
This is a low resolution , black and white version of the article you
downloaded. To download the whole of Free Software Magazine in high
resolution and color, please subscribe!

Subscriptions are free, and every subscriber receives our fantastic
weekly newsletters — which are in fact fully edited articles about free
software.

Please click here to subscribe:

http://www.freesoftwaremagazine.com/subscribe

http://www.freesoftwaremagazine.com/subscribe

Writing device drivers in Linux:
A brief tutorial

An easy and quick introduction on how to write device drivers
for Linux like a true kernel developer!

Xavier Calbet

“D
o you pine for the nice days of Minix-
1.1, when men were men and wrote
their own device drivers?”Linus Tor-
valds

Pre-requisites

In order to develop Linux device drivers, it is necessary to
have an understanding of the following:

• C programming. Some in-depth knowledge of C pro-
gramming is needed, like pointer usage, bit manipulat-
ing functions, etc.

• Microprocessor programming. It is necessary to
know how microcomputers work internally: mem-
ory addressing, interrupts, etc. All of these concepts
should be familiar to an assembler programmer.

There are several different devices in Linux. For simplicity,
this brief tutorial will only cover typechar devices loaded
as modules. Kernel 2.6.x will be used (in particular, kernel
2.6.8 under Debian Sarge, which is now Debian Stable).

User space and kernel space

When you write device drivers, it’s important to make the
distinction between “user space” and “kernel space”.

• Kernel space. The Linux operating system, and in par-
ticular its kernel, manages the machine’s hardware in a

simple and efficient manner, offering the user a simple
and uniform programming interface. In the same way,
the kernel, and in particular its device drivers, form a
bridge or interface between the end-user/programmer
and the hardware. Any subroutines or functions form-
ing part of the kernel (modules and device drivers, for
example) are considered to be part of kernel space.

• User space. End-user programs, like the
UNIX shell or other GUI based applications
(kpresenter for example), are part of the user
space. Obviously, these applications need to interact
with the system’s hardware . However, they don’t do
so directly, but through the kernel supported functions.

All of this is shown in Figure 1.

Interfacing functions between user space and
kernel space

The kernel offers several subroutines or functions in user
space, which allow the end-user application programmer to
interact with the hardware. Usually, in UNIX or Linux sys-
tems, this dialogue is performed through functions or sub-
routines in order to read and write files. The reason for this
is that in Unix devices are seen, from the point of view of
the user, as files.
On the other hand, in kernel space Linux also offers several
functions or subroutines to perform the low level interac-
tions directly with the hardware, and allow the transfer of
information from kernel to user space.

Free Software Magazine Issue 11, March/April 2006 1

Administrator
Line

Administrator
Line

Administrator
Line

HACKER’S CODE

Figure 1. User space where applications reside, and kernel space
where modules or device drivers reside

Table 1. Device driver events and their associated interfacing func-
tions in kernel space and user space.

Events User functions Kernel func-
tions

Load module
Open device
Read device
Write device
Close device
Remove mod-
ule

Usually, for each function in user space (allowing the use of
devices or files), there exists an equivalent in kernel space
(allowing the transfer of information from the kernel to the
user and vice-versa). This is shown in Table 1, which is, at
this point, empty. It will be filled when the different device
drivers concepts are introduced.

Interfacing functions between kernel space
and the hardware device

There are also functions in kernel space which control the
device or exchange information between the kernel and the

Table 2. Device driver events and their associated functions between
kernel space and the hardware device.

Events Kernel functions

Read data
Write data

hardware. Table 2 illustrates these concepts. This table will
also be filled as the concepts are introduced.

The first driver: loading and removing the
driver in user space

I’ll now show you how to develop your first Linux device
driver, which will be introduced in the kernel as a module.

For this purpose I’ll write the following program in a file
namednothing.c
<nothing.c> =

#include <linux/module.h>

MODULE_LICENSE("Dual BSD/GPL");

Since the release of kernel version 2.6.x, compiling mod-
ules has become slightly more complicated. First, you need
to have a complete, compiled kernel source-code-tree. If
you have a Debian Sarge system, you can follow the steps
in Appendix B (towards the end of this article). In the fol-
lowing, I’ll assume that a kernel version 2.6.8 is being used.

Next, you need to generate a makefile. The makefile for this
example, which should be namedMakefile , will be:
<Makefile1> =

obj-m := nothing.o

Unlike with previous versions of the kernel, it’s now also
necessary to compile the module using the same kernel that
you’re going to load and use the module with. To compile
it, you can type:

$ make -C /usr/src/kernel-source-2.6.8

M=‘pwd‘ modules

This extremely simple module belongs to kernel space and
will form part of it once it’s loaded.

In user space, you can load the module as root by typing the
following into the command line:

insmod nothing.ko

2 Free Software Magazine Issue 11, March/April 2006

Administrator
Rectangle

Administrator
Rectangle

HACKER’S CODE

Table 3. Device driver events and their associated interfacing func-
tions between kernel space and user space.

Events User functions Kernel func-
tions

Load module insmod
Open device
Read device
Write device
Close device
Remove mod-
ule

rmmod

The insmod command allows the installation of the mod-
ule in the kernel. However, this particular module isn’t of
much use.

It is possible to check that the module has been installed
correctly by looking at all installed modules:

lsmod

Finally, the module can be removed from the kernel using
the command:

rmmod nothing

By issuing thelsmod command again, you can verify that
the module is no longer in the kernel.

The summary of all this is shown in Table 3.

The “Hello world” driver: loading and
removing the driver in kernel space

When a module device driver is loaded into the kernel, some
preliminary tasks are usually performed like resetting the
device, reserving RAM, reserving interrupts, and reserving
input/output ports, etc.

These tasks are performed, in kernel space, by two func-
tions which need to be present (and explicitly declared):
module init andmodule exit ; they correspond to the
user space commandsinsmod andrmmod, which are used
when installing or removing a module. To sum up, the user
commandsinsmod andrmmod use the kernel space func-
tionsmodule init andmodule exit .

Let’s see a practical example with the classic program
Hello world :
<hello.c> =

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void) {
printk("<1> Hello world!\n");
return 0;

}

static void hello_exit(void) {
printk("<1> Bye, cruel world\n");

}

module_init(hello_init);
module_exit(hello_exit);

The actual functionshello init andhello exit can
be given any name desired. However, in order for them to be
identified as the corresponding loading and removing func-
tions, they have to be passed as parameters to the functions
module init andmodule exit .

Theprintk function has also been introduced. It is very
similar to the well knownprintf apart from the fact that
it only works inside the kernel. The<1> symbol shows
the high priority of the message (low number). In this way,
besides getting the message in the kernel system log files,
you should also receive this message in the system console.

This module can be compiled using the same command as
before, after adding its name into the Makefile.
<Makefile2> =

obj-m := nothing.o hello.o

In the rest of the article, I have left the Makefiles as an ex-
ercise for the reader. A complete Makefile that will compile
all of the modules of this tutorial is shown in Appendix A.

When the module is loaded or removed, the messages that
were written in theprintk statement will be displayed
in the system console. If these messages do not appear
in the console, you can view them by issuing thedmesg

command or by looking at the system log file withcat

/var/log/syslog .

Table 4 shows these two new functions.

The complete driver “memory”: initial part of
the driver

I’ll now show how to build a complete device driver:
memory.c . This device will allow a character to be read

Free Software Magazine Issue 11, March/April 2006 3

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

HACKER’S CODE

Table 4. Device driver events and their associated interfacing func-
tions between kernel space and user space.

Events User functions Kernel func-
tions

Load module insmod moduleinit()
Open device
Read device
Write device
Close device
Remove mod-
ule

rmmod moduleexit()

from or written into it. This device, while normally not very
useful, provides a very illustrative example since it is a com-
plete driver; it’s also easy to implement, since it doesn’t
interface to a real hardware device (besides the computer
itself).

To develop this driver, several new#include statements
which appear frequently in device drivers need to be added:
<memory initial> =

/* Necessary includes for device drivers */
#include <linux/init.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything\ldots{} */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_from/to_user */

MODULE_LICENSE("Dual BSD/GPL");

/* Declaration of memory.c functions */
int memory_open

(struct inode *inode, struct file *filp);
int memory_release

(struct inode *inode, struct file *filp);
ssize_t memory_read

(struct file *filp, char *buf,
size_t count, loff_t *f_pos);

ssize_t memory_write
(struct file *filp, char *buf,

size_t count, loff_t *f_pos);
void memory_exit(void);
int memory_init(void);

/* Structure that declares the usual file */

/* access functions */
struct file_operations memory_fops = {

read: memory_read,
write: memory_write,
open: memory_open,
release: memory_release

};

/* Declaration of the init and exit functions */
module_init(memory_init);
module_exit(memory_exit);

/* Global variables of the driver */
/* Major number */
int memory_major = 60;
/* Buffer to store data */
char *memory_buffer;

After the #include files, the functions that will be de-
fined later are declared. The common functions which are
typically used to manipulate files are declared in the def-
inition of the file operations structure. These will
also be explained in detail later. Next, the initialization and
exit functions—used when loading and removing the mod-
ule—are declared to the kernel. Finally, the global vari-
ables of the driver are declared: one of them is themajor

number of the driver, the other is a pointer to a region in
memory,memory buffer , which will be used as storage
for the driver data.

The “memory” driver: connection of the
device with its files

In UNIX and Linux, devices are accessed from user space
in exactly the same way as files are accessed. These device
files are normally subdirectories of the/dev directory.

To link normal files with a kernel module two numbers
are used:major number and minor number . The
major number is the one the kernel uses to link a file
with its driver. Theminor number is for internal use of
the device and for simplicity it won’t be covered in this ar-
ticle.

To achieve this, a file (which will be used to access the de-
vice driver) must be created, by typing the following com-
mand as root:

mknod /dev/memory c 60 0

In the above,c means that achar device is to be created,
60 is themajor number and0 is theminor number .

Within the driver, in order to link it with its correspond-
ing /dev file in kernel space, theregister chrdev

4 Free Software Magazine Issue 11, March/April 2006

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

HACKER’S CODE

function is used. It is called with three arguments:major

number , a string of characters showing the module name,
and afile operations structure which links the call
with the file functions it defines. It is invoked, when in-
stalling the module, in this way:
<memory init module> =

int memory_init(void) {
int result;

/* Registering device */
result = register_chrdev(memory_major,

"memory", &memory_fops);
if (result < 0) {

printk(
"<1>memory: cannot obtain major number %d\n",
memory_major);

return result;
}

/* Allocating memory for the buffer */
memory_buffer = kmalloc(1, GFP_KERNEL);
if (!memory_buffer) {

result = -ENOMEM;
goto fail;

}
memset(memory_buffer, 0, 1);

printk("<1>Inserting memory module\n");
return 0;

fail:
memory_exit();
return result;

}

Also, note the use of thekmalloc function. This function
is used for memory allocation of the buffer in the device
driver which resides in kernel space. Its use is very similar
to the well knownmalloc function. Finally, if registering
the major number or allocating the memory fails, the
module acts accordingly.

The “memory” driver: removing the driver

In order to remove the module inside thememory exit

function, the functionunregsiter chrdev needs to be
present. This will free themajor number for the kernel.
<memory exit module> =

void memory_exit(void) {
/* Freeing the major number */
unregister_chrdev(memory_major, "memory");

/* Freeing buffer memory */
if (memory_buffer) {

kfree(memory_buffer);

}

printk("<1>Removing memory module\n");

}

The buffer memory is also freed in this function, in order to
leave a clean kernel when removing the device driver.

The “memory” driver: opening the device as
a file

The kernel space function, which corresponds to open-
ing a file in user space (fopen), is the memberopen:

of the file operations structure in the call to
register chrdev . In this case, it is thememory open

function. It takes as arguments: aninode structure,
which sends information to the kernel regarding themajor

number andminor number ; and afile structure with
information relative to the different operations that can be
performed on a file. Neither of these functions will be cov-
ered in depth within this article.

When a file is opened, it’s normally necessary to initialize
driver variables or reset the device. In this simple example,
though, these operations are not performed.

Thememory open function can be seen below:
<memory open> =

int
memory_open(struct inode *inode, struct file *filp) {

/* Success */
return 0;

}

This new function is now shown in Table 5.

The “memory” driver: closing the device as a
file

The corresponding function for closing a file in
user space (fclose) is the release: member
of the file operations structure in the call to
register chrdev . In this particular case, it is the
function memory release , which has as arguments an
inode structure and afile structure, just like before.

When a file is closed, it’s usually necessary to free the used
memory and any variables related to the opening of the de-
vice. But, once again, due to the simplicity of this example,
none of these operations are performed.

Free Software Magazine Issue 11, March/April 2006 5

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

HACKER’S CODE

Table 5. Device driver events and their associated interfacing func-
tions between kernel space and user space.

Events User functions Kernel func-
tions

Load module insmod moduleinit()
Open device fopen fileoperations:

open
Read device
Write device
Close device
Remove mod-
ule

rmmod moduleexit()

Thememory release function is shown below:
<memory release> =

int memory_release
(struct inode *inode, struct file *filp) {

/* Success */
return 0;

}

This new function is shown in Table 6.

The “memory” driver: reading the device

To read a device with the user functionfread or similar,
the memberread: of the file operations structure
is used in the call toregister chrdev . This time, it is
the functionmemory read . Its arguments are: a type file
structure; a buffer (buf), from which the user space func-
tion (fread) will read; a counter with the number of bytes
to transfer (count), which has the same value as the usual
counter in the user space function (fread); and finally, the
position of where to start reading the file (f pos).

In this simple case, thememory read function transfers
a single byte from the driver buffer (memory buffer) to
user space with the functioncopy to user :
<memory read> =

ssize_t memory_read(struct file *filp, char *buf,
size_t count, loff_t *f_pos) {

/* Transfering data to user space */
copy_to_user(buf,memory_buffer,1);

Table 6. Device driver events and their associated interfacing func-
tions between kernel space and user space.

Events User functions Kernel func-
tions

Load module insmod moduleinit()
Open device fopen fileoperations:

open
Read device
Write device
Close device fclose fileoperations:

release
Remove mod-
ule

rmmod moduleexit()

/* Changing reading position as best suits */
if (*f_pos == 0) {

*f_pos+=1;
return 1;

} else {
return 0;

}
}

The reading position in the file (f pos) is also changed. If
the position is at the beginning of the file, it is increased by
one and the number of bytes that have been properly read is
given as a return value,1. If not at the beginning of the file,
an end of file (0) is returned since the file only stores one
byte.

In Table 7 this new function has been added.

The “memory” driver: writing to a device

To write to a device with the user functionfwrite or
similar, the memberwrite: of the file operations

structure is used in the call toregister chrdev . It is
the functionmemory write , in this particular example,
which has the following as arguments: a type file structure;
buf , a buffer in which the user space function (fwrite)
will write; count , a counter with the number of bytes to
transfer, which has the same values as the usual counter in
the user space function (fwrite); and finally,f pos , the
position of where to start writing in the file.
<memory write> =

6 Free Software Magazine Issue 11, March/April 2006

HACKER’S CODE

Table 7. Device driver events and their associated interfacing func-
tions between kernel space and user space.

Events User functions Kernel func-
tions

Load module insmod moduleinit()
Open device fopen fileoperations:

open
Read device fread fileoperations:

read
Write device
Close device fclose fileoperations:

release
Remove mod-
ules

rmmod moduleexit()

ssize_t memory_write(struct file *filp, char *buf,
size_t count, loff_t *f_pos) {

char *tmp;

tmp=buf+count-1;
copy_from_user(memory_buffer,tmp,1);
return 1;

}

In this case, the functioncopy from user transfers the
data from user space to kernel space.

In Table 8 this new function is shown.

The complete “memory” driver

By joining all of the previously shown code, the complete
driver is achieved:
<memory.c> =

<memory initial>
<memory init module>
<memory exit module>
<memory open>
<memory release>
<memory read>
<memory write>

Before this module can be used, you will need to compile it
in the same way as with previous modules. The module can
then be loaded with:

insmod memory.ko

It’s also convenient to unprotect the device:

Device driver events and their associated interfacing functions be-
tween kernel space and user space.

Events User functions Kernel func-
tions

Load module insmod moduleinit()
Open device fopen fileoperations:

open
Close device fread fileoperations:

read
Write device fwrite fileoperations:

write
Close device fclose fileoperations:

release
Remove mod-
ule

rmmod moduleexit()

chmod 666 /dev/memory

If everything went well, you will have a device
/dev/memory to which you can write a string of charac-
ters and it will store the last one of them. You can perform
the operation like this:

$ echo -n abcdef >/dev/memory

To check the content of the device you can use a simple
cat :

$ cat /dev/memory

The stored character will not change until it is overwritten
or the module is removed.

The real “parlelport” driver: description of
the parallel port

I’ll now proceed by modifying the driver that I just created
to develop one that does a real task on a real device. I’ll
use the simple and ubiquitous computer parallel port and
the driver will be calledparlelport .

The parallel port is effectively a device that allows the input
and output of digital information. More specifically it has
a female D-25 connector with twenty-five pins. Internally,
from the point of view of the CPU, it uses three bytes of
memory. In a PC, the base address (the one from the first
byte of the device) is usually0x378 . In this basic example,

Free Software Magazine Issue 11, March/April 2006 7

HACKER’S CODE

The first byte of the parallel port and its pin connections with the
external female D-25 connector

I’ll use just the first byte, which consists entirely of digital
outputs.

The connection of the above-mentioned byte with the exter-
nal connector pins is shown in Fig. 2.

The “parlelport” driver: initializing the
module

The previousmemory init function needs modifica-
tion—changing the RAM memory allocation for the reser-
vation of the memory address of the parallel port (0x378).
To achieve this, use the function for checking the avail-
ability of a memory region (check region), and the
function to reserve the memory region for this device
(request region). Both have as arguments the base
address of the memory region and its length. The
request region function also accepts a string which
defines the module.
<parlelport modified init module> =

/* Registering port */
port = check_region(0x378, 1);
if (port) {

printk("<1>parlelport: cannot reserve 0x378\n");
result = port;
goto fail;

}
request_region(0x378, 1, "parlelport");

The “parlelport” driver: removing the module

It will be very similar to thememory module but substi-
tuting the freeing of memory with the removal of the re-
served memory of the parallel port. This is done by the

Device driver events and their associated functions between kernel
space and the hardware device.

Events Kernel functions

Read data inb
Write data

release region function, which has the same argu-
ments ascheck region .
<parlelport modified exit module> =

/* Make port free! */
if (!port) {

release_region(0x378,1);
}

The “parlelport” driver: reading the device

In this case, a real device reading action needs to be added
to allow the transfer of this information to user space. The
inb function achieves this; its arguments are the address of
the parallel port and it returns the content of the port.
<parlelport inport> =

/* Reading port */
parlelport_buffer = inb(0x378);

Table 9 (the equivalent of Table 2) shows this new function.

The “parlelport” driver: writing to the device

Again, you have to add the “writing to the device” func-
tion to be able to transfer later this data to user space. The
functionoutb accomplishes this; it takes as arguments the
content to write in the port and its address.
<parlelport outport> =

/* Writing to the port */
outb(parlelport_buffer,0x378);

Table 10 summarizes this new function.

The complete “parlelport” driver

I’ll proceed by looking at the whole code of the
parlelport module. You have to replace the word
memory for the wordparlelport throughout the code
for thememory module. The final result is shown below:
<parlelport.c> =

8 Free Software Magazine Issue 11, March/April 2006

HACKER’S CODE

Device driver events and their associated functions between kernel
space and the hardware device.

Events Kernel functions

Read data inb
Write data outb

<parlelport initial>
<parlelport init module>
<parlelport exit module>
<parlelport open>
<parlelport release>
<parlelport read>
<parlelport write>

Initial section

In the initial section of the driver a differentmajor

number is used (61). Also, the global variable
memory buffer is changed toport and two more
#include lines are added:ioport.h andio.h .
<parlelport initial> =

/* Necessary includes for drivers */
#include <linux/init.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything\ldots{} */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/ioport.h>
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_from/to_user */
#include <asm/io.h> /* inb, outb */

MODULE_LICENSE("Dual BSD/GPL");

/* Function declaration of parlelport.c */
int parlelport_open
(struct inode *inode, struct file *filp);
int parlelport_release
(struct inode *inode, struct file *filp);
ssize_t parlelport_read(struct file *filp, char *buf,

size_t count, loff_t *f_pos);
ssize_t parlelport_write(struct file *filp, char *buf,

size_t count, loff_t *f_pos);
void parlelport_exit(void);
int parlelport_init(void);

/* Structure that declares the common */
/* file access fcuntions */
struct file_operations parlelport_fops = {

read: parlelport_read,
write: parlelport_write,
open: parlelport_open,
release: parlelport_release

};

/* Driver global variables */
/* Major number */
int parlelport_major = 61;

/* Control variable for memory */
/* reservation of the parallel port*/
int port;

module_init(parlelport_init);
module_exit(parlelport_exit);

Module init

In this module-initializing-routine I’ll introduce the mem-
ory reserve of the parallel port as was described before.
<parlelport init module> =

int parlelport_init(void) {
int result;

/* Registering device */
result = register_chrdev(parlelport_major,

"parlelport", &parlelport_fops);
if (result < 0) {

printk(
"<1>parlelport: cannot obtain major number %d\n",
parlelport_major);

return result;
}

<parlelport modified init module>

printk("<1>Inserting parlelport module\n");
return 0;

fail:
parlelport_exit();
return result;

}

Removing the module

This routine will include the modifications previously men-
tioned.
<parlelport exit module> =

void parlelport_exit(void) {

/* Make major number free! */
unregister_chrdev(parlelport_major, "parlelport");

<parlelport modified exit module>

printk("<1>Removing parlelport module\n");
}

Free Software Magazine Issue 11, March/April 2006 9

HACKER’S CODE

Opening the device as a file

This routine is identical to thememory driver.
<parlelport open> =

int parlelport_open(struct inode *inode,
struct file *filp) {

/* Success */
return 0;

}

Closing the device as a file

Again, the match is perfect.
<parlelport release> =

int parlelport_release(struct inode *inode,
struct file *filp) {

/* Success */
return 0;

}

Reading the device

The reading function is similar to thememory one with the
corresponding modifications to read from the port of a de-
vice.
<parlelport read> =

ssize_t parlelport_read(struct file *filp, char *buf,
size_t count, loff_t *f_pos) {

/* Buffer to read the device */
char parlelport_buffer;

<parlelport inport>

/* We transfer data to user space */
copy_to_user(buf,&parlelport_buffer,1);

/* We change the reading position as best suits */
if (*f_pos == 0) {

*f_pos+=1;
return 1;

} else {
return 0;

}
}

Writing to the device

It is analogous to thememory one except for writing to a
device.
<parlelport write> =

ssize_t parlelport_write(struct file *filp, char *buf,
size_t count, loff_t *f_pos) {

char *tmp;

/* Buffer writing to the device */
char parlelport_buffer;

tmp=buf+count-1;
copy_from_user(&parlelport_buffer,tmp,1);

<parlelport outport>

return 1;
}

LEDs to test the use of the parallel port

In this section I’ll detail the construction of a piece of hard-
ware that can be used to visualize the state of the parallel
port with some simple LEDs.

WARNING: Connecting devices to the parallel port can
harm your computer. Make sure that you are properly
earthed and your computer is turned off when connect-
ing the device. Any problems that arise due to undertak-
ing these experiments is your sole responsibility.
The circuit to build is shown in Fig.3. You can also read “PC
& Electronics: Connecting Your PC to the Outside World”
by Zoller as reference.

In order to use it, you must first ensure that all hardware
is correctly connected. Next, switch off the PC and connect
the device to the parallel port. The PC can then be turned on
and all device drivers related to the parallel port should be
removed (for example,lp , parport , parport pc , etc.).
The hotplug module of the Debian Sarge distribution is
particularly annoying and should be removed. If the file
/dev/parlelport does not exist, it must be created as
root with the command:

mknod /dev/parlelport c 61 0

Then it needs to be made readable and writable by anybody
with:

chmod 666 /dev/parlelport

The module can now be installed,parlelport . You can
check that it is effectively reserving the input/output port
addresses0x378 with the command:

$ cat /proc/ioports

To turn on the LEDs and check that the system is working,
execute the command:

$ echo -n A >/dev/parlelport

10 Free Software Magazine Issue 11, March/April 2006

HACKER’S CODE

Electronic diagram of the LED matrix to monitor the parallel port

This should turn on LED zero and six, leaving all of the
others off.

You can check the state of the parallel port issuing the com-
mand:

$ cat /dev/parlelport

Final application: flashing lights

Finally, I’ll develop a pretty application which will make
the LEDs flash in succession. To achieve this, a program in
user space needs to be written with which only one bit at a
time will be written to the/dev/parlelport device.
<lights.c> =

#include <stdio.h>
#include <unistd.h></p>

int main() {
unsigned char byte,dummy;
FILE * PARLELPORT;

/* Opening the device parlelport */
PARLELPORT=fopen("/dev/parlelport","w");
/* We remove the buffer from the file i/o */
setvbuf(PARLELPORT,&dummy,_IONBF,1);

/* Initializing the variable to one */
byte=1;

/* We make an infinite loop */
while (1) {

/* Writing to the parallel port */
/* to turn on a LED */
printf("Byte value is %d\n",byte);
fwrite(&byte,1,1,PARLELPORT);
sleep(1);

/* Updating the byte value */
byte<<=1;
if (byte == 0) byte = 1;

}

fclose(PARLELPORT);

Flashing LEDs mounted on the circuit board and the computer run-
ning Linux. Two terminals are shown: one where the “parlelport”
module is loaded and another one where the “lights” program is run.
Tux is closely following what is going on

}

It can be compiled in the usual way:

$ gcc -o lights lights.c

and can be executed with the command:

$ lights

The lights will flash successively one after the other! The
flashing LEDs and the Linux computer running this pro-
gram are shown in Figure 4.

Conclusion

Having followed this brief tutorial you should now be capa-
ble of writing your own complete device driver for simple
hardware like a relay board (see Appendix C), or a minimal
device driver for complex hardware. Learning to understand
some of these simple concepts behind the Linux kernel al-
lows you, in a quick and easy way, to get up to speed with
respect to writing device drivers. And, this will bring you
another step closer to becoming a true Linux kernel devel-
oper.

Bibliography

A. Rubini, J. Corbert. 2001. Linux device drivers (second
edition) (http://www.xml.com/ldd/chapter/

Free Software Magazine Issue 11, March/April 2006 11

http://www.xml.com/ldd/chapter/book/
http://www.xml.com/ldd/chapter/book/

HACKER’S CODE

book/). Ed. O’Reilly. This book is available for free on
the internet.

Jonathan Corbet. 2003/2004. Porting device drivers
to the 2.6 kernel (http://lwn.net/Articles/

driver-porting). This is a very valuable resource for
porting drivers to the new 2.6 Linux kernel and also for
learning about Linux device drivers.

B. Zoller. 1998. PC & Electronics: Connecting Your PC
to the Outside World (Productivity Series). Nowadays it is
probably easier to surf the web for hardware projects like
this one.

M. Waite, S. Prata. 1990. C Programming. Any other good
book on C programming would suffice.

Appendix A. Complete Makefile

<Makefile> =

obj-m := nothing.o hello.o memory.o parlelport.o

Appendix B. Compiling the kernel on a
Debian Sarge system

To compile a 2.6.x kernel on a Debian Sarge system you
need to perform the following steps, which should be run as
root:

1. Install the “kernel-image-2.6.x” package.
2. Reboot the machine to make this the running ker-

nel image. This is done semi-automatically by De-
bian. You may need to tweak the lilo configuration
file /etc/lilo.conf and then runlilo to achieve
this.

3. Install the “kernel-source-2.6.x” package.
4. Change to the source code directory,cd /usr/src

and unzip and untar the source code withbunzip2

kernel-source-2.6.x.tar.bz2 and
tar xvf kernel-source-2.6.x.tar .
Change to the kernel source directory withcd

/usr/src/kernel-source-2.6.x

5. Copy the default Debian kernel configuration
file to your local kernel source directorycp

/boot/config-2.6.x .config .
6. Make the kernel and the modules withmake and then

make modules .

Appendix C. Exercises

If you would like to take on some bigger challenges, here
are a couple of exercises you can do:

1. I once wrote two device drivers for two ISA Meil-
haus (http://meilhaus.de/) boards, an analog
to digital converter (ME26) and a relay control board
(ME53). The software is available from the ADQ
(http://adq.sourceforge.net) project. Get
the newer PCI versions of these Meilhaus boards and
update the software.

2. Take any device that doesn’t work on Linux, but has a
very similar chipset to another device which does have
a proven device driver for Linux. Try to modify the
working device driver to make it work for the new de-
vice. If you achieve this, submit your code to the kernel
and become a kernel developer yourself!

Comments and acknowledgements

Three years have elapsed since the first version
(http://es.tldp.org/Presentaciones/

200103hispalinux/calbet/html/t1.html)
of this document was written. It was originally written
in Spanish and intended for version 2.2 of the kernel, but
kernel 2.4 was already making its first steps at that time.
The reason for this choice is that good documentation for
writing device drivers, theLinux device drivers book (see
bibliography), lagged the release of the kernel in some
months. This new version is also coming out soon after
the release of the new 2.6 kernel, but up to date docu-
mentation is now readily available in Linux Weekly News
(http://lwn.net/Articles/driver-porting)
making it possible to have this document synchronized with
the newest kernel.

Fortunately enough, PCs still come with a built-in parallel
port, despite the actual trend of changing everything inside
a PC to render it obsolete in no time. Let us hope that PCs
still continue to have built-in parallel ports for some time in
the future, or that at least, parallel port PCI cards are still
being sold.

This tutorial has been originally typed using a text editor
(i.e. emacs) in noweb format. This text is then processed
with thenoweb tool to create a LATEX file (.tex) and the

12 Free Software Magazine Issue 11, March/April 2006

http://www.xml.com/ldd/chapter/book/
http://lwn.net/Articles/driver-porting
http://lwn.net/Articles/driver-porting
http://meilhaus.de/
http://adq.sourceforge.net
http://es.tldp.org/Presentaciones/200103hispalinux/calbet/html/t1.html
http://es.tldp.org/Presentaciones/200103hispalinux/calbet/html/t1.html
http://lwn.net/Articles/driver-porting

HACKER’S CODE

source code files (.c). All this can be done using the sup-
plied makefile.document with the commandmake

-f makefile.document .

I would like to thank the “Instituto Polit́ecnico de
Bragança”, the “Ńucleo Estudantil de Linux del Instituto
Politécnico de Bragança (NUX)”, the “Asociación de Soft-
ware Libre de Léon (SLéon)” and the “Ńucleo de Es-
tudantes de Engenharia Informática da Universidade de
Évora” for making this update possible.

Copyright information

c© 2006 Xavier Calbet

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is available at http://www.gnu.org/copyleft/fdl.html

About the author

Xavier Calbet (xcalbet AT yahoo DOT es) is a long
time free software user who started using a Linux dis-
tribution in the ancient times when Slackware had to
be installed using tens of floppy disks. He is currently
working on his two pet projects: a meteorological field
and satellite image display system, SAPO (http://

sourceforge.net/projects/sapo), and the
best available free numerical computer language to
date, PDL (Perl Data Language) (http://pdl.

perl.org/). In his spare time he gives tutorials like
these on how to write device drivers for the Linux ker-
nel

Free Software Magazine Issue 11, March/April 2006 13

http://sourceforge.net/projects/sapo
http://sourceforge.net/projects/sapo
http://pdl.perl.org/
http://pdl.perl.org/

