

Contents

What Every Engineer Should Know: Series Statement. xv

Preface. xvii

Author. xix

Acknowledgments . xx

List of Abbreviations . xxi

1 Development Processes . 1
1.1 Introduction . 1
1.2 Concept and Market . 5
1.3 People and Disciplines . 7
1.4 Architecting and Architecture . 8
1.5 Phases of a Project . 16
1.6 Scheduling. 19
1.7 Documentation . 21
1.8 Requirements and Standards . 24
1.9 Analysis . 30
1.10 Design Trade-Offs. 31
1.11 Tests . 38
1.12 Integration. 42
1.13 Manufacturing. 44
1.14 Support . 45
1.15 Disposal . 47
1.16 Liability. 48
1.17 Priorities . 49
1.18 Summary . 49
References . 50

2 Variations on the Theme—Considerations for Mission-Critical
Equipment and Medical Devices . 53
2.1 Development Processes . 53
2.2 People and Disciplines . 55
2.3 Architecting and Architecture . 55
2.4 Phases . 61
2.5 Scheduling. 65
2.6 Documentation . 66
2.7 Requirements and Standards . 66
2.8 Analysis . 70
2.9 Design Trade-Offs. 75

2.10 Tests . 84
2.11 Integration. 86
2.12 Manufacturing. 90
2.13 Support . 90
2.14 Disposal . 93
2.15 Liability. 93
2.16 Priorities . 93
2.17 Summary . 94
References . 94

3 Tools of the Trade . 97
3.1 Introduction . 97
3.2 Tools for Estimation and Feasibility . 97
3.3 Tools for Project Control . 102
3.4 Tools for Design. 104
3.5 Laboratory Equipment . 106
References . 109

4 Case Study 1—Major Appliances. 111
4.1 Concept and Market . 111
4.2 People and Disciplines . 113
4.3 Architecting and Architecture . 113
4.4 Phases . 115
4.5 Scheduling. 115
4.6 Documentation . 115
4.7 Requirements and Standards . 116
4.8 Analysis . 116
4.9 Design Trade-Offs. 116
4.10 Tests . 119
4.11 Integration. 119
4.12 Manufacturing. 119
4.13 Support . 120
4.14 Disposal . 121
4.15 Liability. 121
4.16 Summary . 121
Acknowledgment. 121

5 Case Study 2—Telecom Products . 123
5.1 Concept and Market . 123
5.2 People and Disciplines . 125
5.3 Architecting and Architecture . 125
5.4 Phases . 127
5.5 Scheduling. 128
5.6 Documentation . 128
5.7 Requirements and Standards . 130
5.8 Analysis . 131

viii Contents

5.9 Design Trade-Offs. 131
5.10 Tests . 133
5.11 Integration. 134
5.12 Manufacturing. 135
5.13 Support . 137
5.14 Disposal . 138
5.15 Liability. 139
5.16 Summary . 139
Acknowledgments. 139

6 Case Study 3—Commercial Laboratory Equipment 141
6.1 Concept and Market . 141
6.2 People and Disciplines . 143
6.3 Architecting and Architecture . 144
6.4 Phases . 147
6.5 Scheduling. 156
6.6 Documentation . 156
6.7 Requirements and Standards . 158
6.8 Analysis . 159
6.9 Design Trade-Offs. 160
6.10 Tests . 165
6.11 Integration. 166
6.12 Manufacturing. 166
6.13 Support . 168
6.14 Disposal . 168
6.15 Liability. 168
6.16 Summary . 169
Acknowledgment. 169
References . 169

7 Case Study 4—Automobile Engine Controller. 171
7.1 Concept and Market . 171
7.2 People and Disciplines . 173
7.3 Architecting and Architecture . 173
7.4 Phases . 176
7.5 Scheduling. 176
7.6 Documentation . 177
7.7 Requirements and Standards . 177
7.8 Analysis . 179
7.9 Design Trade-Offs. 179
7.10 Tests . 182
7.11 Integration. 183
7.12 Manufacturing. 183
7.13 Support . 184
7.14 Disposal . 185
7.15 Liability. 185

Contents ix

7.16 Summary . 187
Acknowledgments. 187
References . 188

8 Case Study 5—Industrial Flowmeter . 189
8.1 Concept and Market . 189
8.2 People and Disciplines . 190
8.3 Architecting and Architecture . 191
8.4 Phases . 192
8.5 Scheduling. 193
8.6 Documentation . 193
8.7 Requirements and Standards . 194
8.8 Analysis . 194
8.9 Design Trade-Offs. 194
8.10 Tests . 199
8.11 Integration. 199
8.12 Manufacturing. 199
8.13 Support . 200
8.14 Disposal . 201
8.15 Liability. 201
8.16 Summary . 202
Acknowledgment. 202

9 Case Study 6—Military Support Equipment. 203
9.1 Concept and Market . 203
9.2 People and Disciplines . 206
9.3 Architecting and Architecture . 207
9.4 Phases . 208
9.5 Scheduling. 210
9.6 Documentation . 210
9.7 Requirements and Standards . 211
9.8 Analysis . 211
9.9 Design Trade-Offs. 212
9.10 Tests . 215
9.11 Integration. 217
9.12 Manufacturing. 217
9.13 Support . 218
9.14 Disposal . 218
9.15 Liability. 218
9.16 Summary . 218
Acknowledgment. 219
Reference . 219

10 Case Study 7—Designing Instruments for
Space Flight . 221
10.1 Concept and Market . 221

x Contents

10.2 People and Disciplines . 222
10.3 Architecting and Architecture . 223
10.4 Phases . 224
10.5 Scheduling and Estimating . 229
10.6 Documentation . 230
10.7 Requirements and Standards . 235
10.8 Analysis . 236
10.9 Design Trade-Offs. 239
10.10 Tests . 244
10.11 Integration. 245
10.12 Manufacturing and Fabrication . 250
10.13 Support . 260
10.14 Disposal . 260
10.15 Liability. 261
10.16 Summary . 261
Acknowledgments. 261
References . 262

11 Case Study 8—Aerospace Video Processor. 263
11.1 Concept and Market . 263
11.2 People and Disciplines . 265
11.3 Architecting and Architecture . 265
11.4 Phases . 267
11.5 Scheduling. 269
11.6 Documentation . 269
11.7 Requirements and Standards . 271
11.8 Analysis . 272
11.9 Design Trade-Offs. 272
11.10 Tests . 274
11.11 Integration. 275
11.12 Manufacturing. 275
11.13 Support . 276
11.14 Disposal . 276
11.15 Liability. 276
11.16 Summary . 277
Acknowledgment. 277

12 Case Study 9—Satellite Subsystem. 279
12.1 Concept and Market . 279
12.2 People and Disciplines . 280
12.3 Architecting and Architecture . 281
12.4 Phases . 282
12.5 Scheduling and Estimating . 283
12.6 Documentation . 283
12.7 Requirements and Standards . 288
12.8 Analysis . 289

Contents xi

12.9 Design Trade-Offs. 289
12.10 Tests . 299
12.11 Integration. 299
12.12 Manufacturing and Fabrication . 300
12.13 Support . 300
12.14 Disposal . 300
12.15 Liability. 301
12.16 Summary . 301
Acknowledgments. 301
References . 301

13 Case Study 10—Programmer for Implanted Stimulators 303
13.1 Concept and Market . 303
13.2 People and Disciplines . 306
13.3 Architecting and Architecture . 307
13.4 Phases . 309
13.5 Scheduling. 311
13.6 Documentation . 311
13.7 Requirements and Standards . 313
13.8 Analysis . 316
13.9 Design Trade-Offs. 323
13.10 Tests . 327
13.11 Integration. 328
13.12 Manufacturing. 328
13.13 Support . 329
13.14 Disposal . 329
13.15 Liability. 329
13.16 Summary . 330
References . 331

14 Case Study 11—Implanted Medical Devices. 333
14.1 Concept and Market . 333
14.2 People and Disciplines . 334
14.3 Architecting and Architecture . 338
14.4 Phases . 342
14.5 Scheduling. 349
14.6 Documentation . 349
14.7 Requirements and Standards . 354
14.8 Analysis . 359
14.9 Design Trade-Offs. 361
14.10 Tests . 367
14.11 Integration. 370
14.12 Manufacturing. 371
14.13 Support . 373
14.14 Disposal . 373
14.15 Liability. 374

xii Contents

14.16 Summary . 374
Acknowledgment. 375
References . 375

15 Summary Comparisons Across the 11 Case Studies 377
15.1 Comparing the Case Studies. 377
15.2 Market . 378
15.3 People and Disciplines . 379
15.4 Architecting and Architecture . 380
15.5 Scheduling. 381
15.6 Documentation and Processes . 381
15.7 Requirements and Standards . 382
15.8 Analyses . 383
15.9 Design Trade-Offs. 383
15.10 Test and Integration. 390
15.11 Manufacturing. 390
15.12 Support and Service. 391
15.13 Liability. 392

16 Some Observations on Architectural Trade-Offs
in Selected Real-Time Systems . 393
16.1 Some Thoughts. 393
16.2 Indicating System for a Parking Garage. 393
16.3 Data Acquisition System for Biological Monitoring 404
16.4 Gun Fuzing System . 407
16.5 Summary . 411
References . 412

17 Some Observations about Consumer Appliances 413
17.1 Concept and Market . 413
17.2 Product Teardown Summaries. 414
17.3 Coffeemaker Teardown . 414
17.4 Remote Control Teardown. 428
17.5 Hobbies, Arts, and Crafts . 432
17.6 Common Appliance Problems . 434
17.7 Summary . 435
References . 438

18 Some Observations about User Interfaces . 439
18.1 Why Are User Interfaces so Important? 439
18.2 Basic Principles for User Interfaces . 439
18.3 Vending Machine faux pas . 441
18.4 Appliance Display faux pas . 442
18.5 Remote Control faux pas. 444
18.6 Boombox faux pas . 446
18.7 Handheld Chemical Agent Sensors . 446

Contents xiii

18.8 Summary . 452
References . 453

Index . 455

xiv Contents

What Every Engineer Should Know:
Series Statement

What every engineer should know amounts to a bewildering array of
knowledge. Regardless of the areas of expertise, engineering intersects with
all the fields that constitute modern enterprises. The engineer discovers
soon after graduation that the range of subjects covered in the engineering
curriculum omits many of the most important problems encountered in
daily practice—problems concerning new technology, business, law, and
related technical fields.

With this series of concise, easy-to-understand volumes, every engineer
now has within reach a compact set of primers on important subjects such
as patents, contracts, software, business communication, management sci-
ence, and risk analysis, as well as more specific topics such as embedded
systems design. To understand the topics covered in these books requires
only a lay knowledge, and no engineer can afford to remain uninformed of
the fields involved.

Preface

Purpose

This book focuses on the processes and trade-offs used to develop real-time
embedded products. It uses case studies and examples that allow you to
compare and contrast design decisions made for different projects in dif-
ferent markets. My hope is that a consistent format will serve as a guideline
when you develop new products.
Another goal, admittedly a distant one, is to encourage change and

improvement in the business of developing embedded systems by helping
you to see some of the relationships between various disciplines.

Scope

The book covers smaller, self-contained devices and subsystems, ranging
from handheld devices to appliances to racks of equipment. While the
processes described in the book are important steps, they are not necessarily
all the steps needed to guarantee success. Furthermore, these processes do
not sufficiently encompass large systems, such as transportation vehicles or
systems of systems.

Audience

The book is primarily for design engineers (electronic hardware and soft-
ware engineers and industrial designers), their managers, and people who
should have an overall perspective on product development. I hope anyone
wanting to better understand how other people and disciplines interact in
engineering and product development will benefit. Some technical back-
ground, two years or more of technical school or university, is needed to
understand the material.

How to read

This book is a curious hybrid between a textbook and a reference. Reading
all the way through probably will be incredibly boring for the vast majority
of you. Most likely, reading the first chapter or two and then several case
studies should efficiently satisfy the knowledge uptake for your market or
field of interest.

The first three chapters lay the basic ground work for good processes,
followed by eleven case studies. The final three chapters contain some
selected observations for specific products and markets. (I will not inflict
you with a long summary here.) The case studies do follow a standard
format so that you may find it easier to compare them. The 15 topics within
each case study are as follows:

. Concept and market

. People and disciplines

. Architecting and architecture

. Phases

. Scheduling

. Documentation

. Requirements and standards

. Analyses

. Design trade-offs

. Tests

. Integration

. Manufacturing

. Support (training, logistics, maintenance, and repair)

. Disposal

. Liability

xviii Preface

Author

Kim Fowler is a consultant and developer of new products; he lectures in-
ternationally on developing real-time embedded systems. Kim has over
25 years of experience in designing, developing, and managing medical,
military, and of satellite equipment projects. He cofounded Stimsoft, a
medical products company, which he sold in 2003.
He has written the textbook, Electronic Instrument Design: Architecting for

the Life Cycle, published by Oxford University Press in 1996. He is the editor-
in-chief for the IEEE Instrumentation & Measurement Magazine and a col-
umnist. He has published widely in biomedical and engineering journals,
has three patents, four filed, and eleven invention disclosures.

Acknowledgments

I could not have written this book without help from a number of folks,
particularly the people who graciously allowed me to interview them. I
acknowledge each person at the end of the case study for which he or she
gave me an interview. Most acted as peer reviewers, as well, for which I am
very grateful. I thank Rudy Marshall for reading and editing the entire
book.
I also thank the folks at CRC Press, a Taylor & Francis Company, who

made the production of the book possible, particularly Allison Shatkin,
editor for computer engineering, design automation, and system-on-chip,
Marsha Pronin, project coordinator, and James Miller for preparing the
front cover. I particularly thank Jennifer Genetti for her delightful cooper-
ation in composing and correcting the typeset copy.
Finally, to my friend, David Paul, who encouraged me to work on the

book and do the most important things first—thank you, David.

Kim Fowler

List of Abbreviations

ADC analog-to-digital converter

AFD arc fault detector

ANSI American National Standards Institute

APT automated parametric test

ASIC application-specific integrated circuit

ATE automatic test equipment

ATP acceptance test procedure

BDM background debug mode

BIT built-in-test

BITE built-in-test equipment

CAD computer-aided design

CAFE corporate average fuel economy

CARB California Air Research Board

CB certified body

CCSDS Consultative Committee for Space Data Systems

CDR critical design review

CDRL contractor data requirements list

CE Conformite Europeene

CMD command

CMMI capability maturity model integration

CoDR conceptual design review

COGS cost of goods sold

COTS commercial-off-the-shelf

CPIN computer program identification number

CPU central processing unit

CRR controlled release review

CSA Canadian Standards Administration

D-Level depot level

DAC digital-to-analog converter

DC direct current

DFi design for improvement

DFA design for assembly

DFM design for manufacture

DFT design for test

DFt design for transfer

DFx design for x

DHF design history file

DID data item description

DMA direct memory access

DoD Department of Defense

DOS disk operating system

DSL digital subscriber line

DSP digital signal processor

DUT device under test

ECM engine control module

ECP engineering change proposal

ECU engine control unit

EDU electronic data unit

EGSE electronic ground support equipment

EMC electromagnetic compatibility

EMI electromagnetic interference

EPA Environmental Protection Agency

ESCM energy storage control module

ESD electrostatic discharge

ETA event tree analysis

FAT first article test or factory acceptance test

FCC Federal Communications Commission

FDA Food and Drug Administration

FET field-effect transistor

FFT Fast Fourier Transform

FMEA failure modes effects analysis

FPGA field-programmable gate array

FTA fault-tree analysis

xxii List of Abbreviations

FW firmware

GPS global positioning system

GSE ground support equipment

GUI graphical users interface

HALT highly accelerated life test

HASS highly accelerated stress screen

HAST highly accelerated stress test

I-Level intermediate level

IC integrated circuit

ICD interface control document

ICT in-circuit test

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

I/O input/output

IP intellectual property

IR infrared

ISO International Organization for Standardization

JHU/APL The Johns Hopkins University Applied Physics Laboratory

JTAG Joint Test Association Group

LAN local area network

LCD liquid crystal display

LED light-emitting diode

LEV low emissions vehicle

LOC lines of code

LRU line-replaceable unit

LUT look-up table

MEMS microelectromechanical systems

Mil-Std military standard

MOU memo of understanding

MRD marketing requirements document

MTBF mean time between failures

NASA National Aeronautics and Space Administration

NHTSA National Highway Transportation Safety Administration

NIST National Institute of Standards and Technology

List of Abbreviations xxiii

NRE non-recurring engineering

OEM original equipment manufacturer

O-Level organizational level

OSHA Occupational Safety and Health Administration

OSV on-site verification

PC personal computer

PCB printed circuit board

PDA personal digital assistant

PDR preliminary design review

PER pre-environmental review

PHO production handoff

PID proportional integral differential

POST power-on-self test

PRB product review board

PROM programmable read-only memory

PSR pre-ship review

PWB printed wiring board

PWM pulse width modulation

PWR power

PZEV partial zero emissions vehicle

QA quality assurance

RF radio frequency

RFP requests for proposal

RoHS Restriction of use of certain Hazardous Substances

RPM revolutions per minute

RTG radioisotope thermionic generator

RTL register transfer level

RTN return

RTOS real-time operating system

SAE Society of Aerospace Engineers

SBC single board computer

SCT system compatibility test

SEB single-event burnout

SEE single-event effect

xxiv List of Abbreviations

SEI Software Engineering Institute

SEL single-event latch-up

SERD support equipment requirements document

SET space environment testbeds

SEU single-event upset

SIL systems integration laboratory

SME subject matter experts

SOW statement of work

SRA shop replaceable assembly

SRU shop replaceable unit

SULEV super-ultra-low emissions vehicle

SW software

TPU timer processor unit

TLM telemetry

TSP test script processor

UART universal asynchronous receiver/transmitter

UI user interface

UL Underwriters Laboratory

ULEV ultra-low emissions vehicle

UML Unified Modeling Language

UUT unit under test

VAR value-added reseller

VOIP voice-over-internet-protocol

WEEE waste from electrical and electronic equipment

WRA weapons replaceable assembly

ZEV zero-emissions vehicle

List of Abbreviations xxv

1
Development Processes

1.1 Introduction

Real-time embedded devices, products, and systems touch every part of our
lives. Generally they are unseen, ‘‘buried’’ inside things (Figure 1.1). In spite
of their invisibility, people still expect those products to function—
for example, microwave ovens, automobiles, or aircraft with hundreds of
microcontrollers and embedded systems.
This book introduces various development processes for real-time em-

bedded products; actually, it is more like a ‘‘keyhole’’ view of how some pro-
ducts come to market. It will focus on development processes through
examples and case studies. This will hopefully give you a deeper appreciation
and understanding how you might go about designing and developing real-
time embedded products.

1.1.1 Basic Definitions

So, what is an embedded, real-time system? What are the common elements
of such a system? What is the ‘‘language’’ used in developing them? Here
are some definitions that will provide you a foundation to compare and
contrast ideas and products.
An embedded system reacts to stimuli and generates actions or output

displays (Figure 1.2). An embedded system generally has three basic
building blocks: input, data processor, and output. The input can include
signal receivers, sensors, signal-conditioning circuitry, and analog-to-digital
converters. The data processor can do a variety of things: fusing data, sophis-
ticated filtering, and making complex decisions. The output converts the
processed data into displays, usable signals, and physical or mechanical
operations. Often the embedded system is a self-contained module with these
three building blocks; sometimes it is a group of modules.
Ganssle and Barr define an embedded system as ‘‘a combination of

computer hardware and software, and perhaps additional mechanical or
other parts, designed to perform a dedicated function’’ ([1], pp. 90–91).

1

(a) (b)

(e)

(c)

(d)

FIGURE 1.1
Examples of products containing real-time embedded systems. (a) The engine and cabin
controls have embedded processors. (b) The microwave oven controls have an embedded
microcontroller. (c) The sewing machine has an embedded processor to control many different
types of stitching. (d) The toy robotic system has an embedded processor and programming
system. (e) The lock on a hotel room has embedded electronics and processing. (� 2006 by Kim
Fowler, used with permission. All rights reserved.)

2 Developing Real-Time Embedded Products

Ganssle and Barr further define real-time as ‘‘having timeliness require-
ments, typically in the form of deadlines that can’t be missed’’ ([1], p. 228).
Real-time means completing tasks within specified deadlines; it is not defined or
limited by a specific execution speed. Just because a system is real-time it does
not mean that the processor is necessarily fast—it just meets the deadline
requirements. There are many things that affect performance including the
execution speed of the processor, the rate of data transfer (bandwidth), the
latency (or response time of the system to a stimulus), and memory size.
For more information about real-time performance, consult References 2–5.

1.1.2 Purpose

This book focuses on the processes to develop a successful product and the
trade-offs that go into designing that product. It does not focus on the
performance of a product.
The book compares and contrasts decisions made between different

projects. This means that I need not present all possibilities for the archi-
tecture of a system—other books do a better job at that.
My goal is to provide a basis for comparing designs in different markets.

Hopefully that basis will have a fairly consistent format that can serve as a
guideline—or even a checklist—when you develop a new product.
Another goal, albeit a ‘‘stretch goal,’’ is to foment change and improve-

ment by encouraging you to see some of the interrelationships between
various disciplines. I hope that these changes go in all directions—up,
down, and sideways—which means to management, support staff, custo-
mers, and clients.
So, plan for change by planning for excellence, thoroughness, and

consistency. This book will provide a framework for some of the needed
thoroughness and consistency. The excellence? Well, that is left to you!

Input
Data

processing
Output

Operator input

Signals

Sensors

Indicators

and

displays

Signals

Actuators

Communications

(Feedback for control and stabilization)

FIGURE 1.2
Diagram of a real-time system. (� 2006 by Kim Fowler, used with permission. All rights
reserved.)

Development Processes 3

1.1.3 Scope

The processes and case studies presented in this book are for smaller, self-
contained subsystems, such as a motor controller, a data acquisition system,
or a handheld chemical sensor. The book’s scope does not encompass larger
systems, such as automobiles, aircrafts, ships, and command-and-control
centers, and it does not address system-of-system concerns.

1.1.4 For Whom Is this Written?

This book is written for design engineers (primarily electronic hardware
and software engineers), their managers, and people who should have an
overall perspective on product development. Also benefiting from this book
will be those wishing to better understand how other people and disciplines
live in the world of engineering and product development.

1.1.5 Outline of Efforts—Basis of Comparison

The basis for comparison between the different case studies are 15 topics
encountered during the life cycle of most projects. These topics are as
follows:

� Concept and market

� People and disciplines

� Architecting and architecture

� Phases

� Scheduling

� Documentation

� Requirements and standards

� Analyses

� Design trade-offs

� Tests

� Integration

� Manufacturing

� Support (training, logistics, maintenance, and repair)

� Disposal

� Liability

Each one of these topics is an important phase or activity. The remainder of
this chapter will expand on them. Each case study will then discuss the
development trade-offs on the basis of these 15 topics.

4 Developing Real-Time Embedded Products

1.2 Concept and Market

1.2.1 What, Who, Why, Where, When, and How

First things first.

� What is the product?

� Who is going to use it?

� Why will people use it?

� Where will they use?

� When will they use it?

� And finally, how will they use it?

These are very basic questions that must be answered before you exert any
further effort. Otherwise, two things probably will happen. One, you could
seriously stretch development time each time you ‘‘respin’’ the product
design because new features are added. Two, you could end up in a
fruitless search to fit an inappropriate or ill-advised design into a useful
niche.
Understanding customers and their needs is often considered the sole

domain of marketing. I think that is far too restrictive; engineers and
designers need to see how people actually perceive, buy, use, abuse, repair,
and dispose products. Once you know these things, you will be better able
to speak ‘‘marketing’’ and work with other functions within your company.

1.2.2 Revolution, Disruption, or Evolution

New products develop in different ways. They can develop through re-
volutionary paradigm shifts, disruptive technology, and evolutionary
change. Each type of change has a unique development process.
Technical revolution is a true breakthrough, or paradigm shift, brought

about by a visionary or a very small group of visionaries. Several charac-
teristics mark every technological revolution. (1) The revolution always
involves simultaneous major improvements in several areas, such as
capability, performance, and utility. (2) The change begins when someone
questions a basic assumption, which most people accept as unchangeable,
but which the visionary eventually proves wrong. (3) The revolution has
four to six separate, simultaneous, and quite significant developments that
cross technical disciplines. (4) Revolutionary change eventually leads to
changes in the infrastructure of society. You can see these characteristics in
the telephone, automobile, the airplane, the television, and the computer.
‘‘Disruptive technologies bring to a market a very different value pro-

position than had been available previously. Generally, disruptive

Development Processes 5

technologies under perform established products in mainstream markets.
But they have other features that a few fringe (and generally new) cus-
tomers value. Products based on disruptive technologies are typically
cheaper, simpler, smaller, and, frequently, more convenient to use’’ [6].
Often these new technologies do not even come close to the performance
of current products. They also have trouble gaining a foothold in the
market before taking off. Finally, most established companies do not take
on a disruptive technology; a risk-taking visionary typically must bring it
to market.
Evolution is the refinement of current technology. Going from one

model of music system to another is an example. The features tend to
multiply—with more buttons than you care to look at. Generally, evolu-
tionary change follows some of these priorities and trends:

1. Performance increases

2. Features and convenience multiply

3. The product becomes smaller or more dense

4. Power density increases

5. Finally, efficiency increases

This book will focus on the evolution of new products and how you might
improve those processes.

1.2.3 Economics

Economics drive most product development. If the product is not eco-
nomically viable, it should not go to market.
Many components play into the economics of product development. Cost

figures as a major part of the economics of a product. Many things comprise
the cost: purchasing components and materials, manufacturing and ass-
embly, distribution, maintenance, and disposal. The cost associated with
nonrecurring engineering (NRE) must be amortized over the life of the
product. NRE includes all design, test, and qualification performed during
the initial development of the product. Then there is the ‘‘cost of goods sold’’
(COGS) that refers to the ongoing expenses and recurring costs that go into
the production of each unit. COGS includes buying components and the
labor to assemble and build each unit.
Another concern is the margin between cost and price. Specialized

low-volume products generally have high margins, that is, a large ratio
(or difference) between the price of the final product and the cost to develop
and manufacture it. High-volume products generally have low margins,
that is, a small difference between the cost and the final price.

6 Developing Real-Time Embedded Products

1.3 People and Disciplines

1.3.1 Focus

Every project involves many people. In this book, I will focus primarily on
those making design decisions during development. These include several
different disciplines for the design engineer: electrical, software, mechan-
ical, and manufacturing.
Smaller and simpler projects have smaller teams—in some cases, it may

be only two or three people. Bigger, more involved projects, such as satellite
instruments or higher volume systems, have bigger teams that may include
hundreds of people.

1.3.2 Team

Here is a listing of many of the types of people involved in the development
process:

� Engineers—electrical, software, mechanical, and manufacturing

� Manufacturing personnel

� Marketing and sales

� Management and administration

� Purchasing and procurement

� Technical support

� Legal department

� Customers

Electrical engineers are involved in specifying, building, fabricating, testing,
and fielding systems, circuit boards, components, cabling, connectors, and
interfaces. Those interfaces include human operations, I/O with other
systems, and mechatronics.
Software engineers are involved in specifying, building, fabricating,

testing, and fielding systems, algorithms, the user interface, and I/O.
Mechanical engineers are involved in specifying, building, fabricating,

testing, and fielding systems, physical components, the user interface,
enclosure,materials, environmental testing, andmechanical I/O—mechatronics.
Manufacturing engineers are involved in specifying, building, fabricating,

testing, and fielding systems, design for assembly, design for disassembly,
and manufacturing tests.
For bigger projects, design teams will include industrial designers, human

factors specialists, trainers, and educators. Many other people are involved
besides the design team; they are outside the purpose and scope of this book.

Development Processes 7

1.3.3 Teamwork

Every person brings a different skill set and personality to the project.
We need to accommodate the inconsequential differences and yet be able to
confront and question problems. This can only be done through integrity,
communication, openness, and trust. Teamwork encompasses these virtues.
One obstacle to teamwork is the ‘‘us vs. them’’ attitude—you see it in

engineers vs. sales and marketing, workers vs. management, or hardware
designers vs. software developers. Some people claim that competition is good
within a team; I disagree. Human nature is such that it often degenerates and
polarizes people into opposing camps. Until you have been on both sides of an
issue, you cannot imagine the challenges and pressures each side faces.
Get rid of the ‘‘us vs. them’’ attitude! A particular concern is engineers vs.

managers—popular cartooning may be descriptive of some situations, but
lampooningdoesnotultimately improve the situation—itonly serves todivide.
Cartoons and humor can be good, but they should only serve to warn of pro-
blems in relationships. Both sides should actively work to avoid these pitfalls.
Never trivialize. A friend of mine often points out that, if something is not

in someone’s field of expertise, then they can tend to consider it easy to do.
Please do not tell a software developer, ‘‘It’s only a few lines of code to add.’’
The implication is, ‘‘Hey, it’s easy, particularly for software.’’ It demon-
strates a lack of understanding in the process—configuration control,
regression testing, documentation changes, more reviews, and so on.

1.3.4 Leadership and Managing the Project

Many books have been written on leadership and management. I am only
going to outline a summary of what I have seen and what I believe is effective.
Leadership personalities vary. Some are visionary; others are adminis-

trative. Both types are needed to develop the concept and then manage the
details. Few people can do both equally well.
Leadership styles also vary. Some are more formal and tend to mandate

directions; others are more informal and tend to cheerlead. The formal style
works for certain teams and projects—sometimes it works for a government
project. The informal style uses influence, agreement, and consensus to
move the team forward.
Recognizing strengths and weaknesses in leadership personality and style

will help compensate and balance out the team. Combinations of person-
alities and styles, when alloyed in teamwork, give the best strength and
creative genius for developing projects.

1.4 Architecting and Architecture

Architecting is the process of defining the architecture of your product.
Rechtin and Maier define systems architecting as both art and science.

8 Developing Real-Time Embedded Products

The art of systems architecting bases judgments ‘‘on qualitative heuristic
principles and techniques, that is, on lessons learned, value judgments, and
unmeasurables’’ [7]. The science of systems architecting bases judgments
‘‘on quantitative analytic techniques, that is, on mathematics and science
and measurables’’ [7].
Architecting matches, balances, and compromises between form and

function in a product. It identifies, specifies, and trades off components,
subsystems, their configurations, and their interactions. Architecting does
the following:

1. Selects the process

2. Identifies parameters

3. Defines the interfaces

4. Performs feasibility analyses

5. Recommends architecture

6. Manages features

7. Certifies completion and ready for use

All of these activities flow into and through the generation of the require-
ments. A change in requirements can force a change in architecture.
Architecting is that repetitive process that hones a system solution and sets
the requirements.
Architecting is a necessary foundation stone to developing a product.

Without it, development schedule and effort spin out of control. A team of
management, designers, and engineers should be involved in architecting.
Often a systems engineer or product leader will organize the effort.

1.4.1 Process

Architecting, the act of establishing a design’s architecture, is all about
process. There are several different models for process development:
waterfall, prototyping, and spiral (Figure 1.3) ([2], Chapter 2). Waterfall
development came out of military programs in the 1950s and 1960s; it still is
used for one-off projects, such as satellites, that have to be right the first time.
Some medical devices and mission-critical systems use a modified waterfall
scheme called the V-model (Figure 1.4). Spiral development received defini-
tion during the 1980s and 1990s; it fits well into large-volume manufacturing
of products and provides for steady evolution of designs. Prototyping is a
more informal type of development that works well for smaller, more focused
applications that do not have tight certifications and regulatory requirements.
One activity within architecting is to partition the design. This involves

all aspects of development: hardware, software, testing, integration, and
installation. Partitioning considers the features that characterize a product;
interactions (and complexity) expand in a factorial fashion as features
increase (Figure 1.5). The goal in architecting is to reduce the interactions

Development Processes 9

to a manageable set of interfaces between modules, which should constrain
complexity.
Another goal in architecting is to balance design complexity with

resources. Reference 8 gives some dimensions of design complexity and
outlines the availability of resources to address those design complexities.
Table 1.1 outlines the components of design complexity. Table 1.2 outlines

Concept

Requirements

Analysis

Design

Test

V&V

Delivery

(a)

(c)

(b)

Requirements
Analysis

Design,
develop,
build Test and

evaluate

Increasing
capability

Idea or concept Breadboard or
prototype

Evaluation

Revise, update,
or redesign

Design considered
complete, finishing
touches

Integration

FIGURE 1.3
Three different process models for development: (a) the traditional waterfall process model,
(b) spiral development model, (c) a more ad hoc process model using prototyping. (� 2007 by
Kim Fowler, used with permission. All rights reserved.)

10 Developing Real-Time Embedded Products

the resources to address design complexity. This simple analysis can give
you a good idea of just how feasible your project is.

1.4.2 Parameters

All products have defining parameters: cost, size, weight, performance,
power, or dependability. Each of these has multiple levels of parameters
within themselves. Performance, for instance, may have concerns with
speed, throughput, loading, and memory size. Power may have input
filtering issues or operational cycling to conserve energy.

Coding and prototyping or
engineering model

Unit, module, and
subsystem tests

Integration tests

Acceptance tests

Analysis and
Architecture

Design

Validation

Verification

Requirements and
specifications

FIGURE 1.4
V-model for process development in mission-critical systems or medical devices.
(� 2006 by Kim Fowler, used with permission. All rights reserved.)

Cost,
time,
effort

Features, complexity, interactions

more
complex
systems

less
complex
systems

FIGURE 1.5
Complexity exponentially increases cost, time, and effort to design and build systems. (� 2006
by Kim Fowler, used with permission. All rights reserved.)

Development Processes 11

Many products, particularly simpler ones, have a critical parameter
that drives design. You should first optimize the architecture for that
critical parameter. (More sophisticated systems, however, are less likely tohave
a single critical parameter driving the design. Optimization is much more
difficult.)

1.4.3 Analysis

Analysis is tightly integrated with selecting and recommending the archi-
tecture. You analyze various possible architectures for feasibility in your
application before selecting one. Often analysis turns up concerns that need
to be addressed by a revision in the architecture. You iterate between
architecture and analysis until you converge on a solution that is ‘‘close
enough.’’

1.4.4 Architecture

Architecture is the structural plan that allows you to accommodate the
design intent; the requirements then attach to or ‘‘hang from’’ this structure.
Architecture defines both form and function. Some of the potential struc-
tures and structural trade-offs that you might consider are distributed vs.

TABLE 1.1

Components of Design Complexity, Following Reference 8

Metric Range

Design type—from redesign to innovation to revolutionary
breakthrough

0–15

Knowledge complexity—from common to expert specialist
knowledge

0–10

Number of steps to complete the design 0–10
Quality implementation effort 0–10
Process design 0–5
Aggressive goals for selling price 0–5
Total design difficulty score 0–55

TABLE 1.2

Components of Resources to Address Design Complexity, Following Reference 8

Metric Range

Cost—NRE to develop product 0–15
Time—from definition of project to delivery of the first unit 0–10
Infrastructure—tools, administration, company capabilities to perform 0–10
Total resources effort required 0–35

12 Developing Real-Time Embedded Products

central design, modular vs. custom design, loose vs. tight coupling, types of
processing, testability, manufacturability, and the human interface ([2],
Chapter 15).

Distributed vs. centralized: A distributed architecture has functionally
defined modules that are sometimes physically separated from each other
and often connected by a network. A centralized architecture, on the other
hand, tends to lump functionality into a single ‘‘mainframe’’ unit. A PC with
peripheral cards and a central power supply is an example of a centralized
architecture.
Distributed architectures tend to be more robust, easier to test, and easier

to upgrade, but they are larger and heavier than centralized architectures
for small products (Figure 1.6). Distributed architectures fit larger systems
better. Centralized architectures can optimize to perform one task or one
type of tasks quite well. Large, tightly coupled, centralized systems can be
very difficult to test because of the many interactions between components.

Modular vs. custom monolithic: A modular architecture generally reduces
the complexity of system interactions. It can also allow parallel effort in
design, test, and fabrication, which speeds development. By definition,
distributed architectures are modular, but modular design is not precluded
by centralized architectures whose components and subsystems can be
modular.

C
o
s
t,

 t
im

e
,

e
ff

o
rt

Size and complexity

Module 1

Module 2

Module 3

Module n

Distributed

system

architecture

Centralized

system

architecture

Bus or point-

to-point

connections,

interfaces are

tightly-coupled

Interfaces are loosely-coupled

FIGURE 1.6
Comparison of distributed and centralized architectures. (� 2006 by Kim Fowler, used with
permission. All rights reserved.)

Development Processes 13

A custom, monolithic design can optimize a single function (such as
performance, weight, or size) for a particular application. Generally,
monolithic designs are better for single-purpose devices. Modular
designs, on the other hand, generally add size and weight to a design over
a custom, monolithic design, and potentially can be more expensive in
COGS.

Loose vs. tight coupling: Loose coupling reduces dependence between
modules and subsystems, which means that communication between
modules reduces, as well. Distributed architectures can use loose coupling
to advantage because they are more tolerant of change, rework, and test.
Tight coupling makes modules highly dependent on each other. Tight

coupling can optimize performance around a single parameter but not for
multiple parameters. Tight coupling also makes testing of the product much
more difficult.
Distributed architectures tend to be loosely coupled, which means that the

interfaces are clearly defined and the communications between units are
minimal. Centralized architectures tend to be tightly coupled, which means
that the communications between modules can be voluminous.

Types of processors: Processors take a variety of forms (Figure 1.7). They
range from specialized circuits with dedicated hardware to powerful,
general-purpose processors that offer a plethora of services. One major
trade-off in selecting a processor is between computational speed and
sophistication of operation. Dedicated hardware and field-programmable
gate arrays (FPGAs) can be extremely fast but have very limited forms of
processing. Digital signal processors (DSPs) are great at number crunching,

Specialized
hardware

Reconfigurable
computing

DSPs General purpose,
conventional
processors and
microcontrollers

Algorithm sophistication and complexity

E
x
e
c
u
ti
o
n
 s

p
e
e
d

FIGURE 1.7
Comparison of different computing architectures. (� 2006 by Kim Fowler, used with permission.
All rights reserved.)

14 Developing Real-Time Embedded Products

as in filters and data compressors, but do not generally integrate a wide
variety of peripherals. Microcontrollers, on the other hand, do integrate
a wide variety of peripherals but are not nearly as fast as DSPs.
Microprocessors generally have the best tool-development suites and the
widest the variety of capabilities but tend to be big, power-hungry, and
expensive.

Testability: Making a product amenable to testing has mechanical,
electrical, and software implications. First, specify the level of repair that
will be allowed. Next, determine the types of test equipment necessary
for your product—whether commercially available or custom-built.
Then consider the ease of disassembly and connection to test equipment.
Finally, determine how much effort will need to go into the software to
support testing.

Manufacturability: Making a product easy to manufacture is a big concern
for selling in high volumes. Manufacturability primarily has mechanical
and electrical concerns. Labor is one of the biggest components of cost in
manufacturing; making a product easy to assemble and package is the most
direct way to reduce cost.

Human interface: All embedded systems eventually produce actions that
humans initiate and perceive. The goal should be to make the operations as
obvious and intuitive as possible. Buttons should have obvious functions;
there should not be any awkward or unusual placement or sequences of
their use. Displays should be clear and not display cryptic symbols or
abbreviations or jargon. Software operations should have a clear flow;
simple wizards are a good example of simple and understandable flow.

1.4.5 Interfaces

A good interface design hides complexity by capturing, organizing, and
communicating information within the project. This is true for the human
interface, as well as for the cables, connectors, and communication
channels. A good interface design reduces the burden of testing and ver-
ifying system performance because it allows separate testing of individual
functions.

1.4.6 Features

All features interact with each other and with the system functionality. New
features affect other parts of the design in unforeseen and unpredictable
ways—one goal of a suitable architecture is to limit the untoward effects
of new features. Please understand that most people prefer control over
performance. Control means that people want to understand the system and find it
easy to use.

Development Processes 15

Adding features is not a simple linear process. It is iterative and expands
in a nearly factorial manner. You need to regression test the entire system
after you add each new feature.
A good team leader and team will handle the features carefully. They

will allot priorities to what is required, what is desired, and what is
requested.

1.5 Phases of a Project

Let us move into some of the ‘‘nuts and bolts’’ of project development. Every
project goes through different phases. This section will outline some phases
of development often encountered on many projects. Table 1.3 summarizes
the phases.
Many parameters can alter the actual phases of development, depending

on size of the project, complexity, regulations, certification, and develop-
ment cost. A simple, small project with a small team of three or four
people, for instance, may combine the first two phases into a feasibility
study, have a single design stage, and then combine production and
maintenance and disposal into a third phase. Here I present a basic set of
phases; the case studies will comment how these might vary for specific
situations.

1.5.1 Concept

The concept phase explores the feasibility of an idea or new project. The
team uses various means to analyze, simulate, and determine feasibility.
Any obstacles that could prevent realization should be uncovered and
trigger a decision to stop the project. This phase defines the requirements
and goals for the project. It also proposes a development approach to meet
those requirements.
At the end of the concept phase is a review, often called the concept

design review or CoDR. The review presents the mission goals, objectives,

TABLE 1.3

A Summary of One Possible Set of Phases That
Might Occur During Project Development

Phase Name

1 Concept
2 Preliminary design
3 Critical design
4 Production (manufacturing)
5 Operation, maintenance, disposal

16 Developing Real-Time Embedded Products

and constraints. The team should understand and present the requirements
for the project and the approach to meet those requirements.

Summary: Concept Phase

What—Explore possibilities and determine feasibility.
Who—Marketing and engineers; bigger projects will include more

disciplines such as manufacturing, logistics, and support.
Why—Feasibility and any no-go decisions from ‘‘show stoppers.’’
How—Studies, focus groups, calculations, and simulations.
When—Complete the phase when either schedule or mutual consent

determines enough information is available to make the decision
(this is not always possible).

1.5.2 Preliminary Design

The preliminary design phase begins the basic approach to a project.
The team completes nearly all of its analyses. Usually, breadboards are built
and lab tests are completed. This phase prepares the basic design with block
diagrams, signal flow diagrams, initial schematics, packaging plans, con-
figuration and layout sketches, and early test results.
At the end of the preliminary design phase is a preliminary design review

or PDR. A PDR should present the basic system in terms of the software,
mechanical, power, thermal, and electronic designs with load, stress, mar-
gins, and reliability assessments. It should also present the software
requirements, structure, computational loading, design language, and
development tools to be used in development. Finally, it should present the
preliminary estimates of weight, power, and volume.

Summary: Preliminary Design Phase

What—Flesh out the design approach.
Who—Marketing, engineers, and manufacturing; bigger projects will

include more disciplines such as industrial designers, logistics, and
support.

Why—Confirm the feasibility and make a go or no-go decision.
How—Calculations and simulations, design tools, and early prototype

tests.
When—Complete the phase when either schedule or the design

approach is clear.

Development Processes 17

1.5.3 Critical Design

The critical design phase completes the final design of the project. The
product is ready to go to production after critical design.
At the end of the critical design phase is a review, called the critical design

review or CDR. A CDR presents the final designs—schematics, software
code, and test results. It also presents the engineering evaluation of the
breadboard model of the project. A CDR must be held prior to the design
freeze and signed off before any significant production begins. The design
at CDR should be complete and comprehensive.

Summary: Critical Design Phase

What—Finalize the design.
Who—Marketing, engineers, and manufacturing; bigger projects will

include more people such as test team, industrial designers,
logistics, and support.

Why—Make the final go or no-go decision on the product.
How—Reviews, evaluation tests, and field tests.
When—Complete the phase when the design is finished, appropri-

ately tested, and manufacturable.

1.5.4 Production Handoff

Sometimes an additional phase, called the production handoff (PHO) phase,
includes integration, test, and delivery; it might be the only fabrication or
production that occurs in the project. The product is installed after this
phase. Its purpose is to assure that the design of the product has been
validated and that all deviations, waivers, and open items have been satis-
factorily closed. It also confirms that the project, along with all the
required support equipment, documentation, and operating procedures, is
ready for production.
This particular phase generally applies to larger custom projects that

deliver a single unit. It has both elements of the critical design phase and
the production phase in those projects. In large-volume manufacturing
situations, PHO focuses solely on preparation for manufacturing.

Summary: Production Handoff Phase

What—Validate the design and close all open issues.
Who—Marketing, engineers, and manufacturing; bigger projects will

include more people such as test team, industrial designers,
logistics, and support.

18 Developing Real-Time Embedded Products

Why—Final step in the quality assurance of the design.
How—Tests for integration, environmental survival, and qualification.

Commissioning and training.
When—The customer signs off.

1.5.5 Commercial or Support

This is an open-ended period that completes the life cycle of the product—
hopefully, it is a long one for the sake of your company and profitability.
This phase is where manufacturing, logistics, maintenance, and disposal are
the primary concerns. You and your team should monitor the product and
its use periodically to prepare feedback for future development efforts.

1.6 Scheduling

1.6.1 General Philosophy

Planning should be an evolving process; we should continually learn about
what works and what does not and then apply these lessons to new projects.
Alas, this seldom happens.

A colleague said to me, ‘‘Everyone wants to do the right thing,
but schedule always wins’’ [9]. For many markets this is true. Most
of us wrestle with the big three—schedule vs. cost vs. quality.
Schedule is usually fixed, which leaves us with the difficult choice of
either reducing cost or improving quality. The holy grail of much
engineering is to improve all three; NASA during the 1990s had the
goal of ‘‘better, faster, cheaper.’’

I think one more factor is assumed but not as clearly defined—
requirements (or features). While we grapple with the schedule, cost,
and quality within a project, most of us just assume a full-feature set
(full requirements). Making features, and therefore requirements, a
variable along with schedule, cost, and quality will help make the
project management and development tractable—see Sections 1.8.4
and 1.10.1 for more details.

Bad schedules often arise from failure to plan properly. Many reasons
exist for the failure to plan and to learn planning. This is a shared problem—
no one person has total responsibility for planning and scheduling. Only a

Development Processes 19

committed group of people will plan well, work the plan, stick to it, and
learn from their mistakes.
You can schedule a project many ways; I will focus on two methods:

top-down planning and bottom-up planning. Top-down planning sets
delivery dates and milestones first and then finds out what you can fit into
the periods between dates. Bottom-up planning starts with the basic details
of everything that needs to be done and builds up to the dates when
components and stages can be finished. Top-down planning can be easily
abused when it over-constrains a project—requiring too much to be done
in too short a time. Bottom-up planning can build inefficiencies into the
process and extend the schedule too far.
I use both methods in combination to attempt an appropriate schedule.

I start with a top-down plan and then see where a bottom-up plan meets
it. This kind of exercise helps me see and remove the pitfalls of either
method.

1.6.2 Covering the Bases

The first thing to do when planning and scheduling is to understand all the
activities that make up a project development. These include meetings,
desk work, lab work, communications, documentation, travel, debugging,
testing, fabrication, support, installation, and training—but this is not an
exhaustive list.
Did I mention meetings, communications, and documentation? Most of us

do not have a clue how much time we spend on meetings, communications,
and documentation. Firing off an e-mail to explain a procedure or clarify a
point often takes a lot longer than the 3 min we thought it would take. Merely
walking to and from a 1 h meeting can take up to 15 min each way with
distance or interruptions to chat. That is 50% over the allotted meeting time!
Simple telephone calls can fill a day. I have found that calling a parts dis-

tributor and asking for price and delivery on a single, generic, run-of-the-mill,
stocked item will average out to 8 min; that means I can only inquire about
six (6) or seven (7) components in the space of 1 h.
Finally, you need to build in some margin for ‘‘surprises.’’ These con-

tingencies are critical to good planning; they should not be used to cover
activities that you already know about—that is being dishonest. The best
way to include contingencies in your schedules is to study where problems
have occurred in previous projects and try to discern a correlation between
the activities and the results. Once you better understand the trouble spots,
you can apportion margin to those activities.

1.6.3 Software Tools

A simple spreadsheet can provide a reasonable ‘‘bottom-up’’ estimate of
time, effort, and cost for your projects. Other software tools, such as Microsoft
Project�, can give an estimate of ‘‘top-down’’ plans; if sufficiently exercised

20 Developing Real-Time Embedded Products

it can give a detailed picture of a ‘‘bottom-up’’ effort, too. Chapter 3 gives
several examples of tools that you might use to schedule activities.

1.6.4 Problems—Fates, Constraints, and Mandates

Business cannot make headway without initiative and risk. Consequently,
planning and scheduling are unavoidable, but traps abound. We need to
bring sanity to the process of planning and scheduling. Here are some of the
problems that you should understand and avoid:

� Mandating deadlines and requiring a fixed feature set is doomed
to failure. Invariably it overconstrains the development. Either fix
the milestone dates and let the features evolve, or fix the features
of the product and settle for the schedule to be flexible.

� Scheduling more than 50% of someone’s time to a task will
probably overload them [10]. This means that even in a full-time
effort, most people lose about half of their time doing things not
directly job-related. They may be moving between meetings or
responding to non-essential e-mail or surfing the Internet or
chatting.

� Not allowing enough time for testing and review will either stretch
the schedule or cut short important qualification steps. I do not
know anyone who gets everything right the first time.

� Not accounting for essential work not immediately recognized as
project-related (for example, meetings, telephone conversations,
and e-mail messages) will result in overloading personnel in a
shortened schedule.

� Not recognizing that documentation is time consuming. Crafting a
simple memo can occupy hours.

� Not recognizing unexpected delays in procurement when compo-
nents are out of stock or a subsystem must be modified to suit your
requirements will stretch out the schedule.

� Not allowing schedule margin (contingencies) for these proble-
matic areas always results in conflict, delayed deliveries, bugs, and
reduced feature sets.

1.7 Documentation

1.7.1 Purposes

Over the years, I have seen three fundamental truths about document-
ation ([2], Chapter 4):

Development Processes 21

� Documentation is integral to every product (Figure 1.8)

� Good documentation cannot help a poor product

� Poor and inadequate documentation can destroy a good product

Documentation generally serves three purposes: to record the specifics
of development (the ‘‘who, how, and why’’), to account for progress
(the ‘‘what, when, and where’’), and to instruct the extent of functionality
(and thus establish the liability) of your product ([2], Chapter 4).
Records include your engineering notebook, software source listings,

schematics, and test reports. This is not an exhaustive listing of all records;
each case study that follows will have specific and unique types of doc-
umentation. These records will help when modifications, upgrades, fixes,
and recalls occur.
Documentation also accounts for the progress toward satisfying require-

ments and provides an audit trail of the development. These types of docu-
ments include memos, meeting notes and minutes, review action items,
and project plans. An appropriate plan for documentation can also support

Documentation
Records

Legal liability

Presentation

Customer
perceptionFuture upgrades and redesigns

FIGURE 1.8
Documentation pervades every aspect of a system. (� 2007 by Kim Fowler, used with permission.
All rights reserved.)

22 Developing Real-Time Embedded Products

rigorous testing, validation, and verification. Again, this is not an exhaustive
listing of all plans and archives—you will see specifics in the case studies.
Good documentation also instructs users and owners as to the function

and extent of operation for the product. It can limit product liability.
Instructions include user manuals, DVDs with instructions, labels and
warnings, presenting concise instructions, and listing necessary details
about the use of your product. This, too, is not an exhaustive listing of all
instructions.
One heuristic that has always worked for me is, ‘‘There are good products

with poor documentation, but I have NEVER found a poor product with
good documentation’’ ([2], Chapter 4). All this to say, documentation is a
necessary but not a sufficient condition for building a quality product.

1.7.2 Types

Many types of documents exist. Each set is project-type specific. They might
include notebooks, letters and e-mail messages, memos, project documents,
manuals, brochures, and presentations.
The set of documents for a project should answer the ‘‘who, what, when,

where, why, and how’’ of product development. Here is a general outline of
the types of documents that are part of most products:

� Plans (who, what, where, when, why)

� Design documents (how, why)—source listings, schematics, and
engineering notebooks

� Reviews and reports (who, what, where, when, why)

� Instructions (what)—user manuals, brochures, training materials,
and maintenance and repair guides

The case studies that follow will cover sets of documents specific for their
markets.

1.7.3 General Formats for Documents

Regardless of the document, basic principles apply. Every document should
have these attributes in the following order of priority:

1. Correct

2. Complete

3. Consistent

4. Clear

5. Concise

First, you must understand the audience—who will read the document and
how they will use it. Tailor your documents to the readers [11]. They should

Development Processes 23

have an appropriate level of detail and reading comprehension (simple,
short, and concise is always best). The layout of text and graphics should
have an intuitive format or instructional flow. The necessary warnings and
updates should also be present.
A users’ manual can be a good example of how documents might be

organized. Good manuals are simple, clear, and easy to use; these charac-
teristics are achieved through attention to the following points:

� Basic content

– What: prominently note the model number and version

– Why: clearly explain the need or theory

– How: detail the operation

� Clear organization

� Modular format

� Clearly illustrated figures and tables

� Detailed schematics

� References to source listings and other technical records

� Table of contents, index, and cross-references

1.8 Requirements and Standards

1.8.1 Markets

I see six basic markets for real-time embedded products and systems: high-
volume consumer appliances, mission-critical consumer (e.g. automobiles),
industrial, military, aerospace, and medical. I will touch on each in the case
studies. I will tend to focus on the military, space, and medical because of my
own experience and because these tend to need more thorough processes.

1.8.2 Standards and Government Regulations

Each market needs to adhere to specific standards and government regula-
tions. If it is a consumer appliance, it must haveUnderwriters Laboratory (UL)
and Conformite Europeene (CE) markings. If it is avionic or military, it has
some narrowly defined standards and regulations—such as DO-168B and
DO-178B. Certain industrial processes follow Institute of Electrical and
Electronic Engineers (IEEE) and International Electrotechnical Commission
(IEC) standards. Finally, if it is medical, it not only follows UL and IEC stan-
dards but also follows the Food and Drug Administration (FDA) guidelines in
the United States, which often apply to other countries, as well. The case
studies will give specific instances of these standards and regulations.

24 Developing Real-Time Embedded Products

For commercial markets, the IEEE and the American National Stand-
ards Institute (ANSI) both provide standards for individual components,
devices, and systems. In Europe and worldwide, you will have to deal with
IEC regulations and the CE mark [12–15].
Beyond commercial concerns, government regulatory concerns are

becoming a bigger part of product design. Restriction of use of certain
Hazardous Substances (RoHS) regulations are forcing manufacturers to
develop recycling programs to take back products at the end of market life
and recover the hazardous materials such as lead and heavy metals.
Standards and regulations feed directly into the design requirements for

each project. Know your market and its particular set of standards and
regulations.

1.8.3 Preparing Requirements

Once you have some grasp on the market and the necessary standards and
regulations, then you can begin setting down requirements. Requirements
are the codification of intent.
Robert Oshana writes, ‘‘Both functional and financial success is affected

by the quality of requirements. So what is a requirement? It may range from
a high-level abstract statement of a service or of a system constraint to a
detailed mathematical functional specification.
Requirements are needed for several reasons:

� Specify external system behavior

� Specify implementation constraints

� Serve as reference tool for maintenance

� Record forethought about the life cycle of the system, that is,
predict changes

� Characterize responses to unexpected events’’ ([4], p. 507)

Good requirements define the metrics of the design. Measurement can
then feedback the design output to the requirements so that you can com-
pare and determine progress.
Intent relates to the desire that a product have appropriate performance.

When someone says, ‘‘It has to be the fastest’’—that is intent. The require-
ments will answer how fast and what ‘‘fast’’ means.
Who defines the intent? How do you encode intent? Those are tough

questions. Customers ultimately express the intent. Marketing and en-
gineering then interpret that intent and translate it to definable metrics in
the requirements. There are several ways to understand intent: customer
visits, focus groups, marketing discussions, and the ‘‘bright idea.’’
For most products, you need to visit customers and ask them about what

they really want; this can be an art unto itself, and marketing usually

Development Processes 25

handles much of this. Really tricky issues, though, need attention from the
designers and face-to-face discussions. You may not like it, but visiting
customers is very important. I will bet that, as you do it, you will come to
appreciate and may be even enjoy visiting customers.
Makers of consumer and medical devices often use focus groups, which

provide a carefully controlled environment with trained facilitators. These
can illicit ideas and directions from potential customers that may not have
occurred to you.
Finally, the occasional ‘‘bright idea’’ supplies the intent that customers

may not even foresee. This certainly occurs with revolutionary changes.
Here a lot of customer training and instruction is necessary. In fact,
the customer usually becomes an integral part of the development team.
Regardless, you must still submit your ‘‘bright idea’’ to customer review.
Ultimately, intent flows into requirements, which define and set mea-

surable quantities for subsequent testing. Verification means that the
design is tested against the requirements. Another important concern is
validation; it means that the product is tested to demonstrate that it meets
the desired intent.

Note: Some people differentiate between requirements and specifica-
tions. They call the natural-language description of the desires as
‘‘requirements’’ and the crafted metrics as ‘‘specifications.’’ It can be
somewhat artificial in some situations but useful in others. I like the
distinction for complex systems.

You need to know what people are thinking. You need to know their
desires. Insist on involvement with the customer. Understand them and
how they do things. All this will help you define more accurate require-
ments (or specifications).
Oshana writes, ‘‘A good set of requirements has the following

characteristics:

� Correct: Meets the need

� Unambiguous: Only one possible interpretation

� Complete: Covers all the requirements

� Consistent: No conflicts between requirements

� Ranked for importance

� Verifiable: A test case can be written

� Traceable: Referring to requirements [is] easy

� Modifiable: Easy to add new requirements’’ ([4], p. 508).

26 Developing Real-Time Embedded Products

The process of developing requirements is still inexact science. Use cases
in unified modeling language (UML) have proven useful to reveal some
interactions between the system and external inputs. Oshana gives a good
example of sequence enumeration that is a way to specify inputs and
responses in an embedded system. It uses prior stimuli to the inputs and
current ones to cover all possible inputs; these then map to a state machine
implementation. Its strength is that it forces you to consider obscure se-
quences. I refer you to Oshana’s book and Appendix D for more informa-
tion ([4], pp. 508–509).

1.8.4 Managing Specifications

Potentially half or more of all information technology projects are afflicted
by shifting, poor, or missing requirements, and end up exceeding the
budget and schedule. Thirty-seven percent of all projects suffer from one or
more of the following: lack of user input (12.8% of all projects), incomplete
requirements and specifications (12.3% of all projects), and changing
requirements and specifications (11.8% of all projects) [16]. Table 1.4

TABLE 1.4

Summary of Some of the ‘‘10 Requirements Traps to Avoid’’ [16]

Trap in the

Specification

Process Symptoms Solutions

Confusion over
definition of
requirements

. Different perspectives (from
vision to detailed design to
solutions) but no qualifying
adjectives

. Miscommunication between
users and developers that
tends to focus only on
functionality

Recognize different types of
requirements:

. Business

. User

. Functional

. Quality

Inadequate
customer or user
involvement

. Users too busy to refine the
requirements

. User surrogates
(user managers, marketing
staff, or software developers)
supply all of the input

. Developers make
requirements decisions
without confirmation

. Identify the different user
classes

. Identify a customer
representative for each user class

. Build a collaborative
relationship between customer
representatives and the
development team

Vague,
ambiguous, or
unused
requirements

. Varying interpretations

. Cannot think of test cases
for specifications

. Guessing at specifications

. Avoid subjective and
ambiguous words

. Trace every functional
requirement back to its origin

(Continued)

Development Processes 27

provides a summary of symptoms and solutions for generating and
managing specifications.
Many companies, including automotive companies and suppliers, are

using or moving toward model-based specifications for subsystems
to capture requirements. Model-based specifications use a model of the
device or system with mathematical constructs, such as sets and
sequences, and define system operations by how they modify the
system state. Use cases and UML are an example of model-based
approaches.
I am not a proponent of the dictum, ‘‘Get the requirements right and you’ll

get the design right.’’ Requirements and specifications are a necessary but not
a sufficient component of good development process. Historically, civil
engineers and architects have shown that few people, if anyone, can ever
specify all the details of a building. Changes do occur during construction.
We embedded developers and system engineers must develop processes to
do likewise.

. Glitzy user interface vs.
necessary functionality

. Developer gold plating

. Inspect the requirements
document

. Write test cases early and
derive requirements
from them

. Develop prototypes

Unprioritized
requirements
and scope creep

. Declaring all requirements,
or 90%, to be equally
critical

. Poor definition of initial scope

. Changes that sneak in through
the back door

. Align use cases with business re-
quirements

. Promote consistent classification
and common expectations

. Plan for changes in requirements
and manage those changes

Inadequate
change process
and version
control

. No defined process for
changes in requirements

. Bypassing process

. Working on changes before
approval

. Poor understanding of
implications

. Keep finding more
implications with further
development

. Can’t distinguish different
versions of the requirements
documents

. Set up control board to monitor
changes

. Use a problem- or issue-tracking
tool to collect, track, and
communicate changes

. Systematically analyze the
impact of each proposed change

. Use a version control tool

TABLE 1.4

Continued

Trap in the

Specification
Process Symptoms Solutions

28 Developing Real-Time Embedded Products

1.8.5 Speed-Up Schedule and Requirements

Many problems arise because the requirements are either too sparse or too
complex. Either situation leads to unforeseen problems and unpredictable
interactions later in product developmentwhen change ismuchmore difficult.
Obviously, sparse requirements leave out important concerns, which lead
to unexpected problems. On the other hand, complex requirements can
‘‘overspecify’’ a product, which leads to unforeseen interactions that cause
problems.
Reinertsen reports that many projects choke on specifications that are too

complete, too stable, and too accurate [17]. Specifications that are overdone
tend to shift attention from the few, critical specifications to the many, unim-
portant ones. One reason for overdoing specifications is because writers ela-
borate what they know; yet the amount of detail does not relate to what the
customer wants. According to Reinertsen, successful products do not ne-
cessarily start with complete specifications—the Apple Powerbook was based
on a one-page specification. More recently, one successful model of cell phone
derived from a group of designers building a prototypewith features that they
liked; it was not directed by marketing. Even history shows that short specifi-
cations can lead to a successful product: a short letter with single page of spe-
cifications from Trans World Airlines to Douglas Aircraft Corporation in 1932
lead to thedevelopment of theDC-2 followedby the highly successfulDC-3 [18].
There are ways to improve scheduling while still establishing useful

requirements:

� Write the catalog page for the product before anything else. Years
ago Hewlett-Packard instituted this practice. If a feature warrants
mention, then it is important. Anything else that is left out is
deemed unimportant [17].

� ‘‘Brief specifications almost always force higher levels of customer
contact ([17], p. 29).’’ More customer contact leads to a deeper
understanding of customer needs, quicker resolution of inter-
pretations, and faster reaction to market shifts. Please note: good
quality makes for concise specifications; the converse is not true—
short specifications do not necessarily lead to good specifications.

� Allow flexibility in the requirements and make development a
‘‘closed-loop system.’’ Reinertsen claims that the initial accuracy is
not as important as assuming that the specifications have
inaccuracies and then using feedback to detect and correct them [17].

� Pazemenas argues for shortening ‘‘the fuzzy front end’’ [19].
Identify new product opportunities and improvements in techno-
logy often—quarterly evaluations may be necessary—so that the
fuzzy front end does not drag out from a long learning curve.

� Pazemenas also promotes the effort to define the right product—the
one with greatest value to the customer. To do this, you need to get
close to the customer; use prototypes to clarify interactions and
operations [19].

Development Processes 29

Note that these will also speed development when properly implemented.
Section 1.10.1 on design trade-offs has a more complete presentation.

1.9 Analysis

1.9.1 Feasibility

Analysis predicts the performance or suitability of the product. (That’s
predicts, not guarantees!) It is faster and cheaper than building prototypes
and testing—usually. The concern is, ‘‘Where do you stop analysis and
begin building?’’ Let us look at analysis first.
Analysis can have a variety of forms, which typically occur early in

the project. Analysis has four general stages: rules of thumb, analytical
approximations, numerical simulation, and test. Each stage is important and
serves a particular need.
I included testing because it confirms analysis. Testing consumes a whole

section in this chapter and in each case study because of its importance in not
only establishing the product’s specifications but also in confirming analysis.

1.9.2 Heuristics

Heuristics are rules of thumb that generally indicate an appropriate direc-
tion. They help constrain a problem during the early concept phase of
development. Heuristics provide boundaries or limits to a situation and
serve as intuitive checks to avoid gross errors. They are quick and cheap.
Experience is a collection of heuristics that fit together—sometimes

ambiguously. They are the things that just work correctly and do not gen-
erally contradict each other. Engineers and designers should continually
build their experience—stockpile heuristics that outline a meaningful,
overall perspective to development.
Tables 1.1 and 1.2 are good examples of heuristics that arise from careful

research.

1.9.3 Calculations

Calculations are definitions of physical phenomena and approximations [20].
Most of our formal technical education focuses on calculations as a basis for
explaining or describing physics. We calculate everything from the power
dissipation of transistors to nonlinear efficiency curves for power converters
to spreadsheets of business models.
While more involved than heuristics, calculations can be more refined than

heuristics. Like heuristics, calculations are still fairly fast and cheap. Most of
us use spreadsheets because they are fast and easy to set up and use.

30 Developing Real-Time Embedded Products

1.9.4 Numerical Simulations

Numerical simulations are a good next step up from calculations. Simulations
operate from known, basic assumptions to project results from complicated
situations. You can simulate many different things: circuit operation, electric
fields or electromagnetic interactions, software operation and performance,
kinematic performance, to name just a few different concerns.
Simulations provide a more in-depth view of potential operations and

circumstances than do calculations alone. Their primary forte is to make
sense out of complicated interactions. Simulations tend to be much more
expensive to purchase than the simple tools that do calculations, but they
generally are much cheaper and faster than building a prototype and testing
(though not always).
Simulations are usually part of most designers’ and engineers’ toolboxes.

They often provide a reasonable basis for doing ‘‘what-if’’ scenarios in fea-
sibility analysis.
Beware! Simulation is not proof that something will work. You still need

to test it.

1.9.5 Testing

Testing confirms analysis through verification and validation. The question
is, ‘‘When is testing sufficient?’’ A full suite of tests to cover all possible
circumstances is impossible in most cases—if not in all.
Testing covers the mechanics, electronic circuits, software, and usability.

It can also help establish dependability (which includes reliability, avail-
ability, maintainability, and fault tolerance).
Certainly designers and engineers are involved, at the very least, in

specifying the requirements that will be tested. Most of us also take part in
portions or all of the testing.

1.10 Design Trade-Offs

1.10.1 Processes to Speed Development

You have several different avenues through which you can speed develop-
ment; they deal with the ‘‘big four’’: scheduling, establishing requirements,
reducing cost, and improving quality. Most of the techniques affect the
requirements, which have a direct effect on the other three concerns of
schedule, cost, and quality.
The most important thing to realize is that these four elements are

interrelated and interdependent. As you add a feature or requirement, you
are adding schedule dependencies, cost impact, and quality interactions.
You need to strike an appropriate balance between them.

Development Processes 31

Here are techniques to speed development:

� Write the catalog page first [17]. This exercise will point out the
important features and therefore the important requirements.
It will help you set priorities for the requirements. A corollary is to
write the users’ manual next. It will help you uncover and fill in
the intermediate requirements, as well as clarify operations and set
expectations.

� Write concise specifications. Beware of specifications that are too
complete, too stable, and too accurate [17].

� Shorten the fuzzy front end [19].

– Doing everything you can to identify the need. Identify new
technologies and product opportunities often—may be even
quarterly evaluations—so that the fuzzy front end does not drag
out from a long learning curve.

– Define the right product—the one with greatest value to the
customer; use prototypes with only a subset of functions to
clarify operations and expectations.

� Make development of requirements a ‘‘closed-loop system’’ [17].
Keep requirements flexible to allow trade-offs [19].

� Get the right architecture—use modular design for concurrent
development and partition the design for functionality. Modular-
ity can contain uncertainty and isolate problems, thereby allowing
change and flexibility [17,19].

� Minimize the required work, reuse designs and modules as
appropriate. But as soon as you start modifying modules, then
redesign them! Shortening development time relies on proven
modules that remain unmodified.

� Get the right team and organize for speed [19].

– Remove long justification/approval phases, elaborate docu-
mentation, limited use of outside resources

– Get enough people to do the job adequately (but not too many!),
give responsibility to do the job (e.g. do not remove responsi-
bility with things like long signature approval lists)

– In some cases, a good contract engineering firm can really help
out with needed expertise and resources

� Increase your parallel effort; do concurrent development, which
can only happen with flexible requirements and the right types of
people to do job (see getting the right team above) [19].

� Management should provide clear objectives and priorities with-
out overconstraining the team. Lack of appropriate objectives and
priorities leads to spinning wheels and wasted time [19].

32 Developing Real-Time Embedded Products

� Manage risk—business, technical, and regulatory. Use prototypes
to confirm requirements; test and validate designs as soon as
possible. This follows the same reasoning as setting clear objectives
and priorities [19].

1.10.2 Intent and Requirements

Change is constant in product design. As it occurs, refer back to the intent—
has it changed, too? If so, then completely rework the requirements. If the
intent does not change, then review the requirements and determine which
items within the requirements need to be updated to reflect the changes.
(Remember that requirements should be a ‘‘closed-loop feedback system.’’)
Maintain a system perspective. When change is suggested, ask if it

is really needed. Seek to understand the potential interactions.
The whole team needs to be aware of the intent and requirements. The

whole team will contribute in various ways. The engineers and designers
will spend the most time considering and analyzing them. Usually, the
project lead or system engineer is responsible for maintaining the require-
ments.
Eventually, you will have to validate the product design against the intent

and verify the design against the metrics in the requirements. Either the
designers or test engineers handle the majority of validation and test.

1.10.3 Hardware

The hardware of a design has many potential trade-offs: type of processing,
candidate processors, peripherals, memory, and fabrication. The fabrication
of circuits and mechanics has great potential for many different config-
urations, including printed circuit boards (PCBs), cables, connectors,
displays, and input devices. These trade-offs have many consequences,
from manufacturing and assembly ease to testing access to cost to customer
acceptance.
Remove cables and connectors from the design if possible. They are the

source of many failures. They do provide access to the circuitry, however,
and may be important in certain systems for testing or upgrades.
Analog circuitry vs. digital circuitry is one area of trade-offs that electrical

engineers will consider when designing circuits. Is it better to build an analog
filter in the front end, or is it more appropriate to provide digital signal
processing to do the filtering? Can an analog amplifier increase the signal
magnitude sufficiently to reduce the amount of processing later? Is repro-
gramming and reconfiguring the processing important enough to put func-
tions in software and remove the analog circuits?
All of these trade-offs aim at reducing cost, unnecessary functions,

development work, and circuitry. Some also provide the capability to
maintain, repair, and upgrade a product once in the field.

Development Processes 33

Several different people make trade-offs in hardware design. Product
designers, such as industrial designers, constrain the external package,
particularly its form and the user interface (buttons, keyboards, and dis-
plays). Sometimes management steps in and mandates specific form or
package. All these constraints will drive some requirements on the circuitry.
Generally, though, engineers make most of the hardware trade-offs.

1.10.4 Cooling

Bigger processors and larger power-handling circuits consume and dis-
sipate more power, though they sometimes are necessary to accomplish the
design task. Greater power dissipation generates large thermal gradients in
the circuit boards that can stress them and eventually lead to failure.
Cooling of these components and circuits allows higher energy density and
reduces thermal gradients. Unfortunately, cooling increases cost, adds
greater complexity, and lowers reliability of the system. Cooling adds to the
cost of the system both in up-front component costs and downstream in
greater maintenance needs.
Cooling of electronics can take many forms: radiant, convection, forced

convection, liquid cooling, and refrigeration. Each successive type of cool-
ing, from radiant through refrigeration, increases the capacity of heat flow
between 5 and 100 times [21]. But, each successive type of cooling also
increases the COGS and the maintenance costs by a similar amount.

1.10.5 Power

One aspect of hardware design and trade-offs is the source and conversion
of power. Often it is line power from the mains—at various voltages and
frequencies. Sometimes, a more portable or remote source of power is
needed, possibly batteries, fuel cells, or more exotic forms such as solar cells
or mechanical energy.
The product’s application will often suggest the choice of power. Portability

is probably the biggest factor in determining the power source. Sometimes,
the customer or industrial designer or management will request, possibly
require, a particular form or source of power.
Once the source of power is determined, you or your engineering team

needs to deal with converting the power into a usable form, typically low-
voltage DC power. Several forms of power conversion exist: primarily
switching DC-DC converters and linear regulators.

1.10.6 Software

Religious wars are waged over software. What language? What develop-
ment platform and tools? What development process? Should code reviews
be implemented? (Yes!!)

34 Developing Real-Time Embedded Products

Software should be carefully planned, developed, reviewed, tested, and
integrated with the system. As with hardware, the product application,
standards, and regulatory environment will narrow the choices and trade-
offs for software.
The engineer or engineering team often determines the software issues.

Sometimes standards, particularly in medical devices, will significantly
drive software development and processes. Unfortunately, and too often,
company legacy will drive software issues too. As I said, religious wars are
fought over software.

1.10.7 Hardware vs. Software

Hardware vs. software is a classic trade-off. There is no final answer for the
best trade-off. Hardware wears out and fails under stress; software does
not. Hardware and physical devices can have quite predictable limits and
failure modes. Software easily hides complex interactions. Hardware
usually is very cheap, while software development is very expensive.
The development effort for software can be thousands or millions of times

more expensive than the component hardware costs; it usually is much
more expensive than the hardware development too. You may specify a
40¢ microcontroller and spend several months to design the circuitry;
software development, on the other hand, may require several years of
engineering effort to program, test, and certify, particularly if it is in a
medical product.
Because software consumes so much effort in developing most products,

it should drive the selection of hardware in most cases. Hardware and
software engineers generally make this trade-off. Unfortunately, company
tradition or management unwillingness to buy new tool support can really
hamstring your efforts and end up extending development time and costing
much more than it should.

1.10.8 Buy vs. Build

A classic trade-off is to decide between buying components and building
them. Components and subsystems can be hardware or software or both;
examples include motherboards, standard interface modules, or commercial
operating systems.
Purchasing components or subsystems can reduce the time to develop the

product. Building, however, allows you to optimize for a narrow set of
requirements. Furthermore, if production quantities are low (less than
hundreds per year) and the market demands a short delivery time then you
should buy commercial-off-the-shelf (COTS) components.
To make the decision between buying and building, first define the para-

meters of your decision. Then list their priority. Reference 2 (Chapter 15)
explains some of the relationships and heuristics that go into the decision.
Seven important parameters (Figure 1.9) are cost, quantity, time to market,

Development Processes 35

(a)

(b)

(c)

(d)

Buy

Build

Time-to-market

Short Long

Buy

Build

Component cost

Low High

Buy

Build

Production quantity

10 100 1000

Buy

Product longevity
Short Long

Build

FIGURE 1.9
Seven parameters that factor into the buy vs. build decision: (a) production quantity,
(b) component and subsystem costs, (c) time-to-market, (d) product longevity, (e) specification
complexity, (f) resources, and (g) technical support. (� 2006 by Kim Fowler, used with
permission. All rights reserved.)

36 Developing Real-Time Embedded Products

longevity on market, specifications, company resources, and necessary
technical support you must receive and provide.
Generally, engineers in conjunction with management make the trade-off

to buy or to build.

1.10.9 Manufacturing, Assembly, Disassembly, and Disposal

Mechanics, packaging, and circuitry all affect manufacturing, assembly,
disassembly, and disposal. Manufacturing and assembly ease can
mean one-piece castings and press fits rather than multiple pieces screwed
together. Disassembly means that a piece of equipment can be taken apart
for repair or upgrade or disposal.
The trade-off is between design time and ease of manufacturing

(or assembly or disassembly or disposal). Products sold in large volume
need a lot of effort in design to make manufacturing efficient and as

(e)

(f)

(g)

Buy

Build

Buy

Build

Must provide technical
support of final product

HighLow

Need vendor technical support

Low High

Buy

Build

Team resources/expertise
Low High

Buy

Build

Scope of specifications

WideNarrow

Buy

Build

Complexity

Low High

FIGURE 1.9
Continued

Development Processes 37

inexpensive as possible. A product sold in small volumes will tend toward
more labor-intensive manufacturing in trade for faster development.
Inputs from both the engineering team and management go into the

decision to trade-off design time with ease of manufacturing (or assembly,
or disassembly, or disposal). The authority to make the trade-off depends
on the company, the industry, and the application.

1.10.10 Test and Maintenance

Test and maintenance intertwine with manufacturing, assembly, dis-
assembly, and disposal. Whatever makes assembly or disassembly easier,
will usually make test and maintenance easier. Test and maintenance does
require two further stages. One is access to the functioning internals:
circuitry, mechanisms, and replaceable substances (e.g. lubricants). The
other is specialized servicing equipment to test the product or replenish its
consumables.

1.11 Tests

1.11.1 Types of Tests

Tests come in a variety of shapes, sizes, and purposes. Some confirm aspects
of simulation and analysis. Some help debug problems. Some assess man-
ufacturing quality or screen components and subsystems. Some can validate
the design intent. Many verify that the design meets requirements.
Tests can be formal or informal. Their results become part of the audit trail

of the project design and typically should be properly archived (bet that
does not happen in most situations—but it should!).
Most of the testing that I will focus on in this book is that done by

engineers. Some, such as design reviews, can involve the entire team or
company.

1.11.2 Laboratory Tests

These tests serve one primary purpose—to reveal basic underlying causes.
They might be truly scientific tests where you hypothesize, test, interpret
the results, and repeat to understand the fundamental physical phenomenon.
Or they might be simple debugging to understand the anomalous behavior
of a piece of software. The more ad hoc tests are also called bench tests.
These laboratory tests are strictly the purview of engineers and software

developers. They can perform these tests just about any time during
development. Usually, the tests constrain the environment to reduce
interactions and clarify a single mechanism or problem.

38 Developing Real-Time Embedded Products

1.11.3 Inspection

Inspection has two purposes—to find problems and to assure quality.
Debugging a problem often involves inspection; it is looking at the circuit or
the source code to find a misalignment or incongruity. Inspection also is
used in manufacturing to give a visual assessment of quality—checking the
workmanship for defects in components.
Engineers and technicians typically use inspection during debugging in

the lab. I have had one technician tell me that more than 60% of problems he
found were through inspection. Manufacturing personnel use inspection as
one criterion for accepting components or subsystems.

1.11.4 Peer Review

Peer review is another form of test. It can be either informal or formal.
Informal peer review is primarily used to help debug. How many of you

have asked a colleague to review a piece of code or circuit? (Is it not funny
how just stating the problem sometimes will suggest a solution?) Often this
informal peer review is among the engineers and designers.
Formal peer review should be a part of the development process. Code

inspections are a type of peer review. Usually, this form of peer review only
requires people immediately involved in the product design.
Giving design reviews, as covered in Section 1.5, is another type of peer

review. As mentioned, formal design reviews can involve many more
people—designers, engineers, technicians, marketing, manufacturing, and
customers. These can occur throughout the development cycle.

1.11.5 Subsystem Tests—Hardware

The subsystem tests for hardware are formal exercises to confirm that the
module performs according to requirements; these are primarily a ver-
ification of operation. Examples of hardware subsystem tests might include
the following (this is not an exhaustive list):

� Cable orientation and connector mating

� Weight and volume

� Power consumption

� Signal levels

� Communication protocol and bandwidth

� Electromagnetic capability (EMC)

� Display function and brightness

� Keyboard operation

Development Processes 39

Generally, the design engineer or design team specifies the necessary tests;
they may also be the ones to run the tests. For larger projects or mission-
critical systems or medical devices, a dedicated tester or engineering team
might be responsible for running the tests; in this situation, selecting tests is
a collaborative effort between the design team and the test team.
These tests are performed before integration either in the laboratory or in

a test facility.

1.11.6 Subsystem Tests—Software

The subsystem tests for software are formal exercises to confirm that
each software module performs according to requirements; often these are
called unit tests and are primarily a verification of operation. Examples of
software subsystem tests might include the following (this is not an ex-
haustive list):

� Human interface—input and display

� Proper function and calculation of parameters

� Interface protocols

� Rejection of out-of-bounds values

� Fault tolerance

� Completion of tasks within deadlines

Tests of software take two different forms, static and dynamic. Static tests
are sometimes called ‘‘glass box’’ or ‘‘white box’’ tests because you can view
the structure of the code. Dynamic tests are sometimes called ‘‘black box’’ or
‘‘closed box’’, tests because you do not see the structure of the code, rather
the tests exercise the operating software.
Static tests examine and critique the structure of the code through either

manual or automated means. Static manual tests include code inspections
and walk-throughs, which can be very effective in finding problems with
the design and the translation of the original intent. Static automated tests
use software tools to check for statement coverage, branch coverage, and
path coverage [22].
Dynamic tests are behavioral tests that exercise the inter-module

coordination in the operating software. These tests rely on understanding
the requirements of the design and testing the software to see if it meets
each requirement [22].
Just as in the previous section, generally the design engineer or design

team specifies the necessary tests; they may also be the ones to run the tests.
For larger projects or mission-critical or medical devices, a dedicated tester
or engineering team might be responsible for running the tests; in this si-
tuation, selecting tests is a collaborative effort between the design team and
the test team.

40 Developing Real-Time Embedded Products

These tests are performed before integration either in the laboratory or in
a test facility.

1.11.7 Environmental

Environmental tests confirm hardware operation to appropriate extremes of
temperature, humidity, pressure, and vibration. Again, the requirements
specify the parameters exercised in these tests; they are another form of
verification of operation.
The specific application drives the environmental tests. Consumer

appliances usually do not need to operate in an ambient environment below
0˚C or above 50˚C. They may have to withstand occasional liquid splashes
or high humidity. Military devices and avionics do need to operate over
wide temperature ranges, often specified between �40˚C and þ80˚C;
sometimes even wider. Military devices may also have to endure wide
humidity ranges to 100% condensing (i.e., meaning water is soaking the
circuitry). Medical devices may not need wide temperature tolerances but
implanted devices certainly need to withstand the corrosive fluids within
the human body. Finally, spacecraft have many environmental parameters
to consider: radiation tolerance, pressure, outgassing, launch vibration, and
huge temperature swings.
Generally, the design engineer or design team specifies the necessary en-

vironmental tests; they may also be the ones to run the tests. For larger pro-
jects or mission-critical or medical devices, a dedicated tester or engineering
team might be responsible for running the tests. For such a situation, selecting
tests is a collaborative effort between the design team and the test team.
These tests may be performed separately. Usually, they are reserved for

final tests following integration in a specialized test facility.

1.11.8 Manufacturing

Manufacturing tests assure quality of the fabricated item. Examples of
manufacturing tests might include the following (this is not an exhaustive
list):

� Fit and finish

� Visual inspection of assembly

� Weight and volume

� Power consumption within limits

� Signal levels within limits

� Display function and brightness within limits

� Mechanism operation within limits

Development Processes 41

Please note: manufacturing tests are not verification of the design! Manu-
facturing tests only assure quality of construction. They do not test whether
the device is a suitable solution of the requirements, and they are not a
thorough exercise of all modules. Verification of design does that and it is
done separately.
Generally, the design engineer or design team specifies the necessary tests

in collaboration with manufacturing. Generally, dedicated technician or test
team run the manufacturing tests.
These tests are performed in the manufacturing facility.

1.11.9 BIT, BITE, and Simulators

Mission-critical equipment sometimes incorporates build-in-test (BIT) and
built-in-test equipment (BITE). This is a more specific concern when high
availability and reduced maintenance time is imperative. BIT becomes an
integral portion of the system.
For larger systems and projects, you may need various simulators that

provide a subset of system functions and interfaces. Simulators can sub-
stitute for various subsystem modules and allow preliminary tests of the
core system modules; they can improve the parallel effort often needed to
reduce time. Simulators range from a simple box that provides a rudi-
mentary interface function to a complex cockpit simulator for testing
avionic instruments. Simulators are a specialized form of test equipment.
Sometimes, they migrate over to become BITE or support equipment for
fielded systems. Engineers design and use simulators to develop the design
of the target system. Technicians might run the more complex simulators
when doing later test and integration.
Generally, the design engineer or design team specifies the BIT and BITE.

For larger projects or mission-critical, a dedicated engineering team might
be responsible for specifying both BIT and BITE; such specification of test
equipment is a collaborative effort between the system design team and the
system test team.
These tests are typically performed by trained technicians in the field.

1.12 Integration

1.12.1 Difference Between Integration and Test

Integration is concerned with the multiple interactions between modules
and subsystems. Integration includes the building of the hardware modules
and software system in a controlled fashion. Integration verifies the total
system operation according to specification. Integration also moves toward
validation of the intent of the design.

42 Developing Real-Time Embedded Products

Tests tend to focus on single-point results, while integration focuses on
subsystem interactions. Integration also helps qualify the design, so it
occurs only toward the end of development. Afterwards, manufacturing
tests take over from integration. Integration assures the quality of design
while manufacturing test assures the quality of production.

1.12.2 Hardware

Integration of hardware includes fit checks, cable routing, connector mating,
power transients, power consumption, compatible signal levels, compatible
communication protocols, mechanism operation, and optical alignments.
The idea is that things should physically fit and function together.
Generally, the same groups of people who design and perform the

hardware testing also do the hardware integration. Integration usually takes
place either in the laboratory or in a dedicated facility. Sometimes it is on the
factory floor.

1.12.3 Software

Integration of software includes assuring correct interaction between
modules, proper and expected input/output responses to the system, and
fault tolerance. The goal is that software performs as specified and handles
unexpected circumstances in an appropriate and predictable manner.
Generally, the same groups of people who design and perform the soft-

ware testing also do the integration of the software. Integration usually
takes place either in the laboratory or in a dedicated facility.

1.12.4 System

The system integration brings all the elements together—hardware, soft-
ware, mechanics, optics, and so forth. Integration is a systems concept;
hardware and software integration are somewhat meaningless outside the
context of the system function.
System integration addresses both verification and validation. Integration

includes the following examples (this is not an exhaustive list):

� Correct interaction between all modules

� Proper and expected input/output responses to the system

� Human interface—input and display

� Fault tolerance

� Confirming the boundary of operations (the ‘‘envelope’’)

Generally, the same groups of people who designate and perform the
testing also do the integration of the system.

Development Processes 43

Integration usually takes place either in the laboratory or in a dedicated
facility. Sometimes it is on the factory floor. In the vast majority of cases,
integration should take place before a field test. Even one-shot deals, like a
missile booster, still go through rigorous testing and integration before launch.

1.12.5 Environmental

Environmental tests are often completed during integration. Usually, the
interactions within a system need to endure environmental extremes as part
of the qualification of the design. Typically, a dedicated team of technicians
performs environmental testing during integration; they work in concert
with test or design engineers. Environmental testing almost always requires
some sort of dedicated facility to control parameters such as temperature,
humidity, and pressure.

1.12.6 Field Tests

Field testing can be a form of integration because it exercises the system in
day-to-day circumstances with real users. It occurs either with prototypes to
refine a design or after rigorous integration. Depending on the size of the
project or its phase of development, anyone of the following might conduct
the field tests: design engineer, technician, test personnel, or marketing.

1.13 Manufacturing

1.13.1 Electrical and Electronic

Manufacturing of electronic circuits is a complex business. There are in-
tegrated circuit (ICs, which constitute an entire industry unto itself, and I
will not discuss them in this book), PCB fabrication (another subculture
within manufacturing), component assembly and soldering, cable and
connector assembly, and module placement and connection.

1.13.2 Mechanical

Even though this is primarily a book on electrical and software issues,
mechanical issues and manufacturing never go away; they are always a
consideration. Products that are primarily electronics and software still have
mechanical concerns—mechanisms (motors, gears, linkages, doors, etc.),
circuit-board attachment, and cabling tie down.
There is always a chassis that supports the circuit boards and power

supply. If the application is avionics, then the chassis might be one piece,
which requires casting or machining. Otherwise, a chassis might be a COTS

44 Developing Real-Time Embedded Products

item built up from plastic or sheet metal, fasteners, and a back-plane PCB.
Any type of enclosure requires fabrication and assembly.

1.13.3 Assembly

Assembly is the putting together of components into a subsystem. It can
also be the putting together of subsystems into a final product. Manu-
facturing assembly design focuses on ease, reducing mistakes, and reducing
the cost of labor.
Many companies outsource the manufacturing and assembly of the PCBs,

which are labor- and capital-intensive activities. In essence, the company
becomes an integrator of the final product. For high-volume manufacturing,
companies might have a dedicated facility or they might send the entire
production to low-cost business locations around the world.

1.13.4 Tests

Each stage within manufacturing usually includes some form of test, even if
it is only a visual inspection. Besides inspection, manufacturing tests might
include automated tests, functional tests of circuits, mechanical alignment
tests, and power-on tests. The case studies will outline some of these
manufacturing tests.

1.14 Support

1.14.1 Installation and Commissioning

Larger projects with many subsystems that are very large or very expensive
require a well developed installation and commissioning stage. For all the
products in these case studies, that is not the situation. I will leave in-
stallation and commissioning to the process industries and large industrial
applications.

1.14.2 Training

Training varies widely from product to product. Generally, the higher the
volume, the more intuitive the product’s operation should be. I really do not
want to spend more than a few moments learning how to use my new
coffeemaker. On the other hand, the more specialized the product, the
greater is the need for training.
Training requires that you understand the customer, the user, and their

needs. You must also understand the product’s purpose and operation. The
user’s manual is the first line of defense in training the user. It must be well
written and easy to use. It should almost entice the user to read it—but do

Development Processes 45

not despair when they do not. Users will read it when they cannot get the
product to work!
If the product has high-volume sales and is fairly intuitive, then little

training is required. For most training in less-specialized equipment, a
technician or an instructor can give the training. If it has few sales and is
highly specialized equipment, then an engineer or even the designer might
train users. In this case, training is often factored into the cost of sale.
Otherwise, training is a separate expense for the customer.
Training can be either on a customer’s site, at a classroom facility, or in the

factory (company’s location).

1.14.3 Logistics

Logistics vary widely from product to product and depend solely on the
application. Portable devices need battery recharging or replacement.
Various expendables in other applications need to be replenished. Some-
times, it is new lubricants or fuels or cooling liquids. Logistics and supply
chain is also a field of operation unto itself, and falls outside the scope of
this book.
Non-professional personnel or even the customer can be trained to handle

logistics for some of the devices described in these case studies. Highly
trained technicians and even engineers might handle logistics for certain
mission-critical and safety-critical devices.

1.14.4 Maintenance

Maintenance first depends on the philosophy of the application and
the product. Smaller, lower-cost consumer appliances are typically
‘‘throw-away.’’ Larger, more expensive consumer appliances tend toward
subsystem replacement (e.g. replacing the entire circuit board instead of
expending additional labor costs to diagnose and repair the defective
component on the circuit board). Economically, it is nonsensical to repair
smaller, cheaper appliances. Much more expensive devices and equipment
will usually have a defined maintenance philosophy. Here are few of those
philosophies:

� Replace subsystems

� Repair subsystems

� Periodic diagnosis and preventive maintenance

� Condition-based monitoring

� BIT and BITE

If you adopt a philosophy of repair rather than one of replacement, be
aware that it might take down the equipment and operation for a significant
amount of time, reducing its availability. Repair also requires trained labor

46 Developing Real-Time Embedded Products

and dedicated equipment. Labor ranges from highly trained technicians
and engineers to depot-level skilled labor to minimally trained personnel.
The equipment ranges from simple multimeters to specialized automated
instruments.

1.14.5 Technical Support

Technical support is the superset that includes maintenance and repair. It also
includes a variety of customer support functions e.g., answering basic ques-
tions about operation, handling warranty claims, or training of sophisticated
and complex functions. A call center staffed by trained personnel with cap-
abilities of a technician can handle numerous basic questions. Training
can range from simple marketing concerns staffed by junior staff to highly
sophisticated operations handled by expert engineers. Training can be on the
factory site or at the customer’s location, depending on the size and cost of the
product. A large, expensive product may include on-site training in its initial
cost. Smaller, less expensive products may warrant fee-based training at the
factory.

1.15 Disposal

1.15.1 Recycling

Recycling of old and discarded electronic products is an international
concern. Salvaging and recycling in rising economies return some materials
for minor income. Unfortunately, the economic gain offsets the health
effects in some of the poorest places. Improperly disposed heavy metals are
leaching into the ground water and soils. Trash litters these regions, which
increases the health risks from disease and infection.
International pressures are mounting to recycle the entire product:

enclosures, batteries, lead, precious metals, lubricants, and plastics. The
RoHS regulations, instituted in Europe and in the United States (as of
July 2006), require that manufacturers take back and recycle disposed
products. This concern is greater for appliance and consumer manu-
facturers than for those who build specialized, custom equipment.
As engineers and designers, we must be aware of these regulations

and incorporate them into the requirements during design. Regulatory
and even marketing personnel will need to be involved in specifying these
regulations.

1.15.2 RoHS and WEEE

The RoHS Directive places a new burden on manufacturers. RoHS requires
the phasing out of lead, mercury, cadmium, chromium, halogen, bromide,

Development Processes 47

and some fire retardants from all products in an effort to limit the
environmental damage on disposal. This directive particularly affects
electronic products and devices because lead is a significant component of
traditional solder, and cadmium is used in nickel–cadmium rechargeable
batteries. RoHS became effective in the United States on July 1, 2006.
Until 2006, about 90% of all electronic devices and equipment ended up in

landfills when disposed. There the heavy metals—lead, cadmium, mercury,
and chromium—leached into the soil. The waste from electrical and
electronic equipment (WEEE) Directive 2002/96/EC requires the treatment,
recovery, and recycling of electric and electronic waste after August 13,
2006 in the European markets. Complying products must have a sticker that
shows a wheeled disposal barrel, called the ‘‘Wheelie Bin.’’

1.16 Liability

1.16.1 Safety

Every product has some level of safety defined by the market and by dis-
parate sets of government regulations. The simplest products, such as
hobby products, have essentially no regulations, if they do not connect to
line power and do not supply batteries in the product. The most complex
products, such as satellite subsystems, may have to conform to international
treaties in some situations (e.g., containing a thermoelectric nuclear power
system). Otherwise, they only need to adhere to excellent design practices
and processes. Medical products arguably have the highest level of safety
concerns, particularly those that sustain life or can threaten life if they fail.
Regulations range from UL to IEC (in Europe and the United States and

spreading all over the world) to FDA approval for medical devices in the
United States. Each case study will outline safety regulations needed.
Everyone in a product team or company should have some awareness of

safety. Engineers and designers must define the level of safety in the
requirements early in development. For medical devices, regulatory per-
sonnel made up of either company staff or hired consultants will also be
involved in specification of safety and the requirements.
Once specified during development, each safety requirement will have to

be tested by your test team to show conformity to safety standards, as well
as to be a satisfactory solution to the operational requirements.

1.16.2 Legalities

There are legal liabilities other than safety.
We engineers and designers have to be aware of the intellectual property

rights of others and not copy competing designs [23,24]. Patent protection
and infringement is important enough for you to receive appropriate legal

48 Developing Real-Time Embedded Products

advice while developing and marketing a product—this advice applies to
engineers, designers, marketing, and management.
Contract law is another area with which each of us should also have some

acquaintance, especially business alliances and memos of understanding
(MOUs). Again, you (engineers, designers, marketing, and management)
should receive appropriate legal advice while doing business [24].
Our goal is to reduce liabilities to an acceptable level for our business or

market. We also need to understand whom it affects and your degree of
responsibility. See References 23 and 24.

1.16.3 Economics

Ultimately, when something does not work or fails, who is liable? Maybe
another way to ask is, ‘‘Who pays? Does it affect you?’’
One thing for sure, no one wants to undergo a product recall. Recalls are

expensive; they cost your company money, and they damage the company’s
reputation for years. Success is short-lived; failure is long-term.

1.17 Priorities

Ok, some of you are probably saying, ‘‘Well, this all looks good, but I can’t
give the same attention to all of it.’’ That is one of the big problems with
design. The rest of this book is devoted to case studies to help you see where
you might set your priorities and what remaining activities might not be as
important.

1.18 Summary

This chapter sets a template for each of the case studies that occupy the vast
majority of this book. The template should aid you to compare and con-
rast development issues in different products. Here is an outline of that
template:

� Concept and market

� People and disciplines

� Architecting and architecture

� Phases

� Scheduling

� Documentation

� Requirements and standards

Development Processes 49

� Analyses

� Design trade-offs

� Tests

� Integration

� Manufacturing

� Support (training, logistics, maintenance, and repair)

� Disposal

� Liability

References

1. Ganssle, J. and Barr, M., Embedded Systems Dictionary, CMP Books, San Francisco,
CA, 2003.

2. Fowler, K.R., Electronic Product Development, Architecting for the Life Cycle, 2nd
ed., Oxford University Press, Oxford, UK, Chapter 2, 2008 (to be published).

3. Laplante, P., Real-Time Systems Design and Analysis, 3rd ed., IEEE Press and
Wiley-Interscience, A John Wiley & Sons, Inc. Publication, Piscataway, NJ 2004.

4. Oshana, R., DSP Software Development Techniques for Embedded and Real-Time
Systems, Newnes, an imprint of Elsevier, Boston, MA, 2006.

5. Williams, R., Real-Time Systems Development, Butterworth-Heinemann, an
imprint of Elsevier, Oxford, UK, 2006.

6. Christensen, C.M., The Innovator’s Dilemma, When New Technologies Cause
Great Firms to Fail, Harvard Business School Press, Boston, MA, 1997,
p. xv.

7. Rechtin, E. and Maier, M., The Art of Systems Architecting, CRC Press, Boca Raton,
FL, 1997, p. 254.

8. Moody, J.A., Chapman, W.L., Van Voorhees, F.D., and Bahill, A.T., Metrics and
Case Studies for Evaluating Engineering Designs, Prentice Hall PTR, Upper Saddle
River, NJ, 1997, pp. 2–7.

9. Colleague, Personal communication, August 2, 2006.
10. Ganssle, J., Managing embedded projects, Embedded Systems Conference,

November 1998.
11. Schoff, G.H. and Robinson, P.A., Writing and Designing Manuals: Operator

Manuals, Service Manuals, Manuals for International Markets, 2nd ed., Chelsea, MI,
1991.

12. EMC Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 75–82.

13. ESD Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 103–105.

14. Telecom Standards and Regulations, Compliance Engineering, Vol. 21, No. 1, 2004
Annual Reference Guide, pp. 139–142.

15. Product Safety Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual
Reference Guide, pp. 165–172.

50 Developing Real-Time Embedded Products

16. Wiegers, K., 10 Requirements Traps to Avoid, Software Testing & Quality
Engineering, January/February 2000.

17. Reinertsen, D., In Search of the Perfect Product Specification, IEEE Instrumenta-
tion & Measurement Magazine, Vol. 3, No. 2, June 2000, pp. 28–31.

18. Allen, F., The Letter that Changed the Way We Fly, in American Inventions,
A Chronicle of Achievements that Changed the World, Barnes & Noble Books by
arrangement with American Heritage, a Division of Forbes, Inc., New York, NY,
1995, pp. 102–109.

19. Pazemenas, V., Rapid Development for Medical Products, IEEE Instrumentation &
Measurement Magazine, Vol. 3, No. 2, June 2000, pp. 32–37.

20. Bogatin, E., Signal Integrity: Simplified, PTR Prentice Hall, Upper Saddle River,
NJ, 2004.

21. Fowler, K., Electronic Product Development, Architecting for the Life Cycle, Oxford
University Press, New York, NY, 1996, p. 373.

22. Freeman, H., Software Testing, IEEE Instrumentation & Measurement Magazine,
Vol. 5, No. 3, September 2002, pp. 48–50.

23. Konold, W., Tittel, B., and Frei, D., What Every Engineer Should Know about
Patents, CRC Press, Boca Raton, FL, 1988.

24. Silver, C., The Pocket Lawyer For Engineers, Elsevier Science-Newves, Boston, MA,
2008 (to be published).

Development Processes 51

2
Variations on the Theme—Considerations
for Mission-Critical Equipment and
Medical Devices

2.1 Development Processes

There are markets and products that require rigorous and well-defined
development processes. Examples include industrial equipment, cars,
trucks, tractors, military equipment, avionics, spacecraft, and medical
devices. These types of products are called mission-critical equipment or,
sometimes, safety-critical equipment.
Mission-critical means that the system or equipment must operate in a

satisfactory fashion that is necessary for a larger overall operation. Should
the equipment either fail or operate in an inappropriate manner, it com-
promises the overall operation or mission. An instrument on a spacecraft is
an example of mission-critical equipment; its failure would seriously impair
the space mission.
Safety-critical is very similar to mission-critical. The one distinction is that

it affects human life. Should the equipment either fail or operate in an
inappropriate manner, it puts human life and limb at risk.
This chapter will suggest some general processes used in design and

development for mission-critical and safety-critical systems. It will highlight
variations in the processes outlined in Chapter 1; these processes include
standards, regulations, certification, documentation, development phases,
plans, procedures, reviews, configuration control, archiving, and traceability.

2.1.1 What, Why, Who, When, Where, and How

You must develop mission-critical and safety-critical systems thoughtfully
and carefully, with traceable evidence for every detail. Like a good journalist,
you and your team must establish the ‘‘what, why, who, when, where, and
how’’ in everything that you do.

What: You are establishing or operating a quality system that supports
development of mission-critical and safety-critical equipment. It encourages

53

rigorous and correct operation of procedures to help you build an
appropriate and correctly operating product. Part of the quality system is
a project plan, which describes the particular activities that must occur
during development.

Why: A quality system should provide a complete audit trail throughout
development. Anytime during development, the quality system should
be able to demonstrate the entire ‘‘what, why, who, when, where, and how’’
of your project.

Who: Relevant personnel include anyone involved at any point in the
development of mission-critical and safety-critical equipment. Most of the
focus in this book will be on designers and engineers, but the ‘‘who’’
includes folks in management, administration, purchasing, manufacturing,
and plant maintenance as well.

When: The project plan describes the phases of development when
particular activities occur.

Where: The project plan describes where particular activities occur.

How: The essence of any quality system is to iterate through a simple five-
step process in each stage of design and development. The steps are plan,
execute, review, report and update (PERRU). This five-step process repeats
at every level of effort, from preparing the simplest component to the
highest-level architectural specification.

� Planning includes sketches, doodles, and notes in engineering
notebooks, discussions with colleagues, meetings, and documenta-
tion of projected effort and responsibility.

� Execution means that you carry out the plans.

� Review includes code inspections, design reviews, tests, analyses,
and simulations.

� Report means that you document the results of the three previous
steps for immediate use (i.e. update) in the next iteration and for
traceability later.

2.1.2 Economics

Mission-critical, safety-critical, and medical equipment all tend to be specia-
lized, lower-volume products that generally have higher profit margins
(ratio or difference between the price of the final product and the cost to
develop, manufacture, and distribute it). One of the main reasons is the
expense of non-recurring engineering (NRE) for certification and govern-
ment approvals.

54 Developing Real-Time Embedded Products

2.2 People and Disciplines

Quality systems include everyone on the team and in the company:
engineers, quality assurance (QA), marketing, management, procurement,
manufacturing, and administration.

2.3 Architecting and Architecture

2.3.1 Process

Most mission-critical, safety-critical, and medical projects operate under a
form of process control. Many companies use the International Organiza-
tion for Standardization, or ISO, standards and certification. More recently,
some favor the Capability Maturity Model Integration, or CMMI, form of
process control. More on ISO and CMMI appears below.
The design and development for these projects often use the modified

Waterfall process, called the V-model, as shown in Figure 1.4. This is be-
cause any type of approval or certification does not allow further mod-
ification or upgrade to the design of the product. What you certify is what
goes on the market. You cannot change it later without another round of
approvals. Furthermore, I would venture to guess that the V-model process
might be more traditional and its traceability better understood (even
though traceability can be used with any process).
Two different sets of standards and regulations from the United States can

guide the architecting and development of mission-critical, safety-critical
systems, and medical devices. For medical devices, I will quote from the
Food and Drug Administration’s (FDA’s)Design Control Guidance for Medical
Device Manufacturers, March 11, 1997. You can find it at Reference 1. For
mission-critical systems, I will quote from the U.S. DO-178B for avionics [2].
These standards give frameworks for development. They do not specify

how each step is to occur. They only provide guidance with phrases like
‘‘represents current thinking on this topic’’ and ‘‘establishes a framework.’’

2.3.2 FDA Design Control Guidance

Intent, Purpose and Scope: ‘‘ The regulation does not prescribe the practices
that must be used. Instead, it establishes a framework that . . . provides
manufacturers with the flexibility needed to develop design controls that
both complywith the regulation and aremost appropriate for their owndesign
and development processes. . . . This guidance is intended to assist manu-
facturers in understanding the intent of the regulation’’ [1]. The purpose of the
FDA Design Control Guidance is, ‘‘ to assist manufacturers in understanding

Variations on the Theme 55

quality system requirements concerning design controls. . . . Design controls
are an interrelated set of practices and procedures that are incorporated into
the design and development process, that is, a system of checks and balances.
Design controls make systematic assessment of the design [1].’’ The scope is,
‘‘Design controls are a component of a comprehensive quality system that
covers the life of a device’’ [1].

Application of design controls: Figure 2.1 outlines the general application
of the design controls. ‘‘Each design input is converted into a new design
output; each output is verified as conforming to its input; . . . [1].’’ Basically,
you can use the five-step process (plan, execute, review, report and update)
and cover this intent. Figure 2.1 is similar to the V-model of development,
but it can be applied to other forms of development too. ‘‘Manufacturers
should use processes best suited to their needs’’ [1].

Design input: ‘‘Design input means the physical and performance require-
ments of a device that are used as a basis for device design’’ (21 CFR
820.3(f)) [1]. Design inputs are a complete, consistent, and unambiguous set
of requirements. They specify intent, the ‘‘who, what, when, where, why,’’
and indicate function, performance, and the interfaces. They should also
give quantitative limits with measurement tolerances, characterization of
the operational environment, and complete, relevant citations. Design
inputs are not the following:

� Marketing memoranda or concept documents

� Prototypes

� ‘‘How’’ of design and development

Marketing memoranda or concept documents can provide the starting
point for design inputs, but they do not provide complete coverage.
Prototypes lack safety and ancillary features.

Design output: ‘‘Design output means the results of a design effort at
each design phase and at the end of the total design effort. . . . The total

Review

Validation

Verification

User
needs

Design
input

Design
process

Design
output

Medical
device

FIGURE 2.1
Outline of FDA design controls. (� 2002 by Kim Fowler, used with permission. All rights
reserved.)

56 Developing Real-Time Embedded Products

finished design output consists of the device, its packaging and labeling,
and the device master record’’ (21 CFR 820.3(g)) [1]. The device master
record contains the production specifications (e.g. assembly drawings, bill
of materials, installation procedures, packaging, and labeling) and
descriptive materials (e.g. risk analysis results, software source code, and
the results of verification). You must document, review, and approve design
outputs before release.

Design review: ‘‘Design review means a documented, comprehensive, syste-
matic examination of a design . . .’’ (21 CFR 820.3(h)) [1]. The design review
describes a variety of reviews, procedures, and reviewers. The results of all
reviews are contained in the design history file (DHF); it is ‘‘ a compilation of
records which describes the design history of a finished device’’ [1].

Design verification: Design verification has two components: verification
and validation. Verification means that the device meets the quantitative
requirements. Verification is an objective comparison of test results to
metrics in the specifications. Validation means that the device satisfies the
intent of user desires. Validation is a more subjective measure than
verification, but validation addresses the system’s overall function.

Design Transfer: Design transfer is a set of ‘‘procedures to ensure that the
device design is correctly translated into production specifications’’ (21 CFR
820.3(h)) [1]. A design transfer contains items like the device master record,
training materials, and manufacturing aids.

2.3.3 DO-178B

Purpose and scope: DO-178B is ‘‘to provide guidelines for the production of
software for airborne systems and equipment that performs its intended
function with a level of confidence in safety that complies with air-
worthiness requirements’’ [2]. The scope is, ‘‘those aspects of airworthiness
certification that pertain to the production of software for airborne systems
and equipment used on aircraft or engines.’’ The document, ‘‘does not
provide guidelines concerning the structure of the applicant’s organization,
the relationships between the applicant and its suppliers, or how the
responsibilities are divided’’ [2].
Like the FDA Design Control Guidance, DO-178B recognizes that you can

develop software inmany different ways. It states, ‘‘This document recognizes
that the guidelines herein are not mandated by law, but represent a consensus
of the aviation community. It also recognizes that alternative methods to
the methods described herein may be available to the applicant’’ [2].

Definitions: DO-178B categorizes failure under five headings:

� Catastrophic

� Hazardous/severe-major

� Major

Variations on the Theme 57

� Minor

� No effect

The level of the software is then defined according to its potential failure
conditions [2]:

� Level A for potential catastrophic failures

� Level B for potential hazardous/severe-major failures

� Level C for potential major failures

� Level D for potential minor failures

� Level E for potential no effect failures

Defining your software accordingly will then affect what level processes
you use under DO-178B.

Processes: ‘‘DO-178B is primarily a process-oriented document. For each
process, objectives are defined and a means of satisfying these objectives are
described’’ [2]. The processes include [2]

� Software planning

� Software development

� Verification of outputs of software requirements

� Verification of outputs of software design

� Verification of outputs of software coding and integration

� Testing of outputs of integration

� Verification of verification process results

� Software configuration management

� Software quality assurance

� Certification liaison

2.3.4 Process Control

The development of mission-critical and safety-critical systems relies on
some form of process control. The standards and regulations leave the
choice to you with the intent that you cover important issues and con-
cerns thoroughly. Process control includes configuration management and
quality assurance. Components within configuration management
include version control, archiving capabilities, and audit trails.
Commercial software tools are available to help you with process

control and configuration management. These tools can provide various
modules that provide object modeling, requirements management, version
control, archiving facilities, and capture of test results for comparison to the
requirements.

58 Developing Real-Time Embedded Products

What follows are selected issues within process control. These are some of
the things that you must do to develop mission-critical and safety-critical
systems.

Performance verification: Another critical element of systems engineering
is ensuring that every requirement is objectively measured and met.
Therefore, the systems engineering team must develop a thorough
compliance matrix that identifies the verification method for each
requirement. The verification may be performed through one or more of
the following four methods:

� Test: Most requirements and specifications will be verified by test or
supported by quantitative test data. Testing will take place at various
levels that may include component, board, module, assembly, or
system.

� Inspection: This approach applies to requirements and specifications
that describe a design characteristic or method. An example of a
requirement that would be verified by inspection is ‘‘the application
software shall be coded in C.’’

� Demonstration: Verification by demonstration is applied to some
qualitative requirements and specifications that cannot be tested. For
example, a requirement such as ‘‘a failure of one instrument shall not
prevent successful operation of all other instruments’’ would be
verified by demonstration.

� Analysis: Some requirements cannot be verified by test alone because
of cost or physical limitations. In this case, analysis and simulation
may help ensure that the system will meet its requirements. This is
the effort of last resort.

System Validation: A critical element of systems engineering is ensuring
that every requirement matches use or customer intent. Therefore, the
systems engineering team must confirm that each requirement matches the
expressed intent and has traceable specifications.

2.3.5 Project Risk Management

One of the most important things that a good process must do is accom-
modate risk management. Risk is the concern over the potential inability to
stay within defined cost, schedule, performance, or safety constraints.
The FDA Design Control Guidance states, ‘‘Risk management is the

systematic application of management policies, procedures, and practices
to the tasks of identifying, analyzing, controlling, and monitoring risk’’
([1], p. 5). Risk management continues throughout the development life
cycle; it identifies risk, develops risk mitigation plans, then tracks and closes
out those identified risks. Risk management includes planning for risk,
assessing risk areas, developing risk-handling options, monitoring risks to

Variations on the Theme 59

determine how risks have changed, and documenting the overall risk
management program.
Formal development activities to identify risks include Event Tree Ana-

lysis (ETA), Fault Tree Analysis (FTA), and Failure Modes and Effects
Analysis (FMEA). Another less obvious activity is margin management,
which helps to constrain and reduce risk as the project proceeds.
ETA helps you understand how your product responds to each potential

and possible circumstance. It is a procedure to establish the relationship
between an event and the causes of that event.
FTA is a top-down analysis. It is the process of establishing the relation-

ship between a fault—an undesirable behavior or system state—and the
causes of that event. FTA examines the causes of a bad result.
FMEA is a bottom-up analysis; it might be viewed as the reverse process

of FTA. FMEA determines what can go wrong from a given cause. The
FMEA picks up where the FTA leaves off at the component and unit level.
In general, the FMEA considers all credible failure cases (e.g. high, low,
or intermittent) for each component. The FMEA will help ensure that no
unexpected single-point failures exist in the system.
Risk analysis establishes the likelihood of problems and the attendant

severity. Margin management uses these metrics to then manage the system
margins. It can help you avoid unexpected problems encountered during
the system development.

2.3.6 Architecture

Mission-critical, safety-critical, and medical products require careful design.
Dependability is a major topic in that design. Careful design to achieve the
various stages of dependability can use a number of techniques, includ-
ing (but not limited to) stress margins, redundancy and error checking,
interlocks, fail-safe, trapdoors, limp-home, and fault tolerance. These can
all help make devices and equipment that survive faults, failures, and
problems, or at least degrade gracefully. Unfortunately, they are accom-
panied by a disproportionate increase in cost and development time.

2.3.7 Interfaces

Interfaces are important for partitioning a design into appropriate units and
modules. Partitioning the development along physical, software, and func-
tional lines should be a considerable part of the architecture and early de-
sign effort.
Among the interfaces and design decisions, the human interface is critical

and very difficult to design. The interface design is the system to the user.
It should be appropriate and as intuitive as possible. Both ETA and FTA
should consider the many ways humans can misuse an instrument.

60 Developing Real-Time Embedded Products

2.4 Phases

Mission-critical and safety-critical systems follow five development phases
(Table 2.1). Each has many recorded activities that are traceable and may be
audited by government agencies. The case studies will each give detailed
lists of activities within each phase. Case Study 7 in Chapter 10, in parti-
cular, has nearly identical outlines for the first three phases that follow.
Please note that the first four phases described here are in terms of the
design review that marks the end of each phase.

2.4.1 Concept

Conceptual Design Review

The Conceptual Design Review concludes Phase 1: Concept; it should
present the mission goals, objectives, and constraints. It should demonstrate
that the requirements of the project are understood and that the proposed
approach will meet these requirements. Example items, from a satellite
subsystem, to be addressed in the CoDR are

� Program organizational structure, organizational interfaces, schedule,
cost, policy

� Review mission objectives

� Requirements

– Mission: environment, host resources, experiment requirements

– Performance: technical characteristics

– Major system function and interfaces

� Research—literature, patent searches

� Design constraints and major trade studies performed

� Requirements process and management

TABLE 2.1

Examples of the Five Phases of Development within Mission-Critical
and Safety-Critical Systems

Phase Medical Device Satellite Subsystem

1 Concept Concept
2 Planning and scheduling Preliminary design
3 Design and development Critical design
4 Controlled release Production (manufacturing)
5 Commercial release Operation, maintenance, disposal

Variations on the Theme 61

� System architecture

– Concept

– Hardware components

– Software components

– Operations concept

– Support systems and logistics

� Planned integration and test program

� Development drivers

� Risk assessment

The output of the CoDR will constrain the baseline design following the
closure of any action items resulting from the review. Long lead items,
development support equipment, breadboard parts, and materials can be
purchased following the successful completion of the CoDR.

2.4.2 Preliminary Design

Preliminary Design Review

The Preliminary Design Review concludes Phase 2: Planning and Sche-
duling or Preliminary Design. It is the first major review of the detailed
design and will be held prior to the preparation of most of the formal design
drawings and software code development. The PDR is held when the de-
sign advances sufficiently to begin either some breadboard testing or fab-
rication of engineering models.
A PDR presents the design and interfaces through block diagrams, signal

flow diagrams, schematics showing logic diagrams, first interface circuits,
packaging plans, configuration and layout sketches, preliminary analyses,
modeling, and any early test results. The PDR should present the estimates
of weight, power, volume, and the basis for the estimates, as well as the
mechanical, power, thermal, and electronic designs with load, stress,
margins, and reliability assessments. A PDR should specify the software
requirements, design, structure, logic flow diagrams, computational load-
ing, design language, and development systems.
An example PDR, for a satellite subsystem, may cover the following

items:

� Technical objectives, requirements, general specification

� Closure of actions from CoDR, completion of research, trade-offs, and
feasibility

� Requirements—function, performance, interface

� Analyses

– Mechanical/structural design, analyses, and life tests

62 Developing Real-Time Embedded Products

– Weight, power, data rate, commands, electromagnetic
interference (EMI)/electromagnetic compatibility (EMC)

– Electrical, thermal, mechanical, and radiation design and analyses

� Software requirements and design

� Support equipment design

� System performance budgets

� Design verification, test flow and test plans

� Host interfaces and drivers

� Parts selection, qualification

� Risk analysis—ETA, FMEA, and FTA

� Risk margin and management

� Contamination requirements and control plan

� Quality control, reliability

� Materials and processes

The completion of the PDR and the closure of any actions generated by the
review become the basis for the start of the detailed design effort and the
purchase of parts, materials, and equipment.

2.4.3 Critical Design

Critical Design Review

The Critical Design Review concludes Phase 3: Design and Development or
Critical Design. It will be held near the completion of engineering evalua-
tion using the breadboard model of the project. It will be held prior to any
design freeze and before any significant fabrication activity begins.
The design at CDR should be complete and comprehensive. The CDR

should present all the same basic subjects as the PDR, but in final form.
An example CDR, for a satellite subsystem, should include all of the items
specified for a PDR, but updated to the final present stage of development
process, plus the following additional items:

� Closure of actions from the PDR review

� Changes from the PDR review

� Final parts list

� Final implementation plans including engineering models, proto-
types, flight units, and spares

� Final software design and process implementation

� Engineering model and breadboard test results

� Design margins

Variations on the Theme 63

� Completed design analyses

� Qualification and environmental test plans and test flow

� Safety requirements

� Operations plan

� Updated risk analysis—ETA, FMEA, and FTA

� Updated risk margin and management

� Test

– Plans

– Status of procedures and verification plans

– Test flow

� Schedule

� Documentation status

� Test history of the hardware

� Product assurance

� Previous anomalies, deviations, waivers, and their resolution

� Identification of residual risk items

� Plans for shipping containers, environmental control, and
transportation

Results from the CDR and resolution of all the action items generated
by it constitute the baseline design.

2.4.4 Production or Manufacturing

Production Handoff

The Production Handoff concludes Phase 4: Controlled Release or Pro-
duction; it occurs prior to manufacturing. The purpose of the PHO is to
ensure that the design of the item has been validated through the en-
vironmental qualification and the acceptance test program, that all devia-
tions, waivers, and open items have been satisfactorily closed, and that the
project, along with all the required support equipment, documentation, and
operating procedures, is ready for production. Here are some example
items from a satellite subsystem:

� Rework/replacement of hardware, regression testing, or test plan
changes

� Compliance with the test verification matrix

� Measured test margins versus design estimates

� Demonstrate qualification/acceptance temperature margins

� Trend data

64 Developing Real-Time Embedded Products

� Total failure-free operating time of the item

� Could-not-duplicate failures should be presented along with assess-
ment of the problem and the residual risk that may be inherent in the
item

� Project assessment of any residual risk

� Review of shipping containers, monitoring/transportation/control
plans

� Ground-support equipment status

� Post-shipment plans

� System-integration support plans

2.4.5 Logistics, Maintenance, and Disposal

This is the market or service phase of the product. It usually is the longest
phase. Its length depends on both the product’s longevity in service and the
development effort. Medical devices might last 10 or 15 years, while auto-
mobiles might go twice as long. Buses and long-haul transport may run for
50 years or more. Certification and government approval usually are long,
arduous, and expensive processes that significantly increase the develop-
ment effort and prevent rapid market cycles.
This phase is the most varied in its requirements depending on the pro-

duct, its uses, and its customers. This phase does not have a general outline
of main considerations that were found in the previous phases; it simply
varies too much from product to product.

2.5 Scheduling

Mission-critical, safety-critical systems, and medical devices have activities
that need scheduling in addition to the ones already listed in Chapter 1.
Here are some activities that you should include in your planning:

� Meetings with potential customers, focus groups

� Research of regulations and standards

� Meetings with the appropriate regulatory bodies

� Integration and test (can be greater than 50% of the development
effort for larger systems with many subsystems)

� Certification—tests at specialized facilities

� Technical and operational evaluation (for military projects)

� Clinical studies (for medical devices)

� Documentation

Variations on the Theme 65

I repeated documentation because it takes on new dimensions in volume
and complexity for medical devices and for mission-critical, safety-critical
systems.

2.6 Documentation

2.6.1 Purposes

Besides the stated purposes in Chapter 1 (to record the specifics of develop-
ment, to account for progress, and to instruct the extent of functionality),
documentation serves several other purposes in mission-critical and safety-
critical systems. They provide the only real form of traceability and the basis
to address audits. You must have a documentation system to be accountable
to certifying bodies and to government organizations. Documentation and
archives of documents are a major effort in mission-critical and safety-
critical projects.

2.6.2 Types

Documentation must cover the entire ‘‘who, what, when, where, why, and
how’’ of a project. Table 2.2 lists examples of documents and when and why
they are prepared during mission-critical and safety-critical development.
Documents generally should not contain redundant information. Each

should fill a specific purpose. If they overlap, one document should control
the wording and the other should point to the first document without
repeating the information. This practice significantly improves configura-
tion control by reducing ambiguity; you do not have to update information
simultaneously in separate documents.

2.7 Requirements and Standards

2.7.1 Markets

Each application area for mission-critical systems—automotive, military,
aerospace, and medical—has its own set of standards. I will only point you
in the direction of some of these standards here. The case studies in later
chapters list examples of compliance standards that you will encounter in
specific areas [3–6].
Many products, if not most, require certification through Underwriter

Laboratories (UL) or have the Conformite Europeene (CE) mark for the
European Union. Certification comes from evaluation testing in approved
test laboratories.

66 Developing Real-Time Embedded Products

TABLE 2.2

Example Listing of Some Documents for Development of Mission-Critical and Safety-Critical Systems

Who, What, When Comments

Plan

(Who, What, When,
Where) Design (How, Why) Execute Review

1. Project-Plan Scheduling and
specifying all other
plans

2. Development plan
System plan
Software plan
Hardware plan
Parts control plan
Test/support
equipment plan

Parts inventory list

3. Configuration
management plan

Traceability
Design history file
Version description
Document
Document control
forms

4. Requirements and
specification plan

Requirements and
specifications

5. Test plan
Laboratory tests
Prototype tests
Field tests
V&V

Test procedures Test results Code and module
inspections
Corrective action
reports

Code standards, style
guide

6. Documentation plan Product description
User manual
Product design

Software source listings Technical reviews
CoDR, PDR, CDR

(Continued)

V
ariation

s
on

the
T
hem

e
67

Who, What, When Comments

Plan
(Who, What, When,

Where) Design (How, Why) Execute Review

Documents
System design
Software design
Hardware design
Support equip. design
doc.
Software design
Hardware design
System design
Technical
communications—
letters, memos, notes

Functional
configuration
review (Validation)

Early phases 7. Risk analysis plan—
FMEA, HA

Risk analysis report

Later phases 8. Training plan Training procedures Training materials—
manuals, brochures,
video, interactive S/W

Later phases 9. Design transfer plan Design transfer
document

TABLE 2.2

Continued

68
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

2.7.2 Government and Market Standards

Automotive: Many standards exist for the automotive market. There are
Corporate Average Fuel Economy (CAFE) regulations for fuel economy in
the United States. The California Air Research Board (CARB) has standards
for emissions reductions, while the European Association for Emissions
Control has standards for emissions for vehicles sold in Europe. The
National Highway Transportation Safety Administration (NHTSA) has
standards for vehicle safety in the United States. You can find more
information in References 7–10 and in the case study of Chapter 7.
In Europe, the OSEK standard defines characteristics for operating sys-

tems and in-vehicle communications protocols. OSEK stands for ‘‘Offene
Systeme und deren Schnittstellen fur die Elektronik im Kraftfahrzeug,’’
which means ‘‘open systems and corresponding interfaces for automotive
electronics’’ [11].

Military: The U.S. government has been moving away from military
standards over the last decade. Now they tend to put exactly what they
want in a statement of work (SOW) or a procurement specification (PS)
instead of calling out specific standards. You can find more information in
the case study of Chapter 9.

Aerospace: General processes in the aerospace business can follow AS9100.
Avionics follow DO-178B/C for software development and documentation.
The Society of Aerospace Engineers (SAE) provides a CD costing US $2915
that has 2400 documents that can be applicable to aerospace [12].

Medical: For medical devices in the United States, the FDA classifies
devices into three categories: Class I, II, or III. Class I devices must supply
premarket notification, registration, prohibitions against adulteration and
misbranding, and rules for good manufacturing practices. Class II devices
have the same requirements as Class I plus they must meet performance
standards. Class III devices have the same requirements as Class II plus
they must gain premarket approval from the FDA. Some of these devices
may be eligible for 510(k) status, which speeds their approval. A 510(k)
status means that the device is substantially equivalent to a device in
commercial distribution before May 1976. You can find more information in
the Reference 13 and in the case studies in Chapters 12, 13, and 14.

UL: Underwriters Laboratory or UL is a certifying body for safety of products
in the United States. UL has more than 800 Standards for Safety [14].

CE: The CE mark, now known as CE marking, is a compliance mark for
products sold in Europe, in particular, and around the world in general.
The certifying body documents compliance with specific standards. The CE
marking on products serves as a ‘‘passport’’ into the European marketplace
of 18 countries (also known as the European Economic Area, or EEA).
The letters ‘‘CE’’ are the abbreviation for ‘‘Conformite Europeene’’ [15,16].

Variations on the Theme 69

Most companies need help getting the CE marking. Third-party certifi-
cation to certify products for the European Union are called ‘‘notified
bodies’’; they are authorized by European countries to serve as independent
test labs and perform the steps called out by product directives. Notified
bodies may be either a private company or a government agency.

ISO: ISO is the acronym for International Organization for Standardization.
The goal of ISO is for companies to build and maintain processes that
ensure quality products. Compliance with ISO standards is a significant
undertaking for any company. A good book for getting a quick under-
standing of ISO implementation is Reference 17.

CMMI: CMMI is the acronym for Capability Maturity Model Integration.
Its goal is for groups to build and maintain processes that ensure quality
products, particularly software. I recommend Reference 18 for better under-
standing CMMI. Reference 19 is a good book for quickly understanding
CMMI and comparing it to ISO.

2.8 Analysis

2.8.1 Event Tree Analysis

Event Tree Analysis (ETA) helps you understand how your product re-
sponds to each potential and possible circumstance. It is a procedure to
establish the relationships between an event and the causes of that event
through the use of an event tree. An event tree gives the sequence of
hardware, software, and operator functions that make up a scenario. ETA
gives both failed and successful paths through scenarios; it can also handle
multiple failures simultaneously.
ETA is a combination of graphical and tabular techniques. ETA can be a

more powerful tool for analyzing a system than FMEA. Figure 2.2 illustrates
just a small example of one event tree that might be used in an ETA. (Re-
ference 20, [pp. 175–176] is a good book for more detail on ETA and the
following analyses of FTA and FMEA.)

2.8.2 Fault Tree Analysis

Fault Tree Analysis (FTA) is a top-down analysis. It is the process of
establishing the relationship between a fault—an undesirable behavior or
system state—and the causes of that event. FTA examines the causes of a
bad result ([20], pp. 166–173).
FTA is a graphical technique. It begins with a fault or failure. It then traces

backwards through successive layers of subsystems and components to
identify the potential cause. It can reveal multiple causes for a particular
fault or failure. Figure 2.3 illustrates just a small example of one fault tree
that might be used in an FTA.

70 Developing Real-Time Embedded Products

2.8.3 Failure Modes and Effects Analysis

Failure Modes and Effects Analysis (FMEA) is a bottom-up analysis; it
might be viewed as the reverse process of FTA. FMEA determines what can
go wrong from a given cause. The FMEA picks up where the FTA leaves off
at the component and unit level. In general, the FMEA considers all credible
failure cases (e.g. stuck high, stuck low, or intermittent) for each component.
The FMEA will help ensure that no unexpected single-point failures exist in
the system.
FMEA is a ‘‘what-if ’’ analysis. It attempts to list all the possible failure

types or modes of a component and then list the outcome—the effect—of
each. A FMEA worksheet should be rigorously filled in. It should identify
the system and subsystem being analyzed, who is doing the analysis, and
when they did it. Figure 2.4 illustrates just a small example of a chart that
might be used in an FMEA.
Dunn cautions that FMEA should be conducted early in design. Merely

tacking on a FMEA does not meet the spirit of its utility. Problems pointed
out by FMEA are much cheaper to correct early in design, rather than late in
design ([20], pp. 159–166). The same thing holds true for ETA and FTA; they
should be done early in design.

2.8.4 Risk Analysis and Margin Management

Margin analysis establishes and manages system margins; it can help you
avoid unexpected problems encountered during the system development.

Initial event

Commanded
operation and
shade begins
unfurling

Step count reaches pre-
determined limit of rotation

Step count does not
reach limit of rotation

Step count Limit switches End event

Both switches detect
end of travel Commanded operation

stopped, shade unfurled

Commanded operation
stopped, shade unfurled

Commanded operation
stopped, shade assumed
unfurled

Commanded operation for
two more counts then
stop, assume failure of
shade to unfurl

Commanded operation
stopped, shade assumed
unfurled, one switch failedNeither switch

detects end of travel

One switch detects
end of travel

One switch detects
end of travel of shade

Both switches detect
end of travel of shade

FIGURE 2.2
Example of an ETA diagram for part of the operation of unfurling a solar shade on a satellite.
It uses a stepper motor to unfurl the shade and limit switches and counter circuitry to detect
the end of travel for the shade. (� 2007 by Kim Fowler, used with permission. All rights
reserved.)

Variations on the Theme 71

The following parameters from a satellite subsystem are examples of items
with margins, which must be managed:

� Mass

� Power consumption

� Data rate

� Data storage

� Critical CPU computational throughput

Shade fails to unfurl

Unfurl command sent
and received

Unfurl
command
not sent

Stepper motor
failed

Stepper motor count
circuit fails and
sticks at max limit
count

OR gate that has an output
fault if any the inputs fail

Symbol Legend:

A basic causal event that
requires no further development

An undeveloped event that
has insufficient information
for further development

AND gate that has an output
fault only if all the inputs fail

Event that may feed into
higher level outcomes, inputs
from AND or OR causes

Mechanics
failed

Limit switches fail
closed indicating
end of shade s travel

,

FIGURE 2.3
Example of an FTA diagram for part of the operation of unfurling a solar shade on a satellite.
It uses a stepper motor to unfurl the shade and limit switches and counter circuitry to detect
the end of travel for the shade. (� 2007 by Kim Fowler, used with permission. All rights
reserved.)

72 Developing Real-Time Embedded Products

System: Solar Shade

Subsystem: boom drive

Operating

Mode: Unfurling

Page: 1 of x

Date: 3 February 2007

Component Failure Mode Failure Effect

Stepper Motor OFF Solar shade does not unfurl.

Stepper motor count circuit detects

no rotation.

Limit switches detect no closure.

Stepper Motor ON Solar shade unfurls and possibly over-

extends to mechanical fracture of boom.

Stepper motor count circuit detects

continuous rotation.

Limit switches detect closure at

end of travel.

Stepper Motor count

circuit

Stuck at

count

Solar shade unfurls.

Limit switches detect closure at

end of travel.

Computer commands motor off.

Limit switch 1 Stuck at OFF Solar shade unfurls.

Limit switch 2 detects closure at

end of travel.

Stepper motor count circuit detects

rotation and maintains step count.

Computer commands motor off.

Limit switch 1 Stuck at ON Computer detects switch set,assumes

its failure and continues operation

by relying on redundant operations

in switches and motor count.

Solar shade unfurls.

Limit switch 2 detects closure at

end of travel.

Stepper motor count circuit detects

rotation and maintains step count.

Computer commands motor off.

Limit switch 2 Stuck at OFF Solar shade unfurls.

Limit switch 1 detects closure at

end of travel.

Stepper motor count circuit detects

rotation and maintains step count.

Computer commands motor off.

Limit switch 2 Stuck at ON Computer detects switch set,

assumes its failure and continues

operation by relying on redundant

operations in switches and motor

count.

Solar shade unfurls.

Limit switch 1 detects closure at

end of travel.

Stepper motor count circuit detects

rotation and maintains step count.

Computer commands motor off.

Boom breaks

Boom sticks

FIGURE 2.4
Example of an FMEA diagram for part of the operation of unfurling a solar shade on a satellite.
It uses a stepper motor to unfurl the shade and limit switches and counter circuitry to detect
the end of travel for the shade. (� 2007 by Kim Fowler, used with permission. All rights
reserved.)

Variations on the Theme 73

� Critical processor memory (code and operational memory) loading

� Critical nonvolatile memory loading

� Data bus throughput

On balance, excessive margins can make a system more complex and expen-
sive than necessary.
Margin analysis has two parts: the likelihood of failing to achieve a desired

result and the consequences of failing to achieve that result. The likelihood of
occurrence ranges from remote to very likely. The consequence of occur-
rence ranges from noncritical to catastrophic.
Table 2.3 is an example from the satellite subsystem of the criteria for

specific levels that define risk consequence and likelihood. The risk severity
is established by combining the consequence and likelihood as shown in
Table 2.4.
Risks that fall in the light gray boxes (diagonal) and dark gray boxes

(upper right corner) of Table 2.4 are tracked in the risk management data-
base. Risks in the clear boxes (lower left corner) are tracked at the discretion
of the program manager.

TABLE 2.3

Example of Risk Attribute Categories

Attribute Value Description

Likelihood Very likely (v)
High (hi)
Moderate (mod)
Low (lo)
Remote (r)

>50% chance of occurring
10–50% chance of occurring
1–10% chance of occurring
0.01–1% chance of occurring
<0.01% chance of occurring

Consequence Catastrophic (C)

Severe (S)

Important (I)

Non-critical (N)

Cost impact exceeds project reserves
Schedule slip that affects launch date
Loss of mission
Cost impact exceeds planned reserves
Schedule slip affecting critical path but not delivery
Major loss of capability in instruments or experiments
Cost impact smaller than element cost reserves
Slip reduces slack to 1 month or <50% of remaining
schedule

Minor loss of capability or design/implementation
work-around

No impact to cost reserves
Slip but slack greater than 1 month or >50% of
remaining schedule

Loss of capability/margin but all mission requirements
met

74 Developing Real-Time Embedded Products

2.8.5 Numerical Simulations

Numerical simulations play a large role in both space and military opera-
tions. Often these missions or systems cannot be fully tested directly; so
development teams will devote large efforts to considering many different
scenarios. Some of these simulations can be updated to accommodate new
principles, information, and understanding. For instance, changing diplo-
matic relationships may require new arenas of military operations. Or mag-
netic or gravitational anomalies may affect the navigation of spacecraft in
different orbit orientations.
Unfortunately, entire simulations almost never can be tested against ac-

tual scenarios. Therefore, development teams must simulate modules and
subsystems and then estimate the potential interactions within the complete
system.

2.8.6 Testing

Prototype field testing is an important part of development for military
equipment and medical devices. Advanced prototypes often undergo
technical evaluations in military environments. Prototypes of medical
devices usually undergo extensive laboratory testing. Medical devices in
final commercial form also undergo clinical investigations to demonstrate
efficacy and safety.

2.9 Design Trade-Offs

2.9.1 Architecture

Every mission-critical or safety-critical system usually has a primary ob-
jective. This means that these systems have a small set of primary

TABLE 2.4

Example of Risk Severity–the darker gray indicates greater severity

C
o
n
se
q
u
en
ce

C

S

I

N

r lo mod hi v

Likelihood

Variations on the Theme 75

requirements that address the objective. The requirements often focus on
one of the following objectives: efficacy, performance, safety, or depend-
ability. Selecting one of these objectives will drive the design of your device.

2.9.2 Dependability

Dependability refers to the quality of service provided; it has various
components ([21], p. 104):

� Reliability

� Availability

� Fault tolerance or performability

� Testability

� Maintainability

� Safety

Dependability has analytical definitions and a theoretical basis. I re-
commend the books cited in References 20 (pp. 175–176) and 21 for further
study of dependability.

Reliability: Reliability ‘‘is the probability that the system operates correctly
throughout a complete interval of time. . . . Reliability is most often used to
characterize systems in which even momentary periods of incorrect
performance are unacceptable, or it is impossible to repair the system’’
([21], pp. 4–5). You specify reliability in hours of continuous operation (i.e.
without failure). Reliability might be in tens of thousands of hours for
military equipment, or in years of continuous operation for satellites or
implanted medical devices.
Complexity, vibration, shock, wide temperature variations, corrosion,

and material aging all reduce reliability. Calculations for reliability do not
accurately predict time intervals of correct functioning; they are better at
indicating where problems might reside, such as in weak components or
circuits or operations. Calculations for reliability have merit when com-
paring different design approaches.

Availability: Availability is the probability that a system is operating
correctly at a specific instant in time. This is different from reliability.
A system may be considered highly available even though it experiences
frequent periods of nonoperation, which are extremely short in duration.
‘‘In other words, the availability of a system depends not only on how
frequently it becomes inoperable but also, how quickly it can be repaired.
Examples of high-availability applications include time-shared computing
systems and certain transactions processing applications, such as airline
reservation systems’’ ([21], pp. 4–5).

76 Developing Real-Time Embedded Products

Fault tolerance or performability: Fault tolerance or performability means
that a system continues operating in the face of a component failure or
operational fault, but the performance may decrease. The difference
between reliability and fault tolerance (performability) is that reliability
defines the likelihood that all of the functions perform correctly, while fault
tolerance (performability) estimates the likelihood that a subset of the
functions performs correctly. Graceful degradation can be an aspect of fault
tolerance (performability) whereby the system automatically reduces its
performance during a fault ([21], pp. 5–6).
Fault tolerance or performability is an operational concern. It does not

provide higher reliability; it provides a more robust approach to surviving
faults and failure. Typically, fault tolerance will even lower reliability
because it uses more components, subsystems, and operations to monitor,
diagnose, and survive faults.
You would tend to use fault tolerance in situations where immediate

repair or maintenance are not available. Examples of fault-tolerant systems
would be a banking system or a server farm, where continued operation is
critical to business. The ‘‘limp-home mode’’ already mentioned in auto-
mobile engine control is another example.
There are three primary ways to achieve fault-tolerant design: careful

design, testable architecture, and redundant architecture. Each of these will
be described in more detail a little later. Design to the application. Do not be
overly conservative, which can drive costs up.

Testability: Testability defines the ease of test for certain attributes within a
system ([21], pp. 5–6). Testable architectures generally do not provide
continuous monitoring and they usually are not automatic either—either
they must periodically trigger testing or an operator must initiate the
testing. Finally, testing also requires that the calibration standard be known
and understood.

Maintainability: Maintainability defines the ease of system maintenance, as
well as the repair for a failed system. Quantitatively, it is the probability that
a failed system or one down for maintenance will resume operation within a
set period of time ([21], pp. 5–6).
Testability, built-in-test (BIT), diagnostics, and repairability all are com-

ponents of maintainability. Furthermore, completing maintenance and re-
pairs more quickly means that the system is more available than a similar
system that is not maintainable. Ultimately this means that the system is
more dependable.

Safety: ‘‘safety is the probability that a system will either perform its
functions correctly or will discontinue the functions in a manner that
causes no harm’’ ([21], pp. 4–5). Safety measures often use dissimilar
operations or subsystems to check operations. Examples include external
safety devices, interlocks, hardware to check software, and software to
check hardware.

Variations on the Theme 77

2.9.3 Trade-Offs for Dependability

These definitions help show that you must make trade-offs when designing
dependable systems. Fault tolerance (or performability), for instance, does
not improve reliability. Fault tolerance, such as redundant design, generally
increases complexity, which lowers reliability. A side-effect of both re-
dundancy and fault tolerance is that they make fault diagnosis generally
more difficult. Hence, testability becomes more difficult.
Mission-critical, safety-critical, andmedical products require careful design.

Design trade-offs for dependability can use a number of techniques, including
(but not limited to) stress margins, redundancy and error checking, interlocks,
fail-safe, and fault tolerance. These can all help make for devices and equip-
ment that survive faults, failures, and problems, or at least degrade gracefully.
Unfortunately, they are accompanied by a disproportionate increase in cost
and development time.

Careful design: Careful design uses conservative design practices, provides
margin for overstress and abuse, and avoids faults and problematic
situations. Here are examples of careful design:

� Reduce large thermal gradients

� Prevent or reduce overvoltage

� Eliminate leakage currents

� Prevent or reduce stray charge and protect against electrostatic
discharge (ESD)

� Prevent or reduce shock and vibration

� Prevent incorrect hookups (e.g., keyed connectors)

The very best fault tolerance is fault avoidance. It is always better to avoid a
problem than to suffer the fault and then try to recover from it. Examples
include uniquely keyed connectors that prevent inadvertent plugging of
cables into the wrong places. When you cannot avoid the fault, then you
might use some of the following techniques.

Stress margins: Design should allow margin in the face of situations that
stress the circuit or system. What you are trying to do is not operate
components at the limit of their capabilities. An example of providing
margin would be to avoid running a transistor near its rated power
dissipation. Other examples of providing margin include dampening
vibration in a system, draining charge in a controlled fashion, filtering
out overvoltage transients, and dissipating heat to avoid large thermal
gradients that can eventually pull physical connections apart through
expansion and contraction cycles.
Avoiding mechanical and thermal stress is a good form of fault avoid-

ance. Turning a component on and off frequently or cycling it through
extreme environments is often stressful. Flicking a light bulb on and then off

78 Developing Real-Time Embedded Products

so that it cools between each lighting will drastically shorten its life
because thermomechanical expansion and contraction accelerates fatigue
fractures in the filament. Steady-state operation is often much more benign
than cycled operations.

Error checking and data redundancy: Error checking can detect memory
and communication failures. Error checking can use parity checks, check-
sums, and cyclic redundancy checks to find data upsets. The trade-offs in
choosing a particular form of error checking revolve around simplicity,
computational power required, and the depth of error coverage.
Data redundancy reduces certain types of failure through parallel trans-

fers of data, preferably through different types of channels. Comparing
datastreams and finding any discrepancies can indicate a problem or fail-
ure, speeding diagnostics and improving testability and maintainability.

Interlocks: ‘‘A safety interlock is a hardwired device employed in a system
to inhibit effector motion when external conditions make effector action
unsafe. Interlocks are commonly used in home appliances: the door switch
on the microwave oven and washing machine that prevent operation when
the door is open . . . safety interlocks should always be able to perform their
safety function regardless of any failure that might occur in the system’’
([20], p. 143).
One example is a thermostatic switch that opens should temperature

exceed a maximum limit. If this switch connects to power and if the tem-
perature exceeds the limit, the switch will interrupt power and shut down
the device to prevent a failure due to overheating.
An interlock can use a hardware or mechanical function as a safety check

or a limit for the software operation. One example is a watchdog timer,
which is a simple hardware check of software operation. The timer con-
tinually counts up (or down); it requires periodic clearing (or resetting)
from a software-induced signal; otherwise, if it is not cleared, it times out
and generates an interrupt or a reset. Hopefully, the reset corrects the
problem in the software’s operation or at least signals a problem.

Fail-safe, trapdoor, and limp-home: Fail-safe operation, trapdoor, and limp-
homemode are all responses to detecting a fault. The interlocksmentioned in
the previous section are a quite rudimentary form of fail-safe. Generally, fail-
safe, trapdoor, and limp-home responses are more complex operations than
an interlock; they provide some sort of minimal functionality after a failure.
An example of fail-safe operation might be in a drug pump that can only

deliver a single squirt of a drug on a timed basis. Should a fault cause
a command for continuous high dosage, the pump is limited to cycling only
a squirt of drug during each fixed interval. It cannot empty itself quickly;
it is restricted to a maximum dose that is not harmful to the patient.
An example of trapdoor operation might be a survival mode for a

spacecraft when a high-gain antenna fails. The trapdoor operation assumes
minimal communications from low-bandwidth recovery communications

Variations on the Theme 79

and goes into an semi-autonomous mode that seeks basic commands and only
runs the most important functions in the spacecraft: orientation toward the
earth or the sun, maintaining attitude to ensure the solar panels keep receiving
light and generating power, maintaining heater controls to keep the electro-
nics above the minimum temperature required for operation, and powering
the low-bandwidth communications with the low-gain antenna.
An example of limp-home mode might be the operation of an engine

control module (ECM) for automobile engine when a crucial sensor fails,
such as an oxygen sensor. The ECM can no longer provide fully optimized
control for the engine, but it can estimate conditions and run in a reduced
capability.

Testable architectures: Testable architectures provide means to test compo-
nents, circuits, and subsystems. The purpose is to reduce repair time by
locating problems quickly. Two simple examples are a collection of test points
for technicians or automatic test equipment. Another example is built-in-test
(BIT), which reduces or eliminates disassembly of equipment during
diagnosis. BIT adds additional circuitry to the circuit or subsystem to test
that subsystem. Testable architectures allow stimulation of circuits and
recording of responses; then the circuit or an operator compares the results to
the expected (or normal) response. Testable architectures add complexity,
which reduces reliability; this trade-off allows quicker diagnosis of faults.
Testable architectures do not monitor functions continuously—that is the
purpose of redundant architectures. The following example discusses one
such system.

Redundant architectures: Redundant architectures have multiple copies of
circuitry and software that continuously self-check between functions. They
detect faults and failures immediately. These are complex systems that are
justified only when downtime for repair and maintenance cannot be
tolerated.
The most common architectures are dual-redundant designs that can

detect problems but not correct them. They are good for alerting operators
to the problem. The following example discusses one such system.
Triply-redundant designs use three identical systems that have voting

modules on the output to detect and override single-point failures. They are
often discussed but rarely implemented. They are generally far too complex;
the voting modules are a source of single-point failures that often put the
entire system back in the same place of a unitary system without
redundancy. These redundant designs often underscore the notion that it is
better to avoid faults than be tolerant of them.

Example: The Arc Fault Detector (AFD)

Arcing faults might be called high-impedance short circuits between
power bus bars. They generally occur in power supply systems;

80 Developing Real-Time Embedded Products

they conduct sufficient current to sustain an arc but remain below the
trip threshold of the circuit breakers that are supposed to protect the
system. Arcing faults generate white-hot heat that consumes the metal
in power switchgear in a few seconds [22].

Many years ago, I worked for the Johns Hopkins University
Applied Physics Laboratory and with the Navy to design a system,
called the Arc Fault Detector (AFD), for detecting and extinguishing
arcing faults in switchboard cabinets in ships. The AFD would trip the
appropriate circuit breakers to extinguish an arc upon detection.
An important consideration was that the Navy required that the AFD
generate no false alarms—even at the cost of potentially missing some
actual events [23].

We designed the AFD with redundancy and testability to improve
both the availability of the system and the chances of correctly
detecting arcing faults. The architecture uses functional redundancy
in the form of two different types of sensors, a photodiode detector
and a fast-acting pressure sensor, to detect arcing faults and avoid
false alarms. The AFD also has BIT, which is regularly exercised by
Navy enlisted personnel to check functionality and locate failures if
they occur. BIT improves availability by reducing the downtime of the
system during repair.

AFD systems have operated for over 1000 ship-years. They have
detected and extinguished at least nine arcing faults and have not
generated any false alarms. Only through functional redundancy and
testability has the AFD achieved this level of dependability.

2.9.4 Performance Margins

Performance is a very different concept from performability. Performance
speaks of throughput, computational power, and capacity while perform-
ability addresses fault tolerant operation in the face of failure.
Both processing and memory constrain performance. Design for per-

formance needs to provide margin for throughput data and memory
capacity.
I suggest that you plan a project to use only about 25% of the memory

capacity. The remainder should be available for upgrades or fixes that
inevitably show up later in a project. The goal is to finish the project and
release it in final form with less than 50% of the memory actually used. Most
of you will need portions of that memory for changes after the final release.
I also suggest that you plan a project to use only about 50% of the rated

throughput. Rate monotonic analysis has shown a theoretical limit at
about 70% of a processor’s rated computational throughput for a variety of
independent tasks [24]. I try to steer clear of that 70% limit. If your software

Variations on the Theme 81

and data flow design exceeds 50% of the rated throughput, then you should
seriously consider one of several options:

� Get a bigger processor

� Add more processing power (additional processors or components
such as field programmable gate arrays [FPGAs])

� Revise the requirements to drop excess demands

Adding more processors is fine until the communications and control
between processors become a bottleneck. Another problemwith adding more
processing resources is cost—more components not only increase the bottom
line (i.e., cost more), they also require additional design time and effort.
Conversely, tweaking software to run on a processor that is 90% loaded for
throughput is terribly time consuming and less than satisfying in the end.
Sometimes a good trade-off is to incorporate a discrete analog circuit

rather than a digital solution and software. Occasionally, an analog filter is
more effective for either cost or performance than burdening the processor
with additional signal processing. The down side is that analog circuitry
does not change easily, can have noise sensitivities, and can consume too
much power.

2.9.5 Cooling

Cooling, while sometimes necessary, contributes complexity (possibly
lowering reliability) and increases cost. It becomes a part of the analysis,
such as FTA, FMEA, and ETA, before detailed design. Realize that, for long-
term installations, active cooling involving fans, forced liquid cooling, or
refrigeration becomes a maintenance concern. Filters over fans need
cleaning or replacement. Bearings on motors eventually wear out. Refri-
geration fluids become a disposal hazard.
Many mission-critical systems do not allow an exchange of gases between

the system enclosure and the ambient environment. This type of situation
makes cooling more difficult and rules out fans to pull air through
the enclosure. More esoteric solutions, such as heat pipes, thermoelectric
coolers, and refrigeration, must then be used.

2.9.6 Power

Power conversion and distribution is a chronic source of problems. In the
1970s and 1980s, 20% of all military electronic failures traced back to the
power converters [25]. My own experience in spacecraft systems is
that many problems, if not the majority, fall into the realm of the power
conversion and distribution subsystems. Some problems are as simple as
incorrect connectors or wiring. Other problems arise from load transients

82 Developing Real-Time Embedded Products

when a subsystem turns on. Understanding the source and the loads in a
system is critical to successful design of a power subsystem.
Many mission-critical and safety-critical devices use batteries as either the

primary or the backup source of power. Voltage is not constant. Batteries
have discharge curves that depend on their chemistry and on the current
demand. Battery-powered systems require power conversion modules to
provide appropriate and constant levels of voltage to circuits. Furthermore,
the energy capacity of batteries is quite limited; for implanted medical
devices, the battery life often determines the operational lifetime.
Spacecraft typically use solar cells to recharge batteries. As a satellite goes

in and out of the earth’s shadow, power from the solar panels surges and
shuts off. Solar cells also degrade over time. Considering these issues, the
recharging and power regulation becomes an important design effort in itself.
Even the more plebeian applications that use line or mains power still

must consider the power design. Raw line power is not constant; it is noisy,
spiky, and has periods of over- or undervoltage. All these things can
adversely affect your equipment and must be accommodated.

2.9.7 Software

The development of mission-critical and safety-critical devices absolutely
requires good design processes for the software! Good processes include
code inspections, design reviews, unit tests, and integration tests. Processes
for software really cannot be separated from the hardware and certainly not
from the system. Adhering to a standard, such as CMMI, will go great
distances to helping you and your development team achieve quality,
functioning software.

2.9.8 Hardware vs. Software

Safety interlocks for software are an example of how hardware may com-
plement software. Conversely, software can check and verify hardware
function. One example of this is BIT, where the software exercises the
hardware by stimulating circuits and monitoring the responses. Correct
responses generate a nominal indication; incorrect responses generate an
indication of fault.

2.9.9 Buy vs. Build

Many mission-critical and safety-critical devices are custom-designed for
a specific application. Companies building larger pieces of equipment,
however, might buy circuit boards, chassis, and subsystems and incorporate
them into the final product. Often these, commercial off-the-shelf (COTS)
components are specialized for a particular market—possibly ruggedized or
certified for an extreme environment or qualified as appropriate tools.

Variations on the Theme 83

Usually, the main concern is whether the COTS component fits the
application or if modification must be made. This concern is compounded
by a long learning curve for complex components. At some point,
it becomes easier to build the component yourself than to purchase it.
(See Chapter 1 and Section 1.10.8 on buy vs. build.)

2.10 Tests

2.10.1 Formal Processes

Mission-critical and safety-critical devices require formal processes for
every aspect of development, including testing. All tests, whether labora-
tory tests, inspections, hardware subsystem tests, or software unit tests,
must be recorded and maintained in a device history file. These files are
subject to audits from certifying bodies or from customers.
Everyone involved in any type of testing, anywhere along the develop-

ment timeline, must understand the processes and adhere to them. These
people include the design engineers, test engineers, technicians, and
personnel at test facilities.
Chapter 1 covered all of these tests. Here I will focus in more detail on two

types of tests and review—the design review and test simulators.

2.10.2 Design and Peer Review

Effective review of the project should have a stereotyped format including
agenda, checklists, and minutes. Complete minutes of a review include

� The date of the review

� The review agenda

� Who attended

� Who presented the design

� The lead and independent reviewers

� What major decisions were made

� What action items were generated, their due dates, and who is
responsible for each

Reviews should generate action items to ensure that identified issues are
addressed. All action items should be tracked in a database. Each action
item should have the following fields:

� Unique identifier number

� Status (open, closed, in work, and in sign-off)

84 Developing Real-Time Embedded Products

� Date opened

� Brief summary

� Response summary

� Requestor

� Assignee

� Due date

Design reviews: For larger programs and projects, the design review
should have independent reviewers who are not directly associated with
the project. The review committee for each formal review should consist of
at least four members plus a designated chairman; none of whom should be
members of the project team. I have to say this rarely happens—it is the
ideal, but most companies do not have the people, time, or resources to
devote to independent review.
Most companies put together design reviews with members of the project

team presenting and reviewing. Sometimes they will ask a customer or
client to attend and critique. This form of review is still effective.
Regardless of the format, you should send a review package to each

reviewer about 2 weeks ahead of the review. The review package should
contain a copy of all the slides to be presented at the review along with
appropriate background material.

Code inspections and system reviews: Software code walk-throughs are a
legitimate form of review, as well. They are a form of static testing—but
highly effective. These forms of peer review are an excellent way to
encourage proper designs and good development processes. For some types
of products, such as medical devices, they are an important part of the
formal development. You should still have procedures (yes, they can be
simple and straightforward) for recording notes or minutes and then
maintain a database of action items.
I would suggest that this same sort of review would be good for early

system integration. If done regularly by team members, these reviews
would reveal more problems earlier and give you a better chance at ironing
them out sooner.

2.10.3 BIT, BITE, and Simulators

Often we need automated help to provide routine test coverage of sub-
systems under development. This test coverage can go on to become an
integral part of the system and product. Built-in-test (BIT), built-in-test
equipment (BITE), and simulators provide portions of that automated help
during test.
For some projects, such as avionics and spacecraft, test support equip-

ment is crucial to their development. It bridges most gaps between test and
integration for larger systems; I will address this in the next section.

Variations on the Theme 85

BIT and BITE: ‘‘BIT can generally be described as a set of evaluation and
diagnostic tests that uses resources that are an integral part of the system
under test’’ [26]. BIT measures, diagnoses, and estimates the state of health
of the system. The subtle difference between BIT and BITE is that BIT is
entirely self-contained within the product that it tests while BITE includes
any set of external components needed to provide full coverage, such as
wrap-around cables that connect outputs to inputs to allow the BIT to test
those functions.
You need to specify BIT in terms of the amount of coverage to detect

faults. Here is an example from a military avionics program: the BIT had to
‘‘detect 95% of all faults, isolate 95% of any fault to one of over 50
replaceable assemblies, and allow false alarms for less than 2% of all detected
faults’’ [27]. For wide coverage, you will expend significant engineering time
and resources to design the BIT and incorporate it in the system. A benefit of
a comprehensive BIT is stated by Steinmetz, ‘‘This information is as useful in
the factory as it is in the field. A system with so much internal measurement
data is often referred to as self-instrumented’’ [27].

Simulators: Simulators can be an excellent form of dynamic testing for
software. They represent other system components with which the primary
instrument interfaces. The closer the simulator comes to replicating the
interface or coupled subsystem, the better the test coverage and the higher
the final confidence in the integrated system. Simulators can fill the void
while the various subsystems are being developed. The downside is that the
closer a simulator gets to replicating the actual subsystem, the more
expensive and the longer development it becomes.
I have worked on spacecraft instruments where the ground support

equipment (GSE) served dual purposes as both test support during design
and later ground support during space flight. This makes a lot of sense; you
get parallel development of necessary subsystems and you get to exercise
both early and often.

2.11 Integration

2.11.1 System Behavior

System integration is an important phase of most mission-critical and
safety-critical devices. A clear understanding of the operational interfaces is
necessary between the various subsystems and operational groups—
including the hardware, software, human, and environmental components.
Integration is the planned combination of these operational groups in
measured steps, with the goal to reveal all interactions, understand con-
sequences and potential consequences, and limit undesirable operations.
Good systems integration provides both verification of requirements and
validation of design intent.

86 Developing Real-Time Embedded Products

Too often people do the ‘‘big bang’’ form of integration, where they con-
nect all the components and then hope for the best. It never works. Even if it
appears to work, something may be amiss but obscured.
The best form of integration is to bring together a minimal number of

subsystems and limit the number of variables. This technique closely mir-
rors the spiral form of development (Figure 1.3b). For more complex sys-
tems, simulators that imitate various subsystems are mandatory. As a
subsystem matures and migrates to integration, it replaces its simulator.
A good example of an integration test bed was Boeing’s 777 Systems

Integration Laboratory (SIL). ‘‘The 777 SIL included all the electrical power
systems, electromechanical systems, avionics, environment control systems,
propulsion systems, and a portion of the payload electronics. The integra-
tion testing included realistic simulations of flight modes to support ver-
ification and validation of production equipment before the first flight of the
aircraft. It also provided support for certification and validated the correct
performance of both the physical and functional interfaces in the electrical
and electronic systems during concurrent operation of multiple subsystems
and failure’’ ([28], p. 14). The Boeing 777 SIL was incredibly complex. Some
of its particulars were as follows ([28], pp. 14–15):

� 40,000 airplane wires in 1,000 bundles

� 28,000 lab-unique wires

� simulate 4000 signals and data buses

� record 1000 signals and data buses

� Support for all the LRUs (line-replaceable units) on the actual
airplane

� Cooling for the LRUs

� Antennas for radios, global positioning system (GPS), and navigation
systems

� 800 kW of power

Integration requires the close cooperation of the design team, test team,
manufacturing team, and integration team. Depending on the complexity of
the system, integration may require its own separate facility, such as
Boeing’s 777 SIL.

2.11.2 Environmental

Mission-critical and safety-critical devices often encounter some sort of
extreme environments: spacecraft encounter vacuum and radiation in
space, aircraft encounter temperature and pressure swings during flight,
and medical devices encounter the hostile milieu of the human body. For
these extremes major subsystems, if not the entire device, must undergo

Variations on the Theme 87

environmental testing. These tests have two purposes: to shake out problems
and to certify a device as capable of surviving the expected environments.
Environmental tests are primarily mechanical in nature: thermal, shock,

vibration, pressure, and vacuum. Spacecraft instruments and subsystems
undergo thermal–vacuum tests and shock and vibration tests. Sometimes,
the entire spacecraft is tested in large thermal–vacuum chambers or on
shake tables. Automobile manufacturers will subject new model cars to
extreme weather, particularly cold and hot, for extended periods of time.
Some environmental tests are more unusual, such as condensation or

EMC tests. Some military systems must endure salt-spray and condensation
testing. Most products do have to pass standard EMC tests.
So far I have described tests that aim at certifying a product. Environ-

mental tests that stress test prototypes have a different purpose; they try to
uncover incipient faults. Stress in the form of thermal or power cycling,
vibration, shock, or condensation applied in extreme forms can reveal
weaknesses. High temperature can precipitate or accelerate diffusion
processes on silicon die, the oxidation of fractures, and reduce timing
margins. Temperature cycling will expand and contract interconnections,
such as solder joints and ball bonds. Elevated humidity that causes condens-
ation can promote corrosion and the breakdown of electrical isolation [29].
These environmental stress tests go by a variety of names: Accelerated

Stress Test (AST), Accelerated Environmental Stress Screen (AESS), and
Accelerated Life Test (ALT). They can also have the prefix of H to indicated
‘‘highly’’ accelerated, as in Highly Accelerated Stress Test (HAST), Highly
Accelerated Stress Screen (HASS), and Highly Accelerated Life Test
(HALT).

2.11.3 Field Tests

Field tests are particularly important for complex systems. You really need
to see the product in use to understand its operation and utility. Some
examples are clinical tests for medical devices (which are very formal field
tests that support certification), test track trials for cars, and military tech-
nical evaluations followed by operational evaluations of equipment on the
battlefield.

2.11.4 Certification

Many mission-critical and safety-critical devices must be certified by a
regulatory agency or designated service. Certification, while a separate
activity, might be considered either a form of integration or a form of
acceptance test. Not understanding the specifics of certification and reg-
ulatory requirements will waste your time and your company’s money.

Standards Organizations: Various organizations can provide different types
of certification. A notified body, a third party designated by authorities,

88 Developing Real-Time Embedded Products

can be either a commercial firm or a government organization that assesses
the compliance for safety, performance, intended use, and risk analysis.
Underwriters Laboratory (UL) in North America, for example, provides
much product-safety certification. Manufacturers must submit product
samples and information, as well as meet the applicable safety standards
for UL certification. Within the European Union, the certification is through
CE marking, which assesses compliance with appropriate directives [13].

Standards: These notified bodies test to the appropriate standards for the
selected market. Section 2.7.2 begins to list some of these possible sets of
standards. The case studies, found later in the book, give more standards for
specific markets.

Safety Evaluation: Standards or portions of standards often focus on safety.
Equipment must be safe in two different ways:

� Normal conditions, which are situations likely to occur

� Single fault conditions, which are situations that could occur, for
example, failure of a component

Certification for safety includes the actual equipment, its markings and
labels, software, biocompatibility, and EMC. The equipment in the eval-
uated system must meet the following conditions to receive certification:

� Fit the scope of the standards

� Include connected equipment

� Identify potential hazards in normal use and abuse

� Verify power requirements and fusing

For certification, you must provide the following to the notified body:

� Insulation diagram

� Documentation for components with UL or American National
Standards Institute (ANSI) standards

� Illustrations of components

� One or more samples of the equipment

Documentation from Safety Evaluation: The safety evaluation generates
three primary documents: the UL report, an informative test report, and a
certified body (CB) report. The UL report is a product description and a test
report; it authorizes you to apply the UL mark to the product. The
informative test report is a complete record of meeting all the requirements
of the applicable standard and contains the insulation diagram, illustra-
tions, and markings. The CB report contains both an informative test report
and a certificate from the issuer. The CB report, which is recognized
internationally, helps you obtain third-party certification marks [13].

Variations on the Theme 89

Common Mistakes: People repeat several types of mistakes in failing
certification. The most common mistake or noncompliance is in the doc-
umentation, in particular, leaving out a required inclusion [13].
The next most common mistake or noncompliance is selecting a power

supply that is not UL certified. Some of the problems with these units
are mechanical spacing, leakage current, and the wrong mains compo-
nent. Use a UL-certified (2601-1) unit to avoid some of these types of
problems [13].
The third most common mistake or noncompliance is using the incorrect

colors for indicator lights. Use red lights or light emitting diodes (LEDs) only
for warning and nothing else; do not use red LEDs to indicate power-on. Use
yellow LEDs only for caution [13].

2.12 Manufacturing

Manufacturing of mission-critical and safety-critical devices often has its
own set of special requirements and quality standards. For small quantities,
a company might try to outsource to a special contract manufacturer where
the work is often hand-assembled. For large quantities of a product, a
company might develop the necessary resources and capability to manu-
facture in-house.
A company building small quantities of a special mission-critical or

safety-critical device might have to develop expertise in-house to assemble
the product. Many companies will outsource components, modules, and
subsystems but do the final assembly and test in-house. Often they will
outsource the circuit board fabrication and assembly. They will also out-
source the production of specialty mechanics and enclosures.
Typically, trained personnel or technicians will perform most tests for

manufacturing quality. The cost of using or programming automatic test
equipment, or ATE, is prohibitive in these small quantities and for these
demanding special applications.

2.13 Support

2.13.1 Fielding

Fielding of mission-critical and safety-critical devices can take many
different forms. Some devices, such as implanted medical devices, are
replaced and the failed unit returned to the manufacturer for diagnosis and
disposal. Other products, such as military equipment, will have modules
called line-replaceable units (LRUs) that allow swapping-out in the field by

90 Developing Real-Time Embedded Products

trained personnel or operators; they then send the failed LRU back to a
depot for repair.
Sometimes a company finds a systematic fault or failure pattern in a

particular product line. When that happens, they must implement a recall
program. A recall exercises the entire network of logistics, distribution,
service, inventory, and disposal, expending great effort by many people and
costing lots of money. Other times, a company may institute a low-level
program to fix a problem with low public visibility. The automotive
industry has the somewhat euphemistically-named ‘‘service programs’’ to
update and modify subsystems whose behavior has nearly risen to the level
of a recall.
Repair often requires skilled field personnel to diagnose and fix problems.

Companies will train either technicians or representatives to handle
problems and failures. They almost never use general repair shops for
repairing or maintaining mission-critical and safety-critical devices. Some
companies providing specialty equipment employ field engineers to do the
detective work.

2.13.2 Logistics and Maintenance

Logistics include concerns such as regular replenishment of consumables,
maintenance, repair, and disposal. Do not confuse the terms maintenance
and repair or use them synonymously. Maintenance is the regular checking
of components and replenishing of consumables, such as lubrication. Repair
is the replacement of broken or failed components. Diagnostics can be
common to both maintenance and repair. Maintenance might lead to repair
if a component is detected as marginal in operation.

Maintenance: Most of us are familiar with regular maintenance like chang-
ing the oil in our automobile engines or rotating the tires. Some equipment
or devices may need periodic checks to confirm calibration or alignment.
Some devices might need filters cleaned or replaced; some industrial equip-
ment operating in a dusty environment can quickly clog the filters over their
cooling fans.

Replenishment: Replenishment of consumables can take on many forms.
Ink-jet cartridges in printers are consumables that need replenishing.
Recharging or replacing batteries in portable devices is another form of
replenishment. Regular lubrication of moving parts, shafts, and bearings is
another form of replenishment.

Inventory: If the product has replaceable components or subsystems, then
some number of spares must be stored and available. This requires
warehouse space and a distribution system, which all costs money and
takes manual labor. Reducing the requirement for inventory can decrease
the life-cycle costs of most systems and products.

Variations on the Theme 91

2.13.3 Repair

Assuming the product is not a ‘‘throw-away’’ appliance, repair is needed
when it breaks or fails. First, someone must diagnose the problem and
determine its cause. Then a technician must repair the problem, usually by
replacing a failed component or by adjusting or tuning the operation.
New forms of diagnostics are transforming certain sectors of industry.

Condition-based maintenance, for instance, automatically monitors the
operation of a piece of equipment and raises an alarm if operating signatures
exceed established bounds. Diagnostics are beginning to use artificial in-
telligence and may operate from one or more different approaches ([30], pp.
16–20):

� Rule-based

� Model-based

� Learning

� Fuzzy reasoning

� Neural networks

� Hybrid

Rule-based approaches incorporate the experience of designers and skilled
maintenance personnel in the form of rules. These rules often are condi-
tional statements, such as, ‘‘IF signature (or condition or symptom) THEN
consider particular fault (or take course of action).’’ A rule-based approach
might have hundreds or thousands of rules. A rule-based approach can be
simple, but it suffers from difficulty in acquiring sufficient knowledge, the
inability to deal with novel situations, and system dependence ([30], p. 17).
Model-based approaches overcome some of the deficiencies of rule-based

approaches through approximate representations of the actual system.
A model-based approach predicts faults using observations of the actual
system and then generating and testing and discriminating hypotheses.
Behavioral modeling of circuits is an example of a model-based approach.
The disadvantages of model-based approaches are that computational effort
climbs with system complexity, good models are difficult to develop, and
information on failure mechanisms may not be available ([30], p. 17).
Learning approaches go beyond the previous two approaches, which

are restricted to fixed levels of performance. Learning can use case-based
reasoning to store experiences of past solutions, use an analogous case for
a new situation, and use past successes and failures in diagnosis to improve
performance. Such case-based reasoning, plus the methods of fuzzy logic
and neural networks, are at the forefront of research into more powerful
diagnostics ([30], p. 18).

2.13.4 Technical Support

Technical support takes on new meaning for specialized mission-critical
and safety-critical devices. It can range from training and explaining basic

92 Developing Real-Time Embedded Products

operation and maintenance to supporting customers implementing
a function. In the latter situation, companies employ field representatives.
For implanted medical devices, the field reps can be highly educated and
trained to advise in certain medical procedures; some are even doctors.
Technical support can handle a number of unusual situations. Component

obsolescence becomes important for products with a long service life,
for example, motors, industrial process control, military equipment, and
medical devices. Technical support can help find replacements for obsolete
components. Technical support can also perform field studies to understand
really ‘‘sticky’’ problems and then prescribe an appropriate corrective action.
These are the folks that probably initiate a recall or ‘‘service program’’ in
appliances or automotive systems.

2.14 Disposal

Few companies escape concerns with Restriction of use of certain Ha-
zardous Substances (RoHS), waste from electrical and electronic equipment
(WEEE), and recycling. If anyone does escape these concern, it is the small
quantity, specialty mission-critical and safety-critical devices, such as mili-
tary equipment or spacecraft. Medical device companies, on the other hand,
not only must insure proper disposal, but also must record the serial
number and keep a database and log of every device throughout its life
cycle.

2.15 Liability

Liability is important for mission-critical and safety-critical devices.
Everything mentioned in Chapter 1 on liability applies to mission-critical and
safety-critical devices, just in greater magnitude. The attendant legalities also
increase. The economics and safety concerns arising from failure can cripple a
small company producing a mission-critical or safety-critical device.

2.16 Priorities

Everything is important with mission-critical and medical devices; that is
why they are mission-critical or safety-critical. At the top of these concerns
are good processes—from methods to implementation; everything must be
carefully considered and recorded. Documentation plays a big role in good
process. Most important are the people involved; they need to be self-
motivated to do a good job.

Variations on the Theme 93

2.17 Summary

This chapter focuses on mission-critical and safety-critical devices. The
development of mission-critical and safety-critical devices requires an
understanding of the appropriate standards for each market and specific
trade-offs that might be made in developing them. Process for mission-
critical and safety-critical devices is rigorous and must be carefully planned.

References

1. U.S. FDA, Design Control Guidance for Medical Device Manufacturers, March 11,
1997, relates to FDA 21 CFR 820.30 and sub-clause 4.4 of ISO9001. http://www.
fda.gov/cdrh/comp/designgd.pdf. pp. i, 1, 2, 4, 5, 8, 13, 19, 23, 37, 43.

2. Software Considerations in Airborne Systems and Equipment Certification, RTCA/
DO-178B, December 1, 1992. RTCA, Inc., 1828 L Street, NW, Suite 805,
Washington, D.C. 20036. pp. A-2, A-3, 1, 7, 68–77. You can purchase DO-178B
at http://www.rtca.org

3. EMC Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 75–82.

4. ESD Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 103–105.

5. Telecom Standards and Regulations, Compliance Engineering, Vol. 21, No. 1, 2004
Annual Reference Guide, pp. 139–142.

6. Product Safety Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual
Reference Guide, pp. 165–172.

7. http://www.nhtsa.dot.gov/
8. www.arb.ca.gov (California Air Resources Board).
9. US Environmental Protection Agency, Office of Transportation and Air Quality,

publication EAP420-B-00-001, February 2000.
10. www.aecc.be/en/european_legislation.htm (European Association for Emissions

Control).
11. Absmeier, J., Dundar, B., and Wilcutts, M., Embedded Controller Hardware and

Operating System Selection for MoBIES Powertrain Testbed, Vehicle Dynamics
Laboratory, University of California, Berkeley, October 31, 2003. http://vehicle.
me.berkeley.edu/mobies/powertrain/reports/Controller_Hardware_and_
Operating_System.doc

12. http://store.sae.org/webcd.htm
13. Marcus, M. and Biersach, B., Regulatory Requirements for Medical Equipment,

IEEE Instrumentation & Measurement Magazine, Vol. 6, No. 4, December 2003,
pp. 23–29.

14. http://www.ul.com/info/standard.htm
15. http://www.ce-mark.com/cedoc.html
16. http://ts.nist.gov/Standards/Global/pg17.cfm
17. Monnich, Jr., H., ISO 9001:2000 for Small and Medium Sized Businesses, ASQ

Quality Press, Milwaukee, WI, 2001.
18. Kasse, T., Practical Insight Into CMMI, Artech House, Boston, MA, 2004.

94 Developing Real-Time Embedded Products

19. Persse, J.R., Process Improvement Essentials, O’Reilly Media, Inc., Sebastopol, CA,
2006.

20. Dunn, W.R., Practical Design of Safety-Critical Computer Systems, Reliability Press,
2002, Solvang, CA, pp. 143–176.

21. Pradhan, D.K., Fault-Tolerant Computer System Design, Prentice Hall PTR, 1996,
pp. 4–6, 104.

22. Land, H.B., Eddins, C.L., Gauthier, L.R., and Klimek, J.M., Design of a Sensor to
Predict Arcing Faults in Nuclear Switchgear, IEEE Transactions on Nuclear
Science, Vol. 50, No. 4, August 2003, pp. 1161–1165.

23. Land III, H.B., Sensing Switchboard Arc Faults, IEEE Power Engineering Review,
April 2002, pp. 18–20, 27.

24. Laplante, P., Real-Time Systems Design and Analysis, 3rd ed., IEEE Press and
Wiley-Interscience, A John Wiley & Sons, Inc., Publication, Piscataway, NJ 2004,
pp. 94–96.

25. Military-power-supply failures give rise to unofficial MIL standard, EDN, July 6,
1984, pp. 49–57.

26. Drees, R. and Young, N., Built-In-Test in Support System Maintenance, IEEE
Instrumentation & Measurement Magazine, Vol. 5, No. 3, September 2002, p. 25.

27. Steinmetz, M., Built-In-Test Instrumentation and 21 Rules of Thumb, IEEE
Instrumentation & Measurement Magazine, Vol. 5, No. 3, September 2002, p. 31.

28. Lansdaal, M. and Lewis, L., Boeing’s 777 Systems Integration Lab, IEEE
Instrumentation & Measurement Magazine, Vol. 3, No. 3, September 2000, p. 14–15.

29. Chan, H.A. and Englert, P.J., (eds.) Accelerated Stress Testing Handbook, Guide for
Achieving Quality Products, IEEE Press, Piscataway, NJ 2001, p. 71.

30. Fenton, B., McGinnity, M., and Maguire, L., Fault Diagnosis of Electronic
Systems, IEEE Instrumentation & Measurement Magazine, Vol. 5, No. 3, September
2002, pp. 16–20.

Variations on the Theme 95

3
Tools of the Trade

3.1 Introduction

You will need a basic set of tools to develop a real-time embedded system.
This chapter is not an exhaustive survey of tools; it may not cover all the
necessary ones. The tools that are covered in this chapter are for illustration
only; they indicate what you might use to implement good processes.

3.2 Tools for Estimation and Feasibility

3.2.1 Spreadsheet

A simple spreadsheet can provide a reasonable ‘‘bottom-up’’ estimate of
time, effort, and cost for your projects. The reference Web site has a template
spreadsheet that you may download and modify to suit your projects [1].
Many different activities make up a project. An accurate estimate requires

accounting for all of them. Here are some activities that you should include
in your planning:

� Planning and meetings

� Travel

� Analysis and simulation

� Hardware design

� Software design and coding

� Prototyping and field tests

� Test and review

� Fabrication, manufacturing, and assembly

� Installation and technical support

� Documentation

Table 3.1 is an example of some simple spreadsheet calculations for activ-
ities within a project.

97

TABLE 3.1

Example of a Spreadsheet Checklist with Some of the Activities to Schedule (� Kim Fowler, 2006, used with permission. All rights reserved)

Concept Phase (Engineering Models Prepared)

Activity
Number of
Meetings

Number of
People

Average

Time Spent
(h)

Total Effort
(h)

Procurement

and Travel
Cost ($)

Engineer and

Program

Management
Cost ($)

Designer
Cost ($)

Total
Cost ($)

Planning 3 4 1 12 1,560
Review and status 2 4 1 8 1,040
Formal presentations 1 4 4 16 2,080
Presentation preparation 1 3 4 12 1,560
Travel 1 3 24 72 3,000 9,360
Simulation 1 16 16 2,080
Human interface design 2 40 80 10,400
Environmental
standards

1 16 16 2,080

Circuit design 1 24 24 3,120
PCB design 1 80 80 8,000
Assembly 1 40 40 6,600 4,000
Software design 2 80 160
Coding 1 40 40
Packaging design 1 80 80 1,000 10,400
Prototyping 1 80 80 8,000
Memos 3 10 30 3,900
Requirements and
specifications

2 40 80 10,400

Design documents 2 20 40 5,200 4,000
Test plans 1 8 8 1,040
Manufacturing transfer
plan

0

98
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Support and training
documents

1 8 8

Inspection 1 1 1 100
Test 0
Approvals 3 1 3 390
Procurement 1 8 8 1,620 800
Program management 1 107 107 13,943
Technical support 0
Contingency 40 5,200 4,000

Minimum calendar
time (h)

619

Minimum effort (man-h) 1061 $12,220 $83,753 $28,900 $124,873
(Minimum)

Maximum calendar
time (h)

929

Maximum adjusted
effort (man-h)

1592 $18,330 $125,629 $43,350 $187,309
(Maximum)

Minimum estimated
effort (man-month)

6.3 Calendar
(months)

3.7

Maximum estimated
effort (man-month)

9.5 Calendar
(months)

5.5

Engineer overhead ($/h) 130
Designer overhead ($/h) 100
Risk factor (%) 50

T
ools

of
the

T
rade

99

3.2.2 Gantt Charts

Scheduling software can also help you develop reasonable estimates of
time, effort, and cost for your projects and then format it into a Gantt chart.
Figure 3.1 shows an example Gantt chart. As in the previous section with a
spreadsheet checklist, you must be honest and diligent to fill in all activities
needed by the software—it cannot do that for you. The reference Web site
has a template Microsoft Project� file that you may download and modify to
suit your projects [1].
You can find more information about Microsoft Project� in Reference 2.

Please remember that this discussion only introduces the concept of the
Gantt chart; other software packages mentioned later also have the capa-
bility to produce these kinds of charts.

3.2.3 Estimating Feasibility

There are some software packages available on the market to help you
estimate feasibility of a proposed project. One such package from Galorath
Associates is the SEER� software. QSM provides another set of tools. Both
companies have databases with many complete software projects to allow
metric comparisons and assessments to make better estimates. These are
two examples of sets of tools on the market; other packages also exist.
The software packages from Galorath Associates can help you plan and

control projects with these modeling tools [3]:

� SEER-SEM is for systems engineering

� SEER-H is for hardware development

� SEER-DFM is for manufacturing

QSM has a set of tools called Software LIfecycle Management (SLIM) that
support decision making during the software life cycle. The tools can esti-
mate, track, benchmark, and analyze metrics. Each tool can stand alone or
operate as part of a suite of software tools. QSM’s tools are as follows [4]:

� SLIM-Estimate helps estimate the time, effort, and cost to satisfy a
set of software requirements.

� EstimateExpress is a software project estimating tool for projects
with smaller requirements.

� SLIM-Control has statistical process control techniques to provide
status on a project. It can compare the project plan against project
actuals and forecast completion.

� SLIM-Metrics and SLIM-DataManager can preserve project histo-
ry, assess competitive position, identify bottlenecks, quantify the
benefits of process improvement, and defend future project
estimates.

100 Developing Real-Time Embedded Products

ID Task Name Duration

33 Design 32.87 days

34 Architectural definition and design 9.67 days

35 Initial concept ideas 4 days

36 Environmental standards 4 hrs

37 Feasibility 4 days

38 Tradeoffs 4 days

39 Hazard analysis 4 days

40 Simulation 2 days

41 Initial human interface 2 days

42 Human interface 2 days

43 Circuit design 2 days

44 PCB design 2 days

45 Software design 2 days

46 Software coding 8 days

47 Software inspections 7.94 days

52 Mechanical design 4 days

53 Packaging design 4 days

54 Concept design final 4 days

55 Concept implementation 4 days

M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Jan 27, '02 Feb 3, '02 Feb 10, '02 Feb 17, '02 Feb 24, '02

FIGURE 3.1
Example of a Gantt chart with some scheduled activities. (� Kim Fowler, 2006, used with permission. All rights reserved.)

T
ools

of
the

T
rade

101

3.3 Tools for Project Control

3.3.1 Overview of Various Software Tools

Managing projects and having adequate control over them is very impor-
tant to developing mission-critical and safety-critical devices. Management
and control starts with generating specifications and high-level require-
ments, moves through design and test, and ends with review and docu-
mentation. Obviously, this is a simplistic view of project phases and cycles
but serves to indicate some necessary components for software tools.
References 5 and 6 have nice outlines of tools for project management.

Within Reference 5 is a short outline with a sampling of tools found in
Reference 7; Table 3.2 lists some of these tools and their example attributes.
Please note that this listing is neither inclusive nor complete—it only serves
to whet your appetite for finding suitable tools for managing your projects.
While these tools provide some insight and control over projects, they are

not complete packages. The sections that follow introduce two commercial
packages that attempt to cover the entire development process. These tend
to be very large, expensive, complex packages that take significant corpo-
rate commitment to buy and use.

3.3.2 Telelogic Rhapsody and Statemate

Telelogic has two software tools, Rhapsody and Statemate, to manage
design and development processes [8].
Rhapsody is an environment for systems, software, and testing that

Telelogic calls Model-Driven Development. It provides a graphical means
to specify the design of the system and its software and to model the
embedded system. Statemate supports modeling, analysis, performance,
and code generation. The goal of Rhapsody and Statemate is threefold:

� To automate simulation

� To automate validation

� To output production code

Rhapsody and Statemate support many different aspects of embedded
system design:

� Requirements modeling

� Lifecycle traceability and analysis

� Team collaboration with document generation

� Design for testability and test generation

102 Developing Real-Time Embedded Products

� Rules-based code generation for C, Cþþ, Java, Ada for 8-, 16-, 32-,
and 64-bit targets

� Adapts to a commercial RTOS

3.3.3 Rational Unified Process

The Rational Unified Process�, or RUP, is a set of tools to manage design and
development processes [9]. RUP comprises RequisitePro� (also known as Re-
qPro), ClearQuest�, ClearCase�, TestManager�, ProjectConsole�, and SoDA�.
RequisitePro� helps create and manage requirements throughout the life

cycle of a project. It not only captures requirements but also manages the

TABLE 3.2

A Small Sampling of Tools for Project Management—These Only Serve as Examples,
This is Neither a Definitive Nor Exhaustive Listing

Software Tool, URL Attributes

Adaptable Process Model
(APM),
www.rspa.com/index.html

APM provides a process flow in a hypertext document,
descriptions of many software engineering tasks, document
templates, and checklists

Artemis Views,
www.artemispm.com

Artemis Views Project Management provides a collaborative
environment for project and resource management that has
role based access to project data through a web browser.
It provides both structured data, such as dates, resources,
and costs, and unstructured data, such as documents, risk,
e-mails, and reminders

Microsoft Project�,
www.microsoft.com

The standard against which most commercial packages
measure themselves. It has various views including Gantt,
resources, loading, and summary

Milestones,
www.kidasa.com

Project management program for projects of all sizes. It can
create presentation reports in a variety of formats including
Earned Value, Resource, Summary, Milestone, and Gantt.
It has many features and is Microsoft Project� compatible

Open Plan,
www.deltek.com

An enterprise project management system that provides
multiproject analysis, critical path planning, and resource
management

Project KickStart,
www.projectkickstart.com

Project management program for small to medium-sized
projects; it both plans a project and creates a schedule.
It guides users to identify goals, obstacles, and resources and
suggests a strategic plan

TurboProject,
www.turboproject.com

Project management program for small to medium-sized
projects; it can create calendars, timelines, and Gantt charts,
assign resources and tasks, and check them off upon
completion. It has tools for resource and activity views,
automatic over allocation warnings, split and recurring
activity scheduling, and presentation templates. Microsoft
Project� compatible

Tools of the Trade 103

changes in requirements. It can help manage the scope of a project through
clarifying requirement attributes and traceability.
ClearQuest� tracks change requests during development. Its goal is to

unify defect and change tracking so that team members can manage
changes in system development.
ClearCase� is a version control tool. It helps the development team to

ensure the accuracy of software releases, to build and patch previously
shipped products, and to organize an automated development process.
TestManager� organizes the testing process by connecting and communi-

cating between the test plan, test cases, requirements, and test records. It links
test cases to requirements. It uses Crystal Reports to provide graphical and text
reports on test metrics, test results, pass–fail status, and load performance.
ProjectConsole� helps developers monitor the status of their projects by

creating a project metrics Web site based on data collected from RUP or
third-party products and presenting the results graphically. It can update
on demand or on schedule to provide an up-to-date view of the project.
SoDA� creates and manages documentation from the RUP suite of tools.

Completeness and consistency are its goals, aswell as easy update. SoDA� has
over 70 templates for documents and supports both the Mil-Std 498 and DoD
2167A formats. It also allows you to format your own proprietary documents.

3.3.4 Version Control

Though it is simple, one of the best things that you can do to improve your
processes and ultimately the quality of your products is to exercise strict
version control. Knowing the latest version of a document or software file
quickly becomes confusing if two or more people have any involvement in
its preparation. Occasionally, we want to go back and view the evolution of
a particular file, as well.
Many software products are available to archive and control your docu-

mentation. These systems allow only one team member at a time check out a
particular file. They also keep a clear record of the evolution of each file,
maintain all updates to the file, and store its latest version.
Rational’s ClearCase� is one example of a version control tool, while

Microsoft’s SourceSafe� is another example. Please note these are only two
examples, many other competent products are available. The most impor-
tant thing to do is to get a version control tool and use it religiously.

3.4 Tools for Design

3.4.1 Simulators

Simulation can be a good start in designing a product. Please recognize that
simulation is just that—a simulation; it is not real life. Simulations are based

104 Developing Real-Time Embedded Products

on simplifying assumptions and can never possibly account for all situa-
tions. Ultimately you will have to test the physical design.
With that said, many different software simulators can help with initial

design. These simulator tools include system models and software gen-
erators (already mentioned earlier), electronic circuit—both digital and
analog—thermal environments, and mechanical structures.
Circuit simulators take several different forms. Digital circuits can use

behavioral or register transfer level (RTL) models. SPICE modeling can be
used to analyze analog circuits and even digital circuits. It is possible to use
electromagnetic and transmission-line models to approach the analog signal
environment. The more sophisticated the tool, the higher its cost, the more
computational power needed, and the slower the simulation.
Simulators for thermal environments can help locate ‘‘hot spots’’ and

map forced convection flows. Simulators for mechanical packaging and
mechanisms can help identify stress and load points. These types of
simulators tend to find a home in environments where either many different
products are developed or where testing is very expensive or impossible
(some spacecraft instruments can only be simulated–they are not tested
until space flight).

3.4.2 Computer Aided Design

Computer aided design (CAD) tools help out with documenting specific
aspects of a product, particularly the mechanical package, the circuit design,
and the circuit board layout. Many competing products are available on the
market and are adequate for the task.
Most circuit design packages can also provide a layout tool for circuit

boards. While most advertise automatic routing features for the circuit
boards, you will still have tune the design by moving traces manually.
This is especially true to drive the layout toward self-shielding and for
high-speed design.

3.4.3 Software Design Tools

Software design tools include at least some of the following:

� Text editor

� Compiler

� Assembler

� Linker

The text editor is a simple word processing program that can produce a
simple hex file. The compiler can be from one of several different sources:
commercial, open source, or certified. Debate rages as to the most effective

Tools of the Trade 105

form of compiler. A certified compiler eases the approval a bit for mission-
critical or safety-critical devices. Open source is free, but you must provide
the technical support. A commercial compiler often has some sort of tech-
nical support. Most commercial compilers automatically assemble and link
the compiled code; you probably would not have to worry about doing it
yourself. Typically, you will be concerned about assembling and linking
modules only when you write subroutines in assembly language to speed
up a section of code.
Another tool is a static code checker that reviews the program structure

and provides comments. These can be effective in catching some problems.
Another tool type includes modeling packages, such as MatLab�, which

not only simulates a system but can also generate code [10]. One concern for
automatic code generation is that you need to understand the assumptions
that underlie the code structure; sometimes, confusion or ignorance about
these assumptions can lead to unforeseen consequences.

3.5 Laboratory Equipment

3.5.1 Instruments and Tools

Electronic development, particularly for embedded systems, needs a basic set
of equipment in the lab. These basic tools include the following (Figure 3.2):

FIGURE 3.2
Examples of lab instruments used in developing and diagnosing hardware design: power
supply, waveform generator, DMM, and a combination oscilloscope and logic analyzer.
(� 2004 by Kim Fowler, used with permission. All rights reserved.)

106 Developing Real-Time Embedded Products

� Several good-quality power supplies or a power supply with
multiple outputs

� Multimeter that has V, I, and O settings

� Signal generator—preferably an arbitrary waveform generator

� Oscilloscope

� Logic analyzer

The multimeter should measure down to microvolts and microamperes.
The signal generator should have at least 2–5 times the bandwidth of the
expected signals that your design might encounter. The oscilloscope should
have a bandwidth greater than 20 times the clock frequency of your design.
The logic analyzer needs to acquire signals and glitches that are a fraction of
the clock period—again 20 times the frequency is a lower bound. For any
kind of wireless design, a spectrum analyzer will also be needed.
Cutting and connecting wires and traces will always be a part of circuit

design and debug. You will need diagonal cutters, needle nose pliers, wire
strippers, a good soldering iron, and various gauges of wire (Figure 3.3).
Even with a fairly simple set of tools, you can do some fairly sophisticated
developments.

FIGURE 3.3
Examples of basic tools for an electronics lab—nothing fancy, just necessary. (� 2007 by Kim
Fowler, used with permission. All rights reserved.)

Tools of the Trade 107

3.5.2 Development Systems

Today, you can find a number of development systems to help with
embedded system development. These are usually simple ‘‘pods’’ that
connect to your desktop computer and then plug into your system.
Traditionally, microprocessor emulators would be plugged in place of the

microprocessor and allow a complete view of all the internal registers in
real-time or in a single-step mode. These were always expensive and
depended on ‘‘bond-out’’ chips from the manufacturer; these are not
available as they once were. Now emulators tend to be EEPROM emulators
to allow you to download and monitor program flow without using an
expensive or exclusive microprocessor emulator.
Another form of development system is the Joint Test Association Group

(JTAG) analyzer. These plug into the JTAG ports on a circuit board and
provide a measure of visibility into the component operation. They also
allow program uploads if the circuit board is designed to do so.

3.5.3 Evaluation Boards

Another very effective form of development is the evaluation board. This is
a relative cheap board from a manufacturer of a selected component, such
as a processor, microcontroller, or an analog-to-digital converter (ADC), on
it. The evaluation board tends to have been carefully designed and laid out
so that you can study and evaluate the component. It often has rudimentary
software routines to control the chip along with communications. Figure 3.4
shows several example evaluation boards for some microcontrollers.

FIGURE 3.4
Examples of a few different evaluation boards. (� 2007 by Kim Fowler, used with permission.
All rights reserved.)

108 Developing Real-Time Embedded Products

With larger systems where you might be using a single-board computer
(SBC) or multiple SBCs, you should buy an SBC and use it as a development
board. If you are evaluating which SBC to buy, I would suggest the following
steps:

1. Review the competing products; ask for a users’ manual for the
product—pay for it if you must.

2. Call technical support at each company and ask a slate of
prepared questions (e.g., power consumption—maximum and
typical values and under what conditions, the recommended
software environment, throughput—under what conditions, etc.)

3. From Steps 1 and 2, select two or three competing products from
those companies who competently responded to you.

4. Buy and evaluate the SBC from each of the competing vendors.
Do not try to get a loaner system; these usually loan on a very
short-term basis and may only be prototypes anyway.

References

1. Website with some basic templates: www.cool-stream.com

2. Gantt charts and scheduling: http://office.microsoft.com/en-us/project/default.

aspx

3. Estimation and project control: http://www.galorath.com/

4. Estimation and project control: http://www.qsm.com/products.html

5. Listing of project management tools: http://www.projectreference.com/#PM

Software

6. Adirectoryofprogrammanagement tools: http://home.houston.rr.com/interplan/

7. Short outline of tools: http://commercial-solutions.com/pages/pmsoftware.html

8. http://www.telelogic.com/Products/focalpoint/index.cfm

9. http://www-306.ibm.com/software/rational/offerings/scm.html

10. MatLab: http://www.mathworks.com

Tools of the Trade 109

4
Case Study 1—Major Appliances

4.1 Concept and Market

4.1.1 Who, What, Why, How, Where, and When

This chapter focuses on major consumer appliances such as kitchen ovens or
washing machines. I will use the development of a kitchen oven as the focus
of this case study. Figure 4.1 shows some examples of these products.
Costumers are primarily distributors who then resell to consumers.
Interestingly, at least one company and most likely more follow the

practices of mission-critical development for these appliances. They need to
get it right the first time because once a product goes out the door, it will not
be coming back for repair or upgrade. Furthermore, these appliances are
expected to last somewhere between 20 and 40 years!

4.1.2 Economics

Between 3 and 5 million appliances are sold every year. These appliances
are cost-sensitive and yet are expected to last for a long time. Clearly, cost
and reliability are prime concerns for the company. For most of us, walking
the line between cost and reliability is a mutually exclusive analysis; as reli-
ability increases so does cost, or as cost is driven down, reliability can suffer.
Profit margins are slim in major appliances and consumer white goods.

Anything that can lower cost and still maintain reliability and functionality
is worthy of a significant amount of research and effort.

4.1.3 Incremental Evolution

Changes in design and features of major appliances and consumer ‘‘white
goods’’ are incremental or evolutionary, at best. The use of microprocessor
controls is only now becoming prevalent. The battle between cost, func-
tionality, and reliability has delayed the entry of this technology into major
consumer appliances. This delay for consumer appliances has lagged be-
hind other markets and applications.

111

(a)

(e)

(d)

(b)

(c)

FIGURE 4.1
(a–e) Examples of white goods consumer products. (� 2006, photographs by Kim Fowler, used
with permission. All rights reserved.)

112 Developing Real-Time Embedded Products

4.2 People and Disciplines

A number of people are involved in developing a major consumer appli-
ance. Marketing defines the implementation for a particular appliance. The
product-development team includes a chassis-performance team with
mechanical, electrical, software, chemical, sensor, and food engineers.
For a high-end kitchen oven, the engineering team typically might include

four software engineers, three hardware engineers, one computer-aided
design (CAD) designer, and one technician. A group of controls engineers
provides the appropriate control algorithms, such as proportional integral
differential (PID) control of the oven temperature. A team that handles
Underwriter Laboratories (UL) certification also provides part-time support
to the development.

4.3 Architecting and Architecture

4.3.1 Process

As mentioned, major appliances and consumer white goods appliances
must be exceedingly reliable. The engineers and designers use a combina-
tion of V-model and spiral development in a mission-critical fashion.
The combination of waterfall and spiral development for appliance design

goes through five phases: concept, prototype design, laboratory design,
manufacturing, and launch (Figure 4.2). Neither the hardware nor the
software changes once finalized; therefore, spiral development of new fea-
tures finishes in the laboratory design.

4.3.2 Analysis

Marketing performs a feasibility analysis for each product idea. They send
the idea to a ‘‘toll gate’’ where the decision is made to go forward or to stop
the development. After an affirmative decision, the product development
team kicks off the product development.
The product development team uses Fault Tree Analysis (FTA) to analyze

functionality and fault tolerance on all possible single-point failures and
Failure Modes and Effects Analysis (FMEA). The engineers check for the
effects of flipped bits in memory and in the software.

4.3.3 Architecture

The product manager and the product development team determine
the features desired and prepare a specification for a new kitchen oven.

Major Appliances 113

The user or human interface is the most critical item. The primary con-
straints on design are cost, time (to develop), and features (see Figure 4.3).
The team first establishes the necessary parameters for the new oven.

Some of the parameters include air temperature, airflow volume and rate,
evenness of browning, and maximum current draw (which must be under
50 A for the United States).
Next, the team considers the new features; displays, for example, are an

important concern. The team evaluates the usability of the display to cus-
tomers. For instance, how would customers turn on the oven? What makes
sense?
Beyond ‘‘touch and feel’’ and intuitive operation, the team considers how

these features affect software and hardware. For touch displays, they
evaluate materials for front panels, such as glass vs. Mylar. Furthermore,
they attempt to reuse previously developed modules in both software and
hardware. These modules have already been proven through testing and
long scrutiny; they represent significant savings in development time and
money when incorporated in new products.

4.3.4 Interfaces

The user or human interface is the most complex arena of design. It is
difficult to test all possible combinations of events—even now as manu-
facturers move to using liquid crystal displays (LCDs). A curious factor in
user interface design is that consumers want each feature to be one button;
consumers do not want menus with nested levels of selections.

Requirements

and specifications

Coding and prototyping
or engineering model

Integration tests

Acceptance tests

Analysis

and architecture

Design

Validation

Verification

Spiral
development

Unit, module,
and subsystem tests

FIGURE 4.2
A modified combination of V-model and spiral development processes. (� 2007 by Kim
Fowler, used with permission. All rights reserved.)

114 Developing Real-Time Embedded Products

4.4 Phases

Most companies have a proprietary development cycle. Most use the
same types of phases as I have described in earlier chapters: Concept,
Prototype Design, Laboratory Design, Manufacturing, Product Launch,
and Logistics–maintenance–disposal. During each phase they update the
schedule, add or revise features, and study the impact of those changes.
They also review the software, its quality, correctness, and progress, at least
once per phase.

4.5 Scheduling

Marketing uses top-down planning to set a target date for product launch.
The product development team then uses bottom-up planning and sets the
resource allocation in both dollars and staffing effort. Finally, both teams,
marketing and product development, negotiate features and development
so that the separately derived target dates move into alignment with each
other.

4.6 Documentation

Most companies will use all the standard forms of communication and
documentation, both formal and informal. These include notebooks, e-mail
messages, letters, memos, project documents, manuals, brochures, and
presentations.
The documentation important to the product development team consists

of specifications, design documents, analyses, and safety concerns. These all
help a team survive a quality or safety audit or should a product recall
occur.

Time

FeaturesCost

FIGURE 4.3
Three primary constraints for product development in major appliances.

Major Appliances 115

4.7 Requirements and Standards

4.7.1 Standards and Regulations

Most companies certify their appliances to UL and CSA regulations. Most
also have proprietary standards for designing appliances. In one instance,
the CAD team has rules and guidelines for designing circuit boards and
modules, which include items such as trace spacing, location of test points,
and layout for electromagnetic capability (EMC).

4.7.2 Preparing Requirements

Both marketing and product development teams help prepare the require-
ments. Marketing maintains contact with customers, consumers, and
distributors to follow current trends. Once marketing develops a concept for
an appliance, called an ‘‘innovation product’’, it goes to the ‘‘toll gate’’ for a
GO/NOGO decision toward development. A GO decision leads to a product
kickoff, where the product development team prepares the requirements
and specifications.

4.8 Analysis

A number of different analyses can be performed: innovation product fea-
sibility, heuristics, calculations, and prototype testing. These are primarily
performed by the product-development team.
Teams study feasibility of an innovation product by studying, comparing,

and contrasting new feature sets. The staff develop heuristics for reusing
hardware and software modules. They use FTA and FMEA calculations to
define fault tolerance and robustness. Finally, they use prototype field
testing with customers to verify and validate concepts.

4.9 Design Trade-Offs

4.9.1 Hardware

The market for consumer white goods and major kitchen appliances such
as ovens places special demands on electronic hardware. Here are some
examples of those demands:

� Integration of components must be high to reduce assembly costs
and still achieve the desired functionality. The designers use the
8-, 10-, or 12-bit analog-to-digital converter (ADC) inside the micro-
controller for reading analog signals from sensors; they do not use a

116 Developing Real-Time Embedded Products

separate, stand-alone component. The analog subsystems and ADCs,
in turn, drive the preference toward 5 VDC powered microcon-
trollers, which have adequate voltage swings to provide noise
margin. They also do not want to change between models because of
development legacy. Microcontroller vendors, however, are forcing
them to move to 3.3 VDC, which reduces the analog noise margins.

� They need a freeze on integrated circuit (IC) fabrication to avoid
EMC problems. When a vendor shrinks the design rules for line
widths and transistor size to improve their fabrication yields,
it causes faster edges on the digital pulses over the original
IC design. This, in turn, increases the amplitude and number of
harmonic components for the same clock frequency, which then
leads to more EMC radiation and interference.

� Flash memory retention needs to be much greater than 20 years
(remember, many of these appliances are expected to last as long
as 40 years). Right now, no IC vendor is willing to specify retention
beyond 20 years.

� Engineers prefer single-layer circuit boards for the lowest cost.
They begrudgingly go to two-layer circuit boards if EMC becomes
a concern.

� The CAD designers that lay out the circuit boards have developed
their own set of rules to control EMC. This decoupling of
knowledge from the design engineers can cause problems and
force iteration in design to achieve all the objectives.

4.9.2 Power

For kitchen stovetops and ovens, the input power is 220 VAC, 60 Hz in the
United States. For many international markets the input power is 240 VAC,
50 Hz.
Companies must ensure operation and tolerance in the face of changes by

vendors in their manufacturing. One way that this is done is to use two
different terminal fuses of the same specification from different vendors in a
redundant circuit to reduce the effects of unexpected changes.
Another concern is power quality. One company tests their appliances for

52 different AC line conditions.

4.9.3 Software

For the kitchen oven in this case study, software engineers write software in C
for appliances. They also design their own custom real-time operating system
(RTOS) for hosting the software on 8-bit microcontroller systems. They use a
custom time-slice RTOS that guarantees timeliness and is amenable to anal-
ysis. They use a custom pre-emptive priority, interrupt-based RTOS for 32-bit
systems. In both types of systems, engineers reuse software modules that have
been proven with time and testing. This reduces cost and effort.

Major Appliances 117

Software has to be correct when the appliance comes off the production
line; it cannot be upgraded or revised once shipped. Software engineers
use careful development processes. They conduct code reviews, do exten-
sive, carefully-planned tests, and perform field tests. The code reviews are
held at least four times before release; this reduces to one or more reviews
per phase.

4.9.4 Hardware vs. Software

The constant battle in designing appliances is desired features vs. either
reliability or utility. Just because a feature is possible, does not mean that it
satisfies the incremental gain in utility or the potential decrease in
reliability.
One interesting trade-off is in the control panels. Most consumers want

each feature to be governed by a single hardware button; they generally do
not want menus with nested levels of selections, which implements easily in
software. As fashions and features change in devices used in all parts of life,
people adjust to new ways of operation. The invasion of menu-driven de-
vices and appliances, such as cell phones, personal digital assistants (PDAs),
and computers, is pushing the acceptance of menus in appliances.

4.9.5 Buy vs. Build

Because major appliances sell in high-volume, low-margin markets, nearly
every subsystem that one company uses is custom-designed. These custom
designs are highly optimized and tightly integrated for cost, functionality,
and reliability.

4.9.6 Manufacturing

Cost is of paramount importance. Companies use both design-for-
manufacture (DFM) and design-for-assembly (DFA) to reduce manu-fac-
turing costs. Shipping is another consideration; whatever reduces the cost of
packaging the appliance and distributing it goes straight to the bottom line.
If the cardboard carton used for shipping can be revised in such a way to
cut pennies of cost while maintaining an acceptable level of protection, it
will be done.

4.9.7 Test and Maintenance

Appliance companies test for manufacturing quality; those tests are
described in Section 4.12. Otherwise, test points on circuit boards and
hardware modules aid diagnostics in the laboratory to debug problems
before manufacturing.

118 Developing Real-Time Embedded Products

Maintenance is not planned for appliances. Consumers are not good
about maintaining equipment; therefore, engineers design for reliability and
avoid maintenance.
Repair is typically by replacement of the failed module. A good technician

can run the appropriate diagnostics to isolate faults and failures, but good
technicians are not common. Still, companies maintain ongoing research
into diagnostics tools and techniques.

4.10 Tests

Some companies use a large number of different tests to develop a product.
The product development team uses field tests and laboratory tests to refine
features and implementation. They use subsystem tests for both hardware
and software to verify function.

4.11 Integration

It is rather arbitrary to separate integration from the tests described in
Section 4.10; I am only doing it to provide a consistent format between case
studies. Hardware and software subsystems are integrated and tested for
functionality. System tests are prescribed to verify specifications, after
which the product is sent to certification testing for UL approval.

4.12 Manufacturing

4.12.1 Electrical, Electronic, and Mechanical

Some companies do all the manufacturing in-house; this includes all the
printed circuit boards used in appliances. These are usually one- or two-
sided cards to maintain cost. One appliance company also manufactures
much of the chassis, doors, hinges, and panels for its appliances.
Most companies only purchase the smallest or most basic components

from vendors: integrated circuits, electronic displays, wires, electrical cords
and plugs, heating elements, and fans. One company also purchases the
materials but builds the glass windows for the oven compartment and the
nonstick glass cooktops.

4.12.2 Assembly

Electrical assembly uses programmable machines to form the cable
harnesses that connect the display panel, buttons, and processor module.

Major Appliances 119

Electronic assembly uses automatic pick and place machines and solder-
ing reflow ovens to build the circuit boards. Mechanical assembly uses
programmable machines to attach the metal panels to the chassis.
Most assemblies are automatic, with programmable machines to reduce

assembly costs. Manual assembly is unavoidable in areas where operations
are too complex for assembly-line equipment and robots.

4.12.3 Tests

Assembly-line testing also strives to reduce the need for different equip-
ment or operations. A case in point is that one company uses one tester
interface for all products within a specific market, for example, for this case
study, all cooker products.
Manufacturing personnel run proprietary protocols on all units that come

off the assembly line. They test

� All loads (heating elements)

� All connections

� All front-panel buttons

They also perform a visual inspection of every display.
Automatic test cross-checks for the version of the software load. Reuse of

hardware means that the same circuit board may end up in 15 or 20 differ-
ent products. The only distinguishing difference is the version of software
load; that version must be confirmed.

4.13 Support

4.13.1 Maintenance and Repair

There is no planned maintenance, other than occasional cleaning by
users. Most companies generally do not plan for software upgrades; it
would be too costly. Third-party companies and local shops repair these
appliances by replacement of parts or modules only.

4.13.2 Technical Support

Technical support covers basic operation, repair concerns, and customers
attempting to try out a function new to them. Although failures are reported
back from the field, it is still difficult to understand the exact problems
without engineers being there to question users. This is a basic weakness
with all consumer appliances.

120 Developing Real-Time Embedded Products

4.14 Disposal

All manufacturers are concerned with Restriction of use of certain
Hazardous Substances (RoHS). On the horizon from Europe is the specter of
recycling, which will place further burdens on manufacturers.

4.15 Liability

The biggest safeguard against liability is careful design and documentation.
Recalls for faulty products are costly in terms of time, money, and company
reputation; building it right the first time is the only way to avoid recalls.
Careful design is the only way to build it right the first time.

4.16 Summary

4.16.1 Emphases

� Developing major appliances, such as a kitchen oven, requires
mission-critical design processes.

� Designing consumer appliances requires a constant struggle to
balance time, cost, and features.

� The user interface, or the graphical user interface (GUI), is a major
focus of any appliance. Much effort is expended studying and
researching the most effective and desired operations.

� The design of major appliances must account for longevity of
operation, potentially up to 40 or 50 years.

4.16.2 Gotcha’s

� Current microcontroller chips have unknown or limited retention
for flash memory.

� IC vendors can and do change fabrication processes, which usually
means smaller features sizes that lead to sharper digital pulse
edges. This increases the frequency of the signal harmonics and
affects EMC.

Acknowledgment

The material for this chapter comes from interviews with a colleague in the
major appliance industry. We could not get approval to use any particular
company’s name.

Major Appliances 121

5
Case Study 2—Telecom Products

5.1 Concept and Market

5.1.1 Who, What, Why, How, Where, and When

This chapter focuses on products in the telecommunications market that
move and transfer data. These products include DSL (digital subscriber
line) systems, remote access servers (colloquially termed ‘‘ISP in a box’’),
and VOIP (voice-over-internet-protocol) boxes. Figure 5.1 shows some of
these products.
The company is Patton Electronics, located in Gaithersburg, MD, USA; it

sells products internationally. Costumers include end users, distributors,
integrators, and value-added resellers (VARs). Patton will ‘‘rebadge’’
products for overseas carrier deployment; this means that the company will
put a customer’s logo on each unit to make the unit unique to the customer.

5.1.2 Economics

The folks at Patton Electronics focus on ‘‘high-mix, low-volume’’ products.
This means that they design, develop, manufacture, and sell many different
products but in fairly small volumes. Patton’s total average output for all
products is about 15,000–20,000 units per month.
Patton picks markets within its expertise and develops advanced

products. They tend to be early adopters of technology, but they avoid the
‘‘bleeding edge’’ in the state-of-the-art. An example of their mode of opera-
tion is their remote-access servers. They entered the market in 1997, fairly
late in the game, then competed with and outlasted some other companies.
A big competitor left the business in 2001 and turned over their product line
to Patton. Patton’s goal is to persist in a market.

5.1.3 Market Definition

The people at Patton Electronics struggle continually to define their
markets. They discuss focus and priorities, channels of products vs. sales
regions vs. applications, and whether to segment product lines or not.
Market definition is rather more amorphous than crisply defined goals.

123

(a)

(b)

(c)

(d)

FIGURE 5.1
(a–d) Examples of telecom products. (� Patton Electronics 2006, used with permission.)

124 Developing Real-Time Embedded Products

There tends to be a lot of angst and hunger for better definition while
remaining ‘‘customer-driven.’’

5.2 People and Disciplines

Patton Electronics uses several different types of teams to develop a product.
One team, called the product review board (PRB), helps define products and
markets. The PRB comprises the president, executive vice president (VP),
VP of product management, VP of manufacturing, VP of product develop-
ment, and the director of technical support. The director of technical support,
who may seem to be an incongruous member of the PRB, provides the insight
as to whether the company will be able to support and service the new
product or not. Another team does the engineering work; these teams are
usually very small, typically one or two people. Manufacturing is done in
cells or groups by a variety of skilled technicians.

5.3 Architecting and Architecture

5.3.1 Product Definition

Anyone within the company may generate a product idea. Once a month
the PRB collects product ideas and discusses them. If a particular idea
merits further consideration, someone designated by the team then writes
a marketing requirements document (MRD), which establishes the business
case. The MRD estimates potential revenues, costs, and margins. Once the
MRD is written and signed off, the idea becomes a product nomination. All
nominations go to a subcommittee for further selection; the executive VP,
VP of product management, product managers, head software engineer,
and head hardware engineer comprise that subcommittee.

5.3.2 Product Development

Engineers within Patton Electronics use both waterfall and spiral develop-
ment processes (Figure 5.2). Hardware designers use the waterfall process
to develop a platform for a new product. Software developers use spiral
development that iterates many times far beyond the initial sale and
deployment.
The waterfall development of hardware goes through three or four

phases: specification, preliminary design (which sometimes combines with
critical design), critical design, and design verification. Hardware platforms
seldom change once designed and produced, and so spiral development
does not apply to designing the hardware. Patton Electronics does some

Telecom Products 125

field testing, and when changes do occur they are generally implemented in
software.
Software development is different from hardware development. In the

beginning of a project the software group meets with the product manager
to determine the course of software development. Most products receive a
basic software load upon initial deployment. Then Patton generates fre-
quent updates, about once per month, to increase the functionality and to
patch bugs. This business model of frequent updates and releases works
well for a number of telecom products.

5.3.4 Architecture

The chief engineers for software and hardware define the data flow,
the data buses, and the memory size. The software engineer defines the

Requirements and

specifications—MRD

Coding and prototyping

Integration and test

Acceptance tests

Analysis and

architecture

Design

Waterfall development to initiate a
product—primarily designing,
building, and finishing the hardware

and the first software load

Spiral development to update the product—
only fixing or upgrading the software

Identify problem or upgrade

Develop patchTest

Deliver

FIGURE 5.2
Patton Electronics uses both a waterfall process and a spiral development for products. The
waterfall process applies to the hardware platform and the first software load. Spiral
development of the software then continues throughout the life of the product. (� 2007 by Kim
Fowler, used with permission. All rights reserved.)

126 Developing Real-Time Embedded Products

software core and how it will grow from the alpha version to the beta
version to the follow-on updates after product release.

5.3.4 Interfaces

Most of these telecom products are embedded within other equipment and
are seldom stand-alone for direct operation by users. So, other than the data
buses and ports, the only other interface for human interaction is the Web
page that a network manager uses to configure or change the operation of
the unit. A manual is not necessarily needed.

5.4 Phases

5.4.1 Specification

Once the MRD is completed and the product selected for development, it
enters the specification phase. It usually spends about 1–2 months in this
phase. The specification review defines its exit from this phase.
A product manager and a software engineer typically write the specifi-

cations. The executive VP, VP of product management, VP of manufactur-
ing, VP of product development, and the director of technical support often
comprise the review team for the specifications.

5.4.2 Preliminary/Critical Design

Next is the preliminary design phase. Sometimes it combines with the
critical design phase for simpler products. This phase spans anywhere from
3 months to one year. Sometimes, the team develops a prototype and sub-
mits it to field testing to find the necessary constraints and concerns for final
development.
The team usually has one or two engineers, most often software engineers.

If the project is big enough, the teammay have a hardware engineer full time,
otherwise they receive some part-time help from a hardware engineer to
develop the hardware platform. The product manager, VP of product man-
agement, VP of manufacturing, VP of product development, and the director
of technical support typically make up the review team to complete the
phases.

5.4.3 Manufacturing

This phase is primarily for the hardware platform. The software engineer or
team continues work on the first software load. This is where pilot versions
of the product are built and tested.

Telecom Products 127

Patton has manufacturing facilities and staff. They can assemble circuit
boards, install power supplies, build wire harnesses, stuff enclosures, and
test, all in-house. Only fabrication of the circuit boards and certification or
compliance testing is performed outside of Patton.

5.4.4 Launch

A successful review determines product launch. The folks involved in that
decision include the product manager, VP of product management, VP of
manufacturing, VP of product development, and the director of technical
support.

5.4.5 Logistics, Maintenance, and Disposal

The software engineer or team enters a spiral development process for
revising and updating the software. New releases are frequent and can
occur monthly.
RoHS compliance and regulations require that Patton collect and dispose

of product and manufacturing equipment at the end of its life.

5.5 Scheduling

Scheduling and product management follow a visual work flow. Each
product nomination receives a ‘‘ticket’’ that contains a project name, the
name of the assigned product manager, and any notes particular to its
development. These enter a product funnel for selection; the selected pro-
ducts then flow out of the funnel into a timeline with the other products in
development. At each stage along the way, notes may be added to the ticket
or checked off. This allows team members to quickly assess the progress of
the project (Figure 5.3).
Scheduling is bottom-up, with deadline dates set along the timeline as a

product percolates through its phases.

5.6 Documentation

5.6.1 Hardware

The documentation for the hardware platforms includes the following:

� Hardware specification

� Design verification report

128 Developing Real-Time Embedded Products

(a)

(b)

(c)

FIGURE 5.3
(a–c) Schematic diagram of project flow and progress visualization at Patton Electronics.
This deceptively simple scheme allows engineers to gather around and at a glance assess the
state of all projects. (a) Nominations and product funnel. (b) Prototypes and pilot runs. (c)
Compliance and certification. (Photographs � 2006 by Kim Fowler, used with permission. All
rights reserved.)

Telecom Products 129

� Parts list

� Assembly instructions

� Qualified manufacturers lists for parts

� Production test procedure

� Compliance test reports

� Regulatory certificates

The hardware engineer generates all of these documents except the last two.
Outside test firms generate the test reports and the regulatory certificates.
A component engineer maintains the database of manufacturers’ declara-
tions pertaining to compliance and regulation.

5.6.2 Software

The software team generates the following documents:

� Software specification, which becomes the release notes

� Design verification report

� Version control

� Bug management database

5.6.3 Manufacturing

Manufacturing has a number of procedures to follow, all controlled by
various software programs. Manufacturing also keeps a database that
contains customer identification, key generator, software load for the unit,
and the ‘‘pack out’’ bar codes, which confirm the Internet address of the
unit. The challenge in all this is to maintain quality in isolated applications
and try to integrate the manufacturing environment.

5.6.4 User Manuals

Patton Electronics maintains Web pages for products that serve as user
manuals. These Web pages are written by the software engineer who deve-
loped the unit; the Web pages serve a very small number of users—system
operators that manage the equipment.

5.7 Requirements and Standards

The primary regulation that this telecom equipment must meet is the
FCC (Federal Communications Commission in the United States) part 68.

130 Developing Real-Time Embedded Products

The products often must meet CE (Conformite Europeene) compliance
for European and international markets.

5.8 Analysis

5.8.1 Feasibility—The Business Case

The primary effort to determine the feasibility of a new product is in the
MRD. The MRD establishes the business case by estimating potential rev-
enues, costs, and margins (the differential between costs and sale price).
Implicit in these estimates is the technical feasibility.
An engineer or product manager assigned by the PRB writes the MRD.

This happens early on in the process and becomes part of the product
nomination.

5.8.2 Heuristics, Calculations, Definitions, Approximations,
and Simulations

The rules of thumb and estimates usually pertain to the size of the software
loads, needed memory, and rates of data throughput. Estimates for power
consumption and cooling are also made.
An engineer or engineering team makes these estimates. These go into the

MRD and help shape the design specifications that follow after selection for
further development.

5.8.3 Field Tests

Occasionally, a product needs further definition through prototype and
field trials. An example of this is any VOIP product; beta test units often
spend extended time in the field. When this happens the engineering team
develops the prototype with oversight from the product manager. The
prototype is fielded and monitored by the engineering team. Field tests
typically take between 2 and 10 months. These occur at a prospective
customer’s site or in the laboratory.

5.9 Design Trade-Offs

5.9.1 Hardware

Most of the hardware focuses on data flow; therefore, field-
programmable gate arrays (FPGAs) are used extensively. Patton uses a
variety of microcontrollers and microprocessors to control the telecom

Telecom Products 131

equipment; these include 8051 series microcontrollers running between 4
and 20 MHz, MIPS processors running at 400 MHz, and i960s. The software
loads generally range between 1 and 5 MB of memory.
Typically, a hardware engineer works closely with the lead software

engineer to determine the size of thememory anddata through requirements.

5.9.2 Power

Input power is nearly always AC line, or mains, power. Patton uses power
supplies that have universal input (100–240 VAC and 50–60 Hz) to allow for
international applications.
The size, shape, and power consumption all factor into selecting the

power supply. For a telecom product that uses a cPCI chassis, they will
select a commercial off-the-shelf (COTS) cPCI power supply that slides into
the chassis. For self-contained enclosures they will select an open-frame
power supply. For lower-power applications in a small box they select a
‘‘wall wart’’ type of power supply.

5.9.3 Cooling

Patton does not use fans to cool the circuitry. They strive for low-power
designs and avoid the maintenance concerns of fans and filters. They de-
pend on forced air cooling provided by equipment chassis.

5.9.4 Software

The software engineers write most of their software in C. They do not use
code reviews but rely on field tests and monthly releases to control the
quality of the software. They write their own custom real-time operating
system (RTOS) for embedding in their products.
I tend to think that the lack of peer review is a weakness in the software

development process. Again a custom RTOS might not be the best way to
go, unless Patton has developed a template for their custom RTOSes. The
caveat in my comments is that I do not know the full extent of the software
in Patton’s telecom products.

5.9.5 Hardware vs. Software

The biggest trade-off is that the hardware platform must have sufficient
memory and computational power to support the frequent software up-
dates. Once designed and released, the hardware is not changed. Only
software updates are used to enhance or modify any particular product. The
lifetime of a typical product is between 3 and 5 years.

132 Developing Real-Time Embedded Products

5.9.6 Buy vs. Build

Nearly all of Patton Electronics’ telecom products are custom-built and
manufactured for specific applications. Patton has in-house manufacturing
facilities for assembling, testing, and shipping products. Consequently,
most subsystems are custom-designed and custom-built.
The one exception is the power supply. Typically, Patton buys COTS

power supplies for their products. The one place where they find it difficult
to buy a COTS supply is for 1 U rack mount enclosures, where they need
long skinny form factors for the power supply. A product in a 1 U enclosure
will often dictate a custom design of the power supply.
Even when Patton does do custom design of a power supply, they still use

standard types of pinouts for the DC-DC convertors. This allows them to
swap out DC-DC modules to fit different applications.

5.9.7 Manufacturing

Patton Electronics designs and develops products with design for
manufacturing (DFM) and design for test (DFT) in mind. This means that
layout of components and subsystems aid the smooth and efficient
assembly of product. Patton also uses DFT to do production testing before a
product ships. Chassis usually have Joint Test Association Group (JTAG)
ports for diagnostics.

5.9.8 Test and Maintenance

Patton Electronics does not maintain a test-engineering staff. The hardware
and software design engineers develop the appropriate tests along with
the production design. Maintenance is not a consideration because, once
a product ships, it does not return for repair. If a unit fails, it is simply
replaced.

5.10 Tests

5.10.1 Formal and Informal

Most testing at Patton is laboratory bench diagnostics or manufacturing
qualification tests. Patton relies on component vendors to test and qualify
components and subsystems; a components engineer maintains a database
of compliance declarations by the vendors.
Patton does not peer-review software. Software engineers rely on frequent

updates of the software in the field.
Field testing often is viewed as an integration activity. Patton uses proto-

types and field-tests them to complete the specifications for a final product.

Telecom Products 133

5.10.2 Manufacturing

Products are usually tested as final assemblies in manufacturing. Examples
of tests carried out on the assembly line include power-on-self test, software
build-in-test (BIT), and link tests. They also test the interfaces for meeting
communications protocols such as T1, DSL, and ISDN. They test for bit error
correction by inserting bit errors with a test article and then check for cor-
rection by the production unit.
The hardware and software engineers on the design team design the

manufacturing tests. Technicians then carry out the tests on the production
units at the end of the manufacturing line.

5.11 Integration

5.11.1 System

Integration brings the hardware and software together; the initial software
programs are loaded on the hardware platform. Integration occurs during
the two different phases: pilot and manufacturing release.
During integration, the system is validated. Most of the validation is

devoted to software functionality.

FIGURE 5.4
Anechoic chamber for precompliance testing. (Photograph � 2007 by Kim Fowler, used with
permission. All rights reserved.)

134 Developing Real-Time Embedded Products

The engineering team, both hardware and software engineers, performs
the integration in both pilot and manufacturing release phases.

5.11.2 Environmental

Patton does do some precompliance testing for electromagnetic capability
(EMC) to reduce the amount of time and effort spent at official test and
certification sites (Figure 5.4). These tests check for radiated emissions and
conducted susceptibility. Precompliance testing gives a measure of assur-
ance before Patton goes to an outside firm to test and certify the design.
Patton tests and certifies to both the CE mark and FCC part 68 regulations.

5.12 Manufacturing

5.12.1 Electrical and Electronic

Patton Electronics has a fairly complete and flexible capability to manu-
facture telecom products. They have pick-and-place equipment to ‘‘stuff’’
circuit boards (Figure 5.5) and then solder reflow ovens to bond the

FIGURE 5.5
Pick-and-place equipment for ‘‘stuffing’’ circuit boards. (Photograph � 2006 by Kim Fowler,
used with permission. All rights reserved.)

Telecom Products 135

components to the circuit boards (Figure 5.6). Afterwards, a technician in-
spects the circuit boards for quality and then sends them onto assembly.
Any wire harnesses are prepared by hand assembly. In general, Patton

avoids discrete wires and harnesses; they try to make connections directly
to the circuit boards.
Patton does not fabricate its own circuit boards; it sends out board layout

files to an outside vendor, who then fabricates and delivers the circuit
boards back to Patton.

5.12.2 Mechanical

Most products use a standard form factor for their enclosures, including
1 U boxes and PCI chassis. Even stand-alone products use COTS enclosures.
If the product is not a PCI chassis, then the circuit boards mount in the
enclosures with a motherboard and daughter cards.
These enclosures are hand-assembled by technicians organized into

groups, or cells. Patton also hand-assembles some components (Figure 5.7).

5.12.3 Assembly Control

Many different software programs run the manufacturing lines; it is not
an integrated process because of the complexity of the processes in a

(a) (b)

FIGURE 5.6
(a and b) Solder reflow oven for attaching components to circuit boards. (Photographs � 2006
by Kim Fowler, used with permission. All rights reserved.)

136 Developing Real-Time Embedded Products

‘‘high-mix, low-volume’’ environment. Patton Electronics relies on skilled
technicians to run the appropriate software to control manufacturing.

5.12.4 Testing

Patton Electronics does not maintain a test-engineering staff. The hardware
and software design engineers develop the appropriate tests along with the
productiondesign.A skilled technician then tests the products at the end of the
manufacturing line (Figure 5.8). These tests are for functionality and quality.

5.13 Support

5.13.1 Logistics and Maintenance

Products from Patton Electronics are generally not field repairable. Repair is
by replacement of the unit if hardware fails. Otherwise, fixes and upgrades
occur through frequent software releases.
The technical support team fields the initial inquiry. If technical support

cannot immediately fix the problem, then the product manager or desig-
nated engineer provides the solution.

FIGURE 5.7
Assembly of components before inserting into a product. (Photograph � 2006 by Kim Fowler,
used with permission. All rights reserved.)

Telecom Products 137

5.13.2 Technical Support

Technical support is primarily instruction into using the Web page of the
individual product. The Web page instructs the user how to configure the
product.

5.14 Disposal

Patton Electronics, like other manufacturers, must deal with Restriction of
use of certain Hazardous Substances (RoHS) and waste from electrical and
electronic equipment (WEEE). They are contracting with third-party com-
panies to recycle old equipment. They also have the option to pick up and
recycle the equipment themselves, but have not done that yet. Implemen-
tation of WEEE recycling is not clear, and each country independently

FIGURE 5.8
Testing products at the end of the manufacturing line. (Photograph � 2007 by Kim Fowler,
used with permission. All rights reserved.)

138 Developing Real-Time Embedded Products

determines how itwants the recycling to be performed. There is some talk of a
fee-based recyclingbasedonproductweight, but that is notdecidedasof early
2007 in any country.

5.15 Liability

These telecom units and market have fairly low liability; they are not
anything like a medical device or automotive device or even a kitchen
appliance. They do not really have major safety issues other than the AC
power input, which many electronic products have.
The biggest concerns are the legalities surrounding intellectual property.

Here Patton primarily deals with products that follow government
and commercial standards. Intellectual property disputes, as with most
products in any market, are the primary concern but very infrequent for
Patton.

5.16 Summary

5.16.1 Emphases

Patton Electronics’ forte is persistence in the telecom market. Their products
generally remain behind the ‘‘bleeding edge’’ of technology but serve
a niche market in data-transfer products. The company specializes in
‘‘high-mix, low-volume’’ products and have the design and manufacturing
resources to support that type of operation.

5.16.2 Gotcha’s

Patton Electronics does not perform peer review of its software. They also
build their own custom RTOSes. Smaller size and extent of the software and
reuse between products can mitigate these concerns.

Acknowledgments

My thanks to Craig Silver and Bryan Dubois at Patton Electronics for
providing the information for this chapter and for reviewing it.

Telecom Products 139

6
Case Study 3—Commercial Laboratory
Equipment

6.1 Concept and Market

6.1.1 Who, What, Why, How, Where, and When

This chapter focuses on scientific instruments for both laboratories and
high-tech manufacturing. These instruments and systems address manu-
facturing tests of electronics, process monitors, and scientific and engi-
neering research. Figure 6.1 shows some of these products.
Keithley Instruments, Inc., of Cleveland, OH, offers about 500 products in

dozens of markets. Keithley’s primary markets for test equipment [1]:

� Manufacturing production test for electronic components

� Testing flat panel displays and optoelectronics

� Accurate, very sensitive, low-level measurements for research into
superconductivity, semiconductors, metals, polymers, and insulators

� Device characterization for semiconductor wafer processing

� Testing telecommunications devices such as cell phones and
digital switch systems

Joseph Keithley founded the company in 1946 in a small workshop in
Cleveland, OH. Its products have evolved and multiplied in the arena
of electronic test, measurement, and data acquisition for engineers and
scientists. The company has grown into an international concern with sales
worldwide [1].

6.1.2 Economics

Keithley Instruments, Inc., has more than 650 employees and yearly sales of
nearly US$150 MM [1]. Keithley’s annual report for 2005 gives the following

141

breakdown of types and price ranges of their products [2]:

� Parametric test systems for semiconductor wafer manufacturing
range from US$150K to $500K

� Semiconductor characterization system ranges fromUS$30K to $75K

� System instruments range from US$15K to $25K

(a)

(c)

(d)

(e)

(b)

FIGURE 6.1
Examples of scientific instrumentation for the laboratory and production line. (� Keithley
Instruments, Inc. 2006, used with permission).

142 Developing Real-Time Embedded Products

� Bench-top, stand-alone instruments range from US$1K to $10K

� Switch systems range from US$2K to $50K

� Personal computer (PC) plug-in boards range from US$200 to
$4000

Like the company in the last chapter, Keithley focuses on ‘‘high-mix, low-
volume’’ products. This means that they design, develop, manufacture, and
sell many different products but in fairly small volumes. Keithley’s average
output per month for all products is between 3,000 and 5,000 units with a
total yearly output of between 45,000 and 60,000 units.

6.2 People and Disciplines

Keithley Instruments has five distinct groups of people working on every
product [3]:

� Strategic marketing

� Research and development (R&D)

� Manufacturing

� Customer service and applications support

� Commercial marketing

Each group has specific responsibilities and tasks depending on the phase
of the project.
Strategic marketing is responsible for the business case, financials, and

planning for a new product. The folks in strategic marketing must under-
stand customers’ applications and requirements and the competition to
gauge both market position and potential. They determine the product’s fit
with the goals and capabilities within the company for other products. They
also develop and maintain key customers and partners who will participate
in the development of the product [3].
R&D is responsible for generating technical innovation, assessing the

technology risks, establishing major milestones during development, the
product design, negotiating product requirements, and quality and reli-
ability. The people in R&D establish external development partnerships, the
schedule, and the resource plans. They also contribute to the DFx goals; DFx
stands for Design-For-x, where x might be assembly, test, manufacturing,
and so forth [3].
Manufacturing eventually builds the product, which means that

manufacturing is responsible for the product assembly and test. They also
finalize the DFx goals, conduct the test run pilot, and build demo units.
Manufacturing also must make sure that material sourcing and material
entry into the purchasing system all happen [3].

Commercial Laboratory Equipment 143

Customer service and applications support is responsible for planning
and implementing the product service and support and for the training in
the use of the new product. Commercial marketing is responsible for the
launch plan, the sources of leads, and sales by geography [3].

6.3 Architecting and Architecture

6.3.1 Process

Keithley Instruments uses the stage-gate process to select and develop
product ideas. Keithley’s stage-gate has four sections or phases. In the first
two phases, called the fuzzy front end, the product is defined and invented.
These phases produce the concept and assess its feasibility. The final
two phases are called the concrete back end; the product is implemented,
designed, built and demonstrated in these two phases. Somewhere between
Phase 2 (the fuzzy front end) and Phase 3 (the concrete back end) is a line
in the sand. It represents the switchover from invention to implementation.
Part of the process and parallel to the fuzzy front end and the concrete

back end is the product funnel (Figure 6.2). The people at Keithley
Instruments, as in the company described in the last chapter, have more
ideas than can be executed at any one time. They must set priorities and
then narrow the number of candidates for further development. Keithley
defines its product funnel through criteria, such as financial payback, risk,
corporate strategy, and core competencies. Most of the selection occurs in
Phases 1 and 2 to weed out product ideas, which leaves full resources
devoted to product implementation in Phases 3 and 4.
Keithley is using a spiral form of development through these four phases,

particularly the last two. It consists of a full integration of the current
build of modules, both hardware and software, to test and verify the

Phase 1 Phase 2 Phase 3 Phase 4 Production

Fuzzy front

We are building a new car.

What should it be like?

We think it should have

autopilot. Can we do it?

Now that we know it should
have autopilot, and we know
how, let us work the bugs out!

We think we have a good product.

Let us build it a bunch of times.

Define and invent Implement

Concrete back end

FIGURE 6.2
Typical resource balancing throughout the phase/gate process. (Used with permission, IEEE
Instrumentation & Measurement Magazine [3] and Keithley Instruments, Inc.)

144 Developing Real-Time Embedded Products

specifications and to validate the functionality of the instrument. The
company is using spiral development to reduce risk in developing products.
It is an ongoing effort that requires extra work and is still resisted by some
engineers; the ultimate goal is to make it into a ‘‘best practice.’’
Part of Keithley’s ‘‘best practices’’ is to localize risky concerns into mod-

ules and not to distribute them across multiple interfaces. Risky modules
may be interchanged with more developed, less risky implementations until
the technology has resolved the concerns.
Keithley has also established a unit called Keithley Labs to take high-

technology risk items as much as possible off of the critical path of the
projects. Their goal is to find high risk new technologies and intersect with
projects that will begin to develop the new technology within 2–3 years
followed by a new product in the marketplace in 4–5 years time.

6.3.2 Parameters and Analyses

This case study does not focus on a single product; it considers the general
processes that Keithley Instruments uses to develop instruments and lab-
oratory equipment. Consequently, these parameters and analyses generalize
to all products.
The parameters and analyses tend to have significant business orientation

and include

� Risk and financial payback

� Opportunity cost of resource usage

� Likelihood of emerging as a critical new industry measurement

� Alignment with corporate strategy and core competencies

� Importance of measurement for key customers

� Maintaining reputation and brand name (e.g. for high reliability)

In addition, considerations of technical issues may include

� Physical limits of measurement

� Stability of sources (e.g. voltage and current sources)

� Low-level noise (e.g. thermal noise overwhelming a low-level
measurement or EMF of dissimilar metals at a junction)

� Power density and cooling

� Radio frequency (RF)—phase noise, distortion, and frequency
ranges

Instruments destined for different industries or market segments have dif-
ferent emphases, hence they focus on different parameters. Instrumentation
for RF testing focuses on phase noise, distortion, and frequency ranges, while

Commercial Laboratory Equipment 145

instrumentation for direct current (DC) measurements focus on low-level
signals and noise reduction. Equipment and instruments for measurements
in semiconductor manufacturing operate round the clock, so they need reli-
ability of the highest degree.

6.3.3 Architecture

Keithley Instruments uses ‘‘platform leverage’’ to help define the architec-
ture of instruments. A platform is a collection of technology blocks or
subsystems, such as power supply, digital signal processor (DSP) module,
digital board, or display board. Platform leverage relies on reusing these
technology blocks to develop new instruments quickly.
Until recently, Keithley has relied on pull-forward leveraging: Keithley

defined a need for a new instrument, then the designers looked for
appropriate technology blocks, already developed, to realize the final product.
Pull-forward leveraging actually results in distinct instruments, each with
distinct support and logistics needs. Because their technology blocks were
pulled from various previous developments on different platforms, distinct
instruments shared few common needs in support or logistics. Such product
development create extra problems in the high-mix and low-volume world.
Keithley Instruments is moving toward forward-looking platform manage-

ment and preparing roadmaps for future instruments, up to 5 years away,
that share common technology blocks and development processes. The goal
is to spin off new product variations and improvements from this common
platform and still maintain a more efficient support infrastructure.
Manufacturing companies in the hi-tech arena are always looking for

higher-density equipment racks that take less floor space. They also want
increased throughput to reduce test time and cost. This means that parallel
tests with multiple sets of source stimuli and receivers or probes are
increasing in use. Furthermore, some manufacturers, such as in semicon-
ductor fabs, operate continuously, i.e., 24/7, hence demand high reliability.
This need affects the architecture of the test instruments on the assembly
line.
Keithley has an internal module for many instruments called the Test

Script Processor (TSPTM). It is a combination of processing hardware and
software that makes possible the fast execution of a sequence of commands.
It has an easy-to-use programming language to generate the test scripts.
The internal hardware accepts commands in batch fashion, executes the
commands including decision blocks, calculates the result of a complex
algorithm, and returns the answer. All of this can be done without contin-
uous communication with the external computer for each command. The
result is a much faster execution of a list of commands. Any instrument with
TSPTM can act as either a master or a slave to expand functionality—only a
simple local area network (LAN) cable connection is needed between units,
and then all measurement channels look like they are in the same box.
In this way, Keithley’s TSPTM provides ‘‘seamless extensibility.’’

146 Developing Real-Time Embedded Products

6.3.4 Interfaces

Instrumentation will always have several important interfaces: electrical,
mechanical, and user. An instrument will have a main sensor or probe,
which means sensing, conditioning, and conversion; all of which occur at an
interface: transduction of phenomena to electrical signal, translation and
isolation of the electrical signal, and translation from the electrical signal to
the digital domain. An instrument will have a user interface—both display
and manipulative input (e.g. buttons). Not all instruments have a display
mounted directly on the enclosure, and some instruments use only a remote
interface. Finally, if an instrument is a piece of manufacturing test equip-
ment, it will have a control interface to maintain process control and data
storage of manufacturing test results.

6.3.5 Branding

Keithley Instruments, Inc. has always focused on building a solid reputation
with quality equipment. Careful control of the Keithley instrument appear-
ance is one way to reinforce its brand and the perception of quality. They
want every product to have a look and feel that immediately identifies the
equipment as Keithley. Keithley pays special attention to the entire ap-
pearance and operation of the equipment, from the logo to the color scheme
to the operation of the buttons and displays.

6.4 Phases

6.4.1 Overview

Figure 6.2 gives a good overview of the phases that Keithley Instruments
goes through to develop a product. A product develops in the first four
phases and then it enters the production and support phases. I will focus on
product development in the first four phases.

6.4.2 Phase 1—Concept

Phase 1, or Concept, is part of the fuzzy front end when Keithley personnel
prepare and refine a product concept. It is a very difficult stage to estimate
and schedule. Product definition is highly iterative. Knowledge of both the
market and the customer feeds into the current understanding of techno-
logy and then Keithley refines the concept.
This phase might be called the invention phase. The primary ownership is

in the hands of the strategic marketing group, who receives technical and
logistic input from the R&D group. Table 6.1 outlines some typical tasks in
Phase 1 [3]. During this phase Keithley will gain greater understanding of

Commercial Laboratory Equipment 147

TABLE 6.1

Phase 1—Typical Activities (Used with Permission, IEEE Instrumentation &
Measurement Magazine [3] and Keithley Instruments, Inc.)

Tasks to Complete Typical Owner Purpose Risk with Deletion

Understand
competitive
offerings, customer
applications, critical
requirements, core
contribution;
positioning in
market

Strategic marketing Aid in
positioning
with respect to
competition
and defining
product that
will solve
customer needs

Miss key definitional
elements; competitive
offering may
overshadow new
product; may not be
prepared to aid
customers pre- or
postsales

Strategic fit with
goals and
capabilities; market
potential;
preliminary
financials

Strategic marketing Maintain
synergy with
other plans;
assure this is
financially the
right
investment

Disjoint product plans
create inefficiencies;
without solid financials,
may over or
underestimate payback

Preliminary key
customer/partner
list

Strategic marketing Customer to aid
in making the
right product

May engage key
customers too late in
development to
influence design

Technology
assessment; list of
high-risk areas,
major decisions, and
major milestones

R&D Assess technical
risk, prepare
for major tasks
to be
completed in
next phase

May enter into
development with too
much technology
development on main
path; schedule slippage

List of potential
development
partnerships

R&D Early
recognition of
risk or cycle
time benefit;
make/buy
decisions the
need to be
made

May pass up opportunity
for significant
development benefit

Preliminary schedule,
resource plan, other
goals (such as DFx)

R&D Aid in financial
analysis,
organizational
awareness, and
commitment

Poor information input
to financials; resources
not available when
needed; need goal/
direction for team

Key issues
preliminary material
sourcing plan

Manufacturing Early
recognition of
major efforts

Schedule slippage due
to surprises

List of key issues Customer service/
applications
support and
commercial
marketing

Early
recognition of
major efforts

Schedule slippage due
to surprises

148 Developing Real-Time Embedded Products

the customer applications sufficient for R&D to identify the key technical
issues to be solved, and to begin their resolution. The key is to identify
separable blocks in the architecture where the technical risk is within the
block, and not within the interface. Breadboards of potential solutions for
key technical issues will be produced and tested. At this stage, Keithley is
taking a minimalist approach, building only those elements necessary to
clearly identify the major issues and potential solutions.
An example of iteration through understanding the customer and

the technology is Keithley’s Model 2602 Source Measure Unit (Figure 6.3).
It has features that addressed previously unidentified customer need.
‘‘Through careful understanding of the competitive offerings and customer
applications, through complete technology assessment and significant
breakthroughs, we produced a product that has exceeded expectations of
our customers in rack density, extendibility to many channels, testing
speed . . . and cost . . . ’’ ([3], p. 16).

6.4.3 Phase 2—Investigation

Phase 2, or Investigation, is the other part of the fuzzy front end when
Keithley eliminates major risks from the product concept: market, tech-
nology, and logistics. Phase 1 identifies the key risks and possible solutions,
and Phase 2 beats these risks down. Engineers build breadboards and test
solutions to all risky portions of the architecture or system. They only

FIGURE 6.3
Keithley Model 2602 two-channel source measurement unit. (Used with permission, IEEE
Instrumentation & Measurement Magazine [3] and Keithley Instruments, Inc.)

Commercial Laboratory Equipment 149

prepare a system breadboard if full integration is the only way to clarify a
system concern, such as heat dissipation or electromagnetic capability
(EMC). At the end of this phase, Keithley engineers have solutions to the
most risky technical issues. Also, during this phase, the team at Keithley
develops a plan for resources and project cost.
Ideally, Phases 1 and 2 should consume about 50% of the project’s

calendar time. If too little time is spent in the fuzzy front end, Keithley runs
the risk of either not correctly defining the product or of taking too much
technical risk into the next phases. If too much time is spent in these first
two phases, time may be wasted and this could strongly affect revenue,
especially in a rapidly moving market. Keithley strives to deliver the right
solution to a customer’s problem within an appropriate window of time.
Phase 2 is the responsibility of both the strategic marketing and R&D

groups, but they receive significant help from manufacturing, especially
if a significantly different manufacturing plan is needed for the project.
Table 6.2 outlines some typical tasks in Phase 2 [3].

TABLE 6.2

Phase 2—Typical Activities (Used with Permission, IEEE Instrumentation &
Measurement Magazine [3] and Keithley Instruments, Inc.)

Tasks to Complete Typical Owner Purpose Risk with Deletion

Update on
competition,
customer apps,
market positioning

Strategic
marketing

Update definition of
product and key
reasons customer
would chose your
product

May have obsolete product
before introduction

Completion of
customer
requirements
documentation

Strategic
marketing

Solidify agreement
with R&D on
deliverable as seen
by customer

Without completion, stand
good chance of product
rework and project delays

Changes to other
aspects of business
plan including
financials

Strategic
marketing

Update
organization on
changes

May miss a key decision
point if conditions
changed

Agreement with key
customers/
partners

Strategic
marketing

Identify customers
who will aid in key
elements of
product definition

Will not have in-depth
analysis by one who uses
equipment; may miss the
mark in key parameters

Completion and
agreement on
product
requirements

R&D Turn customer
requirements into
product
requirements—
translation of
customer needs
into methods for
achieving

May not have
understanding with
marketing on the need
and method of taking the
‘‘need’’ to the ‘‘solution’’;
wrong product

(Continued)

150 Developing Real-Time Embedded Products

At the end of this phase, they hope to have completed product definition.
They should be finished with inventing and ready to implement the con-
cept, but this is not always possible.
‘‘This ideal of having a completed product definition at the end of this phase

is not always possible. This is especially true in caseswhere one isworking on

TABLE 6.2

Continued

Tasks to Complete Typical Owner Purpose Risk with Deletion

Decisions on
architecture and
leverage/reuse;
complete
invention—near
elimination of high
technology risks

R&D Lock in on high
level decisions that
affect technology
risk; get to point
where you can
plan for
implementation

Uncertainty in technology
employed and likely
schedule slippage

Agreement with
development
partners

R&D Understanding with
all parties on who
will do what
development

Uncertainty in roles and
responsibilities; schedule
slippage

Completed resource
plan, achievable
schedule; ID of
major milestones

R&D Financial analysis,
organizational
awareness, and
commitment

Poor information input to
financials; resources not
available when needed;
intermediate goals for
team not clear

Production process
strategy
Preliminary
material sourcing
plan Final DFx
goals

Manufacturing Define major
elements of
manufacturing
process; influence
design for
manufacturing

Chance of major process
change in direction late in
project; miss opportunity
to influence product;
potential for schedule
slippage

Resource plan Manufacturing Financial analysis,
organizational
awareness, and
commitment

Poor information input to
financials; resources not
available when needed

Preliminary product
service and
support strategy

Customer
service/
applications
support

Estimate required
budget, identify
design-for-
serviceability
issues; identify
customers’ service
requirements

Unexpected expenses;
difficulties in servicing
product; service strategy
not accepted by
customers

Preliminary launch
plan and alignment
with other plans;
key assumptions
such as lead
sources, sales by
geography, and
so forth

Commercial
marketing

Estimate scope and
cost of promotion;
set preliminary
lead and
opportunity
objectives

Inadequate lead and
opportunity generation;
excessive promotional
costs

Commercial Laboratory Equipment 151

cutting-edge technology, such as MEMS and nanotechnology, and the
product needs are being defined interactively while a key customer is
completing their technology investigation . . . ’’ (Figure 6.4). In new technol-
ogy areas, Keithley works ‘‘tightly with a customer and alter[s] the product
definition more deeply into the project cycle than the ideal’’ ([3], p. 19).
For the Model 6220 Current Source (Figure 6.5), an instrument used in

the nanotechnology field, Keithley ‘‘learned progressively more about the
customer needs, as their applications were refined. It was necessary in this
case to live with a greater level of uncertainty in the product definition
going into Phase 3. This uncertainty did, of course, produce a longer
cycle time for the product owing to some level of rework on the product
design’’ ([3], p. 19).

FIGURE 6.5
Keithley Model 6220 Current Source. (Used with permission, Keithley Instruments, Inc.)

FIGURE 6.4
Measurement of carbon nanotube using Keithley Model 4200-SCS Semiconductor Characteri-
zation System and Zyvex S100 Nanomanipulator. (Used with permission, IEEE Instrumen-
tation & Measurement Magazine [3] and Keithley Instruments, Inc.)

152 Developing Real-Time Embedded Products

At other times a new product arises while Keithley works with a
customer and understands their application to such a level that they can
give significant help in critical measurements. One such development was
the Model 4200-SCS with Pulsed IV (Figure 6.6) which solved a specific
semiconductor device problem; it integrated a pulse card, an oscilloscope,
and applications software into the Model 4200-SCS Parameter Analyzer.
‘‘Although the solution had been proven with an external pulse instrument,
one of the key risks in the project was to create and integrate a voltage pulse
card into the Model 4200-SCS. Reduction of this key risk, clearly on the
critical path of the schedule, could be accomplished through creation of a
working circuit on the bench. This was necessary before we left the ’fuzzy
front end’.’’ ([3], pp. 19–20).

6.4.4 Phase 3—Development

Phase 3, or Development, is part of the concrete back end; it is where
Keithley personnel implement and complete the design plan for the product
and build a prototype to meet the critical specifications. R&D is most
prominent in this phase. Table 6.3 outlines some typical tasks in Phase 3 [3].
In this phase, the team typically generates between one and three full system
integrations to work out the issues and to guarantee a high-quality manu-
facturable product. Upon exiting this phase Keithley expects no turns of
updated board [meaning they do not plan to fabricate any revised printed
circuit boards (PCBs)] before turning on full manufacturing; they also expect
that full hardware quality audits have been performed and expect that all the
critical firmware functionality has been incorporated into the instrument.

FIGURE 6.6
Keithley Model 4200-SCS with Pulsed IV. (Used with permission, IEEE Instrumentation &
Measurement Magazine [3] and Keithley Instruments, Inc.)

Commercial Laboratory Equipment 153

TABLE 6.3

Phase 3—Typical Activities (Used with Permission, IEEE Instrumentation &
Measurement Magazine [3] and Keithley Instruments, Inc.)

Tasks to Complete Typical Owner Purpose Risk with Deletion

Changes to business
case including
financials

Strategic
marketing

Update
organization on
changes

Miss a key decision point
if conditions change

Create
manufacturable
product,
completed
features, no
planned redesigns

R&D Complete the
design

Potential schedule
slippage from reworking
units in following stage;
potential for not meeting
quality, cost, yield goals

Verify hardware,
firmware, and
software quality
and reliability

R&D Tests to assure a
quality product
released to desired
performance

Potential schedule
slippage; potential for not
meeting quality goals

Complete
preparations for
test run . . .
training, materials
list and mfg
drawings,
preliminary specs

R&D Training of
technicians,
assemblers, testers,
engineers;
readiness for
manufacturing
processes

May have untrained
people, material
shortages for next phase;
schedule slippage

Test run (pilot)
build plan
including demo
units

Manufacturing Number of units to
demonstrate yield,
and so forth
during next phase

May not have good
sampling for statistics

Preliminary
production
ramp plan

Manufacturing Plan for first
production run;
stage material, and
so forth

May not be ready with
material for first
production run

Complete product
assembly and test
processes, material
entry into
purchasing
systems

Manufacturing Readiness for
processes to build
samples during
next phase

May not be representative
test of production
processes

Identify unique
materials—set up
special processes

Manufacturing Special handling
identified

Quality, cost, production
cycle times or
performance may suffer

Complete product
service and
support plan

Customer
service/
applications
support

Prepare plans to
procure spares;
identify required
training

Inability to service product
due to unavailability of
spares or trained
personnel

Verify adequacy of
solution
introduction plans

Commercial
marketing

Verify optimal
solution rollout
into marketplace

Confused or inadequate
market introduction

154 Developing Real-Time Embedded Products

6.4.5 Phase 4—Pilot

Phase 4, or Pilot, is the other part of the concrete back end when
Keithley personnel build a pilot run to test the product for cost and
yield to performance specifications. They also test the manufacturing
processes—material ordering, assembly, and test. Manufacturing owns this
phase. Table 6.4 outlines some typical tasks in Phase 4 [3]. Quality audits
will again be performed on the hardware, and the firmware is sent through
a rigorous process of problem finding, reporting, and fixing. At the end of
this phase, the manufacturing organization has confidence that they will be
able to fulfill a customer order on time and with high quality.

TABLE 6.4

Phase 4—Typical Activities (Used with Permission, IEEE Instrumentation &
Measurement Magazine [3] and Keithley Instruments, Inc.)

Tasks to Complete Typical Owner Purpose Risk with Deletion

Changes to business
case including
financials

Strategic
marketing

Update
organization on
changes

Miss a key decision point if
conditions change

Agree on
engineering
transition plan for
R&D engineers

R&D How long or
through what
goals will R&D
support
manufacturing
during first runs

No commitment from
R&D to focus on release
product until goals met

Aid in any issues
that come up in
mfg test runs

R&D Assure that test
runs go smoothly

Manufacturing
engineering left to solve
all problems, risk to
schedule

Reverify hardware,
firmware, and
software quality
and reliability

R&D Tests on final
product to assure a
quality product
released to desired
performance

Possibility that final
product with recent
changes not represented
by earlier verification

Build significant
sample of product

Manufacturing Check yields,
process, material
flow

May have line shutdown
later due to inability to
build to specs

Specification
negotiation with
marketing and
R&D

Manufacturing Use results of data
taken in Phase 4 to
set realistic specs
balancing yield
risk with market
demand for specs

May not have product
specs supported by
manufacturing results

Updated production
ramp plan

Manufacturing Final check on
material flow

May not ramp quickly
enough to meet market
need

Implement launch
plan and sales plan

Commercial
marketing

Ensure optimal
solution rollout
into marketplace

Suboptimal or inadequate
market introduction

Commercial Laboratory Equipment 155

This phase is important for smooth transfer into manufacturing. Any
changes during Phase 4 should be minor.
On a occasion Keithley has ‘‘tried to shortcut this phase. This is desirable

when time to market is of the greatest concern. You may get a product out
the door and into the market place sooner. But without a complete Phase 4,
the struggles will [occur] in the first production runs, with orders on the
books and customers waiting, and with possible exposure to the customer
of quality and delivery problems’’([3], p. 21).

6.4.6 Production and Support

This phase is where Keithley Instruments manufactures the product in bulk
and ships it to customers as a regular catalog item. During the first months
of production, the R&D team may still be somewhat engaged as volumes
increase and issues are revealed. For this reason, manufacturing will
typically enter production under a ‘‘transition agreement’’ with R&D
engineers to secure time from the R&D engineers as needed. As volumes
and experience with the product increase, the responsibility for continuous
support transfers to the manufacturing engineers.

6.5 Scheduling

As can be seen from the previous section on phases of development,
planning requires both top-down and bottom-up efforts. Obviously goals
and schedule objectives are set in a top-down manner. The fuzzy front end
in the first two phases can alter this; bottom-up planning then plays a role to
readjust the schedule. This bottom-up planning produces a work break-
down structure and its schedule, which gives greater buy-in from the
development teams. (The previous section gives examples of what can
change the schedule during fuzzy front end.) And always, management will
ask the team, ‘‘What can I do to help you be more successful? What can I do
to help you improve the schedule, or improve the chances of hitting the
needed performance? What do you need from me to either assure that you
meet this agreement, or better yet, to improve on it?’’

6.6 Documentation

6.6.1 Types

Keithley Instruments, like any company, has the standard types of documenta-
tion: notebooks, letters and e-mail messages, memos, project documents,
manuals, brochures, and presentations. One major point about Keithley’s
documentation: they know that it is always written for somebody else,

156 Developing Real-Time Embedded Products

both external customers and internal owners of the product. Without this
documentation, transfer of responsibility between internal owners would not
be possible and interruption during the next development project would be
likely.
Engineers who provide support for the product or do follow-on designs

need its theory of operation in the documentation. This is a gradient type
of documentation because it is a living document; it shows trends and gives
the explanation so that upgrades, modifications, and support may continue.
The documentation provides the basis for changes in applications or design
evolution.
Manufacturing, on the other hand, needs a snapshot type of documentation—

a picture of the product at a particular point in time. These documents include
schematics and assembly instructions to build product.
One form of documentation that stands out at Keithley is their application

notes and white papers, which help customers better understand the use of
the instruments. The applications group, often called ‘‘apps’’ in the industry,
works closely with customers to solve problems in test and measurement;
they then publish application notes and white papers to help other custo-
mers through similar experiences.
Keithley Instruments used to give the customer everything—user manuals,

explanations, schematics, and theory. Now they must reserve that kind of
service for bigger customers who have their own calibration laboratories and
repair shops. Protection concerns for intellectual property have made it more
difficult for companies to give away so much information without losing
legal protection for their designs and ideas. Keithley has to limit the docu-
mentation so as to ‘‘not give away the farm.’’

6.6.2 General Formats for User Manuals

A manual from Keithley Instruments is a carefully planned and executed
document. Every manual has a similar format. The following outline com-
bines outlines from the manuals for the model 6220 and model 2600S:

� Front material

– Warranty information

– Title

– Manual print history

– Safety precautions

– Table of contents

– List of illustrations

– List of tables

� Getting started

� Introduction

Commercial Laboratory Equipment 157

– General information—warranty information, safety precautions,
unpacking and handling, options, and accessories

– Front and rear panel familiarization—briefly describe buttons
and displays and their operations

– Precautions—heat sinks and cooling vents

� Power-up

� Display menus

– Editing controls

– Password

– Remote interface

– Error and status messages

– Default settings

� Output connections

– Configurations

– Guards

– Connections to DUT (device under test)

– Using a test fixture

� Operations and commands specific to each instrument

� Appendices

– A: Specifications

– B: Command scripts

– C: Frequently asked questions

– Index

Fonts, font sizes, subheadings, and indentation in every manual follow a
company prescribed format and are simple and clear. The manuals use
simple line drawings to explain the features—these are effective in com-
municating the information. Manuals provide screen shots for instruments
that connect to a control computer where applicable.

6.7 Requirements and Standards

6.7.1 Markets

The markets for Keithley Instruments are scientific and engineering labo-
ratories and high-tech manufacturing lines. Their products address accu-
rate, very-sensitive, low-level measurements in semiconductors, metals,
polymers, and insulators. Their products also go into manufacturing facil-
ities to test electronic and optoelectronic components, flat panel displays,
cell phones, and digital switching systems.

158 Developing Real-Time Embedded Products

Keithley Instruments, Inc., designs, develops, manufactures, and markets
complex electronic instruments and systems geared to the specialized needs
of electronics manufacturers for high-performance production testing,
process monitoring, product development, and research. Keithley has
approximately 500 products used to source, measure, connect, control, or
communicate DC, RF or optical signals. Product offerings include integrated
systems solutions, along with instruments and PC plug-in boards that can
be used as system components or stand-alone solutions. Keithley’s custo-
mers are engineers, technicians, and scientists in manufacturing, product
development, and research.
Keithley partners with customers to anticipate their current and future

measurement needs. A thorough understanding of their applications cou-
pled with Keithley’s precision measurement technology enables Keithley to
add value to customers’ processes by improving quality, throughput, and
yield of their products. These partnerships help Keithley determine which
test applications they choose to serve. Keithley deploys its own sales and
support employees throughout the Americas, Europe, and Asia, as opposed
to relying on a contract sales force, because Keithley believes this serves
customers much more effectively.
Keithley leverages its applications expertise and product platforms to

other industries by concentrating on interrelated industries and product
technologies. Keithley gains insight into measurement problems experi-
enced by one set of customers and uses this insight to solve problems for
other customers.

6.7.2 Standards

All of Keithley Instruments’ products must meet Underwriter Laboratories
(UL) standards for product safety. Beyond these standards, they must be CE
compliant for European and international markets.

6.7.3 Preparing Requirements

Section 6.3 covers much of the preparation of requirements during phases of
development. Strategic marketing works with customers to better under-
stand the needs of the industry. R&D helps assess the technology to show
feasibility. All this occurs in Phase 1.

6.8 Analysis

6.8.1 Feasibility

Section 6.3.2 introduced some parameters and analyses, including risk
and financial payback, corporate strategy and core competencies, and the

Commercial Laboratory Equipment 159

physical limits of measurement, that Keithley Instruments uses to determine
feasibility. Alsomentioned in Section 6.3.2 is that each industry has a different
emphasis, and so Keithley focuses on different parameters and analyses.
The folks involved in determining feasibility are from the marketing

group. The R&D group contributes insight and trade-offs to marketing’s
analyses.

6.8.2 Heuristics, Numerical Simulations, and Calculations

Keithley has proprietary heuristics and core competencies for which their
numerical simulations and models are so good in some market segments,
such as DC measurements, that they have (in the past) been able to predict
product performance accurately before any pilot runs. These predictions
from the theoretical calculations have been good enough for Keithley to fix
specifications early. This has changed in the past several years as Keithley
has standardized on a pilot phase for all projects, along with statistical
setting of specifications. In other market segments, the physics are not as
well understood, and the designers in R&D have to develop a pilot model.
In emerging fields, such as nanotechnology and carbon nanotubules,
Keithley R&D staff work alongside scientists and engineers at customer
sites to develop theory that eventually will lead to usable models and
calculations.

6.8.3 Testing

Breadboards and prototypes are important for developing cutting-edge
scientific instruments. They are necessary to proving the concept and
demonstrating feasibility, but Keithley Instruments recognizes that ‘‘typi-
cally only 10 to 50% of the work has been done by the time this first
breadboard is done’’ ([3], p. 21).
A prototype only points the way. A final product must undergo design

trade-offs, satisfy manufacturing and test concerns, and have ready
support once in the field. Keithley personnel recognize that they are not just
producing an invention; they are producing a supply chain. The develop-
ment task is not complete until this supply chain is in place.

6.9 Design Trade-Offs

6.9.1 Architecture

Keithley Instruments begins any new product by examining architectural
concerns. Their forward-looking platformmanagement affects the form factor
of all products; for instrumentation used in the manufacturing environment,
Keithley has standard dimensions of full rack or half rack (for width) and 1U,

160 Developing Real-Time Embedded Products

2U, 3U, or 4U (for height). Keithley strives for similar dimensions in their
bench-top laboratory equipment. Their goal is encourage the smoothmigration
of thought and test from the R&D bench top to the factory floor.
All enclosures are custom and conform to internal company standards.

Mechanical engineers design the enclosures to account for thermal dissi-
pation, vibration, and acoustic noise. For many years, Keithley has incor-
porated a considerable amount of reuse in developing new instruments. As
they move from pull-forward leveraging to using forward-looking platform
management, they have some standard dimensions and interfaces for but-
tons and displays.
While Keithley’s TSPTM can provide ‘‘seamless extensibility,’’ not every

customer application and not every instrument needs it. When it does not
provide enough added-value, the TSPTM is left out of the instrument design
to save component and manufacturing costs.
There is a balance to reuse and optimization; every module, whether

hardware or software, cannot be designed and built with such flexibility
that it can meet every possible future need or contingency. Even if it could
meet all of the performance needs, the cost of this modularity and flexibility
would probably violate other trade-offs in engineering. At some point, the
instrument will need some unique capability to perform its ultimate task.

6.9.2 Hardware

Forward-looking platform management strives for standard sets of
processors, memory, and processor boards. Common platforms save inven-
tory costs by reducing the variety of different components. Common
platforms also reducemanufacturing and assembly costs by having increased
volumes. As stated in the previous section, a common platformmay not suit a
particular instrument; unique requirements may force custom designs to
accomplish the task.
Circuit boards are another area for design trade-offs. Generally they are

multilayer, usually between 4 and 16 layers and possibly more. Both EMC
isolation and complex interconnects drive the design of the circuit boards,
their complexity, and the number of layers.
Keithley engineers try to balance between theory and practice. The skill

lies in understanding the point of ‘‘too much’’ versus ‘‘not enough’’ theo-
retical modeling and knowing when to do a quick turn PC board to test an
idea. Keithley has a PCB milling machine that can turn out a double-sided
PCB for prototyping circuits in less than an hour. This capability allows
them to quickly test out ideas for circuits.

6.9.3 Power

Keithley products sell internationally, with about one-third of its sales in
Asia, one-third in Europe, and one-third in America. Power supplies built
into their equipment, therefore, have universal inputs; they take 120–240

Commercial Laboratory Equipment 161

VAC and 50–60 Hz line power. Nearly all power supplies within Keithley
instruments require custom design, which is forced by sensitive, low-level
measurements and electromagnetic interference (EMI) control within the
instruments.
Most power supplies are switching supplies to gain efficiency and power

density. Switchers require careful design of output filters and layout to
control conducted and radiated internal noise EMI (a particular problem
with low-level measurements) and to maintain EMC.

6.9.4 Cooling

Most instrument designs strive for passive convection cooling. If engineers
have a concern about heat and dissipation, they do thermal modeling to
analyze whether active cooling is needed or not. They will also use infrared
(IR) cameras and thermocouples on prototypes to verify the thermal models
and to modify designs as necessary. Keithley tries to avoid fans because of
electrical noise problems that can disrupt measurements and the acoustic
noise that can annoy an operator.
A fan immediately adds complexity and cost to an instrument. The power

for the fan must have a separate circuit to isolate conducted EMI produced
by the fan motor from the very ‘‘clean’’ power supply dedicated to sensitive,
low-level analog circuits. Fans also have mechanical bearings that eventu-
ally wear out. Finally, dust can thermally insulate components and cause
temperatures to rise above the expected—Keithley could install filters to
trap dust but these need periodic cleaning. Fans are avoided, if possible.

6.9.5 Software

Much of the source software for operation of instruments is written in C.
Keithley is moving to object-oriented programming and languages, such as
Cþþ, in new designs, particularly for the user interfaces, to help engi-
neering personnel improve structure, documentation, and efficiency in
developing software.
Older products used a ‘‘super loop’’ form of operating system and pro-

cessing. Now Keithley uses real-time operating systems in virtually all new
products. The choice of the real-time operating system (RTOS) depends on
the trade-offs, such as speed and cost, but currently include OSE�, WinCE�,
as well as others.
Keithley has efforts in several directions to improve the quality and access

to improvements. First, Keithley engineers conduct organized technology
forums—communities of similar disciplines such as software and firmware
engineers—to share and develop best practices. On their own initiative, they
have promoted processes such as code reviews and peer checking to
improve quality of software production. Second, the company has set up a
Web site to facilitate software upgrades once a product is in field.
In addition, Keithley has created more rigorous software audits, better

162 Developing Real-Time Embedded Products

design for quality and reliability processes, and better checks and balances
between R&D and manufacturing.

6.9.6 Hardware vs. Software

Keithley uses software to gain flexibility for upgrades and future
expansion—assuming that performance is the same whether using a hard-
ware implementation or a software module. DSP and field-programmable
gate array (FPGA) engines in circuit boards help provide this kind of
flexibility. A solution in hardware will usually result in a faster instrument;
it is used when product speed performance is critical. Creating a solution in
software (e.g. firmware, DSP, FPGA) will usually be faster to implement
and reduces design cycle time while increasing flexibility. In addition, the
user interface for test equipment is becoming more and more important for
a company to distinguish itself. This interface is primarily, of course, con-
trolled by instrument software.
The LXI consortium is a group of test and measurement companies put-

ting together a common protocol for instruments over the Ethernet. They
are defining user interfaces that avoid extensive hardware and put the
functionality in the software with rich features through display Web sites.
A page on a Web site can replace the two-line liquid crystal display (LCD)
from previous generations of instrument front panels with many more
varied features. The trade-off is speed—a Web site page is slower than an
LCD (intelligent design of the web or instrument interface can minimize this
difference in speed). For more information, see www.lxistandard.org.

6.9.7 Buy vs. Build

Keithley buys components and then custom-builds the vast majority of its
modules and subsystems. The market for tightly specified and highly
focused laboratory and test equipment requires custom design; high-margin
products (60% gross margins—see Keithley Instruments’ annual report [2])
support custom design.
Sometimes, they will buy a display subsystem for an instrument and then

wrap a keypad around it. For large test systems built for manufacturing
customers where Keithley might not have expertise in all the functions, they
will buy a specific instrument to cover functions they lack. That instrument
then acts as a subsystem in the larger test system.
One design trade-off is whether to buy standard integrated circuits or to

build an application-specific integrated circuit (ASIC) to accomplish a
particular function. For the high-mix, low-volume market, a major concern
for Keithley is the initial investment cost. For an ASIC, the investment can
be between US$500K and US$1M. If you assume a US$500K investment and
an $80 savings per unit, as an example, it requires 6200 units to break even;
this might be greater than the number of units sold for the entire product’s

Commercial Laboratory Equipment 163

market life. Justifying this level of integration based on volumes just does
not make much sense in the high-mix, low-volume market; other factors,
such as performance, determine the decision for Keithley.
Keithley custom-builds all its enclosures. This is a first line of effort in

branding their products. Custom builds also allow them to achieve the
desired mechanical strength and user interfaces.

6.9.8 Manufacturing

DFx is a general philosophy, where DF means ‘‘design for’’ and x stands for
just about everything. Keithley strives for DFx in a number of ways.
A subset of considerations is:

� Design-for-reliability (DFr), DFM (manufacture), DFA (assembly),
and DFT (test) to assure quality in manufacturing

� Design-for-flexibility (DFf), this is part of their forward-looking
platform management; hardware design may be updated every
year and firmware may be updated every fiscal quarter

� Design-for-transfer (DFt), which allows them to move manufactur-
ing to different sites or to contract manufacturing

� Design-for-improvements (DFi), which reduces cost and increases
both yield and ease of assembly (in some ways it overlaps DFA)

Keithley is in the business of building laboratory instruments and special-
ized test equipment. Such a business is based on high-mix, low-volume,
high-margin products. Consequently, designers look for ways to cut costs
when the potential savings are hundreds of dollars per unit. Forward-
looking platform management is a major part of this type of thinking—
saving money by reusing a previously designed module or optimizing a
function for a totally new instrument design. Unlike consumer appliances,
where margins are low and production volumes are high, things like saving
pennies on the design of a shipping container are not a concern for Keithley.

6.9.9 Test for Quality

There are various ways to insure quality in the circuit boards through
testing of the assembly. Most commonly used methods are functional test,
built-in-test (BIT), and in-circuit test (ICT). BIT and functional test are dis-
tinguished from ICT by the level of capital investment necessary for each
circuit board. ICT can provide a higher level of test coverage along with
more exact fault reporting. In all cases, specific design considerations must
be taken into account during layout of the circuit board.
BIT requires little in the way of capital or equipment investment, and may

be known by other names such as power-on-self-test (POST), diagnostics, or
self-test. The test resides in the firmware internal to the operation of the

164 Developing Real-Time Embedded Products

instrument or in a software program. These methods make a great deal of
sense when the volume of the product is low, since accomplishing BIT
requires some software (SW) or firmware (FW) development and attention
to circuit board layout. The layout requires test pads and the addition of
components to the design to increase the test coverage.
There are several methods and types of ICT. The most common are

boundary scan, flying probe, and full fixture, bed-of-nails ICT. Flying probe
testers pin down on component leads, PC board traces, and test pads
provided on the circuit board. This is the least expensive form of ICT in
terms of fixture cost. Flying probe testing is much slower than a bed-of-nails
test method and is usually used during prototype builds and for very-low-
volume products. Boundary scan testing is used most effectively for digital
designs. The components have to be selected for the capability to support
boundary scan during design. A test connector or test pads on the circuit
board provide test access. The test process can be run from a computer
through a vendor’s boundary scan module or accessed from the flying
probe and bed-of-nails testers. ICT will usually require a ‘‘bed-of-nails’’ type
fixture that may cost from US$20K to $30K. This fixture will need to be
modified with each board modification, and it may need to be replaced if
the board layout changes too much. For the high-mix, low-volume market,
a major concern for Keithley is the initial investment cost. If you assume a
US$50 savings per unit, as an example, it requires 600 units to break even;
for products that might ship only a 100 per year, it does not make sense to
incorporate ICT. BIT may be a better choice. As a result, Keithley carefully
examines when to use BIT and when to use ICT; other factors, such as
quality, help determine the decision for Keithley.

6.9.10 Maintenance and Repair

Keithley has centers around the world for repairing and maintaining their
products. These centers are particularly important for feeding back infor-
mation to Keithley’s engineers on newly introduced products. Other, more-
established products can have regional dependencies that determine how
they are repaired and maintained. In some cases, calibration and repair are
contracted to third-party firms. For large customers with their own facilities,
Keithley provides the documentation and training so that the customer can
do the work themselves.

6.10 Tests

Keithley Instruments has a full range of development tests—informal,
formal, and laboratory. The more informal or lab bench tests include pro-
totypes and breadboards, such as the two-sided PCBs milled out in short
order to try out ideas. The formal tests include both inspection and
peer review, promoted from within by the engineers. They also include

Commercial Laboratory Equipment 165

subsystem tests for both hardware and software modules. The testing is
typically done on nearly complete instruments, or on subelements of a
system. Examples are tests of the preamps in a test head for automated
parametric test (APT) equipment (for process control of semiconductor
wafer fabrication). Keithley performs environmental tests on certain sub-
systems and on the final system. The tests use thermal cycling, shock, and
vibration to exercise the product.
Engineers lead the development of test processes for quality during

design development. Audit engineers contribute to assuring quality.
Another group of test engineers are those who develop tests of the product
itself. While engineers currently perform the testing, Keithley is moving
toward using trained technicians.

6.11 Integration

As mentioned in Section 6.3.1, Keithley Instruments uses cycles of full
integration to build up functionality—spiral development. In some instru-
ments with much software, the design team focuses the integration builds
on the software system. An important point: the designers and engineers try
to localize risk into modules and not across interfaces. This practice eases
test and integration by reducing and focusing the trouble-shooting of the
problems. The integration team comprises all engineers on the project.
Engineers responsible for a given module subgroup help insert that module
into the larger system. The verification of the performance of the system also
involves engineers from the manufacturing design teams.
Integration testing takes hardware and software modules and configures

them into a system that resembles the final instrument. System tests exercise
the interactions between modules; they also exercise the full system
functionality. Eventually, Keithley runs environmental tests with thermal
cycling, shock, and vibration to exercise the entire instrument.
Once an instrument completes full integration testing in the laboratory,

Keithley will often subject units to field tests at customer sites. Field tests
take place with greater frequency and intensity, working closely with the
customer when Keithley tackles fundamentally new areas of measurement.
The field tests are carried out with key customers that are identified early in
the project. People involved in the tests are the customer, a few key project
engineers and people from the strategic marketing organization.

6.12 Manufacturing

As outlined in Section 6.9.8, DFx is a general philosophy for quality
manufacturing. Besides DFM, DFA, and DFT, Keithley does design-for-
reliability, DFt, and DFi. DFt allows Keithley to move manufacturing to

166 Developing Real-Time Embedded Products

different sites, including to contract manufacturing to use manufacturing
resources most efficiently. DFi provides the ‘‘hooks’’ in the design that allow
future changes that reduce the cost of components, improve the yield, and
ease the assembly effort.
Although Keithley buys components, it fabricates and manufactures most

of the electrical and electronic subsystems that go into its products. These
are custom designs because of the special nature of low-level measure-
ments.
Keithley assembles but does not fabricate its own PCBs for its products.

Control and cleanliness in the assembly of PCBs are very important to avoid
interference in low-level signals and very sensitive physical measurements.
For circuits that do not have quite the stringent requirements on control,
Keithley will go to a contract PCB fabricator to build some boards if
Keithley’s facilities are busy.
Keithley works with vendors to fabricate and manufacture the mechanical

elements of subsystems and enclosures, too. Keithley will then assemble
most subsystems on site (Figure 6.7). Branding and the nature of custom
design tends to keep much of the assembly in-house.
Keithley assembles its circuit boards and its products. The primary

reason, again, is quality control to achieve instruments that consistently
function correctly while measuring low-level signals. Parts of the assembly
and manufacturing environment are inspection and test; Keithley personnel
inspect subsystem and final assemblies and perform both manufacturing
tests with dedicated test rigs and BIT, if BIT is incorporated in the product.

FIGURE 6.7
Keithley personnel assembling a product. (Used with permission, Keithley Instruments, Inc.)

Commercial Laboratory Equipment 167

6.13 Support

Section 6.9.10 mentions Keithley’s repair and maintenance centers around
the world for servicing their products. Repair can be any one of several
modes: swapping out units, replacing modules, or even replacing specific
components.
Support in the high-technology arena, however, means more than ship-

ping product, supplying a user’s manual, and maintaining service centers.
Technical support in the form of personal service, application notes, and
white papers is a critical part of selling, using, and operating sophisticated
measurement instruments. The applications (apps) group works closely
with customers to solve problems in test and measurement. They also help
potential customers understand problems and concerns with low-level
measurements and the significance of particular techniques. Keithley’s Web
site has a number of application notes and white papers immediately
available for downloading to serve customers and potential customers [1].

6.14 Disposal

Keithley Instruments will meet both the RoHS (Restriction of the use of
certain Hazardous Substances) and the WEEE (waste from electrical and
electronic equipment) directives. Although it will take a great deal of work
to comply with the regulations and reduce risk—some components
currently used in measurement instruments just cannot be free of lead—
discussions with peer companies in test and measurement have shown that
Keithley is leading many others in preparing for the new regulations. The
good news for all test and measurement companies is that they still have
more time to meet these regulations. The test and measurement community
has received relief from RoHS until 2008 or 2009.

6.15 Liability

While the company’s product manuals have prominent warnings about
safety, Keithley’s level of concern is probably less than that of most appliance
manufacturers. Most customers of their products have a reasonable under-
standing of the dangers of line power and of certain measurements. Keithley
is more concerned over the protection of intellectual property or IP; it is the
primary asset in Keithley’s business. The economics of losing ground to a
competitor who copies a Keithley design can be quite significant.
The possibility of lawsuit has, in the past, been of little concern to Keithley.

They are, however, concerned with their obligation to their customers to

168 Developing Real-Time Embedded Products

maintain an excellent metrology lab and traceability to National Institute of
Standards and Technology (NIST). Keithley remains very active in this effort.

6.16 Summary

6.16.1 Emphases

High-mix, high-margin, and low-volume products, such as those designed,
manufactured, and sold by Keithley Instruments, Inc., are custom designs.
Custom design can better achieve both quality (i.e., meeting all the speci-
fications) and branding. Keithley uses the philosophy of forward-looking
platform management to capitalize on both risk reduction and cost reduction
through reuse. For further enhancement of quality and risk reduction, they
do DFx, where DF is ‘‘Design For’’ and x represents a variety of different
concerns: A for assembly, T for test, M for manufacture, R for reliability,
i for improvement, and Tr for transfer. The company uses spiral develop-
ment and goes through cycles of full integration and test to evolve func-
tional and high-quality products.

6.16.2 Gotcha’s

Reuse might use pull-forward leveraging, which is a backward-looking way of
retrieving (or pulling in) previous subsystem designs. It does not incorpo-
rate a product roadmap to predict trends in commonality between plat-
forms; this can result in disparate modules combined together into distinct
instruments. While the modules have a common background, the archi-
tecture of the platform is unique, thereby increasing the burden on support
and inventory.

Acknowledgment

My thanks to Larry Pendergrass, VP of New Product Development at
Keithley Instruments, Inc. for providing the information for this chapter.

References

1. www.keithley.com/company

2. Keithley Instruments, Inc., 2005 Annual Report, p. 7.

3. Pendergrass, L., Climbing the Commercialization Hill, The Four Phases of

Product Development, IEEE Instrumentation & Measurement Magazine, Vol. 9,

No. 1, February 2006, pp. 12–21.

Commercial Laboratory Equipment 169

7
Case Study 4—Automobile Engine Controller

7.1 Concept and Market

7.1.1 Who, What, Why, How, Where, and When

Electronics invaded the engine compartment of automobiles in the early
1980s. The introduction of engine control modules (ECMs) improved the
performance of automobile engines and decreased pollutant emissions.
Engine tune-ups virtually disappeared. In the three decades since the first
ECMs, development has continued and all aspects of engine operation and
performance have improved. Figure 7.1 shows an example of one engine
compartment and ECM on a recent model automobile.
Electrical, mechanical, and software engineers all participate in the

development of ECMs. The design cycle for an ECM usually takes about
2 years; it continues for about 5 years after the first model introduction with
various upgrades and improvements. Source code for the ECM is then ar-
chived and preserved for at least 10 years after the last unit is produced; this
action is required by government regulations in the event of a recall that
requires reprogramming the ECM.
With more performance being squeezed out of internal combustion

engines and environmental concerns growing, the design of ECMs will
increase in importance. The recent introduction of hybrid vehicles only
further emphasizes the importance of the ECM—now it’s not just the con-
trol of the internal combustion engine; it also involves the entire power
train, inverters, power electronics, battery control modules, motor con-
trollers, and energy/power management through the electric motor and
batteries, as well (Figure 7.2).

7.1.2 Economics

Automobile manufacturers in the United States produce about 12million cars,
light trucks, and light commercial vehicles each year. The United States
produced 4.3 million cars and 7.2 million light trucks and light commercial
vehicles in 2005. NAFTA—the United States, Canada, andMexico—produced
6.7 million cars and 9.1 million light trucks and light commercial vehicles

171

FIGURE 7.1
An automobile engine in a recent model car—the ECM is on the left side between the white
plastic bottles. (� 2005 by Kim Fowler, used with permission. All rights reserved.)

FIGURE 7.2
The ECM for this hybrid car is under the large silver cover just right of center. (� 2004 by Kim
Fowler, used with permission. All rights reserved.)

172 Developing Real-Time Embedded Products

in 2005 [1,2]. Detroit and automotive plants around theworld produce varying
volumes of the differentmodels of cars. Some assembly lines produce as few as
5,000 cars for special editions and hybrids, while production for a particular
model of small car can be as high as 200,000 vehicles per year.
Small cars have very little margin for profit. Big, expensive cars and sports

utility vehicles have good profit margins. Yet every car has an ECM con-
trolling the engine. (Some cars even have a second electronic control unit
[ECU] just for control of the throttle plate to precisely meter air to match the
fuel provided to the injectors for stoichiometry and a target torque/power
value and to control emissions.)

7.2 People and Disciplines

Teams that design ECMs include electrical engineers, software/firmware
engineers, and mechanical engineers. Mechanical engineers comprise a
significant portion of these teams because they understand the problem
domain of the internal combustion engine and its control, although more
computer engineers, software/firmware engineers, and electrical engineers
are entering the field now. The size and composition of the design teams
vary according to the company and supplier.

7.3 Architecting and Architecture

7.3.1 Process

Designing and manufacturing ECMs is a mission-critical process. While
each company has its own process, most rely on a waterfall or V-model
process. Most do not do spiral development because the ECM design gen-
erally must be correct when it goes to commercial production.
The automotive industry does have one major departure from pure pro-

cess—it is called ‘‘calibrations.’’ Many parameters are not understood
completely until commercial production, and so designers build in hooks or
calibration points (called configurations) that are set at production release.
Software or firmware development does continue beyond production

release. When changes need to be incorporated into the ECM, they are for:

� Emergency defect mitigation

� Late requirements

� Future development of new ECM products

� Emission-related campaigns (sometimes this is a euphemistic
phrase for a recall)

Automobile Engine Controller 173

7.3.2 Analysis

All ECM design teams (either working for original equipment manu-
facturers—OEMs—first-tier suppliers, or working for second-tier suppliers)
consistently do Fault Tree Analysis (FTA) and Failure Modes and Effects
Analysis (FMEA). Some teams do these analyses better than others. The
better teams use these analyses to drive design decisions; they do not just
tack on the analyses to satisfy industry regulations.

7.3.3 Architecture

A typical instrumentation block diagram might represent and describe an
ECM (Figure 7.3). It has input from sensors and the driver’s foot pedals; the
sensors monitor shaft position, temperature, air temperature, coolant tem-
perature, air pressure, and oxygen in the exhaust. The ECM diagram has a
central processing block, which is what most of us think of as the ECM box.
Finally, the ECM has output actuation that controls the spark plugs, various
valves, and even the electric fan on the radiator.
ECMs have circuits based on highly integrated microcontrollers that

contain a number of peripherals, such as timing processors and analog
converters. Manufacturers are moving toward common platforms for ECMs
to reduce the cycle time of development through the functional reuse of
hardware and software modules. Configurable hardware (e.g., FPGAs) is
beginning to play a role in developing ECMs, while application-specific
integrated-circuits (ASICs) have been used for nearly two decades.
Automobile engine control is hard real-time embedded control at its best.

It cannot miss a processing deadline without important, if not severe,
consequences.

Input

ECM box in
the engine
compartment
for data
processing

Output

Driver input

Sensors

Indicators
and displays
on dashboard

Spark plugs

Fuel injectors

Radiator fan

(Feedback control)

FIGURE 7.3.
An instrumentation block diagram for an ECM. (� 2006 by Kim Fowler, used with permission.
All rights reserved.)

174 Developing Real-Time Embedded Products

Example

An eight-cylinder automobile engine might allow a maximum of 8000
revolutions per minute (RPM). One spark plug out of four fires each
revolution of the crankshaft. This means that the engine has two
ignition sparks per revolution; at 8000 RPM this is 133 revolutions per
second or 267 sparks per second. The maximum time the ECM has to
process between sparks is the reciprocal of this or 3.75 msec.

The timing resolution on the sparks is even more stringent. The
ECM must time and initiate the spark and control it to within 0.4˚ of
the crankshaft angle, which resolves to 900 positions per revolution.
At 133 revolutions per second, the maximum time is 7.50 msec.
The time resolution = (minimum time to compute/revolution)/
(positions resolved/revolution) = is (7.50 msec)/(900) = 8.33 msec/
position. This type of high resolution in timing needs a dedicated
peripheral to do hardware timing on the microcontroller chip.

In a large, fast microcontroller, 3.75 msec can be a long time if spark
timing were the only algorithm it ran, but that is not the case. The
firmware must take input readings from both the sensors and the
driver control. It must process the data to give the optimum balance
between performance, fuel economy, and pollutant emissions. Finally,
the firmware must actuate a number of outputs: firing the sparkplugs,
pulsing the fuel injectors, setting the throttle opening, running the
radiator fan, maintaining communications (e.g. CAN, Keyword/KWP,
UDS, LIN), and preparing diagnostics, which can consume 30% or
more of the processing capabilities and ROM storage.

Many ECMs use a 32-bit processor or microcontroller. A larger data
path can provide for more sophisticated algorithms than smaller, simpler,
and cheaper microcontrollers. As mentioned, the firmware in the ECMmust
perform many functions including high-speed calculations. One way to
speed up operations and decrease the time of calculations is to use large
look-up tables (LUTs); the trade-off is speed, gained by a large LUT for
memory size, which increases cost and decreases reliability.

7.3.4 Interfaces

The interfaces are electrical, mechanical, and chemical at both the inputs
and the outputs. (Figure 7.3 shows some of these inputs and outputs.)
The sensors detect mechanical values, such as position or rotational velo-
city, physical quantities, such as temperature or air pressure, or chemical
concentrations, such as oxygen. The sensors and transducers translate
the physical phenomenon into electrical signals for transmission to the ECM
‘‘box.’’

Automobile Engine Controller 175

Within the ECM box, the hardware converts the electrical analog signal to
a digital data value. Most inputs use the internal analog-to-digital con-
verters (ADCs) built into the microcontroller. These signals have resolutions
of 10 or 12 bits. Some signals, such as pressure, require fairly high resolu-
tion, which means that separate 16-bit or 18-bit or even 20-bit converters
are sometimes used. (There can also be external smart sensors, which
communicate through serial buses such as SPI or I2C.)
Software then uses these data values. The software also has calibration

points that need setting during or before manufacture on the assembly line.
The ECM must have suitable interfaces to memory and these calibration
points.

7.4 Phases

ECMs go through four or five phases of development plus follow-on
support:

1. Concept

2. Prototype design

3. Iterative testing/validations/development trips

4. Manufacturing development

5. Commercial production

6. Logistics, maintenance, disposal

A slight difference exits between automotive design for ECMs and
the general phases laid out in Chapters 1 and 2. The names of the phases
vary and indicate more of an environment conducive to prototype and field
test in the automotive world. The prime differentiator is ‘‘calibrations,’’
which are the parameter thresholds or base values that are set at the
beginning of development, refined during development, and eventually
specified just before—and sometimes after—the ECM goes to full-scale
manufacturing.

7.5 Scheduling

Scheduling is top-down. Every activity flows down from the deadlines set
for development. In the automotive world, meeting schedule is the primary
thrust. Remember, ‘‘Everyone wants to do the right thing, but schedule
always wins’’ (quote from Section 1.6.1).
The design team fixes the requirements once schedule is set. After that

they must trade-off between cost and quality. Quality is that elusive goal

176 Developing Real-Time Embedded Products

that indicates how well the requirements are met (assuming that the
requirements were set correctly and that they accurately represent intent).
The design cycle time for ECMs is 2 or 3 years, depending on the company,

the team, and the particular ECM. After production release, only firmware
changes to the ECM are allowed for the first 2 or 3 years of production.
Three to six years following production, the design team might modify the
hardware in the ECM, if needed.

7.6 Documentation

Like all mission-critical project developments, full documentation, from
contract and requirements to final test results and delivery transfer, is
necessary to fulfil regulatory concerns. For instance, all source code must be
archived and stored for 10 years after the last production unit rolls off the
assembly line. Chapter 2 contains the essence of the full documentation
needed.

7.7 Requirements and Standards

7.7.1 Markets

The ultimate customer is the automobile buyer. Intermediate customers are
the OEMs who contract or purchase ECMs for their cars. Each car model
and combination of engine and drive train requires a specific ECM.
The markets for automobiles are all over the world—people drive cars

everywhere. Automobiles must endure environments that range from artic
cold to scorching desert heat to tropical moisture to ocean salt spray. Fur-
thermore, ECMs must tolerate years of engine heat and vibration, as well.
Surviving these assaults is a daunting task for ECM enclosures, let alone the
circuit boards with sensitive electronic components within the enclosures.

7.7.2 Government Standards

In the United States, automobiles must meet emissions and fuel economy
standards. These standards apply to the fleet averages of automobiles
produced and sold. ECMs directly control the fuel economy and emissions
produced by vehicles. Consequently, these government standards directly
affect the requirements on the design of ECMs.

Emissions: The U.S. federal government is phasing in new federal emission
regulations; they started in 2004 and extend to 2009. These new regulations
are called Tier II emission regulations, and they apply to different vehicle
classes, as shown in Table 7.1 [3].

Automobile Engine Controller 177

TABLE 7.1

Emissions Specifications for the United States [3]

Carbon

Monoxide, CO

Hydro-

Carbons

Nitrous

Oxides, NOx Particulates

Tier 1 gasoline 4.2 0.31 0.6 0
Tier 1 diesel 4.2 0.31 1.0 0.08
TLEV: transitional low-
emission vehicles

4.2 0.156 0.6 0.08

LEV: low emission vehicles 4.2 0.090 0.3 0.08
ULEV: ultra-low emission
vehicles

2.1 0.055 0.3 0.04

SULEV: super ultra-low
emission vehicle

1.0 0.010 0.02 0.004

ZEV: zero emission vehicles 0.0 0.0 0.0 0.0

Units are in grams per mile, based on 100,000-mile durability.

The definitions in Table 7.1 have been somewhat stratified, as well. The
California Air Research Board, or CARB, has required that light trucks and
sport utility vehicles, among others, meet LEV II emissions reductions; they
also extended the durability standards to 120,000 mi (192,000 km). CARB
also specified that a fraction of vehicles must be zero emissions (ZEVs),
but recognized ZEV as too stringent for immediate production. CARB has
allowed partial ZEV (PZEV) credits to those vehicles with power plants
and systems close to ZEVs—natural gas, fuel cell, and hybrid powered
vehicles. Vehicles that are designated PZEV must meet SULEV emissions
for 150,000 mi (240,000 km) [3–9].
The U.S. Environmental Protection Agency, or EPA, adopted many of the

CARB requirements to develop the Tier II regulations.

Fuel economy: The U.S. government has also instituted the Corporate
Average Fuel Economy, or CAFE, regulations to improve the fuel economy
of cars and light trucks. The CAFE regulations apply to the sales weighted-
average fuel economy to vehicles under 8500 lb (3856 kg). The fleet average
for cars must exceed 27.5 mpg (11.62 km/L). Beginning in 2005, the average
for light trucks must be better than 21.0 mpg (8.87 km/L), 21.6 mpg
(9.13 km/L) in 2006, and 22.2 mpg (9.38 km/L) in 2007. The average for
light trucks goes up to 23.5 mpg (9.93 kg/L) in 2010 [10].
Should a particular model of car fail to meet or exceed the fleet average,

the manufacturer must pay a penalty at the rate of $5.50 per 0.1 mpg (0.0423
km/L) below the standard on each automobile produced [10]. Mileage
credits are given for vehicles that exceed the fleet-average mileage required
by the CAFE standards; consequently, manufacturers factor into their pro-
duction plans the number of small cars to drive up the fleet-average mileage
of the automobiles that they produce each year.

178 Developing Real-Time Embedded Products

7.7.3 Preparing Requirements

Automotive OEMs place requirements on suppliers of ECMs. These sup-
pliers also have internal guidelines and requirements to serve their current
and future concerns. Their concern is to remain flexible and avoid repeat
work in successive models of ECMs.
Specifications and high-level requirements are very important in the

automotive world. Some automotive companies and suppliers are using
model-based specifications to capture subsystem requirements. Chapter 3
lists some specific tools for capturing requirements.

7.8 Analysis

Suppliers of ECMs use a variety of analyses to develop products. University
researchers are constantly developing new algorithms (e.g., fuzzy logic
or neural networks) and demonstrating feasibility. The most successful
concepts eventually find their way into ECMs over the course of years.
Specialists who use proprietary heuristics are called subject matter

experts (SMEs). Calculations and approximations are used where the
physical processes are well known.
Some analyses finish by putting an ECM prototype on the engine stand

dynamometer. Eventually all development undergoes testing on the test
track—and our public roadways—believe it or not!

7.9 Design Trade-Offs

7.9.1 System Architecture

The design cycle time for ECMs is 2 or 3 years, depending on the company,
the team, and the particular product. During the first 3 years, only changes
to the boot ROM are usually allowed (but this is not absolute—hardware
changes can be made after a year if needed). Some hardware modifications
begin filtering into the ECM somewhere between 3 and 6 years. The goal
is to avoid hardware changes and only ‘‘tweak’’ the software in the boot
ROM over the production life of the ECM.
Most companies are moving ECMs toward common platforms. They are

trying to leverage their original efforts through reuse. It is a simple concept
but challenging nonetheless. It requires predicting advances in engine control
and allowing margin for upgrades while minimizing hardware costs.

7.9.2 Hardware

Most OEMs plan and design an automobile to last about 10 years.
Currently, automobile warranties are moving from 3 years and 36,000 miles

Automobile Engine Controller 179

to 10 years and 100,000 miles; longer warranties require higher reliability
from all components, including the ECMs.
Automobile ECM designers are more worried about the number of igni-

tion cycles than miles driven; a cycle bounds the period when a car turns on
and to when it turns off. It is defined by the ignition switch, not by the
engine turning. Many designers plan ECMs to operate for 100,000 to 200,000
cycles. The problem here is that the EEPROM inside the ECM is written on
power-down and EEPROMs have a limited number of write cycles before
they no longer function properly.
As hybrid vehicles become more prevalent, a parallel set of problems exist

for the energy-storage control module (ESCM) for batteries. ESCMs cur-
rently must run at least 50,000 execution cycles, although some OEMs and
customers want 70,000, some even as high as 200,000.
ECMs need 32-bit processors for algorithmic sophistication and proces-

sing power. Designers also want full-featured controller chips with many
peripherals on the integrated circuit (IC)—the higher the integration, the
better—resulting in higher reliability, lower power consumption, and ulti-
mately lower system cost. Peripherals include ADCs, timer processor units
(TPUs), and flash memory.
The controller converts most analog signals with its internal ADCs. These

conversions usually require resolutions of 10 or 12 bits. Some signals, such
as pressure, require fairly high resolution, which means that separate 16-bit
or 18-bit or even 20-bit converters are sometimes used.
TPUs can have different types of masks; two primary types in the Free-

scale TPUs are Mask A, for automotive, and Mask G, for general. Mask A,
called Timing/Counting, has capture-and-compare timing circuits for
automotive ECMs. Spark timing and injector controls need the resolution
and speed of capture-and-compare timing circuits. Mask A also has cir-
cuitry to support pulse-width modulation (PWM) for electric motor control
and stepper motor timing. Mask G, called General/Motion Control, has
more circuits for driving electronic motor waveforms to control consumer
appliances; these include commutation, Hall-effect decoding, and multi-
channel PWMs. Mask G also has frequency measurements and quadrature
decode [11–13].
One way to speed up operations and decrease the time for calculations

is to use a large LUT. A lookup in a LUT is much faster than performing
a polynomial calculation. A large LUT gives higher resolution and more
set points than a smaller LUT and can approximate the accuracy of a
polynomial calculation. The trade-off is speed vs. resolution vs. memory
size, all of which directly affect cost and reliability.

7.9.3 Power

Automotive power is always dirty; it is full of voltage spikes, sags, drop-
outs, ripple, and noise. Most automobiles are 12 VDC systems, but some

180 Developing Real-Time Embedded Products

may go to 24 or 42 VDC systems in the near future. Regardless, you
still have to deal with unregulated, spiky, and noisy power. Appropriate
filtering and circuit protection is necessary within the ECM; most ECMs
have internal regulators.

7.9.4 Software

Software development processes vary greatly between different design
groups and suppliers. Some groups have detailed processes with carefully
prescribed code reviews, tests, and field tests. Others tend to be more ‘‘seat
of the pants’’ and go to testing on the test track more quickly than their
competitors.
Most software is written in C with some assembly routines for critical

timing concerns, such as the bootstrap code and the low-level drivers. The
selection and application of a real-time operating system (RTOS) varies
widely for the 32-bit controllers within the ECMs. These vary from simple
schedulers and round-robin kernels to pre-emptive and co-operative
RTOSes. Some ECMs have a custom RTOS, while others use a commercial-
off-the-shelf (COTS) package.
Some car companies are farming out the low-level drivers and RTOSs

to vendors. Others keep all the software development in-house to retain
control and corporate memory of the development effort.

7.9.5 Hardware vs. Software

The trade-off between hardware and software balances performance, cost,
reliability, and the ability to upgrade. More specifically this balance reduces
to speed vs. ROM size vs. the cost of components.
No surprise to a lot of you software developers, software sometimes

makes up for the sins of the hardware design. Designers of ECMs often
leave spare I/O pins for future use to fix things that inevitably had flawed
specifications or design.
While cost is still prohibitive, suppliers of ECMs might be moving toward

using field-programmable gate arrays (FPGAs). An FPGA can blend
together the advantages of both software and hardware—flexibility and
speed.

7.9.6 Buy vs. Build

Historically, buy vs. build has been a cyclical affair for ECMs. Car companies
began developing ECMs in-house but found they did not always have
enough resources to do the job properly. Then they contracted out the
ECM design to vendors, but found that they were not always fast enough
to meet their demand. Now that ECMs are so critical to the operation of

Automobile Engine Controller 181

automobile engines, more automobile companies are bringing or keeping
ECM design in-house to maintain the design resources and capability.
Companies have also worked to develop career paths for embedded engi-
neers, making long-term employment more attractive to firmware engineers.
An interesting note is that car companies rely solely on outside vendors

for certain integrated subsystems, such as antilock brake systems and air-
bags, which are mission-critical systems and components. This sort of
outsourcing may portend a future swing back to outside vendors to supply
ECMs.

7.9.7 Manufacturing

ECMs have aluminum or high-temperature plastic enclosures. Cost and
durability dictate their design.
The PCBs within ECMs generally use FR-4 substrates; again cost, dura-

bility, and reliability all dictate the selection of materials. In the past, some
PCBs were flex circuits to achieve packaging density in spite of cost! Today,
however, surface-mount ICs and higher integration (microcontroller incor-
porating power electronic field effect transistors and external components
such as flash memory and RAM) have reduced the need for flex circuits.
Nearly all PCBs are multilayer boards with vias and internal ground

planes. The ground planes are the first line of defense in containing EMI and
managing EMC compliance. The circuit boards have rigid attachments to
the enclosure to reduce flexing during vibration.
Manufacturing of ECMs usually incorporates design-for-manufacture

(DFM), design-for-assembly (DFA), and design-for-test (DFT). The goal is to
maintain quality while reducing cost of rework or recall.

7.10 Tests

Testing, both formal and informal, varies from group to group and com-
pany to company. The variation in testing extends all the way through
software unit tests, functional tests, system tests, and ‘‘feet in the car’’ tests
on the test track. Interestingly, some groups go straight to the test track with
each revision of the software.
I advocate a rigorous program for ECM development that includes labo-

ratory tests, inspec-tion, peer review, subsystem tests of both hardware and
software, and system tests on a dynamometer. Not everyone agrees with my
approach; they see experimentation as quicker for finding problems, tuning
the software, and understanding the issues of drivability and driver experi-
ence for noise, vibration, and harshness.
Another variation between designers is problem tracking. Some are much

more rigorous about it than others.

182 Developing Real-Time Embedded Products

How can such variation exist in a mission-critical industry? An important
problem is that ECM software and its operation are hidden. Another reason
for the variation in procedures is the attitude, prevalent in some circles, that
‘‘anyone can be taught software,’’ which is akin to saying that anyone can be
taught to draw. Sure, a guy can draw stick figures, but he is not Rembrandt!
Combine the obscurity of operation with the attitude that anyone can do
software and you have the current situation with development in many
companies, ‘‘Hey, it’s a great drawing in that box—trust me!’’

7.11 Integration

Integration, particularly with numerous software builds, occurs frequently
enough to approach a spiral form of development. Several steps exist for
each revision before integration finishes. The software must perform and
pass the following steps before going to dynamometer tests:

� Compile and link

� The ‘‘blinky light test’’

� Bench tests and breakpoints

� Diagnostic trouble codes (only in later or more mature levels of
software builds)

Interestingly, the ‘‘blinky light test’’ requires a lot of modules and operations
to function correctly in the software to light simple light-emitting diodes
(LEDs). This makes it an effective form of verification. Once the software
development team blesses the results, then the ECM, with its new version of
the software, heads to the test track for testing in a vehicle.

7.12 Manufacturing

Manufacturing of ECMs holds many of the same concerns that any other
mass-produced item does. There are electrical and electronic concerns such
as fabrication of circuit boards and interconnections and assembly of elec-
tronic components, fabrication of mechanical components and enclosures,
inspections, and tests.
The automotive industry is peculiar in one respect—the philosophy of

calibrations. Design and development teams use lots of ‘‘calibration’’ points
in developing ECMs. ‘‘Calibrations’’ are parameters and parameter thres-
holds that are set in manufacturing, though some calibrations are managed
as different ECM part numbers that have variations in content to serve
different models of automobiles.

Automobile Engine Controller 183

The company and the team just do not have the time to characterize
everything. The software finishes long before the production parameters are
fixed. These parameters concern the sensors and control system within the
ECM and include thresholds for (this is not an exhaustive list):

� Timing

� Temperature

� Air pressure

� Gas chemical concentration

� Voltage

Some might view these ‘‘calibrations’’ as a crutch. The automotive industry,
as mentioned already, is extremely conscious of schedule. Design teams just
do not have time to fully analyze the automotive systems, the environments,
and the interactions with ECMs. Moreover, flexibility, changes, and reuse
dictate the need for calibrations. Designers often select or change sensors
and actuators late in the development cycle, a practice that requires
significant flexibility during development. Reuse of software, where a
module or subsystem of software is used in multiple applications, uses
‘‘calibrations.’’

Example:

A calibrationmight indicate the number of engine cylinders, the number
of cam shafts in the engine, whether an engine has electronic throttle
control (ETC) or a manual throttle cable, whether air conditioning is
included on the automobile, and whether the system supports dynamic
cylinder deactivation (i.e. going from running on eight cylinders to
four). A single software system configured by calibrations can support
all these different situations.

7.13 Support

The automotive world, particularly ECMs, blurs the lines between product
launch, logistics, and maintenance. The design team does continuous
development of the software for an ECM, even after manufacturing begins.
Calibrations that go beyond production release are called ‘‘service releases.’’
Onboard diagnosis, or OBD, for automobiles uses trouble trees and

diagnostic trouble codes. These came about in the early 1990s. OBD helps
mechanics determine where a problem is and what needs replacement. If an
ECM is bad, then the mechanic replaces the whole module.

184 Developing Real-Time Embedded Products

Sometimes a particularly difficult failure is brought in from the field.
The development team will put the ECM on a bench and hook it up for
the background debug mode (BDM) to get additional, nonstandard diag-
nostics from the ECM for laboratory analysis. These codes are meaningful to
engineers but not useful to mechanics doing automotive repair. Furthermore,
opening a sealed ECM is a somewhat delicate—and warranty voiding—
operation.
Finally, revision management must be stable. The U.S. government reg-

ulations require automotive companies to keep all source code for 10 years
after final production of a particular car model. This type of archiving
provides the appropriate basis for upgrades and fixing recalls.

7.14 Disposal

The recycling of materials is big business in the automotive industry. Most
of us are familiar with junkyards and automobile recyclers, those companies
that crush cars, shred up the metals and plastics, and melt down the scraps.
The automotive industry is concerned with Restriction of the use of cer-

tain Hazardous Substances (RoHS), as well. European regulations and
markets are driving both recycling and the reduction of hazardous mate-
rials. This will place a burden on automotive manufacturers, the extent of
which is not yet fully understood.

7.15 Liability

The liabilities in the automotive industry are fairly obvious. We all are
familiar with automobile recalls; no doubt many of us have had vehicles
recalled for one thing or another. Recalls are a fact of life for automobile
manufacturers; they all have their attendant economic impact, safety con-
cerns, and potential legal problems. Some companies term ‘‘recalls’’ by the
euphemism ‘‘campaigns’’ to soften the meaning for customers. Some cam-
paigns are mandatory, dictated by the government—some are voluntary.
Recalls can be instructive; here are some examples taken from References

14 and 15:

� ‘‘January 20, 2006 Certain vehicles equipped with V-6 engines may
have a condition where fuel is no longer supplied to the engine.
This condition occurs without the illumination of the fuel level low
indicator light or the warning chime Dealers will reprogram
the electronic control module (ECM) with new software free of
charge. Owners were notified in December 2005 and asked to
maintain at least 1/4 of a tank fuel level to avoid this condition

Automobile Engine Controller 185

until the parts are available. The recall is expected to begin during
March 2006 . . .

� January 11, 2006 On certain passenger vehicles equipped with all
wheel drive and a 3.6 liter V-6 engine, the torque monitoring
functions of the Electronic Throttle Control (ETC) are not enabled.
These functions can limit engine speed and torque if unusual
Engine Control Module (ECM) hardware or software failures
occur . . . Dealers will reprogram the ECM on these vehicles free of
charge. The recall is expected to begin on January 24, 2006 . . .

� March 12, 2002 [Company E] recalled the [specific model] trailer
hitch—circuitry in the converter is inadequate to properly manage
voltage spikes that can lead to an electrical short or open circuit
within the converter, causing a failure and an inoperative trailer
light.

� September 11, 2000 [Company F] recalled about 270,000 [cars]—air
bags that may deploy unexpectedly because of corrosion in the
inflator.

� During 2000 [Company G] recalled ignition modules that could
cause a car to stall. When the temperature of an ignition module
rises above a certain value the chances of the module cutting out
also increases.

� [Company H] recalled 263,000 1995–97 [vehicles] . . . The electronic
control module for the airbag could corrode from water or road
salt and then accidentally deploy the driver side airbag.

� [Company I] recalled 757,000 1992–97 [vehicles] because higher
than specified electrical load through an accessory power feed
circuit may cause a short circuit and allow current to flow through
ground wiring. This could cause overheating and an electrical fire.

� [Company J] recalled 1995–97 [vehicles] because improperly
routed wire harness for the air-conditioner may permit wires to
rub together and short circuit, resulting in a blown fuse, dead
battery, or fire.

� December 11, 1998 [Company K] recalled 226 [electric vehicles] to
reprogram the logic in the motor electronic control unit (ECU),
which can mistakenly detect a failure of an electrical current
sensor at speeds above 50 mph. It can cause the sudden loss of
power and unexpected deceleration.

There are some common elements in these recalls.

� Passage of time—these were all fielded units

� Nonobvious or obscure causes

� Environmental interactions, i.e., corrosion, overheating

� Failure modes with significant effects, i.e., fire or injury.’’ [14,15]

186 Developing Real-Time Embedded Products

ECMs have the mitigating factor of ‘‘calibrations,’’ which reduce the
potential for costly changes. Flash memory also allows field upgrades to
operational software if appropriate and necessary. The word is ‘‘reduce’’—it
is not ‘‘eliminate.’’ A software fix or upgrade can solve many problems, but
not all.

7.16 Summary

7.16.1 Emphases

Automobile ECMs control internal combustion engines and balance their
performance, fuel economy, and emissions. Designing and building ECMs
is a challenging business. It is a mission-critical design; each automobile
must run correctly and well.
The automotive industry lives and dies according to schedule. The three

main concerns are schedule, cost, and quality; of the three, ‘‘schedule always
wins.’’
One way to do continuous development and still meet production

schedules is to incorporate ‘‘calibrations’’ in the software. ‘‘Calibrations’’
are parameters and parameter thresholds that are set in manufacturing;
they allow the developers to finish the algorithms and test the vast
majority of software operations without knowing some of the final para-
meter values.

7.16.2 Gotcha’s

There are two primary problems in developing ECMs for the automotive
market: schedule and variability in rigor. Some development teams do treat
the design of ECMs with diligence and care; some, unfortunately, are more
haphazard. ECM development is mission-critical and needs appropriate
consideration for good processes and procedures.

Acknowledgments

My genuine thanks to a colleague who has worked in the automotive sector
for over a decade supporting the development of control firmware for
power trains. Unfortunately, I cannot acknowledge him here by name so as
to maintain the confidentiality of his clients. My friend, your help is greatly
appreciated!
I also thank Richard Bishop at IVSource for helping me with this field;

I recommend his book, Intelligent Vehicle Technology and Trends, Artech
House, 2005, for a look into the future of embedded systems in vehicles.
His Web site is www.ivsource.net.

Automobile Engine Controller 187

References

1. http://www.oica.net/htdocs/statistics/tableaux2005/worldproduction_cars2005.
pdf

2. http://www.oica.net/htdocs/statistics/tableaux2005/worldproduction_lightCV2005.
pdf

3. http://www.dupontelastomers.com/apps/autofocus/regulations.asp
4. IANGV (International Association for Natural Gas Vehicles) Emission Report 31

March 2000.
5. www.engva.org (European Association for Natural Gas Vehicles).
6. www.arb.ca.gov (California Air Resources Board).
7. U.S. Environmental Protection Agency, Office of Transportation and Air

Quality, publication EAP420-B-00-001, February 2000.
8. www.autofieldguide.com/columns/article (Automotive Design and Production).
9. www.aecc.be/en/european_legislation.htm (European Association for Emissions

Control).
10. http://www.nhtsa.dot.gov/cars/rules/cafe/overview.htm
11. http://busy.lab.free.fr/download/tpu-functions-list.txt
12. http://www.eslave.net/tpu/source/source.shtml
13. http://www.cloudcaptech.com/MPC555%20Resources/TPU3/tpurm.rev3.

pdf#search=%22TPU%20masks%22
14. Fowler, K., Class 307: Fantastic Failures, Embedded Systems Conference, San Jose,

April 5, 2006, pp. 9–10.
15. http://autorepair.about.com/library/recalls/

188 Developing Real-Time Embedded Products

8
Case Study 5—Industrial Flowmeter

8.1 Concept and Market

8.1.1 Who, What, Why, How, Where, and When

Agar Corporation in Houston, TX, designs and builds multiphase
flowmeters. The primary application for these flowmeters is monitoring raw
material flow (oil, water, and gas) from wellheads in oil fields. Actually,
they may be used anywhere crude oil is pumped—the oil field, into
the ship, and into or out of a tank farm.
Agar’s flowmeters measure the unseparated fluid from the wellhead and

give the percentage of flow contributed by oil, water, and gas. These sensors
use the venturi principle to measure flow without separating the oil, water,
and gas into individual streams. Figure 8.1 shows a multiphase flowmeter
in use.
Monitoring the flows and measuring the volume of constituent materials

is important to oil companies. They want to know how much water vs. oil
that they are transporting; it affects their business decisions and revenue.
The water has to be removed and treated so that it does not pollute the
environment with crude oil byproducts.
Agar sells its products directly to end users such as petroleum companies,

refineries, and loading facilities. It has sales offices around the world.

8.1.2 Economics

Equipment in oil fields can last for decades. Agar Corporation designs
multiphase flowmeters to last for a long time—decades—and supports their
installation and maintenance.
The flowmeter business follows the oil industry. The recent upturn,

during 2005 and 2006, in petroleum prices worldwide has caused oil
companies to plunge profits into research, development, and capital assets.
This means that Agar is currently very busy supplying flowmeters to the
industry.

189

8.2 People and Disciplines

While Agar Corporation is a small company with about 50 employees at
headquarters, it is truly a multinational company with offices and people
from all over the world. Multiethnicity in the workforce helps commu-
nications between Agar and customers in other countries; customer relation-
ships are further aided by the corporate understanding of the various
cultures.
People in the Houston office include

� Mechanical engineers

� Electrical engineers

� PhD physicists

� Fluid dynamicists

FIGURE 8.1
A model MPFM-408 multiphase flow meter. (Used with permission from Agar Corporation.)

190 Developing Real-Time Embedded Products

� Software engineers

� Manufacturing professionals

� Purchasing and procurement personnel

Engineers comprise the sales force, which means they can better understand
and communicate with their technical customers.

8.3 Architecting and Architecture

8.3.1 Process

Agar Corporation does not have a traditional process for product develop-
ment. Agar uses a form of waterfall development. The team documents
carefully and tests for certification, as product safety is of paramount im-
portance in their industries. Agar Corporation maintains ISO 9001 certifica-
tion, which means that they use prescribed and documented procedures.

8.3.2 Parameters

Safety is the parameter of paramount importance in design and develop-
ment. Of critical importance to Agar’s customers is avoiding sparks that
might ignite volatile vapors and gases. The designers of flowmeters have to
consider energy that can be stored and delivered from electrical circuits to a
potentially flammable environment.
Agar Corporation designs to standards that define and categorize

environments. These standards are quite similar between different sets
of organizations: ATEX, Underwriter Laboratories (UL), International Elec-
trotechnical Commission (IEC), and EN. Agar designs to IEC 60079-11 and its
various gas groups for petrochemical above-ground environment. Gas group
IIC designates a hydrogen environment for the most flammable gases and
has the lowest threshold-to-energy delivery that can ignite such a gas. Gas
group IIBdesignates anethyleneenvironment,which is lessdangerousand can
tolerate greater energy delivered. Gas group IIA designates a propane envi-
ronment, which is the even less dangerous and tolerates even more energy.
The standards also define various operating zones. IEC Zone 0 is a place

in which an explosive atmosphere is continually present. Zone 1 is a place in
which an explosive atmosphere is likely to occur in normal operating con-
ditions. And Zone 2 is a place in which an explosive atmosphere is not likely
to occur in normal operation, but if it does, it only occurs for short periods.
Dependability is another important parameter for products from Agar

Corporation. Their flowmeters often are ‘‘out in the middle of nowhere’’ and
reliability is critically important. Robust operation is a part of dependability;
if any component fails and the flowmeter stops functioning, then the valves
go into a safe mode.

Industrial Flowmeter 191

8.3.3 Analysis

Engineering design at Agar uses various forms of fault tree analysis (FTA),
and failure modes and effects analysis (FMEA), and risk analysis to ensure
safe operation of their flowmeters. They carefully design for temperature
extremes, which can range fromAlaska’s North Slope toMiddle East deserts;
the same design and equipment operates in any and all environments.
Agar Corporation also does testing to prove designs too. More on this

later.

8.3.4 Architecture

These flowmeters are the essence of embedded systems. They have digital
and analog electronics sealed in a weatherproof, and sometimes explosion-
proof, enclosures. Higher power circuits, such as processor boards, often
reside in enclosures remote from the flowmeter and potentially volatile
environments. This architecture keeps power density low in the vicinity of
flammable gases to reduce the possibility of ignition.
Agar engineers carefully follow previous designs, if it is an upgrade

design. The reason is that safety considerations and certifications drive
the designs and previous designs have already surpassed hurdles for safe
design.

8.3.5 Interfaces

The primary interface into the electronics is a serial interface. Agar provides
RS-232, RS-422, RS-485, and a current loop for communications. These
flowmeters can use Modbus or HART industrial network protocols. Agar is
planning to incorporate Fieldbus and Profibus network protocols in the
future.
The equipment also can provide relay closures. Agar dedicates one relay

to provide an alarm, which can drive a light, buzzer, or an input to a status
system.
The control box often has an liquid crystal display (LCD) of two lines

by 40 characters. This simple display supplies basic status and alarms.
No keypads are needed for this equipment.

8.4 Phases

Agar Corporation follows a course of prototype development and testing,
as opposed to specific phases. To begin, engineering and production
personnel meet to discuss a concept for a new product. Once they agree to an
approach to an idea, the designers begin development of several prototypes.

192 Developing Real-Time Embedded Products

The first prototype is a breadboard that proves feasibility of the concept
in the lab. Next Agar develops an initial prototype; at this time they also
contact the appropriate certification body to begin the certification process.
The concern is for the very tight restrictions on safety, and so the initial
prototype and working with the certification body early in development is
necessary.

Example

A sensor immersed in a fluid is one example of concern for
certification that an initial prototype might address. The sensor must
incorporate DC-blocking capacitors; these capacitors must be con-
nected in series to prevent problems from a short circuit failure in one
capacitor. Also, capacitors must be small enough to avoid storing too
much charge for the rated environment and having the potential to
ignite the fluid. Finally, the capacitors must have a high voltage rating
to accommodate human mistakes from connecting wrong voltages to
the sensor.

The final stage is the production prototype; it is as close to the final
product as possible to find any problems in manufacturing.
The development work on all three prototypes has feedback loops to

previous stages. Revision can go all the way back to the original concept.

8.5 Scheduling

Agar Corporation uses both top-down and bottom-up planning. For a
small project that a customer requests, they use top-down planning to meet
deadlines. For the bigger projects that begin as a good idea, they use
bottom-up planning; development can take twists and turns and present
challenges that defy deadlines. For those projects that use bottom-up
planning, sales pressure can exert influence to set deadlines and eventually
enforce some top-down schedules.

8.6 Documentation

Agar Corporation is an ISO 9001 certified organization and undergoes
audits from any number of certifying bodies (see the next section). This forces
them to follow their procedures and produce the specified documentation
for each product.

Industrial Flowmeter 193

8.7 Requirements and Standards

Agar certifies through government-sanctioned bodies to examine and test
designs for flowmeters. Some of these include:

� ATEX (Europe)

� UL (US)

� Canadian Standards Administration (CSA) (Canada)

� GOST (Russia)

They pay for audits from these certifying bodies. These audits help ensure
that Agar Corporation is following and meeting the necessary standards.
Agar Corporation initiates requirements several different ways. One way

is through the marketing and sales staff, which brings in requests from the
field for a new product or upgrade. Another way is having the engineering
design team generate a new idea. After the new idea is brought forward, the
design team considers the environment and the required safety standards.
The standards define the limitations in all new designs.

8.8 Analysis

Agar Corporation begins examining feasibility of a new product by dis-
cussing it among the team. If the new product or upgrade appears to be a
software change to a current model, they inspect the software and discuss
the implications of change. If significant questions remain about the feasi-
bility, they will build and test a prototype. They have facilities such as flow
loop and temperature environmental chambers to test prototypes.
Agar Corporation sometimes relies on heuristics or numerical simulations

to assess a new idea.

8.9 Design Trade-Offs

8.9.1 Architecture

Agar Corporation maintains designs of its flowmeters and installations for
many years. There are some old designs still in the field using computers
running DOS� (Microsoft’s disk operating system). Newer designs need
great computational power; they are migrating to microcontroller and DSP-
based architectures and away from general-purpose microprocessors. The
newer processors reduce power consumption and physical size.

194 Developing Real-Time Embedded Products

Agar is moving the system design of their flowmeters toward more
distributed architectures. New, low-power microcontrollers make preprocess-
ing at the sensors quite straightforward. These processors lower the overall
power consumption from that of the older single-board computers.
Agar separates higher-power circuits in remote ‘‘safe’’ areas away from

lower-power circuits that provide signal conditioning on the flowmeters.
Usually this means that the processor board, sometimes a single-board
computer, is in the remote, safe area.

8.9.2 Hardware

One of the biggest problems for Agar Corporation is the inventory of com-
ponents and the long-term stability of the supply of components. This
problemaffects the design decisions for the electronics. Oneway this problem
plays out is that Agar engineers will measure parameters of components and
fix their exact values so that Agar’s flowmeters make stable and precise
measurements. Unfortunately, after the parameters are measured, a vendor
might later change a manufacturing parameter that affects the design.

Example

In one situation, Agar Corporation originally designed a circuit with a
crystal oscillator that needed a 100 pF capacitor to start and maintain
resonance. A test inmanufacturing checked the start-up of the oscillator
by repeatedly turning the circuit on and off. Over time, manufacturing
technicians found that they had to place a capacitor in parallel with
another. If the manufacturing test found that the oscillator did not start,
assembly personnel then followed a procedure to remove the parallel
capacitor so the oscillator would start reliably. After some time,
engineers investigated and found that the vendor had changed the
crystal fabrication and no longer specified the 100 pF capacitors for the
crystal oscillator; instead the specification had moved to a 33 pF
capacitor and the manufacturer had not informed them!

As Agar Corporation designs systems with more distributed archi-
tectures, they are moving away from single-board computers and desktop
operating systems, such as DOS, and are using more microcontrollers and
DSP chips. The microcontrollers tend to be 16- and 32-bit processors, though
8-bit controllers are finding their way into sensor heads. Agar has used or
has considered using a variety of different microcontrollers; these range
from the venerable 8051 series from Intel to the PIC family from Microchip
and AVRs from Atmel.
While Agar migrates to microcontrollers and DSP chips for greater

computational processing, a problematic interaction arises between size and
power density. Agar must make sure that the physical area of each

Industrial Flowmeter 195

component is large enough to reduce power dissipation and avoid igniting
a volatile environment. This means that components cannot be ‘‘crammed
together’’ as you might find in consumer appliances, such as cell phones.
This power density concern, which even focuses down to individual resistors,
forces the need for physical space to dissipate power appropriately.
Agar also must design and build the circuit boards for diverse and

severe environments. They use conformal coatings on the assembled circuit
boards and potting compounds around larger components to protect
against dust, sand, and condensation.

8.9.3 Power

The power input for Agar’s flowmeters is either 120 or 240 VAC for most
systems; it must also be 50 or 60 Hz capable. Generally, the flowmeters have
a 12 VAC-to-DC converter in a remote, safe area.
The power circuits usually have two types of safety ‘‘barriers’’ to reduce

the potential of ignition from high-energy discharges. One is a Zener bar-
rier; the other is a galvanic isolation barrier.
The Zener barrier (Figure 8.2) clamps the voltage with a fuse and Zener

diode. If the input voltage goes too high, the fuse will open and prevent
the delivery of energy that exceeds a design threshold. The resistor limits
instantaneous current, for the very same reason—it prevents the delivery
of energy that is above the limit. One caution here is that capacitive or
inductive energy storage in the supplied circuit must also be understood
and designed to avoid storing too much energy that could be delivered in
an accidental discharge.
The galvanic isolator is a DC–DC converter designed to prevent any

charge from moving from safe area into the hazardous area. There is no DC
electrical connection between the two areas. This provides a higher level of
safety and isolation for the components in the hazardous area.

External
power input

Input to
circuitry

FIGURE 8.2
Schematic diagram for a Zener safety barrier. The fuse and zener diode clamp the voltage to an
appropriate level; should it go too high, the fuse will open. The resistor limits instantaneous
current.

196 Developing Real-Time Embedded Products

8.9.4 Cable Harnesses

Cables are an important part of the multiphase flowmeters. The designers
work to keep cables and wires to a minimum in the flowmeters. They
also keep cables short and compact. The cables may be tied down within
enclosures to keep them from resonating with potential sources of vibration.
The cables are also sheathed or placed in conduits to meet the standards for
the specified gas-group environment.

8.9.5 Cooling

Agar Corporation avoids active cooling in its flowmeters because of the
additional complexity and certification required. The design team tried a
thermoelectric cooler inside an enclosure once but they had problems
with positive thermal feedback; it doubled the power consumption and
ultimately did not cool the enclosure.
Enclosures must remain sealed from volatile environments. No vents

are allowed, which excludes fans and forced-convection cooling from the
ambient external atmosphere through the enclosures. Furthermore, the
concern for mechanical reliability of the fan bearings rules out fans from
even circulating air internal to the enclosure for cooling. Flowmeters often
operate for years without interruption—a difficult requirement for fans.

8.9.6 Mechanical Structure

Flowmeters potentially must withstand years of constant vibration; this
particularly applies to the cables and mechanical enclosures. If a flowmeter
sits next to a big pump within a refinery, the vibration can be unrelenting.
Agar Corporation uses shock mounts on some boxes in the flowmeters to
dampen vibration. They also use cable glands to seal cable penetrations and
mitigate the effects of vibration on the cables entering an enclosure.

8.9.7 Software

The engineers at Agar Corporation use careful and thorough processes to
develop software. They write code in C, although some subroutines are
written in assembly language to achieve performance. Engineers use code
reviews, tests, and field tests to assure software functionality. They archive
developed software and version control it. Like certain other applications in
the case studies in this book, they cannot easily upgrade software once it is
fielded; it has to be right the first time.
Historically, Agar engineers have used single-board computers that either

run DOS or use a custom operating system. With newer systems using
newer versions of single-board computers, they have considered several
commercial or open-source operating systems, such as EmbeddedWindows�,

Industrial Flowmeter 197

QNX�, and Linux. Their biggest concern is the stability of the software
platforms; flowmeters may run for 15–20 years, Agar must maintain their
software and software tools for a long time.
As mentioned previously, Agar engineers are using microcontrollers in

distributed architectures. They are considering commercial RTOSes for the
16- and 32-bit processors in the core, while they are writing their own
custom RTOSes for the 8-bit microcontrollers doing the preprocessing in the
sensor heads. Generally, the operations of the sensor heads are quite simple,
which means that the real-time operating system (RTOS) does not need to
be complex.

8.9.8 Buy vs. Build

Agar Corporation has used commercial off-the-shelf (COTS) single-board
computers in their flowmeters. Newer products, however, have a more
distributed architecture and Agar is moving to all custom design. Agar is
doing a mix of things with software RTOSes; some are custom-made while
others are commercial products.

8.9.9 Manufacturing

Agar Corporation does not have an explicit program for DFx (design–for-
manufacture [DFM], design-for-assembly [DFA], or design-for-test [DFT]),
but the engineering team does work closely with the production staff during
design and development to produce flowmeters amenable to manufactur-
ing. They work together to develop test jigs. An example of working
together on test jigs would be those used to test circuit boards arriving from
a fabrication vendor.

8.9.10 Test and Maintenance

The engineering team also works with the field sales staff and affiliates from
around the world. During design, this type of teamwork helps them prepare
better ways to maintain flowmeters in the field.
An example of speeding maintenance is to provide a test head outside the

electronics enclosure; it is potted with the appropriate glands to seal the
cable penetration into the box. The test head speeds diagnostics by allowing
maintenance personnel to connect to the test head, which provides the
signals and controls to the electronics, without opening the main enclosure.
This is important because opening the enclosure is a lengthy process that
requires obtaining a special permit, potentially shutting down adjacent or
related equipment, testing of the environment, and then a tedious effort to
undo all the bolts sealing the enclosure.

198 Developing Real-Time Embedded Products

Agar continues to research ways to speed maintenance. They are
considering radio frequency (RF) links, such as the Bluetooth standard, to
interrogate the enclosures without opening them or even physically
connecting to them. Another advantage to a wireless approach is that in very
cold climates, such as northern Canada, the maintenance personnel would
not have to leave the warm confines of their vehicle to test the flowmeter.

8.10 Tests

Agar Corporation performs a variety of different types of tests to assure
design quality. They test prototypes; they do subsystem functionality tests on
the hardware; and they hold periodic reviews of the design and software.
The team performs thermal testing on prototypes to understand and

demonstrate stability in the measurements and calibration. They use a flow
loop to confirm operation. They also use ESD equipment to test and confirm
electromagnetic compatibility (EMC) for static charge.
The team has periodic reviews of the design and software. These are set

according to stages of both initial and production prototypes. They review
the software and hardware subsystems separately and then together as a
system.

8.11 Integration

Integration is considered a part of testing. Agar Corporation has a large
flow loop to test and demonstrate flowmeters. Agar has a detailed
factory acceptance test (FAT) that customers will often sign off before
acceptance.

8.12 Manufacturing

8.12.1 Outsourcing

Agar Corporation outsources the fabrication and assembly of most
subsystems: circuit boards, metal structures and components, and assembly.
Agar does not have the volume of products to justify maintaining basic
manufacturing capability in-house.
Agar has qualified certain vendors to fabricate the circuit boards and to

solder the components onto them. These electronic ‘‘board houses’’ are
qualified to UL standards to ensure that the circuit boards meet UL ratings.

Industrial Flowmeter 199

Agar also has qualified vendors to weld spool pieces and metal frames for
the flowmeters. They also outsource some assembly of the frames, such as
the shock mounts and cabling.

8.12.2 Assembly

Agar Corporation performs the final integration of the subsystems on their
premises. For some of the smaller meters, such as the water-cut meters, they
will do more of the assembly in-house than would be done on the larger
multiphase flowmeters.

8.12.3 Tests

Agar Corporation does all the final testing in-house. ISO standards and
certification means that they must do many different types of tests to main-
tain quality. One example might be the purchase of 100 enclosures; Agar
must check the dimensions of each enclosure to confirm the size even though
they are catalog items and Agar has ordered them for years. The production
personnel follow forms and checklists. Another example of proper procedure
is pressure tests of the sensor seal housing; they do strip-chart recordings of
the pressures and send copies to the customer on delivery after the sale.

8.13 Support

8.13.1 Logistics

Agar Corporation maintains an inventory of components for replacement.
They will replace modules and subsystems in the field but not individual
components. Agar plans for minimal software upgrades in the field, and
new circuit boards or enclosures might be installed to replace an older unit.

8.13.2 Maintenance

Periodic maintenance is an involved procedure. First the technician must
obtain the appropriate permits and then set up an explosive-gas analyzer to
‘‘sniff’’ for volatile gas for 1 hour. Then the technical personnel go through a
shutdown procedure, possibly involving adjacent or related equipment, and
then remove the bolts on the enclosure. Finally, they tag the flowmeter as
hazardous before running the diagnostics. Afterwards, they have to follow
proper procedure to ‘‘button-up’’ the enclosure, bolt it, and then restart all
the associated equipment.
Trucks with appropriate equipment will go into the field to test and

calibrate Agar’s flowmeters.

200 Developing Real-Time Embedded Products

Field service personnel use a notebook computer to test the embedded
system through one of the serial interfaces on the electronics box.

8.13.3 Technical Support

Agar Corporation maintains a large, international network of field sales and
service staff and affiliates who are highly technical. They can answer
questions and speak directly to customer staff, in their language and
technical vocation, to address concerns.

8.14 Disposal

Agar relies on their outsourcing vendors to handled concerns with
Restriction of use of certain Hazardous Substances (RoHS) properly.
They also advise their customers on the proper procedures to dismantle and
recycle old equipment.

8.15 Liability

8.15.1 Economics

Economics is a large liability for these multiphase flowmeters. If one shuts
down and stops the flow of crude for even a short time, it causes financial
repercussions throughout the industry. Reliability and accuracy are directly
tied to the economics of oil field production.

8.15.2 Safety

Safety in a potentially volatile environment is probably the number-one
concern in developing multiphase flowmeters. Agar engineers expend
much effort to understand all the aspects of safety and to maintain low-
energy discharge limits. A spark that could ignite an explosion affects
human life and safety. This makes safety a very large liability for Agar
Corporation in designing their products.

8.15.3 Legalities

With economics, safety, and international markets, the legal liability is also
large. Careful design and attention to customer concerns help reduce
legal liability.

Industrial Flowmeter 201

8.16 Summary

Multiphase flowmeters used in the petrochemical industry place very
particular demands on design and development. First, they must be safe;
energy distribution, charge storage, and discharge receive much attention to
avoid igniting volatile environments. Second, reliability is very important;
these flowmeters must operate in extreme environments—from blazing
desert heat to Artic cold—for years. They also must endure constant vi-
bration. Finally, they must be accurate and stable in their measurements. A
lot of money rides on the exact percentage of oil, water, and gas transported
through the flowmeters.

Acknowledgment

My thanks to Steven Bates at Agar Corporation for providing the informa-
tion for this chapter.

202 Developing Real-Time Embedded Products

9
Case Study 6—Military Support Equipment

9.1 Concept and Market

9.1.1 Who, What, Why, How, Where, and When

The Support Systems business unit of Boeing Integrated Defense Systems
makes support equipment for military aircraft; the equipment is sold to all
four major U.S. service branches (Army, Air Force, Navy, Marines) and
to foreign militaries. Boeing Support Systems started in this market to
support its own aircraft. Boeing Support Systems has since expanded
and tries to compete for equipment that supports other military systems,
as well.
Boeing Support Systems makes and sells the support equipment, both

mechanical and electrical, to fit one of three different levels of maintenance:
Organizational Level (O-Level), Intermediate Level (I-Level), and Depot
Level (D-Level).

� O-Level indicates that the equipment tests aircraft on the flight
ramp. The equipment must endure dust, rain, snow, very cold and
very hot temperatures, and humidity. Figure 9.1 gives an example
of O-Level equipment.

� I-Level indicates a controlled environment with the appropriate
heating, cooling, and humidity control for the tested units or
‘‘black boxes.’’ These black boxes are called weapons-replaceable
assemblies (WRAs) by the Navy and line-replaceable units (LRUs)
by the Air Force; they are the repairable elements within a system
that can be changed at the flight line. Figure 9.2 gives an example
of I-Level equipment.

� D-Level indicates maintenance performed at either a military
facility or by the manufacturer in a controlled environment on the
next lower assemblies from the I-Level, typically at the circuit card
level. These circuit cards are called shop-replaceable assemblies
(SRAs) by the Navy and shop-replaceable units (SRUs) by the Air
Force. Figure 9.3 gives an example of D-Level equipment.

203

FIGURE 9.1
An example of O-Level equipment, a radar simulator for the F-15 fighter jet. (Used with
permission from the Support Systems business unit of Boeing Integrated Defense Systems.)

FIGURE 9.2
An example of I-Level equipment, the F-15 Avionic Maintenance Support System (AMSS).
(Used with permission from the Support Systems business unit of Boeing Integrated Defense
Systems.)

204 Developing Real-Time Embedded Products

Most of the material in this case study is in the O-Level arena. Consequently,
the decisions and trade-offs in this case study will slant in that direction.
I-Level and D-Level equipment are often called automatic test equipment
(ATE) in other industries.

9.1.2 Economics

Boeing Support Systems invests in both research and internal process
improvement to remain competitive and stay abreast of market trends.
Boeing evaluates individual opportunities on a case-by-case basis and either
responds to request for proposals (RFPs) or talks with customers during the
proposal phase for a particular aircraft program, such as an upgrade to an
existing capability.
For very small numbers Boeing Support Systems generally makes the

equipment in-house. Once production gets underway they will subcontract
most of the parts and act as the system integrator. There are some products
that Boeing Support Systems subcontracts entirely to a vendor, who may
ship the product-directly to the customer. Boeing Support Systems sells
equipment to first-time customers via a System Compatibility Test (SCT) for

FIGURE 9.3
An example of D-Level equipment, the F-15 Digital Test Station (DTS). (Used with permission
from the Support Systems business unit of Boeing Integrated Defense Systems.)

Military Support Equipment 205

the Air Force or First Article Test (FAT) for the Navy. Subsequent sales
usually only require passing an Acceptance Test Procedure (ATP).
One size does not fit all in the world of military support equipment; it is

not off-the-shelf in any sense. Boeing designs and builds support equipment
for specific needs and purposes. Boeing will incorporate commercial off-the-
shelf (COTS) into system solutions primarily in applications where the
environmental operating requirements will allow COTS products.
Boeing generally has short production runs of less than 100 and usually

less than 50. For O-Level support equipment, volumes range from one or
two items per squadron up to one per aircraft, depending on the system that
is supported. The smaller jobs tend to be updates that add new capabilities
to existing fielded equipment. The larger jobs tend to be new designs or
large production runs of existing designs. The I-Levels and D-Levels tend to
have smaller volumes because the support equipment is located in fewer
places than the O-Level equipment.
Life cycles for support equipment can be fairly long; 20 years is not

atypical. As long as people fly Boeing aircraft, Boeing Support Systems has
opportunities to upgrade and enhance their fielded equipment.

9.2 People and Disciplines

The composition of the development team depends on the requirements for
the design. Customers generally dictate what they want in terms of reli-
ability, maintainability, documentation, and special needs. Boeing Support
Systems might add a discipline to meet unusual requirements. In general,
Boeing uses the following types of people during the design phase:

� Team leader

� Electronic hardware engineers

� Mechanical engineers

� Software/firmware engineers

� Technicians

� Quality assurance (both hardware and software)

� Reliability and maintainability engineers

� System safety engineer (depending on the design requirements)

� Supplier management and procurement

� Contracts

� Technical publications

� Training

The actual design effort usually only includes the engineers and the team
leader, but the others come and go as necessary.

206 Developing Real-Time Embedded Products

9.3 Architecting and Architecture

9.3.1 Process

Boeing Support Systems follows a waterfall process in development. They
perform an analysis for the requirements by looking at the inputs and
outputs from the unit-under-test (UUT) and then they specify test
approaches that cover all the signals. The team designs the equipment to meet
those requirements.
Boeing Support Systems is an ISO9001 company and as such has many

processes and procedures; a description of them would be far beyond the
scope of this book.

9.3.2 Parameters

The main parameters that affect design and development are typical for
mission-critical equipment, for example, schedule, requirements, weight,
power, size, cost, reliability, fault tolerance, testability, and availability.
Boeing also considers environmental conditions, including electromagnetic
interference (EMI) and electromagnetic compatibility (EMC) for O-Level
equipment. Ultimately, there are different build requirements based on the
environment that the equipment must survive.

9.3.3 Analysis

Boeing Support Systems uses failure modes and effects analysis (FMEA) to
ensure that any failure of their test sets do not cause any single point failures
in the UUT. They also screen out components that might get too hot or
might have a weakness of some sort as revealed by a reliability analysis.

9.3.4 Architecture

O-Level support equipment is portable, so the keypads are integrated and
simple; they might be numeric only, for instance. The displays tend to be
simple, such as an liquid crystal display (LCD) with four or five lines of text.
There are circuit cards and a central processing unit (CPU) tailored to the
functions needed in a particular design, such as programmable loads,
memory, and digital and analog stimuli. The equipment also has a power
supply. The programs generally run in firmware. Updates to the program
might load externally or require a change of programmable read-only
memory (PROM).
Equipment for the I- and D-Levels comprise an entire test station, any-

where from one to five racks and up to seven feet tall, full of spectrum
analyzers, waveform digitizers, counter-timers, digital multimeters, and
high-power loads. Typically, this type of equipment has circuit cards that

Military Support Equipment 207

plug into a backplane, for example, VME or VXI. Since most of these
systems support multiple UUTs, the programs are stored on some form of
removable media, and, depending on the system, might actually compile on
the station itself. A patch panel (e.g., Virginia Panel or MAC Panel) gen-
erally handles all of the interfaces (with the possible exception of high
power loads and stimulus) via an interface adapter. The interface adapter
takes the hundreds of pins available on the patch panel and routes them to
cable interfaces so that cables can be connected from the interface adapter to
the UUT. The test station must sometimes supply cooling air or liquid
cooling. A test station can have multiple displays; one might be used as the
primary interface for the operator while another might display pictures or
schematics or wiring diagrams that the operator can use for guidance to
perform a procedure. Full keyboards or touch-panel displays are used to
input information and run programs on the test station. There may be
multiple CPUs to provide all the necessary processing.

9.3.5 Interfaces

Environmental concerns are critical for O-Level equipment. Not only must
the equipment survive the environment but also the operator must be able
to use it in harsh environments, so operation while wearing winter gloves or
chemical/biological protection gear is also necessary. Consequently, it is
imperative to keep user interfaces as simple as possible.

9.4 Phases

9.4.1 Concept

Boeing Support Systems can take anywhere from 3 to 12 months depending
on the complexity of the project in this phase. Boeing moves through the
Concept phase that takes them to the preliminary design review (PDR). The
design engineers map the requirements into a workable design and gen-
erate block diagrams. The customer will come in for the PDR and the team
will present the overall design concept. If the customer agrees that Boeing
Support Systems is on the right path, then Boeing moves on to the next
phase; if not, Boeing makes corrections.

9.4.2 Detailed Design

This phase can take from 6 to 12 months depending on complexity. During
this time, Boeing Support Systems moves through the detailed design phase
to the critical design review (CDR). The design team develops the details of
the design, such as schematics and wiring diagrams. Boeing develops a full
drawing package during this phase. They conduct analyses for reliability and

208 Developing Real-Time Embedded Products

maintainability and vet the overall design. The customer will come in for the
CDR and the team will present the final design. If the customer agrees that
Boeing has met the requirements, then Boeing moves on to the next phase; if
not, Boeing makes more corrections. Once the CDR is complete, Boeing starts
buying parts for either the engineering model or for the integration phase.

9.4.3 Engineering Model

Sometimes Boeing builds an engineering model (prototype) to prove out
designs and makes sure everything works the way Boeing thinks it should.
These prototypes are not always pretty, that is, there are cuts and jumpers,
incorrect or nonexistent metal finishes, and so forth. The design continues to
evolve, but the basic concept generally stays intact. This is done in a lab
environment with UUTs that Boeing Support Systems owns or has bor-
rowed from the customer. Sometimes it requires the team to operate test
benches. As Boeing builds the engineering model, the team refines the
design and moves toward the first production models. These production
models are often used for environmental qualification testing. Once Boeing
completes environmental testing, the team might have to refine the design
further, but often they are fully into the integration phase by then.

9.4.4 Integration

Usually the designers and the requirements people carry out the integra-
tion. The effort is intended to validate the design concepts and make sure
that all the requirements are still being met.

9.4.5 Sell-Off

Once integration is complete, Boeing Support Systems does a final design
update, if necessary, and goes to ‘‘sell-off’’, which is conducted with the
customer. They perform a go-path test with the test equipment in a real-life
environment, for example, on the aircraft or with the real UUTs. At the same
time, they verify the procedures. If the equipment passes this test, Boeing is
off to production.

9.4.6 Timing and Acceptance

From CDR to sell-off can take from 6 to 12 months depending on complexity.
A general rule of thumb is that O-Level development takes from 18 to 24
months, and I-Level and D-Level development takes from 24 to 36 months.
Production copies are sold via an ATP, which may or may not be

witnessed by the customer. Depending on the size of the production run the

Military Support Equipment 209

design may be built in-house, divided up between in-house and out-of-house,
or contracted out as a build-to-print. Depending on the contract with the
customer there may or may not be follow-on support for fielded items.
On large complex systems there is often some form of sustaining contract
in place.

9.5 Scheduling

Boeing Support Systems uses both top-down and bottom-up scheduling.
Often customers set the end date and Boeing builds a schedule to try and
support that date from the bottom up. If it is not possible to meet their
desired end date, Boeing works with them to either decrease the require-
ments or move out the end date. If no end date is specified, Boeing tends to
use bottom-up-type planning.
The deployment date is usually the constraint on the schedule for the item

Boeing Support Systems supports. The customer usually requires that the sup-
port be available, either prior to the first deployment or in conjunction with it.

9.6 Documentation

9.6.1 Purposes

Documentation serves a number of purposes. It can instruct an operator on
the proper procedures to follow when using the equipment, or it can
identify parts, such as with a drawing or a parts list, or it can be used in the
repair of equipment, for example, schematics.
The documentation goes to various branches of the government for

review. High-level description type documents might go to the program of-
fice, while lower-level design documents might go to the project engineer.
Documentation is prepared to either government standards when specified
by a data item description (DID), or to company standards when DIDs are not
called for. Documentation can be required during all phases of the program
as called for in the contractor data requirements list (CDRL). The CDRL
dictates what data are prepared, what format they should follow, when they
are submitted, and to which parts of the government they are submitted.

9.6.2 Types

The government has a lengthy list of data items from which to choose [1].
Boeing Support Systems generally deals with drawings, schematics, wiring
diagrams, block diagrams, reliability predictions, software source code,
testability analysis, acceptance test reports, Acceptance Test Procedures,
master program schedules, technical publications, computer program

210 Developing Real-Time Embedded Products

identification number (CPIN) requests, requests for nomenclature, and
support-equipment requirements documents (SERDs).

9.6.3 General Formats for Documents

Details for documentation descriptions can found at the Web site in
Reference 1.

9.7 Requirements and Standards

9.7.1 Military Standards

There are many military standards that this equipment must follow. Some
examples include

� MIL-STD-461 Requirements for the control of electromagnetic
interference characteristics of subsystems and equipment

� MIL-STD-810 Environmental test methods and engineering
guidelines

� MIL-HDBK-2165 Testability program for systems and equipments

� MIL-PRF-28800 Test equipment for use with electrical and
electronic equipment, general specification for

� MIL-DTL-31000 Technical data packages

The U.S. government has been moving away from MIL-STDs over the past
decade. Now they tend to put exactly what they want in a statement of work
(SOW) or a Procurement Specification (PS) instead of calling out a military
specification.

9.7.2 Preparing Requirements

In some cases the customer writes the requirements document for Boeing; in
others Boeing writes a SOW or PS or both for the customer. All affected
disciplines have input to the documents, which are generally included in
the customers request for proposal. Depending on the complexity of the
product, this process can take from days to weeks.

9.8 Analysis

Since Boeing’s support equipment is used for maintenance, the system be-
ing tested either exists or is in the design phase already. Boeing generally

Military Support Equipment 211

does not attempt to do something that has never been done before, so the
feasibility of a new project is based on their experience with the system
Boeing hopes to maintain. Consequently, the Boeing team determines a
design approach based on their knowledge and experience with similar
systems that Boeing already supports.
In general, Boeing does not apply heuristics during the design process.

They do not maintain a central library of calculations or approximations.
They generally do not simulate a design.
In some cases, Boeing will test in conjunction with a development effort.

For instance, Boeing may develop a lab unit or prototype for use in envi-
ronmental testing or for early integration efforts. These assets are used
by the engineering community and are sometimes kept around for future
developmental or field support needs.

9.9 Design Trade-Offs

9.9.1 Architecture

Boeing Support Systems considers many aspects of architecture issues for
support equipment. One consideration is that Boeing’s overall goal tends to
be higher reliability rather than cool features. Here are a few of the factors
they consider:

� Fault isolation and tolerance

� Integration risks

� Power conversion efficiency

� Power consumed

� Cooling

� Data throughput

� Design complexity

� Mass

� Cost

As Boeing’s hardware is used for maintenance, the importance each of these
factors varies by the level of maintenance. O-Level equipment, for example,
must be portable and must run off aircraft power or batteries because
facility power is not generally available. It must operate in very hot and
very cold environments and must be cooled with ambient air, that is, no
external cooling. Reliability and maintainability of the equipment is impor-
tant because the user may take the equipment to a remote location for a long
period of time and provide little or no external support. Boeing usually
custom designs the support equipment for each application. Common bus
structures (VME, VXI, etc.) are used in some applications but others are
custom architectures.

212 Developing Real-Time Embedded Products

I-Level and D-Level equipment pose a different set of requirements.
The equipment usually resides in a facility with cooling air, power, and
controlled temperature and humidity. It tends to be large and is not often
moved. It can be custom designed or built from existing technology such as
a Teradyne 9100 mainframe. The architecture often uses common back-
planes (VME, VXI, PXI, etc.). The designs tend to be more complex and
costly and take much more time to develop than O-Level equipment.

9.9.2 Hardware

Temperature range is the biggest concern for Boeing for selecting integrated
circuit (IC) components. Boeing tries to buy components with the longest
life possible. They design all of their support equipment for a 20-year life.
Some of it has been in the field longer than that. If necessary, Boeing will
buy critical components and inventory them for the life of the project.
Boeing assures EMC through proper circuit board layout and enclosure

shielding and gaskets. As in other industries, shrinking design rules within
IC fabrication cause concerns for Boeing’s support equipment. Boeing her-
metically seals switches. They also put an EMI rubber boot on top of them.
Lamps and displays have EMI grids.
Vibration is a bigger concern for Boeing Support Systems than shock.

They use proper mounting and control of dimensions to minimize damage
from vibration. Boeing Support Systems has few problems with tempera-
ture since their designs are based on components and subassemblies that
are intended for the temperature extremes Boeing expects to encounter.

9.9.3 Power

The input power for O-Level is typically either 28 VDC or 115 VAC, 400 Hz.
Equipment for the I- and D-Levels usually requires 115/240 VAC 60/50 Hz
power, but it can use 400 Hz or 28 VDC power. All equipment has an input
filter on incoming power.
Some O-Level equipment uses standard disposable batteries. I- and

D-Level equipment generally does not use batteries.

9.9.4 Cable Harnesses

Boeing Support Systems keys connectors and labels them at both ends of
each cable. They also put a label in the middle of the cable. They put
a reference for every leg of a cable with corresponding markings on the
receptacles. Boeing generally uses scoop-proof MS connectors. Unused
holes in the connector are all filled to protect the connectors. The cables are
conduit style for both physical and EMI protection. They test each cable for
continuity, discontinuity and insulation resistance. Furthermore, each cable
is tested during self-test of the equipment.

Military Support Equipment 213

9.9.5 Cooling

Boeing Support Systems prefers heat sinks over fans in O-Level equipment.
Fans are a second choice if necessary. Equipment for both I- and D-Levels
generally uses heat sinks and cooling fans. Boeing considers liquid cooling a
last resort. Liquid cooling and refrigeration are avoided because of envi-
ronmental hazards and the mess associated with their use. Fans can be
noisy, and hence the preference for heat sinks.

9.9.6 Mechanical Structure

Most support equipment uses one of the standard form factors and back-
planes with rigid circuit boards. Rigidity resists problems from vibration.
The design often depends on the application and its environment.

9.9.7 Software

Boeing Support Systems develops software according to a software devel-
opment plan. Key steps in this activity include requirements definition,
detailed design specification/review, coding, coding integration reviews,
test readiness reviews, final testing, and delivery. They conduct code
reviews to verify compliance with coding standards. They also conduct
design and requirements peer reviews.
The level of software sophistication and difficulty depends again on the

level of maintenance. Software for support equipment at the O-Level tends
to be less complex and can be prepared in some of the more simple lan-
guages like HP Basic or possibly in assembly language.
I-Level and D-Level equipment tend to use higher level languages.

Typically the software is written in ATLAS or C. Boeing Support Systems
does not use Ada in their support equipment; Ada is considered an avionics
language. The software for I-Level and D-Level equipment tends to be
much more complex to develop and time-consuming, but it is still no more
complex than the hardware of the support equipment.
Boeing Support Systems develops custom RTOSes because the equipment

does not usually run in a standard environment like Windows. Boeing
upgrades the software in the field with EEPROMs or some sort of remov-
able media to support the end user in a timely manner. There are no
planned maintenance actions unless the customer contracts with Boeing to
provide updates. Updates are usually accomplished via an engineering
change proposal (ECP) with the customer.

9.9.8 Hardware vs. Software

Flexibility of upgrades is the prime driver for Boeing Support Systems. It is
much easier to upgrade fielded software than to upgrade fielded hardware.

214 Developing Real-Time Embedded Products

Boeing Support Systems tries to make the hardware as robust as necessary
to handle future upgrades and do the rest in software.

9.9.9 Buy vs. Build

Boeing Support Systems uses both COTS and custom design. They buy
standard COTS equipment like meters, scopes, and instruments on a card.
Their custom-built designs are specialized to the application and may
contain some COTS hardware. The advantages of COTS equipment is that it
readily available and less expensive to buy than building custom equip-
ment. However, COTS equipment is not always capable of satisfying the
environmental extremes that may be required. While custom equipment is
more expensive and takes longer to develop, its operating characteristics
and configuration are more readily controlled. In general, Boeing tries to
use COTS when it will meet their requirements without modification.
The system architect usually makes those decisions.

9.9.10 Manufacturing

Since Boeing Support Systems makes limited quantities of most items, the
fabrication and assembly process is not highly automated. Boeing uses
design-for-manufacture (DFM) practices where practical, but since the
quantities are low, it is not the most important factor. ATE is particularly
used to check cables.

9.9.11 Test and Maintenance

The goal for testing and maintenance is to provide the smallest footprint
possible at the O-Level because military personnel transport it to places
with ongoing military operations. I-Level and D-Level support and test
equipment must provide fast and accurate testing (the faster it can be
done, the less equipment and manpower is needed). To address these
concerns, Boeing Support Systems incorporates built-in-test (BIT) and self-
test provisions in their support equipment for both maintenance and
calibration of the test equipment itself.

9.10 Tests

9.10.1 Formal and Informal

Formal testing is only required at the end of the effort. Boeing performs
informal testing throughout the process with engineering models and
prototypes. All tests are performed by the engineers on the design team. The
tests are run from the early design phase throughout the end of the program.

Military Support Equipment 215

9.10.2 Laboratory Tests

Boeing sometimes prepares lab units or prototypes for use in environmental
testing during the development and early integration efforts. There is no set
rule (unless required by the customer) for when lab tests are required or not.
New or more difficult design issues are generally tested prior to moving
from bench testing and integration to aircraft testing and integration due
to the potential damage to the aircraft and the relative value of aircraft
integration time.

9.10.3 Inspection

Boeing engineers perform inspection during the development phase. Once
Boeing is ready to formally demonstrate a product inspectors for hardware
quality-assurance get involved. Software and hardware quality personnel
take part in the peer reviews during the build process.
A quality check occurs following the completion of each major sub-

component (circuit cards, cables, etc.) once a product is moved to production.
A quality check takes place again once the subcomponents are assembled into
the final product. The customer’s quality-assurance representatives perform
the final inspections during buy-off.

9.10.4 Peer Review

Most modern military equipment contains both hardware and software.
Hardware development is generally done in compliance to an international
quality standard such as AS9100. This standard requires design verification
and validation. Preliminary and CDRs are held to assure customer re-
quirements are addressed by the design.
Boeing develops software for support equipment in accordance with a

software development plan, as mentioned above. The development plan
defines participation in the reviews; it usually includes members of the
engineering team, the team lead, and sometimes quality assurance, and
supplier quality. Peer reviews are performed from requirements definition
through final testing, again according to the software development plan.
Entry and exit criteria are defined for each phase. In most aerospace com-
panies today, these reviews are in line with the SEI CMMI principles.

9.10.5 Environmental

Environmental tests are part of the requirements dictated by the customer.
The environmental tests can include temperature, humidity, EMI, salt/fog,
fungus, altitude, vibration, shock, and splash proofing. Some of these tests
can be performed in-house, but some must be subcontracted out to vendors.
The engineers generally participate in putting the test plan together, and in

216 Developing Real-Time Embedded Products

some cases they participate in the tests themselves. These tests are generally
performed on a preproduction or prototype unit; they take place either in
serial sequence as part of the production program or in parallel with the
production program, depending on the schedule and customer requirements.

9.10.6 Manufacturing

There are no specific types of manufacturing tests required other than
inspections and successful completion of the ATP (see earlier).

9.10.7 BIT, BITE, and Simulators

Boeing Support Systems uses equipment to simulate aircraft equipment to
reduce use of the aircraft time. There are really no other types of simulators
or simulations required. Boeing designs BIT into the product during the
design phase. The design engineers prepare the BIT.

9.11 Integration

Boeing usually integrates hardware and software together for O-Level
equipment. Integration activity generally occurs in three phases.
The first phase is when the hardware and the software are first married

together. Lab tests are run to see that the proper inputs and outputs are
generated when required.
Once the equipment seems to be operating properly, Boeing moves the

equipment to bench integration. This phase occurs on a test bench that
simulates the various aircraft systems exercised by the support equipment.
These tests represent a realistic environment for a high percentage of the
aircraft systems.
Finally, once the bench integration is complete, aircraft integration begins.

Boeing connects the equipment to the aircraft during this phase. Boeing
performs environmental testing either in parallel or in conjunction with the
integration phase. Field testing is not generally required.

9.12 Manufacturing

Boeing Support Systems can assemble circuit cards, make cables, produce
simple metal work, and other similar type activities. Boeing Support
Systems does not manufacture components, connectors, or printed circuit
boards (PCBs). Most of the basic building materials are purchased from
outside suppliers. Contracting with outside suppliers is done in two
primary ways: build to print and unique design.

Military Support Equipment 217

Boeing Support Systems does not use a dedicated in-house manufacturing
facility for its military test equipment. Boeing relies on outside manu-
facturing sources for larger production quantities rather than attempting to
manufacture those within the engineering labs. During the initial design
phase, Boeing prepares a procurement package, which then forms the basis
for a competitive procurement among potential suppliers. The engineering
team works with the selected supplier during the manufacturing phase.

9.13 Support

Support equipment itself is not generally large enough to warrant an
Opeval or a Techeval on its own. It can often be part of a larger program
that does have those phases of evaluation. If Boeing introduces the support
equipment on its own, it can be an On-Site Verification (OSV) or some other
type of field introduction. Both engineers and technicians support an OSV,
especially if it is a retrofit to existing equipment. Once an OSV is completed,
authorities at the operational site generally sign off on the installation. The
introduction is almost always completed in the field at the customer’s site.
Engineers, technicians, or a field support organization can provide sup-

port of the delivered equipment. Boeing Support Systems does not maintain
a website or a 24-h helpline. The users call Boeing directly when they need
assistance. Boeing also supplies extensive manuals so that the user can
provide his own technical support to the greatest extent possible.

9.14 Disposal

The military takes care of the disposal of the equipment when they are done
using it; so there is no burden to Boeing Support Systems.

9.15 Liability

In dealing with military equipment, both personnel and equipment safety
are primary concerns. Boeing Support Systems designs all test equipment to
rigid safety requirements; the system safety group performs system safety
analyses at all levels during the design and qualification process.

9.16 Summary

Boeing Support Systems builds support equipment with embedded
real-time systems that test military equipment—particularly aircraft systems.
The volumes produced are quite small, 50–100 units for any particular piece

218 Developing Real-Time Embedded Products

of equipment. The emphases are dependable operation (long periods of un-
interrupted functioning without failure) and extreme environments. The
equipment must provide simple and robust operation.

Acknowledgment

My thanks to Tim Murphy at Boeing Support Systems, a division of Boeing
Integrated Defense Systems, for providing the information for this chapter.

Reference

1. U.S. Government requirements for documents: http://dodssp.daps.dla.mil/
assist.htm

Military Support Equipment 219

10
Case Study 7—Designing Instruments
for Space Flight

10.1 Concept and Market

10.1.1 Who, What, Why, How, Where, and When

This chapter provides a general format for designing instruments for
spacecraft. The two chapters that follow will provide specific instantiations
of this format. I have drawn on several decades of experience from different
people for this chapter and case study.
Often a team of 20 or 30 or more work, at least part time, on any instrument

destined for space flight. The team comprises scientists, engineers, techni-
cians, fabrication personnel, and administrative staff. The effort to develop
the instrument can take anywhere from 2 to 4 years. The fabrication requires
a number of resources including circuit board fabrication and assembly,
machine work, and test facilities; these activities can take place in many
different locations.

10.1.2 Economics

Instruments that fly on spacecraft take time and money to design, fabricate,
and operate. Many instruments that orbit the Earth on a satellite or fly into
the Solar System on a spacecraft cost between US$5MM and US$50MM.
Most spacecraft have multiple instruments to maximize the opportunity to
gather unique science data. This drives the cost of the satellite up to 100s of
millions of U.S. dollars. Furthermore, a launch vehicle can easily cost
between US$100MM and US$200MM.
Obviously, low-altitude missiles and sounding rockets can host very-

short-term missions for considerably lower cost. They do not have the same
constraints for radiation hardness or low-power consumption that longer-
term satellite missions do.
The final cost of a space instrument depends heavily on the set of features

and specifications. If features and capability are minimized and the time
stretched out so that fewer people need to work on the instrument, then its
final cost can be lower. Full features and capability and a short duration for
development drive the instrument costs much higher.

221

10.2 People and Disciplines

You will need a variety of people and expertise to staff a team to design,
develop, and fabricate a space instrument. The project usually begins years
before as a proposal from a scientist or a group of scientists. Once the project
is funded, these folks work in concert with the design and fabrication teams
and communicate often with your teams. They also participate in all the
design reviews.
First, you need a program manager, a lead project engineer, and a systems

engineer. These folks may have trained as aerospace, mechanical, electrical,
or systems engineers; they should, however, have experience with design-
ing and building space instruments. The program manager handles the
administrative side of things: the scheduling, estimation, and resource
management. The lead project engineer is responsible for the architecture of
the instrument and preparing the specifications and plans and monitoring
the test results. The systems engineer should know the spacecraft and its
interface with the instrument.
Next, you will need a design team to work together and to take respon-

sibility for the instrument:

� Software engineers to develop the code for the instrument

� Electrical engineers to design the hardware

� Component engineer to find, test, and inventory space-qualified
components

� Hardware or software engineers to develop the ground support
equipment (GSE)

� Mechanical engineers to design the chassis and mechanical
mechanisms

� Administrative staff to support them

Test engineers, technicians, and a fabrication team also work closely with
the design team.
For fabricating a space instrument, you will need some or all of

the following people:

� Computer aided design (CAD) designers

� Technicians to fabricate circuit boards

� Machinists for the fabricating the mechanisms and chassis

� Assembly personnel to solder the circuit boards

� Assembly personnel to fabricate the cable harnesses

� Technicians and assembly personnel to integrate the instrument
on the spacecraft

222 Developing Real-Time Embedded Products

� Quality workmanship inspectors

� Administrative support

For testing a space instrument, you will need some or all of the following
staff:

� Technicians to perform the thermal vacuum tests

� Technicians to perform the shock and vibration tests

� Technicians to run the end-to-end systems tests

� Administrative support

10.3 Architecting and Architecture

10.3.1 Process

You generally only get one opportunity to get a space instrument right,
although reprogrammable logic, field-programmable gate arrays (FPGAs),
and computer-based controls are removing these limitations; on-orbit cor-
rections can now be performed. The development is mission-critical and it
must reflect that reality. A V-model development process is best for a
system that is programmed once. A spiral model might work for on-orbit
reprogramming.

10.3.2 Parameters

A space instrument can have many different parameter types, including:

� Environment—temperature extremes and cycles, shock and
vibration, radiation

� Mechanical—size (volume), configuration, mass

� Cooling—thermal conduction and dissipation

� Power—consumption, fault tolerance

� Electromagnetic compatibility (EMC) and electromagnetic interfer-
ence (EMI) margins and tolerances

� Data—memory size, throughput and channel bandwidth, fault
tolerance to improper communications

� Command and data handling—telemetry to the GSE on Earth,
control to the processor

� Mechanical operations—stepper motors or brushless direct current
(DC) motors to move filter wheels, mirrors, scan the instrument,
spin momentum wheels, etc.

Designing Instruments for Space Flight 223

10.3.3 Architecture

There are two basic configurations for a space instrument. One configura-
tion is a fairly ‘‘dumb’’ instrument (or sensor) that is tightly coupled to a
central processor; this is the centralized approach. The other is a distributed
approach, which uses ‘‘smart’’ instruments (or sensors), each with its own
embedded processor, all networked together. Both configurations have their
advantages and disadvantages.
A centralized approach can be the simpler and lower mass configuration

if there are only a few instruments (sensors) on the spacecraft, usually fewer
than five. The cables may be bulky, but they are limited in number. This
approach can optimize the size and number of components (fewer and
smaller than with a distributed approach if only a few sensors are used) and
can be more efficient in power consumption. Its downfall comes when
sensors increase in number beyond a handful. Then it becomes unwieldy
and heavy; moreover, fault tolerance becomes far more difficult to achieve.
A distributed approach is better for larger configurations with many

instruments (sensors). This configuration has smaller and lighter cables and
makes fault tolerance somewhat easier by isolating failures. A network
cable for data transfer and command handling between each instrument
(sensor) can also be significantly lighter than all the cables needed for
the point-to-point scheme of a centralized configuration. A distributed
approach can ease the integration of sensors through a ‘‘plug-and-play’’
philosophy.

10.3.4 Interfaces

A space instrument has a number of specific interfaces:

� Mechanical—to the spacecraft

� Electrical signaling—command and control signals, connectors

� Power—raw or regulated VDC from the spacecraft

� Thermal—thermal paths from the instrument frame to the spacecraft

� Data—formats of commands, signals, and data transfers

10.4 Phases

10.4.1 Concept

During the Concept Phase, the design team should establish the mission
goals, objectives, and constraints. The team needs to understand the
requirements of the project and demonstrate that the proposed architecture
will meet these requirements.

224 Developing Real-Time Embedded Products

The conceptual design review (CoDR) concludes the concept phase.
During the CoDR, the design team should present the following:

� Program organizational structure

– Organizational interfaces

– Schedule

– Cost

– Policy

� Review mission objectives and science goals

� Requirements

– Mission: environment, host resources, science requirements

– Performance: technical characteristics

– Major instrument function and interfaces

� Research—literature, patent searches

� Design constraints and major trade studies performed

� Requirements process and management

� System architecture

– Concept

– Hardware components

– Software components

– Operations concept including the GSE

– Support systems and logistics

� Planned test program

� Planned integration

� Development drivers

� Risk assessment

The output of the CoDR will constrain the baseline design following the
closure of any action items resulting from the review. Long-lead items,
development-support equipment, breadboard parts, and materials can be
purchased following the successful completion of the CoDR.

10.4.2 Preliminary Design

During the preliminary design phase, the design team should prepare
the design and interfaces with block diagrams, signal flow diagrams,
schematics showing logic diagrams, first interface circuits, packaging plans,
configuration and layout sketches, preliminary analyses, and modeling.
The design team should have established the estimates of weight, power,
volume, and the basis for the estimates. The design team should also have

Designing Instruments for Space Flight 225

prepared the mechanical, power, thermal, and electronic designs with load,
stress, margins, and reliability assessments. The software engineers should
specify the software requirements, design, structure, logic flow diagrams,
computational loading, design language, and development systems.
The preliminary design review (PDR) concludes the preliminary design

phase. It is the first major review of the detailed design and will be
held prior to the preparation of most of the formal design drawings and
software code development. The PDR is held when the design advances
sufficiently to begin some breadboard testing or the fabrication of engi-
neering models.
During the PDR, the design team should present the following:

� Technical objectives, requirements, general specification

� Closure of action items from CoDR

� Completion of research, trade-offs, and feasibility

� Requirements—function, performance, interface

� Analyses

– Mechanical/structural design, and analyses

– Weight

– Power

– Electrical, EMI/EMC

– Thermal paths

– Radiation design and analyses

– Data rates, throughput, bandwidth, and commands

� Software requirements and design

� GSE design

� System performance budgets

� Design verification, test flow, and test plans

� Host interfaces and drivers

� Parts selection and qualification

� Event tree analysis (ETA), failure modes effects analysis (FMEA),
and fault tree analysis (FTA)

� Contamination requirements and control plan

� Quality control, reliability

� Materials and processes

The completion of the PDR and the closure of any action items generated
by the review provide the basis for the start of the detailed design effort and
the purchase of parts, materials, and equipment.

226 Developing Real-Time Embedded Products

10.4.3 Critical Design

During the critical design phase, the design team should complete all the
parts of the design and interfaces: mechanical, power, thermal, and elec-
tronic designs with load, stress, margins, and reliability assessments.
The software engineers should have written and tested all code; if the
development is spiral, then the software engineers should have completed
the first cycle and the software should be in a stable, functional state. The
GSE should be specified, designed, and well on its way to being coded.
The critical design review (CDR) concludes the critical design phase.

It will be held near the completion of engineering evaluation using the
breadboard model of the project. It should be held prior to any design freeze
and before any significant fabrication activity begins.
The CDR should present all the same basic subjects as the PDR, but in

final form. During the CDR, the design team should present the following:

� Closure of action items from the PDR review

� Changes from the PDR review

� Final parts list

� Final implementation plans including: engineering models,
prototypes, flight units, and spares

� Final software design and process implementation

� Final GSE design and process implementation

� Engineering model and breadboard test results

� Design margins

� Completed design analyses

– Mechanical/structural design, and analyses

– Weight

– Power

– Electrical, EMI/EMC

– Thermal paths

– Radiation design and analyses

– Data rates, throughput, bandwidth, and commands

� Safety Requirements

� Operations Plan

� Updated ETA, FMEA, and FTA

� Qualification

� Test

– Plans

– Status of procedures and verification plans

Designing Instruments for Space Flight 227

– Test flow

– Schedule

– Documentation status

– Test history of the hardware

– Product assurance

– Previous anomalies, deviations, waivers, and their resolution

– Identification of residual risk items

– Plans for shipping containers, environmental control, transpor-
tation

Completion of the CDR and resolution of all the action items generated
by it constitutes the baseline design.

10.4.4 Fabrication

During the fabrication phase, the design team should confirm that all
components are tested and that the results are acceptable. The team should
also complete the integration plans. The GSE should be completed with
sufficient capability to aid the integration of the instrument to the space-
craft. The team should ensure that the design of the instrument has been
validated through the environmental qualification and the acceptance test
program, that all deviations, waivers, and open items have been satisfac-
torily closed, and that the project, along with all the required support
equipment, documentation, and operating procedures, is ready for
integration.
A fabrication review can conclude the fabrication phase or can be

combined with the pre-environmental review (PER) after integration. If a
Fabrication Review is held, here are some items to address:

� Rework/replacement of hardware, regression testing, or test plan
changes

� Compliance with the test-verification matrix

� Project assessment of any residual risk

� GSE status

� System integration support plans

10.4.5 Integration

During the integration phase, the design team should confirm that the
instrument integrates into the spacecraft and that the results of both
the end-to-end system tests and the environmental tests are acceptable. The
PER occurs before the end-to-end system tests and after the environmental

228 Developing Real-Time Embedded Products

tests. The pre-ship review (PSR), which signals the preparation to move the
spacecraft to the launch facility, ends this phase. Some items that should
considered in the PSR:

� Measured test margins versus design estimates

� Demonstrate qualification/acceptance temperature margins

� Trend data

� Total failure-free operating time of the item

� Could-not-duplicate failures should be presented along with
assessment of the problem and the residual risk that may be
inherent in the item

� Project assessment of any residual risk

� GSE status

� Review shipping containers, monitoring/transportation/control
plans, postshipment plans

The GSE team will train the operators of the GSE to access data from
the instrument and send commands to the instrument. The remainder of
the integration phase has to do with the spacecraft and its attachment
(integration) to the launch vehicle or missile.

10.4.6 Launch and Mission

Most of this phase is taken up with spacecraft concerns and not the
instrument. During this time only the GSE operators are active. Once the
mission begins, the science team will collect and analyze the data from
the instrument. These data pass through the GSE to the science team;
the scientists often communicate frequently with the GSE operators, if not
actually operate the GSE to control the instrument themselves.
If possible, try to debrief the project to record lessons learned. Few people

or organizations do this, but a record of lessons learned is the single most
important tool to improve effort and quality on future projects.

10.5 Scheduling and Estimating

The project always has one important deadline, the launch. In some projects,
the launch window is only open for a few weeks once a year or once a
decade. Delaying the launch to complete your instrument development or
testing is not an option.
Planning for a space mission requires top-down planning because

everything flows backwards from the mission objectives and the launch
date. Then National Aeronautics and Space Administration (NASA; or ESA

Designing Instruments for Space Flight 229

in Europe) will constrain the schedule further with more deadlines, such as
spacecraft integration, environmental tests, and availability of the launch
pad and its facilities.
Once you have the mandated deadlines, carefully plan for each phase and

leave margin for contingencies (fight for these—you will need them and
sponsor organizations seldom recognize the need). Use management plan-
ning software, such as Microsoft Project� to perform bottom-up planning to
meet these deadlines. I suggest that you avoid loading anyone on the project
more than 50% of their time; going over this limit often overloads people.
This is a general heuristic that full time effort is really about 50% of a
person’s time at work; so much of what we do on the job is not directly
productive for the project at hand.
Never use more than two digits of precision in high-level analyses and

presentations. Few people, if any, ever do any better than one digit of
precision in any estimate of effort and cost and time.
Here’s another problem: engineers will rush a design into fabrication

under pressure from management to demonstrate progress on the schedule
to the sponsor, but then end up changing the design repeatedly. This forces
the fabrication team to start the entire process over each time—printed
circuit board (PCB) fabrication and inspection, assembly and inspection,
and finally circuit test and verification.

10.6 Documentation

10.6.1 Purposes

As mentioned in Chapter 1, documentation for a space instrument serves
three purposes:

� To record the specifics of development

� To account for progress,

� To instruct the use of the instrument.

Hopefully the record will be useful for future projects, but it is also neces-
sary to survive quality audits should one be leveled on your organization.
Documentation certainly is needed to account for progress in developing
a space instrument—otherwise, design reviews would go out of fashion.
Finally, documentation of the space instrument can reveal the extent of its
utility and capability.

10.6.2 Types

Table 10.1 lists the major documents. In addition, you will have the stan-
dard stock-in-trade documents, for example, engineering notebooks,

230 Developing Real-Time Embedded Products

TABLE 10.1

Example List of Documents for Developing a Space Instrument

CoDR PDR CDR PER PSR Designated Author

Mission-Level documents
Concept of operations document D F D Sponsor organization
Mission requirements document F D Sponsor organization

Host spacecraft documents
Spacecraft Interface Control Document (ICD) D F D Systems engineer
Safety data package D F D Systems engineer

Instrument documents/databases
Project plan F Systems engineer
Configuration management plan F D D Systems engineer
Problem resolution plan F D D Systems engineer
Infrastructure plan F D D Systems engineer
Product acceptance plan F D D Systems engineer
Risk management plan F Systems engineer

� Risk management plan D F Systems engineer
� Risk management database D D D D D Systems engineer
� Risk watch list D D D D D Systems engineer
� Fault tree analysis (FTA) I D F D D Systems engineer
� Failure modes effects analysis (FMEA) I D D D Lead engineer

Development plans D F Systems engineer

� Architecture development plan D F D Lead engineer
� Software development plan D F D Software lead
� Electronics development plan D F D Hardware lead
� Mechanical Packaging D F D Mechanical lead

Development plan

� GSE development plan D F D GSE engineer

(Continued)

D
esign

in
g
In
stru

m
en
ts

for
S
pace

F
light

231

TABLE 10.1

Continued

CoDR PDR CDR PER PSR Designated Author

Quality assurance plan D F Component engineer

� Parts control plan D F Component engineer
� Parts inventory list D F D Component engineer

Requirements document D F D Systems engineer
Compliance matrix I D F D D Systems engineer
EMC/EMI test plan I D F Systems engineer
Test plan I D F Systems engineer

� Test procedures I F D Lead engineer
� Test results F Test technicians
� Integration procedures I F D Lead engineer
� System verification & validation (V&V) F Test engineer

Documentation plan D F D Systems engineer
Documentation release schedule D F D D Systems engineer
Software users manual/maintenance
documents

I D F Software lead

Training manual I D F Systems engineer
Electronic design documents and schematics D F D Hardware engineers
Mechanical design documents and
schematics

D F D Mechanical engineers

Software design documents and source code D F D D Software engineers
Fabrication plan and databases D F D Lead engineer

� Vendor data D F D Lead engineer
� Bill of materials (BOM) D F D Lead engineer
� Fabrication and assembly instructions D F D Hardware engineers
� Inspection reports D Inspectors

Design reviews and reports D D D D D Systems engineer
Signature list I F Systems engineer
Action item database D D D D D Systems engineer

Key: I: Initial development—A full outline of the document has been established. Writing of some sections has begun. D: Complete draft—The document is
completely written and is undergoing review. A very small number of TBDs can remain, but these are limited to specific pieces of information, not entire
sections or subsections. F: Released final version—Completed initial release. D: Updates to released version—Re-released with changes. CoDR: Conceptual
Design Review. PDR: Preliminary Design Review. CDR: Critical Design Review. PER: Pre-Environmental Review. PSR: Preship Review.

232
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

e-mail messages, memos, letters, project documents, and manuals. As
always, engineering and management presentations will be numerous,
and they will become a part of your documentation load.

10.6.3 General Formats for Documents

The appendices have sample documents and plans. The project plan can
combine all the system engineering issues and project concerns into one
document, as follows:

Project Plan

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definitions, Acronyms, and Abbreviations

1.4. References

1.5. Overview

2. Project Overview

2.1. Project Purpose, Scope, and Objectives

2.2. Assumptions and Constraints

2.3. Project Deliverables

2.4. Evolution of the Project Plan

3. Project Organization

3.1. Program Structure

3.2. Organizational Structures

3.3. External Interfaces and Organizations

3.4. Roles and Responsibilities

3.4.1. Program Manager

3.4.2. Project Lead Engineer

3.4.3. Systems Engineer

3.4.4. Hardware Engineering

3.4.5. Software Engineering

3.4.6. Mechanical, Packaging, and Thermal Engineering

3.4.7. Fabrication Engineering

3.4.8. Parts Quality Assurance

4. Management Process

4.1. Project Estimates

4.2. Project Plan

4.2.1. Phase Plan

Designing Instruments for Space Flight 233

4.2.2. Iteration Objectives

4.2.3. Releases

4.2.4. Project Schedule

4.2.5. Project Resources

4.2.6. Budget

4.3. Iteration Plans

4.4. Project Monitoring and Control

4.4.1. Requirements Management Plan

4.4.2. Schedule Control Plan

4.4.3. Budget Control Plan

4.4.4. Quality Control Plan

4.4.5. Approval, Distribution, and Archiving Plan

4.5. Risk Management Plan

4.5.1. Project Risk Management

4.5.2. Fault Tree Analysis (FTA)

4.5.3. Failure Modes and Effects Analysis (FMEA)

4.5.4. Margin Management

4.6. Close-out Plan

5. System Specification and Performance Verification

5.1. Requirements and Requirement Flow Down

5.2. Technical Performance Standards

5.3. Interface Definition and Control

5.4. Configuration Management and Change Tracking

5.5. System Validation

5.6. Performance Verification

5.7. Technical Performance Trending

5.8. System-Level Design Guidelines

6. Independent Reviews

6.1. Peer Reviews Requirements

6.2. Formal Reviews

6.3. Action Item Management

7. Documentation Plan

8. System Architecture Development Process

8.1. Overview

8.2. Management and Staffing

8.3. Schedule and Iteration Plans

8.4. Design Inputs, Design Outputs, and Documents Required

234 Developing Real-Time Embedded Products

8.5. Standards and Practices

8.6. Reviews

8.7. Test

8.8. Problem Reporting and Corrective Action

8.9. Tools, Techniques, and Methodologies

8.10. Configuration Management

8.11. Records Collection, Maintenance, and Retention

8.12. Risk Management

9. Software Development Process

(9.1–9.12, same sections as System Architecture Development Plans)

10. Electronics Development Process

(10.1–10.12, same sections as SystemArchitecture Development Plans)

11. Mechanical Packaging Development Process

(11.1 – 11.12, same sections as SystemArchitecture Development Plans)

12. Ground Support Equipment Development Process

(12.1–12.12, same sections as System Architecture Development Plans)

13. Supporting Process Plans

13.1. Configuration Management Plan

13.2. Test Plan

13.3. Electromagnetic compatibility (EMC)/electromagnetic interfer-
ence (EMI) Plan

13.4. Documentation Plan

13.5. Problem Resolution Plan

13.6. Infrastructure Plan

13.7. Product Acceptance Plan

14. Glossary

15. Technical Appendices

10.7 Requirements and Standards

10.7.1 NASA and Military Standards

Several different sets of regulations and standards can apply to instrument
design for spacecraft. Table 10.2 lists a few examples of those standards.

10.7.2 Preparing Requirements

You need to work with your sponsor organization, whether it is
NASA, ESA, government, or a commercial space contractor, to develop the

Designing Instruments for Space Flight 235

requirements. The science team, who probably originated the proposal for
the instrument, will be intimately involved as well.

10.8 Analysis

10.8.1 Feasibility

The science team poses a scientific problem that an instrument might solve.
The engineering design team determines if it can be done or if only reduced
capabilities are possible. The team determines feasibility through experi-
ence, calculations, and trade studies.
The primary concerns for feasibility are resolution, accuracy, speed,

power consumption, memory capacity, data throughput, weight, and vol-
ume. The engineering team typically comprises project lead engineer, the
systems engineer, and an instrument engineer. Feasibility is finalized dur-
ing the concept phase.

10.8.2 Heuristics

Heuristics or rules-of-thumb are one of the most valuable means to analyze
feasibility, lay out the design concept, and estimate effort and schedule.
Here are samples of heuristics that might be used.

TABLE 10.2

Examples of Some Standards That Might Apply to Developing a Space Instrument

Category or

Source Standard Description

NASA NASA RP-1124 Outgassing data for selecting spacecraft materials
311-INST-001 Instructions for EEE parts selection, screening and

qualification
PPL 21 GSFC preferred parts list
GEVS Appendix A: General Environmental Verification

Specification

US Military MIL-STD-461E Electromagnetic emission and susceptibility
requirements for the control of electromagnetic
interference, Part 3 for class A2 equipment

MIL-STD-462
(Notice 2)

Measurement of electromagnetic interference

MIL-STD-1540C Test requirements for launch, upper stage, and space
vehicles, September 15, 1994

MIL-STD-883 Test method standard, microcircuits
MIL-B-5087B Bonding, electrical, and lightning protection for

aerospace systems

ISO AS9001 Quality Systems Aerospace standard (aerospace
equivalent of ISO9001)

236 Developing Real-Time Embedded Products

Management issues:

� Expect to spend about US$1MM/kg to develop an instrument for
space [1]

� Expect an instrument to consume power at a rate of about 1W/kg [1]

� Simple things like cables and connectors and alignment cause
many problems.

� Have a checklist for everything.

Antennas and measurements:

� Sensitivity is proportional to weight and size; higher sensitivity
requires more weight and greater size.

� Light sensitivity in optical instruments is proportional to the size
of the aperture.

� Measurement of electrical fields is proportional to the size of the
antenna.

Power supplies are always a problem:

� Low-voltage power supplies regularly have anomalies in power
management, DC–DC conversion, and distribution.

� High-voltage power supplies always have to deal with contami-
nation; outgassing can sustain a plasma, which allows corona
discharge and arcing.

Optics:

� Optical contamination is always an issue—the whole spacecraft
has to be cleaned to protect lenses and mirrors.

� Molecular contamination due to outgassing condenses on every
cold surface including mirrors and lenses, which results in smears
in images.

� Particulate contamination causes glint in optics.

� If optics can point at the sun, they will. (Can the instrument do it
safely? Sensitive optics may not even be able to view the Earth.)

� Optical detectors usually need cooling. (Do you passively couple
to the cold side of the spacecraft? Or use thermoelectric coolers?
Or fly cryogens to cool the detector?)

EMC:

� When measuring particles or electric fields, then external biases or
magnetic fields (either static or dynamic) from the spacecraft will
require various fixes.

Designing Instruments for Space Flight 237

� Material surface properties will cause the spacecraft to accumulate
charge and thereby distort measurements of plasma or electric
fields. Low Earth orbit has less of this problem (the residual
atmosphere helps). Geosynchronous orbit is a bigger problem.
Finally, light or sha-dow affects the charge buildup due to
photoemissions and
photoelectrons.

� Internal EMC—battery currents and switching noise will couple
into sensitive analog circuits and detectors.

10.8.3 Calculations

Calculations are the center of most designs, for example, weight distribution,
center of mass, power consumption, focal length (for optical instruments),
and level of effort, to name just a few issues. Calculations for mean time
between failures (MTBF) can approximate reliability; MTBF is really only
good for comparing design approaches. FTA and FMEA can provide an
indication of failure modes and fault tolerance.
The systems engineer, project lead, and hardware engineers may all

be involved in preparing these calculations and analyses. Most of these
calculations are done in the concept and preliminary design phases.

10.8.4 Numerical Simulations

Some aspects of spacecraft instrument design cannot be verified on Earth,
so you can only model and simulate. Mission profiles and orbital mechanics
directly affect instrument design; they are extraordinarily challenging and
sometimes receive less attention then they should.
Certain other aspects require huge efforts to verify; if so, simulation

becomes a tool of expediency. Simulating the thermal conduction paths and
EMC/EMI effects of an instrument are two examples.
Specialists on the development team handle these numerical simulations.

Most simulations occur during the concept and preliminary design phases.
They often serve to clarify feasibility.

10.8.5 Testing

Many different types of tests can reveal design concerns. One example of
testing for analysis is the building of an engineering model of the instru-
ment before space-qualified fabrication. An engineering model can help
find problems, such as a power-up glitch in specific models of FPGAs that
drew too much current from the power supply of a recent spacecraft. Tests
with engineering models can also find incompatibilities between the in-
strument and the spacecraft of the mechanical attachment, thermal con-
duction, and data protocols.

238 Developing Real-Time Embedded Products

Primarily the hardware engineers on the development team handle these
engineering model tests. Most such tests occur during the preliminary de-
sign phase.

10.9 Design Trade-Offs

10.9.1 Architecture

Every mission is different, which means the instrument design is nearly
always custom. In balancing scientific objectives, the architecture of the
spacecraft is always a compromise and will drive the architecture of the
instrument. In the Chapter 12, I compare architectures for a subsystem’s
power distribution and data networking between a traditional, centralized
‘‘star’’ configuration and a distributed configuration. Many smaller satellites
benefit from the optimizations brought by a centralized ‘‘star’’ configuration.
Larger satellites and spacecraft tend to benefit more from a distributed
approach.
A centralized ‘‘star’’ configuration can allow for a less ‘‘smart’’ but more

optimized and tightly integrated instrument. Its disadvantages are that it is
often less fault-tolerant, more complex to isolate failures, and more difficult
to integrate.
A distributed configuration is more easily developed to isolate failures,

tolerate faults, and integrate. Its disadvantages are that it is often more
complex.
Regardless of configuration topology, the design team will have to calculate:

� Mass

� Power-conversion efficiency

� Power consumed

� Cooling needed

� Cost

� Data throughput

� Design complexity

� Integration risks

� Fault isolation and tolerance

There are design references for space instruments and spacecraft that will
help you [2, 3].

10.9.2 Electronic Hardware

Space flight places special demands on circuit design. The circuit com-
ponents, particularly transistors, and integrated circuits (ICs), must be

Designing Instruments for Space Flight 239

radiation-hard, and they have to minimize power consumption. Weight and
power constraints of space flight keep memories small. Circuit boards and
components should not outgas either—this can lead to coating critical
subsystems, such as optics, with an undesirable material that alters their
operations. Finally, all space-qualified components and subsystems are
long-lead items—typically 6 months to one year to deliver.

Radiation hardness: Radiation has three primary effects on electronics:
total ionizing dose, displacement damage, and single-event effect (SEE). The
total ionizing dose is the accumulated exposure to cosmic rays and
energetic particles that eventually degrade a component drive to outside its
design range. Displacement damage results from prolonged exposure to
low-energy particles; they tend to create crystalline defects that increase the
resistance of the device. An SEE results when a single energetic particle
encounters the IC; there are a variety of SEEs [4]:

� Single-event upset (SEU)—the passing of the particle causes a
change in the logic state.

� Single-event latch-up (SEL)—the passing of the particle not only
causes a change in the logic state, it activates a parasitic circuit
between power and ground that can destroy the IC if the parasitic
circuit is not current limited. Sometimes, turning off the power and
then back on can clear the SEL.

� Single-event burnout (SEB)—an SEL does not clear and then
destroys the device. Such events can happen in power metal-oxide
semiconductor field-effect transistors (MOSFETs).

Reference 5 is a good source concerning radiation effects and analysis. ICs
fabricated as silicon-on-sapphire or silicon-on-insulator tend to resist SEE
problems.

Outgassing: Choosing the appropriate materials can significantly reduce
outgassing. Avoiding certain thermal greases and lubricants is important.
Space-qualified polymeric encapsulants for the circuit boards, connectors,
and cables will also help.

Conduction cooling: Almost all circuit design relies on conduction cooling.
This means that heat travels through the materials, casing, and enclosure to
dissipate away from the circuit source. Components must have packaging
with low thermal resistance to allow conduction cooling.

Processor trade-offs: Besides being radiation-hardnened, the chosen
processor needs to have sufficient but not excessive computational power;
this usually helps maintain low power consumption. Another important
aspect in choosing a processor is whether there is corporate familiarity for
working with its software development tools; components may have long-
lead times, but learning new tools can take even longer.

240 Developing Real-Time Embedded Products

Support peripherals tradeoffs: Space components and ICs are unlike those
in terrestrial applications and markets, where many different models of the
same processor incorporate a variety of peripheral functions. Most space-
qualified components have older architectures that have a long-established
history, and they tend to not have high levels of integration. You will need
to find peripheral components to support them—things like direct memory
access (DMA), memory, timers, analog-to-digital converters (ADCs), and
digital-to-analog converters (DACs).
Radiation-hard peripheral components are out there but they won’t be

the lowest power, fastest speed, or highest resolution. The variety in sup-
port components is small. You may need to design functions in rad-hard
FPGAs to support the main processor.

Memory trade-offs: As is true with the support peripheral ICs, so it is with
memory. Space-qualified memory is not the densest, largest, or fastest
available. You will need to do smart system and circuit design to get the
necessary functions to reside in the memory available.

10.9.3 Power

Power systems in instruments and spacecraft tend to be the source of a
surprising number of problems [6]. A well-designed instrument can help
avoid some of these problems through early recognition of them and an
effort to design carefully. Focusing on the DC–DC converters and their
interactions with the power distribution system should help.

DC–DC converter trade-offs: Several small companies build space-
qualified DC–DC converters. Different models have different levels of
radiation tolerance. Sometimes they are available off the shelf, but like most
space-qualified components or subsystems, they usually have long lead
times for delivery. Their biggest weakness is the type of power-switching
transistors used, which determines the switching frequency and hence the
efficiency. Power transistors are susceptible to both total-dose and SEE.

10.9.4 Electromechanical Hardware

Sometimes a space instrument needs mechanical movement, maybe to scan
a mirror, rotate a filter wheel, or open a door. An electric motor can generate
many of these motions. In selecting a motor, you need to be aware of several
concerns:

� The insulating epoxies used on the motor windings must not
outgas.

� Thermal conduction paths must be short, e.g., through the motor’s
case to a cold plate. There is no convection cooling in space.

Designing Instruments for Space Flight 241

� Bearings must be sized for the driven mass and for the vibration of
launch.

� Lubrication must not outgas and the separators between the balls
and the race within the bearings must be compatible with space
applications.

You have the choice in motor types between step (or stepper) and
brushless DC. Brushless DC motors have two concerns over step motors for
space applications:

� The integrated Hall sensors for the commutation may not be
radiation-hard.

� Cogging is always a problem for smooth rotation.

Mechanical design for space needs to be appropriately rugged to survive
the vibration of launch. The design must also account for temperature
extremes and swings to avoid binding or fracture due to expansion and
contraction.

10.9.5 Cable Harnesses

Cables and connectors are another perennial source of problems in space-
craft and instruments. Low-tech problems such as connector keying,
alignment, and attempted male-to-male connector matings do happen far
too frequently. Conscientious and clear instructions and proper oversight
can reduce these problems significantly.
Routing cable harnesses on a spacecraft to instruments always remains a

challenge. A physical mock-up, made of wood and cardboard, is invaluable
to help with orientation, alignment, and tie-downs.
Space-qualified connectors are only allowed a small number of mate and

de-mate cycles, often 5 or 10 cycles. Connector savers, which are two
connectors—one male, one female—soldered back-to-back, attach to the
flight hardware and remain there until final system integration. This allows
simulators, other instruments, test equipment, and engineering boards to
attach to the flight hardware for testing.

10.9.6 Cooling

Removingheat from circuitry in a spacecraft has very few options. Realistically
all you can do is conduct the heat through a base plate into the spacecraft.
If you have a lot of heat to dissipate, heat pipes or a thermoelectric cooler
may be needed to drive a large radiator. In the extreme, youmay have to resort
to cryogenic cooling, but spacecraft only have limited capacity for storing
cryogens.

242 Developing Real-Time Embedded Products

Most circuit designs rely on conduction cooling. Hot components or those
that dissipate more power need special attention—they might need metal
conduction fingers that extend to the enclosure casing, or even a heat pipe.
Even a few watts of dissipation are a major concern for a spacecraft.

10.9.7 Mechanical Structure

Most instruments use either a backplane with rigid circuit boards or a
stacked ‘‘sandwich’’ chassis (described in Chapter 12). Often these structures
are custom machined from blocks of aluminum alloy. Some experimenta-
tion with carbon fiber is being done for larger structures where stiffness and
size with low weight are needed, for example, booms, solar cell panels, and
sun shades.

10.9.8 Software

Wars are fought over software languages, so I won’t even go there. What I
do know is that good processes for developing software are a must: careful
design, regular design reviews, regular code inspections, and defined, rig-
orous tests to verify functionality. Software design should be modular and
well-documented.
More and more often, a real-time operating system (RTOS) is becoming

necessary, both in the development of the software and to assure proper
operations. A commercial RTOS can take less time to install and run, and it
can sometimes have fairly decent technical support from the vendor. Fault
tolerance is a major concern for space instruments, and the RTOS must
handle many different situations and anomalies gracefully. Unfortunately,
many commercial RTOSs have either too many features or take too much
memory to be used in a space instrument.

10.9.9 Ground Support Equipment

The GSE is specific equipment that tests and then supports your instrument
during the mission. Often GSE is a high-end desktop computer that
can receive, display, and store the data sent down from the spacecraft.
Occasionally, you might have to design a piece of hardware to swallow
large amounts or specific types of data. Generally, most of the effort in
developing GSE lies in programming the system to handle your data.

10.9.10 Buy vs. Build

Most space instruments must be radiation-hard or -tolerant, have low mass,
and consume low power, all of which indicate custom design. Typically, the
only commercial off-the-shelf (COTS) components might be the RTOS
software, the GSE, and maybe some of the GSE software.

Designing Instruments for Space Flight 243

10.10 Tests

10.10.1 Laboratory Tests

Hardware engineers usually prototype circuits and modules on the labo-
ratory bench. Prototypes help prove concepts and confirm designs. GSE
engineers might occasionally need to build prototypes. Most prototyping
occurs during the conceptual design phase.
During the preliminary and critical design phases, design engineers can

use engineering models, which are circuit boards and chassis fabricated to
space-qualified standards but using non-space-qualified components with
the same electrical properties as space-qualified components, but without
all the process and inspection steps. Such models are particularly useful to
study interactions between boards and subsystems in a similar configura-
tion to the flight version. Software engineers can implement and test
functions that might not otherwise be easy to simulate.
Engineering models also provide a good approximation to the flight

instrument for GSE engineers. These models can generate data that
replicates the operation of the flight instrument.

10.10.2 Peer Review

The software engineers and the GSE engineer should perform regular code
reviews to confirm the functionality and quality of the software. The entire
system should undergo regular design reviews (CoDR, PDR, CDR, etc.) as
should reviews for fabrication. The entire team should be involved in most
design reviews. Design reviews occur at the end of each phase; sometimes
targeted reviews to examine important issues will occur during the middle of
a phase.

10.10.3 Subsystem Tests—Hardware

These tests should be developed as part of the design process. They should
test power-up operations, simulated fault conditions, the power distribution
system, the command and data communications, and built-in-test (BIT) or
diagnostics.
Hardware engineers and technicians design and run these tests. They

should design the tests during preliminary design and refine them during
critical design. They should run the tests on the engineering units during the
critical design phase and on the flight units during the fabrication and inte-
gration phase.

10.10.4 Subsystem Tests—Software

These tests of the software should be developed as part of design process.
They would test functionality and operations during all conditions: power
up, power down, dormancy, data transfer and communications, command,

244 Developing Real-Time Embedded Products

and control. They should monitor the instrument’s response to simulated
fault conditions, simulated commands, and simulated data transfers.
The software engineers and technicians should design and run these

tests. A GSE engineer might help by providing the GSE as part of the test
system and simulated commands. They should develop these tests during
preliminary design and refine them during critical design. They would
run the tests on the engineering units during the critical design phase and
on the flight units during the fabrication and integration phase.

10.10.5 Simulators

Clearly the subsystem tests need simulators to support the tests.
The simulators can represent both the host spacecraft and other instru-
ments. The entire design team, i.e., hardware, software, and GSE engineers
and technicians, might contribute to the design of these simulators during
preliminary design and refine them during critical design.
Simulators represent and exercise data and power configurations of the

satellite, command-and-control streams, and other instruments. They can
also exercise the cable harnesses. They are used all the way through from
the preliminary design phase through the fabrication and integration phase.

10.10.6 Ground Support Equipment

The GSE’s primary purpose is to support the mission after launch by
receiving, analyzing, displaying, distributing, and storing data. It has an
important secondary purpose—that of supporting testing, system tests, and
integration. The GSE can simulate the telemetry to the host spacecraft by
generating appropriate commands and data formats. It can also receive
simulated data downloads from your instrument during system tests and
integration, process the data, and then display the processed data.
GSE engineers design these tests and technicians run them. They should

design the tests during preliminary design and refine them during critical
design. They run the tests on the engineering units during the critical design
phase and on the flight units during fabrication and integration phase. The
GSE also supports integration and system tests when the host spacecraft
mates to the launch vehicle and on the launch pad.

10.11 Integration

10.11.1 System

Integration begins in the critical design phase with connecting the engi-
neering models together and driving the mock-up with both spacecraft and
other instrument simulators. This activity helps assure that the interactions
between modules are understood. Insertion of the flight units occurs during
the fabrication and integration phase. An orderly sequence of tests verifies

Designing Instruments for Space Flight 245

operation and functionality as each module is added to the system. Finally,
when all components and instruments of the spacecraft are in place, then a
full suite of system tests can be run both to verify the operation against the
specifications and to validate the design.
System tests exercise the functionality and operations of the spacecraft

and its instruments during all conditions: power up, power down, dor-
mancy, communications with the instruments, command and control, and
data transfer to Earth. The test team monitors the instrument’s response to
simulated fault conditions, simulated commands, simulated data streams
from other instruments, and simulated host communications.
The entire design team, consisting of hardware, software, and GSE engineers

and technicians, contribute to designing and running these system tests. The
GSE engineer is integral to the process by providing both the GSE as part of the
test system and simulated commands from Earth to the spacecraft.
The team develops these tests during preliminary design and refines them

during critical design. They run the tests on the engineering units during
the critical design phase and on the flight units during fabrication and
integration phase.

10.11.2 Environmental

Environmental tests assure operation during launch and space flight. These
environmental tests primarily exercise the instrument to check it for sur-
vival during the shock and vibration of missile launch and the vacuum of
space. These tests almost exclusively exercise the instrument hardware, but
the software needs to be running while undergoing these tests. Environ-
mental tests occur during the fabrication and integration phase. Sometimes
the entire spacecraft with all instruments and subsystems in place are
subjected to environmental tests.

Thermal vacuum: These tests occur within steel chambers that are large
enough to accommodate a large instrument, subsystem, or sometimes an
entire satellite. See Figure 10.1 for an example of a chamber. These chambers
can pump down the air pressure to simulate space. Heating cord wrapped
around the instrument or system or high wattage lamps on the walls of the
chamber can produce a hot thermal environment. Cooling coils around the
walls of the chamber can produce a cold thermal environment.
Typically, a thermal-vacuum test runs for days or weeks. After installing

the instrument inside the chamber and connecting the signal lines to
monitor its operation, technicians pump out the air. Then they run a pre-
scribed series of tests that cycle the temperature from low to high and back
down again. Figure 10.2 illustrates one potential set of temperature profiles.
At each extreme, very cold or very hot, they let the instrument dwell,
sometimes for hours, to reflect the particular mission.
Thermal-vacuum tests tend to open fractures, particularly in circuit

boards. The thermal expansion and contraction work the materials to extend
any fractures present.

246 Developing Real-Time Embedded Products

FIGURE 10.1
An environmental chamber for running thermal vacuum tests. (� 2006 The Johns Hopkins
University Applied Physics Laboratory. All rights reserved. Used with permission.)

Thermal vacuum test

−60

−40

−20

0

20

40

60

80

Time (h)

T
e
m

p
e
ra

tu
re

 (
°
C

)

1 4 7 10 13 16 19 22 25 28

FIGURE 10.2
An example profile for temperature swings in a thermal vacuum test. The instrument might
‘‘soak’’ at the high temperature of þ70˚C for several hours before being run in a functional test
of its operation. The instrument might then ‘‘soak’’ at the survival temperature of –50˚C for
several hours before the test chamber raises the low operating temperature to –30˚C and then
the instrument runs in a functional test of its operation. (� 2007 by Kim Fowler, used with
permission. All rights reserved.)

Designing Instruments for Space Flight 247

(a)

(b)

FIGURE 10.3
Vibration tables for running shock and vibration tests. (a) A vibration table before attaching a test
article. (b) A large vibration tablewith a satellite positioned for vibration testing. (� 2006 TheJohns
HopkinsUniversity Applied Physics Laboratory. All rights reserved. Usedwith permission.)

248 Developing Real-Time Embedded Products

During these tests, engineers continuously monitor and record the
operation of the instrument, as well as the temperature profile. They note
anomalies in operations, which later must be rectified in the laboratory or
constrained by the flight-operation rules of the mission.
Thermal-vacuum facilities are maintained by technicians who run the

tests. Usually a mechanical engineer oversees the facility and its operations.

Shock and vibration: Shock and vibration tests simulate the mechanical
environment during missile launch. Large tables with powerful voice coils
provide the shock and vibration tests. These tables can accommodate an
instrument, subsystem, or sometimes an entire satellite. See Figure 10.3 for
examples of a vibration table and a satellite on another table. They can
produce a mechanical impulse (shock) and a variety of vibration wave-
forms, such as sinusoidal, square, and triangular. Furthermore, the control
system for a ‘‘shock-and-vibe’’ table can drive swept or random frequencies
and amplitudes. Figure 10.4 gives an example of a vibration profile.
Typically, a ‘‘shock-and-vibe’’ test runs for less than an hour. Often a

series of tests are run in different axes of orientation to fully test the
instrument.
During these tests, engineers continuously monitor and record the

operation of the instrument, as well as the vibration profile. Resonant peaks
in the mechanical structures are noted and compared to those predicted in
the mechanical models. Engineers note anomalies in operations, which later
must be rectified in the laboratory or constrained by the mission.
Shock and vibration facilities are maintained by technicians who run the

tests. Usually a mechanical engineer oversees the facility and its operations.

0.001

0.01

0.1

1

10 100 10,0001,000

Frequency (Hz)

P
o
w

e
r

s
p
e
c
tr

a
l
d
e
n
s
it
y

(g

2
/H

z
)

FIGURE 10.4
Example of a vibration profile using random vibration excitation.

Designing Instruments for Space Flight 249

10.12 Manufacturing and Fabrication

There are a number of considerations in fabricating an instrument for a
spacecraft. Nearly all subsystems for a space instrument are custom-built.
Procuring components and modules for fabrication always requires long
lead deliveries.
My own experience in fabricating space instruments indicates that the

CAD design, circuit board fabrication and assembly, and the subsystem or
instrument assembly takes 10 months on average. The absolute minimum is
4 months, if nothing else is in fabrication and the engineers do not make any
revision to the design. Tables 10.3 through 10.5 illustrate minimum, average,
and backlog times for fabricating circuit boards and instruments.
New software tools are arriving on the scene to provide product lifecycle

management. They tie a lot of things together, such as CAD programs and
terminals with scheduling, inventory, and resource management.

10.12.1 Electrical and Electronic Fabrication

Hardware engineers either draw up schematics or collaborate with a
designer in the CAD team. The CAD designer lays out the boards, back-
planes, connectors, and cable harnesses (Figure 10.5). This goes on during
the preliminary design and critical design phases.
The CAD designer transfers the completed drawings to the fabrication

group who builds multilayer circuit boards (Figure 10.6). An inspector
visually analyzes the circuit boards and then performs a microscopic
inspection of the test coupons from the circuit boards (Figure 10.7). The
inspector is looking at cross-sections of vias in the test coupon for attached
voids that plated in fabrication or for delamination of the layers or for metal
plating that is too thin or too thick. These circuit-board fabrication activities
begin in the critical design phase but primarily occur during the fabrication
and integration phase.
Here’s a big problem; engineers often will rush a design into fabrication

under pressure from management to demonstrate progress on the schedule
to the sponsor; they want to show someone a significant fraction of boards
in fabrication at the next design review. Unfortunately, the design is not
complete and usually not correct. They then find problems and end up
revising the design repeatedly. This forces the fabrication team to start over
each time—PCB fabrication and inspection, assembly and inspection, and
finally circuit test and verification. Tables 10.3 through 10.5 illustrate how
starting over in the middle of the process loses days if not months.

10.12.2 Mechanical Machining and Fabrication

The chassis or enclosure or sandwich-stack of circuit boards for the
instrument must be custom-designed and built. A mechanical engineer

250 Developing Real-Time Embedded Products

FIGURE 10.5
CAD designer laying out a circuit board. (� 2006 The Johns Hopkins University Applied
Physics Laboratory. All rights reserved. Used with permission.)

FIGURE 10.6
One example of a multilayer circuit board. (� 2006 The Johns Hopkins University Applied
Physics Laboratory. All rights reserved. Used with permission.)

Designing Instruments for Space Flight 251

prepares schematics that are transferred to a designer in the CAD team.
The designer then lays out the chassis and cable harnesses. This CAD-layout
process happens during the preliminary design and critical design phases.
The CAD designer then transfers the completed drawings to the fabri-

cation group, where a machinist mills the chassis enclosure or the metal
chassis bands for the circuit boards from blocks of aluminum alloy.
Later another technician might anodize or paint the aluminum structure to
protect it from corrosion. These fabrication activities begin in the critical design
phase but primarily occur during the fabrication and integration phase.

10.12.3 Assembly

Assembly includes the circuit boards, the cable harnesses, and the
mechanical chassis components. Either personnel hand-solder the ICs to the
circuit boards (Figure 10.8) or a pick-and-place machine is programmed,
and the circuit boards are fed through it to a solder reflow oven. One or
more technicians fabricate the cable harnesses. Other technicians assemble
the circuit boards into either the aluminum chassis or into their metal bands
(for a sandwich stack). After each step, inspectors check the quality of the
workmanship of each assembly (Figure 10.9). Finally, the circuit boards and
cable assemblies are potted with a durable encapsulating polymer to protect
the components from condensation or contamination before launch and
thus prevent the components from outgassing in space. All these steps take
place during the fabrication and integration phase.

FIGURE 10.7
Microscopic inspection of a circuit board test coupon. (� 2006 The Johns Hopkins University
Applied Physics Laboratory. All rights reserved. Used with permission.)

252 Developing Real-Time Embedded Products

TABLE 10.3

Minimum and Average Times in Design and Fabrication for a Simple Circuit Board (� 2007 by Kim Fowler, used with permission. All
rights reserved)

Category Description Minimum Days Average Days Backlog Days

Design (in CAD) Received into design 0.25 1 5
Part placement and board routing (after all revisions) 5 10 10
Engineering design review 5 10 0
Breadboard release 0.25 1 0
Informal flight fabrication review 5 10 0
Engineering model release 0.25 5 0
Flight fabrication review 5 10 15
On-table for sign-off 5 10 0
Flight release to PDM 0.25 1 0

Design subtotal 26 58 30

Board fabrication Computer aided manufacturing—design rule check 0.375 3 8
Request quotes from external vendor 1 3 5
Place requisition and get signatures 2 4 0
Contract released to external vendor 0.125 1 2
Kitting—requests parts kits from inventory 10 10 5
Fabrication—not complex 5 15 15
Bare board—in receiving 1 3 0
Bare board—inspection and coupon tests 3 5 5
Prepare task control card 0.25 1 2

Board fabrication subtotal 23 45 42

Board assembly Release from kitting 1 2 0
Assembly of passive components 1 5 10
Inspection passive components assembly 0.5 2 0
Test—contingent upon engineer to test 0 5 0
Assembly of active components 1 7 10
Inspection active components assembly 0.5 2 0
Test—contingent upon engineer to test 0 5 0

(Continued)

D
esign

in
g
In
stru

m
en
ts

for
S
pace

F
light

253

TABLE 10.3

Continued

Category Description Minimum Days Average Days Backlog Days

Board assembly
(Continued)

Tailor process 1 5 0
Inspection 1 3 0
Coating and encapsulation 2 5 5
Inspection after coating 0.5 2 0
Coating touchup 1 3 0
Inspection after coating touchup 0.5 2 0
Final inspection 0.5 2 0
Release to program 1 3 0

Assembly subtotal 12 53 25

System assembly Harness assembly 1 5 5
Module plug-in 1 2 10
Stake jack screws 1 2 0
Environmental stress screen 5 15 0
Repair of boards 5 10 0
Sign-off 5 10 0
Release to program 1 5 0

Design subtotal 19 49 15

Calendar—minimum, average, backlog (days) 79 205 112
Calendar—minimum, average, backlog (months) 3.8 9.8 5.3

Most designs experience a significant amount of revision. While average CAD design time is 360 hours or a little over 2 months, most flight boards take 8 to
12 months to complete just the CAD design alone. The minimum time is the best that can be expected in any one category. DO NOTuse minimum time as an
estimation tool. Use the average time and add extra time for design revision. In essence, the average time total is a bare minimum for scheduling!

254
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

TABLE 10.4

Minimum and Average Times in Design and Fabrication for a Complex, Multilayer (8 to 24 Layers with Hidden and Blind Vias) Circuit
Board (� 2007 by Kim Fowler, used with permission. All rights reserved)

Category Description Minimum Days Average Days Backlog Days

Design (in CAD) Received into design 0.25 1 5
Part placement and board routing (after all revisions) 5 10 10
Engineering design review 5 10 0
Breadboard release 0.25 1 0
Informal flight fabrication review 5 10 0
Engineering model release 0.25 5 0
Flight fabrication review 5 10 15
On-table for sign-off 5 10 0
Flight release to PDM 0.25 1 0

Design subtotal 26 58 30

Board fabrication Computer aided manufacturing design rule check 0.375 3 8
Request quotes from external vendor 1 3 5
Place requisition and get signatures 2 4 0
Contract released to external vendor 0.125 1 2
Kitting—requests parts kits from inventory 10 10 5
Fabrication—large, many holes, many layers 10 20 0
Bare board in receiving 1 3 0
Bare board—inspection and coupon tests 3 5 5
Prepare task control card 0.25 1 2

Board fabrication subtotal 28 50 27

Board assembly Release from kitting 1 2 0
Assembly of passive components 1 5 10
Inspection passive components assembly 0.5 2 0
Test—contingent upon engineer to test 0 5 0
Assembly of active components 1 7 10
Inspection active components assembly 0.5 2 0

(Continued)

D
esign

in
g
In
stru

m
en
ts

for
S
pace

F
light

255

TABLE 10.4

Continued

Category Description Minimum Days Average Days Backlog Days

Board Assembly
(Continued)

Test—contingent upon engineer to test 0 5 0
Tailor process 1 5 0
Inspection 1 3 0
Coating and encapsulation 2 5 5
Inspection after coating 0.5 2 0
Coating touchup 1 3 0
Inspection after coating touchup 0.5 2 0
Final inspection 0.5 2 0
Release to program 1 3 0

Assembly subtotal 12 53 25

System assembly Harness assembly 1 5 5
Module plugin 1 2 10
Stake jack screws 1 2 0
Environmental stress screen 5 15 0
Repair of boards 5 10 0
Signoff 5 10 0
Release to program 1 5 0

Design subtotal 19 49 15

Calendar—minimum, average, backlog (days) 84 210 97
Calendar—minimum, average, backlog (months) 4.0 10.0 4.6

Most designs experience a significant amount of revision. While average CAD design time is 360 hours or a little over 2 months, most flight boards take 8 to
12 months to complete just the CAD design alone. The minimum time is the best that can be expected in any one category. DO NOTuse minimum time as an
estimation tool. Use the average time and add extra time for design revision. In essence, the average time total is a bare minimum for scheduling!

256
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

TABLE 10.5

Minimum and Average Times in Design and Fabrication for a Complex, Rigid-Flex Circuit Board. (� 2007 by Kim Fowler, used with
permission. All rights reserved)

Category Description Minimum Days Average Days Backlog Days

Design (in CAD) Received into design 0.25 1 5
Part placement and board routing (after all revisions) 5 10 10
Engineering Design Review 5 10 0
Breadboard release 0.25 1 0
informal Flight Fabrication Review 5 10 0
Engineering Model release 0.25 5 0
Flight Fabrication Review 5 10 15
On-table for sign-off 5 10 0
Flight release to PDM 0.25 1 0

Design subtotal 26 58 30

Board fabrication Computer aided manufacturing—design rule check 0.375 3 8
Request quotes from external vendor 1 3 5
Place requisition and get signatures 2 4 0
Contract released to external vendor 0.125 1 2
Kitting—requests parts kits from inventory 10 10 5
Fabrication—rigid/flex multilayer 30 40 0
Bare board in receiving 1 3 0
Bare board—inspection and coupon tests 3 5 5
Prepare task control card 0.25 1 2

Board fabrication subtotal 48 70 27

Board assembly Release from kitting 1 2 0
Assembly of passive components 1 5 10
Inspection passive components assembly 0.5 2 0
Test—contingent upon engineer to test 0 5 0
Assembly of active components 1 7 10

(Continued)

D
esign

in
g
In
stru

m
en
ts

for
S
pace

F
light

257

TABLE 10.5

Continued

Category Description Minimum Days Average Days Backlog Days

Board Assembly
(Continued)

Inspection active components assembly 0.5 2 0
Test—contingent upon engineer to test 0 5 0
Tailor process 1 5 0
Inspection 1 3 0
Coating and encapsulation 2 5 5
Inspection after coating 0.5 2 0
Coating touchup 1 3 0
Inspection after coating touchup 0.5 2 0
Final inspection 0.5 2 0
Release to program 1 3 0

Assembly subtotal 12 53 25

System assembly Harness assembly 1 5 5
Module plug-in 1 2 10
Stake jack screws 1 2 0
Environmental Stress Screen 5 15 0
Repair of boards 5 10 0
Sign-off 5 10 0
Release to program 1 5 0

Design subtotal 19 49 15

Calendar—minimum, average, backlog (days) 104 230 97
Calendar—minimum, average, backlog (months) 5.0 11.0 4.6

Most designs experience a significant amount of revision. While average CAD design time is 360 h or a little over 2 months, most flight boards take 8-12
months to complete just the CAD design alone. The minimum time is the best that can be expected in any one category. DO NOT use minimum time as an
estimation tool. Use the average time and add extra time for design revision. In essence, the average time total is a bare minimum for scheduling!

258
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

FIGURE 10.8
Assembling a circuit board. (� 2006 The Johns Hopkins University Applied Physics
Laboratory. All rights reserved. Used with permission.)

FIGURE 10.9
Inspecting a circuit board. (� 2006 The Johns Hopkins University Applied Physics Laboratory.
All rights reserved. Used with permission.)

Designing Instruments for Space Flight 259

10.12.4 Tests

All fabrication steps undergo inspections—circuit boards and test coupons,
cable assembly, potting, and mechanical assembly. Each flight circuit board
and each cable are connected, in turn, to the engineering model and verified
for functionality. The design team then verifies the entire flight instrument
with an end-to-end system test.
After a design review, the PER, the instrument undergoes shock and

vibration tests and then thermal-vacuum testing. Assuming the tests reveal
no problems or anomalies, the instrument would then be ready for inte-
gration with the spacecraft. Otherwise, contingency plans require remedial
action to solve the problems or remove the anomalies. The design team then
holds a PSR to confirm the completion of all testing of the instrument.
All these steps take place in the fabrication and integration phase.

10.13 Support

10.13.2 Spacecraft Integration

This is the final set of actions to attach the instrument to the host spacecraft.
It includes mechanical bolting, cabling, and alignment. The entire spacecraft
might then undergo environmental system tests, such as thermal vacuum,
shock, and vibration; the amount of testing depends on the sponsor and
contractor for the host spacecraft. During this integration to the spacecraft,
the GSE engineer and technicians support all testing with the GSE. These
tests are the final steps in the fabrication and integration phase.

10.13.2 Launch

After integration with the spacecraft, the GSE engineer and technicians
support all testing and operations with the instrument through the GSE.
They also train operators to run the GSE. This is the primary involvement of
the design team during the Launch and Mission phase.

10.13.3 Technical Support

The design team is ‘‘on call’’ should anything go wrong or appear anoma-
lous with the instrument. They would have prepared some standard scripts,
prior to launch, for actions during various potential scenarios.

10.14 Disposal

There is very little to dispose. The spacecraft falls out of orbit and burns
up in the atmosphere or disappears into the Solar System or beyond. The
fabrication facility must handle and dispose of all its materials according to

260 Developing Real-Time Embedded Products

NASA and OSHA (in the United States that is the Occupational Safety
Hazards Administration) regulations.

10.15 Liability

The primary liability is the risk of a mission failing to obtain any scientific
data and losing the return on investment for any commercial investors. This
risk is borne equally by the instrument developers, the contractor for the
host spacecraft, and the contractor for the launch vehicle (NASA or ESA or
commercial contractor). For commercial satellites, insurers might or might
not risk covering the launch and deployment of the satellite.
The only other legal risk is if the spacecraft has a radioisotope thermionic

generator (RTG) to provide power. Sometimes environmental groups will
use legal means to prevent its launch; their concern is the risk of a failure
during launch that could spread man-made radiation over populated areas.
RTGs are used only on deep-space missions; so you probably will seldom
encounter one.

10.16 Summary

10.16.1 Emphases

The architecture of an instrument must balance weight, power, fault toler-
ance, and integration ease. All subsystems, ICs, and components in space
flight must be radiation tolerant. The system must also survive the shock
and vibration of launch and wide temperature swings on orbit.

10.16.2 Gotcha’s

Beware of and remove the ‘‘low-tech’’ problems of misalignment, incorrect
connector mating, and glitches in power conversion and distribution.

Acknowledgments

My thanks to both Brian Alvarez and Larry Frank at The Johns Hopkins
University Applied Physics Laboratory for providing some of the infor-
mation for this chapter.

Designing Instruments for Space Flight 261

References

1. According to personal communications with Mr. Larry Frank in September 2006,
these heuristics are remarkably good in many situations even though there are
always some major exceptions.

2. Brown, C.D., Elements of Spacecraft Design (AIAA Educational Series), American
Institute of Aeronautics and Astrophysics, April 2003.

3. Griffin, M.D. and French, J.R., Space Vehicle Design (AIAA Educational Series),
American Institute of Aeronautics and Astrophysics, March 2004.

4. http://creme96.nrl.navy.mil/cm/RadEffects.htm
5. NASA/GSFC Radiation Effects & Analysis Home Page, http://radhome.gsfc.

nasa.gov/top.htm
6. Personal communications with colleagues at JHU/APL, 2002–2005.

262 Developing Real-Time Embedded Products

11
Case Study 8—Aerospace Video Processor

11.1 Concept and Market

11.1.1 Who, What, Why, How, Where, and When

This chapter illustrates some specific issues outlined in Chapter 10. I had a
firsthand view of some of the effort in developing the system because the
customer called me in as a consultant.
Ecliptic Enterprises Corporation in Pasadena, CA, developed a video

system for data acquisition. It is a space version of a commercial off-
the-shelf (COTS) video system; it is designed for shorter-term missions that
approach low-earth orbits. The system uses commercial components to
speed development and reduce cost. Inmanyways, the system is simpler and
cheaper than most instruments designed for space travel because it does not
have some of the requirements that long-lived missions might have.
The system captures, processes, transmits, and displays images in real

time for a mission-critical application. The sensors were very similar to
those in video cameras. The system compresses and multiplexes the data
from the sensors into a single data stream and then sends the data via a
telemetry link to a remote location. At the remote location, the support
equipment decommutates (demultiplexes), decompresses, displays, and
stores the data stream on disk.
Figure 11.1 outlines the design of the system. The flight hardware has four

circuit boards: a video-compression board, a multiplexer board, a power
supply board, and an analog housekeeping board. A field-programmable
gate array (FPGA) on the multiplexer board buffers up the data streams
from each sensor. Digital signal processor (DSP) chips on both the com-
pression board and the multiplexer board multiplex data and to compress
the images. The analog housekeeping collects temperature data and analog
signals from various places on the sensors, converts it to digital format, and
then multiplexes the housekeeping data into the data stream for telemetry.
Source software code for the DSP chips is written in C. The display

software on the support equipment is a purchased COTS package.

263

The entire project took about a year to complete at Ecliptic Enterprises in
California. It took another 8 months to integrate into the launch vehicle in
Arizona and then to fly on a mission over the Pacific Ocean. It worked as
expected.

11.1.2 Economics

This type of system sells in low volume (5 to 10 per year) and at a high
margin. Each one is hand made—machined, fabricated, and assembled. Each
undergoes thorough environmental testing. None of these fabrication pro-
cesses makes for a cheap product, but the final product is still much cheaper
than a custom space-qualified instrument.
The system is not solely tied to making sales in the space business.

Commercial aerospace and military experiments also buy the system.
Consequently, it does not need all the qualification testing for space flight.

11.1.3 Project Background

Until development of this product, Ecliptic had primarily built analog
systems. They had completed a digital system once before, but it was a
much less ambitious system—it only had two cameras and no image
compression.
This project had several complications: the contract with the first cus-

tomer for the new system was devoid of necessary requirements, and a key
person left partway through the project. The effort had begun with legacy
code (from the previous digital system with two cameras), but that code was
poorly designed and implemented, and it did not work for this new product.

FPGAs:

Data

buffering

DSPs:

Image

compression
and multiplexing

Spacecraft
telemetry

Analog

housekeeping

and command
reception

Power supply

board DC–DC
converters

28 VDC

from

spacecraft
Video compressor/multiplexer system GSE

FIGURE 11.1
Block diagram of the video data acquisition system for aerospace. (� 2006 by Kim Fowler, used
with permission. All rights reserved.)

264 Developing Real-Time Embedded Products

Moreover, they designed the system with a new and unfamiliar DSP pro-
cessor and associated development system; the nuances of the new pro-
cessor were something of a stumbling block.
The folks at Ecliptic had to regroup, completely revise the design, and

institute new development processes. They buckled down and worked
70 and 80 hours per week for 6 months. It was a terrible grind for them, but
they completed the project and had a working product at the end of it.
What follows is a hybrid case study—it combines some of what happened

to develop this video compressor and some of what happens now at Ecliptic
in developing other products.

11.2 People and Disciplines

Ecliptic started out with a team of four engineers and a mechanical
designer; as mentioned earlier, one engineer left about 5 months into the
project.
They relied on outside vendors to supply some of the subsystems and

services. They purchased a commercial software package that handles data
from space flight and worked with that vendor to tailor it for their purposes.
They also contracted another firm to do shock and vibration tests on the
flight portions of the equipment.
They also worked closely with their customer to develop the product.

11.3 Architecting and Architecture

11.3.1 Process

This sort of product development requires processes that address mission-
critical applications. Ecliptic used a combination of waterfall and spiral
development to complete this project.
In the beginning, while trying to use the legacy code, they did not follow

defined processes. Partway through, they had no development plans of any
kind: design, schedule, or test; they had no code reviews to assure quality
and functionality; a single code developer, with no accountability, was
working with the legacy code.
The software was a mess! It was what some people call ‘‘spaghetti code.’’

The style guide had not been followed; the software it had no consistent
format. The software did not use a common set of event handlers; each
sensor was handled differently, even though the sensors were very similar
in data output. Orphan code segments floated throughout the software. The
whole program was a set of nested interrupts—a major no-no!

Aerospace Video Processor 265

Newworld order: Ecliptic recognized the problems and completely changed
things around. They defined and instituted new software processes that
required code reviews and metrics for anomalies and production. They held
monthly reviews of their progress with the customer. They staged releases
of the software (using a spiral development model). They also prepared
a complete set of documents to cover the products design, development,
and test.
The new processes included record keeping, metrics, and production

guidelines. Records of production metrics are important to quantify aspects
of quality; they include bug rates, such as lines of code per hour or per
day (LOC/h or LOC/day), bugs found, bug severity, and status of fixes
for bugs.

11.3.2 Parameters

The parameters covered a wide variety of concerns: power, weight, size,
environment, and the characteristics of the compression algorithms.
The environment had to survive the shock and vibration of a missile launch.
The compression algorithms were both lossless and lossly, depending
on the application.

11.3.3 Analysis

There was no major effort to analyze the system. It could have been done
but only portions had been completed. The main concern for the revised
system was computational robustness—could the system gracefully recover
from a sensor outage or a failure in the data stream? Most analysis was
performed by laboratory bench tests on prototype circuit boards.

11.3.4 Architecture

The video compressor/multiplexer has a centralized architecture to save
weight and power (Figure 11.1). The mechanical configuration has circuit
boards that plug into a backplane. The sensors feed raw video data to the
video compressor/multiplexer. Figure 11.2 shows a system on a laboratory
bench undergoing software tests. Figure 11.3 shows two types of circuit
boards that fit into the chassis; note the commercial components that
comprise the circuit boards; also note the channel locks on the sides of the
boards to clamp them and reduce vibration resonances.

11.3.5 Interfaces

The main interfaces for the video compressor/multiplexer were with the
host vehicle and the sensors—primarily video imagers. The interfaces each

266 Developing Real-Time Embedded Products

had defined electrical signal levels, signaling types, and data formats with
frames and specified sequences.

11.4 Phases

For a small, agile company using a spiral type of development, defin-
ing phases is not as useful as it is with a larger product or company. Ecliptic
has a general design phase for preparing schematics of circuit boards and
chassis or enclosure. Then they fabricate and assemble several ‘‘turns’’ of
circuit boards and test them for functionality. Finally, they build the space-
qualified product, which is tested to environmental specifications for tem-
perature swing, vibration, and shock, then it is shipped to the customer. The
software goes through staged releases that implement subsets of the re-
quirements.

11.4.1 Design

During this ‘‘design phase,’’ early conceptual design leads to requirements,
iterating until the requirements are understood and complete. For the video
compressor/multiplexer, two engineers designed the circuit boards and
drew up the schematics; of these two, one developed the FPGA design and

FIGURE 11.2
The video compressor/multiplexer in lab tests with two attached cameras. (� 2005 by Kim
Fowler, used with permission. All rights reserved.)

Aerospace Video Processor 267

code; the other developed the code for one of the DSPs. The mechanical
designer drew up the schematics for the chassis and sensor attachments.
The VP of engineering managed the process and wrote the majority of the
DSP software.
For other products and projects, the three engineers, including the VP,

traded software tasks. The VP usually has the task of understanding

(a)

(b)

FIGURE 11.3
Two types of circuit boards used in the video system: (a) a video compressor board and
(b) a power supply board. (Ecliptic Enterprises Corporation, used with permission.)

268 Developing Real-Time Embedded Products

the customer’s requirements and then cleaning up specifications to a
sensible form.

11.4.2 Fabrication and Delivery

The engineers made minor corrections to the schematics and then had
outside firms fabricate the chassis and fabricate and assemble the circuit
boards. The software went through three major iterations; the company held
monthly design reviews with the customer to discuss progress.

11.4.3 Commercial Production

After fabrication and assembly, an outside firm performed the shock and
vibration tests on the system. The methods and results of the tests were
uncertain, so Ecliptic then took the system to the customer, who had a shock
and vibration table, to complete the testing. After running the system and its
software for many hours without failure, the system was delivered to the
customer.
This video compressor/multiplexer is now available as a COTS product.

Most customers, though, require some changes to its software or structure
to fit their applications.

11.5 Scheduling

As in most projects, the scheduling began with the end in mind, and then
they did a top-down timeline. There was not much bottom-up planning
because there are so few people involved. They simply worked the hours
needed (70–80 h/week) to complete the project. Hopefully this pace will not
continue for future projects.

11.6 Documentation

11.6.1 Purposes

Documentation serves several purposes in aerospace electronics. It aids
quality assurance by providing a basis for design reviews. It confirms that
requirements are met and acts like a checklist for all activities. It serves as
part of the subsystem delivery for customers who will integrate it into larger
systems and provides necessary information for the integration. Finally,
some of it can serve as part of the advertising and support literature for
marketing the product.

Aerospace Video Processor 269

11.6.2 Types

Figure 11.4 outlines the general types of documents found in similar aero-
space products. While Ecliptic Enterprises did not produce all of the
documents shown in Figure 11.4 for this project, it covered the major ones.
Several of these documents can be standard company documents that do

not change from project to project—or they only require a minor addendum
to tailor the document to the project. Standard company documents might
include

� Infrastructure plan

� Problem resolution plan

� Documentation plan

� Risk assessment and management plan

� Configuration management

� Software style guide

Most documents can follow templates, in spite of variations between
projects.
A software style guide, for instance, is a necessary component of good

software processes. It helps the code developers standardize source code
with headers, comments, and acceptable formats. It should not change from
project to project.

Vision memo

Requirements and

specifications

Project

plan

ICD

Risk assessment

and management

plan

Configuration

management

Design descriptions

User manual

Training procedures

Test

plan

Test

results

Problem

resolution plan

Infrastructure

plan

Acceptance

plan

Documentation

plan

FIGURE 11.4
Example outline of documents needed for aerospace electronics such as Ecliptic’s video
compressor/multiplexer. (� 2005 by Kim Fowler, used with permission. All rights reserved.)

270 Developing Real-Time Embedded Products

11.7 Requirements and Standards

11.7.1 Markets

There are two markets: aerospace flights to low-earth orbit and lunar
exploration. This means that the video compressor/multiplexer addresses
commercial, government, and military aerospace experiments. It does not
address long-term missions, high-altitude orbits, or earth-bound consumer
applications. Most experiments that use the video compressor/multiplexer
are attached to missile boosters. Generally, the video compressor/multi-
plexer does not need all the qualifications for space flight, but Ecliptic could
revise the design to include components with higher levels of radiation
tolerance and could perform more environmental tests should the mission
require.

11.7.2 Standards

There are no standards that the video compressor/multiplexer must follow.
Those outlined in the previous chapter are usually sufficient. Otherwise,
customers may require adherence to specific standards, which usually
relate to the environmental tests or to levels of radiation tolerance.

11.7.3 Preparing Requirements

The requirements for the video compressor/multiplexer had some of the
following characteristics:

� Compress data streams from five imaging sensors

� Use lossless compression for radiometric observations from
several of the sensors

� Use lossly compression for video streams from several of the other
sensors

� Record housekeeping data—primarily temperatures from thermo-
couples

� Have GPS time and one pulse per second to synchronize data

� Multiplex data into single, serial data stream for telemetry

� Select and sequence the sensors during the mission or have all five
going at once

� Demultiplex data, decompress images, store on disk, and display
video images

� Survive a harsh environment until the end of the mission.

One of Ecliptic Enterprises’ biggest and ongoing problems is deciphering the
customer’s requirements. Typically, it is because the written specifications
from the customer are unclear or ambiguous or nonsensical.

Aerospace Video Processor 271

11.8 Analysis

Most products built by Ecliptic, including the video compressor/multiplexer,
do not require either numerical analysis or simulation for feasibility. Nearly
all analyses on the video compressor/multiplexer were laboratory bench tests
performed on prototype circuit boards and systems. These are effective forms
of confirming functionality. All three engineers, developing both hardware
and software, tested prototype designs in Ecliptic’s laboratory. These tests
went on throughout development and fabrication.

11.9 Design Trade-Offs

11.9.1 Hardware

The main set of decisions for the electronic hardware centered on the
number of FPGAs vs. DSPs and on the number of circuit boards in the
enclosure. To keep weight and size down, the chassis could hold no more
than four circuit boards. This drove the design to use a combination of
FPGAs and DSPs for data manipulation, compression, and multiplexing.
They also upgraded a small DSP to a more recent model to handle the
housekeeping and receiving the commands from the spacecraft.
Ecliptic relied on legacy software and a former board design—in hope of

reducing the effort through reuse—which forced some of the data to circulate
between several different boards. The system had a video compression board,
a multiplexer board, a power supply board, and an analog housekeeping
board (Figure 11.1). In hindsight, the system might have been reduced to
three optimized boards with a complete redesign.
The VP and two design engineers prepared the system design. The two

design engineers then each took two boards and designed or redesigned
them.

11.9.2 Power

Most spacecraft supply raw þ28 VDC to instrumentation. The dedicated
power supply board had DC–DC converter modules to change the
þ28 VDC to 3.3, 5, and �15 VDC.
Many aerospace applications have some sort of problem with the power

system. This project was not spared either; power-up glitches turned on
some field-effect transistors, which then caused lens covers over the sensors
to open. These covers were supposed to prevent contamination during
launch, which was a short time after the power-up and glitches occurred.
A hardware redesign eliminated the problem. This situation pointed out
the value of bench testing to reveal problems—all of which you know, but
it bears repeating.

272 Developing Real-Time Embedded Products

11.9.3 Cooling

This product, like so many other spacecraft instruments, relies on con-
duction cooling. The low power consumption of the DSPs is important.
A short mission time also helps to reduce the concern over cooling, but that
is not a given for longer missions such as found in orbiting satellites.
Both the hardware design engineers and the mechanical design were

involved in considering the cooling design.

11.9.4 Software

The software had to receive both data from the sensors and uplink com-
mands from the spacecraft (initiated by the ground support equipment and
sent via telemetry to the spacecraft), compress the data, and then multiplex
the desired data streams onto the telemetry output. The compression could
take one of two different algorithms: lossless compression for ratiometric,
scientific data and lossly compression for television imaging.
The software development was the most difficult part of this project. It

involved between 15,000 and 18,000 lines of code (LOC). With the 70- and
80-hour weeks put in over 6 months, the production rate averaged
100 LOC/day or about 10 LOC/hour. This rate of production for the soft-
ware is unusually high when compared with most teams developing code
for mission-critical instruments. (The principal developer was extremely
skilled and highly motivated.) Typical production rates for most companies
range from 5 to 25 LOC/day or between 1 and 3 LOC/hour.
Exacerbating the situation, Ecliptic took on the joys of learning a new DSP

processor and its development system for this particular project. Some of
the stumbling blocks of the new processor included problems (undocu-
mented features) with the serial ports, the cache memory, and the reset
lines. After solving these problems, they then had to struggle with deciding
whether to implement either queues or a system of buffers to receive the
data from the sensors.

11.9.5 Hardware vs. Software

Clearly, the complexity of processing all the instrument functions required
implementation in software (15,000–18,000 LOC). To implement these
functions in hardware, such as FPGAs, would have required far too many
components, which would have added circuit boards with their attendant
size and weight.
Concerns over potential fixes or patches that might be needed at the

last minute necessitated a Joint Test Association Group (JTAG) port,
requiring both hardware and software design to connect the JTAG line
through all the circuit boards. The JTAG port on the end panel of the chassis
allows software upgrades without opening the enclosure to replace or
program the EEPROM.

Aerospace Video Processor 273

11.9.6 Buy vs. Build

Originally, Ecliptic had planned to write custom software to run the ground
support equipment (GSE). Because of devoting all their efforts to the soft-
ware in the video compressor/multiplexer, they ran out of time to write a
custom software package. Instead, they contracted with a developer in a
small company to modify his product to run on their GSE. While the
commercial software was a fine product, it still took time to work out the
kinks with this particular application. Handling high-bandwidth data is
always challenging, regardless of how good the software support is.

11.10 Tests

11.10.1 Laboratory Tests

I have already mentioned that bench testing was important to this project.
Not only did it confirm the functionality of the hardware, it also helped
chase down bugs in the software. On several occasions, Ecliptic needed to
run the equipment through extremes in temperature to exercise the sensors
and to locate a persistent problem that showed up at low temperatures.
One of the hardware engineers and the mechanical designer handled

Ecliptic’s environmental chamber for the laboratory tests. The entire team
participated in planning some of the bench tests. Most of this work took
place during the design and fabrication phases.

11.10.2 Peer Review

Ecliptic heldmonthly design reviewswith the customer. The primary focus in
the reviews was the software development. A list of concerns and software
bugs were collected leading up to each review, then Ecliptic distributed the
list just before the review. During the course of the review, they recorded
action items to correct and dispose the concerns. Leading up to the next
review, they incorporated the activities that resolved the action items.
The entire team at Ecliptic participated in each review with the customer,

who often had four or five engineers attending. Each design review took a
full day of about 10 hours of work.

11.10.3 Subsystem Tests—Hardware and Software Integration

As part of the spiral development practice, Ecliptic performed iterations of
integrating subsets of the software into prototype versions of the hardware.
For each sensor, they had simple but effective tests to confirm functionality.
They exercised the system for each integration, beginning in the design
phase and continuing through the fabrication phase. Eventually, the

274 Developing Real-Time Embedded Products

fully-functional version of the software ran on the final, flight-quality
hardware. The entire team participated in these integration tests.

11.10.4 Environmental

Once Ecliptic finished fabrication of the chassis and circuit boards, they
subjected the video compressor/multiplexer system to both thermal tests and
to shock and vibration tests. These were in accordance with the final
requirements of the customer. The mechanical designer ran the thermal tests
or worked with an outside firm to do the initial shock and vibration testing.
One of the hardware engineers eventually had to accompany the system to
the customer site for a final set of shock and vibration tests.
The thermal tests took about 3 days to complete. The shock and vibration

tests took much longer, mainly because they had to be repeated. The final
set of shock and vibration tests took about 4 days at the customer’s facilities.
These tests took place at the end of the fabrication and delivery phase.

11.11 Integration

Obviously in a spiral model of development, integration occurs repeatedly.
This mode of integrating subsystems of hardware with subsets of software
is described above.
The customer integrated the video compressor/multiplexer and the sen-

sors onto the launch vehicle at a facility in Arizona for the final
system integration. The contractor for the launch booster reviewed the
results from the subsystem environmental tests; they also performed the
actual integration of all the final subsystems onto the booster.

11.12 Manufacturing

11.12.1 Electrical and Electronic

Two engineers designed the circuit boards; their layouts had between
8 and 12 layers. Ecliptic sent the schematics out to a board fabrication
house who then fabricated the boards. Typical turn time to fabricate new
boards is a week, but paying a premium can turn around new boards within
2 or 3 days.

11.12.2 Mechanical

The mechanical designer designed the chassis, enclosures, and attachment
fixtures. Ecliptic sent the schematics out to a machine shop to mill the

Aerospace Video Processor 275

sides of the enclosures and the attachment fixtures from aluminum alloy.
Fabrication time was between 1 and 2 weeks.

11.12.3 Assembly

Once the circuit boards had been fabricated and returned to Ecliptic, they
sent the boards out with a parts kit and instructions to skilled contract help
to assemble the boards. Assembly can take from 1 to 5 days, depending on
complexity of the board and the work load in the electronic assembly firm.

11.12.4 Tests

Ecliptic does not have standard manufacturing tests because so many projects
are nearly custom designed. The laboratory bench tests and environmental
tests, described earlier, serve as their manufacturing tests, as well.

11.13 Support

Ecliptic Enterprises provides technical support on an as-needed basis.
Most customers have one time missions, at the end of which, the equipment
is destroyed upon re-entry to the atmosphere. If the mission is long term
and if technical support is extensive then Ecliptic will contract to support
the customer.

11.14 Disposal

Like most spacecraft, there is very little to dispose of. This system for the
first customer fell into the ocean. The final customer, the U.S. government,
will dispose of the GSE and its computer when the project finishes.
Other Ecliptic customers with other missions allow the equipment to burn

up in the atmosphere upon re-entry. Beyond the actual product, Ecliptic
Enterprises must handle and dispose of all its scrap materials according to
NASA and OSHA regulations.

11.15 Liability

There are no major safety issues with this product; it does not have high vol-
tages or currents; it does not have hazardousmaterials; it is not large or heavy.
The only legal liability is in the contracts with customers and it is small; they
are standard provisions found in most contracts, such as failure to perform.

276 Developing Real-Time Embedded Products

11.16 Summary

11.16.1 Do It Right

These folks recognized the problems with bad processes midway through
the project. They reevaluated, regrouped, instituted good processes, and
pushed through the problems to a successful end result.
This project had enormous potential for severely damaging the custo-

mer’s reputation and its relationship with its final customer. Both sides took
tough measures to complete the work; the customer insisted on recovery
and good processes and then worked as a team member to accomplish those
goals; Ecliptic agreed to change its processes. These two companies ended
up working together well and hopefully have a new level of trust.

11.16.2 Emphases

This subsystem was simpler than many spacecraft projects because it did
not have the level of documentation and qualification required for those
space projects. It represents a good middle ground for space flight experi-
ments and instruments that do not need the standard space guidelines or
bureaucracy.
This case study ends well—which is unusual for projects that encounter

serious difficulties midway. The development of this video compressor/
multiplexer system had complex components, interactions, and processes. It
only succeeded because good people with good attitudes did good work
with the right processes.

11.16.3 Gotcha’s

The customer, who called me in to help solve the problem, was part of the
problem in the beginning. Their contract was weak; it did not provide any
requirements for custom development. This meant that they did not have
recourse if the product did not perform as they had expected. Expecta-
tions must be clearly communicated—the requirements must be clear and
well-thought-out! Contracts must state the requirements and development
processes expected if any custom work is to be done.

Acknowledgment

My thanks to Douglas Caldwell at Ecliptic Enterprises Corporation for
helping to provide some of the information for this chapter.

Aerospace Video Processor 277

12
Case Study 9—Satellite Subsystem

12.1 Concept and Market

12.1.1 Who, What, Why, How, Where, and When

This case study is a subsystem that is somewhat more complex than a single
instrument. It illustrates some specific concerns that Chapter 10 outlined.
The U.S. National Aeronautics and Space Administration (NASA) has a

program called Living With a Star, which is seeking ways to study the sun
and space environments around the Earth through university collaboration.
A particular component of that program is Space Environment Testbeds
(SET). NASA began planning back in 2001 to orbit university experiments
on a variety of satellites with SET.
NASA collaborated with The Johns Hopkins University Applied Physics

Laboratory (JHU/APL) to build a platform for the SET experiments. The
platform was to host 6–12 experiments for each satellite mission and
different groups of experiments for different satellite missions. JHU/APL
was to study, design, and build the SET platform and then to work with
NASA to integrate it onto various launch vehicles. A major obstacle to the
SET platform, though, was that each satellite was different from other
satellites, and each experiment was different from the other experiments.
NASA and JHU/APL developed the concept of a ‘‘carrier’’ to overcome

the differences between satellites and between experiments. The carrier
would be a complete subsystem to support the experiments while providing
minimal, unobtrusive interference with the host spacecraft; it would be a
mechanical platform with standard interfaces for data, power, and thermal
dissipation (cooling) for the experiments. The SET carrier would also isolate
faults in power and data in its interface with the different experiments and
prevent them from propagating to the host spacecraft.
The benefit of the carrier concept is to save money over multiple missions

and to increase the number of experiments that can fly. Doing one design
for the carrier would provide a standard interface for data, signaling, and
power to many different experiments. Universities could easily use a simu-
lated interface for the carrier to develop their unique experiments and
have good assurance that their equipment would work immediately upon

279

integration with the actual carrier before attaching the entire subsystem to a
spacecraft.
The carrier concept generated a number of requirements. First, it had to

‘‘piggyback’’ modules mechanically onto the host satellites. Next, it needed
to be small in both size and volume and have low mass. Third, it had to
keep power consumption low and have low heat dissipation. Finally, it
needed to isolate from the host spacecraft faults or failures both among the
experiments and within itself.
As a program manager, I worked on the carrier at JHU/APL together

with a lead project engineer and a systems engineer from late winter 2002 to
the fall of 2002—about 8 months. A change in the collaborative effort moved
the project to NASA in October 2002 for the remainder of the effort. JHU/
APL no longer had any involvement. Though we did not finish the SET
carrier project, we did make a number of useful trade-offs that illustrate
some basic principles for designing subsystems for spacecraft.

12.1.2 Economics

One of the important determinations that we made was that the effort to
design and build the first SET carrier subsystem and then integrate it with a
spacecraft within three years would cost between US $5MM and US $8MM.
The final cost would depend heavily on the final set of features and spe-
cifications, which NASA and JHU/APL had not completed by the time the
project switched to full NASA oversight. If features had been minimized
and the time stretched out to 3.5 years, the final cost would have been closer
to US$5MM. Full features and an accelerated schedule of 3 years would
have driven costs closer to the US$8MM.
The benefit of doing the design once and then replicating it for successive

missions would reduce cost of the carrier to less than US$1MM per mission.
This compared very favorably with spending more than US$10MM per
mission in a more typical effort that would use a custom design for every
mission.
Another benefit of the SET carrier concept is that it gives opportunity to

universities to fly experiments in space at a low cost. Generally, they could
get by with between US$50K and US$100K to spend on an experiment,
which is within the range of most monetary grants to universities.

12.2 People and Disciplines

The initial design team at JHU/APL had one program manager, one lead
project engineer, and one systems engineer who consulted part time for the
team. All were trained as electrical engineers, and two of us had significant
software experience. We also worked closely with a group of colleagues
from NASA—Goddard Space Flight Center in Greenbelt, MD, to develop
the requirements.

280 Developing Real-Time Embedded Products

If JHU/APL had continued the design, development, fabrication, and
integration of the SET carrier (and the project had not moved to NASA), the
team would have been expanded significantly for the remaining phases of
development. The design team would have added two electrical engineers
to design the hardware and develop the ground support equipment (GSE),
one to two software engineers, and one mechanical engineer to the original
design team of three.
For fabricating the SET carrier platform, JHU/APL would have employed

the following staff in a part time role:

� Two computer aided design (CAD) designers

� Six fabrication and assembly staff

� Two inspectors

� Two machinists

� One component engineer

� Administration support

12.3 Architecting and Architecture

12.3.1 Process

A spacecraft subsystem is mission-critical. We planned to use the V-model
process to develop the SET carrier.

12.3.2 Parameters

We had a number of parameter types to define and consider in designing
the SET carrier. They include

� Mechanical—size (volume), configuration, mass, and thermal
conduction and dissipation

� Power—consumption, fault tolerance

� Component selection—low power and radiation hardness

� Data—memory size, throughput and channel bandwidth, fault
tolerance to improper communications

� Command and data handling—telemetry to the GSE on Earth,
control to the processor

12.3.3 Architecture

We studied two different configurations for the SET carrier, particularly
the cable harnessing. This was important because cables can contribute

Satellite Subsystem 281

significant weight to a subsystem; they also affect the ease of integration and
fault tolerance [1].
We settled on a distributed approach to power distribution and data

networking. By distributing the raw 28 VDC and providing a local DC–DC
converter at each experiment, we could reduce the size and weight of the
power cable. It also made fault tolerance easier; if any experiment failed, its
converter would prevent it from dragging down the remaining experi-
ments. Using a network cable between each experiment in a ring configu-
ration would also reduce the size of the cable over a centralized ‘‘star’’
configuration.

12.3.4 Interfaces

A spacecraft has a number of specific, physical interfaces:

� Mechanical—to the host spacecraft and to the experiments

� Electrical signaling—command and control signals, connectors

� Power—raw 28 VDC from the host spacecraft, regulated DC
voltages to the experiments

� Thermal—thermal paths from the experiments through the SET
carrier to the host spacecraft

� Data—formats of commands, signals, and data transfers

12.4 Phases

This section of the case study is thin. A better example of a set of devel-
opment phases with many more details is found in Chapter 10. We never
got to complete the Concept Phase before the project moved out of our
hands. If it had stayed and we finished developing it, the SET carrier would
have followed this course:

� Concept—complete all specifications for features and develop-
ment timeline, define the architecture, and select basic components
(duration *10 months)

� Preliminary design—finish breadboarding all prototype circuits
and modules, define all the fabrication processes, and have all
design processes running with initial drafts of all documents
(duration *10 months)

� Critical design—prepare engineering models, begin system tests,
begin fabrication of flight components and circuit boards, and
have an initial GSE system working (duration *12 months)

282 Developing Real-Time Embedded Products

� Fabrication and integration—complete the fabrication, assembly,
inspection of all modules and the SET carrier platform, perform all
environmental tests, and integrate the SET carrier on the launch
vehicle (duration *14 months)

� Launch and mission (duration *6 months)

Please recognize that these durations would overlap to give a shorter
calendar time then a simple summation of these phases.

12.5 Scheduling and Estimating

The project had one important deadline, a launch opportunity in December
2005. This constraint indicated top-down planning because all scheduling
choices flowed backwards from that launch date. The integration of the SET
carrier to the host spacecraft had to complete about 6 months before launch,
and delivery of the SET carrier to integration had to occur about 5–6 months
before that, or about 1 year before launch.
I used Microsoft Project� to perform bottom-up planning to meet

these deadlines. For the people and projected team mention in Section 12.2,
I planned for dividing the tasks to take advantage of parallel effort and to
avoid sequential bottlenecks. The most important thing that I did was to
avoid loading anyone with more than 50% of their time (per the reasons
given in Chapter 10).
Microsoft Project� allowed us to calculate a person’s total effort quite

easily so that we could estimate cost fairly well—to about two digits of
precision. As mentioned in Chapter 10, no one really does any better than
two digits of precision in any estimate of effort and cost and time.

12.6 Documentation

12.6.1 Types

We had plans for a full slate of documents to cover the project. Table 12.1
lists the major documents we planned to prepare had we been allowed to
finish the project.

12.6.2 General Formats for Documents

We did develop separate plans: a systems engineering plan and a project
plan. Normally, I would have combined these two documents into a single
project plan, as done in Chapter 10; JHU/APL already had a systems

Satellite Subsystem 283

TABLE 12.1

List of Documents for the Set Carrier Subsystem [2]

CoDR PDR CDR PER PSR Designated Author

Mission-level documents
Concept of operations document D F D Sponsor organization
Mission requirements document F D Sponsor organization
Mission specific requirements F D Sponsor organization

Carrier-level documents/databases
Systems engineering plan (SEP) F Systems engineer
Risk management plan (included in SEP) D F Systems engineer
Risk management database D D D D D Systems engineer
Risk watch list D D D D D Systems engineer
Fault tree analysis (FTA) I D F D D Systems engineer
Failure modes effects analysis (FMEA) I D D D Lead engineer

Development plans D F Systems engineer
Architecture development plan D F D Lead engineer
Software development plan D F D Software lead
Electronics development plan D F D Hardware lead
Mechanical packaging development plan D F D Packaging engineer
GSE development plan D F D GSE engineer

Product assurance implementation plan (PAIP) D F Product assurance engineer
Parts control plan D F Product assurance engineer
Parts inventory list D F D Product assurance engineer

Requirements document D F D Systems engineer
Compliance matrix I D F D D Systems engineer
System test plan I D F Systems engineer
Test procedure(s) I F D Lead engineer
Test results F Lead engineer

284
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Signature list I F Systems engineer
Action item database D D D D D Systems engineer
Documentation release schedule (document
list)

D F D D Systems engineer

Software users manual/maintenance
document

I D F Software lead

Training manual I D F Systems engineer

Experiment documents
Experiment Interface Control Document (ICD) D F D Systems engineer

Host spacecraft documents
Host to payload ICD D F D Systems engineer
Safety data package D F D Systems engineer

Key: I, Initial development—a full outline of the document has been established. Writing of some sections has begun; D, Complete draft—the document is
completely written and is undergoing review. A very small number of TBDs can remain, but these are limited to specific pieces of information, not entire
sections or subsections; F, Released final version—completed initial release; D, Updates to released version—re-released with changes; SEP, system
engineering plan; CoDR, conceptual design review; PDR, preliminary design review; CDR, critical design review; PER, pre-environmental review; PSR, pre-
ship review.

S
atellite

S
u
bsystem

285

engineering plan in place, so I wrote the project plan to fill in the specifics
it left out. Both plans are outlined as follows [2].

Systems Engineering Plan

1. Objective

2. Scope

3. Roles and Responsibilities

4. System Specification and Performance Verification

4.1. Requirements and Requirement Flow Down

4.2. Technical Performance Standards

4.3. Interface Definition and Control

4.4. Configuration Management and Change Tracking

4.5. System Validation

4.6. Performance Verification

4.7. Technical Performance Trending

4.8. System-Level Design Guidelines

5. Risk Management

5.1. Project Risk Management

5.2. Fault Tree Analysis (FTA)

5.3. Failure Modes and Effects Analysis (FMEA)

5.4. Margin Management

6. Independent Reviews

6.1. Peer Reviews Requirements

6.2. Formal Reviews

6.3. Action Item Management

7. Systems Engineering Documentation

Project Plan

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definitions, Acronyms, and Abbreviations

1.4. References

1.5. Overview

2. Project Overview

2.1. Project Purpose, Scope, and Objectives

2.2. Assumptions and Constraints

2.3. Project Deliverables

2.4. Evolution of the Project Plan

286 Developing Real-Time Embedded Products

3. Project Organization

3.1. Program Structure

3.2. Organizational Structures

3.3. External Interfaces and Organizations

3.4. Roles and Responsibilities

3.4.1. Program Manager

3.4.2. Systems Engineer

3.4.3. Hardware Engineering

3.4.4. Software Engineering

3.4.5. Mechanical, Packaging, and Thermal Engineering

3.4.6. Fabrication Engineering

3.4.7. Parts Quality Assurance

4. Management Process

4.1. Project Estimates

4.2. Project Plan

4.2.1. Phase Plan

4.2.2. Iteration Objectives

4.2.3. Releases

4.2.4. Project Schedule

4.2.5. Project Resources

4.2.6. Budget

4.3. Iteration Plans

4.4. Project Monitoring and Control

4.4.1. Requirements Management Plan

4.4.2. Schedule Control Plan

4.4.3. Budget Control Plan

4.4.4. Quality Control Plan

4.4.5. Approval, Distribution, and Archiving Plan

4.5. Risk Management Plan

4.6. Close-out Plan

5. System Architecture Development Process

5.1. Overview

5.2. Management and Staffing

5.3. Schedule and Iteration Plans

5.4. Design Inputs, Design Outputs, and Documents Required

5.5. Standards and Practices

Satellite Subsystem 287

5.6. Reviews

5.7. Test

5.8. Problem Reporting and Corrective Action

5.9. Tools, Techniques, and Methodologies

5.10. Configuration Management

5.11. Records Collection, Maintenance, and Retention

5.12. Risk Management

6. Software Development Process

(6.1–6.12, same sections as System Architecture Development Process)

7. Electronics Development Process

(7.1–7.12, same sections as System Architecture Development Process)

8. Mechanical Packaging Development Process

(8.1–8.12, same sections as System Architecture Development Process)

9. Ground Support Equipment Development Process

(9.1 – 9.12, same sections as System Architecture Development Process)

10. Supporting Process Plans

10.1. Configuration Management Plan

10.2. Test Plan

10.3. Documentation Plan

10.4. Problem Resolution Plan

10.5. Infrastructure Plan

10.6. Product Acceptance Plan

11. Glossary

12. Technical Appendices

12.7 Requirements and Standards

12.7.1 NASA Standards

Several sets of regulations and standards would have applied to SET carrier.
Table 10.2 lists some of those standards.

12.7.2 Preparing Requirements

NASA and JHU/APL worked together at weekly meetings through the
spring and summer of 2002 to refine the requirements. This may seem a bit
unusual in its frequency but the NASA Greenbelt facility was only about
25 mi away from JHU/APL and travel was fairly easy for the team from
NASA.

288 Developing Real-Time Embedded Products

12.8 Analysis

We only just began the analyses that are so important to designing space
subsystems before the project moved over to NASA. We performed trade-
off studies for feasibility, architecture, and planning. We did not have much
opportunity to do further analyses before the project moved over to NASA.
Had we continued the project at JHU/APL, we would have simulated
operations of the system including the ground support equipment (GSE).
We eventually would have performed both FTA and FMEA on the archi-
tecture and design.
The GSE engineer would have worked with both software engineers and

the hardware engineer to simulate operations and to exercise aspects of the
system. Both the lead project engineer and the hardware engineer would
have performed the fault tree analysis (FTA) and failure modes effects
analysis (FMEA). All of these analyses would have occurred primarily
during the preliminary design phase and finished early in the critical design
phase.

12.9 Design Trade-Offs

12.9.1 Architecture

We compared several distributed approaches to power distribution and
data networking with a traditional, centralized ‘‘star’’ configuration, which
provided the baseline [1]. We calculated mass, DC–DC converter efficiency,
power consumed, cost, and harness weight, on a per-experiment basis. With
these values and assuming a payload of eight experiments, we then calcu-
lated the differentials for mass, power, and cost between the baseline
configuration, which was a traditional, centralized ‘‘star’’ and other
approaches. Finally, we examined and compared the following concerns
between the different approaches:

� Design complexity

� Integration risks

� Fault isolation

� Experiment flexibility

� Mission adaptability

Table 12.2 lists these comparisons.
The distributed approaches (one is illustrated in Figure 12.1) were better

than the centralized ‘‘star’’ configuration, illustrated in Figure 12.2. The
centralized, ‘‘star’’ configuration would produce the regulated 15 and 5 VDC

Satellite Subsystem 289

TABLE 12.2

Comparing the Relative Merits of Centralized ‘‘star’’ vs. Distributed Approaches to Subsystem Architecture

Description

Mass per

Experi-

ment

(grams)

Converter

Efficiency

(%)

Power per

Experi-

ment

(W)

Cost per

Experi-

ment ($)

Harness

Weight

(grams)

Mass

Differen-

tial

(%)

Power

Differen-

tial (%)

Cost

Differen-

tial (%)

Design

Comple-

xity

Reduced

Integra-

tion

Risks

Fault

Isola-

tion

Experiment

Flexibility

Mission

Adaptability

Baseline

centralized

power

distribution

231 75 4.02 13,407 296 — — — Mid Mid Mid Mid Mid

Distributed—separate

power converter #1 and

network communications

per experiment

299 68 5.22 28,719 199 38 17 114 Less More Much

more

Much

more

More

Distributed—shared power

converter #1 and network

communications between

two experiments

129 74 4.08 6,113 153 �44 2 �54 More Slightly

more

Less Mid Mid

Distributed—separate

power converter #2 and

network communications

per experiment

217 68 4.45 13,044 151 �6 11 �3 More Much

more

Much

more

Mid Mid

Distributed—separate

power converter #3 and

network communications

per experiment

236 62 4.86 7,778 151 2 21 �42 More Much

more

Much

more

Mid Mid

Distributed—separate

power converter #4 and

network communications

per experiment

266 72 4.21 11,215 151 15 5 �16 More Much

more

Much

more

Mid Mid

Source:Modified from Fowler, K. R., Frank, L. J., and Williams, R. L., IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 4, August 2004, pp. 1065–1070, � 2004 IEEE. Used with permission from IEEE.

NOTE: Boxed line was the selected design approach.

290
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Processor,
memory, and
digital & power
interface

Interface to
spacecraft

Individual experiments (on top) with local power converters and
analog-to-digital converters in bottom boxes, each of which also
provides thermal and mechanical support to the experiment card

small cable with
raw +28 VDC
power and
digital
communications
network

FIGURE 12.1
Distributed approach to the architecture of the SET carrier. This configuration had the distinct
advantages of lower weight, better fault tolerance, and easier integration. (Source: Fowler, K. R.,
Frank, L. J., and Williams, R. L., IEEE Transactions on Instrumentation and Measurement, Vol. 53,
No. 4, August 2004, pp. 1065–1070, � 2004 IEEE. Used with permission from IEEE.)

Interface cards
with power,
digital, and
analog lines

Processor,
memory, and
power conversion

Interface to
spacecraft

Individual
experiment cards

Individual cables
with regulated power
lines, analog signals,
and digital
communications

FIGURE 12.2
Centralized ‘‘star’’ approach to the architecture of the SET carrier. While this configuration
was slightly cheaper in the cost components, it was outweighed by the complexity of
assembly, sheer mass, and more complicated integration. (Source: Fowler, K. R., Frank, L. J., and
Williams, R. L., IEEE Transactions on Instrumentation andMeasurement, Vol. 53, No. 4, August 2004,
pp. 1065–1070, � 2004 IEEE. Used with permission from IEEE.)

Satellite Subsystem 291

in the central processor, which would require heavier and more conductors
in a point-to-point scheme than the distributed approaches, which route 28
VDC to the experiments, and provide a local DC–DC converter at or near
each experiment.
The centralized ‘‘star’’ configuration could minimize the number of active

components at the expense of more cabling and less fault tolerance.
A distributed approach required more active components, DC–DC con-
verters and analog-to-digital converters (ADCs) sited next to each experi-
ment, but with smaller and fewer cables and ultimately lower weight.
A distributed approach not only reduces weight, but also eases integration
and reduces the risk of attaching the wrong cables [1].

12.9.2 Electronic Hardware

Space flight places special demands on integrated circuits (ICs) and circuit
design. ICs must be radiation-hardened. Both components and the circuit
design must have low power consumption. Finally, weight and power
constraints keep memories small.

Processor trade-offs: We studied a number of different processors for the
SET carrier. Besides radiation hardness and low power consumption—
which were required of any IC considered—we focused on ease of use and
corporate experience with their development tools. We also considered
computational power. See Table 12.3 for the details of our trade-offs.
We selected the UT80CRH196KDS from United Technologies, a radiation-

hard version of the Intel 80196 microprocessor, because it had the necessary
qualities we desired. JHU/APL had corporate knowledge working with its
software development tools and its price and availability were acceptable [1].

ADC trade-offs: We studied a number of different ADCs for the SET
carrier. We focused on radiation hardness and low power consumption;
resolution and speed were not big factors. The SET carrier ADCs measured
temperature; only 8-bit resolution was needed. See Table 12.4 for the details
of our trade-offs.
We selected the APL Temperature Remote I/O (TRIO) chip because it

appeared to have the best combination of qualities that we desired. JHU/APL
had corporate knowledge working with this particular ADC, as well [1].

12.9.3 Power

A surprising number of problems are associated with power systems in
satellites [3]. Consequently, we spent quite a bit of time considering power
conversion and distribution schemes. The primary issue was whether to
distribute the DC–DC converters or to use a set of centralized DC–DC
converters. A centralized configuration would be slightly more efficient and
probably use fewer components than a distributed approach, but the

292 Developing Real-Time Embedded Products

TABLE 12.3

Comparing the Relative Merits of Different Processors

UT69RH051 UT80CRH196KDS Mongoose V RAD 6000 RAD 750 RTX2010 UT69R000

Honeywell

ESN

Selection criteria
Radiation hardness 3 3 5 5 5 5 4 1
Low operating power 4 4 2 1 1 3 3 3
Performance 1 2 4 5 5 3 4 5
Small package size 5 5 3 2 2 5 4 1
Low part cost 5 5 2 0 0 4 4 2
Development tools 4 4 3 5 5 1 1 1
Availability 5 5 4 1 5 1 1 0
Future expansion 0 2 4 5 5 2 2 2

Features
Architecture (bits) 8 16 32 32 32 16 16 16
Instruction/data space 64K/64K 64K/64K 4G 4G 4G 1M 1M/64K 1M/64K
Clock speed (MHz) 20 20 15 33 166 16 16 16
MIPS <1 1.5 12.5 35 300 3.5 8 8

Rating: 0 = lowest, 5 = highest. High rating is better. Availability: 0 = no longer available, 1 = end of life.
Source: Modified from Fowler, K. R., Frank, L. J., and Williams, R. L., IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 4, August 2004,
pp. 1065–1070, � 2004 IEEE. Used with permission from IEEE.
NOTE: Boxed column was the selected processor

S
atellite

S
u
bsystem

293

TABLE 12.4

Comparing the Relative Merits of Different ADCs

AD7572 AD7672 AD1672

Maxwell

7872RFP

APL
TRIO

Chip

Intersil

9008RH AD571S AD574

Selection criteria
Radiation hardness 2 2 3 2 5 5 2 4
Low operating power 2 3 2 4 5 1 2 0
Accuracy 5 5 5 5 3 5 4 5
Small package size 1 1 3 4 5 3 2 1
Acquisition rate 1 1 5 4 3 5 1 1
Resolution 5 5 5 5 4 2 4 5
Availability 5 1 4 5 3 0 5 5

Features
Resolution (bits) 12 12 12 14 10 8 10 12
Required voltages þ5,�12 þ5,�15 þ5 5 þ3.3 15 þ5,�15 þ5,15
Maximum power
dissipation (mW)

215 179 363 95 11 >400 275 725

Rating: 0 = lowest, 5 = highest. High rating is better.
Source: Modified from Fowler, K. R., Frank, L. J., and Williams, R. L., IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 4, August 2004,
pp. 1065–1070, � 2004 IEEE. Used with permission from IEEE.
NOTE: Boxed column was the selected ADC.

294
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

centralized configuration with its point-to-point architecture would require
more and heavier cables. A distributed configuration would place DC–DC
converters near each experiment; this configuration was more fault
tolerant—if any experiment failed, its converter would prevent it from
dragging down the remaining experiments (Table 12.2) [1].

12.9.4 Cooling

The SET carrier had to provide a base plate for conductive cooling of its
processor control unit (sometimes called the command and data handling unit
or CMDH unit) and of the experiments. It was not to have any active cooling
subsystem; power consumption and heat dissipation was to be limited.

12.9.5 Mechanical

The SET carrier had to have a platform for both the experiments and the
processor control unit (or CMDH) unit. The general structure of the CMDH
was a stacked ‘‘sandwich’’ chassis. This means that each circuit board had a
machined aluminum band or ring that encased it, each ‘‘slice’’ of circuitry
was stacked on top the next until all circuit boards were bolted together.
This structure makes for efficient fabrication and a complete enclosure
around all the circuit boards. The experiments, to study space environments
such as micro-meteorite impacts, were to lie flat and side-by-side on the
platform, exposed to the external space environment. In the distributed
architecture, the DC–DC converters and ADCs would stack on a circuit
board under each experiment’s circuit board (Figure 12.3).

12.9.6 Software

We planned to write the source code in C, hold regular code reviews, and
have defined, rigorous tests to verify functionality. The software design
needed to be modular, and we planned to reuse code to support multiple
different missions. Figures 12.4 and 12.5 give the planned structure of the
software [1].
We believed a real-time operating system (RTOS) was necessary to

aid development of the software and make the system more adaptable
for different missions. A commercial RTOS seemed to make the most
sense—shorter time to install and run, vendor technical support, and ease of
software development. The choices quickly narrowed down because most
commercial RTOSs had either too many features or architectures that
required non-radiation-hard components in the interface; memory also
constrained the size of the RTOS [1].

Satellite Subsystem 295

FIGURE 12.3
A schematic of what the SET carrier might look like. (� 2007, Kim Fowler. Used with permission. All rights reserved.)

Central processor with memory storage
and power conditioning; each circuit
board resides in a metal frame that
stacks in a sandwich construction.

Individual university experiments: each
a set of two circuit boards stacked over
a third circuit board that has power
conversion and ADC circuits.

Deck provides mechanical support to the processor unit and experiments and
strap down for the cables, and conducts heat to the host spacecraft.

296
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Data_acq_control (O)
CAI interrupt (I)

Exp. science data (I)

Housekeeping data (I)

Interconnect

bus
(Controller backplane)

Carrier

controller

software

Reset

hardware

Software resets

Pwr management (I/O)
Housekeeping (I)

Memory scrubbing (I/O)

Timing/time sync (O)

EDAC errors (I)

Misc.

Software

timers

Common

digital

interface

Common

analog

interface

Exp. commands (O)

CDI interrupt (I)

Exp. telemetry (I)

Exp. acknowledgments (I)

Commands (O)

Reset (O)

Timing/time sync. (O)
Exp. telemetry (I)

Exp. acknowledgments (I/O)

Science & housekeeping data (I)

Pwr management commands (O)

Housekeeping data (I)

Formatted CCSDS telemetry (O)
Telecommand packets (I)

HI interrupt (I)

Misc. I2C bus
(Controller backplane)

Host

interface

Timer control (O)
WDOG timer control (O)

Timer interrupts (I)

Common

power

distribution

FIGURE 12.4
Context diagram for the software. (Source: Fowler, K. R., Frank, L. J., and Williams, R. L., IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 4,
August 2004, pp. 1065–1070, � 2004 IEEE. Used with permission from IEEE.)

S
atellite

S
u
bsystem

297

Bootstrap

code

Kernel

“RTOS”

Common

analog

interface

Common

digital

interface

TimingHost I/F
Memory

management

Power

distribution

Processor

card

Interrupts
Store

formatted

telemetry

Host

interface

Build

science/HSK

telemetry

Exp. Cmd/

data

handling

Key:

Software task

Hardware driver (Hdwr interface)

Scheduler CommandsTelemetry
House

keeping

Paging

EDAC ERR

handling

Memory

scrubbing

Autonomy

FIGURE 12.5
Software tasks required. (Source: Fowler, K. R., Frank, L. J., and Williams, R. L., IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 4, August
2004, pp. 1065–1070,� 2004 IEEE. Used with permission from IEEE.)

298
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

12.9.7 Ground Support Equipment

We planned for the ground support equipment or GSE to comprise nearly
all COTS subsystems. We planned for a desktop computer or two to
receive, display, store, and distribute the data. NASA would receive
the telemetry from the spacecraft and feed the data to the GSE, which then
distributed the data to the university experimenters. We seriously consid-
ered COTS software to display the data and store the values in a database,
but we had not made a decision when the project left JHU/APL.

12.9.8 Buy vs. Build

As is true for most spacecraft, most of the SET carrier was going to be
custom; the requirements for radiation hardness, low weight, and low
power consumption all drive a custom design. We had planned for COTS
RTOS software, GSE, and GSE software.

12.10 Tests

As already mentioned, JHU/APL did not complete the SET carrier, and so
this case study has very little on the later stages of development other than a
statement of what had been planned. Chapter 10 covers the tests that the
SET carrier would have needed for its components and subsystems. The
only difference is that the tests would also need to account for the me-
chanical, electrical, and data interfaces with the university experiments. The
simulators would need to represent the following:

� Host spacecraft

� Experiments

� Unfinished portions of the SET carrier

� Telemetry to the host spacecraft

12.11 Integration

As already mentioned, JHU/APL did not complete the SET carrier, so this
case study has very little on the later stages of development other than a
statement of what had been planned. Chapter 10 covers the integration tests
that the SET carrier would have needed; as with the component and sub-
system tests, integration would have had to account for the mechanical,
electrical, and data interfaces with the university experiments.

Satellite Subsystem 299

12.12 Manufacturing and Fabrication

As already mentioned, JHU/APL did not complete the SET carrier, so this
case study has very little on the later stages of development other than a
statement of what had been planned. Chapter 10 covers the detail that the
SET carrier would have needed for its manufacturing, fabrication, tests, and
integration.
Some differences between fabricating a single instrument and fabricating

the SET carrier are as follows:

� The SET carrier platform would have been redesigned and built
anew for each different host spacecraft.

� After the SET processor control unit was in place and verified,
then each individual experiment card would be added to the SET
carrier and tested. The design team would then verify the entire
flight-quality SET carrier and the experiment cards with an end-to-
end system test.

� All these steps would have taken place in the Fabrication and
Integration phase before taking the SET carrier to the satellite for
integration with the host.

12.13 Support

As already mentioned, JHU/APL did not complete the SET carrier, so this
case study has very little on the later stages of development other than a
statement of what had been planned. Chapter 10 covers the detail that the
SET carrier would have needed for its support during spacecraft integra-
tion, launch, and orbital mission.

12.14 Disposal

There is very little of which to dispose. The spacecraft falls out of orbit and
burns up in the atmosphere. The fabrication facility must handle all its
materials according to NASA and OSHA (in the United States, i.e., the
Occupational Safety and Health Administration) regulations.

300 Developing Real-Time Embedded Products

12.15 Liability

The primary liability is the risk of a mission failing and therefore not getting
any scientific data. This risk is borne equally by the university experi-
menters, the SET carrier developers (NASA and JHU/APL), the contractor
for the host spacecraft, and the launch vehicle (NASA).

12.16 Summary

12.16.1 Emphases

The distributed architecture for the SET carrier produces the best balance
betweenweight, power, fault tolerance, and integration ease. It also provides
the same interface for all experiments, which makes communications within
the carrier and development of the experiments a little easier.
All ICs and components in space flight must be radiation-hard. The system

must also survive the shock and vibration of launch and wide temperature
swings on orbit.

12.16.2 Gotcha’s

Some things were just out of our control. We could not finish the project
because NASA moved it in-house to finish it in their facility. As far as we
know, our technical abilities or management practices were not in question.

Acknowledgments

My thanks to Larry Frank and Robert Williams at JHU/APL for their col-
laboration on the design of the SET carrier.

References

1. Fowler, K.R., Frank, L.J., and Williams, R.L., Space Environment Testbed (SET):
Adaptable System for Piggybacked Satellite Experiments, IEEE Transactions on
Instrumentation and Measurement, Vol. 53, No. 4, August 2004, pp. 1065–1070.

2. Fowler, K.R., ESC-207: Mission-Critical and Safety-Critical Development,
Embedded Systems Conference Silicon Valley 2006 Conference Proceedings, April 4,
2006, pp. 13–14.

3. Personal communications with colleagues at JHU/APL, 2002–2005.

Satellite Subsystem 301

13
Case Study 10—Programmer for Implanted
Stimulators

13.1 Concept and Market

13.1.1 Who, What, Why, How, Where, and When

Chronic pain in the lower back and legs may be treated in several different
ways. Since the 1980s, one particular form of treatment has gained
favor—electrical stimulation of the spinal cord, which blocks pain signals
traveling up the spinal cord to the brain. A small but important market has
grown for implanting these stimulators in patients with chronic pain. After
release from the hospital, a patient may program the desired stimulation
through a transmitter that encodes parameters and then couples them
through radio frequency (RF) to the implant. Figure 13.1 illustrates the
general configuration.
Adjusting the stimulator for each patient, however, is extremely tedious

because there are many possible combinations of parameter values.
Just eight electrodes represent 6050 combinations of polarity, while
16 electrodes represent over 62 million possible combinations. A sophisti-
cated programmer/transmitter, for use by medical staffs and patients, can
ease the burden of adjustment by selecting appropriate subsets of stimu-
lation parameters from the wide variety available. The programmer that my
company designed was a pentop computer that allows patients to tailor
their own treatment by drawing simple lines and touching screen buttons.
Figure 13.2 shows a prototype of such a programmer.
The programmer was to be used primarily by patients in physicians’

offices. A physician or assistant taped the programmer’s antenna over the
site of the implant, set up the session on the programmer, and then handed
the programmer to the patient. Patients responded to simple instructions
and answered questions posed on the screen; they also drew outlines of
where they felt both pain and stimulation effects.
The programmer was intuitive and very easy for patients to use; patients

were intimately involved in their own treatment, an important factor.
It reduced the time spent by medical personnel to adjust stimulators from
hours to minutes. The data were more reliable.

303

I helped develop the concept for this device over 13 years with partners in
university medicine at The Johns Hopkins Hospital, Baltimore, MD. In 1998
I co-founded Stimsoft in Maryland, with two other partners to develop the
programmer into a commercial device. The device and all its intellectual
property assets sold in 2003.

13.1.2 Economics

Tens of thousands of stimulators are implanted each year around theworld to
treat chronic pain. (While I do not have exact numbers now, surgeries for
implants may be approaching hundreds of thousands each year.) Physicians
who implant stimulators could use a sophisticated programmer, which
means that potentially thousands of units would be produced per year.

Spinal

column

Spinal

cord

Antenna

External

transmitter

Implanted

receiver

Electrodes

FIGURE 13.1
The general configuration for communicating with and programming an implanted stimulator.
(� 1996, Oxford University Press, used with permission.)

304 Developing Real-Time Embedded Products

Worldwide, I estimate that the market might take about 5,000–10,000
programmers as a first run. I am purposely vague because I cannot con-
firm the exact numbers now. Marketing estimates have shown a
low-volume market by any measure.
Although many of us hear about the high cost of medicine for patients, the

ongoing effort to contain medical costs makes medical devices extremely
cost-sensitive. This situation is further complicated by the desire or expec-
tation that medical devices, such as this programmer, should last up to
10 years before replacement.
This is a contradictory and nearly impossible set of constraints for

developing and selling a medical device:

� Low cost

� High margin

� Robust and rugged

13.1.3 Surveys and Focus Groups

To determine the utility and necessary features for the programmer, we
surveyed targeted physicians at conferences as well as focus groups of
physicians and medical staff. They considered the programmer a necessary
complement to an implant. Their responses revealed that the programmer
must be easy to use, require little training, and not cost them anything (they

FIGURE 13.2
One example of a programmer used by patients for adjusting an implanted stimulator.
(From the private collection of Kim Fowler, used with permission. All rights reserved.)

Programmer for Implanted Stimulators 305

expected the manufacturer of the implants to supply a programmer free of
charge to physicians). They clearly indicated that less functionality for ease
of use was more desirable than more functionality and more training.

13.2 People and Disciplines

13.2.1 Marketing

The marketing of the programmer had two different stages. The first stage
involved three principals of Stimsoft, the president and both vice presidents
(VPs), marketing the programmer to a client company. The second stage
was to potential customers—physicians who deal with chronic pain patients
and implant stimulators. For this stage, the marketing group comprised both
the three principals of Stimsoft and a marketing team from the client company.

13.2.2 Design and Development

Stimsoft had a team of 12 full-time employees and contractors to do the
design and development of the programmer. That team comprised four
software engineers, one hardware engineer who also wrote software,
a software tester, a Food and Drug Administration (FDA) process and
regulation specialist, a training specialist, a specialist for documentation and
training, and an office administrator who doubled as receptionist. The
two VPs also directed design of the architecture and reviewed technical
progress.

13.2.3 Clinical Testing

We prepared for clinical testing by enlisting the participation of two sepa-
rate medical centers outside of the Johns Hopkins Hospital system. At least
one physician and two or three physician assistants in each center partici-
pated in the study of the programmer with patients.
Clinical testing is a standard and carefully monitored part of medical-

device development. I will not elaborate further because it is out of the
scope of this book. Careful communications with the FDA will clarify what
is expected in setting up clinical tests.
In retrospect, we should have enlisted three or more medical centers and

performed a more rigorous set of tests.

13.2.4 Management

The management was primarily the responsibility of the two VPs. One
focused on software, while the other focused on hardware and systems
development.

306 Developing Real-Time Embedded Products

13.2.5 Manufacturing

Stimsoft outsourced the manufacturing and assembly of the first production
run to Aubrey Group, a contract engineering and manufacturing firm.
Aubrey Group had a team of about 25 people ranging from engineers to
technicians and support staff. However, not everyone was involved in the
production of Stimsoft’s programmer and its antenna.

13.2.6 Sales, Distribution, Logistics

The client company eventually purchased the programmer and all its assets.
They have a sales team numbering about 75 and a distribution channel to
maintain the units.

13.3 Architecting and Architecture

13.3.1 Process

We used the V-model process to develop the programmer. During the early
phases, we performed regular and in-depth code reviews. These reviews
could force requirements changes if the team deemed it necessary. Everyone
at Stimsoft was involved in maintaining a good process.

13.3.2 Parameters

The parameters fell into two basic categories: physical and subjective. The
physical parameters included at least a 10-in. diagonal size screen, weight
not in excess of 2 lb, resistance to disinfectant washes, sufficient battery
reserves to last 8 hours, and the ability to communicate with a commercially-
available stimulator implant. The subjective parameters included ease of use
and comfort for the patient while resting the programmer in the lap.

13.3.3 Analysis

Most medical devices require thorough analysis to show both efficacy
and safety. We certainly went through a lot of analysis to develop the
programmer. First, it rested on a foundation of 13 years of university
research, with data from nearly 1000 patients. Second, we attended focus
groups in two different cities to refine our understanding of physician and
patient desires. In one city, just the two VPs went to observe the proceedings
of the focus groups; in the other city, most of the team went to observe.
Third, the two VPs surveyed selected physicians at two different
conferences to demonstrate prototype operations on pentop computers and

Programmer for Implanted Stimulators 307

to assess their acceptance of the new device. Fourth, the two software leads
and the hardware engineer performed fault tree analysis (FTA) and failure
modes effects analysis (FMEA) during the early phases of the project.
Finally, Stimsoft undertook clinical studies to show efficacy and safety.

13.3.4 Architecture

The programmer was designed to be a stand-alone instrument to support
a lone physician’s office. It could store and print out data collected from
a number of patients. It also could connect to the Internet through an analog
telephone connection to download data. We had plans to eventually
develop ways to analyze the large amounts of collected data, provide
sophisticated analysis, and generate strategies for programming more
effective stimulation patterns.
Figure 13.3 illustrates the architecture of the programmer. It comprised

a personal computer (PC)-compatible pentop running Windows CETM.
It communicated through a digital data stream with the transmitting an-
tenna. It also supplied power to the antenna. The antenna was a commer-
cially available subsystem that required no modification. The programmer
also had a recharging cradle and an infrared (IR)-linked thermal printer.
The final piece was a modem and telephone connection to download data to
a central server.
The VPs, two software leads, and the hardware engineer defined the basic

architecture of the programmer. The entire team was involved in refining
the architecture.

Pentop computer

Voltage
boost
converter

Programming head
with inductive coil

Neurostimulator
implant

Stimulator
electrodes that
thread up into
the spinal
column

Internal to the body

External to the body

FIGURE 13.3
Block diagram of the architecture of the programmer. (� 2006 by Kim Fowler, used with
permission. All rights reserved.)

308 Developing Real-Time Embedded Products

13.3.5 Interfaces

The programmer had five types of interfaces: mechanical, electrical, IR,
telephone, and human. The mechanical interface consisted of the pentop
computer and its cradle. The electrical interface consisted of the pentop
computer, its cradle for recharging, the power supply (a ‘‘wall wart’’), and
the antenna cable and power connections to the computer. The IR interface
connected the pentop computer to its printer. The telephone interface
connected the pentop computer to a telephone line through the cradle.
Finally, the human interface was between the computer and the patient or
medical staff with a stylus.
The human interface, primarily the graphical user interface (GUI) was

critical to the design of the programmer. It was difficult to design because it
was the focus of all the features and utility of the device.

13.4 Phases

13.4.1 Concept

The concept phase covered the business case, goals, objectives, and cons-
traints. We determined the basic architecture of the programmer and its
subsystems and components. We prepared and reviewed software proto-
types of the GUI screens. We performed an initial risk analysis that included
both FMEA and hazard analysis, which was essentially an FTA. We began
all the standard documents (outlined in Section 13.6) particularly the plans:
system, software, hardware, test, and configuration management.
We interviewed and selected our contract manufacturing firm (of the four

that we researched and interviewed, three were very good). This contract
firm would eventually build the production units. We also selected a
commercial off-the-shelf (COTS) vendor for our pentop computer. We
selected and installed Rational Rose� for the configuration management
and design control system. We also set up our documentation system.
This phase was rather difficult for us to define. We were starting up the

company, hiring people, and leasing equipment and office space. Suffice it
to say the phase took about 2 years. This duration is too long for most
projects.

13.4.2 Planning and Scheduling

The planning and scheduling phase lasted about a year and covered
the business case, goals, objectives, constraints, and initial designs for the
system, hardware, and software. We refined the basic architecture of the
programmer and its subsystems and components. We reviewed storyboards
of GUI operations and then refined and tested the software prototypes of

Programmer for Implanted Stimulators 309

the GUI screens. We attended and observed two different focus groups
comprising medical personnel to better learn their desires. We had to find
a new COTS vendor and pentop computer because the original vendor
dropped their product line.
We continued the risk analysis that included both FMEA and hazard

analysis. We continued revising and updating all the standard documents
and began the product description document.
During this phase we began the design of the programmer through block

diagrams, schematics showing logic diagrams, interface circuits, packaging
plans, configuration and layout sketches, and preliminary analyses.
We began estimates for cost, weight, power, and size, as well as the
electronic designs.
We specified the software requirements, design, structure, state diagrams,

design language (Cþþ), and development systems. We also began deve-
loping Unified Modeling Language (UML) use cases and entering them into
Rational Rose�, the configuration management and design control system.
The software developers began writing code, performing code reviews,
and testing each module.

13.4.3 Design and Development

The design and development phase lasted about 2 years but was not
officially closed (we sold the programmer and company assets before
completing the phase). During that time we completed the business case,
goals, objectives, constraints, and the designs for the system, hardware, and
software. We finalized the architecture of the programmer and its
subsystems and components. We attended two different conferences for
physicians who specialized in pain management and surveyed selected
physicians. We demonstrated system and software prototypes of the GUI
screens. We completed the risk analysis that included both FMEA and
hazard analysis.
We continued revising and updating all the standard documents and

completed a number of new ones. In particular, I wrote the design transfer
plan that outlined the manufacturing of the programmer. Another principal
in the company prepared the clinical plan. We also finished the design
documents: software, hardware, and system. Finally, we recorded all the
test results.
We completed the software requirements, the UML use cases, design,

structure, and state diagrams. We did not complete all the software code
reviews or testing each module before selling the company.
We worked with the contract manufacturer to design the DC–DC

converter for the antenna and to build the units: computer, inline converter,
and antenna. The contract manufacturer built 25 production prototype
units. This might be considered a pilot run, which usually occurs in the next
phase.

310 Developing Real-Time Embedded Products

13.4.4 Controlled Release

The controlled release phase should last about a year. (We had sold the
company’s assets before entering this phase.) During that time the clinical
trials and results are completed and presented. All documents are finished.
Submission for FDA approval is made. The manufacturing begins.

13.4.5 Commercial Release

The commercial release phase swings into high gear after receiving FDA
approval. Then sales and support begin, including manufacturing, distri-
bution, and technical support. (Again, we had sold the company’s assets
before entering this phase.)

13.5 Scheduling

Scheduling, for a start-up company, is chaotic at best. We attempted to
make top-down deadlines confirmed by bottom-up planning but events
beyond our control often adjusted our timelines. Between requirements
from the client, meeting with the FDA, contracting for manufacturing, and
just dealing with human personalities, preparing and keeping to a schedule
proved nearly impossible.
You should always be prepared to take more time than you expect. Do not

expect less than 4–6 years from concept to FDA approval and first product.

13.6 Documentation

All phases had a standard set of documents that needed updating. Each
phase also had some documents unique to it (see Table 13.1).
Everyone who generated any document had to make sure that all records

were stored on the server, where they were backed up daily. Documents
were also printed on paper and stored in a file cabinet. Even drafts of
documents were stored in the filing cabinet as soon as they were generated.
The office administrator made sure that documents were stored in the
correct place under the appropriate phase.
Stimsoft had two documentation specialists and a specialist for FDA

process and regulation who determined the basic types of documentation
that we needed.
Some ways that we used to keep and track documents:

� Used colored folders to identify each phase. The colors we chose
were: yellow, gray, red, green, and purple.

Programmer for Implanted Stimulators 311

TABLE 13.1

Listing of Documents Developed for the Programmer
Project

Standard documents for all phases

. Project plan

. Development plans

– System development plan

– Software development plan

– Hardware development plan

. Configuration management plan

. Requirements plan

. Specification plan

. V&V plan

. Document plan

. User manual

. Quality assurance phase review

. Marketing

. Technical reviews

. Technical communications (memos, letters, email notes)

. Document control forms

Phase 1: Concept

. Vision

. Risk plan

– Risk assessment: FMEA and HA

– Business risk

Phase 2: Planning and scheduling

. Product description

. Risk plan

– Risk assessment: FMEA and hazard analysis

– Business Risk

Phase 3: Design and development

. Product description

. Design transfer plan (includes manufacturing)

. Clinical plan

. Code standards

. Test results

– Recorded errors

– Test metrics

. Traceability

(Continued)

312 Developing Real-Time Embedded Products

� Divided up the filing cabinets into phases.

� Marked all documents ‘‘Obsolete’’ from the previous phase once a
newer draft showed up in the current phase.

� Marked all current documents ‘‘Draft’’ until we signed off after
review.

� Developed and adhered to a style guide.

13.7 Requirements and Standards

13.7.1 Market

The programmer was a Class II, 510K device that required premarket
approval, or PMA. In ‘‘FDA-speak’’ this meant that we had to show through
clinical trials that it was safe and effective.
The market comprised a number of people: users, influencers, and

customers. The users were both medical staff in physicians’ offices and

. Design documents

– Software design document

– Source listings

– Hardware design document

– System design document

Phase 4: Controlled Release

. Product description

. Clinical results

. FDA submission

Phase 5: Commercial release

. Product description

. Design history file (DHF)

. Device master record

. Version description document (VDD)

. Publications

– Brochures

– Training materials

. FDA approval

. Training plan

TABLE 13.1

Continued

Programmer for Implanted Stimulators 313

patients with chronic pain. The medical staff, including the doctors, had to
know how to set and run the programmer. Patients needed to perform
rudimentary tasks, such as drawing circles on body outlines and pressing
YES/NO buttons. Influencers were the medical staffs that needed or used
the programmer; they ultimately were the most critical component in
causing a purchase of a programmer. The hospitals or medical institutions,
who were to purchase the programmers, were the actual customers, but
they did not initiate the purchase process—the influencers did that.

13.7.2 Design and Development Standards

There were a number of standards to which the programmer had to adhere.
Some of the more prominent ones are listed in Table 13.2 and include
electromagnetic compatibility (EMC), electrostatic discharge (ESD), and
product safety [1–3].

TABLE 13.2

Listing of Some of the Standards for the Programmer Project [1,2]

Category Origin Standard Description

EMC CENELEC,
European
Standards

EN 55011 Industrial, scientific, and medical radio
frequency equipment—radio disturbance
characteristics—limits and methods of
measurement

EN 61204-3 Low-voltage power supplies, DC output
EN 61000 Electromagnetic compatibility, parts 2 and 4
IEC 61000 Electromagnetic compatibility, parts 1 and 3

ESD European
Standards

IEC 61340-1 Electrostatics Part 1: Guide to the principles
of electrostatic phenomena

IEC 61340-5-1 Electrostatics Part 5-1: General requirements
protection of electronic devices from
electrostatic phenomena

IEC 61340-5-2 Electrostatics Part 5-2: Protection of
electronic devices from electrostatic
phenomena, user guide

USA IEEE C62.47 IEEE guide on electrostatic discharge (ESD),
characterization of the ESD environment

IEEE C62.48 IEEE guide on interactions between power
system disturbances and surge-protective
devices

IEEE C62.64 IEEE standard specifications for surge
protectors used in low voltage data,
communications, and signaling

UL 1449 Transient voltage surge suppressors

(Continued)

314 Developing Real-Time Embedded Products

13.7.3 FDA Approval

All medical devices to be sold in the U.S. must receive FDA approval before
commercial sales are permitted. Not only did we follow the FDA Design
Control Guidance and perform clinical trials (albeit insufficiently for the
first go around), but we also met with the FDA to talk with them and
develop a professional relationship. We started early with the meetings to
find out what the FDA expected and wanted. This was and still is a good
practice to smooth the path to approval.
The company president, two VPs, FDA regulation specialist, software

leads, and hardware design engineer were all involved in the meetings. The
entire team, including business administrator, were regularly briefed on
FDA approval and good processes.

TABLE 13.2

Continued

Category Origin Standard Description

Safety CENELEC EN 61204 Low-voltage power supplies, DC
output—safety requirements

European
Standards

IEC 60086 Primary batteries

IEC 60601-1 Medical electrical equipment,
part 1—general requirements for safety

IEC 60601-1-2 Medical electrical equipment,
part 1—general requirements for safety,
Section 2—EMC

IEC 60601-1-4 Medical electrical equipment,
part 1—general requirements for safety,
Section 4—programmable electrical
medical systems

USA UL 60601-1 Medical electrical equipment,
part 1—general requirements for safety

ISO ISO 11197 Medical electrical equipment—particular
requirements for safety of medical supply
units

ISO/IEC
Guide 63

Guide to the development and inclusion
of safety aspects for medical devices

ISO/TR 16142 Medical devices—guidance on the selection
of standards in support of recognized
essential principles of safety and
performance

Biocom-
patibility

USA—FDA 21 CFR 58 Prescribes practices for nonclinical
laboratory studies to support applications
to the FDA for medical devices

ISO ISO 10993-1 Use the Blue Book Memorandum from the
FDA for testing for neurotoxicity and
immunotoxicity of materials

CENELEC: European Committee for Electrotechnical Standardization; IEC: International
Electrotechnical Commission; IEEE: Institute of Electrical and Electronics Engineers; ISO:
International Organization for Standardization; UL: Underwriters Laboratories; SAE: Society
for Automotive Engineers.

Programmer for Implanted Stimulators 315

13.7.4 Preparing Requirements

The requirements for the programmer had a long and varied path.
University research over 13 years formed the basis for many requirements.
We then refined the requirements through client marketing, focus groups,
and surveys. These activities relied on the medical staffs (influencers in the
sales domain) to provide insight as to need, utility, and cost.
The president (a neurosurgeon) and the VPs were the primary authors of

the requirements. The engineering team, particularly the training specialist
and two software leads, contributed to the effort by translating the
requirements into specifications. The FDA process and regulation specialist
guided our efforts.

13.8 Analysis

13.8.1 Feasibility

Thirteen years of university medical center research amply demonstrated
the feasibility and utility of the programmer. The research covered nearly
1000 patients who tried and used various prototypes, resulting in many
medical papers being published by the principals of Stimsoft and other
medical personnel [4–10].

13.8.2 Focus Groups

During the planning and scheduling phase we attended and observed two
different focus groups comprising medical personnel. The main result was
the requirement that the programmer’s operation be obvious and easy.
Medical staff did not want to take much time in training—typically less than
half an hour.
The client, whowould eventually buy the programmer and its assets, set up

the focus groups. The client contracted a company that specialized in running
focus groups to hold the meetings. We traveled to two different cities to
facilities owned and operated by the contracted focus group company.

13.8.3 Surveys

Three of us, the president and two VPs, attended two different conferences
for physicians who specialized in pain management. The VPs demonstrated
a prototype of the programmer and surveyed selected physicians. These
physicians confirmed utility of the programmer and supplied suggestions
for minor changes (Tables 13.3 and 13.4). The biggest concern that we
uncovered in these surveys is that physicians expected the company supp-
lying the implantable stimulators to supply programmers free of charge to
them in exchange for their recommending and implanting the stimulators.

316 Developing Real-Time Embedded Products

TABLE 13.3

Example of Physicians Surveyed for Programmer Functionality and Utility

Physician

Number of
Patients

Implanted/

Year

Average

Time Spent
Programming

Each Patient

(min)

Length

Patients
Remain

in Care

(Years)

Office
Visits

Per

Year

Who

Programs?

Program

More if Less
Complicated

(1 = yes,

0 = no)

Program

More if

Less Time
Intensive

(1 = yes,

0 = no)

Acceptable

Cost of

Programmer ($) Comments

Dr. A 120 60 ind. 3 Clinical
nurse

1 1 Would rather nurses
rather than reps
program. Saving time
would mean more
money for . . .

Dr. B 40 10 0 2 Himself
and TC

1 1 Tries to see as little of
patients as possible.
Implants them and
returns to referring
physician

Dr. C 100 8 ind. 1 Himself 0 0 Most patients only 1
visit/year. 10% visit
1/month

Dr. D 50 60 ind. 2 TC or rep 0 0 $0 Trials and
percutaneous leads.
Programming needs
to be less intimidating
and require less
training

(Continued)

P
rogram

m
er

for
Im

plan
ted

S
tim

u
lators

317

Dr. E 35 60 ind. Nurse or
rep

0 0 $2,500 Rather buy outright,
not pay for use. ‘‘Do
the right thing wizard
- ‘bingo’ - will pay
$2,500 . . . ’’

Dr. F 75 420 ind. 2 Nurse or
rep

1 1

Dr. G 25 45 ind. 4 Clinical
staff

0 1 Has mandatory visits
every 3 months to fine
tune stimulator, it
works well for his
patients

Dr. H 12 15 4 2.5 Himself 0 0 Be careful about
reimbursement issues.
Physicians can only
charge for ‘‘face-to-
face’’ time

Average 57.1 84.8 2.4 0.4 0.5

St. Dev. 37.8 137.4 0.9 0.5 0.5

ind. = indefinite; TC = therapy consultant; rep = representative.

TABLE 13.3

Continued

Physician

Number of

Patients

Implanted/
Year

Average

Time Spent

Programming

Each Patient
(min)

Length

Patients

Remain

in Care
(Years)

Office

Visits

Per
Year

Who
Programs?

Program

More if Less

Complicated

(1 = yes,
0 = no)

Program
More if

Less time

Intensive

(1 = yes,
0 =no)

Acceptable

Cost of
Programmer ($) Comments

318
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

TABLE 13.4

Example Portion from a Survey for the Usability of the Programmer

User Test Survey—Summary Example

Patient Tutorial Questions Yes No

Will these instructions be clear to your patient population? 7 1
Will pressing the buttons be easy for your patients? 8 0
Do you think the function of the OFF button will be obvious to
your patients?

4 4

Will drawing on the body maps be easy for your patients? 7 1
Do you think the use of the front and back body maps will be
obvious to your patients?

4 4

Do you think the Right and Left labels on the body maps will be
effective with your patients?

6 2

Will marking the rating scales be easy for your patients? 8 0
Do you think your patients will be able to adjust the stimulation
amplitude easily?

8 0

Do you think showing this tutorial to your patients will improve
their comfort level with neurostimulation?

8 0

Average 6.7 1.3

Std. Dev. 1.7 1.7

% Agreement 83% 17%

Comments
� Have a way to stop and then resume the tutorial
� Voice was pleasant
� Several commented on how well worded it was
� One physician thought graphics were ‘‘too Mickey Mouse’’
� One physician wants branded styluses—one with Alabama, the other with Auburn

Patient Tab Questions Yes No

Does the Patient Tab provide the basic information you
need?

6 1

Do the buttons on the right side of the Patient Tab make
sense to you?

8 0

Is the Leads information on the Patient Tab clear to you? 8 0
Does the automated Read Implant function make sense to
you?

8 0

Are you likely to use the Remarks section? 8 0

Average 7.6 0.2

Std. Dev. 0.9 0.4

% Agreement 97% 3%

Comments
� Undo Changes button was not intuitive
� Training is a concern. If staff is to use programmer then they must be trained
� Consider have more information collection: male/female selection, age, diagnosis field

(could use Remarks section) with boxes to check like radicularopathy, CRPS, spinal
stenosis, and so forth, suggested CPT codes

� Read Implant button is not intuitive. Use ‘‘Read Serial Number’’ instead or consider
‘‘Read Generator’’

� Use ‘‘Exit’’ instead of ‘‘LogOff’’ for button

(Continued)

Programmer for Implanted Stimulators 319

Protocol Tab Questions Yes No

Is it clear how you select the pulse parameters? 5 7
Is it clear how you select the electrode parameters? 3 4
Is it clear how you select thresholds? 4 3
Is the Trial Count box helpful? 5 1

Average 4.3 3.8

Std. Dev. 1.0 2.5

% Agreement 53% 47%

Comments
� The three columns for pulse parameters have a lot of information. The screen can be

confusing, it needs training or clarification or simplification
� Explain ‘‘thresholds’’ or train personnel
� AOI threshold not clear at all
� Explain difference between Drawing and Rating under the Threshold tab
� Electrode parameters not clear, as was contiguous. Need training
� OFF polarity not clear–need training to explain
� Sets of 5, 6, 7, or 8 not should not show for a quad lead (164)
� Trial Count Box was not intuitive, it needs explanation or training
� Need a tutorial for physicians! Do not assume that they will do any better than patients;

they are very busy, so unless programmer functions are explained they will not use it

Data Review Tab Questions Yes No

Is the Pain Drawing Sub Tab clear to you? 6 0
Is the Stim Data Sub Tab clear to you? 6 0
Was it easy to scroll through the pain drawings? 6 0
Is the Results Sub Tab clear to you. 6 0
Does the Results Sub Tab provide you with the information you
need to choose the best settings?

6 0

Average 6.0 0.0

Std. Dev. 0.0 0.0

% Agreement 100% 0%

Comments
� Use the label ‘‘Pt.’’ for patient rather than Pat. This is particularly true for Pat Rating
� Pain drawing was not clear because the color changed from when it was drawn to its

review
� Would like an edit function for the pain drawing (Consider for programmer rev. 2)

Prescribe Tab Questions Yes No

Do you like the representation of the electrode polarities and pulse
parameters that give the best settings?

4 0

Would you consider using the Retest Best Setting List Now during a
patient appointment?

3 0

Is it clear to you how to select a prescription? 3 0

Average 3.3 0.0

Std. Dev. 0.6 0.0

% Agreement 100% 0%

(Continued)

TABLE 13.4

Continued

320 Developing Real-Time Embedded Products

Comments
� Would like to download all five prescriptions

Stimulator Tab Questions Yes No

Press the Control Sub Tab within the screen. Is the Control Sub Tab
clear to you?

2 0

Press either the Limits Sub Tab or the Next Button. Is the Limits Sub
Tab clear to you?

2 0

Do you feel that you could easily edit a setting for the patient’s
prescription?

2 0

Would you feel comfortable programming a patient using the IPG
Tab?

2 0

Would you feel more comfortable if the TC/CES did the
programming?

0 1

Average 1.6 0.2

Std. Dev. 0.9 0.4

% Agreement 89% 11%

Comments
� Programmer needs to indicate when its done transmitting to the stimulator (if not

instantaneous)
� Wants direct control, not ramp of stimulation
� Stim OFF needs to be bigger

Wrap Up Questions Yes No

To move between screens, do you prefer using the Tabs (Yes) or the
Next and Back buttons (No)?

7 1

Which tab format would you prefer: this one where you see all the
selections (Yes), or one where you see only one set of selections at
a time (No)?

7 1

Is the wording on the various tabs easy to read? 6 2
Are the graphics on the various tabs easy to understand? 8 0
Would you be willing to use programmer to gather and review
patient data?

8 0

Would you be willing to use programmer to program your
patients?

7 1

After a stimulation session is set, the tablet is given to the patient.
Would you be comfortable letting patients use programmer to go
through the stim trials independently after they have completed
the Patient Tutorial?

8 0

Do you think programmer will facilitate programming stimulators? 8 0

Average 7.4 0.6

Std. Dev. 0.7 0.7

% Agreement 90% 10%

Comments for patient screens
� Takes too long to start
� Give reminder of OFF button function
� Reduce different sizes of fonts
� Most fonts too small
� Pastel colored titles are too light! Use only one dark color for consistency

TABLE 13.4

Continued

(Continued)

Programmer for Implanted Stimulators 321

Surveys contain surprises in comments and anecdotal evidence; some of them
can serve you well, others are nonsense. Here are just a few that we collected:

‘‘Most, if not all, [medical or physician’s] practices do not have the time to
optimize the programming for neurostimulation.’’

‘‘Consider a rubber grip for the stylus, so that older patients could grip it
more easily.’’

‘‘Programmer would save clinical staff time in high-volume practices.’’

‘‘Major, huge, monster advance!’’

‘‘We are stuck in a company X mindset for doing things. Another
company is coming out with a totally different way of thinking [for
programming neurostimulators].’’

‘‘In the South [southern USA], if someone begins with, ‘Bless their heart,’
then you know that they are about to ‘unload’ on them.’’

13.8.4 Heuristics, Calculations, and Numerical Simulations

We used minor spreadsheet calculations and simple heuristics in choosing
components. For instance, we gave more credence to a vendor with many
customers and sales of a particular pentop; this, unfortunately, turned out to
be wrong. We should have investigated the market design cycles with more
diligence than just accepting assurances from the vendor’s salesmen that
products would not be made obsolete. An old Cold War heuristic comes to
mind—‘‘Trust, but verify.’’
We did not rely heavily on simulations. The software engineers used

some UML software modeling to prepare the earliest version of the
software. One engineer used a software tool to generate a finite-state

� OFF button should be relabeled as Stim OFF (could have multiple meanings—tablet OFF
or session OFF or stim OFF)

� Use VAS (for visual-analog scale) instead of ‘‘Rating’’
� Button operation was not always reliable—get click sound but no activation
� Some inconsistency between operation of VAS and the stimulation amplitude slider. VAS

is a slash, stimulation amplitude is a slide (We will consider it for the Rev. 2 programmer)
� Patients will confuse left vs. right and front vs. back
� Would like 3-D figure drawings and verbal instructions for patients (This is a tall order.

We will consider it for the Rev. 2 or later programmer)
� No easy way to show pain on side of body. Many patients have lateral pain
� Ask three (3) questions about pain—least, most, and average pain on an average day
� Ask when worst pain occurs (that is when stimulator is most effective)
� Consider limiting session to run for 30 min; some patients fatigue after that
� Add a cross-hatched bar or spinning ball to indicate saving of data and remaining time

TABLE 13.4

Continued

322 Developing Real-Time Embedded Products

machine in the embedded software for the antenna. Another used a software
simulation to emulate communications with the printer.

13.8.5 Storyboarding

The GUI was critically important to the success of the programmer.
A training specialist worked with the entire design team to storyboard the
operation of programming a stimulator to understand how best to order the
screen features and then sequence through them. Most of the design team
talked to medical staff and discussed how we might train them to use the
programmer and comprehend its capabilities; afterwards, storyboarding
again helped us with the proper sequence of training instructions.

13.8.6 Testing

Testing also played into our feasibility analysis. We used years of clinical
research with three different versions of prototype programmers to form the
basis of the commercial design.

13.9 Design Trade-Offs

13.9.1 Requirements

The requirements comprised several different types of parameters, subjective
and physical. The subjective parameters included ease of use, comfort for the
patient while holding the programmer in the lap, and simplicity in training.
The physical parameters included size, weight, materials, and function.
Some examples of physical requirements follow. The screen, for instance,

had to be at least 10 in. (25 cm) diagonally. The weight of the programmer
was not to exceed 2 lb (about 1 kg). It also had to resist disinfectant washes.
Functionality required many different conditions; a very basic requirement
was that it had to communicate with a commercially-available neuro-
stimulator implant; it had to communicate with a commercial printer
through an IR link; its battery reserves had to run as long as 8 hours.
We had to follow the FDA ‘‘Design Control Guidance for Medical Device

Manufacturers’’ [11]. This drove how we developed requirements.
The entire design team was involved in developing and refining the

requirements.

13.9.2 Hardware

We made a number of design trade-offs with the hardware:

� Chose a COTS pentop computer (more on this decision in the
section Build vs. Buy).

Programmer for Implanted Stimulators 323

� Chose a thermal printer that had an IR communications link. It
was a cheap peripheral that printed out a receipt form of record—
good enough for an immediate record of a programming session.

� Developed a custom communications link with the COTS antenna.
It had a custom DC–DC converter to boost the 5 VDC power to 9
VDC required by the COTS antenna.

� Designed a tab for the recharging cradle to prevent attachment of
the antenna while the pentop was in the cradle. Our client and
the FDA wanted the system not to operate while recharging so as
to avoid any leakage paths from the wall power outlet to a
patient.

The two VPs, the hardware design engineer, and two software leads
contributed to these decisions.

13.9.3 Power

The programmer had battery power for two reasons—electrical isolation
and portability. The system would not be allowed to operate while
recharging so as to avoid any leakage paths from the wall power outlet to a
patient. Furthermore, the ‘‘wall wart’’ for powering the recharging cradle
had to be medical grade; that is, its transformer had to be electrically
isolated so that no leakage currents could flow from the power outlet,
through the primary windings of the transformer, to the DC circuitry
following the secondary windings.
We strove for 8 hours of power, but usually only got 4 hours of use out

of the battery pack. We considered redesigning the case to increase the
size of the battery pack, but this would have necessitated custom design
in both the case and the recharging cradle; we were trying to minimize
custom design. We also considered making the batteries easy to swap
out, but this would have incurred extra training for medical staff and
another potential area of problems should someone install them in the
programmer incorrectly.
The two VPs and the hardware design engineer were primarily respon-

sible for these decisions.

13.9.4 Cooling

This was an easy choice—no fans. We did not want the maintenance burden
of cleaning dust filters. Moreover, a fan would have seriously reduced the
splash resistance of the programmer. Most pentop computers dissipate low
enough power to not need fans.

324 Developing Real-Time Embedded Products

13.9.5 Software

We chose to code the software in Cþþ; it provided a robust methodology
for the user interface. The pentop computer ran Windows CE�, which
made porting the software from an engineer’s desktop to the pentop much
easier.
The user interface took the vast majority of time to develop and test.

The need for intuitive use while being fault-tolerant demanded care and
thoroughness. The GUI went through years of development; we had one
instance where a tester said, ‘‘You know, when you trace around the
outside perimeter of the screen three times and then touch the center of
the screen, the computer crashes.’’ Who thinks of doing these sorts of
things?! It just points to the need for good design, careful review, and
good testing.
We used careful design and development processes, such as regular code

reviews, tests, and field tests, to prepare the software. The two VPs, the five
software engineers, and the one software tester were all involved in
developing software.

13.9.6 Buy vs. Build

This project turned out to be a great example of the challenge to decide
between buying and building.
The pentop computer, antenna, and real-time operating system (RTOS;

Windows CE)� were all chosen to be COTS. For the antenna and RTOS, this
was a good choice; the antenna from the client would be in their inventory
for a long time, as it would be used in other products with the implanted
stimulators; the version of Windows CE� that we used would freeze with
FDA approval and we could not update it. The problem with COTS arose
with the pentop computer—the original vendor dropped their product line,
even though they promised that they would stay in the market, which
forced us to find a new COTS vendor and pentop computer.
One critical concern, which is important for low-volume medical devices,

is component obsolescence. If a device is going to be on the market for more
than 3 years, possibly as long as 10 years, larger subsystems may have to
be custom-designed rather than purchased COTS. This is true for devices
that use a either a pentop computer or a personal digital assistant (PDA)
for its platform; pentop computers and PDAs have very short life cycles,
typically about 6 months. If a low-volume medical device uses a COTS
platform, such as a pentop computer or PDA, then either you have to buy
sufficient quantity of units up front and store them in inventory over the life
cycle or get a contractual agreement from the vendor to stock them for you.
Of course, either of these options will cost your company more than buying
COTS parts that do not account for obsolete parts or inventory.

Programmer for Implanted Stimulators 325

Part of the problem for low-volume medical devices is that they must get
FDA approval before they can sell. FDA approval does not allow for
changes in the product once approved. If a COTS vendor changes a major
subsystem that your company purchases for its medical product, you could
be prevented from continued sales with a new vendor-supplied subsystem
in the product.
The added cost of a custom design may not be far-fetched after all,

particularly for the platform. A custom design allows you to get exactly the
form factor and user interface that you want for the platform; it also allows
you to uniquely brand the enclosure for your product. Finally, custom
design does not fall prey to vendor-enforced obsolescence quite as easily as
does COTS.
A custom design for the pentop computer, or at least choosing a military

vendor with the capacity for long-term inventory and control, would have
been better for us. We could then get sufficient battery capacity to run
8 hours. We could have designed the cradle to recharge the computer while
preventing any patient programming (to avoid leakage paths), all the while
without removing the antenna.
The two VPs and all the design engineers, both hardware and software,

were involved in making the buy versus build decisions.

13.9.7 Manufacturing

The only real choice for us was to outsource the manufacturing. We found
and retained a medical design and manufacturing contract firm to produce
the final product. A number of factors went into choosing a firm:

� A proven track record

� Demonstrated understanding of FDA Design Control Guidance

� Appropriate references from previous clients

� Examples of good documentation from previous projects

� A well-thought-out proposal

I searched a medical design magazine for companies who claimed to do
medical design and manufacturing. After surveying the contenders, I called
each company and asked questions from a checklist comprising material
from the first four aforementioned bullet points. From this, I rated each
company and chose the four top-rated ones. Finally, I traveled with a
consultant, chosen as an impartial third party, to my original deliberations,
to meet each of the four candidate companies. We had a checklist of
questions that we followed while talking to each company. The good news
was that three of the four companies we talked to were very capable for the
task. We ultimately settled on Aubrey Group in Irvine, CA.

326 Developing Real-Time Embedded Products

13.10 Tests

13.10.1 Informal

Like most companies, we had some informal tests to check prototypes in the
lab and demonstrate their use in the field. Conversations following those
demonstrations with some technical field representatives from the client
could be viewed as informal tests. Most of the design team was involved at
some point in informal testing. Most of these tests were completed before
the preliminary design review.

13.10.2 Peer Review

We held regular and rigorous reviews of hardware and software designs.
Code reviews, in particular, were systematic. One person, usually a VP,
acted as moderator and collected the action items that arose. The code’s
author would present the software module—its intent and implementation.
Two other software engineers would review the code. These reviews
occurred through all phases of software development (i.e., up through the
design and development phase; we never got through the controlled release
phase before selling the company and the client took over).

13.10.3 Subsystem Tests—Hardware

We had no real need for these types of test because the hardware was
chosen as COTS. We relied on the certifications and declarations of the
vendors for functionality, survivability (shock and vibration), and EMC.

13.10.4 Subsystem Tests—Software

The software had a defined and rigorous development cycle. It was tied into
Rational Rose,� the design control system, and Clearquest,� the software
test suite. Any time a software engineer deemed a module complete, it went
to verification by the test engineer. These tests occurred all the way through
all phases of software development (i.e., up through the design and de-
velopment phase; we never got through the controlled release phase before
selling the company and the client took over).

13.10.5 Simulators

The software engineers used several software simulators during the
planning and scheduling phase, sometimes called the preliminary design
phase. These simulators allowed engineers to continue designing code
before peripheral units, such as the antenna and printer, were available.

Programmer for Implanted Stimulators 327

We did not rely on the simulators alone. Once the actual peripheral units
were available, the software engineers verified their code with software
tests as described earlier.

13.11 Integration

13.11.1 System

As the contract manufacturer prepared units consisting of pentop computers
connected to antennas through their built-in DC–DC converters, the software
engineers exercised all the modules in the system with well-established tests.
We did not complete these system tests before the company sold.

13.11.2 Environmental

We had an outside test house subject the units to shock, to a drop test of
3 ft (1 m) to a concrete floor, and to some minimal vibration. We found that
the pentop computer really needed a better shock-resistant case. Again,
because the company sold before all the tests were completed, we did not
complete these. A custom design for the pentop computer or a military
computer would have survived shock better. The hardware design engineer
was primarily responsible for these tests.
We did some preliminary testing for EMC at a company that had an an-

echoic chamber for ‘‘precompliance’’ testing. The indication was that the
pentop computer with the attached low-frequency antenna would probably
pass EMC certification.

13.12 Manufacturing

13.12.1 Fabrication and Assembly

Aubrey Group, the contract manufacturing firm, fabricated the DC–DC
converter and then attached it to the antenna. They also assembled the
antenna and pentop computers into a completed programmer unit. They
build 25 programmers in the first run before Stimsoft sold.

13.12.2 Tests

A suite of system tests were in design but never finished. Had the
programmer gone on to commercial release, the tests would have been a
part of manufacturing and would have been performed by the contract
manufacturer.

328 Developing Real-Time Embedded Products

13.13 Support

13.13.1 Logistics

Stimsoft was designing this programmer to be distributed by the client firm,
who eventually bought us out. Each unit would have to be recorded and
tracked throughout its life cycle. Stimsoft did not have the sales or support
channels for such a massive undertaking.

13.13.2 Maintenance

About the only maintenance foreseen for the programmer was regular
cleaning. This would be a disinfectant wipe-down by the medical staff that
owned the unit.

13.13.3 Technical Support

When problems arose, Stimsoft was to provide troubleshooting for the cli-
ent. We planned to use the design engineers in the beginning, but if enough
support was demanded, we would then plan to hire some support staff—
medical and engineering.

13.14 Disposal

The client firm would retrieve the units once a programmer failed or had
reached end-of-life. Most likely the Waste from Electrical and Electronic
Equipment (WEEE) directive would have come into play for recycling
components of the programmer.

13.15 Liability

All medical devices have some degree of safety concerns. This programmer
primarily had several safety concerns, none of which had to do with
its intended operation for adjusting implanted stimulators. The concerns
had to do with leakage currents, a warm computer potentially burning the
lap of a patient, and failed batteries either exploding or leaking. Stimulators
do not cause damage, only discomfort, if programmed inappropriately.
Regardless, a recall of the programmer to fix anything could cost thousands

(or millions if large enough in numbers and late enough in market
penetration) of dollars and potentially take years of effort. Then there would

Programmer for Implanted Stimulators 329

be answering to the FDA and undergoing audits to prove that the fixes were
sufficient.
Even if the programmer operates correctly but a patient sues, everyone

could come under scrutiny. Even the corporate veil is not always sufficient
to protect the officers.
Still when all is considered, a safe device, low probability of failures, and

its utility, the programmer’s liability is fairly low. It is not as low, however,
as some of the other case studies, such as a hobby device or possibly the
military equipment or satellite subsystems.

13.16 Summary

13.16.1 Emphases

Any medical device must follow the FDA’s Design Control Guidance,
which is freely available on theWeb alongwith some other useful documents
[11]. We at Stimsoft focused on setting up good processes and complete
documentation. We had both documentation specialists and an FDA
specialist onboard to help smooth the process.
You need a good team to build a good product. Do not overlook the

importance of documentation and training specialists or of a good business
administrator. You will also need, from time to time, a good FDA consultant
to help you through the process.
We found that feasibility and thorough analyses, such as surveys,

prototype demonstrations, and university research, all helped in refining
the requirements and architecture of the programmer.
Finally, we focused on the GUI because it was so important to acceptable

operation of the programmer. It had to be fault-tolerant and intuitive. The
training specialist helped us immensely with her storyboarding efforts.
Surveys and demonstrations of the prototype all helped refine the GUI.

13.16.2 Gotcha’s

The constraints for developing a medical device are often contradictory.
They usually need to be low-cost, robust, and rugged. They also tend to be
low-volume sales so require high margin in the ratio of sales price to cost.
This type of market is very difficult to understand.
Even though we focused on the GUI, it still proved difficult to build and

code. It required the most effort of any part of the project. I am still not sure
that we got it right. One of the problems is that it is human nature to add
more features. Sometimes simpler is better.
The whole situation around whether to buy or to build is still out for

consideration.Wedecided to buy the pentop computer to save time and effort
in development. It saddled us with limitations—an unreliable COTS vendor,

330 Developing Real-Time Embedded Products

insufficient battery reserves, and insufficient shock resistance. On the other
hand, a custom design or a military version would have been far more
expensive, at least in the beginning of the market cycle. I believe that in
the final analysis, we should have bitten the bullet and designed a custom
platform.

References

1. EMC Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 75–82.

2. ESD Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 103–105.

3. Product Safety Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual
Reference Guide, pp. 165–172.

4. Fowler, K.R., Neurological Stimulation System, Proceedings of the AAMI 21st
Annual Meeting, April 1986, p. 27.

5. North, R.B. and Fowler, K.R., Computer-Controlled, Patient-Interactive,
Multichannel, Implanted Neurological Stimulators, Applied Neurophysiology,
Vol. 50, 1987, pp. 39–41.

6. North, R.B., Nigrin, D.J., Szymanski, R., and Fowler, K.R., Computer-Controlled,
Patient-Interactive, Multichannel, Implanted Neurological Stimulation System:
Clinical Assessment, Pain, Suppl. 5, 1990, p. S83.

7. Fowler, K.R. and North, R.B., Computer-Optimized Neurological Stimulation,
Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Vol. 13, No. 4, 1991, pp. 1692–1693.

8. North, R.B., Fowler, K.R., Nigrin, D.J., and Szymanski, R., Patient-Interactive,
Computer-Controlled Neurological Stimulation System: Clinical Efficacy in
Spinal Cord Stimulator Adjustment, Journal of Neurosurgery, Vol. 76, 1992,
pp. 967–972.

9. North, R.B., Nigrin, D.J., Fowler, K.R., Szymanski, R., and Piantadosi, S.,
Automated ‘‘Pain Drawing’’ Analysis by Computer-Controlled, Patient-Neuro-
logical Stimulation System, Pain, Vol. 50, 1992, pp. 51–57.

10. North, R.B., Sieracki, J.M., Fowler, K.R., Alvarez, B., and Cutchis, P. N., Patient-
Interactive, Microprocessor-Controlled Neurological Stimulation System,
Neuromodulation Vol. 1, No. 4, 1998, pp. 185–193.

11. U.S. FDA, Design Control Guidance for Medical Device Manufacturers, March 11,
1997, relates to FDA 21 CFR 820.30 and sub-clause 4.4 of ISO9001. You can find it
at http://www.fda.gov/cdrh/comp/designgd.pdf.

Programmer for Implanted Stimulators 331

14
Case Study 11—Implanted Medical Devices

14.1 Concept and Market

14.1.1 Who, What, Why, How, Where, and When

This chapter is an amalgamation of several different medical devices that
I have encountered. It will focus on devices that surgeons implant in
patients to provide years of therapy (e.g. pacemakers, stimulators, and drug
pumps). They are Class III devices that require premarket approval,
or PMA. They are either life-sustaining or safety-critical devices and
must be proved to be so through clinical trials to be both safe and effective.
Figure 14.1 illustrates just one of these types of implantable medical devices.
Implanted devices that stimulate tissue electrically often are preferable to

drug therapies or surgery because they have far fewer side effects and
are reversible—they can be removed or turned off if they cause problems.
Implantable drug pumps provide better, closed-loop control of drug delivery.
Surgeries to implant these devices occur every day in hospitals around the

world. Some might be simple outpatient surgeries, such as stimulator
implants. Others might require a week-long hospital stay.

14.1.2 Economics

Tens of thousands (or hundreds of thousands for pacemakers) are implan-
ted each year to treat a variety of serious health issues. Each device and its
implantation surgery can cost anywhere from US$40,000 to US$100,000.
Each device can cost between US$5,000 and US$80,000.
Specialized devices generally exist in the realm of low-volume

manufacturing. If a company builds 20,000 devices in a year and sells
them for US$20,000 per unit, this amounts to gross sales of US$400MM per
year—a nice business! More common devices, such as pacemakers, where
a company may build 200,000–1,000,000 devices each year, edge into
high-volume manufacturing with a decided emphasis on high quality.
These might be lower in cost, say closer to US$5,000 per unit, but at these
quantities the gross sales might approach US$5B per year.

333

14.2 People and Disciplines

14.2.1 Marketing

Companies that develop and sell these implanted devices have large, sophi-
sticated marketing groups. People in these groups may not be physicians

(a)

(b) (c)

FIGURE 14.1
One example of an implantable medical device. (a) The implanted medical device, this is a
Synergy� Neurostimulation System. (b) The patient’s programmer, a Synergy� EZ Patient
Programmer, that communicates through an inductively coupled signal with the implant.
(c) The programmer, the N’Vision�, used by a physician or assistant to adjust the implant
operation. (Photographs provided courtesy of Medtronic, Inc.)

334 Developing Real-Time Embedded Products

but they are knowledgeable and highly specialized. They often spend
significant portions of their time educating and training both physicians and
medical staffs in the use of the devices that they sell. Some of these folks
accompany surgeons into operating rooms to observe and even advise on
implantation of the devices.
Each of these marketing representatives (or sales representatives or

clinical consultants or technical consultants—companies give them a num-
ber of different names) provide the ‘‘face’’ of the medical device company to
the medical staffs and physicians to which they sell the devices. They can be
quite helpful to physicians who have little time on their hands to learn new
techniques or the latest features of particular medical devices.
Marketing ‘‘reps’’ usually handle between 100 and 400 implants each year.

Obviously surgeons who handle more implants on average need less hand-
holding. Consequently, a surgeon who only implants 5 or 10 devices each
year will need more attention from the ‘‘rep’’ than a surgeon who routinely
implants 100 or 200 or more devices per year. In well-developed therapies,
such as heart pacemakers, surgeons or hospitals that implant thousands of
devices each year may only need occasional visits from the ‘‘rep.’’
The numbers of marketing representatives needed depends on the

frequency of implantation and the expertise of the physicians. For newer
devices, such as brain stimulators, a ‘‘rep’’ may oversee every surgery per-
formed in a hospital for the first few years until the company believes that
the medical staff is proficient with implanting and using their devices. This
means that if the company sells 20,000 devices in a year, it may need a
marketing staff approaching 200 people and ‘‘reps.’’ For a well-established
market, such as cardiac pacemakers, where possibly as many as 400,000
devices are implanted each year worldwide, a company may only need
400 or 600 ‘‘reps’’ to peddle their devices.
These surgeons are a valuable source of feedback into the utility and

efficacy of the medical devices that they implant. This is a prime example of
where the customer can really provide insight into necessary requirements.
Furthermore, many companies’ marketing groups will sponsor conferences
to help educate physicians into the use of their devices. They will also fund
medical studies into efficacy of their devices to help with Food and Drug
Administration (FDA) approval.
Medical marketing is a large, diverse, and fascinating field. You will

want to draw on marketing’s insight and experience when developing
implanted medical devices; besides, you cannot avoid them.

14.2.2 Design

The design group for an implanted medical device will comprise a number
of people [1]:

� Team lead or management

� Biomedical engineers

Implanted Medical Devices 335

� Systems engineer or architect

� Electronic hardware engineers

� Software and firmware engineers

� Information technology (IT) specialists (which may be a corporate
function)

� Industrial designers

� Mechanical engineers

� Manufacturing engineers

� Technicians

� Documentation specialists

� Regulatory specialists and regulatory affairs representative

� Quality assurance (QA)

Additional important groups:

� Clinical

� Packaging

� Purchasing

Each of these people will probably overlap in function and expertise. Some
people, particularly in smaller organizations, may wear several ‘‘hats’’ and
do several different jobs simultaneously.
The team lead manages the business of the team and assures that the

project moves forward. They primarily care for the business case and for
getting the appropriate people and expertise on staff for the project.
The biomedical engineers will most likely have the greatest interaction

with the clinicians, physicians, medical staffs, and marketing team. They
usually are responsible for the project requirements and assure that testing
addresses the metrics. They tend to have more interaction with the clinical
staff than anyone else.
The systems architect or engineer may be the team leader in small projects.

In larger projects, the systems architect can play more of an advisory or
mentoring role to the design team. A systems architect helps everyone see
the ‘‘big picture’’ during development and can ease the functional integra-
tion of the different specialties.
The electronic hardware engineers and technicians shepherd the devel-

opment of the circuitry of the medical device. The team may need a range of
expertise—digital, microprocessor, analog, and radio frequency (RF). They
handle component selection, circuit board design and fabrication, and event
tree analysis (ETA), fault tree analysis (FTA), and failure modes and effects
analysis (FMEA); they prepare testing and record the results; they write
instructions for assembly and prepare the bill of materials. In some cases,
a team might even design the integrated circuit chip for a processor or
application-specific integrated circuit (ASIC) for the medical device.

336 Developing Real-Time Embedded Products

The software engineers design, prepare, code, and test the software
embedded in the device. They may also program the software of ancillary
devices to control the device. They cooperate with the hardware engineers
in ETA, FTA, and FMEA and the testing of the device. IT specialists are
becoming more important all the time; many medical devices transmit data
that must be stored in databases on servers and manipulated over great
distances via networks and wireless connections.
Mechanical engineers and technicians develop the materials and enclosure

of the medical device. The team may need a range of expertise—packaging,
mechanisms, and disposables. They select materials, advise the machining
and fabrication of the enclosure, cooperate with the ETA, FTA and FMEA
analyses, and help write both the instructions for assembly and the bill of
materials. If any mechanisms are to be incorporated in the device, such as a
pump, the mechanical engineers will have significant design duties beyond
the enclosure; in such a case, they will have input to the testing, as well.
Documentation specialists, regulatory specialists, and QA personnel are

critical to the development of a medical device, as may be evident from
Chapter 2. FDA approval requires diverse if not mounds of documentation;
hence, a documentation specialist can ease the process considerably for
the team. The same is true for a regulatory specialist. QA may take on these
roles in small projects or organizations, but their focus tends to be more
toward appropriate tests that adhere to standards.

14.2.3 Clinical Testing

Implanted devices must undergo clinical testing to demonstrate efficacy
and safety. A separate team of physicians, nurse consultants, and clinical
specialists handle clinical testing.
Clinical testing is a standard and carefully monitored part of medical

device development. I will not elaborate because it is out of the scope of this
book. Careful communications with the FDA will clarify what is expected in
setting up clinical tests.

14.2.4 Management

The management team ranges from the president of the company, through
vice presidents, directors, and team leaders. Each company is different
and handles the management of projects differently. I will not elaborate
because this subject is also out of the scope of this book.

14.2.5 Manufacturing

Many companies building implanted medical devices have in-house
manufacturing facilities. They do this to control and monitor quality and
production. Very small companies might outsource the manufacturing

Implanted Medical Devices 337

and assembly of a medical device to a contract engineering and manu-
facturing firm.
Manufacturing includes machining and welding the enclosure, fabricat-

ing and assembling the circuit boards, sealing up the penetrations and cable
feed-throughs, and sterilizing the final product and its packaging. Much of
the assembly is manual and labor-intensive; only for high-volume products
would more automated lines be used.

14.2.6 Sales, Distribution, and Logistics

Administrative personnel and technicians provide the support to get the
product to the customer and keep it working properly. Sales, distribution,
and logistics are often tightly integrated with the marketing group.

14.3 Architecting and Architecture

14.3.1 Process

A medical device is safety-critical; its development must reflect that reality.
The V-model process is most typical in developing an implanted medical
device. Most medical devices cannot be reprogrammed once released; such
would be contrary to FDA approval, so spiral development is ruled out
beyond the design phase.
Software is a particular concern. It needs to be right, and it helps to be

fault-tolerant too. This forces you to perform regular, in-depth code reviews
in the early phases before clinical testing. All requirements must be tested
and the results approved as satisfactory before the product goes into clinical
testing.
Chapter 2 goes into more depth on processes.

14.3.2 Parameters

The parameters divide into three or four basic categories: clinical (or thera-
peutic), physical, user, and subjective. Some example categories of these
parameters follow:

� Clinical—dosage, current limit, rates, frequency, protocols, and
patterns of therapy

� Physical—volume, weight, power consumption, battery life, data
format, telemetry encoding, radiated power, electromagnetic
compatibility (EMC) limits, biocompatibility of materials

� User—input needed, button size on controller, programming
options

� Subjective—comfort, limitation of mobility, ease of use

338 Developing Real-Time Embedded Products

These parameters all feed into the requirements. Producing good require-
ments and specifications usually turns out to be one of the most difficult
activities to complete, often requiring many iterations times before the end
of the project.

14.3.3 Analysis

All implanted medical devices require thorough analysis to show both
efficacy and safety. Analyses include

� University research—proof of concept, possibly via in-vitro and
in-vivo animal studies

� Medical studies—often university clinical studies under the
authority of a review board

� Surveys of physicians and medical staff—need, utility, and desires

� Focus groups—particularly if the device needs significant human
input to operate

� Hazard analyses—FTA, FMEA, ETA

� Risk management, including margin and risk analyses (risk
management is a more comprehensive term now that ISO 14971
has been published and is a key standard)

� Trade-off studies for feasibility analysis

� Clinical studies

14.3.4 Architecture

The architecture of implanted medical devices needs considerable attention.
It must satisfy a number of goals, requirements, and objectives.
One way to view the architecture of an implanted medical device is that

of an instrumentation system: input (sensing), processing, and output
(actuation, delivery; Figure 14.2). The input may be any number of different
things, such as a glucose sensor for an insulin pump or an electrical probe
for neural impulses for a pacemaker. The input may also be a simple
command from an external programmer, and then the implanted device
runs autonomously until the next program change. Output can be several
different responses: pumped drugs or electrical stimulation or mechanical
extension or compression or even a simple telemetry signal.
One goal for implanted medical devices is for the output (chemical,

pharmaceutical, or electrical) to have the desired effect with minimal side-
effects. Another goal is to minimize the sensor’s effect on the biological
quantity being sensed. You do not want a glucose sensor producing
chemicals that contaminate the sensed levels in the blood or corrosion
distorting the pickup of minute neural impulses.

Implanted Medical Devices 339

Other important goals for implanted medical devices include depend-
ability, manufacturability, and safety. The devices must be dependable,
which means they are reliable, fault-tolerant, testable, and safe. The
architecture should lend itself to manufacturing. Minimizing mechanical
penetrations will reduce the chance of fluid invasion that can destroy the
device.
As described in Chapter 2, a number of techniques can help toward

reliable and fault-tolerant design: stress margins, redundancy and error
checking, interlocks, and fail-safe (or trapdoor) operation.
Making a design testable can help check for functionality as specified;

‘‘testable’’ means that all portions or subsystems of the device can be reached
and observed. Testable design assures conformance to the specifications but
does not guarantee against design errors. Sometimes reuse of previously
successful circuits and subsystem modules can provide a measure of con-
fidence, but full system tests are still needed for each new application.

14.3.5 Interfaces

Implanted medical devices have three (or possibly four) types of
interfaces: biological, mechanical, and electrical (and human, if the device
is programmable). None of these is necessarily more important than
the others; they all must receive considerable attention during design
and development.

Input
Microcontroller
or processor for
data processing

Output

Programmer input

Sensors

Stimulation
leads

Antenna

Electric
motor or
actuator

Drug pump

(physiological feedback)

drugs

FIGURE 14.2
An instrumentation view of implanted medical devices. (� 2006 by Kim Fowler, used with
permission. All rights reserved.)

340 Developing Real-Time Embedded Products

The biological interface includes therapeutic delivery, side effects, and
sterilization. Clearly these concerns carry over into the mechanical and
electrical interfaces, too. The best way to view the biological interface is
what the device does to the tissues and fluids of the patient. Some basic
questions to settle during design:

� Is the therapy (e.g., drugs, electrical stimulation, compression)
appropriate? Will it work for years or for the time required? Will
the body accommodate to the therapy and eventually render it
ineffective?

� What are the side effects of the therapy? Can they be reversed or
eliminated?

� What are the effects of the leaching of materials and chemicals out
of the implant?

� What level of sterilization is needed to render the implant safe or
acceptable?

� How is the device attached? How much movement is allowed?

The mechanical interface includes therapeutic delivery, sterilization, fluid
invasion, and corrosion. The size, weight, and attachment points of the
device also represent part of the mechanical interface. Another way to view
the mechanical interface is in terms of what the tissues and fluids of the
patient do to the device. Some basic questions to settle during design:

� Is the delivery of therapy (e.g., drugs, electrical stimulation,
compression) reliable? Will it work for years?

� Could the delivery be easily obstructed or blocked by tissue
reaction (e.g., fluid buildup plugging a pump outlet or scar tissue
isolating a stimulation lead)?

� How long will the seals last before fluid invades?

� Are the materials sufficiently biocompatible?

� What are the corrosion products? What are the rates of corrosion?

� How heavy is the implant?

� How is it held or attached in place?

The electrical interface includes therapeutic delivery, battery capacity, sig-
nals between subsystems, and telemetry. Some basic questions to settle
during design:

� Is the delivery of therapy (e.g., electrical stimulation, motor
actuation for pumping drugs or compression) reliable? Will it
work for years?

Implanted Medical Devices 341

� Are the signals and data formats between subsystems robust and
fault-tolerant?

� How long will the battery last for different rates of discharge and
operation?

� Is the telemetry to an external receiver reliable for various depths
of implantation?

� What are the potential leakage paths? How can they be isolated?

The human interface exists on either end of the instrumentation architec-
ture, at the input and at the output. The patient or medical staff affects input
by programming the device. The external programmer has some sort of
graphical user interface (GUI), which is important to the utility of the entire
system including the implanted device. Remember, people prefer under-
standing and ease-of-use over performance—this principle is a direct determi-
nant of success in a patient’s adopting the device. The output is the
therapeutic result that patients sense or feel. If a patient perceives results, then
perception also is important to the market success of adopting the device.

14.4 Phases

14.4.1 Concept

The concept phase covers the business case, goals, objectives, and con-
straints. All basic university and medical research should be complete to a
degree that allows you to make basic assumptions about feasibility. You
should determine the basic architecture of the device and review simulation
prototypes if available. You should set up and perform initial analyses for
risk and hazard (ETA, FTA, and FMEA). You should have notified
manufacturing (or selected a contract manufacturing firm) and support
logistics, who will eventually build and support the production devices.
You should establish the standard documents (see Table 14.1, which is very
similar to that outlined in Section 13.6 and in Table 13.1), particularly the
plans: system, software, hardware, test, and configuration management.
During the concept phase, you should demonstrate that the requirements

of the project are understood and that the proposed approach will meet
these requirements. Example items to be addressed in the concept design
review (CoDR) are as follows:

� Business case, goals, objectives, and constraints

� Research—university, medical, literature, patent searches

� Review initial drafts of standard documents and phase specific
documents—Table 14.1

342 Developing Real-Time Embedded Products

TABLE 14.1

Sample Listing of Documents Needed for Developing
Implantable Medical Devices

Standard documents for all phases
Project plan
Development plans

System development plan
Software development plan
Hardware development plan

Configuration management plan
Requirements plan
Specification plan
V&V plan
Document plan
User manual
Quality assurance phase review
Marketing
Technical reviews
Technical communications (memos, letters, email notes)
Document control forms

Phase 1: Concept
Vision
Feasibility and tradeoff analyses
Risk plan

Risk assessment: ETA, FTA, FMEA
Business risk

Phase 2: planning and Scheduling
Product description
Feasibility and tradeoff analyses
Risk plan

Risk assessment: ETA, FTA, FMEA
Business risk

Phase 3: Design and development
Product description
Feasibility and tradeoff analyses
Design transfer plan
Clinical plan
Code standards
Test results

Recorded errors
Test metrics

Traceability
Design documents
Software design document
Source listings
Hardware design document
System design document
Final parts list

Phase 4: Controlled Release
Product description
Clinical results
FDA submission
Submissions for UL, CE, IEC certifications
Training plan

(Continued)

Implanted Medical Devices 343

� Requirements

– Clinical

– Function

– Performance

– Safety

– FDA approval

– Certifications

� System architecture

– Clinical concept

– Major subsystem components and interfaces: hardware, soft-
ware, mechanical, material, biological, and pharmaceutical

– Features and feature management

– Operations concept

– Training, support, and logistics

� Analyses

– Feasibility: design constraints and major trade-off studies
performed

– Risk assessment

– Margin

� Staffing

� Quality assurance

� Schedule

You will be able to constrain the baseline design following the closure of the
action items resulting from the CoDR. You can then purchase long-lead
items, development support equipment, breadboard parts, and materials.

Phase 5: Commercial release
Product description
Design history file
Device master record
Version description document
Publications

Brochures
Training materials

FDA approval
UL, CE, IEC certifications
Training plan

TABLE 14.1

Continued

344 Developing Real-Time Embedded Products

14.4.2 Planning and Scheduling

The team prepares the detailed design during the planning and scheduling
or preliminary design phase. This means that all the design descriptions are
prepared in an initial state:

� Software—operational storyboards, software use cases, software
size estimates, software requirements, design, structure, logic flow
diagrams, computational loading, design language, and develop-
ment systems

� Hardware—block diagrams, signal flow diagrams, schematics
showing logic diagrams, and first interface circuits

� Mechanical—packaging plans, mechanism schematics, subsystem
layout, material selection

The design descriptions include estimates of weight, power, volume, reli-
ability, and longevity. The analyses, modeling, and any early test results
should be completed, too.
The planning and scheduling or preliminary design review (PDR) is held

when the design advances sufficiently to begin some breadboard testing or
the fabrication of engineering models. The PDR presents the design
descriptions. The PDR should also present the analyses, the estimates, and
the bases for both. Example items to be addressed in the PDR are as follows:

� Business case, goals, objectives, and constraints

� Closure of action items from the CoDR

� Completion of research, trade-offs, and feasibility

� Review of initial drafts of standard documents and phase specific
documents—Table 14.1

� Requirements

– Clinical

– Function

– Performance

– Safety

– FDA approval

– Certifications

� System architecture

– Clinical concept

– Major subsystem components and interfaces: hardware, soft-
ware, mechanical, material, biological, and pharmaceutical

– Features and feature management

– Operations concept

Implanted Medical Devices 345

– Training, support, and logistics

� Analyses

– Risk assessment

– Margin in safety, weight, power

– Mechanical/structural design, weight, thermal, and life tests

– Electrical, power, electromagnetic interference (EMI)/EMC

� Software requirements and design—operations, bug rates, code
reviews

� Design verification, test flow and test plans

� Staffing

� Quality assurance

� Schedule

The completion of the PDR and the closure of any action items generated
by the review become the basis for the start of the detailed design effort and
the purchase of parts, materials, and equipment.

14.4.3 Design and Development

During the design and development, or critical design phase, the team pre-
pares the detailed design for the design freeze, which will lead to fabrication
and manufacture of the product in the next phase. This means that all the
design descriptions are prepared in a complete and comprehensive form:

� Software—operational storyboards, software use cases, software
size estimates, software requirements, design, structure, logic flow
diagrams, computational loading, design language, and develop-
ment systems

� Hardware—block diagrams, signal flow diagrams, schematics
showing logic diagrams, and first interface circuits

� Mechanical—packaging plans, mechanism schematics, subsystem
layout, material selection

All estimates of weight, power, volume, reliability, and longevity will be in
final form, too.
The design and development or critical design review (CDR) should

present all the same basic subjects as the PDR but in final form. The CDR
should include all of the items specified for a PDR but updated to the final
form, plus the some additional items: Example items to be addressed in the
CDR are as follows:

� Business case, goals, objectives, and constraints

� Closure of action items from the PDR

346 Developing Real-Time Embedded Products

� Summary of research, trade-offs, and feasibility

� Review initial drafts of standard documents and phase specific
documents—Table 14.1

� Requirements

– Clinical

– Function

– Performance

– Safety

– FDA approval

– Certifications

� System architecture

– Clinical concept

– Major subsystem components and interfaces: hardware, soft-
ware, mechanical, material, biological, and pharmaceutical

– Features and feature management

– Operations concept

– Training, support, and logistics

� Analyses—updated and final

– Risk Assessment: ETA, FTA, and FMEA

– Margin in safety, weight, power

– Mechanical/structural design, weight, thermal, and life tests

� Electrical, power, EMI/EMC

� Software requirements and design—operations, bug rates, code
reviews

� Design verification, test flow and test plans

– Test results

– Test history of the hardware

� Previous anomalies, deviations, waivers, and their resolution

� Staffing

� Schedule

� Quality assurance

Completion of the CDR and resolution of all the action items generated by it
constitutes the baseline design.

14.4.4 Controlled Release

The controlled release, or production, phase occurs prior to manufacturing.
Its purpose is to assure that the design of the device has been validated

Implanted Medical Devices 347

through the test, verification, validation, and acceptance program, and that
all deviations, waivers and open items have been satisfactorily closed and
that the project, along with all the required operating procedures, docu-
mentation, logistics, and support equipment is ready for production. This is
also the stage where the company makes all of the submissions for certifi-
cations and FDA approval.
The Controlled Release Review (CRR) is an important review to confirm

that the design is ready for production. Here are some example items:

� Business case, goals, objectives, and constraints

� Closure of action items from the CDR

� Completion confirmation of the Design Transfer Plan

� Review of initial drafts of standard documents and phase specific
documents—Table 14.1

� Design verification, test flow and test plans

– Test results

– Test history of the hardware

– Previous anomalies, deviations, waivers and their resolution

– Rework/replacement of hardware, regression testing, or test
plan changes

– Compliance with the test verification matrix

– Measured test margins vs. design estimates

– Trend data

– Could-not-duplicate failures should be presented along with
assessment of the problem and the residual risk that may be
inherent in the item

� Training plan

� Staffing

� Schedule

� Quality assurance

� Clinical and field studies

14.4.5 Commercial Release

The commercial release phase is the stage-gate from manufacturing.
It means that the pilot production is complete and has been analyzed.
All documentation is in final form. All certifications and FDA approval have
passed. The final review should cover

� Business case, goals, objectives, and constraints

� Product launch by sales and marketing

348 Developing Real-Time Embedded Products

� Closure of action items from the CRR

� Review initial drafts of standard documents and phase specific
documents—Table 14.1

� Training Plan

� Staffing

� Schedule

� Quality assurance

14.4.6 Logistics, Maintenance, Disposal

This phase remains for the life cycle of the product; it can be as long as
10–20 years. It covers inventory and distribution, training medical staff to
use and implant the device, providing technical troubleshooting and sup-
port, and eventual disposal of retired or defective devices. Any further
discussion is beyond the scope of this book.

14.5 Scheduling

Scheduling is, or should be, a combination of top-down and bottom-up
planning. Top-down plans are set by marketing and upper management to
meet market conditions. It should be supported by a detailed bottom-up
plan. As mentioned in the last chapter, medical product development
always takes more time than you expect. Some projects can take upwards of
10 years from concept to FDA approval.
Bottom-up planning can begin from the activities called out in each phase

in the previous section. Carefully estimate how much effort and time will
be needed for each one. Then use a program like Microsoft’s Project� to total
the activities together; it will give you a good bottom-up estimate of time
and effort. Table 14.2 has some estimates of efforts that a project like this
might encounter—a combined effort totaling more than 45 years is not
unrealistic—it is probably low!

14.6 Documentation

14.6.1 Purposes

Documentation serves a number of purposes in medical devices. It is
considered part of the labeling by the FDA. It serves in training medical
staff and patients and in supporting use of the device after sale and
distribution.

Implanted Medical Devices 349

TABLE 14.2

Some Estimates of Effort for an Implantable Medical Device

Activities

Phase 1:

Concept

Phase 2:

Planning and
Scheduling

(Preliminary)

Phase 3:
Design

(Critical)

Phase 4:
Controlled

Release

Phase 5:
Commer.

Release

Business case, goals, objectives, constraints 800 800 400 400 200

Research (preparing results)
University 400 200
Medical 800 400
Literature 400 200
Patent searches 200 200

Requirements
Clinical 400 400 200
Function 800 800 400
Performance 1000 1000 600
Safety 1000 1000 600
FDA approval 400 600 1000
Certifications 200 200 200

System architecture
Clinical concept 400 400 200
Subsystem and interfaces: hardware 1000 1000 400
Subsystem and interfaces: software 2000 2000 1000
Subsystem and interfaces: mechanical 400 400 200
Subsystem and interfaces: material 200 200 100
Subsystem and interfaces: biological 400 400 200
Subsystem and interfaces: pharmaceutical 1000 1000 600
Features and feature management 100 200 1000
Operations concept 400 400 200
Training, support, and logistics 100 100 400

350
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Analyses
Feasibility: constraints and trade studies 2000
Focus groups 500 1000
Surveys 600 800
Margin 600 600 600
Weight, thermal, and life tests 400 400 400
Electrical, power, EMI/EMC 400 600 600

Staffing 200 200 200 200 200

Quality assurance 200 400 600 400 400

Schedule 200 200 200 100 40

Software requirements and design 1000 1000 2000 1000 200

Hardware requirements and design 600 600 1000 600 100

Mechanical requirements and design 400 400 1000 400 100

Design verification, test flow and test plans 400 1000 2000

Standard documents
Project plan 120 40 20 20 20
Development plans
System development plan 200 100 40 40 20
Software development plan 200 100 40 40 20
Hardware development plan 100 80 40 20 20

Configuration management plan 40 20 5 5 5
Requirements plan 40 40 20 10 5
Specification plan 40 40 20 10 5
V&V plan 200 400 100 40 5
Document plan 20 20 5 5 5
User manual 100 100 400 400 400
Quality assurance phase review 80 80 40 20 20
Marketing 400 200 200 40 40
Technical reviews 600 600 800 600 400

(Continued)

Im
plan

ted
M
edical

D
evices

351

TABLE 14.2

Continued

Activities

Phase 1:

Concept

Phase 2:

Planning and
Scheduling

(Preliminary)

Phase 3:
Design

(Critical)

Phase 4:
Controlled

Release

Phase 5:
Commer.

Release

Technical communications 2000 2000 2000 2000 2000
Document control forms 80 40 20 5 5

Phase documents
Vision 40
Risk plan

Risk assessment: ETA, FTA, FMEA 800 600
Business risk 200 200

Product description 200 400 400 200
Feasibility and tradeoff analyses 1000 600 200
Design transfer plan 200
Clinical plan 400
Code standards 40
Test results

Recorded errors 2000
Test metrics 600

Traceability 200
Design documents

Software design document 1000
Source listings 80
Hardware design document 600
System design document 200
Final parts list 80

Clinical results 400
FDA submission 2000
Submissions for UL, CE, IEC certifications 1000

352
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Training plan 400 200
Design history file 40 40 80 200
Device master record 200
Version description document 40
Publications

Brochures 400
Training materials 600

FDA approval 200
UL, CE, IEC certifications 200

Total
Subtotals, efforts (h) 25,760 24,000 25,090 12,635 6,450 93,935
Subtotals, efforts (months) 153.3 142.9 149.3 75.2 38.4 559
Subtotals, efforts (years) 12.4 11.5 12.1 6.1 3.1 45

CENELEC: European Committee for Electrotechnical Standardization; IEC: International Electrotechnical Commission;
IEEE: Institute of Electrical and Electronics Engineers; ISO: International Organization for Standardization.

Note: numbers are in hours of effort (� 2006 by Kim Fowler, used with permission. All rights reserved).

Im
plan

ted
M
edical

D
evices

353

14.6.2 Types

There are informal and formal types of documentation; all of which are
archived for potential audits by the FDA in the future. The informal
documentation includes notebooks, notes, and e-mail messages. The formal
documentation includes letters, memos, project documents, manuals,
brochures, and presentations.
All phases have a standard set of documents that need updating. Each

phase also has some documents unique to it (Table 14.1).
You will need specialists in documentation, FDA process, and regulation/

certification to determine the basic types of documentation that youwill need.

14.6.3 General Formats for Documents

The major documents, project documents and manuals, have a template
from which to begin preparation. They follow the general format:

� Title page

� Author page and revision number

� Table of contents

� Introduction with purpose, scope, and overview

� Body of document

� Appendices

� Glossary of terms

In test plans, the body of the document outlines what is to be done and how,
by whom, when, and where. Design documents state what has been done
and how, by whom, when, and where. Templates of documents may be
found at Reference 2.
A user’s manual is a challenging piece to prepare. One of the most

important sections is the introduction titled ‘‘Getting Started,’’ which often
facilitates a user’s understanding of the operation. Many times it is the only
section that users read. Prepare it carefully.
The best guidance for writing manuals for medical devices is the FDA’s

‘‘Write It Right’’ document [3]. You can find it online.
Any documents or records generated should be stored whether as paper

files or as microfiche or as electronic files on a server or all three. Certainly,
files should be backed up daily on a server; having a secure storage facility
that can resist fire, floods, and disasters is important, too.

14.7 Requirements and Standards

14.7.1 Market

These are Class III devices that mean that they need PMA from the FDA.
Some of these devices, such as pacemakers and nerve stimulators, may be

354 Developing Real-Time Embedded Products

eligible for 510(k) designation, which will speed their FDA approval cycle
somewhat.
The users generally are patients, although, if the implanted device has an

external programmer, then medical staff in physicians’ offices can be
included in the user pool. Influencers are the medical staffs that implant or
operate the devices; they initiate the purchase process. Hospitals or medical
institutions, which purchase the devices, are the actual customers. Most
marketing people recognize that the influencers—the medical staffs—are
the important group to reach for market penetration.

14.7.2 Design and Development Standards

There are a number of standards to which an implantable medical device
must adhere. Some of the more prominent ones are listed in Table 14.3 and
include EMC and product safety [4,5]. The UL 60601-1 (USA) standard is
slightly more stringent than IEC 60601-1; if you develop a device according
to UL 60601-1 it generally satisfies IEC 60601-1.
As a point of interest, Table 14.4 lists standards specific to implantable

neurostimulators. This is an example of standards that apply to a specific
device type.

14.7.3 FDA Approval

All medical devices must receive FDA approval before commercial sale.
You must follow the FDA Design Control Guidance and perform clinical
trials to develop an implantable medical device [6–8]. It is a good practice to
meet with the FDA and to develop a professional relationship with them;
they will help you better understand what the FDAwants and expects to see
when you submit for approval. Meeting with the FDA and understanding
their concerns will smooth the path to approval.
Your entire team needs to understand the import of FDA approval and

good processes. Regular briefings on progress and quality processes will
help keep awareness of FDA requirements.

14.7.4 Preparing Requirements

The requirements for an implantable medical device can take a long time
and much effort—and probably should. You can still use the suggested
techniques in Chapter 1 to speed development. Many people, studies, and
parameters contribute to the preparation of the requirements.
Sections 14.3.2 and 14.3.3 indicate some of the concerns that need to be

covered in the Requirements and Specifications Document. The Reference 2
has a template that might help, as well. Requirements must address
concerns that include clinical (e.g. dosage and protocols for therapy),
function—which includes user issues (e.g. programming options) and

Implanted Medical Devices 355

TABLE 14.3

Listing of Some of the Standards for an Implantable Medical Device and its Support Equipment (Programmers, etc.)

Category Origin Standard Description

EMC European Standards EN 55011 Industrial, scientific, and medical radio frequency equipment—radio disturbance
characteristics—limits and methods of measurement

EN 61204-3 Low-voltage power supplies, DC output
EN 61000 Electromagnetic compatibility, parts 2 and 4
IEC 61000 Electromagnetic compatibility, parts 1 and 3

USA IEEE 139 IEEE recommended practice for the measurement of radio frequency emission
from industrial, scientific, and medical (ISM) equipment installed on user’s
premises

IEEE 299 IEEE standard for measuring the effectiveness of the electromagnetic shielding of
an enclosure

IEEE C63.011 Limits and methods of measurement of radio disturbance characteristics of
industrial, scientific, and medical (ISM) radio frequency equipment

IEEE C63.18 Recommended practice for an on-site ad hoc test method for estimating radiated
electromagnetic immunity of medical devices to specific radio frequency
transmitters

Safety European Standards EN 61204 Low-voltage power supplies, DC output—safety requirements
EN 45502-1 Active implantable medical devices—general requirements for safety
EN 45502-2-1 Particular requirements for pacemakers
EN 45502-2-2 Particular requirements for implantable defibrillators

IEC IEC 60086 Primary batteries
IEC 60601-1 Medical electrical equipment, part 1—general requirements for safety
IEC 60601-1-2 Medical electrical equipment, part 1—general requirements for safety, section

2—EMC (applicable to non-implantable parts of implantable devices)
IEC 60601-1-4 Medical electrical equipment, part 1—general requirements for safety, section

4—programmable electrical medical systems
USA UL 60601-1 Medical electrical equipment, part 1—general requirements for safety

IEEE C95.1 IEEE standard for safety levels with respect to human exposure to radio frequency
electromagnetic fields, 3 kHz–300 GHz

356
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

IEEE C95.3 Recommended practice for measurements and computation of radio frequency
electromagnetic fields for human exposure, 100 kHz–300 GHz

IEEE C95.3 IEEE recommended practice for measuring potentially hazardous electromagnetic
fields of RF and microwave

ISO ISO 11197 Medical electrical equipment—particular requirements for safety of medical
supply units

ISO 14708 Implants for surgery—active implantable medical devices—Part 1: General
requirements for safety, marking, and for information to be provided by the
manufacturer

ISO/IEC Guide 63 Guide to the development and inclusion of safety aspects for medical devices
ISO/TR 16142 Medical devices—guidance on the selection of standards in support of recognized

essential principles of safety and performance
ISO 14971 Application of risk management to medical devices (note: this is becoming a very

important document)

Biocom
patibility

USA–FDA 21 CFR 58 Prescribes practices for nonclinical laboratory studies to support applications to the
FDA for medical devices

ISO ISO 10993-1 Use the Blue Book Memorandum from the FDA for testing for neurotoxicity and
immunotoxicity of materials

CENELEC: European Committee for Electrotechnical Standardization; IEC: International Electrotechnical Commission; IEEE: Institute of Electrical and
Electronics Engineers; ISO: International Organization for Standardization.

Im
plan

ted
M
edical

D
evices

357

subjective issues (e.g., comfort andutility), performance (e.g., volume,weight,
power consumption, battery life), safety, FDA approval, and certification.
While marketing might initiate the requirements, the systems architect or

the team leader is the primary author of the requirements. Many people
contribute significantly to preparing the requirements. Table 14.2 estimates
as much as 10,800 hours (over 64 months or 5 years of effort!) to prepare
requirements over three phases, which indicates just how important
requirements are.
You should implement a dedicated process for requirements that takes

input from patients, physicians, medical staffs, customers, marketing, stan-
dards, and FDA regulations. The process should have a clearly defined flow
from intent, through the codification of intent, through review, and endwith a

TABLE 14.4

Referenced Standards from ISO 14708-3 (Implantable Neurostimulators)

Standard Description

ANSI/AAMI
PC69:2000

Active implantablemedical devices—Electromagnetic compatibility—
EMC test protocols for implantable cardiac pacemakers and
implantable cardioverter defibrillators

ISO 780:1997 Packaging—Pictorial marking for handling of goods
ISO 8601:2000 Data elements and interchange formats—Information

interchange—Representation of dates and times
ISO 10993-1:2003 Biological evaluation of medical devices—Part 1: Evaluation and

testing
ISO 11607:2003 Packaging for terminally sterilized medical devices
ISO 14155-1:2003 Clinical investigation of medical devices
ISO 14971:2000 Medical devices—Application of risk management to medical

devices. Amendment 1:2003
ISO 15223:2000 Medical devices—Symbols to be used with medical device labels,

labeling and information to be supplied. Amendment 1:2002
IEC 60068-2-14:1986 Environmental testing—Part 2: Test. Test N: Change of temperature
IEC 60068-2-47:2005 Environmental testing—Part 2-47: Tests—Mounting of specimens for

vibration, impact and similar dynamic tests
IEC 60068-2-64:1993 Environmental testing—Part 2: Test methods—Test Fh: Vibration,

broad-band random (digital control) and guidance.
Corrigendum 1:1993

IEC 60601-1:2005 Medical electrical equipment—Part 1: General requirements for basic
safety and essential performance

IEC 60601-1-2:2001 Medical electrical equipment—Part 1: General requirements
for safety—2
Collateral standard: Electromagnetic compatibility—Requirements
and tests. Amendment 1:2004

IEC 60601-2-27:2005 Medical electrical equipment—Part 2–27: Particular requirements for
the safety, including essential performance, of electrocardiographic
monitoring equipment

IEC 61000-4-3:2002 Electromagnetic compatibility—Part 4–3: Testing and measurement
techniques—Radiated, radio frequency, electromagnetic field
immunity test

This Standard is at the Draft International Stage and is not Yet Published as of November 2006.

358 Developing Real-Time Embedded Products

clear connection to validation testing. Your requirements process will be
company specific and can be policy that is used in project after project.

14.8 Analysis

14.8.1 Feasibility

Feasibility derives from a number of sources. Marketing often initiates the
concept. That concept should then be subjected to a variety of different
studies and analyses: university research, focus groups, surveys, heuristics,
calculations, numerical simulations, and testing.
Research in a university medical center is very important, if not mandatory;

prototypes may be tested for safety, efficacy, feasibility, and utility. The
research will result in medical publications that benefit from peer review.

14.8.2 Focus Groups

Focus groups discuss issues and potential product concepts to clarify need,
operations, and utility. The selected participants discuss concerns and
specific issues related to the treatment field of the device. A facilitator
directs the discussion and asks questions to find out how and why the
device might be useful or how it may not be useful.
While participants discuss and answer questions, your team observes

from behind a one-way mirrored wall. Your team does not participate at all,
except to pass the occasional note to the facilitator if a point needs to be
clarified.
In most cases, your company will contract a company that specializes in

running focus groups to hold themeetings. The contracted companyprovides
the facilities, the facilitator, and the discussion outline; they are expert in
running focus groups and know how to avoid bias in obtaining the answers.
Often the participants are compensated in some way—stipend, food, or
entertainment tickets—to take several hours of their time to attend a session.
Focus groups tend to be most useful during the first two phases of a

project. They are one way to help clarify issues during the ‘‘fuzzy front end.’’
Marketing often sets up the focus groups. I strongly advocate that

designers and engineers get to sit in on one or more sessions; seeing
potential customers and patients respond to questions and your concepts is
always eye-opening!

14.8.3 Surveys

Surveys serve much the same purpose as focus groups but can cover a
wider audience, more quickly. Again, the science of surveys is an expertise
that most of us do not have. Contracting a company to run your surveys can

Implanted Medical Devices 359

make a lot of sense; they know how to prepare a survey that avoids bias and
still gets useful answers for you.
Surveys tend to be most useful during the first two phases of a project.

They are one way to help clarify issues during the ‘‘fuzzy front end.’’
Marketing often sets up the surveys. Designers and engineers should

participate to ensure that no important issues are overlooked.

14.8.4 Heuristics, Calculations, and Numerical Simulations

These types of analyses tend to be very company specific. I would urge
you to collect heuristics and codify a number of basic, but useful, tools to
perform your analyses. Basic spreadsheet calculations, such as Table 14.2,
can help you quantify your effort.
You can purchase commercial programs for modeling thermal heat paths

or EMI. These can be useful simulations if your company designs a number
of different products; often generating your own models is eventually more
useful (such as done by Keithley Instruments in Chapter 6).

14.8.5 Storyboarding

Storyboarding is a form of prototyping that can be very useful for a system
or device that has a user interface. A storyboard or a series of storyboards
helps designers plan sequences of operations; the storyboard can quickly
clarify functions and show where potential problems and unforeseen
interactions might exist.
User interfaces may refer to either patients or physicians (and their

medical staffs); each has their set of concerns in learning how to use a new
interface. A training specialist who understands storyboarding can really
assist the design team to understand the necessary operations and the
appropriate order sequence of those operations.
It is also good for the design team to talk to medical staff and patients to

learn how they perceive the device and its interface. Training on the use of
the device and its interface is one of the sequences of actions that you need
to take seriously.

14.8.6 Testing

Testing is important for feasibility analysis, too. You have a variety of tests
that you might conduct to assure feasibility:

� University research into basic physiology

� Prototypes for engineering studies of function, durability, and
reliability

� Materials research and environmental tolerance (the human body
is extraordinarily corrosive)

360 Developing Real-Time Embedded Products

� Animal trials, where cats, dogs, or pigs receive the implants and
are studied for effects

� Clinical research with possibly different versions of prototypes

Remember, prototypes are just that—they are not close to the finished
product in development. Feasibility shown by prototype is only about 5% of
the effort to develop the final marketable device (see Table 14.2)!

14.9 Design Trade-Offs

14.9.1 Requirements

Implantable medical devices have many different types of requirements.
They span the gamut from clinical concerns, physiological issues, and
sterilization to materials, physical parameters, software operations, and
subjective perceptions.
While the team lead or systems architect may own the requirements,

everyone on the team contributes to preparation of the document.
Requirements require a significant effort during the first three phases of
development.

Clinical concerns: The clinical requirements all have to do with how the
device is handled and used by medical staff. The requirements include
implantation procedures, storage and shelf life, indications of when to use
the device, and indications of when not to use the device.

Physiology: The physiological requirements have to do with the expected
results when implanting and using a device:

� Physiological reactions that can be expected

– Types of response

– Ranges of response

� Durations of response

� Side effects

� Long term effects

– Accommodation of stimuli

– Change in response

– Hypersensitivity

– Chemical imbalances or changes

� Ionic deposits.

Sterilization: Sterilization of themedical device is a first step and an important
requirement. There are several different types of sterilization—autoclaving

Implanted Medical Devices 361

(steam heat and high pressure), chemical washes, and chemical gases. Sterile
packaging and handling is also critical to safe and proper implantation of
devices. The manufacturer usually performs the sterilization and packaging
and must know and follow these requirements.
The medical personnel that handle the purchased devices must know

how the packaged devices are stored before surgery and how they are
delivered and opened during surgery. Sterile procedures must be articu-
lated in the requirements.

Materials: The materials within a medical device must protect the patient
from any chemical interactions that could proceed from the device. The
materials also must be inert and highly resistant to corrosion. All device
enclosures must be welded closed to form hermetic seals to prevent the
leakage of body fluids into the device and the leaching of toxic substances
out of the device and into the body.

Physical parameters: The physical parameters include mechanical size and
weight, electrical operations and power reserves, the user interface, fluid
hydraulics and reservoirs, and communications links and protocols.
Some mechanical requirements might include:

� Weight not to exceed

� Size not to exceed

� Volume not to exceed

� Attachment points to body

Some electrical requirements might include:

� Operational modes

� Power consumption for different operational modes

� Battery power, energy content, and reserves

� Power down or sleep modes

� Reliability

� Fail safe operation and fault tolerance

Some user interface requirements might include (these all have to do with
the external programming or communications device):

� Sequences of operations—intuitive and clear

� Size of keypad

� Size of display

� Haptic feel

� Resist disinfectant washes

362 Developing Real-Time Embedded Products

Some fluid hydraulic requirements might include:

� Reservoir capacity

� Power consumption for different operational modes

� Pump size and power delivery

� Reliability

� Fail safe operation and fault tolerance

Some communication requirements might include:

� Data formats

� Transmission protocols and error correction

� Memory requirements

� Power levels

Software operations: The requirements on the software operations are
usually the most extensive of all. Some software requirements might include:

� Operational modes

� Therapy delivery and control

� Power management

� Communications

� Fail safe operation and fault tolerance

Subjective parameters: The subjective parameters usually have to do with
comfort levels for the patient, ease of use, and ease of training.

14.9.2 Hardware

Probably the biggest concern for implanted electronics is power consum-
ption. I know of at least one manufacturer who designs and fabricates their
own custom ICs, particularly small microcontrollers for implanted medical
devices. They want sufficiently low power consumption so that the
implanted device will function for years before draining the battery.
Another major concern is fault-tolerant operation. Should anomalous

behavior occur, whether externally generated or due to internal failure, the
device should operate or shut down in a safe way. One example of this need
is the communications link—it should be robust. I know of another situation
where a particular model of device behaved erratically when patients
walked between the security monitors in a particular department store.
EMC and EMI need attention while designing circuits, too. Proper layout

of components, power and return planes, and signal traces will cover the
majority of the shielding concerns. See References 9 and 10. Printed circuit

Implanted Medical Devices 363

boards (PCBs) need to resist moisture absorption and be durable to allow
high-density traces and circuits; ceramic substrates with gold-plated traces,
rather than FR4 and copper, can achieve these goals.
Primarily electronic design engineers do this work, although they obvi-

ously take input from software engineers and mechanical engineers.

14.9.3 Power

Battery capacity and power consumption, as just stated in the previous
section, are critical issues to the operational duration of an implanted
device. Most research has been into batteries with higher energy density.
One concern with these high-energy batteries is the risk of generating
extreme heat or even explosions with a short circuit fault. Designers need to
put in place appropriate safeguards against excessive current demand and
heat build-up.
Interestingly, recharging batteries within implants has not been popular

even though it is feasible; only a very few companies have incorporated
rechargeable batteries in their implantable devices. Apparently, the addi-
tional burden of equipment and strapping on a belt with a recharging coil
and waiting (or sleeping) has been considered too time-consuming or too
much effort for physicians and patients to do. It may also carry liability too
great for medical manufacturers to spend the time and money to gain FDA
approval—they do not seem willing to produce a device that might put
patients at risk should they forget to recharge their implanted devices. It all
comes down to cost versus benefit—does the benefit of a longer-lasting
device that reduces the number of surgeries and lowers the total cost per
patient over many years sufficiently balance the increased risk of mistakes
in recharging?

14.9.4 Software

Software in an implantable medical device is safety-critical development if
there is any! Development processes need to include thorough studies that
support detailed and complete requirements, careful design, properly-
conducted code reviews, tests, and field tests.
Some companies build their own custom, time-slice real-time operating

systems (RTOSs) that use a cyclic executive; these are straightforward to
analyze [11]. A time-slice RTOS can guarantee that no tasks are starved or
left undone; the trade-off for that guarantee is efficiency.
A certified compiler is a worthwhile investment for medical-software

development. If your company fabricates its own processors, then your
team or someone in your company will have to write and test a compiler
and linker. If you decide to purchase the RTOS, there are several companies
that provide certified software products for safety-critical markets.

364 Developing Real-Time Embedded Products

Software engineers who develop the software must work closely with the
biomedical engineers to assure correctness in operations. They will have to
work with the electrical engineers who develop the hardware to assure
proper and efficient handling of peripheral devices and input/output (I/O).
Finally, the software team must work closely with the test team to do unit
and system testing.

14.9.5 Hardware vs. Software

As complexity of medical devices increases more functions will implement
in software. Hardware accelerates specialty functions. The balance is
somewhat dictated by how thoroughly the software modules and hardware
subsystems can be verified.
One aspect of fault tolerance is use of a hardware or mechanical function

as a safety check or limit for the software operation. Conversely, software
can check and verify hardware function. An example might be a restriction
in the delivery tube that will not allow fast delivery of drug. Another might
be a hardware counter that independently prevents an overdose of opera-
tions when it times out. The watchdog timer is a simple example of a
hardware check on software operation. Another example might be a ther-
mal sense switch on the battery that opens should temperature exceed a
maximum limit and shuts down the device to prevent a failure from
overheating.
The systems architect needs to work closely with the team to specify the

appropriate trade-offs between hardware and software. Most of this work is
performed in Phase 1, concept development.
Until recently, upgrades were not allowed in implantable medical

devices; once in the patient’s body, the device was not going to be changed.
The software and hardware are FDA-approved and-certified as a system—it
can not be changed after approval. If you do want to change something, you
must take the device through a whole new development cycle and set of
approvals. The implantable medical device market does not have ‘‘service
release’’ policies to fix problems, like automobiles in Chapter 7.
That situation has changed in the past few years. Some programmers and

implantable devices now have the ability to receive software downloads for
upgrades and fixes. Currently, these changes are limited to patches.

14.9.6 Buy vs. Build

Most subsystems within an implantable medical device are custom
designed and built. The basic components may be purchased, although in
some cases, even the processors can be custom application-specific inte-
grated circuits (ASICs). The concerns for specificity, reliability, longevity,
obsolesce, and inventory in commercial off-the-shelf (COTS) products all

Implanted Medical Devices 365

disappear with custom designs. The trade-off is that cost, particularly due to
non-recurring engineering (NRE), increases greatly.
The COTS items in an implantable medical device might include:

� Electronic components and ICs

� Electric motors

� Batteries—but these often are closely specified by outside vendors
The custom-design subsystems in an implantable medical device usually
include:

� ASICs

� PCBs

� Wires, cables, and connectors

� Electrodes

� Pumps, reservoirs, and ‘‘plumbing’’

� Sensors

� Enclosure

If you do purchase COTS components, beware of obsolescence and inven-
tory. Most likely, the vendor would not stock the selected components for
the lifetime of your product. Your company will need to do large one-time
buys and then place the components in inventory. This situation is a risk for
long-term medical devices with long development cycles.

14.9.7 Mechanical

The mechanical aspects of an implantable medical device are very impor-
tant and affect the electrical and software design. Generally, the enclosures
are hermetically-sealed, welded titanium cases; this is necessary for long-
term implantation. Most companies that build implantable devices have
captive facilities and resources for the mechanical fabrication and assembly.
Most people view these captive facilities as necessary to maintain quality
and to assure that the expertise remains available to them.

14.9.8 Manufacturing

For the same reason that mechanical machining and fabrication usually
remains in-house, most companies perform the manufacturing of implant-
able medical devices in-house. Many people see that in-house manu-
facturing better assures quality.

14.9.9 Test

Implantable medical devices have many types of tests in development.
Manufacturing will also have tests. But implantable medical devices

366 Developing Real-Time Embedded Products

do not generally have tests or diagnostics for failure; these certainly are not
needed for maintenance or repair.

14.9.10 Maintenance

Implantable medical devices are not maintained (and certainly not
repaired!); they are replaced if nonfunctional—for example, depleted
battery or failed component. This is generally true for external devices used
for communication or programming, although some companies repair these
external devices in their service departments.

14.10 Tests

14.10.1 Formal and Informal

One of the main activities in designing a medical device is testing. There are
formal tests, which are planned, executed, and rigorous; the following
sections contain more about formal testing.
Otherwise, informal tests, such as laboratory bench tests on prototype

concepts, help elucidate operations, interactions, and feasibility. The tests
comprise mock-ups and prototypes of circuits and modules. Most often the
goal is to clarify or demonstrate a single, important aspect of operation.
Most informal tests take place early in development, usually in Phase 1,
concept development. Biomedical, electrical, and software engineers per-
form these informal tests.

14.10.2 Laboratory Tests

Laboratory tests are the first in a long series of tests for developing a
medical product. They might be animal tests, clinical tests, or formal ver-
sions of bench tests. The tests invariably are under the authority of a clinical
or research review board. The tests can use early prototypes of the proposed
device to demonstrate efficacy or safety. They can also reveal physiological
operations, interactions, and feasibility.
One example of a laboratory test might be implanting a new model of

drug pump in an animal and then studying the long-term results. This type
of research can indicate whether the implanted device functions as intended
over a long period of time. It can also show if problems might occur, such as
clogging of the drug-dispensing port.
Physicians, university researchers, and biomedical, electrical, and soft-

ware engineers can together or separately participate in laboratory tests and
research. Often, the tests are conducted in university laboratories, hospitals,
or clinics early in Phase 1, concept development.

Implanted Medical Devices 367

14.10.3 Inspections, Code Walk-Throughs, and Peer Reviews

Some of you may be familiar with inspection as a part of quality control in
manufacturing. Another form of inspection includes reviews and code walk-
throughs. These are formal activities that are planned, executed, and rigorous
for all aspects of design: software, hardware, and mechanical modules and
subsystems. The primary goal of inspections is to find problems through
examination of the operations, interactions, and potential consequences.
Inspections are meetings where subsets of the design team review sche-

matics, software listings, and subsystem assemblies. The reviewers are elec-
trical, software, andmanufacturing engineers and technicians; theydiscuss the
intent, the execution of the specifications, the operations, interactions, and
potential consequences. Theyare similar todesign reviewsbuthaveanarrower
scope. Inspections also occur much more frequently than design reviews.
Inspections and code walkthroughs generally occur in the first three

phases of development. Chapter 2 and Reference 12 discuss templates for
recording the concerns and actions items that arise from inspections and
code walkthroughs.

14.10.4 Design Reviews

Design reviews, like inspections, are formal, planned, and rigorous. Their
primary purpose is to confirm that the project is adhering to the specifica-
tions. Often, specific or major operations, interactions, and consequences are
presented and discussed.
Design reviews are larger meetings and conclude each phase of devel-

opment. Sometimes, intermediate design reviews occur during a phase.
Major design reviews include all members of the design team and cover the
entire system: hardware, software, mechanics, and clinical issues. Smaller
design reviews can include designated members of the design team and can
focus on specific issues or subsystems.
Design reviews occur in all phases of development. Team members

prepare presentations to address the major concerns. The entire team and
possibly reviewers from outside the design team review the presentations,
which summarize progress and test results, schematics, and software list-
ings for the project.

14.10.5 Subsystem Tests—Hardware

Subsystem tests for the project’s hardware are a formal portion of the test
plan. The test plan prescribes the tests of the hardware subsystems; these
include tests for functionality, reliability, EMC, and EMI. These tests can tie
into a design control system, such as those described in Chapter 2, to record
the results that help confirm adherence to the specifications.
Electrical and mechanical engineers and technicians perform subsystem

tests on engineering models and initial units from a pilot production run.

368 Developing Real-Time Embedded Products

They run these tests in both laboratories and special test facilities. EMC and
EMI tests, for instance, usually require special chambers and equipment.
Subsystem tests take place in Phases 2 and 3.

14.10.6 Subsystem Tests—Software

Subsystem tests for the project’s software are a formal portion of the test
plan. The test plan prescribes the tests of the software subsystems; these
include tests for functionality and fault tolerance and recovery. These tests
can tie into a design control system, such as those described in Chapter 2, to
record the results that help confirm adherence to the specifications.
Software engineers and technicians perform subsystem tests on engi-

neering models and initial units from a pilot production run. They run
these tests in laboratories and any special facilities that might be required.
Subsystem tests take place in Phases 2 and 3.

14.10.7 Environmental

Environmental tests for the project’s hardware and mechanics are a formal
portion of the test plan. The test plan prescribes the tests of the hardware,
mechanical, and enclosure subsystems; these include tests for shock,
vibration, fluid immersion, thermal cycling, and a Highly Accelerated Life
Test (HALT). These tests can tie into a design control system, such as those
described in Chapter 2, to record the results that help confirm adherence to
the specifications.
Electrical and mechanical engineers and technicians perform subsystem

tests on engineering models and on initial units from pilot production run.
They run these tests in both laboratories and special test facilities. Shock and
vibration tests, for instance, require a shake table, while thermal cycling and
HALT tests require thermal environmental chambers. Subsystem tests take
place in Phases 2 and 3.

14.10.8 Manufacturing

Tests for manufacturability usually require a pilot run to produce the first
units of the medical device. These tests demonstrate that the device can be
fabricated and produced in volume. They are usually conducted on the
actual manufacturing and assembly line during Phase 3 by manufacturing,
electrical, and mechanical engineers and technicians.

14.10.9 Simulators

Simulators fill several roles. They can be body simulators that allow
surgeons to practice implant surgery. They can be computer models that
indicate physiological responses to therapy; these might be pharmokinetics

Implanted Medical Devices 369

of drugs from drug pumps or neural mapping for stimulators or heart
operation with pacemakers. The goal of using simulators is to understand
operations and interactions early and then iron out the problems quickly.
Physicians and biomedical engineers usually lead the effort. They conduct
these simulations in the laboratory or in their offices during the first three
phases.

14.11 Integration

14.11.1 Hardware

Integration tests for the project’s hardware are a formal portion of the test
plan, which prescribes integration of the hardware subsystems. Integration
follows the completion of the subsystem tests and strives for correct func-
tionality in the hardware.
Electrical and mechanical engineers and technicians perform integration

tests on engineering models and initial units from pilot production. They
run these tests in both laboratories and special test facilities. EMC and EMI
tests, for instance, usually require special chambers and equipment. Inte-
gration takes place in Phase 3.

14.11.2 Software

Integration tests for the project’s software are a formal portion of the test
plan, which prescribes integration of the software modules. Integration
follows the completion of the subsystem tests and strives for correct func-
tionality in the software.
Software engineers and technicians perform integration tests on engi-

neering models and initial units from pilot production run. They run these
tests in both laboratories and any special facilities that might be required.
Integration takes place in Phase 3.

14.11.3 System

Integration of the system is a formal portion of the test plan, which
prescribes integration of the mechanical, hardware, and software sub-
systems. Integration follows the completion of the subsystem tests and
strives for correct functionality in the system. Please note that most projects
do not have a clean division between integrating the software and the
hardware. Often a project will have to integrate a group of hardware
modules and software packages as a subsystem. The system grows by
adding subsystems together and testing each subset of combined subsystems.
Integration is performed on engineering models and initial units from

pilot production. Integration tests run in both laboratories and special test

370 Developing Real-Time Embedded Products

facilities to confirm functionality, reliability, and fault tolerance and to
confirm adherence to specifications. These tests can tie into a design control
system, such as those described in Chapter 2, to record the results that help
confirm adherence to the specifications.
Integration takes place in Phase 3. Selected members from across the

entire design team often help with integration.

14.11.4 Environmental

Beyond the environmental tests for the hardware subsystems, you must
perform environmental tests on the entire system. The test plan prescribes
the tests of the system; these include tests for shock, vibration, fluid
immersion, thermal cycling, and HALT. These tests can tie into a design
control system, such as those described in Chapter 2, to record the results
that help confirm that the system adheres to the specifications.
Electrical and mechanical engineers and technicians perform integration

system tests on engineering models and on initial units from pilot pro-
duction. They run these tests in both laboratories and special test facilities.
Shock and vibration tests, for instance, require a shake table, while thermal
cycling and HALT tests require thermal environmental chambers. The final
environmental tests of the system take place in Phase 3.

14.11.5 EMI and EMC

Beyond the EMI and EMC tests for the hardware subsystems, you must
perform EMI and EMC tests on the entire system. The test plan prescribes
the EMI and EMC tests of the system; these include tests for conducted and
radiated emissions and susceptibility. These tests can tie into a design
control system, such as those described in Chapter 2, to record the results
that help confirm that the system adheres to the specifications.
Electrical engineers and technicians perform EMI and EMC tests on final

system as represented by the engineering models and by the initial units
from pilot production run. They run these tests in both laboratories and
special test facilities. EMC and EMI tests usually require special chambers
and equipment. The final EMI and EMC tests of the system occur in Phase 3.

14.12 Manufacturing

14.12.1 Electrical and Electronic

Manufacturing for the electronics of an implantable medical device includes
fabricating the PCBs, fabricating the cables and wiring, and assembling
the components onto boards. Highly skilled technicians and trained

Implanted Medical Devices 371

personnel manufacture the production medical device. Most manufacturing
of medical devices is done by hand-assembly. Sometimes, a product and its
volume of production will indicate pick-and-place automated assembly and
solder reflow ovens. Generally, cables and wiring are almost always done
by hand. Manufacturing occurs in Phases 4 and 5.

14.12.2 Mechanical

Manufacturing for the mechanical aspects of an implantable medical
device includes fabricating the mechanical enclosure and mechanisms and
assembling the completed circuit boards, motors, actuators, cables, and
wiring into the enclosure. Again, most manufacturing of medical devices is
hand assembly by highly-skilled technicians and trained personnel.
Machining of the mechanisms and enclosures may be accomplished with
computer-controlled machines, such as mills and lathes, but the mechanical
components are not stamped in a mass-produced fashion.

14.12.3 Assembly

Most manufacturing of medical devices is done by hand-assembly. This
mode of manufacturing is dictated by the small production runs for medical
devices where robots are too inflexible. Manual labor by skilled and trained
personnel is more expensive, but humans are more adaptable and flexible
than robots.
Most medical companies have their own captive manufacturing plant.

They do this to maintain quality in the product and assure retention of
skilled resources.

14.12.4 Tests

Many different tests can be run on the assembly line. The three most
prominent are visual inspections, manual checks of test points, and auto-
matic test with automatic test equipment (ATE). Technicians and trained
personnel perform these tests. These tests usually intersperse between
various steps in the fabrication and assembly of a medical device.
Visual inspections check for correct assembly. Are components installed

in the right orientation? Are solder joints of the right shape and reflectance?
Are labels correctly applied and legible? Is there any evidence of cracks or
flaws?
Electrical tests can be either manual or ATE operations. Test personnel

can probe test points to verify the correct range of voltage levels or for the
correct signals. ATE can run a sequence of complex tests quickly to confirm
a major portion of functionality.

372 Developing Real-Time Embedded Products

14.13 Support

14.13.1 Launch

After FDA approval, the product launch occurs in Phase 5, commercial
release. Sales, marketing, and clinical representatives train physicians both
in the use of the medical device and in surgical implantation techniques;
they also train medical staff to program the device. The company partici-
pates in medical trade shows, sponsors medical conferences, and sponsors
ongoing university medical research on the devices.
Product launch usually begins with distribution of marketing literature

and with training of sales representatives. In some cases, the sales re-
presentatives will introduce or ‘‘talk-up’’ a new product for weeks and
months before it is available so that customers are ready to start using it at
the time of launch.

14.13.2 Logistics

The company must set up a carefully controlled distribution of product.
The distribution includes devices, literature, advisory boards, Web sites,
and 24-hour telephone help lines. Sales teams and clinical representatives
continue training of new customers, physicians, and medical teams. This
effort continues for the life of the product.
Some implantable devices, such as drug pumps, have chambers that need

refilling or replenishment. The company and its distribution channels need
to supply or support the replenishment.

14.13.3 Technical Support

Technical support is a critical part of the distribution of the device. Physicians
and theirmedical staff need instruction for handling, implanting, anddealing
with anomalies. Trained personnel handled routine concerns; service en-
gineers step in if a significant problem or recall occurs. Sometimes, members
of the original design team get called in to help with a problem.
Implantable medical devices generally have no means for maintenance

other than replacement of a failed device. The only support that might be
considered maintenance is if some substance needs replenishment.
Technical support continues for the life of the product. Most companies

maintain Web sites and toll-free numbers to serve physicians, medical staff,
and patients.

14.14 Disposal

Medical waste disposal is a major concern and tightly controlled. In the
United States, the FDA requires companies to recover their devices at the

Implanted Medical Devices 373

end of life and maintain life-cycle records. Trained support personnel
perform these tasks, which, like technical support and logistics, continue for
the life of the product.

14.15 Liability

14.15.1 Economics

Recalls of defective medical devices because of a manufacturing problem or
design flaw can sink a company. The entire team needs constant awareness
of the liabilities and the potential downsides of design choices. Even with
better processes and more regulation, medical device liability remains high
with society because the complex systems that compose medical devices
have undergone dramatic increases in unforeseen circumstances and use.
A major flaw can surface at any time; the most problematic seem to arise

several years after product launch. These kinds of problems also seem to be
the most difficult to diagnose and fix.

14.15.2 Safety

Safety liability refers to any physical or psychological harm to a patient.
Harm can even be perceived and not necessarily be organic. While you
cannot prevent perceived harms, you can reduce their possibility of
occurrence through good design, good practices, and good procedures.
Carefully educating everyone in the treatment regime, from physician to
patient, can help reduce incorrect use.

14.15.3 Legalities

Legal liability includes any or all of the above. Most companies in the
United States are corporations. The corporate structure provides a measure
of protection (but not complete protection) from lawsuits for individuals
within a company. Even with the corporate shield, you can still suffer costly
lawsuits and defamation in the public media and press, which ultimately
might lose the company.

14.16 Summary

14.16.1 Emphases

Any medical device must follow the FDA’s Design Control Guidance,
which is freely available on the web along with some other useful docu-
ments [3–8]. This is particularly true for implantable medical devices.

374 Developing Real-Time Embedded Products

Set up good practices and procedures and complete documentation;
specialists in documentation and in dealing with the FDA can smooth the
process. Implantable devices almost always require a large team of people
with many different skills.
As always, good people can make any process work. No process,

regardless how good it is, can make bad people work well.

14.16.2 Gotcha’s

Developing an implantable medical device has many pitfalls. The
market tends to have low-volume sales but high prices. The tradeoffs are
endless—therapeutic effectiveness, power, weight, longevity, and cost.
Attaining fault tolerance is a never-ending battle to make devices safer.
Development usually takes 4–8 years or longer!

Acknowledgment

My thanks to Curt Sponberg atMedtronic, Inc. for reviewing this chapter and
providing insight into some of the standards for medical devices.

References

1. Pazemenas, V., Rapid Development for Medical Products, IEEE Instrumentation
& Measurement Magazine, Vol. 3, No. 2, June 2000, p. 35.

2. Document templates may be found at www.cool-stream.com
3. Write It Right, Recommendations for Developing User Instruction Manuals for Medical

Devices Used in Home Health Care, FDA Center for Devices and Radiological
Health, August 1993.

4. EMC Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual Reference
Guide, pp. 75–82.

5. Product Safety Standards, Compliance Engineering, Vol. 21, No. 1, 2004 Annual
Reference Guide, pp. 165–172.

6. U.S. FDA, Design Control Guidance for Medical Device Manufacturers, March 11,
1997, relates to FDA 21 CFR 820.30 and sub-clause 4.4 of ISO9001. You can find it
at http://www.fda.gov/cdrh/comp/designgd.pdf

7. Sawyer, D., Do it by Design, An Introduction to Human Factors in Medical Devices,
FDA Center for Devices and Radiological Health, December 1996.

8. Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk
Management, FDA Center for Devices and Radiological Health, July 18, 2000.

9. Brooks, D., Signal Integrity Issues and Printed Circuit Board Design, PTR Prentice
Hall, Upper Saddle River, NJ, 2003.

10. Bogatin, E., Signal Integrity: Simplified, PTR Prentice Hall, Upper Saddle River,
NJ, 2004.

11. Laplante, P., Real-Time Systems Design and Analysis, 3rd Edition, IEEE Press,
Wiley-Interscience, Piscataway, NJ 2004, p. 91.

12. Design review templates can be found at www.cool-stream.com

Implanted Medical Devices 375

15
Summary Comparisons Across the
11 Case Studies

15.1 Comparing the Case Studies

This chapter wraps up the 11 case studies with tabulated comparisons. Each
of the following sections in the chapter, 15.2 through 15.13, aligns with one
area across the case studies. These areas are as follows:

� Market

� People and disciplines

� Architecting and architecture

� Scheduling

� Documentation and processes

� Requirements and standards

� Analyses

� Design trade-offs

� Test and integration

� Manufacturing

� Support and service

� Liability

Each section is self-contained. This chapter does not have a summary or
conclusion; each section acts as a summary for that particular concern across
the case studies.
Not all the comparisons are exact or strictly objective. As an example, some

products may have little integration while others have a medium amount of
integration. This is a subjective evaluation that I have made based on a few
products that have very extensive programs of integration.

377

15.2 Market

Each product in these 11 case studies has a worldwide market. Every
market has specific concerns ranging from the volume of sales to the ex-
pected longevity of the product to its profit margin with a myriad of
parameters in between. Table 15.1 lists some of these concerns.
The sales volume depends on the particular model of product. Simple, cheap

implantable devices will sell in far greater volume than complex, expensive
devices. In some cases the sales volume is considered proprietary and is
unknown, though you can begin to guess at the volume by looking at the size of
the staff for design and support. Longevity is either a vague sort of range or a
median value; clearly some products will last twice or three times the duration
shown.

TABLE 15.1

Comparison of Market Concerns for the 11 Case Studies

Sales

(units/year)

Longevity

(years) Comments and Concerns

Large appliances 3–5 million 20–40 Slim profit margins; objectives
are low cost and high reliability

Small office telecoms 180,000–250,000 3–5 ‘‘High-mix, low-volume’’
production requiring flexible
facilities

Lab instruments 45,000–60,000 5–20 ‘‘High-mix, low-volume’’;
500 different products

Automobile ECM 200,000–1,000,000 5–10 Development takes 2 years, up-
dates may occur over 5 years;
must archive source code for
10 years after final update

Oil field flowmeters a 15–30 Sales follow oil industry ups-
and-downs

Military equipment 50–100 20 Requirements depend on opera-
tional arena: O-Level, I-Level,
D-Level

Space instrument 1 5–15 Requirements depend on mission
profile

Commercial space
system

10–40 0.001–1 Growing market, more products
being sold every year

Satellite subsystem 1 1–3 Planned to build up to 8 units to
amortize cost

Neurostimulator
programmer

2,000–10,000 10 Low cost (many doctors expected
it to be free), must be rugged and
robust

Implantable devices 40,000–5 million 2–8 High reliability demanded; indi-
vidual product sales range bet-
ween US$5K and US$40K

a Proprietary number, unknown how many units are sold each year.

378 Developing Real-Time Embedded Products

15.3 People and Disciplines

Many different people can aid the development of any one product. The
case studies focused on the developers and designers and those directly
involved in the definition of the product. The case studies did not include
all staff throughout the life cycle of a product. For larger volume production
projects, I did not include manufacturing, assembly, test, delivery, and
administrative personnel. For the smaller projects, such as satellite and
space instruments, I included everyone—it is difficult to separate devel-
opers from technicians on these kinds of projects. Table 15.2 attempts to list
the people most prominently involved in development.

TABLE 15.2

Comparison of Responsibilities Within Development Teams for the 11 Case Studies

People Per Team
People Involved in Definition,

Design, and Development

Large appliances 8–30 Four software developers, 3 hardware
engineers, 1 CAD operator, 1 technician,
several control engineers (part time)

Small office telecoms 3 Very small engineering team—2 or 3
engineers, usually 1 hardware engineers
and 1 or 2 software developers

Lab instruments 3–20 Software and hardware engineers, mar-
keting, R&D scientists, manufacturing
engineers, application support

Automobile ECM 8 Originally mechanical engineers but soft-
ware, firmware, and hardware engineers
are changing the composition of the team

Oil field flowmeters 10 PhD physicists, fluid dynamicists,
firmware and hardware engineers,
manufacturing engineers

Military equipment 6–30 Many different types of engineers, tech-
nicians, training and documentation
specialists

Space instrument 8–30 Program manager, lead, systems, and
many different types of engineers,
support technicians

Commercial space system 6 One lead or systems engineer, 1 software,
2 hardware, 2 technicians

Satellite subsystem 35 Program manager, Lead, Systems, and
many different types of engineers,
support technicians

Neurostimulator
programmer

12 Two vice presidents, 4 software engineers,
1 hardware engineer, 2 software testers, 1
technical writer, 1 trainer, 1 support staff

Implantable devices 50–70 Huge, varied team—many specialties

Summary Comparisons Across the 11 Case Studies 379

Interestingly, the job descriptions seemed very specific for high-volume
products, implanted medical devices, or space instruments. People have
very clear delineations of responsibilities in those types of projects.
Smaller companies and projects required people to ‘‘wear multiple hats’’ in
developing their products.

15.4 Architecting and Architecture

Architecture plays the key role in defining a product. Chapter 1 briefly
explained some of the higher-level concepts such as distributed, centralized,
modular, monolithic, loose coupling, and tight coupling. Another concern,
often overlooked by designers, is the human interface; it should be con-
sidered in the basic concept and definition of the product. One lower-level
(or bottom-up) concern is the type of processors that will be incorporated in
the product.
Table 15.3 provides an overview of some architectural features in the 11

case studies. As many products become more complex, their architecture
tends to become more distributed. Most products still rely on some sort
of central processing, however, good modular design often helps with

TABLE 15.3

Comparison of Architectural Concerns for the 11 Case Studies

Distributed

vs.

Centralized

Modular

vs.

Monolithic

Loose vs.

Tight

Coupling

Types of

Processors

Human

Interface

Large appliances Cent Mono t mC s, e
Small office tele-
coms

Cent Mono t mC, mP s, m

Lab instruments Cent Mod t mC, mP,
DSP

s, e

Automobile ECM Cent Mono t mC n
Oil field flowmeters Dist Mod L mC, mP n
Military equipment Cent, dist Mod, mono t, L mC, mP,

DSP
c, *

Space instrument Cent Mod, mono t mP c, *
Commercial space
system

Cent Mod, mono t mC, DSP,
FPGA

c, *

Satellite subsystem Dist Mod L mC, mP s, *
Neurostimulator
programmer

Cent Mono t mP s, c, e

Implantable devices Cent Mono t mP n

s ¼ simple to use; c ¼ complex operations. Development effort: e ¼ extensive; m ¼ some;
n ¼ none; t ¼ tight; L ¼ loose. * ¼ specialized for trained personnel or varies.

380 Developing Real-Time Embedded Products

future upgrades and with integration; these are two disparate concerns
aided by modular design.
The seeming paradox in the human interface for space systems is that all

spacecraft have some sort of ground support system, which usually has a
complicated interface to display the variety of desired parameters but rel-
atively little effort is spent developing it. Military equipment in depot-level
facilities can be similar to spacecraft support equipment; consequently, they,
too, may have complex configurations for the human interface. Generally,
both situations involved highly trained and skilled operators, so their
interfaces do not require all the niceties of a commercial consumer product.

15.5 Scheduling

Many products have tight constraints on time-to-market because of man-
dated deadlines, hence they use top-down scheduling. Some complex
products have such a long development cycle, with certifications and
approvals along the way, that they use bottom-up types of scheduling.
Table 15.4 shows the comparisons of schedules across the 11 case studies.

15.6 Documentation and Processes

Many companies still use proprietary processes. Nevertheless all companies
document their products to some degree. Table 15.5 provides the summary
comparisons of documentation and processes for the 11 case studies.

TABLE 15.4

Comparison of Scheduling for the 11 Case Studies

Top-Down Bottom-Up

Large appliances �

Small office telecoms � �

Lab instruments � �

Automobile ECM �

Oil field flowmeters � �

Military equipment �

Space instrument � �

Commercial space system � �

Satellite subsystem �

Neurostimulator programmer �

Implantable devices �

Summary Comparisons Across the 11 Case Studies 381

15.7 Requirements and Standards

Each market has different requirements and different standards. Most
consumer-oriented products have to be certified by either Underwriters
Laboratory (UL) or have Conformite Europeene (CE) marking. Interesting,
military equipment and spacecraft designs are moving away from strict
standards and toward reliance on statements of work (SOW) to define the
necessary requirements. Table 15.6 lists some of those standards to which
these products conform.

TABLE 15.5

Comparison of Documentation and Processes for the 11 Case Studies

Document Type Process Model

Large appliances ISO V þ S
Small office telecoms Proprietary W þ S
Lab instruments Proprietary S
Automobile ECM Proprietary V
Oil field flow meters ISO W
Military equipment ISO W
Space instrument Proprietary W
Commercial space system CMMI* V þ S
Satellite subsystem Proprietary W
Neurostimulator
programmer

FDA V

Implantable devices FDA V

ISO ¼ International Organization for Standardization; CMMI ¼ Capability
Maturity Model Integration; * ¼ currently implementing; FDA ¼ Food and
Drug; W ¼ waterfall; V ¼ V-model; S ¼ spiral.

TABLE 15.6

Comparison of the Standards Used in the 11 Case Studies

Standards

Large appliances UL, CE
Small office telecoms UL, CE
Lab instruments UL, CE
Automobile ECM SAE, OSEK, CAF, EPA
Oil field flowmeters UL, ATEX, CSA, GOST
Military equipment Military-Standards, SOW
Space instrument SOW, NASA
Commercial space system SOW, NASA
Satellite subsystem SOW, NASA
Neurostimulator programmer FDA
Implantable devices FDA

UL ¼ Underwriters Laboratory; CE ¼ Conformite Europeene marking;
SOW ¼ Statement of Work; FDA ¼ Food and Drug Administration.

382 Developing Real-Time Embedded Products

15.8 Analyses

Designers and development teams determine the feasibility of product
concepts through analyses. A variety of different analyses might apply to
any given product. Table 15.7 lists some of the more typical analyses used
by companies. Not all companies use all six different types of analysis, and
only two companies in this book use all six in driving their carefully con-
trolled processes for laboratory instruments and medical devices. I have
since found that a large telecoms company does all these analyses as well
for designing products.
While Agar Corporation does not use heuristics explicitly in designing

flowmeters, they essentially have a handbook of rules for designing cir-
cuits and systems to avoid sparks and undesired ignitions. Several com-
panies rely on detailed prototypes, which approximate the final product,
to prove feasibility and utility. Aerospace development will often use ei-
ther an engineering development unit or an engineering model to confirm
earlier analyses.

15.9 Design Trade-Offs

Design trade-offs require many dimensions. This section has nine subsec-
tions to compare how the 11 case studies make their individual assessments
for design.

TABLE 15.7

Comparison of the Different Analyses Used in the 11 Case Studies

b h c r s p

Large appliances � � � � �

Small office telecoms � � �

Lab instruments � � � � � �

Automobile ECM � � � �

Oil field flowmeters �

Military equipment � �

Space instrument � � � � *
Commercial space
system

� � � � *

Satellite subsystem � � � � *
Neurostimulator
programmer

� �

Implantable devices � � � � � �

b ¼ business case; h ¼ heuristics; c ¼ calculations; r ¼ risk analysis (includes FMEA, FTA, or
ETA); s ¼ simulations; p ¼ prototype testing; * ¼ engineering development unit or engineering
model.

Summary Comparisons Across the 11 Case Studies 383

15.9.1 Various Goals

This subsection has seven high-level considerations for defining the design
of a product. These extend the architectural considerations in Section 15.4.
Table 15.8 lists these considerations and the comparisons across the case
studies.

15.9.2 Processor Elements

Processing varies widely between different products. Table 15.9 compares
the processors and processing elements used in the case studies. It is more
specific than the architectural considerations in Section 15.4.

15.9.3 Other Circuit Concerns

There are other circuit issues, besides choice of processor, that drive design.
Table 15.10 lists some of these concerns.

15.9.4 Cooling

One of the specific issues in system design is cooling. Table 15.11 lists how
each of the case studies approaches cooling.

15.9.5 Power

Another of the specific concerns in system design is power conversion and
distribution. Table 15.12 lists how each of the case studies approaches
power conversion and distribution.

TABLE 15.8

Comparison of the Different Analyses Used in the 11 Case Studies

C LT Sa s/w D H P

Large appliances � � � � �

Small office telecoms �

Lab instruments � �

Automobile ECM � � * � �

Oil field flowmeters � � � � � �

Military equipment � � � �

Space instrument � * � � �

Commercial space
system

* �

Satellite subsystem * � � �

Neurostimulator
programmer

� � � � �

Implantable devices � � � � � �

C¼ cost sensitive; LT¼ long term; Sa¼ safety; s/w¼ careful software processes; *¼wide variation
or implementing better processes; D ¼ dependable; H ¼ harsh environments; P ¼ low power
consumption.

384 Developing Real-Time Embedded Products

TABLE 15.10

Comparison of the Different Circuit Issues Used in the 11 Case Studies

Comments and Concerns

Large appliances 20–40 year lifetimes. Problems with vendors: (1) changing
fabrication parameters—smaller design rules and lower
voltages—causing EMI problems, and (2) cannot specify flash
memory retention greater than 20 years. Prefer single-sided
PCBs to reduce cost

Small office telecoms Most hardware focuses on data flow. Program loads are
between 1 and 5 MB

Lab instruments Forward-looking platform management saves inventory and
manufacturing costs and speed development. Circuit boards
are the focus of serious design efforts to reduce EMI of low-
level signals

Automobile ECM Need greater than 10 year lifetimes. Concern for ignition cycles
(key on to key off); plan for 100,000–200,000 cycles. Problem is
writing EEPROM every time key turns off. Multilayer PCBs
to control EMC

TABLE 15.9

Comparison of the Different Processors Used in the 11 Case Studies

Bits = 8 16 32 Processors

Large appliances � � � Highly integrated microcontrollers
with many peripherals

Small office telecoms � Control by microprocessors. Extensive
use of FPGAs

Lab instruments � � � Microcontrollers and microprocessors
Automobile ECM � Full featured microcontrollers for

algorithm sophistication with many
integrated peripherals

Oil field flowmeters � � � Microcontrollers: 8051, Microchip PIC,
Atmel AVR

Military equipment � � � Some COTS (depot level equipment),
others have industrial-range
environmental specifications

Space instrument � � � Radiation-hard microcontrollers and
processors; generally older architec-
tures; low level of integration

Commercial space
system

� Analog Devices Blackfin DSP acts as
controller and FPGAs

Satellite subsystem � Radiation-hard 80196 microcontroller
Neurostimulator
programmer

� General purpose microprocessor
running Windows CE

Implantable devices � � � Microcontrollers—some are custom
built

(Continued)

Summary Comparisons Across the 11 Case Studies 385

15.9.6 Software

Software development is the biggest concern for most design and devel-
opment efforts. Table 15.13 lists how each of the case studies approaches
software development and hosting.

Oil field flowmeters Avoid sparks, reduce power dissipation and charge storage.
Longevity problems with vendors (see problems of large
appliances in first line above). Sheath and tie down cables—
no abrasion from vibration

Military equipment Commercial components and subsystems for Depot Level,
industrial grade components for Operational Level

Space instrument Radiation hardness, resistance to outgassing. Memory is not
dense, large, or fast. Electromechanics are challenge for
launch vibration. Cables and connectors are a perennial
source of problems

Commercial space system Commercial components for very-short-term missions or
low-radiation environments

Satellite subsystem Distributed architecture for fault isolation and easing
integration and for reducing cable complexity and weight

Neurostimulator
programmer

Designed to use COTS. Outsourced up-converter design and
manufacture. Avoid excessive heat build-up in laps of
patients

Implantable devices Power consumption is biggest concern. Dependability, fault
tolerance, EMC, and moisture resistance are also important

TABLE 15.10

Continued

Comments and Concerns

TABLE 15.11

Comparison of Cooling Used in the 11 Case Studies

Comments and Concerns

Large appliances No real concerns—low-density power dissipation
Small office telecoms Aim for low-power dissipation. Cooling airflow from

chassis fans already in chassis racks
Lab instruments Passive, convective cooling. Avoid fans because of EMI and

added complexity and cost
Automobile ECM Conduction only. Plan for extremes in temperature
Oil field flowmeters No fans, strive for low-power dissipation. Enclosures must

be sealed in volatile gaseous environments
Military equipment O-Level sealed, no fans. Depot Level uses chassis fans
Space instrument Only conduction to external radiative surfaces
Commercial space system Only conduction to external radiative surfaces
Satellite subsystem Only conduction to external radiative surfaces
Neurostimulator programmer No fan—seal to allow disinfectant wash downs
Implantable devices None, strive for low-power dissipation

386 Developing Real-Time Embedded Products

TABLE 15.13

Comparison of Software Development Used in the 11 Case Studies

Comments and Concerns

Large appliances Software in C. Custom time-slice RTOS to guarantee timeliness
and amenable to analysis for 8-bit microcontrollers. Custom
pre-emptive priority, interrupt-based RTOS for 32-bit sys-
tems. Re-use proven modules. Must be correct at production,
no upgrades. Use very rigorous development processes

Small office telecoms Software in C. Custom RTOS. No code review
Lab instruments Software in C, moving to Cþþ. Custom RTOS in older

products. New products—OSE, WinCE. Web site for software
upgrades

Automobile ECM Huge variation in rigor between different companies. Most
software in C with some assembly language. Both custom
and commercial RTOSs

TABLE 15.12

Comparison of Power Conversion and Distribution Used in the 11 Case Studies

Comments and Concerns

Large appliances Universal input, 220–240 VAC, 50–60 Hz. Test for 52
different AC line conditions

Small office telecoms Universal input, 100–240 VAC, 50–60 Hz. COTS power
converters; use either supplies that slide into a chassis or
‘‘wall warts’’

Lab instruments Universal input, 100–240 VAC, 50–60 Hz. Low-level
measurements and EMC force custom design of con-
verters

Automobile ECM 12, 24, or 42 VDC power; spikes, sags, dropouts, ripple, and
noise. Most ECMs have internal regulators

Oil field flowmeters Universal input, 220–240 VAC, 50–60 Hz. Keep AC–DC
converter in remote, safe area; it produces 12 VDC

Military equipment Variety—aircraft supplied or universal AC input
Space instrument Major source of problems: DC–DC converters, load condi-

tions, and distribution. Switching power transistors
susceptible to radiation concerns (total dose and SEE)

Commercial space system Raw þ28 VDC power (ranges from 22 to 34 V), use DC–DC
converters

Satellite subsystem Distribute raw power to point-of-load (POL) converters for
fault isolation and reduction of cable weight

Neurostimulator programmer Battery capacity needs to be greater than 8 hour of office
time. Could only get 4–6 hour at best from COTS pentop.
Custom design could increase battery capacity

Implantable devices Battery capacity and power consumption are critical issues.
Avoid excessive current demand and heat build-up.
Rechargeable batteries—cost benefit, only recently be-
coming more prevalent

(Continued)

Summary Comparisons Across the 11 Case Studies 387

TABLE 15.13

Continued

Comments and Concerns

Oil field flowmeters Rigorous development. Software in C. Custom RTOSs for 8-bit
microcontrollers. QNX and Linux RTOSs for 16- or 32-bit
systems

Military equipment Code reviews. O-Level use HP Basic or assembly. D-Level use
Atlas or C languages. Both use custom RTOSs

Space instrument Careful design; regular, mandated design reviews. Usually
custom RTOS because commercial RTOS often have too many
features and require too much memory; often time-slice
architecture that allows analysis

Commercial space system Moving to Green Hills Velosity� RTOS
Satellite subsystem C code with regular, mandated design reviews
Neurostimulator
programmer

Cþþ in Windows CE environment. Rigorous development
with regular, mandated design reviews

Implantable devices Safety-critical, rigorous development processes. Certified
compilers. Custom and commercial RTOSs—must be simple
and easily analyzed

TABLE 15.14

Comparison of Buy vs. Build Used in the 11 Case Studies

Comments and Concerns

Large appliances High-volume, low-margin markets. Every subsystem is
custom designed and built to achieve cost, functionality,
and reliability

Small office telecoms All custom design, most power converters are COTS
Lab instruments All custom design except some LCD display systems are

COTS
Automobile ECM Cycle between automobile company custom design and

vendor design. Future leaning towards outside vendors
and COTS

Oil field flowmeters Older designs used COTS single-board computers. New
designs are more distributed and custom-designed and
built

Military equipment O-Level custom design. Depot-Level use VME and VXI
boards.

Space instrument Custom design. GSE is COTS
Commercial space system Commercial components used: ICs, video cameras, DC–DC

converters
Satellite subsystem Custom design. GSE is COTS. To be replicated 6–10 times
Neurostimulator programmer COTS pentop computer but supplier problems—6-month

market cycle; need 3–5 year inventory. Customdesignwith
COTS subsystems would have been better in the long run

Implantable devices Custom design: PCB (ceramic) and titanium hermetically
sealed

388 Developing Real-Time Embedded Products

15.9.7 Buy vs. Build

Another consideration for development is whether to buy or to design a
custom subsystem or component. Table 15.14 lists how each of the case
studies approaches the question.

15.9.8 Plan for Manufacturing and Assembly

Planning for manufacturing and assembly is another consideration for de-
signing a product. Table 15.15 lists how each of the case studies approaches
plans for manufacturing and assembly.

TABLE 15.15

Comparison of Plans for Manufacturing and Assembly Used in the 11 Case Studies

DFx, x ¼ Comments and Concerns

Large appliances M, A, T Automaticmanufacture and assembly in-
house; test all buttons, inspect all dis-
plays, test all loads; software distinct
between products; shave pennies
everywhere

Small office telecoms M, T JTAG, POST, BIT, link tests for T1, DSL,
ISDN; manual labor and automatic
manufacture and assembly in-house

Lab instruments M, A, T, f, t, i f ¼ flexibility, t ¼ transfer, i ¼ im-
provements; mfg in house, some
outsource; test for quality—BIT and
ICT (bed of nails, flying probe)

Automobile ECM M, A, T High-temperature plastic enclosures;
‘‘calibrations’’—software loads done in
manufacturing

Oil field flowmeters Outsource fabrication but design and
manufacture test jigs in-house.
Assemble in-house

Military equipment M Manual fabrication, ATE for cables
Space instrument Manual manufacturing and assembly

in-house; problems with ‘‘churn’’ in
revision of PCB fabrication

Commercial space system Outsource manual manufacture and
assembly

Satellite subsystem Manual manufacture and assembly
in-house, some PCBs in automated
assembly

Neurostimulator program-
mer

Outsource manual manufacture and
assembly

Implantable devices M, A, T Both manual and automatic assembly in
house; welded titanium enclosures

M¼ design for manufacturing; A¼ design for assembly; T¼ design for test; f¼ design for flexi-
bility; t ¼ design for transfer (to other outsource manufacturers); i ¼ design for improvement.

Summary Comparisons Across the 11 Case Studies 389

15.9.9 Plan for Diagnostics, Repair, Maintenance

Like planning for manufacturing and assembly in designing a product,
another consideration is planning for service and repair. Table 15.16 lists
how each of the case studies approaches plans for service and repair.

15.10 Test and Integration

Test and integration is an important point in the development of a device. It
determines if the product meets its specifications. Table 15.17 lists the
amount of effort with which each case studies approaches test and inte-
gration. Please note that this evaluation is a subjective rating. It is more
relative than absolute in its comparisons.

15.11 Manufacturing

Manufacturing is another important point in the development of a device.
Table 15.18 lists the types of manufacturing and assembly each case studies
uses. The variation in commercial off-the-shelf (COTS) incorporation de-
pends on the model of product and whether suitable components or sub-
systems are available.

TABLE 15.16

Comparison of Plans for Service and Repair Used in the 11 Case Studies

Comments and Concerns

Large appliances Local shops—replace modules only, no component repair
Small office telecoms No field repair, replace entire unit; technical support fields

first call
Lab instruments Repair centers around world. Trains large customers to repair

units themselves
Automobile ECM ‘‘Service releases’’ to upgrade software; recalls if problem

really bad. Background Debug Mode (BDM) to get addi-
tional, nonstandard diagnostics from the ECM for laboratory
analysis

Oil field flowmeters Large field sales staff and affiliates around the world.
Considering wireless designs to do BIT without opening
enclosures

Military equipment BIT, calibration; users call engineers directly (small market)
Space instrument Limited or no diagnostics and repair
Commercial space system Limited diagnostics and repair
Satellite subsystem Limited or no diagnostics and repair
Neurostimulator
programmer

No field repair, replace entire unit; engineers diagnose
problems

Implantable devices No field repair, replace entire unit; extensive support staff

390 Developing Real-Time Embedded Products

15.12 Support and Service

Support and service can be an important consideration in the development
of a device. Table 15.19 lists the amount of effort with which each case study
approaches test and integration. Please note that this evaluation is a sub-
jective rating. It is more relative than absolute in its comparisons. Obviously
third-party repair shops can fix a failed appliance—hence, the two check
marks in ‘‘none’’ to ‘‘little’’ support and service. Some products are marked
by their large, available support staff, in particular the oil field flowmeters
and implantable medical devices.

TABLE 15.17

Comparison of the Amount of Effort for Test and Integration
in the 11 Case Studies

l m e

Large appliances �

Small office telecoms �

Lab instruments �

Automobile ECM �

Oil field flowmeters �

Military equipment �

Space instrument �

Commercial space system �

Satellite subsystem �

Neurostimulator programmer �

Implantable devices �

l ¼ little; m ¼ medium; e ¼ extensive.

TABLE 15.18

Comparison of the Manufacturing in the 11 Case Studies

u a i o DFx COTS

Large appliances � � �

Small office telecoms � � � �

Lab instruments � � �

Automobile ECM � � �

Oil field flowmeters � � � � *
Military equipment � � � � *
Space instrument � �

Commercial space system � � � �

Satellite subsystem � �

Neurostimulator programmer � �

Implantable devices � � � �

u ¼ manual; a ¼ automated; i ¼ inhouse; o ¼ outsource; DFx ¼ design for x;
COTS ¼ commercial-off-the-shelf subsystems; * ¼ varies.

Summary Comparisons Across the 11 Case Studies 391

15.13 Liability

Every product has liability. Every one of them has some sort of economic
liability (E column)—contractual or exposure to government recall. Some
have legal concerns with protecting their patents and intellectual property
(L—last column in the table). Table 15.20 lists the areas of appreciable lia-
bility each case studies.

TABLE 15.20

Comparison of the Liability Across the 11 Case Studies

E S L

Large appliances � � �

Small office telecoms � �

Lab instruments �

Automobile ECM � � �

Oil field flowmeters � � �

Military equipment � �

Space instrument �

Commercial space system �

Satellite subsystem �

Neurostimulator programmer � � �

Implantable devices � � �

E¼ economic; S¼ safety; L¼ legally protect patents and intellectual property.

TABLE 15.19

Comparison of the Available Amount of Support and Service
in the 11 Case Studies

n l m e

Large appliances � �

Small office telecoms �

Lab instruments �

Automobile ECM �

Oil field flowmeters �

Military equipment �

Space instrument �

Commercial space system �

Satellite subsystem �

Neurostimulator programmer �

Implantable devices �

n ¼ none; l ¼ little; m ¼ medium; e ¼ extensive.

392 Developing Real-Time Embedded Products

16
Some Observations on Architectural
Trade-Offs in Selected Real-Time Systems

16.1 Some Thoughts

This chapter sketches some of the attributes of three very different real-time
systems and some of the considerations for their designs. One system
records and indicates the available spaces in a car parking garage. Another
is a data-acquisition system that collects biological data. The third appli-
cation is a gun-fuzing system for the military.
Each of these systems requires attention to architecture, component

selection, power supply and distribution, software development, packag-
ing, manufacturing, installation, and maintenance. Each system addresses
the design process differently from the other two.

16.2 Indicating System for a Parking Garage

16.2.1 Purpose and Description

Some parking garages at airports have arrays of sensors, light-emitting
diodes (LEDs), and message boards to help people find available parking
spaces. Each space has a sensor above it on the ceiling that detects the
presence of an automobile (Figure 16.1). The sensor has a red LED that
lights when an automobile occupies the space; it has a green LED that lights
when no vehicle occupies the space. The green LED indicates that the space
is available for another automobile.
At the end of each isle is a message board that displays the number

of open spaces and an arrow pointing down the isle with the open slots. If
a row is full with cars, the message board will display a red X, which
indicates a full row and no available slots (Figure 16.2).

16.2.2 Issues or Concerns

The liability for this parking garage system is quite low; it facilitates people
in finding parking spaces, but it does not prevent them from finding a space

393

FIGURE 16.1
A sensor above a parking space in an airport parking garage. (� 2006 by Kim Fowler, used
with permission. All rights reserved.)

FIGURE 16.2
A message board in a parking system in an airport parking garage. (� 2006 by Kim Fowler,
used with permission. All rights reserved.)

394 Developing Real-Time Embedded Products

if it fails or malfunctions. What this means is that false indications of filled
spaces can be acceptable; however, false indications of open spaces would
be less than acceptable—it will upset customers by wasting their time
driving down an aisle that indicates spaces but they find none. On the other
hand, driving down an isle that indicates no spaces and finding one leaves a
driver feeling lucky or fortunate.

16.2.3 Real-Time Calculations

This is a soft, real-time system because the deadlines are not as critical to
system operation. However, if delays are noticeable, they may affect the
success of the system. The system has a range of acceptable durations to
detect automobiles, indicate their presence, and update the message boards.
What is acceptable? That really depends on operational studies that assess

human reactions to the system and that determine traffic flow and volumes.
To specify a parking garage system, you will need to specify the maximum
delay to maintain customer satisfaction and minimize driver frustration.
Here is one possibility:

� Consider a maximum potential holiday traffic volume of 2000 cars
entering and leaving the parking garage every hour, then the
average time between cars is (3600 sec/h)/(2000 cars/h) = 1.8 sec.
This might suggest a minimum time for detection.

� Is the minimum detection time, between 1.5 and 2 sec, worth the
extra cost to design a system that handles holiday traffic once or
twice each year? This trade-off of cost vs. user satisfaction (or
frustration) will drive the design specifications. A maximum
acceptable delay might be somewhere between 3 and 5 sec.

16.2.4 Architecture

The cost of different system configurations can significantly affect the choice
of architectures. For the sake of illustration, I will assume an average system
that accommodates 5000 parking spaces and has an operational life of 10
years.
There are several interesting points to note:

� The highest cost within the systemmay be installation. The labor for
installing the system can be greater than the cable, conduit,
mechanical suspension, and the total production cost of the sensors.

� Next in line for cost is the system of cable, conduit, and mechanical
suspension. The physical configuration of the system directly
dictates cost.

First, there will be one sensor above each parking spot. If the average
parking garage has an average of 5000 spaces, then each system will need

Some Observations on Architectural Trade-Offs 395

5000 sensors. If marketing estimates sales of systems to 200 parking garages
that hold an average of 5000 cars each, then your company will eventually
need to manufacture one million (106) sensors plus spares for replacement
of failed units.
What kind of network should connect the sensors—a proprietary design

or a more typical configuration based on a current standard? Here is where
the cost of cable and installation play a major role. If a proprietary network
calls for a two-wire cable and conduit, containing both power and signal,
costs about US$27 per car slot, and a parking space is 4 m wide, then a 5,000
car garage will cost about US$133,000 for the cabling and conduit alone. If
you chose a more typical configuration with a four-wire cable plus power
cable, which costs about US$47 per car slot for the cable and conduit, then
the costs are closer to US$233,000 (Table 16.1).
A proprietary network design could lend itself to a smaller cable and

conduit, which might be cheaper and might reduce the installation time.
That cost comes right off the bottom line and improves the profit margin.
The trade-off is whether the extra cost of the standard four-wire configu-

ration will ease maintenance enough and provide more satisfied users over
the 10 years of operation over the proprietary network.

16.2.5 Hardware

The primary trade-off is determining the type of processing element that
would be the most appropriate: microcontroller vs. application-specific

TABLE 16.1

Estimated Costs for Mechanical Support Hardware (Not Including Sensors) for Two
Different Types of Parking Garage Systems (� 2006 by Kim Fowler, Used with
Permission. All rights reserved)

System #1: 2-wire System #2: 4-wire

Item Qty Metric Cost Extension Qty Metric Cost Extension

Cable 1 Meter $3.00 $12.00 1 Meter $6.00 $24.00
Conduit 1 Meter $3.00 $12.00 1 Meter $5.00 $20.00
Suspension
hardware

1 Set/slot $2.50 $2.50 1 Set/slot $2.50 $2.50

Subtotal/
parking
space

$26.50 $46.50

Total
installation
hardware
costs

$132,500 $232,500

Width per
car slot

4 Meters

Spaces in
garage

5000

396 Developing Real-Time Embedded Products

integrated circuit (ASIC). Minimizing peripheral support components and
chips is important too.
You might decide to purchase an 8-bit microcontroller to be the processor

within each sensor. These can cost between US$0.50 and US$1 per chip in
large quantities. If you chose this path, then your company will have to
employ engineers to design, code, and test the software. The nonrecurring
engineering (NRE) is the cost of writing the software and designing the
circuitry.
Another possibility would be to build a fully-custom ASIC controller for

each sensor—the NRE to design a chip can easily be as high as US
$1,000,000. Fabrication can approach US$3 per chip or more. This totals to
US$4 per chip in final delivered form. One problem is that fully custom
ASICs are not easily revised, upgraded, or fixed, unless you incorporate a
flash memory and upload critical parameters. (This would be similar to the
‘‘calibrations’’ process used in automobile ECMs in Chapter 7.)
Table 16.2 is a fairly detailed scenario that compares these two

approaches. This is only one scenario, out of many different possible ones,
for how you might design such a system.

16.2.6 Power

Power distribution and conversion is not a simple task. Thin, narrow-gauge
wire is cheaper than thicker wire, but it has higher resistance per unit length;
this causes a greater voltage drop down the cable. When cable runs are long,
80 m (about 260 ft) in this case study, the loss in a cable can be significant.
These concerns motivate two important efforts; reduce the power consump-
tion in each sensor and increase the voltage of the power delivery.
This case study assumes DC power distribution rather than AC to

remove the need for a step-down transformer and its cost from each sensor.
Regardless of voltage source, each sensor must have local regulation.
Higher voltage distribution is more efficient than lower voltage. The trade-
off is safety; lower voltage has a lower shock hazard.
Table 16.3 outlines the total voltage drop over 20 car park slots for several

different supply voltages. Clearly higher voltages experience lower loss.
You might settle on the 18 or 24 VDC power distribution because it allows
longer runs in bigger parking garages and still is considered quite safe.
The calculations assume 4-m wide slots. These calculations were sim-

plistic; they assumed that each sensor required 100 mW. Digital logic
operates at 3.3 V and the total current is 30 mA: always-on two LEDs, each
needing 10 mA, the processor and its support circuitry, which need 9 mA,
and the ultrasonic transducer pulsed once per second at 40 mA for 25 msec.
The calculations also assumed that the power converter within each sensor
is 80% efficient; this is a rough approximation because most power con-
verters have a nonlinear characteristic or transfer function between effi-
ciency and input supply voltage. Calculating power consumption and
voltage drop in distributed systems with nonlinear loads is quite difficult!

Some Observations on Architectural Trade-Offs 397

TABLE 16.2

Estimated Sensor Costs for Two Different Types of Processing: Microcontroller vs. ASICs (� 2006 by Kim Fowler, used with permission. All
rights reserved)

Microcontroller-Based ASIC-Based

Qty Metric Unit Cost Extension Qty Metric Unit Cost Extension

NRE
Project management 2000 Hours $80.00 $160,000 2000 Hours $80.00 $160,000
Preparing specifications 800 Hours $60.00 $48,000 800 Hours $60.00 $48,000
Simulations and feasibility 800 Hours $60.00 $48,000 800 Hours $60.00 $48,000
Chip design $1,000,000
Software code (2 LOC/h) 5000 LOC $30.00 $150,000 200 LOC $30.00 $6,000
Hardware design 2000 Hours $60.00 $120,000 400 Hours $60.00 $24,000
Development and test 2000 Hours $60.00 $120,000 2000 Hours $60.00 $120,000
Documentation 800 Hours $60.00 $48,000 400 Hours $60.00 $24,000
Field tests 2000 Hours $60.00 $120,000 2000 Hours $60.00 $120,000
Manufacturing plans 800 Hours $60.00 $48,000 800 Hours $60.00 $48,000
Manufacturing test equipment 400 Hours $60.00 $24,000 400 Hours $60.00 $24,000
Customer meetings, product launch 1000 Hours $60.00 $60,000 1000 Hours $60.00 $60,000
Overhead—travel, meetings, and

so forth
$75,000 $75,000

NRE subtotal $1,021,000 $1,757,000

Cost of NRE per sensor
Quantity produced 2Eþ05 $5.11 $8.79
Quantity produced 5Eþ05 $2.04 $3.51
Quantity produced 1Eþ06 $1.02 $1.76

Cost to produce 1 million sensors
Cost (NRE þ COGS) ($40/h burdened labor rate)
Processor NRE cost 1 NRE unit $1.02 $1.02 1 NRE

unit
$1.76 $1.76

Processor unit cost 1 Part $0.50 $0.50 1 Part $3.00 $3.00
Peripheral component costs 1 Set $8.40 $8.40 1 Set $8.40 $8.40

398
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

C
ir
cu

it
b
o
ar
d
fa
b
ri
ca
ti
o
n

1
B
o
ar
d

$5
.0
0

$5
.0
0

1
B
o
ar
d

$5
.0
0

$5
.0
0

C
ir
cu

it
b
o
ar
d
as
se
m
b
ly

1
$4

.0
0

$4
.0
0

1
$4

.0
0

$4
.0
0

E
n
cl
o
su

re
co
st

1
$4

.0
0

$4
.0
0

1
$4

.0
0

$4
.0
0

F
in
al

as
se
m
b
ly

an
d
te
st

1
$3

.3
3

$3
.3
3

1
$3

.3
3

$3
.3
3

C
o
st

p
e
r
u
n
it
su

b
to
ta
l

$
2
6
.2
5

$
2
9
.4
9

F
in
a
l
co
st

o
f
se
n
so
rs

fo
r
5
0
0
0
sl
o
ts

(t
o
ta
l)

$
1
3
1
,2
7
2

$
1
4
7
,4
5
2

C
o
st

(N
R
E
þ

C
O
G
S
)
($
10

/
h
b
u
rd

en
ed

la
b
o
r
ra
te
)

P
ro
ce
ss
o
r
N
R
E
co
st

1
N
R
E
u
n
it

$1
.0
2

$1
.0
2

1
N
R
E

u
n
it

$1
.7
6

$1
.7
6

P
ro
ce
ss
o
r
u
n
it
co
st

1
C
o
m
p
o
-

n
en

t
$0

.5
0

$0
.5
0

1
C
o
m
p
o
-

n
en

t
$3

.0
0

$3
.0
0

P
er
ip
h
er
al

co
m
p
o
n
en

t
co
st
s

1
S
et

$8
.4
0

$8
.4
0

1
S
et

$8
.4
0

$8
.4
0

C
ir
cu

it
b
o
ar
d
fa
b
ri
ca
ti
o
n

1
B
o
ar
d

$5
.0
0

$5
.0
0

1
B
o
ar
d

$5
.0
0

$5
.0
0

C
ir
cu

it
b
o
ar
d
as
se
m
b
ly

1
$1

.0
0

$1
.0
0

1
$1

.0
0

$1
.0
0

E
n
cl
o
su

re
co
st

1
$4

.0
0

$4
.0
0

1
$4

.0
0

$4
.0
0

F
in
al

as
se
m
b
ly

an
d
te
st

1
$0

.8
3

$0
.8
3

1
$0

.8
3

$0
.8
3

C
o
st

p
e
r
u
n
it
su

b
to
ta
l

$
2
0
.7
5

$
2
3
.9
9

F
in
a
l
co
st

o
f
se
n
so
rs

fo
r
5
0
0
0
sl
o
ts

(t
o
ta
l)

$
1
0
3
,2
7
2

$
1
1
9
,9
5
2

C
o
st

(N
R
E
þ

C
O
G
S
)
(a
u
to
m
at
ed

as
se
m
b
ly
)

P
ro
ce
ss
o
r
N
R
E
co
st

1
N
R
E
u
n
it

$1
.0
2

$1
.0
2

1
N
R
E

u
n
it

$1
.7
6

$1
.7
6

P
ro
ce
ss
o
r
u
n
it
co
st

1
C
o
m
p
o
-

n
en

t
$0

.5
0

$0
.5
0

1
C
o
m
p
o
-

n
en

t
$3

.0
0

$3
.0
0

P
er
ip
h
er
al

co
m
p
o
n
en

t
co
st
s

1
S
et

$8
.4
0

$8
.4
0

1
S
et

$8
.4
0

$8
.4
0

C
ir
cu

it
b
o
ar
d
fa
b
ri
ca
ti
o
n

1
B
o
ar
d

$5
.0
0

$5
.0
0

1
B
o
ar
d

$5
.0
0

$5
.0
0

C
ir
cu

it
b
o
ar
d
as
se
m
b
ly

1
$0

.2
0

$0
.2
0

1
$0

.2
0

$0
.2
0

E
n
cl
o
su

re
co
st

1
$4

.0
0

$4
.0
0

1
$4

.0
0

$4
.0
0

F
in
al

as
se
m
b
ly

an
d
te
st

1
$0

.2
0

$0
.2
0

1
$0

.2
0

$0
.2
0

C
o
st

p
e
r
u
n
it
su

b
to
ta
l

$
1
9
.3
2

$
2
2
.5
6

F
in
a
l
co
st

o
f
se
n
so
rs

fo
r
5
0
0
0
sl
o
ts

(t
o
ta
l)

$
9
6
,6
0
5

$
1
1
2
,7
8
5

Some Observations on Architectural Trade-Offs 399

16.2.7 Software

Software should probably be in a high-level language, such as C, to speed
development and improve archival maintenance. A simple real-time opera-
ting system (RTOS) will ease both development and maintenance.
This sort of system probably would not allow upgrades to the software in

the sensors once in the field. The labor cost to open each sensor and upload
updates would be fairly expensive. The opposite would be true for the
message boards or central control units; they may be Web-based to allow
software upgrades and changes.
Software development is a fairly simple process and not mission critical;

consequently, while good practices should be encouraged, rigorous devel-
opment is not as important. (I hate saying that, but the reality is good
processes do cost a little extra.) The one caveat is that contractual liability
still remains—therefore, I still encourage good software development.

16.2.8 Packaging

Packaging has to endure some environmental extremes, such as tempera-
ture (–40˚C to þ50˚C), humidity, and dust. Furthermore, the packaging
must last for many years. One line of defense is durable conformal coating
for the components and circuit board. Encapsulating the components
will also hinder repair, but for a replaceable unit—as opposed to repairable—
this is not a concern.

16.2.9 Buy vs. Build

Sensors will be custom built considering the large number to be produced
and their specific requirements. Greater quantity reduces the per-unit costs
of each sensor; Table 16.2 illustrates just one example of some of the para-
meters that factor into producing sensors.
The same would probably hold for the message boards that hang from

the ceiling at the end of each row of parking spaces. These are custom

TABLE 16.3

Estimated Voltage Drop for Different Supply Voltages (� 2006 by Kim Fowler,
Used with Permission. All rights reserved.)

Supply Voltage (Vs)

% Total Voltage

Drop

Voltage Drop

(DV)

Voltage at Last

Sensor (Vd)

12 11.4 1.37 10.6
18 5 0.9 17.1
24 3 0.72 23.3
30 1.8 0.54 29.5

400 Developing Real-Time Embedded Products

applications and are not widely available. The power consumption, size,
and expense of the message boards would not be as critical as for sensors—
though still important—because they are far fewer in number. In any case,
you will have to perform a careful set of trade-off studies before settling on
a particular approach, which must account for NRE, per-unit costs,
environmental constraints, reliability, and maintenance.
If the processing is not distributed between the message boards, then the

system will need a central control unit to update the parking status for the
entire system. You should seriously consider buying a single-board com-
puter (SBC) for the central control unit. Each system only needs one
(remember the total market is expected to be 200). A standard form factor,
such as PC104, might fit this application well and will have a wide variety of
choices. Many vendors offer commercial or ruggedized SBCs; some of them
will inventory these for you, as well.

16.2.10 Manufacturing

Table 16.2 shows that automated fabrication and assembly can be signifi-
cantly cheaper than manual labor. Pick-and-place machines and automated
solder ovens are one example of the automated manufacturing. If this is
your company’s only product, then employing a contract manufacturer
would be a given. If your company has these facilities and has available
capacity, then you could manufacture the systems in-house.
Design-for-manufacture (DFM), design-for-assembly (DFA), and design-

for-test (DFT) all make sense when designing the sensors. These initiatives
require some upfront costs but result in lower per-unit costs and higher
quality that should lead to higher reliability.

16.2.11 Installation and Maintenance

If installation over each parking space takes 20 minutes to drill holes, anchor
the suspension rods, and attach the conduit and cable, plus another 10 min-
utes to attach a sensor to the suspendedmechanical structure and test it, then
a 5000-car garagewill require 2500 labor-hours to install a system (Table 16.4).
At a burdened labor rate (that iswhere overhead andmanagement costs are

included, along with employee benefits, to the salary) of about US$45/hour,
the installation cost for the sensors alone is about US$112,500. (This estimate
does not explicitly include the cost to install the message boards above each
isle or to install the central processing unit or to commission the system.
These costs, however, are already factored into the sensor installation.)
A team of eight installers would take slightly less than 2 months to install

a system that accommodates 5000 spaces. There are two ways to employ a
team of installers; one way is to maintain a traveling team of trained per-
sonnel; the other way is to contract help at each location and train the
installers on location. A trained team would probably be faster and be more

Some Observations on Architectural Trade-Offs 401

T
A
B
LE

1
6
.4

E
st
im

at
ed

L
ab

o
r
C
o
st
s
fo
r
T
w
o
D
if
fe
re
n
t
In
st
al
la
ti
o
n
C
re
w
s
(�

20
06

b
y
K
im

F
o
w
le
r,
u
se
d
w
it
h
p
er
m
is
si
o
n
.
A
ll
ri
g
h
ts

re
se
rv
ed

)

C
a
se

1
:
T
ra
v
e
li
n
g
In
st
a
ll
e
rs

C
a
se

2
:
L
o
ca
ll
y
C
o
n
tr
a
ct
e
d
In
st
a
ll
e
rs

It
e
m
s

Q
ty

M
e
tr
ic

T
im

e
C
o
st

Q
ty

M
e
tr
ic

T
im

e
C
o
st

B
u
rd

en
ed

la
b
o
r
ra
te

$4
5.
00

P
er

h
o
u
r

$4
5.
00

P
er

h
o
u
r

T
im

e
p
er

p
ar
k
in
g
sp

ac
e

0.
5

H
o
u
r

25
00

$1
12

,5
00

0.
65

H
o
u
r

32
50

$1
46

,2
50

C
a
se

1
:
T
ra
v
e
l
C
o
st
s

C
a
se

2
:
T
ra
v
e
l
C
o
st
s

Q
ty

M
e
tr
ic

C
o
st

E
x
te
n
si
o
n

Q
ty

M
e
tr
ic

C
o
st

E
x
te
n
si
o
n

L
o
d
g
in
g

36
D
ay

s
$6

0
$2

,1
60

47
D
ay

s
$6

0
$2

,8
20

P
er

d
ie
m

36
D
ay

s
$4

0
$1

,4
40

47
D
ay

s
$5

0
$2

,3
50

D
ai
ly

tr
an

sp
o
rt
at
io
n
o
r
re
n
ta
l
ca
r

36
D
ay

s
$2

0
$7

20
47

D
ay

s
$5

0
$2

,3
50

T
ra
v
el

al
lo
w
an

ce
4

T
ri
p
s

$4
00

$1
,6
00

5
T
ri
p
s

$4
00

$2
,0
00

S
u
b
to
ta
l
p
er

p
er
so
n

$5
,9
20

$9
,5
20

P
eo

p
le

h
av

in
g
to

ex
p
en

se
tr
av

el
8

1

T
o
ta
l
tr
av

el
$4

7,
36

0
$9

,5
20

T
o
ta
l
in
st
al
la
ti
o
n
ex
p
en

se
(l
ab

o
r
þ

tr
av

el
)

$1
59

,8
60

$1
55

,7
70

N
u
m
b
er

o
f
se
n
so
rs

=
50

00
.

402 Developing Real-Time Embedded Products

consistent in quality. A local team would potentially be cheaper, but would
require training, could be slower, and may not be as consistent in their
quality of installation.

Case 1: The company has a team of trained installers who travel to each site,
the estimate of travel cost would include the following components (all in
2006 U.S. dollars):

� Local hotel (about US$60 per night per person)

� Food and incidentals (US$40 per diem)

� Travel allowance every 2 weeks for a long weekend (about US$400
per roundtrip per person)

� Transportation costs (about US$20 per day per person)

The travel cost for a permanent team for 2 months of installation would be
about US$50,000. Add this to the labor rate of the team and the total costs
for labor and travel for installation of one system is about US$160,000
(Table 16.4).

Case 2: The company hires local contract installers; the following
assumptions are made:

� One person travels to the site to train and then oversee the
installation

� The same travel costs exist as in Case 1 for that one person (plus
slightly higher per diem and a rental car)

� Local training and local inefficiencies extend installation time by
30%

The travel cost for one person (remember the 30% longer duration) would
be about US$9500. Add this to the labor rate of a local contract team that
takes 30% longer (about US$146,000) and the total costs for labor and travel
for installation of one system is about US$156,000 (Table 16.4).
For the two scenarios developed in Table 16.1 through 16.4, the total

system cost for a two-wire system could be about US$390,000, while the cost
could be about US$490,000 for a four-wire system (Table 16.5). Is the
$100,000 difference in cost worth the potentially more difficult and therefore
more expensive maintenance? The sensors are quite cheap. You probably
will just replace a failed sensor and not repair it.
These sensors may have to operate for up to 10 years, continuously, in all

sorts of harsh environments. How do you diagnose a failure and replace the
sensor? Will built-in-test (BIT) reduce maintenance? Probably not. Rudi-
mentary diagnostics and unit replacement will probably be the most
appropriate plan for maintaining this type of system.

Some Observations on Architectural Trade-Offs 403

16.3 Data Acquisition System for Biological Monitoring

16.3.1 Purpose and Description

As electronics shrink in size and more transistors and functionality cram
into each chip, their potential usage expands. Some biological studies, for
instance, need to follow animals to study migration or feeding habits; collec-
ting various data is becoming cheaper and more available. Some science
teams have even built small electronic modules that easily attach to animals
to collect data.
These specialized data collection systems with their modules are gener-

ally inexpensive compared to other systems presented in this book. They
also tend to have very small production runs.

16.3.2 Issues or Concerns

While these systems are low in cost, they have a potentially high return in
scientific value. The liability is very low, essentially nonexistent. Should a
system fail, only data are lost; it can be reacquired in a follow-on study.
No creature is physically harmed; besides, the nature of scientific investi-
gation is fraught with uncertainty and failure.
The main concern is to assure the accuracy of the data. Calibration and

metrology become an important consideration in data assurance. In par-
ticular, the analog-to-digital converters (ADCs) and sensors are critical to
correct acquisition and should be calibrated appropriately.

16.3.3 Real-Time Calculations

Acquisition times for measuring biological systems range from fractions of a
millisecond for fast events, like nerve impulses, down to 20 or 50 or 100
times per second for other physiological processes, and slower still to once
per second for other events. Many situations in biology need to be sampled
less frequently at once per minute or once per hour.

TABLE 16.5

Total Estimated Costs for Two Different Types of Parking Garage Systems (� 2006
by Kim Fowler, used with permission. All rights reserved)

Cost Item Two-Wire System Four-Wire System

Cable, conduit, and suspension $133,000 $233,000
Sensors $97,000 $97,000
Installation $160,000 $160,000

Total cost $390,000 $490,000

404 Developing Real-Time Embedded Products

16.3.4 Architecture

While the deadlines for calculations and measurement times in biological
data acquisition may be thousands or millions of times longer than for many
embedded systems, they still have some unique challenges for the designer
of embedded systems.
First, power is always a concern—batteries cannot be too big for animals

to carry. Often systems remain unattended for weeks or months in the
wild. Solar power might work if cells can be situated to receive sunlight
regularly.
Electronic components suffer environmental extremes and have their

limitations. There are always problems with moisture leaking into the cir-
cuitry. Large temperature variations are inevitable; though if attached to
a warm-blooded creature, there is some moderation of those extremes
because the body provides some thermal control. Memory within the data
acquisition system can only be so large before it runs out of space to hold
more data.
Location and marking by global positioning system (GPS) is becoming

prevalent. Obscuring of the antenna and degrading of the signal reception
always remains a problem. Transmitting the data or location can relieve the
limitations on memory capacity, but then there are power consumption
concerns with radio transmissions.
Finally, anyone who has dealt with electronics in the outdoors knows

that wires are always susceptible to breakage. Either they flex too much or
they get caught on something. Also critters can nest in your enclosures,
chew up things, or clog them with debris if the enclosures are not
completely sealed.

16.3.5 Hardware

Typically, a low-power microcontroller is the center piece of each data
acquisition module. The modules also need sensors and conversion com-
ponents, both ADCs and digital-to-analog converters (DACs). Most bio-
logical quantities, such as temperature, pressure, speed, and physiological
parameters, do not need either high conversion resolution (less than 14-bits)
or high conversion speed (less than 4000-Hz sampling). A large number of
different microcontrollers have 10-bit or 12-bit converters built-in that are
sufficient in speed for these biological applications.
Data acquisition needs memory for data storage and sometimes a trans-

mitter to send the data to a collection receiver. Memory has to be low-power
and non-volatile; flash-memory components have the density to hold
megabytes to gigabytes of data. Flash memories tend to withstand shock
and vibration much better than hard disk drives. Hard drives might be
useful in some situations, but they need to be protected from the elements
or be ruggedized.

Some Observations on Architectural Trade-Offs 405

16.3.6 Power

Supplying reliable power for a long time is probably the most difficult part
of designing a data acquisition system for biological monitoring. As men-
tioned previously, systems cannot be too big or too heavy for animals to
carry. Moreover, the systems are often unattended for long periods of time.
All this means that systems must be designed to consume very low

power. You may have to design them so that they regularly cycle from
active data collection to sleep mode, which draws miniscule amounts of
power. Furthermore, you will have to consider the operating voltage levels.
Either the power conversion must be very efficient to provide a rock steady
supply voltage or the components must be able to operate over a wide range
of supply voltages as the battery voltage drops.
If the system does not consume too much power and if the situation

allows, solar power might be able to recharge the batteries. Obviously, solar
cells must be situated to receive sunlight to recharge the batteries.
These are just a few of the concerns with powering a data acquisition

system. Clearly, power supply and distribution are major considerations in
developing the system architecture.

16.3.7 Software

Data acquisition is one area where software development processes may not
be critical. (I will probably regret saying that!) If you really want data
assurance, then developing software carefully with code reviews, tests, field
tests, and configurationmanagement is still advisable. You never knowwhen
someone may want to review the system and process that collected the data.

16.3.8 Packaging

Packaging the modules is probably the biggest challenge in data acqui-
sition for biological monitoring. You will have to seal against moisture,
tolerate wide temperature swings, and protect against flexure in wire and
cable. Encapsulating the components in an impervious compound such as
epoxy will help resist water invasion, protect against shock, and reduce
mechanical flexing.
The best design for wires and cables is not to have any. Recognizing that is

impractical, you should provide strain relief, particularly where wires both
exit a case and enter a sensor.

16.3.9 Buy vs. Build

Almost all data acquisition systems are custom-designed. The very specific
requirements of these types of systems strongly indicate that only custom
design will accomplish the task.

406 Developing Real-Time Embedded Products

16.3.10 Manufacturing

Again, the very specialized nature of these systems and very small number
of finished units would strongly indicate custom, manual fabrication.
A contract manufacturer might be useful here; still their costs could easily
add US$100s per unit cost. As most of these data acquisition systems are
used for university research, consider student labor—here is a cheap pool of
motivated personnel that can learn complex procedures quickly.
Automated test is not typically appropriate for this type of system. You

could test each module after assembly and before encapsulation with
standard laboratory gear. BIT might serve you here but probably is not
worth the extra effort.

16.3.11 Installation and Maintenance

Installation and attachment are often performed by graduate student labor.
These modules probably are not repairable because the encapsulation
covers the components and cements them in place. Hopefully, each module
is cheap enough to be a replaceable unit.

16.4 Gun Fuzing System

16.4.1 Purpose and Description

The military wants to strike targets accurately; this also applies to firing
a large gun. One of the concerns is setting the timing on the fuzes of explosive
projectiles as they leave the barrel of the gun during the firing so that
the projectile explodes near the target. The problem is thatminute differences
in grain burning between successive rounds create very slight differences
in velocity of the projectile, which leads to dispersion in detonation near
the target. An embedded system can set the fuze based on a real-time
measurement of the muzzle velocity of each shell. Here is one way to do it.
One solution is to measure the speed of the shell between two points just

outside the muzzle and then use an antenna to set the fuze timing as the
shell flies by. Assume that

� Nominal shell velocity is 1000 m/sec

� Shell velocities vary between 995 and 1025 m/sec

� Distance between the shell sensors, which measure the velocity of
the projectile, is 10 cm

� Distance between the last shell sensor and the antenna is 10 cm

� Dispersion (allowable miss distance) in the explosion should only
vary about 1 m around the target

Some Observations on Architectural Trade-Offs 407

16.4.2 Issues or Concerns

Liability for such a project is not high, but it is not as low as the parking
garage example. While the military accepts risk in using weapon systems,
the government will require a contractual liability with penalty clauses for
nonperformance.
One technical issue is to assure that the adjusted fuze timing is trans-

mitted to the shell. This is a matter of completing the calculations during the
time the shell exits the barrel and then making sure that radio signal
transmission and reception are robust.
Another concern is that the calculations achieve the appropriate time

resolution.

16.4.3 Real-Time Calculations

The real-time calculations must complete in short order. Calculation time is
constrained by the time to measure the speed of the shells, to calculate the
adjustment to fuze timing, and to transmit the appropriate value to the shell
exiting the gun barrel.
The minimum time, Tmin vel calculation, to measure the shell velocity is

constrained by the fastest shell velocity and by the spacing between the
sensors. Tmin vel calculation for the fastest shells is 97 msec.

Tmin vel calculation �
dbetween sensors

vmax
¼

0:1 m

1025 m=sec
¼ 97 msec

The time, Tmin dispersion calculation, to calculate the fuze correction is the
fastest shell’s flight time between the last sensor and the antenna. Tmin

dispersion calculation for the fastest shells is 97 msec.

Tmin dispersion calculation �
dbetween last sensor and antenna

vmax
¼

0:1 m

1025 m=sec
¼ 97 msec

Calculating the necessary resolution in the timing to maintain accuracy
requires an understanding of the dispersion. Assume that dispersion is
evenly spaced over or through the target. Therefore, dispersion should go
from 0.5 m in front of the target to 0.5 m behind the target. The minimum
time resolution for dispersion occurs for the fastest shells.

�T �
ddispersion=2

vmax
¼

1 m=2

1025 m=sec
¼ 490 msec

408 Developing Real-Time Embedded Products

A final concern is the resolution of the measured velocity of each shell. If each
shell nominally travels 1m in 1msec, then the accuracy of calculation should be
down to a centimeter or better. Assuming the need for millimeter resolution,
the timing values have to resolve to one microsecond or less.

16.4.4 Architecture

This gun fuse system is a fairly simple control and instrumentation system.
Figure 16.3 illustrates a block diagram of the system. It has several simple
sensors, a central processing unit, an output transmitter, and a network
connection with the weapons system.
Good system engineering would develop the embedded system to cal-

culate the nominal distance to the target and to fuse the shell in the barrel of
the gun before firing. The system should transmit the dispersion correction
as an increment to this nominal value when the shell leaves the muzzle.
Should the fusing correction fail, then the shell’s fuse will still be set to
ignite near the target. This will allow the gunner to zero in on the target
even if the correction system fails.

FIGURE 16.3
Block diagram of the control system for measuring a shell’s muzzle velocity and correcting its
fuze to eliminate dispersion. (� 2006 by Kim Fowler, used with permission. All rights
reserved.)

Gun
muzzle

Shell

1st

sensor
detection
 ring

2nd

sensor
detection
ring

Antenna

Sensor
detection and
conditioning
circuit

Sensor
detection and
conditioning
circuit

Central processor
to measure
velocity and then
calculate the
incremental
fuzing of the shell

RF
Xmtr

Range information
from the weapons
system through a
network connection

Some Observations on Architectural Trade-Offs 409

Fortunately, you have flexibility in transmitting the value of the fuze
correction into the shell. Remember that for the fastest shells the esti-
mated transmit time is 97 msec. Realistically you probably have more
than twice this time because the free space propagation of the electro-
magnetic energy will transmit to the shell even after it has passed be-
yond the antenna. This gives you good margin in the time to set the fuze
correction. On the other hand, you do not want an overly powerful
transmitter, which could cause radio frequency (RF) interference in other
equipment.

16.4.5 Hardware

The central processor will probably be a large microcontroller, like those
found in automobile ECMs, or a single-board computer with a large
microprocessor. The real-time constraints and deadlines are similar. The
processor will need hardware to capture and compare sensor values that
measure the shell’s velocity and timers with 1 msec resolution to time the
shell velocity.
The processor will also need a network connection with the weapons

system of the platform. At the very least this would be a display unit for the
weapons officer. Most likely, it will have a connection to the range-finding
system that will supply range, azimuth, wind velocity, and temperatures,
all parameters necessary to set the fuze.

16.4.6 Power

If this is a mobile gun, the fusing system will have DC power from a battery,
most likely at 24 or 42 V. Consequently, it needs to be a low-power device
to minimize power consumption. If it is onboard a ship, it might have
120 VAC, 400 Hz power or it might receive 270 VDC power. Regardless,
the choice of power supply and distribution is not inconsequential and
needs appropriate consideration.

16.4.7 Software

You might write the software in C or in Ada 2005. Many developers have
experience with C. Ada 2005, on the other hand, has nice features that can
speed development, but it tends to need a bigger processor [1,2].
This is a military project; consequently the development processes must

be rigorous: code reviews, tests, field tests, configuration management,
version control, and archives to support potential audits. A commercial
RTOS would be most appropriate for this type of system.

410 Developing Real-Time Embedded Products

16.4.8 Packaging

A system for a gun must follow military standards for temperature, shock,
vibration, condensation, and salt-spray. This generally means that it must be
quite rugged and sealed.
Another consideration is the gun recoil, which will make cabling to the

sensors and transmitter difficult to maintain. The mechanical movement of
the barrel requires stress-relief coils to reduce breakage of the cable due to
stress factures. The sensors must withstand the shock of the hot gasses
expelling shells at the muzzle.

16.4.9 Buy vs. Build

The sensors and transmitter for this system will have to be custom designed
and manufactured. The embedded system for controlling the fuze setting
should probably be a COTS single-board computer. The mechanical
enclosure could be purchased if the number of systems is small, on the
order of several thousand or less for the total market life.

16.4.10 Manufacturing

Manufacturing can be performed in several different ways. If a company
has shop and assembly resources and manufacturing personnel and the
capacity to add this system, then it could be built in-house. Contract
manufacturing would be a good option if your company does not have the
manufacturing capability or the capacity.
This sort of project does not lend itself to a great deal of automation in

manufacturing. Some pick-and-place machines for component assembly
and circuit board fabrication might be appropriate. Automated testing
would probably not be cost competitive. Having a skilled technician test
specific points on finished products is more likely to fit this type of work.

16.4.11 Installation and Maintenance

A government contractor would probably employ a skilled technician to
install this system. Diagnostics could include BIT to locate a failure quickly.
Repair would be replacement of modules and circuit boards; components
would be repaired at a military depot.

16.5 Summary

Three real-time, embedded systems were discussed in this chapter:
a parking garage collection of sensors and message boards to indicate

Some Observations on Architectural Trade-Offs 411

available parking slots, a data acquisition system for biological monitoring,
and a gun fusing system. Each one has real-time constraints but in very
different time frames. The parking system needs to respond within a few
seconds. The timing of the data acquisition system ranges from low milli-
seconds to many hours between samples and responses. The gun-fuzing
system must respond in microseconds to meet its deadlines.
Each system has similar areas to consider in design: architecture, hard-

ware, power, software, packaging, manufacturing, installation, and main-
tenance. Still, each system has different emphases and final solutions for
these design concerns:

� The parking garage and data acquisition systems need low power
microcontrollers to reduce power consumption and ease power
distribution and supply. The gun-fuzing system needs a powerful
and fast processor to complete the calculations in time.

� The parking garage system is a custom design. It would benefit
from automated manufacturing and test. The gun-fuzing system
would be well suited for contract manufacturing. The data
acquisition system would be custom built by students or by a
contract manufacturer.

� The parking garage and data acquisition systems tend toward
using less skilled labor for installation, while the gun-fuzing
system needs skilled contractors to install its equipment.

� Repair for the parking garage and data acquisition systems
consists of replacing failed units. The gun-fuzing system would
also be repaired by module replacement, but it also has access to
depot repair to replace specific components, if needed.

References

1. Rogers, P., Programming Real-Time with Ada 2005, Embedded Systems Design,

September 2006, Vol. 19, No. 9, pp. 23–45.

2. McCormick, J.W., Instrumentation Education Through Model Railroading, IEEE

Instrumentation & Measurement Magazine, October 2006, Vol. 9, No. 5, pp. 40–45.

412 Developing Real-Time Embedded Products

17
Some Observations about Consumer
Appliances

17.1 Concept and Market

17.1.1 Economics

We use appliances everyday to speed up routine chores. They include
electric razors, coffeemakers, toasters, blenders, food mixers, microwave
ovens, washers, and dryers. Even cell phones, personal digital assistants
(PDAs), and laptop computers might fit into the appliance category. I will
focus, however, on the more traditionally understood appliances in my
observations for this chapter.
Appliances occupy a unique place in design and development. First,

thousands or millions of each model are sold every year. They compete in
an extraordinarily cost-sensitive environment, and yet consumers expect
them to last 5–10 years. Larger appliances are expected to last even longer.
Profit margins are very thin. Manufacturers look at every aspect of design

and production to cut costs—even to shaving pennies from the shipping
container. This chapter will only introduce you to some of the ways con-
sumer appliances are produced.

17.1.2 Features Wanted

Consumers purchase appliances emotionally. Perception of quality and
purpose and style play a huge role in marketing and selling appliances.
Features and their perceived utility are a key component in marketing an
appliance.
Intuitive operation counts as one of the most important aspects of fea-

tures. Now here is a conundrum—a lot of buttons may indicate a lot of
features, but quantity does not necessarily lead to intuitive operation.
Conversely, many consumers wanted one feature per button on larger ap-
pliances (Chapter 4); at least that was true until recently. They really did not
want nested levels of menus. Computers, cell phones, and PDAs, however,

413

are changing the marketplace for everyone. Better displays and ways of
operating appliances are slowly emerging.
The next chapter has some observations on intuitive operations.

17.2 Product Teardown Summaries

My observations will derive from several sources. I will tear down
and comment on several types of appliances. Several books can help with
explaining product design. Bert Haskell’s book is a particularly good
reference for teardown summaries on cell phones, computers, and PDAs [1].
He provides four different perspectives on product design: power profiles,
weight breakdowns of components and modules, component real estate,
and cost breakdowns.
The cost drivers in most cell phones, laptop computers, and PDAs are the

batteries and electronic components and assemblies—particularly displays.
The housing and material hardware can be a significant portion of the cost
for laptops.
Two differentiating factors between these portable devices and many

appliances are circuit and computational densities. Most appliances do not
need exotic circuit boards, such as flex circuits, or large processors capable
of many computations.

17.3 Coffeemaker Teardown

17.3.1 Description

This coffeemaker grinds coffee beans and then drip-percolates hot water
through the grounds to produce fresh coffee (Figure 17.1). It has several
buttons to control the grinding of the beans and to produce the coffee. These
buttons also program the coffeemaker for automatic operation. A small
liquid crystal display (LCD) provides the time to help you set the automatic
operation.
Figure 17.2 shows the sequence of operations to brew coffee. The grinder

shatters the beans and then whips the grounds into a shoot that directs
them down into the filter. Water is drawn from the reservoir, heated, and
dripped from the top of the filter basket onto the grounds. The water per-
colates through the grounds to the bottom of the filter basket and into the
glass carafe.
The coffeemaker represents a fairly prototypical embedded system be-

cause it has sensors, buttons, knobs, a display, and actuators. It can provide
an interesting case study because it is a food-handling appliance that must
adhere to commercial standards; it includes a user interface, a motor, and a
heating element; it has manufacturing issues, which must contain cost.

414 Developing Real-Time Embedded Products

17.3.2 Architecture and Features

Appliances, like this coffeemaker, will typically last 5–10 years of occasional
use. It is not a commercial unit; it will not withstand heavy daily use in a
restaurant or cafe.
It has a centralized configuration where the sensors, buttons, display, and

actuators all connect to the processor. There is no distributed processing.
Features and functions combine for economy of production; the buttons, for
instance, both direct immediate operations and program for later, automatic
operation.
The coffeemaker has several features and interlocks to make it safer and

more reliable. The design goes to some lengths to prevent wrong operation.
It also avoids water damage in a number of ways.

17.3.3 Hardware

There are two circuit boards: one is the control panel near the top of the
appliance behind the display; the other is a power regulator board buried
deep in the base of the coffeemaker (Figures 17.3 and 17.4). The processor
receives direct input from the buttons and sensors, drives the LCD display,
and controls the motor and heating element. The power regulator board

FIGURE 17.1
A coffeemaker that grinds coffee beans to brew a fresh cup of coffee. (Photograph � 2006 by
Kim Fowler, used with permission. All rights reserved.)

Some Observations about Consumer Appliances 415

(a) (b)

(c) (d)

FIGURE 17.2
Sequence of operations (a through g) to prepare the coffeemaker and brew the coffee. (a) Filter
basket open with filter in place. (b) Adding coffee beans to grinder. (c) Covering beans in
grinder. (d) Putting cover over filter basket. (e) Closing filter door. (f) Adding water to
reservoir. (g) Turning on coffeemaker. (Photograph � 2006 by Kim Fowler, used with
permission. All rights reserved.)

416 Developing Real-Time Embedded Products

conditions and converts the AC power to DC and has two solid-state relays
for controlling the motor and heating coil.
The processor in the control panel is either a microcontroller or an ap-

plication-specific integrated circuit (ASIC); the lack of markings on the chip

(e) (f)

(g)

FIGURE 17.2
Continued

Some Observations about Consumer Appliances 417

protects its identity. I would guess a microcontroller because it would be
cost competitive for the market, and it would also allow modifications
between models. Table 17.1 outlines one possible scenario for how an ap-
pliance manufacturer might determine the type of processing element that
would be the most appropriate.

(a)

(b)

FIGURE 17.3
Central processing board with its (a) microcontroller, and (b) buttons, switches, peripheral
components, and display. Note that some wires and the buttons and knobs are soldered
directly to the circuit board; other wires attach to the board with a connector. (Photograph �

2006 by Kim Fowler, used with permission. All rights reserved.)

418 Developing Real-Time Embedded Products

� Purchasing an 8-bit microcontroller to be the processor in a
coffeemaker can cost between US$0.50 and US$1 per chip in large
quantities. The non-recurring engineering (NRE) is the cost of
designing the circuitry, writing the software, and testing the design.

� Another possibility would be to build a fully-custom ASIC
controller for the coffeemaker. The NRE to design a chip can
easily be as high as US$1,000,000. Fabrication can approach US$3
per chip or more. This totals to US$4 per chip in final delivered
form. Besides the expense, fully-custom ASICs cannot be easily
revised, upgraded, or fixed.

� The circuit board in the control panel for this particular
coffeemaker has the following components: four light-emitting
diodes (LEDs), a connector, one LCD display, an annunciator to
signal people that the coffee is brewed, four push-button switches,
two rotary switches, and 36 discrete components (Figure 17.3).

� The circuit board in the power regulator has the following
components: four transistors, two solid-state relays, an inductor,
a connector, and 27 discrete components (Figure 17.4).

FIGURE 17.4
Power regulator board at the base of the coffeemaker. (Photograph � 2006 by Kim Fowler, used
with permission. All rights reserved.)

Some Observations about Consumer Appliances 419

TABLE 17.1

One of Many Possible Scenarios for Cost (NRE þ COGS) of the Electronics and Circuit Boards within a Coffeemaker.

Microcontroller-Based ASIC-Based

Qty. Metric
Unit Cost
(in $)

Extension
(in $) Qty. Metric

Unit Cost
(in $)

Extension
(in $)

NRE

Project management 2000 Hours 80.00 160,000 2000 Hours 80.00 160,000
Preparing specifications 800 Hours 60.00 48,000 800 Hours 60.00 48,000
Simulations and feasiblity 400 Hours 60.00 24,000 1200 Hours 60.00 72,000
Chip design 1,000,000
Software code (2 LOC/h) 2000 LOC 30.00 60,000 400 LOC 30.00 12,000
Hardware design 4000 Hours 60.00 240,000 2000 Hours 60.00 120,000
Development and test 4000 Hours 60.00 240,000 4000 Hours 60.00 240,000
Documentation 800 Hours 60.00 48,000 400 Hours 60.00 24,000
Field tests 4000 Hours 60.00 240,000 4000 Hours 60.00 240,000
UL certification 800 Hours 60.00 48,000 800 Hours 60.00 48,000
Manufacturing plans 4000 Hours 60.00 240,000 4000 Hours 60.00 240,000
Manufacturing test equipment 2000 Hours 60.00 120,000 2000 Hours 60.00 120,000
Customer meetings, product launch 4000 Hours 60.00 240,000 4000 Hours 60.00 240,000
Overhead—travel, meetings, etc. 200,000 200,000

NRE subtotal ¼ $1,908,000 NRE subtotal¼ $2,764,000
NRE/unit NRE/unit

Quantity produced¼ 50,000 $38.16 $55.28
Quantity produced¼ 100,000 $19.08 $27.64
Quantity produced¼ 200,000 $9.54 $13.82

420
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Cost to produce electronic circuit boards in 200,000 coffeemakers

Cost (NRE þ COGS)

($40/h Burdened Labor Rate)

Processor NRE cost 1 NRE/unit 9.54 9.54 1 NRE/unit 13.82 13.82
Processor unit cost 1 Part 0.50 0.50 1 part 3.00 3.00
Peripheral component costs 1 Set 7.84 7.84 1 Set 7.84 7.84
Control processor PCB fabrication 1 Board 3.00 3.00 1 Board 3.00 3.00
Control processor PCB assembly 1 Board 10.00 10.00 1 Board 10.00 10.00
Power regulator component costs 1 Set 6.50 6.50 1 Set 6.50 6.50
Power regulator PCB fabrication 1 Board 1.00 1.00 1 Board 1.00 1.00
Power regulator PCB assembly 1 Board 4.00 4.00 1 Board 4.00 4.00
Final assembly and test 2 Board 1.33 2.67 2 Board 1.33 2.67

Cost per unit¼ $45.05 Cost per unit¼ $51.83

Total cost for 200,000 sets of electronic boards Total¼ $9,009,333 Total¼ $10,365,333

Cost (NRE þ COGS)
($4/h Burdened Labor Rate)

Processor NRE cost 1 NRE/unit 9.54 9.54 1 NRE/unit 13.82 13.82
Processor unit cost 1 Part 0.50 0.50 1 Part 3.00 3.00
Peripheral component costs 1 Set 7.84 7.84 1 Set 7.84 7.84
Control processor PCB fabrication 1 Board 3.00 3.00 1 Board 3.00 3.00
Control processor PCB assembly 1 Board 1.00 1.00 1 Board 1.00 1.00
Power regulator component costs 1 Set 6.50 6.50 1 Set 6.50 6.50
Power regulator PCB fabrication 1 Board 1.00 1.00 1 Board 1.00 1.00
Power regulator PCB assembly 1 Board 0.40 0.40 1 Board 0.40 0.40
Final assembly and test 2 Board 0.13 0.27 2 Board 0.13 0.27

Cost per unit¼ $30.05 Cost per unit¼ $36.83

Total cost for 200,000 sets of electronic boards Total¼ $6,009,333 Total¼ $7,365,333

(Continued)

S
om

e
O
bservation

s
abou

t
C
on
su
m
er

A
pplian

ces
421

Microcontroller-Based ASIC-Based

Qty. Metric

Unit Cost

(in $)

Extension

(in $) Qty. Metric

Unit Cost

(in $)

Extension

(in $)

Cost (NREþCOGS)

(Automated Assembly)

Processor NRE cost 1 NRE/unit 9.54 9.54 1 NRE/unit 13.82 13.82
Processor unit cost 1 Part 0.50 0.50 1 Part 3.00 3.00
Peripheral component costs 1 Set 7.84 7.84 1 Set 7.84 7.84
Control processor PCB fabrication 1 Board 3.00 3.00 1 Board 3.00 3.00
Control processor PCB assembly 1 Board 0.20 0.20 1 Board 0.20 0.20
Power regulator component costs 1 Set 6.50 6.50 1 Set 6.50 6.50
Power regulator PCB fabrication 1 Board 1.00 1.00 1 Board 1.00 1.00
Power regulator PCB assembly 1 Board 0.20 0.20 1 Board 0.20 0.20
Final assembly and test 2 Board 0.20 0.40 2 Board 0.20 0.40

Cost per unit¼ $29.18 Cost per unit¼ $35.96

Total cost for 200,000 sets of

electronic boards

Total¼ $5,836,000 Total¼ $7,192,000

This Scenario does not Include the Cost of the Molding, Plastics, Sheet Metal, or Final Assembly (� 2006 by Kim Fowler, used with permission. All rights
reserved.)

TABLE 17.1

Continued

422
D
evelopin

g
R
eal-T

im
e
E
m
bedded

P
rodu

cts

Table 17.1 is one scenario that compares these two approaches. Assuming
a production run of 200,000 coffeemakers, the cost (NRE þ cost of goods
sold [COGS]) is between US$30 and US$40 per unit for the electronic boards
alone. Assuming low labor rates outside of the United States or automated
assembly, the highest expense is designing and programming and testing
the central processor. Please note that you have many possible scenarios for
how you might design the control for this coffeemaker.

17.3.4 Power

A separate circuit board resides in the base of the coffeemaker (Figure 17.4).
It appears to be a power regulator with two solid-state relays and discrete
transistors and components. The 120 VAC cord extends upwards from the
base to the grinder motor in the upper structure of the appliance. It prob-
ably is a universal-type brush motor operating directly on 120 VAC. The
processor controls a relay to turn the grinder motor on and off. The pro-
cessor controls the other relay to turn on and off the heating coil. Figure 17.5
shows the heater coil and tubes to deliver the water for heating and
dispensing.

17.3.5 Packaging

The design of the coffeemaker has simple features that help insure safe
and robust operation. There are interlocks to prevent harmful operation.

FIGURE 17.5
Power cord, heater coil, and tubes to deliver the water for heating and dispensing within the
coffeemaker. (Photograph � 2006 by Kim Fowler, used with permission. All rights reserved.)

Some Observations about Consumer Appliances 423

The design reduces potential damage to the circuitry from water or
moisture.

Thermostat interlock: The heating coil has a thermostat that opens should
temperature rise above a set point. This is important when the water
empties out of the coil. It prevents runaway heating by the resistance coil
that would melt down the coffeemaker and possibly cause a fire.

Grinder interlock: The grinder has a combination mechanical/electrical
interlock to protect the user. It is a cover that functions both to shield fingers
from the whirling blades and to contain the grounds so that beans do not
spew everywhere. When the cover is in place on the grinder and the lid is
closed over it, then a switch is closed to allow the grinder’s motor to run. If
either the cover is missing or the lid is not closed, then the switch remains
open and the motor will not run. The grinder cover has a tube with a plastic
plunger inside. The clear plastic tube on the grinder cover fits over a black
plastic hollow post sticking up from the coffeemaker; that post has an
opposing, spring-loaded plunger in it to activate the motor switch interlock
(Figures 17.6 and 17.7).

Filter basket interlock: The filter basket has a mechanical interlock that
closes if the coffee carafe is removed from the appliance. This is a spring-
loaded valve that shuts and prevents coffee from dripping on to the hot

(a) (b)

FIGURE 17.6
(a) Mechanical/electrical interlock on the coffee bean grinder; (b) the tip of my index finger
touches the post with the switch contact for the interlock. (Photographs � 2006 by Kim Fowler,
used with permission. All rights reserved.)

424 Developing Real-Time Embedded Products

base of the appliance. The coffee carafe has a cover with a knob on it that
pushes the valve plunger up; this action allows coffee to drip around the
knob and through the cover into the carafe (Figure 17.8).

Avoiding water damage: The overflow hole near the top of the coffeemaker
prevents overfilling the water reservoir (Figure 17.9). If that overflow hole
were not there, spilled water could damage the grinder motor or the power
regulator board.
Another interesting feature is the drip shield above the entry hole for

the power cord, which is at the base of the coffeemaker. Should water
spill out of the overflow hole, then the drip shield will reduce the chance that
the water will enter the hole in the base with the power cord (Figure 17.9).

Avoiding condensation: Conformal coatings on circuit boards are polymer-
based substances, such as paralene or polyurethane, that seal boards and
components from moisture. The coffeemaker generates condensates that
can infiltrate circuit boards and components and can degrade and destroy
them. Not immediately obvious on the circuit board for the control panel is
a broad swipe of conformal coating over the processor chip and two-thirds
of the circuit board. It looks like the assembler took a 3-inch-wide brush and
slapped conformal coating across the board. A conformal coating covers the
entire power regulator board and all of its components in the base of the
unit.

Switched
input
power

Grinder
motor

Grinder
blade

Grinder
cover

Post with spring-loaded
plunger to the electrical
interlock switch

Short post sticking out
of the bottom of the
hinged lid over the
coffee maker

Plunger in the grinder
cover that mechanically
connects the lid post to the
spring-loaded plunger of
the interlock switch

FIGURE 17.7
Action of the mechanical/electrical interlock on the coffee bean grinder. Only when the top lid
closes and all three mechanical posts and plungers line up and compress together can the
interlock switch closed to allow the grinder motor to turn on. (Drawing � 2006 by Kim Fowler,
used with permission. All rights reserved.)

Some Observations about Consumer Appliances 425

(a) (b)

FIGURE 17.8
Mechanical interlock on the filter drip: (a) this is a spring-loaded plunger valve that closes until
a coffee carafe (b) with its cover is pushed into the appliance. (Photographs � 2006 by Kim
Fowler, used with permission. All rights reserved.)

FIGURE 17.9
Overflow hole for the water reservoir high up, just below the top cover cap, and the drip shield
over the entry for the power cord. (Photograph � 2006 by Kim Fowler, used with permission.
All rights reserved.)

426 Developing Real-Time Embedded Products

The circuitry for the front panel resides within a plastic enclosure. Clear
silicone caulking seals the edges of the plastic box enclosure. White silicone
caulking surrounds the wires that run from the control panel to the power
control circuit in the base of the coffeemaker. This seals the front panel
electronics in a plastic box.

17.3.6 Manufacturing

The coffeemaker is a mass-produced appliance. It has been designed for
assembly (DFA) to help reduce costs. One way to DFA is to solder the
switches directly to the front of the circuit board while the processor is
soldered to the back. This arrangement allows for automated assembly and
reduces wiring. The front panel secures the push buttons and knobs, which
align with the switches on the circuit board. The circuit board then snaps
into place and is held by two screws.
The circuit board for the control panel has two layers while the circuit

board for the power regulator board is single layer; these are simple and
easy-to-fabricate circuit boards. All these design features contain cost. An
insulating sheet covers the back side of the power regulator board to pre-
vent chafing of the wires and premature failure—this is cheaper to do than
staking the wires into another, more complex route.
The wires and cables attach to the enclosure in only two places with

plastic cinch ties. The control wires have a six-row header connector on each
end. Both of these features help reduce the cost of assembly.
The case snaps together and then is held in place by screws. While there

are lots of screws (eight in the base alone, six attaching the front panel, and
two holding each circuit board), they make for a stiff and sturdy con-
struction for the coffeemaker.

17.3.7 Maintenance and Logistics

This appliance, like most appliances, is not designed for repair. The com-
pany has inventory to replace components like the carafe, should it break, or
the grinder cover, should someone lose it. This is the extent of logistics for
most consumer appliances.
Major components for larger appliances, such as motors, heating ele-

ments, and control boards, are stocked by the manufacturer in centralized
warehouses and occasionally by specialized repair shops, but the compo-
nents are not generally or widely available. I doubt that any of these parts
are available for repairing this coffeemaker.

Some Observations about Consumer Appliances 427

17.4 Remote Control Teardown

17.4.1 Market and Description

I hate these things. I hate the bad design most of them foist on consumers.
More buttons do not mean better or easier operations. Howmany of you use
all the buttons on a remote control? (See the next chapter to see the ridic-
ulous extent to which remotes have grown.)
Remote controls control a wide variety of devices: televisions, VCRs, DVD

players, CD players, stereo radios, and so forth. Amazingly, there are
companies that do nothing but design and build remote controls. The
market is very specialized and has unique design challenges.

17.4.2 Architecture and Features

Remote controls have a wide variety of buttons. Some new models have
touch-sensitive visual displays. I will focus on a middle-of-the-road model
that only has buttons (Figure 17.10).
This particular remote control can control televisions, DVD players,

VCRs, and satellite or cable receivers. It accommodates nearly 100 brand
names and hundreds of channels. It stores preferences for up to three users.

FIGURE 17.10
The remote control for a television. (Photograph � 2006 by Kim Fowler, used with permission.
All rights reserved.)

428 Developing Real-Time Embedded Products

17.4.3 Hardware

Many remote controls use a single ASIC to control the device. This partic-
ular device is no exception—it has the ASIC controller chip. The only pe-
ripheral devices are a transmitter driver chip and an LED for sending
infrared energy (Figure 17.11).
The membrane buttons contact the single-layer circuit board. The ASIC

controller reads these contacts directly.

17.4.4 Power

Two AA-sized batteries supply the power. Any regulation is done within
the components. Reduced parts count helps hold the line on costs.

17.4.5 Manufacturing

Everything about this remote control is designed for cost containment. The
circuit board clamps between the two shells of the enclosure, which snap
together (Figure 17.12). The circuit board is a single layer. The battery
contacts are spring steel soldered directly to the circuit board.
Table 17.2 gives one scenario for the cost—it is one among many possible

scenarios. The cost per unit of a particular remote control is somewhere
between US$5 and US$9. The most expensive component would be either
the plastic enclosure or the circuit board. Labor could be the single greatest
cost if not carefully managed.

FIGURE 17.11
The circuit board for the remote control, it only has two integrated circuits—an ASIC controller
and a driver for the infrared LED. The switch contacts for the buttons are etched directly onto
the circuit board. (Photograph � 2006 by Kim Fowler, used with permission. All rights
reserved.)

Some Observations about Consumer Appliances 429

17.4.6 Maintenance and Logistics

These devices are thrown away if they fail. They are not repaired and they
have absolutely no diagnostics.

(a)

(b)

FIGURE 17.12
The remote control is designed for inexpensive manufacturing; it snaps together and the circuit
board is single layer; it also functions as part of the battery holder. (a) Front of the circuit board
with buttons, ASIC, and LED. (b) Back of the circuit board with clips for battery contacts.
(Photographs � 2006 by Kim Fowler, used with permission. All rights reserved.)

430 Developing Real-Time Embedded Products

TABLE 17.2

One of Many Possible Scenarios for the Cost (NRE þ COGS) of a Remote Control
(� 2006 by Kim Fowler, used with permission. All rights reserved.)

NRE Qty. Metric

Unit Cost

(in $)

Extension

(in $)

Project management 100 Hours 80.00 8,000
Preparing specifications 50 Hours 60.00 3,000
Simulations and feasiblity 50 Hours 60.00 3,000
Hardware design 400 Hours 60.00 24,000
Development and test 400 Hours 60.00 24,000
Documentation 100 Hours 60.00 6,000
Field tests 200 Hours 60.00 12,000
Manufacturing plans 100 Hours 60.00 6,000
Manufacturing test equipment 50 Hours 60.00 3,000
Customer meetings, product launch 200 Hours 60.00 12,000
Overhead—travel, meetings, etc 5,000

NRE subtotal ¼ $106,000
NRE/unit

Quantity produced ¼ 50000 2.12
Quantity produced ¼ 100000 1.06
Quantity produced ¼ 200000 0.53

Cost to produce 200,000 remote controls

($40/h Burdened Labor Rate)

NRE cost 1 NRE/unit 0.53 0.53
ASIC unit cost 1 Part 0.50 0.50
Peripheral component costs 1 Set 0.70 0.70
Enclosure injection molding 1 Set 1.50 1.50
Button membrane molding 1 Set 0.40 0.40
springclips for batteries 1 Set 0.20 0.20
PCB fabrication 1 Board 1.50 1.50
PCB assembly 1 Board 2.67 2.67
Final assembly and test 2 Shells 0.67 1.33

Cost (NREþCOGS) per unit ¼ $9.33
Total cost for 200,000 remote controls $ 1,866,000

($4/h Burdened Labor Rate)

NRE cost 1 NRE/unit 0.53 0.53
ASIC unit cost 1 Part 0.50 0.50
Peripheral component costs 1 Set 0.70 0.70
Enclosure injection molding 1 Set 1.50 1.50
Button membrane molding 1 Set 0.40 0.40
springclips for batteries 1 Set 0.20 0.20
PCB fabrication 1 Board 1.50 1.50

(Continued)

Some Observations about Consumer Appliances 431

17.5 Hobbies, Arts, and Crafts

17.5.1 Economics

Companies that produce supplies and electronics for hobbies, arts, and crafts
range from part-time, single-person ‘‘garage’’ shops to large corporations.
They can sell anywhere from tens to hundreds to thousands of units every
year. Two distinguishing factors for hobbies, arts, and crafts are cost and
longevity; everything is cost-sensitive andmust last between 10 and 30 years.
Often there are ‘‘magical’’ cost points: a mechanical component such as a

geared motor in a housing that mechanizes something usually needs to be less
than US$25. Electronic control, such as individual model train controls usually
need to be less than US$50 or US$70 per unit. More intricate model kits need
to be less than US$80 or US$100 per unit. A thorough knowledge of the
particular hobby or craft is necessary to understand acceptable price points.

17.5.2 Liabilities

One good thing about the hobby market is that liability is so low that for
most products it is essentially nonexistent. If your product does not require
line power but runs from batteries or low-voltage DC, then the shock hazard

PCB assembly 1 Board 0.27 0.27
Final assembly and test 2 shells 0.07 0.13

Cost (NREþCOGS) per unit ¼ $5.73

Total cost for 200,000 remote controls $1,146,000

Automated assembly
NRE cost 1 NRE/unit 0.53 0.53
ASIC unit cost 1 Part 0.50 0.50
Peripheral component costs 1 Set 0.70 0.70
Enclosure injection molding 1 Set 1.50 1.50
Button membrane molding 1 Set 0.40 0.40
springclips for batteries 1 Set 0.20 0.20
PCB fabrication 1 Board 1.50 1.50
PCB assembly 1 Board 0.05 0.05
Final assembly and test 2 Shells 0.05 0.10

Cost (NREþCOGS) per unit ¼ $5.48

Total cost for 200,000 remote controls $1,096,000

TABLE 17.2

Continued

NRE Qty. Metric
Unit Cost

(in $)
Extension

(in $)

432 Developing Real-Time Embedded Products

is eliminated. Most hobby equipment does not have a mechanical hazard
either because it is small, light, and low power.

17.5.3 Considerations for Hobby, Arts, and Crafts

By their very nature, hobbies, arts, and crafts are ‘‘do-it-yourself’’ activities.
Reliability and robustness usually are not a concern for the consumer—theyare
going towork around problems and repair or fix things themselves. The funny
thing is this—if the customer is not an electronics hobbyist, then any sophisti-
cated circuitry must have considerable thought put into the interface and into
helping them to understand its operation. Requiring a customer to program in
assembly or even some high-level language usually is bad form.
You may want to take some cues from large appliances when dealing in

hobbies, arts, and crafts. Avoid complex keystrokes to program functions,
unless you have a really well-written users’ manual to walk customers
through every step. Use the ‘‘one button, one function’’ approach if you can.
Otherwise, simple pull-down menus on a display might work.

17.5.4 Hardware

If you need a processor, a simple 8-bit microcontroller will satisfy most
applications. Unless you are building millions of units, an ASIC controller
just does not make economic sense. Reduce the number of peripheral
components to reduce cost. Use single-layer or two-layer circuit boards for
cost containment as long as the frequency of operation stays below 20 MHz
and is localized to the processor.
Try to reduce the wires and cables. They are always a weak point in any

design. Flexingwill eventually break thewires. Connectors add cost and can be
another source of failure, too. One way to reduce the wiring is to put any
buttons or displays right on the circuit board, just as the coffeemaker design
did. Otherwise, consider ways to stake down the wiring to stop flexing and
chafing.

17.5.5 Power

Batteries or low-voltage DC power many hobbies, arts, and crafts. You can
avoid both shock hazards and Underwriters Laboratory (UL) certification
costs by using low-voltage, low-current power sources. This also removes
the need to filter the input power, though you may need to regulate it to a
standard value such as 5 V or 3.3 V.

17.5.6 Manufacturing

Manufacturing should be simple using screws, glue, and snap-fits. You may
want to seriously consider putting a conformal coat on the circuit boards

Some Observations about Consumer Appliances 433

and their edges to seal out moisture and ensure years of trouble-free
operation.

17.5.7 Test, Maintenance, and Logistics

Most hobbies, arts, and crafts have no diagnostics and no repair (it is part of
the fun of a hobby—fixing things). Logistics may include inventory of major
components, such as motors or gearboxes, should they wear out.

17.6 Common Appliance Problems

Appliances can fail for any number of reasons. That considered, there are
still some typical problems that occur regularly. The next two sections have
some things to consider and avoid when designing appliances.

17.6.1 Frequent Problems

Table 17.3 summarizes six prevalent problems found in appliances. You can
find this information at http://www.repairfaq.org [2].

TABLE 17.3

Six Primary Type of Failures Often Found in Appliances [2]

Failure Result(s) Cause(s)

1 Broken wiring inside
cordset

Appliance stops working Flexing, pulling, or long-
term abuse

2 Bad internal connections—
broken wires, corroded or
loosened terminals

Either appliance stops
working or its operation
becomes intermittent or
erratic

Vibration, corrosion, poor
manufacturing, or thermal
fatigue

3 Short circuits Either appliance stops
working, a shock hazard,
or sparking and fire

Shoddy manufacturing with
sharp edges—slice through
wires due to vibrations or
thermal cycles

4 Worn, dirty, or broken
switches or thermostat
contacts

Erratic or no action Simple mechanical wear-out
or abuse

5 Gummed-up lubrication, or
worn or dry bearings

Sluggish or noisy operation
or overheating, possibly
blown fuse or burned out
motor

Environmental conditions
(dust, dirt, humidity) or
poor quality control during
manufacture (they forgot
the oil)

6 Broken or worn drive belts
or gears or parts

Appliance stops working Normal wear and tear, im-
proper use, accidents, or
shoddy manufacturing

434 Developing Real-Time Embedded Products

Broken wiring and bad internal connections are almost always from abuse
or poor manufacturing quality. I repaired a television set once for a friend;
the power plug needed replacing because she pulled the plug by its cord
from the wall outlet after watching television every day. No cord is de-
signed for that kind of abuse.
Short circuits often are the result of poor engineering that does not design

for manufacture (DFM) or design for assembly (DFA). As the reference says,
‘‘ . . . final assembly . . . must sometimes be done blind—the wires get
stuffed in and covers fastened—which may end up nicking or pinching
wires between sharp metal parts. The appliance passes the final inspection
and tests but fails down the road’’ [2].

17.6.2 Appliance Recalls

Appliance recalls can be instructive. They can give you a flavor of the type
of failures that can happen. They also can give you an idea of the magnitude
of problem a recall can present a company—millions of dollars or euros or
your favorite currency lost—in fixing the problem.
Here are some examples of product recalls found during a recent internet

search [3]:

� 45,000 heaters for defective thermostats that were improperly
positioned, which could lead to the units overheating

� 3.1 million dishwashers for a slide switch (the lever that selects
between heat drying and energy saving) that can melt and ignite
over time, posing a fire hazard

� 5,500 toy flashlights because the batteries may overheat or leak and
children could suffer burns from the leaking battery acids

� Upright vacuum cleaners because the power cord may break
inside the handle, posing electrical shock and burn injury hazards

Table 17.4 gives more examples of recalls from the U.S. Consumer
Product Safety Commission [4].

17.7 Summary

Cost is the primary concern for designing consumer appliances. DFM and
DFA are important considerations for reducing the cost of manufacturing—
examples include simple fasteners that install easily, even better if modules
snap together, better yet if assembly and test can be automated.

Some Observations about Consumer Appliances 435

TABLE 17.4

Examples of Recalls from the U.S. Consumer Product Safety Commission Web Site
(http://www.cpsc.gov/cgi-bin/prod.aspx) [4]

Type of Product Approx. Qty Hazard Incidents/Injuries

8-Cup coffee
brewer

73,000 The coffee brewer has
defective electrical
wiring that can result in
overheating, smoking,
burning and melting,
posing a possible fire
hazard

23 reports of melting in
the plastic housing of the
brewers. No injuries have
been reported

Coffeemaker 420,000 The coffeemaker may not
turn off as programmed,
causing the unit to
overheat and melt, and
posing a risk of fire and
burn injury

14 reports of the coffee-
makers overheating. This
resulted in one report of
a minor burn, and 12
reports of minor property
damage to kitchen
cabinets, countertops and
floors

Rechargeable,
lithium ion
batteries

340,000 These lithium ion batter-
ies can overheat, posing
a fire hazard to consu-
mers (3,080,000 sold
worldwide)

16 reports of notebook
computer batteries over-
heating, causing minor
property damage and
two minor burns. All of
these reported incidents
and injuries have been
associated with earlier
recalls of notebook
computer batteries . . .

Flat panel monitor 15,000 A ground clip inside the
back plastic panel of
these monitors can be
incorrectly installed,
posing a risk of electri-
cal shock to consumers

1 report of a consumer
receiving an electrical
shock from one of these
monitors. The consumer
was not injured

Built-in
dishwasher

74,300 These dishwashers have
a connector that can
short-circuit and
overheat during normal
use, posing a fire hazard
to consumers

29 reports of connectors
overheating, including
one report of a fire that
spread outside the
dishwasher and caused
minor property damage.
No injuries have been
reported

Espresso machine 6,600 The electrical connectors
in the espresso machine
can erode, posing a fire
hazard

None

Treadmill 700 The treadmill can
unexpectedly accelerate
or decelerate, possibly
causing the user to lose
control and fall

9 reports of speed control
problems. No injuries
have been reported

(Continued)

436 Developing Real-Time Embedded Products

Cordless electric
lawnmower

160,000 An electrical component
in the lawnmowers can
overheat, posing a fire
hazard

10 additional reports of
electrical components
overheating, including
one additional report of a
fire extending beyond the
mower. Note: The
original recall involved
11 reports of electrical
components overheating.
One of these resulted in a
minor hand burn, and
nine resulted in reports
of minor property
damage extending
beyond the mower

DLP projector 21 If the lamp drive circuit
touches the shield case,
the unit is not ground-
ed, and a person were to
contact metal terminals
at the back of the unit,
there is a potential for
electric shock

2 reports of the lamp-drive
circuit contacting the
shield case. No injuries
have been reported

Radio-controlled
airplane

7,500 The rechargeable battery
pack inside the toy
airplane can overheat
posing a burn hazard

15 reports of the toy
airplane’s rechargeable
battery pack overheating,
including two reports of
minor skin burns

Upright freezers
and refrigerators

112,000 The defrost heater coil
can become exposed
inside the units, which
poses a potential shock
hazard to consumers. In
some cases the exposed
heater wire can also
melt, or burn the unit’s
interior plastic food
liner

45 reports of incidents of
the defrost heater coil
becoming exposed. Nine
of those incidents
resulted in an electrical
short. The others melted
and burned the unit’s
interior plastic liner. No
injuries have been
reported

Three-door refrig-
erator

20,000 A faulty component in
the condenser fan motor
can short circuit. This
could cause the
condenser fan motor
to overheat, posing a
potential fire hazard
to consumers

82 reports of incidents
involving a condenser
fan motor failure due to a
failed capacitor arcing
and smoking. There has
been smoke damage in a
few incidents. There have
been no injuries

TABLE 17.4

Continued

Type of Product Approx. Qty Hazard Incidents/Injuries

(Continued)

Some Observations about Consumer Appliances 437

References

1. Haskell, B., Portable Electronics Product Design and Development, McGraw-Hill,

2004, pp. 222, 257–264, 296–301.

2. http://www.repairfaq.org

3. http://www.matthewslawfirm.com, 2004. While available in 2004, it appears no

longer available on the web.

4. U.S. Government’s Consumer Product Safety Commission’s website: http://

www.cpsc.gov/cgi-bin/prod.aspx

Electric scooter 74,811 Improper wiring can
cause a short circuit,
posing a fire hazard in
the scooter. In addition,
inadequate insulation
may expose electrical
wiring, which poses a
shock hazard

2 reports of the scooters
catching fire. There have
been 13 reports of
scooters starting and/or
moving on their own.
One person reported
receiving scratches as a
result. There have also
been five reports of
property damage, in-
cluding two reports of
the scooters causing
house fires

Sewing and
embroidery
machine

55,000 Electrical arcing can
occur in the machine’s
power supply, posing a
risk of fire

3 incidents of these
machines overheating
and catching fire. One
incident resulted in
extensive smoke damage
to a consumer’s home,
and the other two
incidents resulted in
minor property damage

Upright vacuum
cleaner

636,000 The recalled vacuums
have defective on-off
switches that can
overheat the handle and
tool holder areas of the
vacuum, resulting in a
fire hazard

249 reports of vacuums
overheating, which
caused the handle area to
smoke, melt or catch fire.
One minor burn injury
requiring no medical
attention was reported

TABLE 17.4

Continued

Type of Product Approx. Qty Hazard Incidents/Injuries

438 Developing Real-Time Embedded Products

18
Some Observations about User Interfaces

18.1 Why Are User Interfaces so Important?

The user interface, or UI, represents the purpose, function, and utility of a
device or piece of equipment. The UI is the most powerful aspect of a device
in setting the perception of a user who operates the device or equipment.
Perception is one of those intangible, subjective things we must learn to
accommodate.
Some basic awareness of UI principles can vastly improve the utility and

perception of any product that you design. Even a simple two-button
operation with one or two light-emitting diodes (LEDs) provides a UI that
significantly affects users, customers, and owners. This chapter has some
very simple basic principles and examples that will help you design better
products.

18.2 Basic Principles for User Interfaces

18.2.1 The Goal

The simple goal of a UI is to establish a good relationship between the
device and the user. We have often heard, ‘‘Make it intuitive’’—but what
does that mean? Intuitive for whom? How?
What defines a good relationship between the device and the user? Some

attributes of a good relationship follow. They may not all be intuitive, but
they can be the basis for an intuitive interface and a good relationship.
Visibility means that the function is clear to a user. It helps the user

understand the system by showing the user the state of the system and the
available options.
Control means that users can do what they want to do. They have direct

control over a device and can do useful things. (Beware—automating
sequences of operations can sometimes take control away from users.)
Appropriateness means that the cognitive mapping (or mental image)

correctly defines the relationship between the controls and their results for
the user. People using the device ‘‘expect’’ a certain action when they

439

perform a specific operation (e.g., pushing a button). They get a measured
response when they initiate an operation. An appropriate or measured
response is analogous to the correct gain in an amplifier—you get a propor-
tional response [1].
Feedback is an important aspect of interface design that ties together

visibility, control, and appropriateness. If you push a button, a noticeable
action occurs—maybe an acoustic click or a tactile snap or a visual display
lights up. Feedback informs the user about the action performed and the
result accomplished. It helps set the level of expectation of the user [1].
Perception is the most difficult and often the most important. It is subjective

and has many dimensions to it. The interface is the major factor in forming
perception. ‘‘From the user’s point of view, the interface is the system . . . ’’ [2].
Perception is reality!
Audience is the last component. Education and culture play into how the

user relates with the interface. You need to understand who uses the device,
when they use it, and how they use it.

18.2.2 UI Guidelines

There are five components of user interfaces: cognition, ergonomics, utility,
image, and ownership. While identified as distinct terms, they do overlap
and you cannot really isolate one from the others [3].
Cognition involves themental tasks and computations for operating a device

and relates to the capabilities and expectations of the user. The cognitive
aspects of design include learning, memory, organization, and consistency.
Ergonomics is the physical form and fit found in human factors research.

Examples include:

� Provide comfortable seating and arrangements

� Avoid awkward positions

� Avoid overextended limb movement

� Minimize actions that produce fatigue

� Supply appropriate lighting, not too dim, not too bright

� Avoid annoying or distracting noises

Utility is the metric for the usefulness of the device. It defines how
much the device accomplishes against how much it theoretically could ac-
complish.
Image describes the users’ perceptions of both the device and its operation.

It involves more than styling; cognitive aspects, ergonomics, and utility all
combine to form the image.
Ownership is the level of commitment that an user exercises to use your

product. Ownership can be a powerful determinant in ongoing use of your
device and the eventual purchase of newer models.

440 Developing Real-Time Embedded Products

Organize the UI to fit the tasks. First, develop a good mental model of the
device and its operations for the user. A good mental model provides
visibility, which relates to cognition, utility, and ergonomics. Provide clear
mappings from expectations of the user into operational results. A good
mapping can be intuitive because it will fit the user’s expectations [4].
Making the UI predictable and consistent will improve the mental model

[1]. Strive for actions that cause the least astonishment. Operations that
verify important actions are part of being predictable and reliable [5].
Economy of expression can help a more experienced user to be more effi-
cient, but remember to be appropriate and not terse [1].
Making operations and functions easy to learn and remember is an im-

portant part of utility and cognition. Forcing users to endure a long period
of learning reduces the effectiveness of the UI and ultimately the device; it
can stress the relationship between users and the device [5]. Reference [6] is
a handbook of concepts used in UI.
Finally, realize that people do what they know—not necessarily what is

easy or even correct. We are creatures of habit, which helps reduce our
mental workloads. We maintain mental models of what we want to
accomplish and trust them to get results. We may well continue to do what
we think works, even if it does not. We will not change unless the device
makes clear to us a better or more correct method.

18.3 Vending Machine faux pas

Vending machines dispense any variety of commodities. Most of us have had
experience with retrieving a soft drink from a vending machine. Some
machines have simple buttons with corresponding labels indicating the
particular drinks; you do not actually see the drinks stored; the machine de-
livers the drink container down a chute to you.
Some vending machines have glass fronts so that you can view the items

inside. They have a variety of delivery mechanisms. One such mechanism is
a wire ‘‘corkscrew’’ that turns and pushes items forward until they fall down
into a tray that forms a delivery chute. Another mechanism is a robotic tray
that moves up to the selected item and then down to deliver it to a chute.
Regardless of themechanism, the slot for each set of items isusuallyuniquely

identified by a letter to represent the row and a number to represent the
column. A good UI for a vending machine with a glass front clearly maps the
rows and columns to a keypad for selecting the desired slot. TheUI should also
group the bill and coin slot together and place the display above the keypad.
Figure 18.1 shows one such machine that clearly violates these principles.
The row letters and column numbers did not map spatially to the soft drink
slots; this is confusing to users. The bill slot and coin slot are separated.
Make UIs clear. Reduce confusion; take the path of least astonishment!

Figure 18.2 illustrates a better arrangement for the keypad, along with coin
slot and display.

Some Observations about User Interfaces 441

18.4 Appliance Display faux pas

Figure 18.3 shows the display on a new refrigerator. It is a control panel to
set the temperatures in the freezer and the refrigerator. It also displays the
buttons that dispense water and ice.
It is unnecessarily complex. Too much information is presented on one

screen to be useful. It should have hidden some of the information or put it
in pages or menus behind the main screen. For instance, the buttons do not
map intuitively to the display, it is not obvious how to set the temperature
(and I never did figure how to do it), and the center panel of ‘‘Silent, Fuzzy,
and Deodo’’ is essentially meaningless.

FIGURE 18.1
This is an actual vending machine that I spotted in an international airport. It breaks a
number of rules for a good UI: a nonintuitive mapping for the keypad to displayed items, the
bill slot over the display, and the coin slot separated from the bill slot. (Photograph � 2005 by
Kim Fowler, used with permission. All rights reserved.)

442 Developing Real-Time Embedded Products

FIGURE 18.2
This is another vending machine with a better UI: a standardized keypad and the coin slot is
under the display. (Photograph � 2007 by Kim Fowler, used with permission. All rights
reserved.)

FIGURE 18.3
This is a display on a refrigerator. It is far too complex at a glance. There is a significant
learning curve in using it. (Photograph � 2006 by Kim Fowler, used with permission. All
rights reserved.)

Some Observations about User Interfaces 443

18.5 Remote Control faux pas

Did I mention how much I hate remote controls? I hate them, in general.
They tend to trade flexibility and quantity of functions with utility [7].
Do not most people just use the up/down arrows to channel surf and the
þ/� buttons to change volume? Yet remote controls continue to sprout
more buttons year after year, as shown in Figure 18.4. Figure 18.5 shows
one simple remote that most people can easily use—it does not have great
flexibility with many functions, but it is easy to use.
Buttons on remote controls should be grouped for functionality and

uniquely identified by shape and placement. The number pad for selecting
an arbitrary channel should be a recognizable configuration, such as a
telephone keypad. Figure 18.6 shows an old remote control from 1989 that
controlled a television with a built-in VCR and a much later remote control
for comparison. The old remote control had 64 identical ‘‘chiclet’’ style
buttons. The numbered keypad had no kind of standard configuration.
New generations of remote controls contain liquid crystal display (LCD)

screens with menus of selections. I can only hope that more thought has
been put into these remote controls. The right thing would be to group
similar functions on one page, such as controls for televisions or DVD
players. Navigation between pages should be simple and easy.

FIGURE 18.4
Five different remote controls found in one beach vacation house. Six years after the
photograph Figure 18.6 was taken and still they sport terrible UI—many buttons, confusing
arrangements. (Photograph � 2005 by Kim Fowler, used with permission. All rights reserved.)

444 Developing Real-Time Embedded Products

FIGURE 18.5
Where remote controls could be more useful and less confusing. This was found in a motel.
(Photograph � 2006 by Kim Fowler, used with permission. All rights reserved.)

FIGURE 18.6
An old remote control (on the left) from 1989 and the one on the right from 1999. Designs began
moving towards more usable and thoughtful configurations—standard keypad numbering,
distinctly shaped buttons, and better fit to the hand. (Photograph � 2001 by Kim Fowler, used
with permission. All rights reserved.)

Some Observations about User Interfaces 445

18.6 Boombox faux pas

Figure 18.7 shows a boombox with the controls in the wrong places. The
display and controls for the CD player are on the front panel just above
the cassette tape unit. The controls for the cassette tape unit are on top near
the CD. The cognitive mapping for the controls and display are counter-
intuitive. Everyone that I have watched use this boombox for the first time
gets it wrong. They invariably put in a CD in the top platen, close the lid,
and push the play button on the cassette player next to the lid. Likewise, I
have seen people put in a cassette tape and push the forward arrow (>)
button for the CD play.
Clearly this is a cheap boombox and manufacturing ease was more im-

portant than customer satisfaction. Most people eventually get used to the
inappropriate cognitive mapping.

18.7 Handheld Chemical Agent Sensors (Portions Reprinted,

with Permission from the IEEE Instrumentation &

Measurement Magazine, March 2005. � 2005 IEEE) [8]

18.7.1 Testing

I had the opportunity to test some equipment used to sniff out weapons of
mass destruction. The equipment comprised handheld devices that were

FIGURE 18.7
Boombox with the controls in the wrong places—the cognitive mapping is counter intuitive.
The controls for the CD are on the front panel just above the cassette tape unit and the controls
for the cassette tape unit are on top near the CD. (Photograph � 2000 by Kim Fowler, used with
permission. All rights reserved.)

446 Developing Real-Time Embedded Products

very sophisticated chemical sensors. It was fascinating to be seated in a
laboratory containing high-flow fume hoods with nerve gases streaming
through them and monitor the devices under test as they detected the
agents.
Our goal was to evaluate the effectiveness of sensors in the presence of

common household chemicals. We wanted to see if the sensors would detect
these common chemicals and generate a false alarm. We also wanted to see
if those same chemicals would mask the detection of truly dangerous agents
and prevent a correct, positive alarm.
Each of the tested sensors used one of two different types of transducers

to detect the various types of chemicals. One sensor used both types of
transducers. They generally tended to be handheld devices with several
buttons and a small LCD display. Further discussion of the exact technology
is not necessary for this case study.
What really intrigued me was the software and graphical user displays

for connecting the sensors to a computer and testing them in the labora-
tory. Each sensor approached the display very differently and none of
them did it well. None of the software and displays adhered to good,
basic principles for user interfaces; they did not seem to have a lot of
thought behind them.

18.7.2 Basic Formats for Display

Each of the four devices was from a different manufacturer. Each ap-
proached the display of data differently. The common thread was that each
used a histogram or graph of molecular ion peaks to display its current state
of detection. The software in each device would update the histogram or
trace the display every 5–15 sec. Three of the four also displayed a form of
‘‘waterfall’’ charts with a series of traces, that is, the graph of molecular ion
peaks, overlaying each other. Every chemical compound has its own char-
acteristic peaks in the display. Figure 18.8 gives an example of a waterfall
chart. Furthermore, the devices would display similar histograms for
positive (þ) ion species and negative (�) ion species.
The software for each device would then display various other para-

meters, as well. In particular, each had its specific format for alarms if it
detected a harmful or dangerous chemical. Some were more readily obvious
than others.

Company A: The device from Company A had its screen split into four
areas for displaying the traces and listing the chemicals. The largest areas
displayed the traces. A horizontal bar divided the screen in half, with the
trace of the current ion species at the top and the waterfall display of traces
on the bottom. A vertical bar separated the left-hand column of chemical
listings from the traces that dominated the majority of the display. It labeled
the prominent peaks of the traces with the acronyms for the detected
chemicals.

Some Observations about User Interfaces 447

When the device from Company A detected a harmful or dangerous
chemical, it displayed an alarm by highlighting the name of the agent in red
at the top of the column listing of chemical names. It also highlighted the
acronym for the agent, which produced the alarm, above the prevalent
peaks on the trace.
Here is the bad part, the software flashed the display screen between the

positive ion trace, a gray screen, the negative ion trace, and another gray
screen in a rapid, unending sequence. For each screen display of the ion
traces it provided a dwell time of 3 sec on the screen and then 4 sec in the
gray screen. This meant that the software:

� Simultaneously displayed the positive ion trace and its waterfall
chart for 3 sec.

� Then displayed a blank, gray screen for 4 sec.

� Then simultaneously displayed the negative ion trace and its
waterfall chart for 3 sec.

� And then displayed another blank, gray screen for 4 sec.

This made recognizing and assimilating the data nearly impossible. The
software didmanage to store the data on disk for later review, but immediate
observation was extremely difficult and we regularly missed alarms.

Company B: The device from Company B had a fairly decent screen for
displaying parameters. It had two simple histograms, one was a three-bar

Time

Concentration

FIGURE 18.8
An example of what a ‘‘waterfall’’ chart of histograms might look like. (Reprinted with
permission of the IEEE Instrumentation & Measurement Magazine, March 2005.)

448 Developing Real-Time Embedded Products

histogram for one type of transducer and the other was a 16-bar histogram
for the other type of transducer. These remained on continuously; the
histogram bars updated every 7 sec or so.
The device from Company B also had LED style alarms for four different

general classes of toxic agents. Finally, it had some individual spaces for
displaying numerical values of minor parameters.
The LED alarms were always present on the screen. The difference in

intensity between an ‘‘off’’ LED and one that was ‘‘on’’ was not as great as I
would have liked. I would have preferred it to flash on when detection of a
toxic agent occurred. We occasionally would miss an alarm because of the
minimal distinction between off and on.
The 16-bar histogram showed the bars moving upward from a midpoint

to indicate positive ions. It showed the bars moving downward from the
same midpoint to indicate negative ions. I liked this and found it fairly
intuitive.
The histogram bars were each in a different color. I found this somewhat

distracting. It gave more weight to certain bars, such as the red or green
ones, over other colors, though this was not intentional or significant to the
detection of chemical agents.

Company C: The device from Company C had several sets of traces, a
current ion trace and a waterfall chart. We had to press a button to toggle
between positive and negative ions. It only had several minor readouts for
alarm intensities but no real indication of alarm (it did store on the data on
the disk for later review).
I found the lack of immediate alarm indication somewhat irritating. It

made it difficult to time the onset of detection.

Company D: The device from Company D had several sets of traces, a
current ion trace and a waterfall chart. We had to select a small button item
in the top menu bar to toggle between positive and negative ions. The
detection alarm resided in a separate, small side-window and we had to
scroll through the window to find the location of the alarm. It was
somewhat cryptic too. It indicated a detection of a toxic agent by changing
from a small or zero value to ‘‘exceed a threshold value.’’ It had no separate
indication of an alarm.

18.7.3 Basic Formats for Control

Each of the four devices approached the control differently. They used a
variety of methods: pull-down menus, buttons, textboxes, and file logging.

Company A: The device from Company A had simple control. Basically,
all we had to do was name a file and set some basic parameters in a small
control panel on the screen and then press a start button. We stopped it by
pulling down a menu selection to stop the logging process.

Some Observations about User Interfaces 449

Company B: The device from Company B had a control panel to set up the
log file name and several buttons on the display screen. We started and
stopped the logging of data by pressing the appropriate button that was
clearly marked on the screen. We could indicate that agent gas was on or off
by pressing the appropriate button and the software would immediately log
it in the recorded text file.
The layout of the buttons was OK and usable. I found that keystrokes on

comments in the control panel window would stick and cause a variable
delay of 1–1.5 sec. This was a function of the software; we ran the other
devices on the same machine and did not experience similar behavior.

Company C: The device from Company C had sticky software, as well.
When I typed in notes, comments, or file names, or edited comments, the
keystrokes seemed to stick and delay. This device also had a start button to
begin logging operation, but you had to remember to stop it and type in a
file name to record the log on disk. Otherwise, data would be lost at the end
of a trial. This was a minor annoyance.

Company D: The device from Company D had several quirks in the
operation of its software. First, the cursor moved in a nonintuitive way to
scroll through the window to find the alarm indication. You had to place the
cursor in the window and move it up to drag the window upwards. It did
not use a standard columnar scroll bar to move down the page (i.e., see the
page move upwards). Second, it had these small, very hard-to-read
pictograph buttons in the menu bar at the top of the screen to control the
device. The schematics or diagrams on the pictograph buttons were odd,
too, and you had to learn and remember their meaning.
Similar to the device from Company C, this device had a start button in

the pictograph buttons in the menu bar to begin logging operation. Again,
you had to remember to stop it by selecting and pressing a button and then
type in a file name to record the log on disk. Otherwise, data would be lost
at the end of a trial. As with Company C’s device, this was an annoyance.

18.7.4 Considerations for Improvements

Each of these devices could have benefited by more consideration for the
human interface. After spending several months running them, I have
specific thoughts about how I would have designed the interface differently.
First, the setup and control should be clear and straightforward.

It probably should have several separate screens that can be accessed
intuitively—pull-down menus and a logical progression that pops up the
necessary screens in order.
The main screen (Figure 18.9) would have a ‘‘start log’’ button that would

pop up a screen (Figure 18.10) to select a file name and location if it has not

450 Developing Real-Time Embedded Products

been already set. That same pop up screen would have a text box for the
inclusion of comments.
The main screen would have a ‘‘stop log’’ button and a display of the

current file name for the log. It would also have a ‘‘add notes to log’’ button
that would call up the pop up screen with its text box so that comments
could be inserted at any time during the trial run.
The main screen would have the alarm indication, a big, flashing LED,

near the top in an obvious location. Right next to the flashing LED would be
a textbox to display the detected agent names.
The main screen would display both the positive and negative ion traces

in a waterfall chart. It would also have a place for a histogram (for addi-
tional transducers) or a numerical display of selected parameters.
I would also consider having a separate control that allows users to select

what specific parameters that they might want to see on the main screen.
This allows users to focus on only two or three parameters, which is
intuitive and typical of our human nature. This would mean that the device
would do what they expect and want; it would add a measure of ownership
to the interface because users could customize it to their applications.

AAA
QQQ
ZZZ
.
.
.

Detected agent

Agent
Alarm

+ ion trace – ion trace

User selected parameter display – possibly histogram or numerical
values

Start Stop Add notes to < drive \ path \ file name of log >

FIGURE 18.9
An example of what a main screen for the software GUI might look like in a sensor that detects
toxic and deadly chemicals. (Reprinted with permission of the IEEE Instrumentation &
Measurement Magazine, March 2005.)

Some Observations about User Interfaces 451

18.7.5 Final Thoughts on UI for Chemical Sensors

Before I finish a design of the human interface, I would want to do two very
important activities:

� Interview specific customers for needs and expectations at the
beginning of the design.

� Hold focus groups, maybe Web meetings, to assess the functional-
ity of the proposed interface.

My comments here do not reflect on the sensitivity, functionality, utility,
or capability of the four sensors that my team and I tested. The various
implementations gave me a platform for urging the engineering community
for more considered effort in designing software.

18.8 Summary

The user interface, or UI, is important to any device design. It needs to
be clear, obvious, and usable. I would recommend reading the following
References 4, 5, and 6 to understand the basic principles of UI.

FIGURE 18.10
An example of what a log file screen might look like. (Reprinted with permission of the IEEE
Instrumentation & Measurement Magazine, March 2005.)

452 Developing Real-Time Embedded Products

References

1. Marcus, A. and Van Dam, A., User-interface developments for the nineties.

Computer, Vol. 24, No. 9, 1991, pp. 49–57.

2. Norman, D.A., Cognitive Engineering. In User Centered System Design: New

Perspectives on Human–Computer Interaction, Erlbaum, Hillsdale, NJ, 1986, Chapter 3,

p. 61.

3. Fowler, K., Electronic Instrument Design, Architecting for the Life Cycle, Oxford

University Press, 1996, pp. 104–120.

4. Norman, D.A., The Design of Everyday Things, Doubleday, New York, 1988.

5. Constantine, L.L. and Lockwood, L.A.D., Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design, Addison–Wesley, Boston, MA, 1999,

pp. 7, 23.

6. Lidwell, W., Holden, K., and Butler, J., Universal Principles of Design, Rockport

Publishers, Gloucester, MA, 2003.

7. Lidwell, W., Holden, K., and Butler, J., Universal Principles of Design, Rockport

Publishers, Gloucester, MA, 2003, pp. 86–87.

8. Fowler, K., Tried and True column, ‘‘Human Interface: A Case Study,’’ IEEE

Instrumentation & Measurement Magazine, Vol. 8, No. 1, March 2005, pp. 46–49.

Some Observations about User Interfaces 453

Index

A
Aerospace video processor, 263–276
analysis, 272
architecting and architecture, 265–267

analysis, 266
interfaces, 266
parameters, 266
process, 265–266

concept and market, 263–265
economics, 264

design trade-offs, 272–274
buy vs. build, 274
hardware vs. software, 273

disposal, 276
documentation, 269–270

purposes, 269
types, 270

integration, 275
liability, 276
manufacturing, 275–276

assembly, 276
electrical and electronic, 275
mechanical, 275–276

people and disciplines, 265
phases, 267–269

commercial production, 269
design, 267–269
fabrication and delivery, 269

requirements and standards, 271
markets, 271

scheduling, 269
support, 276
tests, 274–275

environmental, 275
hardware and software integration,

274–275
laboratory tests, 274
peer review, 274

Analyses, analysis
aerospace video processor, 272
automobile engine controller, 174, 179
commercial laboratory

equipment, 159–160
development processes, 30–31
implanted medical devices, 359–360
implanted stimulator programmer,

316–321
industrial flowmeter, 194

major appliances, 113, 116
military support equipment, 211–212
mission-critical equipment, 70–75
satellite subsystem, 289
space flight instrument design, 236–239
summary comparisons, 383
telecom products, 131

Anechoic chamber, 134
Antennas, 237
Arc fault detector, 80–81
Architecting and architecture,

aerospace video processor, 265–267
automobile engine controller, 173–176
commercial laboratory equipment,

144–147
development processes, 8–15
implanted medical devices, 338–342
implanted stimulator programmer,

307–309
industrial flowmeter, 191–193
major appliances, 113–115
military support equipment, 207–208
mission-critical equipment, 55–60
satellite subsystem, 281–282
space flight instrument design,

223–224
summary comparisons, 380–381
telecom products, 125–128

Architecture
architectural trade-offs, 393–411
biological monitoring, see

separate entry
gun fuzing system, see

separate entry
parking garage indicating system,

see separate entry
automobile engine controller, 179,

see also separate entry
biological monitoring, 405
coffeemakers, 415, see also separate entry
consumer appliances, 113–115
distributed vs. centralized, 13, 380
gun fuzing system, 409
human interface, 15
industrial flowmeter, 194–195
loose vs. tight coupling, 14, 380
manufacturability, 15
military support equipment, 212–213

455

Architecture (continued)
modular vs. custom monolithic,

13–14, 380
parking garage indicating system,

395–396
processors types, 14–15, 380
remote control, 428
satellite subsystem, 289–292
centralized star vs. distributed, 290

space flight instruments design, 239
telecom products, 125–128
testability, 15

Arts, See Hobby
ASIC (Application-specific integrated

circuit), 336
ATE (Automatic test equipment), 205
ATEX, 191, 194
Automobile engine controller, 171–187

analysis, 179
architecting and architecture, 173–176
analysis, 174
interfaces, 175–176
process, 173

concept and market, 171–173
economics, 171–173

design trade-offs, 179–182
buy vs. build, 181–182
hardware vs. software, 181
manufacturing, 182

disposal, 185
documentation, 177
integration, 183
liability, 185–187
manufacturing, 183–184
people and disciplines, 173
phases, 176
requirements and standards, 177–179
government standards, 177–178,

See also separate entry
markets, 177
requirements preparation, 179

scheduling, 176–177
support, 184–185
tests, 182–183

Availability, mission-critical
equipment, 76

B
Biological monitoring, 404–407

architecture, 405
buy vs. build, 406
hardware, 405
installation and maintenance, 407
issues, 404
manufacturing, 407
packaging, 406
power, 406

purpose and description, 404
real-time calculations, 404
software, 406

BIT (Built-in-test)
development process, 42
military support equipment, 217
mission-critical equipment, 85–86

BITE (Built-in-test equipment)
development process, 42
military support equipment, 217

Black box, 203
Black box testing, 40
Bluetooth standard, 199
Boombox, 446
Buy vs. build

aerospace video processor, 274
automobile engine controller, 181–183
commercial laboratory equipment,

163–164
development processes, 35–37
implanted medical devices,

365–366
implanted stimulator programmer,

325–326
industrial flowmeter, 198
major appliances, 118
military support equipment, 215
mission-critical equipment, 83–84
satellite subsystem, 299
space flight instrument design, 243
summary comparisons, 388–389
telecom products, 132

C
Cable harnesses

industrial flowmeter, 197
military support equipment, 213
space flight instruments design, 242

CAD (Computer aided design), 105
CE (Conformite Europeene), 66–67
Circuit simulators, 105
ClearCase, 104
ClearQuest, 104
CMMI (Capability maturity model

integration), 67
Code inspections or walk-throughs,

83, 368
Code reviews, 387–388
Coffeemakers, 413–427

architecture and features, 415
description, 414
hardware, 415–423
maintenance and logistics, 427
manufacturing, 427
packaging, 423–427
condensation, avoiding, 425–427
filter basket interlock, 424–425

456 Index

grinder interlock, 424
thermostat interlock, 424
water damage avoidance, 425

power, 423
Cognition, 440
COGS (Cost of goods sold), 6
Commercial laboratory equipment,

141–168
analysis, 159–160

feasibility, 159–160
heuristics, numerical simulations,

160
testing, 160

architecting and architecture, 144–147
branding, 147
interfaces, 147
parameters and analyses, 145–146
process, 144–145

concept and market, 141–143
economics, 141–143

design trade-offs, 160–165
buy vs. build, 163–164
hardware vs. software, 163
maintenance and repair, 165
manufacturing, 164
test for quality, 164–165

disposal, 168
documentation, 156–158

types, 156–157
user manuals, 157–158

integration, 166
liability, 168–169
manufacturing, 166–167
people and disciplines, 143–144
phases, 147–156

concept, 147–149
development, 153
investigation, 149–153
pilot, 155–156
production and support, 156

requirements and standards, 158–159
markets, 158–159

scheduling, 156
support, 168
tests, 165–166

Comparisons, case studies, 377–392
analyses, 383
architecting and architecture, 380–381
design trade-offs, 383–390

buy vs. build, 389
circuit concerns, 384
cooling, 384
manufacturing and assembly, 389
power, 384
processor elements, 384

software development, 386–388
documentation and processes, 381–382
liability, 392

manufacturing, 390–391
market, 378
people and disciplines, 379–380
requirements and standards, 382
scheduling, 381
support and service, 391
test and integration, 390

Concept and market
aerospace video processor, 263–265
automobile engine controller,

171–173
commercial laboratory equipment,

141–143
development processes, 5–6
implanted medical devices, 333–334
implanted stimulator programmer,

303–306
industrial flowmeter, 189–190
major appliances, 111–112
military support equipment, 203–206
satellite subsystem, 279–280
space flight instrument design, 221
summary comparisons, 378
telecom products, 123–125

Consumer appliances, 111–121
analysis, 116
appliance recalls, 435
architecting and architecture, 113–115
analysis, 113
interfaces, 114
process, 113
waterfall and spiral development

process, 114
concept and market, 111–112
economics, 111
incremental evolution, 111–112

design trade-offs, 116–119
buy vs. build, 118
hardware, 116–117
hardware vs. software, 118
manufacturing, 118
power, 117
software, 117–118
test and maintenance, 118–119

disposal, 121
documentation, 115
integration, 119
liability, 121
manufacturing, 119–120
assembly, 119–120
electrical, electronic, and

mechanical, 119
tests, 120

people and disciplines, 113
phases, 115
problems, 434–435
requirements and standards, 116
and regulations, 116

Index 457

Consumer appliances (continued)
scheduling, 115
support, 120
maintenance and repair, 120
technical support, 120

tests, 119
Cooling

aerospace video processor, 273
commercial laboratory

equipment, 162
development process, 34
implanted stimulators, 324
industrial flowmeter, 197
military support equipment, 214
mission-critical equipment, 82
satellite subsystem, 298
space flight instruments design,

242–243
summary comparison, 384, 386
telecom products, 132

COTS (Commercial-off-the-shelf), 181
Coupling, 14

loose vs. tight coupling, 14, 380
Crafts, See Hobby
CSA (Canadian Standards

Administration)
consumer appliances, 116
industrial flowmeter, 194

D
Data redundancy, 79
DC–DC converter, 196
Dependability, 76
Design complexity, 12

components, 12
resources, 12

Design tradeoffs
aerospace video processor, 272–274
automobile engine controller, 179–182
commercial laboratory equipment,

160–165
development processes, 31–38
implanted medical devices, 361–367
implanted stimulator programmer,

323–326
industrial flowmeter, 194–199
major appliances, 116–119
military support equipment, 214–215
mission-critical equipment, 75–80
satellite subsystem, 289–299
space flight instrument design, 239–243
summary comparisons, 383–390
telecom products, 131–133

Development processes, 1–49
analysis, 30–31
calculations, 30
feasibility, 30

heuristics, 30
numerical simulations, 31
testing, 31

architecting, 8–12
analysis, 12
definition, 8
parameters, 11–12
process, 9–11

architecture, 12–15, See also
separate entry

basic definitions, 1–3
comparison, basis of, 4
concept and market, 5–6
revolution, 5
evolution, 6
economics, 6
disruption, 5–6

design complexity, 12
design trade-offs, 31–38
buy vs. build, 35–37
cooling, 34
hardware, 33–34
hardware vs. software, 35
intent and requirements, 33
manufacturing, 37–38
power, 34
software, 34–35
speed development, 31–33
test and maintenance, 38

disposal, 47–48
recycling, 47
RoHS and WEEE, 47–48

documentation, 21–22, See also
separate entry

features, 15–16
integration, 42–43
environmental, 44
field tests, 44
hardware, 43
software, 43
system, 43–44

interfaces, 15
liability, 48–49
economics, 49
legalities, 48–49
safety, 48

manufacturing, See separate entry
people and disciplines, 7–8
project phases, 16–19
concept, 16–17
critical design, 18
preliminary design, 17
production handoff, 18–19

purpose, 3
requirements and standards, 24–30
government regulations, 24–25
markets, 24
requirements preparation, 25–27

458 Index

specifications management, 27–28
speed-up schedule, 29–30

scheduling, 19
bases covering, 20
general philosophy, 19–20
problems, 21
software tools, 20–21

scope, 4
support, 45–47

installation and commissioning, 45
logistics, 46
maintenance, 46–47
technical support, 47
training, 45–46

tests, 38–42
BIT, 42
BITE, 42
environmental, 41
inspection, 39
laboratory tests, 38
manufacturing, 41–42
peer review, 39
simulators, 42
subsystem tests, 39–41
hardware, 39–40
software, 40–41

DFA (Design-for-assembly), 118
DFf (Design-for-flexibility), 164
DFi (Design-for-improvements), 164
DFM (Design-for-manufacturing), 118
DFt (Design-for-transfer), 164
Disposal
aerospace video processor, 276
automobile engine controller, 185
commercial laboratory equipment, 168
development processes, 47–48, 53
implanted medical devices, 373–374
implanted stimulator programmer,

329
industrial flowmeter, 201
major appliances, 121
military support equipment, 218
mission-critical equipment, 93
satellite subsystem, 300
space flight instrument design,

260–261
telecom products, 138–139

DO-178B, 57–58
Documentation
aerospace video processor, 269–270
automobile engine controller, 177
commercial laboratory equipment,

156–158
commercial laboratory equipment

types, 156–157
gradient type, 157
snapshot type, 157

general formats, 23–24

purposes, 21–23
types, 23

development processes, 21–22
implanted medical devices, 349–354
implanted stimulator programmer,

311–313
industrial flowmeter, 193
major appliances, 115
military support equipment, 210–211
mission-critical equipment, 66
purposes, 66
types, 66

processes, 58
purpose and scope, 57
satellite subsystem, 283–288
space flight instrument design,

230–235
summary comparisons, 381–382
telecom products, 128–130

DSP (Digital signal processor)
chips, 263–264

E
Electromechanical hardware, 241–242
Electronic hardware, see also Hardware

satellite subsystem, 292
ADC tradeoffs, 292
processor trade-offs, 292

space flight instruments
design, 239–240

conduction cooling, 240
memory trade-offs, 241
outgassing, 240
processor trade-offs, 240
radiation hardness, 240
support peripherals tradeoffs, 241

Embedded system, 1–2
EMC (Electromagnetic compatibility)

implanted medical devices, 371
implanted simulators, 314
space flight instruments design,

237–238
EMI tests, 371
Ergonomics, 440
Error checking, 79
ESD (Electrostatic discharge), 314
Evaluation boards, 108–109
Event tree analysis, 70

F
Failure(s)

aerospace video processor, 266,
269, 276

automobile engine controller, 185, 186
biological monitoring system, 404
development processes, 20, 21, 33, 34

Index 459

Failure(s) (continued)
gun fuzing system, 411
implanted medical devices, 348,

363, 365, 367
implanted stimulator programmer,

330
industrial flowmeter, 193
major appliances, 113, 119, 120
military support equipment, 207, 219
mission-critical equipment, 53,

57–60, 65, 70, 71, 76–82, 87,
89, 91–93

parking garage system, 403
satellite subsystem, 280, 284, 286
space flight instrument design, 224,

229, 234, 238, 239, 261
FAT (Factory acceptance test), 199
FAT (First article test), 206
Fault tolerance (tolerant), 31, 40, 43, 60,

76–78, 81, 113, 116, 207, 223–224,
238–239, 243, 261, 281–282,
291–292, 298, 301, 325, 330, 338,
340, 342, 363, 365, 369, 371,
375, 386

Fault tree analysis, 70
FDA design control guidance, 55–57

design controls application, 56
design input, 56
design output, 56–57
design review, 57
design transfer, 57
design verification, 57
intent, purpose and scope, 55–56

Filter basket, 414 –416
filter basket interlock, 424

Flowmeter, industrial, See Industrial
flowmeter

FMEA (Failure modes and effects
analysis), 71

military support equipment, 207
FPGA (Field programmable gate array),

263–264

G
Galvanic isolation barrier, 196
Galvanic isolator, 196
Gantt charts, 100
Goddard space flight center, 280
GOST, 194, 382
Government standards, 69

aerospace, 69
automotive, 69
CE marking, 66–67
emissions, 177–178
fuel economy, 178
military, 69
underwriters laboratory, 66

Grinder interlock, 424
Ground support equipment

satellite subsystem, 299
space flight instruments design,

234, 245
Gun fuzing system, 407–411

architecture, 409
control system, 409–410

buy vs. build, 411
hardware, 410
installation and maintenance, 411
issues, 408
manufacturing, 411
packaging, 411
power, 410
purpose and description, 407
real-time calculations, 408–409
software, 410

H
Handheld chemical agent sensors,

446–452
control formats, 449–450
display formats, 447–449
improvement considerations, 450–452
testing, 446–447

Hardware
aerospace video processor, 272
automobile engine controller, 179–180
biological monitoring, 405
coffeemakers, 415–423
commercial laboratory equipment, 161
consumer appliances, 116–117
development process, 33–34
gun fuzing system, 410
implanted medical devices, 363–364
implanted stimulators, 323–324
industrial flowmeter, 195–196
military support equipment, 213
mission-critical equipment, 83
parking garage indicating system,

396–397
remote control, 429
telecom products, 131–132

Hobby, 432
economics, 432
hardware, 433
liabilities, 432–433
manufacturing, 433
power, 433
test, maintenance, and logistics, 434

Human interface, see user interfaces

I
Implanted medical devices, 333–374

analysis, 359

460 Index

feasibility, 359
focus groups, 359
heuristics, calculations, and

numerical simulations, 360
storyboarding, 360
surveys, 359–360

architecting and architecture, 338–342
analysis, 339
interfaces, 340–342
parameters, 338–339
process, 338

concept and market, 333–334
economics, 333–334

design trade-offs, 361–367
buy vs. build, 365–366
hardware vs. software, 365
requirements, 361–363

disposal, 373–374
documentation, 349–354

general formats, 354
types, 354

integration, 370
EMI and EMC tests, 371

liability, 374
manufacturing and fabrication,

372–373
people and disciplines, 334–338

clinical testing, 337
design, 335–337
management, 337
manufacturing, 337–338
marketing, 334–335
sales, distribution, logistics, 338

phases, 342–349
commercial release, 348–349
controlled release, 347–348
design and development, 346–347
logistics, maintenance, disposal,

349
planning and scheduling, 345–346

requirements and standards, 354–359
design and development standards,

355
FDA approval, 355
market, 354–355

scheduling, 349
support, 373
tests, 367–369

design reviews, 368
environmental, 369
formal and informal, 367
inspections, 368
laboratory tests, 367

Implanted stimulator programmer,
303–331

analysis, 316–323
feasibility, 316
focus groups, 316

heuristics, calculations, andnumerical
simulations, 322–323

storyboarding, 323
surveys, 316–322

architecting and architecture, 307–309
analysis, 307–308
interfaces, 309
parameters, 307
process, 307

concept and market, 303–306
economics, 304–305
surveys and focus groups, 305–306

design trade-offs, 323–326
buy vs. build, 325–326
manufacturing, 326
requirements, 323

disposal, 329
documentation, 311–313
integration, 328
environmental, 328
system, 328

liability, 329–330
manufacturing, 328–329
fabrication and assembly, 328
tests, 328

people and disciplines, 306–307
clinical testing, 306
design and development, 306
management, 306
manufacturing, 307
marketing, 306
sales, distribution, logistics, 307

phases, 309
commercial release, 311
concept, 309
controlled release, 311
design and development, 310
planning and scheduling, 309–310

programmer architecture, 308
requirements and standards,

313–316
design and development standards,

314–315
FDA approval, 315
market, 313–314

scheduling, 311
support, 329
tests, 327–328
informal, 327
simulators, 327–328
subsystem tests, 327

hardware, 327
software, 327

Industrial flowmeter, 189–202
analysis, 194
architecting and architecture, 191–193
analysis, 192
interfaces, 192

Index 461

Industrial flowmeter (continued)
parameters, 191
process, 191

concept and market, 189–190
economics, 189–190

design trade-offs, 194–199
buy vs. build, 198
manufacturing, 198
test and maintenance, 198–199

disposal, 201
documentation, 193
integration, 199
liability, 201
economics, 201
legalities, 201
safety, 201

manufacturing, 199–200
assembly, 200
outsourcing, 199–200

people and disciplines, 190–191
phases, 192–193
requirements and standards, 194
scheduling, 193
support, 200–201
logistics, 200
maintenance, 200–201
technical support, 201

tests, 199
Inspection, 39, 83, 368
Integration

aerospace video processor, 275
automobile engine controller, 183
commercial laboratory equipment, 166
development processes, 42–43
implanted medical devices, 370
implanted stimulator programmer, 328
industrial flowmeter, 199
major appliances, 119
military support equipment, 216
mission-critical equipment, 86–90
satellite subsystem, 299
space flight instrument design, 245–249
summary comparisons, 390–391
telecom products, 134–135

Interlocks, 79
coffeemaker, 424–426
implanted medical devices, 340

ISO (International Organization for
Standardization), 67

ISO 14708-3, 358

L
Liability

aerospace video processor, 276
automobile engine controller, 185–187
commercial laboratory equipment,

168–169

development processes, 48–49
implanted medical devices, 374
implanted stimulator programmer,

329–330
industrial flowmeter, 201
major appliances, 121
military support equipment, 218
mission-critical equipment, 93
satellite subsystem, 301
space flight instrument design, 261
summary comparisons, 392
telecom products, 139

Limp-home mode, 79–80
Living With a Star, 279
Loose coupling, 14

vs. tight coupling, 14, 380
LRU (Line replaceable units), 91

M
Maintenance

coffeemakers, 427
depot level, 203
implanted medical devices, 367
intermediate level, 203
mission-critical equipment, 77
organizational level, 203
remote control, 430–432

Manufacturing
aerospace video processor, 275–276
automobile engine controller, 182–184
coffeemakers, 427
commercial laboratory equipment, 164,

166–167
development process, 44–45
assembly, 45
electrical and electronic, 44
mechanical, 44
tests, 45

implanted medical devices, 366, 372–373
implanted stimulator programmer,

328–329
industrial flowmeter, 199–200
major appliances, 118–120
military support equipment, 215,

217–218
remote control, 429
satellite subsystem, 300
space flight instrument design,

250–260
summary comparisons, 390
telecom products, 133, 135–137

Market, see also Concept and market
MatLab, 106
Mechanical structure

implanted medical devices, 366
industrial flowmeter, 197
military support equipment, 214

462 Index

satellite subsystem, 298
space flight instruments design, 243

Military support equipment, 203–219
analysis, 211–212
architecting and architecture, 207–208

analysis, 207
interfaces, 208
parameters, 207
process, 207

concept and market, 203–206
economics, 205–206

design trade-offs, 214–215
buy vs. build, 215
hardware vs. software, 214–215
manufacturing, 215
test and maintenance, 215

disposal, 218
documentation, 210–211

general formats, 211
purposes, 210
types, 210–211

integration, 217
liability, 218
manufacturing, 217–218
people and disciplines, 206
phases, 208–210

concept, 208
detailed design, 208–209
engineering model, 209
integration, 209
sell-off, 209
timing and acceptance, 209–210

requirements and standards, 211
military standards, 211

scheduling, 210
support, 218
tests, 215–217

BIT, BITE, and simulators, 217
environmental, 216–217
formal and informal, 215
inspection, 216
laboratory tests, 216
manufacturing, 217
peer review, 216

Mission-critical equipment, 53–94
analysis, 70–75

event tree analysis, 70
failure modes and effects analysis, 71
fault tree analysis, 70
numerical simulations, 75
risk analysis and margin

management, 71–75
testing, 75

architecting and architecture, 55–60
DO-178B, See separate entry
FDA design control guidance,

See separate entry
interfaces, 60

process control, 58–59
performance verification, 59
system validation, 59

process, 55
project risk management, 59–60

design trade-offs, 75–80
architecture, 75–76
buy vs. build, 83–84

development processes, 53
disposal, 93
documentation, 66
purposes, 66
types, 66

economics, 54
integration, 86–90
certification, 88–90

documentation, 89
safety evaluation, 89
standards organizations, 88–89

environmental, 87–88
field tests, 88
system behavior, 86–87

liability, 93
manufacturing, 90
people and disciplines, 55
phases, 61–65
concept, 61–62

conceptual design review, 61–62
critical design, 63

critical design review, 63–64
logistics, maintenance, and disposal,

65
preliminary design, 62–63

preliminary design review, 62–63
production or manufacturing,

64–65
production handoff, 64–65

priorities, 93
requirements and standards, 66–70
government and market standards,

69–70, See also Government
standards

ISO, 70
CMMI, 70

markets, 66
scheduling, 65–66
support, 90–93
fielding, 90–91
logistics and maintenance, 91

inventory, 91
replenishment, 91

repair, 92
technical support, 92–93

tests, 84
BIT and BITE, 85–86
design and peer review, 84
formal processes, 84
simulators, 86

Index 463

N
Numerical simulations

commercial laboratory equipment, 160
development process, 31
implanted medical devices, 369–370
implanted stimulators, 322–323
space and military operations, 75
space flight instruments design, 238
spacecraft design, 238

O
Outgassing, 240

P
Packaging

biological monitoring, 406
coffeemakers, 423–427
gun fuzing system, 411
parking garage indicating system, 400

Parking garage indicating system,
393–404

architecture, 395–396
buy vs. build, 400–401
hardware, 396–397
installation and maintenance,

401–404
issues, 393–395
manufacturing, 401
message board, 394
packaging, 400
power, 397–400
microcontroller vs. ASICs, 398–399

purpose and description, 393
real-time calculations, 395
software, 400

Performability, See Fault tolerance
Performance margins, 81–82
Phases

aerospace video processor, 267–269
automobile engine controller, 176
commercial laboratory equipment,

147–156
development processes, 16–19
implanted medical devices, 342–349
implanted stimulator programmer,

309
industrial flowmeter, 192–193
major appliances, 115
military support equipment, 208–210
mission-critical equipment, 61–65
satellite subsystem, 282–283
space flight instrument design,

224–229
telecom products, 127–128

PHO (Production handoff), 18–19
Pick-and-place equipment, 135

Power
aerospace video processor, 272
automobile engine controller, 180–181
biological monitoring, 406
coffeemakers, 423
commercial laboratory equipment,

161–162
consumer appliances, 117
development process, 34
gun fusing system, 410
implanted medical devices, 364
implanted stimulators, 324
industrial flowmeter, 196
military support equipment, 213
mission-critical equipment, 82–83
parking garage indicating system,

397–400
remote control, 429
satellite subsystem, 292–298
space flight instruments design, 241
DC–DC converter trade-offs, 241

summary comparison, 384, 387
telecom products, 132

Processors, 14–15, 384–385
types, 14–15
comparison, 384–385

Production handoff, 64–65

R
Radiation hardness, 221, 240, 299
Rational unified process, 103
Real-time calculations

biological monitoring, 404
gun fuzing system, 408–409
parking garage indicating

system, 395
Redundant architectures, 80
Reliability, 76
Remote control, 428–432

architecture and features, 428
circuit board, 429
hardware, 429
maintenance and logistics, 430–432
manufacturing, 429
power, 429

Requirements and standards
aerospace video processor, 271
automobile engine controller, 177–179
commercial laboratory equipment,

158–159
development processes, 24–30
implanted medical devices, 354–359
implanted stimulator programmer,

313–316
industrial flowmeter, 194
major appliances, 116
military support equipment, 211

464 Index

mission-critical equipment, 66–70
satellite subsystem, 288
space flight instrument design, 235–236
summary comparisons, 382
telecom products, 130–131

Rhapsody, 102–103
Rigid-flex circuit board, 256–257
RoHS (Restriction of use of certain

hazardous substances), 47–48
RTOS (Real-time operating system),

103, 117, 132, 139, 162, 181,
198, 214, 243, 298, 325, 364,
387–388, 400, 410

S
Safety, 77, 384
Satellite subsystem, 279–300
analysis, 289
architecting and architecture, 281–282

interfaces, 282
parameters, 281
process, 281

concept and market, 279–280
economics, 280

design trade-offs, 289–299
buy vs. build, 299

disposal, 300
documentation, 283–288

general formats, 283–288
project plan, 286–288

types, 283
integration, 299
liability, 301
manufacturing and fabrication, 300
people and disciplines, 280–281
phases, 282–283
requirements and standards, 288

NASA standards, 288
scheduling and estimating, 283
support, 300
tests, 299

Scheduling
aerospace video processor, 269
automobile engine controller, 176–177
commercial laboratory equipment, 156
development processes, 19–21
implanted medical devices, 349
implanted stimulator programmer, 311
industrial flowmeter, 193
major appliances, 115
military support equipment, 210
mission-critical equipment, 65–66
satellite subsystem, 283
space flight instrument design, 229–230
summary comparisons, 381
telecom products, 128

SCT (System compatibility test), 205

SET (Space environment testbeds), 279
Shock-and-vibe test, 249
Single-board computer, 109
SLIM (Software lifecycle management),

100
Software

aerospace video processor, 273
automobile engine controller, 181
biological monitoring, 406
commercial laboratory equipment,

162–163
consumer appliances, 117–118
design tools, 105–106
development process, 34–35
gun fuzing system, 410
implanted medical devices, 364–365
implanted stimulators, 325
industrial flowmeter, 197–198
military support equipment, 214
mission-critical equipment, 83
parking garage indicating system, 400
satellite subsystem, 298
space flight instruments design, 243
summary comparisons, 386–388
telecom products, 132

Solder reflow oven, 136
Space flight instruments design, 221–261

analysis, 236–239
calculations, 238
feasibility, 236
heuristics, 236–238

antennas and measurements, 237
EMC, 237–238
management issue, 237
optics, 237
power supply problem, 237

testing, 238–245
architecting and architecture,

223–224
interfaces, 224
parameters, 223
process, 223

concept and market, 221
economics, 221

design trade-offs, 239–243
buy vs. build, 243

disposal, 260–261
documentation, 230–235
general formats, 233

project plan, 233–235
purposes, 230
types, 230–233

integration, 245–249
environmental, 246–249

shock and vibration, 249
thermal vacuum, 246–249

system, 245–246
liability, 261

Index 465

Space flight instruments design
(continued)
manufacturing and fabrication,

250–260
assembly, 258
electrical and electronic

fabrication, 250
mechanical machining and

fabrication, 250–258
tests, 260

people and disciplines, 222–223
phases, 224–229
concept, 224–225
critical design, 227–229
fabrication, 228
integration, 228–229
launch and mission, 229
preliminary design, 225–226

requirements and standards,
235–236

NASA and military standards,
235–236

scheduling and estimating, 229–230
support, 260
launch, 260
spacecraft integration, 260
technical support, 260

tests, 244–245
laboratory tests, 244
peer review, 244
simulators, 245
subsystem tests, 244–245

hardware, 244
software, 244–245

Spacecraft integration, 260
Spiral development model, 10
Spreadsheet, 97–99
SRA (Shop replaceable assemblies), 203
SRU (Shop replaceable units), 203
Standards, see also Requirements and

standards
Statemate, 102–103
Storyboarding, 360
Stress margins, 78–79
Subsystem tests

hardware
implanted medical devices, 368
implanted simulators, 327

software
implanted medical devices, 368
implanted simulators, 327

Support
aerospace video processor, 276
automobile engine controller, 184–185
commercial laboratory equipment, 168
development processes, 45–47
implanted medical devices, 373
implanted stimulator programmer, 329

industrial flowmeter, 200–201
major appliances, 120
military support equipment, 218
mission-critical equipment, 90–93
satellite subsystem, 300
space flight instrument design, 27
summary comparisons, 391–392
telecom products, 137–138

T
Telecom products, 123–139

analysis, 131
feasibility, 131
field tests, 131

architecting and architecture, 125–128
interfaces, 127
launch, 128
logistics, maintenance, and

disposal, 128
manufacturing, 127–128
phases, 127
preliminary/critical design, 127
product definition, 125
product development, 125–126
specification, 127

concept and market, 123–125
economics, 123
market definition, 123–125

design trade-offs, 131–133
hardware vs. software, 132
buy vs. build, 133
manufacturing, 133
test and maintenance, 133

disposal, 138–139
documentation, 128–130
hardware, 128–130
manufacturing, 130
software, 130
user manuals, 130

integration, 134–135
system, 134–135
environmental, 135

liability, 139
manufacturing, 134, 135–137
assembly control, 136–137
electrical and electronic, 135–136
mechanical, 136
testing, 137

people and disciplines, 125
requirements and standards, 130–131
scheduling, 128
support, 137–138
logistics and maintenance, 137
technical support, 138

tests, 133–134
formal and informal, 133
manufacturing, 134

466 Index

Telelogic, 102–103
Rhapsody, 102–103
Statemate, 102–103

Testability, 15, 77, 389
Testable architectures, 80
Tests
aerospace video processor, 274–275
automobile engine controller, 182–183
commercial laboratory equipment,

165–166
development processes, 38–42
implanted medical devices, 367–369
implanted stimulator programmer,

327–328
industrial flowmeter, 199
major appliances, 118–119
military support equipment, 215–217
mission-critical equipment, 84
satellite subsystem, 299
space flight instrument design, 244–245
summary comparisons, 390–391
telecom products, 133–134

Thermal vacuum, 246
Thermostat interlock, 424
Tight coupling, 14
vs. loose coupling, 14, 380

Trade tools, 97–109
for design, 104–106

CAD, 105
simulators, 104–105
software design tools, 105–106

for estimation and feasibility,
97–101

estimating feasibility, 100
Gantt charts, 100–101
spreadsheet, 97–99

laboratory equipment, 106–109
development systems, 108
evaluation boards, 108
instruments and tools, 106–107

for project control, 102–104
rational unified process, 103–104

Telelogic Rhapsody and Statemate,
102–103

version control, 104

U
UL (Underwriter laboratories)

consumer appliances, 116
implanted simulators, 314–315
industrial flowmeter, 191,

194, 198
User (human) interfaces, 15, 40, 380–381,

439–453
appliance display, 442–443
basic principles, 439–440
boombox, 446
remote control, 444
user interface guidelines, 440
vending machine, 441–442

Utility, 440

V
Vending machine, 441–442
Vibration tables, 248
Video compressor board, 268
Video compressor/multiplexer, 267
Video data acquisition system, 264
V-model, 11, 382

W
Waterfall process model, 10, 382
WEEE (Waste from electrical and

electronic equipment), 47–48
White box testing, 40
WRA (Weapons replaceable assemblies),

203

Z
Zener barrier, 196

Index 467

