name is present in the architecture-specific sources of most CPUs.'-17) Figure 4-18 shows the code
flow diagram of this extensive routine.

do_page_fault I

| Save faulting address |

|| Interrupt handler

e —|fixup_exception|

Address > TASK_SIZE

. Yes
and no protection fault vmalloc-Handler

and kernel mode?

° | {Eindma]

| vm_area_struct exists?

Yes q
fl Usermode access |—| Segmentation Fault I

Yes | v unsuccesssful No
| Stack? Iﬁ|expand_stack fixup_exception|
No
successsful
Allowed read access, Alllowed write access Not allowed Not allowed
page not present page not present write access read access

|—{handle_m.m_fault |

Figure 4-18: Code flow diagram for do_page_fault on IA-32 processors.

This situation is complex, so it is necessary to examine the implementation of do_page_fault very
closely.

Two parameters are passed to the routine — the register set active at the time of the fault, and an error
code (long error_code) that supplies information on the cause of the fault. Currently, only the first three
bits (0, 1, and 2) of error_code are used; their meanings are given in Table 4-1.

arch/x86/mm/fault_32.c
fastcall void _ kprobes do_page_fault (struct pt_regs *regs,
unsigned long error_code)

struct task_struct *tsk;
struct mm_struct *mm;

16 Ag usual, Sparc processors are the odd man out. There the name of the function is do_sparc_fault (Sparc32),
do_sundc_fault (Sparc32 sundc), or do_sparc64_fault (UltraSparc). ia64_do_page_fault is used on IA-64 systems.
17Note that the code for IA-32 and AMD64 will be unified in kernel 2.6.25, which was still under development when this book was
written. The remarks given here also apply for the AMD64 architecture.
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struct vm_area_struct * vma;
unsigned long address;
unsigned long page;

int write, si_code;

int fault;

/* get the address */
address = read_cr2();

Table 4-1: Meaning of Page Fault Error Codes on 1A-32

Bit Set (1) Not set (0)

0 No page present in RAM Protection fault (insufficient access permission)
1 Read access Write access

2 Privileged kernel mode User mode

Once a large number of variables have been declared for subsequent use, the kernel stores the address of
the location that triggered the fault in address.!®

arch/i386/mm/fault.c
tsk = current;

si_code = SEGV_MAPERR;

/
We fault-in kernel-space virtual memory on-demand. The
'reference' page table is init_mm.pgd.

*

*

*

*

* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should

* only copy the information from the master page table,
* nothing more.

*

* This verifies that the fault happens in kernel space
*
*
*
f

(error_code & 4) == 0, and that the fault was not a
protection error (error_code & 9) == 0.

/
if (unlikely(address >= TASK_SIZE)) {
if (! (error_code & 0x0000000d) && vmalloc_fault (address) >= 0)
return;
/*

* Don't take the mm semaphore here. If we fixup a prefetch
* fault we could otherwise deadlock.

180n 1A-32 processors, the address is held in register CR2, whose contents are copied to address by read_cr2. The processor-
specific details are of no interest.
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*/
goto bad_area_nosemaphore;

A vmalloc fault is indicated if the address is outside user address space. The page tables of the process
must therefore be synchronized with the information in the kernel’s master page table. Naturally, this is
only permitted if access took place in kernel mode and the fault was not triggered by a protection error;
in other words, neither bit 2 nor bits 3 and 0 of the error code may be set.1?

The kernel uses the auxiliary function vmalloc_fault to synchronize the page tables. I won’t show the
code in detail because all it does is copy the relevant entry from the page table of init — this is the
kernel master table on IA-32 systems — into the current page table. If no matching entry is found there,
the kernel invokes fixup_exception in a final attempt to recover the fault; I discuss this shortly.

The kernel jumps to the bad_area_nosemaphore label if the fault was triggered during an interrupt (see
Chapter 14) or in a kernel thread (see Chapter 14) that does not have its own context and therefore no
separate instance of mm_struct.

arch/i386/mm/fault.c
mm = tsk->mm;

/*
* If we're in an interrupt, have no user context or are running in an
* atomic region then we must not take the fault..
*/
if (in_atomic() || !mm)
goto bad_area_nosemaphore;

bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (error_code & 4) {

force_sig_info_fault (SIGSEGV, si_code, address, tsk);
return;

no_context:
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;

A segmentation fault is output if the fault originates from userspace (indicated by the fact that bit 4 is
set in error_code). If, however, the fault originates from kernel space, fixup_exception is invoked. I
describe this function below.

If the fault does not occur in an interrupt or without a context, the kernel checks whether the address
space of the process contains a region in which the fault address lies. It invokes the find_vma function,
which we know from Section 4.5.1 to do this.

1This is checked by ! (error_code & 0x0000000d). Because 20 4 22 + 23 = 13 = 0xd, neither bit 2 nor bits 3 and 0 may be set.
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arch/i386/mm/fault.c
vma = find_vma (mm, address);
if (!vma)

goto bad_area;

if (vma->vm_start <= address)
goto good_area;

if (! (vma->vm_flags & VM_GROWSDOWN) )
goto bad_area;

if (expand_stack(vma, address))
goto bad_area;

good_area and bad_area are labels to which the kernel jumps once it has discovered whether the address
is valid or invalid.

The search can yield various results:

0 Noregion is found whose end address is after address, in which case access is invalid.

O  The fault address is within the region found, in which case access is valid and the page fault is
corrected by the kernel.

0O  Aregion is found whose end address is after the fault address but the fault address is not within
the region. There may be two reasons for this:

1. The vi_GrowSDOWN flag of the region is set; this means that the region is a stack that grows
from top to bottom. expand_stack is then invoked to enlarge the stack accordingly. If it
succeeds, 0 is returned as the result, and the kernel resumes execution at good_area. Oth-
erwise, access is interpreted as invalid.

2. The region found is not a stack, so access is invalid.
good_area follows on immediately after the above code.
arch/i386/mm/fault.c
éééd_area:
si_code = SEGV_ACCERR;

write = 0;
switch (error_code & 3) {

default: /* 3: write, present */
/* fall through */

case 2: /* write, not present */
if (! (vma->vm_flags & VM_WRITE))

goto bad_area;

write++;
break;

case 1: /* read, present */
goto bad_area;

case 0: /* read, not present */

if (! (vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
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The presence of a mapping for the fault address does not necessarily mean that access is actually permit-
ted. The kernel must check the access permissions by examining bits 0 and 1 (because 2° + 2! = 3). The
following situations may apply:

Q VM _WRITE must be set in the event of a write access (bit 1 set, cases 3 and 2). Otherwise, access is
invalid, and execution resumes at bad_area.

0  Inthe event of a read access to an existing page (Case 1), the fault must be a permission fault
detected by the hardware. Execution then resumes at bad_area.

Q  If aread access is made to a page that doesn’t exist, the kernel must check whether vM_READ or
VM_EXEC is set, in which case access is valid. Otherwise, read access is denied, and the kernel
jumps to bad_area.

If the kernel does not explicitly jump to bad_area, it works its way down through the case statement and
arrives at the handle_mm_fault call that immediately follows; this function is responsible for correcting
the page fault (i.e., reading the required data).

arch/i386/mm/fault.c

survive:
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
fault = handle_mm_ fault (mm, vma, address, write);
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_ OOM)
goto out_of_memory;
else if (fault & VM_FAULT SIGBUS)
goto do_sigbus;
BUG() ;
}
if (fault & VM_FAULT_MAJOR)
tsk->maj_flt++;
else
tsk->min_flt++;

return;

}

handle_mm_fault is an architecture-independent routine for selecting the appropriate fault correction
method (demand paging, swap-in, etc.) and for applying the method selected (we take a close look at the
implementation and the various options of handle_mm_fault in Section 4.11).

If the page is created successfully, the routine returns either vi_FAULT_MINOR (the data were already in
memory) or VM_FAULT_MAJOR (the data had to be read from a block device). The kernel then updates the

process statistics.

However, faults may also occur when a page is created. If there is insufficient physical memory to load
the page, the kernel forces termination of the process to at least keep the system running. If a permitted
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access to data fails for whatever reason — for instance, if a mapping is accessed but has been shrunk by
another process in the meantime and is no longer present at the given address — the SIGBUS signal is
sent to the process.

4.11 Correction of Userspace Page Faults

Once the architecture-specific analysis of the page fault has been concluded and it has been established
that the fault was triggered at a permitted address, the kernel must decide on the appropriate method to
read the required data into RAM memory. This task is delegated to handle_mm_fault, which is no longer
dependent on the underlying architecture but is implemented system-independently within the memory
management framework. The function ensures that page table entries for all directory levels that lead to
the faulty PTE are present. The function handle_pte_fault analyzes the reason for the page fault. entry
is a pointer to the relevant page table element (pte_t).

mm/memory.c

static inline int handle_pte_fault(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
pte_t *pte, pmd_t *pmd, int write_access)

pte_t entry;
spinlock_t *ptl;

if (!pte_present(entry)) {
if (pte_none(entry)) {
if (vma->vm_ops) {
return do_linear_fault (mm, vma, address,
pte, pmd, write_access, entry);
}
return do_anonymous_page (mm, vma, address,
pte, pmd, write_access);
}
if (pte_file(entry))
return do_nonlinear_fault (mm, vma, address,
pte, pmd, write_access, entry);
return do_swap_page (mm, vma, address,
pte, pmd, write_access, entry);

}

Three cases must be distinguished if the page is not present in physical memory [!pte_present (entry) ].

1.  If no page table entry is present (page_none), the kernel must load the page from scratch —
this is known as demand allocation for anonymous mappings and demand paging for
file-based mappings. This does not apply if there is no vm_operations_struct regis-
tered in vm_ops — in this case, the kernel must return an anonymous page using do_
anonymous_page.

2.  If the page is marked as not present but information on the page is held in the page table,
this means that the page has been swapped out and must therefore be swapped back in from
one of the system swap areas (swap-in or demand paging).
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3. Parts of nonlinear mappings that have been swapped out cannot be swapped in like regular
pages because the nonlinear association must be restored correctly. The function pte_file
allows for checking if the PTE belongs to a nonlinear mapping, and do_nonlinear_fault
handles the fault.

A further potential case arises if the region grants write permission for the page but the access mecha-
nisms of the hardware do not (thus triggering the fault). Notice that since the page is present in this case,
the above if case is executed and the kernel drops right through to the following code:

mm/memory.c
if (write_access) {
if (!pte_write(entry))
return do_wp_page (mm, vma, address,
pte, pmd, ptl, entry);
entry = pte_mkdirty(entry);

do_wp_page is responsible for creating a copy of the page and inserting it in the page tables of the
process — with write access permission for the hardware. This mechanism is referred to as copy on write
(COW, for short) and is discussed briefly in Chapter 1. When a process forks, the pages are not copied
immediately but are mapped into the address space of the process as ““read-only”* copies so as not to
spend too much time in the (wasteful) copying of information. A separate copy of the page is not created
for the process until write access actually takes place.

The sections below take a closer look at the implementation of the fault handler routines invoked dur-
ing page fault correction. They do not cover how pages are swapped in from a swap area by means of
do_swap_page, as this topic is discussed separately in Chapter 18 and requires additional knowledge of
the structure and organization of the swap layer.

4.11.1 Demand Allocation/Paging

Allocation of pages on demand is delegated to do_linear_fault, which is defined in mm/memory. c. After
some parameter conversion, the work is delegated to __do_fault, and the code flow diagram of this
function is shown in Figure 4-19.

First of all, the kernel has to make sure that the required data are read into the faulting page. How this is
handled depends on the file that is mapped into the faulting address space, and therefore a file-specific
method is invoked to obtain the data. Usually, it is stored in vm->vm_ops->fault. Since earlier kernel
versions used a method with a different calling convention, the kernel must account for the situation in
which some code has not yet been updated to stick to the new convention. Therefore, the old variant
vm->vm_ops->nopage is invoked if no fault method is registered.

Most files use filemap_fault to read in the required data. The function not only reads in the required
data, but also implements readahead functionality, which reads in pages ahead of time that will most
likely be required in the future. The mechanisms needed to do this are introduced in Chapter 16, which
discusses the function in greater length. At the moment, all we need to know is that the kernel reads the
data from the backing store into a physical memory page using the information in the address_space
object.
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_ _do_fault I

; Yes
_’| Only vma->vm_ops->nopage available? |—>| vma->vm_ops->nopage I

o
=

vma->vm_ops->fault I

—>| Write access on private page? |

| anon_vma_prepare I

Allocate page

| copy_user_highpage I

—’| flush_icache_pagel

]

—>| Write access? |—>| pte_mkwrite I
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—>| Anonymous page? | lru_cache_add_activel

| page_add_new_anon_rmap I
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page_add_file_rmap I

—>| update_mmu_cache I

Figure 4-19: Code flow diagram for __do_fault.

Given the vm_area_struct region involved, how can the kernel choose which method to use to read the

page?

1.
2.
3.

The mapped file object is found using vm_area_struct->vm_file.
A pointer to the mapping itself can be found in file->f_mapping.

Each address space has special address space operations from which the readpage method
can be selected. The data are transferred from the file into RAM memory using mapping->
a_ops->readpage (file, page).

If write access is required, the kernel has to distinguish between shared and private mappings. For private
mappings, a copy of the page has to be prepared.

mm/memory.c

static int _ do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
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/*
* Should we do an early C-0-W break?
*/
if (flags & FAULT_FLAG_WRITE) {
if (! (vma->vm_flags & VM_SHARED)) {
anon = 1;
if (unlikely (anon_vma_prepare (vma))) {
ret = VM_FAULT_OOM;
goto out;

}
page = alloc_page_vma (GFP_HIGHUSER_MOVABLE,
vma, address);

}

copy_user_highpage (page, vmf.page, address, vma);

A new page must be allocated once a new anon_vma instance has been created for the region with
anon_vma_prepare (the pointer to the old region is redirected to the new region in anon_vma_prepare).
The high memory area is preferably used for this purpose as it presents no problems for userspace pages.
copy_user_highpage then creates a copy of the data (routines for copying data between kernel and
userspace are discussed in Section 4.13).

Now that the position of the page is known, it must be added to the page table of the process and incor-
porated in the reverse mapping data structures. Before this is done, a check is made to ensure that the
page contents are visible in userspace by updating the caches with flush_icache_page. (Most processors
don’t need to do this and define an empty operation.)

A page table entry that normally points to a read-only page is generated using the mk_pte function
discussed in Section 3.3.2. If a page with write access is created, the kernel must explicitly set write
permission with pte_mkwrite.

How pages are integrated into the reverse mapping depends on their type. If the page generated when
handling the write access is anonymous, it is added to the active area of the LRU cache using 1ru_cache_
add_active (Chapter 16 examines the caching mechanisms used in more detail) and then integrated into
the reverse mapping with page_add_new_anon_rmap. page_add_file_rmap is invoked for all other pages
associated with a file-based mapping. Both functions are discussed in Section 4.8. Finally, the MMU cache
of the processor has to be updated if required because the page tables have been modified.

4.11.2 Anonymous Pages

do_anonymous_page is invoked to map pages not associated with a file as a backing store. Except that no
data must be read into a page, the procedure hardly differs from the way in which file-based data are
mapped. A new page is created in the highmem area, and all its contents are deleted. The page is then
added to the page tables of the process, and the caches/MMU are updated.

Notice that earlier kernels distinguished between read-only and write access to anonymous mappings: In
the first case, a single, global page filled with zero bytes was used to satisfy read requests to anonymous
regions. During the development of kernel 2.6.24, this behavior has, however, been dropped because
measurements have shown that the performance gain is negligible, while larger systems can experience
several problems with shared zero mappings, which I do not want to discuss in detail here.
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4.11.3 Copy on Write

Copy on write is handled in do_wp_page, whose code flow diagram is shown in Figure 4-20.

do_wp, _pagel

—>| v-m_normal_pagel

|anon_vma_preparel

—>| alloc_page_vma I

cow_user_vma

_’l page_remove_rmap I

—>| Insert page into page tables |

—>| lru_cache_add_active I

—>| page_add_new_anon_rmap I

Figure 4-20: Code flow diagram for
do_wp_page.

Let’s examine a slightly simplified version in which I have omitted potential interference with the swap
cache as well as some corner cases, since this would complicate the situation without revealing anything
insightful about the mechanism itself.

The kernel first invokes vm_normal_page to find the struct page instance of the page by reference to
the page table entry — essentially, this function builds on pte_pfn and pfn_to_page, which must be
defined on all architectures. The former finds the page number for an associated page table entry, and
the latter determines the page instance associated with the page number. This is possible because the
COW mechanism is invoked only for pages that actually reside in memory (otherwise, they are first
automatically loaded by one of the other page fault mechanisms).

After obtaining a reference on the page with page_cache_get, anon_vma_prepare then prepares the
data structures of the reverse mapping mechanism to accept a new anonymous area. Since the fault
originates from a page filled with useful data that must be copied to a new page, the kernel invokes
alloc_page_vma to allocate a fresh page. cow_user_page then copies the data of the faulted page into the
new page to which the process may subsequently write.

The reverse mapping to the original read-only page is then removed using page_remove_rmap. The new
page is added to the page tables, at which point the CPU caches must also be updated.

The final actions involve placing the newly allocated pages on the active list of the LRU cache using

lru_cache_add_active and inserting them in the reverse mapping data structures by means of
page_add_anon_rmap. Thereafter, the userspace process can write to the page to its heart’s content.
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4.11.4 Getting Nonlinear Mappings

Page fault handling for nonlinear mappings is much shorter than when the methods described above are
used:

mm/memory.c

static int do_nonlinear_fault (struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
int write_access, pte_t orig_pte)

pgoff = pte_to_pgoff (orig_pte);
return _ do_fault (mm, vma, address, pmd, pgoff, flags, orig_pte);
}

Since the faulting address is not linearly associated with the contents of the mapped file, the desired posi-
tion must be obtained from the information in the PTE that was previously encoded with pgoff_to_pte.
Now comes the time to put this information to use: pte_to_pgoff analyzes the page table entry and
obtains the desired page-sized offset into the file.

Once the address within the file is known, reading in the required data can be pursued as for regular
page faults. The kernel thus hands off the work to the previously discussed function __do_page_fault
and is done.

4.12 Kernel Page Faults

When kernel address space is accessed, page faults can be triggered by various conditions as described
below.

0 A programming error in the kernel has caused an incorrect address to be accessed — this is a
genuine bug. Of course, this should never happen in stable versions® but does occur occasion-
ally in developer versions.

0  The kernel accesses an invalid address passed as a system call parameter from userspace.

Q  The page fault was triggered by access to an area allocated using vmalloc.

The first two condi