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In order to thoroughly understand what makes Linux tick and why it works so well on a
wide variety of systems, you need to delve deep into the heart of the kernel. The
kernel handles all interactions between the CPU and the external world, and determines
which programs will share processor time, in what order. It manages limited memory so
well that hundreds of processes can share the system efficiently, and expertly
organizes data transfers so that the CPU isn't kept waiting any longer than necessary
for the relatively slow disks.

The third edition of Understanding the Linux Kernel takes you on a guided tour of the
most significant data structures, algorithms, and programming tricks used in the kernel.
Probing beyond superficial features, the authors offer valuable insights to people who
want to know how things really work inside their machine. Important Intel-specific
features are discussed. Relevant segments of code are dissected line by line. But the
book covers more than just the functioning of the code; it explains the theoretical
underpinnings of why Linux does things the way it does.

This edition of the book covers Version 2.6, which has seen significant changes to
nearly every kernel subsystem, particularly in the areas of memory management and
block devices. The book focuses on the following topics:

 Memory management, including file buffering, process swapping, and Direct
memory Access (DMA) 

 The Virtual Filesystem layer and the Second and Third Extended Filesystems

 Process creation and scheduling

 Signals, interrupts, and the essential interfaces to device drivers

 Timing

 Synchronization within the kernel

 Interprocess Communication (IPC) 

 Program execution

Understanding the Linux Kernel will acquaint you with all the inner workings of Linux,
but it's more than just an academic exercise. You'll learn what conditions bring out
Linux's best performance, and you'll see how it meets the challenge of providing good
system response during process scheduling, file access, and memory management in a
wide variety of environments. This book will help you make the most of your Linux
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system.
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Preface
In the spring semester of 1997, we taught a course on operating systems based on Linux 2.0.
The idea was to encourage students to read the source code. To achieve this, we assigned
term projects consisting of making changes to the kernel and performing tests on the modified
version. We also wrote course notes for our students about a few critical features of Linux
such as task switching and task scheduling.

Out of this work and with a lot of support from our O'Reilly editor Andy Oram came the first
edition of Understanding the Linux Kernel at the end of 2000, which covered Linux 2.2 with a
few anticipations on Linux 2.4. The success encountered by this book encouraged us to
continue along this line. At the end of 2002, we came out with a second edition covering Linux
2.4. You are now looking at the third edition, which covers Linux 2.6.

As in our previous experiences, we read thousands of lines of code, trying to make sense of
them. After all this work, we can say that it was worth the effort. We learned a lot of things
you don't find in books, and we hope we have succeeded in conveying some of this
information in the following pages.
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The Audience for This Book
All people curious about how Linux works and why it is so efficient will find answers here. After
reading the book, you will find your way through the many thousands of lines of code,
distinguishing between crucial data structures and secondary onesin short, becoming a true
Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the significant data
structures and many algorithms and programming tricks used in the kernel are discussed. In
many cases, the relevant fragments of code are discussed line by line. Of course, you should
have the Linux source code on hand and should be willing to expend some effort deciphering
some of the functions that are not, for sake of brevity, fully described.

On another level, the book provides valuable insight to people who want to know more about
the critical design issues in a modern operating system. It is not specifically addressed to
system administrators or programmers; it is mostly for people who want to understand how
things really work inside the machine! As with any good guide, we try to go beyond superficial
features. We offer a background, such as the history of major features and the reasons why
they were used.
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Organization of the Material
When we began to write this book, we were faced with a critical decision: should we refer to
a specific hardware platform or skip the hardware-dependent details and concentrate on the
pure hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided to adopt
the former one for the following reasons:

 Efficient kernels take advantage of most available hardware features, such as
addressing techniques, caches, processor exceptions, special instructions, processor
control registers, and so on. If we want to convince you that the kernel indeed does
quite a good job in performing a specific task, we must first tell what kind of support
comes from the hardware.

 Even if a large portion of a Unix kernel source code is processor-independent and
coded in C language, a small and critical part is coded in assembly language. A
thorough knowledge of the kernel, therefore, requires the study of a few assembly
language fragments that interact with the hardware.

When covering hardware features, our strategy is quite simple: only sketch the features that
are totally hardware-driven while detailing those that need some software support. In fact,
we are interested in kernel design rather than in computer architecture.

Our next step in choosing our path consisted of selecting the computer system to describe.
Although Linux is now running on several kinds of personal computers and workstations, we
decided to concentrate on the very popular and cheap IBM-compatible personal computersand
thus on the 80 x 86 microprocessors and on some support chips included in these personal
computers. The term 80 x 86 microprocessor will be used in the forthcoming chapters to
denote the Intel 80386, 80486, Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4
microprocessors or compatible models. In a few cases, explicit references will be made to
specific models.

One more choice we had to make was the order to follow in studying Linux components. We
tried a bottom-up approach: start with topics that are hardware-dependent and end with
those that are totally hardware-independent. In fact, we'll make many references to the 80 x
86 microprocessors in the first part of the book, while the rest of it is relatively
hardware-independent. Significant exceptions are made in Chapter 13 and Chapter 14. In
practice, following a bottom-up approach is not as simple as it looks, because the areas of
memory management, process management, and filesystems are intertwined; a few forward
referencesthat is, references to topics yet to be explainedare unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is then
presented according to the bottom-up approach. We start with the data structures needed to
support the functionalities described in the chapter. Then we usually move from the lowest
level of functions to higher levels, often ending by showing how system calls issued by user
applications are supported.
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Level of Description
Linux source code for all supported architectures is contained in more than 14,000 C and
assembly language files stored in about 1000 subdirectories; it consists of roughly 6 million
lines of code, which occupy over 230 megabytes of disk space. Of course, this book can
cover only a very small portion of that code. Just to figure out how big the Linux source is,
consider that the whole source code of the book you are reading occupies less than 3
megabytes. Therefore, we would need more than 75 books like this to list all code, without
even commenting on it!

So we had to make some choices about the parts to describe. This is a rough assessment of
our decisions:

 We describe process and memory management fairly thoroughly.

 We cover the Virtual Filesystem and the Ext2 and Ext3 filesystems, although many
functions are just mentioned without detailing the code; we do not discuss other
filesystems supported by Linux.

 We describe device drivers, which account for roughly 50% of the kernel, as far as the
kernel interface is concerned, but do not attempt analysis of each specific driver.

The book describes the official 2.6.11 version of the Linux kernel, which can be downloaded
from the web site http://www.kernel.org.

Be aware that most distributions of GNU/Linux modify the official kernel to implement new
features or to improve its efficiency. In a few cases, the source code provided by your
favorite distribution might differ significantly from the one described in this book.

In many cases, we show fragments of the original code rewritten in an easier-to-read but less
efficient way. This occurs at time-critical points at which sections of programs are often
written in a mixture of hand-optimized C and assembly code. Once again, our aim is to provide
some help in studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many familiar
features that Unix programmers have heard of and about which they may be curious (shared
and mapped memory, signals, pipes, symbolic links, and so on).
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Overview of the Book
To make life easier, Chapter 1, Introduction, presents a general picture of what is inside a
Unix kernel and how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2, Memory Addressing, explains
how 80 x 86 processors include special circuits to address data in memory and how Linux
exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in Chapter 3,
Processes. Here we also explain how each process runs either in an unprivileged User Mode or
in a privileged Kernel Mode. Transitions between User Mode and Kernel Mode happen only
through well-established hardware mechanisms called interrupts and exceptions. These are
introduced in Chapter 4, Interrupts and Exceptions.

In many occasions, the kernel has to deal with bursts of interrupt signals coming from
different devices and processors. Synchronization mechanisms are needed so that all these
requests can be serviced in an interleaved way by the kernel: they are discussed in Chapter 5
, Kernel Synchronization, for both uniprocessor and multiprocessor systems.

One type of interrupt is crucial for allowing Linux to take care of elapsed time; further details
can be found in Chapter 6, Timing Measurements.

Chapter 7, Process Scheduling, explains how Linux executes, in turn, every active process in
the system so that all of them can progress toward their completions.

Next we focus again on memory. Chapter 8, Memory Management, describes the sophisticated
techniques required to handle the most precious resource in the system (besides the
processors, of course): available memory. This resource must be granted both to the Linux
kernel and to the user applications. Chapter 9, Process Address Space, shows how the kernel
copes with the requests for memory issued by greedy application programs.

Chapter 10, System Calls, explains how a process running in User Mode makes requests to the
kernel, while Chapter 11, Signals, describes how a process may send synchronization signals
to other processes. Now we are ready to move on to another essential topic, how Linux
implements the filesystem. A series of chapters cover this topic. Chapter 12, The Virtual
Filesystem, introduces a general layer that supports many different filesystems. Some Linux
files are special because they provide trapdoors to reach hardware devices; Chapter 13, I/O
Architecture and Device Drivers, and Chapter 14, Block Device Drivers, offer insights on these
special files and on the corresponding hardware device drivers.

Another issue to consider is disk access time; Chapter 15, The Page Cache, shows how a
clever use of RAM reduces disk accesses, therefore improving system performance
significantly. Building on the material covered in these last chapters, we can now explain in 
Chapter 16, Accessing Files, how user applications access normal files. Chapter 17, Page
Frame Reclaiming, completes our discussion of Linux memory management and explains the
techniques used by Linux to ensure that enough memory is always available. The last chapter
dealing with files is Chapter 18, The Ext2 and Ext3 Filesystems, which illustrates the most
frequently used Linux filesystem, namely Ext2 and its recent evolution, Ext3.

The last two chapters end our detailed tour of the Linux kernel: Chapter 19, Process
Communication, introduces communication mechanisms other than signals available to User
Mode processes; Chapter 20, Program Execution, explains how user applications are started.

Last, but not least, are the appendixes: Appendix A, System Startup, sketches out how Linux
is booted, while Appendix B, Modules, describes how to dynamically reconfigure the running
kernel, adding and removing functionalities as needed. The Source Code Index includes all the
Linux symbols referenced in the book; here you will find the name of the Linux file defining
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each symbol and the book's page number where it is explained. We think you'll find it quite
handy.
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Background Information
No prerequisites are required, except some skill in C programming language and perhaps some
knowledge of an assembly language.
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Conventions in This Book
The following is a list of typographical conventions used in this book:

Constant Width

Used to show the contents of code files or the output from commands, and to indicate
source code keywords that appear in code.

Italic

Used for file and directory names, program and command names, command-line
options, and URLs, and for emphasizing new terms.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/understandlk/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com
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Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology
book, it means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily
search thousands of top technology books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it for free
at http://safari.oreilly.com.
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Chapter 1. Introduction
Linux[*] is a member of the large family of Unix-like operating systems . A relative newcomer
experiencing sudden spectacular popularity starting in the late 1990s, Linux joins such
well-known commercial Unix operating systems as System V Release 4 (SVR4), developed by
AT&T (now owned by the SCO Group); the 4.4 BSD release from the University of California at
Berkeley (4.4BSD); Digital UNIX from Digital Equipment Corporation (now Hewlett-Packard);
AIX from IBM; HP-UX from Hewlett-Packard; Solaris from Sun Microsystems; and Mac OS X
from Apple Computer, Inc. Beside Linux, a few other opensource Unix-like kernels exist, such
as FreeBSD , NetBSD , and OpenBSD .

[*] LINUX® is a registered trademark of Linus Torvalds.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for
IBM-compatible personal computers based on the Intel 80386 microprocessor. Linus remains
deeply involved with improving Linux, keeping it up-to-date with various hardware
developments and coordinating the activity of hundreds of Linux developers around the world.
Over the years, developers have worked to make Linux available on other architectures,
including Hewlett-Packard's Alpha, Intel's Itanium, AMD's AMD64, PowerPC, and IBM's zSeries.

One of the more appealing benefits to Linux is that it isn't a commercial operating system: its
source code under the GNU General Public License (GPL)[ ] is open and available to anyone to
study (as we will in this book); if you download the code (the official site is 
http://www.kernel.org) or check the sources on a Linux CD, you will be able to explore, from
top to bottom, one of the most successful modern operating systems. This book, in fact,
assumes you have the source code on hand and can apply what we say to your own
explorations.

[ ] The GNU project is coordinated by the Free Softw are Foundation, Inc. (http://w w w .gnu.org); its aim is to implement a w hole
operating system freely usable by everyone. The availability of a GNU C compiler has been essential for the success of the Linux
project.

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operating system
because it does not include all the Unix applications, such as filesystem utilities, windowing
systems and graphical desktops, system administrator commands, text editors, compilers, and
so on. However, because most of these programs are freely available under the GPL, they can
be installed in every Linux-based system.

Because the Linux kernel requires so much additional software to provide a useful
environment, many Linux users prefer to rely on commercial distributions, available on
CD-ROM, to get the code included in a standard Unix system. Alternatively, the code may be
obtained from several different sites, for instance http://www.kernel.org. Several distributions
put the Linux source code in the /usr/src/linux directory. In the rest of this book, all file
pathnames will refer implicitly to the Linux source code directory.
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1.1. Linux Versus Other Unix-Like Kernels
The various Unix-like systems on the market, some of which have a long history and show
signs of archaic practices, differ in many important respects. All commercial variants were
derived from either SVR4 or 4.4BSD, and all tend to agree on some common standards like
IEEE's Portable Operating Systems based on Unix (POSIX) and X/Open's Common Applications
Environment (CAE).

The current standards specify only an application programming interface (API)that is, a
well-defined environment in which user programs should run. Therefore, the standards do not
impose any restriction on internal design choices of a compliant kernel.[*]

[*] As a matter of fact, several non-Unix operating systems, such as Window s NT and its descendents, are POSIX-compliant.

To define a common user interface, Unix-like kernels often share fundamental design ideas and
features. In this respect, Linux is comparable with the other Unix-like operating systems.
Reading this book and studying the Linux kernel, therefore, may help you understand the other
Unix variants, too.

The 2.6 version of the Linux kernel aims to be compliant with the IEEE POSIX standard. This,
of course, means that most existing Unix programs can be compiled and executed on a Linux
system with very little effort or even without the need for patches to the source code.
Moreover, Linux includes all the features of a modern Unix operating system, such as virtual
memory, a virtual filesystem, lightweight processes, Unix signals , SVR4 interprocess
communications, support for Symmetric Multiprocessor (SMP) systems, and so on.

When Linus Torvalds wrote the first kernel, he referred to some classical books on Unix
internals, like Maurice Bach's The Design of the Unix Operating System (Prentice Hall, 1986).
Actually, Linux still has some bias toward the Unix baseline described in Bach's book (i.e.,
SVR2). However, Linux doesn't stick to any particular variant. Instead, it tries to adopt the
best features and design choices of several different Unix kernels.

The following list describes how Linux competes against some well-known commercial Unix
kernels:

Monolithic kernel

It is a large, complex do-it-yourself program, composed of several logically different
components. In this, it is quite conventional; most commercial Unix variants are
monolithic. (Notable exceptions are the Apple Mac OS X and the GNU Hurd operating
systems, both derived from the Carnegie-Mellon's Mach, which follow a microkernel
approach.)

Compiled and statically linked traditional Unix kernels

Most modern kernels can dynamically load and unload some portions of the kernel code
(typically, device drivers), which are usually called modules . Linux's support for
modules is very good, because it is able to automatically load and unload modules on
demand. Among the main commercial Unix variants, only the SVR4.2 and Solaris kernels
have a similar feature.

Kernel threading

Some Unix kernels, such as Solaris and SVR4.2/MP, are organized as a set of kernel
threads . A kernel thread is an execution context that can be independently
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scheduled; it may be associated with a user program, or it may run only some kernel
functions. Context switches between kernel threads are usually much less expensive
than context switches between ordinary processes, because the former usually
operate on a common address space. Linux uses kernel threads in a very limited way to
execute a few kernel functions periodically; however, they do not represent the basic
execution context abstraction. (That's the topic of the next item.)

Multithreaded application support

Most modern operating systems have some kind of support for multithreaded
applications that is, user programs that are designed in terms of many relatively
independent execution flows that share a large portion of the application data
structures. A multithreaded user application could be composed of many lightweight
processes (LWP), which are processes that can operate on a common address space,
common physical memory pages, common opened files, and so on. Linux defines its own
version of lightweight processes, which is different from the types used on other
systems such as SVR4 and Solaris. While all the commercial Unix variants of LWP are
based on kernel threads, Linux regards lightweight processes as the basic execution
context and handles them via the nonstandard clone( ) system call.

Preemptive kernel

When compiled with the "Preemptible Kernel" option, Linux 2.6 can arbitrarily interleave
execution flows while they are in privileged mode. Besides Linux 2.6, a few other
conventional, general-purpose Unix systems, such as Solaris and Mach 3.0 , are fully
preemptive kernels. SVR4.2/MP introduces some fixed preemption points as a method
to get limited preemption capability.

Multiprocessor support

Several Unix kernel variants take advantage of multiprocessor systems. Linux 2.6
supports symmetric multiprocessing (SMP ) for different memory models, including
NUMA: the system can use multiple processors and each processor can handle any
task there is no discrimination among them. Although a few parts of the kernel code
are still serialized by means of a single "big kernel lock ," it is fair to say that Linux 2.6
makes a near optimal use of SMP.

Filesystem

Linux's standard filesystems come in many flavors. You can use the plain old Ext2
filesystem if you don't have specific needs. You might switch to Ext3 if you want to
avoid lengthy filesystem checks after a system crash. If you'll have to deal with many
small files, the ReiserFS filesystem is likely to be the best choice. Besides Ext3 and
ReiserFS, several other journaling filesystems can be used in Linux; they include IBM
AIX's Journaling File System (JFS ) and Silicon Graphics IRIX 's XFS filesystem. Thanks
to a powerful object-oriented Virtual File System technology (inspired by Solaris and
SVR4), porting a foreign filesystem to Linux is generally easier than porting to other
kernels.

STREAMS

Linux has no analog to the STREAMS I/O subsystem introduced in SVR4, although it is
included now in most Unix kernels and has become the preferred interface for writing
device drivers, terminal drivers, and network protocols.

This assessment suggests that Linux is fully competitive nowadays with commercial operating
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systems. Moreover, Linux has several features that make it an exciting operating system.
Commercial Unix kernels often introduce new features to gain a larger slice of the market, but
these features are not necessarily useful, stable, or productive. As a matter of fact, modern
Unix kernels tend to be quite bloated. By contrast, Linuxtogether with the other open source
operating systemsdoesn't suffer from the restrictions and the conditioning imposed by the
market, hence it can freely evolve according to the ideas of its designers (mainly Linus
Torvalds). Specifically, Linux offers the following advantages over its commercial competitors:

Linux is cost-free

You can install a complete Unix system at no expense other than the hardware (of
course).

Linux is fully customizable in all its components

Thanks to the compilation options, you can customize the kernel by selecting only the
features really needed. Moreover, thanks to the GPL, you are allowed to freely read
and modify the source code of the kernel and of all system programs.[*]

[*] Many commercial companies are now supporting their products under Linux. However, many of
them aren't distributed under an open source license, so you might not be allowed to read or modify
their source code.

Linux runs on low-end, inexpensive hardware platforms

You are able to build a network server using an old Intel 80386 system with 4 MB of
RAM.

Linux is powerful

Linux systems are very fast, because they fully exploit the features of the hardware
components. The main Linux goal is efficiency, and indeed many design choices of
commercial variants, like the STREAMS I/O subsystem, have been rejected by Linus
because of their implied performance penalty.

Linux developers are excellent programmers

Linux systems are very stable; they have a very low failure rate and system
maintenance time.

The Linux kernel can be very small and compact

It is possible to fit a kernel image, including a few system programs, on just one 1.44
MB floppy disk. As far as we know, none of the commercial Unix variants is able to boot
from a single floppy disk.

Linux is highly compatible with many common operating systems

Linux lets you directly mount filesystems for all versions of MS-DOS and Microsoft
Windows , SVR4, OS/2 , Mac OS X , Solaris , SunOS , NEXTSTEP , many BSD variants,
and so on. Linux also is able to operate with many network layers, such as Ethernet
(as well as Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Ethernet), Fiber Distributed
Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IEEE 802.11
(Wireless LAN), and IEEE 802.15 (Bluetooth). By using suitable libraries, Linux systems
are even able to directly run programs written for other operating systems. For
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example, Linux is able to execute some applications written for MS-DOS, Microsoft
Windows, SVR3 and R4, 4.4BSD, SCO Unix , Xenix , and others on the 80x86 platform.

Linux is well supported

Believe it or not, it may be a lot easier to get patches and updates for Linux than for
any proprietary operating system. The answer to a problem often comes back within a
few hours after sending a message to some newsgroup or mailing list. Moreover, drivers
for Linux are usually available a few weeks after new hardware products have been
introduced on the market. By contrast, hardware manufacturers release device drivers
for only a few commercial operating systems usually Microsoft's. Therefore, all
commercial Unix variants run on a restricted subset of hardware components.

With an estimated installed base of several tens of millions, people who are used to certain
features that are standard under other operating systems are starting to expect the same
from Linux. In that regard, the demand on Linux developers is also increasing. Luckily, though,
Linux has evolved under the close direction of Linus and his subsystem maintainers to
accommodate the needs of the masses.

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


1.2. Hardware Dependency
Linux tries to maintain a neat distinction between hardware-dependent and
hardware-independent source code. To that end, both the arch and the include directories
include 23 subdirectories that correspond to the different types of hardware platforms
supported. The standard names of the platforms are:

alpha

Hewlett-Packard's Alpha workstations (originally Digital, then Compaq; no longer
manufactured)

arm, arm26

ARM processor-based computers such as PDAs and embedded devices

cris

"Code Reduced Instruction Set" CPUs used by Axis in its thin-servers, such as web
cameras or development boards

frv

Embedded systems based on microprocessors of the Fujitsu's FR-V family

h8300

Hitachi h8/300 and h8S RISC 8/16-bit microprocessors

i386

IBM-compatible personal computers based on 80x86 microprocessors

ia64

Workstations based on the Intel 64-bit Itanium microprocessor

m32r

Computers based on the Renesas M32R family of microprocessors

m68k, m68knommu

Personal computers based on Motorola MC680x0 microprocessors

mips

Workstations based on MIPS microprocessors, such as those marketed by Silicon
Graphics
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parisc

Workstations based on Hewlett Packard HP 9000 PA-RISC microprocessors

ppc, ppc64

Workstations based on the 32-bit and 64-bit Motorola-IBM PowerPC microprocessors

s390

IBM ESA/390 and zSeries mainframes

sh, sh64

Embedded systems based on SuperH microprocessors developed by Hitachi and
STMicroelectronics

sparc, sparc64

Workstations based on Sun Microsystems SPARC and 64-bit Ultra SPARC
microprocessors

um

User Mode Linux, a virtual platform that allows developers to run a kernel in User Mode

v850

NEC V850 microcontrollers that incorporate a 32-bit RISC core based on the Harvard
architecture

x86_64

Workstations based on the AMD's 64-bit microprocessorssuch Athlon and Opteron and
Intel's ia32e/EM64T 64-bit microprocessors
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1.3. Linux Versions
Up to kernel version 2.5, Linux identified kernels through a simple numbering scheme. Each
version was characterized by three numbers, separated by periods. The first two numbers
were used to identify the version; the third number identified the release. The first version
number, namely 2, has stayed unchanged since 1996. The second version number identified
the type of kernel: if it was even, it denoted a stable version; otherwise, it denoted a
development version.

As the name suggests, stable versions were thoroughly checked by Linux distributors and
kernel hackers. A new stable version was released only to address bugs and to add new
device drivers. Development versions, on the other hand, differed quite significantly from one
another; kernel developers were free to experiment with different solutions that occasionally
lead to drastic kernel changes. Users who relied on development versions for running
applications could experience unpleasant surprises when upgrading their kernel to a newer
release.

During development of Linux kernel version 2.6, however, a significant change in the version
numbering scheme has taken place. Basically, the second number no longer identifies stable or
development versions; thus, nowadays kernel developers introduce large and significant
changes in the current kernel version 2.6. A new kernel 2.7 branch will be created only when
kernel developers will have to test a really disruptive change; this 2.7 branch will lead to a
new current kernel version, or it will be backported to the 2.6 version, or finally it will simply
be dropped as a dead end.

The new model of Linux development implies that two kernels having the same version but
different release numbersfor instance, 2.6.10 and 2.6.11can differ significantly even in core
components and in fundamental algorithms. Thus, when a new kernel release appears, it is
potentially unstable and buggy. To address this problem, the kernel developers may release
patched versions of any kernel, which are identified by a fourth number in the version
numbering scheme. For instance, at the time this paragraph was written, the latest "stable"
kernel version was 2.6.11.12.

Please be aware that the kernel version described in this book is Linux 2.6.11.
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1.4. Basic Operating System Concepts
Each computer system includes a basic set of programs called the operating system. The
most important program in the set is called the kernel. It is loaded into RAM when the system
boots and contains many critical procedures that are needed for the system to operate. The
other programs are less crucial utilities; they can provide a wide variety of interactive
experiences for the useras well as doing all the jobs the user bought the computer forbut the
essential shape and capabilities of the system are determined by the kernel. The kernel
provides key facilities to everything else on the system and determines many of the
characteristics of higher software. Hence, we often use the term "operating system" as a
synonym for "kernel."

The operating system must fulfill two main objectives:

 Interact with the hardware components, servicing all low-level programmable elements
included in the hardware platform.

 Provide an execution environment to the applications that run on the computer system
(the so-called user programs).

Some operating systems allow all user programs to directly play with the hardware
components (a typical example is MS-DOS ). In contrast, a Unix-like operating system hides all
low-level details concerning the physical organization of the computer from applications run by
the user. When a program wants to use a hardware resource, it must issue a request to the
operating system. The kernel evaluates the request and, if it chooses to grant the resource,
interacts with the proper hardware components on behalf of the user program.

To enforce this mechanism, modern operating systems rely on the availability of specific
hardware features that forbid user programs to directly interact with low-level hardware
components or to access arbitrary memory locations. In particular, the hardware introduces at
least two different execution modes for the CPU: a nonprivileged mode for user programs and
a privileged mode for the kernel. Unix calls these User Mode and Kernel Mode , respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the design
of Unix over the past two decades, as well as Linux and other operating systems. While the
concepts are probably familiar to you as a Linux user, these sections try to delve into them a
bit more deeply than usual to explain the requirements they place on an operating system
kernel. These broad considerations refer to virtually all Unix-like systems. The other chapters
of this book will hopefully help you understand the Linux kernel internals.

1.4.1. Multiuser Systems

A multiuser system is a computer that is able to concurrently and independently execute
several applications belonging to two or more users. Concurrently means that applications can
be active at the same time and contend for the various resources such as CPU, memory, hard
disks, and so on. Independently means that each application can perform its task with no
concern for what the applications of the other users are doing. Switching from one application
to another, of course, slows down each of them and affects the response time seen by the
users. Many of the complexities of modern operating system kernels, which we will examine in
this book, are present to minimize the delays enforced on each program and to provide the
user with responses that are as fast as possible.

Multiuser operating systems must include several features:

 An authentication mechanism for verifying the user's identity

 A protection mechanism against buggy user programs that could block other
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applications running in the system

 A protection mechanism against malicious user programs that could interfere with or
spy on the activity of other users

 An accounting mechanism that limits the amount of resource units assigned to each
user

To ensure safe protection mechanisms, operating systems must use the hardware protection
associated with the CPU privileged mode. Otherwise, a user program would be able to directly
access the system circuitry and overcome the imposed bounds. Unix is a multiuser system
that enforces the hardware protection of system resources.

1.4.2. Users and Groups

In a multiuser system, each user has a private space on the machine; typically, he owns some
quota of the disk space to store files, receives private mail messages, and so on. The
operating system must ensure that the private portion of a user space is visible only to its
owner. In particular, it must ensure that no user can exploit a system application for the
purpose of violating the private space of another user.

All users are identified by a unique number called the User ID, or UID. Usually only a restricted
number of persons are allowed to make use of a computer system. When one of these users
starts a working session, the system asks for a login name and a password. If the user does
not input a valid pair, the system denies access. Because the password is assumed to be
secret, the user's privacy is ensured.

To selectively share material with other users, each user is a member of one or more user
groups , which are identified by a unique number called a user group ID . Each file is
associated with exactly one group. For example, access can be set so the user owning the file
has read and write privileges, the group has read-only privileges, and other users on the
system are denied access to the file.

Any Unix-like operating system has a special user called root or superuser . The system
administrator must log in as root to handle user accounts, perform maintenance tasks such as
system backups and program upgrades, and so on. The root user can do almost everything,
because the operating system does not apply the usual protection mechanisms to her. In
particular, the root user can access every file on the system and can manipulate every
running user program.

1.4.3. Processes

All operating systems use one fundamental abstraction: the process. A process can be
defined either as "an instance of a program in execution" or as the "execution context" of a
running program. In traditional operating systems, a process executes a single sequence of
instructions in an address space; the address space is the set of memory addresses that the
process is allowed to reference. Modern operating systems allow processes with multiple
execution flows that is, multiple sequences of instructions executed in the same address
space.

Multiuser systems must enforce an execution environment in which several processes can be
active concurrently and contend for system resources, mainly the CPU. Systems that allow
concurrent active processes are said to be multiprogramming or multiprocessing .[*] It is
important to distinguish programs from processes; several processes can execute the same
program concurrently, while the same process can execute several programs sequentially.

[*] Some multiprocessing operating systems are not multiuser; an example is Microsoft Window s 98.

On uniprocessor systems, just one process can hold the CPU, and hence just one execution
flow can progress at a time. In general, the number of CPUs is always restricted, and
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therefore only a few processes can progress at once. An operating system component called
the scheduler chooses the process that can progress. Some operating systems allow only
nonpreemptable processes, which means that the scheduler is invoked only when a process
voluntarily relinquishes the CPU. But processes of a multiuser system must be preemptable;
the operating system tracks how long each process holds the CPU and periodically activates
the scheduler.

Unix is a multiprocessing operating system with preemptable processes . Even when no user is
logged in and no application is running, several system processes monitor the peripheral
devices. In particular, several processes listen at the system terminals waiting for user logins.
When a user inputs a login name, the listening process runs a program that validates the user
password. If the user identity is acknowledged, the process creates another process that runs
a shell into which commands are entered. When a graphical display is activated, one process
runs the window manager, and each window on the display is usually run by a separate
process. When a user creates a graphics shell, one process runs the graphics windows and a
second process runs the shell into which the user can enter the commands. For each user
command, the shell process creates another process that executes the corresponding
program.

Unix-like operating systems adopt a process/kernel model . Each process has the illusion that
it's the only process on the machine, and it has exclusive access to the operating system
services. Whenever a process makes a system call (i.e., a request to the kernel, see Chapter
10), the hardware changes the privilege mode from User Mode to Kernel Mode, and the
process starts the execution of a kernel procedure with a strictly limited purpose. In this way,
the operating system acts within the execution context of the process in order to satisfy its
request. Whenever the request is fully satisfied, the kernel procedure forces the hardware to
return to User Mode and the process continues its execution from the instruction following the
system call.

1.4.4. Kernel Architecture

As stated before, most Unix kernels are monolithic: each kernel layer is integrated into the
whole kernel program and runs in Kernel Mode on behalf of the current process. In contrast, 
microkernel operating systems demand a very small set of functions from the kernel, generally
including a few synchronization primitives, a simple scheduler, and an interprocess
communication mechanism. Several system processes that run on top of the microkernel
implement other operating system-layer functions, like memory allocators, device drivers, and
system call handlers.

Although academic research on operating systems is oriented toward microkernels , such
operating systems are generally slower than monolithic ones, because the explicit message
passing between the different layers of the operating system has a cost. However,
microkernel operating systems might have some theoretical advantages over monolithic ones.
Microkernels force the system programmers to adopt a modularized approach, because each
operating system layer is a relatively independent program that must interact with the other
layers through well-defined and clean software interfaces. Moreover, an existing microkernel
operating system can be easily ported to other architectures fairly easily, because all
hardware-dependent components are generally encapsulated in the microkernel code. Finally,
microkernel operating systems tend to make better use of random access memory (RAM) than
monolithic ones, because system processes that aren't implementing needed functionalities
might be swapped out or destroyed.

To achieve many of the theoretical advantages of microkernels without introducing
performance penalties, the Linux kernel offers modules . A module is an object file whose code
can be linked to (and unlinked from) the kernel at runtime. The object code usually consists of
a set of functions that implements a filesystem, a device driver, or other features at the
kernel's upper layer. The module, unlike the external layers of microkernel operating systems,
does not run as a specific process. Instead, it is executed in Kernel Mode on behalf of the
current process, like any other statically linked kernel function.
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The main advantages of using modules include:

modularized approach

Because any module can be linked and unlinked at runtime, system programmers must
introduce well-defined software interfaces to access the data structures handled by
modules. This makes it easy to develop new modules.

Platform independence

Even if it may rely on some specific hardware features, a module doesn't depend on a
fixed hardware platform. For example, a disk driver module that relies on the SCSI
standard works as well on an IBM-compatible PC as it does on Hewlett-Packard's
Alpha.

Frugal main memory usage

A module can be linked to the running kernel when its functionality is required and
unlinked when it is no longer useful; this is quite useful for small embedded systems.

No performance penalty

Once linked in, the object code of a module is equivalent to the object code of the
statically linked kernel. Therefore, no explicit message passing is required when the
functions of the module are invoked.[*]

[*] A small performance penalty occurs when the module is linked and unlinked. However, this penalty
can be compared to the penalty caused by the creation and deletion of system processes in
microkernel operating systems.
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1.5. An Overview of the Unix Filesystem
The Unix operating system design is centered on its filesystem, which has several interesting
characteristics. We'll review the most significant ones, since they will be mentioned quite
often in forthcoming chapters.

1.5.1. Files

A Unix file is an information container structured as a sequence of bytes; the kernel does not
interpret the contents of a file. Many programming libraries implement higher-level
abstractions, such as records structured into fields and record addressing based on keys.
However, the programs in these libraries must rely on system calls offered by the kernel. From
the user's point of view, files are organized in a tree-structured namespace, as shown in
Figure 1-1.

Figure 1-1. An example of a directory tree

All the nodes of the tree, except the leaves, denote directory names. A directory node
contains information about the files and directories just beneath it. A file or directory name
consists of a sequence of arbitrary ASCII characters,[*] with the exception of / and of the null
character \0. Most filesystems place a limit on the length of a filename, typically no more than
255 characters. The directory corresponding to the root of the tree is called the root
directory. By convention, its name is a slash (/). Names must be different within the same
directory, but the same name may be used in different directories.

[*] Some operating systems allow  filenames to be expressed in many different alphabets, based on 16-bit extended coding of
graphical characters such as Unicode.

Unix associates a current working directory with each process (see the section "The
Process/Kernel Model" later in this chapter); it belongs to the process execution context, and
it identifies the directory currently used by the process. To identify a specific file, the process
uses a pathname, which consists of slashes alternating with a sequence of directory names
that lead to the file. If the first item in the pathname is a slash, the pathname is said to be 
absolute, because its starting point is the root directory. Otherwise, if the first item is a
directory name or filename, the pathname is said to be relative, because its starting point is
the process's current directory.

While specifying filenames, the notations "." and ".." are also used. They denote the current
working directory and its parent directory, respectively. If the current working directory is the
root directory, "." and ".." coincide.
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1.5.2. Hard and Soft Links

A filename included in a directory is called a file hard link, or more simply, a link. The same file
may have several links included in the same directory or in different ones, so it may have
several filenames.

The Unix command:

    $ ln p1 p2

is used to create a new hard link that has the pathname p2 for a file identified by the
pathname p1.

Hard links have two limitations:

 It is not possible to create hard links for directories. Doing so might transform the
directory tree into a graph with cycles, thus making it impossible to locate a file
according to its name.

 Links can be created only among files included in the same filesystem. This is a serious
limitation, because modern Unix systems may include several filesystems located on
different disks and/or partitions, and users may be unaware of the physical divisions
between them.

To overcome these limitations, soft links (also called symbolic links) were introduced a long
time ago. Symbolic links are short files that contain an arbitrary pathname of another file. The
pathname may refer to any file or directory located in any filesystem; it may even refer to a
nonexistent file.

The Unix command:

    $ ln -s p1 p2

creates a new soft link with pathname p2 that refers to pathname p1. When this command is
executed, the filesystem extracts the directory part of p2 and creates a new entry in that
directory of type symbolic link, with the name indicated by p2. This new file contains the name
indicated by pathname p1. This way, each reference to p2 can be translated automatically
into a reference to p1.

1.5.3. File Types

Unix files may have one of the following types:

 Regular file

 Directory

 Symbolic link

 Block-oriented device file

 Character-oriented device file

 Pipe and named pipe (also called FIFO)

 Socket

The first three file types are constituents of any Unix filesystem. Their implementation is
described in detail in Chapter 18.
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Device files are related both to I/O devices, and to device drivers integrated into the kernel.
For example, when a program accesses a device file, it acts directly on the I/O device
associated with that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see the section "
Synchronization and Critical Regions" later in this chapter; also see Chapter 19).

1.5.4. File Descriptor and Inode

Unix makes a clear distinction between the contents of a file and the information about a file.
With the exception of device files and files of special filesystems, each file consists of a
sequence of bytes. The file does not include any control information, such as its length or an
end-of-file (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data structure called
an inode. Each file has its own inode, which the filesystem uses to identify the file.

While filesystems and the kernel functions handling them can vary widely from one Unix
system to another, they must always provide at least the following attributes, which are
specified in the POSIX standard:

 File type (see the previous section)

 Number of hard links associated with the file

 File length in bytes

 Device ID (i.e., an identifier of the device containing the file)

 Inode number that identifies the file within the filesystem

 UID of the file owner

 User group ID of the file

 Several timestamps that specify the inode status change time, the last access time,
and the last modify time

 Access rights and file mode (see the next section)

1.5.5. Access Rights and File Mode

The potential users of a file fall into three classes:

 The user who is the owner of the file

 The users who belong to the same group as the file, not including the owner

 All remaining users (others)

There are three types of access rights -- read, write, and execute for each of these three
classes. Thus, the set of access rights associated with a file consists of nine different binary
flags. Three additional flags, called suid (Set User ID), sgid (Set Group ID), and sticky, define
the file mode. These flags have the following meanings when applied to executable files:

suid

A process executing a file normally keeps the User ID (UID ) of the process owner.
However, if the executable file has the suid flag set, the process gets the UID of the
file owner.
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sgid

A process executing a file keeps the user group ID of the process group. However, if
the executable file has the sgid flag set, the process gets the user group ID of the file.

sticky

An executable file with the sticky flag set corresponds to a request to the kernel to
keep the program in memory after its execution terminates.[*]

[*] This flag has become obsolete; other approaches based on sharing of code pages are now used
(see Chapter 9).

When a file is created by a process, its owner ID is the UID of the process. Its owner user
group ID can be either the process group ID of the creator process or the user group ID of the
parent directory, depending on the value of the sgid flag of the parent directory.

1.5.6. File-Handling System Calls

When a user accesses the contents of either a regular file or a directory, he actually
accesses some data stored in a hardware block device. In this sense, a filesystem is a
user-level view of the physical organization of a hard disk partition. Because a process in User
Mode cannot directly interact with the low-level hardware components, each actual file
operation must be performed in Kernel Mode. Therefore, the Unix operating system defines
several system calls related to file handling.

All Unix kernels devote great attention to the efficient handling of hardware block devices to
achieve good overall system performance. In the chapters that follow, we will describe topics
related to file handling in Linux and specifically how the kernel reacts to file-related system
calls. To understand those descriptions, you will need to know how the main file-handling
system calls are used; these are described in the next section.

1.5.6.1. Opening a file

Processes can access only "opened" files. To open a file, the process invokes the system call:

    fd = open(path, flag, mode)

The three parameters have the following meanings:

path

Denotes the pathname (relative or absolute) of the file to be opened.

flag

Specifies how the file must be opened (e.g., read, write, read/write, append). It also
can specify whether a nonexisting file should be created.

mode

Specifies the access rights of a newly created file.

This system call creates an "open file" object and returns an identifier called a file descriptor.
An open file object contains:
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 Some file-handling data structures, such as a set of flags specifying how the file has
been opened, an offset field that denotes the current position in the file from which
the next operation will take place (the so-called file pointer), and so on.

 Some pointers to kernel functions that the process can invoke. The set of permitted
functions depends on the value of the flag parameter.

We discuss open file objects in detail in Chapter 12. Let's limit ourselves here to describing
some general properties specified by the POSIX semantics.

 A file descriptor represents an interaction between a process and an opened file, while
an open file object contains data related to that interaction. The same open file object
may be identified by several file descriptors in the same process.

 Several processes may concurrently open the same file. In this case, the filesystem
assigns a separate file descriptor to each file, along with a separate open file object.
When this occurs, the Unix filesystem does not provide any kind of synchronization
among the I/O operations issued by the processes on the same file. However, several
system calls such as flock( ) are available to allow processes to synchronize
themselves on the entire file or on portions of it (see Chapter 12).

To create a new file, the process also may invoke the creat( ) system call, which is handled
by the kernel exactly like open( ).

1.5.6.2. Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device files and
named pipes are usually accessed sequentially. In both kinds of access, the kernel stores the
file pointer in the open file object that is, the current position at which the next read or write
operation will take place.

Sequential access is implicitly assumed: the read( ) and write( ) system calls always refer to
the position of the current file pointer. To modify the value, a program must explicitly invoke
the lseek( ) system call. When a file is opened, the kernel sets the file pointer to the position
of the first byte in the file (offset 0).

The lseek( ) system call requires the following parameters:

    newoffset = lseek(fd, offset, whence);

which have the following meanings:

fd

Indicates the file descriptor of the opened file

offset

Specifies a signed integer value that will be used for computing the new position of the
file pointer

whence

Specifies whether the new position should be computed by adding the offset value to
the number 0 (offset from the beginning of the file), the current file pointer, or the
position of the last byte (offset from the end of the file)
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The read( ) system call requires the following parameters:
nread = read(fd, buf, count);

which have the following meanings:

fd

Indicates the file descriptor of the opened file

buf

Specifies the address of the buffer in the process's address space to which the data
will be transferred

count

Denotes the number of bytes to read

When handling such a system call, the kernel attempts to read count bytes from the file
having the file descriptor fd, starting from the current value of the opened file's offset field. In
some casesend-of-file, empty pipe, and so onthe kernel does not succeed in reading all count
bytes. The returned nread value specifies the number of bytes effectively read. The file
pointer also is updated by adding nread to its previous value. The write( ) parameters are
similar.

1.5.6.3. Closing a file

When a process does not need to access the contents of a file anymore, it can invoke the
system call:

    res = close(fd);

which releases the open file object corresponding to the file descriptor fd. When a process
terminates, the kernel closes all its remaining opened files.

1.5.6.4. Renaming and deleting a file

To rename or delete a file, a process does not need to open it. Indeed, such operations do
not act on the contents of the affected file, but rather on the contents of one or more
directories. For example, the system call:

    res = rename(oldpath, newpath);

changes the name of a file link, while the system call:

    res = unlink(pathname);

decreases the file link count and removes the corresponding directory entry. The file is
deleted only when the link count assumes the value 0.

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


1.6. An Overview of Unix Kernels
Unix kernels provide an execution environment in which applications may run. Therefore, the
kernel must implement a set of services and corresponding interfaces. Applications use those
interfaces and do not usually interact directly with hardware resources.

1.6.1. The Process/Kernel Model

As already mentioned, a CPU can run in either User Mode or Kernel Mode . Actually, some
CPUs can have more than two execution states. For instance, the 80 x 86 microprocessors
have four different execution states. But all standard Unix kernels use only Kernel Mode and
User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data
structures or the kernel programs. When an application executes in Kernel Mode, however,
these restrictions no longer apply. Each CPU model provides special instructions to switch from
User Mode to Kernel Mode and vice versa. A program usually executes in User Mode and
switches to Kernel Mode only when requesting a service provided by the kernel. When the
kernel has satisfied the program's request, it puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the system. The
task of creating, eliminating, and synchronizing the existing processes is delegated to a group
of routines in the kernel.

The kernel itself is not a process but a process manager. The process/kernel model assumes
that processes that require a kernel service use specific programming constructs called 
system calls . Each system call sets up the group of parameters that identifies the process
request and then executes the hardware-dependent CPU instruction to switch from User Mode
to Kernel Mode.

Besides user processes, Unix systems include a few privileged processes called kernel threads
with the following characteristics:

 They run in Kernel Mode in the kernel address space.

 They do not interact with users, and thus do not require terminal devices.

 They are usually created during system startup and remain alive until the system is
shut down.

On a uniprocessor system, only one process is running at a time, and it may run either in User
or in Kernel Mode. If it runs in Kernel Mode, the processor is executing some kernel routine. 
Figure 1-2 illustrates examples of transitions between User and Kernel Mode. Process 1 in User
Mode issues a system call, after which the process switches to Kernel Mode, and the system
call is serviced. Process 1 then resumes execution in User Mode until a timer interrupt occurs,
and the scheduler is activated in Kernel Mode. A process switch takes place, and Process 2
starts its execution in User Mode until a hardware device raises an interrupt. As a
consequence of the interrupt, Process 2 switches to Kernel Mode and services the interrupt.

Figure 1-2. Transitions between User and Kernel Mode
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Unix kernels do much more than handle system calls; in fact, kernel routines can be activated
in several ways:

 A process invokes a system call.

 The CPU executing the process signals an exception, which is an unusual condition
such as an invalid instruction. The kernel handles the exception on behalf of the
process that caused it.

 A peripheral device issues an interrupt signal to the CPU to notify it of an event such
as a request for attention, a status change, or the completion of an I/O operation.
Each interrupt signal is dealt by a kernel program called an interrupt handler. Because
peripheral devices operate asynchronously with respect to the CPU, interrupts occur at
unpredictable times.

 A kernel thread is executed. Because it runs in Kernel Mode, the corresponding program
must be considered part of the kernel.

1.6.2. Process Implementation

To let the kernel manage processes, each process is represented by a process descriptor that
includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of several
processor registers in the process descriptor. These include:

 The program counter (PC) and stack pointer (SP) registers

 The general purpose registers

 The floating point registers

 The processor control registers (Processor Status Word) containing information about
the CPU state

 The memory management registers used to keep track of the RAM accessed by the
process

When the kernel decides to resume executing a process, it uses the proper process descriptor
fields to load the CPU registers. Because the stored value of the program counter points to
the instruction following the last instruction executed, the process resumes execution at the
point where it was stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix kernels
distinguish many wait states, which are usually implemented by queues of process descriptors
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; each (possibly empty) queue corresponds to the set of processes waiting for a specific
event.

1.6.3. Reentrant Kernels

All Unix kernels are reentrant. This means that several processes may be executing in Kernel
Mode at the same time. Of course, on uniprocessor systems, only one process can progress,
but many can be blocked in Kernel Mode when waiting for the CPU or the completion of some
I/O operation. For instance, after issuing a read to a disk on behalf of a process, the kernel
lets the disk controller handle it and resumes executing other processes. An interrupt notifies
the kernel when the device has satisfied the read, so the former process can resume the
execution.

One way to provide reentrancy is to write functions so that they modify only local variables
and do not alter global data structures. Such functions are called reentrant functions . But a
reentrant kernel is not limited only to such reentrant functions (although that is how some
real-time kernels are implemented). Instead, the kernel can include nonreentrant functions and
use locking mechanisms to ensure that only one process can execute a nonreentrant function
at a time.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current running
process even if that process is in Kernel Mode. This capability is very important, because it
improves the throughput of the device controllers that issue interrupts. Once a device has
issued an interrupt, it waits until the CPU acknowledges it. If the kernel is able to answer
quickly, the device controller will be able to perform other tasks while the CPU handles the
interrupt.

Now let's look at kernel reentrancy and its impact on the organization of the kernel. A kernel
control path denotes the sequence of instructions executed by the kernel to handle a system
call, an exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the first
instruction to the last. When one of the following events occurs, however, the CPU
interleaves the kernel control paths :

 A process executing in User Mode invokes a system call, and the corresponding kernel
control path verifies that the request cannot be satisfied immediately; it then invokes
the scheduler to select a new process to run. As a result, a process switch occurs.
The first kernel control path is left unfinished, and the CPU resumes the execution of
some other kernel control path. In this case, the two control paths are executed on
behalf of two different processes.

 The CPU detects an exceptionfor example, access to a page not present in RAMwhile
running a kernel control path. The first control path is suspended, and the CPU starts
the execution of a suitable procedure. In our example, this type of procedure can
allocate a new page for the process and read its contents from disk. When the
procedure terminates, the first control path can be resumed. In this case, the two
control paths are executed on behalf of the same process.

 A hardware interrupt occurs while the CPU is running a kernel control path with the
interrupts enabled. The first kernel control path is left unfinished, and the CPU starts
processing another kernel control path to handle the interrupt. The first kernel control
path resumes when the interrupt handler terminates. In this case, the two kernel
control paths run in the execution context of the same process, and the total system
CPU time is accounted to it. However, the interrupt handler doesn't necessarily operate
on behalf of the process.

 An interrupt occurs while the CPU is running with kernel preemption enabled, and a
higher priority process is runnable. In this case, the first kernel control path is left
unfinished, and the CPU resumes executing another kernel control path on behalf of the
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higher priority process. This occurs only if the kernel has been compiled with kernel
preemption support.

Figure 1-3 illustrates a few examples of noninterleaved and interleaved kernel control paths.
Three different CPU states are considered:

 Running a process in User Mode (User)

 Running an exception or a system call handler (Excp)

 Running an interrupt handler (Intr)

Figure 1-3. Interleaving of kernel control paths

1.6.4. Process Address Space

Each process runs in its private address space. A process running in User Mode refers to
private stack, data, and code areas. When running in Kernel Mode, the process addresses the
kernel data and code areas and uses another private stack.

Because the kernel is reentrant, several kernel control pathseach related to a different
processmay be executed in turn. In this case, each kernel control path refers to its own
private kernel stack.

While it appears to each process that it has access to a private address space, there are
times when part of the address space is shared among processes. In some cases, this sharing
is explicitly requested by processes; in others, it is done automatically by the kernel to reduce
memory usage.

If the same program, say an editor, is needed simultaneously by several users, the program is
loaded into memory only once, and its instructions can be shared by all of the users who need
it. Its data, of course, must not be shared, because each user will have separate data. This
kind of shared address space is done automatically by the kernel to save memory.

Processes also can share parts of their address space as a kind of interprocess
communication, using the "shared memory" technique introduced in System V and supported
by Linux.

Finally, Linux supports the mmap( ) system call, which allows part of a file or the information
stored on a block device to be mapped into a part of a process address space. Memory
mapping can provide an alternative to normal reads and writes for transferring data. If the
same file is shared by several processes, its memory mapping is included in the address space
of each of the processes that share it.

1.6.5. Synchronization and Critical Regions

Implementing a reentrant kernel requires the use of synchronization . If a kernel control path
is suspended while acting on a kernel data structure, no other kernel control path should be
allowed to act on the same data structure unless it has been reset to a consistent state.
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Otherwise, the interaction of the two control paths could corrupt the stored information.

For example, suppose a global variable V contains the number of available items of some
system resource. The first kernel control path, A, reads the variable and determines that
there is just one available item. At this point, another kernel control path, B, is activated and
reads the same variable, which still contains the value 1. Thus, B decreases V and starts
using the resource item. Then A resumes the execution; because it has already read the value
of V, it assumes that it can decrease V and take the resource item, which B already uses. As
a final result, V contains -1, and two kernel control paths use the same resource item with
potentially disastrous effects.

When the outcome of a computation depends on how two or more processes are scheduled,
the code is incorrect. We say that there is a race condition.

In general, safe access to a global variable is ensured by using atomic operations . In the
previous example, data corruption is not possible if the two control paths read and decrease V
with a single, noninterruptible operation. However, kernels contain many data structures that
cannot be accessed with a single operation. For example, it usually isn't possible to remove an
element from a linked list with a single operation, because the kernel needs to access at least
two pointers at once. Any section of code that should be finished by each process that
begins it before another process can enter it is called a critical region.[*]

[*] Synchronization problems have been fully described in other w orks; w e refer the interested reader to books on the Unix
operating systems (see the Bibliography).

These problems occur not only among kernel control paths but also among processes sharing
common data. Several synchronization techniques have been adopted. The following section
concentrates on how to synchronize kernel control paths.

1.6.5.1. Kernel preemption disabling

To provide a drastically simple solution to synchronization problems, some traditional Unix
kernels are nonpreemptive: when a process executes in Kernel Mode, it cannot be arbitrarily
suspended and substituted with another process. Therefore, on a uniprocessor system, all
kernel data structures that are not updated by interrupts or exception handlers are safe for
the kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this case, it
must ensure that all data structures are left in a consistent state. Moreover, when it resumes
its execution, it must recheck the value of any previously accessed data structures that could
be changed.

A synchronization mechanism applicable to preemptive kernels consists of disabling kernel
preemption before entering a critical region and reenabling it right after leaving the region.

Nonpreemptability is not enough for multiprocessor systems, because two kernel control paths
running on different CPUs can concurrently access the same data structure.

1.6.5.2. Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling all hardware
interrupts before entering a critical region and reenabling them right after leaving it. This
mechanism, while simple, is far from optimal. If the critical region is large, interrupts can
remain disabled for a relatively long time, potentially causing all hardware activities to freeze.

Moreover, on a multiprocessor system, disabling interrupts on the local CPU is not sufficient,
and other synchronization techniques must be used.

1.6.5.3. Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor systems, relies on
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the use of semaphores . A semaphore is simply a counter associated with a data structure; it
is checked by all kernel threads before they try to access the data structure. Each semaphore
may be viewed as an object composed of:

 An integer variable

 A list of waiting processes

 Two atomic methods: down( ) and up( )

The down( ) method decreases the value of the semaphore. If the new value is less than 0,
the method adds the running process to the semaphore list and then blocks (i.e., invokes the
scheduler). The up( ) method increases the value of the semaphore and, if its new value is
greater than or equal to 0, reactivates one or more processes in the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1. When a
kernel control path wishes to access the data structure, it executes the down( ) method on
the proper semaphore. If the value of the new semaphore isn't negative, access to the data
structure is granted. Otherwise, the process that is executing the kernel control path is added
to the semaphore list and blocked. When another process executes the up( ) method on that
semaphore, one of the processes in the semaphore list is allowed to proceed.

1.6.5.4. Spin locks

In multiprocessor systems, semaphores are not always the best solution to the
synchronization problems. Some kernel data structures should be protected from being
concurrently accessed by kernel control paths that run on different CPUs. In this case, if the
time required to update the data structure is short, a semaphore could be very inefficient. To
check a semaphore, the kernel must insert a process in the semaphore list and then suspend
it. Because both operations are relatively expensive, in the time it takes to complete them,
the other kernel control path could have already released the semaphore.

In these cases, multiprocessor operating systems use spin locks . A spin lock is very similar to
a semaphore, but it has no process list; when a process finds the lock closed by another
process, it "spins" around repeatedly, executing a tight instruction loop until the lock becomes
open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel control path
tries to access a locked data structure, it starts an endless loop. Therefore, the kernel control
path that is updating the protected data structure would not have a chance to continue the
execution and release the spin lock. The final result would be that the system hangs.

1.6.5.5. Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may easily enter
a deadlock state. The simplest case of deadlock occurs when process p1 gains access to data
structure a and process p2 gains access to b, but p1 then waits for b and p2 waits for a.
Other more complex cyclic waits among groups of processes also may occur. Of course, a
deadlock condition causes a complete freeze of the affected processes or kernel control
paths.

As far as kernel design is concerned, deadlocks become an issue when the number of kernel
locks used is high. In this case, it may be quite difficult to ensure that no deadlock state will
ever be reached for all possible ways to interleave kernel control paths. Several operating
systems, including Linux, avoid this problem by requesting locks in a predefined order.

1.6.6. Signals and Interprocess Communication

Unix signals provide a mechanism for notifying processes of system events. Each event has its
own signal number, which is usually referred to by a symbolic constant such as SIGTERM. There
are two kinds of system events:
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Asynchronous notifications

For instance, a user can send the interrupt signal SIGINT to a foreground process by
pressing the interrupt keycode (usually Ctrl-C) at the terminal.

Synchronous notifications

For instance, the kernel sends the signal SIGSEGV to a process when it accesses a
memory location at an invalid address.

The POSIX standard defines about 20 different signals, 2 of which are user-definable and may
be used as a primitive mechanism for communication and synchronization among processes in
User Mode. In general, a process may react to a signal delivery in two possible ways:

 Ignore the signal.

 Asynchronously execute a specified procedure (the signal handler).

If the process does not specify one of these alternatives, the kernel performs a default action
that depends on the signal number. The five possible default actions are:

 Terminate the process.

 Write the execution context and the contents of the address space in a file (core
dump) and terminate the process.

 Ignore the signal.

 Suspend the process.

 Resume the process's execution, if it was stopped.

Kernel signal handling is rather elaborate, because the POSIX semantics allows processes to
temporarily block signals. Moreover, the SIGKILL and SIGSTOP signals cannot be directly
handled by the process or ignored.

AT&T's Unix System V introduced other kinds of interprocess communication among processes
in User Mode, which have been adopted by many Unix kernels: semaphores , message queues
, and shared memory . They are collectively known as System V IPC.

The kernel implements these constructs as IPC resources. A process acquires a resource by
invoking a shmget( ) , semget( ) , or msgget( ) system call. Just like files, IPC resources are
persistent: they must be explicitly deallocated by the creator process, by the current owner,
or by a superuser process.

Semaphores are similar to those described in the section "Synchronization and Critical Regions
," earlier in this chapter, except that they are reserved for processes in User Mode. Message
queues allow processes to exchange messages by using the msgsnd( ) and msgrcv( ) system
calls, which insert a message into a specific message queue and extract a message from it,
respectively.

The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on message
queues, which is usually known as POSIX message queues . They are similar to the System V
IPC's message queues, but they have a much simpler file-based interface to the applications.

Shared memory provides the fastest way for processes to exchange and share data. A
process starts by issuing a shmget( ) system call to create a new shared memory having a
required size. After obtaining the IPC resource identifier, the process invokes the shmat( )
system call, which returns the starting address of the new region within the process address
space. When the process wishes to detach the shared memory from its address space, it
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invokes the shmdt( ) system call. The implementation of shared memory depends on how the
kernel implements process address spaces.

1.6.7. Process Management

Unix makes a neat distinction between the process and the program it is executing. To that
end, the fork( ) and _exit( ) system calls are used respectively to create a new process and
to terminate it, while an exec( )-like system call is invoked to load a new program. After such
a system call is executed, the process resumes execution with a brand new address space
containing the loaded program.

The process that invokes a fork( ) is the parent, while the new process is its child. Parents
and children can find one another because the data structure describing each process
includes a pointer to its immediate parent and pointers to all its immediate children.

A naive implementation of the fork( ) would require both the parent's data and the parent's
code to be duplicated and the copies assigned to the child. This would be quite time
consuming. Current kernels that can rely on hardware paging units follow the Copy-On-Write
approach, which defers page duplication until the last moment (i.e., until the parent or the
child is required to write into a page). We shall describe how Linux implements this technique
in the section "Copy On Write" in Chapter 9.

The _exit( ) system call terminates a process. The kernel handles this system call by
releasing the resources owned by the process and sending the parent process a SIGCHLD
signal, which is ignored by default.

1.6.7.1. Zombie processes

How can a parent process inquire about termination of its children? The wait4( ) system call
allows a process to wait until one of its children terminates; it returns the process ID (PID) of
the terminated child.

When executing this system call, the kernel checks whether a child has already terminated. A
special zombie process state is introduced to represent terminated processes: a process
remains in that state until its parent process executes a wait4( ) system call on it. The
system call handler extracts data about resource usage from the process descriptor fields; the
process descriptor may be released once the data is collected. If no child process has already
terminated when the wait4( ) system call is executed, the kernel usually puts the process in a
wait state until a child terminates.

Many kernels also implement a waitpid( ) system call, which allows a process to wait for a
specific child process. Other variants of wait4( ) system calls are also quite common.

It's good practice for the kernel to keep around information on a child process until the parent
issues its wait4( ) call, but suppose the parent process terminates without issuing that call?
The information takes up valuable memory slots that could be used to serve living processes.
For example, many shells allow the user to start a command in the background and then log
out. The process that is running the command shell terminates, but its children continue their
execution.

The solution lies in a special system process called init, which is created during system
initialization. When a process terminates, the kernel changes the appropriate process
descriptor pointers of all the existing children of the terminated process to make them become
children of init. This process monitors the execution of all its children and routinely issues
wait4( ) system calls, whose side effect is to get rid of all orphaned zombies.

1.6.7.2. Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a "job"
abstraction. For example, in order to execute the command line:
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    $ ls | sort | more

a shell that supports process groups, such as bash, creates a new group for the three
processes corresponding to ls, sort, and more. In this way, the shell acts on the three
processes as if they were a single entity (the job, to be precise). Each process descriptor
includes a field containing the process group ID . Each group of processes may have a group
leader, which is the process whose PID coincides with the process group ID. A newly created
process is initially inserted into the process group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session contains all
processes that are descendants of the process that has started a working session on a
specific terminalusually, the first command shell process created for the user. All processes in
a process group must be in the same login session. A login session may have several process
groups active simultaneously; one of these process groups is always in the foreground, which
means that it has access to the terminal. The other active process groups are in the
background. When a background process tries to access the terminal, it receives a SIGTTIN or
SIGTTOUT signal. In many command shells, the internal commands bg and fg can be used to put
a process group in either the background or the foreground.

1.6.8. Memory Management

Memory management is by far the most complex activity in a Unix kernel. More than a third of
this book is dedicated just to describing how Linux handles memory management. This section
illustrates some of the main issues related to memory management.

1.6.8.1. Virtual memory

All recent Unix systems provide a useful abstraction called virtual memory . Virtual memory
acts as a logical layer between the application memory requests and the hardware Memory
Management Unit (MMU). Virtual memory has many purposes and advantages:

 Several processes can be executed concurrently.

 It is possible to run applications whose memory needs are larger than the available
physical memory.

 Processes can execute a program whose code is only partially loaded in memory.

 Each process is allowed to access a subset of the available physical memory.

 Processes can share a single memory image of a library or program.

 Programs can be relocatable that is, they can be placed anywhere in physical memory.

 Programmers can write machine-independent code, because they do not need to be
concerned about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address space. The
set of memory references that a process can use is different from physical memory addresses.
When a process uses a virtual address,[*] the kernel and the MMU cooperate to find the actual
physical location of the requested memory item.

[*] These addresses have different nomenclatures, depending on the computer architecture. As w e'll see in Chapter 2, Intel
manuals refer to them as "logical addresses."

Today's CPUs include hardware circuits that automatically translate the virtual addresses into
physical ones. To that end, the available RAM is partitioned into page frames typically 4 or 8
KB in lengthand a set of Page Tables is introduced to specify how virtual addresses
correspond to physical addresses. These circuits make memory allocation simpler, because a
request for a block of contiguous virtual addresses can be satisfied by allocating a group of
page frames having noncontiguous physical addresses.
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1.6.8.2. Random access memory usage

All Unix operating systems clearly distinguish between two portions of the random access
memory (RAM). A few megabytes are dedicated to storing the kernel image (i.e., the kernel
code and the kernel static data structures). The remaining portion of RAM is usually handled
by the virtual memory system and is used in three possible ways:

 To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data
structures

 To satisfy process requests for generic memory areas and for memory mapping of files

 To get better performance from disks and other buffered devices by means of caches

Each request type is valuable. On the other hand, because the available RAM is limited, some
balancing among request types must be done, particularly when little available memory is left.
Moreover, when some critical threshold of available memory is reached and a
page-frame-reclaiming algorithm is invoked to free additional memory, which are the page
frames most suitable for reclaiming? As we will see in Chapter 17, there is no simple answer to
this question and very little support from theory. The only available solution lies in developing
carefully tuned empirical algorithms.

One major problem that must be solved by the virtual memory system is memory
fragmentation . Ideally, a memory request should fail only when the number of free page
frames is too small. However, the kernel is often forced to use physically contiguous memory
areas. Hence the memory request could fail even if there is enough memory available, but it is
not available as one contiguous chunk.

1.6.8.3. Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests for
memory areas from all parts of the system. Some of these requests come from other kernel
subsystems needing memory for kernel use, and some requests come via system calls from
user programs to increase their processes' address spaces. A good KMA should have the
following features:

 It must be fast. Actually, this is the most crucial attribute, because it is invoked by all
kernel subsystems (including the interrupt handlers).

 It should minimize the amount of wasted memory.

 It should try to reduce the memory fragmentation problem.

 It should be able to cooperate with the other memory management subsystems to
borrow and release page frames from them.

Several proposed KMAs, which are based on a variety of different algorithmic techniques,
include:

 Resource map allocator

 Power-of-two free lists

 McKusick-Karels allocator

 Buddy system

 Mach's Zone allocator

 Dynix allocator

 Solaris 's Slab allocator
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As we will see in Chapter 8, Linux's KMA uses a Slab allocator on top of a buddy system.

1.6.8.4. Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the process is
allowed to reference. The kernel usually stores a process virtual address space as a list of 
memory area descriptors . For example, when a process starts the execution of some
program via an exec( )-like system call, the kernel assigns to the process a virtual address
space that comprises memory areas for:

 The executable code of the program

 The initialized data of the program

 The uninitialized data of the program

 The initial program stack (i.e., the User Mode stack)

 The executable code and data of needed shared libraries

 The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand paging .
With demand paging, a process can start program execution with none of its pages in physical
memory. As it accesses a nonpresent page, the MMU generates an exception; the exception
handler finds the affected memory region, allocates a free page, and initializes it with the
appropriate data. In a similar fashion, when the process dynamically requires memory by using 
malloc( ), or the brk( ) system call (which is invoked internally by malloc( )), the kernel just
updates the size of the heap memory region of the process. A page frame is assigned to the
process only when it generates an exception by trying to refer its virtual memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy On Write
strategy mentioned earlier. For example, when a new process is created, the kernel just
assigns the parent's page frames to the child address space, but marks them read-only. An
exception is raised as soon the parent or the child tries to modify the contents of a page. The
exception handler assigns a new page frame to the affected process and initializes it with the
contents of the original page.

1.6.8.5. Caching

A good part of the available physical memory is used as cache for hard disks and other block
devices. This is because hard drives are very slow: a disk access requires several milliseconds,
which is a very long time compared with the RAM access time. Therefore, disks are often the
bottleneck in system performance. As a general rule, one of the policies already implemented
in the earliest Unix system is to defer writing to disk as long as possible. As a result, data read
previously from disk and no longer used by any process continue to stay in RAM.

This strategy is based on the fact that there is a good chance that new processes will require
data read from or written to disk by processes that no longer exist. When a process asks to
access a disk, the kernel checks first whether the required data are in the cache. Each time
this happens (a cache hit), the kernel is able to service the process request without
accessing the disk.

The sync( ) system call forces disk synchronization by writing all of the "dirty" buffers (i.e., all
the buffers whose contents differ from that of the corresponding disk blocks) into disk. To
avoid data loss, all operating systems take care to periodically write dirty buffers back to disk.

1.6.9. Device Drivers

The kernel interacts with I/O devices by means of device drivers . Device drivers are included
in the kernel and consist of data structures and functions that control one or more devices,
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such as hard disks, keyboards, mouses, monitors, network interfaces, and devices connected
to an SCSI bus. Each driver interacts with the remaining part of the kernel (even with other
drivers) through a specific interface. This approach has the following advantages:

 Device-specific code can be encapsulated in a specific module.

 Vendors can add new devices without knowing the kernel source code; only the
interface specifications must be known.

 The kernel deals with all devices in a uniform way and accesses them through the
same interface.

 It is possible to write a device driver as a module that can be dynamically loaded in the
kernel without requiring the system to be rebooted. It is also possible to dynamically
unload a module that is no longer needed, therefore minimizing the size of the kernel
image stored in RAM.

Figure 1-4 illustrates how device drivers interface with the rest of the kernel and with the
processes.

Figure 1-4. Device driver interface

Some user programs (P) wish to operate on hardware devices. They make requests to the
kernel using the usual file-related system calls and the device files normally found in the /dev
directory. Actually, the device files are the user-visible portion of the device driver interface.
Each device file refers to a specific device driver, which is invoked by the kernel to perform
the requested operation on the hardware component.

At the time Unix was introduced, graphical terminals were uncommon and expensive, so only
alphanumeric terminals were handled directly by Unix kernels. When graphical terminals
became widespread, ad hoc applications such as the X Window System were introduced that
ran as standard processes and accessed the I/O ports of the graphics interface and the RAM
video area directly. Some recent Unix kernels, such as Linux 2.6, provide an abstraction for
the frame buffer of the graphic card and allow application software to access them without
needing to know anything about the I/O ports of the graphics interface (see the section "
Levels of Kernel Support" in Chapter 13.)
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Chapter 2. Memory Addressing
This chapter deals with addressing techniques. Luckily, an operating system is not forced to
keep track of physical memory all by itself; today's microprocessors include several hardware
circuits to make memory management both more efficient and more robust so that
programming errors cannot cause improper accesses to memory outside the program.

As in the rest of this book, we offer details in this chapter on how 80 x 86 microprocessors
address memory chips and how Linux uses the available addressing circuits. You will find, we
hope, that when you learn the implementation details on Linux's most popular platform you will
better understand both the general theory of paging and how to research the implementation
on other platforms.

This is the first of three chapters related to memory management; Chapter 8 discusses how
the kernel allocates main memory to itself, while Chapter 9 considers how linear addresses are
assigned to processes.
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2.1. Memory Addresses
Programmers casually refer to a memory address as the way to access the contents of a
memory cell. But when dealing with 80 x 86 microprocessors, we have to distinguish three
kinds of addresses:

Logical address

Included in the machine language instructions to specify the address of an operand or
of an instruction. This type of address embodies the well-known 80 x 86 segmented
architecture that forces MS-DOS and Windows programmers to divide their programs
into segments . Each logical address consists of a segment and an offset (or
displacement) that denotes the distance from the start of the segment to the actual
address.

Linear address (also known as virtual address)

A single 32-bit unsigned integer that can be used to address up to 4 GB that is, up to
4,294,967,296 memory cells. Linear addresses are usually represented in hexadecimal
notation; their values range from 0x00000000 to 0xffffffff.

Physical address

Used to address memory cells in memory chips. They correspond to the electrical
signals sent along the address pins of the microprocessor to the memory bus. Physical
addresses are represented as 32-bit or 36-bit unsigned integers.

The Memory Management Unit (MMU) transforms a logical address into a linear address by
means of a hardware circuit called a segmentation unit ; subsequently, a second hardware
circuit called a paging unit transforms the linear address into a physical address (see Figure
2-1).

Figure 2-1. Logical address translation

In multiprocessor systems, all CPUs usually share the same memory; this means that RAM
chips may be accessed concurrently by independent CPUs. Because read or write operations
on a RAM chip must be performed serially, a hardware circuit called a memory arbiter is
inserted between the bus and every RAM chip. Its role is to grant access to a CPU if the chip
is free and to delay it if the chip is busy servicing a request by another processor. Even
uniprocessor systems use memory arbiters , because they include specialized processors
called DMA controllers that operate concurrently with the CPU (see the section "Direct
Memory Access (DMA)" in Chapter 13). In the case of multiprocessor systems, the structure
of the arbiter is more complex because it has more input ports. The dual Pentium, for
instance, maintains a two-port arbiter at each chip entrance and requires that the two CPUs
exchange synchronization messages before attempting to use the common bus. From the
programming point of view, the arbiter is hidden because it is managed by hardware circuits.
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2.2. Segmentation in Hardware
Starting with the 80286 model, Intel microprocessors perform address translation in two
different ways called real mode and protected mode . We'll focus in the next sections on
address translation when protected mode is enabled. Real mode exists mostly to maintain
processor compatibility with older models and to allow the operating system to bootstrap (see 
Appendix A for a short description of real mode).

2.2.1. Segment Selectors and Segmentation Registers

A logical address consists of two parts: a segment identifier and an offset that specifies the
relative address within the segment. The segment identifier is a 16-bit field called the 
Segment Selector (see Figure 2-2), while the offset is a 32-bit field. We'll describe the fields
of Segment Selectors in the section "Fast Access to Segment Descriptors" later in this
chapter.

Figure 2-2. Segment Selector format

To make it easy to retrieve segment selectors quickly, the processor provides segmentation
registers whose only purpose is to hold Segment Selectors; these registers are called cs, ss,
ds, es, fs, and gs. Although there are only six of them, a program can reuse the same
segmentation register for different purposes by saving its content in memory and then
restoring it later.

Three of the six segmentation registers have specific purposes:

cs

The code segment register, which points to a segment containing program instructions

ss

The stack segment register, which points to a segment containing the current program
stack

ds

The data segment register, which points to a segment containing global and static
data

The remaining three segmentation registers are general purpose and may refer to arbitrary
data segments.

The cs register has another important function: it includes a 2-bit field that specifies the
Current Privilege Level (CPL) of the CPU. The value 0 denotes the highest privilege level, while
the value 3 denotes the lowest one. Linux uses only levels 0 and 3, which are respectively
called Kernel Mode and User Mode.

2.2.2. Segment Descriptors
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Each segment is represented by an 8-byte Segment Descriptor that describes the segment
characteristics. Segment Descriptors are stored either in the Global Descriptor Table (GDT ) or
in the Local Descriptor Table(LDT).

Usually only one GDT is defined, while each process is permitted to have its own LDT if it
needs to create additional segments besides those stored in the GDT. The address and size of
the GDT in main memory are contained in the gdtr control register, while the address and size
of the currently used LDT are contained in the ldtr control register.

Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various fields is
explained in Table 2-1.

Table 2-1. Segment Descriptor fields

Field
name Description

Base Contains the linear address of the first byte of the segment.

G Granularity flag: if it is cleared (equal to 0), the segment size is expressed in bytes;
otherwise, it is expressed in multiples of 4096 bytes.

Limit

Holds the offset of the last memory cell in the segment, thus binding the segment
length. When G is set to 0, the size of a segment may vary between 1 byte and 1
MB; otherwise, it may vary between 4 KB and 4 GB.

S

System flag: if it is cleared, the segment is a system segment that stores critical
data structures such as the Local Descriptor Table; otherwise, it is a normal code or
data segment.

Type Characterizes the segment type and its access rights (see the text that follows this
table).

DPL 

Descriptor Privilege Level: used to restrict accesses to the segment. It represents
the minimal CPU privilege level requested for accessing the segment. Therefore, a
segment with its DPL set to 0 is accessible only when the CPL is 0 that is, in Kernel
Mode while a segment with its DPL set to 3 is accessible with every CPL value.

P
Segment-Present flag : is equal to 0 if the segment is not stored currently in main
memory. Linux always sets this flag (bit 47) to 1, because it never swaps out whole
segments to disk.

D or B
Called D or B depending on whether the segment contains code or data. Its meaning
is slightly different in the two cases, but it is basically set (equal to 1) if the
addresses used as segment offsets are 32 bits long, and it is cleared if they are 16
bits long (see the Intel manual for further details).

AVL May be used by the operating system, but it is ignored by Linux.

There are several types of segments, and thus several types of Segment Descriptors. The
following list shows the types that are widely used in Linux.

Code Segment Descriptor
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Indicates that the Segment Descriptor refers to a code segment; it may be included
either in the GDT or in the LDT. The descriptor has the S flag set (non-system
segment).

Data Segment Descriptor

Indicates that the Segment Descriptor refers to a data segment; it may be included
either in the GDT or in the LDT. The descriptor has the S flag set. Stack segments are
implemented by means of generic data segments.

Task State Segment Descriptor (TSSD)

Indicates that the Segment Descriptor refers to a Task State Segment (TSS) that is, a
segment used to save the contents of the processor registers (see the section "Task
State Segment" in Chapter 3); it can appear only in the GDT. The corresponding Type
field has the value 11 or 9, depending on whether the corresponding process is
currently executing on a CPU. The S flag of such descriptors is set to 0.

Figure 2-3. Segment Descriptor format

Local Descriptor Table Descriptor (LDTD)

Indicates that the Segment Descriptor refers to a segment containing an LDT; it can
appear only in the GDT. The corresponding Type field has the value 2. The S flag of
such descriptors is set to 0. The next section shows how 80 x 86 processors are able
to decide whether a segment descriptor is stored in the GDT or in the LDT of the
process.

2.2.3. Fast Access to Segment Descriptors
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We recall that logical addresses consist of a 16-bit Segment Selector and a 32-bit Offset, and
that segmentation registers store only the Segment Selector.

To speed up the translation of logical addresses into linear addresses, the 80 x 86 processor
provides an additional nonprogrammable registerthat is, a register that cannot be set by a
programmerfor each of the six programmable segmentation registers. Each nonprogrammable
register contains the 8-byte Segment Descriptor (described in the previous section) specified
by the Segment Selector contained in the corresponding segmentation register. Every time a
Segment Selector is loaded in a segmentation register, the corresponding Segment Descriptor
is loaded from memory into the matching nonprogrammable CPU register. From then on,
translations of logical addresses referring to that segment can be performed without accessing
the GDT or LDT stored in main memory; the processor can refer only directly to the CPU
register containing the Segment Descriptor. Accesses to the GDT or LDT are necessary only
when the contents of the segmentation registers change (see Figure 2-4).

Figure 2-4. Segment Selector and Segment Descriptor

Any Segment Selector includes three fields that are described in Table 2-2.

Table 2-2. Segment Selector fields

Field
name Description

index Identifies the Segment Descriptor entry contained in the GDT or in the LDT
(described further in the text following this table).

TI Table Indicator : specifies whether the Segment Descriptor is included in the GDT
(TI = 0) or in the LDT (TI = 1).

RPL

Requestor Privilege Level : specifies the Current Privilege Level of the CPU when the
corresponding Segment Selector is loaded into the cs register; it also may be used
to selectively weaken the processor privilege level when accessing data segments
(see Intel documentation for details).

Because a Segment Descriptor is 8 bytes long, its relative address inside the GDT or the LDT
is obtained by multiplying the 13-bit index field of the Segment Selector by 8. For instance, if
the GDT is at 0x00020000 (the value stored in the gdtr register) and the index specified by the
Segment Selector is 2, the address of the corresponding Segment Descriptor is 0x00020000 +
(2 x 8), or 0x00020010.

The first entry of the GDT is always set to 0. This ensures that logical addresses with a null
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Segment Selector will be considered invalid, thus causing a processor exception. The maximum
number of Segment Descriptors that can be stored in the GDT is 8,191 (i.e., 213-1).

2.2.4. Segmentation Unit

Figure 2-5 shows in detail how a logical address is translated into a corresponding linear
address. The segmentation unit performs the following operations:

 Examines the TI field of the Segment Selector to determine which Descriptor Table
stores the Segment Descriptor. This field indicates that the Descriptor is either in the
GDT (in which case the segmentation unit gets the base linear address of the GDT from
the gdtr register) or in the active LDT (in which case the segmentation unit gets the
base linear address of that LDT from the ldtr register).

 Computes the address of the Segment Descriptor from the index field of the Segment
Selector. The index field is multiplied by 8 (the size of a Segment Descriptor), and the
result is added to the content of the gdtr or ldtr register.

 Adds the offset of the logical address to the Base field of the Segment Descriptor, thus
obtaining the linear address.

Figure 2-5. Translating a logical address

Notice that, thanks to the nonprogrammable registers associated with the segmentation
registers, the first two operations need to be performed only when a segmentation register
has been changed.
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2.3. Segmentation in Linux
Segmentation has been included in 80 x 86 microprocessors to encourage programmers to split
their applications into logically related entities, such as subroutines or global and local data
areas. However, Linux uses segmentation in a very limited way. In fact, segmentation and
paging are somewhat redundant, because both can be used to separate the physical address
spaces of processes: segmentation can assign a different linear address space to each
process, while paging can map the same linear address space into different physical address
spaces. Linux prefers paging to segmentation for the following reasons:

 Memory management is simpler when all processes use the same segment register
values that is, when they share the same set of linear addresses.

 One of the design objectives of Linux is portability to a wide range of architectures;
RISC architectures in particular have limited support for segmentation.

The 2.6 version of Linux uses segmentation only when required by the 80 x 86 architecture.

All Linux processes running in User Mode use the same pair of segments to address
instructions and data. These segments are called user code segment and user data segment
, respectively. Similarly, all Linux processes running in Kernel Mode use the same pair of
segments to address instructions and data: they are called kernel code segment and kernel
data segment , respectively. Table 2-3 shows the values of the Segment Descriptor fields for
these four crucial segments.

Table 2-3. Values of the Segment Descriptor fields for the four main
Linux segments

Segment Base G Limit S Type DPL D/B P

user code 0x00000000 1 0xfffff 1 10 3 1 1

user data 0x00000000 1 0xfffff 1 2 3 1 1

kernel code 0x00000000 1 0xfffff 1 10 0 1 1

kernel data 0x00000000 1 0xfffff 1 2 0 1 1

The corresponding Segment Selectors are defined by the macros _ _USER_CS, _ _USER_DS, _
_KERNEL_CS, and _ _KERNEL_DS, respectively. To address the kernel code segment, for instance,
the kernel just loads the value yielded by the _ _KERNEL_CS macro into the cs segmentation
register.

Notice that the linear addresses associated with such segments all start at 0 and reach the
addressing limit of 232 -1. This means that all processes, either in User Mode or in Kernel Mode,
may use the same logical addresses.

Another important consequence of having all segments start at 0x00000000 is that in Linux,
logical addresses coincide with linear addresses; that is, the value of the Offset field of a
logical address always coincides with the value of the corresponding linear address.

As stated earlier, the Current Privilege Level of the CPU indicates whether the processor is in
User or Kernel Mode and is specified by the RPL field of the Segment Selector stored in the cs
register. Whenever the CPL is changed, some segmentation registers must be correspondingly
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updated. For instance, when the CPL is equal to 3 (User Mode), the ds register must contain
the Segment Selector of the user data segment, but when the CPL is equal to 0, the ds
register must contain the Segment Selector of the kernel data segment.

A similar situation occurs for the ss register. It must refer to a User Mode stack inside the
user data segment when the CPL is 3, and it must refer to a Kernel Mode stack inside the
kernel data segment when the CPL is 0. When switching from User Mode to Kernel Mode, Linux
always makes sure that the ss register contains the Segment Selector of the kernel data
segment.

When saving a pointer to an instruction or to a data structure, the kernel does not need to
store the Segment Selector component of the logical address, because the ss register
contains the current Segment Selector. As an example, when the kernel invokes a function, it
executes a call assembly language instruction specifying just the Offset component of its
logical address; the Segment Selector is implicitly selected as the one referred to by the cs
register. Because there is just one segment of type "executable in Kernel Mode," namely the
code segment identified by __KERNEL_CS, it is sufficient to load __KERNEL_CS into cs whenever
the CPU switches to Kernel Mode. The same argument goes for pointers to kernel data
structures (implicitly using the ds register), as well as for pointers to user data structures (the
kernel explicitly uses the es register).

Besides the four segments just described, Linux makes use of a few other specialized
segments. We'll introduce them in the next section while describing the Linux GDT.

2.3.1. The Linux GDT

In uniprocessor systems there is only one GDT, while in multiprocessor systems there is one
GDT for every CPU in the system. All GDTs are stored in the cpu_gdt_table array, while the
addresses and sizes of the GDTs (used when initializing the gdtr registers) are stored in the
cpu_gdt_descr array. If you look in the Source Code Index, you can see that these symbols
are defined in the file arch/i386/kernel/head.S . Every macro, function, and other symbol in
this book is listed in the Source Code Index, so you can quickly find it in the source code.

The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18 segment
descriptors and 14 null, unused, or reserved entries. Unused entries are inserted on purpose
so that Segment Descriptors usually accessed together are kept in the same 32-byte line of
the hardware cache (see the section "Hardware Cache" later in this chapter).

The 18 segment descriptors included in each GDT point to the following segments:

 Four user and kernel code and data segments (see previous section).

 A Task State Segment (TSS), different for each processor in the system. The linear
address space corresponding to a TSS is a small subset of the linear address space
corresponding to the kernel data segment. The Task State Segments are sequentially
stored in the init_tss array; in particular, the Base field of the TSS descriptor for the n
th CPU points to the nth component of the init_tss array. The G (granularity) flag is
cleared, while the Limit field is set to 0xeb, because the TSS segment is 236 bytes
long. The Type field is set to 9 or 11 (available 32-bit TSS), and the DPL is set to 0,
because processes in User Mode are not allowed to access TSS segments. You will find
details on how Linux uses TSSs in the section "Task State Segment" in Chapter 3.

Figure 2-6. The Global Descriptor Table

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


 A segment including the default Local Descriptor Table (LDT), usually shared by all
processes (see the next section).

 Three Thread-Local Storage (TLS) segments: this is a mechanism that allows
multithreaded applications to make use of up to three segments containing data local
to each thread. The set_thread_area( ) and get_thread_area( ) system calls,
respectively, create and release a TLS segment for the executing process.

 Three segments related to Advanced Power Management (APM ): the BIOS code makes
use of segments, so when the Linux APM driver invokes BIOS functions to get or set
the status of APM devices, it may use custom code and data segments.

 Five segments related to Plug and Play (PnP ) BIOS services. As in the previous case,
the BIOS code makes use of segments, so when the Linux PnP driver invokes BIOS
functions to detect the resources used by PnP devices, it may use custom code and
data segments.

 A special TSS segment used by the kernel to handle "Double fault " exceptions (see "
Exceptions" in Chapter 4).

As stated earlier, there is a copy of the GDT for each processor in the system. All copies of
the GDT store identical entries, except for a few cases. First, each processor has its own TSS
segment, thus the corresponding GDT's entries differ. Moreover, a few entries in the GDT may
depend on the process that the CPU is executing (LDT and TLS Segment Descriptors). Finally,
in some cases a processor may temporarily modify an entry in its copy of the GDT; this
happens, for instance, when invoking an APM's BIOS procedure.

2.3.2. The Linux LDTs

Most Linux User Mode applications do not make use of a Local Descriptor Table, thus the
kernel defines a default LDT to be shared by most processes. The default Local Descriptor
Table is stored in the default_ldt array. It includes five entries, but only two of them are
effectively used by the kernel: a call gate for iBCS executables, and a call gate for Solaris
/x86 executables (see the section "Execution Domains" in Chapter 20). Call gates are a
mechanism provided by 80 x 86 microprocessors to change the privilege level of the CPU while
invoking a predefined function; as we won't discuss them further, you should consult the Intel
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documentation for more details.

In some cases, however, processes may require to set up their own LDT. This turns out to be
useful to applications (such as Wine) that execute segment-oriented Microsoft Windows
applications. The modify_ldt( ) system call allows a process to do this.

Any custom LDT created by modify_ldt( ) also requires its own segment. When a processor
starts executing a process having a custom LDT, the LDT entry in the CPU-specific copy of
the GDT is changed accordingly.

User Mode applications also may allocate new segments by means of modify_ldt( ); the
kernel, however, never makes use of these segments, and it does not have to keep track of
the corresponding Segment Descriptors, because they are included in the custom LDT of the
process.
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2.4. Paging in Hardware
The paging unit translates linear addresses into physical ones. One key task in the unit is to
check the requested access type against the access rights of the linear address. If the
memory access is not valid, it generates a Page Fault exception (see Chapter 4 and Chapter 8
).

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called pages ;
contiguous linear addresses within a page are mapped into contiguous physical addresses. In
this way, the kernel can specify the physical address and the access rights of a page instead
of those of all the linear addresses included in it. Following the usual convention, we shall use
the term "page" to refer both to a set of linear addresses and to the data contained in this
group of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames (sometimes
referred to as physical pages ). Each page frame contains a page that is, the length of a page
frame coincides with that of a page. A page frame is a constituent of main memory, and
hence it is a storage area. It is important to distinguish a page from a page frame; the former
is just a block of data, which may be stored in any page frame or on disk.

The data structures that map linear to physical addresses are called page tables ; they are
stored in main memory and must be properly initialized by the kernel before enabling the
paging unit.

Starting with the 80386, all 80 x 86 processors support paging; it is enabled by setting the PG
flag of a control register named cr0 . When PG = 0, linear addresses are interpreted as
physical addresses.

2.4.1. Regular Paging

Starting with the 80386, the paging unit of Intel processors handles 4 KB pages.

The 32 bits of a linear address are divided into three fields:

Directory

The most significant 10 bits

Table

The intermediate 10 bits

Offset

The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a type of
translation table. The first translation table is called the Page Directory, and the second is
called the Page Table.[*]

[*] In the discussion that follow s, the low ercase "page table" term denotes any page storing the mapping betw een linear and
physical addresses, w hile the capitalized "Page Table" term denotes a page in the last level of page tables.

The aim of this two-level scheme is to reduce the amount of RAM required for per-process
Page Tables. If a simple one-level Page Table was used, then it would require up to 220
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entries (i.e., at 4 bytes per entry, 4 MB of RAM) to represent the Page Table for each process
(if the process used a full 4 GB linear address space), even though a process does not use all
addresses in that range. The two-level scheme reduces the memory by requiring Page Tables
only for those virtual memory regions actually used by a process.

Each active process must have a Page Directory assigned to it. However, there is no need to
allocate RAM for all Page Tables of a process at once; it is more efficient to allocate RAM for a
Page Table only when the process effectively needs it.

The physical address of the Page Directory in use is stored in a control register named cr3 .
The Directory field within the linear address determines the entry in the Page Directory that
points to the proper Page Table. The address's Table field, in turn, determines the entry in the
Page Table that contains the physical address of the page frame containing the page. The
Offset field determines the relative position within the page frame (see Figure 2-7). Because it
is 12 bits long, each page consists of 4096 bytes of data.

Figure 2-7. Paging by 80 x 86 processors

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page Tables
can include up to 1,024 entries. It follows that a Page Directory can address up to 1024 x
1024 x 4096=232 memory cells, as you'd expect in 32-bit addresses.

The entries of Page Directories and Page Tables have the same structure. Each entry includes
the following fields:

Present flag

If it is set, the referred-to page (or Page Table) is contained in main memory; if the
flag is 0, the page is not contained in main memory and the remaining entry bits may
be used by the operating system for its own purposes. If the entry of a Page Table or
Page Directory needed to perform an address translation has the Present flag cleared,
the paging unit stores the linear address in a control register named cr2 and generates
exception 14: the Page Fault exception. (We will see in Chapter 17 how Linux uses this
field.)
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Field containing the 20 most significant bits of a page frame physical address

Because each page frame has a 4-KB capacity, its physical address must be a multiple
of 4096, so the 12 least significant bits of the physical address are always equal to 0.
If the field refers to a Page Directory, the page frame contains a Page Table; if it
refers to a Page Table, the page frame contains a page of data.

Accessed flag

Set each time the paging unit addresses the corresponding page frame. This flag may
be used by the operating system when selecting pages to be swapped out. The paging
unit never resets this flag; this must be done by the operating system.

Dirty flag

Applies only to the Page Table entries. It is set each time a write operation is
performed on the page frame. As with the Accessed flag, Dirty may be used by the
operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Read/Write flag

Contains the access right (Read/Write or Read) of the page or of the Page Table (see
the section "Hardware Protection Scheme" later in this chapter).

User/Supervisor flag

Contains the privilege level required to access the page or Page Table (see the later
section "Hardware Protection Scheme").

PCD and PWT flags

Controls the way the page or Page Table is handled by the hardware cache (see the
section "Hardware Cache" later in this chapter).

Page Size flag

Applies only to Page Directory entries. If it is set, the entry refers to a 2 MB- or 4
MB-long page frame (see the following sections).

Global flag

Applies only to Page Table entries. This flag was introduced in the Pentium Pro to
prevent frequently used pages from being flushed from the TLB cache (see the section
"Translation Lookaside Buffers (TLB)" later in this chapter). It works only if the Page
Global Enable (PGE) flag of register cr4 is set.

2.4.2. Extended Paging

Starting with the Pentium model, 80 x 86 microprocessors introduce extended paging , which
allows page frames to be 4 MB instead of 4 KB in size (see Figure 2-8). Extended paging is
used to translate large contiguous linear address ranges into corresponding physical ones; in
these cases, the kernel can do without intermediate Page Tables and thus save memory and
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preserve TLB entries (see the section "Translation Lookaside Buffers (TLB)").

Figure 2-8. Extended paging

As mentioned in the previous section, extended paging is enabled by setting the Page Size flag
of a Page Directory entry. In this case, the paging unit divides the 32 bits of a linear address
into two fields:

Directory

The most significant 10 bits

Offset

The remaining 22 bits

Page Directory entries for extended paging are the same as for normal paging, except that:

 The Page Size flag must be set.

 Only the 10 most significant bits of the 20-bit physical address field are significant.
This is because each physical address is aligned on a 4-MB boundary, so the 22 least
significant bits of the address are 0.

Extended paging coexists with regular paging; it is enabled by setting the PSE flag of the cr4
processor register.

2.4.3. Hardware Protection Scheme

The paging unit uses a different protection scheme from the segmentation unit. While 80 x 86
processors allow four possible privilege levels to a segment, only two privilege levels are
associated with pages and Page Tables, because privileges are controlled by the 
User/Supervisor flag mentioned in the earlier section "Regular Paging." When this flag is 0, the
page can be addressed only when the CPL is less than 3 (this means, for Linux, when the
processor is in Kernel Mode). When the flag is 1, the page can always be addressed.
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Furthermore, instead of the three types of access rights (Read, Write, and Execute)
associated with segments, only two types of access rights (Read and Write) are associated
with pages. If the Read/Write flag of a Page Directory or Page Table entry is equal to 0, the
corresponding Page Table or page can only be read; otherwise it can be read and written.[*]

[*] Recent Intel Pentium 4 processors sport an NX (No eXecute) flag in each 64-bit Page Table entry (PAE must be enabled, see the
section "The Physical Address Extension (PAE) Paging Mechanism" later in this chapter). Linux 2.6.11 supports this hardw are
feature.

2.4.4. An Example of Regular Paging

A simple example will help in clarifying how regular paging works. Let's assume that the kernel
assigns the linear address space between 0x20000000 and 0x2003ffff to a running process.[ ]

This space consists of exactly 64 pages. We don't care about the physical addresses of the
page frames containing the pages; in fact, some of them might not even be in main memory.
We are interested only in the remaining fields of the Page Table entries.

[ ] As w e shall see in the follow ing chapters, the 3 GB linear address space is an upper limit, but a User Mode process is allow ed
to reference only a subset of it.

Let's start with the 10 most significant bits of the linear addresses assigned to the process,
which are interpreted as the Directory field by the paging unit. The addresses start with a 2
followed by zeros, so the 10 bits all have the same value, namely 0x080 or 128 decimal. Thus
the Directory field in all the addresses refers to the 129th entry of the process Page
Directory. The corresponding entry must contain the physical address of the Page Table
assigned to the process (see Figure 2-9). If no other linear addresses are assigned to the
process, all the remaining 1,023 entries of the Page Directory are filled with zeros.

Figure 2-9. An example of paging

The values assumed by the intermediate 10 bits, (that is, the values of the Table field) range
from 0 to 0x03f, or from 0 to 63 decimal. Thus, only the first 64 entries of the Page Table are
valid. The remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This address is
handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which points
to the Page Table associated with the process's pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points to the
page frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the desired
page frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not present in
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main memory; in this case, the paging unit issues a Page Fault exception while translating the
linear address. The same exception is issued whenever the process attempts to access linear
addresses outside of the interval delimited by 0x20000000 and 0x2003ffff, because the Page
Table entries not assigned to the process are filled with zeros; in particular, their Present flags
are all cleared.

2.4.5. The Physical Address Extension (PAE) Paging Mechanism

The amount of RAM supported by a processor is limited by the number of address pins
connected to the address bus. Older Intel processors from the 80386 to the Pentium used
32-bit physical addresses. In theory, up to 4 GB of RAM could be installed on such systems; in
practice, due to the linear address space requirements of User Mode processes, the kernel
cannot directly address more than 1 GB of RAM, as we will see in the later section "Paging in
Linux."

However, big servers that need to run hundreds or thousands of processes at the same time
require more than 4 GB of RAM, and in recent years this created a pressure on Intel to expand
the amount of RAM supported on the 32-bit 80 x 86 architecture.

Intel has satisfied these requests by increasing the number of address pins on its processors
from 32 to 36. Starting with the Pentium Pro, all Intel processors are now able to address up
to 236 = 64 GB of RAM. However, the increased range of physical addresses can be exploited
only by introducing a new paging mechanism that translates 32-bit linear addresses into 36-bit
physical ones.

With the Pentium Pro processor, Intel introduced a mechanism called Physical Address
Extension (PAE). Another mechanism, Page Size Extension (PSE-36), was introduced in the
Pentium III processor, but Linux does not use it, and we won't discuss it further in this book.

PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 control
register. The Page Size (PS) flag in the page directory entry enables large page sizes (2 MB
when PAE is enabled).

Intel has changed the paging mechanism in order to support PAE.

 The 64 GB of RAM are split into 224 distinct page frames, and the physical address field
of Page Table entries has been expanded from 20 to 24 bits. Because a PAE Page
Table entry must include the 12 flag bits (described in the earlier section "Regular
Paging") and the 24 physical address bits, for a grand total of 36, the Page Table entry
size has been doubled from 32 bits to 64 bits. As a result, a 4-KB PAE Page Table
includes 512 entries instead of 1,024.

 A new level of Page Table called the Page Directory Pointer Table (PDPT) consisting of
four 64-bit entries has been introduced.

 The cr3 control register contains a 27-bit Page Directory Pointer Table base address
field. Because PDPTs are stored in the first 4 GB of RAM and aligned to a multiple of 32
bytes (25), 27 bits are sufficient to represent the base address of such tables.

 When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory entry),
the 32 bits of a linear address are interpreted in the following way:

cr3

Points to a PDPT

bits 3130
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Point to 1 of 4 possible entries in PDPT

bits 2921

Point to 1 of 512 possible entries in Page Directory

bits 2012

Point to 1 of 512 possible entries in Page Table

bits 11-0

Offset of 4-KB page

 When mapping linear addresses to 2-MB pages (PS flag set in Page Directory entry),
the 32 bits of a linear address are interpreted in the following way:

cr3

Points to a PDPT

bits 31-30

Point to 1 of 4 possible entries in PDPT

bits 2921

Point to 1 of 512 possible entries in Page Directory

bits 20-0

Offset of 2-MB page

To summarize, once cr3 is set, it is possible to address up to 4 GB of RAM. If we want to
address more RAM, we'll have to put a new value in cr3 or change the content of the PDPT.
However, the main problem with PAE is that linear addresses are still 32 bits long. This forces
kernel programmers to reuse the same linear addresses to map different areas of RAM. We'll
sketch how Linux initializes Page Tables when PAE is enabled in the later section, "Final kernel
Page Table when RAM size is more than 4096 MB." Clearly, PAE does not enlarge the linear
address space of a process, because it deals only with physical addresses. Furthermore, only
the kernel can modify the page tables of the processes, thus a process running in User Mode
cannot use a physical address space larger than 4 GB. On the other hand, PAE allows the
kernel to exploit up to 64 GB of RAM, and thus to increase significantly the number of
processes in the system.

2.4.6. Paging for 64-bit Architectures

As we have seen in the previous sections, two-level paging is commonly used by 32-bit
microprocessors[*]. Two-level paging, however, is not suitable for computers that adopt a
64-bit architecture. Let's use a thought experiment to explain why:

[*] The third level of paging present in 80 x 86 processors w ith PAE enabled has been introduced only to low er from 1024 to 512
the number of entries in the Page Directory and Page Tables. This enlarges the Page Table entries from 32 bits to 64 bits so that
they can store the 24 most significant bits of the physical address.
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Start by assuming a standard page size of 4 KB. Because 1 KB covers a range of 210

addresses, 4 KB covers 212 addresses, so the Offset field is 12 bits. This leaves up to 52 bits
of the linear address to be distributed between the Table and the Directory fields. If we now
decide to use only 48 of the 64 bits for addressing (this restriction leaves us with a
comfortable 256 TB address space!), the remaining 48-12 = 36 bits will have to be split among
Table and the Directory fields. If we now decide to reserve 18 bits for each of these two
fields, both the Page Directory and the Page Tables of each process should include 218 entries
that is, more than 256,000 entries.

For that reason, all hardware paging systems for 64-bit processors make use of additional
paging levels. The number of levels used depends on the type of processor. Table 2-4
summarizes the main characteristics of the hardware paging systems used by some 64-bit
platforms supported by Linux. Please refer to the section "Hardware Dependency" in Chapter 1
for a short description of the hardware associated with the platform name.

Table 2-4. Paging levels in some 64-bit architectures

Platform
name

Page
size

Number of address
bits used

Number of paging
levels

Linear address
splitting

alpha 8 KB a 43 3 10 + 10 + 10 + 13

ia64 4 KB a 39 3 9 + 9 + 9 + 12

ppc64 4 KB 41 3 10 + 10 + 9 + 12

sh64 4 KB 41 3 10 + 10 + 9 + 12

x86_64 4 KB 48 4 9 + 9 + 9 + 9 + 12

a This architecture supports different page sizes; we select a typical page size adopted by
Linux.

As we will see in the section "Paging in Linux" later in this chapter, Linux succeeds in providing
a common paging model that fits most of the supported hardware paging systems.

2.4.7. Hardware Cache

Today's microprocessors have clock rates of several gigahertz, while dynamic RAM (DRAM)
chips have access times in the range of hundreds of clock cycles. This means that the CPU
may be held back considerably while executing instructions that require fetching operands
from RAM and/or storing results into RAM.

Hardware cache memories were introduced to reduce the speed mismatch between CPU and
RAM. They are based on the well-known locality principle , which holds both for programs and
data structures. This states that because of the cyclic structure of programs and the packing
of related data into linear arrays, addresses close to the ones most recently used have a high
probability of being used in the near future. It therefore makes sense to introduce a smaller
and faster memory that contains the most recently used code and data. For this purpose, a
new unit called the line was introduced into the 80 x 86 architecture. It consists of a few
dozen contiguous bytes that are transferred in burst mode between the slow DRAM and the
fast on-chip static RAM (SRAM) used to implement caches.

The cache is subdivided into subsets of lines . At one extreme, the cache can be direct
mapped , in which case a line in main memory is always stored at the exact same location in
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the cache. At the other extreme, the cache is fully associative , meaning that any line in
memory can be stored at any location in the cache. But most caches are to some degree 
N-way set associative , where any line of main memory can be stored in any one of N lines of
the cache. For instance, a line of memory can be stored in two different lines of a two-way
set associative cache.

As shown in Figure 2-10, the cache unit is inserted between the paging unit and the main
memory. It includes both a hardware cache memory and a cache controller. The cache
memory stores the actual lines of memory. The cache controller stores an array of entries,
one entry for each line of the cache memory. Each entry includes a tag and a few flags that
describe the status of the cache line. The tag consists of some bits that allow the cache
controller to recognize the memory location currently mapped by the line. The bits of the
memory's physical address are usually split into three groups: the most significant ones
correspond to the tag, the middle ones to the cache controller subset index, and the least
significant ones to the offset within the line.

Figure 2-10. Processor hardware cache

When accessing a RAM memory cell, the CPU extracts the subset index from the physical
address and compares the tags of all lines in the subset with the high-order bits of the
physical address. If a line with the same tag as the high-order bits of the address is found,
the CPU has a cache hit; otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently, depending on the access
type. For a read operation, the controller selects the data from the cache line and transfers it
into a CPU register; the RAM is not accessed and the CPU saves time, which is why the cache
system was invented. For a write operation, the controller may implement one of two basic
strategies called write-through and write-back . In a write-through, the controller always
writes into both RAM and the cache line, effectively switching off the cache for write
operations. In a write-back, which offers more immediate efficiency, only the cache line is
updated and the contents of the RAM are left unchanged. After a write-back, of course, the
RAM must eventually be updated. The cache controller writes the cache line back into RAM
only when the CPU executes an instruction requiring a flush of cache entries or when a FLUSH
hardware signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the correct
line is fetched from RAM into the cache entry.

Multiprocessor systems have a separate hardware cache for every processor, and therefore
they need additional hardware circuitry to synchronize the cache contents. As shown in 
Figure 2-11, each CPU has its own local hardware cache. But now updating becomes more
time consuming: whenever a CPU modifies its hardware cache, it must check whether the
same data is contained in the other hardware cache; if so, it must notify the other CPU to
update it with the proper value. This activity is often called cache snooping . Luckily, all this
is done at the hardware level and is of no concern to the kernel.
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Figure 2-11. The caches in a dual processor

Cache technology is rapidly evolving. For example, the first Pentium models included a single
on-chip cache called the L1-cache. More recent models also include other larger, slower
on-chip caches called the L2-cache, L3-cache, etc. The consistency between the cache
levels is implemented at the hardware level. Linux ignores these hardware details and assumes
there is a single cache.

The CD flag of the cr0 processor register is used to enable or disable the cache circuitry. The
NW flag, in the same register, specifies whether the write-through or the write-back strategy is
used for the caches.

Another interesting feature of the Pentium cache is that it lets an operating system associate
a different cache management policy with each page frame. For this purpose, each Page
Directory and each Page Table entry includes two flags: PCD (Page Cache Disable), which
specifies whether the cache must be enabled or disabled while accessing data included in the
page frame; and PWT (Page Write-Through), which specifies whether the write-back or the
write-through strategy must be applied while writing data into the page frame. Linux clears
the PCD and PWT flags of all Page Directory and Page Table entries; as a result, caching is
enabled for all page frames, and the write-back strategy is always adopted for writing.

2.4.8. Translation Lookaside Buffers (TLB)

Besides general-purpose hardware caches, 80 x 86 processors include another cache called 
Translation Lookaside Buffers (TLB) to speed up linear address translation. When a linear
address is used for the first time, the corresponding physical address is computed through
slow accesses to the Page Tables in RAM. The physical address is then stored in a TLB entry
so that further references to the same linear address can be quickly translated.

In a multiprocessor system, each CPU has its own TLB, called the local TLB of the CPU.
Contrary to the hardware cache, the corresponding entries of the TLB need not be
synchronized, because processes running on the existing CPUs may associate the same linear
address with different physical ones.

When the cr3 control register of a CPU is modified, the hardware automatically invalidates all
entries of the local TLB, because a new set of page tables is in use and the TLBs are pointing
to old data.
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2.5. Paging in Linux
Linux adopts a common paging model that fits both 32-bit and 64-bit architectures. As
explained in the earlier section "Paging for 64-bit Architectures," two paging levels are
sufficient for 32-bit architectures, while 64-bit architectures require a higher number of paging
levels. Up to version 2.6.10, the Linux paging model consisted of three paging levels. Starting
with version 2.6.11, a four-level paging model has been adopted.[*] The four types of page
tables illustrated in Figure 2-12 are called:

[*] This change has been made to fully support the linear address bit splitting used by the x86_64 platform (see Table 2-4).

 Page Global Directory

 Page Upper Directory

 Page Middle Directory

 Page Table

The Page Global Directory includes the addresses of several Page Upper Directories, which in
turn include the addresses of several Page Middle Directories, which in turn include the
addresses of several Page Tables. Each Page Table entry points to a page frame. Thus the
linear address can be split into up to five parts. Figure 2-12 does not show the bit numbers,
because the size of each part depends on the computer architecture.

For 32-bit architectures with no Physical Address Extension, two paging levels are sufficient.
Linux essentially eliminates the Page Upper Directory and the Page Middle Directory fields by
saying that they contain zero bits. However, the positions of the Page Upper Directory and
the Page Middle Directory in the sequence of pointers are kept so that the same code can
work on 32-bit and 64-bit architectures. The kernel keeps a position for the Page Upper
Directory and the Page Middle Directory by setting the number of entries in them to 1 and
mapping these two entries into the proper entry of the Page Global Directory.

Figure 2-12. The Linux paging model

For 32-bit architectures with the Physical Address Extension enabled, three paging levels are
used. The Linux's Page Global Directory corresponds to the 80 x 86's Page Directory Pointer
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Table, the Page Upper Directory is eliminated, the Page Middle Directory corresponds to the 80
x 86's Page Directory, and the Linux's Page Table corresponds to the 80 x 86's Page Table.

Finally, for 64-bit architectures three or four levels of paging are used depending on the linear
address bit splitting performed by the hardware (see Table 2-2).

Linux's handling of processes relies heavily on paging. In fact, the automatic translation of
linear addresses into physical ones makes the following design objectives feasible:

 Assign a different physical address space to each process, ensuring an efficient
protection against addressing errors.

 Distinguish pages (groups of data) from page frames (physical addresses in main
memory). This allows the same page to be stored in a page frame, then saved to disk
and later reloaded in a different page frame. This is the basic ingredient of the virtual
memory mechanism (see Chapter 17).

In the remaining part of this chapter, we will refer for the sake of concreteness to the paging
circuitry used by the 80 x 86 processors.

As we will see in Chapter 9, each process has its own Page Global Directory and its own set of
Page Tables. When a process switch occurs (see the section "Process Switch" in Chapter 3),
Linux saves the cr3 control register in the descriptor of the process previously in execution
and then loads cr3 with the value stored in the descriptor of the process to be executed next.
Thus, when the new process resumes its execution on the CPU, the paging unit refers to the
correct set of Page Tables.

Mapping linear to physical addresses now becomes a mechanical task, although it is still
somewhat complex. The next few sections of this chapter are a rather tedious list of functions
and macros that retrieve information the kernel needs to find addresses and manage the
tables; most of the functions are one or two lines long. You may want to only skim these
sections now, but it is useful to know the role of these functions and macros, because you'll
see them often in discussions throughout this book.

2.5.1. The Linear Address Fields

The following macros simplify Page Table handling:

PAGE_SHIFT

Specifies the length in bits of the Offset field; when applied to 80 x 86 processors, it
yields the value 12. Because all the addresses in a page must fit in the Offset field, the
size of a page on 80 x 86 systems is 212 or the familiar 4,096 bytes; the PAGE_SHIFT of
12 can thus be considered the logarithm base 2 of the total page size. This macro is
used by PAGE_SIZE to return the size of the page. Finally, the PAGE_MASK macro yields
the value 0xfffff000 and is used to mask all the bits of the Offset field.

PMD_SHIFT

The total length in bits of the Offset and Table fields of a linear address; in other
words, the logarithm of the size of the area a Page Middle Directory entry can map.
The PMD_SIZE macro computes the size of the area mapped by a single entry of the
Page Middle Directory that is, of a Page Table. The PMD_MASK macro is used to mask all
the bits of the Offset and Table fields.

When PAE is disabled, PMD_SHIFT yields the value 22 (12 from Offset plus 10 from
Table), PMD_SIZE yields 222 or 4 MB, and PMD_MASK yields 0xffc00000. Conversely, when
PAE is enabled, PMD_SHIFT yields the value 21 (12 from Offset plus 9 from Table),
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PMD_SIZE yields 221 or 2 MB, and PMD_MASK yields 0xffe00000.

Large pages do not make use of the last level of page tables, thus LARGE_PAGE_SIZE,
which yields the size of a large page, is equal to PMD_SIZE (2PMD_SHIFT) while
LARGE_PAGE_MASK, which is used to mask all the bits of the Offset and Table fields in a
large page address, is equal to PMD_MASK.

PUD_SHIFT

Determines the logarithm of the size of the area a Page Upper Directory entry can map.
The PUD_SIZE macro computes the size of the area mapped by a single entry of the
Page Global Directory. The PUD_MASK macro is used to mask all the bits of the Offset,
Table, Middle Air, and Upper Air fields.

On the 80 x 86 processors, PUD_SHIFT is always equal to PMD_SHIFT and PUD_SIZE is
equal to 4 MB or 2 MB.

PGDIR_SHIFT

Determines the logarithm of the size of the area that a Page Global Directory entry can
map. The PGDIR_SIZE macro computes the size of the area mapped by a single entry of
the Page Global Directory. The PGDIR_MASK macro is used to mask all the bits of the
Offset, Table, Middle Air, and Upper Air fields.

When PAE is disabled, PGDIR_SHIFT yields the value 22 (the same value yielded by
PMD_SHIFT and by PUD_SHIFT), PGDIR_SIZE yields 222 or 4 MB, and PGDIR_MASK yields
0xffc00000. Conversely, when PAE is enabled, PGDIR_SHIFT yields the value 30 (12 from
Offset plus 9 from Table plus 9 from Middle Air), PGDIR_SIZE yields 230 or 1 GB, and
PGDIR_MASK yields 0xc0000000.

PTRS_PER_PTE, PTRS_PER_PMD, PTRS_PER_PUD, and PTRS_PER_PGD

Compute the number of entries in the Page Table, Page Middle Directory, Page Upper
Directory, and Page Global Directory. They yield the values 1,024, 1, 1, and 1,024,
respectively, when PAE is disabled; and the values 512, 512, 1, and 4, respectively,
when PAE is enabled.

2.5.2. Page Table Handling
pte_t, pmd_t, pud_t, and pgd_t describe the format of, respectively, a Page Table, a Page
Middle Directory, a Page Upper Directory, and a Page Global Directory entry. They are 64-bit
data types when PAE is enabled and 32-bit data types otherwise. pgprot_t is another 64-bit
(PAE enabled) or 32-bit (PAE disabled) data type that represents the protection flags
associated with a single entry.

Five type-conversion macros _ _ pte, _ _ pmd, _ _ pud, _ _ pgd, and _ _ pgprot cast an
unsigned integer into the required type. Five other type-conversion macros pte_val, pmd_val,
pud_val, pgd_val, and pgprot_val perform the reverse casting from one of the four previously
mentioned specialized types into an unsigned integer.

The kernel also provides several macros and functions to read or modify page table entries:

 pte_none, pmd_none, pud_none, and pgd_none yield the value 1 if the corresponding entry
has the value 0; otherwise, they yield the value 0.

 pte_clear, pmd_clear, pud_clear, and pgd_clear clear an entry of the corresponding
page table, thus forbidding a process to use the linear addresses mapped by the page
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table entry. The ptep_get_and_clear( ) function clears a Page Table entry and returns
the previous value.

 set_pte, set_pmd, set_pud, and set_pgd write a given value into a page table entry;
set_pte_atomic is identical to set_pte, but when PAE is enabled it also ensures that the
64-bit value is written atomically.

 pte_same(a,b) returns 1 if two Page Table entries a and b refer to the same page and
specify the same access privileges, 0 otherwise.

 pmd_large(e) returns 1 if the Page Middle Directory entry e refers to a large page (2 MB
or 4 MB), 0 otherwise.

The pmd_bad macro is used by functions to check Page Middle Directory entries passed as
input parameters. It yields the value 1 if the entry points to a bad Page Table that is, if at
least one of the following conditions applies:

 The page is not in main memory (Present flag cleared).

 The page allows only Read access (Read/Write flag cleared).

 Either Accessed or Dirty is cleared (Linux always forces these flags to be set for every
existing Page Table).

The pud_bad and pgd_bad macros always yield 0. No pte_bad macro is defined, because it is
legal for a Page Table entry to refer to a page that is not present in main memory, not
writable, or not accessible at all.

The pte_present macro yields the value 1 if either the Present flag or the Page Size flag of a
Page Table entry is equal to 1, the value 0 otherwise. Recall that the Page Size flag in Page
Table entries has no meaning for the paging unit of the microprocessor; the kernel, however,
marks Present equal to 0 and Page Size equal to 1 for the pages present in main memory but
without read, write, or execute privileges. In this way, any access to such pages triggers a
Page Fault exception because Present is cleared, and the kernel can detect that the fault is
not due to a missing page by checking the value of Page Size.

The pmd_present macro yields the value 1 if the Present flag of the corresponding entry is
equal to 1 that is, if the corresponding page or Page Table is loaded in main memory. The 
pud_present and pgd_present macros always yield the value 1.

The functions listed in Table 2-5 query the current value of any of the flags included in a Page
Table entry; with the exception of pte_file(), these functions work properly only on Page
Table entries for which pte_present returns 1.

Table 2-5. Page flag reading functions

Function
name Description

pte_user( ) Reads the User/Supervisor flag

pte_read( ) Reads the User/Supervisor flag (pages on the 80 x 86 processor cannot be
protected against reading)

pte_write( ) Reads the Read/Write flag

pte_exec( ) Reads the User/Supervisor flag (pages on the 80 x 86 processor cannot be
protected against code execution)
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Table 2-5. Page flag reading functions

Function
name Description

pte_dirty( ) Reads the Dirty flag

pte_young( ) Reads the Accessed flag

pte_file( ) Reads the Dirty flag (when the Present flag is cleared and the Dirty flag is
set, the page belongs to a non-linear disk file mapping; see Chapter 16)

Another group of functions listed in Table 2-6 sets the value of the flags in a Page Table
entry.

Table 2-6. Page flag setting functions

Function name Description

mk_pte_huge( ) Sets the Page Size and Present flags of a Page Table entry

pte_wrprotect( ) Clears the Read/Write flag

pte_rdprotect( ) Clears the User/Supervisor flag

pte_exprotect( ) Clears the User/Supervisor flag

pte_mkwrite( ) Sets the Read/Write flag

pte_mkread( ) Sets the User/Supervisor flag

pte_mkexec( ) Sets the User/Supervisor flag

pte_mkclean( ) Clears the Dirty flag

pte_mkdirty( ) Sets the Dirty flag

pte_mkold( ) Clears the Accessed flag (makes the page old)

pte_mkyoung( ) Sets the Accessed flag (makes the page young)

pte_modify(p,v) Sets all access rights in a Page Table entry p to a specified
value v

ptep_set_wrprotect( ) Like pte_wrprotect( ), but acts on a pointer to a Page Table
entry

ptep_set_access_flags()

If the Dirty flag is set, sets the page's access rights to a
specified value and invokes flush_tlb_page() (see the
section "Translation Lookaside Buffers (TLB)" later in this
chapter)
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Table 2-6. Page flag setting functions

Function name Description

ptep_mkdirty() Like pte_mkdirty( ) but acts on a pointer to a Page Table
entry

ptep_test_and_clear_dirty( ) Like pte_mkclean( ) but acts on a pointer to a Page Table
entry and returns the old value of the flag

ptep_test_and_clear_young( ) Like pte_mkold( ) but acts on a pointer to a Page Table
entry and returns the old value of the flag

Now, let's discuss the macros listed in Table 2-7 that combine a page address and a group of
protection flags into a page table entry or perform the reverse operation of extracting the
page address from a page table entry. Notice that some of these macros refer to a page
through the linear address of its "page descriptor" (see the section "Page Descriptors" in
Chapter 8) rather than the linear address of the page itself.

Table 2-7. Macros acting on Page Table entries

Macro name Description

pgd_index(addr) Yields the index (relative position) of the entry in the Page Global
Directory that maps the linear address addr.

pgd_offset(mm, addr)

Receives as parameters the address of a memory descriptor cw
(see Chapter 9) and a linear address addr. The macro yields the
linear address of the entry in a Page Global Directory that
corresponds to the address addr; the Page Global Directory is
found through a pointer within the memory descriptor.

pgd_offset_k(addr)

Yields the linear address of the entry in the master kernel Page
Global Directory that corresponds to the address addr (see the
later section "Kernel Page Tables").

pgd_page(pgd)

Yields the page descriptor address of the page frame containing
the Page Upper Directory referred to by the Page Global
Directory entry pgd. In a two- or three-level paging system, this
macro is equivalent to pud_page() applied to the folded Page
Upper Directory entry.

pud_offset(pgd, addr)

Receives as parameters a pointer pgd to a Page Global Directory
entry and a linear address addr. The macro yields the linear
address of the entry in a Page Upper Directory that corresponds
to addr. In a two- or three-level paging system, this macro
yields pgd, the address of a Page Global Directory entry.

pud_page(pud)

Yields the linear address of the Page Middle Directory referred to
by the Page Upper Directory entry pud. In a two-level paging
system, this macro is equivalent to pmd_page() applied to the
folded Page Middle Directory entry.

pmd_index(addr) Yields the index (relative position) of the entry in the Page
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Table 2-7. Macros acting on Page Table entries

Macro name Description

Middle Directory that maps the linear address addr.

pmd_offset(pud, addr)

Receives as parameters a pointer pud to a Page Upper Directory
entry and a linear address addr. The macro yields the address of
the entry in a Page Middle Directory that corresponds to addr. In
a two-level paging system, it yields pud, the address of a Page
Global Directory entry.

pmd_page(pmd)

Yields the page descriptor address of the Page Table referred to
by the Page Middle Directory entry pmd. In a two-level paging
system, pmd is actually an entry of a Page Global Directory.

mk_pte(p,prot)

Receives as parameters the address of a page descriptor p and a
group of access rights prot, and builds the corresponding Page
Table entry.

pte_index(addr) Yields the index (relative position) of the entry in the Page Table
that maps the linear address addr.

pte_offset_kernel(dir,

addr)

Yields the linear address of the Page Table that corresponds to
the linear address addr mapped by the Page Middle Directory dir.
Used only on the master kernel page tables (see the later
section "Kernel Page Tables").

pte_offset_map(dir, addr)

Receives as parameters a pointer dir to a Page Middle Directory
entry and a linear address addr; it yields the linear address of the
entry in the Page Table that corresponds to the linear address 
addr. If the Page Table is kept in high memory, the kernel
establishes a temporary kernel mapping (see the section "Kernel
Mappings of High-Memory Page Frames" in Chapter 8), to be
released by means of pte_unmap. The macros
pte_offset_map_nested and pte_unmap_nested are identical, but
they use a different temporary kernel mapping.

pte_page(x) Returns the page descriptor address of the page referenced by
the Page Table entry x.

pte_to_pgoff(pte)

Extracts from the content pte of a Page Table entry the file
offset corresponding to a page belonging to a non-linear file
memory mapping (see the section "Non-Linear Memory Mappings"
in Chapter 16).

pgoff_to_pte(offset ) Sets up the content of a Page Table entry for a page belonging
to a non-linear file memory mapping.

The last group of functions of this long list was introduced to simplify the creation and
deletion of page table entries.

When two-level paging is used, creating or deleting a Page Middle Directory entry is trivial. As
we explained earlier in this section, the Page Middle Directory contains a single entry that
points to the subordinate Page Table. Thus, the Page Middle Directory entry is the entry
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within the Page Global Directory, too. When dealing with Page Tables, however, creating an
entry may be more complex, because the Page Table that is supposed to contain it might not
exist. In such cases, it is necessary to allocate a new page frame, fill it with zeros, and add
the entry.

If PAE is enabled, the kernel uses three-level paging. When the kernel creates a new Page
Global Directory, it also allocates the four corresponding Page Middle Directories; these are
freed only when the parent Page Global Directory is released.

When two or three-level paging is used, the Page Upper Directory entry is always mapped as
a single entry within the Page Global Directory.

As usual, the description of the functions listed in Table 2-8 refers to the 80 x 86
architecture.

Table 2-8. Page allocation functions

Function name Description

pgd_alloc(mm)

Allocates a new Page Global Directory; if PAE is enabled, it also
allocates the three children Page Middle Directories that map the
User Mode linear addresses. The argument mm (the address of a
memory descriptor) is ignored on the 80 x 86 architecture.

pgd_free( pgd)

Releases the Page Global Directory at address pgd; if PAE is
enabled, it also releases the three Page Middle Directories that
map the User Mode linear addresses.

pud_alloc(mm, pgd, addr)

In a two- or three-level paging system, this function does
nothing: it simply returns the linear address of the Page Global
Directory entry pgd.

pud_free(x) In a two- or three-level paging system, this macro does nothing.

pmd_alloc(mm, pud, addr)

Defined so generic three-level paging systems can allocate a new
Page Middle Directory for the linear address addr. If PAE is not
enabled, the function simply returns the input parameter pud that
is, the address of the entry in the Page Global Directory. If PAE is
enabled, the function returns the linear address of the Page
Middle Directory entry that maps the linear address addr. The
argument cw is ignored.

pmd_free(x) Does nothing, because Page Middle Directories are allocated and
deallocated together with their parent Page Global Directory.

pte_alloc_map(mm, pmd,

addr)

Receives as parameters the address of a Page Middle Directory
entry pmd and a linear address addr, and returns the address of
the Page Table entry corresponding to addr. If the Page Middle
Directory entry is null, the function allocates a new Page Table
by invoking pte_alloc_one( ). If a new Page Table is allocated,
the entry corresponding to addr is initialized and the
User/Supervisor flag is set. If the Page Table is kept in high
memory, the kernel establishes a temporary kernel mapping (see
the section "Kernel Mappings of High-Memory Page Frames" in
Chapter 8), to be released by pte_unmap.

pte_alloc_kernel(mm, pmd, If the Page Middle Directory entry pmd associated with the
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Table 2-8. Page allocation functions

Function name Description

addr)

address addr is null, the function allocates a new Page Table. It
then returns the linear address of the Page Table entry
associated with addr. Used only for master kernel page tables
(see the later section "Kernel Page Tables").

pte_free(pte) Releases the Page Table associated with the pte page descriptor
pointer.

pte_free_kernel(pte) Equivalent to pte_free( ), but used for master kernel page
tables.

clear_page_range(mmu,

start,end)

Clears the contents of the page tables of a process from linear
address start to end by iteratively releasing its Page Tables and
clearing the Page Middle Directory entries.

2.5.3. Physical Memory Layout

During the initialization phase the kernel must build a physical addresses map that specifies
which physical address ranges are usable by the kernel and which are unavailable (either
because they map hardware devices' I/O shared memory or because the corresponding page
frames contain BIOS data).

The kernel considers the following page frames as reserved :

 Those falling in the unavailable physical address ranges

 Those containing the kernel's code and initialized data structures

A page contained in a reserved page frame can never be dynamically assigned or swapped to
disk.

As a general rule, the Linux kernel is installed in RAM starting from the physical address 
0x00100000 i.e., from the second megabyte. The total number of page frames required depends
on how the kernel is configured. A typical configuration yields a kernel that can be loaded in
less than 3 MB of RAM.

Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC
architecture has several peculiarities that must be taken into account. For example:

 Page frame 0 is used by BIOS to store the system hardware configuration detected
during the Power-On Self-Test(POST); the BIOS of many laptops, moreover, writes
data on this page frame even after the system is initialized.

 Physical addresses ranging from 0x000a0000 to 0x000fffff are usually reserved to BIOS
routines and to map the internal memory of ISA graphics cards. This area is the
well-known hole from 640 KB to 1 MB in all IBM-compatible PCs: the physical addresses
exist but they are reserved, and the corresponding page frames cannot be used by the
operating system.

 Additional page frames within the first megabyte may be reserved by specific computer
models. For example, the IBM ThinkPad maps the 0xa0 page frame into the 0x9f one.

In the early stage of the boot sequence (see Appendix A), the kernel queries the BIOS and
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learns the size of the physical memory. In recent computers, the kernel also invokes a BIOS
procedure to build a list of physical address ranges and their corresponding memory types.

Later, the kernel executes the machine_specific_memory_setup( ) function, which builds the
physical addresses map (see Table 2-9 for an example). Of course, the kernel builds this table
on the basis of the BIOS list, if this is available; otherwise the kernel builds the table following
the conservative default setup: all page frames with numbers from 0x9f (LOWMEMSIZE( )) to
0x100 (HIGH_MEMORY) are marked as reserved.

Table 2-9. Example of BIOS-provided physical addresses map

Start End Type

0x00000000 0x0009ffff Usable

0x000f0000 0x000fffff Reserved

0x00100000 0x07feffff Usable

0x07ff0000 0x07ff2fff ACPI data

0x07ff3000 0x07ffffff ACPI NVS

0xffff0000 0xffffffff Reserved

A typical configuration for a computer having 128 MB of RAM is shown in Table 2-9. The
physical address range from 0x07ff0000 to 0x07ff2fff stores information about the hardware
devices of the system written by the BIOS in the POST phase; during the initialization phase,
the kernel copies such information in a suitable kernel data structure, and then considers
these page frames usable. Conversely, the physical address range of 0x07ff3000 to 0x07ffffff
is mapped to ROM chips of the hardware devices. The physical address range starting from 
0xffff0000 is marked as reserved, because it is mapped by the hardware to the BIOS's ROM
chip (see Appendix A). Notice that the BIOS may not provide information for some physical
address ranges (in the table, the range is 0x000a0000 to 0x000effff). To be on the safe side,
Linux assumes that such ranges are not usable.

The kernel might not see all physical memory reported by the BIOS: for instance, the kernel
can address only 4 GB of RAM if it has not been compiled with PAE support, even if a larger
amount of physical memory is actually available. The setup_memory( ) function is invoked right
after machine_specific_memory_setup( ): it analyzes the table of physical memory regions and
initializes a few variables that describe the kernel's physical memory layout. These variables
are shown in Table 2-10.

Table 2-10. Variables describing the kernel's physical memory layout

Variable name Description

num_physpages Page frame number of the highest usable page frame

totalram_pages Total number of usable page frames

min_low_pfn Page frame number of the first usable page frame after the kernel image in
RAM
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Table 2-10. Variables describing the kernel's physical memory layout

Variable name Description

max_pfn Page frame number of the last usable page frame

max_low_pfn Page frame number of the last page frame directly mapped by the kernel
(low memory)

totalhigh_pages Total number of page frames not directly mapped by the kernel (high
memory)

highstart_pfn Page frame number of the first page frame not directly mapped by the
kernel

highend_pfn Page frame number of the last page frame not directly mapped by the
kernel

To avoid loading the kernel into groups of noncontiguous page frames, Linux prefers to skip
the first megabyte of RAM. Clearly, page frames not reserved by the PC architecture will be
used by Linux to store dynamically assigned pages.

Figure 2-13 shows how the first 3 MB of RAM are filled by Linux. We have assumed that the
kernel requires less than 3 MB of RAM.

The symbol _text, which corresponds to physical address 0x00100000, denotes the address of
the first byte of kernel code. The end of the kernel code is similarly identified by the symbol 
_etext. Kernel data is divided into two groups: initialized and uninitialized. The initialized data
starts right after _etext and ends at _edata. The uninitialized data follows and ends up at _end
.

The symbols appearing in the figure are not defined in Linux source code; they are produced
while compiling the kernel.[*]

[*] You can find the linear address of these symbols in the file System.map, w hich is created right after the kernel is compiled.

Figure 2-13. The first 768 page frames (3 MB) in Linux 2.6

2.5.4. Process Page Tables
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The linear address space of a process is divided into two parts:

 Linear addresses from 0x00000000 to 0xbfffffff can be addressed when the process
runs in either User or Kernel Mode.

 Linear addresses from 0xc0000000 to 0xffffffff can be addressed only when the
process runs in Kernel Mode.

When a process runs in User Mode, it issues linear addresses smaller than 0xc0000000; when it
runs in Kernel Mode, it is executing kernel code and the linear addresses issued are greater
than or equal to 0xc0000000. In some cases, however, the kernel must access the User Mode
linear address space to retrieve or store data.

The PAGE_OFFSET macro yields the value 0xc0000000; this is the offset in the linear address
space of a process where the kernel lives. In this book, we often refer directly to the number 
0xc0000000 instead.

The content of the first entries of the Page Global Directory that map linear addresses lower
than 0xc0000000 (the first 768 entries with PAE disabled, or the first 3 entries with PAE
enabled) depends on the specific process. Conversely, the remaining entries should be the
same for all processes and equal to the corresponding entries of the master kernel Page Global
Directory (see the following section).

2.5.5. Kernel Page Tables

The kernel maintains a set of page tables for its own use, rooted at a so-called master kernel
Page Global Directory. After system initialization, this set of page tables is never directly used
by any process or kernel thread; rather, the highest entries of the master kernel Page Global
Directory are the reference model for the corresponding entries of the Page Global Directories
of every regular process in the system.

We explain how the kernel ensures that changes to the master kernel Page Global Directory
are propagated to the Page Global Directories that are actually used by processes in the
section "Linear Addresses of Noncontiguous Memory Areas" in Chapter 8.

We now describe how the kernel initializes its own page tables. This is a two-phase activity.
In fact, right after the kernel image is loaded into memory, the CPU is still running in real
mode; thus, paging is not enabled.

In the first phase, the kernel creates a limited address space including the kernel's code and
data segments, the initial Page Tables, and 128 KB for some dynamic data structures. This
minimal address space is just large enough to install the kernel in RAM and to initialize its core
data structures.

In the second phase, the kernel takes advantage of all of the existing RAM and sets up the
page tables properly. Let us examine how this plan is executed.

2.5.5.1. Provisional kernel Page Tables

A provisional Page Global Directory is initialized statically during kernel compilation, while the
provisional Page Tables are initialized by the startup_32( ) assembly language function defined
in arch/i386/kernel/head.S . We won't bother mentioning the Page Upper Directories and Page
Middle Directories anymore, because they are equated to Page Global Directory entries. PAE
support is not enabled at this stage.

The provisional Page Global Directory is contained in the swapper_pg_dir variable. The
provisional Page Tables are stored starting from pg0, right after the end of the kernel's
uninitialized data segments (symbol _end in Figure 2-13). For the sake of simplicity, let's
assume that the kernel's segments, the provisional Page Tables, and the 128 KB memory area
fit in the first 8 MB of RAM. In order to map 8 MB of RAM, two Page Tables are required.
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The objective of this first phase of paging is to allow these 8 MB of RAM to be easily
addressed both in real mode and protected mode. Therefore, the kernel must create a
mapping from both the linear addresses 0x00000000 through 0x007fffff and the linear
addresses 0xc0000000 through 0xc07fffff into the physical addresses 0x00000000 through
0x007fffff. In other words, the kernel during its first phase of initialization can address the
first 8 MB of RAM by either linear addresses identical to the physical ones or 8 MB worth of
linear addresses, starting from 0xc0000000.

The Kernel creates the desired mapping by filling all the swapper_pg_dir entries with zeroes,
except for entries 0, 1, 0x300 (decimal 768), and 0x301 (decimal 769); the latter two entries
span all linear addresses between 0xc0000000 and 0xc07fffff. The 0, 1, 0x300, and 0x301
enTRies are initialized as follows:

 The address field of entries 0 and 0x300 is set to the physical address of pg0, while the
address field of entries 1 and 0x301 is set to the physical address of the page frame
following pg0.

 The Present, Read/Write, and User/Supervisor flags are set in all four entries.

 The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared in all four entries.

The startup_32( ) assembly language function also enables the paging unit. This is achieved
by loading the physical address of swapper_pg_dir into the cr3 control register and by setting
the PG flag of the cr0 control register, as shown in the following equivalent code fragment:

    movl $swapper_pg_dir-0xc0000000,%eax

    movl %eax,%cr3        /* set the page table pointer.. */

    movl %cr0,%eax

    orl $0x80000000,%eax

    movl %eax,%cr0        /* ..and set paging (PG) bit */

2.5.5.2. Final kernel Page Table when RAM size is less than 896 MB

The final mapping provided by the kernel page tables must transform linear addresses starting
from 0xc0000000 into physical addresses starting from 0.

The _ _pa macro is used to convert a linear address starting from PAGE_OFFSET to the
corresponding physical address, while the _ _va macro does the reverse.

The master kernel Page Global Directory is still stored in swapper_pg_dir. It is initialized by the
paging_init( ) function, which does the following:

1. Invokes pagetable_init( ) to set up the Page Table entries properly.

2. Writes the physical address of swapper_pg_dir in the cr3 control register.

3. If the CPU supports PAE and if the kernel is compiled with PAE support, sets the PAE
flag in the cr4 control register.

4. Invokes _ _flush_tlb_all( ) to invalidate all TLB entries.

The actions performed by pagetable_init( ) depend on both the amount of RAM present and
on the CPU model. Let's start with the simplest case. Our computer has less than 896 MB[*] of
RAM, 32-bit physical addresses are sufficient to address all the available RAM, and there is no
need to activate the PAE mechanism. (See the earlier section "The Physical Address Extension
(PAE) Paging Mechanism.")

[*] The highest 128 MB of linear addresses are left available for several kinds of mappings (see sections "Fix-Mapped Linear
Addresses" later in this chapter and "Linear Addresses of Noncontiguous Memory Areas" in Chapter 8). The kernel address space
left for mapping the RAM is thus 1 GB - 128 MB = 896 MB.
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The swapper_pg_dir Page Global Directory is reinitialized by a cycle equivalent to the following:

    pgd = swapper_pg_dir + pgd_index(PAGE_OFFSET); /* 768 */

    phys_addr = 0x00000000;

    while (phys_addr < (max_low_pfn * PAGE_SIZE)) {

        pmd = one_md_table_init(pgd); /* returns pgd itself */

        set_pmd(pmd, _ _pmd(phys_addr | pgprot_val(_ _pgprot(0x1e3))));

        /* 0x1e3 == Present, Accessed, Dirty, Read/Write,

                Page Size, Global */

                phys_addr += PTRS_PER_PTE * PAGE_SIZE; /* 0x400000 */

         ++pgd;

  }

We assume that the CPU is a recent 80 x 86 microprocessor supporting 4 MB pages and
"global" TLB entries. Notice that the User/Supervisor flags in all Page Global Directory entries
referencing linear addresses above 0xc0000000 are cleared, thus denying processes in User
Mode access to the kernel address space. Notice also that the Page Size flag is set so that
the kernel can address the RAM by making use of large pages (see the section "Extended
Paging" earlier in this chapter).

The identity mapping of the first megabytes of physical memory (8 MB in our example) built by
the startup_32( ) function is required to complete the initialization phase of the kernel. When
this mapping is no longer necessary, the kernel clears the corresponding page table entries by
invoking the zap_low_mappings( ) function.

Actually, this description does not state the whole truth. As we'll see in the later section "
Fix-Mapped Linear Addresses," the kernel also adjusts the entries of Page Tables
corresponding to the "fix-mapped linear addresses ."

2.5.5.3. Final kernel Page Table when RAM size is between 896 MB and 4096 MB

In this case, the RAM cannot be mapped entirely into the kernel linear address space. The
best Linux can do during the initialization phase is to map a RAM window of size 896 MB into
the kernel linear address space. If a program needs to address other parts of the existing
RAM, some other linear address interval must be mapped to the required RAM. This implies
changing the value of some page table entries. We'll discuss how this kind of dynamic
remapping is done in Chapter 8.

To initialize the Page Global Directory, the kernel uses the same code as in the previous case.

2.5.5.4. Final kernel Page Table when RAM size is more than 4096 MB

Let's now consider kernel Page Table initialization for computers with more than 4 GB; more
precisely, we deal with cases in which the following happens:

 The CPU model supports Physical Address Extension (PAE ).

 The amount of RAM is larger than 4 GB.

 The kernel is compiled with PAE support.

Although PAE handles 36-bit physical addresses, linear addresses are still 32-bit addresses. As
in the previous case, Linux maps a 896-MB RAM window into the kernel linear address space;
the remaining RAM is left unmapped and handled by dynamic remapping, as described in 
Chapter 8. The main difference with the previous case is that a three-level paging model is
used, so the Page Global Directory is initialized by a cycle equivalent to the following:

    pgd_idx = pgd_index(PAGE_OFFSET); /* 3 */

    for (i=0; i<pgd_idx; i++)

        set_pgd(swapper_pg_dir + i, _ _pgd(_ _pa(empty_zero_page) + 0x001));
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        /* 0x001 == Present */

    pgd = swapper_pg_dir + pgd_idx;

    phys_addr = 0x00000000;

    for (; i<PTRS_PER_PGD; ++i, ++pgd) {

        pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

        set_pgd(pgd, _ _pgd(_ _pa(pmd) | 0x001)); /* 0x001 == Present */

        if (phys_addr < max_low_pfn * PAGE_SIZE)

            for (j=0; j < PTRS_PER_PMD /* 512 */

                  && phys_addr < max_low_pfn*PAGE_SIZE; ++j) {

                set_pmd(pmd, _ _pmd(phys_addr |

                               pgprot_val(_ _pgprot(0x1e3))));

                /* 0x1e3 == Present, Accessed, Dirty, Read/Write,

                        Page Size, Global */

                phys_addr += PTRS_PER_PTE * PAGE_SIZE; /* 0x200000 */

          }

    }

    swapper_pg_dir[0] = swapper_pg_dir[pgd_idx];

The kernel initializes the first three entries in the Page Global Directory corresponding to the
user linear address space with the address of an empty page (empty_zero_page). The fourth
entry is initialized with the address of a Page Middle Directory (pmd) allocated by invoking
alloc_bootmem_low_pages( ). The first 448 entries in the Page Middle Directory (there are 512
entries, but the last 64 are reserved for noncontiguous memory allocation; see the section "
Noncontiguous Memory Area Management" in Chapter 8) are filled with the physical address of
the first 896 MB of RAM.

Notice that all CPU models that support PAE also support large 2-MB pages and global pages.
As in the previous cases, whenever possible, Linux uses large pages to reduce the number of
Page Tables.

The fourth Page Global Directory entry is then copied into the first entry, so as to mirror the
mapping of the low physical memory in the first 896 MB of the linear address space. This
mapping is required in order to complete the initialization of SMP systems: when it is no longer
necessary, the kernel clears the corresponding page table entries by invoking the 
zap_low_mappings( ) function, as in the previous cases.

2.5.6. Fix-Mapped Linear Addresses

We saw that the initial part of the fourth gigabyte of kernel linear addresses maps the
physical memory of the system. However, at least 128 MB of linear addresses are always left
available because the kernel uses them to implement noncontiguous memory allocation and
fix-mapped linear addresses.

Noncontiguous memory allocation is just a special way to dynamically allocate and release
pages of memory, and is described in the section "Linear Addresses of Noncontiguous Memory
Areas" in Chapter 8. In this section, we focus on fix-mapped linear addresses.

Basically, a fix-mapped linear address is a constant linear address like 0xffffc000 whose
corresponding physical address does not have to be the linear address minus 0xc000000, but
rather a physical address set in an arbitrary way. Thus, each fix-mapped linear address maps
one page frame of the physical memory. As we'll see in later chapters, the kernel uses
fix-mapped linear addresses instead of pointer variables that never change their value.

Fix-mapped linear addresses are conceptually similar to the linear addresses that map the first
896 MB of RAM. However, a fix-mapped linear address can map any physical address, while
the mapping established by the linear addresses in the initial portion of the fourth gigabyte is
linear (linear address X maps physical address X-PAGE_OFFSET).

With respect to variable pointers, fix-mapped linear addresses are more efficient. In fact,
dereferencing a variable pointer requires one memory access more than dereferencing an
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immediate constant address. Moreover, checking the value of a variable pointer before
dereferencing it is a good programming practice; conversely, the check is never required for a
constant linear address.

Each fix-mapped linear address is represented by a small integer index defined in the enum
fixed_addresses data structure:

    enum fixed_addresses {

        FIX_HOLE,

        FIX_VSYSCALL,

        FIX_APIC_BASE,

        FIX_IO_APIC_BASE_0,

        [...]

        _ _end_of_fixed_addresses

    };

Fix-mapped linear addresses are placed at the end of the fourth gigabyte of linear addresses.
The fix_to_virt( ) function computes the constant linear address starting from the index:

    inline unsigned long fix_to_virt(const unsigned int idx)

    {

    if (idx >= _ _end_of_fixed_addresses)

        _ _this_fixmap_does_not_exist( );

        return (0xfffff000UL - (idx << PAGE_SHIFT));

    }

Let's assume that some kernel function invokes fix_to_virt(FIX_IOAPIC_BASE_0). Because the
function is declared as "inline," the C compiler does not generate a call to fix_to_virt( ), but
inserts its code in the calling function. Moreover, the check on the index value is never
performed at runtime. In fact, FIX_IOAPIC_BASE_0 is a constant equal to 3, so the compiler can
cut away the if statement because its condition is false at compile time. Conversely, if the
condition is true or the argument of fix_to_virt( ) is not a constant, the compiler issues an
error during the linking phase because the symbol _ _this_fixmap_does_not_exist is not
defined anywhere. Eventually, the compiler computes 0xfffff000-(3<<PAGE_SHIFT) and replaces
the fix_to_virt( ) function call with the constant linear address 0xffffc000.

To associate a physical address with a fix-mapped linear address, the kernel uses the 
set_fixmap(idx,phys) and set_fixmap_nocache(idx,phys) macros. Both of them initialize the
Page Table entry corresponding to the fix_to_virt(idx) linear address with the physical
address phys; however, the second function also sets the PCD flag of the Page Table entry,
thus disabling the hardware cache when accessing the data in the page frame (see the
section "Hardware Cache" earlier in this chapter). Conversely, clear_fixmap(idx) removes the
linking between a fix-mapped linear address idx and the physical address.

2.5.7. Handling the Hardware Cache and the TLB

The last topic of memory addressing deals with how the kernel makes an optimal use of the
hardware caches. Hardware caches and Translation Lookaside Buffers play a crucial role in
boosting the performance of modern computer architectures. Several techniques are used by
kernel developers to reduce the number of cache and TLB misses.

2.5.7.1. Handling the hardware cache

As mentioned earlier in this chapter, hardware caches are addressed by cache lines. The 
L1_CACHE_BYTES macro yields the size of a cache line in bytes. On Intel models earlier than the
Pentium 4, the macro yields the value 32; on a Pentium 4, it yields the value 128.

To optimize the cache hit rate, the kernel considers the architecture in making the following
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decisions.

 The most frequently used fields of a data structure are placed at the low offset within
the data structure, so they can be cached in the same line.

 When allocating a large set of data structures, the kernel tries to store each of them
in memory in such a way that all cache lines are used uniformly.

Cache synchronization is performed automatically by the 80 x 86 microprocessors, thus the
Linux kernel for this kind of processor does not perform any hardware cache flushing. The
kernel does provide, however, cache flushing interfaces for processors that do not
synchronize caches.

2.5.7.2. Handling the TLB

Processors cannot synchronize their own TLB cache automatically because it is the kernel,
and not the hardware, that decides when a mapping between a linear and a physical address
is no longer valid.

Linux 2.6 offers several TLB flush methods that should be applied appropriately, depending on
the type of page table change (see Table 2-11).

Table 2-11. Architecture-independent TLB-invalidating methods

Method name Description Typically used when

flush_tlb_all

Flushes all TLB entries (including those
that refer to global pages, that is, pages
whose Global flag is set)

Changing the kernel
page table entries

flush_tlb_kernel_range

Flushes all TLB entries in a given range of
linear addresses (including those that
refer to global pages)

Changing a range of
kernel page table
entries

flush_tlb Flushes all TLB entries of the non-global
pages owned by the current process

Performing a process
switch

flush_tlb_mm Flushes all TLB entries of the non-global
pages owned by a given process Forking a new process

flush_tlb_range

Flushes the TLB entries corresponding to
a linear address interval of a given
process

Releasing a linear
address interval of a
process

flush_tlb_pgtables

Flushes the TLB entries of a given
contiguous subset of page tables of a
given process

Releasing some page
tables of a process

flush_tlb_page Flushes the TLB of a single Page Table
entry of a given process

Processing a Page
Fault

Despite the rich set of TLB methods offered by the generic Linux kernel, every microprocessor
usually offers a far more restricted set of TLB-invalidating assembly language instructions. In
this respect, one of the more flexible hardware platforms is Sun's UltraSPARC. In contrast,
Intel microprocessors offers only two TLB-invalidating techniques:
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 All Pentium models automatically flush the TLB entries relative to non-global pages
when a value is loaded into the cr3 register.

 In Pentium Pro and later models, the invlpg assembly language instruction invalidates a
single TLB entry mapping a given linear address.

Table 2-12 lists the Linux macros that exploit such hardware techniques; these macros are
the basic ingredients to implement the architecture-independent methods listed in Table 2-11.

Table 2-12. TLB-invalidating macros for the Intel Pentium Pro and
later processors

Macro name Description Used by

_ _flush_tlb( )
Rewrites cr3 register
back into itself

flush_tlb,

flush_tlb_mm,flush_tlb_range

_ _flush_tlb_global( )

Disables global pages
by clearing the PGE
flag of cr4, rewrites
cr3 register back into
itself, and sets again
the PGE flag

flush_tlb_all,flush_tlb_kernel_range

_ _flush_tlb_single(addr)

Executes invlpg
assembly language
instruction with
parameter addr

flush_tlb_page

Notice that the flush_tlb_pgtables method is missing from Table 2-12: in the 80 x 86
architecture nothing has to be done when a page table is unlinked from its parent table, thus
the function implementing this method is empty.

The architecture-independent TLB-invalidating methods are extended quite simply to
multiprocessor systems. The function running on a CPU sends an Interprocessor Interrupt (see
"Interprocessor Interrupt Handling" in Chapter 4) to the other CPUs that forces them to
execute the proper TLB-invalidating function.

As a general rule, any process switch implies changing the set of active page tables. Local
TLB entries relative to the old page tables must be flushed; this is done automatically when
the kernel writes the address of the new Page Global Directory into the cr3 control register.
The kernel succeeds, however, in avoiding TLB flushes in the following cases:

 When performing a process switch between two regular processes that use the same
set of page tables (see the section "The schedule( ) Function" in Chapter 7).

 When performing a process switch between a regular process and a kernel thread. In
fact, we'll see in the section "Memory Descriptor of Kernel Threads" in Chapter 9, that
kernel threads do not have their own set of page tables; rather, they use the set of
page tables owned by the regular process that was scheduled last for execution on the
CPU.

Besides process switches, there are other cases in which the kernel needs to flush some
entries in a TLB. For instance, when the kernel assigns a page frame to a User Mode process
and stores its physical address into a Page Table entry, it must flush any local TLB entry that
refers to the corresponding linear address. On multiprocessor systems, the kernel also must
flush the same TLB entry on the CPUs that are using the same set of page tables, if any.
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To avoid useless TLB flushing in multiprocessor systems, the kernel uses a technique called 
lazy TLB mode . The basic idea is the following: if several CPUs are using the same page
tables and a TLB entry must be flushed on all of them, then TLB flushing may, in some cases,
be delayed on CPUs running kernel threads.

In fact, each kernel thread does not have its own set of page tables; rather, it makes use of
the set of page tables belonging to a regular process. However, there is no need to invalidate
a TLB entry that refers to a User Mode linear address, because no kernel thread accesses the
User Mode address space.[*]

[*] By the w ay, the flush_tlb_all method does not use the lazy TLB mode mechanism; it is usually invoked w henever the kernel
modifies a Page Table entry relative to the Kernel Mode address space.

When some CPUs start running a kernel thread, the kernel sets it into lazy TLB mode. When
requests are issued to clear some TLB entries, each CPU in lazy TLB mode does not flush the
corresponding entries; however, the CPU remembers that its current process is running on a
set of page tables whose TLB entries for the User Mode addresses are invalid. As soon as the
CPU in lazy TLB mode switches to a regular process with a different set of page tables, the
hardware automatically flushes the TLB entries, and the kernel sets the CPU back in non-lazy
TLB mode. However, if a CPU in lazy TLB mode switches to a regular process that owns the
same set of page tables used by the previously running kernel thread, then any deferred TLB
invalidation must be effectively applied by the kernel. This "lazy" invalidation is effectively
achieved by flushing all non-global TLB entries of the CPU.

Some extra data structures are needed to implement the lazy TLB mode. The cpu_tlbstate
variable is a static array of NR_CPUS structures (the default value for this macro is 32; it
denotes the maximum number of CPUs in the system) consisting of an active_mm field pointing
to the memory descriptor of the current process (see Chapter 9) and a state flag that can
assume only two values: TLBSTATE_OK (non-lazy TLB mode) or TLBSTATE_LAZY (lazy TLB mode).
Furthermore, each memory descriptor includes a cpu_vm_mask field that stores the indices of
the CPUs that should receive Interprocessor Interrupts related to TLB flushing. This field is
meaningful only when the memory descriptor belongs to a process currently in execution.

When a CPU starts executing a kernel thread, the kernel sets the state field of its
cpu_tlbstate element to TLBSTATE_LAZY; moreover, the cpu_vm_mask field of the active memory
descriptor stores the indices of all CPUs in the system, including the one that is entering in
lazy TLB mode. When another CPU wants to invalidate the TLB entries of all CPUs relative to a
given set of page tables, it delivers an Interprocessor Interrupt to all CPUs whose indices are
included in the cpu_vm_mask field of the corresponding memory descriptor.

When a CPU receives an Interprocessor Interrupt related to TLB flushing and verifies that it
affects the set of page tables of its current process, it checks whether the state field of its
cpu_tlbstate element is equal to TLBSTATE_LAZY. In this case, the kernel refuses to invalidate
the TLB entries and removes the CPU index from the cpu_vm_mask field of the memory
descriptor. This has two consequences:

 As long as the CPU remains in lazy TLB mode, it will not receive other Interprocessor
Interrupts related to TLB flushing.

 If the CPU switches to another process that is using the same set of page tables as
the kernel thread that is being replaced, the kernel invokes _ _flush_tlb( ) to
invalidate all non-global TLB entries of the CPU.
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Chapter 3. Processes
The concept of a process is fundamental to any multiprogramming operating system. A
process is usually defined as an instance of a program in execution; thus, if 16 users are
running vi at once, there are 16 separate processes (although they can share the same
executable code). Processes are often called tasks or threads in the Linux source code.

In this chapter, we discuss static properties of processes and then describe how process
switching is performed by the kernel. The last two sections describe how processes can be
created and destroyed. We also describe how Linux supports multithreaded applications as
mentioned in Chapter 1, it relies on so-called lightweight processes (LWP).
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3.1. Processes, Lightweight Processes, and Threads
The term "process" is often used with several different meanings. In this book, we stick to the
usual OS textbook definition: a process is an instance of a program in execution. You might
think of it as the collection of data structures that fully describes how far the execution of
the program has progressed.

Processes are like human beings: they are generated, they have a more or less significant life,
they optionally generate one or more child processes, and eventually they die. A small
difference is that sex is not really common among processes each process has just one
parent.

From the kernel's point of view, the purpose of a process is to act as an entity to which
system resources (CPU time, memory, etc.) are allocated.

When a process is created, it is almost identical to its parent. It receives a (logical) copy of
the parent's address space and executes the same code as the parent, beginning at the next
instruction following the process creation system call. Although the parent and child may
share the pages containing the program code (text), they have separate copies of the data
(stack and heap), so that changes by the child to a memory location are invisible to the
parent (and vice versa).

While earlier Unix kernels employed this simple model, modern Unix systems do not. They
support multithreaded applications user programs having many relatively independent
execution flows sharing a large portion of the application data structures. In such systems, a
process is composed of several user threads (or simply threads), each of which represents an
execution flow of the process. Nowadays, most multithreaded applications are written using
standard sets of library functions called pthread (POSIX thread) libraries .

Older versions of the Linux kernel offered no support for multithreaded applications. From the
kernel point of view, a multithreaded application was just a normal process. The multiple
execution flows of a multithreaded application were created, handled, and scheduled entirely
in User Mode, usually by means of a POSIX-compliant pthread library.

However, such an implementation of multithreaded applications is not very satisfactory. For
instance, suppose a chess program uses two threads: one of them controls the graphical
chessboard, waiting for the moves of the human player and showing the moves of the
computer, while the other thread ponders the next move of the game. While the first thread
waits for the human move, the second thread should run continuously, thus exploiting the
thinking time of the human player. However, if the chess program is just a single process, the
first thread cannot simply issue a blocking system call waiting for a user action; otherwise,
the second thread is blocked as well. Instead, the first thread must employ sophisticated
nonblocking techniques to ensure that the process remains runnable.

Linux uses lightweight processes to offer better support for multithreaded applications.
Basically, two lightweight processes may share some resources, like the address space, the
open files, and so on. Whenever one of them modifies a shared resource, the other
immediately sees the change. Of course, the two processes must synchronize themselves
when accessing the shared resource.

A straightforward way to implement multithreaded applications is to associate a lightweight
process with each thread. In this way, the threads can access the same set of application
data structures by simply sharing the same memory address space, the same set of open files,
and so on; at the same time, each thread can be scheduled independently by the kernel so
that one may sleep while another remains runnable. Examples of POSIX-compliant pthread
libraries that use Linux's lightweight processes are LinuxThreads, Native POSIX Thread Library
(NPTL), and IBM's Next Generation Posix Threading Package (NGPT).
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POSIX-compliant multithreaded applications are best handled by kernels that support "thread
groups ." In Linux a thread group is basically a set of lightweight processes that implement a
multithreaded application and act as a whole with regards to some system calls such as 
getpid( ) , kill( ) , and _exit( ) . We are going to describe them at length later in this
chapter.
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3.2. Process Descriptor
To manage processes, the kernel must have a clear picture of what each process is doing. It
must know, for instance, the process's priority, whether it is running on a CPU or blocked on
an event, what address space has been assigned to it, which files it is allowed to address,
and so on. This is the role of the process descriptor a task_struct type structure whose fields
contain all the information related to a single process.[*] As the repository of so much
information, the process descriptor is rather complex. In addition to a large number of fields
containing process attributes, the process descriptor contains several pointers to other data
structures that, in turn, contain pointers to other structures. Figure 3-1 describes the Linux
process descriptor schematically.

[*] The kernel also defines the task_t data type to be equivalent to struct task_struct.

The six data structures on the right side of the figure refer to specific resources owned by the
process. Most of these resources will be covered in future chapters. This chapter focuses on
two types of fields that refer to the process state and to process parent/child relationships.

3.2.1. Process State

As its name implies, the state field of the process descriptor describes what is currently
happening to the process. It consists of an array of flags, each of which describes a possible
process state. In the current Linux version, these states are mutually exclusive, and hence
exactly one flag of state always is set; the remaining flags are cleared. The following are the
possible process states:

TASK_RUNNING

The process is either executing on a CPU or waiting to be executed.

TASK_INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a
hardware interrupt, releasing a system resource the process is waiting for, or delivering
a signal are examples of conditions that might wake up the process (put its state back
to TASK_RUNNING).

TASK_UNINTERRUPTIBLE

Like TASK_INTERRUPTIBLE, except that delivering a signal to the sleeping process leaves
its state unchanged. This process state is seldom used. It is valuable, however, under
certain specific conditions in which a process must wait until a given event occurs
without being interrupted. For instance, this state may be used when a process opens
a device file and the corresponding device driver starts probing for a corresponding
hardware device. The device driver must not be interrupted until the probing is
complete, or the hardware device could be left in an unpredictable state.

Figure 3-1. The Linux process descriptor
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TASK_STOPPED

Process execution has been stopped; the process enters this state after receiving a 
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal.

TASK_TRACED

Process execution has been stopped by a debugger. When a process is being
monitored by another (such as when a debugger executes a ptrace( ) system call to
monitor a test program), each signal may put the process in the TASK_TRACED state.

Two additional states of the process can be stored both in the state field and in the
exit_state field of the process descriptor; as the field name suggests, a process reaches one
of these two states only when its execution is terminated:

EXIT_ZOMBIE

Process execution is terminated, but the parent process has not yet issued a wait4( )
or waitpid( ) system call to return information about the dead process.[*] Before the
wait( )-like call is issued, the kernel cannot discard the data contained in the dead

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


process descriptor because the parent might need it. (See the section "Process
Removal" near the end of this chapter.)

[*] There are other wait( ) -like library functions, such as wait3( ) and wait( ), but in Linux they are
implemented by means of the wait4( ) and waitpid( ) system calls.

EXIT_DEAD

The final state: the process is being removed by the system because the parent
process has just issued a wait4( ) or waitpid( ) system call for it. Changing its state
from EXIT_ZOMBIE to EXIT_DEAD avoids race conditions due to other threads of execution
that execute wait( )-like calls on the same process (see Chapter 5).

The value of the state field is usually set with a simple assignment. For instance:

    p->state = TASK_RUNNING;

The kernel also uses the set_task_state and set_current_state macros: they set the state of
a specified process and of the process currently executed, respectively. Moreover, these
macros ensure that the assignment operation is not mixed with other instructions by the
compiler or the CPU control unit. Mixing the instruction order may sometimes lead to
catastrophic results (see Chapter 5).

3.2.2. Identifying a Process

As a general rule, each execution context that can be independently scheduled must have its
own process descriptor; therefore, even lightweight processes, which share a large portion of
their kernel data structures, have their own task_struct structures.

The strict one-to-one correspondence between the process and process descriptor makes the
32-bit address[ ] of the task_struct structure a useful means for the kernel to identify
processes. These addresses are referred to as process descriptor pointers. Most of the
references to processes that the kernel makes are through process descriptor pointers.

[ ] As already noted in the section "Segmentation in Linux" in Chapter 2, although technically these 32 bits are only the offset
component of a logical address, they coincide w ith the linear address.

On the other hand, Unix-like operating systems allow users to identify processes by means of
a number called the Process ID (or PID), which is stored in the pid field of the process
descriptor. PIDs are numbered sequentially: the PID of a newly created process is normally the
PID of the previously created process increased by one. Of course, there is an upper limit on
the PID values; when the kernel reaches such limit, it must start recycling the lower, unused
PIDs. By default, the maximum PID number is 32,767 (PID_MAX_DEFAULT - 1); the system
administrator may reduce this limit by writing a smaller value into the /proc
/sys/kernel/pid_max file (/proc is the mount point of a special filesystem, see the section "
Special Filesystems" in Chapter 12). In 64-bit architectures, the system administrator can
enlarge the maximum PID number up to 4,194,303.

When recycling PID numbers, the kernel must manage a pidmap_array bitmap that denotes
which are the PIDs currently assigned and which are the free ones. Because a page frame
contains 32,768 bits, in 32-bit architectures the pidmap_array bitmap is stored in a single
page. In 64-bit architectures, however, additional pages can be added to the bitmap when
the kernel assigns a PID number too large for the current bitmap size. These pages are never
released.

Linux associates a different PID with each process or lightweight process in the system. (As
we shall see later in this chapter, there is a tiny exception on multiprocessor systems.) This
approach allows the maximum flexibility, because every execution context in the system can
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be uniquely identified.

On the other hand, Unix programmers expect threads in the same group to have a common
PID. For instance, it should be possible to a send a signal specifying a PID that affects all
threads in the group. In fact, the POSIX 1003.1c standard states that all threads of a
multithreaded application must have the same PID.

To comply with this standard, Linux makes use of thread groups. The identifier shared by the
threads is the PID of the thread group leader , that is, the PID of the first lightweight process
in the group; it is stored in the tgid field of the process descriptors. The getpid( ) system call
returns the value of tgid relative to the current process instead of the value of pid, so all the
threads of a multithreaded application share the same identifier. Most processes belong to a
thread group consisting of a single member; as thread group leaders, they have the tgid field
equal to the pid field, thus the getpid( ) system call works as usual for this kind of process.

Later, we'll show you how it is possible to derive a true process descriptor pointer efficiently
from its respective PID. Efficiency is important because many system calls such as kill( )
use the PID to denote the affected process.

3.2.2.1. Process descriptors handling

Processes are dynamic entities whose lifetimes range from a few milliseconds to months. Thus,
the kernel must be able to handle many processes at the same time, and process descriptors
are stored in dynamic memory rather than in the memory area permanently assigned to the
kernel. For each process, Linux packs two different data structures in a single per-process
memory area: a small data structure linked to the process descriptor, namely the thread_info
structure, and the Kernel Mode process stack. The length of this memory area is usually 8,192
bytes (two page frames). For reasons of efficiency the kernel stores the 8-KB memory area in
two consecutive page frames with the first page frame aligned to a multiple of 213; this may
turn out to be a problem when little dynamic memory is available, because the free memory
may become highly fragmented (see the section "The Buddy System Algorithm" in Chapter 8).
Therefore, in the 80x86 architecture the kernel can be configured at compilation time so that
the memory area including stack and tHRead_info structure spans a single page frame (4,096
bytes).

In the section "Segmentation in Linux" in Chapter 2, we learned that a process in Kernel Mode
accesses a stack contained in the kernel data segment, which is different from the stack used
by the process in User Mode. Because kernel control paths make little use of the stack, only a
few thousand bytes of kernel stack are required. Therefore, 8 KB is ample space for the stack
and the tHRead_info structure. However, when stack and thread_info structure are contained
in a single page frame, the kernel uses a few additional stacks to avoid the overflows caused
by deeply nested interrupts and exceptions (see Chapter 4).

Figure 3-2 shows how the two data structures are stored in the 2-page (8 KB) memory area.
The thread_info structure resides at the beginning of the memory area, and the stack grows
downward from the end. The figure also shows that the tHRead_info structure and the
task_struct structure are mutually linked by means of the fields task and tHRead_info,
respectively.

Figure 3-2. Storing the thread_info structure and the process kernel
stack in two page frames
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The esp register is the CPU stack pointer, which is used to address the stack's top location.
On 80x86 systems, the stack starts at the end and grows toward the beginning of the
memory area. Right after switching from User Mode to Kernel Mode, the kernel stack of a
process is always empty, and therefore the esp register points to the byte immediately
following the stack.

The value of the esp is decreased as soon as data is written into the stack. Because the
thread_info structure is 52 bytes long, the kernel stack can expand up to 8,140 bytes.

The C language allows the tHRead_info structure and the kernel stack of a process to be
conveniently represented by means of the following union construct:

    union thread_union {

        struct thread_info thread_info;

        unsigned long stack[2048]; /* 1024 for 4KB stacks */

    };

The tHRead_info structure shown in Figure 3-2 is stored starting at address 0x015fa000, and
the stack is stored starting at address 0x015fc000. The value of the esp register points to the
current top of the stack at 0x015fa878.

The kernel uses the alloc_thread_info and free_thread_info macros to allocate and release
the memory area storing a thread_info structure and a kernel stack.

3.2.2.2. Identifying the current process

The close association between the thread_info structure and the Kernel Mode stack just
described offers a key benefit in terms of efficiency: the kernel can easily obtain the address
of the thread_info structure of the process currently running on a CPU from the value of the
esp register. In fact, if the thread_union structure is 8 KB (213 bytes) long, the kernel masks
out the 13 least significant bits of esp to obtain the base address of the thread_info
structure; on the other hand, if the thread_union structure is 4 KB long, the kernel masks out
the 12 least significant bits of esp. This is done by the current_thread_info( ) function, which
produces assembly language instructions like the following:

    movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */

    andl %esp,%ecx

    movl %ecx,p
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After executing these three instructions, p contains the tHRead_info structure pointer of the
process running on the CPU that executes the instruction.

Most often the kernel needs the address of the process descriptor rather than the address of
the thread_info structure. To get the process descriptor pointer of the process currently
running on a CPU, the kernel makes use of the current macro, which is essentially equivalent
to current_thread_info( )->task and produces assembly language instructions like the
following:

    movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */

    andl %esp,%ecx

    movl (%ecx),p

Because the task field is at offset 0 in the thread_info structure, after executing these three
instructions p contains the process descriptor pointer of the process running on the CPU.

The current macro often appears in kernel code as a prefix to fields of the process descriptor.
For example, current->pid returns the process ID of the process currently running on the CPU.

Another advantage of storing the process descriptor with the stack emerges on multiprocessor
systems: the correct current process for each hardware processor can be derived just by
checking the stack, as shown previously. Earlier versions of Linux did not store the kernel
stack and the process descriptor together. Instead, they were forced to introduce a global
static variable called current to identify the process descriptor of the running process. On
multiprocessor systems, it was necessary to define current as an arrayone element for each
available CPU.

3.2.2.3. Doubly linked lists

Before moving on and describing how the kernel keeps track of the various processes in the
system, we would like to emphasize the role of special data structures that implement doubly
linked lists.

For each list, a set of primitive operations must be implemented: initializing the list, inserting
and deleting an element, scanning the list, and so on. It would be both a waste of
programmers' efforts and a waste of memory to replicate the primitive operations for each
different list.

Therefore, the Linux kernel defines the list_head data structure, whose only fields next and
prev represent the forward and back pointers of a generic doubly linked list element,
respectively. It is important to note, however, that the pointers in a list_head field store the
addresses of other list_head fields rather than the addresses of the whole data structures in
which the list_head structure is included; see Figure 3-3 (a).

A new list is created by using the LIST_HEAD(list_name) macro. It declares a new variable
named list_name of type list_head, which is a dummy first element that acts as a placeholder
for the head of the new list, and initializes the prev and next fields of the list_head data
structure so as to point to the list_name variable itself; see Figure 3-3 (b).

Figure 3-3. Doubly linked lists built with list_head data structures
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Several functions and macros implement the primitives, including those shown in Table Table
3-1.

Table 3-1. List handling functions and macros

Name Description

list_add(n,p)

Inserts an element pointed to by n right after the specified
element pointed to by p. (To insert n at the beginning of the
list, set p to the address of the list head.)

list_add_tail(n,p)

Inserts an element pointed to by n right before the specified
element pointed to by p. (To insert n at the end of the list,
set p to the address of the list head.)

list_del(p) Deletes an element pointed to by p. (There is no need to
specify the head of the list.)

list_empty(p) Checks if the list specified by the address p of its head is
empty.

list_entry(p,t,m)

Returns the address of the data structure of type t in which
the list_head field that has the name m and the address p is
included.

list_for_each(p,h) Scans the elements of the list specified by the address h of
the head; in each iteration, a pointer to the list_head
structure of the list element is returned in p.

list_for_each_entry(p,h,m)

Similar to list_for_each, but returns the address of the data
structure embedding the list_head structure rather than the
address of the list_head structure itself.
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The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs from a 
list_head list because it is not circular; it is mainly used for hash tables, where space is
important, and finding the the last element in constant time is not. The list head is stored in
an hlist_head data structure, which is simply a pointer to the first element in the list (NULL if
the list is empty). Each element is represented by an hlist_node data structure, which
includes a pointer next to the next element, and a pointer pprev to the next field of the
previous element. Because the list is not circular, the pprev field of the first element and the
next field of the last element are set to NULL. The list can be handled by means of several
helper functions and macros similar to those listed in Table 3-1: hlist_add_head( ), hlist_del(
), hlist_empty( ), hlist_entry, hlist_for_each_entry, and so on.

3.2.2.4. The process list

The first example of a doubly linked list we will examine is the process list, a list that links
together all existing process descriptors. Each task_struct structure includes a tasks field of
type list_head whose prev and next fields point, respectively, to the previous and to the
next task_struct element.

The head of the process list is the init_task task_struct descriptor; it is the process
descriptor of the so-called process 0 or swapper (see the section "Kernel Threads" later in
this chapter). The tasks->prev field of init_task points to the tasks field of the process
descriptor inserted last in the list.

The SET_LINKS and REMOVE_LINKS macros are used to insert and to remove a process descriptor
in the process list, respectively. These macros also take care of the parenthood relationship
of the process (see the section "How Processes Are Organized" later in this chapter).

Another useful macro, called for_each_process, scans the whole process list. It is defined as:

    #define for_each_process(p) \

       for (p=&init_task; (p=list_entry((p)->tasks.next, \

                                        struct task_struct, tasks) \

                                       ) != &init_task; )

The macro is the loop control statement after which the kernel programmer supplies the loop.
Notice how the init_task process descriptor just plays the role of list header. The macro
starts by moving past init_task to the next task and continues until it reaches init_task
again (thanks to the circularity of the list). At each iteration, the variable passed as the
argument of the macro contains the address of the currently scanned process descriptor, as
returned by the list_entry macro.

3.2.2.5. The lists of TASK_RUNNING processes

When looking for a new process to run on a CPU, the kernel has to consider only the runnable
processes (that is, the processes in the TASK_RUNNING state).

Earlier Linux versions put all runnable processes in the same list called runqueue. Because it
would be too costly to maintain the list ordered according to process priorities, the earlier
schedulers were compelled to scan the whole list in order to select the "best" runnable
process.

Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to select the
best runnable process in constant time, independently of the number of runnable processes.
We'll defer to Chapter 7 a detailed description of this new kind of runqueue, and we'll provide
here only some basic information.

The trick used to achieve the scheduler speedup consists of splitting the runqueue in many
lists of runnable processes, one list per process priority. Each task_struct descriptor includes
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a run_list field of type list_head. If the process priority is equal to k (a value ranging
between 0 and 139), the run_list field links the process descriptor into the list of runnable
processes having priority k. Furthermore, on a multiprocessor system, each CPU has its own
runqueue, that is, its own set of lists of processes. This is a classic example of making a data
structures more complex to improve performance: to make scheduler operations more
efficient, the runqueue list has been split into 140 different lists!

As we'll see, the kernel must preserve a lot of data for every runqueue in the system;
however, the main data structures of a runqueue are the lists of process descriptors belonging
to the runqueue; all these lists are implemented by a single prio_array_t data structure,
whose fields are shown in Table 3-2.

Table 3-2. The fields of the prio_array_t data structure

Type Field Description

int nr_active The number of process descriptors linked into the lists

unsigned long [5] bitmap A priority bitmap: each flag is set if and only if the
corresponding priority list is not empty

struct list_head

[140]
queue The 140 heads of the priority lists

The enqueue_task(p,array) function inserts a process descriptor into a runqueue list; its code
is essentially equivalent to:

    list_add_tail(&p->run_list, &array->queue[p->prio]);

    __set_bit(p->prio, array->bitmap);

    array->nr_active++;

    p->array = array;

The prio field of the process descriptor stores the dynamic priority of the process, while the
array field is a pointer to the prio_array_t data structure of its current runqueue. Similarly,
the dequeue_task(p,array) function removes a process descriptor from a runqueue list.

3.2.3. Relationships Among Processes

Processes created by a program have a parent/child relationship. When a process creates
multiple children , these children have sibling relationships. Several fields must be introduced in
a process descriptor to represent these relationships; they are listed in Table 3-3 with respect
to a given process P. Processes 0 and 1 are created by the kernel; as we'll see later in the
chapter, process 1 (init) is the ancestor of all other processes.

Table 3-3. Fields of a process descriptor used to express parenthood
relationships

Field name Description

real_parent

Points to the process descriptor of the process that created P or to the
descriptor of process 1 (init) if the parent process no longer exists. (Therefore,
when a user starts a background process and exits the shell, the background
process becomes the child of init.)
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Table 3-3. Fields of a process descriptor used to express parenthood
relationships

Field name Description

parent

Points to the current parent of P (this is the process that must be signaled
when the child process terminates); its value usually coincides with that of 
real_parent. It may occasionally differ, such as when another process issues
a ptrace( ) system call requesting that it be allowed to monitor P (see the
section "Execution Tracing" in Chapter 20).

children The head of the list containing all children created by P.

sibling The pointers to the next and previous elements in the list of the sibling
processes, those that have the same parent as P.

Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Process P0
successively created P1, P2, and P3. Process P3, in turn, created process P4.

Furthermore, there exist other relationships among processes: a process can be a leader of a
process group or of a login session (see "Process Management" in Chapter 1), it can be a
leader of a thread group (see "Identifying a Process" earlier in this chapter), and it can also
trace the execution of other processes (see the section "Execution Tracing" in Chapter 20).
Table 3-4 lists the fields of the process descriptor that establish these relationships between
a process P and the other processes.

Table 3-4. The fields of the process descriptor that establish
non-parenthood relationships

Field name Description

group_leader Process descriptor pointer of the group leader of P

signal->pgrp PID of the group leader of P

tgid PID of the thread group leader of P

signal->session PID of the login session leader of P

ptrace_children The head of a list containing all children of P being traced by a debugger

ptrace_list The pointers to the next and previous elements in the real parent's list of
traced processes (used when P is being traced)

Figure 3-4. Parenthood relationships among five processes
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3.2.3.1. The pidhash table and chained lists

In several circumstances, the kernel must be able to derive the process descriptor pointer
corresponding to a PID. This occurs, for instance, in servicing the kill( ) system call. When
process P1 wishes to send a signal to another process, P2, it invokes the kill( ) system call
specifying the PID of P2 as the parameter. The kernel derives the process descriptor pointer
from the PID and then extracts the pointer to the data structure that records the pending
signals from P2's process descriptor.

Scanning the process list sequentially and checking the pid fields of the process descriptors is
feasible but rather inefficient. To speed up the search, four hash tables have been introduced.
Why multiple hash tables? Simply because the process descriptor includes fields that represent
different types of PID (see Table 3-5), and each type of PID requires its own hash table.

Table 3-5. The four hash tables and corresponding fields in the process
descriptor

Hash table type Field name Description

PIDTYPE_PID pid PID of the process

PIDTYPE_TGID tgid PID of thread group leader process

PIDTYPE_PGID pgrp PID of the group leader process

PIDTYPE_SID session PID of the session leader process

The four hash tables are dynamically allocated during the kernel initialization phase, and their
addresses are stored in the pid_hash array. The size of a single hash table depends on the
amount of available RAM; for example, for systems having 512 MB of RAM, each hash table is
stored in four page frames and includes 2,048 entries.

The PID is transformed into a table index using the pid_hashfn macro, which expands to:

    #define pid_hashfn(x) hash_long((unsigned long) x, pidhash_shift)

The pidhash_shift variable stores the length in bits of a table index (11, in our example). The
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hash_long( ) function is used by many hash functions; on a 32-bit architecture it is essentially
equivalent to:

    unsigned long hash_long(unsigned long val, unsigned int bits)

    {

        unsigned long hash = val * 0x9e370001UL;

        return hash >> (32 - bits);

    }

Because in our example pidhash_shift is equal to 11, pid_hashfn yields values ranging between
0 and 211 - 1 = 2047.

The Magic Constant

You might wonder where the 0x9e370001 constant (= 2,654,404,609) comes from.
This hash function is based on a multiplication of the index by a suitable large
number, so that the result overflows and the value remaining in the 32-bit variable
can be considered as the result of a modulus operation. Knuth suggested that
good results are obtained when the large multiplier is a prime approximately in
golden ratio to 232 (32 bit being the size of the 80x86's registers). Now,

2,654,404,609 is a prime near to that can also be easily multiplied by
additions and bit shifts, because it is equal to 

As every basic computer science course explains, a hash function does not always ensure a
one-to-one correspondence between PIDs and table indexes. Two different PIDs that hash
into the same table index are said to be colliding.

Linux uses chaining to handle colliding PIDs; each table entry is the head of a doubly linked list
of colliding process descriptors. Figure 3-5 illustrates a PID hash table with two lists. The
processes having PIDs 2,890 and 29,384 hash into the 200th element of the table, while the
process having PID 29,385 hashes into the 1,466th element of the table.

Hashing with chaining is preferable to a linear transformation from PIDs to table indexes
because at any given instance, the number of processes in the system is usually far below
32,768 (the maximum number of allowed PIDs). It would be a waste of storage to define a
table consisting of 32,768 entries, if, at any given instance, most such entries are unused.

The data structures used in the PID hash tables are quite sophisticated, because they must
keep track of the relationships between the processes. As an example, suppose that the
kernel must retrieve all processes belonging to a given thread group, that is, all processes
whose tgid field is equal to a given number. Looking in the hash table for the given thread
group number returns just one process descriptor, that is, the descriptor of the thread group
leader. To quickly retrieve the other processes in the group, the kernel must maintain a list of
processes for each thread group. The same situation arises when looking for the processes
belonging to a given login session or belonging to a given process group.

Figure 3-5. A simple PID hash table and chained lists
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The PID hash tables' data structures solve all these problems, because they allow the
definition of a list of processes for any PID number included in a hash table. The core data
structure is an array of four pid structures embedded in the pids field of the process
descriptor; the fields of the pid structure are shown in Table 3-6.

Table 3-6. The fields of the pid data structures

Type Name Description

int nr The PID number

struct hlist_node pid_chain The links to the next and previous elements in the hash chain
list

struct list_head pid_list The head of the per-PID list

Figure 3-6 shows an example based on the PIDTYPE_TGID hash table. The second entry of the
pid_hash array stores the address of the hash table, that is, the array of hlist_head
structures representing the heads of the chain lists. In the chain list rooted at the 71st entry
of the hash table, there are two process descriptors corresponding to the PID numbers 246
and 4,351 (double-arrow lines represent a couple of forward and backward pointers). The PID
numbers are stored in the nr field of the pid structure embedded in the process descriptor (by
the way, because the thread group number coincides with the PID of its leader, these
numbers also are stored in the pid field of the process descriptors). Let us consider the
per-PID list of the thread group 4,351: the head of the list is stored in the pid_list field of
the process descriptor included in the hash table, while the links to the next and previous
elements of the per-PID list also are stored in the pid_list field of each list element.

Figure 3-6. The PID hash tables
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The following functions and macros are used to handle the PID hash tables:

do_each_task_pid(nr, type, task)

while_each_task_pid(nr, type, task)

Mark begin and end of a do-while loop that iterates over the per-PID list associated
with the PID number nr of type type; in any iteration, task points to the process
descriptor of the currently scanned element.

find_task_by_pid_type(type, nr)

Looks for the process having PID nr in the hash table of type type. The function
returns a process descriptor pointer if a match is found, otherwise it returns NULL.

find_task_by_pid(nr)

Same as find_task_by_pid_type(PIDTYPE_PID, nr).

attach_pid(task, type, nr)

Inserts the process descriptor pointed to by task in the PID hash table of type type
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according to the PID number nr; if a process descriptor having PID nr is already in the
hash table, the function simply inserts task in the per-PID list of the already present
process.

detach_pid(task, type)

Removes the process descriptor pointed to by task from the per-PID list of type type
to which the descriptor belongs. If the per-PID list does not become empty, the
function terminates. Otherwise, the function removes the process descriptor from the
hash table of type type; finally, if the PID number does not occur in any other hash
table, the function clears the corresponding bit in the PID bitmap, so that the number
can be recycled.

next_thread(task)

Returns the process descriptor address of the lightweight process that follows task in
the hash table list of type PIDTYPE_TGID. Because the hash table list is circular, when
applied to a conventional process the macro returns the descriptor address of the
process itself.

3.2.4. How Processes Are Organized

The runqueue lists group all processes in a TASK_RUNNING state. When it comes to grouping
processes in other states, the various states call for different types of treatment, with Linux
opting for one of the choices shown in the following list.

 Processes in a TASK_STOPPED, EXIT_ZOMBIE, or EXIT_DEAD state are not linked in specific
lists. There is no need to group processes in any of these three states, because
stopped, zombie, and dead processes are accessed only via PID or via linked lists of
the child processes for a particular parent.

 Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state are subdivided into
many classes, each of which corresponds to a specific event. In this case, the process
state does not provide enough information to retrieve the process quickly, so it is
necessary to introduce additional lists of processes. These are called wait queues and
are discussed next.

3.2.4.1. Wait queues

Wait queues have several uses in the kernel, particularly for interrupt handling, process
synchronization, and timing. Because these topics are discussed in later chapters, we'll just
say here that a process must often wait for some event to occur, such as for a disk operation
to terminate, a system resource to be released, or a fixed interval of time to elapse. Wait
queues implement conditional waits on events: a process wishing to wait for a specific event
places itself in the proper wait queue and relinquishes control. Therefore, a wait queue
represents a set of sleeping processes, which are woken up by the kernel when some
condition becomes true.

Wait queues are implemented as doubly linked lists whose elements include pointers to process
descriptors. Each wait queue is identified by a wait queue head, a data structure of type
wait_queue_head_t:

    struct _ _wait_queue_head {

        spinlock_t lock;

        struct list_head task_list;

    };

    typedef struct _ _wait_queue_head wait_queue_head_t;
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Because wait queues are modified by interrupt handlers as well as by major kernel functions,
the doubly linked lists must be protected from concurrent accesses, which could induce
unpredictable results (see Chapter 5). Synchronization is achieved by the lock spin lock in the
wait queue head. The task_list field is the head of the list of waiting processes.

Elements of a wait queue list are of type wait_queue_t:

    struct _ _wait_queue {

        unsigned int flags;

        struct task_struct * task;

        wait_queue_func_t func;

        struct list_head task_list;

    };

    typedef struct _ _wait_queue wait_queue_t;

Each element in the wait queue list represents a sleeping process, which is waiting for some
event to occur; its descriptor address is stored in the task field. The task_list field contains
the pointers that link this element to the list of processes waiting for the same event.

However, it is not always convenient to wake up all sleeping processes in a wait queue. For
instance, if two or more processes are waiting for exclusive access to some resource to be
released, it makes sense to wake up just one process in the wait queue. This process takes
the resource, while the other processes continue to sleep. (This avoids a problem known as
the "thundering herd," with which multiple processes are wakened only to race for a resource
that can be accessed by one of them, with the result that remaining processes must once
more be put back to sleep.)

Thus, there are two kinds of sleeping processes: exclusive processes (denoted by the value 1
in the flags field of the corresponding wait queue element) are selectively woken up by the
kernel, while nonexclusive processes (denoted by the value 0 in the flags field) are always
woken up by the kernel when the event occurs. A process waiting for a resource that can be
granted to just one process at a time is a typical exclusive process. Processes waiting for an
event that may concern any of them are nonexclusive. Consider, for instance, a group of
processes that are waiting for the termination of a group of disk block transfers: as soon as
the transfers complete, all waiting processes must be woken up. As we'll see next, the func
field of a wait queue element is used to specify how the processes sleeping in the wait queue
should be woken up.

3.2.4.2. Handling wait queues

A new wait queue head may be defined by using the DECLARE_WAIT_QUEUE_HEAD(name) macro,
which statically declares a new wait queue head variable called name and initializes its lock
and task_list fields. The init_waitqueue_head( ) function may be used to initialize a wait
queue head variable that was allocated dynamically.

The init_waitqueue_entry(q,p ) function initializes a wait_queue_t structure q as follows:

    q->flags = 0;

    q->task = p;

    q->func = default_wake_function;

The nonexclusive process p will be awakened by default_wake_function( ), which is a simple
wrapper for the TRy_to_wake_up( ) function discussed in Chapter 7.

Alternatively, the DEFINE_WAIT macro declares a new wait_queue_t variable and initializes it
with the descriptor of the process currently executing on the CPU and the address of the 
autoremove_wake_function( ) wake-up function. This function invokes default_wake_function(
) to awaken the sleeping process, and then removes the wait queue element from the wait
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queue list. Finally, a kernel developer can define a custom awakening function by initializing
the wait queue element with the init_waitqueue_func_entry( ) function.

Once an element is defined, it must be inserted into a wait queue. The add_wait_queue( )
function inserts a nonexclusive process in the first position of a wait queue list. The 
add_wait_queue_exclusive( ) function inserts an exclusive process in the last position of a wait
queue list. The remove_wait_queue( ) function removes a process from a wait queue list. The
waitqueue_active( ) function checks whether a given wait queue list is empty.

A process wishing to wait for a specific condition can invoke any of the functions shown in
the following list.

 The sleep_on( ) function operates on the current process:


     void sleep_on(wait_queue_head_t *wq)

     {

         wait_queue_t wait;

         init_waitqueue_entry(&wait, current);

         current->state = TASK_UNINTERRUPTIBLE;

         add_wait_queue(wq,&wait); /*  wq points to the wait queue head 

*/

         schedule( );

         remove_wait_queue(wq, &wait);

    }

The function sets the state of the current process to TASK_UNINTERRUPTIBLE and inserts
it into the specified wait queue. Then it invokes the scheduler, which resumes the
execution of another process. When the sleeping process is awakened, the scheduler
resumes execution of the sleep_on( ) function, which removes the process from the
wait queue.

 The interruptible_sleep_on( ) function is identical to sleep_on( ), except that it sets
the state of the current process to TASK_INTERRUPTIBLE instead of setting it to
TASK_UNINTERRUPTIBLE, so that the process also can be woken up by receiving a signal.

 The sleep_on_timeout( ) and interruptible_sleep_on_timeout( ) functions are similar
to the previous ones, but they also allow the caller to define a time interval after
which the process will be woken up by the kernel. To do this, they invoke the 
schedule_timeout( ) function instead of schedule( ) (see the section "An Application of
Dynamic Timers: the nanosleep( ) System Call" in Chapter 6).

 The prepare_to_wait( ), prepare_to_wait_exclusive( ), and finish_wait( ) functions,
introduced in Linux 2.6, offer yet another way to put the current process to sleep in a
wait queue. Typically, they are used as follows:


     DEFINE_WAIT(wait);

     prepare_to_wait_exclusive(&wq, &wait, TASK_INTERRUPTIBLE);

                                 /* wq is the head of the wait queue */

     ...

     if (!condition)

         schedule();

    finish_wait(&wq, &wait);

The prepare_to_wait( ) and prepare_to_wait_exclusive( ) functions set the process
state to the value passed as the third parameter, then set the exclusive flag in the
wait queue element respectively to 0 (nonexclusive) or 1 (exclusive), and finally insert
the wait queue element wait into the list of the wait queue head wq.
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As soon as the process is awakened, it executes the finish_wait( ) function, which
sets again the process state to TASK_RUNNING (just in case the awaking condition
becomes true before invoking schedule( )), and removes the wait queue element from
the wait queue list (unless this has already been done by the wake-up function).

 The wait_event and wait_event_interruptible macros put the calling process to sleep
on a wait queue until a given condition is verified. For instance, the 
wait_event(wq,condition) macro essentially yields the following fragment:


     DEFINE_WAIT(_ _wait);

     for (;;) {

         prepare_to_wait(&wq, &_ _wait, TASK_UNINTERRUPTIBLE);

         if (condition)

             break;

         schedule( );

     }

    finish_wait(&wq, &_ _wait);

A few comments on the functions mentioned in the above list: the sleep_on( )-like functions
cannot be used in the common situation where one has to test a condition and atomically put
the process to sleep when the condition is not verified; therefore, because they are a
well-known source of race conditions, their use is discouraged. Moreover, in order to insert an
exclusive process into a wait queue, the kernel must make use of the 
prepare_to_wait_exclusive( ) function (or just invoke add_wait_queue_exclusive( ) directly);
any other helper function inserts the process as nonexclusive. Finally, unless DEFINE_WAIT or
finish_wait( ) are used, the kernel must remove the wait queue element from the list after
the waiting process has been awakened.

The kernel awakens processes in the wait queues, putting them in the TASK_RUNNING state, by
means of one of the following macros: wake_up, wake_up_nr, wake_up_all,
wake_up_interruptible, wake_up_interruptible_nr, wake_up_interruptible_all,
wake_up_interruptible_sync, and wake_up_locked. One can understand what each of these nine
macros does from its name:

 All macros take into consideration sleeping processes in the TASK_INTERRUPTIBLE state;
if the macro name does not include the string "interruptible," sleeping processes in the 
TASK_UNINTERRUPTIBLE state also are considered.

 All macros wake all nonexclusive processes having the required state (see the previous
bullet item).

 The macros whose name include the string "nr" wake a given number of exclusive
processes having the required state; this number is a parameter of the macro. The
macros whose names include the string "all" wake all exclusive processes having the
required state. Finally, the macros whose names don't include "nr" or "all" wake exactly
one exclusive process that has the required state.

 The macros whose names don't include the string "sync" check whether the priority of
any of the woken processes is higher than that of the processes currently running in
the systems and invoke schedule( ) if necessary. These checks are not made by the
macro whose name includes the string "sync"; as a result, execution of a high priority
process might be slightly delayed.

 The wake_up_locked macro is similar to wake_up, except that it is called when the spin
lock in wait_queue_head_t is already held.

For instance, the wake_up macro is essentially equivalent to the following code fragment:

    void wake_up(wait_queue_head_t *q)

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


    {

        struct list_head *tmp;

        wait_queue_t *curr;

        list_for_each(tmp, &q->task_list) {

            curr = list_entry(tmp, wait_queue_t, task_list);

            if (curr->func(curr, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE,

                           0, NULL) && curr->flags)

                break;

        }

    }

The list_for_each macro scans all items in the q->task_list doubly linked list, that is, all
processes in the wait queue. For each item, the list_entry macro computes the address of
the corresponding wait_queue_t variable. The func field of this variable stores the address of
the wake-up function, which tries to wake up the process identified by the task field of the
wait queue element. If a process has been effectively awakened (the function returned 1) and
if the process is exclusive (curr->flags equal to 1), the loop terminates. Because all
nonexclusive processes are always at the beginning of the doubly linked list and all exclusive
processes are at the end, the function always wakes the nonexclusive processes and then
wakes one exclusive process, if any exists.[*]

[*] By the w ay, it is rather uncommon that a w ait queue includes both exclusive and nonexclusive processes.

3.2.5. Process Resource Limits

Each process has an associated set of resource limits , which specify the amount of system
resources it can use. These limits keep a user from overwhelming the system (its CPU, disk
space, and so on). Linux recognizes the following resource limits illustrated in Table 3-7.

The resource limits for the current process are stored in the current->signal->rlim field, that
is, in a field of the process's signal descriptor (see the section "Data Structures Associated
with Signals" in Chapter 11). The field is an array of elements of type struct rlimit, one for
each resource limit:

    struct rlimit {

        unsigned long rlim_cur;

        unsigned long rlim_max;

    };

Table 3-7. Resource limits

Field name Description

RLIMIT_AS The maximum size of process address space, in bytes. The kernel
checks this value when the process uses malloc( ) or a related
function to enlarge its address space (see the section "The
Process's Address Space" in Chapter 9).

RLIMIT_CORE The maximum core dump file size, in bytes. The kernel checks this
value when a process is aborted, before creating a core file in the
current directory of the process (see the section "Actions Performed
upon Delivering a Signal" in Chapter 11). If the limit is 0, the kernel
won't create the file.

RLIMIT_CPU The maximum CPU time for the process, in seconds. If the process
exceeds the limit, the kernel sends it a SIGXCPU signal, and then, if
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Table 3-7. Resource limits

Field name Description

the process doesn't terminate, a SIGKILL signal (see Chapter 11).

RLIMIT_DATA

The maximum heap size, in bytes. The kernel checks this value
before expanding the heap of the process (see the section "
Managing the Heap" in Chapter 9).

RLIMIT_FSIZE

The maximum file size allowed, in bytes. If the process tries to
enlarge a file to a size greater than this value, the kernel sends it a 
SIGXFSZ signal.

RLIMIT_LOCKS Maximum number of file locks (currently, not enforced).

RLIMIT_MEMLOCK The maximum size of nonswappable memory, in bytes. The kernel
checks this value when the process tries to lock a page frame in
memory using the mlock( ) or mlockall( ) system calls (see the
section "Allocating a Linear Address Interval" in Chapter 9).

RLIMIT_MSGQUEUE Maximum number of bytes in POSIX message queues (see the
section "POSIX Message Queues" in Chapter 19).

RLIMIT_NOFILE

The maximum number of open file descriptors . The kernel checks
this value when opening a new file or duplicating a file descriptor
(see Chapter 12).

RLIMIT_NPROC

The maximum number of processes that the user can own (see the
section "The clone( ), fork( ), and vfork( ) System Calls" later in this
chapter).

RLIMIT_RSS The maximum number of page frames owned by the process
(currently, not enforced).

RLIMIT_SIGPENDING The maximum number of pending signals for the process (see 
Chapter 11).

RLIMIT_STACK The maximum stack size, in bytes. The kernel checks this value
before expanding the User Mode stack of the process (see the
section "Page Fault Exception Handler" in Chapter 9).

The rlim_cur field is the current resource limit for the resource. For example,
current->signal->rlim[RLIMIT_CPU].rlim_cur represents the current limit on the CPU time of
the running process.

The rlim_max field is the maximum allowed value for the resource limit. By using the getrlimit(
) and setrlimit( ) system calls, a user can always increase the rlim_cur limit of some
resource up to rlim_max. However, only the superuser (or, more precisely, a user who has the
CAP_SYS_RESOURCE capability) can increase the rlim_max field or set the rlim_cur field to a value
greater than the corresponding rlim_max field.

Most resource limits contain the value RLIM_INFINITY (0xffffffff), which means that no user
limit is imposed on the corresponding resource (of course, real limits exist due to kernel design
restrictions, available RAM, available space on disk, etc.). However, the system administrator
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may choose to impose stronger limits on some resources. Whenever a user logs into the
system, the kernel creates a process owned by the superuser, which can invoke setrlimit( )
to decrease the rlim_max and rlim_cur fields for a resource. The same process later executes
a login shell and becomes owned by the user. Each new process created by the user inherits
the content of the rlim array from its parent, and therefore the user cannot override the
limits enforced by the administrator.
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3.3. Process Switch
To control the execution of processes, the kernel must be able to suspend the execution of
the process running on the CPU and resume the execution of some other process previously
suspended. This activity goes variously by the names process switch, task switch, or context
switch. The next sections describe the elements of process switching in Linux.

3.3.1. Hardware Context

While each process can have its own address space, all processes have to share the CPU
registers. So before resuming the execution of a process, the kernel must ensure that each
such register is loaded with the value it had when the process was suspended.

The set of data that must be loaded into the registers before the process resumes its
execution on the CPU is called the hardware context . The hardware context is a subset of
the process execution context, which includes all information needed for the process
execution. In Linux, a part of the hardware context of a process is stored in the process
descriptor, while the remaining part is saved in the Kernel Mode stack.

In the description that follows, we will assume the prev local variable refers to the process
descriptor of the process being switched out and next refers to the one being switched in to
replace it. We can thus define a process switch as the activity consisting of saving the
hardware context of prev and replacing it with the hardware context of next. Because process
switches occur quite often, it is important to minimize the time spent in saving and loading
hardware contexts.

Old versions of Linux took advantage of the hardware support offered by the 80x86
architecture and performed a process switch through a far jmp instruction[*] to the selector of
the Task State Segment Descriptor of the next process. While executing the instruction, the
CPU performs a hardware context switch by automatically saving the old hardware context
and loading a new one. But Linux 2.6 uses software to perform a process switch for the
following reasons:

[*] far jmp instructions modify both the cs and eip registers, w hile simple jmp instructions modify only eip.

 Step-by-step switching performed through a sequence of mov instructions allows better
control over the validity of the data being loaded. In particular, it is possible to check
the values of the ds and es segmentation registers, which might have been forged by a
malicious user. This type of checking is not possible when using a single far jmp
instruction.

 The amount of time required by the old approach and the new approach is about the
same. However, it is not possible to optimize a hardware context switch, while there
might be room for improving the current switching code.

Process switching occurs only in Kernel Mode. The contents of all registers used by a process
in User Mode have already been saved on the Kernel Mode stack before performing process
switching (see Chapter 4). This includes the contents of the ss and esp pair that specifies the
User Mode stack pointer address.

3.3.2. Task State Segment

The 80x86 architecture includes a specific segment type called the Task State Segment
(TSS), to store hardware contexts. Although Linux doesn't use hardware context switches, it
is nonetheless forced to set up a TSS for each distinct CPU in the system. This is done for
two main reasons:
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 When an 80x86 CPU switches from User Mode to Kernel Mode, it fetches the address of
the Kernel Mode stack from the TSS (see the sections "Hardware Handling of Interrupts
and Exceptions" in Chapter 4 and "Issuing a System Call via the sysenter Instruction"
in Chapter 10).

 When a User Mode process attempts to access an I/O port by means of an in or out
instruction, the CPU may need to access an I/O Permission Bitmap stored in the TSS to
verify whether the process is allowed to address the port.

More precisely, when a process executes an in or out I/O instruction in User Mode, the
control unit performs the following operations:

1. It checks the 2-bit IOPL field in the eflags register. If it is set to 3, the control
unit executes the I/O instructions. Otherwise, it performs the next check.

2. It accesses the tr register to determine the current TSS, and thus the proper
I/O Permission Bitmap.

3. It checks the bit of the I/O Permission Bitmap corresponding to the I/O port
specified in the I/O instruction. If it is cleared, the instruction is executed;
otherwise, the control unit raises a "General protection " exception.

The tss_struct structure describes the format of the TSS. As already mentioned in Chapter 2,
the init_tss array stores one TSS for each CPU on the system. At each process switch, the
kernel updates some fields of the TSS so that the corresponding CPU's control unit may safely
retrieve the information it needs. Thus, the TSS reflects the privilege of the current process
on the CPU, but there is no need to maintain TSSs for processes when they're not running.

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This descriptor includes
a 32-bit Base field that points to the TSS starting address and a 20-bit Limit field. The S flag
of a TSSD is cleared to denote the fact that the corresponding TSS is a System Segment
(see the section "Segment Descriptors" in Chapter 2).

The Type field is set to either 9 or 11 to denote that the segment is actually a TSS. In the
Intel's original design, each process in the system should refer to its own TSS; the second
least significant bit of the Type field is called the Busy bit; it is set to 1 if the process is being
executed by a CPU, and to 0 otherwise. In Linux design, there is just one TSS for each CPU,
so the Busy bit is always set to 1.

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose base
address is stored in the gdtr register of each CPU. The tr register of each CPU contains the
TSSD Selector of the corresponding TSS. The register also includes two hidden,
nonprogrammable fields: the Base and Limit fields of the TSSD. In this way, the processor can
address the TSS directly without having to retrieve the TSS address from the GDT.

3.3.2.1. The thread field

At every process switch, the hardware context of the process being replaced must be saved
somewhere. It cannot be saved on the TSS, as in the original Intel design, because Linux uses
a single TSS for each processor, instead of one for every process.

Thus, each process descriptor includes a field called thread of type thread_struct, in which
the kernel saves the hardware context whenever the process is being switched out. As we'll
see later, this data structure includes fields for most of the CPU registers, except the
general-purpose registers such as eax, ebx, etc., which are stored in the Kernel Mode stack.

3.3.3. Performing the Process Switch

A process switch may occur at just one well-defined point: the schedule( ) function, which is
discussed at length in Chapter 7. Here, we are only concerned with how the kernel performs a
process switch.
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Essentially, every process switch consists of two steps:

1. Switching the Page Global Directory to install a new address space; we'll describe this
step in Chapter 9.

2. Switching the Kernel Mode stack and the hardware context, which provides all the
information needed by the kernel to execute the new process, including the CPU
registers.

Again, we assume that prev points to the descriptor of the process being replaced, and next
to the descriptor of the process being activated. As we'll see in Chapter 7, prev and next are
local variables of the schedule( ) function.

3.3.3.1. The switch_to macro

The second step of the process switch is performed by the switch_to macro. It is one of the
most hardware-dependent routines of the kernel, and it takes some effort to understand what
it does.

First of all, the macro has three parameters, called prev, next, and last. You might easily
guess the role of prev and next: they are just placeholders for the local variables prev and
next, that is, they are input parameters that specify the memory locations containing the
descriptor address of the process being replaced and the descriptor address of the new
process, respectively.

What about the third parameter, last? Well, in any process switch three processes are
involved, not just two. Suppose the kernel decides to switch off process A and to activate
process B. In the schedule( ) function, prev points to A's descriptor and next points to B's
descriptor. As soon as the switch_to macro deactivates A, the execution flow of A freezes.

Later, when the kernel wants to reactivate A, it must switch off another process C (in
general, this is different from B) by executing another switch_to macro with prev pointing to C
and next pointing to A. When A resumes its execution flow, it finds its old Kernel Mode stack,
so the prev local variable points to A's descriptor and next points to B's descriptor. The
scheduler, which is now executing on behalf of process A, has lost any reference to C. This
reference, however, turns out to be useful to complete the process switching (see Chapter 7
for more details).

The last parameter of the switch_to macro is an output parameter that specifies a memory
location in which the macro writes the descriptor address of process C (of course, this is done
after A resumes its execution). Before the process switching, the macro saves in the eax CPU
register the content of the variable identified by the first input parameter prevthat is, the prev
local variable allocated on the Kernel Mode stack of A. After the process switching, when A
has resumed its execution, the macro writes the content of the eax CPU register in the
memory location of A identified by the third output parameter last. Because the CPU register
doesn't change across the process switch, this memory location receives the address of C's
descriptor. In the current implementation of schedule( ), the last parameter identifies the prev
local variable of A, so prev is overwritten with the address of C.

The contents of the Kernel Mode stacks of processes A, B, and C are shown in Figure 3-7,
together with the values of the eax register; be warned that the figure shows the value of
the prev local variable before its value is overwritten with the contents of the eax register.

Figure 3-7. Preserving the reference to process C across a process
switch
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The switch_to macro is coded in extended inline assembly language that makes for rather
complex reading: in fact, the code refers to registers by means of a special positional notation
that allows the compiler to freely choose the general-purpose registers to be used. Rather
than follow the cumbersome extended inline assembly language, we'll describe what the 
switch_to macro typically does on an 80x86 microprocessor by using standard assembly
language:

1. Saves the values of prev and next in the eax and edx registers, respectively:
2.
3.     movl prev, %eax

    movl next, %edx

4. Saves the contents of the eflags and ebp registers in the prev Kernel Mode stack.
They must be saved because the compiler assumes that they will stay unchanged until
the end of switch_to:

5.
6.     pushfl

    pushl %ebp

7. Saves the content of esp in prev->thread.esp so that the field points to the top of the
prev Kernel Mode stack:

8.
    movl %esp,484(%eax)

The 484(%eax) operand identifies the memory cell whose address is the contents of eax
plus 484.

9. Loads next->thread.esp in esp. From now on, the kernel operates on the Kernel Mode
stack of next, so this instruction performs the actual process switch from prev to next.
Because the address of a process descriptor is closely related to that of the Kernel
Mode stack (as explained in the section "Identifying a Process" earlier in this chapter),
changing the kernel stack means changing the current process:

10.
    movl 484(%edx), %esp

11. Saves the address labeled 1 (shown later in this section) in prev->thread.eip. When
the process being replaced resumes its execution, the process executes the instruction
labeled as 1:

12.
    movl $1f, 480(%eax)
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13. On the Kernel Mode stack of next, the macro pushes the next->thread.eip value,
which, in most cases, is the address labeled as 1:

14.
    pushl 480(%edx)

15. Jumps to the _ _switch_to( ) C function (see next):
16.

    jmp _ _switch_to

17. Here process A that was replaced by B gets the CPU again: it executes a few
instructions that restore the contents of the eflags and ebp registers. The first of
these two instructions is labeled as 1:

18.
19.     1:

20.         popl %ebp

        popfl

Notice how these pop instructions refer to the kernel stack of the prev process. They
will be executed when the scheduler selects prev as the new process to be executed
on the CPU, thus invoking switch_to with prev as the second parameter. Therefore,
the esp register points to the prev's Kernel Mode stack.

21. Copies the content of the eax register (loaded in step 1 above) into the memory
location identified by the third parameter last of the switch_to macro:

22.
    movl %eax, last

As discussed earlier, the eax register points to the descriptor of the process that has
just been replaced.[*]

[*] As stated earlier in this section, the current implementation of the schedule( ) function reuses the
prev local variable, so that the assembly language instruction looks like movl %eax,prev.

3.3.3.2. The _ _switch_to ( ) function

The _ _switch_to( ) function does the bulk of the process switch started by the switch_to( )
macro. It acts on the prev_p and next_p parameters that denote the former process and the
new process. This function call is different from the average function call, though, because _
_switch_to( ) takes the prev_p and next_p parameters from the eax and edx registers (where
we saw they were stored), not from the stack like most functions. To force the function to go
to the registers for its parameters, the kernel uses the _ _attribute_ _ and regparm keywords,
which are nonstandard extensions of the C language implemented by the gcc compiler. The _
_switch_to( ) function is declared in the include /asm-i386 /system.h header file as follows:

    _ _switch_to(struct task_struct *prev_p,

                struct task_struct *next_p)

       _ _attribute_ _(regparm(3));

The steps performed by the function are the following:

1. Executes the code yielded by the _ _unlazy_fpu( ) macro (see the section "Saving and
Loading the FPU , MMX, and XMM Registers" later in this chapter) to optionally save
the contents of the FPU, MMX, and XMM registers of the prev_p process.

2.
    _ _unlazy_fpu(prev_p);
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3. Executes the smp_processor_id( ) macro to get the index of the local CPU , namely the
CPU that executes the code. The macro gets the index from the cpu field of the
tHRead_info structure of the current process and stores it into the cpu local variable.

4. Loads next_p->thread.esp0 in the esp0 field of the TSS relative to the local CPU; as
we'll see in the section "Issuing a System Call via the sysenter Instruction " in Chapter
10, any future privilege level change from User Mode to Kernel Mode raised by a
sysenter assembly instruction will copy this address in the esp register:

5.
    init_tss[cpu].esp0 = next_p->thread.esp0;

6. Loads in the Global Descriptor Table of the local CPU the Thread-Local Storage (TLS)
segments used by the next_p process; the three Segment Selectors are stored in the
tls_array array inside the process descriptor (see the section "Segmentation in Linux"
in Chapter 2).

7.
8.     cpu_gdt_table[cpu][6] = next_p->thread.tls_array[0];

9.     cpu_gdt_table[cpu][7] = next_p->thread.tls_array[1];

    cpu_gdt_table[cpu][8] = next_p->thread.tls_array[2];

10. Stores the contents of the fs and gs segmentation registers in prev_p->thread.fs and
prev_p->thread.gs, respectively; the corresponding assembly language instructions are:

11.
12.     movl %fs, 40(%esi)

    movl %gs, 44(%esi)

The esi register points to the prev_p->thread structure.

13. If the fs or the gs segmentation register have been used either by the prev_p or by
the next_p process (i.e., if they have a nonzero value), loads into these registers the
values stored in the thread_struct descriptor of the next_p process. This step logically
complements the actions performed in the previous step. The main assembly language
instructions are:

14.
15.     movl 40(%ebx),%fs

    movl 44(%ebx),%gs

The ebx register points to the next_p->thread structure. The code is actually more
intricate, as an exception might be raised by the CPU when it detects an invalid
segment register value. The code takes this possibility into account by adopting a
"fix-up" approach (see the section "Dynamic Address Checking: The Fix-up Code" in
Chapter 10).

16. Loads six of the dr0,..., dr7 debug registers [*] with the contents of the
next_p->thread.debugreg array. This is done only if next_p was using the debug
registers when it was suspended (that is, field next_p->thread.debugreg[7] is not 0).
These registers need not be saved, because the prev_p->thread.debugreg array is
modified only when a debugger wants to monitor prev:

[*] The 80x86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint
areas may be defined. Whenever a monitored process issues a linear address included in one of the
breakpoint areas, an exception occurs.

    if (next_p->thread.debugreg[7]){

        loaddebug(&next_p->thread, 0);

        loaddebug(&next_p->thread, 1);

        loaddebug(&next_p->thread, 2);
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        loaddebug(&next_p->thread, 3);

        /* no 4 and 5 */

        loaddebug(&next_p->thread, 6);

        loaddebug(&next_p->thread, 7);

    }

17. Updates the I/O bitmap in the TSS, if necessary. This must be done when either next_p
or prev_p has its own customized I/O Permission Bitmap:

18.
19.     if (prev_p->thread.io_bitmap_ptr || next_p->thread.io_bitmap_ptr)

        handle_io_bitmap(&next_p->thread, &init_tss[cpu]);

Because processes seldom modify the I/O Permission Bitmap, this bitmap is handled in a
"lazy" mode: the actual bitmap is copied into the TSS of the local CPU only if a process
actually accesses an I/O port in the current timeslice. The customized I/O Permission
Bitmap of a process is stored in a buffer pointed to by the io_bitmap_ptr field of the
tHRead_info structure. The handle_io_bitmap( ) function sets up the io_bitmap field of
the TSS used by the local CPU for the next_p process as follows:

o If the next_p process does not have its own customized I/O Permission Bitmap,
the io_bitmap field of the TSS is set to the value 0x8000.

o If the next_p process has its own customized I/O Permission Bitmap, the
io_bitmap field of the TSS is set to the value 0x9000.

The io_bitmap field of the TSS should contain an offset inside the TSS where the
actual bitmap is stored. The 0x8000 and 0x9000 values point outside of the TSS limit
and will thus cause a "General protection " exception whenever the User Mode process
attempts to access an I/O port (see the section "Exceptions" in Chapter 4). The
do_general_protection( ) exception handler will check the value stored in the
io_bitmap field: if it is 0x8000, the function sends a SIGSEGV signal to the User Mode
process; otherwise, if it is 0x9000, the function copies the process bitmap (pointed to
by the io_bitmap_ptr field in the tHRead_info structure) in the TSS of the local CPU,
sets the io_bitmap field to the actual bitmap offset (104), and forces a new execution
of the faulty assembly language instruction.

20. Terminates. The _ _switch_to( ) C function ends by means of the statement:
21.

    return prev_p;

The corresponding assembly language instructions generated by the compiler are:

    movl %edi,%eax

    ret 

The prev_p parameter (now in edi) is copied into eax, because by default the return
value of any C function is passed in the eax register. Notice that the value of eax is
thus preserved across the invocation of _ _switch_to( ); this is quite important,
because the invoking switch_to macro assumes that eax always stores the address of
the process descriptor being replaced.

The ret assembly language instruction loads the eip program counter with the return
address stored on top of the stack. However, the _ _switch_to( ) function has been
invoked simply by jumping into it. Therefore, the ret instruction finds on the stack the
address of the instruction labeled as 1, which was pushed by the switch_to macro. If
next_p was never suspended before because it is being executed for the first time, the
function finds the starting address of the ret_from_fork( ) function (see the section "
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The clone( ), fork( ), and vfork( ) System Calls" later in this chapter).

3.3.4. Saving and Loading the FPU, MMX, and XMM Registers

Starting with the Intel 80486DX, the arithmetic floating-point unit (FPU) has been integrated
into the CPU. The name mathematical coprocessor continues to be used in memory of the
days when floating-point computations were executed by an expensive special-purpose chip.
To maintain compatibility with older models, however, floating-point arithmetic functions are
performed with ESCAPE instructions , which are instructions with a prefix byte ranging
between 0xd8 and 0xdf. These instructions act on the set of floating-point registers included
in the CPU. Clearly, if a process is using ESCAPE instructions, the contents of the
floating-point registers belong to its hardware context and should be saved.

In later Pentium models, Intel introduced a new set of assembly language instructions into its
microprocessors. They are called MMX instructions and are supposed to speed up the
execution of multimedia applications. MMX instructions act on the floating-point registers of
the FPU. The obvious disadvantage of this architectural choice is that programmers cannot
mix floating-point instructions and MMX instructions. The advantage is that operating system
designers can ignore the new instruction set, because the same facility of the task-switching
code for saving the state of the floating-point unit can also be relied upon to save the MMX
state.

MMX instructions speed up multimedia applications, because they introduce a
single-instruction multiple-data (SIMD) pipeline inside the processor. The Pentium III model
extends that SIMD capability: it introduces the SSE extensions (Streaming SIMD Extensions),
which adds facilities for handling floating-point values contained in eight 128-bit registers
called the XMM registers . Such registers do not overlap with the FPU and MMX registers , so
SSE and FPU/MMX instructions may be freely mixed. The Pentium 4 model introduces yet
another feature: the SSE2 extensions, which is basically an extension of SSE supporting
higher-precision floating-point values. SSE2 uses the same set of XMM registers as SSE.

The 80x86 microprocessors do not automatically save the FPU, MMX, and XMM registers in the
TSS. However, they include some hardware support that enables kernels to save these
registers only when needed. The hardware support consists of a TS (Task-Switching) flag in
the cr0 register, which obeys the following rules:

 Every time a hardware context switch is performed, the TS flag is set.

 Every time an ESCAPE, MMX, SSE, or SSE2 instruction is executed when the TS flag is
set, the control unit raises a "Device not available " exception (see Chapter 4).

The TS flag allows the kernel to save and restore the FPU, MMX, and XMM registers only when
really needed. To illustrate how it works, suppose that a process A is using the mathematical
coprocessor. When a context switch occurs from A to B, the kernel sets the TS flag and
saves the floating-point registers into the TSS of process A. If the new process B does not
use the mathematical coprocessor, the kernel won't need to restore the contents of the
floating-point registers. But as soon as B tries to execute an ESCAPE or MMX instruction, the
CPU raises a "Device not available" exception, and the corresponding handler loads the
floating-point registers with the values saved in the TSS of process B.

Let's now describe the data structures introduced to handle selective loading of the FPU,
MMX, and XMM registers. They are stored in the thread.i387 subfield of the process
descriptor, whose format is described by the i387_union union:

    union i387_union {

        struct i387_fsave_struct    fsave;

        struct i387_fxsave_struct   fxsave;

        struct i387_soft_struct     soft;

    };
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As you see, the field may store just one of three different types of data structures. The 
i387_soft_struct type is used by CPU models without a mathematical coprocessor; the Linux
kernel still supports these old chips by emulating the coprocessor via software. We don't
discuss this legacy case further, however. The i387_fsave_struct type is used by CPU models
with a mathematical coprocessor and, optionally, an MMX unit. Finally, the i387_fxsave_struct
type is used by CPU models featuring SSE and SSE2 extensions.

The process descriptor includes two additional flags:

 The TS_USEDFPU flag, which is included in the status field of the thread_info descriptor.
It specifies whether the process used the FPU, MMX, or XMM registers in the current
execution run.

 The PF_USED_MATH flag, which is included in the flags field of the task_struct descriptor.
This flag specifies whether the contents of the thread.i387 subfield are significant. The
flag is cleared (not significant) in two cases, shown in the following list.

o When the process starts executing a new program by invoking an execve( )
system call (see Chapter 20). Because control will never return to the former
program, the data currently stored in thread.i387 is never used again.

o When a process that was executing a program in User Mode starts executing a
signal handler procedure (see Chapter 11). Because signal handlers are
asynchronous with respect to the program execution flow, the floating-point
registers could be meaningless to the signal handler. However, the kernel saves
the floating-point registers in thread.i387 before starting the handler and
restores them after the handler terminates. Therefore, a signal handler is
allowed to use the mathematical coprocessor.

3.3.4.1. Saving the FPU registers

As stated earlier, the _ _switch_to( ) function executes the _ _unlazy_fpu macro, passing the
process descriptor of the prev process being replaced as an argument. The macro checks the
value of the TS_USEDFPU flags of prev. If the flag is set, prev has used an FPU, MMX, SSE, or
SSE2 instructions; therefore, the kernel must save the relative hardware context:

    if (prev->thread_info->status & TS_USEDFPU)

        save_init_fpu(prev);

The save_init_fpu( ) function, in turn, executes essentially the following operations:

1. Dumps the contents of the FPU registers in the process descriptor of prev and then
reinitializes the FPU. If the CPU uses SSE/SSE2 extensions, it also dumps the contents
of the XMM registers and reinitializes the SSE/SSE2 unit. A couple of powerful
extended inline assembly language instructions take care of everything, either:

2.
3.     asm volatile( "fxsave 

4.  %0 ; fnclex"

        : "=m" (prev->thread.i387.fxsave) );

if the CPU uses SSE/SSE2 extensions, or otherwise:

    asm volatile( "fnsave 

 %0 ; fwait"

        : "=m" (prev->thread.i387.fsave) );

5. Resets the TS_USEDFPU flag of prev:
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6.
    prev->thread_info->status &= ~TS_USEDFPU;

7. Sets the CW flag of cr0 by means of the stts( ) macro, which in practice yields
assembly language instructions like the following:

8.
9.     movl %cr0, %eax

10.     orl $8,%eax

    movl %eax, %cr0

3.3.4.2. Loading the FPU registers

The contents of the floating-point registers are not restored right after the next process
resumes execution. However, the TS flag of cr0 has been set by _ _unlazy_fpu( ). Thus, the
first time the next process tries to execute an ESCAPE, MMX, or SSE/SSE2 instruction, the
control unit raises a "Device not available" exception, and the kernel (more precisely, the
exception handler involved by the exception) runs the math_state_restore( ) function. The
next process is identified by this handler as current.

    void math_state_restore( )

    {

        asm volatile ("clts"); /* clear the TS flag of cr0 */

        if (!(current->flags & PF_USED_MATH))

            init_fpu(current);

        restore_fpu(current);

        current->thread.status |= TS_USEDFPU;

    }

The function clears the CW flags of cr0, so that further FPU, MMX, or SSE/SSE2 instructions
executed by the process won't trigger the "Device not available" exception. If the contents of
the thread.i387 subfield are not significant, i.e., if the PF_USED_MATH flag is equal to 0,
init_fpu() is invoked to reset the tHRead.i387 subfield and to set the PF_USED_MATH flag of
current to 1. The restore_fpu( ) function is then invoked to load the FPU registers with the
proper values stored in the thread.i387 subfield. To do this, either the fxrstor or the frstor
assembly language instructions are used, depending on whether the CPU supports SSE/SSE2
extensions. Finally, math_state_restore( ) sets the TS_USEDFPU flag.

3.3.4.3. Using the FPU, MMX, and SSE/SSE2 units in Kernel Mode

Even the kernel can make use of the FPU, MMX, or SSE/SSE2 units. In doing so, of course, it
should avoid interfering with any computation carried on by the current User Mode process.
Therefore:

 Before using the coprocessor, the kernel must invoke kernel_fpu_begin( ), which
essentially calls save_init_fpu( ) to save the contents of the registers if the User
Mode process used the FPU (TS_USEDFPU flag), and then resets the TS flag of the cr0
register.

 After using the coprocessor, the kernel must invoke kernel_fpu_end( ), which sets the
TS flag of the cr0 register.

Later, when the User Mode process executes a coprocessor instruction, the 
math_state_restore( ) function will restore the contents of the registers, just as in process
switch handling.

It should be noted, however, that the execution time of kernel_fpu_begin( ) is rather large
when the current User Mode process is using the coprocessor, so much as to nullify the
speedup obtained by using the FPU, MMX, or SSE/SSE2 units. As a matter of fact, the kernel
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uses them only in a few places, typically when moving or clearing large memory areas or when
computing checksum functions.
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3.4. Creating Processes
Unix operating systems rely heavily on process creation to satisfy user requests. For example,
the shell creates a new process that executes another copy of the shell whenever the user
enters a command.

Traditional Unix systems treat all processes in the same way: resources owned by the parent
process are duplicated in the child process. This approach makes process creation very slow
and inefficient, because it requires copying the entire address space of the parent process.
The child process rarely needs to read or modify all the resources inherited from the parent; in
many cases, it issues an immediate execve( ) and wipes out the address space that was so
carefully copied.

Modern Unix kernels solve this problem by introducing three different mechanisms:

 The Copy On Write technique allows both the parent and the child to read the same
physical pages. Whenever either one tries to write on a physical page, the kernel
copies its contents into a new physical page that is assigned to the writing process.
The implementation of this technique in Linux is fully explained in Chapter 9.

 Lightweight processes allow both the parent and the child to share many per-process
kernel data structures, such as the paging tables (and therefore the entire User Mode
address space), the open file tables, and the signal dispositions.

 The vfork( ) system call creates a process that shares the memory address space of
its parent. To prevent the parent from overwriting data needed by the child, the
parent's execution is blocked until the child exits or executes a new program. We'll
learn more about the vfork( ) system call in the following section.

3.4.1. The clone( ), fork( ), and vfork( ) System Calls

Lightweight processes are created in Linux by using a function named clone( ), which uses
the following parameters:

fn

Specifies a function to be executed by the new process; when the function returns,
the child terminates. The function returns an integer, which represents the exit code
for the child process.

arg

Points to data passed to the fn( ) function.

flags

Miscellaneous information. The low byte specifies the signal number to be sent to the
parent process when the child terminates; the SIGCHLD signal is generally selected. The
remaining three bytes encode a group of clone flags, which are shown in Table 3-8.

child_stack

Specifies the User Mode stack pointer to be assigned to the esp register of the child
process. The invoking process (the parent) should always allocate a new stack for the
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child.

tls

Specifies the address of a data structure that defines a Thread Local Storage segment
for the new lightweight process (see the section "The Linux GDT" in Chapter 2).
Meaningful only if the CLONE_SETTLS flag is set.

ptid

Specifies the address of a User Mode variable of the parent process that will hold the
PID of the new lightweight process. Meaningful only if the CLONE_PARENT_SETTID flag is
set.

ctid

Specifies the address of a User Mode variable of the new lightweight process that will
hold the PID of such process. Meaningful only if the CLONE_CHILD_SETTID flag is set.

Table 3-8. Clone flags

Flag name Description

CLONE_VM Shares the memory descriptor and all Page Tables (see Chapter 9).

CLONE_FS Shares the table that identifies the root directory and the current
working directory, as well as the value of the bitmask used to mask
the initial file permissions of a new file (the so-called file umask ).

CLONE_FILES Shares the table that identifies the open files (see Chapter 12).

CLONE_SIGHAND Shares the tables that identify the signal handlers and the blocked
and pending signals (see Chapter 11). If this flag is true, the
CLONE_VM flag must also be set.

CLONE_PTRACE If traced, the parent wants the child to be traced too. Furthermore,
the debugger may want to trace the child on its own; in this case,
the kernel forces the flag to 1.

CLONE_VFORK Set when the system call issued is a vfork( ) (see later in this
section).

CLONE_PARENT Sets the parent of the child (parent and real_parent fields in the
process descriptor) to the parent of the calling process.

CLONE_THREAD Inserts the child into the same thread group of the parent, and
forces the child to share the signal descriptor of the parent. The
child's tgid and group_leader fields are set accordingly. If this flag is
true, the CLONE_SIGHAND flag must also be set.

CLONE_NEWNS Set if the clone needs its own namespace, that is, its own view of
the mounted filesystems (see Chapter 12); it is not possible to
specify both CLONE_NEWNS and CLONE_FS.
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Table 3-8. Clone flags

Flag name Description

CLONE_SYSVSEM Shares the System V IPC undoable semaphore operations (see the
section "IPC Semaphores" in Chapter 19).

CLONE_SETTLS

Creates a new Thread Local Storage (TLS) segment for the
lightweight process; the segment is described in the structure
pointed to by the tls parameter.

CLONE_PARENT_SETTID Writes the PID of the child into the User Mode variable of the parent
pointed to by the ptid parameter.

CLONE_CHILD_CLEARTID When set, the kernel sets up a mechanism to be triggered when the
child process will exit or when it will start executing a new program.
In these cases, the kernel will clear the User Mode variable pointed
to by the ctid parameter and will awaken any process waiting for
this event.

CLONE_DETACHED A legacy flag ignored by the kernel.

CLONE_UNTRACED Set by the kernel to override the value of the CLONE_PTRACE flag
(used for disabling tracing of kernel threads ; see the section "Kernel
Threads" later in this chapter).

CLONE_CHILD_SETTID Writes the PID of the child into the User Mode variable of the child
pointed to by the ctid parameter.

CLONE_STOPPED Forces the child to start in the TASK_STOPPED state.

clone( ) is actually a wrapper function defined in the C library (see the section "POSIX APIs
and System Calls" in Chapter 10), which sets up the stack of the new lightweight process and
invokes a clone( ) system call hidden to the programmer. The sys_clone( ) service routine
that implements the clone( ) system call does not have the fn and arg parameters. In fact,
the wrapper function saves the pointer fn into the child's stack position corresponding to the
return address of the wrapper function itself; the pointer arg is saved on the child's stack
right below fn. When the wrapper function terminates, the CPU fetches the return address
from the stack and executes the fn(arg) function.

The traditional fork( ) system call is implemented by Linux as a clone( ) system call whose
flags parameter specifies both a SIGCHLD signal and all the clone flags cleared, and whose
child_stack parameter is the current parent stack pointer. Therefore, the parent and child
temporarily share the same User Mode stack. But thanks to the Copy On Write mechanism,
they usually get separate copies of the User Mode stack as soon as one tries to change the
stack.

The vfork( ) system call, introduced in the previous section, is implemented by Linux as a
clone( ) system call whose flags parameter specifies both a SIGCHLD signal and the flags
CLONE_VM and CLONE_VFORK, and whose child_stack parameter is equal to the current parent
stack pointer.

3.4.1.1. The do_fork( ) function

The do_fork( ) function, which handles the clone( ), fork( ), and vfork( ) system calls, acts
on the following parameters:
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clone_flags

Same as the flags parameter of clone( )

stack_start

Same as the child_stack parameter of clone( )

regs

Pointer to the values of the general purpose registers saved into the Kernel Mode stack
when switching from User Mode to Kernel Mode (see the section "The do_IRQ( )
function" in Chapter 4)

stack_size

Unused (always set to 0)

parent_tidptr, child_tidptr

Same as the corresponding ptid and ctid parameters of clone()

do_fork( ) makes use of an auxiliary function called copy_process( ) to set up the process
descriptor and any other kernel data structure required for child's execution. Here are the
main steps performed by do_fork( ):

1. Allocates a new PID for the child by looking in the pidmap_array bitmap (see the earlier
section "Identifying a Process").

2. Checks the ptrace field of the parent (current->ptrace): if it is not zero, the parent
process is being traced by another process, thus do_fork( ) checks whether the
debugger wants to trace the child on its own (independently of the value of the 
CLONE_PTRACE flag specified by the parent); in this case, if the child is not a kernel
thread (CLONE_UNTRACED flag cleared), the function sets the CLONE_PTRACE flag.

3. Invokes copy_process() to make a copy of the process descriptor. If all needed
resources are available, this function returns the address of the task_struct descriptor
just created. This is the workhorse of the forking procedure, and we will describe it
right after do_fork( ).

4. If either the CLONE_STOPPED flag is set or the child process must be traced, that is, the
PT_PTRACED flag is set in p->ptrace, it sets the state of the child to TASK_STOPPED and
adds a pending SIGSTOP signal to it (see the section "The Role of Signals" in Chapter 11
). The state of the child will remain TASK_STOPPED until another process (presumably the
tracing process or the parent) will revert its state to TASK_RUNNING, usually by means of
a SIGCONT signal.

5. If the CLONE_STOPPED flag is not set, it invokes the wake_up_new_task( ) function, which
performs the following operations:

a. Adjusts the scheduling parameters of both the parent and the child (see "The
Scheduling Algorithm" in Chapter 7).

b. If the child will run on the same CPU as the parent,[*] and parent and child do
not share the same set of page tables (CLONE_VM flag cleared), it then forces
the child to run before the parent by inserting it into the parent's runqueue
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right before the parent. This simple step yields better performance if the child
flushes its address space and executes a new program right after the forking. If
we let the parent run first, the Copy On Write mechanism would give rise to a
series of unnecessary page duplications.

[*] The parent process might be moved on to another CPU while the kernel forks the new
process.

c. Otherwise, if the child will not be run on the same CPU as the parent, or if
parent and child share the same set of page tables (CLONE_VM flag set), it
inserts the child in the last position of the parent's runqueue.

6. If the CLONE_STOPPED flag is set, it puts the child in the TASK_STOPPED state.

7. If the parent process is being traced, it stores the PID of the child in the 
ptrace_message field of current and invokes ptrace_notify( ), which essentially stops
the current process and sends a SIGCHLD signal to its parent. The "grandparent" of the
child is the debugger that is tracing the parent; the SIGCHLD signal notifies the
debugger that current has forked a child, whose PID can be retrieved by looking into
the current->ptrace_message field.

8. If the CLONE_VFORK flag is specified, it inserts the parent process in a wait queue and
suspends it until the child releases its memory address space (that is, until the child
either terminates or executes a new program).

9. Terminates by returning the PID of the child.

3.4.1.2. The copy_process( ) function

The copy_process( ) function sets up the process descriptor and any other kernel data
structure required for a child's execution. Its parameters are the same as do_fork( ), plus the
PID of the child. Here is a description of its most significant steps:

1. Checks whether the flags passed in the clone_flags parameter are compatible. In
particular, it returns an error code in the following cases:

a. Both the flags CLONE_NEWNS and CLONE_FS are set.

b. The CLONE_THREAD flag is set, but the CLONE_SIGHAND flag is cleared (lightweight
processes in the same thread group must share signals).

c. The CLONE_SIGHAND flag is set, but the CLONE_VM flag is cleared (lightweight
processes sharing the signal handlers must also share the memory descriptor).

2. Performs any additional security checks by invoking security_task_create( ) and,
later, security_task_alloc( ). The Linux kernel 2.6 offers hooks for security extensions
that enforce a security model stronger than the one adopted by traditional Unix. See 
Chapter 20 for details.

3. Invokes dup_task_struct( ) to get the process descriptor for the child. This function
performs the following actions:

a. Invokes _ _unlazy_fpu( ) on the current process to save, if necessary, the
contents of the FPU, MMX, and SSE/SSE2 registers in the thread_info structure
of the parent. Later, dup_task_struct( ) will copy these values in the
thread_info structure of the child.

b. Executes the alloc_task_struct( ) macro to get a process descriptor (
task_struct structure) for the new process, and stores its address in the tsk
local variable.

c. Executes the alloc_thread_info macro to get a free memory area to store the
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thread_info structure and the Kernel Mode stack of the new process, and saves
its address in the ti local variable. As explained in the earlier section "
Identifying a Process," the size of this memory area is either 8 KB or 4 KB.

d. Copies the contents of the current's process descriptor into the task_struct
structure pointed to by tsk, then sets tsk->thread_info to ti.

e. Copies the contents of the current's thread_info descriptor into the structure
pointed to by ti, then sets ti->task to tsk.

f. Sets the usage counter of the new process descriptor (tsk->usage) to 2 to
specify that the process descriptor is in use and that the corresponding process
is alive (its state is not EXIT_ZOMBIE or EXIT_DEAD).

g. Returns the process descriptor pointer of the new process (tsk).

4. Checks whether the value stored in current->signal->rlim[RLIMIT_NPROC].rlim_cur is
smaller than or equal to the current number of processes owned by the user. If so, an
error code is returned, unless the process has root privileges. The function gets the
current number of processes owned by the user from a per-user data structure named 
user_struct. This data structure can be found through a pointer in the user field of the
process descriptor.

5. Increases the usage counter of the user_struct structure (tsk->user->_ _count field)
and the counter of the processes owned by the user (tsk->user->processes).

6. Checks that the number of processes in the system (stored in the nr_threads variable)
does not exceed the value of the max_threads variable. The default value of this
variable depends on the amount of RAM in the system. The general rule is that the
space taken by all tHRead_info descriptors and Kernel Mode stacks cannot exceed 1/8
of the physical memory. However, the system administrator may change this value by
writing in the /proc/sys/kernel/threads-max file.

7. If the kernel functions implementing the execution domain and the executable format
(see Chapter 20) of the new process are included in kernel modules, it increases their
usage counters (see Appendix B).

8. Sets a few crucial fields related to the process state:

a. Initializes the big kernel lock counter tsk->lock_depth to -1 (see the section "
The Big Kernel Lock" in Chapter 5).

b. Initializes the tsk->did_exec field to 0: it counts the number of execve( )
system calls issued by the process.

c. Updates some of the flags included in the tsk->flags field that have been
copied from the parent process: first clears the PF_SUPERPRIV flag, which
indicates whether the process has used any of its superuser privileges, then
sets the PF_FORKNOEXEC flag, which indicates that the child has not yet issued
an execve( ) system call.

9. Stores the PID of the new process in the tsk->pid field.

10. If the CLONE_PARENT_SETTID flag in the clone_flags parameter is set, it copies the child's
PID into the User Mode variable addressed by the parent_tidptr parameter.

11. Initializes the list_head data structures and the spin locks included in the child's
process descriptor, and sets up several other fields related to pending signals, timers,
and time statistics.

12. Invokes copy_semundo( ), copy_files( ), copy_fs( ), copy_sighand( ), copy_signal( ),
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copy_mm( ), and copy_namespace( ) to create new data structures and copy into them
the values of the corresponding parent process data structures, unless specified
differently by the clone_flags parameter.

13. Invokes copy_thread( ) to initialize the Kernel Mode stack of the child process with the
values contained in the CPU registers when the clone( ) system call was issued (these
values have been saved in the Kernel Mode stack of the parent, as described in 
Chapter 10). However, the function forces the value 0 into the field corresponding to
the eax register (this is the child's return value of the fork() or clone( ) system call).
The tHRead.esp field in the descriptor of the child process is initialized with the base
address of the child's Kernel Mode stack, and the address of an assembly language
function (ret_from_fork( )) is stored in the thread.eip field. If the parent process
makes use of an I/O Permission Bitmap, the child gets a copy of such bitmap. Finally, if
the CLONE_SETTLS flag is set, the child gets the TLS segment specified by the User
Mode data structure pointed to by the tls parameter of the clone( ) system call.[*]

[*] A careful reader might wonder how copy_thread( ) gets the value of the tls parameter of clone( ),
because tls is not passed to do_fork( ) and nested functions. As we'll see in Chapter 10, the
parameters of the system calls are usually passed to the kernel by copying their values into some
CPU register; thus, these values are saved in the Kernel Mode stack together with the other
registers. The copy_thread( ) function just looks at the address saved in the Kernel Mode stack location
corresponding to the value of esi.

14. If either CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID is set in the clone_flags
parameter, it copies the value of the child_tidptr parameter in the tsk->set_chid_tid
or tsk->clear_child_tid field, respectively. These flags specify that the value of the
variable pointed to by child_tidptr in the User Mode address space of the child has to
be changed, although the actual write operations will be done later.

15. Turns off the TIF_SYSCALL_TRACE flag in the tHRead_info structure of the child, so that
the ret_from_fork( ) function will not notify the debugging process about the system
call termination (see the section "Entering and Exiting a System Call" in Chapter 10).
(The system call tracing of the child is not disabled, because it is controlled by the 
PTRACE_SYSCALL flag in tsk->ptrace.)

16. Initializes the tsk->exit_signal field with the signal number encoded in the low bits of
the clone_flags parameter, unless the CLONE_THREAD flag is set, in which case initializes
the field to -1. As we'll see in the section "Process Termination" later in this chapter,
only the death of the last member of a thread group (usually, the thread group leader)
causes a signal notifying the parent of the thread group leader.

17. Invokes sched_fork( ) to complete the initialization of the scheduler data structure of
the new process. The function also sets the state of the new process to TASK_RUNNING
and sets the preempt_count field of the tHRead_info structure to 1, thus disabling kernel
preemption (see the section "Kernel Preemption" in Chapter 5). Moreover, in order to
keep process scheduling fair, the function shares the remaining timeslice of the parent
between the parent and the child (see "The scheduler_tick( ) Function" in Chapter 7).

18. Sets the cpu field in the thread_info structure of the new process to the number of the
local CPU returned by smp_processor_id( ).

19. Initializes the fields that specify the parenthood relationships. In particular, if 
CLONE_PARENT or CLONE_THREAD are set, it initializes tsk->real_parent and tsk->parent to
the value in current->real_parent; the parent of the child thus appears as the parent
of the current process. Otherwise, it sets the same fields to current.

20. If the child does not need to be traced (CLONE_PTRACE flag not set), it sets the
tsk->ptrace field to 0. This field stores a few flags used when a process is being traced
by another process. In such a way, even if the current process is being traced, the
child will not.
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21. Executes the SET_LINKS macro to insert the new process descriptor in the process list.

22. If the child must be traced (PT_PTRACED flag in the tsk->ptrace field set), it sets
tsk->parent to current->parent and inserts the child into the trace list of the debugger.

23. Invokes attach_pid( ) to insert the PID of the new process descriptor in the
pidhash[PIDTYPE_PID] hash table.

24. If the child is a thread group leader (flag CLONE_THREAD cleared):

a. Initializes tsk->tgid to tsk->pid.

b. Initializes tsk->group_leader to tsk.

c. Invokes three times attach_pid( ) to insert the child in the PID hash tables of
type PIDTYPE_TGID, PIDTYPE_PGID, and PIDTYPE_SID.

25. Otherwise, if the child belongs to the thread group of its parent (CLONE_THREAD flag
set):

a. Initializes tsk->tgid to tsk->current->tgid.

b. Initializes tsk->group_leader to the value in current->group_leader.

c. Invokes attach_pid( ) to insert the child in the PIDTYPE_TGID hash table (more
specifically, in the per-PID list of the current->group_leader process).

26. A new process has now been added to the set of processes: increases the value of
the nr_threads variable.

27. Increases the total_forks variable to keep track of the number of forked processes.

28. Terminates by returning the child's process descriptor pointer (tsk).

Let's go back to what happens after do_fork() terminates. Now we have a complete child
process in the runnable state. But it isn't actually running. It is up to the scheduler to decide
when to give the CPU to this child. At some future process switch, the schedule bestows this
favor on the child process by loading a few CPU registers with the values of the thread field of
the child's process descriptor. In particular, esp is loaded with thread.esp (that is, with the
address of child's Kernel Mode stack), and eip is loaded with the address of ret_from_fork( ).
This assembly language function invokes the schedule_tail( ) function (which in turn invokes
the finish_task_switch( ) function to complete the process switch; see the section "The
schedule( ) Function" in Chapter 7), reloads all other registers with the values stored in the
stack, and forces the CPU back to User Mode. The new process then starts its execution right
at the end of the fork( ), vfork( ), or clone( ) system call. The value returned by the
system call is contained in eax: the value is 0 for the child and equal to the PID for the child's
parent. To understand how this is done, look back at what copy_thread() does on the eax
register of the child's process (step 13 of copy_process()).

The child process executes the same code as the parent, except that the fork returns a 0
(see step 13 of copy_process( )). The developer of the application can exploit this fact, in a
manner familiar to Unix programmers, by inserting a conditional statement in the program
based on the PID value that forces the child to behave differently from the parent process.

3.4.2. Kernel Threads

Traditional Unix systems delegate some critical tasks to intermittently running processes,
including flushing disk caches, swapping out unused pages, servicing network connections,
and so on. Indeed, it is not efficient to perform these tasks in strict linear fashion; both their
functions and the end user processes get better response if they are scheduled in the
background. Because some of the system processes run only in Kernel Mode, modern
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operating systems delegate their functions to kernel threads , which are not encumbered with
the unnecessary User Mode context. In Linux, kernel threads differ from regular processes in
the following ways:

 Kernel threads run only in Kernel Mode, while regular processes run alternatively in
Kernel Mode and in User Mode.

 Because kernel threads run only in Kernel Mode, they use only linear addresses greater
than PAGE_OFFSET. Regular processes, on the other hand, use all four gigabytes of linear
addresses, in either User Mode or Kernel Mode.

3.4.2.1. Creating a kernel thread

The kernel_thread( ) function creates a new kernel thread. It receives as parameters the
address of the kernel function to be executed (fn), the argument to be passed to that
function (arg), and a set of clone flags (flags). The function essentially invokes do_fork( ) as
follows:

    do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, pregs, 0, NULL, NULL);

The CLONE_VM flag avoids the duplication of the page tables of the calling process: this
duplication would be a waste of time and memory, because the new kernel thread will not
access the User Mode address space anyway. The CLONE_UNTRACED flag ensures that no
process will be able to trace the new kernel thread, even if the calling process is being traced.

The pregs parameter passed to do_fork( ) corresponds to the address in the Kernel Mode
stack where the copy_thread( ) function will find the initial values of the CPU registers for the
new thread. The kernel_thread( ) function builds up this stack area so that:

 The ebx and edx registers will be set by copy_thread() to the values of the parameters
fn and arg, respectively.

 The eip register will be set to the address of the following assembly language
fragment:


     movl %edx,%eax

     pushl %edx

     call *%ebx

     pushl %eax

    call do_exit

Therefore, the new kernel thread starts by executing the fn(arg) function. If this function
terminates, the kernel thread executes the _exit( ) system call passing to it the return value
of fn( ) (see the section "Destroying Processes" later in this chapter).

3.4.2.2. Process 0

The ancestor of all processes, called process 0, the idle process, or, for historical reasons,
the swapper process, is a kernel thread created from scratch during the initialization phase of
Linux (see Appendix A). This ancestor process uses the following statically allocated data
structures (data structures for all other processes are dynamically allocated):

 A process descriptor stored in the init_task variable, which is initialized by the
INIT_TASK macro.

 A thread_info descriptor and a Kernel Mode stack stored in the init_thread_union
variable and initialized by the INIT_THREAD_INFO macro.

 The following tables, which the process descriptor points to:
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o init_mm

o init_fs

o init_files

o init_signals

o init_sighand

The tables are initialized, respectively, by the following macros:

o INIT_MM

o INIT_FS

o INIT_FILES

o INIT_SIGNALS

o INIT_SIGHAND

 The master kernel Page Global Directory stored in swapper_pg_dir (see the section "
Kernel Page Tables" in Chapter 2).

The start_kernel( ) function initializes all the data structures needed by the kernel, enables
interrupts, and creates another kernel thread, named process 1 (more commonly referred to
as the init process ):

    kernel_thread(init, NULL, CLONE_FS|CLONE_SIGHAND);

The newly created kernel thread has PID 1 and shares all per-process kernel data structures
with process 0. When selected by the scheduler, the init process starts executing the init( )
function.

After having created the init process, process 0 executes the cpu_idle( ) function, which
essentially consists of repeatedly executing the hlt assembly language instruction with the
interrupts enabled (see Chapter 4). Process 0 is selected by the scheduler only when there
are no other processes in the TASK_RUNNING state.

In multiprocessor systems there is a process 0 for each CPU. Right after the power-on, the
BIOS of the computer starts a single CPU while disabling the others. The swapper process
running on CPU 0 initializes the kernel data structures, then enables the other CPUs and
creates the additional swapper processes by means of the copy_process( ) function passing
to it the value 0 as the new PID. Moreover, the kernel sets the cpu field of the tHRead_info
descriptor of each forked process to the proper CPU index.

3.4.2.3. Process 1

The kernel thread created by process 0 executes the init( ) function, which in turn
completes the initialization of the kernel. Then init( ) invokes the execve( ) system call to
load the executable program init. As a result, the init kernel thread becomes a regular process
having its own per-process kernel data structure (see Chapter 20). The init process stays
alive until the system is shut down, because it creates and monitors the activity of all
processes that implement the outer layers of the operating system.

3.4.2.4. Other kernel threads

Linux uses many other kernel threads. Some of them are created in the initialization phase and
run until shutdown; others are created "on demand," when the kernel must execute a task
that is better performed in its own execution context.
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A few examples of kernel threads (besides process 0 and process 1) are:

keventd (also called events)

Executes the functions in the keventd_wq workqueue (see Chapter 4).

kapmd

Handles the events related to the Advanced Power Management (APM).

kswapd

Reclaims memory, as described in the section "Periodic Reclaiming" in Chapter 17.

pdflush

Flushes "dirty" buffers to disk to reclaim memory, as described in the section "The
pdflush Kernel Threads" in Chapter 15.

kblockd

Executes the functions in the kblockd_workqueue workqueue. Essentially, it periodically
activates the block device drivers, as described in the section "Activating the Block
Device Driver" in Chapter 14.

ksoftirqd

Runs the tasklets (see section "Softirqs and Tasklets" in Chapter 4); there is one of
these kernel threads for each CPU in the system.

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


3.5. Destroying Processes
Most processes "die" in the sense that they terminate the execution of the code they were
supposed to run. When this occurs, the kernel must be notified so that it can release the
resources owned by the process; this includes memory, open files, and any other odds and
ends that we will encounter in this book, such as semaphores.

The usual way for a process to terminate is to invoke the exit( ) library function, which
releases the resources allocated by the C library, executes each function registered by the
programmer, and ends up invoking a system call that evicts the process from the system.
The exit( ) library function may be inserted by the programmer explicitly. Additionally, the C
compiler always inserts an exit( ) function call right after the last statement of the main( )
function.

Alternatively, the kernel may force a whole thread group to die. This typically occurs when a
process in the group has received a signal that it cannot handle or ignore (see Chapter 11) or
when an unrecoverable CPU exception has been raised in Kernel Mode while the kernel was
running on behalf of the process (see Chapter 4).

3.5.1. Process Termination

In Linux 2.6 there are two system calls that terminate a User Mode application:

 The exit_group( ) system call, which terminates a full thread group, that is, a whole
multithreaded application. The main kernel function that implements this system call is
called do_group_exit( ). This is the system call that should be invoked by the exit() C
library function.

 The _exit( ) system call, which terminates a single process, regardless of any other
process in the thread group of the victim. The main kernel function that implements
this system call is called do_exit( ). This is the system call invoked, for instance, by
the pthread_exit( ) function of the LinuxThreads library.

3.5.1.1. The do_group_exit( ) function

The do_group_exit( ) function kills all processes belonging to the thread group of current. It
receives as a parameter the process termination code, which is either a value specified in the
exit_group( ) system call (normal termination) or an error code supplied by the kernel
(abnormal termination). The function executes the following operations:

1. Checks whether the SIGNAL_GROUP_EXIT flag of the exiting process is not zero, which
means that the kernel already started an exit procedure for this thread group. In this
case, it considers as exit code the value stored in current->signal->group_exit_code,
and jumps to step 4.

2. Otherwise, it sets the SIGNAL_GROUP_EXIT flag of the process and stores the termination
code in the current->signal->group_exit_code field.

3. Invokes the zap_other_threads( ) function to kill the other processes in the thread
group of current, if any. In order to do this, the function scans the per-PID list in the
PIDTYPE_TGID hash table corresponding to current->tgid; for each process in the list
different from current, it sends a SIGKILL signal to it (see Chapter 11). As a result, all
such processes will eventually execute the do_exit( ) function, and thus they will be
killed.

4. Invokes the do_exit( ) function passing to it the process termination code. As we'll
see below, do_exit( ) kills the process and never returns.
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3.5.1.2. The do_exit( ) function

All process terminations are handled by the do_exit( ) function, which removes most
references to the terminating process from kernel data structures. The do_exit( ) function
receives as a parameter the process termination code and essentially executes the following
actions:

1. Sets the PF_EXITING flag in the flag field of the process descriptor to indicate that the
process is being eliminated.

2. Removes, if necessary, the process descriptor from a dynamic timer queue via the 
del_timer_sync( ) function (see Chapter 6).

3. Detaches from the process descriptor the data structures related to paging,
semaphores, filesystem, open file descriptors, namespaces, and I/O Permission Bitmap,
respectively, with the exit_mm( ), exit_sem( ), _ _exit_files( ), _ _exit_fs(),
exit_namespace( ), and exit_thread( ) functions. These functions also remove each of
these data structures if no other processes are sharing them.

4. If the kernel functions implementing the execution domain and the executable format
(see Chapter 20) of the process being killed are included in kernel modules, the
function decreases their usage counters.

5. Sets the exit_code field of the process descriptor to the process termination code.
This value is either the _exit( ) or exit_group( ) system call parameter (normal
termination), or an error code supplied by the kernel (abnormal termination).

6. Invokes the exit_notify( ) function to perform the following operations:

a. Updates the parenthood relationships of both the parent process and the child
processes. All child processes created by the terminating process become
children of another process in the same thread group, if any is running, or
otherwise of the init process.

b. Checks whether the exit_signal process descriptor field of the process being
terminated is different from -1, and whether the process is the last member of
its thread group (notice that these conditions always hold for any normal
process; see step 16 in the description of copy_process( ) in the earlier section
"The clone( ), fork( ), and vfork( ) System Calls"). In this case, the function
sends a signal (usually SIGCHLD) to the parent of the process being terminated
to notify the parent about a child's death.

c. Otherwise, if the exit_signal field is equal to -1 or the thread group includes
other processes, the function sends a SIGCHLD signal to the parent only if the
process is being traced (in this case the parent is the debugger, which is thus
informed of the death of the lightweight process).

d. If the exit_signal process descriptor field is equal to -1 and the process is not
being traced, it sets the exit_state field of the process descriptor to EXIT_DEAD,
and invokes release_task( ) to reclaim the memory of the remaining process
data structures and to decrease the usage counter of the process descriptor
(see the following section). The usage counter becomes equal to 1 (see step 3f
in the copy_process( ) function), so that the process descriptor itself is not
released right away.

e. Otherwise, if the exit_signal process descriptor field is not equal to -1 or the
process is being traced, it sets the exit_state field to EXIT_ZOMBIE. We'll see
what happens to zombie processes in the following section.

f. Sets the PF_DEAD flag in the flags field of the process descriptor (see the
section "The schedule( ) Function" in Chapter 7).
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7. Invokes the schedule( ) function (see Chapter 7) to select a new process to run.
Because a process in an EXIT_ZOMBIE state is ignored by the scheduler, the process
stops executing right after the switch_to macro in schedule( ) is invoked. As we'll see
in Chapter 7, the scheduler will check the PF_DEAD flag and will decrease the usage
counter in the descriptor of the zombie process being replaced to denote the fact that
the process is no longer alive.

3.5.2. Process Removal

The Unix operating system allows a process to query the kernel to obtain the PID of its parent
process or the execution state of any of its children. A process may, for instance, create a
child process to perform a specific task and then invoke some wait( )-like library function to
check whether the child has terminated. If the child has terminated, its termination code will
tell the parent process if the task has been carried out successfully.

To comply with these design choices, Unix kernels are not allowed to discard data included in
a process descriptor field right after the process terminates. They are allowed to do so only
after the parent process has issued a wait( )-like system call that refers to the terminated
process. This is why the EXIT_ZOMBIE state has been introduced: although the process is
technically dead, its descriptor must be saved until the parent process is notified.

What happens if parent processes terminate before their children? In such a case, the system
could be flooded with zombie processes whose process descriptors would stay forever in RAM.
As mentioned earlier, this problem is solved by forcing all orphan processes to become children
of the init process. In this way, the init process will destroy the zombies while checking for
the termination of one of its legitimate children through a wait( )-like system call.

The release_task( ) function detaches the last data structures from the descriptor of a
zombie process; it is applied on a zombie process in two possible ways: by the do_exit( )
function if the parent is not interested in receiving signals from the child, or by the wait4( )
or waitpid( ) system calls after a signal has been sent to the parent. In the latter case, the
function also will reclaim the memory used by the process descriptor, while in the former case
the memory reclaiming will be done by the scheduler (see Chapter 7). This function executes
the following steps:

1. Decreases the number of processes belonging to the user owner of the terminated
process. This value is stored in the user_struct structure mentioned earlier in the
chapter (see step 4 of copy_process( )).

2. If the process is being traced, the function removes it from the debugger's 
ptrace_children list and assigns the process back to its original parent.

3. Invokes _ _exit_signal() to cancel any pending signal and to release the
signal_struct descriptor of the process. If the descriptor is no longer used by other
lightweight processes, the function also removes this data structure. Moreover, the
function invokes exit_itimers( ) to detach any POSIX interval timer from the process.

4. Invokes _ _exit_sighand() to get rid of the signal handlers.

5. Invokes _ _unhash_process( ), which in turn:

a. Decreases by 1 the nr_threads variable.

b. Invokes detach_pid( ) twice to remove the process descriptor from the pidhash
hash tables of type PIDTYPE_PID and PIDTYPE_TGID.

c. If the process is a thread group leader, invokes again detach_pid( ) twice to
remove the process descriptor from the PIDTYPE_PGID and PIDTYPE_SID hash
tables.

d. Uses the REMOVE_LINKS macro to unlink the process descriptor from the process
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list.

6. If the process is not a thread group leader, the leader is a zombie, and the process is
the last member of the thread group, the function sends a signal to the parent of the
leader to notify it of the death of the process.

7. Invokes the sched_exit( ) function to adjust the timeslice of the parent process (this
step logically complements step 17 in the description of copy_process( ))

8. Invokes put_task_struct() to decrease the process descriptor's usage counter; if the
counter becomes zero, the function drops any remaining reference to the process:

a. Decreases the usage counter (_ _count field) of the user_struct data structure
of the user that owns the process (see step 5 of copy_process( )), and
releases that data structure if the usage counter becomes zero.

b. Releases the process descriptor and the memory area used to contain the 
tHRead_info descriptor and the Kernel Mode stack.
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Chapter 4. Interrupts and Exceptions
An interrupt is usually defined as an event that alters the sequence of instructions executed
by a processor. Such events correspond to electrical signals generated by hardware circuits
both inside and outside the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts :

 Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them only after
terminating the execution of an instruction.

 Asynchronous interrupts are generated by other hardware devices at arbitrary times
with respect to the CPU clock signals.

Intel microprocessor manuals designate synchronous and asynchronous interrupts as
exceptions and interrupts, respectively. We'll adopt this classification, although we'll
occasionally use the term "interrupt signal" to designate both types together (synchronous as
well as asynchronous).

Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a
keystroke from a user sets off an interrupt.

Exceptions, on the other hand, are caused either by programming errors or by anomalous
conditions that must be handled by the kernel. In the first case, the kernel handles the
exception by delivering to the current process one of the signals familiar to every Unix
programmer. In the second case, the kernel performs all the steps needed to recover from the
anomalous condition, such as a Page Fault or a requestvia an assembly language instruction
such as int or sysenter for a kernel service.

We start by describing in the next section the motivation for introducing such signals. We
then show how the well-known IRQs (Interrupt ReQuests) issued by I/O devices give rise to
interrupts, and we detail how 80 x 86 processors handle interrupts and exceptions at the
hardware level. Then we illustrate, in the section "Initializing the Interrupt Descriptor Table,"
how Linux initializes all the data structures required by the 80x86 interrupt architecture. The
remaining three sections describe how Linux handles interrupt signals at the software level.

One word of caution before moving on: in this chapter, we cover only "classic" interrupts
common to all PCs; we do not cover the nonstandard interrupts of some architectures.
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4.1. The Role of Interrupt Signals
As the name suggests, interrupt signals provide a way to divert the processor to code outside
the normal flow of control. When an interrupt signal arrives, the CPU must stop what it's
currently doing and switch to a new activity; it does this by saving the current value of the
program counter (i.e., the content of the eip and cs registers) in the Kernel Mode stack and
by placing an address related to the interrupt type into the program counter.

There are some things in this chapter that will remind you of the context switch described in
the previous chapter, carried out when a kernel substitutes one process for another. But
there is a key difference between interrupt handling and process switching: the code
executed by an interrupt or by an exception handler is not a process. Rather, it is a kernel
control path that runs at the expense of the same process that was running when the
interrupt occurred (see the later section "Nested Execution of Exception and Interrupt
Handlers"). As a kernel control path, the interrupt handler is lighter than a process (it has less
context and requires less time to set up or tear down).

Interrupt handling is one of the most sensitive tasks performed by the kernel, because it must
satisfy the following constraints:

 Interrupts can come anytime, when the kernel may want to finish something else it
was trying to do. The kernel's goal is therefore to get the interrupt out of the way as
soon as possible and defer as much processing as it can. For instance, suppose a block
of data has arrived on a network line. When the hardware interrupts the kernel, it
could simply mark the presence of data, give the processor back to whatever was
running before, and do the rest of the processing later (such as moving the data into a
buffer where its recipient process can find it, and then restarting the process). The
activities that the kernel needs to perform in response to an interrupt are thus divided
into a critical urgent part that the kernel executes right away and a deferrable part
that is left for later.

 Because interrupts can come anytime, the kernel might be handling one of them while
another one (of a different type) occurs. This should be allowed as much as possible,
because it keeps the I/O devices busy (see the later section "Nested Execution of
Exception and Interrupt Handlers"). As a result, the interrupt handlers must be coded
so that the corresponding kernel control paths can be executed in a nested manner.
When the last kernel control path terminates, the kernel must be able to resume
execution of the interrupted process or switch to another process if the interrupt
signal has caused a rescheduling activity.

 Although the kernel may accept a new interrupt signal while handling a previous one,
some critical regions exist inside the kernel code where interrupts must be disabled.
Such critical regions must be limited as much as possible because, according to the
previous requirement, the kernel, and particularly the interrupt handlers, should run
most of the time with the interrupts enabled.
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4.2. Interrupts and Exceptions
The Intel documentation classifies interrupts and exceptions as follows:

 Interrupts:

Maskable interrupts

All Interrupt Requests (IRQs) issued by I/O devices give rise to maskable interrupts . A
maskable interrupt can be in two states: masked or unmasked; a masked interrupt is
ignored by the control unit as long as it remains masked.

Nonmaskable interrupts

Only a few critical events (such as hardware failures) give rise to nonmaskable
interrupts . Nonmaskable interrupts are always recognized by the CPU.

 Exceptions:

Processor-detected exceptions

Generated when the CPU detects an anomalous condition while executing an
instruction. These are further divided into three groups, depending on the value of the 
eip register that is saved on the Kernel Mode stack when the CPU control unit raises
the exception.

Faults

Can generally be corrected; once corrected, the program is allowed to restart with no
loss of continuity. The saved value of eip is the address of the instruction that caused
the fault, and hence that instruction can be resumed when the exception handler
terminates. As we'll see in the section "Page Fault Exception Handler" in Chapter 9,
resuming the same instruction is necessary whenever the handler is able to correct the
anomalous condition that caused the exception.

Traps

Reported immediately following the execution of the trapping instruction; after the
kernel returns control to the program, it is allowed to continue its execution with no
loss of continuity. The saved value of eip is the address of the instruction that should
be executed after the one that caused the trap. A trap is triggered only when there is
no need to reexecute the instruction that terminated. The main use of traps is for
debugging purposes. The role of the interrupt signal in this case is to notify the
debugger that a specific instruction has been executed (for instance, a breakpoint has
been reached within a program). Once the user has examined the data provided by the
debugger, she may ask that execution of the debugged program resume, starting from
the next instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be unable to store in
the eip register the precise location of the instruction causing the exception. Aborts
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are used to report severe errors, such as hardware failures and invalid or inconsistent
values in system tables. The interrupt signal sent by the control unit is an emergency
signal used to switch control to the corresponding abort exception handler. This
handler has no choice but to force the affected process to terminate.

Programmed exceptions

Occur at the request of the programmer. They are triggered by int or int3
instructions; the into (check for overflow) and bound (check on address bound)
instructions also give rise to a programmed exception when the condition they are
checking is not true. Programmed exceptions are handled by the control unit as traps;
they are often called software interrupts . Such exceptions have two common uses:
to implement system calls and to notify a debugger of a specific event (see Chapter 10
).

Each interrupt or exception is identified by a number ranging from 0 to 255; Intel calls this
8-bit unsigned number a vector. The vectors of nonmaskable interrupts and exceptions are
fixed, while those of maskable interrupts can be altered by programming the Interrupt
Controller (see the next section).

4.2.1. IRQs and Interrupts

Each hardware device controller capable of issuing interrupt requests usually has a single
output line designated as the Interrupt ReQuest (IRQ) line.[*] All existing IRQ lines are
connected to the input pins of a hardware circuit called the Programmable Interrupt
Controller, which performs the following actions:

[*] More sophisticated devices use several IRQ lines. For instance, a PCI card can use up to four IRQ lines.

1. Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are raised,
selects the one having the lower pin number.

2. If a raised signal occurs on an IRQ line:

a. Converts the raised signal received into a corresponding vector.

b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to
read it via the data bus.

c. Sends a raised signal to the processor INTR pinthat is, issues an interrupt.

d. Waits until the CPU acknowledges the interrupt signal by writing into one of the 
Programmable Interrupt Controllers (PIC) I/O ports; when this occurs, clears
the INTR line.

3. Goes back to step 1.

The IRQ lines are sequentially numbered starting from 0; therefore, the first IRQ line is usually
denoted as IRQ 0. Intel's default vector associated with IRQ n is n+32. As mentioned before,
the mapping between IRQs and vectors can be modified by issuing suitable I/O instructions to
the Interrupt Controller ports.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to disable IRQs.
That is, the PIC can be told to stop issuing interrupts that refer to a given IRQ line, or to
resume issuing them. Disabled interrupts are not lost; the PIC sends them to the CPU as soon
as they are enabled again. This feature is used by most interrupt handlers, because it allows
them to process IRQs of the same type serially.

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of maskable
interrupts. When the IF flag of the eflags register is clear, each maskable interrupt issued by
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the PIC is temporarily ignored by the CPU. The cli and sti assembly language instructions,
respectively, clear and set that flag.

Traditional PICs are implemented by connecting "in cascade" two 8259A-style external chips.
Each chip can handle up to eight different IRQ input lines. Because the INT output line of the
slave PIC is connected to the IRQ 2 pin of the master PIC, the number of available IRQ lines is
limited to 15.

4.2.1.1. The Advanced Programmable Interrupt Controller (APIC)

The previous description refers to PICs designed for uniprocessor systems. If the system
includes a single CPU, the output line of the master PIC can be connected in a straightforward
way to the INTR pin the CPU. However, if the system includes two or more CPUs, this
approach is no longer valid and more sophisticated PICs are needed.

Being able to deliver interrupts to each CPU in the system is crucial for fully exploiting the
parallelism of the SMP architecture. For that reason, Intel introduced starting with Pentium III
a new component designated as the I/O Advanced Programmable Interrupt Controller (I/O
APIC). This chip is the advanced version of the old 8259A Programmable Interrupt Controller;
to support old operating systems, recent motherboards include both types of chip. Moreover,
all current 80 x 86 microprocessors include a local APIC. Each local APIC has 32-bit registers,
an internal clock; a local timer device; and two additional IRQ lines, LINT 0 and LINT 1,
reserved for local APIC interrupts. All local APICs are connected to an external I/O APIC,
giving rise to a multi-APIC system.

Figure 4-1 illustrates in a schematic way the structure of a multi-APIC system. An APIC bus
connects the "frontend" I/O APIC to the local APICs. The IRQ lines coming from the devices
are connected to the I/O APIC, which therefore acts as a router with respect to the local
APICs. In the motherboards of the Pentium III and earlier processors, the APIC bus was a
serial three-line bus; starting with the Pentium 4, the APIC bus is implemented by means of
the system bus. However, because the APIC bus and its messages are invisible to software,
we won't give further details.

Figure 4-1. Multi-APIC system

The I/O APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table,
programmable registers, and a message unit for sending and receiving APIC messages over the
APIC bus. Unlike IRQ pins of the 8259A, interrupt priority is not related to pin number: each
entry in the Redirection Table can be individually programmed to indicate the interrupt vector
and priority, the destination processor, and how the processor is selected. The information in
the Redirection Table is used to translate each external IRQ signal into a message to one or
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more local APIC units via the APIC bus.

Interrupt requests coming from external hardware devices can be distributed among the
available CPUs in two ways:

Static distribution

The IRQ signal is delivered to the local APICs listed in the corresponding Redirection
Table entry. The interrupt is delivered to one specific CPU, to a subset of CPUs, or to
all CPUs at once (broadcast mode).

Dynamic distribution

The IRQ signal is delivered to the local APIC of the processor that is executing the
process with the lowest priority.

Every local APIC has a programmable task priority register (TPR), which is used to
compute the priority of the currently running process. Intel expects this register to be
modified in an operating system kernel by each process switch.

If two or more CPUs share the lowest priority, the load is distributed between them
using a technique called arbitration . Each CPU is assigned a different arbitration
priority ranging from 0 (lowest) to 15 (highest) in the arbitration priority register of the
local APIC.

Every time an interrupt is delivered to a CPU, its corresponding arbitration priority is
automatically set to 0, while the arbitration priority of any other CPU is increased.
When the arbitration priority register becomes greater than 15, it is set to the previous
arbitration priority of the winning CPU increased by 1. Therefore, interrupts are
distributed in a round-robin fashion among CPUs with the same task priority.[*]

[*] The Pentium 4 local APIC  doesn't have an arbitration priority register; the arbitration mechanism is
hidden in the bus arbitration circuitry. The Intel manuals state that if the operating system kernel
does not regularly update the task priority registers , performance may be suboptimal because
interrupts might always be serviced by the same CPU.

Besides distributing interrupts among processors, the multi-APIC system allows CPUs to
generate interprocessor interrupts . When a CPU wishes to send an interrupt to another CPU,
it stores the interrupt vector and the identifier of the target's local APIC in the Interrupt
Command Register (ICR) of its own local APIC. A message is then sent via the APIC bus to the
target's local APIC, which therefore issues a corresponding interrupt to its own CPU.

Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP architecture.
They are actively used by Linux to exchange messages among CPUs (see later in this
chapter).

Many of the current uniprocessor systems include an I/O APIC chip, which may be configured
in two distinct ways:

 As a standard 8259A-style external PIC connected to the CPU. The local APIC is
disabled and the two LINT 0 and LINT 1 local IRQ lines are configured, respectively, as
the INTR and NMI pins.

 As a standard external I/O APIC. The local APIC is enabled, and all external interrupts
are received through the I/O APIC.

4.2.2. Exceptions

The 80x86 microprocessors issue roughly 20 different exceptions .[*] The kernel must provide a
dedicated exception handler for each exception type. For some exceptions, the CPU control
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unit also generates a hardware error code and pushes it on the Kernel Mode stack before
starting the exception handler.

[*] The exact number depends on the processor model.

The following list gives the vector, the name, the type, and a brief description of the
exceptions found in 80x86 processors. Additional information may be found in the Intel
technical documentation.

0 - "Divide error" (fault)

Raised when a program issues an integer division by 0.

1- "Debug" (trap or fault)

Raised when the TF flag of eflags is set (quite useful to implement single-step
execution of a debugged program) or when the address of an instruction or operand
falls within the range of an active debug register (see the section "Hardware Context"
in Chapter 3).

2 - Not used

Reserved for nonmaskable interrupts (those that use the NMI pin).

3 - "Breakpoint" (trap)

Caused by an int3 (breakpoint) instruction (usually inserted by a debugger).

4 - "Overflow" (trap)

An into (check for overflow) instruction has been executed while the OF (overflow) flag
of eflags is set.

5 - "Bounds check" (fault)

A bound (check on address bound) instruction is executed with the operand outside of
the valid address bounds.

6 - "Invalid opcode" (fault)

The CPU execution unit has detected an invalid opcode (the part of the machine
instruction that determines the operation performed).

7 - "Device not available" (fault)

An ESCAPE, MMX, or SSE/SSE2 instruction has been executed with the TS flag of cr0
set (see the section "Saving and Loading the FPU, MMX, and XMM Registers" in
Chapter 3).

8 - "Double fault" (abort)

Normally, when the CPU detects an exception while trying to call the handler for a prior
exception, the two exceptions can be handled serially. In a few cases, however, the
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processor cannot handle them serially, so it raises this exception.

9 - "Coprocessor segment overrun" (abort)

Problems with the external mathematical coprocessor (applies only to old 80386
microprocessors).

10 - "Invalid TSS" (fault)

The CPU has attempted a context switch to a process having an invalid Task State
Segment.

11 - "Segment not present" (fault)

A reference was made to a segment not present in memory (one in which the 
Segment-Present flag of the Segment Descriptor was cleared).

12 - "Stack segment fault" (fault)

The instruction attempted to exceed the stack segment limit, or the segment identified
by ss is not present in memory.

13 - "General protection" (fault)

One of the protection rules in the protected mode of the 80x86 has been violated.

14 - "Page Fault" (fault)

The addressed page is not present in memory, the corresponding Page Table entry is
null, or a violation of the paging protection mechanism has occurred.

15 - Reserved by Intel

16 - "Floating-point error" (fault)

The floating-point unit integrated into the CPU chip has signaled an error condition,
such as numeric overflow or division by 0.[*]

[*] The 80 x 86 microprocessors also generate this exception when performing a signed division
whose result cannot be stored as a signed integer (for instance, a division between -2,147,483,648
and -1).

17 - "Alignment check" (fault)

The address of an operand is not correctly aligned (for instance, the address of a long
integer is not a multiple of 4).

18 - "Machine check" (abort)

A machine-check mechanism has detected a CPU or bus error.
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19 - "SIMD floating point exception" (fault)

The SSE or SSE2 unit integrated in the CPU chip has signaled an error condition on a
floating-point operation.

The values from 20 to 31 are reserved by Intel for future development. As illustrated in Table
4-1, each exception is handled by a specific exception handler (see the section "Exception
Handling" later in this chapter), which usually sends a Unix signal to the process that caused
the exception.

Table 4-1. Signals sent by the exception handlers

# Exception Exception handler Signal

0 Divide error divide_error( ) SIGFPE

1 Debug debug( ) SIGTRAP

2 NMI nmi( ) None

3 Breakpoint int3( ) SIGTRAP

4 Overflow overflow( ) SIGSEGV

5 Bounds check bounds( ) SIGSEGV

6 Invalid opcode invalid_op( ) SIGILL

7 Device not available device_not_available( ) None

8 Double fault doublefault_fn( ) None

9 Coprocessor segment overrun coprocessor_segment_overrun( ) SIGFPE

10 Invalid TSS invalid_TSS( ) SIGSEGV

11 Segment not present segment_not_present( ) SIGBUS

12 Stack segment fault stack_segment( ) SIGBUS

13 General protection general_protection( ) SIGSEGV

14 Page Fault page_fault( ) SIGSEGV

15 Intel-reserved None None

16 Floating-point error coprocessor_error( ) SIGFPE

17 Alignment check alignment_check( ) SIGBUS

18 Machine check machine_check( ) None

19 SIMD floating point simd_coprocessor_error( ) SIGFPE
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4.2.3. Interrupt Descriptor Table

A system table called Interrupt Descriptor Table (IDT ) associates each interrupt or exception
vector with the address of the corresponding interrupt or exception handler. The IDT must be
properly initialized before the kernel enables interrupts.

The IDT format is similar to that of the GDT and the LDTs examined in Chapter 2. Each entry
corresponds to an interrupt or an exception vector and consists of an 8-byte descriptor.
Thus, a maximum of 256 x 8 = 2048 bytes are required to store the IDT.

The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both the
IDT base physical address and its limit (maximum length). It must be initialized before enabling
interrupts by using the lidt assembly language instruction.

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 64
bits included in each of them. In particular, the value of the Type field encoded in the bits
4043 identifies the descriptor type.

Figure 4-2. Gate descriptors' format

The descriptors are:

Task gate

Includes the TSS selector of the process that must replace the current one when an
interrupt signal occurs.

Interrupt gate
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Includes the Segment Selector and the offset inside the segment of an interrupt or
exception handler. While transferring control to the proper segment, the processor
clears the IF flag, thus disabling further maskable interrupts.

Trap gate

Similar to an interrupt gate, except that while transferring control to the proper
segment, the processor does not modify the IF flag.

As we'll see in the later section "Interrupt, Trap, and System Gates," Linux uses interrupt
gates to handle interrupts and trap gates to handle exceptions.[*]

[*] The "Double fault " exception, w hich denotes a type of kernel misbehavior, is the only exception handled by means of a task gate
(see the section "Exception Handling" later in this chapter.).

4.2.4. Hardware Handling of Interrupts and Exceptions

We now describe how the CPU control unit handles interrupts and exceptions. We assume that
the kernel has been initialized, and thus the CPU is operating in Protected Mode.

After executing an instruction, the cs and eip pair of registers contain the logical address of
the next instruction to be executed. Before dealing with that instruction, the control unit
checks whether an interrupt or an exception occurred while the control unit executed the
previous instruction. If one occurred, the control unit does the following:

1. Determines the vector i (0 i 255) associated with the interrupt or the exception.

2. Reads the i th entry of the IDT referred by the idtr register (we assume in the
following description that the entry contains an interrupt or a trap gate).

3. Gets the base address of the GDT from the gdtr register and looks in the GDT to read
the Segment Descriptor identified by the selector in the IDT entry. This descriptor
specifies the base address of the segment that includes the interrupt or exception
handler.

4. Makes sure the interrupt was issued by an authorized source. First, it compares the
Current Privilege Level (CPL), which is stored in the two least significant bits of the cs
register, with the Descriptor Privilege Level (DPL ) of the Segment Descriptor included
in the GDT. Raises a "General protection " exception if the CPL is lower than the DPL,
because the interrupt handler cannot have a lower privilege than the program that
caused the interrupt. For programmed exceptions, makes a further security check:
compares the CPL with the DPL of the gate descriptor included in the IDT and raises a
"General protection" exception if the DPL is lower than the CPL. This last check makes
it possible to prevent access by user applications to specific trap or interrupt gates.

5. Checks whether a change of privilege level is taking place that is, if CPL is different
from the selected Segment Descriptor's DPL. If so, the control unit must start using
the stack that is associated with the new privilege level. It does this by performing the
following steps:

a. Reads the tr register to access the TSS segment of the running process.

b. Loads the ss and esp registers with the proper values for the stack segment
and stack pointer associated with the new privilege level. These values are
found in the TSS (see the section "Task State Segment" in Chapter 3).

c. In the new stack, it saves the previous values of ss and esp, which define the
logical address of the stack associated with the old privilege level.

6. If a fault has occurred, it loads cs and eip with the logical address of the instruction
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that caused the exception so that it can be executed again.

7. Saves the contents of eflags , cs, and eip in the stack.

8. If the exception carries a hardware error code, it saves it on the stack.

9. Loads cs and eip, respectively, with the Segment Selector and the Offset fields of the
Gate Descriptor stored in the i th entry of the IDT. These values define the logical
address of the first instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or
exception handler. In other words, the instruction processed by the control unit after dealing
with the interrupt signal is the first instruction of the selected handler.

After the interrupt or exception is processed, the corresponding handler must relinquish
control to the interrupted process by issuing the iret instruction, which forces the control
unit to:

1. Load the cs, eip, and eflags registers with the values saved on the stack. If a
hardware error code has been pushed in the stack on top of the eip contents, it must
be popped before executing iret.

2. Check whether the CPL of the handler is equal to the value contained in the two least
significant bits of cs (this means the interrupted process was running at the same
privilege level as the handler). If so, iret concludes execution; otherwise, go to the
next step.

3. Load the ss and esp registers from the stack and return to the stack associated with
the old privilege level.

4. Examine the contents of the ds, es, fs, and gs segment registers; if any of them
contains a selector that refers to a Segment Descriptor whose DPL value is lower than
CPL, clear the corresponding segment register. The control unit does this to forbid User
Mode programs that run with a CPL equal to 3 from using segment registers previously
used by kernel routines (with a DPL equal to 0). If these registers were not cleared,
malicious User Mode programs could exploit them in order to access the kernel address
space.
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4.3. Nested Execution of Exception and Interrupt
Handlers
Every interrupt or exception gives rise to a kernel control path or separate sequence of
instructions that execute in Kernel Mode on behalf of the current process. For instance, when
an I/O device raises an interrupt, the first instructions of the corresponding kernel control
path are those that save the contents of the CPU registers in the Kernel Mode stack, while
the last are those that restore the contents of the registers.

Kernel control paths may be arbitrarily nested; an interrupt handler may be interrupted by
another interrupt handler, thus giving rise to a nested execution of kernel control paths , as
shown in Figure 4-3. As a result, the last instructions of a kernel control path that is taking
care of an interrupt do not always put the current process back into User Mode: if the level of
nesting is greater than 1, these instructions will put into execution the kernel control path
that was interrupted last, and the CPU will continue to run in Kernel Mode.

Figure 4-3. An example of nested execution of kernel control paths

The price to pay for allowing nested kernel control paths is that an interrupt handler must
never block, that is, no process switch can take place until an interrupt handler is running. In
fact, all the data needed to resume a nested kernel control path is stored in the Kernel Mode
stack, which is tightly bound to the current process.

Assuming that the kernel is bug free, most exceptions can occur only while the CPU is in User
Mode. Indeed, they are either caused by programming errors or triggered by debuggers.
However, the "Page Fault " exception may occur in Kernel Mode. This happens when the
process attempts to address a page that belongs to its address space but is not currently in
RAM. While handling such an exception, the kernel may suspend the current process and
replace it with another one until the requested page is available. The kernel control path that
handles the "Page Fault" exception resumes execution as soon as the process gets the
processor again.

Because the "Page Fault" exception handler never gives rise to further exceptions, at most
two kernel control paths associated with exceptions (the first one caused by a system call
invocation, the second one caused by a Page Fault) may be stacked, one on top of the other.

In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures
specific to the current process, although the kernel control paths that handle them run on
behalf of that process. As a matter of fact, it is impossible to predict which process will be
running when a given interrupt occurs.

An interrupt handler may preempt both other interrupt handlers and exception handlers.
Conversely, an exception handler never preempts an interrupt handler. The only exception
that can be triggered in Kernel Mode is "Page Fault," which we just described. But interrupt
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handlers never perform operations that can induce page faults, and thus, potentially, a
process switch.

Linux interleaves kernel control paths for two major reasons:

 To improve the throughput of programmable interrupt controllers and device
controllers. Assume that a device controller issues a signal on an IRQ line: the PIC
transforms it into an external interrupt, and then both the PIC and the device
controller remain blocked until the PIC receives an acknowledgment from the CPU.
Thanks to kernel control path interleaving, the kernel is able to send the
acknowledgment even when it is handling a previous interrupt.

 To implement an interrupt model without priority levels. Because each interrupt handler
may be deferred by another one, there is no need to establish predefined priorities
among hardware devices. This simplifies the kernel code and improves its portability.

On multiprocessor systems, several kernel control paths may execute concurrently. Moreover,
a kernel control path associated with an exception may start executing on a CPU and, due to
a process switch, migrate to another CPU.
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4.4. Initializing the Interrupt Descriptor Table
Now that we understand what the 80x86 microprocessors do with interrupts and exceptions at
the hardware level, we can move on to describe how the Interrupt Descriptor Table is
initialized.

Remember that before the kernel enables the interrupts, it must load the initial address of the
IDT table into the idtr register and initialize all the entries of that table. This activity is done
while initializing the system (see Appendix A).

The int instruction allows a User Mode process to issue an interrupt signal that has an
arbitrary vector ranging from 0 to 255. Therefore, initialization of the IDT must be done
carefully, to block illegal interrupts and exceptions simulated by User Mode processes via int
instructions. This can be achieved by setting the DPL field of the particular Interrupt or Trap
Gate Descriptor to 0. If the process attempts to issue one of these interrupt signals, the
control unit checks the CPL value against the DPL field and issues a "General protection "
exception.

In a few cases, however, a User Mode process must be able to issue a programmed exception.
To allow this, it is sufficient to set the DPL field of the corresponding Interrupt or Trap Gate
Descriptors to 3 that is, as high as possible.

Let's now see how Linux implements this strategy.

4.4.1. Interrupt, Trap, and System Gates

As mentioned in the earlier section "Interrupt Descriptor Table," Intel provides three types of
interrupt descriptors : Task, Interrupt, and Trap Gate Descriptors. Linux uses a slightly
different breakdown and terminology from Intel when classifying the interrupt descriptors
included in the Interrupt Descriptor Table:

Interrupt gate

An Intel interrupt gate that cannot be accessed by a User Mode process (the gate's
DPL field is equal to 0). All Linux interrupt handlers are activated by means of interrupt
gates , and all are restricted to Kernel Mode.

System gate

An Intel trap gate that can be accessed by a User Mode process (the gate's DPL field
is equal to 3). The three Linux exception handlers associated with the vectors 4, 5,
and 128 are activated by means of system gates , so the three assembly language
instructions into , bound , and int $0x80 can be issued in User Mode.

System interrupt gate

An Intel interrupt gate that can be accessed by a User Mode process (the gate's DPL
field is equal to 3). The exception handler associated with the vector 3 is activated by
means of a system interrupt gate, so the assembly language instruction int3 can be
issued in User Mode.

Trap gate

An Intel trap gate that cannot be accessed by a User Mode process (the gate's DPL
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field is equal to 0). Most Linux exception handlers are activated by means of trap gates
.

Task gate

An Intel task gate that cannot be accessed by a User Mode process (the gate's DPL
field is equal to 0). The Linux handler for the "Double fault " exception is activated by
means of a task gate.

The following architecture-dependent functions are used to insert gates in the IDT:

set_intr_gate(n,addr)

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate
is set to the kernel code's Segment Selector. The Offset field is set to addr, which is
the address of the interrupt handler. The DPL field is set to 0.

set_system_gate(n,addr)

Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is set
to the kernel code's Segment Selector. The Offset field is set to addr, which is the
address of the exception handler. The DPL field is set to 3.

set_system_intr_gate(n,addr)

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate
is set to the kernel code's Segment Selector. The Offset field is set to addr, which is
the address of the exception handler. The DPL field is set to 3.

set_trap_gate(n,addr)

Similar to the previous function, except the DPL field is set to 0.

set_task_gate(n,gdt)

Inserts a task gate in the n th IDT entry. The Segment Selector inside the gate stores
the index in the GDT of the TSS containing the function to be activated. The Offset
field is set to 0, while the DPL field is set to 3.

4.4.2. Preliminary Initialization of the IDT

The IDT is initialized and used by the BIOS routines while the computer still operates in Real
Mode. Once Linux takes over, however, the IDT is moved to another area of RAM and
initialized a second time, because Linux does not use any BIOS routine (see Appendix A).

The IDT is stored in the idt_table table, which includes 256 entries. The 6-byte idt_descr
variable stores both the size of the IDT and its address and is used in the system initialization
phase when the kernel sets up the idtr register with the lidt assembly language instruction.[*]

[*] Some old Pentium models have the notorious "f00f" bug, w hich allow s User Mode programs to freeze the system. When
executing on such CPUs, Linux uses a w orkaround based on initializing the idtr register w ith a fix-mapped read-only linear
address pointing to the actual IDT (see the section "Fix-Mapped Linear Addresses" in Chapter 2).

During kernel initialization, the setup_idt( ) assembly language function starts by filling all 256
entries of idt_table with the same interrupt gate, which refers to the ignore_int( ) interrupt
handler:

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


    setup_idt:

        lea ignore_int, %edx

        movl $(_ _KERNEL_CS << 16), %eax

        movw %dx, %ax       /* selector = 0x0010 = cs */

        movw $0x8e00, %dx   /* interrupt gate, dpl=0, present */

        lea idt_table, %edi

        mov $256, %ecx

    rp_sidt:

        movl %eax, (%edi)

        movl %edx, 4(%edi)

        addl $8, %edi

        dec %ecx

        jne rp_sidt

        ret

The ignore_int( ) interrupt handler, which is in assembly language, may be viewed as a null
handler that executes the following actions:

1. Saves the content of some registers in the stack.

2. Invokes the printk( ) function to print an "Unknown interrupt" system message.

3. Restores the register contents from the stack.

4. Executes an iret instruction to restart the interrupted program.

The ignore_int( ) handler should never be executed. The occurrence of "Unknown interrupt"
messages on the console or in the log files denotes either a hardware problem (an I/O device
is issuing unforeseen interrupts) or a kernel problem (an interrupt or exception is not being
handled properly).

Following this preliminary initialization, the kernel makes a second pass in the IDT to replace
some of the null handlers with meaningful trap and interrupt handlers. Once this is done, the
IDT includes a specialized interrupt, trap, or system gate for each different exception issued
by the control unit and for each IRQ recognized by the interrupt controller.

The next two sections illustrate in detail how this is done for exceptions and interrupts.

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


4.5. Exception Handling
Most exceptions issued by the CPU are interpreted by Linux as error conditions. When one of
them occurs, the kernel sends a signal to the process that caused the exception to notify it
of an anomalous condition. If, for instance, a process performs a division by zero, the CPU
raises a "Divide error " exception, and the corresponding exception handler sends a SIGFPE
signal to the current process, which then takes the necessary steps to recover or (if no signal
handler is set for that signal) abort.

There are a couple of cases, however, where Linux exploits CPU exceptions to manage
hardware resources more efficiently. A first case is already described in the section "Saving
and Loading the FPU, MMX, and XMM Registers" in Chapter 3. The "Device not available "
exception is used together with the TS flag of the cr0 register to force the kernel to load the
floating point registers of the CPU with new values. A second case involves the "Page Fault "
exception, which is used to defer allocating new page frames to the process until the last
possible moment. The corresponding handler is complex because the exception may, or may
not, denote an error condition (see the section "Page Fault Exception Handler" in Chapter 9).

Exception handlers have a standard structure consisting of three steps:

1. Save the contents of most registers in the Kernel Mode stack (this part is coded in
assembly language).

2. Handle the exception by means of a high-level C function.

3. Exit from the handler by means of the ret_from_exception( ) function.

To take advantage of exceptions, the IDT must be properly initialized with an exception
handler function for each recognized exception. It is the job of the trap_init( ) function to
insert the final valuesthe functions that handle the exceptionsinto all IDT entries that refer to
nonmaskable interrupts and exceptions. This is accomplished through the set_trap_gate( ),
set_intr_gate( ), set_system_gate( ), set_system_intr_gate( ), and set_task_gate( )
functions:

    set_trap_gate(0,&divide_error);

    set_trap_gate(1,&debug);

    set_intr_gate(2,&nmi);

    set_system_intr_gate(3,&int3);

    set_system_gate(4,&overflow);

    set_system_gate(5,&bounds);

    set_trap_gate(6,&invalid_op);

    set_trap_gate(7,&device_not_available);

    set_task_gate(8,31);

    set_trap_gate(9,&coprocessor_segment_overrun);

    set_trap_gate(10,&invalid_TSS);

    set_trap_gate(11,&segment_not_present);

    set_trap_gate(12,&stack_segment);

    set_trap_gate(13,&general_protection);

    set_intr_gate(14,&page_fault);

    set_trap_gate(16,&coprocessor_error);

    set_trap_gate(17,&alignment_check);

    set_trap_gate(18,&machine_check);

    set_trap_gate(19,&simd_coprocessor_error);

    set_system_gate(128,&system_call);

The "Double fault" exception is handled by means of a task gate instead of a trap or system
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gate, because it denotes a serious kernel misbehavior. Thus, the exception handler that tries
to print out the register values does not trust the current value of the esp register. When
such an exception occurs, the CPU fetches the Task Gate Descriptor stored in the entry at
index 8 of the IDT. This descriptor points to the special TSS segment descriptor stored in the
32nd entry of the GDT. Next, the CPU loads the eip and esp registers with the values stored in
the corresponding TSS segment. As a result, the processor executes the doublefault_fn()
exception handler on its own private stack.

Now we will look at what a typical exception handler does once it is invoked. Our description
of exception handling will be a bit sketchy for lack of space. In particular we won't be able to
cover:

1. The signal codes (see Table 11-8 in Chapter 11) sent by some handlers to the User
Mode processes.

2. Exceptions that occur when the kernel is operating in MS-DOS emulation mode (vm86
mode), which must be dealt with differently.

3. "Debug " exceptions.

4.5.1. Saving the Registers for the Exception Handler

Let's use handler_name to denote the name of a generic exception handler. (The actual names
of all the exception handlers appear on the list of macros in the previous section.) Each
exception handler starts with the following assembly language instructions:

    handler_name:

        pushl $0 /* only for some exceptions */

        pushl $do_handler_name

        jmp error_code

If the control unit is not supposed to automatically insert a hardware error code on the stack
when the exception occurs, the corresponding assembly language fragment includes a pushl
$0 instruction to pad the stack with a null value. Then the address of the high-level C function
is pushed on the stack; its name consists of the exception handler name prefixed by do_.

The assembly language fragment labeled as error_code is the same for all exception handlers
except the one for the "Device not available " exception (see the section "Saving and Loading
the FPU, MMX, and XMM Registers" in Chapter 3). The code performs the following steps:

1. Saves the registers that might be used by the high-level C function on the stack.

2. Issues a cld instruction to clear the direction flag DF of eflags , thus making sure that
autoincreases on the edi and esi registers will be used with string instructions .[*]

[*] A single assembly language "string instruction," such as rep;movsb , is able to act on a whole block of
data (string).

3. Copies the hardware error code saved in the stack at location esp+36 in edx. Stores the
value -1 in the same stack location. As we'll see in the section "Reexecution of System
Calls" in Chapter 11, this value is used to separate 0x80 exceptions from other
exceptions.

4. Loads edi with the address of the high-level do_handler_name( ) C function saved in
the stack at location esp+32; writes the contents of es in that stack location.

5. Loads in the eax register the current top location of the Kernel Mode stack. This
address identifies the memory cell containing the last register value saved in step 1.

6. Loads the user data Segment Selector into the ds and es registers.
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7. Invokes the high-level C function whose address is now stored in edi.

The invoked function receives its arguments from the eax and edx registers rather than from
the stack. We have already run into a function that gets its arguments from the CPU
registers: the _ _switch_to( ) function, discussed in the section "Performing the Process
Switch" in Chapter 3.

4.5.2. Entering and Leaving the Exception Handler

As already explained, the names of the C functions that implement exception handlers always
consist of the prefix do_ followed by the handler name. Most of these functions invoke the
do_trap() function to store the hardware error code and the exception vector in the process
descriptor of current, and then send a suitable signal to that process:

    current->thread.error_code = error_code;

    current->thread.trap_no = vector;

    force_sig(sig_number, current);

The current process takes care of the signal right after the termination of the exception
handler. The signal will be handled either in User Mode by the process's own signal handler (if
it exists) or in Kernel Mode. In the latter case, the kernel usually kills the process (see 
Chapter 11). The signals sent by the exception handlers are listed in Table 4-1.

The exception handler always checks whether the exception occurred in User Mode or in
Kernel Mode and, in the latter case, whether it was due to an invalid argument passed to a
system call. We'll describe in the section "Dynamic Address Checking: The Fix-up Code" in
Chapter 10 how the kernel defends itself against invalid arguments passed to system calls.
Any other exception raised in Kernel Mode is due to a kernel bug. In this case, the exception
handler knows the kernel is misbehaving. In order to avoid data corruption on the hard disks,
the handler invokes the die( ) function, which prints the contents of all CPU registers on the
console (this dump is called kernel oops ) and terminates the current process by calling
do_exit( ) (see "Process Termination" in Chapter 3).

When the C function that implements the exception handling terminates, the code performs a 
jmp instruction to the ret_from_exception( ) function. This function is described in the later
section "Returning from Interrupts and Exceptions."
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4.6. Interrupt Handling
As we explained earlier, most exceptions are handled simply by sending a Unix signal to the
process that caused the exception. The action to be taken is thus deferred until the process
receives the signal; as a result, the kernel is able to process the exception quickly.

This approach does not hold for interrupts, because they frequently arrive long after the
process to which they are related (for instance, a process that requested a data transfer)
has been suspended and a completely unrelated process is running. So it would make no sense
to send a Unix signal to the current process.

Interrupt handling depends on the type of interrupt. For our purposes, we'll distinguish three
main classes of interrupts:

I/O interrupts

An I/O device requires attention; the corresponding interrupt handler must query the
device to determine the proper course of action. We cover this type of interrupt in the
later section "I/O Interrupt Handling."

Timer interrupts

Some timer, either a local APIC timer or an external timer, has issued an interrupt; this
kind of interrupt tells the kernel that a fixed-time interval has elapsed. These interrupts
are handled mostly as I/O interrupts; we discuss the peculiar characteristics of timer
interrupts in Chapter 6.

Interprocessor interrupts

A CPU issued an interrupt to another CPU of a multiprocessor system. We cover such
interrupts in the later section "Interprocessor Interrupt Handling."

4.6.1. I/O Interrupt Handling

In general, an I/O interrupt handler must be flexible enough to service several devices at the
same time. In the PCI bus architecture, for instance, several devices may share the same IRQ
line. This means that the interrupt vector alone does not tell the whole story. In the example
shown in Table 4-3, the same vector 43 is assigned to the USB port and to the sound card.
However, some hardware devices found in older PC architectures (such as ISA) do not reliably
operate if their IRQ line is shared with other devices.

Interrupt handler flexibility is achieved in two distinct ways, as discussed in the following list.

IRQ sharing

The interrupt handler executes several interrupt service routines (ISRs). Each ISR is a
function related to a single device sharing the IRQ line. Because it is not possible to
know in advance which particular device issued the IRQ, each ISR is executed to verify
whether its device needs attention; if so, the ISR performs all the operations that need
to be executed when the device raises an interrupt.

IRQ dynamic allocation
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An IRQ line is associated with a device driver at the last possible moment; for instance,
the IRQ line of the floppy device is allocated only when a user accesses the floppy disk
device. In this way, the same IRQ vector may be used by several hardware devices
even if they cannot share the IRQ line; of course, the hardware devices cannot be
used at the same time. (See the discussion at the end of this section.)

Not all actions to be performed when an interrupt occurs have the same urgency. In fact, the
interrupt handler itself is not a suitable place for all kind of actions. Long noncritical operations
should be deferred, because while an interrupt handler is running, the signals on the
corresponding IRQ line are temporarily ignored. Most important, the process on behalf of which
an interrupt handler is executed must always stay in the TASK_RUNNING state, or a system
freeze can occur. Therefore, interrupt handlers cannot perform any blocking procedure such
as an I/O disk operation. Linux divides the actions to be performed following an interrupt into
three classes:

Critical

Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC or the
device controller, or updating data structures accessed by both the device and the
processor. These can be executed quickly and are critical, because they must be
performed as soon as possible. Critical actions are executed within the interrupt
handler immediately, with maskable interrupts disabled.

Noncritical

Actions such as updating data structures that are accessed only by the processor (for
instance, reading the scan code after a keyboard key has been pushed). These actions
can also finish quickly, so they are executed by the interrupt handler immediately, with
the interrupts enabled.

Noncritical deferrable

Actions such as copying a buffer's contents into the address space of a process (for
instance, sending the keyboard line buffer to the terminal handler process). These may
be delayed for a long time interval without affecting the kernel operations; the
interested process will just keep waiting for the data. Noncritical deferrable actions are
performed by means of separate functions that are discussed in the later section "
Softirqs and Tasklets."

Regardless of the kind of circuit that caused the interrupt, all I/O interrupt handlers perform
the same four basic actions:

1. Save the IRQ value and the register's contents on the Kernel Mode stack.

2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing it to
issue further interrupts.

3. Execute the interrupt service routines (ISRs) associated with all the devices that share
the IRQ.

4. Terminate by jumping to the ret_from_intr( ) address.

Several descriptors are needed to represent both the state of the IRQ lines and the functions
to be executed when an interrupt occurs. Figure 4-4 represents in a schematic way the
hardware circuits and the software functions used to handle an interrupt. These functions are
discussed in the following sections.

4.6.1.1. Interrupt vectors
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As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range 32-238.
However, Linux uses vector 128 to implement system calls.

The IBM-compatible PC architecture requires that some devices be statically connected to
specific IRQ lines. In particular:

 The interval timer device must be connected to the IRQ 0 line (see Chapter 6).

 The slave 8259A PIC must be connected to the IRQ 2 line (although more advanced
PICs are now being used, Linux still supports 8259A-style PICs).

Figure 4-4. I/O interrupt handling

 The external mathematical coprocessor must be connected to the IRQ 13 line
(although recent 80 x 86 processors no longer use such a device, Linux continues to
support the hardy 80386 model).

 In general, an I/O device can be connected to a limited number of IRQ lines. (As a
matter of fact, when playing with an old PC where IRQ sharing is not possible, you
might not succeed in installing a new card because of IRQ conflicts with other already
present hardware devices.)

Table 4-2. Interrupt vectors in Linux

Vector range Use

019 (0x0-0x13) Nonmaskable interrupts and exceptions

2031 (0x14-
0x1f)

Intel-reserved

32127 (0x20-
0x7f)

External interrupts (IRQs)

128 (0x80) Programmed exception for system calls (see Chapter 10)
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Table 4-2. Interrupt vectors in Linux

Vector range Use

129238 (0x81-
0xee)

External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt (see Chapter 6)

240 (0xf0) Local APIC thermal interrupt (introduced in the Pentium 4 models)

241250 (0xf1-
0xfa)

Reserved by Linux for future use

251253 (0xfb-
0xfd)

Interprocessor interrupts (see the section "Interprocessor Interrupt Handling
" later in this chapter)

254 (0xfe) Local APIC error interrupt (generated when the local APIC detects an
erroneous condition)

255 (0xff) Local APIC spurious interrupt (generated if the CPU masks an interrupt while
the hardware device raises it)

There are three ways to select a line for an IRQ-configurable device:

 By setting hardware jumpers (only on very old device cards).

 By a utility program shipped with the device and executed when installing it. Such a
program may either ask the user to select an available IRQ number or probe the system
to determine an available number by itself.

 By a hardware protocol executed at system startup. Peripheral devices declare which
interrupt lines they are ready to use; the final values are then negotiated to reduce
conflicts as much as possible. Once this is done, each interrupt handler can read the
assigned IRQ by using a function that accesses some I/O ports of the device. For
instance, drivers for devices that comply with the Peripheral Component Interconnect
(PCI) standard use a group of functions such as pci_read_config_byte( ) to access the
device configuration space.

Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those that might
be found on one particular PC.

Table 4-3. An example of IRQ assignment to I/O devices

IRQ INT Hardware device

0 32 Timer

1 33 Keyboard

2 34 PIC cascading

3 35 Second serial port
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Table 4-3. An example of IRQ assignment to I/O devices

IRQ INT Hardware device

4 36 First serial port

6 38 Floppy disk

8 40 System clock

10 42 Network interface

11 43 USB port, sound card

12 44 PS/2 mouse

13 45 Mathematical coprocessor

14 46 EIDE disk controller's first chain

15 47 EIDE disk controller's second chain

The kernel must discover which I/O device corresponds to the IRQ number before enabling
interrupts. Otherwise, for example, how could the kernel handle a signal from a SCSI disk
without knowing which vector corresponds to the device? The correspondence is established
while initializing each device driver (see Chapter 13).

4.6.1.2. IRQ data structures

As always, when discussing complicated operations involving state transitions, it helps to
understand first where key data is stored. Thus, this section explains the data structures that
support interrupt handling and how they are laid out in various descriptors. Figure 4-5
illustrates schematically the relationships between the main descriptors that represent the
state of the IRQ lines. (The figure does not illustrate the data structures needed to handle
softirqs and tasklets; they are discussed later in this chapter.)

Figure 4-5. IRQ descriptors

Every interrupt vector has its own irq_desc_t descriptor, whose fields are listed in Table 4-4.
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All such descriptors are grouped together in the irq_desc array.

Table 4-4. The irq_desc_t descriptor

Field Description

handler Points to the PIC object (hw_irq_controller descriptor) that services the
IRQ line.

handler_data Pointer to data used by the PIC methods.

action Identifies the interrupt service routines to be invoked when the IRQ occurs.
The field points to the first element of the list of irqaction descriptors
associated with the IRQ. The irqaction descriptor is described later in the
chapter.

status A set of flags describing the IRQ line status (see Table 4-5).

depth Shows 0 if the IRQ line is enabled and a positive value if it has been
disabled at least once.

irq_count Counter of interrupt occurrences on the IRQ line (for diagnostic use only).

irqs_unhandled Counter of unhandled interrupt occurrences on the IRQ line (for diagnostic
use only).

lock A spin lock used to serialize the accesses to the IRQ descriptor and to the
PIC (see Chapter 5).

An interrupt is unexpected if it is not handled by the kernel, that is, either if there is no ISR
associated with the IRQ line, or if no ISR associated with the line recognizes the interrupt as
raised by its own hardware device. Usually the kernel checks the number of unexpected
interrupts received on an IRQ line, so as to disable the line in case a faulty hardware device
keeps raising an interrupt over and over. Because the IRQ line can be shared among several
devices, the kernel does not disable the line as soon as it detects a single unhandled
interrupt. Rather, the kernel stores in the irq_count and irqs_unhandled fields of the
irq_desc_t descriptor the total number of interrupts and the number of unexpected interrupts,
respectively; when the 100,000th interrupt is raised, the kernel disables the line if the number
of unhandled interrupts is above 99,900 (that is, if less than 101 interrupts over the last
100,000 received are expected interrupts from hardware devices sharing the line).

The status of an IRQ line is described by the flags listed in Table 4-5.

Table 4-5. Flags describing the IRQ line status

Flag name Description

IRQ_INPROGRESS A handler for the IRQ is being executed.

IRQ_DISABLED The IRQ line has been deliberately disabled by a device driver.

IRQ_PENDING An IRQ has occurred on the line; its occurrence has been acknowledged to
the PIC, but it has not yet been serviced by the kernel.
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Table 4-5. Flags describing the IRQ line status

Flag name Description

IRQ_REPLAY The IRQ line has been disabled but the previous IRQ occurrence has not yet
been acknowledged to the PIC.

IRQ_AUTODETECT The kernel is using the IRQ line while performing a hardware device probe.

IRQ_WAITING The kernel is using the IRQ line while performing a hardware device probe;
moreover, the corresponding interrupt has not been raised.

IRQ_LEVEL Not used on the 80 x 86 architecture.

IRQ_MASKED Not used.

IRQ_PER_CPU Not used on the 80 x 86 architecture.

The depth field and the IRQ_DISABLED flag of the irq_desc_t descriptor specify whether the IRQ
line is enabled or disabled. Every time the disable_irq( ) or disable_irq_nosync( ) function is
invoked, the depth field is increased; if depth is equal to 0, the function disables the IRQ line
and sets its IRQ_DISABLED flag.[*] Conversely, each invocation of the enable_irq( ) function
decreases the field; if depth becomes 0, the function enables the IRQ line and clears its
IRQ_DISABLED flag.

[*] In contrast to disable_irq_nosync( ), disable_irq(n) w aits until all interrupt handlers for IRQ n that are running on other CPUs
have completed before returning.

During system initialization, the init_IRQ( ) function sets the status field of each IRQ main
descriptor to IRQ _DISABLED. Moreover, init_IRQ( ) updates the IDT by replacing the interrupt
gates set up by setup_idt( ) (see the section "Preliminary Initialization of the IDT," earlier in
this chapter) with new ones. This is accomplished through the following statements:

    for (i = 0; i < NR_IRQS; i++)

       if (i+32 != 128)

           set_intr_gate(i+32,interrupt[i]);

This code looks in the interrupt array to find the interrupt handler addresses that it uses to
set up the interrupt gates . Each entry n of the interrupt array stores the address of the
interrupt handler for IRQ n (see the later section "Saving the registers for the interrupt handler
"). Notice that the interrupt gate corresponding to vector 128 is left untouched, because it is
used for the system call's programmed exception.

In addition to the 8259A chip that was mentioned near the beginning of this chapter, Linux
supports several other PIC circuits such as the SMP IO-APIC, Intel PIIX4's internal 8259 PIC,
and SGI's Visual Workstation Cobalt (IO-)APIC. To handle all such devices in a uniform way,
Linux uses a PIC object, consisting of the PIC name and seven PIC standard methods. The
advantage of this object-oriented approach is that drivers need not to be aware of the kind of
PIC installed in the system. Each driver-visible interrupt source is transparently wired to the
appropriate controller. The data structure that defines a PIC object is called 
hw_interrupt_type (also called hw_irq_controller).

For the sake of concreteness, let's assume that our computer is a uniprocessor with two
8259A PICs, which provide 16 standard IRQs. In this case, the handler field in each of the 16
irq_desc_t descriptors points to the i8259A_irq_type variable, which describes the 8259A PIC.
This variable is initialized as follows:
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    struct hw_interrupt_type i8259A_irq_type = {

        .typename     = "XT-PIC",

        .startup      = startup_8259A_irq,

        .shutdown     = shutdown_8259A_irq,

        .enable       = enable_8259A_irq,

        .disable      = disable_8259A_irq,

        .ack          = mask_and_ack_8259A,

        .end          = end_8259A_irq,

        .set_affinity = NULL

    };

The first field in this structure, "XT-PIC", is the PIC name. Next come the pointers to six
different functions used to program the PIC. The first two functions start up and shut down
an IRQ line of the chip, respectively. But in the case of the 8259A chip, these functions
coincide with the third and fourth functions, which enable and disable the line. The 
mask_and_ack_8259A( ) function acknowledges the IRQ received by sending the proper bytes to
the 8259A I/O ports. The end_8259A_irq( ) function is invoked when the interrupt handler for
the IRQ line terminates. The last set_affinity method is set to NULL: it is used in
multiprocessor systems to declare the "affinity" of CPUs for specified IRQs that is, which CPUs
are enabled to handle specific IRQs.

As described earlier, multiple devices can share a single IRQ. Therefore, the kernel maintains 
irqaction descriptors (see Figure 4-5 earlier in this chapter), each of which refers to a
specific hardware device and a specific interrupt. The fields included in such descriptor are
shown in Table 4-6, and the flags are shown in Table 4-7.

Table 4-6. Fields of the irqaction descriptor

Field
name Description

handler Points to the interrupt service routine for an I/O device. This is the key field that
allows many devices to share the same IRQ.

flags This field includes a few fields that describe the relationships between the IRQ line
and the I/O device (see Table 4-7).

mask Not used.

name The name of the I/O device (shown when listing the serviced IRQs by reading the 
/proc/interrupts file).

dev_id A private field for the I/O device. Typically, it identifies the I/O device itself (for
instance, it could be equal to its major and minor numbers; see the section "
Device Files" in Chapter 13), or it points to the device driver's data.

next Points to the next element of a list of irqaction descriptors. The elements in the
list refer to hardware devices that share the same IRQ.

irq IRQ line.

dir Points to the descriptor of the /proc/irq/n directory associated with the IRQn.
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Table 4-7. Flags of the irqaction descriptor

Flag name Description

SA_INTERRUPT The handler must execute with interrupts disabled.

SA_SHIRQ The device permits its IRQ line to be shared with other devices.

SA_SAMPLE_RANDOM The device may be considered a source of events that occurs randomly;
it can thus be used by the kernel random number generator. (Users can
access this feature by taking random numbers from the /dev/random and
/dev/urandom device files.)

Finally, the irq_stat array includes NR_CPUS entries, one for every possible CPU in the system.
Each entry of type irq_cpustat_t includes a few counters and flags used by the kernel to
keep track of what each CPU is currently doing (see Table 4-8).

Table 4-8. Fields of the irq_cpustat_t structure

Field name Description

_ _softirq_pending Set of flags denoting the pending softirqs (see the section "Softirqs"
later in this chapter)

idle_timestamp Time when the CPU became idle (significant only if the CPU is currently
idle)

_ _nmi_count Number of occurrences of NMI interrupts 

apic_timer_irqs Number of occurrences of local APIC timer interrupts (see Chapter 6)

4.6.1.3. IRQ distribution in multiprocessor systems

Linux sticks to the Symmetric Multiprocessing model (SMP ); this means, essentially, that the
kernel should not have any bias toward one CPU with respect to the others. As a
consequence, the kernel tries to distribute the IRQ signals coming from the hardware devices
in a round-robin fashion among all the CPUs. Therefore, all the CPUs should spend
approximately the same fraction of their execution time servicing I/O interrupts.

In the earlier section "The Advanced Programmable Interrupt Controller (APIC)," we said that
the multi-APIC system has sophisticated mechanisms to dynamically distribute the IRQ signals
among the CPUs.

During system bootstrap, the booting CPU executes the setup_IO_APIC_irqs( ) function to
initialize the I/O APIC chip. The 24 entries of the Interrupt Redirection Table of the chip are
filled, so that all IRQ signals from the I/O hardware devices can be routed to each CPU in the
system according to the "lowest priority" scheme (see the earlier section "IRQs and Interrupts
"). During system bootstrap, moreover, all CPUs execute the setup_local_APIC( ) function,
which takes care of initializing the local APICs. In particular, the task priority register (TPR) of
each chip is initialized to a fixed value, meaning that the CPU is willing to handle every kind of
IRQ signal, regardless of its priority. The Linux kernel never modifies this value after its
initialization.

All task priority registers contain the same value, thus all CPUs always have the same priority.
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To break a tie, the multi-APIC system uses the values in the arbitration priority registers of
local APICs, as explained earlier. Because such values are automatically changed after every
interrupt, the IRQ signals are, in most cases, fairly distributed among all CPUs.[*]

[*] There is an exception, though. Linux usually sets up the local APICs in such a w ay to honor the focus processor, w hen it exists.
A focus process w ill catch all IRQs of the same type as long as it has received an IRQ of that type, and it has not finished
executing the interrupt handler. How ever, Intel has dropped support for focus processors in the Pentium 4 model.

In short, when a hardware device raises an IRQ signal, the multi-APIC system selects one of
the CPUs and delivers the signal to the corresponding local APIC, which in turn interrupts its
CPU. No other CPUs are notified of the event.

All this is magically done by the hardware, so it should be of no concern for the kernel after
multi-APIC system initialization. Unfortunately, in some cases the hardware fails to distribute
the interrupts among the microprocessors in a fair way (for instance, some Pentium 4-based
SMP motherboards have this problem). Therefore, Linux 2.6 makes use of a special kernel
thread called kirqd to correct, if necessary, the automatic assignment of IRQs to CPUs.

The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affinity of a
CPU: by modifying the Interrupt Redirection Table entries of the I/O APIC, it is possible to
route an interrupt signal to a specific CPU. This can be done by invoking the 
set_ioapic_affinity_irq( ) function, which acts on two parameters: the IRQ vector to be
rerouted and a 32-bit mask denoting the CPUs that can receive the IRQ. The IRQ affinity of a
given interrupt also can be changed by the system administrator by writing a new CPU bitmap
mask into the /proc/irq/n/smp_affinity file (n being the interrupt vector).

The kirqd kernel thread periodically executes the do_irq_balance( ) function, which keeps
track of the number of interrupt occurrences received by every CPU in the most recent time
interval. If the function discovers that the IRQ load imbalance between the heaviest loaded
CPU and the least loaded CPU is significantly high, then it either selects an IRQ to be "moved"
from a CPU to another, or rotates all IRQs among all existing CPUs.

4.6.1.4. Multiple Kernel Mode stacks

As mentioned in the section "Identifying a Process" in Chapter 3, the thread_info descriptor of
each process is coupled with a Kernel Mode stack in a thread_union data structure composed
by one or two page frames, according to an option selected when the kernel has been
compiled. If the size of the tHRead_union structure is 8 KB, the Kernel Mode stack of the
current process is used for every type of kernel control path: exceptions, interrupts, and
deferrable functions (see the later section "Softirqs and Tasklets"). Conversely, if the size of
the thread_union structure is 4 KB, the kernel makes use of three types of Kernel Mode
stacks:

 The exception stack is used when handling exceptions (including system calls). This is
the stack contained in the per-process thread_union data structure, thus the kernel
makes use of a different exception stack for each process in the system.

 The hard IRQ stack is used when handling interrupts. There is one hard IRQ stack for
each CPU in the system, and each stack is contained in a single page frame.

 The soft IRQ stack is used when handling deferrable functions (softirqs or tasklets; see
the later section "Softirqs and Tasklets"). There is one soft IRQ stack for each CPU in
the system, and each stack is contained in a single page frame.

All hard IRQ stacks are contained in the hardirq_stack array, while all soft IRQ stacks are
contained in the softirq_stack array. Each array element is a union of type irq_ctx that span
a single page. At the bottom of this page is stored a thread_info structure, while the spare
memory locations are used for the stack; remember that each stack grows towards lower
addresses. Thus, hard IRQ stacks and soft IRQ stacks are very similar to the exception stacks
described in the section "Identifying a Process" in Chapter 3; the only difference is that the
tHRead_info structure coupled with each stack is associated with a CPU rather than a

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


process.

The hardirq_ctx and softirq_ctx arrays allow the kernel to quickly determine the hard IRQ
stack and soft IRQ stack of a given CPU, respectively: they contain pointers to the
corresponding irq_ctx elements.

4.6.1.5. Saving the registers for the interrupt handler

When a CPU receives an interrupt, it starts executing the code at the address found in the
corresponding gate of the IDT (see the earlier section "Hardware Handling of Interrupts and
Exceptions").

As with other context switches, the need to save registers leaves the kernel developer with a
somewhat messy coding job, because the registers have to be saved and restored using
assembly language code. However, within those operations, the processor is expected to call
and return from a C function. In this section, we describe the assembly language task of
handling registers; in the next, we show some of the acrobatics required in the C function
that is subsequently invoked.

Saving registers is the first task of the interrupt handler. As already mentioned, the address of
the interrupt handler for IRQ n is initially stored in the interrupt[n] enTRy and then copied
into the interrupt gate included in the proper IDT entry.

The interrupt array is built through a few assembly language instructions in the
arch/i386/kernel/entry.S file. The array includes NR_IRQS elements, where the NR_IRQS macro
yields either the number 224 if the kernel supports a recent I/O APIC chip,[*] or the number 16
if the kernel uses the older 8259A PIC chips. The element at index n in the array stores the
address of the following two assembly language instructions:

[*] 256 vectors is an architectural limit for the 80x86 architecture. 32 of them are used or reserved for the CPU, so the usable
vector space consists of 224 vectors.

        pushl $n-256

        jmp common_interrupt

The result is to save on the stack the IRQ number associated with the interrupt minus 256.
The kernel represents all IRQs through negative numbers, because it reserves positive
interrupt numbers to identify system calls (see Chapter 10). The same code for all interrupt
handlers can then be executed while referring to this number. The common code starts at
label common_interrupt and consists of the following assembly language macros and
instructions:

    common_interrupt:

        SAVE_ALL

        movl %esp,%eax

        call do_IRQ

        jmp ret_from_intr

The SAVE_ALL macro expands to the following fragment:

    cld

    push %es

    push %ds

    pushl %eax

    pushl %ebp

    pushl %edi

    pushl %esi

    pushl %edx
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    pushl %ecx

    pushl %ebx

    movl $ _ _USER_DS,%edx

    movl %edx,%ds

    movl %edx,%es

SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the stack,
except for eflags , cs, eip, ss, and esp, which are already saved automatically by the control
unit (see the earlier section "Hardware Handling of Interrupts and Exceptions"). The macro
then loads the selector of the user data segment into ds and es.

After saving the registers, the address of the current top stack location is saved in the eax
register; then, the interrupt handler invokes the do_IRQ( ) function. When the ret instruction
of do_IRQ( ) is executed (when that function terminates) control is transferred to
ret_from_intr( ) (see the later section "Returning from Interrupts and Exceptions").

4.6.1.6. The do_IRQ( ) function

The do_IRQ( ) function is invoked to execute all interrupt service routines associated with an
interrupt. It is declared as follows:

    _ _attribute_ _((regparm(3))) unsigned int do_IRQ(struct pt_regs *regs)

The regparm keyword instructs the function to go to the eax register to find the value of the
regs argument; as seen above, eax points to the stack location containing the last register
value pushed on by SAVE_ALL.

The do_IRQ( ) function executes the following actions:

1. Executes the irq_enter( ) macro, which increases a counter representing the number
of nested interrupt handlers. The counter is stored in the preempt_count field of the
tHRead_info structure of the current process (see Table 4-10 later in this chapter).

2. If the size of the thread_union structure is 4 KB, it switches to the hard IRQ stack.In
particular, the function performs the following substeps:

a. Executes the current_thread_info( ) function to get the address of the
tHRead_info descriptor associated with the Kernel Mode stack addressed by the
esp register (see the section "Identifying a Process" in Chapter 3).

b. Compares the address of the tHRead_info descriptor obtained in the previous
step with the address stored in hardirq_ctx[smp_processor_id( )], that is, the
address of the thread_info descriptor associated with the local CPU. If the two
addresses are equal, the kernel is already using the hard IRQ stack, thus jumps
to step 3. This happens when an IRQ is raised while the kernel is still handling
another interrupt.

c. Here the Kernel Mode stack has to be switched. Stores the pointer to the
current process descriptor in the task field of the tHRead_info descriptor in
irq_ctx union of the local CPU. This is done so that the current macro works as
expected while the kernel is using the hard IRQ stack (see the section "
Identifying a Process" in Chapter 3).

d. Stores the current value of the esp stack pointer register in the previous_esp
field of the thread_info descriptor in the irq_ctx union of the local CPU (this
field is used only when preparing the function call trace for a kernel oops).

e. Loads in the esp stack register the top location of the hard IRQ stack of the
local CPU (the value in hardirq_ctx[smp_processor_id( )] plus 4096); the
previous value of the esp register is saved in the ebx register.
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3. Invokes the _ _do_IRQ( ) function passing to it the pointer regs and the IRQ number
obtained from the regs->orig_eax field (see the following section).

4. If the hard IRQ stack has been effectively switched in step 2e above, the function
copies the original stack pointer from the ebx register into the esp register, thus
switching back to the exception stack or soft IRQ stack that were in use before.

5. Executes the irq_exit( ) macro, which decreases the interrupt counter and checks
whether deferrable kernel functions are waiting to be executed (see the section "
Softirqs and Tasklets" later in this chapter).

6. Terminates: the control is transferred to the ret_from_intr( ) function (see the later
section "Returning from Interrupts and Exceptions").

4.6.1.7. The _ _do_IRQ( ) function

The _ _do_IRQ( ) function receives as its parameters an IRQ number (through the eax register)
and a pointer to the pt_regs structure where the User Mode register values have been saved
(through the edx register).

The function is equivalent to the following code fragment:

    spin_lock(&(irq_desc[irq].lock));

    irq_desc[irq].handler->ack(irq);

    irq_desc[irq].status &= ~(IRQ_REPLAY | IRQ_WAITING);

    irq_desc[irq].status |= IRQ_PENDING;

    if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))

            && irq_desc[irq].action) {

        irq_desc[irq].status |= IRQ_INPROGRESS;

        do {

            irq_desc[irq].status &= ~IRQ_PENDING;

            spin_unlock(&(irq_desc[irq].lock));

            handle_IRQ_event(irq, regs, irq_desc[irq].action);

            spin_lock(&(irq_desc[irq].lock));

        } while (irq_desc[irq].status & IRQ_PENDING);

        irq_desc[irq].status &= ~IRQ_INPROGRESS;

    }

    irq_desc[irq].handler->end(irq);

    spin_unlock(&(irq_desc[irq].lock));

Before accessing the main IRQ descriptor, the kernel acquires the corresponding spin lock.
We'll see in Chapter 5 that the spin lock protects against concurrent accesses by different
CPUs. This spin lock is necessary in a multiprocessor system, because other interrupts of the
same kind may be raised, and other CPUs might take care of the new interrupt occurrences.
Without the spin lock, the main IRQ descriptor would be accessed concurrently by several
CPUs. As we'll see, this situation must be absolutely avoided.

After acquiring the spin lock, the function invokes the ack method of the main IRQ descriptor.
When using the old 8259A PIC, the corresponding mask_and_ack_8259A( ) function
acknowledges the interrupt on the PIC and also disables the IRQ line. Masking the IRQ line
ensures that the CPU does not accept further occurrences of this type of interrupt until the
handler terminates. Remember that the _ _do_IRQ( ) function runs with local interrupts
disabled; in fact, the CPU control unit automatically clears the IF flag of the eflags register
because the interrupt handler is invoked through an IDT's interrupt gate. However, we'll see
shortly that the kernel might re-enable local interrupts before executing the interrupt service
routines of this interrupt.

When using the I/O APIC, however, things are much more complicated. Depending on the type
of interrupt, acknowledging the interrupt could either be done by the ack method or delayed
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until the interrupt handler terminates (that is, acknowledgement could be done by the end
method). In either case, we can take for granted that the local APIC doesn't accept further
interrupts of this type until the handler terminates, although further occurrences of this type
of interrupt may be accepted by other CPUs.

The _ _do_IRQ( ) function then initializes a few flags of the main IRQ descriptor. It sets the
IRQ_PENDING flag because the interrupt has been acknowledged (well, sort of), but not yet
really serviced; it also clears the IRQ_WAITING and IRQ_REPLAY flags (but we don't have to care
about them now).

Now _ _do_IRQ( ) checks whether it must really handle the interrupt. There are three cases in
which nothing has to be done. These are discussed in the following list.

IRQ_DISABLED is set

A CPU might execute the _ _do_IRQ( ) function even if the corresponding IRQ line is
disabled; you'll find an explanation for this nonintuitive case in the later section "
Reviving a lost interrupt." Moreover, buggy motherboards may generate spurious
interrupts even when the IRQ line is disabled in the PIC.

IRQ_INPROGRESS is set

In a multiprocessor system, another CPU might be handling a previous occurrence of
the same interrupt. Why not defer the handling of this occurrence to that CPU? This is
exactly what is done by Linux. This leads to a simpler kernel architecture because
device drivers' interrupt service routines need not to be reentrant (their execution is
serialized). Moreover, the freed CPU can quickly return to what it was doing, without
dirtying its hardware cache; this is beneficial to system performance. The 
IRQ_INPROGRESS flag is set whenever a CPU is committed to execute the interrupt
service routines of the interrupt; therefore, the _ _do_IRQ( ) function checks it before
starting the real work.

irq_desc[irq].action is NULL

This case occurs when there is no interrupt service routine associated with the
interrupt. Normally, this happens only when the kernel is probing a hardware device.

Let's suppose that none of the three cases holds, so the interrupt has to be serviced. The _ _
do_IRQ( ) function sets the IRQ_INPROGRESS flag and starts a loop. In each iteration, the
function clears the IRQ_PENDING flag, releases the interrupt spin lock, and executes the
interrupt service routines by invoking handle_IRQ_event( ) (described later in the chapter).
When the latter function terminates, _ _do_IRQ( ) acquires the spin lock again and checks the
value of the IRQ_PENDING flag. If it is clear, no further occurrence of the interrupt has been
delivered to another CPU, so the loop ends. Conversely, if IRQ_PENDING is set, another CPU has
executed the do_IRQ( ) function for this type of interrupt while this CPU was executing
handle_IRQ_event( ). Therefore, do_IRQ( ) performs another iteration of the loop, servicing the
new occurrence of the interrupt.[*]

[*] Because IRQ_PENDING is a flag and not a counter, only the second occurrence of the interrupt can be recognized. Further
occurrences in each iteration of the do_IRQ( )'s loop are simply lost.

Our _ _do_IRQ( ) function is now going to terminate, either because it has already executed
the interrupt service routines or because it had nothing to do. The function invokes the end
method of the main IRQ descriptor. When using the old 8259A PIC, the corresponding 
end_8259A_irq( ) function reenables the IRQ line (unless the interrupt occurrence was
spurious). When using the I/O APIC, the end method acknowledges the interrupt (if not
already done by the ack method).
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Finally, _ _do_IRQ( ) releases the spin lock: the hard work is finished!

4.6.1.8. Reviving a lost interrupt

The _ _do_IRQ( ) function is small and simple, yet it works properly in most cases. Indeed,
the IRQ_PENDING, IRQ_INPROGRESS, and IRQ_DISABLED flags ensure that interrupts are correctly
handled even when the hardware is misbehaving. However, things may not work so smoothly
in a multiprocessor system.

Suppose that a CPU has an IRQ line enabled. A hardware device raises the IRQ line, and the
multi-APIC system selects our CPU for handling the interrupt. Before the CPU acknowledges
the interrupt, the IRQ line is masked out by another CPU; as a consequence, the IRQ_DISABLED
flag is set. Right afterwards, our CPU starts handling the pending interrupt; therefore, the 
do_IRQ( ) function acknowledges the interrupt and then returns without executing the
interrupt service routines because it finds the IRQ_DISABLED flag set. Therefore, even though
the interrupt occurred before the IRQ line was disabled, it gets lost.

To cope with this scenario, the enable_irq( ) function, which is used by the kernel to enable
an IRQ line, checks first whether an interrupt has been lost. If so, the function forces the
hardware to generate a new occurrence of the lost interrupt:

    spin_lock_irqsave(&(irq_desc[irq].lock), flags);

    if (--irq_desc[irq].depth == 0) {

        irq_desc[irq].status &= ~IRQ_DISABLED;

        if (irq_desc[irq].status & (IRQ_PENDING | IRQ_REPLAY))

               == IRQ_PENDING) {

            irq_desc[irq].status |= IRQ_REPLAY;

            hw_resend_irq(irq_desc[irq].handler,irq);

        }

        irq_desc[irq].handler->enable(irq);

    }

    spin_lock_irqrestore(&(irq_desc[irq].lock), flags);

The function detects that an interrupt was lost by checking the value of the IRQ_PENDING flag.
The flag is always cleared when leaving the interrupt handler; therefore, if the IRQ line is
disabled and the flag is set, then an interrupt occurrence has been acknowledged but not yet
serviced. In this case the hw_resend_irq( ) function raises a new interrupt. This is obtained by
forcing the local APIC to generate a self-interrupt (see the later section "Interprocessor
Interrupt Handling"). The role of the IRQ_REPLAY flag is to ensure that exactly one
self-interrupt is generated. Remember that the _ _do_IRQ( ) function clears that flag when it
starts handling the interrupt.

4.6.1.9. Interrupt service routines

As mentioned previously, an interrupt service routine handles an interrupt by executing an
operation specific to one type of device. When an interrupt handler must execute the ISRs, it
invokes the handle_IRQ_event( ) function. This function essentially performs the following
steps:

1. Enables the local interrupts with the sti assembly language instruction if the
SA_INTERRUPT flag is clear.

2. Executes each interrupt service routine of the interrupt through the following code:
3.
4.     retval = 0;

5.     do {

6.         retval |= action->handler(irq, action->dev_id, regs);

7.         action = action->next;

    } while (action);
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At the start of the loop, action points to the start of a list of irqaction data
structures that indicate the actions to be taken upon receiving the interrupt (see 
Figure 4-5 earlier in this chapter).

8. Disables local interrupts with the cli assembly language instruction.

9. Terminates by returning the value of the retval local variable, that is, 0 if no interrupt
service routine has recognized interrupt, 1 otherwise (see next).

All interrupt service routines act on the same parameters (once again they are passed through
the eax, edx, and ecx registers, respectively):

irq

The IRQ number

dev_id

The device identifier

regs

A pointer to a pt_regs structure on the Kernel Mode (exception) stack containing the
registers saved right after the interrupt occurred. The pt_regs structure consists of 15
fields:

 The first nine fields are the register values pushed by SAVE_ALL

 The tenth field, referenced through a field called orig_eax, encodes the IRQ
number

 The remaining fields correspond to the register values pushed on automatically
by the control unit

The first parameter allows a single ISR to handle several IRQ lines, the second one allows a
single ISR to take care of several devices of the same type, and the last one allows the ISR
to access the execution context of the interrupted kernel control path. In practice, most ISRs
do not use these parameters.

Every interrupt service routine returns the value 1 if the interrupt has been effectively
handled, that is, if the signal was raised by the hardware device handled by the interrupt
service routine (and not by another device sharing the same IRQ); it returns the value 0
otherwise. This return code allows the kernel to update the counter of unexpected interrupts
mentioned in the section "IRQ data structures" earlier in this chapter.

The SA_INTERRUPT flag of the main IRQ descriptor determines whether interrupts must be
enabled or disabled when the do_IRQ( ) function invokes an ISR. An ISR that has been invoked
with the interrupts in one state is allowed to put them in the opposite state. In a uniprocessor
system, this can be achieved by means of the cli (disable interrupts) and sti (enable
interrupts) assembly language instructions.

The structure of an ISR depends on the characteristics of the device handled. We'll give a
couple of examples of ISRs in Chapter 6 and Chapter 13.

4.6.1.10. Dynamic allocation of IRQ lines

As noted in section "Interrupt vectors," a few vectors are reserved for specific devices, while
the remaining ones are dynamically handled. There is, therefore, a way in which the same IRQ
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line can be used by several hardware devices even if they do not allow IRQ sharing. The trick
is to serialize the activation of the hardware devices so that just one owns the IRQ line at a
time.

Before activating a device that is going to use an IRQ line, the corresponding driver invokes 
request_irq( ). This function creates a new irqaction descriptor and initializes it with the
parameter values; it then invokes the setup_irq( ) function to insert the descriptor in the
proper IRQ list. The device driver aborts the operation if setup_irq( ) returns an error code,
which usually means that the IRQ line is already in use by another device that does not allow
interrupt sharing. When the device operation is concluded, the driver invokes the free_irq( )
function to remove the descriptor from the IRQ list and release the memory area.

Let's see how this scheme works on a simple example. Assume a program wants to address
the /dev/fd0 device file, which corresponds to the first floppy disk on the system.[*] The
program can do this either by directly accessing /dev/fd0 or by mounting a filesystem on it.
Floppy disk controllers are usually assigned IRQ 6; given this, a floppy driver may issue the
following request:

[*] Floppy disks are "old" devices that do not usually allow  IRQ sharing.

    request_irq(6, floppy_interrupt,

                SA_INTERRUPT|SA_SAMPLE_RANDOM, "floppy", NULL);

As can be observed, the floppy_interrupt( ) interrupt service routine must execute with the
interrupts disabled (SA_INTERRUPT flag set) and no sharing of the IRQ (SA_SHIRQ flag missing).
The SA_SAMPLE_RANDOM flag set means that accesses to the floppy disk are a good source of
random events to be used for the kernel random number generator. When the operation on
the floppy disk is concluded (either the I/O operation on /dev/fd0 terminates or the filesystem
is unmounted), the driver releases IRQ 6:

    free_irq(6, NULL);

To insert an irqaction descriptor in the proper list, the kernel invokes the setup_irq( )
function, passing to it the parameters irq _nr, the IRQ number, and new (the address of a
previously allocated irqaction descriptor). This function:

1. Checks whether another device is already using the irq _nr IRQ and, if so, whether
the SA_SHIRQ flags in the irqaction descriptors of both devices specify that the IRQ line
can be shared. Returns an error code if the IRQ line cannot be used.

2. Adds *new (the new irqaction descriptor pointed to by new) at the end of the list to
which irq _desc[irq _nr]->action points.

3. If no other device is sharing the same IRQ, the function clears the IRQ _DISABLED,
IRQ_AUTODETECT, IRQ_WAITING, and IRQ _INPROGRESS flags in the flags field of *new and
invokes the startup method of the irq_desc[irq_nr]->handler PIC object to make sure
that IRQ signals are enabled.

Here is an example of how setup_irq( ) is used, drawn from system initialization. The kernel
initializes the irq0 descriptor of the interval timer device by executing the following
instructions in the time_init( ) function (see Chapter 6):

    struct irqaction irq0  =

        {timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};

    setup_irq(0, &irq0);

First, the irq0 variable of type irqaction is initialized: the handler field is set to the address of
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the timer_interrupt( ) function, the flags field is set to SA_INTERRUPT, the name field is set to
"timer", and the fifth field is set to NULL to show that no dev_id value is used. Next, the
kernel invokes setup_irq( ) to insert irq0 in the list of irqaction descriptors associated with
IRQ 0.

4.6.2. Interprocessor Interrupt Handling

Interprocessor interrupts allow a CPU to send interrupt signals to any other CPU in the
system. As explained in the section "The Advanced Programmable Interrupt Controller (APIC)"
earlier in this chapter, an interprocessor interrupt (IPI) is delivered not through an IRQ line,
but directly as a message on the bus that connects the local APIC of all CPUs (either a
dedicated bus in older motherboards, or the system bus in the Pentium 4-based
motherboards).

On multiprocessor systems, Linux makes use of three kinds of interprocessor interrupts (see
also Table 4-2):

CALL_FUNCTION_VECTOR (vector 0xfb)

Sent to all CPUs but the sender, forcing those CPUs to run a function passed by the
sender. The corresponding interrupt handler is named call_function_interrupt( ). The
function (whose address is passed in the call_data global variable) may, for instance,
force all other CPUs to stop, or may force them to set the contents of the Memory
Type Range Registers (MTRRs).[*] Usually this interrupt is sent to all CPUs except the
CPU executing the calling function by means of the smp_call_function( ) facility
function.

[*] Starting with the Pentium Pro model, Intel microprocessors include these additional registers to
easily customize cache operations. For instance, Linux may use these registers to disable the
hardware cache for the addresses mapping the frame buffer of a PCI/AGP graphic card while
maintaining the "write combining" mode of operation: the paging unit combines write transfers into
larger chunks before copying them into the frame buffer.

RESCHEDULE_VECTOR (vector 0xfc)

When a CPU receives this type of interrupt, the corresponding handler named 
reschedule_interrupt( ) limits itself to acknowledging the interrupt. Rescheduling is
done automatically when returning from the interrupt (see the section "Returning from
Interrupts and Exceptions" later in this chapter).

INVALIDATE_TLB_VECTOR (vector 0xfd)

Sent to all CPUs but the sender, forcing them to invalidate their Translation Lookaside
Buffers. The corresponding handler, named invalidate_interrupt( ), flushes some TLB
entries of the processor as described in the section "Handling the Hardware Cache and
the TLB" in Chapter 2.

The assembly language code of the interprocessor interrupt handlers is generated by the 
BUILD_INTERRUPT macro: it saves the registers, pushes the vector number minus 256 on the
stack, and then invokes a high-level C function having the same name as the low-level
handler preceded by smp_. For instance, the high-level handler of the CALL_FUNCTION_VECTOR
interprocessor interrupt that is invoked by the low-level call_function_interrupt( ) handler is
named smp_call_function_interrupt( ). Each high-level handler acknowledges the
interprocessor interrupt on the local APIC and then performs the specific action triggered by
the interrupt.

Thanks to the following group of functions, issuing interprocessor interrupts (IPIs) becomes an
easy task:
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send_IPI_all( )

Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself( )

Sends an IPI to all CPUs except the sender

send_IPI_self( )

Sends an IPI to the sender CPU

send_IPI_mask( )

Sends an IPI to a group of CPUs specified by a bit mask
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4.7. Softirqs and Tasklets
We mentioned earlier in the section "Interrupt Handling" that several tasks among those
executed by the kernel are not critical: they can be deferred for a long period of time, if
necessary. Remember that the interrupt service routines of an interrupt handler are serialized,
and often there should be no occurrence of an interrupt until the corresponding interrupt
handler has terminated. Conversely, the deferrable tasks can execute with all interrupts
enabled. Taking them out of the interrupt handler helps keep kernel response time small. This
is a very important property for many time-critical applications that expect their interrupt
requests to be serviced in a few milliseconds.

Linux 2.6 answers such a challenge by using two kinds of non-urgent interruptible kernel
functions: the so-called deferrable functions[*] (softirqs and tasklets ), and those executed by
means of some work queues (we will describe them in the section "Work Queues" later in this
chapter).

[*] These are also called software interrupts, but w e denote them as "deferrable functions" to avoid confusion w ith programmed
exceptions, w hich are referred to as "softw are interrupts " in Intel manuals.

Softirqs and tasklets are strictly correlated, because tasklets are implemented on top of
softirqs. As a matter of fact, the term "softirq," which appears in the kernel source code,
often denotes both kinds of deferrable functions. Another widely used term is interrupt
context : it specifies that the kernel is currently executing either an interrupt handler or a
deferrable function.

Softirqs are statically allocated (i.e., defined at compile time), while tasklets can also be
allocated and initialized at runtime (for instance, when loading a kernel module). Softirqs can
run concurrently on several CPUs, even if they are of the same type. Thus, softirqs are
reentrant functions and must explicitly protect their data structures with spin locks. Tasklets
do not have to worry about this, because their execution is controlled more strictly by the
kernel. Tasklets of the same type are always serialized: in other words, the same type of
tasklet cannot be executed by two CPUs at the same time. However, tasklets of different
types can be executed concurrently on several CPUs. Serializing the tasklet simplifies the life
of device driver developers, because the tasklet function needs not be reentrant.

Generally speaking, four kinds of operations can be performed on deferrable functions:

Initialization

Defines a new deferrable function; this operation is usually done when the kernel
initializes itself or a module is loaded.

Activation

Marks a deferrable function as "pending" to be run the next time the kernel schedules a
round of executions of deferrable functions. Activation can be done at any time (even
while handling interrupts).

Masking

Selectively disables a deferrable function so that it will not be executed by the kernel
even if activated. We'll see in the section "Disabling and Enabling Deferrable Functions"
in Chapter 5 that disabling deferrable functions is sometimes essential.
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Execution

Executes a pending deferrable function together with all other pending deferrable
functions of the same type; execution is performed at well-specified times, explained
later in the section "Softirqs."

Activation and execution are bound together: a deferrable function that has been activated
by a given CPU must be executed on the same CPU. There is no self-evident reason
suggesting that this rule is beneficial for system performance. Binding the deferrable function
to the activating CPU could in theory make better use of the CPU hardware cache. After all, it
is conceivable that the activating kernel thread accesses some data structures that will also
be used by the deferrable function. However, the relevant lines could easily be no longer in
the cache when the deferrable function is run because its execution can be delayed a long
time. Moreover, binding a function to a CPU is always a potentially "dangerous" operation,
because one CPU might end up very busy while the others are mostly idle.

4.7.1. Softirqs

Linux 2.6 uses a limited number of softirqs . For most purposes, tasklets are good enough and
are much easier to write because they do not need to be reentrant.

As a matter of fact, only the six kinds of softirqs listed in Table 4-9 are currently defined.

Table 4-9. Softirqs used in Linux 2.6

Softirq Index (priority) Description

HI_SOFTIRQ 0 Handles high priority tasklets

TIMER_SOFTIRQ 1 Tasklets related to timer interrupts

NET_TX_SOFTIRQ 2 Transmits packets to network cards

NET_RX_SOFTIRQ 3 Receives packets from network cards

SCSI_SOFTIRQ 4 Post-interrupt processing of SCSI commands

TASKLET_SOFTIRQ 5 Handles regular tasklets

The index of a sofirq determines its priority: a lower index means higher priority because
softirq functions will be executed starting from index 0.

4.7.1.1. Data structures used for softirqs

The main data structure used to represent softirqs is the softirq_vec array, which includes 32
elements of type softirq_action. The priority of a softirq is the index of the corresponding
softirq_action element inside the array. As shown in Table 4-9, only the first six entries of
the array are effectively used. The softirq_action data structure consists of two fields: an
action pointer to the softirq function and a data pointer to a generic data structure that may
be needed by the softirq function.

Another critical field used to keep track both of kernel preemption and of nesting of kernel
control paths is the 32-bit preempt_count field stored in the tHRead_info field of each process
descriptor (see the section "Identifying a Process" in Chapter 3). This field encodes three
distinct counters plus a flag, as shown in Table 4-10.
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Table 4-10. Subfields of the preempt_count field (continues)

Bits Description

07 Preemption counter (max value = 255)

815 Softirq counter (max value = 255).

1627 Hardirq counter (max value = 4096)

28 PREEMPT_ACTIVE flag

The first counter keeps track of how many times kernel preemption has been explicitly disabled
on the local CPU; the value zero means that kernel preemption has not been explicitly disabled
at all. The second counter specifies how many levels deep the disabling of deferrable
functions is (level 0 means that deferrable functions are enabled). The third counter specifies
the number of nested interrupt handlers on the local CPU (the value is increased by irq_enter(
) and decreased by irq_exit( ); see the section "I/O Interrupt Handling" earlier in this
chapter).

There is a good reason for the name of the preempt_count field: kernel preemptability has to be
disabled either when it has been explicitly disabled by the kernel code (preemption counter not
zero) or when the kernel is running in interrupt context. Thus, to determine whether the
current process can be preempted, the kernel quickly checks for a zero value in the 
preempt_count field. Kernel preemption will be discussed in depth in the section "Kernel
Preemption" in Chapter 5.

The in_interrupt( ) macro checks the hardirq and softirq counters in the
current_thread_info( )->preempt_count field. If either one of these two counters is positive,
the macro yields a nonzero value, otherwise it yields the value zero. If the kernel does not
make use of multiple Kernel Mode stacks, the macro always looks at the preempt_count field of
the thread_info descriptor of the current process. If, however, the kernel makes use of
multiple Kernel Mode stacks, the macro might look at the preempt_count field in the tHRead_info
descriptor contained in a irq_ctx union associated with the local CPU. In this case, the macro
returns a nonzero value because the field is always set to a positive value.

The last crucial data structure for implementing the softirqs is a per-CPU 32-bit mask
describing the pending softirqs; it is stored in the _ _softirq_pending field of the
irq_cpustat_t data structure (recall that there is one such structure per each CPU in the
system; see Table 4-8). To get and set the value of the bit mask, the kernel makes use of
the local_softirq_pending( ) macro that selects the softirq bit mask of the local CPU.

4.7.1.2. Handling softirqs

The open_softirq( ) function takes care of softirq initialization. It uses three parameters: the
softirq index, a pointer to the softirq function to be executed, and a second pointer to a data
structure that may be required by the softirq function. open_softirq( ) limits itself to
initializing the proper entry of the softirq_vec array.

Softirqs are activated by means of the raise_softirq( ) function. This function, which
receives as its parameter the softirq index nr, performs the following actions:

1. Executes the local_irq_save macro to save the state of the IF flag of the eflags
register and to disable interrupts on the local CPU.

2. Marks the softirq as pending by setting the bit corresponding to the index nr in the
softirq bit mask of the local CPU.
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3. If in_interrupt() yields the value 1, it jumps to step 5. This situation indicates either
that raise_softirq( ) has been invoked in interrupt context, or that the softirqs are
currently disabled.

4. Otherwise, invokes wakeup_softirqd() to wake up, if necessary, the ksoftirqd kernel
thread of the local CPU (see later).

5. Executes the local_irq_restore macro to restore the state of the IF flag saved in step
1.

Checks for active (pending) softirqs should be perfomed periodically, but without inducing too
much overhead. They are performed in a few points of the kernel code. Here is a list of the
most significant points (be warned that number and position of the softirq checkpoints change
both with the kernel version and with the supported hardware architecture):

 When the kernel invokes the local_bh_enable( ) function[*] to enable softirqs on the
local CPU

[*] The name local_bh_enable( ) refers to a special type of deferrable function called "bottom half" that no longer exists in
Linux 2.6.

 When the do_IRQ( ) function finishes handling an I/O interrupt and invokes the
irq_exit( ) macro

 If the system uses an I/O APIC, when the smp_apic_timer_interrupt( ) function
finishes handling a local timer interrupt (see the section "Timekeeping Architecture in
Multiprocessor Systems" in Chapter 6)

 In multiprocessor systems, when a CPU finishes handling a function triggered by a 
CALL_FUNCTION_VECTOR interprocessor interrupt

 When one of the special ksoftirqd/n kernel threads is awakened (see later)

4.7.1.3. The do_softirq( ) function

If pending softirqs are detected at one such checkpoint (local_softirq_pending() is not zero),
the kernel invokes do_softirq( ) to take care of them. This function performs the following
actions:

1. If in_interrupt( ) yields the value one, this function returns. This situation indicates
either that do_softirq( ) has been invoked in interrupt context or that the softirqs are
currently disabled.

2. Executes local_irq_save to save the state of the IF flag and to disable the interrupts
on the local CPU.

3. If the size of the thread_union structure is 4 KB, it switches to the soft IRQ stack, if
necessary. This step is very similar to step 2 of do_IRQ( ) in the earlier section "I/O
Interrupt Handling;" of course, the softirq_ctx array is used instead of hardirq_ctx.

4. Invokes the _ _do_softirq( ) function (see the following section).

5. If the soft IRQ stack has been effectively switched in step 3 above, it restores the
original stack pointer into the esp register, thus switching back to the exception stack
that was in use before.

6. Executes local_irq_restore to restore the state of the IF flag (local interrupts enabled
or disabled) saved in step 2 and returns.

4.7.1.4. The _ _do_softirq( ) function

The _ _do_softirq( ) function reads the softirq bit mask of the local CPU and executes the
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deferrable functions corresponding to every set bit. While executing a softirq function, new
pending softirqs might pop up; in order to ensure a low latency time for the deferrable
funtions, _ _do_softirq( ) keeps running until all pending softirqs have been executed. This
mechanism, however, could force _ _do_softirq( ) to run for long periods of time, thus
considerably delaying User Mode processes. For that reason, _ _do_softirq( ) performs a
fixed number of iterations and then returns. The remaining pending softirqs, if any, will be
handled in due time by the ksoftirqd kernel thread described in the next section. Here is a
short description of the actions performed by the function:

1. Initializes the iteration counter to 10.

2. Copies the softirq bit mask of the local CPU (selected by local_softirq_pending( )) in
the pending local variable.

3. Invokes local_bh_disable( ) to increase the softirq counter. It is somewhat
counterintuitive that deferrable functions should be disabled before starting to execute
them, but it really makes a lot of sense. Because the deferrable functions mostly run
with interrupts enabled, an interrupt can be raised in the middle of the _ _do_softirq(
) function. When do_IRQ( ) executes the irq_exit( ) macro, another instance of the _
_do_softirq( ) function could be started. This has to be avoided, because deferrable
functions must execute serially on the CPU. Thus, the first instance of _ _do_softirq(
) disables deferrable functions, so that every new instance of the function will exit at
step 1 of do_softirq( ).

4. Clears the softirq bitmap of the local CPU, so that new softirqs can be activated (the
value of the bit mask has already been saved in the pending local variable in step 2).

5. Executes local_irq_enable( ) to enable local interrupts.

6. For each bit set in the pending local variable, it executes the corresponding softirq
function; recall that the function address for the softirq with index n is stored in
softirq_vec[n]->action.

7. Executes local_irq_disable() to disable local interrupts.

8. Copies the softirq bit mask of the local CPU into the pending local variable and
decreases the iteration counter one more time.

9. If pending is not zeroat least one softirq has been activated since the start of the last
iterationand the iteration counter is still positive, it jumps back to step 4.

10. If there are more pending softirqs, it invokes wakeup_softirqd( ) to wake up the kernel
thread that takes care of the softirqs for the local CPU (see next section).

11. Subtracts 1 from the softirq counter, thus reenabling the deferrable functions.

4.7.1.5. The ksoftirqd kernel threads

In recent kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is the
logical number of the CPU). Each ksoftirqd/n kernel thread runs the ksoftirqd( ) function,
which essentially executes the following loop:

    for(;;) {

        set_current_state(TASK_INTERRUPTIBLE );

        schedule( );

        /* now in TASK_RUNNING state */

        while (local_softirq_pending( )) {

            preempt_disable();

            do_softirq( );

            preempt_enable();

            cond_resched( );
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        }

    }

When awakened, the kernel thread checks the local_softirq_pending() softirq bit mask and
invokes, if necessary, do_softirq( ). If there are no softirqs pending, the function puts the
current process in the TASK_INTERRUPTIBLE state and invokes then the cond_resched() function
to perform a process switch if required by the current process (flag TIF_NEED_RESCHED of the
current thread_info set).

The ksoftirqd/n kernel threads represent a solution for a critical trade-off problem.

Softirq functions may reactivate themselves; in fact, both the networking softirqs and the
tasklet softirqs do this. Moreover, external events, such as packet flooding on a network card,
may activate softirqs at very high frequency.

The potential for a continuous high-volume flow of softirqs creates a problem that is solved by
introducing kernel threads. Without them, developers are essentially faced with two
alternative strategies.

The first strategy consists of ignoring new softirqs that occur while do_softirq( ) is running.
In other words, the do_softirq( ) function could determine what softirqs are pending when
the function is started and then execute their functions. Next, it would terminate without
rechecking the pending softirqs. This solution is not good enough. Suppose that a softirq
function is reactivated during the execution of do_softirq( ). In the worst case, the softirq is
not executed again until the next timer interrupt, even if the machine is idle. As a result,
softirq latency time is unacceptable for networking developers.

The second strategy consists of continuously rechecking for pending softirqs. The do_softirq(
) function could keep checking the pending softirqs and would terminate only when none of
them is pending. While this solution might satisfy networking developers, it can certainly upset
normal users of the system: if a high-frequency flow of packets is received by a network card
or a softirq function keeps activating itself, the do_softirq( ) function never returns, and the
User Mode programs are virtually stopped.

The ksoftirqd/n kernel threads try to solve this difficult trade-off problem. The do_softirq( )
function determines what softirqs are pending and executes their functions. After a few
iterations, if the flow of softirqs does not stop, the function wakes up the kernel thread and
terminates (step 10 of _ _do_softirq( )). The kernel thread has low priority, so user programs
have a chance to run; but if the machine is idle, the pending softirqs are executed quickly.

4.7.2. Tasklets

Tasklets are the preferred way to implement deferrable functions in I/O drivers. As already
explained, tasklets are built on top of two softirqs named HI_SOFTIRQ and TASKLET_SOFTIRQ.
Several tasklets may be associated with the same softirq, each tasklet carrying its own
function. There is no real difference between the two softirqs, except that do_softirq( )
executes HI_SOFTIRQ's tasklets before TASKLET_SOFTIRQ's tasklets.

Tasklets and high-priority tasklets are stored in the tasklet_vec and tasklet_hi_vec arrays,
respectively. Both of them include NR_CPUS elements of type tasklet_head, and each element
consists of a pointer to a list of tasklet descriptors. The tasklet descriptor is a data structure
of type tasklet_struct, whose fields are shown in Table 4-11.

Table 4-11. The fields of the tasklet descriptor

Field name Description

next Pointer to next descriptor in the list
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Table 4-11. The fields of the tasklet descriptor

Field name Description

state Status of the tasklet

count Lock counter

func Pointer to the tasklet function

data An unsigned long integer that may be used by the tasklet function

The state field of the tasklet descriptor includes two flags:

TASKLET_STATE_SCHED

When set, this indicates that the tasklet is pending (has been scheduled for
execution); it also means that the tasklet descriptor is inserted in one of the lists of
the tasklet_vec and tasklet_hi_vec arrays.

TASKLET_STATE_RUN

When set, this indicates that the tasklet is being executed; on a uniprocessor system
this flag is not used because there is no need to check whether a specific tasklet is
running.

Let's suppose you're writing a device driver and you want to use a tasklet: what has to be
done? First of all, you should allocate a new tasklet_struct data structure and initialize it by
invoking tasklet_init( ); this function receives as its parameters the address of the tasklet
descriptor, the address of your tasklet function, and its optional integer argument.

The tasklet may be selectively disabled by invoking either tasklet_disable_nosync( ) or
tasklet_disable( ). Both functions increase the count field of the tasklet descriptor, but the
latter function does not return until an already running instance of the tasklet function has
terminated. To reenable the tasklet, use tasklet_enable( ).

To activate the tasklet, you should invoke either the tasklet_schedule( ) function or the
tasklet_hi_schedule( ) function, according to the priority that you require for the tasklet. The
two functions are very similar; each of them performs the following actions:

1. Checks the TASKLET_STATE_SCHED flag; if it is set, returns (the tasklet has already been
scheduled).

2. Invokes local_irq_save to save the state of the IF flag and to disable local interrupts.

3. Adds the tasklet descriptor at the beginning of the list pointed to by tasklet_vec[n] or
tasklet_hi_vec[n], where n denotes the logical number of the local CPU.

4. Invokes raise_softirq_irqoff( ) to activate either the TASKLET_SOFTIRQ or the
HI_SOFTIRQ softirq (this function is similar to raise_softirq( ), except that it assumes
that local interrupts are already disabled).

5. Invokes local_irq_restore to restore the state of the IF flag.

Finally, let's see how the tasklet is executed. We know from the previous section that, once
activated, softirq functions are executed by the do_softirq( ) function. The softirq function
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associated with the HI_SOFTIRQ softirq is named tasklet_hi_action( ), while the function
associated with TASKLET_SOFTIRQ is named tasklet_action( ). Once again, the two functions
are very similar; each of them:

1. Disables local interrupts.

2. Gets the logical number n of the local CPU.

3. Stores the address of the list pointed to by tasklet_vec[n] or tasklet_hi_vec[n] in the
list local variable.

4. Puts a NULL address in tasklet_vec[n] or tasklet_hi_vec[n], thus emptying the list of
scheduled tasklet descriptors.

5. Enables local interrupts.

6. For each tasklet descriptor in the list pointed to by list:

a. In multiprocessor systems, checks the TASKLET_STATE_RUN flag of the tasklet.

 If it is set, a tasklet of the same type is already running on another CPU,
so the function reinserts the task descriptor in the list pointed to by 
tasklet_vec[n] or tasklet_hi_vec[n] and activates the TASKLET_SOFTIRQ
or HI_SOFTIRQ softirq again. In this way, execution of the tasklet is
deferred until no other tasklets of the same type are running on other
CPUs.

 Otherwise, the tasklet is not running on another CPU: sets the flag so
that the tasklet function cannot be executed on other CPUs.

b. Checks whether the tasklet is disabled by looking at the count field of the
tasklet descriptor. If the tasklet is disabled, it clears its TASKLET_STATE_RUN flag
and reinserts the task descriptor in the list pointed to by tasklet_vec[n] or
tasklet_hi_vec[n]; then the function activates the TASKLET_SOFTIRQ or
HI_SOFTIRQ softirq again.

c. If the tasklet is enabled, it clears the TASKLET_STATE_SCHED flag and executes
the tasklet function.

Notice that, unless the tasklet function reactivates itself, every tasklet activation triggers at
most one execution of the tasklet function.
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4.8. Work Queues
The work queues have been introduced in Linux 2.6 and replace a similar construct called
"task queue" used in Linux 2.4. They allow kernel functions to be activated (much like
deferrable functions) and later executed by special kernel threads called worker threads .

Despite their similarities, deferrable functions and work queues are quite different. The main
difference is that deferrable functions run in interrupt context while functions in work queues
run in process context. Running in process context is the only way to execute functions that
can block (for instance, functions that need to access some block of data on disk) because,
as already observed in the section "Nested Execution of Exception and Interrupt Handlers"
earlier in this chapter, no process switch can take place in interrupt context. Neither
deferrable functions nor functions in a work queue can access the User Mode address space
of a process. In fact, a deferrable function cannot make any assumption about the process
that is currently running when it is executed. On the other hand, a function in a work queue is
executed by a kernel thread, so there is no User Mode address space to access.

4.8.1. 

4.8.1.1. Work queue data structures

The main data structure associated with a work queue is a descriptor called workqueue_struct,
which contains, among other things, an array of NR_CPUS elements, the maximum number of
CPUs in the system.[*] Each element is a descriptor of type cpu_workqueue_struct, whose fields
are shown in Table 4-12.

[*] The reason for duplicating the w ork queue data structures in multiprocessor systems is that per-CPU local data structures yield
a much more efficient code (see the section "Per-CPU Variables" in Chapter 5).

Table 4-12. The fields of the cpu_workqueue_struct structure

Field name Description

lock Spin lock used to protect the structure

remove_sequence Sequence number used by flush_workqueue( )

insert_sequence Sequence number used by flush_workqueue( )

worklist Head of the list of pending functions

more_work Wait queue where the worker thread waiting for more work to be done
sleeps

work_done Wait queue where the processes waiting for the work queue to be flushed
sleep

wq Pointer to the workqueue_struct structure containing this descriptor

tHRead Process descriptor pointer of the worker thread of the structure

run_depth Current execution depth of run_workqueue( ) (this field may become
greater than one when a function in the work queue list blocks)
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The worklist field of the cpu_workqueue_struct structure is the head of a doubly linked list
collecting the pending functions of the work queue. Every pending function is represented by
a work_struct data structure, whose fields are shown in Table 4-13.

Table 4-13. The fields of the work_struct structure

Field name Description

pending Set to 1 if the function is already in a work queue list, 0 otherwise

entry Pointers to next and previous elements in the list of pending functions

func Address of the pending function

data Pointer passed as a parameter to the pending function

wq_data Usually points to the parent cpu_workqueue_struct descriptor

timer Software timer used to delay the execution of the pending function

4.8.1.2. Work queue functions

The create_workqueue("foo" ) function receives as its parameter a string of characters and
returns the address of a workqueue_struct descriptor for the newly created work queue. The
function also creates n worker threads (where n is the number of CPUs effectively present in
the system), named after the string passed to the function: foo/0, foo/1, and so on. The
create_singlethread_workqueue( ) function is similar, but it creates just one worker thread, no
matter what the number of CPUs in the system is. To destroy a work queue the kernel invokes
the destroy_workqueue( ) function, which receives as its parameter a pointer to a
workqueue_struct array.

queue_work( ) inserts a function (already packaged inside a work_struct descriptor) in a work
queue; it receives a pointer wq to the workqueue_struct descriptor and a pointer work to the
work_struct descriptor. queue_work( ) essentially performs the following steps:

1. Checks whether the function to be inserted is already present in the work queue (
work->pending field equal to 1); if so, terminates.

2. Adds the work_struct descriptor to the work queue list, and sets work->pending to 1.

3. If a worker thread is sleeping in the more_work wait queue of the local CPU's
cpu_workqueue_struct descriptor, the function wakes it up.

The queue_delayed_work( ) function is nearly identical to queue_work( ), except that it
receives a third parameter representing a time delay in system ticks (see Chapter 6). It is
used to ensure a minimum delay before the execution of the pending function. In practice, 
queue_delayed_work( ) relies on the software timer in the timer field of the work_struct
descriptor to defer the actual insertion of the work_struct descriptor in the work queue list.
cancel_delayed_work( ) cancels a previously scheduled work queue function, provided that the
corresponding work_struct descriptor has not already been inserted in the work queue list.

Every worker thread continuously executes a loop inside the worker_thread( ) function; most
of the time the thread is sleeping and waiting for some work to be queued. Once awakened,
the worker thread invokes the run_workqueue( ) function, which essentially removes every
work_struct descriptor from the work queue list of the worker thread and executes the
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corresponding pending function. Because work queue functions can block, the worker thread
can be put to sleep and even migrated to another CPU when resumed.[*]

[*] Strangely enough, a w orker thread can be executed by every CPU, not just the CPU corresponding to the cpu_workqueue_struct
descriptor to w hich the w orker thread belongs. Therefore, queue_work( ) inserts a function in the queue of the local CPU, but that
function may be executed by any CPU in the systems.

Sometimes the kernel has to wait until all pending functions in a work queue have been
executed. The flush_workqueue( ) function receives a workqueue_struct descriptor address
and blocks the calling process until all functions that are pending in the work queue terminate.
The function, however, does not wait for any pending function that was added to the work
queue following flush_workqueue( ) invocation; the remove_sequence and insert_sequence fields
of every cpu_workqueue_struct descriptor are used to recognize the newly added pending
functions.

4.8.1.3. The predefined work queue

In most cases, creating a whole set of worker threads in order to run a function is overkill.
Therefore, the kernel offers a predefined work queue called events, which can be freely used
by every kernel developer. The predefined work queue is nothing more than a standard work
queue that may include functions of different kernel layers and I/O drivers; its 
workqueue_struct descriptor is stored in the keventd_wq array. To make use of the predefined
work queue, the kernel offers the functions listed in Table 4-14.

Table 4-14. Helper functions for the predefined work queue

Predefined work queue function Equivalent standard work queue function

schedule_work(w) queue_work(keventd_wq,w)

schedule_delayed_work(w,d) queue_delayed_work(keventd_wq,w,d) (on any CPU)

schedule_delayed_work_on(cpu,w,d)
queue_delayed_work(keventd_wq,w,d) (on a given
CPU)

flush_scheduled_work( ) flush_workqueue(keventd_wq)

The predefined work queue saves significant system resources when the function is seldom
invoked. On the other hand, functions executed in the predefined work queue should not block
for a long time: because the execution of the pending functions in the work queue list is
serialized on each CPU, a long delay negatively affects the other users of the predefined work
queue.

In addition to the general events queue, you'll find a few specialized work queues in Linux 2.6.
The most significant is the kblockd work queue used by the block device layer (see Chapter 14
).

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


4.9. Returning from Interrupts and Exceptions
We will finish the chapter by examining the termination phase of interrupt and exception
handlers. (Returning from a system call is a special case, and we shall describe it in Chapter
10.) Although the main objective is clear namely, to resume execution of some program
several issues must be considered before doing it:

Number of kernel control paths being concurrently executed

If there is just one, the CPU must switch back to User Mode.

Pending process switch requests

If there is any request, the kernel must perform process scheduling; otherwise, control
is returned to the current process.

Pending signals

If a signal is sent to the current process, it must be handled.

Single-step mode

If a debugger is tracing the execution of the current process, single-step mode must
be restored before switching back to User Mode.

Virtual-8086 mode

If the CPU is in virtual-8086 mode, the current process is executing a legacy Real Mode
program, thus it must be handled in a special way.

A few flags are used to keep track of pending process switch requests, of pending signals ,
and of single step execution; they are stored in the flags field of the thread_info descriptor.
The field stores other flags as well, but they are not related to returning from interrupts and
exceptions. See Table 4-15 for a complete list of these flags.

Table 4-15. The flags field of the thread_info descriptor (continues)

Flag name Description

TIF_SYSCALL_TRACE System calls are being traced

TIF_NOTIFY_RESUME Not used in the 80 x 86 platform

TIF_SIGPENDING The process has pending signals

TIF_NEED_RESCHED Scheduling must be performed

TIF_SINGLESTEP Restore single step execution on return to User Mode

TIF_IRET Force return from system call via iret rather than sysexit
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Table 4-15. The flags field of the thread_info descriptor (continues)

Flag name Description

TIF_SYSCALL_AUDIT System calls are being audited

TIF_POLLING_NRFLAG The idle process is polling the TIF_NEED_RESCHED flag

TIF_MEMDIE The process is being destroyed to reclaim memory (see the section "
The Out of Memory Killer" in Chapter 17)

The kernel assembly language code that accomplishes all these things is not, technically
speaking, a function, because control is never returned to the functions that invoke it. It is a
piece of code with two different entry points: ret_from_intr( ) and ret_from_exception( ). As
their names suggest, the kernel enters the former when terminating an interrupt handler, and
it enters the latter when terminating an exception handler. We shall refer to the two entry
points as functions, because this makes the description simpler.

The general flow diagram with the corresponding two entry points is illustrated in Figure 4-6.
The gray boxes refer to assembly language instructions that implement kernel preemption
(see Chapter 5); if you want to see what the kernel does when it is compiled without support
for kernel preemption, just ignore the gray boxes. The ret_from_exception( ) and
ret_from_intr( ) enTRy points look quite similar in the flow diagram. A difference exists only if
support for kernel preemption has been selected as a compilation option: in this case, local
interrupts are immediately disabled when returning from exceptions.

Figure 4-6. Returning from interrupts and exceptions
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The flow diagram gives a rough idea of the steps required to resume the execution of an
interrupted program. Now we will go into detail by discussing the assembly language code.

4.9.1. 

4.9.1.1. The entry points

The ret_from_intr( ) and ret_from_exception( ) entry points are essentially equivalent to the
following assembly language code:

    ret_from_exception:

        cli ; missing if kernel preemption is not supported

    ret_from_intr:

        movl $-8192, %ebp ; -4096 if multiple Kernel Mode stacks are used

        andl %esp, %ebp

        movl 0x30(%esp), %eax

        movb 0x2c(%esp), %al

        testl $0x00020003, %eax

        jnz resume_userspace

        jpm resume_kernel
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Recall that when returning from an interrupt, the local interrupts are disabled (see step 3 in
the earlier description of handle_IRQ_event( )); thus, the cli assembly language instruction is
executed only when returning from an exception.

The kernel loads the address of the tHRead_info descriptor of current in the ebp register (see "
Identifying a Process" in Chapter 3).

Next, the values of the cs and eflags registers, which were pushed on the stack when the
interrupt or the exception occurred, are used to determine whether the interrupted program
was running in User Mode, or if the VM flag of eflags was set.[*] In either case, a jump is made
to the resume_userspace label. Otherwise, a jump is made to the resume_kernel label.

[*] When this flag is set, programs are executed in virtual-8086 mode; see the Pentium manuals for more details.

4.9.1.2. Resuming a kernel control path

The assembly language code at the resume_kernel label is executed if the program to be
resumed is running in Kernel Mode:

    resume_kernel:

        cli                 ; these three instructions are

        cmpl $0, 0x14(%ebp) ; missing if kernel preemption

        jz need_resched     ; is not supported

    restore_all:

        popl %ebx

        popl %ecx

        popl %edx

        popl %esi

        popl %edi

        popl %ebp

        popl %eax

        popl %ds

        popl %es

        addl $4, %esp

        iret 

If the preempt_count field of the tHRead_info descriptor is zero (kernel preemption enabled),
the kernel jumps to the need_resched label. Otherwise, the interrupted program is to be
restarted. The function loads the registers with the values saved when the interrupt or the
exception started, and the function yields control by executing the iret instruction.

4.9.1.3. Checking for kernel preemption

When this code is executed, none of the unfinished kernel control paths is an interrupt
handler, otherwise the preempt_count field would be greater than zero. However, as stated in "
Nested Execution of Exception and Interrupt Handlers" earlier in this chapter, there could be
up to two kernel control paths associated with exceptions (beside the one that is
terminating).

    need_resched:

        movl 0x8(%ebp), %ecx

        testb $(1<<TIF_NEED_RESCHED), %cl

        jz restore_all

        testl $0x00000200,0x30(%esp)

        jz restore_all

        call preempt_schedule_irq

        jmp need_resched
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If the TIF_NEED_RESCHED flag in the flags field of current->thread_info is zero, no process
switch is required, thus a jump is made to the restore_all label. Also a jump to the same label
is made if the kernel control path that is being resumed was running with the local interrupts
disabled. In this case a process switch could corrupt kernel data structures (see the section "
When Synchronization Is Necessary" in Chapter 5 for more details).

If a process switch is required, the preempt_schedule_irq( ) function is invoked: it sets the
PREEMPT_ACTIVE flag in the preempt_count field, temporarily sets the big kernel lock counter to -
1 (see the section "The Big Kernel Lock" in Chapter 5), enables the local interrupts, and
invokes schedule( ) to select another process to run. When the former process will resume,
preempt_schedule_irq( ) restores the previous value of the big kernel lock counter, clears the
PREEMPT_ACTIVE flag, and disables local interrupts. The schedule( ) function will continue to be
invoked as long as the TIF_NEED_RESCHED flag of the current process is set.

4.9.1.4. Resuming a User Mode program

If the program to be resumed was running in User Mode, a jump is made to the 
resume_userspace label:

    resume_userspace:

        cli

        movl 0x8(%ebp), %ecx

        andl $0x0000ff6e, %ecx

        je restore_all

        jmp work_pending

After disabling the local interrupts, a check is made on the value of the flags field of
current->thread_info. If no flag except TIF_SYSCALL_TRACE, TIF_SYSCALL_AUDIT, or
TIF_SINGLESTEP is set, nothing remains to be done: a jump is made to the restore_all label,
thus resuming the User Mode program.

4.9.1.5. Checking for rescheduling

The flags in the thread_info descriptor state that additional work is required before resuming
the interrupted program.

    work_pending:

        testb $(1<<TIF_NEED_RESCHED), %cl

        jz work_notifysig

    work_resched:

        call schedule

        cli

        jmp resume_userspace

If a process switch request is pending, schedule( ) is invoked to select another process to
run. When the former process will resume, a jump is made back to resume_userspace.

4.9.1.6. Handling pending signals, virtual-8086 mode, and single stepping

There is other work to be done besides process switch requests:

    work_notifysig:

        movl %esp, %eax

        testl $0x00020000, 0x30(%esp)

        je 1f

    work_notifysig_v86:

        pushl %ecx

        call save_v86_state
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        popl %ecx

        movl %eax, %esp

    1:

        xorl %edx, %edx

        call do_notify_resume

        jmp restore_all

If the VM control flag in the eflags register of the User Mode program is set, the
save_v86_state( ) function is invoked to build up the virtual-8086 mode data structures in the
User Mode address space. Then the do_notify_resume( ) function is invoked to take care of
pending signals and single stepping. Finally, a jump is made to the restore_all label to resume
the interrupted program.
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Chapter 5. Kernel Synchronization
You could think of the kernel as a server that answers requests; these requests can come
either from a process running on a CPU or an external device issuing an interrupt request. We
make this analogy to underscore that parts of the kernel are not run serially, but in an
interleaved way. Thus, they can give rise to race conditions, which must be controlled
through proper synchronization techniques. A general introduction to these topics can be
found in the section "An Overview of Unix Kernels" in Chapter 1.

We start this chapter by reviewing when, and to what extent, kernel requests are executed in
an interleaved fashion. We then introduce the basic synchronization primitives implemented by
the kernel and describe how they are applied in the most common cases. Finally, we illustrate
a few practical examples.
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5.1. How the Kernel Services Requests
To get a better grasp of how kernel's code is executed, we will look at the kernel as a waiter
who must satisfy two types of requests: those issued by customers and those issued by a
limited number of different bosses. The policy adopted by the waiter is the following:

1. If a boss calls while the waiter is idle, the waiter starts servicing the boss.

2. If a boss calls while the waiter is servicing a customer, the waiter stops servicing the
customer and starts servicing the boss.

3. If a boss calls while the waiter is servicing another boss, the waiter stops servicing the
first boss and starts servicing the second one. When he finishes servicing the new
boss, he resumes servicing the former one.

4. One of the bosses may induce the waiter to leave the customer being currently
serviced. After servicing the last request of the bosses, the waiter may decide to drop
temporarily his customer and to pick up a new one.

The services performed by the waiter correspond to the code executed when the CPU is in
Kernel Mode. If the CPU is executing in User Mode, the waiter is considered idle.

Boss requests correspond to interrupts, while customer requests correspond to system calls or
exceptions raised by User Mode processes. As we shall see in detail in Chapter 10, User Mode
processes that want to request a service from the kernel must issue an appropriate
instruction (on the 80x86, an int $0x80 or a sysenter instruction). Such instructions raise an
exception that forces the CPU to switch from User Mode to Kernel Mode. In the rest of this
chapter, we will generally denote as "exceptions" both the system calls and the usual
exceptions.

The careful reader has already associated the first three rules with the nesting of kernel
control paths described in "Nested Execution of Exception and Interrupt Handlers" in Chapter 4
. The fourth rule corresponds to one of the most interesting new features included in the Linux
2.6 kernel, namely kernel preemption .

5.1.1. Kernel Preemption

It is surprisingly hard to give a good definition of kernel preemption. As a first try, we could
say that a kernel is preemptive if a process switch may occur while the replaced process is
executing a kernel function, that is, while it runs in Kernel Mode. Unfortunately, in Linux (as
well as in any other real operating system) things are much more complicated:

 Both in preemptive and nonpreemptive kernels, a process running in Kernel Mode can
voluntarily relinquish the CPU, for instance because it has to sleep waiting for some
resource. We will call this kind of process switch a planned process switch. However, a
preemptive kernel differs from a nonpreemptive kernel on the way a process running in
Kernel Mode reacts to asynchronous events that could induce a process switchfor
instance, an interrupt handler that awakes a higher priority process. We will call this
kind of process switch a forced process switch.

 All process switches are performed by the switch_to macro. In both preemptive and
nonpreemptive kernels, a process switch occurs when a process has finished some
thread of kernel activity and the scheduler is invoked. However, in nonpreemptive
kernels, the current process cannot be replaced unless it is about to switch to User
Mode (see the section "Performing the Process Switch" in Chapter 3).

Therefore, the main characteristic of a preemptive kernel is that a process running in Kernel
Mode can be replaced by another process while in the middle of a kernel function.
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Let's give a couple of examples to illustrate the difference between preemptive and
nonpreemptive kernels.

While process A executes an exception handler (necessarily in Kernel Mode), a higher priority
process B becomes runnable. This could happen, for instance, if an IRQ occurs and the
corresponding handler awakens process B. If the kernel is preemptive, a forced process switch
replaces process A with B. The exception handler is left unfinished and will be resumed only
when the scheduler selects again process A for execution. Conversely, if the kernel is
nonpreemptive, no process switch occurs until process A either finishes handling the exception
handler or voluntarily relinquishes the CPU.

For another example, consider a process that executes an exception handler and whose time
quantum expires (see the section "The scheduler_tick( ) Function" in Chapter 7). If the kernel
is preemptive, the process may be replaced immediately; however, if the kernel is
nonpreemptive, the process continues to run until it finishes handling the exception handler or
voluntarily relinquishes the CPU.

The main motivation for making a kernel preemptive is to reduce the dispatch latency of the
User Mode processes, that is, the delay between the time they become runnable and the time
they actually begin running. Processes performing timely scheduled tasks (such as external
hardware controllers, environmental monitors, movie players, and so on) really benefit from
kernel preemption, because it reduces the risk of being delayed by another process running in
Kernel Mode.

Making the Linux 2.6 kernel preemptive did not require a drastic change in the kernel design
with respect to the older nonpreemptive kernel versions. As described in the section "
Returning from Interrupts and Exceptions" in Chapter 4, kernel preemption is disabled when
the preempt_count field in the tHRead_info descriptor referenced by the current_thread_info( )
macro is greater than zero. The field encodes three different counters, as shown in Table
4-10 in Chapter 4, so it is greater than zero when any of the following cases occurs:

1. The kernel is executing an interrupt service routine.

2. The deferrable functions are disabled (always true when the kernel is executing a
softirq or tasklet).

3. The kernel preemption has been explicitly disabled by setting the preemption counter
to a positive value.

The above rules tell us that the kernel can be preempted only when it is executing an
exception handler (in particular a system call) and the kernel preemption has not been
explicitly disabled. Furthermore, as described in the section "Returning from Interrupts and
Exceptions" in Chapter 4, the local CPU must have local interrupts enabled, otherwise kernel
preemption is not performed.

A few simple macros listed in Table 5-1 deal with the preemption counter in the prempt_count
field.

Table 5-1. Macros dealing with the preemption counter subfield

Macro Description

preempt_count( ) Selects the preempt_count field in the tHRead_info descriptor

preempt_disable( ) Increases by one the value of the preemption counter

preempt_enable_no_resched( ) Decreases by one the value of the preemption counter

preempt_enable( ) Decreases by one the value of the preemption counter, and
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Table 5-1. Macros dealing with the preemption counter subfield

Macro Description

invokes preempt_schedule( ) if the TIF_NEED_RESCHED flag in
the thread_info descriptor is set

get_cpu( ) Similar to preempt_disable( ), but also returns the number of
the local CPU

put_cpu( ) Same as preempt_enable( )

put_cpu_no_resched( ) Same as preempt_enable_no_resched( )

The preempt_enable( ) macro decreases the preemption counter, then checks whether the
TIF_NEED_RESCHED flag is set (see Table 4-15 in Chapter 4). In this case, a process switch
request is pending, so the macro invokes the preempt_schedule( ) function, which essentially
executes the following code:

    if (!current_thread_info->preempt_count && !irqs_disabled()) {

        current_thread_info->preempt_count = PREEMPT_ACTIVE;

        schedule();

        current_thread_info->preempt_count = 0;

    }

The function checks whether local interrupts are enabled and the preempt_count field of
current is zero; if both conditions are true, it invokes schedule( ) to select another process to
run. Therefore, kernel preemption may happen either when a kernel control path (usually, an
interrupt handler) is terminated, or when an exception handler reenables kernel preemption by
means of preempt_enable( ). As we'll see in the section "Disabling and Enabling Deferrable
Functions" later in this chapter, kernel preemption may also happen when deferrable functions
are enabled.

We'll conclude this section by noticing that kernel preemption introduces a nonnegligible
overhead. For that reason, Linux 2.6 features a kernel configuration option that allows users
to enable or disable kernel preemption when compiling the kernel.

5.1.2. When Synchronization Is Necessary

Chapter 1 introduced the concepts of race condition and critical region for processes. The
same definitions apply to kernel control paths . In this chapter, a race condition can occur
when the outcome of a computation depends on how two or more interleaved kernel control
paths are nested. A critical region is a section of code that must be completely executed by
the kernel control path that enters it before another kernel control path can enter it.

Interleaving kernel control paths complicates the life of kernel developers: they must apply
special care in order to identify the critical regions in exception handlers, interrupt handlers,
deferrable functions, and kernel threads . Once a critical region has been identified, it must be
suitably protected to ensure that any time at most one kernel control path is inside that
region.

Suppose, for instance, that two different interrupt handlers need to access the same data
structure that contains several related member variables for instance, a buffer and an integer
indicating its length. All statements affecting the data structure must be put into a single
critical region. If the system includes a single CPU, the critical region can be implemented by
disabling interrupts while accessing the shared data structure, because nesting of kernel
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control paths can only occur when interrupts are enabled.

On the other hand, if the same data structure is accessed only by the service routines of
system calls, and if the system includes a single CPU, the critical region can be implemented
quite simply by disabling kernel preemption while accessing the shared data structure.

As you would expect, things are more complicated in multiprocessor systems. Many CPUs may
execute kernel code at the same time, so kernel developers cannot assume that a data
structure can be safely accessed just because kernel preemption is disabled and the data
structure is never addressed by an interrupt, exception, or softirq handler.

We'll see in the following sections that the kernel offers a wide range of different
synchronization techniques. It is up to kernel designers to solve each synchronization problem
by selecting the most efficient technique.

5.1.3. When Synchronization Is Not Necessary

Some design choices already discussed in the previous chapter simplify somewhat the
synchronization of kernel control paths. Let us recall them briefly:

 All interrupt handlers acknowledge the interrupt on the PIC and also disable the IRQ
line. Further occurrences of the same interrupt cannot occur until the handler
terminates.

 Interrupt handlers, softirqs, and tasklets are both nonpreemptable and non-blocking, so
they cannot be suspended for a long time interval. In the worst case, their execution
will be slightly delayed, because other interrupts occur during their execution (nested
execution of kernel control paths).

 A kernel control path performing interrupt handling cannot be interrupted by a kernel
control path executing a deferrable function or a system call service routine.

 Softirqs and tasklets cannot be interleaved on a given CPU.

 The same tasklet cannot be executed simultaneously on several CPUs.

Each of the above design choices can be viewed as a constraint that can be exploited to
code some kernel functions more easily. Here are a few examples of possible simplifications:

 Interrupt handlers and tasklets need not to be coded as reentrant functions.

 Per-CPU variables accessed by softirqs and tasklets only do not require
synchronization.

 A data structure accessed by only one kind of tasklet does not require
synchronization.

The rest of this chapter describes what to do when synchronization is necessary i.e., how to
prevent data corruption due to unsafe accesses to shared data structures.
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5.2. Synchronization Primitives
We now examine how kernel control paths can be interleaved while avoiding race conditions
among shared data. Table 5-2 lists the synchronization techniques used by the Linux kernel.
The "Scope" column indicates whether the synchronization technique applies to all CPUs in the
system or to a single CPU. For instance, local interrupt disabling applies to just one CPU (other
CPUs in the system are not affected); conversely, an atomic operation affects all CPUs in the
system (atomic operations on several CPUs cannot interleave while accessing the same data
structure).

Table 5-2. Various types of synchronization techniques used by the
kernel

Technique Description Scope

Per-CPU variables Duplicate a data structure among the CPUs All CPUs

Atomic operation Atomic read-modify-write instruction to a counter All CPUs

Memory barrier Avoid instruction reordering Local CPU or All
CPUs

Spin lock Lock with busy wait All CPUs

Semaphore Lock with blocking wait (sleep) All CPUs

Seqlocks Lock based on an access counter All CPUs

Local interrupt
disabling Forbid interrupt handling on a single CPU Local CPU

Local softirq disabling Forbid deferrable function handling on a single
CPU Local CPU

Read-copy-update
(RCU)

Lock-free access to shared data structures
through pointers All CPUs

Let's now briefly discuss each synchronization technique. In the later section "Synchronizing
Accesses to Kernel Data Structures," we show how these synchronization techniques can be
combined to effectively protect kernel data structures.

5.2.1. Per-CPU Variables

The best synchronization technique consists in designing the kernel so as to avoid the need
for synchronization in the first place. As we'll see, in fact, every explicit synchronization
primitive has a significant performance cost.

The simplest and most efficient synchronization technique consists of declaring kernel
variables as per-CPU variables . Basically, a per-CPU variable is an array of data structures,
one element per each CPU in the system.

A CPU should not access the elements of the array corresponding to the other CPUs; on the
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other hand, it can freely read and modify its own element without fear of race conditions,
because it is the only CPU entitled to do so. This also means, however, that the per-CPU
variables can be used only in particular casesbasically, when it makes sense to logically split
the data across the CPUs of the system.

The elements of the per-CPU array are aligned in main memory so that each data structure
falls on a different line of the hardware cache (see the section "Hardware Cache" in Chapter 2
). Therefore, concurrent accesses to the per-CPU array do not result in cache line snooping
and invalidation, which are costly operations in terms of system performance.

While per-CPU variables provide protection against concurrent accesses from several CPUs,
they do not provide protection against accesses from asynchronous functions (interrupt
handlers and deferrable functions). In these cases, additional synchronization primitives are
required.

Furthermore, per-CPU variables are prone to race conditions caused by kernel preemption ,
both in uniprocessor and multiprocessor systems. As a general rule, a kernel control path
should access a per-CPU variable with kernel preemption disabled. Just consider, for instance,
what would happen if a kernel control path gets the address of its local copy of a per-CPU
variable, and then it is preempted and moved to another CPU: the address still refers to the
element of the previous CPU.

Table 5-3 lists the main functions and macros offered by the kernel to use per-CPU variables.

Table 5-3. Functions and macros for the per-CPU variables

Macro or function name Description

DEFINE_PER_CPU(type, name) Statically allocates a per-CPU array called name of type data
structures

per_cpu(name, cpu) Selects the element for CPU cpu of the per-CPU array name

_ _get_cpu_var(name) Selects the local CPU's element of the per-CPU array name

get_cpu_var(name) Disables kernel preemption, then selects the local CPU's element
of the per-CPU array name

put_cpu_var(name) Enables kernel preemption (name is not used)

alloc_percpu(type) Dynamically allocates a per-CPU array of type data structures
and returns its address

free_percpu(pointer) Releases a dynamically allocated per-CPU array at address 
pointer

per_cpu_ptr(pointer, cpu) Returns the address of the element for CPU cpu of the per-CPU
array at address pointer

5.2.2. Atomic Operations

Several assembly language instructions are of type "read-modify-write" that is, they access a
memory location twice, the first time to read the old value and the second time to write a
new value.
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Suppose that two kernel control paths running on two CPUs try to "read-modify-write" the
same memory location at the same time by executing nonatomic operations. At first, both
CPUs try to read the same location, but the memory arbiter (a hardware circuit that serializes
accesses to the RAM chips) steps in to grant access to one of them and delay the other.
However, when the first read operation has completed, the delayed CPU reads exactly the
same (old) value from the memory location. Both CPUs then try to write the same (new) value
to the memory location; again, the bus memory access is serialized by the memory arbiter,
and eventually both write operations succeed. However, the global result is incorrect because
both CPUs write the same (new) value. Thus, the two interleaving "read-modify-write"
operations act as a single one.

The easiest way to prevent race conditions due to "read-modify-write" instructions is by
ensuring that such operations are atomic at the chip level. Every such operation must be
executed in a single instruction without being interrupted in the middle and avoiding accesses
to the same memory location by other CPUs. These very small atomic operations can be found
at the base of other, more flexible mechanisms to create critical regions.

Let's review 80x86 Instructions According To That classification:

 Assembly language instructions that make zero or one aligned memory access are
atomic.[*]

[*] A data item is aligned in memory w hen its address is a multiple of its size in bytes. For instance, the address of an
aligned short integer must be a multiple of tw o, w hile the address of an aligned integer must be a multiple of four.
Generally speaking, an unaligned memory access is not atomic.

 Read-modify-write assembly language instructions (such as inc or dec) that read data
from memory, update it, and write the updated value back to memory are atomic if no
other processor has taken the memory bus after the read and before the write.
Memory bus stealing never happens in a uniprocessor system.

 Read-modify-write assembly language instructions whose opcode is prefixed by the 
lock byte (0xf0) are atomic even on a multiprocessor system. When the control unit
detects the prefix, it "locks" the memory bus until the instruction is finished. Therefore,
other processors cannot access the memory location while the locked instruction is
being executed.

 Assembly language instructions whose opcode is prefixed by a rep byte (0xf2, 0xf3,
which forces the control unit to repeat the same instruction several times) are not
atomic. The control unit checks for pending interrupts before executing a new
iteration.

When you write C code, you cannot guarantee that the compiler will use an atomic instruction
for an operation like a=a+1 or even for a++. Thus, the Linux kernel provides a special atomic_t
type (an atomically accessible counter) and some special functions and macros (see Table 5-4
) that act on atomic_t variables and are implemented as single, atomic assembly language
instructions. On multiprocessor systems, each such instruction is prefixed by a lock byte.

Table 5-4. Atomic operations in Linux

Function Description

atomic_read(v) Return *v

atomic_set(v,i) Set *v to i

atomic_add(i,v) Add i to *v

atomic_sub(i,v) Subtract i from *v
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Table 5-4. Atomic operations in Linux

Function Description

atomic_sub_and_test(i, v) Subtract i from *v and return 1 if the result is zero; 0
otherwise

atomic_inc(v) Add 1 to *v

atomic_dec(v) Subtract 1 from *v

atomic_dec_and_test(v) Subtract 1 from *v and return 1 if the result is zero; 0
otherwise

atomic_inc_and_test(v) Add 1 to *v and return 1 if the result is zero; 0 otherwise

atomic_add_negative(i, v) Add i to *v and return 1 if the result is negative; 0 otherwise

atomic_inc_return(v) Add 1 to *v and return the new value of *v

atomic_dec_return(v) Subtract 1 from *v and return the new value of *v

atomic_add_return(i, v) Add i to *v and return the new value of *v

atomic_sub_return(i, v) Subtract i from *v and return the new value of *v

Another class of atomic functions operate on bit masks (see Table 5-5).

Table 5-5. Atomic bit handling functions in Linux

Function Description

test_bit(nr, addr) Return the value of the nrth bit of *addr

set_bit(nr, addr) Set the nrth bit of *addr

clear_bit(nr, addr) Clear the nrth bit of *addr

change_bit(nr, addr) Invert the nrth bit of *addr

test_and_set_bit(nr, addr) Set the nrth bit of *addr and return its old value

test_and_clear_bit(nr, addr) Clear the nrth bit of *addr and return its old value

test_and_change_bit(nr, addr) Invert the nrth bit of *addr and return its old value

atomic_clear_mask(mask, addr) Clear all bits of *addr specified by mask

atomic_set_mask(mask, addr) Set all bits of *addr specified by mask
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5.2.3. Optimization and Memory Barriers

When using optimizing compilers, you should never take for granted that instructions will be
performed in the exact order in which they appear in the source code. For example, a compiler
might reorder the assembly language instructions in such a way to optimize how registers are
used. Moreover, modern CPUs usually execute several instructions in parallel and might reorder
memory accesses. These kinds of reordering can greatly speed up the program.

When dealing with synchronization, however, reordering instructions must be avoided. Things
would quickly become hairy if an instruction placed after a synchronization primitive is
executed before the synchronization primitive itself. Therefore, all synchronization primitives
act as optimization and memory barriers .

An optimization barrier primitive ensures that the assembly language instructions
corresponding to C statements placed before the primitive are not mixed by the compiler with
assembly language instructions corresponding to C statements placed after the primitive. In
Linux the barrier( ) macro, which expands into asm volatile("":::"memory"), acts as an
optimization barrier. The asm instruction tells the compiler to insert an assembly language
fragment (empty, in this case). The volatile keyword forbids the compiler to reshuffle the asm
instruction with the other instructions of the program. The memory keyword forces the compiler
to assume that all memory locations in RAM have been changed by the assembly language
instruction; therefore, the compiler cannot optimize the code by using the values of memory
locations stored in CPU registers before the asm instruction. Notice that the optimization
barrier does not ensure that the executions of the assembly language instructions are not
mixed by the CPUthis is a job for a memory barrier.

A memory barrier primitive ensures that the operations placed before the primitive are
finished before starting the operations placed after the primitive. Thus, a memory barrier is like
a firewall that cannot be passed by an assembly language instruction.

In the 80x86 processors, the following kinds of assembly language instructions are said to be
"serializing" because they act as memory barriers:

 All instructions that operate on I/O ports

 All instructions prefixed by the lock byte (see the section "Atomic Operations")

 All instructions that write into control registers, system registers, or debug registers
(for instance, cli and sti , which change the status of the IF flag in the eflags
register)

 The lfence , sfence , and mfence assembly language instructions, which have been
introduced in the Pentium 4 microprocessor to efficiently implement read memory
barriers, write memory barriers, and read-write memory barriers, respectively.

 A few special assembly language instructions; among them, the iret instruction that
terminates an interrupt or exception handler

Linux uses a few memory barrier primitives, which are shown in Table 5-6. These primitives act
also as optimization barriers , because we must make sure the compiler does not move the
assembly language instructions around the barrier. "Read memory barriers" act only on
instructions that read from memory, while "write memory barriers" act only on instructions that
write to memory. Memory barriers can be useful in both multiprocessor and uniprocessor
systems. The smp_xxx( ) primitives are used whenever the memory barrier should prevent race
conditions that might occur only in multiprocessor systems; in uniprocessor systems, they do
nothing. The other memory barriers are used to prevent race conditions occurring both in
uniprocessor and multiprocessor systems.
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Table 5-6. Memory barriers in Linux

Macro Description

mb( ) Memory barrier for MP and UP

rmb( ) Read memory barrier for MP and UP

wmb( ) Write memory barrier for MP and UP

smp_mb( ) Memory barrier for MP only

smp_rmb( ) Read memory barrier for MP only

smp_wmb( ) Write memory barrier for MP only

The implementations of the memory barrier primitives depend on the architecture of the
system. On an 80x86 microprocessor, the rmb( ) macro usually expands into asm
volatile("lfence") if the CPU supports the lfence assembly language instruction, or into asm
volatile("lock;addl $0,0(%%esp)":::"memory") otherwise. The asm statement inserts an
assembly language fragment in the code generated by the compiler and acts as an
optimization barrier. The lock; addl $0,0(%%esp) assembly language instruction adds zero to
the memory location on top of the stack; the instruction is useless by itself, but the lock
prefix makes the instruction a memory barrier for the CPU.

The wmb( ) macro is actually simpler because it expands into barrier( ). This is because
existing Intel microprocessors never reorder write memory accesses, so there is no need to
insert a serializing assembly language instruction in the code. The macro, however, forbids the
compiler from shuffling the instructions.

Notice that in multiprocessor systems, all atomic operations described in the earlier section "
Atomic Operations" act as memory barriers because they use the lock byte.

5.2.4. Spin Locks

A widely used synchronization technique is locking. When a kernel control path must access a
shared data structure or enter a critical region, it needs to acquire a "lock" for it. A resource
protected by a locking mechanism is quite similar to a resource confined in a room whose door
is locked when someone is inside. If a kernel control path wishes to access the resource, it
tries to "open the door" by acquiring the lock. It succeeds only if the resource is free. Then,
as long as it wants to use the resource, the door remains locked. When the kernel control
path releases the lock, the door is unlocked and another kernel control path may enter the
room.

Figure 5-1 illustrates the use of locks. Five kernel control paths (P0, P1, P2, P3, and P4) are
trying to access two critical regions (C1 and C2). Kernel control path P0 is inside C1, while P2
and P4 are waiting to enter it. At the same time, P1 is inside C2, while P3 is waiting to enter
it. Notice that P0 and P1 could run concurrently. The lock for critical region C3 is open
because no kernel control path needs to enter it.

Figure 5-1. Protecting critical regions with several locks
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Spin locks are a special kind of lock designed to work in a multiprocessor environment. If the
kernel control path finds the spin lock "open," it acquires the lock and continues its execution.
Conversely, if the kernel control path finds the lock "closed" by a kernel control path running
on another CPU, it "spins" around, repeatedly executing a tight instruction loop, until the lock
is released.

The instruction loop of spin locks represents a "busy wait." The waiting kernel control path
keeps running on the CPU, even if it has nothing to do besides waste time. Nevertheless, spin
locks are usually convenient, because many kernel resources are locked for a fraction of a
millisecond only; therefore, it would be far more time-consuming to release the CPU and
reacquire it later.

As a general rule, kernel preemption is disabled in every critical region protected by spin locks.
In the case of a uniprocessor system, the locks themselves are useless, and the spin lock
primitives just disable or enable the kernel preemption. Please notice that kernel preemption is
still enabled during the busy wait phase, thus a process waiting for a spin lock to be released
could be replaced by a higher priority process.

In Linux, each spin lock is represented by a spinlock_t structure consisting of two fields:

slock

Encodes the spin lock state: the value 1 corresponds to the unlocked state, while
every negative value and 0 denote the locked state

break_lock

Flag signaling that a process is busy waiting for the lock (present only if the kernel
supports both SMP and kernel preemption)

Six macros shown in Table 5-7 are used to initialize, test, and set spin locks. All these macros
are based on atomic operations; this ensures that the spin lock will be updated properly even
when multiple processes running on different CPUs try to modify the lock at the same time.[*]

[*] Spin locks, ironically enough, are global and therefore must themselves be protected against concurrent accesses.
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Table 5-7. Spin lock macros

Macro Description

spin_lock_init( ) Set the spin lock to 1 (unlocked)

spin_lock( ) Cycle until spin lock becomes 1 (unlocked), then set it to 0 (locked)

spin_unlock( ) Set the spin lock to 1 (unlocked)

spin_unlock_wait( ) Wait until the spin lock becomes 1 (unlocked)

spin_is_locked( ) Return 0 if the spin lock is set to 1 (unlocked); 1 otherwise

spin_trylock( ) Set the spin lock to 0 (locked), and return 1 if the previous value of
the lock was 1; 0 otherwise

5.2.4.1. The spin_lock macro with kernel preemption

Let's discuss in detail the spin_lock macro, which is used to acquire a spin lock. The following
description refers to a preemptive kernel for an SMP system. The macro takes the address slp
of the spin lock as its parameter and executes the following actions:

1. Invokes preempt_disable( ) to disable kernel preemption.

2. Invokes the _raw_spin_trylock( ) function, which does an atomic test-and-set
operation on the spin lock's slock field; this function executes first some instructions
equivalent to the following assembly language fragment:

3.
4.     movb $0, %al

5.     xchgb %al, slp->slock

The xchg assembly language instruction exchanges atomically the content of the 8-bit
%al register (storing zero) with the content of the memory location pointed to by
slp->slock. The function then returns the value 1 if the old value stored in the spin
lock (in %al after the xchg instruction) was positive, the value 0 otherwise.

6. If the old value of the spin lock was positive, the macro terminates: the kernel control
path has acquired the spin lock.

7. Otherwise, the kernel control path failed in acquiring the spin lock, thus the macro
must cycle until the spin lock is released by a kernel control path running on some
other CPU. Invokes preempt_enable( ) to undo the increase of the preemption counter
done in step 1. If kernel preemption was enabled before executing the spin_lock
macro, another process can now replace this process while it waits for the spin lock.

8. If the break_lock field is equal to zero, sets it to one. By checking this field, the
process owning the lock and running on another CPU can learn whether there are other
processes waiting for the lock. If a process holds a spin lock for a long time, it may
decide to release it prematurely to allow another process waiting for the same spin lock
to progress.

9. Executes the wait cycle:
10.
11.     while (spin_is_locked(slp) && slp->break_lock)

12.         cpu_relax();
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The cpu_relax( ) macro reduces to a pause assembly language instruction. This
instruction has been introduced in the Pentium 4 model to optimize the execution of
spin lock loops. By introducing a short delay, it speeds up the execution of code
following the lock and reduces power consumption. The pause instruction is backward
compatible with earlier models of 80x86 microprocessors because it corresponds to the
instruction rep;nop, that is, to a no-operation.

13. Jumps back to step 1 to try once more to get the spin lock.

5.2.4.2. The spin_lock macro without kernel preemption

If the kernel preemption option has not been selected when the kernel was compiled, the 
spin_lock macro is quite different from the one described above. In this case, the macro
yields a assembly language fragment that is essentially equivalent to the following tight busy
wait:[*]

[*] The actual implementation of the tight busy w ait loop is slightly more complicated. The code at label 2, w hich is executed only if
the spin lock is busy, is included in an auxiliary section so that in the most frequent case (w hen the spin lock is already free) the
hardw are cache is not filled w ith code that w on't be executed. In our discussion, w e omit these optimization details.

    1: lock; decb slp->slock

       jns  3f

    2: pause

       cmpb $0,slp->slock

       jle 2b

       jmp 1b

    3:

The decb assembly language instruction decreases the spin lock value; the instruction is
atomic because it is prefixed by the lock byte. A test is then performed on the sign flag. If it
is clear, it means that the spin lock was set to 1 (unlocked), so normal execution continues at
label 3 (the f suffix denotes the fact that the label is a "forward" one; it appears in a later line
of the program). Otherwise, the tight loop at label 2 (the b suffix denotes a "backward" label)
is executed until the spin lock assumes a positive value. Then execution restarts from label 1,
since it is unsafe to proceed without checking whether another processor has grabbed the
lock.

5.2.4.3. The spin_unlock macro

The spin_unlock macro releases a previously acquired spin lock; it essentially executes the
assembly language instruction:

    movb $1, slp->slock

and then invokes preempt_enable( ) (if kernel preemption is not supported, preempt_enable( )
does nothing). Notice that the lock byte is not used because write-only accesses in memory
are always atomically executed by the current 80x86 microprocessors.

5.2.5. Read/Write Spin Locks

Read/write spin locks have been introduced to increase the amount of concurrency inside the
kernel. They allow several kernel control paths to simultaneously read the same data
structure, as long as no kernel control path modifies it. If a kernel control path wishes to write
to the structure, it must acquire the write version of the read/write lock, which grants
exclusive access to the resource. Of course, allowing concurrent reads on data structures
improves system performance.
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Figure 5-2 illustrates two critical regions (C1 and C2) protected by read/write locks. Kernel
control paths R0 and R1 are reading the data structures in C1 at the same time, while W0 is
waiting to acquire the lock for writing. Kernel control path W1 is writing the data structures in
C2, while both R2 and W2 are waiting to acquire the lock for reading and writing, respectively.

Figure 5-2. Read/write spin locks

Each read/write spin lock is a rwlock_t structure; its lock field is a 32-bit field that encodes
two distinct pieces of information:

 A 24-bit counter denoting the number of kernel control paths currently reading the
protected data structure. The two's complement value of this counter is stored in bits
023 of the field.

 An unlock flag that is set when no kernel control path is reading or writing, and clear
otherwise. This unlock flag is stored in bit 24 of the field.

Notice that the lock field stores the number 0x01000000 if the spin lock is idle (unlock flag set
and no readers), the number 0x00000000 if it has been acquired for writing (unlock flag clear
and no readers), and any number in the sequence 0x00ffffff, 0x00fffffe, and so on, if it has
been acquired for reading by one, two, or more processes (unlock flag clear and the two's
complement on 24 bits of the number of readers). As the spinlock_t structure, the rwlock_t
structure also includes a break_lock field.

The rwlock_init macro initializes the lock field of a read/write spin lock to 0x01000000
(unlocked) and the break_lock field to zero.

5.2.5.1. Getting and releasing a lock for reading

The read_lock macro, applied to the address rwlp of a read/write spin lock, is similar to the
spin_lock macro described in the previous section. If the kernel preemption option has been
selected when the kernel was compiled, the macro performs the very same actions as those
of spin_lock( ), with just one exception: to effectively acquire the read/write spin lock in
step 2, the macro executes the _raw_read_trylock( ) function:

    int _raw_read_trylock(rwlock_t *lock)

    {

        atomic_t *count = (atomic_t *)lock->lock;

        atomic_dec(count);

        if (atomic_read(count) >= 0)

            return 1;

        atomic_inc(count);

        return 0;

    }

The lock fieldthe read/write lock counteris accessed by means of atomic operations. Notice,
however, that the whole function does not act atomically on the counter: for instance, the
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counter might change after having tested its value with the if statement and before returning
1. Nevertheless, the function works properly: in fact, the function returns 1 only if the
counter was not zero or negative before the decrement, because the counter is equal to 
0x01000000 for no owner, 0x00ffffff for one reader, and 0x00000000 for one writer.

If the kernel preemption option has not been selected when the kernel was compiled, the 
read_lock macro yields the following assembly language code:

        movl $rwlp->lock,%eax

        lock; subl $1,(%eax)

        jns 1f

        call _ _read_lock_failed

    1:

where _ _read_lock_failed( ) is the following assembly language function:

    _ _read_lock_failed:

        lock; incl (%eax)

    1:  pause

        cmpl $1,(%eax)

        js 1b

        lock; decl (%eax)

        js _ _read_lock_failed

        ret

The read_lock macro atomically decreases the spin lock value by 1, thus increasing the
number of readers. The spin lock is acquired if the decrement operation yields a nonnegative
value; otherwise, the _ _read_lock_failed( ) function is invoked. The function atomically
increases the lock field to undo the decrement operation performed by the read_lock macro,
and then loops until the field becomes positive (greater than or equal to 1). Next, _
_read_lock_failed( ) tries to get the spin lock again (another kernel control path could
acquire the spin lock for writing right after the cmpl instruction).

Releasing the read lock is quite simple, because the read_unlock macro must simply increase
the counter in the lock field with the assembly language instruction:

    lock; incl rwlp->lock

to decrease the number of readers, and then invoke preempt_enable( ) to reenable kernel
preemption.

5.2.5.2. Getting and releasing a lock for writing

The write_lock macro is implemented in the same way as spin_lock( ) and read_lock( ). For
instance, if kernel preemption is supported, the function disables kernel preemption and tries
to grab the lock right away by invoking _raw_write_trylock( ). If this function returns 0, the
lock was already taken, thus the macro reenables kernel preemption and starts a busy wait
loop, as explained in the description of spin_lock( ) in the previous section.

The _raw_write_trylock( ) function is shown below:

    int _raw_write_trylock(rwlock_t *lock)

    {

        atomic_t *count = (atomic_t *)lock->lock;

        if (atomic_sub_and_test(0x01000000, count))

            return 1;

        atomic_add(0x01000000, count);
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        return 0;

    }

The _raw_write_trylock( ) function subtracts 0x01000000 from the read/write spin lock value,
thus clearing the unlock flag (bit 24). If the subtraction operation yields zero (no readers), the
lock is acquired and the function returns 1; otherwise, the function atomically adds 0x01000000
to the spin lock value to undo the subtraction operation.

Once again, releasing the write lock is much simpler because the write_unlock macro must
simply set the unlock flag in the lock field with the assembly language instruction:

    lock; addl $0x01000000,rwlp

and then invoke preempt_enable().

5.2.6. Seqlocks

When using read/write spin locks, requests issued by kernel control paths to perform a 
read_lock or a write_lock operation have the same priority: readers must wait until the writer
has finished and, similarly, a writer must wait until all readers have finished.

Seqlocks introduced in Linux 2.6 are similar to read/write spin locks, except that they give a
much higher priority to writers: in fact a writer is allowed to proceed even when readers are
active. The good part of this strategy is that a writer never waits (unless another writer is
active); the bad part is that a reader may sometimes be forced to read the same data several
times until it gets a valid copy.

Each seqlock is a seqlock_t structure consisting of two fields: a lock field of type spinlock_t
and an integer sequence field. This second field plays the role of a sequence counter. Each
reader must read this sequence counter twice, before and after reading the data, and check
whether the two values coincide. In the opposite case, a new writer has become active and
has increased the sequence counter, thus implicitly telling the reader that the data just read
is not valid.

A seqlock_t variable is initialized to "unlocked" either by assigning to it the value
SEQLOCK_UNLOCKED, or by executing the seqlock_init macro. Writers acquire and release a
seqlock by invoking write_seqlock( ) and write_sequnlock( ). The first function acquires the
spin lock in the seqlock_t data structure, then increases the sequence counter by one; the
second function increases the sequence counter once more, then releases the spin lock. This
ensures that when the writer is in the middle of writing, the counter is odd, and that when no
writer is altering data, the counter is even. Readers implement a critical region as follows:

    unsigned int seq;

    do {

        seq = read_seqbegin(&seqlock);

        /* ... CRITICAL REGION ... */

    } while (read_seqretry(&seqlock, seq));

read_seqbegin() returns the current sequence number of the seqlock; read_seqretry() returns
1 if either the value of the seq local variable is odd (a writer was updating the data structure
when the read_seqbegin( ) function has been invoked), or if the value of seq does not match
the current value of the seqlock's sequence counter (a writer started working while the reader
was still executing the code in the critical region).

Notice that when a reader enters a critical region, it does not need to disable kernel
preemption; on the other hand, the writer automatically disables kernel preemption when
entering the critical region, because it acquires the spin lock.
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Not every kind of data structure can be protected by a seqlock. As a general rule, the
following conditions must hold:

 The data structure to be protected does not include pointers that are modified by the
writers and dereferenced by the readers (otherwise, a writer could change the pointer
under the nose of the readers)

 The code in the critical regions of the readers does not have side effects (otherwise,
multiple reads would have different effects from a single read)

Furthermore, the critical regions of the readers should be short and writers should seldom
acquire the seqlock, otherwise repeated read accesses would cause a severe overhead. A
typical usage of seqlocks in Linux 2.6 consists of protecting some data structures related to
the system time handling (see Chapter 6).

5.2.7. Read-Copy Update (RCU)

Read-copy update (RCU) is yet another synchronization technique designed to protect data
structures that are mostly accessed for reading by several CPUs. RCU allows many readers
and many writers to proceed concurrently (an improvement over seqlocks, which allow only
one writer to proceed). Moreover, RCU is lock-free, that is, it uses no lock or counter shared
by all CPUs; this is a great advantage over read/write spin locks and seqlocks, which have a
high overhead due to cache line-snooping and invalidation.

How does RCU obtain the surprising result of synchronizing several CPUs without shared data
structures? The key idea consists of limiting the scope of RCU as follows:

1. Only data structures that are dynamically allocated and referenced by means of
pointers can be protected by RCU.

2. No kernel control path can sleep inside a critical region protected by RCU.

When a kernel control path wants to read an RCU-protected data structure, it executes the 
rcu_read_lock( ) macro, which is equivalent to preempt_disable( ). Next, the reader
dereferences the pointer to the data structure and starts reading it. As stated above, the
reader cannot sleep until it finishes reading the data structure; the end of the critical region is
marked by the rcu_read_unlock( ) macro, which is equivalent to preempt_enable( ).

Because the reader does very little to prevent race conditions, we could expect that the
writer has to work a bit more. In fact, when a writer wants to update the data structure, it
dereferences the pointer and makes a copy of the whole data structure. Next, the writer
modifies the copy. Once finished, the writer changes the pointer to the data structure so as
to make it point to the updated copy. Because changing the value of the pointer is an atomic
operation, each reader or writer sees either the old copy or the new one: no corruption in the
data structure may occur. However, a memory barrier is required to ensure that the updated
pointer is seen by the other CPUs only after the data structure has been modified. Such a
memory barrier is implicitly introduced if a spin lock is coupled with RCU to forbid the
concurrent execution of writers.

The real problem with the RCU technique, however, is that the old copy of the data structure
cannot be freed right away when the writer updates the pointer. In fact, the readers that
were accessing the data structure when the writer started its update could still be reading
the old copy. The old copy can be freed only after all (potential) readers on the CPUs have
executed the rcu_read_unlock( ) macro. The kernel requires every potential reader to execute
that macro before:

 The CPU performs a process switch (see restriction 2 earlier).

 The CPU starts executing in User Mode.

 The CPU executes the idle loop (see the section "Kernel Threads" in Chapter 3).
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In each of these cases, we say that the CPU has gone through a quiescent state.

The call_rcu( ) function is invoked by the writer to get rid of the old copy of the data
structure. It receives as its parameters the address of an rcu_head descriptor (usually
embedded inside the data structure to be freed) and the address of a callback function to be
invoked when all CPUs have gone through a quiescent state. Once executed, the callback
function usually frees the old copy of the data structure.

The call_rcu( ) function stores in the rcu_head descriptor the address of the callback and its
parameter, then inserts the descriptor in a per-CPU list of callbacks. Periodically, once every
tick (see the section "Updating Local CPU Statistics" in Chapter 6), the kernel checks whether
the local CPU has gone through a quiescent state. When all CPUs have gone through a
quiescent state, a local taskletwhose descriptor is stored in the rcu_tasklet per-CPU
variableexecutes all callbacks in the list.

RCU is a new addition in Linux 2.6; it is used in the networking layer and in the Virtual
Filesystem.

5.2.8. Semaphores

We have already introduced semaphores in the section "Synchronization and Critical Regions"
in Chapter 1. Essentially, they implement a locking primitive that allows waiters to sleep until
the desired resource becomes free.

Actually, Linux offers two kinds of semaphores:

 Kernel semaphores, which are used by kernel control paths

 System V IPC semaphores, which are used by User Mode processes

In this section, we focus on kernel semaphores, while IPC semaphores are described in 
Chapter 19.

A kernel semaphore is similar to a spin lock, in that it doesn't allow a kernel control path to
proceed unless the lock is open. However, whenever a kernel control path tries to acquire a
busy resource protected by a kernel semaphore, the corresponding process is suspended. It
becomes runnable again when the resource is released. Therefore, kernel semaphores can be
acquired only by functions that are allowed to sleep; interrupt handlers and deferrable
functions cannot use them.

A kernel semaphore is an object of type struct semaphore, containing the fields shown in the
following list.

count

Stores an atomic_t value. If it is greater than 0, the resource is free that is, it is
currently available. If count is equal to 0, the semaphore is busy but no other process
is waiting for the protected resource. Finally, if count is negative, the resource is
unavailable and at least one process is waiting for it.

wait

Stores the address of a wait queue list that includes all sleeping processes that are
currently waiting for the resource. Of course, if count is greater than or equal to 0, the
wait queue is empty.

sleepers

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Stores a flag that indicates whether some processes are sleeping on the semaphore.
We'll see this field in operation soon.

The init_MUTEX( ) and init_MUTEX_LOCKED( ) functions may be used to initialize a semaphore
for exclusive access: they set the count field to 1 (free resource with exclusive access) and 0
(busy resource with exclusive access currently granted to the process that initializes the
semaphore), respectively. The DECLARE_MUTEX and DECLARE_MUTEX_LOCKED macros do the same,
but they also statically allocate the struct semaphore variable. Note that a semaphore could
also be initialized with an arbitrary positive value n for count. In this case, at most n
processes are allowed to concurrently access the resource.

5.2.8.1. Getting and releasing semaphores

Let's start by discussing how to release a semaphore, which is much simpler than getting one.
When a process wishes to release a kernel semaphore lock, it invokes the up( ) function. This
function is essentially equivalent to the following assembly language fragment:

        movl $sem->count,%ecx

        lock; incl (%ecx)

        jg 1f

        lea %ecx,%eax

        pushl %edx

        pushl %ecx

        call _ _up

        popl %ecx

        popl %edx

    1:

where _ _up( ) is the following C function:

    __attribute__((regparm(3))) void _ _up(struct semaphore *sem)

    {

        wake_up(&sem->wait);

    }

The up( ) function increases the count field of the *sem semaphore, and then it checks
whether its value is greater than 0. The increment of count and the setting of the flag tested
by the following jump instruction must be atomically executed, or else another kernel control
path could concurrently access the field value, with disastrous results. If count is greater than
0, there was no process sleeping in the wait queue, so nothing has to be done. Otherwise,
the _ _up( ) function is invoked so that one sleeping process is woken up. Notice that _ _up(
) receives its parameter from the eax register (see the description of the _ _switch_to( )
function in the section "Performing the Process Switch" in Chapter 3).

Conversely, when a process wishes to acquire a kernel semaphore lock, it invokes the down( )
function. The implementation of down( ) is quite involved, but it is essentially equivalent to the
following:

    down:

        movl $sem->count,%ecx

        lock; decl (%ecx);

        jns 1f

        lea %ecx, %eax

        pushl %edx

        pushl %ecx

        call _ _down

        popl %ecx

        popl %edx
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    1:

where _ _down( ) is the following C function:

    __attribute__((regparm(3))) void _ _down(struct semaphore * sem)

    {

        DECLARE_WAITQUEUE(wait, current);

        unsigned long flags;

        current->state = TASK_UNINTERRUPTIBLE;

        spin_lock_irqsave(&sem->wait.lock, flags);

        add_wait_queue_exclusive_locked(&sem->wait, &wait);

        sem->sleepers++;

        for (;;) {

            if (!atomic_add_negative(sem->sleepers-1, &sem->count)) {

                sem->sleepers = 0;

                break;

            }

            sem->sleepers = 1;

            spin_unlock_irqrestore(&sem->wait.lock, flags);

            schedule( );

            spin_lock_irqsave(&sem->wait.lock, flags);

            current->state = TASK_UNINTERRUPTIBLE;

        }

        remove_wait_queue_locked(&sem->wait, &wait);

        wake_up_locked(&sem->wait);

        spin_unlock_irqrestore(&sem->wait.lock, flags);

        current->state = TASK_RUNNING;

    }

The down( ) function decreases the count field of the *sem semaphore, and then checks
whether its value is negative. Again, the decrement and the test must be atomically
executed. If count is greater than or equal to 0, the current process acquires the resource
and the execution continues normally. Otherwise, count is negative, and the current process
must be suspended. The contents of some registers are saved on the stack, and then _
_down( ) is invoked.

Essentially, the _ _down( ) function changes the state of the current process from
TASK_RUNNING to TASK_UNINTERRUPTIBLE, and it puts the process in the semaphore wait queue.
Before accessing the fields of the semaphore structure, the function also gets the
sem->wait.lock spin lock that protects the semaphore wait queue (see "How Processes Are
Organized" in Chapter 3) and disables local interrupts. Usually, wait queue functions get and
release the wait queue spin lock as necessary when inserting and deleting an element. The _
_down( ) function, however, uses the wait queue spin lock also to protect the other fields of
the semaphore data structure, so that no process running on another CPU is able to read or
modify them. To that end, _ _down( ) uses the "_locked" versions of the wait queue functions,
which assume that the spin lock has been already acquired before their invocations.

The main task of the _ _down( ) function is to suspend the current process until the
semaphore is released. However, the way in which this is done is quite involved. To easily
understand the code, keep in mind that the sleepers field of the semaphore is usually set to 0
if no process is sleeping in the wait queue of the semaphore, and it is set to 1 otherwise. Let's
try to explain the code by considering a few typical cases.

MUTEX semaphore open (count equal to 1, sleepers equal to 0)

The down macro just sets the count field to 0 and jumps to the next instruction of the
main program; therefore, the _ _down( ) function is not executed at all.
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MUTEX semaphore closed, no sleeping processes (count equal to 0, sleepers equal to 0)

The down macro decreases count and invokes the _ _down( ) function with the count
field set to -1 and the sleepers field set to 0. In each iteration of the loop, the
function checks whether the count field is negative. (Observe that the count field is
not changed by atomic_add_negative( ) because sleepers is equal to 0 when the
function is invoked.)

 If the count field is negative, the function invokes schedule( ) to suspend the
current process. The count field is still set to -1, and the sleepers field to 1.
The process picks up its run subsequently inside this loop and issues the test
again.

 If the count field is not negative, the function sets sleepers to 0 and exits from
the loop. It tries to wake up another process in the semaphore wait queue (but
in our scenario, the queue is now empty) and terminates holding the
semaphore. On exit, both the count field and the sleepers field are set to 0, as
required when the semaphore is closed but no process is waiting for it.

MUTEX semaphore closed, other sleeping processes (count equal to -1, sleepers equal to 1)

The down macro decreases count and invokes the _ _down( ) function with count set to
-2 and sleepers set to 1. The function temporarily sets sleepers to 2, and then undoes
the decrement performed by the down macro by adding the value sleepers-1 to count.
At the same time, the function checks whether count is still negative (the semaphore
could have been released by the holding process right before _ _down( ) entered the
critical region).

 If the count field is negative, the function resets sleepers to 1 and invokes
schedule( ) to suspend the current process. The count field is still set to -1,
and the sleepers field to 1.

 If the count field is not negative, the function sets sleepers to 0, tries to wake
up another process in the semaphore wait queue, and exits holding the
semaphore. On exit, the count field is set to 0 and the sleepers field to 0. The
values of both fields look wrong, because there are other sleeping processes.
However, consider that another process in the wait queue has been woken up.
This process does another iteration of the loop; the atomic_add_negative( )
function subtracts 1 from count, restoring it to -1; moreover, before returning
to sleep, the woken-up process resets sleepers to 1.

So, the code properly works in all cases. Consider that the wake_up( ) function in _ _down( )
wakes up at most one process, because the sleeping processes in the wait queue are
exclusive (see the section "How Processes Are Organized" in Chapter 3).

Only exception handlers , and particularly system call service routines , can use the down( )
function. Interrupt handlers or deferrable functions must not invoke down( ), because this
function suspends the process when the semaphore is busy. For this reason, Linux provides
the down_trylock( ) function, which may be safely used by one of the previously mentioned
asynchronous functions. It is identical to down( ) except when the resource is busy. In this
case, the function returns immediately instead of putting the process to sleep.

A slightly different function called down_interruptible( ) is also defined. It is widely used by
device drivers, because it allows processes that receive a signal while being blocked on a
semaphore to give up the "down" operation. If the sleeping process is woken up by a signal
before getting the needed resource, the function increases the count field of the semaphore
and returns the value -EINTR. On the other hand, if down_interruptible( ) runs to normal
completion and gets the resource, it returns 0. The device driver may thus abort the I/O
operation when the return value is -EINTR.
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Finally, because processes usually find semaphores in an open state, the semaphore functions
are optimized for this case. In particular, the up( ) function does not execute jump
instructions if the semaphore wait queue is empty; similarly, the down( ) function does not
execute jump instructions if the semaphore is open. Much of the complexity of the semaphore
implementation is precisely due to the effort of avoiding costly instructions in the main branch
of the execution flow.

5.2.9. Read/Write Semaphores

Read/write semaphores are similar to the read/write spin locks described earlier in the section
"Read/Write Spin Locks," except that waiting processes are suspended instead of spinning
until the semaphore becomes open again.

Many kernel control paths may concurrently acquire a read/write semaphore for reading;
however, every writer kernel control path must have exclusive access to the protected
resource. Therefore, the semaphore can be acquired for writing only if no other kernel control
path is holding it for either read or write access. Read/write semaphores improve the amount
of concurrency inside the kernel and improve overall system performance.

The kernel handles all processes waiting for a read/write semaphore in strict FIFO order. Each
reader or writer that finds the semaphore closed is inserted in the last position of a
semaphore's wait queue list. When the semaphore is released, the process in the first position
of the wait queue list are checked. The first process is always awoken. If it is a writer, the
other processes in the wait queue continue to sleep. If it is a reader, all readers at the start
of the queue, up to the first writer, are also woken up and get the lock. However, readers
that have been queued after a writer continue to sleep.

Each read/write semaphore is described by a rw_semaphore structure that includes the
following fields:

count

Stores two 16-bit counters. The counter in the most significant word encodes in two's
complement form the sum of the number of nonwaiting writers (either 0 or 1) and the
number of waiting kernel control paths. The counter in the less significant word
encodes the total number of nonwaiting readers and writers.

wait_list

Points to a list of waiting processes. Each element in this list is a rwsem_waiter
structure, including a pointer to the descriptor of the sleeping process and a flag
indicating whether the process wants the semaphore for reading or for writing.

wait_lock

A spin lock used to protect the wait queue list and the rw_semaphore structure itself.

The init_rwsem( ) function initializes an rw_semaphore structure by setting the count field to 0,
the wait_lock spin lock to unlocked, and wait_list to the empty list.

The down_read( ) and down_write( ) functions acquire the read/write semaphore for reading
and writing, respectively. Similarly, the up_read( ) and up_write( ) functions release a
read/write semaphore previously acquired for reading and for writing. The down_read_trylock(
) and down_write_trylock( ) functions are similar to down_read( ) and down_write( ),
respectively, but they do not block the process if the semaphore is busy. Finally, the 
downgrade_write( ) function atomically transforms a write lock into a read lock. The
implementation of these five functions is long, but easy to follow because it resembles the
implementation of normal semaphores; therefore, we avoid describing them.
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5.2.10. Completions

Linux 2.6 also makes use of another synchronization primitive similar to semaphores: 
completions . They have been introduced to solve a subtle race condition that occurs in
multiprocessor systems when process A allocates a temporary semaphore variable, initializes it
as closed MUTEX, passes its address to process B, and then invokes down( ) on it. Process A
plans to destroy the semaphore as soon as it awakens. Later on, process B running on a
different CPU invokes up( ) on the semaphore. However, in the current implementation up( )
and down( ) can execute concurrently on the same semaphore. Thus, process A can be woken
up and destroy the temporary semaphore while process B is still executing the up( ) function.
As a result, up( ) might attempt to access a data structure that no longer exists.

Of course, it is possible to change the implementation of down( ) and up( ) to forbid
concurrent executions on the same semaphore. However, this change would require additional
instructions, which is a bad thing to do for functions that are so heavily used.

The completion is a synchronization primitive that is specifically designed to solve this
problem. The completion data structure includes a wait queue head and a flag:

    struct completion {

        unsigned int done;

        wait_queue_head_t wait;

    };

The function corresponding to up( ) is called complete( ). It receives as an argument the
address of a completion data structure, invokes spin_lock_irqsave( ) on the spin lock of the
completion's wait queue, increases the done field, wakes up the exclusive process sleeping in
the wait wait queue, and finally invokes spin_unlock_irqrestore( ).

The function corresponding to down( ) is called wait_for_completion( ). It receives as an
argument the address of a completion data structure and checks the value of the done flag. If
it is greater than zero, wait_for_completion( ) terminates, because complete( ) has already
been executed on another CPU. Otherwise, the function adds current to the tail of the wait
queue as an exclusive process and puts current to sleep in the TASK_UNINTERRUPTIBLE state.
Once woken up, the function removes current from the wait queue. Then, the function checks
the value of the done flag: if it is equal to zero the function terminates, otherwise, the current
process is suspended again. As in the case of the complete( ) function, wait_for_completion(
) makes use of the spin lock in the completion's wait queue.

The real difference between completions and semaphores is how the spin lock included in the
wait queue is used. In completions, the spin lock is used to ensure that complete( ) and
wait_for_completion( ) cannot execute concurrently. In semaphores, the spin lock is used to
avoid letting concurrent down( )'s functions mess up the semaphore data structure.

5.2.11. Local Interrupt Disabling

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of kernel
statements is treated as a critical section. It allows a kernel control path to continue
executing even when hardware devices issue IRQ signals, thus providing an effective way to
protect data structures that are also accessed by interrupt handlers. By itself, however, local
interrupt disabling does not protect against concurrent accesses to data structures by
interrupt handlers running on other CPUs, so in multiprocessor systems, local interrupt
disabling is often coupled with spin locks (see the later section "Synchronizing Accesses to
Kernel Data Structures").

The local_irq_disable( ) macro, which makes use of the cli assembly language instruction,
disables interrupts on the local CPU. The local_irq_enable( ) macro, which makes use of the
of the sti assembly language instruction, enables them. As stated in the section "IRQs and
Interrupts" in Chapter 4, the cli and sti assembly language instructions, respectively, clear
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and set the IF flag of the eflags control register. The irqs_disabled( ) macro yields the value
one if the IF flag of the eflags register is clear, the value one if the flag is set.

When the kernel enters a critical section, it disables interrupts by clearing the IF flag of the
eflags register. But at the end of the critical section, often the kernel can't simply set the
flag again. Interrupts can execute in nested fashion, so the kernel does not necessarily know
what the IF flag was before the current control path executed. In these cases, the control
path must save the old setting of the flag and restore that setting at the end.

Saving and restoring the eflags content is achieved by means of the local_irq_save and
local_irq_restore macros, respectively. The local_irq_save macro copies the content of the
eflags register into a local variable; the IF flag is then cleared by a cli assembly language
instruction. At the end of the critical region, the macro local_irq_restore restores the original
content of eflags; therefore, interrupts are enabled only if they were enabled before this
control path issued the cli assembly language instruction.

5.2.12. Disabling and Enabling Deferrable Functions

In the section "Softirqs" in Chapter 4, we explained that deferrable functions can be executed
at unpredictable times (essentially, on termination of hardware interrupt handlers). Therefore,
data structures accessed by deferrable functions must be protected against race conditions.

A trivial way to forbid deferrable functions execution on a CPU is to disable interrupts on that
CPU. Because no interrupt handler can be activated, softirq actions cannot be started
asynchronously.

As we'll see in the next section, however, the kernel sometimes needs to disable deferrable
functions without disabling interrupts. Local deferrable functions can be enabled or disabled on
the local CPU by acting on the softirq counter stored in the preempt_count field of the current
's tHRead_info descriptor.

Recall that the do_softirq( ) function never executes the softirqs if the softirq counter is
positive. Moreover, tasklets are implemented on top of softirqs, so setting this counter to a
positive value disables the execution of all deferrable functions on a given CPU, not just
softirqs.

The local_bh_disable macro adds one to the softirq counter of the local CPU, while the
local_bh_enable( ) function subtracts one from it. The kernel can thus use several nested
invocations of local_bh_disable; deferrable functions will be enabled again only by the
local_bh_enable macro matching the first local_bh_disable invocation.

After having decreased the softirq counter, local_bh_enable( ) performs two important
operations that help to ensure timely execution of long-waiting threads:

1. Checks the hardirq counter and the softirq counter in the preempt_count field of the
local CPU; if both of them are zero and there are pending softirqs to be executed,
invokes do_softirq( ) to activate them (see the section "Softirqs" in Chapter 4).

2. Checks whether the TIF_NEED_RESCHED flag of the local CPU is set; if so, a process
switch request is pending, thus invokes the preempt_schedule( ) function (see the
section "Kernel Preemption" earlier in this chapter).
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5.3. Synchronizing Accesses to Kernel Data Structures
A shared data structure can be protected against race conditions by using some of the
synchronization primitives shown in the previous section. Of course, system performance may
vary considerably, depending on the kind of synchronization primitive selected. Usually, the
following rule of thumb is adopted by kernel developers: always keep the concurrency level as
high as possible in the system.

In turn, the concurrency level in the system depends on two main factors:

 The number of I/O devices that operate concurrently

 The number of CPUs that do productive work

To maximize I/O throughput, interrupts should be disabled for very short periods of time. As
described in the section "IRQs and Interrupts" in Chapter 4, when interrupts are disabled, IRQs
issued by I/O devices are temporarily ignored by the PIC, and no new activity can start on
such devices.

To use CPUs efficiently, synchronization primitives based on spin locks should be avoided
whenever possible. When a CPU is executing a tight instruction loop waiting for the spin lock
to open, it is wasting precious machine cycles. Even worse, as we have already said, spin
locks have negative effects on the overall performance of the system because of their impact
on the hardware caches.

Let's illustrate a couple of cases in which synchronization can be achieved while still
maintaining a high concurrency level:

 A shared data structure consisting of a single integer value can be updated by
declaring it as an atomic_t type and by using atomic operations. An atomic operation is
faster than spin locks and interrupt disabling, and it slows down only kernel control
paths that concurrently access the data structure.

 Inserting an element into a shared linked list is never atomic, because it consists of at
least two pointer assignments. Nevertheless, the kernel can sometimes perform this
insertion operation without using locks or disabling interrupts. As an example of why
this works, we'll consider the case where a system call service routine (see "System
Call Handler and Service Routines" in Chapter 10) inserts new elements in a singly
linked list, while an interrupt handler or deferrable function asynchronously looks up the
list.

In the C language, insertion is implemented by means of the following pointer
assignments:

    new->next = list_element->next;

    list_element->next = new;

In assembly language, insertion reduces to two consecutive atomic instructions. The
first instruction sets up the next pointer of the new element, but it does not modify the
list. Thus, if the interrupt handler sees the list between the execution of the first and
second instructions, it sees the list without the new element. If the handler sees the
list after the execution of the second instruction, it sees the list with the new element.
The important point is that in either case, the list is consistent and in an uncorrupted
state. However, this integrity is assured only if the interrupt handler does not modify
the list. If it does, the next pointer that was just set within the new element might
become invalid.
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However, developers must ensure that the order of the two assignment operations
cannot be subverted by the compiler or the CPU's control unit; otherwise, if the
system call service routine is interrupted by the interrupt handler between the two
assignments, the handler finds a corrupted list. Therefore, a write memory barrier
primitive is required:

    new->next = list_element->next;

    wmb( );

    list_element->next = new;

5.3.1. Choosing Among Spin Locks, Semaphores, and Interrupt
Disabling

Unfortunately, access patterns to most kernel data structures are a lot more complex than
the simple examples just shown, and kernel developers are forced to use semaphores, spin
locks, interrupts, and softirq disabling. Generally speaking, choosing the synchronization
primitives depends on what kinds of kernel control paths access the data structure, as shown
in Table 5-8. Remember that whenever a kernel control path acquires a spin lock (as well as a
read/write lock, a seqlock, or a RCU "read lock"), disables the local interrupts, or disables the
local softirqs, kernel preemption is automatically disabled.

Table 5-8. Protection required by data structures accessed by kernel
control paths

Kernel control paths accessing the
data structure UP protection MP further protection

Exceptions Semaphore None

Interrupts Local interrupt
disabling Spin lock

Deferrable functions None None or spin lock (see 
Table 5-9)

Exceptions + Interrupts Local interrupt
disabling Spin lock

Exceptions + Deferrable functions Local softirq disabling Spin lock

Interrupts + Deferrable functions Local interrupt
disabling Spin lock

Exceptions + Interrupts + Deferrable
functions

Local interrupt
disabling Spin lock

5.3.1.1. Protecting a data structure accessed by exceptions

When a data structure is accessed only by exception handlers, race conditions are usually
easy to understand and prevent. The most common exceptions that give rise to
synchronization problems are the system call service routines (see the section "System Call
Handler and Service Routines" in Chapter 10) in which the CPU operates in Kernel Mode to
offer a service to a User Mode program. Thus, a data structure accessed only by an exception
usually represents a resource that can be assigned to one or more processes.
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Race conditions are avoided through semaphores, because these primitives allow the process
to sleep until the resource becomes available. Notice that semaphores work equally well both
in uniprocessor and multiprocessor systems.

Kernel preemption does not create problems either. If a process that owns a semaphore is
preempted, a new process running on the same CPU could try to get the semaphore. When
this occurs, the new process is put to sleep, and eventually the old process will release the
semaphore. The only case in which kernel preemption must be explicitly disabled is when
accessing per-CPU variables, as explained in the section "Per-CPU Variables" earlier in this
chapter.

5.3.1.2. Protecting a data structure accessed by interrupts

Suppose that a data structure is accessed by only the "top half" of an interrupt handler. We
learned in the section "Interrupt Handling" in Chapter 4 that each interrupt handler is serialized
with respect to itself that is, it cannot execute more than once concurrently. Thus, accessing
the data structure does not require synchronization primitives.

Things are different, however, if the data structure is accessed by several interrupt handlers.
A handler may interrupt another handler, and different interrupt handlers may run concurrently
in multiprocessor systems. Without synchronization, the shared data structure might easily
become corrupted.

In uniprocessor systems, race conditions must be avoided by disabling interrupts in all critical
regions of the interrupt handler. Nothing less will do because no other synchronization
primitives accomplish the job. A semaphore can block the process, so it cannot be used in an
interrupt handler. A spin lock, on the other hand, can freeze the system: if the handler
accessing the data structure is interrupted, it cannot release the lock; therefore, the new
interrupt handler keeps waiting on the tight loop of the spin lock.

Multiprocessor systems, as usual, are even more demanding. Race conditions cannot be
avoided by simply disabling local interrupts. In fact, even if interrupts are disabled on a CPU,
interrupt handlers can still be executed on the other CPUs. The most convenient method to
prevent the race conditions is to disable local interrupts (so that other interrupt handlers
running on the same CPU won't interfere) and to acquire a spin lock or a read/write spin lock
that protects the data structure. Notice that these additional spin locks cannot freeze the
system because even if an interrupt handler finds the lock closed, eventually the interrupt
handler on the other CPU that owns the lock will release it.

The Linux kernel uses several macros that couple the enabling and disabling of local interrupts
with spin lock handling. Table 5-9 describes all of them. In uniprocessor systems, these
macros just enable or disable local interrupts and kernel preemption.

Table 5-9. Interrupt-aware spin lock macros

Macro Description

spin_lock_irq(l) local_irq_disable( ); spin_lock(l)

spin_unlock_irq(l) spin_unlock(l); local_irq_enable()

spin_lock_bh(l) local_bh_disable( ); spin_lock(l)

spin_unlock_bh(l) spin_unlock(l); local_bh_enable()

spin_lock_irqsave(l,f) local_irq_save(f); spin_lock(l)

spin_unlock_irqrestore(l,f) spin_unlock(l); local_irq_restore(f)
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Table 5-9. Interrupt-aware spin lock macros

Macro Description

read_lock_irq(l) local_irq_disable( ); read_lock(l)

read_unlock_irq(l) read_unlock(l); local_irq_enable( )

read_lock_bh(l) local_bh_disable( ); read_lock(l)

read_unlock_bh(l) read_unlock(l); local_bh_enable( )

write_lock_irq(l) local_irq_disable( ); write_lock(l)

write_unlock_irq(l) write_unlock(l); local_irq_enable( )

write_lock_bh(l) local_bh_disable( ); write_lock(l)

write_unlock_bh(l) write_unlock(l); local_bh_enable( )

read_lock_irqsave(l,f) local_irq_save(f); read_lock(l)

read_unlock_irqrestore(l,f) read_unlock(l); local_irq_restore(f)

write_lock_irqsave(l,f) local_irq_save(f); write_lock(l)

write_unlock_irqrestore(l,f) write_unlock(l); local_irq_restore(f)

read_seqbegin_irqsave(l,f) local_irq_save(f); read_seqbegin(l)

read_seqretry_irqrestore(l,v,f) read_seqretry(l,v); local_irq_restore(f)

write_seqlock_irqsave(l,f) local_irq_save(f); write_seqlock(l)

write_sequnlock_irqrestore(l,f) write_sequnlock(l); local_irq_restore(f)

write_seqlock_irq(l) local_irq_disable( ); write_seqlock(l)

write_sequnlock_irq(l) write_sequnlock(l); local_irq_enable( )

write_seqlock_bh(l) local_bh_disable( ); write_seqlock(l);

write_sequnlock_bh(l) write_sequnlock(l); local_bh_enable( )

5.3.1.3. Protecting a data structure accessed by deferrable functions

What kind of protection is required for a data structure accessed only by deferrable functions?
Well, it mostly depends on the kind of deferrable function. In the section "Softirqs and
Tasklets" in Chapter 4, we explained that softirqs and tasklets essentially differ in their degree
of concurrency.

First of all, no race condition may exist in uniprocessor systems. This is because execution of
deferrable functions is always serialized on a CPU that is, a deferrable function cannot be
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interrupted by another deferrable function. Therefore, no synchronization primitive is ever
required.

Conversely, in multiprocessor systems, race conditions do exist because several deferrable
functions may run concurrently. Table 5-10 lists all possible cases.

Table 5-10. Protection required by data structures accessed by
deferrable functions in SMP

Deferrable functions accessing the data structure Protection

Softirqs Spin lock

One tasklet None

Many tasklets Spin lock

A data structure accessed by a softirq must always be protected, usually by means of a spin
lock, because the same softirq may run concurrently on two or more CPUs. Conversely, a data
structure accessed by just one kind of tasklet need not be protected, because tasklets of the
same kind cannot run concurrently. However, if the data structure is accessed by several
kinds of tasklets, then it must be protected.

5.3.1.4. Protecting a data structure accessed by exceptions and interrupts

Let's consider now a data structure that is accessed both by exceptions (for instance, system
call service routines) and interrupt handlers.

On uniprocessor systems, race condition prevention is quite simple, because interrupt handlers
are not reentrant and cannot be interrupted by exceptions. As long as the kernel accesses
the data structure with local interrupts disabled, the kernel cannot be interrupted when
accessing the data structure. However, if the data structure is accessed by just one kind of
interrupt handler, the interrupt handler can freely access the data structure without disabling
local interrupts.

On multiprocessor systems, we have to take care of concurrent executions of exceptions and
interrupts on other CPUs. Local interrupt disabling must be coupled with a spin lock, which
forces the concurrent kernel control paths to wait until the handler accessing the data
structure finishes its work.

Sometimes it might be preferable to replace the spin lock with a semaphore. Because interrupt
handlers cannot be suspended, they must acquire the semaphore using a tight loop and the 
down_trylock( ) function; for them, the semaphore acts essentially as a spin lock. System call
service routines, on the other hand, may suspend the calling processes when the semaphore
is busy. For most system calls, this is the expected behavior. In this case, semaphores are
preferable to spin locks, because they lead to a higher degree of concurrency of the system.

5.3.1.5. Protecting a data structure accessed by exceptions and deferrable functions

A data structure accessed both by exception handlers and deferrable functions can be
treated like a data structure accessed by exception and interrupt handlers. In fact, deferrable
functions are essentially activated by interrupt occurrences, and no exception can be raised
while a deferrable function is running. Coupling local interrupt disabling with a spin lock is
therefore sufficient.

Actually, this is much more than sufficient: the exception handler can simply disable deferrable
functions instead of local interrupts by using the local_bh_disable( ) macro (see the section "
Softirqs" in Chapter 4). Disabling only the deferrable functions is preferable to disabling
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interrupts, because interrupts continue to be serviced by the CPU. Execution of deferrable
functions on each CPU is serialized, so no race condition exists.

As usual, in multiprocessor systems, spin locks are required to ensure that the data structure
is accessed at any time by just one kernel control.

5.3.1.6. Protecting a data structure accessed by interrupts and deferrable functions

This case is similar to that of a data structure accessed by interrupt and exception handlers.
An interrupt might be raised while a deferrable function is running, but no deferrable function
can stop an interrupt handler. Therefore, race conditions must be avoided by disabling local
interrupts during the deferrable function. However, an interrupt handler can freely touch the
data structure accessed by the deferrable function without disabling interrupts, provided that
no other interrupt handler accesses that data structure.

Again, in multiprocessor systems, a spin lock is always required to forbid concurrent accesses
to the data structure on several CPUs.

5.3.1.7. Protecting a data structure accessed by exceptions, interrupts, and deferrable functions

Similarly to previous cases, disabling local interrupts and acquiring a spin lock is almost always
necessary to avoid race conditions. Notice that there is no need to explicitly disable
deferrable functions, because they are essentially activated when terminating the execution
of interrupt handlers; disabling local interrupts is therefore sufficient.
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5.4. Examples of Race Condition Prevention
Kernel developers are expected to identify and solve the synchronization problems raised by
interleaving kernel control paths. However, avoiding race conditions is a hard task because it
requires a clear understanding of how the various components of the kernel interact. To give
a feeling of what's really inside the kernel code, let's mention a few typical usages of the
synchronization primitives defined in this chapter.

5.4.1. Reference Counters

Reference counters are widely used inside the kernel to avoid race conditions due to the
concurrent allocation and releasing of a resource. A reference counter is just an atomic_t
counter associated with a specific resource such as a memory page, a module, or a file. The
counter is atomically increased when a kernel control path starts using the resource, and it is
decreased when a kernel control path finishes using the resource. When the reference counter
becomes zero, the resource is not being used, and it can be released if necessary.

5.4.2. The Big Kernel Lock

In earlier Linux kernel versions, a big kernel lock (also known as global kernel lock, or BKL) was
widely used. In Linux 2.0, this lock was a relatively crude spin lock, ensuring that only one
processor at a time could run in Kernel Mode. The 2.2 and 2.4 kernels were considerably more
flexible and no longer relied on a single spin lock; rather, a large number of kernel data
structures were protected by many different spin locks. In Linux kernel version 2.6, the big
kernel lock is used to protect old code (mostly functions related to the VFS and to several
filesystems).

Starting from kernel version 2.6.11, the big kernel lock is implemented by a semaphore named 
kernel_sem (in earlier 2.6 versions, the big kernel lock was implemented by means of a spin
lock). The big kernel lock is slightly more sophisticated than a simple semaphore, however.

Every process descriptor includes a lock_depth field, which allows the same process to acquire
the big kernel lock several times. Therefore, two consecutive requests for it will not hang the
processor (as for normal locks). If the process has not acquired the lock, the field has the
value -1; otherwise, the field value plus 1 specifies how many times the lock has been taken.
The lock_depth field is crucial for allowing interrupt handlers, exception handlers, and
deferrable functions to take the big kernel lock: without it, every asynchronous function that
tries to get the big kernel lock could generate a deadlock if the current process already owns
the lock.

The lock_kernel( ) and unlock_kernel( ) functions are used to get and release the big kernel
lock. The former function is equivalent to:

    depth = current->lock_depth + 1;

    if (depth == 0)

        down(&kernel_sem);

    current->lock_depth = depth;

while the latter is equivalent to:

    if (--current->lock_depth < 0)

        up(&kernel_sem);

Notice that the if statements of the lock_kernel( ) and unlock_kernel( ) functions need not
be executed atomically because lock_depth is not a global variable each CPU addresses a field
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of its own current process descriptor. Local interrupts inside the if statements do not induce
race conditions either. Even if the new kernel control path invokes lock_kernel( ), it must
release the big kernel lock before terminating.

Surprisingly enough, a process holding the big kernel lock is allowed to invoke schedule( ),
thus relinquishing the CPU. The schedule( ) function, however, checks the lock_depth field of
the process being replaced and, if its value is zero or positive, automatically releases the 
kernel_sem semaphore (see the section "The schedule( ) Function" in Chapter 7). Thus, no
process that explicitly invokes schedule( ) can keep the big kernel lock across the process
switch. The schedule( ) function, however, will reacquire the big kernel lock for the process
when it will be selected again for execution.

Things are different, however, if a process that holds the big kernel lock is preempted by
another process. Up to kernel version 2.6.10 this case could not occur, because acquiring a
spin lock automatically disables kernel preemption. The current implementation of the big
kernel lock, however, is based on a semaphore, and acquiring it does not automatically disable
kernel preemption. Actually, allowing kernel preemption inside critical regions protected by the
big kernel lock has been the main reason for changing its implementation. This, in turn, has
beneficial effects on the response time of the system.

When a process holding the big kernel lock is preempted, schedule( ) must not release the
semaphore because the process executing the code in the critical region has not voluntarily
triggered a process switch, thus if the big kernel lock would be released, another process
might take it and corrupt the data structures accessed by the preempted process.

To avoid the preempted process losing the big kernel lock, the preempt_schedule_irq( )
function temporarily sets the lock_depth field of the process to -1 (see the section "Returning
from Interrupts and Exceptions" in Chapter 4). Looking at the value of this field, schedule( )
assumes that the process being replaced does not hold the kernel_sem semaphore and thus
does not release it. As a result, the kernel_sem semaphore continues to be owned by the
preempted process. Once this process is selected again by the scheduler, the 
preempt_schedule_irq( ) function restores the original value of the lock_depth field and lets
the process resume execution in the critical section protected by the big kernel lock.

5.4.3. Memory Descriptor Read/Write Semaphore

Each memory descriptor of type mm_struct includes its own semaphore in the mmap_sem field
(see the section "The Memory Descriptor" in Chapter 9). The semaphore protects the
descriptor against race conditions that could arise because a memory descriptor can be
shared among several lightweight processes.

For instance, let's suppose that the kernel must create or extend a memory region for some
process; to do this, it invokes the do_mmap( ) function, which allocates a new vm_area_struct
data structure. In doing so, the current process could be suspended if no free memory is
available, and another process sharing the same memory descriptor could run. Without the
semaphore, every operation of the second process that requires access to the memory
descriptor (for instance, a Page Fault due to a Copy on Write) could lead to severe data
corruption.

The semaphore is implemented as a read/write semaphore, because some kernel functions,
such as the Page Fault exception handler (see the section "Page Fault Exception Handler" in
Chapter 9), need only to scan the memory descriptors.

5.4.4. Slab Cache List Semaphore

The list of slab cache descriptors (see the section "Cache Descriptor" in Chapter 8) is
protected by the cache_chain_sem semaphore, which grants an exclusive right to access and
modify the list.

A race condition is possible when kmem_cache_create( ) adds a new element in the list, while
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kmem_cache_shrink( ) and kmem_cache_reap( ) sequentially scan the list. However, these
functions are never invoked while handling an interrupt, and they can never block while
accessing the list. The semaphore plays an active role both in multiprocessor systems and in
uniprocessor systems with kernel preemption supported.

5.4.5. Inode Semaphore

As we'll see in "Inode Objects" in Chapter 12, Linux stores the information on a disk file in a
memory object called an inode. The corresponding data structure includes its own semaphore
in the i_sem field.

A huge number of race conditions can occur during filesystem handling. Indeed, each file on
disk is a resource held in common for all users, because all processes may (potentially) access
the file content, change its name or location, destroy or duplicate it, and so on. For example,
let's suppose that a process lists the files contained in some directory. Each disk operation is
potentially blocking, and therefore even in uniprocessor systems, other processes could
access the same directory and modify its content while the first process is in the middle of
the listing operation. Or, again, two different processes could modify the same directory at
the same time. All these race conditions are avoided by protecting the directory file with the
inode semaphore.

Whenever a program uses two or more semaphores, the potential for deadlock is present,
because two different paths could end up waiting for each other to release a semaphore.
Generally speaking, Linux has few problems with deadlocks on semaphore requests, because
each kernel control path usually needs to acquire just one semaphore at a time. However, in
some cases, the kernel must get two or more locks. Inode semaphores are prone to this
scenario; for instance, this occurs in the service routine in the rename( ) system call. In this
case, two different inodes are involved in the operation, so both semaphores must be taken.
To avoid such deadlocks, semaphore requests are performed in predefined address order.
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Chapter 6. Timing Measurements
Countless computerized activities are driven by timing measurements , often behind the user's
back. For instance, if the screen is automatically switched off after you have stopped using
the computer's console, it is due to a timer that allows the kernel to keep track of how much
time has elapsed since you pushed a key or moved the mouse. If you receive a warning from
the system asking you to remove a set of unused files, it is the outcome of a program that
identifies all user files that have not been accessed for a long time. To do these things,
programs must be able to retrieve a timestamp identifying its last access time from each file.
Such a timestamp must be automatically written by the kernel. More significantly, timing
drives process switches along with even more visible kernel activities such as checking for
time-outs.

We can distinguish two main kinds of timing measurement that must be performed by the Linux
kernel:

 Keeping the current time and date so they can be returned to user programs through
the time( ), ftime( ), and gettimeofday( ) APIs (see the section "The time( ) and
gettimeofday( ) System Calls" later in this chapter) and used by the kernel itself as
timestamps for files and network packets

 Maintaining timers mechanisms that are able to notify the kernel (see the later section
"Software Timers and Delay Functions") or a user program (see the later sections "The
setitimer( ) and alarm( ) System Calls" and "System Calls for POSIX Timers") that a
certain interval of time has elapsed

Timing measurements are performed by several hardware circuits based on fixed-frequency
oscillators and counters. This chapter consists of four different parts. The first two sections
describe the hardware devices that underly timing and give an overall picture of Linux
timekeeping architecture. The following sections describe the main time-related duties of the
kernel: implementing CPU time sharing, updating system time and resource usage statistics,
and maintaining software timers. The last section discusses the system calls related to timing
measurements and the corresponding service routines.
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6.1. Clock and Timer Circuits
On the 80x86 architecture, the kernel must explicitly interact with several kinds of clocks and
timer circuits . The clock circuits are used both to keep track of the current time of day and
to make precise time measurements. The timer circuits are programmed by the kernel, so that
they issue interrupts at a fixed, predefined frequency; such periodic interrupts are crucial for
implementing the software timers used by the kernel and the user programs. We'll now briefly
describe the clock and hardware circuits that can be found in IBM-compatible PCs.

6.1.1. Real Time Clock (RTC)

All PCs include a clock called Real Time Clock (RTC), which is independent of the CPU and all
other chips.

The RTC continues to tick even when the PC is switched off, because it is energized by a
small battery. The CMOS RAM and RTC are integrated in a single chip (the Motorola 146818 or
an equivalent).

The RTC is capable of issuing periodic interrupts on IRQ 8 at frequencies ranging between 2 Hz
and 8,192 Hz. It can also be programmed to activate the IRQ 8 line when the RTC reaches a
specific value, thus working as an alarm clock.

Linux uses the RTC only to derive the time and date; however, it allows processes to program
the RTC by acting on the /dev/rtc device file (see Chapter 13). The kernel accesses the RTC
through the 0x70 and 0x71 I/O ports. The system administrator can read and write the RTC by
executing the clock Unix system program that acts directly on these two I/O ports.

6.1.2. Time Stamp Counter (TSC)

All 80x86 microprocessors include a CLK input pin, which receives the clock signal of an
external oscillator. Starting with the Pentium, 80x86 microprocessors sport a counter that is
increased at each clock signal. The counter is accessible through the 64-bit Time Stamp
Counter(TSC) register, which can be read by means of the rdtsc assembly language
instruction. When using this register, the kernel has to take into consideration the frequency
of the clock signal: if, for instance, the clock ticks at 1 GHz, the Time Stamp Counter is
increased once every nanosecond.

Linux may take advantage of this register to get much more accurate time measurements than
those delivered by the Programmable Interval Timer. To do this, Linux must determine the
clock signal frequency while initializing the system. In fact, because this frequency is not
declared when compiling the kernel, the same kernel image may run on CPUs whose clocks
may tick at any frequency.

The task of figuring out the actual frequency of a CPU is accomplished during the system's
boot. The calibrate_tsc( ) function computes the frequency by counting the number of clock
signals that occur in a time interval of approximately 5 milliseconds. This time constant is
produced by properly setting up one of the channels of the Programmable Interval Timer (see
the next section).[*]

[*] To avoid losing significant digits in the integer divisions, calibrate_tsc( ) returns the duration, in microseconds, of a clock tick
multiplied by 232.

6.1.3. Programmable Interval Timer (PIT)

Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs include another
type of time-measuring device called Programmable Interval Timer(PIT). The role of a PIT is
similar to the alarm clock of a microwave oven: it makes the user aware that the cooking time
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interval has elapsed. Instead of ringing a bell, this device issues a special interrupt called 
timer interrupt, which notifies the kernel that one more time interval has elapsed.[ ] Another
difference from the alarm clock is that the PIT goes on issuing interrupts forever at some fixed
frequency established by the kernel. Each IBM-compatible PC includes at least one PIT, which
is usually implemented by an 8254 CMOS chip using the 0x40-0x43 I/O ports.

[ ] The PIT is also used to drive an audio amplifier connected to the computer's internal speaker.

As we'll see in detail in the next paragraphs, Linux programs the PIT of IBM-compatible PCs to
issue timer interrupts on the IRQ 0 at a (roughly) 1000-Hz frequency that is, once every 1
millisecond. This time interval is called a tick, and its length in nanoseconds is stored in the
tick_nsec variable. On a PC, tick_nsec is initialized to 999,848 nanoseconds (yielding a clock
signal frequency of about 1000.15 Hz), but its value may be automatically adjusted by the
kernel if the computer is synchronized with an external clock (see the later section "The
adjtimex( ) System Call"). The ticks beat time for all activities in the system; in some sense,
they are like the ticks sounded by a metronome while a musician is rehearsing.

Generally speaking, shorter ticks result in higher resolution timers, which help with smoother
multimedia playback and faster response time when performing synchronous I/O multiplexing (
poll( ) and select( ) system calls). This is a trade-off however: shorter ticks require the CPU
to spend a larger fraction of its time in Kernel Mode that is, a smaller fraction of time in User
Mode. As a consequence, user programs run slower.

The frequency of timer interrupts depends on the hardware architecture. The slower machines
have a tick of roughly 10 milliseconds (100 timer interrupts per second), while the faster ones
have a tick of roughly 1 millisecond (1000 or 1024 timer interrupts per second).

A few macros in the Linux code yield some constants that determine the frequency of timer
interrupts. These are discussed in the following list.

 HZ yields the approximate number of timer interrupts per second that is, their
frequency. This value is set to 1000 for IBM PCs.

 CLOCK_TICK_RATE yields the value 1,193,182, which is the 8254 chip's internal oscillator
frequency.

 LATCH yields the ratio between CLOCK_TICK_RATE and HZ, rounded to the nearest integer.
It is used to program the PIT.

The PIT is initialized by setup_pit_timer( ) as follows:

    spin_lock_irqsave(&i8253_lock, flags);

    outb_p(0x34,0x43);

    udelay(10);

    outb_p(LATCH & 0xff, 0x40);

    udelay(10);

    outb 

(LATCH >> 8, 0x40);

    spin_unlock_irqrestore(&i8253_lock, flags);

The outb( ) C function is equivalent to the outb assembly language instruction: it copies the
first operand into the I/O port specified as the second operand. The outb_p( ) function is
similar to outb( ), except that it introduces a pause by executing a no-op instruction to keep
the hardware from getting confused. The udelay() macro introduces a further small delay (see
the later section "Delay Functions"). The first outb_ p( ) invocation is a command to the PIT
to issue interrupts at a new rate. The next two outb_ p( ) and outb( ) invocations supply the
new interrupt rate to the device. The 16-bit LATCH constant is sent to the 8-bit 0x40 I/O port
of the device as two consecutive bytes. As a result, the PIT issues timer interrupts at a
(roughly) 1000-Hz frequency (that is, once every 1 ms).
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6.1.4. CPU Local Timer

The local APIC present in recent 80 x 86 microprocessors (see the section "Interrupts and
Exceptions" in Chapter 4) provides yet another time-measuring device: the CPU local timer .

The CPU local timer is a device similar to the Programmable Interval Timer just described that
can issue one-shot or periodic interrupts. There are, however, a few differences:

 The APIC's timer counter is 32 bits long, while the PIT's timer counter is 16 bits long;
therefore, the local timer can be programmed to issue interrupts at very low
frequencies (the counter stores the number of ticks that must elapse before the
interrupt is issued).

 The local APIC timer sends an interrupt only to its processor, while the PIT raises a
global interrupt, which may be handled by any CPU in the system.

 The APIC's timer is based on the bus clock signal (or the APIC bus signal, in older
machines). It can be programmed in such a way to decrease the timer counter every
1, 2, 4, 8, 16, 32, 64, or 128 bus clock signals. Conversely, the PIT, which makes use
of its own clock signals, can be programmed in a more flexible way.

6.1.5. High Precision Event Timer (HPET)

The High Precision Event Timer (HPET) is a new timer chip developed jointly by Intel and
Microsoft. Although HPETs are not yet very common in end-user machines, Linux 2.6 already
supports them, so we'll spend a few words describing their characteristics.

The HPET provides a number of hardware timers that can be exploited by the kernel. Basically,
the chip includes up to eight 32-bit or 64-bit independent counters . Each counter is driven
by its own clock signal, whose frequency must be at least 10 MHz; therefore, the counter is
increased at least once in 100 nanoseconds. Any counter is associated with at most 32 
timers, each of which is composed by a comparator and a match register. The comparator is
a circuit that checks the value in the counter against the value in the match register, and
raises a hardware interrupt if a match is found. Some of the timers can be enabled to
generate a periodic interrupt.

The HPET chip can be programmed through registers mapped into memory space (much like
the I/O APIC). The BIOS establishes the mapping during the bootstrapping phase and reports
to the operating system kernel its initial memory address. The HPET registers allow the kernel
to read and write the values of the counters and of the match registers , to program one-shot
interrupts, and to enable or disable periodic interrupts on the timers that support them.

The next generation of motherboards will likely sport both the HPET and the 8254 PIT; in some
future time, however, the HPET is expected to completely replace the PIT.

6.1.6. ACPI Power Management Timer

The ACPI Power Management Timer (or ACPI PMT) is yet another clock device included in
almost all ACPI-based motherboards. Its clock signal has a fixed frequency of roughly 3.58
MHz. The device is actually a simple counter increased at each clock tick; to read the current
value of the counter, the kernel accesses an I/O port whose address is determined by the
BIOS during the initialization phase (see Appendix A).

The ACPI Power Management Timer is preferable to the TSC if the operating system or the
BIOS may dynamically lower the frequency or voltage of the CPU to save battery power.
When this happens, the frequency of the TSC changesthus causing time warps and others
unpleasant effectswhile the frequency of the ACPI PMT does not. On the other hand, the
high-frequency of the TSC counter is quite handy for measuring very small time intervals.

However, if an HPET device is present, it should always be preferred to the other circuits

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


because of its richer architecture. Table 6-2 later in this chapter illustrates how Linux takes
advantage of the available timing circuits.

Now that we understand what the hardware timers are, we may discuss how the Linux kernel
exploits them to conduct all activities of the system.
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6.2. The Linux Timekeeping Architecture
Linux must carry on several time-related activities. For instance, the kernel periodically:

 Updates the time elapsed since system startup.

 Updates the time and date.

 Determines, for every CPU, how long the current process has been running, and
preempts it if it has exceeded the time allocated to it. The allocation of time slots (also
called "quanta") is discussed in Chapter 7.

 Updates resource usage statistics.

 Checks whether the interval of time associated with each software timer (see the later
section "Software Timers and Delay Functions") has elapsed.

Linux's timekeeping architecture is the set of kernel data structures and functions related to
the flow of time. Actually, 80 x 86-based multiprocessor machines have a timekeeping
architecture that is slightly different from the timekeeping architecture of uniprocessor
machines:

 In a uniprocessor system, all time-keeping activities are triggered by interrupts raised
by the global timer (either the Programmable Interval Timer or the High Precision Event
Timer).

 In a multiprocessor system, all general activities (such as handling of software timers)
are triggered by the interrupts raised by the global timer, while CPU-specific activities
(such as monitoring the execution time of the currently running process) are triggered
by the interrupts raised by the local APIC timer.

Unfortunately, the distinction between the two cases is somewhat blurred. For instance, some
early SMP systems based on Intel 80486 processors didn't have local APICs. Even nowadays,
there are SMP motherboards so buggy that local timer interrupts are not usable at all. In
these cases, the SMP kernel must resort to the UP timekeeping architecture. On the other
hand, recent uniprocessor systems feature one local APIC, so the UP kernel often makes use
of the SMP timekeeping architecture. However, to simplify our description, we won't discuss
these hybrid cases and will stick to the two "pure" timekeeping architectures.

Linux's timekeeping architecture depends also on the availability of the Time Stamp Counter
(TSC), of the ACPI Power Management Timer, and of the High Precision Event Timer (HPET).
The kernel uses two basic timekeeping functions: one to keep the current time up-to-date
and another to count the number of nanoseconds that have elapsed within the current
second. There are different ways to get the last value. Some methods are more precise and
are available if the CPU has a Time Stamp Counter or a HPET; a less-precise method is used in
the opposite case (see the later section "The time( ) and gettimeofday( ) System Calls").

6.2.1. Data Structures of the Timekeeping Architecture

The timekeeping architecture of Linux 2.6 makes use of a large number of data structures. As
usual, we will describe the most important variables by referring to the 80 x 86 architecture.

6.2.1.1. The timer object

In order to handle the possible timer sources in a uniform way, the kernel makes use of a
"timer object," which is a descriptor of type timer_opts consisting of the timer name and of
four standard methods shown in Table 6-1.
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Table 6-1. The fields of the timer_opts data structure

Field name Description

name A string identifying the timer source

mark_offset Records the exact time of the last tick; it is invoked by the timer
interrupt handler

get_offset Returns the time elapsed since the last tick

monotonic_clock Returns the number of nanoseconds since the kernel initialization

delay Waits for a given number of "loops" (see the later section "Delay
Functions")

The most important methods of the timer object are mark_offset and get_offset. The
mark_offset method is invoked by the timer interrupt handler, and records in a suitable data
structure the exact time at which the tick occurred. Using the saved value, the get_offset
method computes the time in microseconds elapsed since the last timer interrupt (tick).
Thanks to these two methods, Linux timekeeping architecture achieves a sub-tick
resolutionthat is, the kernel is able to determine the current time with a precision much higher
than the tick duration. This operation is called time interpolation .

The cur_timer variable stores the address of the timer object corresponding to the "best"
timer source available in the system. Initially, cur_timer points to timer_none, which is the
object corresponding to a dummy timer source used when the kernel is being initialized. During
kernel initialization, the select_timer( ) function sets cur_timer to the address of the
appropriate timer object. Table 6-2 shows the most common timer objects used in the 80x86
architecture, in order of preference. As you see, select_timer( ) selects the HPET, if
available; otherwise, it selects the ACPI Power Management Timer , if available, or the TSC.
As the last resort, select_timer( ) selects the always-present PIT. The "Time interpolation"
column lists the timer sources used by the mark_offset and get_offset methods of the timer
object; the "Delay" column lists the timer sources used by the delay method.

Table 6-2. Typical timer objects of the 80x86 architecture, in order of
preference

Timer object
name Description Time

interpolation Delay

timer_hpet High Precision Event Timer (HPET) HPET HPET

timer_pmtmr ACPI Power Management Timer (ACPI
PMT) ACPI PMT TSC

timer_tsc Time Stamp Counter (TSC) TSC TSC

timer_pit Programmable Interval Timer (PIT) PIT Tight
loop

timer_none Generic dummy timer source(used during
kernel initialization) (none) Tight

loop
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Notice that local APIC timers do not have a corresponding timer object. The reason is that
local APIC timers are used only to generate periodic interrupts and are never used to achieve
sub-tick resolution.

6.2.1.2. The jiffies variable

The jiffies variable is a counter that stores the number of elapsed ticks since the system
was started. It is increased by one when a timer interrupt occursthat is, on every tick. In the
80 x 86 architecture, jiffies is a 32-bit variable, therefore it wraps around in approximately
50 daysa relatively short time interval for a Linux server. However, the kernel handles cleanly
the overflow of jiffies thanks to the time_after, time_after_eq, time_before, and
time_before_eq macros: they yield the correct value even if a wraparound occurred.

You might suppose that jiffies is initialized to zero at system startup. Actually, this is not
the case: jiffies is initialized to 0xfffb6c20, which corresponds to the 32-bit signed value
300,000; therefore, the counter will overflow five minutes after the system boot. This is done
on purpose, so that buggy kernel code that does not check for the overflow of jiffies shows
up very soon in the developing phase and does not pass unnoticed in stable kernels.

In a few cases, however, the kernel needs the real number of system ticks elapsed since the
system boot, regardless of the overflows of jiffies. Therefore, in the 80 x 86 architecture
the jiffies variable is equated by the linker to the 32 less significant bits of a 64-bit counter
called jiffies_64. With a tick of 1 millisecond, the jiffies_64 variable wraps around in several
hundreds of millions of years, thus we can safely assume that it never overflows.

You might wonder why jiffies has not been directly declared as a 64-bit unsigned long long
integer on the 80 x 86 architecture. The answer is that accesses to 64-bit variables in 32-bit
architectures cannot be done atomically. Therefore, every read operation on the whole 64 bits
requires some synchronization technique to ensure that the counter is not updated while the
two 32-bit half-counters are read; as a consequence, every 64-bit read operation is
significantly slower than a 32-bit read operation.

The get_jiffies_64( ) function reads the value of jiffies_64 and returns its value:

    unsigned long long get_jiffies_64(void)

    {

        unsigned long seq;

        unsigned long long ret;

        do {

            seq = read_seqbegin(&xtime_lock);

            ret = jiffies_64;

        } while (read_seqretry(&xime_lock, seq));

        return ret;

    }

The 64-bit read operation is protected by the xtime_lock seqlock (see the section "Seqlocks"
in Chapter 5): the function keeps reading the jiffies_64 variable until it knows for sure that it
has not been concurrently updated by another kernel control path.

Conversely, the critical region increasing the jiffies_64 variable must be protected by means
of write_seqlock(&xtime_lock ) and write_sequnlock( &xtime_lock). Notice that the
++jiffies_64 instruction also increases the 32-bit jiffies variable, because the latter
corresponds to the lower half of jiffies_64.

6.2.1.3. The xtime variable

The xtime variable stores the current time and date; it is a structure of type timespec having
two fields:
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tv_sec

Stores the number of seconds that have elapsed since midnight of January 1, 1970
(UTC)

tv_nsec

Stores the number of nanoseconds that have elapsed within the last second (its value
ranges between 0 and 999,999,999)

The xtime variable is usually updated once in a tickthat is, roughly 1000 times per second. As
we'll see in the later section "System Calls Related to Timing Measurements," user programs
get the current time and date from the xtime variable. The kernel also often refers to it, for
instance, when updating inode timestamps (see the section "File Descriptor and Inode" in
Chapter 1).

The xtime_lock seqlock avoids the race conditions that could occur due to concurrent
accesses to the xtime variable. Remember that xtime_lock also protects the jiffies_64
variable; in general, this seqlock is used to define several critical regions of the timekeeping
architecture.

6.2.2. Timekeeping Architecture in Uniprocessor Systems

In a uniprocessor system, all time-related activities are triggered by the interrupts raised by
the Programmable Interval Timer on IRQ line 0. As usual, in Linux, some of these activities are
executed as soon as possible right after the interrupt is raised, while the remaining activities
are carried on by deferrable functions (see the later section "Dynamic Timers").

6.2.2.1. Initialization phase

During kernel initialization, the time_init( ) function is invoked to set up the timekeeping
architecture. It usually[*] performs the following operations:

[*] The time_init( ) function is executed before mem_init( ), w hich initializes the memory data structures. Unfortunately, the HPET
registers are memory mapped, therefore initialization of the HPET chip has to be done after the execution of mem_init( ). Linux 2.6
adopts a cumbersome solution: if the kernel supports the HPET chip, the time_init( ) function limits itself to trigger the activation of
the hpet_time_init( ) function.The latter function is executed after mem_init( ) and performs the operations described in this
section.

1. Initializes the xtime variable. The number of seconds elapsed since the midnight of
January 1, 1970 is read from the Real Time Clock by means of the get_cmos_time( )
function. The tv_nsec field of xtime is set, so that the forthcoming overflow of the
jiffies variable will coincide with an increment of the tv_sec fieldthat is, it will fall on a
second boundary.

2. Initializes the wall_to_monotonic variable. This variable is of the same type timespec as
xtime, and it essentially stores the number of seconds and nanoseconds to be added
to xtime in order to get a monotonic (ever increasing) flow of time. In fact, both leap
seconds and synchronization with external clocks might suddenly change the tv_sec
and tv_nsec fields of xtime so that they are no longer monotonically increased. As we'll
see in the later section "System Calls for POSIX Timers," sometimes the kernel needs a
truly monotonic time source.

3. If the kernel supports HPET, it invokes the hpet_enable( ) function to determine
whether the ACPI firmware has probed the chip and mapped its registers in the memory
address space. In the affirmative case, hpet_enable( ) programs the first timer of the
HPET chip so that it raises the IRQ 0 interrupt 1000 times per second. Otherwise, if the
HPET chip is not available, the kernel will use the PIT: the chip has already been
programmed by the init_IRQ( ) function to raise 1000 timer interrupts per second, as
described in the earlier section "Programmable Interval Timer (PIT)."
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4. Invokes select_timer( ) to select the best timer source available in the system, and
sets the cur_timer variable to the address of the corresponding timer object.

5. Invokes setup_irq( 0,&irq0) to set up the interrupt gate corresponding to IRQ0the line
associated with the system timer interrupt source (PIT or HPET).The irq0 variable is
statically defined as:

6.
7.     struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0,

8.                               "timer", NULL, NULL };

From now on, the timer_interrupt( ) function will be invoked once every tick with
interrupts disabled, because the status field of IRQ 0's main descriptor has the
SA_INTERRUPT flag set.

6.2.2.2. The timer interrupt handler

The timer_interrupt( ) function is the interrupt service routine (ISR) of the PIT or of the
HPET; it performs the following steps:

1. Protects the time-related kernel variables by issuing a write_seqlock() on the
xtime_lock seqlock (see the section "Seqlocks" in Chapter 5).

2. Executes the mark_offset method of the cur_timer timer object. As explained in the
earlier section "Data Structures of the Timekeeping Architecture," there are four
possible cases:

a. cur_timer points to the timer_hpet object: in this case, the HPET chip is the
source of timer interrupts. The mark_offset method checks that no timer
interrupt has been lost since the last tick; in this unlikely case, it updates 
jiffies_64 accordingly. Next, the method records the current value of the
periodic HPET counter.

b. cur_timer points to the timer_pmtmr object: in this case, the PIT chip is the
source of timer interrupts, but the kernel uses the APIC Power Management
Timer to measure time with a finer resolution. The mark_offset method checks
that no timer interrupt has been lost since the last tick and updates jiffies_64
if necessary. Then, it records the current value of the APIC Power Management
Timer counter.

c. cur_timer points to the timer_tsc object: in this case, the PIT chip is the
source of timer interrupts, but the kernel uses the Time Stamp Counter to
measure time with a finer resolution. The mark_offset method performs the
same operations as in the previous case: it checks that no timer interrupt has
been lost since the last tick and updates jiffies_64 if necessary. Then, it
records the current value of the TSC counter.

d. cur_timer points to the timer_pit object: in this case, the PIT chip is the
source of timer interrupts, and there is no other timer circuit. The mark_offset
method does nothing.

3. Invokes the do_timer_interrupt( ) function, which in turn performs the following
actions:

a. Increases by one the value of jiffies_64. Notice that this can be done safely,
because the kernel control path still holds the xtime_lock seqlock for writing.

b. Invokes the update_times( ) function to update the system date and time and
to compute the current system load; these activities are discussed later in the
sections "Updating the Time and Date" and "Updating System Statistics."
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c. Invokes the update_process_times( ) function to perform several time-related
accounting operations for the local CPU (see the section "Updating Local CPU
Statistics" later in this chapter).

d. Invokes the profile_tick( ) function (see the section "Profiling the Kernel Code
" later in this chapter).

e. If the system clock is synchronized with an external clock (an adjtimex( )
system call has been previously issued), invokes the set_rtc_mmss( ) function
once every 660 seconds (every 11 minutes) to adjust the Real Time Clock. This
feature helps systems on a network synchronize their clocks (see the later
section "The adjtimex( ) System Call").

4. Releases the xtime_lock seqlock by invoking write_sequnlock().

5. Returns the value 1 to notify that the interrupt has been effectively handled (see the
section "I/O Interrupt Handling" in Chapter 4).

6.2.3. Timekeeping Architecture in Multiprocessor Systems

Multiprocessor systems can rely on two different sources of timer interrupts: those raised by
the Programmable Interval Timer or the High Precision Event Timer, and those raised by the
CPU local timers.

In Linux 2.6, global timer interruptsraised by the PIT or the HPETsignal activities not related to
a specific CPU, such as handling of software timers and keeping the system time up-to-date.
Conversely, a CPU local timer interrupt signals timekeeping activities related to the local CPU,
such as monitoring how long the current process has been running and updating the resource
usage statistics.

6.2.3.1. Initialization phase

The global timer interrupt handler is initialized by the time_init( ) function, which has already
been described in the earlier section "Timekeeping Architecture in Uniprocessor Systems."

The Linux kernel reserves the interrupt vector 239 (0xef) for local timer interrupts (see Table
4-2 in Chapter 4). During kernel initialization, the apic_intr_init( ) function sets up the IDT's
interrupt gate corresponding to vector 239 with the address of the low-level interrupt handler 
apic_timer_interrupt( ). Moreover, each APIC has to be told how often to generate a local
time interrupt. The calibrate_APIC_clock( ) function computes how many bus clock signals
are received by the local APIC of the booting CPU during a tick (1 ms). This exact value is
then used to program the local APICs in such a way to generate one local timer interrupt
every tick. This is done by the setup_APIC_timer( ) function, which is executed once for every
CPU in the system.

All local APIC timers are synchronized because they are based on the common bus clock
signal. This means that the value computed by calibrate_APIC_clock( ) for the boot CPU is
also good for the other CPUs in the system.

6.2.3.2. The global timer interrupt handler

The SMP version of the timer_interrupt() handler differs from the UP version in a few points:

 The do_timer_interrupt( ) function, invoked by timer_interrupt( ), writes into a port
of the I/O APIC chip to acknowledge the timer IRQ.

 The update_process_times( ) function is not invoked, because this function performs
actions related to a specific CPU.

 The profile_tick( ) function is not invoked, because this function also performs
actions related to a specific CPU.

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


6.2.3.3. The local timer interrupt handler

This handler performs the timekeeping activities related to a specific CPU in the system,
namely profiling the kernel code and checking how long the current process has been running
on a given CPU.

The apic_timer_interrupt( ) assembly language function is equivalent to the following code:

    apic_timer_interrupt:

        pushl $(239-256)

        SAVE_ALL

        movl %esp, %eax

        call smp_apic_timer_interrupt

        jmp ret_from_intr

As you can see, the low-level handler is very similar to the other low-level interrupt handlers
already described in Chapter 4. The high-level interrupt handler called
smp_apic_timer_interrupt( ) executes the following steps:

1. Gets the CPU logical number (say, n).

2. Increases the apic_timer_irqs field of the nth entry of the irq_stat array (see the
section "Checking the NMI Watchdogs" later in this chapter).

3. Acknowledges the interrupt on the local APIC.

4. Calls the irq_enter( ) function (see the section "The do_IRQ( ) function" in Chapter 4
).

5. Invokes the smp_local_timer_interrupt( ) function.

6. Calls the irq_exit( ) function.

The smp_local_timer_interrupt( ) function executes the per-CPU timekeeping activities.
Actually, it performs the following main steps:

1. Invokes the profile_tick( ) function (see the section "Profiling the Kernel Code" later
in this chapter).

2. Invokes the update_process_times( ) function to check how long the current process
has been running and to update some local CPU statistics (see the section "Updating
Local CPU Statistics" later in this chapter).

The system administrator can change the sample frequency of the kernel code profiler by
writing into the /proc/profile file.To carry out the change, the kernel modifies the frequency
at which local timer interrupts are generated. However, the smp_local_timer_interrupt( )
function keeps invoking the update_process_times( ) function exactly once every tick.
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6.3. Updating the Time and Date
User programs get the current time and date from the xtime variable. The kernel must
periodically update this variable, so that its value is always reasonably accurate.

The update_times( ) function, which is invoked by the global timer interrupt handler, updates
the value of the xtime variable as follows:

    void update_times(void)

    {

        unsigned long ticks;

        ticks = jiffies - wall_jiffies;

        if (ticks) {

            wall_jiffies += ticks;

            update_wall_time(ticks);

        }

        calc_load(ticks);

    }

We recall from the previous description of the timer interrupt handler that when the code of
this function is executed, the xtime_lock seqlock has already been acquired for writing.

The wall_jiffies variable stores the time of the last update of the xtime variable. Observe
that the value of wall_jiffies can be smaller than jiffies-1, since a few timer interrupts can
be lost, for instance when interrupts remain disabled for a long period of time; in other words,
the kernel does not necessarily update the xtime variable at every tick. However, no tick is
definitively lost, and in the long run, xtime stores the correct system time. The check for lost
timer interrupts is done in the mark_offset method of cur_timer; see the earlier section "
Timekeeping Architecture in Uniprocessor Systems."

The update_wall_time( ) function invokes the update_wall_time_one_tick( ) function ticks
consecutive times; normally, each invocation adds 1,000,000 to the xtime.tv_nsec field. If the
value of xtime.tv_nsec becomes greater than 999,999,999, the update_wall_time( ) function
also updates the tv_sec field of xtime. If an adjtimex( ) system call has been issued, for
reasons explained in the section "The adjtimex( ) System Call" later in this chapter, the
function might tune the value 1,000,000 slightly so the clock speeds up or slows down a little.

The calc_load( ) function is described in the section "Keeping Track of System Load" later in
this chapter.
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6.4. Updating System Statistics
The kernel, among the other time-related duties, must periodically collect various data used
for:

 Checking the CPU resource limit of the running processes

 Updating statistics about the local CPU workload

 Computing the average system load

 Profiling the kernel code

6.4.1. Updating Local CPU Statistics

We have mentioned that the update_process_times( ) function is invokedeither by the global
timer interrupt handler on uniprocessor systems or by the local timer interrupt handler in
multiprocessor systemsto update some kernel statistics. This function performs the following
steps:

1. Checks how long the current process has been running. Depending on whether the
current process was running in User Mode or in Kernel Mode when the timer interrupt
occurred, invokes either account_user_time( ) or account_system_time( ). Each of
these functions performs essentially the following steps:

a. Updates either the utime field (ticks spent in User Mode) or the stime field (ticks
spent in Kernel Mode) of the current process descriptor. Two additional fields
called cutime and cstime are provided in the process descriptor to count the
number of CPU ticks spent by the process children in User Mode and Kernel
Mode, respectively. For reasons of efficiency, these fields are not updated by 
update_process_times( ), but rather when the parent process queries the state
of one of its children (see the section "Destroying Processes" in Chapter 3).

b. Checks whether the total CPU time limit has been reached; if so, sends SIGXCPU
and SIGKILL signals to current. The section "Process Resource Limits" in Chapter
3 describes how the limit is controlled by the signal->rlim[RLIMIT_CPU].rlim_cur
field of each process descriptor.

c. Invokes account_it_virt( ) and account_it_prof( ) to check the process timers
(see the section "The setitimer( ) and alarm( ) System Calls" later in this
chapter).

d. Updates some kernel statistics stored in the kstat per-CPU variable.

2. Invokes raise_softirq( ) to activate the TIMER_SOFTIRQ tasklet on the local CPU (see
the section "Software Timers and Delay Functions" later in this chapter).

3. If some old version of an RCU-protected data structure has to be reclaimed, checks
whether the local CPU has gone through a quiescent state and invokes 
tasklet_schedule( ) to activate the rcu_tasklet tasklet of the local CPU (see the
section "Read-Copy Update (RCU)" in Chapter 5).

4. Invokes the scheduler_tick( ) function, which decreases the time slice counter of the
current process, and checks whether its quantum is exhausted. We'll discuss in depth
these operations in the section "The scheduler_tick( ) Function" in Chapter 7.

6.4.2. Keeping Track of System Load
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Every Unix kernel keeps track of how much CPU activity is being carried on by the system.
These statistics are used by various administration utilities such as top. A user who enters
the uptime command sees the statistics as the "load average" relative to the last minute, the
last 5 minutes, and the last 15 minutes. On a uniprocessor system, a value of 0 means that
there are no active processes (besides the swapper process 0) to run, while a value of 1
means that the CPU is 100 percent busy with a single process, and values greater than 1
mean that the CPU is shared among several active processes.[*]

[*] Linux includes in the load average all processes that are in the TASK_RUNNING and TASK_UNINTERRUPTIBLE states. How ever, under
normal conditions, there are few  TASK_UNINTERRUPTIBLE processes, so a high load usually means that the CPU is busy.

At every tick, update_times( ) invokes the calc_load( ) function, which counts the number of
processes in the TASK_RUNNING or TASK_UNINTERRUPTIBLE state and uses this number to update
the average system load.

6.4.3. Profiling the Kernel Code

Linux includes a minimalist code profiler called readprofile used by Linux developers to discover
where the kernel spends its time in Kernel Mode. The profiler identifies the hot spots of the
kernel the most frequently executed fragments of kernel code. Identifying the kernel hot spots
is very important, because they may point out kernel functions that should be further
optimized.

The profiler is based on a simple Monte Carlo algorithm: at every timer interrupt occurrence,
the kernel determines whether the interrupt occurred in Kernel Mode; if so, the kernel fetches
the value of the eip register before the interruption from the stack and uses it to discover
what the kernel was doing before the interrupt. In the long run, the samples accumulate on
the hot spots.

The profile_tick( ) function collects the data for the code profiler. It is invoked either by
the do_timer_interrupt( ) function in uniprocessor systems (by the global timer interrupt
handler) or by the smp_local_timer_interrupt( ) function in multiprocessor systems (by the
local timer interrupt handler).

To enable the code profiler, the Linux kernel must be booted by passing as a parameter the
string profile=N, where 2N denotes the size of the code fragments to be profiled. The
collected data can be read from the /proc/profile file. The counters are reset by writing in the
same file; in multiprocessor systems, writing into the file can also change the sample
frequency (see the earlier section "Timekeeping Architecture in Multiprocessor Systems").
However, kernel developers do not usually access /proc/profile directly; instead, they use
the readprofile system command.

The Linux 2.6 kernel includes yet another profiler called oprofile. Besides being more flexible
and customizable than readprofile, oprofile can be used to discover hot spots in kernel code,
User Mode applications, and system libraries. When oprofile is being used, profile_tick( )
invokes the timer_notify( ) function to collect the data used by this new profiler.

6.4.4. Checking the NMI Watchdogs

In multiprocessor systems, Linux offers yet another feature to kernel developers: a watchdog
system , which might be quite useful to detect kernel bugs that cause a system freeze. To
activate such a watchdog, the kernel must be booted with the nmi_watchdog parameter.

The watchdog is based on a clever hardware feature of local and I/O APICs: they can
generate periodic NMI interrupts on every CPU. Because NMI interrupts are not masked by
the cli assembly language instruction, the watchdog can detect deadlocks even when
interrupts are disabled.

As a consequence, once every tick, all CPUs, regardless of what they are doing, start
executing the NMI interrupt handler; in turn, the handler invokes do_nmi( ). This function gets
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the logical number n of the CPU, and then checks the apic_timer_irqs field of the nth entry of
irq_stat (see Table 4-8 in Chapter 4). If the CPU is working properly, the value must be
different from the value read at the previous NMI interrupt. When the CPU is running properly,
the nth entry of the apic_timer_irqs field is increased by the local timer interrupt handler (see
the earlier section "The local timer interrupt handler"); if the counter is not increased, the
local timer interrupt handler has not been executed in a whole tick. Not a good thing, you
know.

When the NMI interrupt handler detects a CPU freeze, it rings all the bells: it logs scary
messages in the system logfiles, dumps the contents of the CPU registers and of the kernel
stack (kernel oops), and finally kills the current process. This gives kernel developers a chance
to discover what's gone wrong.
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6.5. Software Timers and Delay Functions
A timer is a software facility that allows functions to be invoked at some future moment, after
a given time interval has elapsed; a time-out denotes a moment at which the time interval
associated with a timer has elapsed.

Timers are widely used both by the kernel and by processes. Most device drivers use timers to
detect anomalous conditions floppy disk drivers, for instance, use timers to switch off the
device motor after the floppy has not been accessed for a while, and parallel printer drivers
use them to detect erroneous printer conditions.

Timers are also used quite often by programmers to force the execution of specific functions
at some future time (see the later section "The setitimer( ) and alarm( ) System Calls").

Implementing a timer is relatively easy. Each timer contains a field that indicates how far in
the future the timer should expire. This field is initially calculated by adding the right number
of ticks to the current value of jiffies. The field does not change. Every time the kernel
checks a timer, it compares the expiration field to the value of jiffies at the current moment,
and the timer expires when jiffies is greater than or equal to the stored value.

Linux considers two types of timers called dynamic timers and interval timers . The first type
is used by the kernel, while interval timers may be created by processes in User Mode.

One word of caution about Linux timers: since checking for timer functions is always done by
deferrable functions that may be executed a long time after they have been activated, the
kernel cannot ensure that timer functions will start right at their expiration times. It can only
ensure that they are executed either at the proper time or after with a delay of up to a few
hundreds of milliseconds. For this reason, timers are not appropriate for real-time applications
in which expiration times must be strictly enforced.

Besides software timers , the kernel also makes use of delay functions , which execute a tight
instruction loop until a given time interval elapses. We will discuss them in the later section "
Delay Functions."

6.5.1. Dynamic Timers

Dynamic timers may be dynamically created and destroyed. No limit is placed on the number
of currently active dynamic timers.

A dynamic timer is stored in the following timer_list structure:

    struct timer_list {

        struct list_head entry;

        unsigned long expires;

        spinlock_t lock;

        unsigned long magic;

        void (*function)(unsigned long);

        unsigned long data;

        tvec_base_t *base;

    };

The function field contains the address of the function to be executed when the timer
expires. The data field specifies a parameter to be passed to this timer function. Thanks to
the data field, it is possible to define a single general-purpose function that handles the
time-outs of several device drivers; the data field could store the device ID or other
meaningful data that could be used by the function to differentiate the device.
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The expires field specifies when the timer expires; the time is expressed as the number of
ticks that have elapsed since the system started up. All timers that have an expires value
smaller than or equal to the value of jiffies are considered to be expired or decayed.

The entry field is used to insert the software timer into one of the doubly linked circular lists
that group together the timers according to the value of their expires field. The algorithm that
uses these lists is described later in this chapter.

To create and activate a dynamic timer, the kernel must:

1. Create, if necessary, a new timer_list object for example, t. This can be done in
several ways by:

o Defining a static global variable in the code.

o Defining a local variable inside a function; in this case, the object is stored on
the Kernel Mode stack.

o Including the object in a dynamically allocated descriptor.

2. Initialize the object by invoking the init_timer(&t) function. This essentially sets the
t.base pointer field to NULL and sets the t.lock spin lock to "open."

3. Load the function field with the address of the function to be activated when the
timer decays. If required, load the data field with a parameter value to be passed to
the function.

4. If the dynamic timer is not already inserted in a list, assign a proper value to the 
expires field and invoke the add_timer(&t) function to insert the t element in the
proper list.

5. Otherwise, if the dynamic timer is already inserted in a list, update the expires field by
invoking the mod_timer( ) function, which also takes care of moving the object into the
proper list (discussed next).

Once the timer has decayed, the kernel automatically removes the t element from its list.
Sometimes, however, a process should explicitly remove a timer from its list using the 
del_timer( ), del_timer_sync( ), or del_singleshot_timer_sync( ) functions. Indeed, a
sleeping process may be woken up before the time-out is over; in this case, the process may
choose to destroy the timer. Invoking del_timer( ) on a timer already removed from a list
does no harm, so removing the timer within the timer function is considered a good practice.

In Linux 2.6, a dynamic timer is bound to the CPU that activated itthat is, the timer function
will always run on the same CPU that first executed the add_timer( ) or later the mod_timer( )
function. The del_timer( ) and companion functions, however, can deactivate every dynamic
timer, even if it is not bound to the local CPU.

6.5.1.1. Dynamic timers and race conditions

Being asynchronously activated, dynamic timers are prone to race conditions. For instance,
consider a dynamic timer whose function acts on a discardable resource (e.g., a kernel module
or a file data structure). Releasing the resource without stopping the timer may lead to data
corruption if the timer function got activated when the resource no longer exists. Thus, a rule
of thumb is to stop the timer before releasing the resource:

    ...

    del_timer(&t);

    X_Release_Resources( );

    ...
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In multiprocessor systems, however, this code is not safe because the timer function might
already be running on another CPU when del_timer( ) is invoked. As a result, resources may
be released while the timer function is still acting on them. To avoid this kind of race
condition, the kernel offers the del_timer_sync( ) function. It removes the timer from the list,
and then it checks whether the timer function is executed on another CPU; in such a case, 
del_timer_sync( ) waits until the timer function terminates.

The del_timer_sync( ) function is rather complex and slow, because it has to carefully take
into consideration the case in which the timer function reactivates itself. If the kernel
developer knows that the timer function never reactivates the timer, she can use the simpler
and faster del_singleshot_timer_sync( ) function to deactivate a timer and wait until the
timer function terminates.

Other types of race conditions exist, of course. For instance, the right way to modify the 
expires field of an already activated timer consists of using mod_timer( ), rather than deleting
the timer and re-creating it thereafter. In the latter approach, two kernel control paths that
want to modify the expires field of the same timer may mix each other up badly. The
implementation of the timer functions is made SMP-safe by means of the lock spin lock
included in every timer_list object: every time the kernel must access a dynamic timer, it
disables the interrupts and acquires this spin lock.

6.5.1.2. Data structures for dynamic timers

Choosing the proper data structure to implement dynamic timers is not easy. Stringing
together all timers in a single list would degrade system performance, because scanning a long
list of timers at every tick is costly. On the other hand, maintaining a sorted list would not be
much more efficient, because the insertion and deletion operations would also be costly.

The adopted solution is based on a clever data structure that partitions the expires values
into blocks of ticks and allows dynamic timers to percolate efficiently from lists with larger 
expires values to lists with smaller ones. Moreover, in multiprocessor systems the set of
active dynamic timers is split among the various CPUs.

The main data structure for dynamic timers is a per-CPU variable (see the section "Per-CPU
Variables" in Chapter 5) named tvec_bases: it includes NR_CPUS elements, one for each CPU in
the system. Each element is a tvec_base_t structure, which includes all data needed to handle
the dynamic timers bound to the corresponding CPU:

    typedef struct tvec_t_base_s {

        spinlock_t lock;

        unsigned long timer_jiffies;

        struct timer_list *running_timer;

        tvec_root_t tv1;

        tvec_t tv2;

        tvec_t tv3;

        tvec_t tv4;

        tvec_t tv5;

    } tvec_base_t;

The tv1 field is a structure of type tvec_root_t, which includes a vec array of 256 list_head
elements that is, lists of dynamic timers. It contains all dynamic timers, if any, that will decay
within the next 255 ticks.

The tv2, tv3, and tv4 fields are structures of type tvec_t consisting of a vec array of 64
list_head elements. These lists contain all dynamic timers that will decay within the next 214

-1, 220-1, and 226-1 ticks, respectively.

The tv5 field is identical to the previous ones, except that the last entry of the vec array is a
list that includes dynamic timers with extremely large expires fields. It never needs to be
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replenished from another array. Figure 6-1 illustrates in a schematic way the five groups of
lists.

The timer_jiffies field represents the earliest expiration time of the dynamic timers yet to be
checked: if it coincides with the value of jiffies, no backlog of deferrable functions has
accumulated; if it is smaller than jiffies, then lists of dynamic timers that refer to previous
ticks must be dealt with. The field is set to jiffies at system startup and is increased only by
the run_timer_softirq( ) function described in the next section. Notice that the
timer_jiffies field might drop a long way behind jiffies when the deferrable functions that
handle dynamic timers are not executed for a long timefor instance because these functions
have been disabled or because a large number of interrupt handlers have been executed.

Figure 6-1. The groups of lists associated with dynamic timers

In multiprocessor systems, the running_timer field points to the timer_list structure of the
dynamic timer that is currently handled by the local CPU.

6.5.1.3. Dynamic timer handling

Despite the clever data structures, handling software timers is a time-consuming activity that
should not be performed by the timer interrupt handler. In Linux 2.6 this activity is carried on
by a deferrable function, namely the TIMER_SOFTIRQ softirq.

The run_timer_softirq( ) function is the deferrable function associated with the
TIMER_SOFTIRQ softirq. It essentially performs the following actions:

1. Stores in the base local variable the address of the tvec_base_t data structure
associated with the local CPU.

2. Acquires the base->lock spin lock and disables local interrupts.

3. Starts a while loop, which ends when base->timer_jiffies becomes greater than the
value of jiffies. In every single execution of the cycle, performs the following
substeps:

a. Computes the index of the list in base->tv1 that holds the next timers to be
handled:
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b.
c.     index = base->timer_jiffies & 255;

d. If index is zero, all lists in base->tv1 have been checked, so they are empty:
the function therefore percolates the dynamic timers by invoking cascade( ):

e.
f.     if (!index &&

g.       (!cascade(base, &base->tv2, (base->timer_jiffies>> 8)&63))

&&

h.       (!cascade(base, &base->tv3, (base->timer_jiffies>>14)&63))

&&

i.       (!cascade(base, &base->tv4, (base->timer_jiffies>>20)&63)))

j.         cascade(base, &base->tv5, (base->timer_jiffies>>26)&63);

Consider the first invocation of the cascade( ) function: it receives as
arguments the address in base, the address of base->tv2, and the index of the
list in base->tv2 including the timers that will decay in the next 256 ticks. This
index is determined by looking at the proper bits of the base->timer_jiffies
value. cascade( ) moves all dynamic timers in the base->tv2 list into the proper
lists of base->tv1; then, it returns a positive value, unless all base->tv2 lists are
now empty. If so, cascade( ) is invoked once more to replenish base->tv2 with
the timers included in a list of base->tv3, and so on.

k. Increases by one base->timer_jiffies.

l. For each dynamic timer in the base->tv1.vec[index] list, executes the
corresponding timer function. In particular, for each timer_list element t in the
list essentially performs the following steps:

1. Removes t from the base->tv1's list.

2. In multiprocessor systems, sets base->running_timer to &t.

3. Sets t.base to NULL.

4. Releases the base->lock spin lock, and enables local interrupts.

5. Executes the timer function t.function passing as argument t.data.

6. Acquires the base->lock spin lock, and disables local interrupts.

7. Continues with the next timer in the list, if any.

m. All timers in the list have been handled. Continues with the next iteration of the
outermost while cycle.

4. The outermost while cycle is terminated, which means that all decayed timers have
been handled. In multiprocessor systems, sets base->running_timer to NULL.

5. Releases the base->lock spin lock and enables local interrupts.

Because the values of jiffies and timer_jiffies usually coincide, the outermost while cycle
is often executed only once. In general, the outermost loop is executed jiffies -
base->timer_jiffies + 1 consecutive times. Moreover, if a timer interrupt occurs while
run_timer_softirq( ) is being executed, dynamic timers that decay at this tick occurrence are
also considered, because the jiffies variable is asynchronously increased by the global timer
interrupt handler (see the earlier section "The timer interrupt handler").

Notice that run_timer_softirq( ) disables interrupts and acquires the base->lock spin lock just
before entering the outermost loop; interrupts are enabled and the spin lock is released right
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before invoking each dynamic timer function, until its termination. This ensures that the
dynamic timer data structures are not corrupted by interleaved kernel control paths.

To sum up, this rather complex algorithm ensures excellent performance. To see why, assume
for the sake of simplicity that the TIMER_SOFTIRQ softirq is executed right after the
corresponding timer interrupt occurs. Then, in 255 timer interrupt occurrences out of 256 (in
99.6% of the cases), the run_timer_softirq( ) function just runs the functions of the
decayed timers, if any. To replenish base->tv1.vec periodically, it is sufficient 63 times out of
64 to partition one list of base->tv2 into the 256 lists of base->tv1. The base->tv2.vec array, in
turn, must be replenished in 0.006 percent of the cases (that is, once every 16.4 seconds).
Similarly, base->tv3.vec is replenished every 17 minutes and 28 seconds, and base->tv4.vec is
replenished every 18 hours and 38 minutes. base->tv5.vec doesn't need to be replenished.

6.5.2. An Application of Dynamic Timers: the nanosleep( ) System
Call

To show how the outcomes of all the previous activities are actually used in the kernel, we'll
show an example of the creation and use of a process time-out.

Let's consider the service routine of the nanosleep() system call, that is, sys_nanosleep(),
which receives as its parameter a pointer to a timespec structure and suspends the invoking
process until the specified time interval elapses. The service routine first invokes 
copy_from_user() to copy the values contained in the User Mode timespec structure into the
local variable t. Assuming that the timespec structure defines a non-null delay, the function
then executes the following code:

    current->state = TASK_INTERRUPTIBLE;

    remaining = schedule_timeout(timespec_to_jiffies(&t)+1);

The timespec_to_jiffies( ) function converts in ticks the time interval stored in the timespec
structure. To be on the safe side, sys_nanosleep( ) adds one tick to the value computed by
timespec_to_jiffies( ).

The kernel implements process time-outs by using dynamic timers. They appear in the
schedule_timeout( ) function, which essentially executes the following statements:

    struct timer_list timer;

    unsigned long expire = timeout + jiffies;

    init_timer(&timer);

    timer.expires = expire;

    timer.data = (unsigned long) current;

    timer.function = process_timeout;

    add_timer(&timer);

    schedule( );     /* process suspended until timer expires */

    del_singleshot_timer_sync(&timer);

    timeout = expire - jiffies;

    return (timeout < 0 ? 0 : timeout);

When schedule( ) is invoked, another process is selected for execution; when the former
process resumes its execution, the function removes the dynamic timer. In the last
statement, the function either returns 0, if the time-out is expired, or the number of ticks left
to the time-out expiration if the process was awakened for some other reason.

When the time-out expires, the timer's function is executed:

    void process_timeout(unsigned long __data)

    {
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        wake_up_process((task_t *)__data);

    }

The process_timeout( ) receives as its parameter the process descriptor pointer stored in the
data field of the timer object. As a result, the suspended process is awakened.

Once awakened, the process continues the execution of the sys_nanosleep( ) system call. If
the value returned by schedule_timeout( ) specifies that the process time-out is expired
(value zero), the system call terminates. Otherwise, the system call is automatically
restarted, as explained in the section "Reexecution of System Calls" in Chapter 11.

6.5.3. Delay Functions

Software timers are useless when the kernel must wait for a short time intervallet's say, less
than a few milliseconds. For instance, often a device driver has to wait for a predefined
number of microseconds until the hardware completes some operation. Because a dynamic
timer has a significant setup overhead and a rather large minimum wait time (1 millisecond),
the device driver cannot conveniently use it.

In these cases, the kernel makes use of the udelay( ) and ndelay( ) functions: the former
receives as its parameter a time interval in microseconds and returns after the specified delay
has elapsed; the latter is similar, but the argument specifies the delay in nanoseconds.

Essentially, the two functions are defined as follows:

void udelay(unsigned long usecs)

    {

        unsigned long loops;

        loops = (usecs*HZ*current_cpu_data.loops_per_jiffy)/1000000;

        cur_timer->delay(loops);

    }

    void ndelay(unsigned long nsecs)

    {

        unsigned long loops;

        loops = (nsecs*HZ*current_cpu_data.loops_per_jiffy)/1000000000;

        cur_timer->delay(loops);

    }

Both functions rely on the delay method of the cur_timer timer object (see the earlier section
"Data Structures of the Timekeeping Architecture"), which receives as its parameter a time
interval in "loops." The exact duration of one "loop," however, depends on the timer object
referred by cur_timer (see Table 6-2 earlier in this chapter):

 If cur_timer points to the timer_hpet, timer_pmtmr, and timer_tsc objects, one "loop"
corresponds to one CPU cyclethat is, the time interval between two consecutive CPU
clock signals (see the earlier section "Time Stamp Counter (TSC)").

 If cur_timer points to the timer_none or timer_pit objects, one "loop" corresponds to
the time duration of a single iteration of a tight instruction loop.

During the initialization phase, after cur_timer has been set up by select_timer( ), the kernel
executes the calibrate_delay( ) function, which determines how many "loops" fit in a tick.
This value is then saved in the current_cpu_data.loops_per_jiffy variable, so that it can be
used by udelay( ) and ndelay( ) to convert microseconds and nanoseconds, respectively, to
"loops."

Of course, the cur_timer->delay( ) method makes use of the HPET or TSC hardware circuitry,
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if available, to get an accurate measurement of time. Otherwise, if no HPET or TSC is
available, the method executes loops iterations of a tight instruction loop.
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6.6. System Calls Related to Timing Measurements
Several system calls allow User Mode processes to read and modify the time and date and to
create timers. Let's briefly review these and discuss how the kernel handles them.

6.6.1. The time( ) and gettimeofday( ) System Calls

Processes in User Mode can get the current time and date by means of several system calls:

time( )

Returns the number of elapsed seconds since midnight at the start of January 1, 1970
(UTC).

gettimeofday( )

Returns, in a data structure named timeval, the number of elapsed seconds since
midnight of January 1, 1970 (UTC) and the number of elapsed microseconds in the last
second (a second data structure named timezone is not currently used).

The time( ) system call is superseded by gettimeofday( ), but it is still included in Linux for
backward compatibility. Another widely used function, ftime( ), which is no longer
implemented as a system call, returns the number of elapsed seconds since midnight of
January 1, 1970 (UTC) and the number of elapsed milliseconds in the last second.

The gettimeofday( ) system call is implemented by the sys_gettimeofday( ) function. To
compute the current date and time of the day, this function invokes do_gettimeofday( ),
which executes the following actions:

1. Acquires the xtime_lock seqlock for reading.

2. Determines the number of microseconds elapsed since the last timer interrupt by
invoking the get_offset method of the cur_timer timer object:

3.
4.     usec = cur_timer->getoffset( );

As explained in the earlier section "Data Structures of the Timekeeping Architecture,"
there are four possible cases:

a. If cur_timer points to the timer_hpet object, the method compares the current
value of the HPET counter with the value of the same counter saved in the last
execution of the timer interrupt handler.

b. If cur_timer points to the timer_pmtmr object, the method compares the current
value of the ACPI PMT counter with the value of the same counter saved in the
last execution of the timer interrupt handler.

c. If cur_timer points to the timer_tsc object, the method compares the current
value of the Time Stamp Counter with the value of the TSC saved in the last
execution of the timer interrupt handler.

d. If cur_timer points to the timer_pit object, the method reads the current value
of the PIT counter to compute the number of microseconds elapsed since the
last PIT's timer interrupt.
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5. If some timer interrupt has been lost (see the section "Updating the Time and Date"
earlier in this chapter), the function adds to usec the corresponding delay:

6.
7.     usec += (jiffies - wall_jiffies) * 1000;

8. Adds to usec the microseconds elapsed in the last second:
9.
10.     usec += (xtime.tv_nsec / 1000);

11. Copies the contents of xtime into the user-space buffer specified by the system call
parameter tv, adding to the microseconds field the value of usec:

12.
13.     tv->tv_sec = xtime->tv_sec;

14.     tv->tv_usec = xtime->tv_usec + usec;

15. Invokes read_seqretry( ) on the xtime_lock seqlock, and jumps back to step 1 if
another kernel control path has concurrently acquired xtime_lock for writing.

16. Checks for an overflow in the microseconds field, adjusting both that field and the
second field if necessary:

17.
18.     while (tv->tv_usec >= 1000000) {

19.         tv->tv_usec -= 1000000;

20.         tv->tv_sec++;

21.     }

Processes in User Mode with root privilege may modify the current date and time by using
either the obsolete stime( ) or the settimeofday( ) system call. The sys_settimeofday( )
function invokes do_settimeofday( ), which executes operations complementary to those of
do_gettimeofday( ).

Notice that both system calls modify the value of xtime while leaving the RTC registers
unchanged. Therefore, the new time is lost when the system shuts down, unless the user
executes the clock program to change the RTC value.

6.6.2. The adjtimex( ) System Call

Although clock drift ensures that all systems eventually move away from the correct time,
changing the time abruptly is both an administrative nuisance and risky behavior. Imagine, for
instance, programmers trying to build a large program and depending on file timestamps to
make sure that out-of-date object files are recompiled. A large change in the system's time
could confuse the make program and lead to an incorrect build. Keeping the clocks tuned is
also important when implementing a distributed filesystem on a network of computers. In this
case, it is wise to adjust the clocks of the interconnected PCs, so that the timestamp values
associated with the inodes of the accessed files are coherent. Thus, systems are often
configured to run a time synchronization protocol such as Network Time Protocol (NTP) on a
regular basis to change the time gradually at each tick. This utility depends on the adjtimex(
) system call in Linux.

This system call is present in several Unix variants, although it should not be used in programs
intended to be portable. It receives as its parameter a pointer to a timex structure, updates
kernel parameters from the values in the timex fields, and returns the same structure with
current kernel values. Such kernel values are used by update_wall_time_one_tick( ) to slightly
adjust the number of microseconds added to xtime.tv_usec at each tick.

6.6.3. The setitimer( ) and alarm( ) System Calls
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Linux allows User Mode processes to activate special timers called interval timers .[*] The
timers cause Unix signals (see Chapter 11) to be sent periodically to the process. It is also
possible to activate an interval timer so that it sends just one signal after a specified delay.
Each interval timer is therefore characterized by:

[*] These softw are constructs have nothing in common w ith the Programmable Interval Timer chip described earlier in this chapter.

 The frequency at which the signals must be emitted, or a null value if just one signal
has to be generated

 The time remaining until the next signal is to be generated

The earlier warning about accuracy applies to these timers. They are guaranteed to execute
after the requested time has elapsed, but it is impossible to predict exactly when they will be
delivered.

Interval timers are activated by means of the POSIX setitimer( ) system call. The first
parameter specifies which of the following policies should be adopted:

ITIMER_REAL

The actual elapsed time; the process receives SIGALRM signals.

ITIMER_VIRTUAL

The time spent by the process in User Mode; the process receives SIGVTALRM signals.

ITIMER_PROF

The time spent by the process both in User and in Kernel Mode; the process receives 
SIGPROF signals.

The interval timers can be either single-shot or periodic. The second parameter of setitimer(
) points to a structure of type itimerval that specifies the initial duration of the timer (in
seconds and nanoseconds) and the duration to be used when the timer is automatically
reactivated (or zero for single-shot timers).The third parameter of setitimer( ) is an optional
pointer to an itimerval structure that is filled by the system call with the previous timer
parameters.

To implement an interval timer for each of the preceding policies, the process descriptor
includes three pairs of fields:

 it_real_incr and it_real_value

 it_virt_incr and it_virt_value

 it_prof_incr and it_prof_value

The first field of each pair stores the interval in ticks between two signals; the other field
stores the current value of the timer.

The ITIMER_REAL interval timer is implemented by using dynamic timers because the kernel
must send signals to the process even when it is not running on the CPU. Therefore, each
process descriptor includes a dynamic timer object called real_timer. The setitimer( ) system
call initializes the real_timer fields and then invokes add_timer( ) to insert the dynamic timer
in the proper list. When the timer expires, the kernel executes the it_real_fn( ) timer
function. In turn, the it_real_fn( ) function sends a SIGALRM signal to the process; then, if
it_real_incr is not null, it sets the expires field again, reactivating the timer.
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The ITIMER_VIRTUAL and ITIMER_PROF interval timers do not require dynamic timers, because
they can be updated while the process is running. The account_it_virt( ) and
account_it_prof( ) functions are invoked by update_ process_times( ), which is called either
by the PIT's timer interrupt handler (UP) or by the local timer interrupt handlers (SMP).
Therefore, the two interval timers are updated once every tick, and if they are expired, the
proper signal is sent to the current process.

The alarm( ) system call sends a SIGALRM signal to the calling process when a specified time
interval has elapsed. It is very similar to setitimer( ) when invoked with the ITIMER_REAL
parameter, because it uses the real_timer dynamic timer included in the process descriptor.
Therefore, alarm( ) and setitimer( ) with parameter ITIMER_REAL cannot be used at the same
time.

6.6.4. System Calls for POSIX Timers

The POSIX 1003.1b standard introduced a new type of software timers for User Mode
programsin particular, for multithreaded and real-time applications. These timers are often
referred to as POSIX timers .

Every implementation of the POSIX timers must offer to the User Mode programs a few POSIX
clocks , that is, virtual time sources having predefined resolutions and properties. Whenever
an application wants to make use of a POSIX timer, it creates a new timer resource specifying
one of the existing POSIX clocks as the timing base. The system calls that allow users to
handle POSIX clocks and timers are listed in Table 6-3.

Table 6-3. System calls for POSIX timers and clocks

System call Description

clock_gettime() Gets the current value of a POSIX clock

clock_settime( ) Sets the current value of a POSIX clock

clock_getres( ) Gets the resolution of a POSIX clock

timer_create( ) Creates a new POSIX timer based on a specified POSIX clock

timer_gettime( ) Gets the current value and increment of a POSIX timer

timer_settime( ) Sets the current value and increment of a POSIX timer

timer_getoverrun( ) Gets the number of overruns of a decayed POSIX timer

timer_delete( ) Destroys a POSIX timer

clock_nanosleep() Puts the process to sleep using a POSIX clock as time source

The Linux 2.6 kernel offers two types of POSIX clocks:

CLOCK_REALTIME

This virtual clock represents the real-time clock of the systemessentially the value of
the xtime variable (see the earlier section "Updating the Time and Date"). The
resolution returned by the clock_getres( ) system call is 999,848 nanoseconds, which
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corresponds to roughly 1000 updates of xtime in a second.

CLOCK_MONOTONIC

This virtual clock represents the real-time clock of the system purged of every time
warp due to the synchronization with an external time source. Essentially, this virtual
clock is represented by the sum of the two variables xtime and wall_to_monotonic (see
the earlier section "Timekeeping Architecture in Uniprocessor Systems"). The resolution
of this POSIX clock, returned by clock_getres( ), is 999,848 nanoseconds.

The Linux kernel implements the POSIX timers by means of dynamic timers. Thus, they are
similar to the traditional ITIMER_REAL interval timers we described in the previous section.
POSIX timers, however, are much more flexible and reliable than traditional interval timers. A
couple of significant differences between them are:

 When a traditional interval timer decays, the kernel always sends a SIGALRM signal to
the process that activated the timer. Instead, when a POSIX timer decays, the kernel
can send every kind of signal, either to the whole multithreaded application or to a
single specified thread. The kernel can also force the execution of a notifier function in
a thread of the application, or it can even do nothing (it is up to a User Mode library to
handle the event).

 If a traditional interval timer decays many times but the User Mode process cannot
receive the SIGALRM signal (for instance because the signal is blocked or the process is
not running), only the first signal is received: all other occurrences of SIGALRM are lost.
The same holds for POSIX timers, but the process can invoke the timer_getoverrun( )
system call to get the number of times the timer decayed since the generation of the
first signal.
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Chapter 7. Process Scheduling
Like every time sharing system, Linux achieves the magical effect of an apparent simultaneous
execution of multiple processes by switching from one process to another in a very short time
frame. Process switching itself was discussed in Chapter 3; this chapter deals with scheduling
, which is concerned with when to switch and which process to choose.

The chapter consists of three parts. The section "Scheduling Policy" introduces the choices
made by Linux in the abstract to schedule processes. The section "The Scheduling Algorithm"
discusses the data structures used to implement scheduling and the corresponding algorithm.
Finally, the section "System Calls Related to Scheduling" describes the system calls that
affect process scheduling.

To simplify the description, we refer as usual to the 80 x 86 architecture; in particular, we
assume that the system uses the Uniform Memory Access model, and that the system tick is
set to 1 ms.
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7.1. Scheduling Policy
The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting
objectives: fast process response time, good throughput for background jobs, avoidance of
process starvation, reconciliation of the needs of low- and high-priority processes, and so on.
The set of rules used to determine when and how to select a new process to run is called 
scheduling policy .

Linux scheduling is based on the time sharing technique: several processes run in "time
multiplexing" because the CPU time is divided into slices, one for each runnable process.[*] Of
course, a single processor can run only one process at any given instant. If a currently
running process is not terminated when its time slice or quantum expires, a process switch
may take place. Time sharing relies on timer interrupts and is thus transparent to processes.
No additional code needs to be inserted in the programs to ensure CPU time sharing.

[*] Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run on a CPU.

The scheduling policy is also based on ranking processes according to their priority.
Complicated algorithms are sometimes used to derive the current priority of a process, but the
end result is the same: each process is associated with a value that tells the scheduler how
appropriate it is to let the process run on a CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing
and adjusts their priorities periodically; in this way, processes that have been denied the use
of a CPU for a long time interval are boosted by dynamically increasing their priority.
Correspondingly, processes running for a long time are penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as I/O-bound or
CPU-bound. The former make heavy use of I/O devices and spend much time waiting for I/O
operations to complete; the latter carry on number-crunching applications that require a lot of
CPU time.

An alternative classification distinguishes three classes of processes:

Interactive processes

These interact constantly with their users, and therefore spend a lot of time waiting
for keypresses and mouse operations. When input is received, the process must be
woken up quickly, or the user will find the system to be unresponsive. Typically, the
average delay must fall between 50 and 150 milliseconds. The variance of such delay
must also be bounded, or the user will find the system to be erratic. Typical interactive
programs are command shells, text editors, and graphical applications.

Batch processes

These do not need user interaction, and hence they often run in the background.
Because such processes do not need to be very responsive, they are often penalized
by the scheduler. Typical batch programs are programming language compilers,
database search engines, and scientific computations.

Real-time processes

These have very stringent scheduling requirements. Such processes should never be
blocked by lower-priority processes and should have a short guaranteed response time
with a minimum variance. Typical real-time programs are video and sound applications,
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robot controllers, and programs that collect data from physical sensors.

The two classifications we just offered are somewhat independent. For instance, a batch
process can be either I/O-bound (e.g., a database server) or CPU-bound (e.g., an
image-rendering program). While real-time programs are explicitly recognized as such by the
scheduling algorithm in Linux, there is no easy way to distinguish between interactive and
batch programs. The Linux 2.6 scheduler implements a sophisticated heuristic algorithm based
on the past behavior of the processes to decide whether a given process should be
considered as interactive or batch. Of course, the scheduler tends to favor interactive
processes over batch ones.

Programmers may change the scheduling priorities by means of the system calls illustrated in 
Table 7-1. More details are given in the section "System Calls Related to Scheduling."

Table 7-1. System calls related to scheduling

System call Description

nice( ) Change the static priority of a conventional process

getpriority( ) Get the maximum static priority of a group of conventional
processes

setpriority( ) Set the static priority of a group of conventional processes

sched_getscheduler( ) Get the scheduling policy of a process

sched_setscheduler( ) Set the scheduling policy and the real-time priority of a
process

sched_getparam( ) Get the real-time priority of a process

sched_setparam( ) Set the real-time priority of a process

sched_yield( ) Relinquish the processor voluntarily without blocking

sched_get_ priority_min( ) Get the minimum real-time priority value for a policy

sched_get_ priority_max( ) Get the maximum real-time priority value for a policy

sched_rr_get_interval( ) Get the time quantum value for the Round Robin policy

sched_setaffinity( ) Set the CPU affinity mask of a process

sched_getaffinity( ) Get the CPU affinity mask of a process

7.1.1. Process Preemption

As mentioned in the first chapter, Linux processes are preemptable. When a process enters
the TASK_RUNNING state, the kernel checks whether its dynamic priority is greater than the
priority of the currently running process. If it is, the execution of current is interrupted and
the scheduler is invoked to select another process to run (usually the process that just
became runnable). Of course, a process also may be preempted when its time quantum
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expires. When this occurs, the TIF_NEED_RESCHED flag in the thread_info structure of the
current process is set, so the scheduler is invoked when the timer interrupt handler
terminates.

For instance, let's consider a scenario in which only two programsa text editor and a
compilerare being executed. The text editor is an interactive program, so it has a higher
dynamic priority than the compiler. Nevertheless, it is often suspended, because the user
alternates between pauses for think time and data entry; moreover, the average delay
between two keypresses is relatively long. However, as soon as the user presses a key, an
interrupt is raised and the kernel wakes up the text editor process. The kernel also determines
that the dynamic priority of the editor is higher than the priority of current, the currently
running process (the compiler), so it sets the TIF_NEED_RESCHED flag of this process, thus
forcing the scheduler to be activated when the kernel finishes handling the interrupt. The
scheduler selects the editor and performs a process switch; as a result, the execution of the
editor is resumed very quickly and the character typed by the user is echoed to the screen.
When the character has been processed, the text editor process suspends itself waiting for
another keypress and the compiler process can resume its execution.

Be aware that a preempted process is not suspended, because it remains in the TASK_RUNNING
state; it simply no longer uses the CPU. Moreover, remember that the Linux 2.6 kernel is
preemptive, which means that a process can be preempted either when executing in Kernel or
in User Mode; we discussed in depth this feature in the section "Kernel Preemption" in Chapter
5.

7.1.2. How Long Must a Quantum Last?

The quantum duration is critical for system performance: it should be neither too long nor too
short.

If the average quantum duration is too short, the system overhead caused by process
switches becomes excessively high. For instance, suppose that a process switch requires 5
milliseconds; if the quantum is also set to 5 milliseconds, then at least 50 percent of the CPU
cycles will be dedicated to process switching.[*]

[*] Actually, things could be much w orse than this; for example, if the time required for the process sw itch is counted in the
process quantum, all CPU time is devoted to the process sw itch and no process can progress tow ard its termination.

If the average quantum duration is too long, processes no longer appear to be executed
concurrently. For instance, let's suppose that the quantum is set to five seconds; each
runnable process makes progress for about five seconds, but then it stops for a very long time
(typically, five seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of interactive
applications. This is usually false. As described in the section "Process Preemption" earlier in
this chapter, interactive processes have a relatively high priority, so they quickly preempt the
batch processes, no matter how long the quantum duration is.

In some cases, however, a very long quantum duration degrades the responsiveness of the
system. For instance, suppose two users concurrently enter two commands at the respective
shell prompts; one command starts a CPU-bound process, while the other launches an
interactive application. Both shells fork a new process and delegate the execution of the
user's command to it; moreover, suppose such new processes have the same initial priority
(Linux does not know in advance if a program to be executed is batch or interactive). Now if
the scheduler selects the CPU-bound process to run first, the other process could wait for a
whole time quantum before starting its execution. Therefore, if the quantum duration is long,
the system could appear to be unresponsive to the user that launched the interactive
application.

The choice of the average quantum duration is always a compromise. The rule of thumb
adopted by Linux is choose a duration as long as possible, while keeping good system
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response time.
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7.2. The Scheduling Algorithm
The scheduling algorithm used in earlier versions of Linux was quite simple and straightforward:
at every process switch the kernel scanned the list of runnable processes, computed their
priorities, and selected the "best" process to run. The main drawback of that algorithm is that
the time spent in choosing the best process depends on the number of runnable processes;
therefore, the algorithm is too costlythat is, it spends too much timein high-end systems
running thousands of processes.

The scheduling algorithm of Linux 2.6 is much more sophisticated. By design, it scales well
with the number of runnable processes, because it selects the process to run in constant
time, independently of the number of runnable processes. It also scales well with the number
of processors because each CPU has its own queue of runnable processes. Furthermore, the
new algorithm does a better job of distinguishing interactive processes and batch processes.
As a consequence, users of heavily loaded systems feel that interactive applications are much
more responsive in Linux 2.6 than in earlier versions.

The scheduler always succeeds in finding a process to be executed; in fact, there is always
at least one runnable process: the swapper process, which has PID 0 and executes only when
the CPU cannot execute other processes. As mentioned in Chapter 3, every CPU of a
multiprocessor system has its own swapper process with PID equal to 0.

Every Linux process is always scheduled according to one of the following scheduling classes :

SCHED_FIFO

A First-In, First-Out real-time process. When the scheduler assigns the CPU to the
process, it leaves the process descriptor in its current position in the runqueue list. If
no other higher-priority real-time process is runnable, the process continues to use the
CPU as long as it wishes, even if other real-time processes that have the same priority
are runnable.

SCHED_RR

A Round Robin real-time process. When the scheduler assigns the CPU to the process,
it puts the process descriptor at the end of the runqueue list. This policy ensures a fair
assignment of CPU time to all SCHED_RR real-time processes that have the same priority.

SCHED_NORMAL

A conventional, time-shared process.

The scheduling algorithm behaves quite differently depending on whether the process is
conventional or real-time.

7.2.1. Scheduling of Conventional Processes

Every conventional process has its own static priority, which is a value used by the scheduler
to rate the process with respect to the other conventional processes in the system. The
kernel represents the static priority of a conventional process with a number ranging from 100
(highest priority) to 139 (lowest priority); notice that static priority decreases as the values
increase.

A new process always inherits the static priority of its parent. However, a user can change
the static priority of the processes that he owns by passing some "nice values" to the nice( )
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and setpriority( ) system calls (see the section "System Calls Related to Scheduling" later in
this chapter).

7.2.1.1. Base time quantum

The static priority essentially determines the base time quantum of a process, that is, the
time quantum duration assigned to the process when it has exhausted its previous time
quantum. Static priority and base time quantum are related by the following formula:

As you see, the higher the static priority (i.e., the lower its numerical value), the longer the
base time quantum. As a consequence, higher priority processes usually get longer slices of
CPU time with respect to lower priority processes. Table 7-2 shows the static priority, the
base time quantum values, and the corresponding nice values for a conventional process
having highest static priority, default static priority, and lowest static priority. (The table also
lists the values of the interactive delta and of the sleep time threshold, which are explained
later in this chapter.)

Table 7-2. Typical priority values for a conventional process

Description Static
priority

Nice
value

Base time
quantum Interactivedelta Sleep time

threshold

Highest static
priority 100 -20 800 ms -3 299 ms

High static
priority 110 -10 600 ms -1 499 ms

Default static
priority 120 0 100 ms +2 799 ms

Low static
priority 130 +10 50 ms +4 999 ms

Lowest static
priority 139 +19 5 ms +6 1199 ms

7.2.1.2. Dynamic priority and average sleep time

Besides a static priority, a conventional process also has a dynamic priority, which is a value
ranging from 100 (highest priority) to 139 (lowest priority). The dynamic priority is the number
actually looked up by the scheduler when selecting the new process to run. It is related to
the static priority by the following empirical formula:

dynamic priority = max (100, min (  static priority - bonus 

 + 5, 139))   (2)

The bonus is a value ranging from 0 to 10; a value less than 5 represents a penalty that
lowers the dynamic priority, while a value greater than 5 is a premium that raises the dynamic
priority. The value of the bonus, in turn, depends on the past history of the process; more
precisely, it is related to the average sleep time of the process.
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Roughly, the average sleep time is the average number of nanoseconds that the process
spent while sleeping. Be warned, however, that this is not an average operation on the
elapsed time. For instance, sleeping in TASK_INTERRUPTIBLE state contributes to the average
sleep time in a different way from sleeping in TASK_UNINTERRUPTIBLE state. Moreover, the
average sleep time decreases while a process is running. Finally, the average sleep time can
never become larger than 1 second.

The correspondence between average sleep times and bonus values is shown in Table 7-3.
(The table lists also the corresponding granularity of the time slice, which will be discussed
later.)

Table 7-3. Average sleep times, bonus values, and time slice
granularity

Average sleep time Bonus Granularity

Greater than or equal to 0 but smaller than 100 ms 0 5120

Greater than or equal to 100 ms but smaller than 200 ms 1 2560

Greater than or equal to 200 ms but smaller than 300 ms 2 1280

Greater than or equal to 300 ms but smaller than 400 ms 3 640

Greater than or equal to 400 ms but smaller than 500 ms 4 320

Greater than or equal to 500 ms but smaller than 600 ms 5 160

Greater than or equal to 600 ms but smaller than 700 ms 6 80

Greater than or equal to 700 ms but smaller than 800 ms 7 40

Greater than or equal to 800 ms but smaller than 900 ms 8 20

Greater than or equal to 900 ms but smaller than 1000 ms 9 10

1 second 10 10

The average sleep time is also used by the scheduler to determine whether a given process
should be considered interactive or batch. More precisely, a process is considered
"interactive" if it satisfies the following formula:

dynamic priority    3 x   static priority / 4 + 28       (3)

which is equivalent to the following:

bonus - 5    static priority / 4 - 28

The expression static priority / 4 - 28 is called the interactive delta ; some typical values of
this term are listed in Table 7-2. It should be noted that it is far easier for high priority than
for low priority processes to become interactive. For instance, a process having highest static
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priority (100) is considered interactive when its bonus value exceeds 2, that is, when its
average sleep time exceeds 200 ms. Conversely, a process having lowest static priority (139)
is never considered as interactive, because the bonus value is always smaller than the value
11 required to reach an interactive delta equal to 6. A process having default static priority
(120) becomes interactive as soon as its average sleep time exceeds 700 ms.

7.2.1.3. Active and expired processes

Even if conventional processes having higher static priorities get larger slices of the CPU time,
they should not completely lock out the processes having lower static priority. To avoid
process starvation, when a process finishes its time quantum, it can be replaced by a lower
priority process whose time quantum has not yet been exhausted. To implement this
mechanism, the scheduler keeps two disjoint sets of runnable processes:

Active processes

These runnable processes have not yet exhausted their time quantum and are thus
allowed to run.

Expired processes

These runnable processes have exhausted their time quantum and are thus forbidden
to run until all active processes expire.

However, the general schema is slightly more complicated than this, because the scheduler
tries to boost the performance of interactive processes. An active batch process that finishes
its time quantum always becomes expired. An active interactive process that finishes its time
quantum usually remains active: the scheduler refills its time quantum and leaves it in the set
of active processes. However, the scheduler moves an interactive process that finished its
time quantum into the set of expired processes if the eldest expired process has already
waited for a long time, or if an expired process has higher static priority (lower value) than the
interactive process. As a consequence, the set of active processes will eventually become
empty and the expired processes will have a chance to run.

7.2.2. Scheduling of Real-Time Processes

Every real-time process is associated with a real-time priority, which is a value ranging from 1
(highest priority) to 99 (lowest priority). The scheduler always favors a higher priority runnable
process over a lower priority one; in other words, a real-time process inhibits the execution of
every lower-priority process while it remains runnable. Contrary to conventional processes,
real-time processes are always considered active (see the previous section). The user can
change the real-time priority of a process by means of the sched_setparam( ) and
sched_setscheduler( ) system calls (see the section "System Calls Related to Scheduling" later
in this chapter).

If several real-time runnable processes have the same highest priority, the scheduler chooses
the process that occurs first in the corresponding list of the local CPU's runqueue (see the
section "The lists of TASK_RUNNING processes" in Chapter 3).

A real-time process is replaced by another process only when one of the following events
occurs:

 The process is preempted by another process having higher real-time priority.

 The process performs a blocking operation, and it is put to sleep (in state 
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE).

 The process is stopped (in state TASK_STOPPED or TASK_TRACED), or it is killed (in state
EXIT_ZOMBIE or EXIT_DEAD).
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 The process voluntarily relinquishes the CPU by invoking the sched_yield( ) system call
(see the section "System Calls Related to Scheduling" later in this chapter).

 The process is Round Robin real-time (SCHED_RR), and it has exhausted its time
quantum.

The nice( ) and setpriority( ) system calls, when applied to a Round Robin real-time
process, do not change the real-time priority but rather the duration of the base time
quantum. In fact, the duration of the base time quantum of Round Robin real-time processes
does not depend on the real-time priority, but rather on the static priority of the process,
according to the formula (1) in the earlier section "Scheduling of Conventional Processes."
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7.3. Data Structures Used by the Scheduler
Recall from the section "Identifying a Process" in Chapter 3 that the process list links all
process descriptors, while the runqueue lists link the process descriptors of all runnable
processesthat is, of those in a TASK_RUNNING stateexcept the swapper process (idle process).

7.3.1. The runqueue Data Structure

The runqueue data structure is the most important data structure of the Linux 2.6 scheduler.
Each CPU in the system has its own runqueue; all runqueue structures are stored in the
runqueues per-CPU variable (see the section "Per-CPU Variables" in Chapter 5). The this_rq( )
macro yields the address of the runqueue of the local CPU, while the cpu_rq(n) macro yields
the address of the runqueue of the CPU having index n.

Table 7-4 lists the fields included in the runqueue data structure; we will discuss most of them
in the following sections of the chapter.

Table 7-4. The fields of the runqueue structure

Type Name Description

spinlock_t lock Spin lock protecting the lists of processes

unsigned long nr_running Number of runnable processes in the runqueue lists

unsigned long cpu_load CPU load factor based on the average number of
processes in the runqueue

unsigned long nr_switches Number of process switches performed by the CPU

unsigned long nr_uninterruptible

Number of processes that were previously in the
runqueue lists and are now sleeping in 
TASK_UNINTERRUPTIBLE state (only the sum of these
fields across all runqueues is meaningful)

unsigned long expired_timestamp Insertion time of the eldest process in the expired
lists

unsigned long
long

timestamp_last_tick Timestamp value of the last timer interrupt

task_t * curr Process descriptor pointer of the currently running
process (same as current for the local CPU)

task_t * idle Process descriptor pointer of the swapper process
for this CPU

struct mm_struct
*

prev_mm

Used during a process switch to store the address
of the memory descriptor of the process being
replaced

prio_array_t * active Pointer to the lists of active processes
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Table 7-4. The fields of the runqueue structure

Type Name Description

prio_array_t * expired Pointer to the lists of expired processes

prio_array_t [2] arrays The two sets of active and expired processes

int best_expired_prio The best static priority (lowest value) among the
expired processes

atomic_t nr_iowait

Number of processes that were previously in the
runqueue lists and are now waiting for a disk I/O
operation to complete

struct
sched_domain * sd

Points to the base scheduling domain of this CPU
(see the section "Scheduling Domains" later in this
chapter)

int active_balance Flag set if some process shall be migrated from
this runqueue to another (runqueue balancing)

int push_cpu Not used

task_t * migration_thread Process descriptor pointer of the migration kernel
thread

struct list_head migration_queue List of processes to be removed from the runqueue

The most important fields of the runqueue data structure are those related to the lists of
runnable processes. Every runnable process in the system belongs to one, and just one,
runqueue. As long as a runnable process remains in the same runqueue, it can be executed
only by the CPU owning that runqueue. However, as we'll see later, runnable processes may
migrate from one runqueue to another.

The arrays field of the runqueue is an array consisting of two prio_array_t structures. Each
data structure represents a set of runnable processes, and includes 140 doubly linked list
heads (one list for each possible process priority), a priority bitmap, and a counter of the
processes included in the set (see Table 3-2 in the section Chapter 3).

Figure 7-1. The runqueue structure and the two sets of runnable
processes
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As shown in Figure 7-1, the active field of the runqueue structure points to one of the two
prio_array_t data structures in arrays: the corresponding set of runnable processes includes
the active processes. Conversely, the expired field points to the other prio_array_t data
structure in arrays: the corresponding set of runnable processes includes the expired
processes.

Periodically, the role of the two data structures in arrays changes: the active processes
suddenly become the expired processes, and the expired processes become the active ones.
To achieve this change, the scheduler simply exchanges the contents of the active and
expired fields of the runqueue.

7.3.2. Process Descriptor

Each process descriptor includes several fields related to scheduling; they are listed in Table
7-5.

Table 7-5. Fields of the process descriptor related to the scheduler

Type Name Description

unsigned long thread_info->flags
Stores the TIF_NEED_RESCHED flag, which is set if the
scheduler must be invoked (see the section "Returning
from Interrupts and Exceptions" in Chapter 4)

unsigned int thread_info->cpu Logical number of the CPU owning the runqueue to
which the runnable process belongs

unsigned long state The current state of the process (see the section "
Process State" in Chapter 3)

int prio Dynamic priority of the process

int static_prio Static priority of the process

struct

list_head
run_list Pointers to the next and previous elements in the

runqueue list to which the process belongs

prio_array_t * array Pointer to the runqueue's prio_array_t set that
includes the process

unsigned long sleep_avg Average sleep time of the process

unsigned long

long
timestamp Time of last insertion of the process in the runqueue,

or time of last process switch involving the process

unsigned long

long
last_ran Time of last process switch that replaced the process

int activated Condition code used when the process is awakened

unsigned long policy The scheduling class of the process (SCHED_NORMAL,
SCHED_RR, or SCHED_FIFO)

cpumask_t cpus_allowed Bit mask of the CPUs that can execute the process
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Table 7-5. Fields of the process descriptor related to the scheduler

Type Name Description

unsigned int time_slice Ticks left in the time quantum of the process

unsigned int first_time_slice Flag set to 1 if the process never exhausted its time
quantum

unsigned long rt_priority Real-time priority of the process

When a new process is created, sched_fork( ), invoked by copy_process( ), sets the
time_slice field of both current (the parent) and p (the child) processes in the following way:

p->time_slice = (current->time_slice + 1) >> 1;

current->time_slice >>= 1;

In other words, the number of ticks left to the parent is split in two halves: one for the parent
and one for the child. This is done to prevent users from getting an unlimited amount of CPU
time by using the following method: the parent process creates a child process that runs the
same code and then kills itself; by properly adjusting the creation rate, the child process
would always get a fresh quantum before the quantum of its parent expires. This programming
trick does not work because the kernel does not reward forks. Similarly, a user cannot hog an
unfair share of the processor by starting several background processes in a shell or by opening
a lot of windows on a graphical desktop. More generally speaking, a process cannot hog
resources (unless it has privileges to give itself a real-time policy) by forking multiple
descendents.

If the parent had just one tick left in its time slice, the splitting operation forces 
current->time_slice to 0, thus exhausting the quantum of the parent. In this case,
copy_process( ) sets current->time_slice back to 1, then invokes scheduler_tick( ) to
decrease the field (see the following section).

The copy_process( ) function also initializes a few other fields of the child's process descriptor
related to scheduling:

p->first_time_slice = 1;

p->timestamp = sched_clock( );

The first_time_slice flag is set to 1, because the child has never exhausted its time quantum
(if a process terminates or executes a new program during its first time slice, the parent
process is rewarded with the remaining time slice of the child). The timestamp field is initialized
with a timestamp value produced by sched_clock( ): essentially, this function returns the
contents of the 64-bit TSC register (see the section "Time Stamp Counter (TSC)" in Chapter 6
) converted to nanoseconds.
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7.4. Functions Used by the Scheduler
The scheduler relies on several functions in order to do its work; the most important are:

scheduler_tick( )

Keeps the time_slice counter of current up-to-date

try_to_wake_up( )

Awakens a sleeping process

recalc_task_prio( )

Updates the dynamic priority of a process

schedule( )

Selects a new process to be executed

load_balance()

Keeps the runqueues of a multiprocessor system balanced

7.4.1. The scheduler_tick( ) Function

We have already explained in the section "Updating Local CPU Statistics" in Chapter 6 how
scheduler_tick( ) is invoked once every tick to perform some operations related to
scheduling. It executes the following main steps:

1. Stores in the timestamp_last_tick field of the local runqueue the current value of the
TSC converted to nanoseconds; this timestamp is obtained from the sched_clock( )
function (see the previous section).

2. Checks whether the current process is the swapper process of the local CPU. If so, it
performs the following substeps:

a. If the local runqueue includes another runnable process besides swapper, it
sets the TIF_NEED_RESCHED flag of the current process to force rescheduling. As
we'll see in the section "The schedule( ) Function" later in this chapter, if the
kernel supports the hyper-threading technology (see the section "Runqueue
Balancing in Multiprocessor Systems" later in this chapter), a logical CPU might
be idle even if there are runnable processes in its runqueue, as long as those
processes have significantly lower priorities than the priority of a process
already executing on another logical CPU associated with the same physical
CPU.

b. Jumps to step 7 (there is no need to update the time slice counter of the 
swapper process).

3. Checks whether current->array points to the active list of the local runqueue. If not,
the process has expired its time quantum, but it has not yet been replaced: sets the 
TIF_NEED_RESCHED flag to force rescheduling, and jumps to step 7.
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4. Acquires the this_rq()->lock spin lock.

5. Decreases the time slice counter of the current process, and checks whether the
quantum is exhausted. The operations performed by the function are quite different
according to the scheduling class of the process; we will discuss them in a moment.

6. Releases the this_rq( )->lock spin lock.

7. Invokes the rebalance_tick( ) function, which should ensure that the runqueues of the
various CPUs contain approximately the same number of runnable processes. We will
discuss runqueue balancing in the later section "Runqueue Balancing in Multiprocessor
Systems."

7.4.1.1. Updating the time slice of a real-time process

If the current process is a FIFO real-time process, scheduler_tick( ) has nothing to do. In
this case, in fact, current cannot be preempted by lower or equal priority processes, thus it
does not make sense to keep its time slice counter up-to-date.

If current is a Round Robin real-time process, scheduler_tick( ) decreases its time slice
counter and checks whether the quantum is exhausted:

if (current->policy == SCHED_RR && !--current->time_slice) {

    current->time_slice = task_timeslice(current);

    current->first_time_slice = 0;

    set_tsk_need_resched(current);

    list_del(&current->run_list);

    list_add_tail(&current->run_list,

                  this_rq( )->active->queue+current->prio);

}

If the function determines that the time quantum is effectively exhausted, it performs a few
operations aimed to ensure that current will be preempted, if necessary, as soon as possible.

The first operation consists of refilling the time slice counter of the process by invoking 
task_timeslice( ). This function considers the static priority of the process and returns the
corresponding base time quantum, according to the formula (1) shown in the earlier section "
Scheduling of Conventional Processes." Moreover, the first_time_slice field of current is
cleared: this flag is set by copy_process( ) in the service routine of the fork( ) system call,
and should be cleared as soon as the first time quantum of the process elapses.

Next, scheduler_tick( ) invokes the set_tsk_need_resched( ) function to set the
TIF_NEED_RESCHED flag of the process. As described in the section "Returning from Interrupts
and Exceptions" in Chapter 4, this flag forces the invocation of the schedule( ) function, so
that current can be replaced by another real-time process having equal (or higher) priority, if
any.

The last operation of scheduler_tick( ) consists of moving the process descriptor to the last
position of the runqueue active list corresponding to the priority of current. Placing current in
the last position ensures that it will not be selected again for execution until every real-time
runnable process having the same priority as current will get a slice of the CPU time. This is
the meaning of round-robin scheduling. The descriptor is moved by first invoking list_del( )
to remove the process from the runqueue active list, then by invoking list_add_tail( ) to
insert back the process in the last position of the same list.

7.4.1.2. Updating the time slice of a conventional process

If the current process is a conventional process, the scheduler_tick( ) function performs the
following operations:
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1. Decreases the time slice counter (current->time_slice).

2. Checks the time slice counter. If the time quantum is exhausted, the function performs
the following operations:

a. Invokes dequeue_task( ) to remove current from the this_rq( )->active set of
runnable processes.

b. Invokes set_tsk_need_resched( ) to set the TIF_NEED_RESCHED flag.

c. Updates the dynamic priority of current:
d.
e.     current->prio = effective_prio(current);

The effective_prio( ) function reads the static_prio and sleep_avg fields of
current, and computes the dynamic priority of the process according to the
formula (2) shown in the earlier section "Scheduling of Conventional Processes."

f. Refills the time quantum of the process:
g.
h.     current->time_slice = task_timeslice(current);

i.     current->first_time_slice = 0;

j. If the expired_timestamp field of the local runqueue data structure is equal to
zero (that is, the set of expired processes is empty), writes into the field the
value of the current tick:

k.
l.     if (!this_rq( )->expired_timestamp)

m.         this_rq( )->expired_timestamp = jiffies;

n. Inserts the current process either in the active set or in the expired set:
o.
p.     if (!TASK_INTERACTIVE(current) || EXPIRED_STARVING(this_rq( ))

{

q.         enqueue_task(current, this_rq( )->expired);

r.         if (current->static_prio < this_rq( )->best_expired_prio)

s.             this_rq( )->best_expired_prio = current->static_prio;

t.     } else

u.         enqueue_task(current, this_rq( )->active);

The TASK_INTERACTIVE macro yields the value one if the process is recognized as
interactive using the formula (3) shown in the earlier section "Scheduling of
Conventional Processes." The EXPIRED_STARVING macro checks whether the first
expired process in the runqueue had to wait for more than 1000 ticks times the
number of runnable processes in the runqueue plus one; if so, the macro yields
the value one. The EXPIRED_STARVING macro also yields the value one if the
static priority value of the current process is greater than the static priority
value of an already expired process.

3. Otherwise, if the time quantum is not exhausted (current->time_slice is not zero),
checks whether the remaining time slice of the current process is too long:

4.
5. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -

6.          p->time_slice) % TIMESLICE_GRANULARITY(p)) &&

7.         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&

8.         (p->array == rq->active)) {

9.     list_del(&current->run_list);
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10.     list_add_tail(&current->run_list,

11.                   this_rq( )->active->queue+current->prio);

12.     set_tsk_need_resched(p);

13. }

The TIMESLICE_GRANULARITY macro yields the product of the number of CPUs in the
system and a constant proportional to the bonus of the current process (see Table 7-3
earlier in the chapter). Basically, the time quantum of interactive processes with high
static priorities is split into several pieces of TIMESLICE_GRANULARITY size, so that they
do not monopolize the CPU.

7.4.2. The try_to_wake_up( ) Function

The TRy_to_wake_up( ) function awakes a sleeping or stopped process by setting its state to
TASK_RUNNING and inserting it into the runqueue of the local CPU. For instance, the function is
invoked to wake up processes included in a wait queue (see the section "How Processes Are
Organized" in Chapter 3) or to resume execution of processes waiting for a signal (see Chapter
11). The function receives as its parameters:

 The descriptor pointer (p) of the process to be awakened

 A mask of the process states (state) that can be awakened

 A flag (sync) that forbids the awakened process to preempt the process currently
running on the local CPU

The function performs the following operations:

1. Invokes the task_rq_lock( ) function to disable local interrupts and to acquire the lock
of the runqueue rq owned by the CPU that was last executing the process (it could be
different from the local CPU). The logical number of that CPU is stored in the 
p->thread_info->cpu field.

2. Checks if the state of the process p->state belongs to the mask of states state
passed as argument to the function; if this is not the case, it jumps to step 9 to
terminate the function.

3. If the p->array field is not NULL, the process already belongs to a runqueue; therefore,
it jumps to step 8.

4. In multiprocessor systems, it checks whether the process to be awakened should be
migrated from the runqueue of the lastly executing CPU to the runqueue of another
CPU. Essentially, the function selects a target runqueue according to some heuristic
rules. For example:

o If some CPU in the system is idle, it selects its runqueue as the target.
Preference is given to the previously executing CPU and to the local CPU, in this
order.

o If the workload of the previously executing CPU is significantly lower than the
workload of the local CPU, it selects the old runqueue as the target.

o If the process has been executed recently, it selects the old runqueue as the
target (the hardware cache might still be filled with the data of the process).

o If moving the process to the local CPU reduces the unbalance between the
CPUs, the target is the local runqueue (see the section "Runqueue Balancing in
Multiprocessor Systems" later in this chapter).

After this step has been executed, the function has identified a target CPU that will
execute the awakened process and, correspondingly, a target runqueue rq in which to
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insert the process.

1. If the process is in the TASK_UNINTERRUPTIBLE state, it decreases the
nr_uninterruptible field of the target runqueue, and sets the p->activated field of the
process descriptor to -1. See the later section "The recalc_task_prio( ) Function" for
an explanation of the activated field.

2. Invokes the activate_task( ) function, which in turn performs the following substeps:

a. Invokes sched_clock( ) to get the current timestamp in nanoseconds. If the
target CPU is not the local CPU, it compensates for the drift of the local timer
interrupts by using the timestamps relative to the last occurrences of the timer
interrupts on the local and target CPUs:

b.
c.     now = (sched_clock( ) - this_rq( )->timestamp_last_tick)

d.           + rq->timestamp_last_tick;

e. Invokes recalc_task_prio( ), passing to it the process descriptor pointer and
the timestamp computed in the previous step. The recalc_task_prio( ) function
is described in the next section.

f. Sets the value of the p->activated field according to Table 7-6 later in this
chapter.

g. Sets the p->timestamp field with the timestamp computed in step 6a.

h. Inserts the process descriptor in the active set:
i.
j. enqueue_task(p, rq->active);

k. rq->nr_running++;

3. If either the target CPU is not the local CPU or if the sync flag is not set, it checks
whether the new runnable process has a dynamic priority higher than that of the
current process of the rq runqueue (p->prio < rq->curr->prio); if so, invokes
resched_task( ) to preempt rq->curr. In uniprocessor systems the latter function just
executes set_tsk_need_resched( ) to set the TIF_NEED_RESCHED flag of the rq->curr
process. In multiprocessor systems resched_task( ) also checks whether the old value
of whether TIF_NEED_RESCHED flag was zero, the target CPU is different from the local
CPU, and whether the TIF_POLLING_NRFLAG flag of the rq->curr process is clear (the
target CPU is not actively polling the status of the TIF_NEED_RESCHED flag of the
process). If so, resched_task( ) invokes smp_send_reschedule( ) to raise an IPI and
force rescheduling on the target CPU (see the section "Interprocessor Interrupt
Handling" in Chapter 4).

4. Sets the p->state field of the process to TASK_RUNNING.

5. Invokes task_rq_unlock( ) to unlock the rq runqueue and reenable the local interrupts.

6. Returns 1 (if the process has been successfully awakened) or 0 (if the process has not
been awakened).

7.4.3. The recalc_task_prio( ) Function

The recalc_task_prio( ) function updates the average sleep time and the dynamic priority of
a process. It receives as its parameters a process descriptor pointer p and a timestamp now
computed by the sched_clock( ) function.

The function executes the following operations:
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1. Stores in the sleep_time local variable the result of:
2.
3.      min (now    -   p->timestamp, 10

9
 )

The p->timestamp field contains the timestamp of the process switch that put the
process to sleep; therefore, sleep_time stores the number of nanoseconds that the
process spent sleeping since its last execution (or the equivalent of 1 second, if the
process slept more).

4. If sleep_time is not greater than zero, it jumps to step 8 so as to skip updating the
average sleep time of the process.

5. Checks whether the process is not a kernel thread, whether it is awakening from
the TASK_UNINTERRUPTIBLE state (p->activated field equal to -1; see step 5 in the
previous section), and whether it has been continuously asleep beyond a given
sleep time threshold. If these three conditions are fulfilled, the function sets
the p->sleep_avg field to the equivalent of 900 ticks (an empirical value obtained
by subtracting the duration of the base time quantum of a standard process
from the maximum average sleep time). Then, it jumps to step 8.

The sleep time threshold depends on the static priority of the process; some typical
values are shown in Table 7-2. In short, the goal of this empirical rule is to ensure that
processes that have been asleep for a long time in uninterruptible modeusually waiting
for disk I/O operationsget a predefined sleep average value that is large enough to
allow them to be quickly serviced, but it is also not so large to cause starvation for
other processes.

6. Executes the CURRENT_BONUS macro to compute the bonus value of the previous average
sleep time of the process (see Table 7-3). If (10 - bonus) is greater than zero, the
function multiplies sleep_time by this value. Since sleep_time will be added to the
average sleep time of the process (see step 6 below), the lower the current average
sleep time is, the more rapidly it will rise.

7. If the process is in TASK_UNINTERRUPTIBLE mode and it is not a kernel thread, it performs
the following substeps:

a. Checks whether the average sleep time p->sleep_avg is greater than or equal to
its sleep time threshold (see Table 7-2 earlier in this chapter). If so, it resets
the sleep_avg local variable to zerothus skipping the adjustment of the average
sleep timeand jumps to step 6.

b. If the sum sleep_avg + p->sleep_avg is greater than or equal to the sleep time
threshold, it sets the p->sleep_avg field to the sleep time threshold, and sets
sleep_avg to zero.

By somewhat limiting the increment of the average sleep time of the process, the
function does not reward too much batch processes that sleep for a long time.

8. Adds sleep_time to the average sleep time of the process (p->sleep_avg).

9. Checks whether p->sleep_avg exceeds 1000 ticks (in nanoseconds); if so, the function
cuts it down to 1000 ticks (in nanoseconds).

10. Updates the dynamic priority of the process:
11.
12. p->prio = effective_prio(p);

The effective_prio( ) function has already been discussed in the section "The
scheduler_tick( ) Function" earlier in this chapter.
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7.4.4. The schedule( ) Function

The schedule( ) function implements the scheduler. Its objective is to find a process in the
runqueue list and then assign the CPU to it. It is invoked, directly or in a lazy (deferred) way,
by several kernel routines.

7.4.4.1. Direct invocation

The scheduler is invoked directly when the current process must be blocked right away
because the resource it needs is not available. In this case, the kernel routine that wants to
block it proceeds as follows:

1. Inserts current in the proper wait queue.

2. Changes the state of current either to TASK_INTERRUPTIBLE or to TASK_UNINTERRUPTIBLE.

3. Invokes schedule( ).

4. Checks whether the resource is available; if not, goes to step 2.

5. Once the resource is available, removes current from the wait queue.

The kernel routine checks repeatedly whether the resource needed by the process is
available; if not, it yields the CPU to some other process by invoking schedule( ). Later, when
the scheduler once again grants the CPU to the process, the availability of the resource is
rechecked. These steps are similar to those performed by wait_event( ) and similar functions
described in the section "How Processes Are Organized" in Chapter 3.

The scheduler is also directly invoked by many device drivers that execute long iterative
tasks. At each iteration cycle, the driver checks the value of the TIF_NEED_RESCHED flag and, if
necessary, invokes schedule( ) to voluntarily relinquish the CPU.

7.4.4.2. Lazy invocation

The scheduler can also be invoked in a lazy way by setting the TIF_NEED_RESCHED flag of
current to 1. Because a check on the value of this flag is always made before resuming the
execution of a User Mode process (see the section "Returning from Interrupts and Exceptions"
in Chapter 4), schedule( ) will definitely be invoked at some time in the near future.

Typical examples of lazy invocation of the scheduler are:

 When current has used up its quantum of CPU time; this is done by the
scheduler_tick( ) function.

 When a process is woken up and its priority is higher than that of the current process;
this task is performed by the try_to_wake_up( ) function.

 When a sched_setscheduler( ) system call is issued (see the section "System Calls
Related to Scheduling" later in this chapter).

7.4.4.3. Actions performed by schedule( ) before a process switch

The goal of the schedule( ) function consists of replacing the currently executing process
with another one. Thus, the key outcome of the function is to set a local variable called next,
so that it points to the descriptor of the process selected to replace current. If no runnable
process in the system has priority greater than the priority of current, at the end, next
coincides with current and no process switch takes place.

The schedule( ) function starts by disabling kernel preemption and initializing a few local
variables:
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need_resched:

preempt_disable( );

prev = current;

rq = this_rq( );

As you see, the pointer returned by current is saved in prev, and the address of the runqueue
data structure corresponding to the local CPU is saved in rq.

Next, schedule( ) makes sure that prev doesn't hold the big kernel lock (see the section "The
Big Kernel Lock" in Chapter 5):

if (prev->lock_depth >= 0)

    up(&kernel_sem);

Notice that schedule( ) doesn't change the value of the lock_depth field; when prev resumes
its execution, it reacquires the kernel_flag spin lock if the value of this field is not negative.
Thus, the big kernel lock is automatically released and reacquired across a process switch.

The sched_clock( ) function is invoked to read the TSC and convert its value to nanoseconds;
the timestamp obtained is saved in the now local variable. Then, schedule( ) computes the
duration of the CPU time slice used by prev:

now = sched_clock( );

run_time = now - prev->timestamp;

if (run_time > 1000000000)

    run_time = 1000000000;

The usual cut-off at 1 second (converted to nanoseconds) applies. The run_time value is used
to charge the process for the CPU usage. However, a process having a high average sleep
time is favored:

run_time /= (CURRENT_BONUS(prev) ? : 1);

Remember that CURRENT_BONUS returns a value between 0 and 10 that is proportional to the
average sleep time of the process.

Before starting to look at the runnable processes, schedule( ) must disable the local interrupts
and acquire the spin lock that protects the runqueue:

spin_lock_irq(&rq->lock);

As explained in the section "Process Termination" in Chapter 3, prev might be a process that is
being terminated. To recognize this case, schedule( ) looks at the PF_DEAD flag:

if (prev->flags & PF_DEAD)

    prev->state = EXIT_DEAD;

Next, schedule( ) examines the state of prev. If it is not runnable and it has not been
preempted in Kernel Mode (see the section "Returning from Interrupts and Exceptions" in
Chapter 4), then it should be removed from the runqueue. However, if it has nonblocked
pending signals and its state is TASK_INTERRUPTIBLE, the function sets the process state to
TASK_RUNNING and leaves it into the runqueue. This action is not the same as assigning the
processor to prev; it just gives prev a chance to be selected for execution:
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if (prev->state != TASK_RUNNING &&

    !(preempt_count() & PREEMPT_ACTIVE)) {

    if (prev->state == TASK_INTERRUPTIBLE && signal_pending(prev))

        prev->state = TASK_RUNNING;

    else {

        if (prev->state == TASK_UNINTERRUPTIBLE)

            rq->nr_uninterruptible++;

        deactivate_task(prev, rq);

    }

}

The deactivate_task( ) function removes the process from the runqueue:

rq->nr_running--;

dequeue_task(p, p->array);

p->array = NULL;

Now, schedule( ) checks the number of runnable processes left in the runqueue. If there are
some runnable processes, the function invokes the dependent_sleeper( ) function. In most
cases, this function immediately returns zero. If, however, the kernel supports the
hyper-threading technology (see the section "Runqueue Balancing in Multiprocessor Systems"
later in this chapter), the function checks whether the process that is going to be selected
for execution has significantly lower priority than a sibling process already running on a logical
CPU of the same physical CPU; in this particular case, schedule( ) refuses to select the lower
privilege process and executes the swapper process instead.

if (rq->nr_running) {

    if (dependent_sleeper(smp_processor_id( ), rq)) {

        next = rq->idle;

        goto switch_tasks;

    }

}

If no runnable process exists, the function invokes idle_balance( ) to move some runnable
process from another runqueue to the local runqueue; idle_balance( ) is similar to
load_balance( ), which is described in the later section "The load_balance( ) Function."

if (!rq->nr_running) {

    idle_balance(smp_processor_id( ), rq);

    if (!rq->nr_running) {

        next = rq->idle;

        rq->expired_timestamp = 0;

        wake_sleeping_dependent(smp_processor_id( ), rq);

        if (!rq->nr_running)

            goto switch_tasks;

    }

}

If idle_balance( ) fails in moving some process in the local runqueue, schedule( ) invokes
wake_sleeping_dependent( ) to reschedule runnable processes in idle CPUs (that is, in every
CPU that runs the swapper process). As explained earlier when discussing the
dependent_sleeper( ) function, this unusual case might happen when the kernel supports the
hyper-threading technology. However, in uniprocessor systems, or when all attempts to move
a runnable process in the local runqueue have failed, the function picks the swapper process
as next and continues with the next phase.
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Let's suppose that the schedule( ) function has determined that the runqueue includes some
runnable processes; now it has to check that at least one of these runnable processes is
active. If not, the function exchanges the contents of the active and expired fields of the
runqueue data structure; thus, all expired processes become active, while the empty set is
ready to receive the processes that will expire in the future.

array = rq->active;

if (!array->nr_active) {

    rq->active = rq->expired;

    rq->expired = array;

    array = rq->active;

    rq->expired_timestamp = 0;

    rq->best_expired_prio = 140;

}

It is time to look up a runnable process in the active prio_array_t data structure (see the
section "Identifying a Process" in Chapter 3). First of all, schedule( ) searches for the first
nonzero bit in the bitmask of the active set. Remember that a bit in the bitmask is set when
the corresponding priority list is not empty. Thus, the index of the first nonzero bit indicates
the list containing the best process to run. Then, the first process descriptor in that list is
retrieved:

idx = sched_find_first_bit(array->bitmap);

next = list_entry(array->queue[idx].next, task_t, run_list);

The sched_find_first_bit( ) function is based on the bsfl assembly language instruction,
which returns the bit index of the least significant bit set to one in a 32-bit word.

The next local variable now stores the descriptor pointer of the process that will replace prev.
The schedule( ) function looks at the next->activated field. This field encodes the state of
the process when it was awakened, as illustrated in Table 7-6.

Table 7-6. The meaning of the activated field in the process descriptor

Value Description

0 The process was in TASK_RUNNING state.

1 The process was in TASK_INTERRUPTIBLE or TASK_STOPPED state, and it is being
awakened by a system call service routine or a kernel thread.

2 The process was in TASK_INTERRUPTIBLE or TASK_STOPPED state, and it is being
awakened by an interrupt handler or a deferrable function.

-1 The process was in TASK_UNINTERRUPTIBLE state and it is being awakened.

If next is a conventional process and it is being awakened from the TASK_INTERRUPTIBLE or
TASK_STOPPED state, the scheduler adds to the average sleep time of the process the
nanoseconds elapsed since the process was inserted into the runqueue. In other words, the
sleep time of the process is increased to cover also the time spent by the process in the
runqueue waiting for the CPU:

if (next->prio >= 100 && next->activated > 0) {

    unsigned long long delta = now - next->timestamp;
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    if (next->activated == 1)

        delta = (delta * 38) / 128;

    array = next->array;

    dequeue_task(next, array);

    recalc_task_prio(next, next->timestamp + delta);

    enqueue_task(next, array);

}

next->activated = 0;

Observe that the scheduler makes a distinction between a process awakened by an interrupt
handler or deferrable function, and a process awakened by a system call service routine or a
kernel thread. In the former case, the scheduler adds the whole runqueue waiting time, while
in the latter it adds just a fraction of that time. This is because interactive processes are
more likely to be awakened by asynchronous events (think of the user pressing keys on the
keyboard) rather than by synchronous ones.

7.4.4.4. Actions performed by schedule( ) to make the process switch

Now the schedule( ) function has determined the next process to run. In a moment, the
kernel will access the tHRead_info data structure of next, whose address is stored close to the
top of next's process descriptor:

switch_tasks:

prefetch(next);

The prefetch macro is a hint to the CPU control unit to bring the contents of the first fields
of next's process descriptor in the hardware cache. It is here just to improve the performance
of schedule( ), because the data are moved in parallel to the execution of the following
instructions, which do not affect next.

Before replacing prev, the scheduler should do some administrative work:

clear_tsk_need_resched(prev);

rcu_qsctr_inc(prev->thread_info->cpu);

The clear_tsk_need_resched( ) function clears the TIF_NEED_RESCHED flag of prev, just in case
schedule( ) has been invoked in the lazy way. Then, the function records that the CPU is
going through a quiescent state (see the section "Read-Copy Update (RCU)" in Chapter 5).

The schedule( ) function must also decrease the average sleep time of prev, charging to it
the slice of CPU time used by the process:

prev->sleep_avg -= run_time;

if ((long)prev->sleep_avg <= 0)

    prev->sleep_avg = 0;

prev->timestamp = prev->last_ran = now;

The timestamps of the process are then updated.

It is quite possible that prev and next are the same process: this happens if no other higher or
equal priority active process is present in the runqueue. In this case, the function skips the
process switch:

if (prev == next) {

    spin_unlock_irq(&rq->lock);

    goto finish_schedule;
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}

At this point, prev and next are different processes, and the process switch is for real:

next->timestamp = now;

rq->nr_switches++;

rq->curr = next;

prev = context_switch(rq, prev, next);

The context_switch( ) function sets up the address space of next. As we'll see in "Memory
Descriptor of Kernel Threads" in Chapter 9, the active_mm field of the process descriptor points
to the memory descriptor that is used by the process, while the mm field points to the memory
descriptor owned by the process. For normal processes, the two fields hold the same address;
however, a kernel thread does not have its own address space and its mm field is always set
to NULL. The context_switch( ) function ensures that if next is a kernel thread, it uses the
address space used by prev:

if (!next->mm) {

    next->active_mm = prev->active_mm;

    atomic_inc(&prev->active_mm->mm_count);

    enter_lazy_tlb(prev->active_mm, next);

}

Up to Linux version 2.2, kernel threads had their own address space. That design choice was
suboptimal, because the Page Tables had to be changed whenever the scheduler selected a
new process, even if it was a kernel thread. Because kernel threads run in Kernel Mode, they
use only the fourth gigabyte of the linear address space, whose mapping is the same for all
processes in the system. Even worse, writing into the cr3 register invalidates all TLB entries
(see "Translation Lookaside Buffers (TLB)" in Chapter 2), which leads to a significant
performance penalty. Linux is nowadays much more efficient because Page Tables aren't
touched at all if next is a kernel thread. As further optimization, if next is a kernel thread, the
schedule( ) function sets the process into lazy TLB mode (see the section "Translation
Lookaside Buffers (TLB)" in Chapter 2).

Conversely, if next is a regular process, the context_switch( ) function replaces the address
space of prev with the one of next:

if (next->mm)

    switch_mm(prev->active_mm, next->mm, next);

If prev is a kernel thread or an exiting process, the context_switch( ) function saves the
pointer to the memory descriptor used by prev in the runqueue's prev_mm field, then resets
prev->active_mm:

if (!prev->mm) {

    rq->prev_mm = prev->active_mm;

    prev->active_mm = NULL;

}

Now context_switch( ) can finally invoke switch_to( ) to perform the process switch
between prev and next (see the section "Performing the Process Switch" in Chapter 3):

switch_to(prev, next, prev);

return prev;
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7.4.4.5. Actions performed by schedule( ) after a process switch

The instructions of the context_switch( ) and schedule( ) functions following the switch_to
macro invocation will not be performed right away by the next process, but at a later time by
prev when the scheduler selects it again for execution. However, at that moment, the prev
local variable does not point to our original process that was to be replaced when we started
the description of schedule( ), but rather to the process that was replaced by our original
prev when it was scheduled again. (If you are confused, go back and read the section "
Performing the Process Switch" in Chapter 3.) The first instructions after a process switch
are:

barrier( );

finish_task_switch(prev);

Right after the invocation of the context_switch( ) function in schedule( ), the barrier( )
macro yields an optimization barrier for the code (see the section "Optimization and Memory
Barriers" in Chapter 5). Then, the finish_task_switch( ) function is executed:

mm = this_rq( )->prev_mm;

this_rq( )->prev_mm = NULL;

prev_task_flags = prev->flags;

spin_unlock_irq(&this_rq( )->lock);

if (mm)

    mmdrop(mm);

if (prev_task_flags & PF_DEAD)

    put_task_struct(prev);

If prev is a kernel thread, the prev_mm field of the runqueue stores the address of the memory
descriptor that was lent to prev. As we'll see in Chapter 9, mmdrop( ) decreases the usage
counter of the memory descriptor; if the counter reaches 0 (likely because prev is a zombie
process), the function also frees the descriptor together with the associated Page Tables and
virtual memory regions.

The finish_task_switch( ) function also releases the spin lock of the runqueue and enables
the local interrupts. Then, it checks whether prev is a zombie task that is being removed from
the system (see the section "Process Termination" in Chapter 3); if so, it invokes
put_task_struct( ) to free the process descriptor reference counter and drop all remaining
references to the process (see the section "Process Removal" in Chapter 3).

The very last instructions of the schedule( ) function are:

finish_schedule:

prev = current;

if (prev->lock_depth >= 0)

    _ _reacquire_kernel_lock( );

preempt_enable_no_resched();

if (test_bit(TIF_NEED_RESCHED, &current_thread_info( )->flags)

   goto need_resched;

return;

As you see, schedule( ) reacquires the big kernel lock if necessary, reenables kernel
preemption, and checks whether some other process has set the TIF_NEED_RESCHED flag of the
current process. In this case, the whole schedule( ) function is reexecuted from the
beginning; otherwise, the function terminates.
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7.5. Runqueue Balancing in Multiprocessor Systems
We have seen in Chapter 4 that Linux sticks to the Symmetric Multiprocessing model (SMP );
this means, essentially, that the kernel should not have any bias toward one CPU with respect
to the others. However, multiprocessor machines come in many different flavors, and the
scheduler behaves differently depending on the hardware characteristics. In particular, we will
consider the following three types of multiprocessor machines:

Classic multiprocessor architecture

Until recently, this was the most common architecture for multiprocessor machines.
These machines have a common set of RAM chips shared by all CPUs.

Hyper-threading

A hyper-threaded chip is a microprocessor that executes several threads of execution
at once; it includes several copies of the internal registers and quickly switches
between them. This technology, which was invented by Intel, allows the processor to
exploit the machine cycles to execute another thread while the current thread is
stalled for a memory access. A hyper-threaded physical CPU is seen by Linux as
several different logical CPUs.

NUMA

CPUs and RAM chips are grouped in local "nodes" (usually a node includes one CPU and
a few RAM chips). The memory arbiter (a special circuit that serializes the accesses to
RAM performed by the CPUs in the system, see the section "Memory Addresses" in
Chapter 2) is a bottleneck for the performance of the classic multiprocessor systems.
In a NUMA architecture, when a CPU accesses a "local" RAM chip inside its own node,
there is little or no contention, thus the access is usually fast; on the other hand,
accessing a "remote" RAM chip outside of its node is much slower. We'll mention in the
section "Non-Uniform Memory Access (NUMA)" in Chapter 8 how the Linux kernel
memory allocator supports NUMA architectures.

These basic kinds of multiprocessor systems are often combined. For instance, a motherboard
that includes two different hyper-threaded CPUs is seen by the kernel as four logical CPUs.

As we have seen in the previous section, the schedule( ) function picks the new process to
run from the runqueue of the local CPU. Therefore, a given CPU can execute only the runnable
processes that are contained in the corresponding runqueue. On the other hand, a runnable
process is always stored in exactly one runqueue: no runnable process ever appears in two or
more runqueues. Therefore, until a process remains runnable, it is usually bound to one CPU.

This design choice is usually beneficial for system performance, because the hardware cache
of every CPU is likely to be filled with data owned by the runnable processes in the runqueue.
In some cases, however, binding a runnable process to a given CPU might induce a severe
performance penalty. For instance, consider a large number of batch processes that make
heavy use of the CPU: if most of them end up in the same runqueue, one CPU in the system
will be overloaded, while the others will be nearly idle.

Therefore, the kernel periodically checks whether the workloads of the runqueues are
balanced and, if necessary, moves some process from one runqueue to another. However, to
get the best performance from a multiprocessor system, the load balancing algorithm should
take into consideration the topology of the CPUs in the system. Starting from kernel version
2.6.7, Linux sports a sophisticated runqueue balancing algorithm based on the notion of
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"scheduling domains." Thanks to the scheduling domains, the algorithm can be easily tuned for
all kinds of existing multiprocessor architectures (and even for recent architectures such as
those based on the "multi-core" microprocessors).

7.5.1. Scheduling Domains

Essentially, a scheduling domain is a set of CPUs whose workloads should be kept balanced by
the kernel. Generally speaking, scheduling domains are hierarchically organized: the top-most
scheduling domain, which usually spans all CPUs in the system, includes children scheduling
domains, each of which include a subset of the CPUs. Thanks to the hierarchy of scheduling
domains, workload balancing can be done in a rather efficient way.

Every scheduling domain is partitioned, in turn, in one or more groups, each of which
represents a subset of the CPUs of the scheduling domain. Workload balancing is always done
between groups of a scheduling domain. In other words, a process is moved from one CPU to
another only if the total workload of some group in some scheduling domain is significantly
lower than the workload of another group in the same scheduling domain.

Figure 7-2 illustrates three examples of scheduling domain hierarchies, corresponding to the
three main architectures of multiprocessor machines.

Figure 7-2. Three examples of scheduling domain hierarchies

Figure 7-2 (a) represents a hierarchy composed by a single scheduling domain for a 2-CPU
classic multiprocessor architecture. The scheduling domain includes only two groups, each of
which includes one CPU.

Figure 7-2 (b) represents a two-level hierarchy for a 2-CPU multiprocessor box with
hyper-threading technology. The top-level scheduling domain spans all four logical CPUs in the
system, and it is composed by two groups. Each group of the top-level domain corresponds to
a child scheduling domain and spans a physical CPU. The bottom-level scheduling domains
(also called base scheduling domains ) include two groups, one for each logical CPU.

Finally, Figure 7-2 (c) represents a two-level hierarchy for an 8-CPU NUMA architecture with
two nodes and four CPUs per node. The top-level domain is organized in two groups, each of
which corresponds to a different node. Every base scheduling domain spans the CPUs inside a
single node and has four groups, each of which spans a single CPU.

Every scheduling domain is represented by a sched_domain descriptor, while every group inside
a scheduling domain is represented by a sched_group descriptor. Each sched_domain descriptor
includes a field groups, which points to the first element in a list of group descriptors.
Moreover, the parent field of the sched_domain structure points to the descriptor of the parent

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


scheduling domain, if any.

The sched_domain descriptors of all physical CPUs in the system are stored in the per-CPU
variable phys_domains. If the kernel does not support the hyper-threading technology, these
domains are at the bottom level of the domain hierarchy, and the sd fields of the runqueue
descriptors point to themthat is, they are the base scheduling domains. Conversely, if the
kernel supports the hyper-threading technology, the bottom-level scheduling domains are
stored in the per-CPU variable cpu_domains.

7.5.2. The rebalance_tick( ) Function

To keep the runqueues in the system balanced, the rebalance_tick( ) function is invoked by
scheduler_tick( ) once every tick. It receives as its parameters the index this_cpu of the
local CPU, the address this_rq of the local runqueue, and a flag, idle, which can assume the
following values:

SCHED_IDLE

The CPU is currently idle, that is, current is the swapper process.

NOT_IDLE

The CPU is not currently idle, that is, current is not the swapper process.

The rebalance_tick( ) function determines first the number of processes in the runqueue and
updates the runqueue's average workload; to do this, the function accesses the nr_running
and cpu_load fields of the runqueue descriptor.

Then, rebalance_tick( ) starts a loop over all scheduling domains in the path from the base
domain (referenced by the sd field of the local runqueue descriptor) to the top-level domain.
In each iteration the function determines whether the time has come to invoke the 
load_balance( ) function, thus executing a rebalancing operation on the scheduling domain.
The value of idle and some parameters stored in the sched_domain descriptor determine the
frequency of the invocations of load_balance( ). If idle is equal to SCHED_IDLE, then the
runqueue is empty, and rebalance_tick( ) invokes load_balance( ) quite often (roughly once
every one or two ticks for scheduling domains corresponding to logical and physical CPUs).
Conversely, if idle is equal to NOT_IDLE, rebalance_tick( ) invokes load_balance( ) sparingly
(roughly once every 10 milliseconds for scheduling domains corresponding to logical CPUs, and
once every 100 milliseconds for scheduling domains corresponding to physical CPUs).

7.5.3. The load_balance( ) Function

The load_balance( ) function checks whether a scheduling domain is significantly unbalanced;
more precisely, it checks whether unbalancing can be reduced by moving some processes from
the busiest group to the runqueue of the local CPU. If so, the function attempts this
migration. It receives four parameters:

this_cpu

The index of the local CPU

this_rq

The address of the descriptor of the local runqueue

sd
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Points to the descriptor of the scheduling domain to be checked

idle

Either SCHED_IDLE (local CPU is idle) or NOT_IDLE

The function performs the following operations:

1. Acquires the this_rq->lock spin lock.

2. Invokes the find_busiest_group( ) function to analyze the workloads of the groups
inside the scheduling domain. The function returns the address of the sched_group
descriptor of the busiest group, provided that this group does not include the local
CPU; in this case, the function also returns the number of processes to be moved into
the local runqueue to restore balancing. On the other hand, if either the busiest group
includes the local CPU or all groups are essentially balanced, the function returns NULL.
This procedure is not trivial, because the function tries to filter the statistical
fluctuations in the workloads.

3. If find_busiest_group( ) did not find a group not including the local CPU that is
significantly busier than the other groups in the scheduling domain, the function
releases the this_rq->lock spin lock, tunes the parameters in the scheduling domain
descriptor so as to delay the next invocation of load_balance( ) on the local CPU, and
terminates.

4. Invokes the find_busiest_queue( ) function to find the busiest CPUs in the group found
in step 2. The function returns the descriptor address busiest of the corresponding
runqueue.

5. Acquires a second spin lock, namely the busiest->lock spin lock. To prevent deadlocks,
this has to be done carefully: the this_rq->lock is first released, then the two locks
are acquired by increasing CPU indices.

6. Invokes the move_tasks( ) function to try moving some processes from the busiest
runqueue to the local runqueue this_rq (see the next section).

7. If the move_task( ) function failed in migrating some process to the local runqueue, the
scheduling domain is still unbalanced. Sets to 1 the busiest->active_balance flag and
wakes up the migration kernel thread whose descriptor is stored in
busiest->migration_thread. The migration kernel thread walks the chain of the
scheduling domain, from the base domain of the busiest runqueue to the top domain,
looking for an idle CPU. If an idle CPU is found, the kernel thread invokes move_tasks( )
to move one process into the idle runqueue.

8. Releases the busiest->lock and this_rq->lock spin locks.

9. Terminates.

7.5.4. The move_tasks( ) Function

The move_tasks( ) function moves processes from a source runqueue to the local runqueue. It
receives six parameters: this_rq and this_cpu (the local runqueue descriptor and the local
CPU index), busiest (the source runqueue descriptor), max_nr_move (the maximum number of
processes to be moved), sd (the address of the scheduling domain descriptor in which this
balancing operation is carried on), and the idle flag (beside SCHED_IDLE and NOT_IDLE, this flag
can also be set to NEWLY_IDLE when the function is indirectly invoked by idle_balance( ); see
the section "The schedule( ) Function" earlier in this chapter).

The function first analyzes the expired processes of the busiest runqueue, starting from the
higher priority ones. When all expired processes have been scanned, the function scans the
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active processes of the busiest runqueue. For each candidate process, the function invokes
can_migrate_task( ), which returns 1 if all the following conditions hold:

 The process is not being currently executed by the remote CPU.

 The local CPU is included in the cpus_allowed bitmask of the process descriptor.

 At least one of the following holds:

o The local CPU is idle. If the kernel supports the hyper-threading technology, all
logical CPUs in the local physical chip must be idle.

o The kernel is having trouble in balancing the scheduling domain, because
repeated attempts to move processes have failed.

o The process to be moved is not "cache hot" (it has not recently executed on
the remote CPU, so one can assume that no data of the process is included in
the hardware cache of the remote CPU).

If can_migrate_task( ) returns the value 1, move_tasks( ) invokes the pull_task( ) function to
move the candidate process to the local runqueue. Essentially, pull_task( ) executes
dequeue_task( ) to remove the process from the remote runqueue, then executes
enqueue_task( ) to insert the process in the local runqueue, and finally, if the process just
moved has higher dynamic priority than current, invokes resched_task( ) to preempt the
current process of the local CPU.
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7.6. System Calls Related to Scheduling
Several system calls have been introduced to allow processes to change their priorities and
scheduling policies. As a general rule, users are always allowed to lower the priorities of their
processes. However, if they want to modify the priorities of processes belonging to some
other user or if they want to increase the priorities of their own processes, they must have
superuser privileges.

7.6.1. The nice( ) System Call

The nice( )[*] system call allows processes to change their base priority. The integer value
contained in the increment parameter is used to modify the nice field of the process
descriptor. The nice Unix command, which allows users to run programs with modified
scheduling priority, is based on this system call.

[*] Because this system call is usually invoked to low er the priority of a process, users w ho invoke it for their processes are "nice"
to other users.

The sys_nice( ) service routine handles the nice( ) system call. Although the increment
parameter may have any value, absolute values larger than 40 are trimmed down to 40.
Traditionally, negative values correspond to requests for priority increments and require
superuser privileges, while positive ones correspond to requests for priority decreases. In the
case of a negative increment, the function invokes the capable( ) function to verify whether
the process has a CAP_SYS_NICE capability. Moreover, the function invokes the
security_task_setnice( ) security hook. We discuss that function in Chapter 20. If the user
turns out to have the privilege required to change priorities, sys_nice( ) converts
current->static_prio to the range of nice values, adds the value of increment, and invokes
the set_user_nice( ) function. In turn, the latter function gets the local runqueue lock,
updates the static priority of current, invokes the resched_task( ) function to allow other
processes to preempt current, and release the runqueue lock.

The nice( ) system call is maintained for backward compatibility only; it has been replaced by
the setpriority( ) system call described next.

7.6.2. The getpriority( ) and setpriority( ) System Calls

The nice( ) system call affects only the process that invokes it. Two other system calls,
denoted as getpriority( ) and setpriority( ), act on the base priorities of all processes in a
given group. getpriority( ) returns 20 minus the lowest nice field value among all processes
in a given groupthat is, the highest priority among those processes; setpriority( ) sets the
base priority of all processes in a given group to a given value.

The kernel implements these system calls by means of the sys_getpriority( ) and
sys_setpriority( ) service routines. Both of them act essentially on the same group of
parameters:

which

The value that identifies the group of processes; it can assume one of the following:

PRIO_PROCESS

Selects the processes according to their process ID (pid field of the process
descriptor).
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PRIO_PGRP

Selects the processes according to their group ID (pgrp field of the process
descriptor).

PRIO_USER

Selects the processes according to their user ID (uid field of the process descriptor).

who

The value of the pid, pgrp, or uid field (depending on the value of which) to be used
for selecting the processes. If who is 0, its value is set to that of the corresponding
field of the current process.

niceval

The new base priority value (needed only by sys_setpriority( )). It should range
between - 20 (highest priority) and + 19 (lowest priority).

As stated before, only processes with a CAP_SYS_NICE capability are allowed to increase their
own base priority or to modify that of other processes.

As we will see in Chapter 10, system calls return a negative value only if some error occurred.
For this reason, getpriority( ) does not return a normal nice value ranging between - 20 and
+ 19, but rather a nonnegative value ranging between 1 and 40.

7.6.3. The sched_getaffinity( ) and sched_setaffinity( ) System Calls

The sched_getaffinity( ) and sched_setaffinity( ) system calls respectively return and set
up the CPU affinity mask of a processthe bit mask of the CPUs that are allowed to execute
the process. This mask is stored in the cpus_allowed field of the process descriptor.

The sys_sched_getaffinity( ) system call service routine looks up the process descriptor by
invoking find_task_by_pid( ), and then returns the value of the corresponding cpus_allowed
field ANDed with the bitmap of the available CPUs.

The sys_sched_setaffinity( ) system call is a bit more complicated. Besides looking for the
descriptor of the target process and updating the cpus_allowed field, this function has to
check whether the process is included in a runqueue of a CPU that is no longer present in the
new affinity mask. In the worst case, the process has to be moved from one runqueue to
another one. To avoid problems due to deadlocks and race conditions, this job is done by the 
migration kernel threads (there is one thread per CPU). Whenever a process has to be moved
from a runqueue rq1 to another runqueue rq2, the system call awakes the migration thread of
rq1 (rq1->migration_thread), which in turn removes the process from rq1 and inserts it into
rq2.

7.6.4. System Calls Related to Real-Time Processes

We now introduce a group of system calls that allow processes to change their scheduling
discipline and, in particular, to become real-time processes. As usual, a process must have a 
CAP_SYS_NICE capability to modify the values of the rt_priority and policy process descriptor
fields of any process, including itself.

7.6.4.1. The sched_getscheduler( ) and sched_setscheduler( ) system calls

The sched_getscheduler( ) system call queries the scheduling policy currently applied to the
process identified by the pid parameter. If pid equals 0, the policy of the calling process is
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retrieved. On success, the system call returns the policy for the process: SCHED_FIFO, SCHED_RR
, or SCHED_NORMAL (the latter is also called SCHED_OTHER). The corresponding
sys_sched_getscheduler( ) service routine invokes find_process_by_pid( ), which locates the
process descriptor corresponding to the given pid and returns the value of its policy field.

The sched_setscheduler( ) system call sets both the scheduling policy and the associated
parameters for the process identified by the parameter pid. If pid is equal to 0, the scheduler
parameters of the calling process will be set.

The corresponding sys_sched_setscheduler( ) system call service routine simply invokes
do_sched_setscheduler( ). The latter function checks whether the scheduling policy specified
by the policy parameter and the new priority specified by the param->sched_priority
parameter are valid. It also checks whether the process has CAP_SYS_NICE capability or
whether its owner has superuser rights. If everything is OK, it removes the process from its
runqueue (if it is runnable); updates the static, real-time, and dynamic priorities of the
process; inserts the process back in the runqueue; and finally invokes, if necessary, the 
resched_task( ) function to preempt the current process of the runqueue.

7.6.4.2. The sched_ getparam( ) and sched_setparam( ) system calls

The sched_getparam( ) system call retrieves the scheduling parameters for the process
identified by pid. If pid is 0, the parameters of the current process are retrieved. The
corresponding sys_sched_getparam( ) service routine, as one would expect, finds the process
descriptor pointer associated with pid, stores its rt_priority field in a local variable of type
sched_param, and invokes copy_to_user( ) to copy it into the process address space at the
address specified by the param parameter.

The sched_setparam( ) system call is similar to sched_setscheduler( ). The difference is that
sched_setparam( ) does not let the caller set the policy field's value.[*] The corresponding
sys_sched_setparam( ) service routine invokes do_sched_setscheduler( ), with almost the same
parameters as sys_sched_setscheduler( ).

[*] This anomaly is caused by a specific requirement of the POSIX standard.

7.6.4.3. The sched_ yield( ) system call

The sched_yield( ) system call allows a process to relinquish the CPU voluntarily without
being suspended; the process remains in a TASK_RUNNING state, but the scheduler puts it either
in the expired set of the runqueue (if the process is a conventional one), or at the end of the
runqueue list (if the process is a real-time one). The schedule( ) function is then invoked. In
this way, other processes that have the same dynamic priority have a chance to run. The call
is used mainly by SCHED_FIFO real-time processes.

7.6.4.4. The sched_ get_priority_min( ) and sched_ get_priority_max( ) system calls

The sched_get_priority_min( ) and sched_get_priority_max( ) system calls return,
respectively, the minimum and the maximum real-time static priority value that can be used
with the scheduling policy identified by the policy parameter.

The sys_sched_get_priority_min( ) service routine returns 1 if current is a real-time process,
0 otherwise.

The sys_sched_get_priority_max( ) service routine returns 99 (the highest priority) if current
is a real-time process, 0 otherwise.

7.6.4.5. The sched_rr_ get_interval( ) system call

The sched_rr_get_interval( ) system call writes into a structure stored in the User Mode
address space the Round Robin time quantum for the real-time process identified by the pid
parameter. If pid is zero, the system call writes the time quantum of the current process.
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The corresponding sys_sched_rr_get_interval( ) service routine invokes, as usual,
find_process_by_pid( ) to retrieve the process descriptor associated with pid. It then
converts the base time quantum of the selected process into seconds and nanoseconds and
copies the numbers into the User Mode structure. Conventionally, the time quantum of a FIFO
real-time process is equal to zero.
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Chapter 8. Memory Management
We saw in Chapter 2 how Linux takes advantage of 80 x 86's segmentation and paging circuits
to translate logical addresses into physical ones. We also mentioned that some portion of RAM
is permanently assigned to the kernel and used to store both the kernel code and the static
kernel data structures.

The remaining part of the RAM is called dynamic memory . It is a valuable resource, needed
not only by the processes but also by the kernel itself. In fact, the performance of the entire
system depends on how efficiently dynamic memory is managed. Therefore, all current
multitasking operating systems try to optimize the use of dynamic memory, assigning it only
when it is needed and freeing it as soon as possible. Figure 8-1 shows schematically the page
frames used as dynamic memory; see the section "Physical Memory Layout" in Chapter 2 for
details.

This chapter, which consists of three main sections, describes how the kernel allocates
dynamic memory for its own use. The sections "Page Frame Management" and "Memory Area
Management" illustrate two different techniques for handling physically contiguous memory
areas, while the section "Noncontiguous Memory Area Management" illustrates a third
technique that handles noncontiguous memory areas. In these sections we'll cover topics
such as memory zones, kernel mappings, the buddy system, the slab cache, and memory
pools.

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


8.1. Page Frame Management
We saw in the section "Paging in Hardware" in Chapter 2 how the Intel Pentium processor can
use two different page frame sizes: 4 KB and 4 MB (or 2 MB if PAE is enabledsee the section "
The Physical Address Extension (PAE) Paging Mechanism" in Chapter 2). Linux adopts the
smaller 4 KB page frame size as the standard memory allocation unit. This makes things simpler
for two reasons:

 The Page Fault exceptions issued by the paging circuitry are easily interpreted. Either
the page requested exists but the process is not allowed to address it, or the page
does not exist. In the second case, the memory allocator must find a free 4 KB page
frame and assign it to the process.

 Although both 4 KB and 4 MB are multiples of all disk block sizes, transfers of data
between main memory and disks are in most cases more efficient when the smaller size
is used.

Figure 8-1. Dynamic memory

8.1.1. Page Descriptors

The kernel must keep track of the current status of each page frame. For instance, it must be
able to distinguish the page frames that are used to contain pages that belong to processes
from those that contain kernel code or kernel data structures. Similarly, it must be able to
determine whether a page frame in dynamic memory is free. A page frame in dynamic memory
is free if it does not contain any useful data. It is not free when the page frame contains data
of a User Mode process, data of a software cache, dynamically allocated kernel data
structures, buffered data of a device driver, code of a kernel module, and so on.

State information of a page frame is kept in a page descriptor of type page, whose fields are
shown in Table 8-1. All page descriptors are stored in the mem_map array. Because each
descriptor is 32 bytes long, the space required by mem_map is slightly less than 1% of the whole
RAM. The virt_to_page(addr) macro yields the address of the page descriptor associated with
the linear address addr. The pfn_to_page(pfn) macro yields the address of the page descriptor
associated with the page frame having number pfn.

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Table 8-1. The fields of the page descriptor

Type Name Description

unsigned long flags Array of flags (see Table 8-2). Also encodes the zone number to
which the page frame belongs.

atomic_t _count Page frame's reference counter.

atomic_t _mapcount Number of Page Table entries that refer to the page frame (-1 if
none).

unsigned long private

Available to the kernel component that is using the page (for
instance, it is a buffer head pointer in case of buffer page; see "
Block Buffers and Buffer Heads" in Chapter 15). If the page is
free, this field is used by the buddy system (see later in this
chapter).

struct

address_space *

mapping

Used when the page is inserted into the page cache (see the
section "The Page Cache" in Chapter 15), or when it belongs to
an anonymous region (see the section "Reverse Mapping for
Anonymous Pages" in Chapter 17).

unsigned long index

Used by several kernel components with different meanings. For
instance, it identifies the position of the data stored in the page
frame within the page's disk image or within an anonymous
region (Chapter 15), or it stores a swapped-out page identifier (
Chapter 17).

struct

list_head
lru Contains pointers to the least recently used doubly linked list of

pages.

You don't have to fully understand the role of all fields in the page descriptor right now. In the
following chapters, we often come back to the fields of the page descriptor. Moreover, several
fields have different meaning, according to whether the page frame is free or what kernel
component is using the page frame.

Let's describe in greater detail two of the fields:

_count

A usage reference counter for the page. If it is set to -1, the corresponding page
frame is free and can be assigned to any process or to the kernel itself. If it is set to a
value greater than or equal to 0, the page frame is assigned to one or more processes
or is used to store some kernel data structures. The page_count( ) function returns the
value of the _count field increased by one, that is, the number of users of the page.

flags

Includes up to 32 flags (see Table 8-2) that describe the status of the page frame. For
each PG_xyz flag, the kernel defines some macros that manipulate its value. Usually,
the PageXyz macro returns the value of the flag, while the SetPageXyz and ClearPage
Xyz macro set and clear the corresponding bit, respectively.
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Table 8-2. Flags describing the status of a page frame

Flag name Meaning

PG_locked The page is locked; for instance, it is involved in a disk I/O operation.

PG_error An I/O error occurred while transferring the page.

PG_referenced The page has been recently accessed.

PG_uptodate This flag is set after completing a read operation, unless a disk I/O error
happened.

PG_dirty The page has been modified (see the section "Implementing the PFRA" in
Chapter 17).

PG_lru The page is in the active or inactive page list (see the section "The Least
Recently Used (LRU) Lists" in Chapter 17).

PG_active The page is in the active page list (see the section "The Least Recently
Used (LRU) Lists" in Chapter 17).

PG_slab The page frame is included in a slab (see the section "Memory Area
Management" later in this chapter).

PG_highmem The page frame belongs to the ZONE_HIGHMEM zone (see the following
section "Non-Uniform Memory Access (NUMA)").

PG_checked Used by some filesystems such as Ext2 and Ext3 (see Chapter 18).

PG_arch_1 Not used on the 80 x 86 architecture.

PG_reserved The page frame is reserved for kernel code or is unusable.

PG_private The private field of the page descriptor stores meaningful data.

PG_writeback The page is being written to disk by means of the writepage method (see
Chapter 16) .

PG_nosave Used for system suspend/resume.

PG_compound The page frame is handled through the extended paging mechanism (see
the section "Extended Paging" in Chapter 2).

PG_swapcache The page belongs to the swap cache (see the section "The Swap Cache"
in Chapter 17).

PG_mappedtodisk All data in the page frame corresponds to blocks allocated on disk.

PG_reclaim The page has been marked to be written to disk in order to reclaim
memory.

PG_nosave_free Used for system suspend/resume.
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8.1.2. Non-Uniform Memory Access (NUMA)

We are used to thinking of the computer's memory as a homogeneous, shared resource.
Disregarding the role of the hardware caches, we expect the time required for a CPU to
access a memory location to be essentially the same, regardless of the location's physical
address and the CPU. Unfortunately, this assumption is not true in some architectures. For
instance, it is not true for some multiprocessor Alpha or MIPS computers.

Linux 2.6 supports the Non-Uniform Memory Access (NUMA) model, in which the access times
for different memory locations from a given CPU may vary. The physical memory of the system
is partitioned in several nodes . The time needed by a given CPU to access pages within a
single node is the same. However, this time might not be the same for two different CPUs. For
every CPU, the kernel tries to minimize the number of accesses to costly nodes by carefully
selecting where the kernel data structures that are most often referenced by the CPU are
stored.[*]

[*] Furthermore, the Linux kernel makes use of NUMA even for some peculiar uniprocessor systems that have huge "holes" in the
physical address space. The kernel handles these architectures by assigning the contiguous subranges of valid physical
addresses to different memory nodes .

The physical memory inside each node can be split into several zones, as we will see in the
next section. Each node has a descriptor of type pg_data_t, whose fields are shown in Table
8-3. All node descriptors are stored in a singly linked list, whose first element is pointed to by
the pgdat_list variable.

Table 8-3. The fields of the node descriptor

Type Name Description

struct zone [ ] node_zones Array of zone descriptors of the node

struct zonelist [ ] node_zonelists

Array of zonelist data structures used by the
page allocator (see the later section "Memory
Zones")

int nr_zones Number of zones in the node

struct page * node_mem_map Array of page descriptors of the node

struct

bootmem_data *

bdata Used in the kernel initialization phase

unsigned long node_start_pfn Index of the first page frame in the node

unsigned long node_present_pages Size of the memory node, excluding holes (in
page frames)

unsigned long node_spanned_pages Size of the node, including holes (in page
frames)

int node_id Identifier of the node

pg_data_t * pgdat_next Next item in the memory node list
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Table 8-3. The fields of the node descriptor

Type Name Description

wait_queue_head_t kswapd_wait
Wait queue for the kswapd pageout daemon
(see the section "Periodic Reclaiming" in
Chapter 17)

struct task_struct * kswapd Pointer to the process descriptor of the 
kswapd kernel thread

int kswapd_max_order Logarithmic size of free blocks to be created
by kswapd

As usual, we are mostly concerned with the 80 x 86 architecture. IBM-compatible PCs use the
Uniform Memory Access model (UMA), thus the NUMA support is not really required. However,
even if NUMA support is not compiled in the kernel, Linux makes use of a single node that
includes all system physical memory. Thus, the pgdat_list variable points to a list consisting
of a single elementthe node 0 descriptorstored in the contig_page_data variable.

On the 80 x 86 architecture, grouping the physical memory in a single node might appear
useless; however, this approach makes the memory handling code more portable, because the
kernel can assume that the physical memory is partitioned in one or more nodes in all
architectures.[*]

[*] We have another example of this kind of design choice: Linux uses four levels of Page Tables even w hen the hardw are
architecture defines just tw o levels (see the section "Paging in Linux" in Chapter 2).

8.1.3. Memory Zones

In an ideal computer architecture, a page frame is a memory storage unit that can be used for
anything: storing kernel and user data, buffering disk data, and so on. Every kind of page of
data can be stored in a page frame, without limitations.

However, real computer architectures have hardware constraints that may limit the way page
frames can be used. In particular, the Linux kernel must deal with two hardware constraints of
the 80 x 86 architecture:

 The Direct Memory Access (DMA) processors for old ISA buses have a strong
limitation: they are able to address only the first 16 MB of RAM.

 In modern 32-bit computers with lots of RAM, the CPU cannot directly access all
physical memory because the linear address space is too small.

To cope with these two limitations, Linux 2.6 partitions the physical memory of every memory
node into three zones. In the 80 x 86 UMA architecture the zones are:

ZONE_DMA

Contains page frames of memory below 16 MB

ZONE_NORMAL

Contains page frames of memory at and above 16 MB and below 896 MB
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ZONE_HIGHMEM

Contains page frames of memory at and above 896 MB

The ZONE_DMA zone includes page frames that can be used by old ISA-based devices by means
of the DMA. (The section "Direct Memory Access (DMA)" in Chapter 13 gives further details on
DMA.)

The ZONE_DMA and ZONE_NORMAL zones include the "normal" page frames that can be directly
accessed by the kernel through the linear mapping in the fourth gigabyte of the linear address
space (see the section "Kernel Page Tables" in Chapter 2). Conversely, the ZONE_HIGHMEM zone
includes page frames that cannot be directly accessed by the kernel through the linear
mapping in the fourth gigabyte of linear address space (see the section "Kernel Mappings of
High-Memory Page Frames" later in this chapter). The ZONE_HIGHMEM zone is always empty on
64-bit architectures.

Each memory zone has its own descriptor of type zone. Its fields are shown in Table 8-4.

Table 8-4. The fields of the zone descriptor

Type Name Description

unsigned long free_pages Number of free pages in the zone.

unsigned long pages_min

Number of reserved pages of the zone (see the
section "The Pool of Reserved Page Frames"
later in this chapter).

unsigned long pages_low

Low watermark for page frame reclaiming; also
used by the zone allocator as a threshold value
(see the section "The Zone Allocator" later in
this chapter).

unsigned long pages_high High watermark for page frame reclaiming; also
used by the zone allocator as a threshold value.

unsigned long [] lowmem_reserve
Specifies how many page frames in each zone
must be reserved for handling low-on-memory
critical situations.

struct
per_cpu_pageset[] pageset

Data structure used to implement special
caches of single page frames (see the section "
The Per-CPU Page Frame Cache" later in this
chapter).

spinlock_t lock Spin lock protecting the descriptor.

struct free_area [] free_area
Identifies the blocks of free page frames in the
zone (see the section "The Buddy System
Algorithm" later in this chapter).

spinlock_t lru_lock Spin lock for the active and inactive lists.

struct list head active_list List of active pages in the zone (see Chapter 17
).
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Table 8-4. The fields of the zone descriptor

Type Name Description

struct list head inactive_list List of inactive pages in the zone (see Chapter
17).

unsigned long nr_scan_active
Number of active pages to be scanned when
reclaiming memory (see the section "Low On
Memory Reclaiming" in Chapter 17).

unsigned long nr_scan_inactive Number of inactive pages to be scanned when
reclaiming memory.

unsigned long nr_active Number of pages in the zone's active list.

unsigned long nr_inactive Number of pages in the zone's inactive list.

unsigned long pages_scanned Counter used when doing page frame reclaiming
in the zone.

int all_unreclaimable Flag set when the zone is full of unreclaimable
pages.

int temp_priority Temporary zone's priority (used when doing
page frame reclaiming).

int prev_priority

Zone's priority ranging between 12 and 0 (used
by the page frame reclaiming algorithm, see the
section "Low On Memory Reclaiming" in Chapter
17).

wait_queue_head_t * wait_table Hash table of wait queues of processes waiting
for one of the pages of the zone.

unsigned long wait_table_size Size of the wait queue hash table.

unsigned long wait_table_bits Power-of-2 order of the size of the wait queue
hash table array.

struct pglist_data * zone_pgdat Memory node (see the earlier section "
Non-Uniform Memory Access (NUMA)").

struct page * zone_mem_map Pointer to first page descriptor of the zone.

unsigned long zone_start_pfn Index of the first page frame of the zone.

unsigned long spanned_pages Total size of zone in pages, including holes.

unsigned long present_pages Total size of zone in pages, excluding holes.

char * name Pointer to the conventional name of the zone:
"DMA," "Normal," or "HighMem."
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Many fields of the zone structure are used for page frame reclaiming and will be described in
Chapter 17.

Each page descriptor has links to the memory node and to the zone inside the node that
includes the corresponding page frame. To save space, these links are not stored as classical
pointers; rather, they are encoded as indices stored in the high bits of the flags field. In fact,
the number of flags that characterize a page frame is limited, thus it is always possible to
reserve the most significant bits of the flags field to encode the proper memory node and
zone number.[*] The page_zone( ) function receives as its parameter the address of a page
descriptor; it reads the most significant bits of the flags field in the page descriptor, then it
determines the address of the corresponding zone descriptor by looking in the zone_table
array. This array is initialized at boot time with the addresses of all zone descriptors of all
memory nodes.

[*] The number of bits reserved for the indices depends on w hether the kernel supports the NUMA model and on the size of the
flags field. If NUMA is not supported, the flags field has tw o bits for the zone index and one bitalw ays set to zerofor the node
index. On NUMA 32-bit architectures, flags has tw o bits for the zone index and six bits for the node number. Finally, on NUMA
64-bit architectures, the 64-bit flags field has 2 bits for the zone index and 10 bits for the node number.

When the kernel invokes a memory allocation function, it must specify the zones that contain
the requested page frames. The kernel usually specifies which zones it's willing to use. For
instance, if a page frame must be directly mapped in the fourth gigabyte of linear addresses
but it is not going to be used for ISA DMA transfers, then the kernel requests a page frame
either in ZONE_NORMAL or in ZONE_DMA. Of course, the page frame should be obtained from
ZONE_DMA only if ZONE_NORMAL does not have free page frames. To specify the preferred zones in
a memory allocation request, the kernel uses the zonelist data structure, which is an array of
zone descriptor pointers.

8.1.4. The Pool of Reserved Page Frames

Memory allocation requests can be satisfied in two different ways. If enough free memory is
available, the request can be satisfied immediately. Otherwise, some memory reclaiming must
take place, and the kernel control path that made the request is blocked until additional
memory has been freed.

However, some kernel control paths cannot be blocked while requesting memorythis happens,
for instance, when handling an interrupt or when executing code inside a critical region. In
these cases, a kernel control path should issue atomic memory allocation requests (using
the GFP_ATOMIC flag; see the later section "The Zoned Page Frame Allocator"). An atomic
request never blocks: if there are not enough free pages, the allocation simply fails.

Although there is no way to ensure that an atomic memory allocation request never fails, the
kernel tries hard to minimize the likelihood of this unfortunate event. In order to do this, the
kernel reserves a pool of page frames for atomic memory allocation requests to be used only
on low-on-memory conditions.

The amount of the reserved memory (in kilobytes) is stored in the min_free_kbytes variable.
Its initial value is set during kernel initialization and depends on the amount of physical
memory that is directly mapped in the kernel's fourth gigabyte of linear addressesthat is, it
depends on the number of page frames included in the ZONE_DMA and ZONE_NORMAL memory
zones:

However, initially min_free_kbytes cannot be lower than 128 and greater than 65,536.[*]

[*] The amount of reserved memory can be changed later by the system administrator either by w riting in the
/proc/sys/vm/min_free_kbytes file or by issuing a suitable sysctl( ) system call.

The ZONE_DMA and ZONE_NORMAL memory zones contribute to the reserved memory with a
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number of page frames proportional to their relative sizes. For instance, if the ZONE_NORMAL
zone is eight times bigger than ZONE_DMA, seven-eighths of the page frames will be taken from
ZONE_NORMAL and one-eighth from ZONE_DMA.

The pages_min field of the zone descriptor stores the number of reserved page frames inside
the zone. As we'll see in Chapter 17, this field plays also a role for the page frame reclaiming
algorithm, together with the pages_low and pages_high fields. The pages_low field is always set
to 5/4 of the value of pages_min, and pages_high is always set to 3/2 of the value of pages_min
.

8.1.5. The Zoned Page Frame Allocator

The kernel subsystem that handles the memory allocation requests for groups of contiguous
page frames is called the zoned page frame allocator . Its main components are shown in
Figure 8-2.

The component named "zone allocator " receives the requests for allocation and deallocation
of dynamic memory. In the case of allocation requests, the component searches a memory
zone that includes a group of contiguous page frames that can satisfy the request (see the
later section "The Zone Allocator"). Inside each zone, page frames are handled by a
component named "buddy system " (see the later section "The Buddy System Algorithm"). To
get better system performance, a small number of page frames are kept in cache to quickly
satisfy the allocation requests for single page frames (see the later section "The Per-CPU
Page Frame Cache").

Figure 8-2. Components of the zoned page frame allocator

8.1.5.1. Requesting and releasing page frames

Page frames can be requested by using six slightly different functions and macros. Unless
otherwise stated, they return the linear address of the first allocated page or return NULL if
the allocation failed.

alloc_pages(gfp_mask, order)

Macro used to request 2order contiguous page frames. It returns the address of the
descriptor of the first allocated page frame or returns NULL if the allocation failed.
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alloc_page(gfp_mask)

Macro used to get a single page frame; it expands to:

alloc_pages(gfp_mask, 0)

It returns the address of the descriptor of the allocated page frame or returns NULL if
the allocation failed.

_ _get_free_pages(gfp_mask, order)

Function that is similar to alloc_pages( ), but it returns the linear address of the first
allocated page.

_ _get_free_page(gfp_mask)

Macro used to get a single page frame; it expands to:

_ _get_free_pages(gfp_mask, 0)

get_zeroed_page(gfp_mask)

Function used to obtain a page frame filled with zeros; it invokes:

alloc_pages(gfp_mask | _ _GFP_ZERO, 0)

and returns the linear address of the obtained page frame.

_ _get_dma_pages(gfp_mask, order)

Macro used to get page frames suitable for DMA; it expands to:

_ _get_free_pages(gfp_mask | _ _GFP_DMA, order)

The parameter gfp_mask is a group of flags that specify how to look for free page frames. The
flags that can be used in gfp_mask are shown in Table 8-5.

Table 8-5. Flag used to request page frames

Flag Description

_ _GFP_DMA The page frame must belong to the ZONE_DMA memory zone. Equivalent to
GFP_DMA.

_ _GFP_HIGHMEM The page frame may belong to the ZONE_HIGHMEM memory zone.

_ _GFP_WAIT The kernel is allowed to block the current process waiting for free page
frames.

_ _GFP_HIGH The kernel is allowed to access the pool of reserved page frames.
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Table 8-5. Flag used to request page frames

Flag Description

_ _GFP_IO The kernel is allowed to perform I/O transfers on low memory pages in order
to free page frames.

_ _GFP_FS If clear, the kernel is not allowed to perform filesystem-dependent
operations.

_ _GFP_COLD The requested page frames may be "cold" (see the later section "The
Per-CPU Page Frame Cache").

_ _GFP_NOWARN A memory allocation failure will not produce a warning message.

_ _GFP_REPEAT The kernel keeps retrying the memory allocation until it succeeds.

_ _GFP_NOFAIL Same as _ _GFP_REPEAT.

_ _GFP_NORETRY Do not retry a failed memory allocation.

_ _GFP_NO_GROW The slab allocator does not allow a slab cache to be enlarged (see the later
section "The Slab Allocator").

_ _GFP_COMP The page frame belongs to an extended page (see the section "Extended
Paging" in Chapter 2).

_ _GFP_ZERO The page frame returned, if any, must be filled with zeros.

In practice, Linux uses the predefined combinations of flag values shown in Table 8-6; the
group name is what you'll encounter as the argument of the six page frame allocation
functions.

Table 8-6. Groups of flag values used to request page frames

Group name Corresponding flags

GFP_ATOMIC _ _GFP_HIGH

GFP_NOIO _ _GFP_WAIT

GFP_NOFS _ _GFP_WAIT | _ _GFP_IO

GFP_KERNEL _ _GFP_WAIT | _ _GFP_IO | _ _GFP_FS

GFP_USER _ _GFP_WAIT | _ _GFP_IO | _ _GFP_FS

GFP_HIGHUSER _ _GFP_WAIT | _ _GFP_IO | _ _GFP_FS | _ _GFP_HIGHMEM

The _ _GFP_DMA and _ _GFP_HIGHMEM flags are called zone modifiers ; they specify the zones
searched by the kernel while looking for free page frames. The node_zonelists field of the
contig_page_data node descriptor is an array of lists of zone descriptors representing the

Page 306

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


fallback zones: for each setting of the zone modifiers, the corresponding list includes the
memory zones that could be used to satisfy the memory allocation request in case the original
zone is short on page frames. In the 80 x 86 UMA architecture, the fallback zones are the
following:

 If the _ _GFP_DMA flag is set, page frames can be taken only from the ZONE_DMA memory
zone.

 Otherwise, if the _ _GFP_HIGHMEM flag is not set, page frames can be taken only from
the ZONE_NORMAL and the ZONE_DMA memory zones, in order of preference.

 Otherwise (the _ _GFP_HIGHMEM flag is set), page frames can be taken from
ZONE_HIGHMEM, ZONE_NORMAL, and ZONE_DMA memory zones, in order of preference.

Page frames can be released through each of the following four functions and macros:

_ _free_pages(page, order)

This function checks the page descriptor pointed to by page; if the page frame is not
reserved (i.e., if the PG_reserved flag is equal to 0), it decreases the count field of the
descriptor. If count becomes 0, it assumes that 2order contiguous page frames starting
from the one corresponding to page are no longer used. In this case, the function
releases the page frames as explained in the later section "The Zone Allocator."

free_pages(addr, order)

This function is similar to _ _free_pages( ), but it receives as an argument the linear
address addr of the first page frame to be released.

_ _free_page(page)

This macro releases the page frame having the descriptor pointed to by page; it
expands to:

_ _free_pages(page, 0)

free_page(addr)

This macro releases the page frame having the linear address addr; it expands to:

free_pages(addr, 0)

8.1.6. Kernel Mappings of High-Memory Page Frames

The linear address that corresponds to the end of the directly mapped physical memory, and
thus to the beginning of the high memory, is stored in the high_memory variable, which is set to
896 MB. Page frames above the 896 MB boundary are not generally mapped in the fourth
gigabyte of the kernel linear address spaces, so the kernel is unable to directly access them.
This implies that each page allocator function that returns the linear address of the assigned
page frame doesn't work for high-memory page frames, that is, for page frames in the
ZONE_HIGHMEM memory zone.

For instance, suppose that the kernel invoked _ _get_free_pages(GFP_HIGHMEM,0) to allocate a
page frame in high memory. If the allocator assigned a page frame in high memory, _
_get_free_pages( ) cannot return its linear address because it doesn't exist; thus, the
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function returns NULL. In turn, the kernel cannot use the page frame; even worse, the page
frame cannot be released because the kernel has lost track of it.

This problem does not exist on 64-bit hardware platforms, because the available linear address
space is much larger than the amount of RAM that can be installedin short, the ZONE_HIGHMEM
zone of these architectures is always empty. On 32-bit platforms such as the 80 x 86
architecture, however, Linux designers had to find some way to allow the kernel to exploit all
the available RAM, up to the 64 GB supported by PAE. The approach adopted is the following:

 The allocation of high-memory page frames is done only through the alloc_pages( )
function and its alloc_page( ) shortcut. These functions do not return the linear
address of the first allocated page frame, because if the page frame belongs to the
high memory, such linear address simply does not exist. Instead, the functions return
the linear address of the page descriptor of the first allocated page frame. These linear
addresses always exist, because all page descriptors are allocated in low memory once
and forever during the kernel initialization.

 Page frames in high memory that do not have a linear address cannot be accessed by
the kernel. Therefore, part of the last 128 MB of the kernel linear address space is
dedicated to mapping high-memory page frames. Of course, this kind of mapping is
temporary, otherwise only 128 MB of high memory would be accessible. Instead, by
recycling linear addresses the whole high memory can be accessed, although at
different times.

The kernel uses three different mechanisms to map page frames in high memory; they are
called permanent kernel mapping, temporary kernel mapping, and noncontiguous memory
allocation. In this section, we'll cover the first two techniques; the third one is discussed in
the section "Noncontiguous Memory Area Management" later in this chapter.

Establishing a permanent kernel mapping may block the current process; this happens when no
free Page Table entries exist that can be used as "windows" on the page frames in high
memory. Thus, a permanent kernel mapping cannot be established in interrupt handlers and
deferrable functions. Conversely, establishing a temporary kernel mapping never requires
blocking the current process; its drawback, however, is that very few temporary kernel
mappings can be established at the same time.

A kernel control path that uses a temporary kernel mapping must ensure that no other kernel
control path is using the same mapping. This implies that the kernel control path can never
block, otherwise another kernel control path might use the same window to map some other
high memory page.

Of course, none of these techniques allow addressing the whole RAM simultaneously. After all,
less than 128 MB of linear address space are left for mapping the high memory, while PAE
supports systems having up to 64 GB of RAM.

8.1.6.1. Permanent kernel mappings

Permanent kernel mappings allow the kernel to establish long-lasting mappings of high-memory
page frames into the kernel address space. They use a dedicated Page Table in the master
kernel page tables . The pkmap_page_table variable stores the address of this Page Table, while
the LAST_PKMAP macro yields the number of entries. As usual, the Page Table includes either
512 or 1,024 entries, according to whether PAE is enabled or disabled (see the section "The
Physical Address Extension (PAE) Paging Mechanism" in Chapter 2); thus, the kernel can
access at most 2 or 4 MB of high memory at once.

The Page Table maps the linear addresses starting from PKMAP_BASE. The pkmap_count array
includes LAST_PKMAP counters, one for each entry of the pkmap_page_table Page Table. We
distinguish three cases:

The counter is 0
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The corresponding Page Table entry does not map any high-memory page frame and is
usable.

The counter is 1

The corresponding Page Table entry does not map any high-memory page frame, but it
cannot be used because the corresponding TLB entry has not been flushed since its
last usage.

The counter is n (greater than 1)

The corresponding Page Table entry maps a high-memory page frame, which is used by
exactly n - 1 kernel components.

To keep track of the association between high memory page frames and linear addresses
induced by permanent kernel mappings , the kernel makes use of the page_address_htable hash
table. This table contains one page_address_map data structure for each page frame in high
memory that is currently mapped. In turn, this data structure contains a pointer to the page
descriptor and the linear address assigned to the page frame.

The page_address( ) function returns the linear address associated with the page frame, or
NULL if the page frame is in high memory and is not mapped. This function, which receives as
its parameter a page descriptor pointer page, distinguishes two cases:

1. If the page frame is not in high memory (PG_highmem flag clear), the linear address
always exists and is obtained by computing the page frame index, converting it into a
physical address, and finally deriving the linear address corresponding to the physical
address. This is accomplished by the following code:

2.
_ _va((unsigned long)(page  -  mem_map)  <<  12)

3. If the page frame is in high memory (PG_highmem flag set), the function looks into the
page_address_htable hash table. If the page frame is found in the hash table,
page_address( ) returns its linear address, otherwise it returns NULL.

The kmap( ) function establishes a permanent kernel mapping. It is essentially equivalent to
the following code:

void * kmap(struct page * page)

{

    if (!PageHighMem(page))

        return page_address(page);

    return kmap_high(page);

}

The kmap_high( ) function is invoked if the page frame really belongs to high memory. The
function is essentially equivalent to the following code:

void * kmap_high(struct page * page)

{

    unsigned long vaddr;

    spin_lock(&kmap_lock);

    vaddr = (unsigned long) page_address(page);

    if (!vaddr)

        vaddr = map_new_virtual(page);

    pkmap_count[(vaddr-PKMAP_BASE) >> PAGE_SHIFT]++;
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    spin_unlock(&kmap_lock);

    return (void *) vaddr;

}

The function gets the kmap_lock spin lock to protect the Page Table against concurrent
accesses in multiprocessor systems. Notice that there is no need to disable the interrupts,
because kmap( ) cannot be invoked by interrupt handlers and deferrable functions. Next, the
kmap_high( ) function checks whether the page frame is already mapped by invoking
page_address( ). If not, the function invokes map_new_virtual( ) to insert the page frame
physical address into an entry of pkmap_page_table and to add an element to the
page_address_htable hash table. Then kmap_high( ) increases the counter corresponding to
the linear address of the page frame to take into account the new kernel component that
invoked this function. Finally, kmap_high( ) releases the kmap_lock spin lock and returns the
linear address that maps the page frame.

The map_new_virtual( ) function essentially executes two nested loops:

    for (;;) {

        int count;

        DECLARE_WAITQUEUE(wait, current);

        for (count = LAST_PKMAP; count > 0; --count) {

            last_pkmap_nr = (last_pkmap_nr + 1) & (LAST_PKMAP - 1);

            if (!last_pkmap_nr) {

                flush_all_zero_pkmaps( );

                count = LAST_PKMAP;

            }

            if (!pkmap_count[last_pkmap_nr]) {

                unsigned long vaddr = PKMAP_BASE +

                                      (last_pkmap_nr << PAGE_SHIFT);

                set_pte(&(pkmap_page_table[last_pkmap_nr]),

                        mk_pte(page, _ _pgprot(0x63)));

                pkmap_count[last_pkmap_nr] = 1;

                set_page_address(page, (void *) vaddr);

                return vaddr;

            }

        }

        current->state = TASK_UNINTERRUPTIBLE;

        add_wait_queue(&pkmap_map_wait, &wait);

        spin_unlock(&kmap_lock);

        schedule( );

        remove_wait_queue(&pkmap_map_wait, &wait);

        spin_lock(&kmap_lock);

        if (page_address(page))

            return (unsigned long) page_address(page);

    }

In the inner loop, the function scans all counters in pkmap_count until it finds a null value. The
large if block runs when an unused entry is found in pkmap_count. That block determines the
linear address corresponding to the entry, creates an entry for it in the pkmap_page_table Page
Table, sets the count to 1 because the entry is now used, invokes set_page_address( ) to
insert a new element in the page_address_htable hash table, and returns the linear address.

The function starts where it left off last time, cycling through the pkmap_count array. It does
this by preserving in a variable named last_pkmap_nr the index of the last used entry in the
pkmap_page_table Page Table. Thus, the search starts from where it was left in the last
invocation of the map_new_virtual( ) function.

When the last counter in pkmap_count is reached, the search restarts from the counter at
index 0. Before continuing, however, map_new_virtual( ) invokes the flush_all_zero_pkmaps( )
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function, which starts another scan of the counters, looking for those that have the value 1.
Each counter that has a value of 1 denotes an entry in pkmap_page_table that is free but
cannot be used because the corresponding TLB entry has not yet been flushed. 
flush_all_zero_pkmaps( ) resets their counters to zero, deletes the corresponding elements
from the page_address_htable hash table, and issues TLB flushes on all entries of
pkmap_page_table.

If the inner loop cannot find a null counter in pkmap_count, the map_new_virtual( ) function
blocks the current process until some other process releases an entry of the pkmap_page_table
Page Table. This is achieved by inserting current in the pkmap_map_wait wait queue, setting
the current state to TASK_UNINTERRUPTIBLE, and invoking schedule( ) to relinquish the CPU.
Once the process is awakened, the function checks whether another process has mapped the
page by invoking page_address( ); if no other process has mapped the page yet, the inner
loop is restarted.

The kunmap( ) function destroys a permanent kernel mapping established previously by kmap( )
. If the page is really in the high memory zone, it invokes the kunmap_high( ) function, which is
essentially equivalent to the following code:

void kunmap_high(struct page * page)

{

    spin_lock(&kmap_lock);

    if ((--pkmap_count[((unsigned long)page_address(page)

                        -PKMAP_BASE)>>PAGE_SHIFT]) == 1)

        if (waitqueue_active(&pkmap_map_wait))

            wake_up(&pkmap_map_wait);

    spin_unlock(&kmap_lock);

}

The expression within the brackets computes the index into the pkmap_count array from the
page's linear address. The counter is decreased and compared to 1. A successful comparison
indicates that no process is using the page. The function can finally wake up processes in the
wait queue filled by map_new_virtual( ), if any.

8.1.6.2. Temporary kernel mappings

Temporary kernel mappings are simpler to implement than permanent kernel mappings;
moreover, they can be used inside interrupt handlers and deferrable functions, because
requesting a temporary kernel mapping never blocks the current process.

Every page frame in high memory can be mapped through a window in the kernel address
spacenamely, a Page Table entry that is reserved for this purpose. The number of windows
reserved for temporary kernel mappings is quite small.

Each CPU has its own set of 13 windows, represented by the enum km_type data structure.
Each symbol defined in this data structuresuch as KM_BOUNCE_READ, KM_USER0, or KM_PTE0
identifies the linear address of a window.

The kernel must ensure that the same window is never used by two kernel control paths at
the same time. Thus, each symbol in the km_type structure is dedicated to one kernel
component and is named after the component. The last symbol, KM_TYPE_NR, does not
represent a linear address by itself, but yields the number of different windows usable by
every CPU.

Each symbol in km_type, except the last one, is an index of a fix-mapped linear address (see
the section "Fix-Mapped Linear Addresses" in Chapter 2). The enum fixed_addresses data
structure includes the symbols FIX_KMAP_BEGIN and FIX_KMAP_END; the latter is assigned to the
index FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS) - 1. In this manner, there are KM_TYPE_NR
fix-mapped linear addresses for each CPU in the system. Furthermore, the kernel initializes
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the kmap_pte variable with the address of the Page Table entry corresponding to the
fix_to_virt(FIX_KMAP_BEGIN) linear address.

To establish a temporary kernel mapping, the kernel invokes the kmap_atomic( ) function,
which is essentially equivalent to the following code:

void * kmap_atomic(struct page * page, enum km_type type)

{

    enum fixed_addresses idx;

    unsigned long vaddr;

    current_thread_info( )->preempt_count++;

    if (!PageHighMem(page))

        return page_address(page);

    idx = type + KM_TYPE_NR * smp_processor_id( );

    vaddr = fix_to_virt(FIX_KMAP_BEGIN + idx);

    set_pte(kmap_pte-idx, mk_pte(page, 0x063));

    _ _flush_tlb_single(vaddr);

    return (void *) vaddr;

}

The type argument and the CPU identifier retrieved through smp_processor_id( ) specify what
fix-mapped linear address has to be used to map the request page. The function returns the
linear address of the page frame if it doesn't belong to high memory; otherwise, it sets up the
Page Table entry corresponding to the fix-mapped linear address with the page's physical
address and the bits Present, Accessed, Read/Write, and Dirty. Finally, the function flushes the
proper TLB entry and returns the linear address.

To destroy a temporary kernel mapping, the kernel uses the kunmap_atomic( ) function. In the
80 x 86 architecture, this function decreases the preempt_count of the current process; thus,
if the kernel control path was preemptable right before requiring a temporary kernel mapping,
it will be preemptable again after it has destroyed the same mapping. Moreover, 
kunmap_atomic( ) checks whether the TIF_NEED_RESCHED flag of current is set and, if so,
invokes schedule( ).

8.1.7. The Buddy System Algorithm

The kernel must establish a robust and efficient strategy for allocating groups of contiguous
page frames. In doing so, it must deal with a well-known memory management problem called 
external fragmentation: frequent requests and releases of groups of contiguous page frames
of different sizes may lead to a situation in which several small blocks of free page frames are
"scattered" inside blocks of allocated page frames. As a result, it may become impossible to
allocate a large block of contiguous page frames, even if there are enough free pages to
satisfy the request.

There are essentially two ways to avoid external fragmentation:

 Use the paging circuitry to map groups of noncontiguous free page frames into
intervals of contiguous linear addresses.

 Develop a suitable technique to keep track of the existing blocks of free contiguous
page frames, avoiding as much as possible the need to split up a large free block to
satisfy a request for a smaller one.

The second approach is preferred by the kernel for three good reasons:

 In some cases, contiguous page frames are really necessary, because contiguous linear
addresses are not sufficient to satisfy the request. A typical example is a memory
request for buffers to be assigned to a DMA processor (see Chapter 13). Because most
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DMAs ignore the paging circuitry and access the address bus directly while transferring
several disk sectors in a single I/O operation, the buffers requested must be located in
contiguous page frames.

 Even if contiguous page frame allocation is not strictly necessary, it offers the big
advantage of leaving the kernel paging tables unchanged. What's wrong with modifying
the Page Tables? As we know from Chapter 2, frequent Page Table modifications lead
to higher average memory access times, because they make the CPU flush the
contents of the translation lookaside buffers.

 Large chunks of contiguous physical memory can be accessed by the kernel through 4
MB pages. This reduces the translation lookaside buffers misses, thus significantly
speeding up the average memory access time (see the section "Translation Lookaside
Buffers (TLB)" in Chapter 2).

The technique adopted by Linux to solve the external fragmentation problem is based on the
well-known buddy system algorithm. All free page frames are grouped into 11 lists of blocks
that contain groups of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 contiguous page
frames, respectively. The largest request of 1024 page frames corresponds to a chunk of 4 MB
of contiguous RAM. The physical address of the first page frame of a block is a multiple of the
group sizefor example, the initial address of a 16-page-frame block is a multiple of 16 x 212 (212

= 4,096, which is the regular page size).

We'll show how the algorithm works through a simple example:

Assume there is a request for a group of 256 contiguous page frames (i.e., one megabyte).
The algorithm checks first to see whether a free block in the 256-page-frame list exists. If
there is no such block, the algorithm looks for the next larger blocka free block in the
512-page-frame list. If such a block exists, the kernel allocates 256 of the 512 page frames to
satisfy the request and inserts the remaining 256 page frames into the list of free
256-page-frame blocks. If there is no free 512-page block, the kernel then looks for the next
larger block (i.e., a free 1024-page-frame block). If such a block exists, it allocates 256 of the
1024 page frames to satisfy the request, inserts the first 512 of the remaining 768 page
frames into the list of free 512-page-frame blocks, and inserts the last 256 page frames into
the list of free 256-page-frame blocks. If the list of 1024-page-frame blocks is empty, the
algorithm gives up and signals an error condition.

The reverse operation, releasing blocks of page frames, gives rise to the name of this
algorithm. The kernel attempts to merge pairs of free buddy blocks of size b together into a
single block of size 2b. Two blocks are considered buddies if:

 Both blocks have the same size, say b.

 They are located in contiguous physical addresses.

 The physical address of the first page frame of the first block is a multiple of 2 x b x 212

.

The algorithm is iterative; if it succeeds in merging released blocks, it doubles b and tries
again so as to create even bigger blocks.

8.1.7.1. Data structures

Linux 2.6 uses a different buddy system for each zone. Thus, in the 80 x 86 architecture,
there are 3 buddy systems: the first handles the page frames suitable for ISA DMA, the
second handles the "normal" page frames, and the third handles the high-memory page
frames. Each buddy system relies on the following main data structures :

 The mem_map array introduced previously. Actually, each zone is concerned with a
subset of the mem_map elements. The first element in the subset and its number of
elements are specified, respectively, by the zone_mem_map and size fields of the zone
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descriptor.

 An array consisting of eleven elements of type free_area, one element for each group
size. The array is stored in the free_area field of the zone descriptor.

Let us consider the kth element of the free_area array in the zone descriptor, which identifies
all the free blocks of size 2k. The free_list field of this element is the head of a doubly linked
circular list that collects the page descriptors associated with the free blocks of 2k pages.
More precisely, this list includes the page descriptors of the starting page frame of every
block of 2k free page frames; the pointers to the adjacent elements in the list are stored in
the lru field of the page descriptor.[*]

[*] As w e'll see later, the lru field of the page descriptor can be used w ith other meanings w hen the page is not free.

Besides the head of the list, the kth element of the free_area array includes also the field
nr_free, which specifies the number of free blocks of size 2k pages. Of course, if there are no
blocks of 2k free page frames, nr_free is equal to 0 and the free_list list is empty (both
pointers of free_list point to the free_list field itself).

Finally, the private field of the descriptor of the first page in a block of 2k free pages stores
the order of the block, that is, the number k. Thanks to this field, when a block of pages is
freed, the kernel can determine whether the buddy of the block is also free and, if so, it can
coalesce the two blocks in a single block of 2k+1 pages. It should be noted that up to Linux
2.6.10, the kernel used 10 arrays of flags to encode this information.

8.1.7.2. Allocating a block

The _ _rmqueue( ) function is used to find a free block in a zone. The function takes two
arguments: the address of the zone descriptor, and order, which denotes the logarithm of the
size of the requested block of free pages (0 for a one-page block, 1 for a two-page block, and
so forth). If the page frames are successfully allocated, the _ _rmqueue( ) function returns
the address of the page descriptor of the first allocated page frame. Otherwise, the function
returns NULL.

The _ _rmqueue( ) function assumes that the caller has already disabled local interrupts and
acquired the zone->lock spin lock, which protects the data structures of the buddy system. It
performs a cyclic search through each list for an available block (denoted by an entry that
doesn't point to the entry itself), starting with the list for the requested order and continuing
if necessary to larger orders:

struct free_area *area;

unsigned int current_order;

for (current_order=order; current_order<11; ++current_order) {

    area = zone->free_area + current_order;

    if (!list_empty(&area->free_list))

        goto block_found;

}

return NULL;

If the loop terminates, no suitable free block has been found, so _ _rmqueue( ) returns a NULL
value. Otherwise, a suitable free block has been found; in this case, the descriptor of its first
page frame is removed from the list and the value of free_ pages in the zone descriptor is
decreased:

block_found:

    page = list_entry(area->free_list.next, struct page, lru);

    list_del(&page->lru);
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    ClearPagePrivate(page);

    page->private = 0;

    area->nr_free--;

    zone->free_pages -= 1UL << order;

If the block found comes from a list of size curr_order greater than the requested size order,
a while cycle is executed. The rationale behind these lines of codes is as follows: when it
becomes necessary to use a block of 2k page frames to satisfy a request for 2h page frames (
h < k), the program allocates the first 2h page frames and iteratively reassigns the last 2k - 2h

page frames to the free_area lists that have indexes between h and k:

    size = 1 << curr_order;

    while (curr_order > order) {

        area--;

        curr_order--;

        size >>= 1;

        buddy = page + size;

        /* insert buddy as first element in the list */

        list_add(&buddy->lru, &area->free_list);

        area->nr_free++;

        buddy->private = curr_order;

        SetPagePrivate(buddy);

    }

    return page;

Because the _ _rmqueue( ) function has found a suitable free block, it returns the address
page of the page descriptor associated with the first allocated page frame.

8.1.7.3. Freeing a block

The _ _free_pages_bulk( ) function implements the buddy system strategy for freeing page
frames. It uses three basic input parameters:[*]

[*] For performance reasons, this inline function also uses another parameter; its value, how ever, can be determined by the three
basic parameters show n in the text.

page

The address of the descriptor of the first page frame included in the block to be
released

zone

The address of the zone descriptor

order

The logarithmic size of the block

The function assumes that the caller has already disabled local interrupts and acquired the 
zone->lock spin lock, which protects the data structure of the buddy system. _
_free_pages_bulk( ) starts by declaring and initializing a few local variables:

struct page * base = zone->zone_mem_map;

unsigned long buddy_idx, page_idx = page - base;

struct page * buddy, * coalesced;
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int order_size = 1 << order;

The page_idx local variable contains the index of the first page frame in the block with respect
to the first page frame of the zone.

The order_size local variable is used to increase the counter of free page frames in the zone:

zone->free_pages += order_size;

The function now performs a cycle executed at most 10- order times, once for each
possibility for merging a block with its buddy. The function starts with the smallest-sized block
and moves up to the top size:

while (order < 10) {

    buddy_idx = page_idx ^ (1 << order);

    buddy = base + buddy_idx;

    if (!page_is_buddy(buddy, order))

        break;

    list_del(&buddy->lru);

    zone->free_area[order].nr_free--;

    ClearPagePrivate(buddy);

    buddy->private = 0;

    page_idx &= buddy_idx;

    order++;

}

In the body of the loop, the function looks for the index buddy_idx of the block, which is
buddy to the one having the page descriptor index page_idx. It turns out that this index can
be easily computed as:

buddy_idx = page_idx ^ (1 << order);

In fact, an Exclusive OR (XOR) using the (1<<order) mask switches the value of the order-th
bit of page_idx. Therefore, if the bit was previously zero, buddy_idx is equal to page_idx+
order_size; conversely, if the bit was previously one, buddy_idx is equal to page_idx -
order_size.

Once the buddy block index is known, the page descriptor of the buddy block can be easily
obtained as:

buddy = base + buddy_idx;

Now the function invokes page_is_buddy() to check if buddy describes the first page of a block
of order_size free page frames.

int page_is_buddy(struct page *page, int order)

{

    if (PagePrivate(buddy) && page->private == order &&

          !PageReserved(buddy) && page_count(page) ==0)

        return 1;

    return 0;

}

As you see, the buddy's first page must be free ( _count field equal to -1), it must belong to
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the dynamic memory (PG_reserved bit clear), its private field must be meaningful (PG_private
bit set), and finally the private field must store the order of the block being freed.

If all these conditions are met, the buddy block is free and the function removes the buddy
block from the list of free blocks of order order, and performs one more iteration looking for
buddy blocks twice as big.

If at least one of the conditions in page_is_buddy( ) is not met, the function breaks out of the
cycle, because the free block obtained cannot be merged further with other free blocks. The
function inserts it in the proper list and updates the private field of the first page frame with
the order of the block size:

coalesced = base + page_idx;

coalesced->private = order;

SetPagePrivate(coalesced);

list_add(&coalesced->lru, &zone->free_area[order].free_list);

zone->free_area[order].nr_free++;

8.1.8. The Per-CPU Page Frame Cache

As we will see later in this chapter, the kernel often requests and releases single page frames.
To boost system performance, each memory zone defines a per-CPU page frame cache. Each
per-CPU cache includes some pre-allocated page frames to be used for single memory
requests issued by the local CPU.

Actually, there are two caches for each memory zone and for each CPU: a hot cache , which
stores page frames whose contents are likely to be included in the CPU's hardware cache, and
a cold cache .

Taking a page frame from the hot cache is beneficial for system performance if either the
kernel or a User Mode process will write into the page frame right after the allocation. In fact,
every access to a memory cell of the page frame will result in a line of the hardware cache
being "stolen" from another page frameunless, of course, the hardware cache already includes
a line that maps the cell of the "hot" page frame just accessed.

Conversely, taking a page frame from the cold cache is convenient if the page frame is going
to be filled with a DMA operation. In this case, the CPU is not involved and no line of the
hardware cache will be modified. Taking the page frame from the cold cache preserves the
reserve of hot page frames for the other kinds of memory allocation requests.

The main data structure implementing the per-CPU page frame cache is an array of 
per_cpu_pageset data structures stored in the pageset field of the memory zone descriptor.
The array includes one element for each CPU; this element, in turn, consists of two 
per_cpu_pages descriptors, one for the hot cache and the other for the cold cache. The fields
of the per_cpu_pages descriptor are listed in Table 8-7.

Table 8-7. The fields of the per_cpu_pages descriptor

Type Name Description

int count Number of pages frame in the cache

int low Low watermark for cache replenishing

int high High watermark for cache depletion

int batch Number of page frames to be added or subtracted from the cache
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Table 8-7. The fields of the per_cpu_pages descriptor

Type Name Description

struct list_head list List of descriptors of the page frames included in the cache

The kernel monitors the size of the both the hot and cold caches by using two watermarks: if
the number of page frames falls below the low watermark, the kernel replenishes the proper
cache by allocating batch single page frames from the buddy system; otherwise, if the number
of page frames rises above the high watermark, the kernel releases to the buddy system batch
page frames in the cache. The values of batch, low, and high essentially depend on the
number of page frames included in the memory zone.

8.1.8.1. Allocating page frames through the per-CPU page frame caches

The buffered_rmqueue( ) function allocates page frames in a given memory zone. It makes use
of the per-CPU page frame caches to handle single page frame requests.

The parameters are the address of the memory zone descriptor, the order of the memory
allocation request order, and the allocation flags gfp_flags. If the _ _GFP_COLD flag is set in
gfp_flags, the page frame should be taken from the cold cache, otherwise it should be taken
from the hot cache (this flag is meaningful only for single page frame requests). The function
essentially executes the following operations:

1. If order is not equal to 0, the per-CPU page frame cache cannot be used: the function
jumps to step 4.

2. Checks whether the memory zone's local per-CPU cache identified by the value of the 
_ _GFP_COLD flag has to be replenished (the count field of the per_cpu_pages descriptor
is lower than or equal to the low field). In this case, it executes the following
substeps:

a. Allocates batch single page frames from the buddy system by repeatedly
invoking the _ _rmqueue( ) function.

b. Inserts the descriptors of the allocated page frames in the cache's list.

c. Updates the value of count by adding the number of page frames actually
allocated.

3. If count is positive, the function gets a page frame from the cache's list, decreases
count, and jumps to step 5. (Observe that a per-CPU page frame cache could be
empty; this happens when the _ _rmqueue( ) function invoked in step 2a fails to
allocate any page frames.)

4. Here, the memory request has not yet been satisfied, either because the request
spans several contiguous page frames, or because the selected page frame cache is
empty. Invokes the _ _rmqueue( ) function to allocate the requested page frames from
the buddy system.

5. If the memory request has been satisfied, the function initializes the page descriptor of
the (first) page frame: clears some flags, sets the private field to zero, and sets the
page frame reference counter to one. Moreover, if the _ _GPF_ZERO flag in gfp_flags is
set, it fills the allocated memory area with zeros.

6. Returns the page descriptor address of the (first) page frame, or NULL if the memory
allocation request failed.

8.1.8.2. Releasing page frames to the per-CPU page frame caches
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In order to release a single page frame to a per-CPU page frame cache, the kernel makes use
of the free_hot_page( ) and free_cold_page( ) functions. Both of them are simple wrappers for
the free_hot_cold_page( ) function, which receives as its parameters the descriptor address
page of the page frame to be released and a cold flag specifying either the hot cache or the
cold cache.

The free_hot_cold_page( ) function executes the following operations:

1. Gets from the page->flags field the address of the memory zone descriptor including
the page frame (see the earlier section "Non-Uniform Memory Access (NUMA)").

2. Gets the address of the per_cpu_pages descriptor of the zone's cache selected by the
cold flag.

3. Checks whether the cache should be depleted: if count is higher than or equal to high,
invokes the free_pages_bulk( ) function, passing to it the zone descriptor, the number
of page frames to be released (batch field), the address of the cache's list, and the
number zero (for 0-order page frames). In turn, the latter function invokes repeatedly
the _ _free_pages_bulk( ) function to releases the specified number of page
framestaken from the cache's listto the buddy system of the memory zone.

4. Adds the page frame to be released to the cache's list, and increases the count field.

It should be noted that in the current version of the Linux 2.6 kernel, no page frame is ever
released to the cold cache: the kernel always assumes the freed page frame is hot with
respect to the hardware cache. Of course, this does not mean that the cold cache is empty:
the cache is replenished by buffered_rmqueue( ) when the low watermark has been reached.

8.1.9. The Zone Allocator

The zone allocator is the frontend of the kernel page frame allocator. This component must
locate a memory zone that includes a number of free page frames large enough to satisfy the
memory request. This task is not as simple as it could appear at a first glance, because the
zone allocator must satisfy several goals:

 It should protect the pool of reserved page frames (see the earlier section "The Pool of
Reserved Page Frames").

 It should trigger the page frame reclaiming algorithm (see Chapter 17) when memory is
scarce and blocking the current process is allowed; once some page frames have been
freed, the zone allocator will retry the allocation.

 It should preserve the small, precious ZONE_DMA memory zone, if possible. For instance,
the zone allocator should be somewhat reluctant to assign page frames in the ZONE_DMA
memory zone if the request was for ZONE_NORMAL or ZONE_HIGHMEM page frames.

We have seen in the earlier section "The Zoned Page Frame Allocator" that every request for
a group of contiguous page frames is eventually handled by executing the alloc_pages macro.
This macro, in turn, ends up invoking the _ _alloc_pages( ) function, which is the core of the
zone allocator. It receives three parameters:

gfp_mask

The flags specified in the memory allocation request (see earlier Table 8-5)

order

The logarithmic size of the group of contiguous page frames to be allocated
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zonelist

Pointer to a zonelist data structure describing, in order of preference, the memory
zones suitable for the memory allocation

The _ _alloc_pages( ) function scans every memory zone included in the zonelist data
structure. The code that does this looks like the following:

for (i = 0; (z=zonelist->zones[i]) != NULL; i++) {

    if (zone_watermark_ok(z, order, ...)) {

        page = buffered_rmqueue(z, order, gfp_mask);

        if (page)

            return page;

    }

}

For each memory zone, the function compares the number of free page frames with a
threshold value that depends on the memory allocation flags, on the type of current process,
and on how many times the zone has already been checked by the function. In fact, if free
memory is scarce, every memory zone is typically scanned several times, each time with lower
threshold on the minimal amount of free memory required for the allocation. The previous block
of code is thus replicated several timeswith minor variationsin the body of the _ _alloc_pages(
) function. The buffered_rmqueue( ) function has been described already in the earlier section
"The Per-CPU Page Frame Cache:" it returns the page descriptor of the first allocated page
frame, or NULL if the memory zone does not include a group of contiguous page frames of the
requested size.

The zone_watermark_ok( ) auxiliary function receives several parameters, which determine a
threshold min on the number of free page frames in the memory zone. In particular, the
function returns the value 1 if the following two conditions are met:

1. Besides the page frames to be allocated, there are at least min free page frames in the
memory zone, not including the page frames in the low-on-memory reserve (
lowmem_reserve field of the zone descriptor).

2. Besides the page frames to be allocated, there are at least free page frames in
blocks of order at least k, for each k between 1 and the order of the allocation.
Therefore, if order is greater than zero, there must be at least min/2 free page frames
in blocks of size at least 2; if order is greater than one, there must be at least min/4
free page frames in blocks of size at least 4; and so on.

The value of the threshold min is determined by zone_watermark_ok( ) as follows:

 The base value is passed as a parameter of the function and can be one of the 
pages_min, pages_low, and pages_high zone's watermarks (see the section "The Pool of
Reserved Page Frames" earlier in this chapter).

 The base value is divided by two if the gfp_high flag passed as parameter is set.
Usually, this flag is equal to one if the _ _GFP_HIGHMEM flag is set in the gfp_mask, that
is, if the page frames can be allocated from high memory.

 The threshold value is further reduced by one-fourth if the can_try_harder flag passed
as parameter is set. This flag is usually equal to one if either the _ _GFP_WAIT flag is set
in gfp_mask, or if the current process is a real-time process and the memory allocation
is done in process context (outside of interrupt handlers and deferrable functions).

The _ _alloc_pages( ) function essentially executes the following steps:

1. Performs a first scanning of the memory zones (see the block of code shown earlier).
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In this first scan, the min threshold value is set to z->pages_low, where z points to the
zone descriptor being analyzed (the can_try_harder and gfp_high parameters are set to
zero).

2. If the function did not terminate in the previous step, there is not much free memory
left: the function awakens the kswapd kernel threads to start reclaiming page frames
asynchronously (see Chapter 17).

3. Performs a second scanning of the memory zones, passing as base threshold the value 
z->pages_min. As explained previously, the actual threshold is determined also by the
can_try_harder and gfp_high flags. This step is nearly identical to step 1, except that
the function is using a lower threshold.

4. If the function did not terminate in the previous step, the system is definitely low on
memory. If the kernel control path that issued the memory allocation request is not an
interrupt handler or a deferrable function and it is trying to reclaim page frames (either
the PF_MEMALLOC flag or the PF_MEMDIE flag of current is set), the function then performs
a third scanning of the memory zones, trying to allocate the page frames ignoring the
low-on-memory thresholdsthat is, without invoking zone_watermark_ok( ). This is the
only case where the kernel control path is allowed to deplete the low-on-memory
reserve of pages specified by the lowmem_reserve field of the zone descriptor. In fact,
in this case the kernel control path that issued the memory request is ultimately trying
to free page frames, thus it should get what it has requested, if at all possible. If no
memory zone includes enough page frames, the function returns NULL to notify the
caller of the failure.

5. Here, the invoking kernel control path is not trying to reclaim memory. If the _
_GFP_WAIT flag of gfp_mask is not set, the function returns NULL to notify the kernel
control path of the memory allocation failure: in this case, there is no way to satisfy
the request without blocking the current process.

6. Here the current process can be blocked: invokes cond_resched() to check whether
some other process needs the CPU.

7. Sets the PF_MEMALLOC flag of current, to denote the fact that the process is ready to
perform memory reclaiming.

8. Stores in current->reclaim_state a pointer to a reclaim_state structure. This structure
includes just one field, reclaimed_slab, initialized to zero (we'll see how this field is
used in the section "Interfacing the Slab Allocator with the Zoned Page Frame Allocator
" later in this chapter).

9. Invokes TRy_to_free_pages( ) to look for some page frames to be reclaimed (see the
section "Low On Memory Reclaiming" in Chapter 17). The latter function may block the
current process. Once that function returns, _ _alloc_pages( ) resets the PF_MEMALLOC
flag of current and invokes once more cond_resched().

10. If the previous step has freed some page frames, the function performs yet another
scanning of the memory zones equal to the one performed in step 3. If the memory
allocation request cannot be satisfied, the function determines whether it should
continue scanning the memory zone: if the _ _GFP_NORETRY flag is clear and either the
memory allocation request spans up to eight page frames, or one of the _ _GFP_REPEAT
and _ _GFP_NOFAIL flags is set, the function invokes blk_congestion_wait( ) to put the
process asleep for awhile (see Chapter 14), and it jumps back to step 6. Otherwise,
the function returns NULL to notify the caller that the memory allocation failed.

11. If no page frame has been freed in step 9, the kernel is in deep trouble, because free
memory is dangerously low and it was not possible to reclaim any page frame. Perhaps
the time has come to take a crucial decision. If the kernel control path is allowed to
perform the filesystem-dependent operations needed to kill a process (the _ _GFP_FS
flag in gfp_mask is set) and the _ _GFP_NORETRY flag is clear, performs the following
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substeps:

a. Scans once again the memory zones with a threshold value equal to 
z->pages_high.

b. Invokes out_of_memory() to start freeing some memory by killing a victim
process (see "The Out of Memory Killer" in Chapter 17).

c. Jumps back to step 1.

Because the watermark used in step 11a is much higher than the watermarks used in
the previous scannings, that step is likely to fail. Actually, step 11a succeeds only if
another kernel control path is already killing a process to reclaim its memory. Thus,
step 11a avoids that two innocent processes are killed instead of one.

8.1.9.1. Releasing a group of page frames

The zone allocator also takes care of releasing page frames; thankfully, releasing memory is a
lot easier than allocating it.

All kernel macros and functions that release page framesdescribed in the earlier section "The
Zoned Page Frame Allocator"rely on the _ _free_pages( ) function. It receives as its
parameters the address of the page descriptor of the first page frame to be released (page),
and the logarithmic size of the group of contiguous page frames to be released (order). The
function executes the following steps:

1. Checks that the first page frame really belongs to dynamic memory (its PG_reserved
flag is cleared); if not, terminates.

2. Decreases the page->_count usage counter; if it is still greater than or equal to zero,
terminates.

3. If order is equal to zero, the function invokes free_hot_page( ) to release the page
frame to the per-CPU hot cache of the proper memory zone (see the earlier section "
The Per-CPU Page Frame Cache").

4. If order is greater than zero, it adds the page frames in a local list and invokes the
free_pages_bulk( ) function to release them to the buddy system of the proper
memory zone (see step 3 in the description of free_hot_cold_page( ) in the earlier
section "The Per-CPU Page Frame Cache").
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8.2. Memory Area Management
This section deals with memory areas that is, with sequences of memory cells having
contiguous physical addresses and an arbitrary length.

The buddy system algorithm adopts the page frame as the basic memory area. This is fine for
dealing with relatively large memory requests, but how are we going to deal with requests for
small memory areas, say a few tens or hundreds of bytes?

Clearly, it would be quite wasteful to allocate a full page frame to store a few bytes. A better
approach instead consists of introducing new data structures that describe how small memory
areas are allocated within the same page frame. In doing so, we introduce a new problem
called internal fragmentation. It is caused by a mismatch between the size of the memory
request and the size of the memory area allocated to satisfy the request.

A classical solution (adopted by early Linux versions) consists of providing memory areas
whose sizes are geometrically distributed; in other words, the size depends on a power of 2
rather than on the size of the data to be stored. In this way, no matter what the memory
request size is, we can ensure that the internal fragmentation is always smaller than 50
percent. Following this approach, the kernel creates 13 geometrically distributed lists of free
memory areas whose sizes range from 32 to 131, 072 bytes. The buddy system is invoked
both to obtain additional page frames needed to store new memory areas and, conversely, to
release page frames that no longer contain memory areas. A dynamic list is used to keep track
of the free memory areas contained in each page frame.

8.2.1. The Slab Allocator

Running a memory area allocation algorithm on top of the buddy algorithm is not particularly
efficient. A better algorithm is derived from the slab allocator schema that was adopted for
the first time in the Sun Microsystems Solaris 2.4 operating system. It is based on the
following premises:

 The type of data to be stored may affect how memory areas are allocated; for
instance, when allocating a page frame to a User Mode process, the kernel invokes
the get_zeroed_page( ) function, which fills the page with zeros.

The concept of a slab allocator expands upon this idea and views the memory areas
as objects consisting of both a set of data structures and a couple of functions or
methods called the constructor and destructor. The former initializes the memory area
while the latter deinitializes it.

To avoid initializing objects repeatedly, the slab allocator does not discard the objects
that have been allocated and then released but instead saves them in memory. When
a new object is then requested, it can be taken from memory without having to be
reinitialized.

 The kernel functions tend to request memory areas of the same type repeatedly. For
instance, whenever the kernel creates a new process, it allocates memory areas for
some fixed size tables such as the process descriptor, the open file object, and so on
(see Chapter 3). When a process terminates, the memory areas used to contain these
tables can be reused. Because processes are created and destroyed quite frequently,
without the slab allocator, the kernel wastes time allocating and deallocating the page
frames containing the same memory areas repeatedly; the slab allocator allows them to
be saved in a cache and reused quickly.

 Requests for memory areas can be classified according to their frequency. Requests of
a particular size that are expected to occur frequently can be handled most efficiently
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by creating a set of special-purpose objects that have the right size, thus avoiding
internal fragmentation. Meanwhile, sizes that are rarely encountered can be handled
through an allocation scheme based on objects in a series of geometrically distributed
sizes (such as the power-of-2 sizes used in early Linux versions), even if this approach
leads to internal fragmentation.

 There is another subtle bonus in introducing objects whose sizes are not geometrically
distributed: the initial addresses of the data structures are less prone to be
concentrated on physical addresses whose values are a power of 2. This, in turn, leads
to better performance by the processor hardware cache.

 Hardware cache performance creates an additional reason for limiting calls to the
buddy system allocator as much as possible. Every call to a buddy system function
"dirties" the hardware cache, thus increasing the average memory access time. The
impact of a kernel function on the hardware cache is called the function footprint; it is
defined as the percentage of cache overwritten by the function when it terminates.
Clearly, large footprints lead to a slower execution of the code executed right after the
kernel function, because the hardware cache is by now filled with useless information.

The slab allocator groups objects into caches . Each cache is a "store" of objects of the same
type. For instance, when a file is opened, the memory area needed to store the corresponding
"open file" object is taken from a slab allocator cache named filp (for "file pointer").

The area of main memory that contains a cache is divided into slabs ; each slab consists of
one or more contiguous page frames that contain both allocated and free objects (see Figure
8-3).

Figure 8-3. The slab allocator components

As we'll see in Chapter 17, the kernel periodically scans the caches and releases the page
frames corresponding to empty slabs.

8.2.2. Cache Descriptor

Each cache is described by a structure of type kmem_cache_t (which is equivalent to the type
struct kmem_cache_s), whose fields are listed in Table 8-8. We omitted from the table several
fields used for collecting statistical information and for debugging.

Table 8-8. The fields of the kmem_cache_t descriptor

Type Name Description

struct

array_cache * []

array

Per-CPU array of pointers to local caches of free objects
(see the section "Local Caches of Free Slab Objects" later
in this chapter).
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Table 8-8. The fields of the kmem_cache_t descriptor

Type Name Description

unsigned int batchcount Number of objects to be transferred in bulk to or from the
local caches.

unsigned int limit Maximum number of free objects in the local caches. This is
tunable.

struct kmem_list3 lists See next table.

unsigned int objsize Size of the objects included in the cache.

unsigned int flags Set of flags that describes permanent properties of the
cache.

unsigned int num Number of objects packed into a single slab. (All slabs of
the cache have the same size.)

unsigned int free_limit Upper limit of free objects in the whole slab cache.

spinlock_t spinlock Cache spin lock.

unsigned int gfporder Logarithm of the number of contiguous page frames
included in a single slab.

unsigned int gfpflags Set of flags passed to the buddy system function when
allocating page frames.

size_t colour Number of colors for the slabs (see the section "Slab
Coloring" later in this chapter).

unsigned int colour_off Basic alignment offset in the slabs.

unsigned int colour_next Color to use for the next allocated slab.

kmem_cache_t * slabp_cache
Pointer to the general slab cache containing the slab
descriptors (NULL if internal slab descriptors are used; see
next section).

unsigned int slab_size The size of a single slab.

unsigned int dflags Set of flags that describe dynamic properties of the cache.

void * ctor Pointer to constructor method associated with the cache.

void * dtor Pointer to destructor method associated with the cache.

const char * name Character array storing the name of the cache.

struct list_head next Pointers for the doubly linked list of cache descriptors.

Page 325

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The lists field of the kmem_cache_t descriptor, in turn, is a structure whose fields are listed in
Table 8-9.

Table 8-9. The fields of the kmem_list3 structure

Type Name Description

struct
list_head slabs_partial Doubly linked circular list of slab descriptors with both free

and nonfree objects

struct
list_head slabs_full Doubly linked circular list of slab descriptors with no free

objects

struct
list_head

slabs_free Doubly linked circular list of slab descriptors with free objects
only

unsigned long free_objects Number of free objects in the cache

int free_touched Used by the slab allocator's page reclaiming algorithm (see 
Chapter 17)

unsigned long next_reap Used by the slab allocator's page reclaiming algorithm (see 
Chapter 17)

struct

array_cache *

shared Pointer to a local cache shared by all CPUs (see the later
section "Local Caches of Free Slab Objects")

8.2.3. Slab Descriptor

Each slab of a cache has its own descriptor of type slab illustrated in Table 8-10.

Table 8-10. The fields of the slab descriptor

Type Name Description

struct

list_head
list

Pointers for one of the three doubly linked list of slab descriptors
(either the slabs_full, slabs_partial, or slabs_free list in the
kmem_list3 structure of the cache descriptor)

unsigned

long
colouroff Offset of the first object in the slab (see the section "Slab Coloring

" later in this chapter)

void * s_mem Address of first object (either allocated or free) in the slab

unsigned int inuse Number of objects in the slab that are currently used (not free)

unsigned int free

Index of next free object in the slab, or BUFCTL_END if there are no
free objects left (see the section "Object Descriptor" later in this
chapter)

Slab descriptors can be stored in two possible places:
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External slab descriptor

Stored outside the slab, in one of the general caches not suitable for ISA DMA pointed
to by cache_sizes (see the next section).

Internal slab descriptor

Stored inside the slab, at the beginning of the first page frame assigned to the slab.

The slab allocator chooses the second solution when the size of the objects is smaller than
512MB or when internal fragmentation leaves enough space for the slab descriptor and the
object descriptors (as described later)inside the slab. The CFLGS_OFF_SLAB flag in the flags
field of the cache descriptor is set to one if the slab descriptor is stored outside the slab; it is
set to zero otherwise.

Figure 8-4 illustrates the major relationships between cache and slab descriptors. Full slabs,
partially full slabs, and free slabs are linked in different lists.

8.2.4. General and Specific Caches

Caches are divided into two types: general and specific. General caches are used only by the
slab allocator for its own purposes, while specific caches are used by the remaining parts of
the kernel.

Figure 8-4. Relationship between cache and slab descriptors

The general caches are:

 A first cache called kmem_cache whose objects are the cache descriptors of the
remaining caches used by the kernel. The cache_cache variable contains the descriptor
of this special cache.

 Several additional caches contain general purpose memory areas. The range of the
memory area sizes typically includes 13 geometrically distributed sizes. A table called 
malloc_sizes (whose elements are of type cache_sizes) points to 26 cache descriptors
associated with memory areas of size 32, 64, 128, 256, 512, 1,024, 2,048, 4,096,
8,192, 16,384, 32,768, 65,536, and 131,072 bytes. For each size, there are two
caches: one suitable for ISA DMA allocations and the other for normal allocations.
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The kmem_cache_init( ) function is invoked during system initialization to set up the general
caches.

Specific caches are created by the kmem_cache_create( ) function. Depending on the
parameters, the function first determines the best way to handle the new cache (for
instance, whether to include the slab descriptor inside or outside of the slab). It then
allocates a cache descriptor for the new cache from the cache_cache general cache and
inserts the descriptor in the cache_chain list of cache descriptors (the insertion is done after
having acquired the cache_chain_sem semaphore that protects the list from concurrent
accesses).

It is also possible to destroy a cache and remove it from the cache_chain list by invoking
kmem_cache_destroy( ). This function is mostly useful to modules that create their own caches
when loaded and destroy them when unloaded. To avoid wasting memory space, the kernel
must destroy all slabs before destroying the cache itself. The kmem_cache_shrink( ) function
destroys all the slabs in a cache by invoking slab_destroy( ) iteratively (see the later section
"Releasing a Slab from a Cache").

The names of all general and specific caches can be obtained at runtime by reading 
/proc/slabinfo; this file also specifies the number of free objects and the number of allocated
objects in each cache.

8.2.5. Interfacing the Slab Allocator with the Zoned Page Frame
Allocator

When the slab allocator creates a new slab, it relies on the zoned page frame allocator to
obtain a group of free contiguous page frames. For this purpose, it invokes the kmem_getpages(
) function, which is essentially equivalent, on a UMA system, to the following code fragment:

void * kmem_getpages(kmem_cache_t *cachep, int flags)

{

    struct page *page;

    int i;

    flags |= cachep->gfpflags;

    page = alloc_pages(flags, cachep->gfporder);

    if (!page)

        return NULL;

    i = (1 << cache->gfporder);

    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)

        atomic_add(i, &slab_reclaim_pages);

    while (i--)

            SetPageSlab(page++);

    return page_address(page);

}

The two parameters have the following meaning:

cachep

Points to the cache descriptor of the cache that needs additional page frames (the
number of required page frames is determined by the order in the cachep->gfporder
field).

flags

Specifies how the page frame is requested (see the section "The Zoned Page Frame
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Allocator" earlier in this chapter). This set of flags is combined with the specific cache
allocation flags stored in the gfpflags field of the cache descriptor.

The size of the memory allocation request is specified by the gfporder field of the cache
descriptor, which encodes the size of a slab in the cache.[*] If the slab cache has been
created with the SLAB_RECLAIM_ACCOUNT flag set, the page frames assigned to the slabs are
accounted for as reclaimable pages when the kernel checks whether there is enough memory
to satisfy some User Mode requests. The function also sets the PG_slab flag in the page
descriptors of the allocated page frames.

[*] Notice that it is not possible to allocate page frames from the ZONE_HIGHMEM memory zone, because the kmem_getpages( ) function
returns the linear address yielded by the page_address( ) function; as explained in the section "Kernel Mappings of High-Memory
Page Frames" earlier in this chapter, this function returns NULL for unmapped high-memory page frames.

In the reverse operation, page frames assigned to a slab can be released (see the section "
Releasing a Slab from a Cache" later in this chapter) by invoking the kmem_freepages( )
function:

void kmem_freepages(kmem_cache_t *cachep, void *addr)

{

    unsigned long i = (1<<cachep->gfporder);

    struct page *page = virt_to_page(addr);

    if (current->reclaim_state)

        current->reclaim_state->reclaimed_slab += i;

    while (i--)

        ClearPageSlab(page++);

    free_pages((unsigned long) addr, cachep->gfporder);

    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)

        atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);

}

The function releases the page frames, starting from the one having the linear address addr,
that had been allocated to the slab of the cache identified by cachep. If the current process is
performing memory reclaiming (current->reclaim_state field not NULL), the reclaimed_slab field
of the reclaim_state structure is properly increased, so that the pages just freed can be
accounted for by the page frame reclaiming algorithm (see the section "Low On Memory
Reclaiming" in Chapter 17). Moreover, if the SLAB_RECLAIM_ACCOUNT flag is set (see above), the
slab_reclaim_pages variable is properly decreased.

8.2.6. Allocating a Slab to a Cache

A newly created cache does not contain a slab and therefore does not contain any free
objects. New slabs are assigned to a cache only when both of the following are true:

 A request has been issued to allocate a new object.

 The cache does not include a free object.

Under these circumstances, the slab allocator assigns a new slab to the cache by invoking 
cache_grow( ). This function calls kmem_ getpages( ) to obtain from the zoned page frame
allocator the group of page frames needed to store a single slab; it then calls alloc_slabmgmt(
) to get a new slab descriptor. If the CFLGS_OFF_SLAB flag of the cache descriptor is set, the
slab descriptor is allocated from the general cache pointed to by the slabp_cache field of the
cache descriptor; otherwise, the slab descriptor is allocated in the first page frame of the
slab.

The kernel must be able to determine, given a page frame, whether it is used by the slab
allocator and, if so, to derive quickly the addresses of the corresponding cache and slab
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descriptors. Therefore, cache_ grow( ) scans all page descriptors of the page frames assigned
to the new slab, and loads the next and prev subfields of the lru fields in the page descriptors
with the addresses of, respectively, the cache descriptor and the slab descriptor. This works
correctly because the lru field is used by functions of the buddy system only when the page
frame is free, while page frames handled by the slab allocator functions have the PG_slab flag
set and are not free as far as the buddy system is concerned.[*] The opposite questiongiven a
slab in a cache, which are the page frames that implement it?can be answered by using the 
s_mem field of the slab descriptor and the gfporder field (the size of a slab) of the cache
descriptor.

[*] As w e'll in Chapter 17, the lru field is also used by the page frame reclaiming algorithm.

Next, cache_grow( ) calls cache_init_objs( ), which applies the constructor method (if
defined) to all the objects contained in the new slab.

Finally, cache_ grow( ) calls list_add_tail( ) to add the newly obtained slab descriptor *slabp
at the end of the fully free slab list of the cache descriptor *cachep, and updates the counter
of free objects in the cache:

list_add_tail(&slabp->list, &cachep->lists->slabs_free);

cachep->lists->free_objects += cachep->num;

8.2.7. Releasing a Slab from a Cache

Slabs can be destroyed in two cases:

 There are too many free objects in the slab cache (see the later section "Releasing a
Slab from a Cache").

 A timer function invoked periodically determines that there are fully unused slabs that
can be released (see Chapter 17).

In both cases, the slab_destroy( ) function is invoked to destroy a slab and release the
corresponding page frames to the zoned page frame allocator:

void slab_destroy(kmem_cache_t *cachep, slab_t *slabp)

{

    if (cachep->dtor) {

        int i;

        for (i = 0; i < cachep->num; i++) {

            void* objp = slabp->s_mem+cachep->objsize*i;

            (cachep->dtor)(objp, cachep, 0);

        }

    }

    kmem_freepages(cachep, slabp->s_mem - slabp->colouroff);

    if (cachep->flags & CFLGS_OFF_SLAB)

        kmem_cache_free(cachep->slabp_cache, slabp);

}

The function checks whether the cache has a destructor method for its objects (the dtor field
is not NULL), in which case it applies the destructor to all the objects in the slab; the objp
local variable keeps track of the currently examined object. Next, it calls kmem_freepages( ),
which returns all the contiguous page frames used by the slab to the buddy system. Finally, if
the slab descriptor is stored outside of the slab, the function releases it from the cache of
slab descriptors .

Actually, the function is slightly more complicated. For example, a slab cache can be created
with the SLAB_DESTROY_BY_RCU flag, which means that slabs should be released in a deferred
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way by registering a callback with the call_rcu( ) function (see the section "Read-Copy
Update (RCU)" in Chapter 5). The callback function, in turn, invokes kmem_freepages() and,
possibly, the kmem_cache_free(), as in the main case shown above.

8.2.8. Object Descriptor

Each object has a short descriptor of type kmem_bufctl_t. Object descriptors are stored in an
array placed right after the corresponding slab descriptor. Thus, like the slab descriptors
themselves, the object descriptors of a slab can be stored in two possible ways that are
illustrated in Figure 8-5.

External object descriptors

Stored outside the slab, in the general cache pointed to by the slabp_cache field of the
cache descriptor. The size of the memory area, and thus the particular general cache
used to store object descriptors, depends on the number of objects stored in the slab
(num field of the cache descriptor).

Internal object descriptors

Stored inside the slab, right before the objects they describe.

The first object descriptor in the array describes the first object in the slab, and so on. An
object descriptor is simply an unsigned short integer, which is meaningful only when the object
is free. It contains the index of the next free object in the slab, thus implementing a simple list
of free objects inside the slab. The object descriptor of the last element in the free object list
is marked by the conventional value BUFCTL_END (0xffff).

Figure 8-5. Relationships between slab and object descriptors

8.2.9. Aligning Objects in Memory
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The objects managed by the slab allocator are aligned in memorythat is, they are stored in
memory cells whose initial physical addresses are multiples of a given constant, which is
usually a power of 2. This constant is called the alignment factor.

The largest alignment factor allowed by the slab allocator is 4,096the page frame size. This
means that objects can be aligned by referring to either their physical addresses or their linear
addresses. In both cases, only the 12 least significant bits of the address may be altered by
the alignment.

Usually, microcomputers access memory cells more quickly if their physical addresses are
aligned with respect to the word size (that is, to the width of the internal memory bus of the
computer). Thus, by default, the kmem_cache_create( ) function aligns objects according to
the word size specified by the BYTES_PER_WORD macro. For 80 x 86 processors, the macro yields
the value 4 because the word is 32 bits long.

When creating a new slab cache, it's possible to specify that the objects included in it be
aligned in the first-level hardware cache. To achieve this, the kernel sets the 
SLAB_HWCACHE_ALIGN cache descriptor flag. The kmem_cache_create( ) function handles the
request as follows:

 If the object's size is greater than half of a cache line, it is aligned in RAM to a multiple
of L1_CACHE_BYTESthat is, at the beginning of the line.

 Otherwise, the object size is rounded up to a submultiple of L1_CACHE_BYTES; this
ensures that a small object will never span across two cache lines.

Clearly, what the slab allocator is doing here is trading memory space for access time; it gets
better cache performance by artificially increasing the object size, thus causing additional
internal fragmentation.

8.2.10. Slab Coloring

We know from Chapter 2 that the same hardware cache line maps many different blocks of
RAM. In this chapter, we have also seen that objects of the same size end up being stored at
the same offset within a cache. Objects that have the same offset within different slabs will,
with a relatively high probability, end up mapped in the same cache line. The cache hardware
might therefore waste memory cycles transferring two objects from the same cache line back
and forth to different RAM locations, while other cache lines go underutilized. The slab
allocator tries to reduce this unpleasant cache behavior by a policy called slab coloring :
different arbitrary values called colors are assigned to the slabs.

Before examining slab coloring, we have to look at the layout of objects in the cache. Let's
consider a cache whose objects are aligned in RAM. This means that the object address must
be a multiple of a given positive value, say aln. Even taking the alignment constraint into
account, there are many possible ways to place objects inside the slab. The choices depend
on decisions made for the following variables:

num

Number of objects that can be stored in a slab (its value is in the num field of the
cache descriptor).

osize

Object size, including the alignment bytes.

dsize
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Slab descriptor size plus all object descriptors size, rounded up to the smallest multiple
of the hardware cache line size. Its value is equal to 0 if the slab and object
descriptors are stored outside of the slab.

free

Number of unused bytes (bytes not assigned to any object) inside the slab.

The total length in bytes of a slab can then be expressed as:

slab length = (num x osize) + dsize+ free

free is always smaller than osize, because otherwise, it would be possible to place additional
objects inside the slab. However, free could be greater than aln.

The slab allocator takes advantage of the free unused bytes to color the slab. The term
"color" is used simply to subdivide the slabs and allow the memory allocator to spread objects
out among different linear addresses. In this way, the kernel obtains the best possible
performance from the microprocessor's hardware cache.

Slabs having different colors store the first object of the slab in different memory locations,
while satisfying the alignment constraint. The number of available colors is free/aln (this value
is stored in the colour field of the cache descriptor). Thus, the first color is denoted as 0 and
the last one is denoted as (free / aln)-1. (As a particular case, if free is lower than aln,
colour is set to 0, nevertheless all slabs use color 0, thus really the number of colors is one.)

If a slab is colored with color col, the offset of the first object (with respect to the slab initial
address) is equal to colx aln + dsize bytes. Figure 8-6 illustrates how the placement of objects
inside the slab depends on the slab color. Coloring essentially leads to moving some of the free
area of the slab from the end to the beginning.

Figure 8-6. Slab with color col and alignment aln

Coloring works only when free is large enough. Clearly, if no alignment is required for the
objects or if the number of unused bytes inside the slab is smaller than the required alignment
(free < aln), the only possible slab coloring is the one that has the color 0the one that assigns
a zero offset to the first object.

The various colors are distributed equally among slabs of a given object type by storing the
current color in a field of the cache descriptor called colour_next. The cache_ grow( ) function
assigns the color specified by colour_next to a new slab and then increases the value of this
field. After reaching colour, it wraps around again to 0. In this way, each slab is created with
a different color from the previous one, up to the maximum available colors. The cache_grow( )
function, moreover, gets the value aln from the colour_off field of the cache descriptor,
computes dsize according to the number of objects inside the slab, and finally stores the
value colx aln + dsize in the colouroff field of the slab descriptor.
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8.2.11. Local Caches of Free Slab Objects

The Linux 2.6 implementation of the slab allocator for multiprocessor systems differs from that
of the original Solaris 2.4. To reduce spin lock contention among processors and to make
better use of the hardware caches, each cache of the slab allocator includes a per-CPU data
structure consisting of a small array of pointers to freed objects called the slab local cache .
Most allocations and releases of slab objects affect the local cache only; the slab data
structures get involved only when the local cache underflows or overflows. This technique is
quite similar to the one illustrated in the section "The Per-CPU Page Frame Cache" earlier in
this chapter.

The array field of the cache descriptor is an array of pointers to array_cache data structures,
one element for each CPU in the system. Each array_cache data structure is a descriptor of
the local cache of free objects, whose fields are illustrated in Table 8-11.

Table 8-11. The fields of the array_cache structure

Type Name Description

unsigned

int
avail Number of pointers to available objects in the local cache. The field

also acts as the index of the first free slot in the cache.

unsigned

int
limit Size of the local cachethat is, the maximum number of pointers in

the local cache.

unsigned

int
batchcount Chunk size for local cache refill or emptying.

unsigned

int
touched Flag set to 1 if the local cache has been recently used.

Notice that the local cache descriptor does not include the address of the local cache itself;
in fact, the local cache is placed right after the descriptor. Of course, the local cache stores
the pointers to the freed objects, not the object themselves, which are always placed inside
the slabs of the cache.

When creating a new slab cache, the kmem_cache_create( ) function determines the size of
the local caches (storing this value in the limit field of the cache descriptor), allocates them,
and stores their pointers into the array field of the cache descriptor.

When creating a new slab cache, the kmem_cache_create( ) function determines the size of
the local caches (storing this value in the limit field of the cache descriptor), allocates them,
and stores their pointers into the array field of the cache descriptor. The size depends on the
size of the objects stored in the slab cache, and ranges from 1 for very large objects to 120
for small ones. Moreover, the initial value of the batchcount field, which is the number of
objects added or removed in a chunk from a local cache, is initially set to half of the local
cache size.[*]

[*] The system administrator can tunefor each cachethe size of the local caches and the value of the batchcount field by w riting into
the /proc/slabinfo file.

In multiprocessor systems, slab caches for small objects also sport an additional local cache,
whose address is stored in the lists.shared field of the cache descriptor. The shared local
cache is, as the name suggests, shared among all CPUs, and it makes the task of migrating
free objects from a local cache to another easier (see the following section). Its initial size is
equal to eight times the value of the batchcount field.
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8.2.12. Allocating a Slab Object

New objects may be obtained by invoking the kmem_cache_alloc( ) function. The parameter
cachep points to the cache descriptor from which the new free object must be obtained, while
the parameter flag represents the flags to be passed to the zoned page frame allocator
functions, should all slabs of the cache be full.

The function is essentially equivalent to the following:

void * kmem_cache_alloc(kmem_cache_t *cachep, int flags)

{

    unsigned long save_flags;

    void *objp;

    struct array_cache *ac;

    local_irq_save(save_flags);

    ac = cache_p->array[smp_processor_id()];

    if (ac->avail) {

        ac->touched = 1;

        objp = ((void **)(ac+1))[--ac->avail];

    } else

        objp = cache_alloc_refill(cachep, flags);

    local_irq_restore(save_flags);

    return objp;

}

The function tries first to retrieve a free object from the local cache. If there are free
objects, the avail field contains the index in the local cache of the entry that points to the
last freed object. Because the local cache array is stored right after the ac descriptor,
((void**)(ac+1))[--ac->avail] gets the address of that free object and decreases the value
of ac->avail. The cache_alloc_refill( ) function is invoked to repopulate the local cache and
get a free object when there are no free objects in the local cache.

The cache_alloc_refill( ) function essentially performs the following steps:

1. Stores in the ac local variable the address of the local cache descriptor:
2.

ac = cachep->array[smp_processor_id()];

3. Gets the cachep->spinlock.

4. If the slab cache includes a shared local cache, and if the shared local cache includes
some free objects, it refills the CPU's local cache by moving up to ac->batchcount
pointers from the shared local cache. Then, it jumps to step 6.

5. Tries to fill the local cache with up to ac->batchcount pointers to free objects included
in the slabs of the cache:

a. Looks in the slabs_partial and slabs_free lists of the cache descriptor, and
gets the address slabp of a slab descriptor whose corresponding slab is either
partially filled or empty. If no such descriptor exists, the function goes to step
5.

b. For each free object in the slab, the function increases the inuse field of the
slab descriptor, inserts the object's address in the local cache, and updates
the free field so that it stores the index of the next free object in the slab:

c.
d. slabp->inuse++;
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e. ((void**)(ac+1))[ac->avail++] =

f.                 slabp->s_mem + slabp->free * cachep->obj_size;

g. slabp->free = ((kmem_bufctl_t*)(slabp+1))[slabp->free];

h. Inserts, if necessary, the depleted slab in the proper list, either the slab_full
or the slab_partial list.

6. At this point, the number of pointers added to the local cache is stored in the 
ac->avail field: the function decreases the free_objects field of the kmem_list3
structure of the same amount to specify that the objects are no longer free.

7. Releases the cachep->spinlock.

8. If the ac->avail field is now greater than 0 (some cache refilling took place), it sets
the ac->touched field to 1 and returns the free object pointer that was last inserted in
the local cache:

9.
return ((void**)(ac+1))[--ac->avail];

10. Otherwise, no cache refilling took place: invokes cache_grow() to get a new slab, and
thus new free objects.

11. If cache_grow() fails, it returns NULL; otherwise it goes back to step 1 to repeat the
procedure.

8.2.13. Freeing a Slab Object

The kmem_cache_free( ) function releases an object previously allocated by the slab allocator
to some kernel function. Its parameters are cachep, the address of the cache descriptor, and
objp, the address of the object to be released:

void kmem_cache_free(kmem_cache_t *cachep, void *objp)

{

    unsigned long flags;

    struct array_cache *ac;

    local_irq_save(flags);

    ac = cachep->array[smp_processor_id()];

    if (ac->avail == ac->limit)

        cache_flusharray(cachep, ac);

    ((void**)(ac+1))[ac->avail++] = objp;

    local_irq_restore(flags);

}

The function checks first whether the local cache has room for an additional pointer to a free
object. If so, the pointer is added to the local cache and the function returns. Otherwise it
first invokes cache_flusharray( ) to deplete the local cache and then adds the pointer to the
local cache.

The cache_flusharray( ) function performs the following operations:

1. Acquires the cachep->spinlock spin lock.

2. If the slab cache includes a shared local cache, and if the shared local cache is not
already full, it refills the shared local cache by moving up to ac->batchcount pointers
from the CPU's local cache. Then, it jumps to step 4.

3. Invokes the free_block( ) function to give back to the slab allocator up to
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ac->batchcount objects currently included in the local cache. For each object at
address objp, the function executes the following steps:

a. Increases the lists.free_objects field of the cache descriptor.

b. Determines the address of the slab descriptor containing the object:
c.
d. slabp = (struct slab *)(virt_to_page(objp)->lru.prev);

(Remember that the lru.prev field of the descriptor of the slab page points to
the corresponding slab descriptor.)

e. Removes the slab descriptor from its slab cache list (either 
cachep->lists.slabs_partial or cachep->lists.slabs_full).

f. Computes the index of the object inside the slab:
g.
h. objnr = (objp - slabp->s_mem) / cachep->objsize;

i. Stores in the object descriptor the current value of the slabp->free, and puts
in slabp->free the index of the object (the last released object will be the first
object to be allocated again):

j.
k. ((kmem_bufctl_t *)(slabp+1))[objnr] = slabp->free;

l. slabp->free = objnr;

m. Decreases the slabp->inuse field.

n. If slabp->inuse is equal to zeroall objects in the slab are freeand the number of
free objects in the whole slab cache (cachep->lists.free_objects) is greater
than the limit stored in the cachep->free_limit field, then the function releases
the slab's page frame(s) to the zoned page frame allocator:

o.
p. cachep->lists.free_objects -= cachep->num;

q. slab_destroy(cachep, slabp);

The value stored in the cachep->free_limit field is usually equal to cachep->num+
(1+N) x cachep->batchcount, where N denotes the number of CPUs of the
system.

r. Otherwise, if slab->inuse is equal to zero but the number of free objects in the
whole slab cache is less than cachep->free_limit, it inserts the slab descriptor
in the cachep->lists.slabs_free list.

s. Finally, if slab->inuse is greater than zero, the slab is partially filled, so the
function inserts the slab descriptor in the cachep->lists.slabs_partial list.

4. Releases the cachep->spinlock spin lock.

5. Updates the avail field of the local cache descriptor by subtracting the number of
objects moved to the shared local cache or released to the slab allocator.

6. Moves all valid pointers in the local cache at the beginning of the local cache's array.
This step is necessary because the first object pointers have been removed from the
local cache, thus the remaining ones must be moved up.

8.2.14. General Purpose Objects
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As stated earlier in the section "The Buddy System Algorithm," infrequent requests for memory
areas are handled through a group of general caches whose objects have geometrically
distributed sizes ranging from a minimum of 32 to a maximum of 131,072 bytes.

Objects of this type are obtained by invoking the kmalloc( ) function, which is essentially
equivalent to the following code fragment:

void * kmalloc(size_t size, int flags)

{

    struct cache_sizes *csizep = malloc_sizes;

    kmem_cache_t * cachep;

    for (; csizep->cs_size; csizep++) {

        if (size > csizep->cs_size)

            continue;

        if (flags & _ _GFP_DMA)

            cachep = csizep->cs_dmacachep;

        else

            cachep = csizep->cs_cachep;

        return kmem_cache_alloc(cachep, flags);

    }

    return NULL;

}

The function uses the malloc_sizes table to locate the nearest power-of-2 size to the
requested size. It then calls kmem_cache_alloc( ) to allocate the object, passing to it either
the cache descriptor for the page frames usable for ISA DMA or the cache descriptor for the
"normal" page frames, depending on whether the caller specified the _ _GFP_DMA flag.

Objects obtained by invoking kmalloc( ) can be released by calling kfree( ):

void kfree(const void *objp)

{

    kmem_cache_t * c;

    unsigned long flags;

    if (!objp)

        return;

    local_irq_save(flags);

    c = (kmem_cache_t *)(virt_to_page(objp)->lru.next);

     kmem_cache_free(c, (void *)objp);

    local_irq_restore(flags);

}

The proper cache descriptor is identified by reading the lru.next subfield of the descriptor of
the first page frame containing the memory area. The memory area is released by invoking 
kmem_cache_free( ).

8.2.15. Memory Pools

Memory pools are a new feature of Linux 2.6. Basically, a memory pool allows a kernel
componentsuch as the block device subsystemto allocate some dynamic memory to be used
only in low-on-memory emergencies.

Memory pools should not be confused with the reserved page frames described in the earlier
section "The Pool of Reserved Page Frames." In fact, those page frames can be used only to
satisfy atomic memory allocation requests issued by interrupt handlers or inside critical
regions. Instead, a memory pool is a reserve of dynamic memory that can be used only by a
specific kernel component, namely the "owner" of the pool. The owner does not normally use
the reserve; however, if dynamic memory becomes so scarce that all usual memory allocation
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requests are doomed to fail, the kernel component can invoke, as a last resort, special
memory pool functions that dip in the reserve and get the memory needed. Thus, creating a
memory pool is similar to keeping a reserve of canned foods on hand and using a can opener
only when no fresh food is available.

Often, a memory pool is stacked over the slab allocatorthat is, it is used to keep a reserve of
slab objects. Generally speaking, however, a memory pool can be used to allocate every kind
of dynamic memory, from whole page frames to small memory areas allocated with kmalloc().
Therefore, we will generically refer to the memory units handled by a memory pool as "memory
elements."

A memory pool is described by a mempool_t object, whose fields are shown in Table 8-12.

Table 8-12. The fields of the mempool_t object

Type Name Description

spinlock_t lock Spin lock protecting the object fields

int min_nr Maximum number of elements in the memory pool

int curr_nr Current number of elements in the memory pool

void ** elements Pointer to an array of pointers to the reserved elements

void * pool_data Private data available to the pool's owner

mempool_alloc_t * alloc Method to allocate an element

mempool_free_t * free Method to free an element

wait_queue_head_t wait Wait queue used when the memory pool is empty

The min_nr field stores the initial number of elements in the memory pool. In other words, the
value stored in this field represents the number of memory elements that the owner of the
memory pool is sure to obtain from the memory allocator. The curr_nr field, which is always
lower than or equal to min_nr, stores the number of memory elements currently included in the
memory pool. The memory elements themselves are referenced by an array of pointers, whose
address is stored in the elements field.

The alloc and free methods interface with the underlying memory allocator to get and release
a memory element, respectively. Both methods may be custom functions provided by the
kernel component that owns the memory pool.

When the memory elements are slab objects, the alloc and free methods are commonly
implemented by the mempool_alloc_slab( ) and mempool_free_slab( ) functions, which just
invoke the kmem_cache_alloc( ) and kmem_cache_free( ) functions, respectively. In this case,
the pool_data field of the mempool_t object stores the address of the slab cache descriptor.

The mempool_create( ) function creates a new memory pool; it receives the number of memory
elements min_nr, the addresses of the functions that implement the alloc and free methods,
and an optional value for the pool_data field. The function allocates memory for the mempool_t
object and the array of pointers to the memory elements, then repeatedly invokes the alloc
method to get the min_nr memory elements. Conversely, the mempool_destroy( ) function
releases all memory elements in the pool, then releases the array of elements and the 
mempool_t object themselves.
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To allocate an element from a memory pool, the kernel invokes the mempool_alloc( ) function,
passing to it the address of the mempool_t object and the memory allocation flags (see Table
8-5 and Table 8-6 earlier in this chapter). Essentially, the function tries to allocate a memory
element from the underlying memory allocator by invoking the alloc method, according to the
memory allocation flags specified as parameters. If the allocation succeeds, the function
returns the memory element obtained, without touching the memory pool. Otherwise, if the
allocation fails, the memory element is taken from the memory pool. Of course, too many
allocations in a low-on-memory condition can exhaust the memory pool: in this case, if the _
_GFP_WAIT flag is not set, mempool_alloc() blocks the current process until a memory element is
released to the memory pool.

Conversely, to release an element to a memory pool, the kernel invokes the mempool_free( )
function. If the memory pool is not full (curr_min is smaller than min_nr), the function adds the
element to the memory pool. Otherwise, mempool_free( ) invokes the free method to release
the element to the underlying memory allocator.
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8.3. Noncontiguous Memory Area Management
We already know that it is preferable to map memory areas into sets of contiguous page
frames, thus making better use of the cache and achieving lower average memory access
times. Nevertheless, if the requests for memory areas are infrequent, it makes sense to
consider an allocation scheme based on noncontiguous page frames accessed through
contiguous linear addresses . The main advantage of this schema is to avoid external
fragmentation, while the disadvantage is that it is necessary to fiddle with the kernel Page
Tables. Clearly, the size of a noncontiguous memory area must be a multiple of 4,096. Linux
uses noncontiguous memory areas in several ways for instance, to allocate data structures for
active swap areas (see the section "Activating and Deactivating a Swap Area" in Chapter 17),
to allocate space for a module (see Appendix B), or to allocate buffers to some I/O drivers.
Furthermore, noncontiguous memory areas provide yet another way to make use of high
memory page frames (see the later section "Allocating a Noncontiguous Memory Area").

8.3.1. Linear Addresses of Noncontiguous Memory Areas

To find a free range of linear addresses, we can look in the area starting from PAGE_OFFSET
(usually 0xc0000000, the beginning of the fourth gigabyte). Figure 8-7 shows how the fourth
gigabyte linear addresses are used:

 The beginning of the area includes the linear addresses that map the first 896 MB of
RAM (see the section "Process Page Tables" in Chapter 2); the linear address that
corresponds to the end of the directly mapped physical memory is stored in the 
high_memory variable.

 The end of the area contains the fix-mapped linear addresses (see the section "
Fix-Mapped Linear Addresses" in Chapter 2).

 Starting from PKMAP_BASE we find the linear addresses used for the persistent kernel
mapping of high-memory page frames (see the section "Kernel Mappings of
High-Memory Page Frames" earlier in this chapter).

 The remaining linear addresses can be used for noncontiguous memory areas. A safety
interval of size 8 MB (macro VMALLOC_OFFSET) is inserted between the end of the
physical memory mapping and the first memory area; its purpose is to "capture"
out-of-bounds memory accesses. For the same reason, additional safety intervals of
size 4 KB are inserted to separate noncontiguous memory areas.

Figure 8-7. The linear address interval starting from PAGE_OFFSET

The VMALLOC_START macro defines the starting address of the linear space reserved for
noncontiguous memory areas, while VMALLOC_END defines its ending address.

8.3.2. Descriptors of Noncontiguous Memory Areas

Each noncontiguous memory area is associated with a descriptor of type vm_struct, whose
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fields are listed in Table 8-13.

Table 8-13. The fields of the vm_struct descriptor

Type Name Description

void * addr Linear address of the first memory cell of the area

unsigned long size Size of the area plus 4,096 (inter-area safety interval)

unsigned long flags Type of memory mapped by the noncontiguous memory area

struct page ** pages Pointer to array of nr_pages pointers to page descriptors 

unsigned int nr_pages Number of pages filled by the area

unsigned long phys_addr Set to 0 unless the area has been created to map the I/O
shared memory of a hardware device

struct
vm_struct * next Pointer to next vm_struct structure

These descriptors are inserted in a simple list by means of the next field; the address of the
first element of the list is stored in the vmlist variable. Accesses to this list are protected by
means of the vmlist_lock read/write spin lock. The flags field identifies the type of memory
mapped by the area: VM_ALLOC for pages obtained by means of vmalloc( ), VM_MAP for already
allocated pages mapped by means of vmap() (see the next section), and VM_IOREMAP for
on-board memory of hardware devices mapped by means of ioremap( ) (see Chapter 13).

The get_vm_area( ) function looks for a free range of linear addresses between VMALLOC_START
and VMALLOC_END. This function acts on two parameters: the size (size) in bytes of the
memory region to be created, and a flag (flag) specifying the type of region (see above). The
steps performed are the following:

1. Invokes kmalloc( ) to obtain a memory area for the new descriptor of type vm_struct.

2. Gets the vmlist_lock lock for writing and scans the list of descriptors of type vm_struct
looking for a free range of linear addresses that includes at least size + 4096 addresses
(4096 is the size of the safety interval between the memory areas).

3. If such an interval exists, the function initializes the fields of the descriptor, releases
the vmlist_lock lock, and terminates by returning the initial address of the
noncontiguous memory area.

4. Otherwise, get_vm_area( ) releases the descriptor obtained previously, releases the
vmlist_lock lock, and returns NULL.

8.3.3. Allocating a Noncontiguous Memory Area

The vmalloc( ) function allocates a noncontiguous memory area to the kernel. The parameter
size denotes the size of the requested area. If the function is able to satisfy the request, it
then returns the initial linear address of the new area; otherwise, it returns a NULL pointer:

void * vmalloc(unsigned long size)

{

    struct vm_struct *area;
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    struct page **pages;

    unsigned int array_size, i;

    size = (size + PAGE_SIZE - 1) & PAGE_MASK;

    area = get_vm_area(size, VM_ALLOC);

    if (!area)

        return NULL;

    area->nr_pages = size >> PAGE_SHIFT;

    array_size = (area->nr_pages * sizeof(struct page *));

    area->pages = pages = kmalloc(array_size, GFP_KERNEL);

    if (!area_pages) {

        remove_vm_area(area->addr);

        kfree(area);

        return NULL;

    }

    memset(area->pages, 0, array_size);

    for (i=0; i<area->nr_pages; i++) {

        area->pages[i] = alloc_page(GFP_KERNEL|_ _GFP_HIGHMEM);

        if (!area->pages[i]) {

            area->nr_pages = i;

    fail:   vfree(area->addr);

            return NULL;

       }

    }

    if (map_vm_area(area, _ _pgprot(0x63), &pages))

        goto fail;

    return area->addr;

}

The function starts by rounding up the value of the size parameter to a multiple of 4,096 (the
page frame size). Then vmalloc( ) invokes get_vm_area( ), which creates a new descriptor
and returns the linear addresses assigned to the memory area. The flags field of the
descriptor is initialized with the VM_ALLOC flag, which means that the noncontiguous page
frames will be mapped into a linear address range by means of the vmalloc( ) function. Then
the vmalloc( ) function invokes kmalloc( ) to request a group of contiguous page frames
large enough to contain an array of page descriptor pointers. The memset( ) function is
invoked to set all these pointers to NULL. Next the alloc_page( ) function is called repeatedly,
once for each of the nr_pages of the region, to allocate a page frame and store the address of
the corresponding page descriptor in the area->pages array. Observe that using the
area->pages array is necessary because the page frames could belong to the ZONE_HIGHMEM
memory zone, thus right now they are not necessarily mapped to a linear address.

Now comes the tricky part. Up to this point, a fresh interval of contiguous linear addresses
has been obtained and a group of noncontiguous page frames has been allocated to map
these linear addresses. The last crucial step consists of fiddling with the page table entries
used by the kernel to indicate that each page frame allocated to the noncontiguous memory
area is now associated with a linear address included in the interval of contiguous linear
addresses yielded by vmalloc( ). This is what map_vm_area( ) does.

The map_vm_area( ) function uses three parameters:

area

The pointer to the vm_struct descriptor of the area.

prot

The protection bits of the allocated page frames. It is always set to 0x63, which
corresponds to Present, Accessed, Read/Write, and Dirty.
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pages

The address of a variable pointing to an array of pointers to page descriptors (thus, 
struct page *** is used as the data type!).

The function starts by assigning the linear addresses of the start and end of the area to the 
address and end local variables, respectively:

address = area->addr;

end = address + (area->size - PAGE_SIZE);

Remember that area->size stores the actual size of the area plus the 4 KB inter-area safety
interval. The function then uses the pgd_offset_k macro to derive the entry in the master
kernel Page Global Directory related to the initial linear address of the area; it then acquires
the kernel Page Table spin lock:

pgd = pgd_offset_k(address);

spin_lock(&init_mm.page_table_lock);

The function then executes the following cycle:

int ret = 0;

for (i = pgd_index(address); i < pgd_index(end-1); i++) {

    pud_t *pud = pud_alloc(&init_mm, pgd, address);

    ret = -ENOMEM;

    if (!pud)

        break;

    next = (address + PGDIR_SIZE) & PGDIR_MASK;

    if (next < address || next > end)

        next = end;

    if (map_area_pud(pud, address, next, prot, pages))

        break;

    address = next;

    pgd++;

    ret = 0;

}

spin_unlock(&init_mm.page_table_lock);

flush_cache_vmap((unsigned long)area->addr, end);

return ret;

In each cycle, it first invokes pud_alloc( ) to create a Page Upper Directory for the new area
and writes its physical address in the right entry of the kernel Page Global Directory. It then
calls map_area_pud( ) to allocate all the page tables associated with the new Page Upper
Directory. It adds the size of the range of linear addresses spanned by a single Page Upper
Directorythe constant 230 if PAE is enabled, 222 otherwiseto the current value of address, and
it increases the pointer pgd to the Page Global Directory.

The cycle is repeated until all Page Table entries referring to the noncontiguous memory area
are set up.

The map_area_pud( ) function executes a similar cycle for all the page tables that a Page
Upper Directory points to:

do {

    pmd_t * pmd = pmd_alloc(&init_mm, pud, address);

    if (!pmd)
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        return -ENOMEM;

    if (map_area_pmd(pmd, address, end-address, prot, pages))

        return -ENOMEM;

    address = (address + PUD_SIZE) & PUD_MASK;

    pud++;

} while (address < end);

The map_area_pmd( ) function executes a similar cycle for all the Page Tables that a Page
Middle Directory points to:

do {

    pte_t * pte = pte_alloc_kernel(&init_mm, pmd, address);

    if (!pte)

        return -ENOMEM;

    if (map_area_pte(pte, address, end-address, prot, pages))

        return -ENOMEM;

    address = (address + PMD_SIZE) & PMD_MASK;

    pmd++;

} while (address < end);

The pte_alloc_kernel( ) function (see the section "Page Table Handling" in Chapter 2)
allocates a new Page Table and updates the corresponding entry in the Page Middle Directory.
Next, map_area_pte( ) allocates all the page frames corresponding to the entries in the Page
Table. The value of address is increased by 222the size of the linear address interval spanned
by a single Page Tableand the cycle is repeated.

The main cycle of map_area_pte( ) is:

do {

    struct page * page = **pages;

    set_pte(pte, mk_pte(page, prot));

    address += PAGE_SIZE;

    pte++;

    (*pages)++;

} while (address < end);

The page descriptor address page of the page frame to be mapped is read from the array's
entry pointed to by the variable at address pages. The physical address of the new page
frame is written into the Page Table by the set_pte and mk_pte macros. The cycle is repeated
after adding the constant 4,096 (the length of a page frame) to address.

Notice that the Page Tables of the current process are not touched by map_vm_area( ).
Therefore, when a process in Kernel Mode accesses the noncontiguous memory area, a Page
Fault occurs, because the entries in the process's Page Tables corresponding to the area are
null. However, the Page Fault handler checks the faulty linear address against the master
kernel Page Tables (which are init_mm.pgd Page Global Directory and its child page tables; see
the section "Kernel Page Tables" in Chapter 2). Once the handler discovers that a master
kernel Page Table includes a non-null entry for the address, it copies its value into the
corresponding process's Page Table entry and resumes normal execution of the process. This
mechanism is described in the section "Page Fault Exception Handler" in Chapter 9.

Beside the vmalloc( ) function, a noncontiguous memory area can be allocated by the
vmalloc_32( ) function, which is very similar to vmalloc( ) but only allocates page frames from
the ZONE_NORMAL and ZONE_DMA memory zones.

Linux 2.6 also features a vmap( ) function, which maps page frames already allocated in a
noncontiguous memory area: essentially, this function receives as its parameter an array of
pointers to page descriptors, invokes get_vm_area( ) to get a new vm_struct descriptor, and
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then invokes map_vm_area( ) to map the page frames. The function is thus similar to vmalloc(
), but it does not allocate page frames.

8.3.4. Releasing a Noncontiguous Memory Area

The vfree( ) function releases noncontiguous memory areas created by vmalloc( ) or
vmalloc_32( ), while the vunmap( ) function releases memory areas created by vmap( ). Both
functions have one parameterthe address of the initial linear address of the area to be
released; they both rely on the _ _vunmap( ) function to do the real work.

The _ _vunmap( ) function receives two parameters: the address addr of the initial linear
address of the area to be released, and the flag deallocate_pages, which is set if the page
frames mapped in the area should be released to the zoned page frame allocator (vfree( )'s
invocation), and cleared otherwise (vunmap( )'s invocation). The function performs the
following operations:

1. Invokes the remove_vm_area( ) function to get the address area of the vm_struct
descriptor and to clear the kernel's page table entries corresponding to the linear
address in the noncontiguous memory area.

2. If the deallocate_pages flag is set, it scans the area->pages array of pointers to the
page descriptor; for each element of the array, invokes the _ _free_page( ) function
to release the page frame to the zoned page frame allocator. Moreover, executes 
kfree(area->pages) to release the array itself.

3. Invokes kfree(area) to release the vm_struct descriptor.

The remove_vm_area( ) function performs the following cycle:

write_lock(&vmlist_lock);

for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {

    if (tmp->addr == addr) {

        unmap_vm_area(tmp);

        *p = tmp->next;

        break;

    }

}

write_unlock(&vmlist_lock);

return tmp;

The area itself is released by invoking unmap_vm_area( ). This function acts on a single
parameter, namely a pointer area to the vm_struct descriptor of the area. It executes the
following cycle to reverse the actions performed by map_vm_area( ):

address = area->addr;

end = address + area->size;

pgd = pgd_offset_k(address);

for (i = pgd_index(address); i <= pgd_index(end-1); i++) {

    next = (address + PGDIR_SIZE) & PGDIR_MASK;

    if (next <= address || next > end)

        next = end;

    unmap_area_pud(pgd, address, next - address);

    address = next;

    pgd++;

}

In turn, unmap_area_pud( ) reverses the actions of map_area_pud( ) in the cycle:
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do {

    unmap_area_pmd(pud, address, end-address);

    address = (address + PUD_SIZE) & PUD_MASK;

    pud++;

} while (address && (address < end));

The unmap_area_pmd( ) function reverses the actions of map_area_pmd( ) in the cycle:

do {

    unmap_area_pte(pmd, address, end-address);

    address = (address + PMD_SIZE) & PMD_MASK;

    pmd++;

} while (address < end);

Finally, unmap_area_pte( ) reverses the actions of map_area_pte( ) in the cycle:

do {

    pte_t page = ptep_get_and_clear(pte);

    address += PAGE_SIZE;

    pte++;

    if (!pte_none(page) && !pte_present(page))

        printk("Whee... Swapped out page in kernel page table\n");

} while (address < end);

In every iteration of the cycle, the page table entry pointed to by pte is set to 0 by the
ptep_get_and_clear macro.

As for vmalloc( ), the kernel modifies the entries of the master kernel Page Global Directory
and its child page tables (see the section "Kernel Page Tables" in Chapter 2), but it leaves
unchanged the entries of the process page tables mapping the fourth gigabyte. This is fine
because the kernel never reclaims Page Upper Directories, Page Middle Directories, and Page
Tables rooted at the master kernel Page Global Directory.

For instance, suppose that a process in Kernel Mode accessed a noncontiguous memory area
that later got released. The process's Page Global Directory entries are equal to the
corresponding entries of the master kernel Page Global Directory, thanks to the mechanism
explained in the section "Page Fault Exception Handler" in Chapter 9; they point to the same
Page Upper Directories, Page Middle Directories, and Page Tables. The unmap_area_pte( )
function clears only the entries of the page tables (without reclaiming the page tables
themselves). Further accesses of the process to the released noncontiguous memory area will
trigger Page Faults because of the null page table entries. However, the handler will consider
such accesses a bug, because the master kernel page tables do not include valid entries.
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Chapter 9. Process Address Space
As seen in the previous chapter, a kernel function gets dynamic memory in a fairly
straightforward manner by invoking one of a variety of functions: _ _get_free_pages( ) or
alloc_pages( ) to get pages from the zoned page frame allocator, kmem_cache_alloc( ) or
kmalloc( ) to use the slab allocator for specialized or general-purpose objects, and vmalloc( )
or vmalloc_32( ) to get a noncontiguous memory area. If the request can be satisfied, each of
these functions returns a page descriptor address or a linear address identifying the beginning
of the allocated dynamic memory area.

These simple approaches work for two reasons:

 The kernel is the highest-priority component of the operating system. If a kernel
function makes a request for dynamic memory, it must have a valid reason to issue
that request, and there is no point in trying to defer it.

 The kernel trusts itself. All kernel functions are assumed to be error-free, so the kernel
does not need to insert any protection against programming errors.

When allocating memory to User Mode processes, the situation is entirely different:

 Process requests for dynamic memory are considered non-urgent. When a process's
executable file is loaded, for instance, it is unlikely that the process will address all the
pages of code in the near future. Similarly, when a process invokes malloc( ) to get
additional dynamic memory, it doesn't mean the process will soon access all the
additional memory obtained. Thus, as a general rule, the kernel tries to defer allocating
dynamic memory to User Mode processes.

 Because user programs cannot be trusted, the kernel must be prepared to catch all
addressing errors caused by processes in User Mode.

As this chapter describes, the kernel succeeds in deferring the allocation of dynamic memory
to processes by using a new kind of resource. When a User Mode process asks for dynamic
memory, it doesn't get additional page frames; instead, it gets the right to use a new range of
linear addresses, which become part of its address space. This interval is called a "memory
region."

In the next section, we discuss how the process views dynamic memory. We then describe
the basic components of the process address space in the section "Memory Regions." Next,
we examine in detail the role played by the Page Fault exception handler in deferring the
allocation of page frames to processes and illustrate how the kernel creates and deletes whole
process address spaces. Last, we discuss the APIs and system calls related to address space
management.
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9.1. The Process's Address Space
The address space of a process consists of all linear addresses that the process is allowed to
use. Each process sees a different set of linear addresses; the address used by one process
bears no relation to the address used by another. As we will see later, the kernel may
dynamically modify a process address space by adding or removing intervals of linear
addresses.

The kernel represents intervals of linear addresses by means of resources called memory
regions , which are characterized by an initial linear address, a length, and some access
rights. For reasons of efficiency, both the initial address and the length of a memory region
must be multiples of 4,096, so that the data identified by each memory region completely fills
up the page frames allocated to it. Following are some typical situations in which a process
gets new memory regions:

 When the user types a command at the console, the shell process creates a new
process to execute the command. As a result, a fresh address space, and thus a set
of memory regions, is assigned to the new process (see the section "Creating and
Deleting a Process Address Space" later in this chapter; also, see Chapter 20).

 A running process may decide to load an entirely different program. In this case, the
process ID remains unchanged, but the memory regions used before loading the
program are released and a new set of memory regions is assigned to the process (see
the section "The exec Functions" in Chapter 20).

 A running process may perform a "memory mapping" on a file (or on a portion of it). In
such cases, the kernel assigns a new memory region to the process to map the file
(see the section "Memory Mapping" in Chapter 16).

 A process may keep adding data on its User Mode stack until all addresses in the
memory region that map the stack have been used. In this case, the kernel may decide
to expand the size of that memory region (see the section "Page Fault Exception
Handler" later in this chapter).

 A process may create an IPC-shared memory region to share data with other
cooperating processes. In this case, the kernel assigns a new memory region to the
process to implement this construct (see the section "IPC Shared Memory" in Chapter
19).

 A process may expand its dynamic area (the heap) through a function such as malloc(
). As a result, the kernel may decide to expand the size of the memory region assigned
to the heap (see the section "Managing the Heap" later in this chapter).

Table 9-1 illustrates some of the system calls related to the previously mentioned tasks. brk(
) is discussed at the end of this chapter, while the remaining system calls are described in
other chapters.

Table 9-1. System calls related to memory region creation and deletion

System call Description

brk( ) Changes the heap size of the process

execve( ) Loads a new executable file, thus changing the process address space

_exit( ) Terminates the current process and destroys its address space
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Table 9-1. System calls related to memory region creation and deletion

System call Description

fork( ) Creates a new process, and thus a new address space

mmap( ), mmap2( ) Creates a memory mapping for a file, thus enlarging the process
address space

mremap( ) Expands or shrinks a memory region

remap_file_pages( ) Creates a non-linear mapping for a file (see Chapter 16)

munmap( ) Destroys a memory mapping for a file, thus contracting the process
address space

shmat( ) Attaches a shared memory region

shmdt( ) Detaches a shared memory region

As we'll see in the later section "Page Fault Exception Handler," it is essential for the kernel to
identify the memory regions currently owned by a process (the address space of a process),
because that allows the Page Fault exception handler to efficiently distinguish between two
types of invalid linear addresses that cause it to be invoked:

 Those caused by programming errors.

 Those caused by a missing page; even though the linear address belongs to the
process's address space, the page frame corresponding to that address has yet to be
allocated.

The latter addresses are not invalid from the process's point of view; the induced Page Faults
are exploited by the kernel to implement demand paging : the kernel provides the missing page
frame and lets the process continue.
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9.2. The Memory Descriptor
All information related to the process address space is included in an object called the 
memory descriptor of type mm_struct. This object is referenced by the mm field of the process
descriptor. The fields of a memory descriptor are listed in Table 9-2.

Table 9-2. The fields of the memory descriptor

Type Field Description

struct

vm_area_struct *

mmap Pointer to the head of the list of memory region
objects

struct rb_root mm_rb Pointer to the root of the red-black tree of
memory region objects

struct

vm_area_struct *

mmap_cache Pointer to the last referenced memory region
object

unsigned long
(*)( )

get_unmapped_area Method that searches an available linear address
interval in the process address space

void (*)( ) unmap_area Method invoked when releasing a linear address
interval

unsigned long mmap_base Identifies the linear address of the first allocated
anonymous memory region or file memory mapping
(see the section "Program Segments and Process
Memory Regions" in Chapter 20)

unsigned long free_area_cache
Address from which the kernel will look for a free
interval of linear addresses in the process address
space

pgd_t * pgd Pointer to the Page Global Directory

atomic_t mm_users Secondary usage counter

atomic_t mm_count Main usage counter

int map_count Number of memory regions

struct

rw_semaphore

mmap_sem Memory regions' read/write semaphore

spinlock_t page_table_lock Memory regions' and Page Tables' spin lock

struct list_head
mmlist Pointers to adjacent elements in the list of

memory descriptors
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Table 9-2. The fields of the memory descriptor

Type Field Description

unsigned long start_code Initial address of executable code

unsigned long end_code Final address of executable code

unsigned long start_data Initial address of initialized data

unsigned long end_data Final address of initialized data

unsigned long start_brk Initial address of the heap

unsigned long brk Current final address of the heap

unsigned long start_stack Initial address of User Mode stack

unsigned long arg_start Initial address of command-line arguments

unsigned long arg_end Final address of command-line arguments

unsigned long env_start Initial address of environment variables

unsigned long env_end Final address of environment variables

unsigned long rss Number of page frames allocated to the process

unsigned long anon_rss Number of page frames assigned to anonymous
memory mappings

unsigned long total_vm Size of the process address space (number of
pages)

unsigned long locked_vm Number of "locked" pages that cannot be swapped
out (see Chapter 17)

unsigned long shared_vm Number of pages in shared file memory mappings

unsigned long exec_vm Number of pages in executable memory mappings

unsigned long stack_vm Number of pages in the User Mode stack

unsigned long reserved_vm Number of pages in reserved or special memory
regions

unsigned long def_flags Default access flags of the memory regions

unsigned long nr_ptes Number of Page Tables of this process

unsigned long []
saved_auxv Used when starting the execution of an ELF

program (see Chapter 20)
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Table 9-2. The fields of the memory descriptor

Type Field Description

unsigned int dumpable Flag that specifies whether the process can
produce a core dump of the memory

cpumask_t cpu_vm_mask Bit mask for lazy TLB switches (see Chapter 2)

mm_context_t context

Pointer to table for architecture-specific
information (e.g., LDT's address in 80 86
platforms)

unsigned long swap_token_time
When this process will become eligible for having
the swap token (see the section "The Swap
Token" in Chapter 17)

char recent_pagein Flag set if a major Page Fault has recently
occurred

int core_waiters Number of lightweight processes that are dumping
the contents of the process address space to a
core file (see the section "Deleting a Process
Address Space" later in this chapter)

struct completion
*

core_startup_done Pointer to a completion used when creating a core
file (see the section "Completions" in Chapter 5)

struct completion core_done Completion used when creating a core file

rwlock_t ioctx_list_lock Lock used to protect the list of asynchronous I/O
contexts (see Chapter 16)

struct kioctx * ioctx_list List of asynchronous I/O contexts (see Chapter
16)

struct kioctx default_kioctx Default asynchronous I/O context (see Chapter 16
)

unsigned long hiwater_rss Maximum number of page frames ever owned by
the process

unsigned long hiwater_vm Maximum number of pages ever included in the
memory regions of the process

All memory descriptors are stored in a doubly linked list. Each descriptor stores the address of
the adjacent list items in the mmlist field. The first element of the list is the mmlist field of
init_mm, the memory descriptor used by process 0 in the initialization phase. The list is
protected against concurrent accesses in multiprocessor systems by the mmlist_lock spin
lock.

The mm_users field stores the number of lightweight processes that share the mm_struct data
structure (see the section "The clone( ), fork( ), and vfork( ) System Calls" in Chapter 3).
The mm_count field is the main usage counter of the memory descriptor; all "users" in mm_users
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count as one unit in mm_count. Every time the mm_count field is decreased, the kernel checks
whether it becomes zero; if so, the memory descriptor is deallocated because it is no longer in
use.

We'll try to explain the difference between the use of mm_users and mm_count with an example.
Consider a memory descriptor shared by two lightweight processes. Normally, its mm_users field
stores the value 2, while its mm_count field stores the value 1 (both owner processes count as
one).

If the memory descriptor is temporarily lent to a kernel thread (see the next section), the
kernel increases the mm_count field. In this way, even if both lightweight processes die and
the mm_users field becomes zero, the memory descriptor is not released until the kernel thread
finishes using it because the mm_count field remains greater than zero.

If the kernel wants to be sure that the memory descriptor is not released in the middle of a
lengthy operation, it might increase the mm_users field instead of mm_count (this is what the
try_to_unuse( ) function does; see the section "Activating and Deactivating a Swap Area" in
Chapter 17). The final result is the same because the increment of mm_users ensures that
mm_count does not become zero even if all lightweight processes that own the memory
descriptor die.

The mm_alloc( ) function is invoked to get a new memory descriptor. Because these
descriptors are stored in a slab allocator cache, mm_alloc( ) calls kmem_cache_alloc( ),
initializes the new memory descriptor, and sets the mm_count and mm_users field to 1.

Conversely, the mmput( ) function decreases the mm_users field of a memory descriptor. If that
field becomes 0, the function releases the Local Descriptor Table, the memory region
descriptors (see later in this chapter), and the Page Tables referenced by the memory
descriptor, and then invokes mmdrop( ). The latter function decreases mm_count and, if it
becomes zero, releases the mm_struct data structure.

The mmap, mm_rb, mmlist, and mmap_cache fields are discussed in the next section.

9.2.1. Memory Descriptor of Kernel Threads

Kernel threads run only in Kernel Mode, so they never access linear addresses below TASK_SIZE
(same as PAGE_OFFSET, usually 0xc0000000). Contrary to regular processes, kernel threads do
not use memory regions, therefore most of the fields of a memory descriptor are meaningless
for them.

Because the Page Table entries that refer to the linear address above TASK_SIZE should always
be identical, it does not really matter what set of Page Tables a kernel thread uses. To avoid
useless TLB and cache flushes, a kernel thread uses the set of Page Tables of the last
previously running regular process. To that end, two kinds of memory descriptor pointers are
included in every process descriptor: mm and active_mm.

The mm field in the process descriptor points to the memory descriptor owned by the process,
while the active_mm field points to the memory descriptor used by the process when it is in
execution. For regular processes, the two fields store the same pointer. Kernel threads,
however, do not own any memory descriptor, thus their mm field is always NULL. When a kernel
thread is selected for execution, its active_mm field is initialized to the value of the active_mm
of the previously running process (see the section "The schedule( ) Function" in Chapter 7).

There is, however, a small complication. Whenever a process in Kernel Mode modifies a Page
Table entry for a "high" linear address (above TASK_SIZE), it should also update the
corresponding entry in the sets of Page Tables of all processes in the system. In fact, once
set by a process in Kernel Mode, the mapping should be effective for all other processes in
Kernel Mode as well. Touching the sets of Page Tables of all processes is a costly operation;
therefore, Linux adopts a deferred approach.
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We already mentioned this deferred approach in the section "Noncontiguous Memory Area
Management" in Chapter 8: every time a high linear address has to be remapped (typically by
vmalloc( ) or vfree( )), the kernel updates a canonical set of Page Tables rooted at the
swapper_pg_dir master kernel Page Global Directory (see the section "Kernel Page Tables" in
Chapter 2). This Page Global Directory is pointed to by the pgd field of a master memory
descriptor , which is stored in the init_mm variable.[*]

[*] We mentioned in the section "Kernel Threads" in Chapter 3 that the swapper process uses init_mm during the initialization phase.
How ever, sw apper never uses this memory descriptor once the initialization phase completes.

Later, in the section "Handling Noncontiguous Memory Area Accesses," we'll describe how the
Page Fault handler takes care of spreading the information stored in the canonical Page Tables
when effectively needed.
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9.3. Memory Regions
Linux implements a memory region by means of an object of type vm_area_struct; its fields are
shown in Table 9-3.[*]

[*] We omitted describing a few  additional fields used in NUMA systems.

Table 9-3. The fields of the memory region object

Type Field Description

struct mm_struct * vm_mm Pointer to the memory descriptor that owns
the region.

unsigned long vm_start First linear address inside the region.

unsigned long vm_end First linear address after the region.

struct

vm_area_struct *

vm_next Next region in the process list.

pgprot_t vm_page_prot Access permissions for the page frames of
the region.

unsigned long vm_flags Flags of the region.

struct rb_node vm_rb Data for the red-black tree (see later in this
chapter).

union shared Links to the data structures used for
reverse mapping (see the section "Reverse
Mapping for Mapped Pages" in Chapter 17).

struct list_head anon_vma_node Pointers for the list of anonymous memory
regions (see the section "Reverse Mapping
for Anonymous Pages" in Chapter 17).

struct anon_vma * anon_vma Pointer to the anon_vma data structure (see
the section "Reverse Mapping for
Anonymous Pages" in Chapter 17).

struct

vm_operations_struct*

vm_ops Pointer to the methods of the memory
region.

unsigned long vm_pgoff Offset in mapped file (see Chapter 16). For
anonymous pages, it is either zero or equal
to vm_start/PAGE_SIZE (see Chapter 17).

struct file * vm_file Pointer to the file object of the mapped file,
if any.
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Table 9-3. The fields of the memory region object

Type Field Description

void * vm_private_data Pointer to private data of the memory
region.

unsigned long vm_truncate_count Used when releasing a linear address interval
in a non-linear file memory mapping.

Each memory region descriptor identifies a linear address interval. The vm_start field contains
the first linear address of the interval, while the vm_end field contains the first linear address
outside of the interval; vm_end-vm_start thus denotes the length of the memory region. The
vm_mm field points to the mm_struct memory descriptor of the process that owns the region. We
will describe the other fields of vm_area_struct as they come up.

Memory regions owned by a process never overlap, and the kernel tries to merge regions when
a new one is allocated right next to an existing one. Two adjacent regions can be merged if
their access rights match.

As shown in Figure 9-1, when a new range of linear addresses is added to the process address
space, the kernel checks whether an already existing memory region can be enlarged (case a
). If not, a new memory region is created (case b). Similarly, if a range of linear addresses is
removed from the process address space, the kernel resizes the affected memory regions
(case c). In some cases, the resizing forces a memory region to split into two smaller ones
(case d) .[*]

[*] Removing a linear address interval may theoretically fail because no free memory is available for a new  memory descriptor.

Figure 9-1. Adding or removing a linear address interval
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The vm_ops field points to a vm_operations_struct data structure, which stores the methods of
the memory region. Only four methodsillustrated in Table 9-4are applicable to UMA systems.

Table 9-4. The methods to act on a memory region

Method Description

open Invoked when the memory region is added to the set of regions owned by a
process.

close Invoked when the memory region is removed from the set of regions owned by a
process.

nopage Invoked by the Page Fault exception handler when a process tries to access a
page not present in RAM whose linear address belongs to the memory region (see
the later section "Page Fault Exception Handler").

populate Invoked to set the page table entries corresponding to the linear addresses of the
memory region (prefaulting). Mainly used for non-linear file memory mappings.

9.3.1. Memory Region Data Structures

All the regions owned by a process are linked in a simple list. Regions appear in the list in
ascending order by memory address; however, successive regions can be separated by an
area of unused memory addresses. The vm_next field of each vm_area_struct element points to
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the next element in the list. The kernel finds the memory regions through the mmap field of the
process memory descriptor, which points to the first memory region descriptor in the list.

The map_count field of the memory descriptor contains the number of regions owned by the
process. By default, a process may own up to 65,536 different memory regions; however, the
system administrator may change this limit by writing in the /proc/sys/vm/max_map_count
file.

Figure 9-2 illustrates the relationships among the address space of a process, its memory
descriptor, and the list of memory regions.

Figure 9-2. Descriptors related to the address space of a process

A frequent operation performed by the kernel is to search the memory region that includes a
specific linear address. Because the list is sorted, the search can terminate as soon as a
memory region that ends after the specific linear address is found.

However, using the list is convenient only if the process has very few memory regionslet's say
less than a few tens of them. Searching, inserting elements, and deleting elements in the list
involve a number of operations whose times are linearly proportional to the list length.

Although most Linux processes use very few memory regions, there are some large
applications, such as object-oriented databases or specialized debuggers for the usage of 
malloc(), that have many hundreds or even thousands of regions. In such cases, the memory
region list management becomes very inefficient, hence the performance of the
memory-related system calls degrades to an intolerable point.

Therefore, Linux 2.6 stores memory descriptors in data structures called red-black trees . In a
red-black tree, each element (or node) usually has two children: a left child and a right child.
The elements in the tree are sorted. For each node N, all elements of the subtree rooted at
the left child of N precede N, while, conversely, all elements of the subtree rooted at the right
child of N follow N (see Figure 9-3(a); the key of the node is written inside the node itself.
Moreover, a red-black tree must satisfy four additional rules:

1. Every node must be either red or black.

2. The root of the tree must be black.

3. The children of a red node must be black.

4. Every path from a node to a descendant leaf must contain the same number of black
nodes . When counting the number of black nodes, null pointers are counted as black
nodes.
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Figure 9-3. Example of red-black trees

These four rules ensure that every red-black tree with n internal nodes has a height of at
most 2 x log(n + 1).

Searching an element in a red-black tree is thus very efficient, because it requires operations
whose execution time is linearly proportional to the logarithm of the tree size. In other words,
doubling the number of memory regions adds just one more iteration to the operation.

Inserting and deleting an element in a red-black tree is also efficient, because the algorithm
can quickly traverse the tree to locate the position at which the element will be inserted or
from which it will be removed. Each new node must be inserted as a leaf and colored red. If
the operation breaks the rules, a few nodes of the tree must be moved or recolored.

For instance, suppose that an element having the value 4 must be inserted in the red-black
tree shown in Figure 9-3(a). Its proper position is the right child of the node that has key 3,
but once it is inserted, the red node that has the value 3 has a red child, thus breaking rule 3.
To satisfy the rule, the color of nodes that have the values 3, 4, and 7 is changed. This
operation, however, breaks rule 4, thus the algorithm performs a "rotation" on the subtree
rooted at the node that has the key 19, producing the new red-black tree shown in Figure 9-3
(b). This looks complicated, but inserting or deleting an element in a red-black tree requires a
small number of operationsa number linearly proportional to the logarithm of the tree size.

Therefore, to store the memory regions of a process, Linux uses both a linked list and a
red-black tree. Both data structures contain pointers to the same memory region descriptors.
When inserting or removing a memory region descriptor, the kernel searches the previous and
next elements through the red-black tree and uses them to quickly update the list without
scanning it.

The head of the linked list is referenced by the mmap field of the memory descriptor. Each
memory region object stores the pointer to the next element of the list in the vm_next field.
The head of the red-black tree is referenced by the mm_rb field of the memory descriptor. Each
memory region object stores the color of the node, as well as the pointers to the parent, the
left child, and the right child, in the vm_rb field of type rb_node.

In general, the red-black tree is used to locate a region including a specific address, while the
linked list is mostly useful when scanning the whole set of regions.

9.3.2. Memory Region Access Rights

Before moving on, we should clarify the relation between a page and a memory region. As
mentioned in Chapter 2, we use the term "page" to refer both to a set of linear addresses and
to the data contained in this group of addresses. In particular, we denote the linear address
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interval ranging between 0 and 4,095 as page 0, the linear address interval ranging between
4,096 and 8,191 as page 1, and so forth. Each memory region therefore consists of a set of
pages that have consecutive page numbers.

We have already discussed two kinds of flags associated with a page:

 A few flags such as Read/Write, Present, or User/Supervisor stored in each Page Table
entry (see the section "Regular Paging" in Chapter 2).

 A set of flags stored in the flags field of each page descriptor (see the section "Page
Frame Management" in Chapter 8).

The first kind of flag is used by the 80 x 86 hardware to check whether the requested kind of
addressing can be performed; the second kind is used by Linux for many different purposes
(see Table 8-2).

We now introduce a third kind of flag: those associated with the pages of a memory region.
They are stored in the vm_flags field of the vm_area_struct descriptor (see Table 9-5). Some
flags offer the kernel information about all the pages of the memory region, such as what they
contain and what rights the process has to access each page. Other flags describe the region
itself, such as how it can grow.

Table 9-5. The memory region flags

Flag name Description

VM_READ Pages can be read

VM_WRITE Pages can be written

VM_EXEC Pages can be executed

VM_SHARED Pages can be shared by several processes

VM_MAYREAD VM_READ flag may be set

VM_MAYWRITE VM_WRITE flag may be set

VM_MAYEXEC VM_EXEC flag may be set

VM_MAYSHARE VM_SHARE flag may be set

VM_GROWSDOWN The region can expand toward lower addresses

VM_GROWSUP The region can expand toward higher addresses

VM_SHM The region is used for IPC's shared memory

VM_DENYWRITE The region maps a file that cannot be opened for writing

VM_EXECUTABLE The region maps an executable file

VM_LOCKED Pages in the region are locked and cannot be swapped out

VM_IO The region maps the I/O address space of a device
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Table 9-5. The memory region flags

Flag name Description

VM_SEQ_READ The application accesses the pages sequentially

VM_RAND_READ The application accesses the pages in a truly random order

VM_DONTCOPY Do not copy the region when forking a new process

VM_DONTEXPAND Forbid region expansion through mremap( ) system call

VM_RESERVED The region is special (for instance, it maps the I/O address space of a
device), so its pages must not be swapped out

VM_ACCOUNT Check whether there is enough free memory for the mapping when creating
an IPC shared memory region (see Chapter 19)

VM_HUGETLB The pages in the region are handled through the extended paging mechanism
(see the section "Extended Paging" in Chapter 2)

VM_NONLINEAR The region implements a non-linear file mapping

Page access rights included in a memory region descriptor may be combined arbitrarily. It is
possible, for instance, to allow the pages of a region to be read but not executed. To
implement this protection scheme efficiently, the Read, Write, and Execute access rights
associated with the pages of a memory region must be duplicated in all the corresponding
Page Table entries, so that checks can be directly performed by the Paging Unit circuitry. In
other words, the page access rights dictate what kinds of access should generate a Page
Fault exception. As we'll see shortly, the job of figuring out what caused the Page Fault is
delegated by Linux to the Page Fault handler, which implements several page-handling
strategies.

The initial values of the Page Table flags (which must be the same for all pages in the memory
region, as we have seen) are stored in the vm_ page_ prot field of the vm_area_struct
descriptor. When adding a page, the kernel sets the flags in the corresponding Page Table
entry according to the value of the vm_ page_ prot field.

However, translating the memory region's access rights into the page protection bits is not
straightforward for the following reasons:

 In some cases, a page access should generate a Page Fault exception even when its
access type is granted by the page access rights specified in the vm_flags field of the
corresponding memory region. For instance, as we'll see in the section "Copy On Write"
later in this chapter, the kernel may wish to store two identical, writable private pages
(whose VM_SHARE flags are cleared) belonging to two different processes in the same
page frame; in this case, an exception should be generated when either one of the
processes tries to modify the page.

 As mentioned in Chapter 2, 80 x 86 processors's Page Tables have just two protection
bits, namely the Read/Write and User/Supervisor flags. Moreover, the User/Supervisor
flag of every page included in a memory region must always be set, because the page
must always be accessible by User Mode processes.

 Recent Intel Pentium 4 microprocessors with PAE enabled sport a NX (No eXecute) flag
in each 64-bit Page Table entry.
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If the kernel has been compiled without support for PAE, Linux adopts the following rules,
which overcome the hardware limitation of the 80 x 86 microprocessors:

 The Read access right always implies the Execute access right, and vice versa.

 The Write access right always implies the Read access right.

Conversely, if the kernel has been compiled with support for PAE and the CPU has the NX flag,
Linux adopts different rules:

 The Execute access right always implies the Read access right.

 The Write access right always implies the Read access right.

Moreover, to correctly defer the allocation of page frames through the "Copy On Write"
technique (see later in this chapter), the page frame is write-protected whenever the
corresponding page must not be shared by several processes.

Therefore, the 16 possible combinations of the Read, Write, Execute, and Share access rights
are scaled down according to the following rules:

 If the page has both Write and Share access rights, the Read/Write bit is set.

 If the page has the Read or Execute access right but does not have either the Write or
the Share access right, the Read/Write bit is cleared.

 If the NX bit is supported and the page does not have the Execute access right, the NX
bit is set.

 If the page does not have any access rights, the Present bit is cleared so that each
access generates a Page Fault exception. However, to distinguish this condition from
the real page-not-present case, Linux also sets the Page size bit to 1.[*]

[*] You might consider this use of the Page size bit to be a dirty trick, because the bit w as meant to indicate the real page
size. But Linux can get aw ay w ith the deception because the 80 x 86 chip checks the Page size bit in Page Directory
entries, but not in Page Table entries.

The downscaled protection bits corresponding to each combination of access rights are stored
in the 16 elements of the protection_map array.

9.3.3. Memory Region Handling

Having the basic understanding of data structures and state information that control memory
handling , we can look at a group of low-level functions that operate on memory region
descriptors. They should be considered auxiliary functions that simplify the implementation of 
do_mmap( ) and do_munmap( ). Those two functions, which are described in the sections "
Allocating a Linear Address Interval" and "Releasing a Linear Address Interval" later in this
chapter, enlarge and shrink the address space of a process, respectively. Working at a higher
level than the functions we consider here, they do not receive a memory region descriptor as
their parameter, but rather the initial address, the length, and the access rights of a linear
address interval.

9.3.3.1. Finding the closest region to a given address: find_vma( )

The find_vma( ) function acts on two parameters: the address mm of a process memory
descriptor and a linear address addr. It locates the first memory region whose vm_end field is
greater than addr and returns the address of its descriptor; if no such region exists, it returns
a NULL pointer. Notice that the region selected by find_vma( ) does not necessarily include
addr because addr may lie outside of any memory region.

Each memory descriptor includes an mmap_cache field that stores the descriptor address of the
region that was last referenced by the process. This additional field is introduced to reduce
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the time spent in looking for the region that contains a given linear address. Locality of
address references in programs makes it highly likely that if the last linear address checked
belonged to a given region, the next one to be checked belongs to the same region.

The function thus starts by checking whether the region identified by mmap_cache includes addr
. If so, it returns the region descriptor pointer:

    vma = mm->mmap_cache;

    if (vma && vma->vm_end > addr && vma->vm_start <= addr)

        return vma;

Otherwise, the memory regions of the process must be scanned, and the function looks up the
memory region in the red-black tree:

    rb_node = mm->mm_rb.rb_node;

    vma = NULL;

    while (rb_node) {

        vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);

        if (vma_tmp->vm_end > addr) {

            vma = vma_tmp;

            if (vma_tmp->vm_start <= addr)

                break;

            rb_node = rb_node->rb_left;

        } else

            rb_node = rb_node->rb_right;

    }

    if (vma)

        mm->mmap_cache = vma;

    return vma;

The function uses the rb_entry macro, which derives from a pointer to a node of the red-black
tree the address of the corresponding memory region descriptor.

The find_vma_prev( ) function is similar to find_vma( ), except that it writes in an additional
pprev parameter a pointer to the descriptor of the memory region that precedes the one
selected by the function.

Finally, the find_vma_prepare( ) function locates the position of the new leaf in the red-black
tree that corresponds to a given linear address and returns the addresses of the preceding
memory region and of the parent node of the leaf to be inserted.

9.3.3.2. Finding a region that overlaps a given interval: find_vma_intersection( )

The find_vma_intersection( ) function finds the first memory region that overlaps a given
linear address interval; the mm parameter points to the memory descriptor of the process, while
the start_addr and end_addr linear addresses specify the interval:

    vma = find_vma(mm,start_addr);

    if (vma && end_addr <= vma->vm_start)

        vma = NULL;

    return vma;

The function returns a NULL pointer if no such region exists. To be exact, if find_vma( )
returns a valid address but the memory region found starts after the end of the linear address
interval, vma is set to NULL.

9.3.3.3. Finding a free interval: get_unmapped_area( )
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The get_unmapped_area( ) function searches the process address space to find an available
linear address interval. The len parameter specifies the interval length, while a non-null addr
parameter specifies the address from which the search must be started. If the search is
successful, the function returns the initial address of the new interval; otherwise, it returns
the error code -ENOMEM.

If the addr parameter is not NULL, the function checks that the specified address is in the User
Mode address space and that it is aligned to a page boundary. Next, the function invokes
either one of two methods, depending on whether the linear address interval should be used
for a file memory mapping or for an anonymous memory mapping. In the former case, the
function executes the get_unmapped_area file operation; this is discussed in Chapter 16.

In the latter case, the function executes the get_unmapped_area method of the memory
descriptor. In turn, this method is implemented by either the arch_get_unmapped_area( )
function, or the arch_get_unmapped_area_topdown( ) function, according to the memory region
layout of the process. As we'll see in the section "Program Segments and Process Memory
Regions" in Chapter 20, every process can have two different layouts for the memory regions
allocated through the mmap( ) system call: either they start from the linear address 0x40000000
and grow towards higher addresses, or they start right above the User Mode stack and grow
towards lower addresses.

Let us discuss the arch_get_unmapped_area( ) function, which is used when the memory
regions are allocated moving from lower addresses to higher ones. It is essentially equivalent
to the following code fragment:

    if (len > TASK_SIZE)

        return -ENOMEM;

    addr = (addr + 0xfff) & 0xfffff000;

    if (addr && addr + len <= TASK_SIZE) {

        vma = find_vma(current->mm, addr);

        if (!vma || addr + len <= vma->vm_start)

            return addr;

    }

    start_addr = addr = mm->free_area_cache;

    for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {

        if (addr + len > TASK_SIZE) {

            if (start_addr == (TASK_SIZE/3+0xfff)&0xfffff000)

                return -ENOMEM;

            start_addr = addr = (TASK_SIZE/3+0xfff)&0xfffff000;

            vma = find_vma(current->mm, addr);

        }

        if (!vma || addr + len <= vma->vm_start) {

            mm->free_area_cache = addr + len;

            return addr;

        }

        addr = vma->vm_end;

    }

The function starts by checking to make sure the interval length is within TASK_SIZE, the limit
imposed on User Mode linear addresses (usually 3 GB). If addr is different from zero, the
function tries to allocate the interval starting from addr. To be on the safe side, the function
rounds up the value of addr to a multiple of 4 KB.

If addr is 0 or the previous search failed, the arch_get_unmapped_area( ) function scans the
User Mode linear address space looking for a range of linear addresses not included in any
memory region and large enough to contain the new region. To speed up the search, the
search's starting point is usually set to the linear address following the last allocated memory
region. The mm->free_area_cache field of the memory descriptor is initialized to one-third of the
User Mode linear address spaceusually, 1 GBand then updated as new memory regions are
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created. If the function fails in finding a suitable range of linear addresses, the search restarts
from the beginningthat is, from one-third of the User Mode linear address space: in fact, the
first third of the User Mode linear address space is reserved for memory regions having a
predefined starting linear address, typically the text, data, and bss segments of an executable
file (see Chapter 20).

The function invokes find_vma( ) to locate the first memory region ending after the search's
starting point, then repeatedly considers all the following memory regions. Three cases may
occur:

 The requested interval is larger than the portion of linear address space yet to be
scanned (addr + len > TASK_SIZE): in this case, the function either restarts from
one-third of the User Mode address space or, if the second search has already been
done, returns -ENOMEM (there are not enough linear addresses to satisfy the request).

 The hole following the last scanned region is not large enough (vma != NULL &&
vma->vm_start < addr + len). In this case, the function considers the next region.

 If neither one of the preceding conditions holds, a large enough hole has been found.
In this case, the function returns addr.

9.3.3.4. Inserting a region in the memory descriptor list: insert_vm_struct( )

insert_vm_struct( ) inserts a vm_area_struct structure in the memory region object list and
red-black tree of a memory descriptor. It uses two parameters: mm, which specifies the
address of a process memory descriptor, and vma, which specifies the address of the
vm_area_struct object to be inserted. The vm_start and vm_end fields of the memory region
object must have already been initialized. The function invokes the find_vma_prepare( )
function to look up the position in the red-black tree mm->mm_rb where vma should go. Then
insert_vm_struct( ) invokes the vma_link( ) function, which in turn:

1. Inserts the memory region in the linked list referenced by mm->mmap.

2. Inserts the memory region in the red-black tree mm->mm_rb.

3. If the memory region is anonymous, inserts the region in the list headed at the
corresponding anon_vma data structure (see the section "Reverse Mapping for
Anonymous Pages" in Chapter 17).

4. Increases the mm->map_count counter.

If the region contains a memory-mapped file, the vma_link( ) function performs additional
tasks that are described in Chapter 17.

The _ _vma_unlink( ) function receives as its parameters a memory descriptor address mm and
two memory region object addresses vma and prev. Both memory regions should belong to mm,
and prev should precede vma in the memory region ordering. The function removes vma from the
linked list and the red-black tree of the memory descriptor. It also updates mm->mmap_cache,
which stores the last referenced memory region, if this field points to the memory region just
deleted.

9.3.4. Allocating a Linear Address Interval

Now let's discuss how new linear address intervals are allocated. To do this, the do_mmap( )
function creates and initializes a new memory region for the current process. However, after a
successful allocation, the memory region could be merged with other memory regions defined
for the process.

The function uses the following parameters:
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file and offset

File object pointer file and file offset offset are used if the new memory region will
map a file into memory. This topic is discussed in Chapter 16. In this section, we
assume that no memory mapping is required and that file and offset are both NULL.

addr

This linear address specifies where the search for a free interval must start.

len

The length of the linear address interval.

prot

This parameter specifies the access rights of the pages included in the memory region.
Possible flags are PROT_READ, PROT_WRITE, PROT_EXEC, and PROT_NONE. The first three flags
mean the same things as the VM_READ, VM_WRITE, and VM_EXEC flags. PROT_NONE indicates
that the process has none of those access rights.

flag

This parameter specifies the remaining memory region flags:

MAP_GROWSDOWN, MAP_LOCKED, MAP_DENYWRITE, and MAP_EXECUTABLE

Their meanings are identical to those of the flags listed in Table 9-5.

MAP_SHARED and MAP_PRIVATE

The former flag specifies that the pages in the memory region can be shared among
several processes; the latter flag has the opposite effect. Both flags refer to the 
VM_SHARED flag in the vm_area_struct descriptor.

MAP_FIXED

The initial linear address of the interval must be exactly the one specified in the addr
parameter.

MAP_ANONYMOUS

No file is associated with the memory region (see Chapter 16).

MAP_NORESERVE

The function doesn't have to do a preliminary check on the number of free page
frames.

MAP_POPULATE

The function should pre-allocate the page frames required for the mapping established
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by the memory region. This flag is significant only for memory regions that map files
(see Chapter 16) and for IPC shared memory regions (see Chapter 19).

MAP_NONBLOCK

Significant only when the MAP_POPULATE flag is set: when pre-allocating the page
frames, the function must not block.

The do_mmap( ) function performs some preliminary checks on the value of offset and then
executes the do_mmap_pgoff( ) function. In this chapter we will suppose that the new interval
of linear address does not map a file on diskfile memory mapping is discussed in detail in 
Chapter 16. Here is a description of the do_mmap_pgoff( ) function for anonymous memory
regions:

1. Checks whether the parameter values are correct and whether the request can be
satisfied. In particular, it checks for the following conditions that prevent it from
satisfying the request:

o The linear address interval has zero length or includes addresses greater than 
TASK_SIZE.

o The process has already mapped too many memory regionsthat is, the value of
the map_count field of its mm memory descriptor exceeds the allowed maximum
value.

o The flag parameter specifies that the pages of the new linear address interval
must be locked in RAM, but the process is not allowed to create locked memory
regions, or the number of pages locked by the process exceeds the threshold
stored in the signal->rlim[RLIMIT_MEMLOCK].rlim_cur field of the process
descriptor.

If any of the preceding conditions holds, do_mmap_pgoff( ) terminates by returning a
negative value. If the linear address interval has a zero length, the function returns
without performing any action.

2. Invokes get_unmapped_area( ) to obtain a linear address interval for the new region
(see the previous section "Memory Region Handling").

3. Computes the flags of the new memory region by combining the values stored in the 
prot and flags parameters:

4.
5.     vm_flags = calc_vm_prot_bits(prot,flags) |

6.                calc_vm_flag_bits(prot,flags) |

7.                mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

8.     if (flags & MAP_SHARED)

        vm_flags |= VM_SHARED | VM_MAYSHARE;

The calc_vm_prot_bits( ) function sets the VM_READ, VM_WRITE, and VM_EXEC flags in
vm_flags only if the corresponding PROT_READ, PROT_WRITE, and PROT_EXEC flags in prot
are set. The calc_vm_flag_bits( ) function sets the VM_GROWSDOWN, VM_DENYWRITE,
VM_EXECUTABLE, and VM_LOCKED flags in vm_flags only if the corresponding MAP_GROWSDOWN,
MAP_DENYWRITE, MAP_EXECUTABLE, and MAP_LOCKED flags in flags are set. A few other flags
are set in vm_flags: VM_MAYREAD, VM_MAYWRITE, VM_MAYEXEC, the default flags for all
memory regions in mm->def_flags,[*] and both VM_SHARED and VM_MAYSHARE if the pages of
the memory region have to be shared with other processes.

[*] Actually, the def_flags field of the memory descriptor is modified only by the mlockall( ) system call,
which can be used to set the VM_LOCKED flag, thus locking all future pages of the calling process in RAM.
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9. Invokes find_vma_prepare( ) to locate the object of the memory region that shall
precede the new interval, as well as the position of the new region in the red-black
tree:

10.
11.     for (;;) {

12.         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);

13.         if (!vma || vma->vm_start >= addr + len)

14.             break;

15.         if (do_munmap(mm, addr, len))

16.             return -ENOMEM;

    }

The find_vma_prepare( ) function also checks whether a memory region that overlaps
the new interval already exists. This occurs when the function returns a non-NULL
address pointing to a region that starts before the end of the new interval. In this
case, do_mmap_pgoff( ) invokes do_munmap( ) to remove the new interval and then
repeats the whole step (see the later section "Releasing a Linear Address Interval").

17. Checks whether inserting the new memory region causes the size of the process
address space (mm->total_vm<<PAGE_SHIFT)+len to exceed the threshold stored in the
signal->rlim[RLIMIT_AS].rlim_cur field of the process descriptor. If so, it returns the
error code -ENOMEM. Notice that the check is done here and not in step 1 with the other
checks, because some memory regions could have been removed in step 4.

18. Returns the error code -ENOMEM if the MAP_NORESERVE flag was not set in the flags
parameter, the new memory region contains private writable pages, and there are not
enough free page frames; this last check is performed by the 
security_vm_enough_memory( ) function.

19. If the new interval is private (VM_SHARED not set) and it does not map a file on disk, it
invokes vma_merge( ) to check whether the preceding memory region can be expanded
in such a way to include the new interval. Of course, the preceding memory region
must have exactly the same flags as those memory regions stored in the vm_flags local
variable. If the preceding memory region can be expanded, vma_merge( ) also tries to
merge it with the following memory region (this occurs when the new interval fills the
hole between two memory regions and all three have the same flags). In case it
succeeds in expanding the preceding memory region, the function jumps to step 12.

20. Allocates a vm_area_struct data structure for the new memory region by invoking the
kmem_cache_alloc( ) slab allocator function.

21. Initializes the new memory region object (pointed to by vma):
22.
23.     vma->vm_mm = mm;

24.     vma->vm_start = addr;

25.     vma->vm_end = addr + len;

26.     vma->vm_flags = vm_flags;

27.     vma->vm_page_prot = protection_map[vm_flags & 0x0f];

28.     vma->vm_ops = NULL;

29.     vma->vm_pgoff = pgoff;

30.     vma->vm_file = NULL;

31.     vma->vm_private_data = NULL;

32.     vma->vm_next = NULL;

    INIT_LIST_HEAD(&vma->shared);

33. If the MAP_SHARED flag is set (and the new memory region doesn't map a file on disk),
the region is a shared anonymous region: invokes shmem_zero_setup( ) to initialize it.
Shared anonymous regions are mainly used for interprocess communications; see the
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section "IPC Shared Memory" in Chapter 19.

34. Invokes vma_link( ) to insert the new region in the memory region list and red-black
tree (see the earlier section "Memory Region Handling").

35. Increases the size of the process address space stored in the total_vm field of the
memory descriptor.

36. If the VM_LOCKED flag is set, it invokes make_pages_present( ) to allocate all the pages
of the memory region in succession and lock them in RAM:

37.
38.     if (vm_flags & VM_LOCKED) {

39.         mm->locked_vm += len >> PAGE_SHIFT;

40.         make_pages_present(addr, addr + len);

41.     }

The make_pages_present( ) function, in turn, invokes get_user_pages( ) as follows:

    write = (vma->vm_flags & VM_WRITE) != 0;

    get_user_pages(current, current->mm, addr, len, write, 0, NULL,

NULL);

The get_user_pages( ) function cycles through all starting linear addresses of the
pages between addr and addr+len; for each of them, it invokes follow_page( ) to
check whether there is a mapping to a physical page in the current's Page Tables. If
no such physical page exists, get_user_pages( ) invokes handle_mm_fault( ), which, as
we'll see in the section "Handling a Faulty Address Inside the Address Space," allocates
one page frame and sets its Page Table entry according to the vm_flags field of the
memory region descriptor.

42. Finally, it terminates by returning the linear address of the new memory region.

9.3.5. Releasing a Linear Address Interval

When the kernel must delete a linear address interval from the address space of the current
process, it uses the do_munmap( ) function. The parameters are: the address mm of the
process's memory descriptor, the starting address start of the interval, and its length len.
The interval to be deleted does not usually correspond to a memory region; it may be included
in one memory region or span two or more regions.

9.3.5.1. The do_munmap( ) function

The function goes through two main phases. In the first phase (steps 16), it scans the list of
memory regions owned by the process and unlinks all regions included in the linear address
interval from the process address space. In the second phase (steps 712), the function
updates the process Page Tables and removes the memory regions identified in the first
phase. The function makes use of the split_vma( ) and unmap_region( ) functions, which will
be described later. do_munmap( ) executes the following steps:

1. Performs some preliminary checks on the parameter values. If the linear address
interval includes addresses greater than TASK_SIZE, if start is not a multiple of 4,096,
or if the linear address interval has a zero length, the function returns the error code 
-EINVAL.

2. Locates the first memory region mpnt that ends after the linear address interval to be
deleted (mpnt->end > start), if any:

3.
    mpnt = find_vma_prev(mm, start, &prev);
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4. If there is no such memory region, or if the region does not overlap with the linear
address interval, nothing has to be done because there is no memory region in the
interval:

5.
6.     end = start + len;

7.     if (!mpnt || mpnt->vm_start >= end)

8.         return 0;

9. If the linear address interval starts inside the mpnt memory region, it invokes split_vma(
) (described below) to split the mpnt memory region into two smaller regions: one
outside the interval and the other inside the interval:

10.
11.     if (start > mpnt->vm_start) {

12.         if (split_vma(mm, mpnt, start, 0))

13.             return -ENOMEM;

14.         prev = mpnt;

    }

The prev local variable, which previously stored the pointer to the memory region
preceding mpnt, is updated so that it points to mpntthat is, to the new memory region
lying outside the linear address interval. In this way, prev still points to the memory
region preceding the first memory region to be removed.

15. If the linear address interval ends inside a memory region, it invokes split_vma( ) once
again to split the last overlapping memory region into two smaller regions: one inside
the interval and the other outside the interval:[*]

[*] If the linear address interval is properly contained inside a memory region, the region must be
replaced by two new smaller regions. When this case occurs, step 4 and step 5 break the memory
region in three smaller regions: the middle region is destroyed, while the first and the last ones will
be preserved.

    last = find_vma(mm, end);

    if (last && end > last->vm_start)){

        if (split_vma(mm, last, start, end, 1))

            return -ENOMEM;

    }

16. Updates the value of mpnt so that it points to the first memory region in the linear
address interval. If prev is NULLthat is, there is no preceding memory regionthe address
of the first memory region is taken from mm->mmap:

17.
    mpnt = prev ? prev->vm_next : mm->mmap;

18. Invokes detach_vmas_to_be_unmapped( ) to remove the memory regions included in the
linear address interval from the process's linear address space. This function essentially
executes the following code:

19.
20.     vma = mpnt;

21.     insertion_point = (prev ? &prev->vm_next : &mm->mmap);

22.     do {

23.         rb_erase(&vma->vm_rb, &mm->mm_rb);

24.         mm->map_count--;

25.         tail_vma = vma;

26.         vma = vma->next;

27.     } while (vma && vma->start < end);
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28.     *insertion_point = vma;

29.     tail_vma->vm_next = NULL;

    mm->map_cache = NULL;

The descriptors of the regions to be removed are stored in an ordered list, whose head
is pointed to by the mpnt local variable (actually, this list is just a fragment of the
original process's list of memory regions).

30. Gets the mm->page_table_lock spin lock.

31. Invokes unmap_region( ) to clear the Page Table entries covering the linear address
interval and to free the corresponding page frames (discussed later):

32.
    unmap_region(mm, mpnt, prev, start, end);

33. Releases the mm->page_table_lock spin lock.

34. Releases the descriptors of the memory regions collected in the list built in step 7:
35.
36.     do {

37.         struct vm_area_struct * next = mpnt->vm_next;

38.         unmap_vma(mm, mpnt);

39.         mpnt = next;

    } while (mpnt != NULL);

The unmap_vma( ) function is invoked on every memory region in the list; it essentially
executes the following steps:

a. Updates the mm->total_vm and mm->locked_vm fields.

b. Executes the mm->unmap_area method of the memory descriptor. This method is
implemented either by arch_unmap_area( ) or by arch_unmap_area_topdown( ),
according to the memory region layout of the process (see the earlier section "
Memory Region Handling"). In both cases, the mm->free_area_cache field is
updated, if needed.

c. Invokes the close method of the memory region, if defined.

d. If the memory region is anonymous, the function removes it from the
anonymous memory region list headed at mm->anon_vma.

e. Invokes kmem_cache_free( ) to release the memory region descriptor.

40. Returns 0 (success).

9.3.5.2. The split_vma( ) function

The purpose of the split_vma( ) function is to split a memory region that intersects a linear
address interval into two smaller regions, one outside of the interval and the other inside. The
function receives four parameters: a memory descriptor pointer mm, a memory area descriptor
pointer vma that identifies the region to be split, an address addr that specifies the
intersection point between the interval and the memory region, and a flag new_below that
specifies whether the intersection occurs at the beginning or at the end of the interval. The
function performs the following basic steps:

1. Invokes kmem_cache_alloc( ) to get an additional vm_area_struct descriptor, and stores
its address in the new local variable. If no free memory is available, it returns -ENOMEM.

2. Initializes the fields of the new descriptor with the contents of the fields of the vma
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descriptor.

3. If the new_below flag is 0, the linear address interval starts inside the vma region, so the
new region must be placed after the vma region. Thus, the function sets both the
new->vm_start and the vma->vm_end fields to addr.

4. Conversely, if the new_below flag is equal to 1, the linear address interval ends inside
the vma region, so the new region must be placed before the vma region. Thus, the
function sets both the new->vm_end and the vma->vm_start fields to addr.

5. If the open method of the new memory region is defined, the function executes it.

6. Links the new memory region descriptor to the mm->mmap list of memory regions and to
the mm->mm_rb red-black tree. Moreover, the function adjusts the red-black tree to take
care of the new size of the memory region vma.

7. Returns 0 (success).

9.3.5.3. The unmap_region( ) function

The unmap_region( ) function walks through a list of memory regions and releases the page
frames belonging to them. It acts on five parameters: a memory descriptor pointer mm, a
pointer vma to the descriptor of the first memory region being removed, a pointer prev to the
memory region preceding vma in the process's list (see steps 2 and 4 in do_munmap()), and two
addresses start and end that delimit the linear address interval being removed. The function
essentially executes the following steps:

1. Invokes lru_add_drain( ) (see Chapter 17).

2. Invokes the tlb_gather_mmu( ) function to initialize a per-CPU variable named
mmu_gathers. The contents of mmu_gathers are architecture-dependent: generally
speaking, the variable should store all information required for a successful updating of
the page table entries of a process. In the 80 x 86 architecture, the tlb_gather_mmu( )
function simply saves the value of the mm memory descriptor pointer in the mmu_gathers
variable of the local CPU.

3. Stores the address of the mmu_gathers variable in the tlb local variable.

4. Invokes unmap_vmas( ) to scan all Page Table entries belonging to the linear address
interval: if only one CPU is available, the function invokes free_swap_and_cache( )
repeatedly to release the corresponding pages (see Chapter 17); otherwise, the
function saves the pointers of the corresponding page descriptors in the mmu_gathers
local variable.

5. Invokes free_pgtables(tlb,prev,start,end) to try to reclaim the Page Tables of the
process that have been emptied in the previous step.

6. Invokes tlb_finish_mmu(tlb,start,end) to finish the work: in turn, this function:

a. Invokes flush_tlb_mm( ) to flush the TLB (see the section "Handling the
Hardware Cache and the TLB" in Chapter 2).

b. In multiprocessor system, invokes free_pages_and_swap_cache( ) to release the
page frames whose pointers have been collected in the mmu_gather data
structure. This function is described in Chapter 17.
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9.4. Page Fault Exception Handler
As stated previously, the Linux Page Fault exception handler must distinguish exceptions caused
by programming errors from those caused by a reference to a page that legitimately belongs to
the process address space but simply hasn't been allocated yet.

The memory region descriptors allow the exception handler to perform its job quite efficiently.
The do_page_fault( ) function, which is the Page Fault interrupt service routine for the 80 x 86
architecture, compares the linear address that caused the Page Fault against the memory
regions of the current process; it can thus determine the proper way to handle the exception
according to the scheme that is illustrated in Figure 9-4.

Figure 9-4. Overall scheme for the Page Fault handler

In practice, things are a lot more complex because the Page Fault handler must recognize
several particular subcases that fit awkwardly into the overall scheme, and it must distinguish
several kinds of legal access. A detailed flow diagram of the handler is illustrated in Figure 9-5.

The identifiers vmalloc_fault, good_area, bad_area, and no_context are labels appearing in
do_page_fault( ) that should help you to relate the blocks of the flow diagram to specific lines of
code.

The do_ page_fault( ) function accepts the following input parameters:

 The regs address of a pt_regs structure containing the values of the microprocessor
registers when the exception occurred.

 A 3-bit error_code, which is pushed on the stack by the control unit when the exception
occurred (see "Hardware Handling of Interrupts and Exceptions" in Chapter 4). The bits
have the following meanings:

o If bit 0 is clear, the exception was caused by an access to a page that is not
present (the Present flag in the Page Table entry is clear); otherwise, if bit 0 is
set, the exception was caused by an invalid access right.
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Figure 9-5. The flow diagram of the Page Fault handler

o If bit 1 is clear, the exception was caused by a read or execute access; if set,
the exception was caused by a write access.

o If bit 2 is clear, the exception occurred while the processor was in Kernel Mode;
otherwise, it occurred in User Mode.

The first operation of do_ page_fault( ) consists of reading the linear address that caused the
Page Fault. When the exception occurs, the CPU control unit stores that value in the cr2 control
register:

    asm("movl %%cr2,%0":"=r" (address));

    if (regs->eflags & 0x00020200)

        local_irq_enable( );

    tsk = current;

The linear address is saved in the address local variable. The function also ensures that local
interrupts are enabled if they were enabled before the fault or the CPU was running in

Page 375

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


virtual-8086 mode, and saves the pointers to the process descriptor of current in the tsk local
variable.

As shown at the top of Figure 9-5, do_ page_fault( ) checks whether the faulty linear address
belongs to the fourth gigabyte:

    info.si_code = SEGV_MAPERR;

    if (address >= TASK_SIZE ) {

        if  (!(error_code & 0x101))

            goto vmalloc_fault;

        goto bad_area_nosemaphore;

    }

If the exception was caused by the kernel trying to access a nonexisting page frame, a jump is
made to the code at label vmalloc_fault, which takes care of faults that were likely caused by
accessing a noncontiguous memory area in Kernel Mode; we describe this case in the later
section "Handling Noncontiguous Memory Area Accesses." Otherwise, a jump is made to the code
at the bad_area_nosemaphore label, described in the later section "Handling a Faulty Address
Outside the Address Space."

Next, the handler checks whether the exception occurred while the kernel was executing some
critical routine or running a kernel thread (remember that the mm field of the process descriptor is
always NULL for kernel threads ):

    if (in_atomic( ) || !tsk->mm)

        goto bad_area_nosemaphore;

The in_atomic( ) macro yields the value one if the fault occurred while either one of the
following conditions holds:

 The kernel was executing an interrupt handler or a deferrable function.

 The kernel was executing a critical region with kernel preemption disabled (see the
section "Kernel Preemption" in Chapter 5).

If the Page Fault did occur in an interrupt handler, in a deferrable function, in a critical region, or
in a kernel thread, do_ page_fault( ) does not try to compare the linear address with the
memory regions of current. Kernel threads never use linear addresses below TASK_SIZE. Similarly,
interrupt handlers, deferrable functions, and code of critical regions should not use linear
addresses below TASK_SIZE because this might block the current process. (See the section "
Handling a Faulty Address Outside the Address Space" later in this chapter for information on
the info local variable and a description of the code at the bad_area_nosemaphore label.)

Let's suppose that the Page Fault did not occur in an interrupt handler, in a deferrable function,
in a critical region, or in a kernel thread. Then the function must inspect the memory regions
owned by the process to determine whether the faulty linear address is included in the process
address space. In order to this, it must acquire the mmap_sem read/write semaphore of the
process:

    if (!down_read_trylock(&tsk->mm>mmap_sem)) {

        if ((error_code & 4) == 0 &&

            !search_exception_table(regs->eip))

            goto bad_area_nosemaphore;

        down_read(&tsk->mm->mmap_sem);

    }

If kernel bugs and hardware malfunctioning can be ruled out, the current process has not already
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acquired the mmap_sem semaphore for writing when the Page Fault occurs. However,
do_page_fault( ) wants to be sure that this is actually true, because otherwise a deadlock
would occur. For that reason, the function makes use of down_read_trylock( ) instead of
down_read( ) (see the section "Read/Write Semaphores" in Chapter 5). If the semaphore is closed
and the Page Fault occurred in Kernel Mode, do_page_fault( ) determines whether the exception
occurred while using some linear address that has been passed to the kernel as a parameter of a
system call (see the next section "Handling a Faulty Address Outside the Address Space"). In
this case, do_page_fault( ) knows for sure that the semaphore is owned by another
processbecause every system call service routine carefully avoids acquiring the mmap_sem
semaphore for writing before accessing the User Mode address spaceso the function waits until
the semaphore is released. Otherwise, the Page Fault is due to a kernel bug or to a serious
hardware problem, so the function jumps to the bad_area_nosemaphore label.

Let's assume that the mmap_sem semaphore has been safely acquired for reading. Now
do_page_fault( ) looks for a memory region containing the faulty linear address:

    vma = find_vma(tsk->mm, address);

    if (!vma)

        goto bad_area;

    if (vma->vm_start <= address)

        goto good_area;

If vma is NULL, there is no memory region ending after address, and thus the faulty address is
certainly bad. On the other hand, if the first memory region ending after address includes address
, the function jumps to the code at label good_area.

If none of the two "if" conditions are satisfied, the function has determined that address is not
included in any memory region; however, it must perform an additional check, because the faulty
address may have been caused by a push or pusha instruction on the User Mode stack of the
process.

Let's make a short digression to explain how stacks are mapped into memory regions. Each region
that contains a stack expands toward lower addresses; its VM_GROWSDOWN flag is set, so the value
of its vm_end field remains fixed while the value of its vm_start field may be decreased. The region
boundaries include, but do not delimit precisely, the current size of the User Mode stack. The
reasons for the fuzz factor are:

 The region size is a multiple of 4 KB (it must include complete pages) while the stack size
is arbitrary.

 Page frames assigned to a region are never released until the region is deleted; in
particular, the value of the vm_start field of a region that includes a stack can only
decrease; it can never increase. Even if the process executes a series of pop
instructions, the region size remains unchanged.

It should now be clear how a process that has filled up the last page frame allocated to its stack
may cause a Page Fault exception: the push refers to an address outside of the region (and to a
nonexistent page frame). Notice that this kind of exception is not caused by a programming
error; thus it must be handled separately by the Page Fault handler.

We now return to the description of do_ page_fault( ), which checks for the case described
previously:

    if (!(vma->vm_flags & VM_GROWSDOWN))

        goto bad_area;

    if (error_code & 4      /* User Mode */

        && address + 32 < regs->esp)

            goto bad_area;

    if (expand_stack(vma, address))
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        goto bad_area;

    goto good_area;

If the VM_GROWSDOWN flag of the region is set and the exception occurred in User Mode, the
function checks whether address is smaller than the regs->esp stack pointer (it should be only a
little smaller). Because a few stack-related assembly language instructions (such as pusha)
perform a decrement of the esp register only after the memory access, a 32-byte tolerance
interval is granted to the process. If the address is high enough (within the tolerance granted),
the code invokes the expand_stack( ) function to check whether the process is allowed to
extend both its stack and its address space; if everything is OK, it sets the vm_start field of vma
to address and returns 0; otherwise, it returns -ENOMEM.

Note that the preceding code skips the tolerance check whenever the VM_GROWSDOWN flag of the
region is set and the exception did not occur in User Mode. These conditions mean that the
kernel is addressing the User Mode stack and that the code should always run expand_stack( ).

9.4.1. Handling a Faulty Address Outside the Address Space

If address does not belong to the process address space, do_page_fault( ) proceeds to execute
the statements at the label bad_area. If the error occurred in User Mode, it sends a SIGSEGV
signal to current (see the section "Generating a Signal" in Chapter 11) and terminates:

    bad_area:

    up_read(&tsk->mm->mmap_sem);

    bad_area_nosemaphore:

    if (error_code & 4) {   /* User Mode */

        tsk->thread.cr2 = address;

        tsk->thread.error_code = error_code | (address >= TASK_SIZE);

        tsk->thread.trap_no = 14;

        info.si_signo = SIGSEGV;

        info.si_errno = 0;

        info.si_addr = (void *) address;

        force_sig_info(SIGSEGV, &info, tsk);

        return;

    }

The force_sig_info( ) function makes sure that the process does not ignore or block the
SIGSEGV signal, and sends the signal to the User Mode process while passing some additional
information in the info local variable (see the section "Generating a Signal" in Chapter 11). The
info.si_code field is already set to SEGV_MAPERR (if the exception was due to a nonexisting page
frame) or to SEGV_ACCERR (if the exception was due to an invalid access to an existing page
frame).

If the exception occurred in Kernel Mode (bit 2 of error_code is clear), there are still two
alternatives:

 The exception occurred while using some linear address that has been passed to the
kernel as a parameter of a system call.

 The exception is due to a real kernel bug.

The function distinguishes these two alternatives as follows:

    no_context:

    if ((fixup = search_exception_table(regs->eip)) != 0) {

        regs->eip = fixup;

        return;

    }
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In the first case, it jumps to a "fixup code," which typically sends a SIGSEGV signal to current or
terminates a system call handler with a proper error code (see the section "Dynamic Address
Checking: The Fix-up Code" in Chapter 10).

In the second case, the function prints a complete dump of the CPU registers and of the Kernel
Mode stack both on the console and on a system message buffer; it then kills the current
process by invoking the do_exit( ) function (see Chapter 20). This is the so-called "Kernel oops"
error, named after the message displayed. The dumped values can be used by kernel hackers to
reconstruct the conditions that triggered the bug, and thus find and correct it.

9.4.2. Handling a Faulty Address Inside the Address Space

If address belongs to the process address space, do_ page_fault( ) proceeds to the statement
labeled good_area:

    good_area:

    info.si_code = SEGV_ACCERR;

    write = 0;

    if (error_code & 2) { /* write access */

        if (!(vma->vm_flags & VM_WRITE))

            goto bad_area;

        write++;

    } else                /* read access */

        if ((error_code & 1) || !(vma->vm_flags & (VM_READ | VM_EXEC)))

            goto bad_area;

If the exception was caused by a write access, the function checks whether the memory region
is writable. If not, it jumps to the bad_area code; if so, it sets the write local variable to 1.

If the exception was caused by a read or execute access, the function checks whether the
page is already present in RAM. In this case, the exception occurred because the process tried
to access a privileged page frame (one whose User/Supervisor flag is clear) in User Mode, so the
function jumps to the bad_area code.[*] If the page is not present, the function also checks
whether the memory region is readable or executable.

[*] How ever, this case should never happen, because the kernel does not assign privileged page frames to the processes.

If the memory region access rights match the access type that caused the exception, the 
handle_mm_fault( ) function is invoked to allocate a new page frame:

    survive:

    ret = handle_mm_fault(tsk->mm, vma, address, write);

    if (ret == VM_FAULT_MINOR || ret == VM_FAULT_MAJOR) {

        if (ret == VM_FAULT_MINOR) tsk->min_flt++; else tsk->maj_flt++;

        up_read(&tsk->mm->mmap_sem);

        return;

    }

The handle_mm_fault( ) function returns VM_FAULT_MINOR or VM_FAULT_MAJOR if it succeeded in
allocating a new page frame for the process. The value VM_FAULT_MINOR indicates that the Page
Fault has been handled without blocking the current process; this kind of Page Fault is called 
minor fault. The value VM_FAULT_MAJOR indicates that the Page Fault forced the current process
to sleep (most likely because time was spent while filling the page frame assigned to the process
with data read from disk); a Page Fault that blocks the current process is called a major fault.
The function can also return VM_FAULT_OOM (for not enough memory) or VM_FAULT_SIGBUS (for every
other error).

If handle_mm_fault( ) returns the value VM_FAULT_SIGBUS, a SIGBUS signal is sent to the process:
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    if (ret == VM_FAULT_SIGBUS) {

    do_sigbus:

        up_read(&tsk->mm->mmap_sem);

        if (!(error_code & 4)) /* Kernel Mode */

            goto no_context;

        tsk->thread.cr2 = address;

        tsk->thread.error_code = error_code;

        tsk->thread.trap_no = 14;

        info.si_signo = SIGBUS;

        info.si_errno = 0;

        info.si_code = BUS_ADRERR;

        info.si_addr = (void *) address;

        force_sig_info(SIGBUS, &info, tsk);

    }

If handle_mm_fault( ) cannot allocate the new page frame, it returns the value VM_FAULT_OOM; in
this case, the kernel usually kills the current process. However, if current is the init process, it is
just put at the end of the run queue and the scheduler is invoked; once init resumes its
execution, handle_mm_fault( ) is executed again:

    if (ret == VM_FAULT_OOM) {

      out_of_memory:

        up_read(&tsk->mm->mmap_sem);

        if (tsk->pid != 1) {

            if (error_code & 4) /* User Mode */

                do_exit(SIGKILL);

            goto no_context;

        }

        yield();

        down_read(&tsk->mm->mmap_sem);

        goto survive;

    }

The handle_mm_fault( ) function acts on four parameters:

mm

A pointer to the memory descriptor of the process that was running on the CPU when the
exception occurred

vma

A pointer to the descriptor of the memory region, including the linear address that caused
the exception

address

The linear address that caused the exception

write_access

Set to 1 if tsk attempted to write in address and to 0 if tsk attempted to read or execute
it
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The function starts by checking whether the Page Middle Directory and the Page Table used to
map address exist. Even if address belongs to the process address space, the corresponding
Page Tables might not have been allocated, so the task of allocating them precedes everything
else:

    pgd = pgd_offset(mm, address);

    spin_lock(&mm->page_table_lock);

    pud = pud_alloc(mm, pgd, address);

    if (pud) {

        pmd = pmd_alloc(mm, pud, address);

        if (pmd) {

            pte = pte_alloc_map(mm, pmd, address);

            if (pte)

                return handle_pte_fault(mm, vma, address,

                                        write_access, pte, pmd);

        }

    }

    spin_unlock(&mm->page_table_lock);

    return VM_FAULT_OOM;

The pgd local variable contains the Page Global Directory entry that refers to address; pud_alloc(
) and pmd_alloc( ) are invoked to allocate, if needed, a new Page Upper Directory and a new
Page Middle Directory, respectively.[*] pte_alloc_map( ) is then invoked to allocate, if needed, a
new Page Table. If both operations are successful, the pte local variable points to the Page
Table entry that refers to address. The handle_pte_fault( ) function is then invoked to inspect
the Page Table entry corresponding to address and to determine how to allocate a new page
frame for the process:

[*] On 80 x 86 microprocessors, these allocations never occur, because the Page Upper Directories are alw ays included in the Page
Global Directory, and the Page Middle Directories are either included in the Page Upper Directory (PAE not enabled) or allocated
together w ith the Page Upper Directory (PAE enabled).

 If the accessed page is not presentthat is, if it is not already stored in any page
framethe kernel allocates a new page frame and initializes it properly; this technique is
called demand paging .

 If the accessed page is present but is marked read-onlyi.e., if it is already stored in a
page framethe kernel allocates a new page frame and initializes its contents by copying
the old page frame data; this technique is called Copy On Write.

9.4.3. Demand Paging

The term demand paging denotes a dynamic memory allocation technique that consists of
deferring page frame allocation until the last possible momentuntil the process attempts to
address a page that is not present in RAM, thus causing a Page Fault exception.

The motivation behind demand paging is that processes do not address all the addresses
included in their address space right from the start; in fact, some of these addresses may never
be used by the process. Moreover, the program locality principle (see the section "Hardware
Cache" in Chapter 2) ensures that, at each stage of program execution, only a small subset of
the process pages are really referenced, and therefore the page frames containing the
temporarily useless pages can be used by other processes. Demand paging is thus preferable to
global allocation (assigning all page frames to the process right from the start and leaving them
in memory until program termination), because it increases the average number of free page
frames in the system and therefore allows better use of the available free memory. From another
viewpoint, it allows the system as a whole to get better throughput with the same amount of
RAM.

The price to pay for all these good things is system overhead: each Page Fault exception
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induced by demand paging must be handled by the kernel, thus wasting CPU cycles. Fortunately,
the locality principle ensures that once a process starts working with a group of pages, it sticks
with them without addressing other pages for quite a while. Thus, Page Fault exceptions may be
considered rare events.

An addressed page may not be present in main memory either because the page was never
accessed by the process, or because the corresponding page frame has been reclaimed by the
kernel (see Chapter 17).

In both cases, the page fault handler must assign a new page frame to the process. How this
page frame is initialized, however, depends on the kind of page and on whether the page was
previously accessed by the process. In particular:

1. Either the page was never accessed by the process and it does not map a disk file, or
the page maps a disk file. The kernel can recognize these cases because the Page Table
entry is filled with zerosi.e., the pte_none macro returns the value 1.

2. The page belongs to a non-linear disk file mapping (see the section "Non-Linear Memory
Mappings" in Chapter 16). The kernel can recognize this case, because the Present flag is
cleared and the Dirty flag is seti.e., the pte_file macro returns the value 1.

3. The page was already accessed by the process, but its content is temporarily saved on
disk. The kernel can recognize this case because the Page Table entry is not filled with
zeros, but the Present and Dirty flags are cleared.

Thus, the handle_ pte_fault( ) function is able to distinguish the three cases by inspecting the
Page Table entry that refers to address:

    entry = *pte;

    if (!pte_present(entry)) {

        if (pte_none(entry))

            return do_no_page(mm, vma, address, write_access, pte, pmd);

        if (pte_file(entry))

            return do_file_page(mm, vma, address, write_access, pte, pmd);

        return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);

    }

We'll examine cases 2 and 3 in Chapter 16 and in Chapter 17, respectively.

In case 1, when the page was never accessed or the page linearly maps a disk file, the 
do_no_page( ) function is invoked. There are two ways to load the missing page, depending on
whether the page is mapped to a disk file. The function determines this by checking the nopage
method of the vma memory region object, which points to the function that loads the missing
page from disk into RAM if the page is mapped to a file. Therefore, the possibilities are:

 The vma->vm_ops->nopage field is not NULL. In this case, the memory region maps a disk file
and the field points to the function that loads the page. This case is covered in the
section "Demand Paging for Memory Mapping" in Chapter 16 and in the section "IPC
Shared Memory" in Chapter 19.

 Either the vma->vm_ops field or the vma->vm_ops->nopage field is NULL. In this case, the
memory region does not map a file on diski.e., it is an anonymous mapping . Thus, do_no_
page( ) invokes the do_anonymous_page( ) function to get a new page frame:


     if (!vma->vm_ops || !vma->vm_ops->nopage)

         return do_anonymous_page(mm, vma, page_table, pmd,

                                 write_access, address);
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The do_anonymous_page( ) function[*] handles write and read requests separately:

[*] To simplify the description of this function, w e skip the statements that deal w ith reverse mapping, a topic that w ill be covered in the
section "Reverse Mapping" in Chapter 17.

    if (write_access) {

        pte_unmap(page_table);

        spin_unlock(&mm->page_table_lock);

        page = alloc_page(GFP_HIGHUSER | _ _GFP_ZERO);

        spin_lock(&mm->page_table_lock);

        page_table = pte_offset_map(pmd, addr);

        mm->rss++;

        entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,

                                                 vma->vm_page_prot)), vma);

        lru_cache_add_active(page);

        SetPageReferenced(page);

        set_pte(page_table, entry);

        pte_unmap(page_table);

        spin_unlock(&mm->page_table_lock);

        return VM_FAULT_MINOR;

    }

The first execution of the pte_unmap macro releases the temporary kernel mapping for the
high-memory physical address of the Page Table entry established by pte_offset_map before
invoking the handle_pte_fault( ) function (see Table 2-7 in the section "Page Table Handling" in
Chapter 2). The following pair or pte_offset_map and pte_unmap macros acquires and releases the
same temporary kernel mapping. The temporary kernel mapping has to be released before
invoking alloc_page( ), because this function might block the current process.

The function increases the rss field of the memory descriptor to keep track of the number of
page frames allocated to the process. The Page Table entry is then set to the physical address
of the page frame, which is marked as writable[ ] and dirty. The lru_cache_add_active( )
function inserts the new page frame in the swap-related data structures; we discuss it in 
Chapter 17.

[ ] If a debugger attempts to w rite in a page belonging to a read-only memory region of the traced process, the kernel does not set
the Read/Write flag. The maybe_mkwrite( ) function takes care of this special case.

Conversely, when handling a read access, the content of the page is irrelevant because the
process is addressing it for the first time. It is safer to give a page filled with zeros to the
process rather than an old page filled with information written by some other process. Linux goes
one step further in the spirit of demand paging. There is no need to assign a new page frame
filled with zeros to the process right away, because we might as well give it an existing page
called zero page , thus deferring further page frame allocation. The zero page is allocated
statically during kernel initialization in the empty_zero_page variable (an array of 4,096 bytes filled
with zeros).

The Page Table entry is thus set with the physical address of the zero page:

    entry = pte_wrprotect(mk_pte(virt_to_page(empty_zero_page),

                                 vma->vm_page_prot));

    set_pte(page_table, entry);

    spin_unlock(&mm->page_table_lock);

    return VM_FAULT_MINOR;

Because the page is marked as nonwritable, if the process attempts to write in it, the Copy On
Write mechanism is activated. Only then does the process get a page of its own to write in. The
mechanism is described in the next section.
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9.4.4. Copy On Write

First-generation Unix systems implemented process creation in a rather clumsy way: when a 
fork( ) system call was issued, the kernel duplicated the whole parent address space in the
literal sense of the word and assigned the copy to the child process. This activity was quite time
consuming since it required:

 Allocating page frames for the Page Tables of the child process

 Allocating page frames for the pages of the child process

 Initializing the Page Tables of the child process

 Copying the pages of the parent process into the corresponding pages of the child
process

This way of creating an address space involved many memory accesses, used up many CPU
cycles, and completely spoiled the cache contents. Last but not least, it was often pointless
because many child processes start their execution by loading a new program, thus discarding
entirely the inherited address space (see Chapter 20).

Modern Unix kernels, including Linux, follow a more efficient approach called Copy On Write (COW
). The idea is quite simple: instead of duplicating page frames, they are shared between the
parent and the child process. However, as long as they are shared, they cannot be modified.
Whenever the parent or the child process attempts to write into a shared page frame, an
exception occurs. At this point, the kernel duplicates the page into a new page frame that it
marks as writable. The original page frame remains write-protected: when the other process tries
to write into it, the kernel checks whether the writing process is the only owner of the page
frame; in such a case, it makes the page frame writable for the process.

The _count field of the page descriptor is used to keep track of the number of processes that are
sharing the corresponding page frame. Whenever a process releases a page frame or a Copy On
Write is executed on it, its _count field is decreased; the page frame is freed only when _count
becomes -1 (see the section "Page Descriptors" in Chapter 8).

Let's now describe how Linux implements COW. When handle_ pte_fault( ) determines that the
Page Fault exception was caused by an access to a page present in memory, it executes the
following instructions:

    if (pte_present(entry)) {

        if (write_access) {

            if (!pte_write(entry))

                return do_wp_page(mm, vma, address, pte, pmd, entry);

            entry = pte_mkdirty(entry);

        }

        entry = pte_mkyoung(entry);

        set_pte(pte, entry);

        flush_tlb_page(vma, address);

        pte_unmap(pte);

        spin_unlock(&mm->page_table_lock);

        return VM_FAULT_MINOR;

    }

The handle_pte_fault( ) function is architecture-independent: it considers each possible
violation of the page access rights. However, in the 80 x 86 architecture, if the page is present,
the access was for writing and the page frame is write-protected (see the earlier section "
Handling a Faulty Address Inside the Address Space"). Thus, the do_wp_page( ) function is
always invoked.

Page 384

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The do_wp_page( ) function[*] starts by deriving the page descriptor of the page frame referenced
by the Page Table entry involved in the Page Fault exception. Next, the function determines
whether the page must really be duplicated. If only one process owns the page, Copy On Write
does not apply, and the process should be free to write the page. Basically, the function reads
the _count field of the page descriptor: if it is equal to 0 (a single owner), COW must not be
done. Actually, the check is slightly more complicated, because the _count field is also increased
when the page is inserted into the swap cache (see the section "The Swap Cache" in Chapter 17
) and when the PG_private flag in the page descriptor is set. However, when COW is not to be
done, the page frame is marked as writable, so that it does not cause further Page Fault
exceptions when writes are attempted:

[*] To simplify the description of this function, w e skip the statements that deal w ith reverse mapping, a topic that w ill be covered in the
section "Reverse Mapping" in Chapter 17.

    set_pte(page_table, maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),vma));

    flush_tlb_page(vma, address);

    pte_unmap(page_table);

    spin_unlock(&mm->page_table_lock);

    return VM_FAULT_MINOR;

If the page is shared among several processes by means of COW, the function copies the
content of the old page frame (old_page) into the newly allocated one (new_page). To avoid race
conditions, get_page( ) is invoked to increase the usage counter of old_page before starting the
copy operation:

    old_page = pte_page(pte);

    pte_unmap(page_table);

    get_page(old_page);

    spin_unlock(&mm->page_table_lock);

    if (old_page == virt_to_page(empty_zero_page))

        new_page = alloc_page(GFP_HIGHUSER | _ _GFP_ZERO);

    } else {

        new_page = alloc_page(GFP_HIGHUSER);

        vfrom = kmap_atomic(old_page, KM_USER0)

        vto = kmap_atomic(new_page, KM_USER1);

        copy_page(vto, vfrom);

        kunmap_atomic(vfrom, KM_USER0);

        kunmap_atomic(vto, KM_USER0);

    }

If the old page is the zero page, the new frame is efficiently filled with zeros when it is allocated
(_ _GFP_ZERO flag). Otherwise, the page frame content is copied using the copy_page( ) macro.
Special handling for the zero page is not strictly required, but it improves the system
performance, because it preserves the microprocessor hardware cache by making fewer address
references.

Because the allocation of a page frame can block the process, the function checks whether the
Page Table entry has been modified since the beginning of the function (pte and *page_table do
not have the same value). In this case, the new page frame is released, the usage counter of 
old_page is decreased (to undo the increment made previously), and the function terminates.

If everything looks OK, the physical address of the new page frame is finally written into the
Page Table entry, and the corresponding TLB register is invalidated:

    spin_lock(&mm->page_table_lock);

    entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page,

                                             vma->vm_page_prot)),vma);

    set_pte(page_table, entry);
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    flush_tlb_page(vma, address);

    lru_cache_add_active(new_page);

    pte_unmap(page_table);

    spin_unlock(&mm->page_table_lock);

The lru_cache_add_active( ) function inserts the new page frame in the swap-related data
structures; see Chapter 17 for its description.

Finally, do_wp_page( ) decreases the usage counter of old_page twice. The first decrement
undoes the safety increment made before copying the page frame contents; the second
decrement reflects the fact that the current process no longer owns the page frame.

9.4.5. Handling Noncontiguous Memory Area Accesses

We have seen in the section "Noncontiguous Memory Area Management" in Chapter 8 that the
kernel is quite lazy in updating the Page Table entries corresponding to noncontiguous memory
areas. In fact, the vmalloc( ) and vfree( ) functions limit themselves to updating the master
kernel Page Tables (i.e., the Page Global Directory init_mm.pgd and its child Page Tables).

However, once the kernel initialization phase ends, the master kernel Page Tables are not
directly used by any process or kernel thread. Thus, consider the first time that a process in
Kernel Mode accesses a noncontiguous memory area. When translating the linear address into a
physical address, the CPU's memory management unit encounters a null Page Table entry and
raises a Page Fault. However, the handler recognizes this special case because the exception
occurred in Kernel Mode, and the faulty linear address is greater than TASK_SIZE. Thus, the
do_page_fault( ) handler checks the corresponding master kernel Page Table entry:

    vmalloc_fault:

    asm("movl %%cr3 

,%0":"=r" (pgd_paddr));

    pgd = pgd_index(address) + (pgd_t *) _ _va(pgd_paddr);

    pgd_k = init_mm.pgd + pgd_index(address);

    if (!pgd_present(*pgd_k))

        goto no_context;

    pud = pud_offset(pgd, address);

    pud_k = pud_offset(pgd_k, address);

    if (!pud_present(*pud_k))

        goto no_context;

    pmd = pmd_offset(pud, address);

    pmd_k = pmd_offset(pud_k, address);

    if (!pmd_present(*pmd_k))

        goto no_context;

    set_pmd(pmd, *pmd_k);

    pte_k = pte_offset_kernel(pmd_k, address);

    if (!pte_present(*pte_k))

        goto no_context;

    return;

The pgd_paddr local variable is loaded with the physical address of the Page Global Directory of
the current process, which is stored in the cr3 register.[*] The pgd local variable is then loaded
with the linear address corresponding to pgd_paddr, and the pgd_k local variable is loaded with
the linear address of the master kernel Page Global Directory.

[*] The kernel doesn't use current->mm->pgd to derive the address because this fault can occur anytime, even during a process sw itch.

If the master kernel Page Global Directory entry corresponding to the faulty linear address is null,
the function jumps to the code at the no_context label (see the earlier section "Handling a Faulty
Address Outside the Address Space"). Otherwise, the function looks at the master kernel Page
Upper Directory entry and at the master kernel Page Middle Directory entry corresponding to the
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faulty linear address. Again, if either one of these entries is null, a jump is done to the 
no_context label. Otherwise, the master entry is copied into the corresponding entry of the
process's Page Middle Directory.[*] Then the whole operation is repeated with the master Page
Table entry.

[*] You might remember from the section "Paging in Linux" in Chapter 2 that if PAE is enabled then the Page Upper Directory entry
cannot be null; otherw ise, if PAE is disabled, setting the Page Middle Directory entry implicitly sets the Page Upper Directory entry, too.
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9.5. Creating and Deleting a Process Address Space
Of the six typical cases mentioned earlier in the section "The Process's Address Space," in
which a process gets new memory regions, the first oneissuing a fork( ) system callrequires
the creation of a whole new address space for the child process. Conversely, when a process
terminates, the kernel destroys its address space. In this section, we discuss how these two
activities are performed by Linux.

9.5.1. Creating a Process Address Space

In the section "The clone( ), fork( ), and vfork( ) System Calls" in Chapter 3, we mentioned
that the kernel invokes the copy_mm( ) function while creating a new process. This function
creates the process address space by setting up all Page Tables and memory descriptors of
the new process.

Each process usually has its own address space, but lightweight processes can be created by
calling clone( ) with the CLONE_VM flag set. These processes share the same address space;
that is, they are allowed to address the same set of pages.

Following the COW approach described earlier, traditional processes inherit the address space
of their parent: pages stay shared as long as they are only read. When one of the processes
attempts to write one of them, however, the page is duplicated; after some time, a forked
process usually gets its own address space that is different from that of the parent process.
Lightweight processes, on the other hand, use the address space of their parent process.
Linux implements them simply by not duplicating address space. Lightweight processes can be
created considerably faster than normal processes, and the sharing of pages can also be
considered a benefit as long as the parent and children coordinate their accesses carefully.

If the new process has been created by means of the clone( ) system call and if the CLONE_VM
flag of the flag parameter is set, copy_mm( ) gives the clone (tsk) the address space of its
parent (current):

    if (clone_flags & CLONE_VM) {

        atomic_inc(&current->mm->mm_users);

        spin_unlock_wait(&current->mm->page_table_lock);

        tsk->mm = current->mm;

        tsk->active_mm = current->mm;

        return 0;

    }

Invoking the spin_unlock_wait( ) function ensures that, if the page table spin lock of the
process is held by some other CPU, the page fault handler does not terminate until that lock is
released. In fact, beside protecting the page tables, this spin lock must forbid the creation of
new lightweight processes sharing the current->mm descriptor.

If the CLONE_VM flag is not set, copy_mm( ) must create a new address space (even though no
memory is allocated within that address space until the process requests an address). The
function allocates a new memory descriptor, stores its address in the mm field of the new
process descriptor tsk, and copies the contents of current->mm into tsk->mm. It then changes
a few fields of the new descriptor:

    tsk->mm = kmem_cache_alloc(mm_cachep, SLAB_KERNEL);

    memcpy(tsk->mm, current->mm, sizeof(*tsk->mm));

    atomic_set(&tsk->mm->mm_users, 1);

    atomic_set(&tsk->mm->mm_count, 1);

    init_rwsem(&tsk->mm->mmap_sem);
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    tsk->mm->core_waiters = 0;

    tsk->mm->page_table_lock = SPIN_LOCK_UNLOCKED;

    tsk->mm->ioctx_list_lock = RW_LOCK_UNLOCKED;

    tsk->mm->ioctx_list = NULL;

    tsk->mm->default_kioctx = INIT_KIOCTX(tsk->mm->default_kioctx,

                                          *tsk->mm);

    tsk->mm->free_area_cache = (TASK_SIZE/3+0xfff)&0xfffff000;

    tsk->mm->pgd = pgd_alloc(tsk->mm);

    tsk->mm->def_flags = 0;

Remember that the pgd_alloc( ) macro allocates a Page Global Directory for the new process.

The architecture-dependent init_new_context( ) function is then invoked: when dealing with
80 x 86 processors, this function checks whether the current process owns a customized
Local Descriptor Table; if so, init_new_context( ) makes a copy of the Local Descriptor Table
of current and adds it to the address space of tsk.

Finally, the dup_mmap( ) function is invoked to duplicate both the memory regions and the Page
Tables of the parent process. This function inserts the new memory descriptor tsk->mm in the
global list of memory descriptors. Then it scans the list of regions owned by the parent
process, starting from the one pointed to by current->mm->mmap. It duplicates each
vm_area_struct memory region descriptor encountered and inserts the copy in the list of
regions and in the red-black tree owned by the child process.

Right after inserting a new memory region descriptor, dup_mmap( ) invokes copy_page_range( )
to create, if necessary, the Page Tables needed to map the group of pages included in the
memory region and to initialize the new Page Table entries. In particular, each page frame
corresponding to a private, writable page (VM_SHARED flag off and VM_MAYWRITE flag on) is
marked as read-only for both the parent and the child, so that it will be handled with the Copy
On Write mechanism.

9.5.2. Deleting a Process Address Space

When a process terminates, the kernel invokes the exit_mm( ) function to release the address
space owned by that process:

    mm_release(tsk, tsk->mm);

    if (!(mm = tsk->mm)) /* kernel thread ? */

        return;

    down_read(&mm->mmap_sem);

The mm_release( ) function essentially wakes up all processes sleeping in the tsk->vfork_done
completion (see the section "Completions" in Chapter 5). Typically, the corresponding wait
queue is nonempty only if the exiting process was created by means of the vfork( ) system
call (see the section "The clone( ), fork( ), and vfork( ) System Calls" in Chapter 3).

If the process being terminated is not a kernel thread, the exit_mm( ) function must release
the memory descriptor and all related data structures. First of all, it checks whether the 
mm->core_waiters flag is set: if it does, then the process is dumping the contents of the
memory to a core file. To avoid corruption in the core file, the function makes use of the 
mm->core_done and mm->core_startup_done completions to serialize the execution of the
lightweight processes sharing the same memory descriptor mm.

Next, the function increases the memory descriptor's main usage counter, resets the mm field
of the process descriptor, and puts the processor in lazy TLB mode (see "Handling the
Hardware Cache and the TLB" in Chapter 2):

    atomic_inc(&mm->mm_count);

    spin_lock(tsk->alloc_lock);
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    tsk->mm = NULL;

    up_read(&mm->map_sem);

    enter_lazy_tlb(mm, current);

    spin_unlock(tsk->alloc_lock);

    mmput(mm);

Finally, the mmput( ) function is invoked to release the Local Descriptor Table, the memory
region descriptors, and the Page Tables. The memory descriptor itself, however, is not
released, because exit_mm( ) has increased the main usage counter. The descriptor will be
released by the finish_task_switch( ) function when the process being terminated will be
effectively evicted from the local CPU (see the section "The schedule( ) Function" in Chapter
7).
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9.6. Managing the Heap
Each Unix process owns a specific memory region called the heap, which is used to satisfy the
process's dynamic memory requests. The start_brk and brk fields of the memory descriptor
delimit the starting and ending addresses, respectively, of that region.

The following APIs can be used by the process to request and release dynamic memory:

malloc(size)

Requests size bytes of dynamic memory; if the allocation succeeds, it returns the
linear address of the first memory location.

calloc(n,size)

Requests an array consisting of n elements of size size; if the allocation succeeds, it
initializes the array components to 0 and returns the linear address of the first
element.

realloc(ptr,size)

Changes the size of a memory area previously allocated by malloc( ) or calloc( ) .

free(addr)

Releases the memory region allocated by malloc( ) or calloc( ) that has an initial
address of addr.

brk(addr)

Modifies the size of the heap directly; the addr parameter specifies the new value of
current->mm->brk, and the return value is the new ending address of the memory region
(the process must check whether it coincides with the requested addr value).

sbrk(incr)

Is similar to brk( ) , except that the incr parameter specifies the increment or
decrement of the heap size in bytes.

The brk( ) function differs from the other functions listed because it is the only one
implemented as a system call. All the other functions are implemented in the C library by
using brk( ) and mmap( ).[*]

[*] The realloc( ) library function can also make use of the mremap( ) system call.

When a process in User Mode invokes the brk( ) system call, the kernel executes the
sys_brk(addr) function. This function first verifies whether the addr parameter falls inside the
memory region that contains the process code; if so, it returns immediately because the heap
cannot overlap with memory region containing the process's code:

    mm = current->mm;

    down_write(&mm->mmap_sem);
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    if (addr < mm->end_code) {

    out:

        up_write(&mm->mmap_sem);

        return mm->brk;

    }

Because the brk( ) system call acts on a memory region, it allocates and deallocates whole
pages. Therefore, the function aligns the value of addr to a multiple of PAGE_SIZE and
compares the result with the value of the brk field of the memory descriptor:

    newbrk = (addr + 0xfff) & 0xfffff000;

    oldbrk = (mm->brk + 0xfff) & 0xfffff000;

    if (oldbrk == newbrk) {

        mm->brk = addr;

        goto out;

    }

If the process asked to shrink the heap, sys_brk( ) invokes the do_munmap( ) function to do
the job and then returns:

    if (addr <= mm->brk) {

        if (!do_munmap(mm, newbrk, oldbrk-newbrk))

            mm->brk = addr;

        goto out;

    }

If the process asked to enlarge the heap, sys_brk( ) first checks whether the process is
allowed to do so. If the process is trying to allocate memory outside its limit, the function
simply returns the original value of mm->brk without allocating more memory:

    rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;

    if (rlim < RLIM_INFINITY && addr - mm->start_data > rlim)

        goto out;

The function then checks whether the enlarged heap would overlap some other memory region
belonging to the process and, if so, returns without doing anything:

    if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))

        goto out;

If everything is OK, the do_brk( ) function is invoked. If it returns the oldbrk value, the
allocation was successful and sys_brk( ) returns the value addr; otherwise, it returns the old
mm->brk value:

    if (do_brk(oldbrk, newbrk-oldbrk) == oldbrk)

        mm->brk = addr;

    goto out;

The do_brk( ) function is actually a simplified version of do_mmap( ) that handles only
anonymous memory regions. Its invocation might be considered equivalent to:

    do_mmap(NULL, oldbrk, newbrk-oldbrk, PROT_READ|PROT_WRITE|PROT_EXEC,

            MAP_FIXED|MAP_PRIVATE, 0)
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do_brk( ) is slightly faster than do_mmap( ), because it avoids several checks on the memory
region object fields by assuming that the memory region doesn't map a file on disk.
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Chapter 10. System Calls
Operating systems offer processes running in User Mode a set of interfaces to interact with
hardware devices such as the CPU, disks, and printers. Putting an extra layer between the
application and the hardware has several advantages. First, it makes programming easier by
freeing users from studying low-level programming characteristics of hardware devices.
Second, it greatly increases system security, because the kernel can check the accuracy of
the request at the interface level before attempting to satisfy it. Last but not least, these
interfaces make programs more portable, because they can be compiled and executed
correctly on every kernel that offers the same set of interfaces.

Unix systems implement most interfaces between User Mode processes and hardware devices
by means of system calls issued to the kernel. This chapter examines in detail how Linux
implements system calls that User Mode programs issue to the kernel.
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10.1. POSIX APIs and System Calls
Let's start by stressing the difference between an application programmer interface (API) and
a system call. The former is a function definition that specifies how to obtain a given service,
while the latter is an explicit request to the kernel made via a software interrupt.

Unix systems include several libraries of functions that provide APIs to programmers. Some of
the APIs defined by the libc standard C library refer to wrapper routines (routines whose only
purpose is to issue a system call). Usually, each system call has a corresponding wrapper
routine, which defines the API that application programs should employ.

The converse is not true, by the wayan API does not necessarily correspond to a specific
system call. First of all, the API could offer its services directly in User Mode. (For something
abstract such as math functions, there may be no reason to make system calls.) Second, a
single API function could make several system calls. Moreover, several API functions could
make the same system call, but wrap extra functionality around it. For instance, in Linux, the 
malloc( ) , calloc( ) , and free( ) APIs are implemented in the libc library. The code in this
library keeps track of the allocation and deallocation requests and uses the brk( ) system call
to enlarge or shrink the process heap (see the section "Managing the Heap" in Chapter 9).

The POSIX standard refers to APIs and not to system calls. A system can be certified as
POSIX-compliant if it offers the proper set of APIs to the application programs, no matter how
the corresponding functions are implemented. As a matter of fact, several non-Unix systems
have been certified as POSIX-compliant, because they offer all traditional Unix services in User
Mode libraries.

From the programmer's point of view, the distinction between an API and a system call is
irrelevantthe only things that matter are the function name, the parameter types, and the
meaning of the return code. From the kernel designer's point of view, however, the distinction
does matter because system calls belong to the kernel, while User Mode libraries don't.

Most wrapper routines return an integer value, whose meaning depends on the corresponding
system call. A return value of -1 usually indicates that the kernel was unable to satisfy the
process request. A failure in the system call handler may be caused by invalid parameters, a
lack of available resources, hardware problems, and so on. The specific error code is
contained in the errno variable, which is defined in the libc library.

Each error code is defined as a macro constant, which yields a corresponding positive integer
value. The POSIX standard specifies the macro names of several error codes. In Linux, on 80 x
86 systems, these macros are defined in the header file include/asm-i386/errno.h. To allow
portability of C programs among Unix systems, the include/asm-i386/errno.h header file is
included, in turn, in the standard /usr/include/errno.h C library header file. Other systems
have their own specialized subdirectories of header files.
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10.2. System Call Handler and Service Routines
When a User Mode process invokes a system call, the CPU switches to Kernel Mode and starts
the execution of a kernel function. As we will see in the next section, in the 80 x 86
architecture a Linux system call can be invoked in two different ways. The net result of both
methods, however, is a jump to an assembly language function called the system call handler.

Because the kernel implements many different system calls, the User Mode process must pass
a parameter called the system call number to identify the required system call; the eax
register is used by Linux for this purpose. As we'll see in the section "Parameter Passing" later
in this chapter, additional parameters are usually passed when invoking a system call.

All system calls return an integer value. The conventions for these return values are different
from those for wrapper routines. In the kernel, positive or 0 values denote a successful
termination of the system call, while negative values denote an error condition. In the latter
case, the value is the negation of the error code that must be returned to the application
program in the errno variable. The errno variable is not set or used by the kernel. Instead, the
wrapper routines handle the task of setting this variable after a return from a system call.

The system call handler, which has a structure similar to that of the other exception handlers,
performs the following operations:

 Saves the contents of most registers in the Kernel Mode stack (this operation is
common to all system calls and is coded in assembly language).

 Handles the system call by invoking a corresponding C function called the system call
service routine.

 Exits from the handler: the registers are loaded with the values saved in the Kernel
Mode stack, and the CPU is switched back from Kernel Mode to User Mode (this
operation is common to all system calls and is coded in assembly language).

The name of the service routine associated with the xyz( ) system call is usually sys_xyz( );
there are, however, a few exceptions to this rule.

Figure 10-1 illustrates the relationships between the application program that invokes a
system call, the corresponding wrapper routine, the system call handler, and the system call
service routine. The arrows denote the execution flow between the functions. The terms "
SYSCALL" and "SYSEXIT" are placeholders for the actual assembly language instructions that
switch the CPU, respectively, from User Mode to Kernel Mode and from Kernel Mode to User
Mode.

Figure 10-1. Invoking a system call
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To associate each system call number with its corresponding service routine, the kernel uses
a system call dispatch table, which is stored in the sys_call_table array and has NR_syscalls
entries (289 in the Linux 2.6.11 kernel). The nth entry contains the service routine address of
the system call having number n.

The NR_syscalls macro is just a static limit on the maximum number of implementable system
calls; it does not indicate the number of system calls actually implemented. Indeed, each
entry of the dispatch table may contain the address of the sys_ni_syscall( ) function, which
is the service routine of the "nonimplemented" system calls; it just returns the error code 
-ENOSYS.
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10.3. Entering and Exiting a System Call
Native applications[*] can invoke a system call in two different ways:

[*] As w e w ill see in the section "Execution Domains" in Chapter 20, Linux can execute programs compiled for "foreign" operating
systems. Therefore, the kernel offers a compatibility mode to enter a system call: User Mode processes executing iBCS and
Solaris /x86 programs can enter the kernel by jumping into suitable call gates included in the default Local Descriptor Table (see the
section "The Linux LDTs" in Chapter 2).

 By executing the int $0x80 assembly language instruction; in older versions of the
Linux kernel, this was the only way to switch from User Mode to Kernel Mode.

 By executing the sysenter assembly language instruction, introduced in the Intel
Pentium II microprocessors; this instruction is now supported by the Linux 2.6 kernel.

Similarly, the kernel can exit from a system callthus switching the CPU back to User Modein
two ways:

 By executing the iret assembly language instruction.

 By executing the sysexit assembly language instruction, which was introduced in the
Intel Pentium II microprocessors together with the sysenter instruction.

However, supporting two different ways to enter the kernel is not as simple as it might look,
because:

 The kernel must support both older libraries that only use the int $0x80 instruction and
more recent ones that also use the sysenter instruction.

 A standard library that makes use of the sysenter instruction must be able to cope
with older kernels that support only the int $0x80 instruction.

 The kernel and the standard library must be able to run both on older processors that
do not include the sysenter instruction and on more recent ones that include it.

We will see in the section "Issuing a System Call via the sysenter Instruction" later in this
chapter how the Linux kernel solves these compatibility problems.

10.3.1. Issuing a System Call via the int $0x80 Instruction

The "traditional" way to invoke a system call makes use of the int assembly language
instruction, which was discussed in the section "Hardware Handling of Interrupts and
Exceptions" in Chapter 4.

The vector 128in hexadecimal, 0x80is associated with the kernel entry point. The trap_init( )
function, invoked during kernel initialization, sets up the Interrupt Descriptor Table entry
corresponding to vector 128 as follows:

    set_system_gate(0x80, &system_call);

The call loads the following values into the gate descriptor fields (see the section "Interrupt,
Trap, and System Gates" in Chapter 4):

Segment Selector

The _ _KERNEL_CS Segment Selector of the kernel code segment.
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Offset

The pointer to the system_call( ) system call handler.

Type

Set to 15. Indicates that the exception is a Trap and that the corresponding handler
does not disable maskable interrupts.

DPL (Descriptor Privilege Level)

Set to 3. This allows processes in User Mode to invoke the exception handler (see the
section "Hardware Handling of Interrupts and Exceptions" in Chapter 4).

Therefore, when a User Mode process issues an int $0x80 instruction, the CPU switches into
Kernel Mode and starts executing instructions from the system_call address.

10.3.1.1. The system_call( ) function

The system_call( ) function starts by saving the system call number and all the CPU registers
that may be used by the exception handler on the stackexcept for eflags, cs, eip, ss, and esp
, which have already been saved automatically by the control unit (see the section "Hardware
Handling of Interrupts and Exceptions" in Chapter 4). The SAVE_ALL macro, which was already
discussed in the section "I/O Interrupt Handling" in Chapter 4, also loads the Segment Selector
of the kernel data segment in ds and es:

    system_call:

      pushl %eax

      SAVE_ALL

      movl $0xffffe000, %ebx /* or 0xfffff000 for 4-KB stacks */

      andl %esp, %ebx

The function then stores the address of the thread_info data structure of the current process
in ebx (see the section "Identifying a Process" in Chapter 3). This is done by taking the value
of the kernel stack pointer and rounding it up to a multiple of 4 or 8 KB (see the section "
Identifying a Process" in Chapter 3).

Next, the system_call( ) function checks whether either one of the TIF_SYSCALL_TRACE and
TIF_SYSCALL_AUDIT flags included in the flags field of the thread_info structure is setthat is,
whether the system call invocations of the executed program are being traced by a debugger.
If this is the case, system_call( ) invokes the do_syscall_trace( ) function twice: once right
before and once right after the execution of the system call service routine (as described
later). This function stops current and thus allows the debugging process to collect
information about it.

A validity check is then performed on the system call number passed by the User Mode
process. If it is greater than or equal to the number of entries in the system call dispatch
table, the system call handler terminates:

      cmpl $NR_syscalls, %eax

      jb nobadsys

      movl $(-ENOSYS), 24(%esp)

      jmp resume_userspace

    nobadsys:

If the system call number is not valid, the function stores the -ENOSYS value in the stack
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location where the eax register has been savedthat is, at offset 24 from the current stack
top. It then jumps to resume_userspace (see below). In this way, when the process resumes
its execution in User Mode, it will find a negative return code in eax.

Finally, the specific service routine associated with the system call number contained in eax is
invoked:

      call *sys_call_table(0, %eax, 4)

Because each entry in the dispatch table is 4 bytes long, the kernel finds the address of the
service routine to be invoked by multiplying the system call number by 4, adding the initial
address of the sys_call_table dispatch table, and extracting a pointer to the service routine
from that slot in the table.

10.3.1.2. Exiting from the system call

When the system call service routine terminates, the system_call( ) function gets its return
code from eax and stores it in the stack location where the User Mode value of the eax
register is saved:

      movl %eax, 24(%esp)

Thus, the User Mode process will find the return code of the system call in the eax register.

Then, the system_call( ) function disables the local interrupts and checks the flags in the
thread_info structure of current:

      cli

      movl 8(%ebp), %ecx

      testw $0xffff, %cx

      je restore_all

The flags field is at offset 8 in the tHRead_info structure; the mask 0xffff selects the bits
corresponding to all flags listed in Table 4-15 except TIF_POLLING_NRFLAG. If none of these
flags is set, the function jumps to the restore_all label: as described in the section "Returning
from Interrupts and Exceptions" in Chapter 4, this code restores the contents of the registers
saved on the Kernel Mode stack and executes an iret assembly language instruction to
resume the User Mode process. (You might refer to the flow diagram in Figure 4-6.)

If any of the flags is set, then there is some work to be done before returning to User Mode.
If the TIF_SYSCALL_TRACE flag is set, the system_call( ) function invokes for the second time
the do_syscall_trace( ) function, then jumps to the resume_userspace label. Otherwise, if the
TIF_SYSCALL_TRACE flag is not set, the function jumps to the work_pending label.

As explained in the section "Returning from Interrupts and Exceptions" in Chapter 4, that code
at the resume_userspace and work_pending labels checks for rescheduling requests, virtual-8086
mode, pending signals, and single stepping; then eventually a jump is done to the restore_all
label to resume the execution of the User Mode process.

10.3.2. Issuing a System Call via the sysenter Instruction

The int assembly language instruction is inherently slow because it performs several
consistency and security checks. (The instruction is described in detail in the section "
Hardware Handling of Interrupts and Exceptions" in Chapter 4.)

The sysenter instruction, dubbed in Intel documentation as "Fast System Call," provides a
faster way to switch from User Mode to Kernel Mode.
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10.3.2.1. The sysenter instruction

The sysenter assembly language instruction makes use of three special registers that must be
loaded with the following information:[*]

[*] "MSR" is an acronym for "Model-Specific Register" and denotes a register that is present only in some models of 80 x 86
microprocessors.

SYSENTER_CS_MSR

The Segment Selector of the kernel code segment

SYSENTER_EIP_MSR

The linear address of the kernel entry point

SYSENTER_ESP_MSR

The kernel stack pointer

When the sysenter instruction is executed, the CPU control unit:

1. Copies the content of SYSENTER_CS_MSR into cs.

2. Copies the content of SYSENTER_EIP_MSR into eip.

3. Copies the content of SYSENTER_ESP_MSR into esp.

4. Adds 8 to the value of SYSENTER_CS_MSR, and loads this value into ss.

Therefore, the CPU switches to Kernel Mode and starts executing the first instruction of the
kernel entry point. As we have seen in the section "The Linux GDT" in Chapter 2, the kernel
stack segment coincides with the kernel data segment, and the corresponding descriptor
follows the descriptor of the kernel code segment in the Global Descriptor Table; therefore,
step 4 loads the proper Segment Selector in the ss register.

The three model-specific registers are initialized by the enable_sep_cpu( ) function, which is
executed once by every CPU in the system during the initialization of the kernel. The function
performs the following steps:

1. Writes the Segment Selector of the kernel code (_ _KERNEL_CS) in the SYSENTER_CS_MSR
register.

2. Writes in the SYSENTER_CS_EIP register the linear address of the sysenter_entry( )
function described below.

3. Computes the linear address of the end of the local TSS, and writes this value in the 
SYSENTER_CS_ESP register.[*]

[*] The encoding of the local TSS address written in SYSENTER_ESP_MSR is due to the fact that the register
should point to a real stack, which grows towards lower address. In practice, initializing the register
with any value would work, provided that it is possible to get the address of the local TSS from such
a value.

The setting of the SYSENTER_CS_ESP register deserves some comments. When a system call
starts, the kernel stack is empty, thus the esp register should point to the end of the 4- or
8-KB memory area that includes the kernel stack and the descriptor of the current process
(see Figure 3-2). The User Mode wrapper routine cannot properly set this register, because it
does not know the address of this memory area; on the other hand, the value of the register
must be set before switching to Kernel Mode. Therefore, the kernel initializes the register so
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as to encode the address of the Task State Segment of the local CPU. As we have described
in step 3 of the _ _switch_to( ) function (see the section "Performing the Process Switch" in
Chapter 3), at every process switch the kernel saves the kernel stack pointer of the current
process in the esp0 field of the local TSS. Thus, the system call handler reads the esp register,
computes the address of the esp0 field of the local TSS, and loads into the same esp register
the proper kernel stack pointer.

10.3.2.2. The vsyscall page

A wrapper function in the libc standard library can make use of the sysenter instruction only if
both the CPU and the Linux kernel support it.

This compatibility problem calls for a quite sophisticated solution. Essentially, in the
initialization phase the sysenter_setup( ) function builds a page frame called vsyscall page
containing a small ELF shared object (i.e., a tiny ELF dynamic library). When a process issues
an execve( ) system call to start executing an ELF program, the code in the vsyscall page is
dynamically linked to the process address space (see the section "The exec Functions" in
Chapter 20). The code in the vsyscall page makes use of the best available instruction to
issue a system call.

The sysenter_setup( ) function allocates a new page frame for the vsyscall page and
associates its physical address with the FIX_VSYSCALL fix-mapped linear address (see the
section "Fix-Mapped Linear Addresses" in Chapter 2). Then, the function copies in the page
either one of two predefined ELF shared objects:

 If the CPU does not support sysenter, the function builds a vsyscall page that includes
the code:


     _ _kernel_vsyscall:

       int 

  $0x80

      ret

 Otherwise, if the CPU does support sysenter, the function builds a vsyscall page that
includes the code:


     _ _kernel_vsyscall:

       pushl %ecx

       pushl %edx

       pushl %ebp

       movl %esp, %ebp

      sysenter

When a wrapper routine in the standard library must invoke a system call, it calls the _
_kernel_vsyscall( ) function, whatever it may be.

A final compatibility problem is due to old versions of the Linux kernel that do not support the 
sysenter instruction; in this case, of course, the kernel does not build the vsyscall page and
the _ _kernel_vsyscall( ) function is not linked to the address space of the User Mode
processes. When recent standard libraries recognize this fact, they simply execute the int
$0x80 instruction to invoke the system calls.

10.3.2.3. Entering the system call

The sequence of steps performed when a system call is issued via the sysenter instruction is
the following:

1. The wrapper routine in the standard library loads the system call number into the eax
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register and calls the _ _kernel_vsyscall( ) function.

2. The _ _kernel_vsyscall( ) function saves on the User Mode stack the contents of ebp,
edx, and ecx (these registers are going to be used by the system call handler), copies
the user stack pointer in ebp, then executes the sysenter instruction.

3. The CPU switches from User Mode to Kernel Mode, and the kernel starts executing the 
sysenter_entry( ) function (pointed to by the SYSENTER_EIP_MSR register).

4. The sysenter_entry( ) assembly language function performs the following steps:

a. Sets up the kernel stack pointer:
b.
c.     movl -508(%esp), %esp

Initially, the esp register points to the first location after the local TSS, which is
512bytes long. Therefore, the instruction loads in the esp register the contents
of the field at offset 4 in the local TSS, that is, the contents of the esp0 field.
As already explained, the esp0 field always stores the kernel stack pointer of
the current process.

d. Enables local interrupts:
e.
f.     sti

g. Saves in the Kernel Mode stack the Segment Selector of the user data
segment, the current user stack pointer, the eflags register, the Segment
Selector of the user code segment, and the address of the instruction to be
executed when exiting from the system call:

h.
i.     pushl $(__USER_DS)

j.     pushl %ebp

k.     pushfl

l.     pushl $(__USER_CS)

m.     pushl $SYSENTER_RETURN

Observe that these instructions emulate some operations performed by the int
assembly language instruction (steps 5c and 7 in the description of int in the
section "Hardware Handling of Interrupts and Exceptions" in Chapter 4).

n. Restores in ebp the original value of the register passed by the wrapper routine:
o.

    movl (%ebp), %ebp

This instruction does the job, because _ _kernel_vsyscall( ) saved on the User
Mode stack the original value of ebp and then loaded in ebp the current value of
the user stack pointer.

p. Invokes the system call handler by executing a sequence of instructions
identical to that starting at the system_call label described in the earlier section
"Issuing a System Call via the int $0x80 Instruction."

10.3.2.4. Exiting from the system call

When the system call service routine terminates, the sysenter_entry( ) function executes
essentially the same operations as the system_call( ) function (see previous section). First, it
gets the return code of the system call service routine from eax and stores it in the kernel
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stack location where the User Mode value of the eax register is saved. Then, the function
disables the local interrupts and checks the flags in the thread_info structure of current.

If any of the flags is set, then there is some work to be done before returning to User Mode.
In order to avoid code duplication, this case is handled exactly as in the system_call( )
function, thus the function jumps to the resume_userspace or work_pending labels (see flow
diagram in Figure 4-6 in Chapter 4). Eventually, the iret assembly language instruction
fetches from the Kernel Mode stack the five arguments saved in step 4c by the 
sysenter_entry( ) function, and thus switches the CPU back to User Mode and starts
executing the code at the SYSENTER_RETURN label (see below).

If the sysenter_entry( ) function determines that the flags are cleared, it performs a quick
return to User Mode:

    movl 40(%esp), %edx

    movl 52(%esp), %ecx

    xorl %ebp, %ebp

    sti

    sysexit

The edx and ecx registers are loaded with a couple of the stack values saved by
sysenter_entry( ) in step 4c in the previos section: edx gets the address of the
SYSENTER_RETURN label, while ecx gets the current user data stack pointer.

10.3.2.5. The sysexit instruction

The sysexit assembly language instruction is the companion of sysenter: it allows a fast
switch from Kernel Mode to User Mode. When the instruction is executed, the CPU control unit
performs the following steps:

1. Adds 16 to the value in the SYSENTER_CS_MSR register, and loads the result in the cs
register.

2. Copies the content of the edx register into the eip register.

3. Adds 24 to the value in the SYSENTER_CS_MSR register, and loads the result in the ss
register.

4. Copies the content of the ecx register into the esp register.

Because the SYSENTER_CS_MSR register is loaded with the Segment Selector of the kernel code,
the cs register is loaded with the Segment Selector of the user code, while the ss register is
loaded with the Segment Selector of the user data segment (see the section "The Linux GDT"
in Chapter 2).

As a result, the CPU switches from Kernel Mode to User Mode and starts executing the
instruction whose address is stored in the edx register.

10.3.2.6. The SYSENTER_RETURN code

The code at the SYSENTER_RETURN label is stored in the vsyscall page, and it is executed when
a system call entered via sysenter is being terminated, either by the iret instruction or the
sysexit instruction.

The code simply restores the original contents of the ebp, edx, and ecx registers saved in the
User Mode stack, and returns the control to the wrapper routine in the standard library:

    SYSENTER_RETURN:

      popl %ebp

      popl %edx
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      popl %ecx

      ret
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10.4. Parameter Passing
Like ordinary functions, system calls often require some input/output parameters, which may
consist of actual values (i.e., numbers), addresses of variables in the address space of the
User Mode process, or even addresses of data structures including pointers to User Mode
functions (see the section "System Calls Related to Signal Handling" in Chapter 11).

Because the system_call( ) and the sysenter_entry( ) functions are the common entry points
for all system calls in Linux, each of them has at least one parameter: the system call number
passed in the eax register. For instance, if an application program invokes the fork( ) wrapper
routine, the eax register is set to 2 (i.e., _ _NR_fork) before executing the int $0x80 or
sysenter assembly language instruction. Because the register is set by the wrapper routines
included in the libc library, programmers do not usually care about the system call number.

The fork( ) system call does not require other parameters. However, many system calls do
require additional parameters, which must be explicitly passed by the application program. For
instance, the mmap( ) system call may require up to six additional parameters (besides the
system call number).

The parameters of ordinary C functions are usually passed by writing their values in the active
program stack (either the User Mode stack or the Kernel Mode stack). Because system calls
are a special kind of function that cross over from user to kernel land, neither the User Mode
or the Kernel Mode stacks can be used. Rather, system call parameters are written in the CPU
registers before issuing the system call. The kernel then copies the parameters stored in the
CPU registers onto the Kernel Mode stack before invoking the system call service routine,
because the latter is an ordinary C function.

Why doesn't the kernel copy parameters directly from the User Mode stack to the Kernel Mode
stack? First of all, working with two stacks at the same time is complex; second, the use of
registers makes the structure of the system call handler similar to that of other exception
handlers.

However, to pass parameters in registers, two conditions must be satisfied:

 The length of each parameter cannot exceed the length of a register (32 bits).[*]

[*] We refer, as usual, to the 32-bit architecture of the 80 x 86 processors. The discussion in this section does not apply
to 64-bit architectures.

 The number of parameters must not exceed six, besides the system call number passed
in eax, because 80 x 86 processors have a very limited number of registers.

The first condition is always true because, according to the POSIX standard, large parameters
that cannot be stored in a 32-bit register must be passed by reference. A typical example is
the settimeofday( ) system call, which must read a 64-bit structure.

However, system calls that require more than six parameters exist. In such cases, a single
register is used to point to a memory area in the process address space that contains the
parameter values. Of course, programmers do not have to care about this workaround. As
with every C function call, parameters are automatically saved on the stack when the wrapper
routine is invoked. This routine will find the appropriate way to pass the parameters to the
kernel.

The registers used to store the system call number and its parameters are, in increasing
order, eax (for the system call number), ebx, ecx, edx, esi, edi, and ebp. As seen before,
system_call( ) and sysenter_entry( ) save the values of these registers on the Kernel Mode
stack by using the SAVE_ALL macro. Therefore, when the system call service routine goes to
the stack, it finds the return address to system_call( ) or to sysenter_entry( ), followed by
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the parameter stored in ebx (the first parameter of the system call), the parameter stored in
ecx, and so on (see the section "Saving the registers for the interrupt handler" in Chapter 4).
This stack configuration is exactly the same as in an ordinary function call, and therefore the
service routine can easily refer to its parameters by using the usual C-language constructs.

Let's look at an example. The sys_write( ) service routine, which handles the write( ) system
call, is declared as:

    int sys_write (unsigned int fd, const char * buf, unsigned int count)

The C compiler produces an assembly language function that expects to find the fd, buf, and
count parameters on top of the stack, right below the return address, in the locations used to
save the contents of the ebx, ecx, and edx registers, respectively.

In a few cases, even if the system call doesn't use any parameters, the corresponding service
routine needs to know the contents of the CPU registers right before the system call was
issued. For example, the do_fork( ) function that implements fork( ) needs to know the value
of the registers in order to duplicate them in the child process thread field (see the section "
The thread field" in Chapter 3). In these cases, a single parameter of type pt_regs allows the
service routine to access the values saved in the Kernel Mode stack by the SAVE_ALL macro
(see the section "The do_IRQ( ) function" in Chapter 4):

    int sys_fork (struct pt_regs regs)

The return value of a service routine must be written into the eax register. This is
automatically done by the C compiler when a return n; instruction is executed.

10.4.1. Verifying the Parameters

All system call parameters must be carefully checked before the kernel attempts to satisfy a
user request. The type of check depends both on the system call and on the specific
parameter. Let's go back to the write( ) system call introduced before: the fd parameter
should be a file descriptor that identifies a specific file, so sys_write( ) must check whether
fd really is a file descriptor of a file previously opened and whether the process is allowed to
write into it (see the section "File-Handling System Calls" in Chapter 1). If any of these
conditions are not true, the handler must return a negative valuein this case, the error code 
-EBADF.

One type of checking, however, is common to all system calls. Whenever a parameter
specifies an address, the kernel must check whether it is inside the process address space.
There are two possible ways to perform this check:

 Verify that the linear address belongs to the process address space and, if so, that the
memory region including it has the proper access rights.

 Verify just that the linear address is lower than PAGE_OFFSET (i.e., that it doesn't fall
within the range of interval addresses reserved to the kernel).

Early Linux kernels performed the first type of checking. But it is quite time consuming
because it must be executed for each address parameter included in a system call;
furthermore, it is usually pointless because faulty programs are not very common.

Therefore, starting with Version 2.2, Linux employs the second type of checking. This is much
more efficient because it does not require any scan of the process memory region descriptors.
Obviously, this is a very coarse check: verifying that the linear address is smaller than 
PAGE_OFFSET is a necessary but not sufficient condition for its validity. But there's no risk in
confining the kernel to this limited kind of check because other errors will be caught later.
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The approach followed is thus to defer the real checking until the last possible momentthat is,
until the Paging Unit translates the linear address into a physical one. We will discuss in the
section "Dynamic Address Checking: The Fix-up Code," later in this chapter, how the Page
Fault exception handler succeeds in detecting those bad addresses issued in Kernel Mode that
were passed as parameters by User Mode processes.

One might wonder at this point why the coarse check is performed at all. This type of
checking is actually crucial to preserve both process address spaces and the kernel address
space from illegal accesses. We saw in Chapter 2 that the RAM is mapped starting from
PAGE_OFFSET. This means that kernel routines are able to address all pages present in memory.
Thus, if the coarse check were not performed, a User Mode process might pass an address
belonging to the kernel address space as a parameter and then be able to read or write every
page present in memory without causing a Page Fault exception.

The check on addresses passed to system calls is performed by the access_ok( ) macro,
which acts on two parameters: addr and size. The macro checks the address interval
delimited by addr and addr + size - 1. It is essentially equivalent to the following C function:

    int access_ok(const void * addr, unsigned long size)

    {

        unsigned long a = (unsigned long) addr;

        if (a + size < a ||

            a + size > current_thread_info( )->addr_limit.seg)

            return 0;

        return 1;

    }

The function first verifies whether addr + size, the highest address to be checked, is larger
than 232-1; because unsigned long integers and pointers are represented by the GNU C
compiler (gcc) as 32-bit numbers, this is equivalent to checking for an overflow condition. The
function also checks whether addr + size exceeds the value stored in the addr_limit.seg field
of the thread_info structure of current. This field usually has the value PAGE_OFFSET for normal
processes and the value 0xffffffff for kernel threads . The value of the addr_limit.seg field
can be dynamically changed by the get_fs and set_fs macros; this allows the kernel to bypass
the security checks made by access_ok( ), so that it can invoke system call service routines,
directly passing to them addresses in the kernel data segment.

The verify_area( ) function performs the same check as the access_ok( ) macro; although
this function is considered obsolete, it is still widely used in the source code.

10.4.2. Accessing the Process Address Space

System call service routines often need to read or write data contained in the process's
address space. Linux includes a set of macros that make this access easier. We'll describe two
of them, called get_user( ) and put_user( ). The first can be used to read 1, 2, or 4
consecutive bytes from an address, while the second can be used to write data of those sizes
into an address.

Each function accepts two arguments, a value x to transfer and a variable ptr. The second
variable also determines how many bytes to transfer. Thus, in get_user(x,ptr), the size of the
variable pointed to by ptr causes the function to expand into a _ _get_user_1( ), _
_get_user_2( ), or _ _get_user_4( ) assembly language function. Let's consider one of them, _
_get_user_2( ):

     _ _get_user_2:

        addl $1, %eax

        jc bad_get_user

        movl $0xffffe000, %edx /* or 0xfffff000 for 4-KB stacks */

        andl %esp, %edx
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        cmpl 24(%edx), %eax

        jae bad_get_user

    2:  movzwl 

 -1(%eax), %edx

        xorl %eax, %eax

        ret

    bad_get_user:

        xorl %edx, %edx

        movl $-EFAULT, %eax

        ret

The eax register contains the address ptr of the first byte to be read. The first six instructions
essentially perform the same checks as the access_ok( ) macro: they ensure that the 2 bytes
to be read have addresses less than 4 GB as well as less than the addr_limit.seg field of the
current process. (This field is stored at offset 24 in the thread_info structure of current,
which appears in the first operand of the cmpl instruction.)

If the addresses are valid, the function executes the movzwl instruction to store the data to
be read in the two least significant bytes of edx register while setting the high-order bytes of
edx to 0; then it sets a 0 return code in eax and terminates. If the addresses are not valid,
the function clears edx, sets the -EFAULT value into eax, and terminates.

The put_user(x,ptr) macro is similar to the one discussed before, except it writes the value x
into the process address space starting from address ptr. Depending on the size of x, it
invokes either the _ _put_user_asm( ) macro (size of 1, 2, or 4 bytes) or the _ _put_user_u64(
) macro (size of 8 bytes). Both macros return the value 0 in the eax register if they succeed
in writing the value, and -EFAULT otherwise.

Several other functions and macros are available to access the process address space in
Kernel Mode; they are listed in Table 10-1. Notice that many of them also have a variant
prefixed by two underscores (_ _). The ones without initial underscores take extra time to
check the validity of the linear address interval requested, while the ones with the
underscores bypass that check. Whenever the kernel must repeatedly access the same
memory area in the process address space, it is more efficient to check the address once at
the start and then access the process area without making any further checks.

Table 10-1. Functions and macros that access the process address
space

Function Action

get_user _ _get_user Reads an integer value from user space (1, 2, or 4
bytes)

put_user _ _put_user Writes an integer value to user space (1, 2, or 4
bytes)

copy_from_user _ _copy_from_user Copies a block of arbitrary size from user space

copy_to_user _ _copy_to_user Copies a block of arbitrary size to user space

strncpy_from_user _

_strncpy_from_user
Copies a null-terminated string from user space

strlen_user strnlen_user Returns the length of a null-terminated string in user
space
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Table 10-1. Functions and macros that access the process address
space

Function Action

clear_user _ _clear_user Fills a memory area in user space with zeros

10.4.3. Dynamic Address Checking: The Fix-up Code

As seen previously, access_ok( ) makes a coarse check on the validity of linear addresses
passed as parameters of a system call. This check only ensures that the User Mode process is
not attempting to fiddle with the kernel address space; however, the linear addresses passed
as parameters still might not belong to the process address space. In this case, a Page Fault
exception will occur when the kernel tries to use any of such bad addresses.

Before describing how the kernel detects this type of error, let's specify the three cases in
which Page Fault exceptions may occur in Kernel Mode. These cases must be distinguished by
the Page Fault handler, because the actions to be taken are quite different.

1. The kernel attempts to address a page belonging to the process address space, but
either the corresponding page frame does not exist or the kernel tries to write a
read-only page. In these cases, the handler must allocate and initialize a new page
frame (see the sections "Demand Paging" and "Copy On Write" in Chapter 9).

2. The kernel addresses a page belonging to its address space, but the corresponding
Page Table entry has not yet been initialized (see the section "Handling Noncontiguous
Memory Area Accesses" in Chapter 9). In this case, the kernel must properly set up
some entries in the Page Tables of the current process.

3. Some kernel functions include a programming bug that causes the exception to be
raised when that program is executed; alternatively, the exception might be caused by
a transient hardware error. When this occurs, the handler must perform a kernel oops
(see the section "Handling a Faulty Address Inside the Address Space" in Chapter 9).

4. The case introduced in this chapter: a system call service routine attempts to read or
write into a memory area whose address has been passed as a system call parameter,
but that address does not belong to the process address space.

The Page Fault handler can easily recognize the first case by determining whether the faulty
linear address is included in one of the memory regions owned by the process. It is also able
to detect the second case by checking whether the corresponding master kernel Page Table
entry includes a proper non-null entry that maps the address. Let's now explain how the
handler distinguishes the remaining two cases.

10.4.4. The Exception Tables

The key to determining the source of a Page Fault lies in the narrow range of calls that the
kernel uses to access the process address space. Only the small group of functions and
macros described in the previous section are used to access this address space; thus, if the
exception is caused by an invalid parameter, the instruction that caused it must be included
in one of the functions or else be generated by expanding one of the macros. The number of
the instructions that address user space is fairly small.

Therefore, it does not take much effort to put the address of each kernel instruction that
accesses the process address space into a structure called the exception table. If we
succeed in doing this, the rest is easy. When a Page Fault exception occurs in Kernel Mode,
the do_ page_fault( ) handler examines the exception table: if it includes the address of the
instruction that triggered the exception, the error is caused by a bad system call parameter;
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otherwise, it is caused by a more serious bug.

Linux defines several exception tables . The main exception table is automatically generated
by the C compiler when building the kernel program image. It is stored in the _ _ex_table
section of the kernel code segment, and its starting and ending addresses are identified by
two symbols produced by the C compiler: _ _start_ _ _ex_table and _ _stop_ _ _ex_table.

Moreover, each dynamically loaded module of the kernel (see Appendix B) includes its own
local exception table. This table is automatically generated by the C compiler when building
the module image, and it is loaded into memory when the module is inserted in the running
kernel.

Each entry of an exception table is an exception_table_entry structure that has two fields:

insn

The linear address of an instruction that accesses the process address space

fixup

The address of the assembly language code to be invoked when a Page Fault
exception triggered by the instruction located at insn occurs

The fixup code consists of a few assembly language instructions that solve the problem
triggered by the exception. As we will see later in this section, the fix usually consists of
inserting a sequence of instructions that forces the service routine to return an error code to
the User Mode process. These instructions, which are usually defined in the same macro or
function that accesses the process address space, are placed by the C compiler into a
separate section of the kernel code segment called .fixup.

The search_exception_tables( ) function is used to search for a specified address in all
exception tables: if the address is included in a table, the function returns a pointer to the
corresponding exception_table_entry structure; otherwise, it returns NULL. Thus the Page
Fault handler do_page_fault( ) executes the following statements:

    if ((fixup = search_exception_tables(regs->eip))) {

        regs->eip = fixup->fixup;

        return 1;

    }

The regs->eip field contains the value of the eip register saved on the Kernel Mode stack
when the exception occurred. If the value in the register (the instruction pointer) is in an
exception table, do_page_fault( ) replaces the saved value with the address found in the
entry returned by search_exception_tables( ). Then the Page Fault handler terminates and
the interrupted program resumes with execution of the fixup code .

10.4.5. Generating the Exception Tables and the Fixup Code

The GNU Assembler .section directive allows programmers to specify which section of the
executable file contains the code that follows. As we will see in Chapter 20, an executable file
includes a code segment, which in turn may be subdivided into sections. Thus, the following
assembly language instructions add an entry into an exception table; the "a" attribute
specifies that the section must be loaded into memory together with the rest of the kernel
image:

    .section _ _ex_table, "a"

        .long faulty_instruction_address, fixup_code_address
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    .previous

The .previous directive forces the assembler to insert the code that follows into the section
that was active when the last .section directive was encountered.

Let's consider again the _ _get_user_1( ), _ _get_user_2( ), and _ _get_user_4( ) functions
mentioned before. The instructions that access the process address space are those labeled
as 1, 2, and 3:

    _ _get_user_1:

        [...]

    1:  movzbl (%eax), %edx

        [...]

    _ _get_user_2:

        [...]

    2:  movzwl -1(%eax), %edx

        [...]

    _ _get_user_4:

        [...]

    3:  movl -3(%eax), %edx

        [...]

    bad_get_user:

        xorl %edx, %edx

        movl $-EFAULT, %eax

        ret

    .section _ _ex_table,"a"

        .long 1b, bad_get_user

        .long 2b, bad_get_user

        .long 3b, bad_get_user

    .previous

Each exception table entry consists of two labels. The first one is a numeric label with a b
suffix to indicate that the label is "backward;" in other words, it appears in a previous line of
the program. The fixup code is common to the three functions and is labeled as bad_get_user.
If a Page Fault exception is generated by the instructions at label 1, 2, or 3, the fixup code is
executed. It simply returns an -EFAULT error code to the process that issued the system call.

Other kernel functions that act in the User Mode address space use the fixup code technique.
Consider, for instance, the strlen_user(string) macro. This macro returns either the length of
a null-terminated string passed as a parameter in a system call or the value 0 on error. The
macro essentially yields the following assembly language instructions:

        movl $0, %eax

        movl $0x7fffffff, %ecx

        movl %ecx, %ebx

        movl string, %edi

    0:  repne; scasb 

        subl %ecx, %ebx

        movl %ebx, %eax

    1:

    .section .fixup,"ax"

    2:  xorl %eax, %eax

        jmp 1b

    .previous

    .section _ _ex_table,"a"

        .long 0b, 2b

    .previous
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The ecx and ebx registers are initialized with the 0x7fffffff value, which represents the
maximum allowed length for the string in the User Mode address space. The repne;scasb
assembly language instructions iteratively scan the string pointed to by the edi register,
looking for the value 0 (the end of string \0 character) in eax. Because scasb decreases the
ecx register at each iteration, the eax register ultimately stores the total number of bytes
scanned in the string (that is, the length of the string).

The fixup code of the macro is inserted into the .fixup section. The "ax" attributes specify
that the section must be loaded into memory and that it contains executable code. If a Page
Fault exception is generated by the instructions at label 0, the fixup code is executed; it
simply loads the value 0 in eaxthus forcing the macro to return a 0 error code instead of the
string lengthand then jumps to the 1 label, which corresponds to the instruction following the
macro.

The second .section directive adds an entry containing the address of the repne; scasb
instruction and the address of the corresponding fixup code in the _ _ex_table section.
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10.5. Kernel Wrapper Routines
Although system calls are used mainly by User Mode processes, they can also be invoked by
kernel threads , which cannot use library functions. To simplify the declarations of the
corresponding wrapper routines , Linux defines a set of seven macros called _syscall0
through _syscall6.

In the name of each macro, the numbers 0 through 6 correspond to the number of parameters
used by the system call (excluding the system call number). The macros are used to declare
wrapper routines that are not already included in the libc standard library (for instance,
because the Linux system call is not yet supported by the library); however, they cannot be
used to define wrapper routines for system calls that have more than six parameters
(excluding the system call number) or for system calls that yield nonstandard return values.

Each macro requires exactly 2 + 2 x n parameters, with n being the number of parameters of
the system call. The first two parameters specify the return type and the name of the system
call; each additional pair of parameters specifies the type and the name of the corresponding
system call parameter. Thus, for instance, the wrapper routine of the fork( ) system call may
be generated by:

    _syscall0(int,fork)

while the wrapper routine of the write( ) system call may be generated by:

    _syscall3(int,write,int,fd,const char *,buf,unsigned int,count)

In the latter case, the macro yields the following code:

    int write(int fd,const char * buf,unsigned int count)

    {

        long _ _res;

        asm("int $0x80"

            : "=a" (_ _res)

            : "0" (_ _NR_write), "b" ((long)fd),

              "c" ((long)buf), "d" ((long)count));

        if ((unsigned long)_ _res >= (unsigned long)-129) {

            errno = -_ _res;

            _ _res = -1;

        }

        return (int) _ _res;

    }

The _ _NR_write macro is derived from the second parameter of _syscall3; it expands into the
system call number of write( ). When compiling the preceding function, the following
assembly language code is produced:

    write:

         pushl %ebx              ; push ebx into stack

         movl 8(%esp), %ebx      ; put first parameter in ebx

         movl 12(%esp), %ecx     ; put second parameter in ecx

         movl 16(%esp), %edx     ; put third parameter in edx

         movl $4, %eax           ; put _ _NR_write in eax

         int 

 $0x80               ; invoke system call
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         cmpl $-125, %eax        ; check return code

         jbe .L1                 ; if no error, jump

         negl %eax               ; complement the value of eax

         movl %eax, errno        ; put result in errno

         movl $-1, %eax          ; set eax to -1

    .L1: popl %ebx               ; pop ebx from stack

         ret                     ; return to calling program

Notice how the parameters of the write( ) function are loaded into the CPU registers before
the int $0x80 instruction is executed. The value returned in eax must be interpreted as an
error code if it lies between -1 and -129 (the kernel assumes that the largest error code
defined in include/generic/errno.h is 129). If this is the case, the wrapper routine stores the
value of -eax in errno and returns the value -1; otherwise, it returns the value of eax.
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Chapter 11. Signals
Signals were introduced by the first Unix systems to allow interactions between User Mode
processes; the kernel also uses them to notify processes of system events. Signals have been
around for 30 years with only minor changes.

The first sections of this chapter examine in detail how signals are handled by the Linux
kernel, then we discuss the system calls that allow processes to exchange signals.
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11.1. The Role of Signals
A signal is a very short message that may be sent to a process or a group of processes. The
only information given to the process is usually a number identifying the signal; there is no
room in standard signals for arguments, a message, or other accompanying information.

A set of macros whose names start with the prefix SIG is used to identify signals; we have
already made a few references to them in previous chapters. For instance, the SIGCHLD macro
was mentioned in the section "The clone( ), fork( ), and vfork( ) System Calls" in Chapter 3.
This macro, which expands into the value 17 in Linux, yields the identifier of the signal that is
sent to a parent process when a child stops or terminates. The SIGSEGV macro, which expands
into the value 11, was mentioned in the section "Page Fault Exception Handler" in Chapter 9;
it yields the identifier of the signal that is sent to a process when it makes an invalid memory
reference.

Signals serve two main purposes:

 To make a process aware that a specific event has occurred

 To cause a process to execute a signal handler function included in its code

Of course, the two purposes are not mutually exclusive, because often a process must react
to some event by executing a specific routine.

Table 11-1 lists the first 31 signals handled by Linux 2.6 for the 80x86 architecture (some
signal numbers, such those associated with SIGCHLD or SIGSTOP, are architecture-dependent;
furthermore, some signals such as SIGSTKFLT are defined only for specific architectures). The
meanings of the default actions are described in the next section.

Table 11-1. The first 31 signals in Linux/i386

# Signal name Default action Comment POSIX

1 SIGHUP Terminate Hang up controlling terminal or process Yes

2 SIGINT Terminate Interrupt from keyboard Yes

3 SIGQUIT Dump Quit from keyboard Yes

4 SIGILL Dump Illegal instruction Yes

5 SIGTRAP Dump Breakpoint for debugging No

6 SIGABRT Dump Abnormal termination Yes

6 SIGIOT Dump Equivalent to SIGABRT No

7 SIGBUS Dump Bus error No

8 SIGFPE Dump Floating-point exception Yes

9 SIGKILL Terminate Forced-process termination Yes
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Table 11-1. The first 31 signals in Linux/i386

# Signal name Default action Comment POSIX

10 SIGUSR1 Terminate Available to processes Yes

11 SIGSEGV Dump Invalid memory reference Yes

12 SIGUSR2 Terminate Available to processes Yes

13 SIGPIPE Terminate Write to pipe with no readers Yes

14 SIGALRM Terminate Real-timerclock Yes

15 SIGTERM Terminate Process termination Yes

16 SIGSTKFLT Terminate Coprocessor stack error No

17 SIGCHLD Ignore Child process stopped or terminated, or got
signal if traced

Yes

18 SIGCONT Continue Resume execution, if stopped Yes

19 SIGSTOP Stop Stop process execution Yes

20 SIGTSTP Stop Stop process issued from tty Yes

21 SIGTTIN Stop Background process requires input Yes

22 SIGTTOU Stop Background process requires output Yes

23 SIGURG Ignore Urgent condition on socket No

24 SIGXCPU Dump CPU time limit exceeded No

25 SIGXFSZ Dump File size limit exceeded No

26 SIGVTALRM Terminate Virtual timer clock No

27 SIGPROF Terminate Profile timer clock No

28 SIGWINCH Ignore Window resizing No

29 SIGIO Terminate I/O now possible No

29 SIGPOLL Terminate Equivalent to SIGIO No

30 SIGPWR Terminate Power supply failure No

31 SIGSYS Dump Bad system call No

31 SIGUNUSED Dump Equivalent to SIGSYS No
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Besides the regular signals described in this table, the POSIX standard has introduced a new
class of signals denoted as real-time signals ; their signal numbers range from 32 to 64 on
Linux. They mainly differ from regular signals because they are always queued so that multiple
signals sent will be received. On the other hand, regular signals of the same kind are not
queued: if a regular signal is sent many times in a row, just one of them is delivered to the
receiving process. Although the Linux kernel does not use real-time signals, it fully supports
the POSIX standard by means of several specific system calls.

A number of system calls allow programmers to send signals and determine how their
processes respond to the signals they receive. Table 11-2 summarizes these calls; their
behavior is described in detail in the later section "System Calls Related to Signal Handling."

Table 11-2. The most significant system calls related to signals

System call Description

kill( ) Send a signal to a thread group

tkill( ) Send a signal to a process

tgkill( ) Send a signal to a process in a specific thread group

sigaction( ) Change the action associated with a signal

signal( ) Similar to sigaction( )

sigpending( ) Check whether there are pending signals

sigprocmask( ) Modify the set of blocked signals

sigsuspend( ) Wait for a signal

rt_sigaction( ) Change the action associated with a real-time signal

rt_sigpending( ) Check whether there are pending real-time signals

rt_sigprocmask( ) Modify the set of blocked real-time signals

rt_sigqueueinfo( ) Send a real-time signal to a thread group

rt_sigsuspend( ) Wait for a real-time signal

rt_sigtimedwait( ) Similar to rt_sigsuspend( )

An important characteristic of signals is that they may be sent at any time to a process
whose state is usually unpredictable. Signals sent to a process that is not currently executing
must be saved by the kernel until that process resumes execution. Blocking a signal (described
later) requires that delivery of the signal be held off until it is later unblocked, which
exacerbates the problem of signals being raised before they can be delivered.

Therefore, the kernel distinguishes two different phases related to signal transmission:
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Signal generation

The kernel updates a data structure of the destination process to represent that a
new signal has been sent.

Signal delivery

The kernel forces the destination process to react to the signal by changing its
execution state, by starting the execution of a specified signal handler, or both.

Each signal generated can be delivered once, at most. Signals are consumable resources:
once they have been delivered, all process descriptor information that refers to their previous
existence is canceled.

Signals that have been generated but not yet delivered are called pending signals . At any
time, only one pending signal of a given type may exist for a process; additional pending
signals of the same type to the same process are not queued but simply discarded. Real-time
signals are different, though: there can be several pending signals of the same type.

In general, a signal may remain pending for an unpredictable amount of time. The following
factors must be taken into consideration:

 Signals are usually delivered only to the currently running process (that is, to the 
current process).

 Signals of a given type may be selectively blocked by a process (see the later section
"Modifying the Set of Blocked Signals"). In this case, the process does not receive the
signal until it removes the block.

 When a process executes a signal-handler function, it usually masks the corresponding
signali.e., it automatically blocks the signal until the handler terminates. A signal
handler therefore cannot be interrupted by another occurrence of the handled signal,
and the function doesn't need to be reentrant.

Although the notion of signals is intuitive, the kernel implementation is rather complex. The
kernel must:

 Remember which signals are blocked by each process.

 When switching from Kernel Mode to User Mode, check whether a signal for a process
has arrived. This happens at almost every timer interrupt (roughly every millisecond).

 Determine whether the signal can be ignored. This happens when all of the following
conditions are fulfilled:

o The destination process is not traced by another process (the PT_PTRACED flag in
the process descriptor ptrace field is equal to 0).[*]

[*] If a process receives a signal w hile it is being traced, the kernel stops the process and notifies the tracing
process by sending a SIGCHLD signal to it. The tracing process may, in turn, resume execution of the traced
process by means of a SIGCONT signal.

o The signal is not blocked by the destination process.

o The signal is being ignored by the destination process (either because the
process explicitly ignored it or because the process did not change the default
action of the signal and that action is "ignore").

 Handle the signal, which may require switching the process to a handler function at
any point during its execution and restoring the original execution context after the
function returns.
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Moreover, Linux must take into account the different semantics for signals adopted by BSD
and System V ; furthermore, it must comply with the rather cumbersome POSIX requirements.

11.1.1. Actions Performed upon Delivering a Signal

There are three ways in which a process can respond to a signal:

1. Explicitly ignore the signal.

2. Execute the default action associated with the signal (see Table 11-1). This action,
which is predefined by the kernel, depends on the signal type and may be any one of
the following:

Terminate

The process is terminated (killed).

Dump

The process is terminated (killed) and a core file containing its execution context is
created, if possible; this file may be used for debug purposes.

Ignore

The signal is ignored.

Stop

The process is stoppedi.e., put in the TASK_STOPPED state (see the section "Process
State" in Chapter 3).

Continue

If the process was stopped (TASK_STOPPED), it is put into the TASK_RUNNING state.

3. Catch the signal by invoking a corresponding signal-handler function.

Notice that blocking a signal is different from ignoring it. A signal is not delivered as long as it
is blocked; it is delivered only after it has been unblocked. An ignored signal is always
delivered, and there is no further action.

The SIGKILL and SIGSTOP signals cannot be ignored, caught, or blocked, and their default
actions must always be executed. Therefore, SIGKILL and SIGSTOP allow a user with
appropriate privileges to terminate and to stop, respectively, every process,[*] regardless of
the defenses taken by the program it is executing.

[*] There are tw o exceptions: it is not possible to send a signal to process 0 (swapper), and signals sent to process 1 (init) are
alw ays discarded unless they are caught. Therefore, process 0 never dies, w hile process 1 dies only w hen the init program
terminates.

A signal is fatal for a given process if delivering the signal causes the kernel to kill the
process. The SIGKILL signal is always fatal; moreover, each signal whose default action is
"Terminate" and which is not caught by a process is also fatal for that process. Notice,
however, that a signal caught by a process and whose corresponding signal-handler function
terminates the process is not fatal, because the process chose to terminate itself rather than
being killed by the kernel.
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11.1.2. POSIX Signals and Multithreaded Applications

The POSIX 1003.1 standard has some stringent requirements for signal handling of
multithreaded applications:

 Signal handlers must be shared among all threads of a multithreaded application;
however, each thread must have its own mask of pending and blocked signals.

 The kill( ) and sigqueue( ) POSIX library functions (see the later section "System
Calls Related to Signal Handling") must send signals to whole multithreaded
applications, not to a specific thread. The same holds for all signals (such as SIGCHLD,
SIGINT, or SIGQUIT) generated by the kernel.

 Each signal sent to a multithreaded application will be delivered to just one thread,
which is arbitrarily chosen by the kernel among the threads that are not blocking that
signal.

 If a fatal signal is sent to a multithreaded application, the kernel will kill all threads of
the applicationnot just the thread to which the signal has been delivered.

In order to comply with the POSIX standard, the Linux 2.6 kernel implements a multithreaded
application as a set of lightweight processes belonging to the same thread group (see the
section "Processes, Lightweight Processes, and Threads" in Chapter 3).

In this chapter the term "thread group" denotes any thread group, even if it is composed by a
single (conventional) process. For instance, when we state that kill( ) can send a signal to
a thread group, we imply that this system call can send a signal to a conventional process,
too. We will use the term "process" to denote either a conventional process or a lightweight
processthat is, a specific member of a thread group.

Furthermore, a pending signal is private if it has been sent to a specific process; it is shared if
it has been sent to a whole thread group.

11.1.3. Data Structures Associated with Signals

For each process in the system, the kernel must keep track of what signals are currently
pending or masked; the kernel must also keep track of how every thread group is supposed to
handle every signal. To do this, the kernel uses several data structures accessible from the
process descriptor. The most significant ones are shown in Figure 11-1.

Figure 11-1. The most significant data structures related to signal
handling
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The fields of the process descriptor related to signal handling are listed in Table 11-3.

Table 11-3. Process descriptor fields related to signal handling

Type Name Description

struct signal_struct

*
signal Pointer to the process's signal descriptor

struct
sighand_struct *

sighand Pointer to the process's signal handler descriptor

sigset_t blocked Mask of blocked signals

sigset_t real_blocked Temporary mask of blocked signals (used by the 
rt_sigtimedwait( ) system call)

struct sigpending pending Data structure storing the private pending signals

unsigned long sas_ss_sp Address of alternative signal handler stack

size_t sas_ss_size Size of alternative signal handler stack

int (*) (void *) notifier Pointer to a function used by a device driver to block
some signals of the process

void * notifier_data Pointer to data that might be used by the notifier
function (previous field of table)
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Table 11-3. Process descriptor fields related to signal handling

Type Name Description

sigset_t * notifier_mask Bit mask of signals blocked by a device driver through
a notifier function

The blocked field stores the signals currently masked out by the process. It is a sigset_t array
of bits, one for each signal type:

    typedef struct {

        unsigned long sig[2];

    } sigset_t;

Because each unsigned long number consists of 32 bits, the maximum number of signals that
may be declared in Linux is 64 (the _NSIG macro specifies this value). No signal can have
number 0, so the signal number corresponds to the index of the corresponding bit in a 
sigset_t variable plus one. Numbers between 1 and 31 correspond to the signals listed in
Table 11-1, while numbers between 32 and 64 correspond to real-time signals.

11.1.3.1. The signal descriptor and the signal handler descriptor

The signal field of the process descriptor points to a signal descriptor, a signal_struct
structure that keeps track of the shared pending signals. Actually, the signal descriptor also
includes fields not strictly related to signal handling, such as the rlim per-process resource
limit array (see the section "Process Resource Limits" in Chapter 3), or the pgrp and session
fields, which store the PIDs of the group leader and of the session leader of the process,
respectively (see the section "Relationships Among Processes" in Chapter 3). In fact, as
mentioned in the section "The clone( ) , fork( ), and vfork( ) System Calls" in Chapter 3, the
signal descriptor is shared by all processes belonging to the same thread groupthat is, all
processes created by invoking the clone( ) system call with the CLONE_THREAD flag setthus the
signal descriptor includes the fields that must be identical for every process in the same
thread group.

The fields of a signal descriptor somewhat related to signal handling are shown in Table 11-4.

Table 11-4. The fields of the signal descriptor related to signal handling

Type Name Description

atomic_t count Usage counter of the signal descriptor

atomic_t live Number of live processes in the thread group

wait_queue_head_t wait_chldexit Wait queue for the processes sleeping in a wait4(
) system call

struct task_struct * curr_target Descriptor of the last process in the thread group
that received a signal

struct sigpending shared_pending Data structure storing the shared pending signals

int group_exit_code Process termination code for the thread group
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Table 11-4. The fields of the signal descriptor related to signal handling

Type Name Description

struct task_struct * group_exit_task Used when killing a whole thread group

int notify_count Used when killing a whole thread group

int group_stop_count Used when stopping a whole thread group

unsigned int flags Flags used when delivering signals that modify the
status of the process

Besides the signal descriptor, every process refers also to a signal handler descriptor, which is
a sighand_struct structure describing how each signal must be handled by the thread group.
Its fields are shown in Table 11-5.

Table 11-5. The fields of the signal handler descriptor

Type Name Description

atomic_t count Usage counter of the signal handler descriptor

struct k_sigaction

[64]
action Array of structures specifying the actions to be performed

upon delivering the signals

spinlock_t siglock Spin lock protecting both the signal descriptor and the signal
handler descriptor

As mentioned in the section "The clone( ), fork( ), and vfork( ) System Calls" in Chapter 3, the
signal handler descriptor may be shared by several processes by invoking the clone( ) system
call with the CLONE_SIGHAND flag set; the count field in this descriptor specifies the number of
processes that share the structure. In a POSIX multithreaded application, all lightweight
processes in the thread group refer to the same signal descriptor and to the same signal
handler descriptor.

11.1.3.2. The sigaction data structure

Some architectures assign properties to a signal that are visible only to the kernel. Thus, the
properties of a signal are stored in a k_sigaction structure, which contains both the properties
hidden from the User Mode process and the more familiar sigaction structure that holds all the
properties a User Mode process can see. Actually, on the 80 x 86 platform, all signal
properties are visible to User Mode processes. Thus the k_sigaction structure simply reduces
to a single sa structure of type sigaction, which includes the following fields:[*]

[*] The sigaction structure used by User Mode applications to pass parameters to the signal( ) and sigaction( ) system calls is
slightly different from the structure used by the kernel, although it stores essentially the same information.

sa_handler

This field specifies the type of action to be performed; its value can be a pointer to
the signal handler, SIG_DFL (that is, the value 0) to specify that the default action is
performed, or SIG_IGN (that is, the value 1) to specify that the signal is ignored.
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sa_flags

This set of flags specifies how the signal must be handled; some of them are listed in 
Table 11-6.[ ]

[ ] For historical reasons, these flags have the same prefix "SA_" as the flags of the irqaction
descriptor (see Table 4-7 in Chapter 4); nevertheless there is no relation between the two sets of
flags.

sa_mask

This sigset_t variable specifies the signals to be masked when running the signal
handler.

Table 11-6. Flags specifying how to handle a signal

Flag Name Description

SA_NOCLDSTOP Applies only to SIGCHLD; do not send SIGCHLD to the parent when the
process is stopped

SA_NOCLDWAIT Applies only to SIGCHLD; do not create a zombie when the process
terminates

SA_SIGINFO Provide additional information to the signal handler (see the later
section "Changing a Signal Action")

SA_ONSTACK Use an alternative stack for the signal handler (see the later section "
Catching the Signal")

SA_RESTART Interrupted system calls are automatically restarted (see the later
section "Reexecution of System Calls")

SA_NODEFER,

SA_NOMASK Do not mask the signal while executing the signal handler

SA_RESETHAND,

SA_ONESHOT
Reset to default action after executing the signal handler

11.1.3.3. The pending signal queues

As we have seen in Table 11-2 earlier in the chapter, there are several system calls that can
generate a signal: some of themkill( ) and rt_sigqueueinfo( ) send a signal to a whole
thread group, while otherstkill( ) and tgkill( ) send a signal to a specific process.

Thus, in order to keep track of what signals are currently pending, the kernel associates two
pending signal queues to each process:

 The shared pending signal queue, rooted at the shared_pending field of the signal
descriptor, stores the pending signals of the whole thread group.

 The private pending signal queue, rooted at the pending field of the process descriptor,
stores the pending signals of the specific (lightweight) process.
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A pending signal queue consists of a sigpending data structure, which is defined as follows:

    struct sigpending {

        struct list_head list;

        sigset_t signal;

    }

The signal field is a bit mask specifying the pending signals, while the list field is the head of
a doubly linked list containing sigqueue data structures; the fields of this structure are shown
in Table 11-7.

Table 11-7. The fields of the sigqueue data structure

Type Name Description

struct

list_head
list Links for the pending signal queue's list

spinlock_t * lock Pointer to the siglock field in the signal handler descriptor
corresponding to the pending signal

int flags Flags of the sigqueue data structure

siginfo_t info Describes the event that raised the signal

struct

user_struct *

user

Pointer to the per-user data structure of the process's owner (see
the section "The clone( ), fork( ), and vfork( ) System Calls" in
Chapter 3)

The siginfo_t data structure is a 128-byte data structure that stores information about an
occurrence of a specific signal; it includes the following fields:

si_signo

The signal number

si_errno

The error code of the instruction that caused the signal to be raised, or 0 if there was
no error

si_code

A code identifying who raised the signal (see Table 11-8)

Table 11-8. The most significant signal sender codes

Code Name Sender

SI_USER
kill( ) and raise( ) (see the later section "System Calls Related to Signal
Handling")
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Table 11-8. The most significant signal sender codes

Code Name Sender

SI_KERNEL Generic kernel function

SI_QUEUE sigqueue( ) (see the later section "System Calls Related to Signal Handling")

SI_TIMER Timer expiration

SI_ASYNCIO Asynchronous I/O completion

SI_TKILL
tkill( ) and tgkill( ) (see the later section "System Calls Related to Signal
Handling")

_sifields

A union storing information depending on the type of signal. For instance, the 
siginfo_t data structure relative to an occurrence of the SIGKILL signal records the
PID and the UID of the sender process here; conversely, the data structure relative to
an occurrence of the SIGSEGV signal stores the memory address whose access caused
the signal to be raised.

11.1.4. Operations on Signal Data Structures

Several functions and macros are used by the kernel to handle signals. In the following
description, set is a pointer to a sigset_t variable, nsig is the number of a signal, and mask is
an unsigned long bit mask.

sigemptyset(set) and sigfillset(set)

Sets the bits in the sigset_t variable to 0 or 1, respectively.

sigaddset(set,nsig) and sigdelset(set,nsig)

Sets the bit of the sigset_t variable corresponding to signal nsig to 1 or 0,
respectively. In practice, sigaddset( ) reduces to:

    set->sig[(nsig - 1) / 32] |= 1UL << ((nsig - 1) % 32);

and sigdelset( ) to:

    set->sig[(nsig - 1) / 32] &= ~(1UL << ((nsig - 1) % 32));

sigaddsetmask(set,mask) and sigdelsetmask(set,mask)

Sets all the bits of the sigset_t variable whose corresponding bits of mask are on 1 or
0, respectively. They can be used only with signals that are between 1 and 32. The
corresponding functions reduce to:

    set->sig[0] |= mask;
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and to:

    set->sig[0] &= ~mask;

sigismember(set,nsig)

Returns the value of the bit of the sigset_t variable corresponding to the signal nsig.
In practice, this function reduces to:

    return 1 & (set->sig[(nsig-1) / 32] >> ((nsig-1) % 32));

sigmask(nsig)

Yields the bit index of the signal nsig. In other words, if the kernel needs to set, clear,
or test a bit in an element of sigset_t that corresponds to a particular signal, it can
derive the proper bit through this macro.

sigandsets(d,s1,s2), sigorsets(d,s1,s2), and signandsets(d,s1,s2)

Performs a logical AND, a logical OR, and a logical NAND, respectively, between the 
sigset_t variables to which s1 and s2 point; the result is stored in the sigset_t variable
to which d points.

sigtestsetmask(set,mask)

Returns the value 1 if any of the bits in the sigset_t variable that correspond to the
bits set to 1 in mask is set; it returns 0 otherwise. It can be used only with signals that
have a number between 1 and 32.

siginitset(set,mask)

Initializes the low bits of the sigset_t variable corresponding to signals between 1 and
32 with the bits contained in mask, and clears the bits corresponding to signals
between 33 and 63.

siginitsetinv(set,mask)

Initializes the low bits of the sigset_t variable corresponding to signals between 1 and
32 with the complement of the bits contained in mask, and sets the bits corresponding
to signals between 33 and 63.

signal_pending(p)

Returns the value 1 (true) if the process identified by the *p process descriptor has
nonblocked pending signals, and returns the value 0 (false) if it doesn't. The function is
implemented as a simple check on the TIF_SIGPENDING flag of the process.

recalc_sigpending_tsk(t) and recalc_sigpending( )

The first function checks whether there are pending signals either for the process
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identified by the process descriptor at *t (by looking at the t->pending->signal field) or
for the thread group to which the process belongs (by looking at the 
t->signal->shared_pending->signal field). The function then sets accordingly the
TIF_SIGPENDING flag in t->thread_info->flags. The recalc_sigpending( ) function is
equivalent to recalc_sigpending_tsk(current).

rm_from_queue(mask,q)

Removes from the pending signal queue q the pending signals corresponding to the bit
mask mask.

flush_sigqueue(q)

Removes from the pending signal queue q all pending signals.

flush_signals(t)

Deletes all signals sent to the process identified by the process descriptor at *t. This is
done by clearing the TIF_SIGPENDING flag in t->thread_info->flags and invoking twice
flush_sigqueue( ) on the t->pending and t->signal->shared_pending queues.
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11.2. Generating a Signal
Many kernel functions generate signals: they accomplish the first phase of signal
handlingdescribed earlier in the section "The Role of Signals"by updating one or more process
descriptors as needed. They do not directly perform the second phase of delivering the signal
but, depending on the type of signal and the state of the destination processes, may wake up
some processes and force them to receive the signal.

When a signal is sent to a process, either from the kernel or from another process, the kernel
generates it by invoking one of the functions listed in Table 11-9.

Table 11-9. Kernel functions that generate a signal for a process

Name Description

send_sig( ) Sends a signal to a single process

send_sig_info( ) Like send_sig( ), with extended information in a siginfo_t structure

force_sig( ) Sends a signal that cannot be explicitly ignored or blocked by the
process

force_sig_info( ) Like force_sig( ), with extended information in a siginfo_t
structure

force_sig_specific( ) Like force_sig( ), but optimized for SIGSTOP and SIGKILL signals

sys_tkill( ) System call handler of tkill( ) (see the later section "System Calls
Related to Signal Handling")

sys_tgkill( ) System call handler of tgkill( ) 

All functions in Table 11-9 end up invoking the specific_send_sig_info( ) function described
in the next section.

When a signal is sent to a whole thread group, either from the kernel or from another process,
the kernel generates it by invoking one of the functions listed in Table 11-10.

Table 11-10. Kernel functions that generate a signal for a thread
group

Name Description

send_group_sig_info( ) Sends a signal to a single thread group identified by the process
descriptor of one of its members

kill_pg( ) Sends a signal to all thread groups in a process group (see the
section "Process Management" in Chapter 1)

kill_pg_info( ) Like kill_pg( ), with extended information in a siginfo_t structure
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Table 11-10. Kernel functions that generate a signal for a thread
group

Name Description

kill_proc( ) Sends a signal to a single thread group identified by the PID of one
of its members

kill_proc_info( ) Like kill_proc( ), with extended information in a siginfo_t
structure

sys_kill( ) System call handler of kill( ) (see the later section "System Calls
Related to Signal Handling")

sys_rt_sigqueueinfo( ) System call handler of rt_sigqueueinfo( )

All functions in Table 11-10 end up invoking the group_send_sig_info( ) function, which is
described in the later section "The group_send_sig_info( ) Function."

11.2.1. The specific_send_sig_info( ) Function

The specific_send_sig_info( ) function sends a signal to a specific process. It acts on three
parameters:

sig

The signal number.

info

Either the address of a siginfo_t table or one of three special values: 0 means that
the signal has been sent by a User Mode process, 1 means that it has been sent by
the kernel, and 2 means that is has been sent by the kernel and the signal is SIGSTOP
or SIGKILL.

t

A pointer to the descriptor of the destination process.

The specific_send_sig_info( ) function must be invoked with local interrupts disabled and
the t->sighand->siglock spin lock already acquired. The function executes the following steps:

1. Checks whether the process ignores the signal; in the affirmative case, returns 0
(signal not generated). The signal is ignored when all three conditions for ignoring a
signal are satisfied, that is:

o The process is not being traced (PT_PTRACED flag in t->ptrace clear).

o The signal is not blocked (sigismember(&t->blocked, sig) returns 0).

o The signal is either explicitly ignored (the sa_handler field of
t->sighand->action[sig-1] is equal to SIG_IGN) or implicitly ignored (the
sa_handler field is equal to SIG_DFL and the signal is SIGCONT, SIGCHLD, SIGWINCH,
or SIGURG).
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2. Checks whether the signal is non-real-time (sig<32) and another occurrence of the
same signal is already pending in the private pending signal queue of the process (
sigismember(&t->pending.signal,sig) returns 1): in the affirmative case, nothing has to
be done, thus returns 0.

3. Invokes send_signal(sig, info, t, &t->pending) to add the signal to the set of
pending signals of the process; this function is described in detail in the next section.

4. If send_signal( ) successfully terminated and the signal is not blocked (
sigismember(&t->blocked,sig) returns 0), invokes the signal_wake_up( ) function to
notify the process about the new pending signal. In turn, this function executes the
following steps:

o Sets the TIF_SIGPENDING flags in t->tHRead_info->flags.

o Invokes try_to_wake_up( )see the section "The try_to_wake_up( ) Function" in
Chapter 7to awake the process if it is either in TASK_INTERRUPTIBLE state, or in
TASK_STOPPED state and the signal is SIGKILL.

o If try_to_wake_up( ) returned 0, the process was already runnable: if so, it
checks whether the process is already running on another CPU and, in this
case, sends an interprocessor interrupt to that CPU to force a reschedule of
the current process (see the section "Interprocessor Interrupt Handling" in
Chapter 4). Because each process checks the existence of pending signals
when returning from the schedule( ) function, the interprocessor interrupt
ensures that the destination process quickly notices the new pending signal.

5. Returns 1 (the signal has been successfully generated).

11.2.2. The send_signal( ) Function

The send_signal( ) function inserts a new item in a pending signal queue. It receives as its
parameters the signal number sig, the address info of a siginfo_t data structure (or a special
code, see the description of specific_send_sig_info( ) in the previous section), the address t
of the descriptor of the target process, and the address signals of the pending signal queue.

The function executes the following steps:

1. If the value of info is 2, the signal is either SIGKILL or SIGSTOP and it has been
generated by the kernel via the force_sig_specific( ) function: in this case, it jumps
to step 9. The action corresponding to these signals is immediately enforced by the
kernel, thus the function may skip adding the signal to the pending signal queue.

2. If the number of pending signals of the process's owner (t->user->sigpending) is
smaller than the current process's resource limit 
(t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur), the function allocates a sigqueue data
structure for the new occurrence of the signal:

3.
4.     q = kmem_cache_alloc(sigqueue_cachep, GFP_ATOMIC);

5. If the number of pending signals of the process's owner is too high or the memory
allocation in the previous step failed, it jumps to step 9.

6. Increases the number of pending signals of the owner (t->user->sigpending) and the
reference counter of the per-user data structure pointed to by t->user.

7. Adds the sigqueue data structure in the pending signal queue signals:
8.
9.     list_add_tail(&q->list, &signals->list);
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10. Fills the siginfo_t table inside the sigqueue data structure:
11.
12.     if ((unsigned long)info == 0) {

13.         q->info.si_signo = sig;

14.         q->info.si_errno = 0;

15.         q->info.si_code = SI_USER;

16.         q->info._sifields._kill._pid = current->pid;

17.         q->info._sifields._kill._uid = current->uid;

18.     } else if ((unsigned long)info == 1) {

19.         q->info.si_signo = sig;

20.         q->info.si_errno = 0;

21.         q->info.si_code = SI_KERNEL;

22.         q->info._sifields._kill._pid = 0;

23.         q->info._sifields._kill._uid = 0;

24.     } else

25.         copy_siginfo(&q->info, info);

The copy_siginfo( ) function copies the siginfo_t table passed by the caller.

26. Sets the bit corresponding to the signal in the bit mask of the queue:
27.
28.     sigaddset(&signals->signal, sig);

29. Returns 0: the signal has been successfully appended to the pending signal queue.

30. Here, an item will not be added to the signal pending queue, because there are already
too many pending signals, or there is no free memory for the sigqueue data structure,
or the signal is immediately enforced by the kernel. If the signal is real-time and was
sent through a kernel function that is explicitly required to queue it, the function
returns the error code -EAGAIN:

31.
32.     if (sig>=32 && info && (unsigned long) info != 1 &&

33.         info->si_code != SI_USER)

34.         return -EAGAIN;

35. Sets the bit corresponding to the signal in the bit mask of the queue:
36.
37.     sigaddset(&signals->signal, sig);

38. Returns 0: even if the signal has not been appended to the queue, the corresponding
bit has been set in the bit mask of pending signals.

It is important to let the destination process receive the signal even if there is no room for the
corresponding item in the pending signal queue. Suppose, for instance, that a process is
consuming too much memory. The kernel must ensure that the kill( ) system call succeeds
even if there is no free memory; otherwise, the system administrator doesn't have any chance
to recover the system by terminating the offending process.

11.2.3. The group_send_sig_info( ) Function

The group_send_sig_info( ) function sends a signal to a whole thread group. It acts on three
parameters: a signal number sig, the address info of a siginfo_t tableor alternatively the
special values 0, 1, or 2, as explained in the earlier section "The specific_send_sig_info( )
Function"and the address p of a process descriptor.

The function essentially executes the following steps:
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1. Checks that the parameter sig is correct:
2.
3.     if (sig < 0 || sig > 64)

4.         return -EINVAL;

5. If the signal is being sent by a User Mode process, it checks whether the operation is
allowed. The signal is delivered only if at least one of the following conditions holds:

o The owner of the sending process has the proper capability (usually, this simply
means the signal was issued by the system administrator; see Chapter 20).

o The signal is SIGCONT and the destination process is in the same login session of
the sending process.

o Both processes belong to the same user.

If the User Mode process is not allowed to send the signal, the function returns the
value -EPERM.

6. If the sig parameter has the value 0, it returns immediately without generating any
signal:

7.
8.     if (!sig || !p->sighand)

9.         return 0;

Because 0 is not a valid signal number, it is used to allow the sending process to check
whether it has the required privileges to send a signal to the destination thread group.
The function also returns if the destination process is being killed, indicated by
checking whether its signal handler descriptor has been released.

10. Acquires the p->sighand->siglock spin lock and disables local interrupts.

11. Invokes the handle_stop_signal( ) function, which checks for some types of signals
that might nullify other pending signals for the destination thread group. The latter
function executes the following steps:

o If the thread group is being killed (SIGNAL_GROUP_EXIT flag in the flags field of
the signal descriptor set), it returns.

o If sig is a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal, the function invokes the
rm_from_queue( ) function to remove the SIGCONT signal from the shared pending
signal queue p->signal->shared_pending and from the private queues of all
members of the thread group.

o If sig is SIGCONT, it invokes the rm_from_queue( ) function to remove any
SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signal from the shared pending signal
queue p->signal->shared_pending; then, removes the same signals from the
private pending signal queues of the processes belonging to the thread group,
and awakens them:

o

o     rm_from_queue(0x003c0000, &p->signal->shared_pending);

o     t = p;

o     do {

o         rm_from_queue(0x003c0000, &t->pending);

o         try_to_wake_up(t, TASK_STOPPED, 0);

o         t = next_thread(t);

o     } while (t != p);
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The mask 0x003c0000 selects the four stop signals. At each iteration, the
next_thread macro returns the descriptor address of a different lightweight
process in the thread group (see the section "Relationships Among Processes"
in Chapter 3).[*]

[*] The actual code is more complicated than the fragment just shown, because
handle_stop_signal( ) also takes care of the unusual case of the SIGCONT signal being caught, as
well as of the race conditions due to a SIGCONT signal occurring while all processes in the
thread group are being stopped.

12. Checks whether the thread group ignores the signal; if so, returns the value 0
(success). The signal is ignored when all three conditions for ignoring a signal that are
mentioned in the earlier section "The Role of Signals" are satisfied (see also step 1 in
the earlier section "The specific_send_sig_info( ) Function").

13. Checks whether the signal is non-real-time and another occurrence of the same signal
is already pending in the shared pending signal queue of the thread group: if so,
nothing has to be done, thus returns the value 0 (success):

14.
15.     if (sig<32 && sigismember(&p->signal->shared_pending.signal,sig))

16.         return 0;

17. Invokes send_signal( ) to append the signal to the shared pending signal queue (see
the previous section "The send_signal( ) Function"). If send_signal( ) returns a
nonzero error code, it terminates while returning the same value.

18. Invokes the _ _group_complete_signal( ) function to wake up one lightweight process
in the thread group (see below).

19. Releases the p->sighand->siglock spin lock and enables local interrupts.

20. Returns 0 (success).

The _ _group_complete_signal( ) function scans the processes in the thread group, looking for
a process that can receive the new signal. A process may be selected if it satisfies all the
following conditions:

 The process does not block the signal.

 The process is not in state EXIT_ZOMBIE, EXIT_DEAD, TASK_TRACED, or TASK_STOPPED (as an
exception, the process can be in the TASK_TRACED or TASK_STOPPED states if the signal is
SIGKILL).

 The process is not being killedthat is, its PF_EXITING flag is not set.

 Either the process is currently in execution on a CPU, or its TIF_SIGPENDING flag is not
already set. (In fact, there is no point in awakening a process that has pending
signals: in general, this operation has been already performed by the kernel control
path that set the TIF_SIGPENDING flag. On the other hand, if a process is currently in
execution, it should be notified of the new pending signal.)

A thread group might include many processes that satisfy the above conditions. The function
selects one of them as follows:

 If the process identified by pthe descriptor address passed as parameter of the
group_send_sig_info( ) functionsatisfies all the prior rules and can thus receive the
signal, the function selects it.

 Otherwise, the function searches for a suitable process by scanning the members of
the thread group, starting from the process that received the last thread group's signal
(p->signal->curr_target).
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If _ _group_complete_signal( ) succeeds in finding a suitable process, it sets up the delivery
of the signal to the selected process. First, the function checks whether the signal is fatal: in
this case, the whole thread group is killed by sending SIGKILL signals to each lightweight
process in the group. Otherwise, if the signal is not fatal, the function invokes the 
signal_wake_up( ) function to notify the selected process that it has a new pending signal
(see step 4 in the earlier section "The specific_send_sig_info( ) Function").
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11.3. Delivering a Signal
We assume that the kernel noticed the arrival of a signal and invoked one of the functions
mentioned in the previous sections to prepare the process descriptor of the process that is
supposed to receive the signal. But in case that process was not running on the CPU at that
moment, the kernel deferred the task of delivering the signal. We now turn to the activities
that the kernel performs to ensure that pending signals of a process are handled.

As mentioned in the section "Returning from Interrupts and Exceptions" in Chapter 4, the
kernel checks the value of the TIF_SIGPENDING flag of the process before allowing the process
to resume its execution in User Mode. Thus, the kernel checks for the existence of pending
signals every time it finishes handling an interrupt or an exception.

To handle the nonblocked pending signals, the kernel invokes the do_signal( ) function, which
receives two parameters:

regs

The address of the stack area where the User Mode register contents of the current
process are saved.

oldset

The address of a variable where the function is supposed to save the bit mask array of
blocked signals. It is NULL if there is no need to save the bit mask array.

Our description of the do_signal( ) function will focus on the general mechanism of signal
delivery; the actual code is burdened with lots of details dealing with race conditions and
other special casessuch as freezing the system, generating core dumps, stopping and killing a
whole thread group, and so on. We will quietly skip all these details.

As already mentioned, the do_signal( ) function is usually only invoked when the CPU is going
to return in User Mode. For that reason, if an interrupt handler invokes do_signal( ), the
function simply returns:

    if ((regs->xcs & 3) != 3)

        return 1;

If the oldset parameter is NULL, the function initializes it with the address of the
current->blocked field:

    if (!oldset)

        oldset = &current->blocked;

The heart of the do_signal( ) function consists of a loop that repeatedly invokes the
dequeue_signal( ) function until no nonblocked pending signals are left in both the private and
shared pending signal queues. The return code of dequeue_signal( ) is stored in the signr
local variable. If its value is 0, it means that all pending signals have been handled and 
do_signal( ) can finish. As long as a nonzero value is returned, a pending signal is waiting to
be handled. dequeue_signal( ) is invoked again after do_signal( ) handles the current signal.

The dequeue_signal( ) considers first all signals in the private pending signal queue, starting
from the lowest-numbered signal, then the signals in the shared queue. It updates the data
structures to indicate that the signal is no longer pending and returns its number. This task
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involves clearing the corresponding bit in current->pending.signal or
current->signal->shared_pending.signal, and invoking recalc_sigpending( ) to update the
value of the TIF_SIGPENDING flag.

Let's see how the do_signal( ) function handles each pending signal whose number is
returned by dequeue_signal( ). First, it checks whether the current receiver process is being
monitored by some other process; in this case, do_signal( ) invokes
do_notify_parent_cldstop( ) and schedule( ) to make the monitoring process aware of the
signal handling.

Then do_signal( ) loads the ka local variable with the address of the k_sigaction data
structure of the signal to be handled:

    ka = &current->sig->action[signr-1];

Depending on the contents, three kinds of actions may be performed: ignoring the signal,
executing a default action, or executing a signal handler.

When a delivered signal is explicitly ignored, the do_signal( ) function simply continues with a
new execution of the loop and therefore considers another pending signal:

    if (ka->sa.sa_handler == SIG_IGN)

        continue;

In the following two sections we will describe how a default action and a signal handler are
executed.

11.3.1. Executing the Default Action for the Signal

If ka->sa.sa_handler is equal to SIG_DFL, do_signal( ) must perform the default action of the
signal. The only exception comes when the receiving process is init, in which case the signal is
discarded as described in the earlier section "Actions Performed upon Delivering a Signal":

    if (current->pid == 1)

        continue;

For other processes, the signals whose default action is "ignore" are also easily handled:

    if (signr==SIGCONT || signr==SIGCHLD ||

            signr==SIGWINCH || signr==SIGURG)

        continue;

The signals whose default action is "stop" may stop all processes in the thread group. To do
this, do_signal( ) sets their states to TASK_STOPPED and then invokes the schedule( ) function
(see the section "The schedule( ) Function" in Chapter 7):

    if (signr==SIGSTOP || signr==SIGTSTP ||

            signr==SIGTTIN || signr==SIGTTOU) {

        if (signr != SIGSTOP &&

               is_orphaned_pgrp(current->signal->pgrp))

            continue;

        do_signal_stop(signr);

    }

The difference between SIGSTOP and the other signals is subtle: SIGSTOP always stops the
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thread group, while the other signals stop the thread group only if it is not in an "orphaned
process group." The POSIX standard specifies that a process group is not orphaned as long as
there is a process in the group that has a parent in a different process group but in the same
session. Thus, if the parent process dies but the user who started the process is still logged
in, the process group is not orphaned.

The do_signal_stop( ) function checks whether current is the first process being stopped in
the thread group. If so, it activates a "group stop": essentially, the function sets the 
group_stop_count field in the signal descriptor to a positive value, and awakens each process
in the thread group. Each such process, in turn, looks at this field to recognize that a group
stop is in progress, changes its state to TASK_STOPPED, and invokes schedule(). The
do_signal_stop( ) function also sends a SIGCHLD signal to the parent process of the thread
group leader, unless the parent has set the SA_NOCLDSTOP flag of SIGCHLD.

The signals whose default action is "dump" may create a core file in the process working
directory; this file lists the complete contents of the process's address space and CPU
registers. After do_signal( ) creates the core file, it kills the thread group. The default action
of the remaining 18 signals is "terminate," which consists of simply killing the thread group. To
kill the whole thread group, the function invokes do_group_exit( ), which executes a clean
"group exit" procedure (see the section "Process Termination" in Chapter 3).

11.3.2. Catching the Signal

If a handler has been established for the signal, the do_signal( ) function must enforce its
execution. It does this by invoking handle_signal( ):

    handle_signal(signr, &info, &ka, oldset, regs);

    if (ka->sa.sa_flags & SA_ONESHOT)

        ka->sa.sa_handler = SIG_DFL;

    return 1;

If the received signal has the SA_ONESHOT flag set, it must be reset to its default action, so
that further occurrences of the same signal will not trigger again the execution of the signal
handler. Notice how do_signal( ) returns after having handled a single signal. Other pending
signals won't be considered until the next invocation of do_signal( ). This approach ensures
that real-time signals will be dealt with in the proper order.

Executing a signal handler is a rather complex task because of the need to juggle stacks
carefully while switching between User Mode and Kernel Mode. We explain exactly what is
entailed here:

Signal handlers are functions defined by User Mode processes and included in the User Mode
code segment. The handle_signal( ) function runs in Kernel Mode while signal handlers run in
User Mode; this means that the current process must first execute the signal handler in User
Mode before being allowed to resume its "normal" execution. Moreover, when the kernel
attempts to resume the normal execution of the process, the Kernel Mode stack no longer
contains the hardware context of the interrupted program, because the Kernel Mode stack is
emptied at every transition from User Mode to Kernel Mode.

An additional complication is that signal handlers may invoke system calls. In this case, after
the service routine executes, control must be returned to the signal handler instead of to the
normal flow of code of the interrupted program.

The solution adopted in Linux consists of copying the hardware context saved in the Kernel
Mode stack onto the User Mode stack of the current process. The User Mode stack is also
modified in such a way that, when the signal handler terminates, the sigreturn( ) system call
is automatically invoked to copy the hardware context back on the Kernel Mode stack and to
restore the original content of the User Mode stack.
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Figure 11-2 illustrates the flow of execution of the functions involved in catching a signal. A
nonblocked signal is sent to a process. When an interrupt or exception occurs, the process
switches into Kernel Mode. Right before returning to User Mode, the kernel executes the 
do_signal( ) function, which in turn handles the signal (by invoking handle_signal( )) and
sets up the User Mode stack (by invoking setup_frame( ) or setup_rt_frame( )). When the
process switches again to User Mode, it starts executing the signal handler, because the
handler's starting address was forced into the program counter. When that function
terminates, the return code placed on the User Mode stack by the setup_frame( ) or
setup_rt_frame( ) function is executed. This code invokes the sigreturn( ) or the
rt_sigreturn( ) system call; the corresponding service routines copy the hardware context of
the normal program to the Kernel Mode stack and restore the User Mode stack back to its
original state (by invoking restore_sigcontext( )). When the system call terminates, the
normal program can thus resume its execution.

Figure 11-2. Catching a signal

Let's now examine in detail how this scheme is carried out.

11.3.2.1. Setting up the frame

To properly set the User Mode stack of the process, the handle_signal( ) function invokes
either setup_frame( ) (for signals that do not require a siginfo_t table; see the section "
System Calls Related to Signal Handling" later in this chapter) or setup_rt_frame( ) (for signals
that do require a siginfo_t table). To choose among these two functions, the kernel checks
the value of the SA_SIGINFO flag in the sa_flags field of the sigaction table associated with
the signal.

The setup_frame( ) function receives four parameters, which have the following meanings:

sig

Signal number

ka

Address of the k_sigaction table associated with the signal

oldset
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Address of a bit mask array of blocked signals

regs

Address in the Kernel Mode stack area where the User Mode register contents are
saved

The setup_frame( ) function pushes onto the User Mode stack a data structure called a frame
, which contains the information needed to handle the signal and to ensure the correct return
to the sys_sigreturn( ) function. A frame is a sigframe table that includes the following fields
(see Figure 11-3):

pretcode

Return address of the signal handler function; it points to the code at the _
_kernel_sigreturn label (see below).

sig

The signal number; this is the parameter required by the signal handler.

sc

S tructure of type sigcontext containing the hardware context of the User Mode
process right before switching to Kernel Mode (this information is copied from the
Kernel Mode stack of current). It also contains a bit array that specifies the blocked
regular signals of the process.

fpstate

Structure of type _fpstate that may be used to store the floating point registers of the
User Mode process (see the section "Saving and Loading the FPU, MMX, and XMM
Registers" in Chapter 3).

extramask

Bit array that specifies the blocked real-time signals.

retcode

8-byte code issuing a sigreturn( ) system call. In earlier versions of Linux, this code
was effectively executed to return from the signal handler; in Linux 2.6, however, it is
used only as a signature, so that debuggers can recognize the signal stack frame.

Figure 11-3. Frame on the User Mode stack
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The setup_frame( ) function starts by invoking get_sigframe( ) to compute the first memory
location of the frame. That memory location is usually[*] in the User Mode stack, so the
function returns the value:

[*] Linux allow s processes to specify an alternative stack for their signal handlers by invoking the signaltstack( ) system call; this
feature is also required by the X/Open standard. When an alternative stack is present, the get_sigframe( ) function returns an
address inside that stack. We don't discuss this feature further, because it is conceptually similar to regular signal handling.

    (regs->esp - sizeof(struct sigframe)) & 0xfffffff8

Because stacks grow toward lower addresses, the initial address of the frame is obtained by
subtracting its size from the address of the current stack top and aligning the result to a
multiple of 8.

The returned address is then verified by means of the access_ok macro; if it is valid, the
function repeatedly invokes _ _put_user( ) to fill all the fields of the frame. The pretcode field
in the frame is initialized to &_ _kernel_sigreturn, the address of some glue code placed in the
vsyscall page (see the section "Issuing a System Call via the sysenter Instruction" in Chapter
10).

Once this is done, the function modifies the regs area of the Kernel Mode stack, thus ensuring
that control is transferred to the signal handler when current resumes its execution in User
Mode:

    regs->esp = (unsigned long) frame;

    regs->eip = (unsigned long) ka->sa.sa_handler;

    regs->eax = (unsigned long) sig;

    regs->edx = regs->ecx = 0;

    regs->xds = regs->xes = regs->xss = _ _USER_DS;

    regs->xcs = _ _USER_CS;

The setup_frame( ) function terminates by resetting the segmentation registers saved on the
Kernel Mode stack to their default value. Now the information needed by the signal handler is
on the top of the User Mode stack.

The setup_rt_frame( ) function is similar to setup_frame( ), but it puts on the User Mode
stack an extended frame (stored in the rt_sigframe data structure) that also includes the
content of the siginfo_t table associated with the signal. Moreover, this function sets the
pretcode field so that it points to the _ _kernel_rt_sigreturn code in the vsyscall page.

11.3.2.2. Evaluating the signal flags

After setting up the User Mode stack, the handle_signal( ) function checks the values of the
flags associated with the signal. If the signal does not have the SA_NODEFER flag set, the
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signals in the sa_mask field of the sigaction table must be blocked during the execution of the
signal handler:

    if (!(ka->sa.sa_flags & SA_NODEFER)) {

        spin_lock_irq(&current->sighand->siglock);

       sigorsets(&current->blocked, &current->blocked, &ka->sa.sa_mask);

        sigaddset(&current->blocked, sig);

        recalc_sigpending(current);

        spin_unlock_irq(&current->sighand->siglock);

    }

As described earlier, the recalc_sigpending( ) function checks whether the process has
nonblocked pending signals and sets its TIF_SIGPENDING flag accordingly.

The function returns then to do_signal( ), which also returns immediately.

11.3.2.3. Starting the signal handler

When do_signal( ) returns, the current process resumes its execution in User Mode. Because
of the preparation by setup_frame( ) described earlier, the eip register points to the first
instruction of the signal handler, while esp points to the first memory location of the frame
that has been pushed on top of the User Mode stack. As a result, the signal handler is
executed.

11.3.2.4. Terminating the signal handler

When the signal handler terminates, the return address on top of the stack points to the code
in the vsyscall page referenced by the pretcode field of the frame:

    _ _kernel_sigreturn:

      popl %eax

      movl $_ _NR_sigreturn, %eax

      int $0x80

Therefore, the signal number (that is, the sig field of the frame) is discarded from the stack;
the sigreturn( ) system call is then invoked.

The sys_sigreturn( ) function computes the address of the pt_regs data structure regs,
which contains the hardware context of the User Mode process (see the section "Parameter
Passing" in Chapter 10). From the value stored in the esp field, it can thus derive and check
the frame address inside the User Mode stack:

    frame = (struct sigframe *)(regs.esp - 8);

    if (verify_area(VERIFY_READ, frame, sizeof(*frame)) {

        force_sig(SIGSEGV, current);

        return 0;

    }

Then the function copies the bit array of signals that were blocked before invoking the signal
handler from the sc field of the frame to the blocked field of current. As a result, all signals
that have been masked for the execution of the signal handler are unblocked. The 
recalc_sigpending( ) function is then invoked.

The sys_sigreturn( ) function must at this point copy the process hardware context from
the sc field of the frame to the Kernel Mode stack and remove the frame from the User Mode
stack; it performs these two tasks by invoking the restore_sigcontext( ) function.
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If the signal was sent by a system call such as rt_sigqueueinfo( ) that required a siginfo_t
table to be associated with the signal, the mechanism is similar. The pretcode field of the
extended frame points to the _ _kernel_rt_sigreturn code in the vsyscall page, which in turn
invokes the rt_sigreturn( ) system call; the corresponding sys_rt_sigreturn( ) service
routine copies the process hardware context from the extended frame to the Kernel Mode
stack and restores the original User Mode stack content by removing the extended frame from
it.

11.3.3. Reexecution of System Calls

The request associated with a system call cannot always be immediately satisfied by the
kernel; when this happens, the process that issued the system call is put in a 
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state.

If the process is put in a TASK_INTERRUPTIBLE state and some other process sends a signal to
it, the kernel puts it in the TASK_RUNNING state without completing the system call (see the
section "Returning from Interrupts and Exceptions" in Chapter 4). The signal is delivered to the
process while switching back to User Mode. When this happens, the system call service
routine does not complete its job, but returns an EINTR, ERESTARTNOHAND, ERESTART_RESTARTBLOCK
, ERESTARTSYS, or ERESTARTNOINTR error code.

In practice, the only error code a User Mode process can get in this situation is EINTR, which
means that the system call has not been completed. (The application programmer may check
this code and decide whether to reissue the system call.) The remaining error codes are used
internally by the kernel to specify whether the system call may be reexecuted automatically
after the signal handler termination.

Table 11-11 lists the error codes related to unfinished system calls and their impact for each
of the three possible signal actions. The terms that appear in the entries are defined in the
following list:

Terminate

The system call will not be automatically reexecuted; the process will resume its
execution in User Mode at the instruction following the int $0x80 or sysenter one and
the eax register will contain the -EINTR value.

Reexecute

The kernel forces the User Mode process to reload the eax register with the system call
number and to reexecute the int $0x80 or sysenter instruction; the process is not
aware of the reexecution and the error code is not passed to it.

Depends

The system call is reexecuted only if the SA_RESTART flag of the delivered signal is set;
otherwise, the system call terminates with a -EINTR error code.
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Table 11-11. Reexecution of system calls

Error codes and their impact on system call execution

Signal

Action
EINTR ERESTARTSYS

ERESTARTNOHAND

ERESTART_RESTARTBLOCKa
ERESTARTNOINTR

Default Terminate Reexecute Reexecute Reexecute

Ignore Terminate Reexecute Reexecute Reexecute

Catch Terminate Depends Terminate Reexecute

a The ERESTARTNOHAND and ERESTART_RESTARTBLOCK error codes differ on the mechanism used to
restart the system call (see below).

When delivering a signal, the kernel must be sure that the process really issued a system call
before attempting to reexecute it. This is where the orig_eax field of the regs hardware
context plays a critical role. Let's recall how this field is initialized when the interrupt or
exception handler starts:

Interrupt

The field contains the IRQ number associated with the interrupt minus 256 (see the
section "Saving the registers for the interrupt handler" in Chapter 4).

0x80 exception (also sysenter)

The field contains the system call number (see the section "Entering and Exiting a
System Call" in Chapter 10).

Other exceptions

The field contains the value -1 (see the section "Saving the Registers for the
Exception Handler" in Chapter 4).

Therefore, a nonnegative value in the orig_eax field means that the signal has woken up a
TASK_INTERRUPTIBLE process that was sleeping in a system call. The service routine recognizes
that the system call was interrupted, and thus returns one of the previously mentioned error
codes.

11.3.3.1. Restarting a system call interrupted by a non-caught signal

If the signal is explicitly ignored or if its default action is enforced, do_signal( ) analyzes the
error code of the system call to decide whether the unfinished system call must be
automatically reexecuted, as specified in Table 11-11. If the call must be restarted, the
function modifies the regs hardware context so that, when the process is back in User Mode,
eip points either to the int $0x80 instruction or to the sysenter instruction, and eax contains
the system call number:

    if (regs->orig_eax >= 0) {

        if (regs->eax == -ERESTARTNOHAND || regs->eax == -ERESTARTSYS ||

              regs->eax == -ERESTARTNOINTR) {
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            regs->eax = regs->orig_eax;

            regs->eip -= 2;

        }

        if (regs->eax == -ERESTART_RESTARTBLOCK) {

            regs->eax = _ _NR_restart_syscall;

            regs->eip -= 2;

        }

    }

The regs->eax field is filled with the return code of a system call service routine (see the
section "Entering and Exiting a System Call" in Chapter 10). Notice that both the int $0x80
and sysreturn instructions are two bytes long so the function subtracts 2 from eip in order to
set it to the instruction that triggers the system call.

The error code ERESTART_RESTARTBLOCK is special, because the eax register is set to the number
of the restart_syscall( ) system call; thus, the User Mode process does not restart the same
system call that was interrupted by the signal. This error code is only used by time-related
system calls that, when restarted, should adjust their User Mode parameters. A typical
example is the nanosleep( ) system call (see the section "An Application of Dynamic Timers:
the nanosleep( ) System Call" in Chapter 6): suppose that a process invokes it to pause the
execution for 20 milliseconds, and that a signal occurs 10 milliseconds later. If the system call
would be restarted as usual, the total delay time would exceed 30 milliseconds.

Instead, the service routine of the nanosleep( ) system call fills the restart_block field in the
current's thread_info structure with the address of a special service routine to be used when
restarting, and returns -ERESTART_RESTARTBLOCK if interrupted. The sys_restart_syscall( )
service routine just executes the special nanosleep( )'s service routine, which adjusts the
delay to consider the time elapsed between the invocation of the original system call and its
restarting.

11.3.3.2. Restarting a system call for a caught signal

If the signal is caught, handle_signal( ) analyzes the error code and, possibly, the SA_RESTART
flag of the sigaction table to decide whether the unfinished system call must be reexecuted:

    if (regs->orig_eax >= 0) {

        switch (regs->eax) {

            case -ERESTART_RESTARTBLOCK:

            case -ERESTARTNOHAND:

                regs->eax = -EINTR;

                break;

            case -ERESTARTSYS:

                if (!(ka->sa.sa_flags & SA_RESTART)) {

                    regs->eax = -EINTR;

                    break;

                }

            /* fallthrough */

            case -ERESTARTNOINTR:

                regs->eax = regs->orig_eax;

                regs->eip -= 2;

        }

    }

If the system call must be restarted, handle_signal( ) proceeds exactly as do_signal( );
otherwise, it returns an -EINTR error code to the User Mode process.
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11.4. System Calls Related to Signal Handling
As stated in the introduction of this chapter, programs running in User Mode are allowed to
send and receive signals. This means that a set of system calls must be defined to allow
these kinds of operations. Unfortunately, for historical reasons, several system calls exist that
serve essentially the same purpose. As a result, some of these system calls are never
invoked. For instance, sys_sigaction( ) and sys_rt_sigaction( ) are almost identical, so the
sigaction( ) wrapper function included in the C library ends up invoking sys_rt_sigaction( )
instead of sys_sigaction( ). We will describe some of the most significant system calls in the
following sections.

11.4.1. The kill( ) System Call

The kill(pid,sig) system call is commonly used to send signals to conventional processes or
multithreaded applications; its corresponding service routine is the sys_kill( ) function. The
integer pid parameter has several meanings, depending on its numerical value:

pid > 0

The sig signal is sent to the thread group of the process whose PID is equal to pid.

pid = 0

The sig signal is sent to all thread groups of the processes in the same process group
as the calling process.

pid = -1

The signal is sent to all processes, except swapper (PID 0), init (PID 1), and current.

pid < -1

The signal is sent to all thread groups of the processes in the process group -pid.

The sys_kill( ) function sets up a minimal siginfo_t table for the signal, and then invokes
kill_something_info( ):

    info.si_signo = sig;

    info.si_errno = 0;

    info.si_code = SI_USER;

    info._sifields._kill._pid = current->tgid;

    info._sifields._kill._uid = current->uid;

    return kill_something_info(sig, &info, pid);

The kill_something_info( ) function, in turn, invokes either kill_proc_info( ) (to send the
signal to a single thread group via group_send_sig_info( )), or kill_pg_info( ) (to scan all
processes in the destination process group and invoke send_sig_info( ) for each of them), or
repeatedly group_send_sig_info( ) for each process in the system (if pid is -1).

The kill( ) system call is able to send every signal, even the so-called real-time signals that
have numbers ranging from 32 to 64. However, as we saw in the earlier section "Generating a
Signal," the kill( ) system call does not ensure that a new element is added to the pending
signal queue of the destination process, so multiple instances of pending signals can be lost.
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Real-time signals should be sent by means of a system call such as rt_sigqueueinfo( ) (see
the later section "System Calls for Real-Time Signals").

System V and BSD Unix variants also have a killpg( ) system call, which is able to explicitly
send a signal to a group of processes. In Linux, the function is implemented as a library
function that uses the kill( ) system call. Another variation is raise( ) , which sends a
signal to the current process (that is, to the process executing the function). In Linux, 
raise() is implemented as a library function.

11.4.2. The tkill( ) and tgkill( ) System Calls

The tkill( ) and tgkill( ) system calls send a signal to a specific process in a thread group.
The pthread_kill( ) function of every POSIX-compliant pthread library invokes either of them
to send a signal to a specific lightweight process.

The tkill( ) system call expects two parameters: the PID pid of the process to be signaled
and the signal number sig. The sys_tkill( ) service routine fills a siginfo table, gets the
process descriptor address, makes some permission checks (such as those in step 2 in the
section "The group_send_sig_info( ) Function"), and invokes specific_send_sig_info( ) to
send the signal.

The tgkill( ) system call differs from tkill( ) because it has a third parameter: the thread
group ID (tgid) of the thread group that includes the process to be signaled. The sys_tgkill(
) service routine performs exactly the same operations as sys_tkill( ), but also checks that
the process being signaled actually belongs to the thread group tgid. This additional check
solves a race condition that occurs when a signal is sent to a process that is being killed: if
another multithreaded application is creating lightweight processes fast enough, the signal
could be delivered to the wrong process. The tgkill( ) system call solves the problem,
because the thread group ID is never changed during the life span of a multithreaded
application.

11.4.3. Changing a Signal Action

The sigaction(sig,act,oact) system call allows users to specify an action for a signal; of
course, if no signal action is defined, the kernel executes the default action associated with
the delivered signal.

The corresponding sys_sigaction( ) service routine acts on two parameters: the sig signal
number and the act table of type old_sigaction that specifies the new action. A third oact
optional output parameter may be used to get the previous action associated with the signal.
(The old_sigaction data structure contains the same fields as the sigaction structure
described in the earlier section "Data Structures Associated with Signals," but in a different
order.)

The function checks first whether the act address is valid. Then it fills the sa_handler,
sa_flags, and sa_mask fields of a new_ka local variable of type k_sigaction with the
corresponding fields of *act:

    _ _get_user(new_ka.sa.sa_handler, &act->sa_handler);

    _ _get_user(new_ka.sa.sa_flags, &act->sa_flags);

    _ _get_user(mask, &act->sa_mask);

    siginitset(&new_ka.sa.sa_mask, mask);

The function invokes do_sigaction( ) to copy the new new_ka table into the entry at the sig-1
position of current->sig->action ( the number of the signal is one higher than the position in
the array because there is no zero signal):

    k = &current->sig->action[sig-1];

    if (act) {
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        *k = *act;

        sigdelsetmask(&k->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP));

        if (k->sa.sa_handler == SIG_IGN || (k->sa.sa_handler == SIG_DFL &&

         (sig==SIGCONT || sig==SIGCHLD || sig==SIGWINCH || sig==SIGURG))) {

        rm_from_queue(sigmask(sig), &current->signal->shared_pending);

            t = current;

            do {

                rm_from_queue(sigmask(sig), &current->pending);

                recalc_sigpending_tsk(t);

                t = next_thread(t);

            } while (t != current);

        }

    }

The POSIX standard requires that setting a signal action to either SIG_IGN or SIG_DFL when the
default action is "ignore" causes every pending signal of the same type to be discarded.
Moreover, notice that no matter what the requested masked signals are for the signal
handler, SIGKILL and SIGSTOP are never masked.

The sigaction( ) system call also allows the user to initialize the sa_flags field in the
sigaction table. We listed the values allowed for this field and the related meanings in Table
11-6 (earlier in this chapter).

Older System V Unix variants offered the signal( ) system call, which is still widely used by
programmers. Recent C libraries implement signal( ) by means of rt_sigaction( ) . However,
Linux still supports older C libraries and offers the sys_signal( ) service routine:

    new_sa.sa.sa_handler = handler;

    new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;

    ret = do_sigaction(sig, &new_sa, &old_sa);

    return ret ? ret : (unsigned long)old_sa.sa.sa_handler;

11.4.4. Examining the Pending Blocked Signals

The sigpending( ) system call allows a process to examine the set of pending blocked
signalsi.e., those that have been raised while blocked. The corresponding sys_sigpending( )
service routine acts on a single parameter, set, namely, the address of a user variable where
the array of bits must be copied:

    sigorsets(&pending, &current->pending.signal,

                        &current->signal->shared_pending.signal);

    sigandsets(&pending, &current->blocked, &pending);

    copy_to_user(set, &pending, 4);

11.4.5. Modifying the Set of Blocked Signals

The sigprocmask( ) system call allows processes to modify the set of blocked signals; it
applies only to regular (non-real-time) signals. The corresponding sys_sigprocmask( ) service
routine acts on three parameters:

oset

Pointer in the process address space to a bit array where the previous bit mask must
be stored.
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set

Pointer in the process address space to the bit array containing the new bit mask.

how

Flag that may have one of the following values:

SIG_BLOCK

The *set bit mask array specifies the signals that must be added to the bit mask array
of blocked signals.

SIG_UNBLOCK

The *set bit mask array specifies the signals that must be removed from the bit mask
array of blocked signals.

SIG_SETMASK

The *set bit mask array specifies the new bit mask array of blocked signals.

The function invokes copy_from_user( ) to copy the value pointed to by the set parameter
into the new_set local variable and copies the bit mask array of standard blocked signals of
current into the old_set local variable. It then acts as the how flag specifies on these two
variables:

    if (copy_from_user(&new_set, set, sizeof(*set)))

        return -EFAULT;

    new_set &= ~(sigmask(SIGKILL)|sigmask(SIGSTOP));

    old_set = current->blocked.sig[0];

    if (how == SIG_BLOCK)

        sigaddsetmask(&current->blocked, new_set);

    else if (how == SIG_UNBLOCK)

        sigdelsetmask(&current->blocked, new_set);

    else if (how == SIG_SETMASK)

        current->blocked.sig[0] = new_set;

    else

        return -EINVAL;

    recalc_sigpending(current);

    if (oset && copy_to_user(oset, &old_set, sizeof(*oset)))

            return -EFAULT;

    return 0;

11.4.6. Suspending the Process

The sigsuspend( ) system call puts the process in the TASK_INTERRUPTIBLE state, after having
blocked the standard signals specified by a bit mask array to which the mask parameter points.
The process will wake up only when a nonignored, nonblocked signal is sent to it.

The corresponding sys_sigsuspend( ) service routine executes these statements:

    mask &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));

    saveset = current->blocked;

    siginitset(&current->blocked, mask);
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    recalc_sigpending(current);

    regs->eax = -EINTR;

    while (1) {

        current->state = TASK_INTERRUPTIBLE;

        schedule( );

        if (do_signal(regs, &saveset))

            return -EINTR;

    }

The schedule( ) function selects another process to run. When the process that issued the
sigsuspend( ) system call is executed again, sys_sigsuspend( ) invokes the do_signal( )
function to deliver the signal that has awakened the process. If that function returns the
value 1, the signal is not ignored. Therefore the system call terminates by returning the error
code -EINTR.

The sigsuspend( ) system call may appear redundant, because the combined execution of
sigprocmask( ) and sleep( ) apparently yields the same result. But this is not true: because
processes can be interleaved at any time, one must be conscious that invoking a system call
to perform action A followed by another system call to perform action B is not equivalent to
invoking a single system call that performs action A and then action B.

In this particular case, sigprocmask( ) might unblock a signal that is delivered before invoking
sleep( ). If this happens, the process might remain in a TASK_INTERRUPTIBLE state forever,
waiting for the signal that was already delivered. On the other hand, the sigsuspend( )
system call does not allow signals to be sent after unblocking and before the schedule( )
invocation, because other processes cannot grab the CPU during that time interval.

11.4.7. System Calls for Real-Time Signals

Because the system calls previously examined apply only to standard signals, additional
system calls must be introduced to allow User Mode processes to handle real-time signals .

Several system calls for real-time signals (rt_sigaction( ) , rt_sigpending( ) ,
rt_sigprocmask( ) , and rt_sigsuspend( ) ) are similar to those described earlier and won't be
discussed further. For the same reason, we won't discuss two other system calls that deal
with queues of real-time signals:

rt_sigqueueinfo( )

Sends a real-time signal so that it is added to the shared pending signal queue of the
destination process. Usually invoked through the sigqueue( ) standard library function.

rt_sigtimedwait( )

Dequeues a blocked pending signal without delivering it and returns the signal number
to the caller; if no blocked signal is pending, suspends the current process for a fixed
amount of time. Usually invoked through the sigwaitinfo( ) and sigtimedwait( )
standard library functions.
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Chapter 12. The Virtual Filesystem
One of Linux's keys to success is its ability to coexist comfortably with other systems. You
can transparently mount disks or partitions that host file formats used by Windows , other
Unix systems, or even systems with tiny market shares like the Amiga. Linux manages to
support multiple filesystem types in the same way other Unix variants do, through a concept
called the Virtual Filesystem.

The idea behind the Virtual Filesystem is to put a wide range of information in the kernel to
represent many different types of filesystems ; there is a field or function to support each
operation provided by all real filesystems supported by Linux. For each read, write, or other
function called, the kernel substitutes the actual function that supports a native Linux
filesystem, the NTFS filesystem, or whatever other filesystem the file is on.

This chapter discusses the aims, structure, and implementation of Linux's Virtual Filesystem. It
focuses on three of the five standard Unix file typesnamely, regular files, directories, and
symbolic links. Device files are covered in Chapter 13, while pipes are discussed in Chapter 19.
To show how a real filesystem works, Chapter 18 covers the Second Extended Filesystem that
appears on nearly all Linux systems.
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12.1. The Role of the Virtual Filesystem (VFS)
The Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is a kernel software
layer that handles all system calls related to a standard Unix filesystem. Its main strength is
providing a common interface to several kinds of filesystems.

For instance, let's assume that a user issues the shell command:

    $ cp /floppy/TEST /tmp/test

where /floppy is the mount point of an MS-DOS diskette and /tmp is a normal Second
Extended Filesystem (Ext2) directory. The VFS is an abstraction layer between the application
program and the filesystem implementations (see Figure 12-1(a)). Therefore, the cp program
is not required to know the filesystem types of /floppy/TEST and /tmp/test. Instead, cp
interacts with the VFS by means of generic system calls known to anyone who has done Unix
programming (see the section "File-Handling System Calls" in Chapter 1); the code executed
by cp is shown in Figure 12-1(b).

Figure 12-1. VFS role in a simple file copy operation

Filesystems supported by the VFS may be grouped into three main classes:

Disk-based filesystems

These manage memory space available in a local disk or in some other device that
emulates a disk (such as a USB flash drive). Some of the well-known disk-based
filesystems supported by the VFS are:

 Filesystems for Linux such as the widely used Second Extended Filesystem
(Ext2), the recent Third Extended Filesystem (Ext3), and the Reiser Filesystems
(ReiserFS )[*]

[*] Although these filesystems owe their birth to Linux, they have been ported to several
other operating systems.

 Filesystems for Unix variants such as sysv filesystem (System V , Coherent ,
Xenix ), UFS (BSD , Solaris , NEXTSTEP ), MINIX filesystem, and VERITAS VxFS
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(SCO UnixWare )

 Microsoft filesystems such as MS-DOS, VFAT (Windows 95 and later releases),
and NTFS (Windows NT 4 and later releases)

 ISO9660 CD-ROM filesystem (formerly High Sierra Filesystem) and Universal Disk
Format (UDF ) DVD filesystem

 Other proprietary filesystems such as IBM's OS/2 (HPFS ), Apple's Macintosh
(HFS ), Amiga's Fast Filesystem (AFFS ), and Acorn Disk Filing System (ADFS )

 Additional journaling filesystems originating in systems other than Linux such as
IBM's JFS and SGI's XFS 

Network filesystems

These allow easy access to files included in filesystems belonging to other networked
computers. Some well-known network filesystems supported by the VFS are NFS ,
Coda , AFS (Andrew filesystem), CIFS (Common Internet File System, used in Microsoft
Windows ), and NCP (Novell's NetWare Core Protocol).

Special filesystems

These do not manage disk space, either locally or remotely. The /proc filesystem is a
typical example of a special filesystem (see the later section "Special Filesystems").

In this book, we describe in detail the Ext2 and Ext3 filesystems only (see Chapter 18); the
other filesystems are not covered for lack of space.

As mentioned in the section "An Overview of the Unix Filesystem" in Chapter 1, Unix directories
build a tree whose root is the / directory. The root directory is contained in the root
filesystem, which in Linux, is usually of type Ext2 or Ext3. All other filesystems can be
"mounted" on subdirectories of the root filesystem.[*]

[*] When a filesystem is mounted on a directory, the contents of the directory in the parent filesystem are no longer accessible,
because every pathname, including the mount point, w ill refer to the mounted filesystem. How ever, the original directory's content
show s up again w hen the filesystem is unmounted. This somew hat surprising feature of Unix filesystems is used by system
administrators to hide files; they simply mount a filesystem on the directory containing the files to be hidden.

A disk-based filesystem is usually stored in a hardware block device such as a hard disk, a
floppy, or a CD-ROM. A useful feature of Linux's VFS allows it to handle virtual block devices
such as /dev/loop0, which may be used to mount filesystems stored in regular files. As a
possible application, a user may protect her own private filesystem by storing an encrypted
version of it in a regular file.

The first Virtual Filesystem was included in Sun Microsystems's SunOS in 1986. Since then,
most Unix filesystems include a VFS. Linux's VFS, however, supports the widest range of
filesystems.

12.1.1. The Common File Model

The key idea behind the VFS consists of introducing a common file model capable of
representing all supported filesystems. This model strictly mirrors the file model provided by
the traditional Unix filesystem. This is not surprising, because Linux wants to run its native
filesystem with minimum overhead. However, each specific filesystem implementation must
translate its physical organization into the VFS's common file model.

For instance, in the common file model, each directory is regarded as a file, which contains a
list of files and other directories. However, several non-Unix disk-based filesystems use a File
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Allocation Table (FAT), which stores the position of each file in the directory tree. In these
filesystems, directories are not files. To stick to the VFS's common file model, the Linux
implementations of such FAT-based filesystems must be able to construct on the fly, when
needed, the files corresponding to the directories. Such files exist only as objects in kernel
memory.

More essentially, the Linux kernel cannot hardcode a particular function to handle an operation
such as read( ) or ioctl( ) . Instead, it must use a pointer for each operation; the pointer is
made to point to the proper function for the particular filesystem being accessed.

Let's illustrate this concept by showing how the read( ) shown in Figure 12-1 would be
translated by the kernel into a call specific to the MS-DOS filesystem. The application's call
to read( ) makes the kernel invoke the corresponding sys_read( ) service routine, like every
other system call. The file is represented by a file data structure in kernel memory, as we'll
see later in this chapter. This data structure contains a field called f_op that contains pointers
to functions specific to MS-DOS files, including a function that reads a file. sys_read( ) finds
the pointer to this function and invokes it. Thus, the application's read( ) is turned into the
rather indirect call:

    file->f_op->read(...);

Similarly, the write( ) operation triggers the execution of a proper Ext2 write function
associated with the output file. In short, the kernel is responsible for assigning the right set of
pointers to the file variable associated with each open file, and then for invoking the call
specific to each filesystem that the f_op field points to.

One can think of the common file model as object-oriented, where an object is a software
construct that defines both a data structure and the methods that operate on it. For reasons
of efficiency, Linux is not coded in an object-oriented language such as C++. Objects are
therefore implemented as plain C data structures with some fields pointing to functions that
correspond to the object's methods.

The common file model consists of the following object types:

The superblock object

Stores information concerning a mounted filesystem. For disk-based filesystems, this
object usually corresponds to a filesystem control block stored on disk.

The inode object

Stores general information about a specific file. For disk-based filesystems, this object
usually corresponds to a file control block stored on disk. Each inode object is
associated with an inode number, which uniquely identifies the file within the
filesystem.

The file object

Stores information about the interaction between an open file and a process. This
information exists only in kernel memory during the period when a process has the file
open.

The dentry object

Stores information about the linking of a directory entry (that is, a particular name of
the file) with the corresponding file. Each disk-based filesystem stores this information
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in its own particular way on disk.

Figure 12-2 illustrates with a simple example how processes interact with files. Three different
processes have opened the same file, two of them using the same hard link. In this case,
each of the three processes uses its own file object, while only two dentry objects are
requiredone for each hard link. Both dentry objects refer to the same inode object, which
identifies the superblock object and, together with the latter, the common disk file.

Figure 12-2. Interaction between processes and VFS objects

Besides providing a common interface to all filesystem implementations, the VFS has another
important role related to system performance. The most recently used dentry objects are
contained in a disk cache named the dentry cache , which speeds up the translation from a
file pathname to the inode of the last pathname component.

Generally speaking, a disk cache is a software mechanism that allows the kernel to keep in
RAM some information that is normally stored on a disk, so that further accesses to that data
can be quickly satisfied without a slow access to the disk itself.

Notice how a disk cache differs from a hardware cache or a memory cache, neither of which
has anything to do with disks or other devices. A hardware cache is a fast static RAM that
speeds up requests directed to the slower dynamic RAM (see the section "Hardware Cache" in
Chapter 2). A memory cache is a software mechanism introduced to bypass the Kernel
Memory Allocator (see the section "The Slab Allocator" in Chapter 8).

Beside the dentry cache and the inode cache, Linux uses other disk caches. The most
important one, called the page cache, is described in detail in Chapter 15.

12.1.2. System Calls Handled by the VFS

Table 12-1 illustrates the VFS system calls that refer to filesystems, regular files, directories,
and symbolic links. A few other system calls handled by the VFS, such as ioperm( ) , ioctl( )
, pipe( ) , and mknod( ) , refer to device files and pipes. These are discussed in later
chapters. A last group of system calls handled by the VFS, such as socket( ) , connect( ) ,
and bind( ) , refer to sockets and are used to implement networking. Some of the kernel
service routines that correspond to the system calls listed in Table 12-1 are discussed either
in this chapter or in Chapter 18.
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Table 12-1. Some system calls handled by the VFS

System call name Description

mount( ) umount( ) umount2( ) Mount/unmount filesystems

sysfs( ) Get filesystem information

statfs( ) fstatfs( ) statfs64( ) fstatfs64( )

ustat( )

Get filesystem statistics

chroot( ) pivot_root( ) Change root directory

chdir( ) fchdir( ) getcwd( ) Manipulate current directory

mkdir( ) rmdir( ) Create and destroy directories

getdents( ) getdents64( ) readdir( ) link( )

unlink( ) rename( ) lookup_dcookie( )

Manipulate directory entries

readlink( ) symlink( ) Manipulate soft links

chown( ) fchown( ) lchown( ) chown16( )

fchown16( ) lchown16( )

Modify file owner

chmod( ) fchmod( ) utime( ) Modify file attributes

stat( ) fstat( ) lstat( ) access( ) oldstat( )

oldfstat( ) oldlstat( ) stat64( ) lstat64( )

fstat64( )

Read file status

open( ) close( ) creat( ) umask( ) Open, close, and create files

dup( ) dup2( ) fcntl( ) fcntl64( ) Manipulate file descriptors

select( ) poll( ) Wait for events on a set of file
descriptors

truncate( ) ftruncate( ) truncate64( )

ftruncate64( )

Change file size

lseek( ) _llseek( ) Change file pointer

read( ) write( ) readv( ) writev( ) sendfile( )

sendfile64( ) readahead( )
Carry out file I/O operations

io_setup( ) io_submit( ) io_getevents( ) io_cancel( )
io_destroy( ) 

Asynchronous I/O (allows multiple
outstanding read and write
requests)
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Table 12-1. Some system calls handled by the VFS

System call name Description

pread64( ) pwrite64( ) Seek file and access it

mmap( ) mmap2( ) munmap( ) madvise( ) mincore( ) 

remap_file_pages( ) 
Handle file memory mapping

fdatasync( ) fsync( ) sync( ) msync( ) Synchronize file data

flock( ) Manipulate file lock

setxattr( ) lsetxattr( ) fsetxattr( ) getxattr( ) lgetxattr( )
fgetxattr( ) listxattr( ) llistxattr( ) flistxattr( )
removexattr( ) lremovexattr( ) fremovexattr( ) 

Manipulate file extended
attributes

We said earlier that the VFS is a layer between application programs and specific filesystems.
However, in some cases, a file operation can be performed by the VFS itself, without invoking
a lower-level procedure. For instance, when a process closes an open file, the file on disk
doesn't usually need to be touched, and hence the VFS simply releases the corresponding file
object. Similarly, when the lseek( ) system call modifies a file pointer, which is an attribute
related to the interaction between an opened file and a process, the VFS needs to modify
only the corresponding file object without accessing the file on disk, and therefore it does not
have to invoke a specific filesystem procedure. In some sense, the VFS could be considered a
"generic" filesystem that relies, when necessary, on specific ones.
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12.2. VFS Data Structures
Each VFS object is stored in a suitable data structure, which includes both the object
attributes and a pointer to a table of object methods. The kernel may dynamically modify the
methods of the object and, hence, it may install specialized behavior for the object. The
following sections explain the VFS objects and their interrelationships in detail.

12.2.1. Superblock Objects

A superblock object consists of a super_block structure whose fields are described in Table
12-2.

Table 12-2. The fields of the superblock object

Type Field Description

struct list_head s_list Pointers for superblock list

dev_t s_dev Device identifier

unsigned long s_blocksize Block size in bytes

unsigned long s_old_blocksize Block size in bytes as reported by the
underlying block device driver

unsigned char s_blocksize_bits Block size in number of bits

unsigned char s_dirt Modified (dirty) flag

unsigned long long s_maxbytes Maximum size of the files

struct

file_system_type *

s_type Filesystem type

struct

super_operations *

s_op Superblock methods

struct dquot_operations

*
dq_op Disk quota handling methods

struct quotactl_ops * s_qcop Disk quota administration methods

struct
export_operations *

s_export_op Export operations used by network filesystems

unsigned long s_flags Mount flags

unsigned long s_magic Filesystem magic number

struct dentry * s_root Dentry object of the filesystem's root directory
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Table 12-2. The fields of the superblock object

Type Field Description

struct rw_semaphore s_umount Semaphore used for unmounting

struct semaphore s_lock Superblock semaphore

int s_count Reference counter

int s_syncing Flag indicating that inodes of the superblock are
being synchronized

int s_need_sync_fs Flag used when synchronizing the superblock's
mounted filesystem

atomic_t s_active Secondary reference counter

void * s_security Pointer to superblock security structure

struct xattr_handler ** s_xattr Pointer to superblock extended attribute
structure

struct list_head s_inodes List of all inodes

struct list_head s_dirty List of modified inodes

struct list_head s_io List of inodes waiting to be written to disk

struct hlist_head s_anon List of anonymous dentries for handling remote
network filesystems

struct list_head s_files List of file objects

struct block_device * s_bdev Pointer to the block device driver descriptor

struct list_head s_instances

Pointers for a list of superblock objects of a
given filesystem type (see the later section "
Filesystem Type Registration")

struct quota_info s_dquot Descriptor for disk quota

int s_frozen Flag used when freezing the filesystem (forcing
it to a consistent state)

wait_queue_head_t s_wait_unfrozen Wait queue where processes sleep until the
filesystem is unfrozen

char[] s_id Name of the block device containing the
superblock

void * s_fs_info Pointer to superblock information of a specific
filesystem
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Table 12-2. The fields of the superblock object

Type Field Description

struct semaphore s_vfs_rename_sem Semaphore used by VFS when renaming files
across directories

u32 s_time_gran Timestamp's granularity (in nanoseconds)

All superblock objects are linked in a circular doubly linked list. The first element of this list is
represented by the super_blocks variable, while the s_list field of the superblock object
stores the pointers to the adjacent elements in the list. The sb_lock spin lock protects the list
against concurrent accesses in multiprocessor systems.

The s_fs_info field points to superblock information that belongs to a specific filesystem; for
instance, as we'll see later in Chapter 18, if the superblock object refers to an Ext2 filesystem,
the field points to an ext2_sb_info structure, which includes the disk allocation bit masks and
other data of no concern to the VFS common file model.

In general, data pointed to by the s_fs_info field is information from the disk duplicated in
memory for reasons of efficiency. Each disk-based filesystem needs to access and update its
allocation bitmaps in order to allocate or release disk blocks. The VFS allows these filesystems
to act directly on the s_fs_info field of the superblock in memory without accessing the disk.

This approach leads to a new problem, however: the VFS superblock might end up no longer
synchronized with the corresponding superblock on disk. It is thus necessary to introduce an 
s_dirt flag, which specifies whether the superblock is dirtythat is, whether the data on the
disk must be updated. The lack of synchronization leads to the familiar problem of a corrupted
filesystem when a site's power goes down without giving the user the chance to shut down a
system cleanly. As we'll see in the section "Writing Dirty Pages to Disk" in Chapter 15, Linux
minimizes this problem by periodically copying all dirty superblocks to disk.

The methods associated with a superblock are called superblock operations . They are
described by the super_operations structure whose address is included in the s_op field.

Each specific filesystem can define its own superblock operations. When the VFS needs to
invoke one of them, say read_inode( ), it executes the following:

    sb->s_op->read_inode(inode);

where sb stores the address of the superblock object involved. The read_inode field of the
super_operations table contains the address of the suitable function, which is therefore
directly invoked.

Let's briefly describe the superblock operations, which implement higher-level operations like
deleting files or mounting disks. They are listed in the order they appear in the 
super_operations table:

alloc_inode(sb)

Allocates space for an inode object, including the space required for filesystem-specific
data.

destroy_inode(inode)
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Destroys an inode object, including the filesystem-specific data.

read_inode(inode)

Fills the fields of the inode object passed as the parameter with the data on disk; the 
i_ino field of the inode object identifies the specific filesystem inode on the disk to be
read.

dirty_inode(inode)

Invoked when the inode is marked as modified (dirty). Used by filesystems such as
ReiserFS and Ext3 to update the filesystem journal on disk.

write_inode(inode, flag)

Updates a filesystem inode with the contents of the inode object passed as the
parameter; the i_ino field of the inode object identifies the filesystem inode on disk
that is concerned. The flag parameter indicates whether the I/O operation should be
synchronous.

put_inode(inode)

Invoked when the inode is releasedits reference counter is decreasedto perform
filesystem-specific operations.

drop_inode(inode)

Invoked when the inode is about to be destroyedthat is, when the last user releases
the inode; filesystems that implement this method usually make use of 
generic_drop_inode( ). This function removes every reference to the inode from the
VFS data structures and, if the inode no longer appears in any directory, invokes the 
delete_inode superblock method to delete the inode from the filesystem.

delete_inode(inode)

Invoked when the inode must be destroyed. Deletes the VFS inode in memory and the
file data and metadata on disk.

put_super(super)

Releases the superblock object passed as the parameter (because the corresponding
filesystem is unmounted).

write_super(super)

Updates a filesystem superblock with the contents of the object indicated.

sync_fs(sb, wait)

Invoked when flushing the filesystem to update filesystem-specific data structures on
disk (used by journaling filesystems ).
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write_super_lockfs(super)

Blocks changes to the filesystem and updates the superblock with the contents of the
object indicated. This method is invoked when the filesystem is frozen, for instance by
the Logical Volume Manager (LVM) driver.

unlockfs(super)

Undoes the block of filesystem updates achieved by the write_super_lockfs superblock
method.

statfs(super, buf)

Returns statistics on a filesystem by filling the buf buffer.

remount_fs(super, flags, data)

Remounts the filesystem with new options (invoked when a mount option must be
changed).

clear_inode(inode)

Invoked when a disk inode is being destroyed to perform filesystem-specific operations.

umount_begin(super)

Aborts a mount operation because the corresponding unmount operation has been
started (used only by network filesystems ).

show_options(seq_file, vfsmount)

Used to display the filesystem-specific options

quota_read(super, type, data, size, offset)

Used by the quota system to read data from the file that specifies the limits for this
filesystem.[*]

[*] The quota system defines for each user and/or group limits on the amount of space that can be
used on a given filesystem (see the quotactl() system call.)

quota_write(super, type, data, size, offset)

Used by the quota system to write data into the file that specifies the limits for this
filesystem.

The preceding methods are available to all possible filesystem types. However, only a subset
of them applies to each specific filesystem; the fields corresponding to unimplemented
methods are set to NULL. Notice that no get_super method to read a superblock is definedhow
could the kernel invoke a method of an object yet to be read from disk? We'll find an
equivalent get_sb method in another object describing the filesystem type (see the later
section "Filesystem Type Registration").

12.2.2. Inode Objects
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All information needed by the filesystem to handle a file is included in a data structure called
an inode. A filename is a casually assigned label that can be changed, but the inode is unique
to the file and remains the same as long as the file exists. An inode object in memory consists
of an inode structure whose fields are described in Table 12-3.

Table 12-3. The fields of the inode object

Type Field Description

struct hlist_node i_hash Pointers for the hash list

struct list_head i_list Pointers for the list that describes the inode's
current state

struct list_head i_sb_list Pointers for the list of inodes of the superblock

struct list_head i_dentry The head of the list of dentry objects referencing
this inode

unsigned long i_ino inode number

atomic_t i_count Usage counter

umode_t i_mode File type and access rights

unsigned int i_nlink Number of hard links

uid_t i_uid Owner identifier

gid_t i_gid Group identifier

dev_t i_rdev Real device identifier

loff_t i_size File length in bytes

struct timespec i_atime Time of last file access

struct timespec i_mtime Time of last file write

struct timespec i_ctime Time of last inode change

unsigned int i_blkbits Block size in number of bits

unsigned long i_blksize Block size in bytes

unsigned long i_version Version number, automatically increased after
each use

unsigned long i_blocks Number of blocks of the file

unsigned short i_bytes Number of bytes in the last block of the file

unsigned char i_sock Nonzero if file is a socket
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Table 12-3. The fields of the inode object

Type Field Description

spinlock_t i_lock Spin lock protecting some fields of the inode

struct semaphore i_sem inode semaphore

struct rw_semaphore i_alloc_sem Read/write semaphore protecting against race
conditions in direct I/O file operations

struct

inode_operations *
i_op inode operations

struct file_operations

*
i_fop Default file operations

struct super_block * i_sb Pointer to superblock object

struct file_lock * i_flock Pointer to file lock list

struct address_space * i_mapping Pointer to an address_space object (see Chapter
15)

struct address_space i_data address_space object of the file

struct dquot * [] i_dquot inode disk quotas

struct list_head i_devices Pointers for a list of inodes relative to a specific
character or block device (see Chapter 13)

struct pipe_inode_info

*
i_pipe Used if the file is a pipe (see Chapter 19)

struct block_device * i_bdev Pointer to the block device driver

struct cdev * i_cdev Pointer to the character device driver

int i_cindex Index of the device file within a group of minor
numbers

_ _u32 i_generation inode version number (used by some filesystems)

unsigned long i_dnotify_mask Bit mask of directory notify events

struct dnotify_struct

*
i_dnotify Used for directory notifications

unsigned long i_state inode state flags

unsigned long dirtied_when Dirtying time (in ticks) of the inode

unsigned int i_flags Filesystem mount flags

Page 466

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Table 12-3. The fields of the inode object

Type Field Description

atomic_t i_writecount Usage counter for writing processes

void * i_security Pointer to inode's security structure

void * u.generic_ip Pointer to private data

seqcount_t i_size_seqcount Sequence counter used in SMP systems to get
consistent values for i_size

Each inode object duplicates some of the data included in the disk inodefor instance, the
number of blocks allocated to the file. When the value of the i_state field is equal to
I_DIRTY_SYNC, I_DIRTY_DATASYNC, or I_DIRTY_PAGES, the inode is dirtythat is, the corresponding
disk inode must be updated. The I_DIRTY macro can be used to check the value of these
three flags at once (see later for details). Other values of the i_state field are I_LOCK (the
inode object is involved in an I/O transfer), I_FREEING (the inode object is being freed),
I_CLEAR (the inode object contents are no longer meaningful), and I_NEW (the inode object has
been allocated but not yet filled with data read from the disk inode).

Each inode object always appears in one of the following circular doubly linked lists (in all
cases, the pointers to the adjacent elements are stored in the i_list field):

 The list of valid unused inodes, typically those mirroring valid disk inodes and not
currently used by any process. These inodes are not dirty and their i_count field is set
to 0. The first and last elements of this list are referenced by the next and prev fields,
respectively, of the inode_unused variable. This list acts as a disk cache.

 The list of in-use inodes, that is, those mirroring valid disk inodes and used by some
process. These inodes are not dirty and their i_count field is positive. The first and last
elements are referenced by the inode_in_use variable.

 The list of dirty inodes. The first and last elements are referenced by the s_dirty field
of the corresponding superblock object.

Each of the lists just mentioned links the i_list fields of the proper inode objects.

Moreover, each inode object is also included in a per-filesystem doubly linked circular list
headed at the s_inodes field of the superblock object; the i_sb_list field of the inode object
stores the pointers for the adjacent elements in this list.

Finally, the inode objects are also included in a hash table named inode_hashtable. The hash
table speeds up the search of the inode object when the kernel knows both the inode number
and the address of the superblock object corresponding to the filesystem that includes the
file. Because hashing may induce collisions, the inode object includes an i_hash field that
contains a backward and a forward pointer to other inodes that hash to the same position;
this field creates a doubly linked list of those inodes.

The methods associated with an inode object are also called inode operations . They are
described by an inode_operations structure, whose address is included in the i_op field. Here
are the inode operations in the order they appear in the inode_operations table:

create(dir, dentry, mode, nameidata)

Creates a new disk inode for a regular file associated with a dentry object in some
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directory.

lookup(dir, dentry, nameidata)

Searches a directory for an inode corresponding to the filename included in a dentry
object.

link(old_dentry, dir, new_dentry)

Creates a new hard link that refers to the file specified by old_dentry in the directory
dir; the new hard link has the name specified by new_dentry.

unlink(dir, dentry)

Removes the hard link of the file specified by a dentry object from a directory.

symlink(dir, dentry, symname)

Creates a new inode for a symbolic link associated with a dentry object in some
directory.

mkdir(dir, dentry, mode)

Creates a new inode for a directory associated with a dentry object in some directory.

rmdir(dir, dentry)

Removes from a directory the subdirectory whose name is included in a dentry object.

mknod(dir, dentry, mode, rdev)

Creates a new disk inode for a special file associated with a dentry object in some
directory. The mode and rdev parameters specify, respectively, the file type and the
device's major and minor numbers.

rename(old_dir, old_dentry, new_dir, new_dentry)

Moves the file identified by old_entry from the old_dir directory to the new_dir one.
The new filename is included in the dentry object that new_dentry points to.

readlink(dentry, buffer, buflen)

Copies into a User Mode memory area specified by buffer the file pathname
corresponding to the symbolic link specified by the dentry.

follow_link(inode, nameidata)

Translates a symbolic link specified by an inode object; if the symbolic link is a relative
pathname, the lookup operation starts from the directory specified in the second
parameter.
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put_link(dentry, nameidata)

Releases all temporary data structures allocated by the follow_link method to
translate a symbolic link.

truncate(inode)

Modifies the size of the file associated with an inode. Before invoking this method, it is
necessary to set the i_size field of the inode object to the required new size.

permission(inode, mask, nameidata)

Checks whether the specified access mode is allowed for the file associated with inode
.

setattr(dentry, iattr)

Notifies a "change event" after touching the inode attributes.

getattr(mnt, dentry, kstat)

Used by some filesystems to read inode attributes.

setxattr(dentry, name, value, size, flags)

Sets an "extended attribute" of an inode (extended attributes are stored on disk blocks
outside of any inode).

getxattr(dentry, name, buffer, size)

Gets an extended attribute of an inode.

listxattr(dentry, buffer, size)

Gets the whole list of extended attribute names.

removexattr(dentry, name)

Removes an extended attribute of an inode.

The methods just listed are available to all possible inodes and filesystem types. However,
only a subset of them applies to a specific inode and filesystem; the fields corresponding to
unimplemented methods are set to NULL.

12.2.3. File Objects

A file object describes how a process interacts with a file it has opened. The object is created
when the file is opened and consists of a file structure, whose fields are described in Table
12-4. Notice that file objects have no corresponding image on disk, and hence no "dirty" field
is included in the file structure to specify that the file object has been modified.
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Table 12-4. The fields of the file object

Type Field Description

struct list_head f_list Pointers for generic file object list

struct dentry * f_dentry dentry object associated with the file

struct vfsmount * f_vfsmnt Mounted filesystem containing the file

struct

file_operations *
f_op Pointer to file operation table

atomic_t f_count File object's reference counter

unsigned int f_flags Flags specified when opening the file

mode_t f_mode Process access mode

int f_error Error code for network write operation

loff_t f_pos Current file offset (file pointer)

struct fown_struct f_owner Data for I/O event notification via signals

unsigned int f_uid User's UID 

unsigned int f_gid User group ID

struct file_ra_state f_ra File read-ahead state (see Chapter 16)

size_t f_maxcount Maximum number of bytes that can be read or written
with a single operation (currently set to 231-1)

unsigned long f_version Version number, automatically increased after each
use

void * f_security Pointer to file object's security structure

void * private_data Pointer to data specific for a filesystem or a device
driver

struct list_head f_ep_links Head of the list of event poll waiters for this file

spinlock_t f_ep_lock Spin lock protecting the f_ep_links list

struct address_space

*
f_mapping Pointer to file's address space object (see Chapter 15)

The main information stored in a file object is the file pointerthe current position in the file
from which the next operation will take place. Because several processes may access the
same file concurrently, the file pointer must be kept in the file object rather than the inode
object.
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File objects are allocated through a slab cache named filp, whose descriptor address is stored
in the filp_cachep variable. Because there is a limit on the number of file objects that can be
allocated, the files_stat variable specifies in the max_files field the maximum number of
allocatable file objectsi.e., the maximum number of files that can be accessed at the same
time in the system.[*]

[*] The files_init( ) function, executed during kernel initialization, sets the max_files field to one-tenth of the available RAM in
kilobytes, but the system administrator can tune this parameter by w riting into the /proc/sys/fs/file-max file. Moreover, the
superuser can alw ays get a file object, even if max_files file objects have already been allocated.

"In use" file objects are collected in several lists rooted at the superblocks of the owning
filesystems. Each superblock object stores in the s_files field the head of a list of file
objects; thus, file objects of files belonging to different filesystems are included in different
lists. The pointers to the previous and next element in the list are stored in the f_list field of
the file object. The files_lock spin lock protects the superblock s_files lists against
concurrent accesses in multiprocessor systems.

The f_count field of the file object is a reference counter: it counts the number of processes
that are using the file object (remember however that lightweight processes created with the 
CLONE_FILES flag share the table that identifies the open files, thus they use the same file
objects). The counter is also increased when the file object is used by the kernel itselffor
instance, when the object is inserted in a list, or when a dup( ) system call has been issued.

When the VFS must open a file on behalf of a process, it invokes the get_empty_filp( )
function to allocate a new file object. The function invokes kmem_cache_alloc( ) to get a free
file object from the filp cache, then it initializes the fields of the object as follows:

    memset(f, 0, sizeof(*f));

    INIT_LIST_HEAD(&f->f_ep_links);

    spin_lock_init(&f->f_ep_lock);

    atomic_set(&f->f_count, 1);

    f->f_uid = current->fsuid;

    f->f_gid = current->fsgid;

    f->f_owner.lock = RW_LOCK_UNLOCKED;

    INIT_LIST_HEAD(&f->f_list);

    f->f_maxcount = INT_MAX;

As we explained earlier in the section "The Common File Model," each filesystem includes its
own set of file operations that perform such activities as reading and writing a file. When the
kernel loads an inode into memory from disk, it stores a pointer to these file operations in a 
file_operations structure whose address is contained in the i_fop field of the inode object.
When a process opens the file, the VFS initializes the f_op field of the new file object with the
address stored in the inode so that further calls to file operations can use these functions. If
necessary, the VFS may later modify the set of file operations by storing a new value in f_op.

The following list describes the file operations in the order in which they appear in the 
file_operations table:

llseek(file, offset, origin)

Updates the file pointer.

read(file, buf, count, offset)

Reads count bytes from a file starting at position *offset; the value *offset (which
usually corresponds to the file pointer) is then increased.
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aio_read(req, buf, len, pos)

Starts an asynchronous I/O operation to read len bytes into buf from file position pos
(introduced to support the io_submit( ) system call).

write(file, buf, count, offset)

Writes count bytes into a file starting at position *offset; the value *offset (which
usually corresponds to the file pointer) is then increased.

aio_write(req, buf, len, pos)

Starts an asynchronous I/O operation to write len bytes from buf to file position pos.

readdir(dir, dirent, filldir)

Returns the next directory entry of a directory in dirent; the filldir parameter
contains the address of an auxiliary function that extracts the fields in a directory
entry.

poll(file, poll_table)

Checks whether there is activity on a file and goes to sleep until something happens on
it.

ioctl(inode, file, cmd, arg)

Sends a command to an underlying hardware device. This method applies only to
device files.

unlocked_ioctl(file, cmd, arg)

Similar to the ioctl method, but it does not take the big kernel lock (see the section "
The Big Kernel Lock" in Chapter 5). It is expected that all device drivers and all
filesystems will implement this new method instead of the ioctl method.

compat_ioctl(file, cmd, arg)

Method used to implement the ioctl() 32-bit system call by 64-bit kernels.

mmap(file, vma)

Performs a memory mapping of the file into a process address space (see the section "
Memory Mapping" in Chapter 16).

open(inode, file)

Opens a file by creating a new file object and linking it to the corresponding inode
object (see the section "The open( ) System Call" later in this chapter).

flush(file)
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Called when a reference to an open file is closed. The actual purpose of this method is
filesystem-dependent.

release(inode, file)

Releases the file object. Called when the last reference to an open file is closedthat is,
when the f_count field of the file object becomes 0.

fsync(file, dentry, flag)

Flushes the file by writing all cached data to disk.

aio_fsync(req, flag)

Starts an asynchronous I/O flush operation.

fasync(fd, file, on)

Enables or disables I/O event notification by means of signals.

lock(file, cmd, file_lock)

Applies a lock to the file (see the section "File Locking" later in this chapter).

readv(file, vector, count, offset)

Reads bytes from a file and puts the results in the buffers described by vector; the
number of buffers is specified by count.

writev(file, vector, count, offset)

Writes bytes into a file from the buffers described by vector; the number of buffers is
specified by count.

sendfile(in_file, offset, count, file_send_actor, out_file)

Transfers data from in_file to out_file (introduced to support the sendfile( ) system
call).

sendpage(file, page, offset, size, pointer, fill)

Transfers data from file to the page cache's page; this is a low-level method used by
sendfile( ) and by the networking code for sockets.

get_unmapped_area(file, addr, len, offset, flags)

Gets an unused address range to map the file.

check_flags(flags)

Method invoked by the service routine of the fcntl( ) system call to perform additional
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checks when setting the status flags of a file (F_SETFL command). Currently used only
by the NFS network filesystem.

dir_notify(file, arg)

Method invoked by the service routine of the fcntl( ) system call when establishing a
directory change notification (F_NOTIFY command). Currently used only by the Common
Internet File System (CIFS ) network filesystem.

flock(file, flag, lock)

Used to customize the behavior of the flock() system call. No official Linux filesystem
makes use of this method.

The methods just described are available to all possible file types. However, only a subset of
them apply to a specific file type; the fields corresponding to unimplemented methods are set
to NULL.

12.2.4. dentry Objects

We mentioned in the section "The Common File Model" that the VFS considers each directory
a file that contains a list of files and other directories. We will discuss in Chapter 18 how
directories are implemented on a specific filesystem. Once a directory entry is read into
memory, however, it is transformed by the VFS into a dentry object based on the dentry
structure, whose fields are described in Table 12-5. The kernel creates a dentry object for
every component of a pathname that a process looks up; the dentry object associates the
component to its corresponding inode. For example, when looking up the /tmp/test pathname,
the kernel creates a dentry object for the / root directory, a second dentry object for the
tmp entry of the root directory, and a third dentry object for the test entry of the /tmp
directory.

Notice that dentry objects have no corresponding image on disk, and hence no field is
included in the dentry structure to specify that the object has been modified. Dentry objects
are stored in a slab allocator cache whose descriptor is dentry_cache; dentry objects are thus
created and destroyed by invoking kmem_cache_alloc( ) and kmem_cache_free( ).

Table 12-5. The fields of the dentry object

Type Field Description

atomic_t d_count Dentry object usage counter

unsigned int d_flags Dentry cache flags

spinlock_t d_lock Spin lock protecting the dentry object

struct inode * d_inode Inode associated with filename

struct dentry * d_parent Dentry object of parent directory

struct qstr d_name Filename

struct list_head d_lru Pointers for the list of unused dentries

struct list_head d_child For directories, pointers for the list of directory dentries
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Table 12-5. The fields of the dentry object

Type Field Description

in the same parent directory

struct list_head d_subdirs For directories, head of the list of subdirectory dentries

struct list_head d_alias Pointers for the list of dentries associated with the
same inode (alias)

unsigned long d_time Used by d_revalidate method

struct

dentry_operations*
d_op Dentry methods

struct super_block * d_sb Superblock object of the file

void * d_fsdata Filesystem-dependent data

struct rcu_head d_rcu
The RCU descriptor used when reclaiming the dentry
object (see the section "Read-Copy Update (RCU)" in
Chapter 5)

struct dcookie_struct * d_cookie Pointer to structure used by kernel profilers

struct hlist_node d_hash Pointer for list in hash table entry

int d_mounted For directories, counter for the number of filesystems
mounted on this dentry

unsigned char[] d_iname Space for short filename

Each dentry object may be in one of four states:

Free

The dentry object contains no valid information and is not used by the VFS. The
corresponding memory area is handled by the slab allocator.

Unused

The dentry object is not currently used by the kernel. The d_count usage counter of
the object is 0, but the d_inode field still points to the associated inode. The dentry
object contains valid information, but its contents may be discarded if necessary in
order to reclaim memory.

In use

The dentry object is currently used by the kernel. The d_count usage counter is
positive, and the d_inode field points to the associated inode object. The dentry object
contains valid information and cannot be discarded.
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Negative

The inode associated with the dentry does not exist, either because the corresponding
disk inode has been deleted or because the dentry object was created by resolving a
pathname of a nonexistent file. The d_inode field of the dentry object is set to NULL,
but the object still remains in the dentry cache, so that further lookup operations to
the same file pathname can be quickly resolved. The term "negative" is somewhat
misleading, because no negative value is involved.

The methods associated with a dentry object are called dentry operations ; they are
described by the dentry_operations structure, whose address is stored in the d_op field.
Although some filesystems define their own dentry methods, the fields are usually NULL and
the VFS replaces them with default functions. Here are the methods, in the order they appear
in the dentry_operations table:

d_revalidate(dentry, nameidata)

Determines whether the dentry object is still valid before using it for translating a file
pathname. The default VFS function does nothing, although network filesystems may
specify their own functions.

d_hash(dentry, name)

Creates a hash value; this function is a filesystem-specific hash function for the dentry
hash table. The dentry parameter identifies the directory containing the component.
The name parameter points to a structure containing both the pathname component to
be looked up and the value produced by the hash function.

d_compare(dir, name1, name2)

Compares two filenames ; name1 should belong to the directory referenced by dir. The
default VFS function is a normal string match. However, each filesystem can implement
this method in its own way. For instance, MS-DOS does not distinguish capital from
lowercase letters.

d_delete(dentry)

Called when the last reference to a dentry object is deleted (d_count becomes 0). The
default VFS function does nothing.

d_release(dentry)

Called when a dentry object is going to be freed (released to the slab allocator). The
default VFS function does nothing.

d_iput(dentry, ino)

Called when a dentry object becomes "negative"that is, it loses its inode. The default
VFS function invokes iput( ) to release the inode object.

12.2.5. The dentry Cache

Because reading a directory entry from disk and constructing the corresponding dentry object
requires considerable time, it makes sense to keep in memory dentry objects that you've
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finished with but might need later. For instance, people often edit a file and then compile it, or
edit and print it, or copy it and then edit the copy. In such cases, the same file needs to be
repeatedly accessed.

To maximize efficiency in handling dentries, Linux uses a dentry cache, which consists of two
kinds of data structures:

 A set of dentry objects in the in-use, unused, or negative state.

 A hash table to derive the dentry object associated with a given filename and a given
directory quickly. As usual, if the required object is not included in the dentry cache,
the search function returns a null value.

The dentry cache also acts as a controller for an inode cache . The inodes in kernel memory
that are associated with unused dentries are not discarded, because the dentry cache is still
using them. Thus, the inode objects are kept in RAM and can be quickly referenced by means
of the corresponding dentries.

All the "unused" dentries are included in a doubly linked "Least Recently Used" list sorted by
time of insertion. In other words, the dentry object that was last released is put in front of
the list, so the least recently used dentry objects are always near the end of the list. When
the dentry cache has to shrink, the kernel removes elements from the tail of this list so that
the most recently used objects are preserved. The addresses of the first and last elements of
the LRU list are stored in the next and prev fields of the dentry_unused variable of type
list_head. The d_lru field of the dentry object contains pointers to the adjacent dentries in
the list.

Each "in use" dentry object is inserted into a doubly linked list specified by the i_dentry field
of the corresponding inode object (because each inode could be associated with several hard
links, a list is required). The d_alias field of the dentry object stores the addresses of the
adjacent elements in the list. Both fields are of type struct list_head.

An "in use" dentry object may become "negative" when the last hard link to the corresponding
file is deleted. In this case, the dentry object is moved into the LRU list of unused dentries.
Each time the kernel shrinks the dentry cache, negative dentries move toward the tail of the
LRU list so that they are gradually freed (see the section "Reclaiming Pages of Shrinkable Disk
Caches" in Chapter 17).

The hash table is implemented by means of a dentry_hashtable array. Each element is a
pointer to a list of dentries that hash to the same hash table value. The array's size usually
depends on the amount of RAM installed in the system; the default value is 256 entries per
megabyte of RAM. The d_hash field of the dentry object contains pointers to the adjacent
elements in the list associated with a single hash value. The hash function produces its value
from both the dentry object of the directory and the filename.

The dcache_lock spin lock protects the dentry cache data structures against concurrent
accesses in multiprocessor systems. The d_lookup( ) function looks in the hash table for a
given parent dentry object and filename; to avoid race conditions, it makes use of a seqlock
(see the section "Seqlocks" in Chapter 5). The _ _d_lookup( ) function is similar, but it
assumes that no race condition can happen, so it does not use the seqlock.

12.2.6. Files Associated with a Process

We mentioned in the section "An Overview of the Unix Filesystem" in Chapter 1 that each
process has its own current working directory and its own root directory. These are only two
examples of data that must be maintained by the kernel to represent the interactions between
a process and a filesystem. A whole data structure of type fs_struct is used for that purpose
(see Table 12-6), and each process descriptor has an fs field that points to the process
fs_struct structure.
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Table 12-6. The fields of the fs_struct structure

Type Field Description

atomic_t count Number of processes sharing this table

rwlock_t lock Read/write spin lock for the table fields

int umask Bit mask used when opening the file to set the file permissions

struct dentry

*
root Dentry of the root directory

struct dentry

*
pwd Dentry of the current working directory

struct dentry

*
altroot Dentry of the emulated root directory (always NULL for the 80 x

86 architecture)

struct

vfsmount *
rootmnt Mounted filesystem object of the root directory

struct

vfsmount *
pwdmnt Mounted filesystem object of the current working directory

struct

vfsmount *
altrootmnt Mounted filesystem object of the emulated root directory

(always NULL for the 80 x 86 architecture)

A second table, whose address is contained in the files field of the process descriptor,
specifies which files are currently opened by the process. It is a files_struct structure whose
fields are illustrated in Table 12-7.

Table 12-7. The fields of the files_struct structure

Type Field Description

atomic_t count Number of processes sharing this table

rwlock_t file_lock Read/write spin lock for the table fields

int max_fds Current maximum number of file objects

int max_fdset Current maximum number of file descriptors 

int next_fd Maximum file descriptors ever allocated plus 1

struct file ** fd Pointer to array of file object pointers

fd_set * close_on_exec Pointer to file descriptors to be closed on exec( )

fd_set * open_fds Pointer to open file descriptors
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Table 12-7. The fields of the files_struct structure

Type Field Description

fd_set close_on_exec_init Initial set of file descriptors to be closed on exec( )

fd_set open_fds_init Initial set of file descriptors

struct file *[] fd_array Initial array of file object pointers

The fd field points to an array of pointers to file objects. The size of the array is stored in
the max_fds field. Usually, fd points to the fd_array field of the files_struct structure, which
includes 32 file object pointers. If the process opens more than 32 files, the kernel allocates a
new, larger array of file pointers and stores its address in the fd fields; it also updates the
max_fds field.

For every file with an entry in the fd array, the array index is the file descriptor. Usually, the
first element (index 0) of the array is associated with the standard input of the process, the
second with the standard output, and the third with the standard error (see Figure 12-3).
Unix processes use the file descriptor as the main file identifier. Notice that, thanks to the 
dup( ) , dup2( ) , and fcntl( ) system calls, two file descriptors may refer to the same
opened filethat is, two elements of the array could point to the same file object. Users see
this all the time when they use shell constructs such as 2>&1 to redirect the standard error to
the standard output.

A process cannot use more than NR_OPEN (usually, 1, 048, 576) file descriptors. The kernel also
enforces a dynamic bound on the maximum number of file descriptors in the 
signal->rlim[RLIMIT_NOFILE] structure of the process descriptor; this value is usually 1,024,
but it can be raised if the process has root privileges.

The open_fds field initially contains the address of the open_fds_init field, which is a bitmap
that identifies the file descriptors of currently opened files. The max_fdset field stores the
number of bits in the bitmap. Because the fd_set data structure includes 1,024 bits, there is
usually no need to expand the size of the bitmap. However, the kernel may dynamically
expand the size of the bitmap if this turns out to be necessary, much as in the case of the
array of file objects.

Figure 12-3. The fd array
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The kernel provides an fget( ) function to be invoked when the kernel starts using a file
object. This function receives as its parameter a file descriptor fd. It returns the address in
current->files->fd[fd] (that is, the address of the corresponding file object), or NULL if no file
corresponds to fd. In the first case, fget( ) increases the file object usage counter f_count
by 1.

The kernel also provides an fput( ) function to be invoked when a kernel control path finishes
using a file object. This function receives as its parameter the address of a file object and
decreases its usage counter, f_count. Moreover, if this field becomes 0, the function invokes
the release method of the file operations (if defined), decreases the i_writecount field in the
inode object (if the file was opened for writing), removes the file object from the superblock's
list, releases the file object to the slab allocator, and decreases the usage counters of the
associated dentry object and of the filesystem descriptor (see the later section "Filesystem
Mounting).

The fget_light( ) and fput_light( ) functions are faster versions of fget( ) and fput( ): the
kernel uses them when it can safely assume that the current process already owns the file
objectthat is, the process has already previously increased the file object's reference counter.
For instance, they are used by the service routines of the system calls that receive a file
descriptor as an argument, because the file object's reference counter has been increased by
a previous open( ) system call.
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12.3. Filesystem Types
The Linux kernel supports many different types of filesystems. In the following, we introduce a
few special types of filesystems that play an important role in the internal design of the Linux
kernel.

Next, we'll discuss filesystem registrationthat is, the basic operation that must be performed,
usually during system initialization, before using a filesystem type. Once a filesystem is
registered, its specific functions are available to the kernel, so that type of filesystem can be
mounted on the system's directory tree.

12.3.1. Special Filesystems

While network and disk-based filesystems enable the user to handle information stored outside
the kernel, special filesystems may provide an easy way for system programs and
administrators to manipulate the data structures of the kernel and to implement special
features of the operating system. Table 12-8 lists the most common special filesystems used
in Linux; for each of them, the table reports its suggested mount point and a short
description.

Notice that a few filesystems have no fixed mount point (keyword "any" in the table). These
filesystems can be freely mounted and used by the users. Moreover, some other special
filesystems do not have a mount point at all (keyword "none" in the table). They are not for
user interaction, but the kernel can use them to easily reuse some of the VFS layer code; for
instance, we'll see in Chapter 19 that, thanks to the pipefs special filesystem, pipes can be
treated in the same way as FIFO files.

Table 12-8. Most common special filesystems

Name Mount point Description

bdev none Block devices (see Chapter 13)

binfmt_misc any Miscellaneous executable formats (see Chapter 20)

devpts /dev/pts Pseudoterminal support (Open Group's Unix98 standard)

eventpollfs none Used by the efficient event polling mechanism

futexfs none Used by the futex (Fast Userspace Locking) mechanism

pipefs none Pipes (see Chapter 19)

proc /proc General access point to kernel data structures

rootfs none Provides an empty root directory for the bootstrap phase

shm none IPC-shared memory regions (see Chapter 19)

mqueue any Used to implement POSIX message queues (see Chapter 19)

sockfs none Sockets
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Table 12-8. Most common special filesystems

Name Mount point Description

sysfs /sys General access point to system data (see Chapter 13)

tmpfs any Temporary files (kept in RAM unless swapped)

usbfs /proc/bus/usb USB devices

Special filesystems are not bound to physical block devices. However, the kernel assigns to
each mounted special filesystem a fictitious block device that has the value 0 as major
number and an arbitrary value (different for each special filesystem) as a minor number. The 
set_anon_super( ) function is used to initialize superblocks of special filesystems; this function
essentially gets an unused minor number dev and sets the s_dev field of the new superblock
with major number 0 and minor number dev. Another function called kill_anon_super( )
removes the superblock of a special filesystem. The unnamed_dev_idr variable includes pointers
to auxiliary structures that record the minor numbers currently in use. Although some kernel
designers dislike the fictitious block device identifiers, they help the kernel to handle special
filesystems and regular ones in a uniform way.

We'll see a practical example of how the kernel defines and initializes a special filesystem in
the later section "Mounting a Generic Filesystem."

12.3.2. Filesystem Type Registration

Often, the user configures Linux to recognize all the filesystems needed when compiling the
kernel for his system. But the code for a filesystem actually may either be included in the
kernel image or dynamically loaded as a module (see Appendix B). The VFS must keep track of
all filesystem types whose code is currently included in the kernel. It does this by performing 
filesystem type registration .

Each registered filesystem is represented as a file_system_type object whose fields are
illustrated in Table 12-9.

Table 12-9. The fields of the file_system_type object

Type Field Description

const char * name Filesystem name

int fs_flags Filesystem type flags

struct super_block * (*)(

)
get_sb Method for reading a superblock

void (*)( ) kill_sb Method for removing a superblock

struct module * owner Pointer to the module implementing the filesystem
(see Appendix B)

struct file_system_type * next Pointer to the next element in the list of filesystem
types
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Table 12-9. The fields of the file_system_type object

Type Field Description

struct list_head fs_supers Head of a list of superblock objects having the same
filesystem type

All filesystem-type objects are inserted into a singly linked list. The file_systems variable
points to the first item, while the next field of the structure points to the next item in the list.
The file_systems_lock read/write spin lock protects the whole list against concurrent
accesses.

The fs_supers field represents the head (first dummy element) of a list of superblock objects
corresponding to mounted filesystems of the given type. The backward and forward links of a
list element are stored in the s_instances field of the superblock object.

The get_sb field points to the filesystem-type-dependent function that allocates a new
superblock object and initializes it (if necessary, by reading a disk). The kill_sb field points to
the function that destroys a superblock.

The fs_flags field stores several flags, which are listed in Table 12-10.

Table 12-10. The filesystem type flags

Name Description

FS_REQUIRES_DEV Every filesystem of this type must be located on a physical disk
device.

FS_BINARY_MOUNTDATA The filesystem uses binary mount data.

FS_REVAL_DOT Always revalidate the "." and ".." paths in the dentry cache (for
network filesystems).

FS_ODD_RENAME "Rename" operations are "move" operations (for network filesystems).

During system initialization, the register_filesystem( ) function is invoked for every filesystem
specified at compile time; the function inserts the corresponding file_system_type object into
the filesystem-type list.

The register_filesystem( ) function is also invoked when a module implementing a filesystem
is loaded. In this case, the filesystem may also be unregistered (by invoking the 
unregister_filesystem( ) function) when the module is unloaded.

The get_fs_type( ) function, which receives a filesystem name as its parameter, scans the list
of registered filesystems looking at the name field of their descriptors, and returns a pointer to
the corresponding file_system_type object, if it is present.
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12.4. Filesystem Handling
Like every traditional Unix system, Linux makes use of a system's root filesystem : it is the
filesystem that is directly mounted by the kernel during the booting phase and that holds the
system initialization scripts and the most essential system programs.

Other filesystems can be mountedeither by the initialization scripts or directly by the userson
directories of already mounted filesystems. Being a tree of directories, every filesystem has its
own root directory. The directory on which a filesystem is mounted is called the mount point.
A mounted filesystem is a child of the mounted filesystem to which the mount point directory
belongs. For instance, the /proc virtual filesystem is a child of the system's root filesystem
(and the system's root filesystem is the parent of /proc). The root directory of a mounted
filesystem hides the content of the mount point directory of the parent filesystem, as well as
the whole subtree of the parent filesystem below the mount point.[*]

[*] The root directory of a filesystem can be different from the root directory of a process: as w e have seen in the earlier section "
Files Associated w ith a Process," the process's root directory is the directory corresponding to the "/" pathname. By default, the
process' root directory coincides w ith the root directory of the system's root filesystem (or more precisely, w ith the root directory
of the root filesystem in the namespace of the process, described in the follow ing section), but it can be changed by invoking the
chroot( ) system call.

12.4.1. Namespaces

In a traditional Unix system, there is only one tree of mounted filesystems: starting from the
system's root filesystem, each process can potentially access every file in a mounted
filesystem by specifying the proper pathname. In this respect, Linux 2.6 is more refined: every
process might have its own tree of mounted filesystemsthe so-called namespace of the
process.

Usually most processes share the same namespace, which is the tree of mounted filesystems
that is rooted at the system's root filesystem and that is used by the init process. However, a
process gets a new namespace if it is created by the clone( ) system call with the
CLONE_NEWNS flag set (see the section "The clone( ), fork( ), and vfork( ) System Calls" in
Chapter 3). The new namespace is then inherited by children processes if the parent creates
them without the CLONE_NEWNS flag.

When a process mountsor unmountsa filesystem, it only modifies its namespace. Therefore,
the change is visible to all processes that share the same namespace, and only to them. A
process can even change the root filesystem of its namespace by using the Linux-specific 
pivot_root( ) system call.

The namespace of a process is represented by a namespace structure pointed to by the
namespace field of the process descriptor. The fields of the namespace structure are shown in
Table 12-11.

Table 12-11. The fields of the namespace structure

Type Field Description

atomic_t count Usage counter (how many processes share the namespace)

struct vfsmount * root Mounted filesystem descriptor for the root directory of the
namespace

struct list_head list Head of list of all mounted filesystem descriptors
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Table 12-11. The fields of the namespace structure

Type Field Description

struct rw_semaphore sem Read/write semaphore protecting this structure

The list field is the head of a doubly linked circular list collecting all mounted filesystems that
belong to the namespace. The root field specifies the mounted filesystem that represents the
root of the tree of mounted filesystems of this namespace. As we will see in the next section,
mounted filesystems are represented by vfsmount structures.

12.4.2. Filesystem Mounting

In most traditional Unix-like kernels, each filesystem can be mounted only once. Suppose that
an Ext2 filesystem stored in the /dev/fd0 floppy disk is mounted on /flp by issuing the
command:

    mount -t ext2 /dev/fd0 /flp

Until the filesystem is unmounted by issuing a umount command, every other mount command
acting on /dev/fd0 fails.

However, Linux is different: it is possible to mount the same filesystem several times. Of
course, if a filesystem is mounted n times, its root directory can be accessed through n mount
points, one per mount operation. Although the same filesystem can be accessed by using
different mount points, it is really unique. Thus, there is only one superblock object for all of
them, no matter of how many times it has been mounted.

Mounted filesystems form a hierarchy: the mount point of a filesystem might be a directory of
a second filesystem, which in turn is already mounted over a third filesystem, and so on.[*]

[*] Quite surprisingly, the mount point of a filesystem might be a directory of the same filesystem, provided that it w as already
mounted. For instance:

    mount -t ext2 /dev/fd0 /flp; touch /flp/foo

    mkdir /flp/mnt; mount -t ext2 /dev/fd0 /flp/mnt

Now , the empty foo file on the floppy filesystem can be accessed both as /flp/foo and /flp/mnt/foo.

It is also possible to stack multiple mounts on a single mount point. Each new mount on the
same mount point hides the previously mounted filesystem, although processes already using
the files and directories under the old mount can continue to do so. When the topmost
mounting is removed, then the next lower mount is once more made visible.

As you can imagine, keeping track of mounted filesystems can quickly become a nightmare.
For each mount operation, the kernel must save in memory the mount point and the mount
flags, as well as the relationships between the filesystem to be mounted and the other
mounted filesystems. Such information is stored in a mounted filesystem descriptor of type
vfsmount. The fields of this descriptor are shown in Table 12-12.

Table 12-12. The fields of the vfsmount data structure

Type Field Description

struct mnt_hash Pointers for the hash table list.
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Table 12-12. The fields of the vfsmount data structure

Type Field Description

list_head

struct vfsmount

*
mnt_parent Points to the parent filesystem on which this filesystem

is mounted.

struct dentry * mnt_mountpoint Points to the dentry of the mount point directory
where the filesystem is mounted.

struct dentry * mnt_root Points to the dentry of the root directory of this
filesystem.

struct

super_block *
mnt_sb Points to the superblock object of this filesystem.

struct

list_head
mnt_mounts Head of a list including all filesystem descriptors

mounted on directories of this filesystem.

struct

list_head
mnt_child Pointers for the mnt_mounts list of mounted filesystem

descriptors.

atomic_t mnt_count Usage counter (increased to forbid filesystem
unmounting).

int mnt_flags Flags.

int mnt_expiry_mark
Flag set to true if the filesystem is marked as expired
(the filesystem can be automatically unmounted if the
flag is set and no one is using it).

char * mnt_devname Device filename.

struct

list_head
mnt_list Pointers for namespace's list of mounted filesystem

descriptors.

struct

list_head
mnt_fslink Pointers for the filesystem-specific expire list.

struct
namespace *

mnt_namespace Pointer to the namespace of the process that mounted
the filesystem.

The vfsmount data structures are kept in several doubly linked circular lists:

 A hash table indexed by the address of the vfsmount descriptor of the parent filesystem
and the address of the dentry object of the mount point directory. The hash table is
stored in the mount_hashtable array, whose size depends on the amount of RAM in the
system. Each item of the table is the head of a circular doubly linked list storing all
descriptors that have the same hash value. The mnt_hash field of the descriptor
contains the pointers to adjacent elements in this list.

 For each namespace, a circular doubly linked list including all mounted filesystem
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descriptors belonging to the namespace. The list field of the namespace structure
stores the head of the list, while the mnt_list field of the vfsmount descriptor contains
the pointers to adjacent elements in the list.

 For each mounted filesystem, a circular doubly linked list including all child mounted
filesystems. The head of each list is stored in the mnt_mounts field of the mounted
filesystem descriptor; moreover, the mnt_child field of the descriptor stores the
pointers to the adjacent elements in the list.

The vfsmount_lock spin lock protects the lists of mounted filesystem objects from concurrent
accesses.

The mnt_flags field of the descriptor stores the value of several flags that specify how some
kinds of files in the mounted filesystem are handled. These flags, which can be set through
options of the mount command, are listed in Table 12-13.

Table 12-13. Mounted filesystem flags

Name Description

MNT_NOSUID Forbid setuid and setgid flags in the mounted filesystem

MNT_NODEV Forbid access to device files in the mounted filesystem

MNT_NOEXEC Disallow program execution in the mounted filesystem

Here are some functions that handle the mounted filesystem descriptors:

alloc_vfsmnt(name)

Allocates and initializes a mounted filesystem descriptor

free_vfsmnt(mnt)

Frees a mounted filesystem descriptor pointed to by mnt

lookup_mnt(mnt, dentry)

Looks up a descriptor in the hash table and returns its address

12.4.3. Mounting a Generic Filesystem

We'll now describe the actions performed by the kernel in order to mount a filesystem. We'll
start by considering a filesystem that is going to be mounted over a directory of an already
mounted filesystem (in this discussion we will refer to this new filesystem as "generic").

The mount( ) system call is used to mount a generic filesystem; its sys_mount( ) service
routine acts on the following parameters:

 The pathname of a device file containing the filesystem, or NULL if it is not required (for
instance, when the filesystem to be mounted is network-based)

 The pathname of the directory on which the filesystem will be mounted (the mount
point)
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 The filesystem type, which must be the name of a registered filesystem

 The mount flags (permitted values are listed in Table 12-14)

 A pointer to a filesystem-dependent data structure (which may be NULL)

Table 12-14. Flags used by the mount() system call

Macro Description

MS_RDONLY Files can only be read

MS_NOSUID Forbid setuid and setgid flags

MS_NODEV Forbid access to device files

MS_NOEXEC Disallow program execution

MS_SYNCHRONOUS Write operations on files and directories are immediate

MS_REMOUNT Remount the filesystem changing the mount flags

MS_MANDLOCK Mandatory locking allowed

MS_DIRSYNC Write operations on directories are immediate

MS_NOATIME Do not update file access time

MS_NODIRATIME Do not update directory access time

MS_BIND

Create a "bind mount," which allows making a file or directory visible at
another point of the system directory tree (option --bind of the mount
command)

MS_MOVE Atomically move a mounted filesystem to another mount point (option 
--move of the mount command)

MS_REC Recursively create "bind mounts" for a directory subtree

MS_VERBOSE Generate kernel messages on mount errors

The sys_mount( ) function copies the value of the parameters into temporary kernel buffers,
acquires the big kernel lock , and invokes the do_mount( ) function. Once do_mount( ) returns,
the service routine releases the big kernel lock and frees the temporary kernel buffers.

The do_mount( ) function takes care of the actual mount operation by performing the following
operations:

1. If some of the MS_NOSUID, MS_NODEV, or MS_NOEXEC mount flags are set, it clears them and
sets the corresponding flag (MNT_NOSUID, MNT_NODEV, MNT_NOEXEC) in the mounted
filesystem object.

2. Looks up the pathname of the mount point by invoking path_lookup( ); this function
stores the result of the pathname lookup in the local variable nd of type nameidata (see
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the later section "Pathname Lookup").

3. Examines the mount flags to determine what has to be done. In particular:

a. If the MS_REMOUNT flag is specified, the purpose is usually to change the mount
flags in the s_flags field of the superblock object and the mounted filesystem
flags in the mnt_flags field of the mounted filesystem object. The do_remount( )
function performs these changes.

b. Otherwise, it checks the MS_BIND flag. If it is specified, the user is asking to
make visible a file or directory on another point of the system directory tree.

c. Otherwise, it checks the MS_MOVE flag. If it is specified, the user is asking to
change the mount point of an already mounted filesystem. The do_move_mount(
) function does this atomically.

d. Otherwise, it invokes do_new_mount( ). This is the most common case. It is
triggered when the user asks to mount either a special filesystem or a regular
filesystem stored in a disk partition. do_new_mount( ) invokes the do_kern_mount(
) function passing to it the filesystem type, the mount flags, and the block
device name. This function, which takes care of the actual mount operation and
returns the address of a new mounted filesystem descriptor, is described below.
Next, do_new_mount( ) invokes do_add_mount( ), which essentially performs the
following actions:

1. Acquires for writing the namespace->sem semaphore of the current
process, because the function is going to modify the namespace.

2. The do_kern_mount( ) function might put the current process to sleep;
meanwhile, another process might mount a filesystem on the very same
mount point as ours or even change our root filesystem (
current->namespace->root). Verifies that the lastly mounted filesystem on
this mount point still refers to the current's namespace; if not, releases
the read/write semaphore and returns an error code.

3. If the filesystem to be mounted is already mounted on the mount point
specified as parameter of the system call, or if the mount point is a
symbolic link, it releases the read/write semaphore and returns an error
code.

4. Initializes the flags in the mnt_flags field of the new mounted filesystem
object allocated by do_kern_mount( ).

5. Invokes graft_tree( ) to insert the new mounted filesystem object in
the namespace list, in the hash table, and in the children list of the
parent-mounted filesystem.

6. Releases the namespace->sem read/write semaphore and returns.

4. Invokes path_release( ) to terminate the pathname lookup of the mount point (see the
later section "Pathname Lookup") and returns 0.

12.4.3.1. The do_kern_mount( ) function

The core of the mount operation is the do_kern_mount( ) function, which checks the
filesystem type flags to determine how the mount operation is to be done. This function
receives the following parameters:

fstype
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The name of the filesystem type to be mounted

flags

The mount flags (see Table 12-14)

name

The pathname of the block device storing the filesystem (or the filesystem type name
for special filesystems)

data

Pointer to additional data to be passed to the read_super method of the filesystem

The function takes care of the actual mount operation by performing essentially the following
operations:

1. Invokes get_fs_type( ) to search in the list of filesystem types and locate the name
stored in the fstype parameter; get_fs_type( ) returns in the local variable type the
address of the corresponding file_system_type descriptor.

2. Invokes alloc_vfsmnt( ) to allocate a new mounted filesystem descriptor and stores its
address in the mnt local variable.

3. Invokes the type->get_sb( ) filesystem-dependent function to allocate a new
superblock and to initialize it (see below).

4. Initializes the mnt->mnt_sb field with the address of the new superblock object.

5. Initializes the mnt->mnt_root field with the address of the dentry object corresponding
to the root directory of the filesystem, and increases the usage counter of the dentry
object.

6. Initializes the mnt->mnt_parent field with the value in mnt (for generic filesystems, the
proper value of mnt_parent will be set when the mounted filesystem descriptor is
inserted in the proper lists by graft_tree( ); see step 3d5 of do_mount( )).

7. Initializes the mnt->mnt_namespace field with the value in current->namespace.

8. Releases the s_umount read/write semaphore of the superblock object (it was acquired
when the object was allocated in step 3).

9. Returns the address mnt of the mounted filesystem object.

12.4.3.2. Allocating a superblock object

The get_sb method of the filesystem object is usually implemented by a one-line function. For
instance, in the Ext2 filesystem the method is implemented as follows:

    struct super_block * ext2_get_sb(struct file_system_type *type,

                            int flags, const char *dev_name, void *data)

    {

        return get_sb_bdev(type, flags, dev_name, data, ext2_fill_super);

    }

The get_sb_bdev( ) VFS function allocates and initializes a new superblock suitable for
disk-based filesystems ; it receives the address of the ext2_fill_super( ) function, which
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reads the disk superblock from the Ext2 disk partition.

To allocate superblocks suitable for special filesystems , the VFS also provides the
get_sb_pseudo( ) function (for special filesystems with no mount point such as pipefs ), the
get_sb_single( ) function (for special filesystems with single mount point such as sysfs ), and
the get_sb_nodev( ) function (for special filesystems that can be mounted several times such
as tmpfs ; see below).

The most important operations performed by get_sb_bdev( ) are the following:

1. Invokes open_bdev_excl( ) to open the block device having device file name dev_name
(see the section "Character Device Drivers" in Chapter 13).

2. Invokes sget( ) to search the list of superblock objects of the filesystem (
type->fs_supers, see the earlier section "Filesystem Type Registration"). If a superblock
relative to the block device is already present, the function returns its address.
Otherwise, it allocates and initializes a new superblock object, inserts it into the
filesystem list and in the global list of superblocks, and returns its address.

3. If the superblock is not new (it was not allocated in the previous step, because the
filesystem is already mounted), it jumps to step 6.

4. Copies the value of the flags parameter into the s_flags field of the superblock and
sets the s_id, s_old_blocksize, and s_blocksize fields with the proper values for the
block device.

5. Invokes the filesystem-dependent function passed as last argument to get_sb_bdev( )
to access the superblock information on disk and fill the other fields of the new
superblock object.

6. Returns the address of the new superblock object.

12.4.4. Mounting the Root Filesystem

Mounting the root filesystem is a crucial part of system initialization. It is a fairly complex
procedure, because the Linux kernel allows the root filesystem to be stored in many different
places, such as a hard disk partition, a floppy disk, a remote filesystem shared via NFS, or
even a ramdisk (a fictitious block device kept in RAM).

To keep the description simple, let's assume that the root filesystem is stored in a partition of
a hard disk (the most common case, after all). While the system boots, the kernel finds the
major number of the disk that contains the root filesystem in the ROOT_DEV variable (see
Appendix A). The root filesystem can be specified as a device file in the /dev directory either
when compiling the kernel or by passing a suitable "root" option to the initial bootstrap loader.
Similarly, the mount flags of the root filesystem are stored in the root_mountflags variable.
The user specifies these flags either by using the rdev external program on a compiled kernel
image or by passing a suitable rootflags option to the initial bootstrap loader (see Appendix A
).

Mounting the root filesystem is a two-stage procedure, shown in the following list:

1. The kernel mounts the special rootfs filesystem, which simply provides an empty
directory that serves as initial mount point.

2. The kernel mounts the real root filesystem over the empty directory.

Why does the kernel bother to mount the rootfs filesystem before the real one? Well, the
rootfs filesystem allows the kernel to easily change the real root filesystem. In fact, in some
cases, the kernel mounts and unmounts several root filesystems, one after the other. For
instance, the initial bootstrap CD of a distribution might load in RAM a kernel with a minimal set
of drivers, which mounts as root a minimal filesystem stored in a ramdisk. Next, the programs
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in this initial root filesystem probe the hardware of the system (for instance, they determine
whether the hard disk is EIDE, SCSI, or whatever), load all needed kernel modules, and
remount the root filesystem from a physical block device.

12.4.4.1. Phase 1: Mounting the rootfs filesystem

The first stage is performed by the init_rootfs( ) and init_mount_tree( ) functions, which
are executed during system initialization.

The init_rootfs( ) function registers the special filesystem type rootfs:

    struct file_system_type rootfs_fs_type = {

        .name = "rootfs";

        .get_sb = rootfs_get_sb;

        .kill_sb = kill_litter_super;

    };

    register_filesystem(&rootfs_fs_type);

The init_mount_tree( ) function executes the following operations:

1. Invokes do_kern_mount( ) passing to it the string "rootfs" as filesystem type, and
stores the address of the mounted filesystem descriptor returned by this function in
the mnt local variable. As explained in the previous section, do_kern_mount( ) ends up
invoking the get_sb method of the rootfs filesystem, that is, the rootfs_get_sb( )
function:

2.
3.     struct superblock *rootfs_get_sb(struct file_system_type *fs_type,

4.                            int flags, const char *dev_name, void *data)

5.     {

6.         return get_sb_nodev(fs_type, flags|MS_NOUSER, data,

7.                             ramfs_fill_super);

8.     }

The get_sb_nodev( ) function, in turn, executes the following steps:

a. Invokes sget( ) to allocate a new superblock passing as parameter the address
of the set_anon_super( ) function (see the earlier section "Special Filesystems
"). As a result, the s_dev field of the superblock is set in the appropriate way:
major number 0, minor number different from those of other mounted special
filesystems.

b. Copies the value of the flags parameter into the s_flags field of the superblock.

c. Invokes ramfs_fill_super( ) to allocate an inode object and a corresponding
dentry object, and to fill the superblock fields. Because rootfs is a special
filesystem that has no disk superblock, only a couple of superblock operations
need to be implemented.

d. Returns the address of the new superblock.

9. Allocates a namespace object for the namespace of process 0, and inserts into it the
mounted filesystem descriptor returned by do_kern_mount( ):

10.
11.     namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);

12.     list_add(&mnt->mnt_list, &namespace->list);

13.     namespace->root = mnt;

14.     mnt->mnt_namespace = init_task.namespace = namespace;
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15. Sets the namespace field of every other process in the system to the address of the
namespace object; also initializes the namespace->count usage counter. (By default, all
processes share the same, initial namespace.)

16. Sets the root directory and the current working directory of process 0 to the root
filesystem.

12.4.4.2. Phase 2: Mounting the real root filesystem

The second stage of the mount operation for the root filesystem is performed by the kernel
near the end of the system initialization. There are several ways to mount the real root
filesystem, according to the options selected when the kernel has been compiled and to the
boot options passed by the kernel loader. For the sake of brevity, we consider the case of a
disk-based filesystem whose device file name has been passed to the kernel by means of the "
root" boot parameter. We also assume that no initial special filesystem is used, except the
rootfs filesystem.

The prepare_namespace( ) function executes the following operations:

1. Sets the root_device_name variable with the device filename obtained from the "root"
boot parameter. Also, sets the ROOT_DEV variable with the major and minor numbers of
the same device file.

2. Invokes the mount_root( ) function, which in turn:

a. Invokes sys_mknod( ) (the service routine of the mknod( ) system call) to create
a /dev/root device file in the rootfs initial root filesystem, having the major and
minor numbers as in ROOT_DEV.

b. Allocates a buffer and fills it with a list of filesystem type names. This list is
either passed to the kernel in the "rootfstype" boot parameter or built by
scanning the elements in the singly linked list of filesystem types.

c. Scans the list of filesystem type names built in the previous step. For each
name, it invokes sys_mount( ) to try to mount the given filesystem type on the
root device. Because each filesystem-specific method uses a different magic
number, all get_sb( ) invocations will fail except the one that attempts to fill
the superblock by using the function of the filesystem really used on the root
device. The filesystem is mounted on a directory named /root of the rootfs
filesystem.

d. Invokes sys_chdir("/root") to change the current directory of the process.

3. Moves the mount point of the mounted filesystem on the root directory of the rootfs
filesystem:

4.
5.     sys_mount(".", "/", NULL, MS_MOVE, NULL);

    sys_chroot(".");

Notice that the rootfs special filesystem is not unmounted: it is only hidden under the
disk-based root filesystem.

12.4.5. Unmounting a Filesystem

The umount( ) system call is used to unmount a filesystem. The corresponding sys_umount( )
service routine acts on two parameters: a filename (either a mount point directory or a block
device filename) and a set of flags. It performs the following actions:

1. Invokes path_lookup( ) to look up the mount point pathname; this function returns the
results of the lookup operation in a local variable nd of type nameidata (see next
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section).

2. If the resulting directory is not the mount point of a filesystem, it sets the retval
return code to -EINVAL and jumps to step 6. This check is done by verifying that
nd->mnt->mnt_root contains the address of the dentry object pointed to by nd.dentry.

3. If the filesystem to be unmounted has not been mounted in the namespace, it sets
the retval return code to -EINVAL and jumps to step 6. (Recall that some special
filesystems have no mount point.) This check is done by invoking the check_mnt( )
function on nd->mnt.

4. If the user does not have the privileges required to unmount the filesystem, it sets
the retval return code to -EPERM and jumps to step 6.

5. Invokes do_umount( ) passing as parameters nd.mnt (the mounted filesystem object)
and flags (the set of flags). This function performs essentially the following
operations:

a. Retrieves the address of the sb superblock object from the mnt_sb field of the
mounted filesystem object.

b. If the user asked to force the unmount operation, it interrupts any ongoing
mount operation by invoking the umount_begin superblock operation.

c. If the filesystem to be unmounted is the root filesystem and the user didn't ask
to actually detach it, it invokes do_remount_sb( ) to remount the root filesystem
read-only and terminates.

d. Acquires for writing the namespace->sem read/write semaphore of the current
process, and gets the vfsmount_lock spin lock.

e. If the mounted filesystem does not include mount points for any child mounted
filesystem, or if the user asked to forcibly detach the filesystem, it invokes 
umount_tree( ) to unmount the filesystem (together with all children
filesystems).

f. Releases the vfsmount_lock spin lock and the namespace->sem read/write
semaphore of the current process.

6. Decreases the usage counters of the dentry object corresponding to the root directory
of the filesystem and of the mounted filesystem descriptor; these counters were
increased by path_lookup( ).

7. Returns the retval value.
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12.5. Pathname Lookup
When a process must act on a file, it passes its file pathname to some VFS system call, such
as open( ) , mkdir( ), rename( ) , or stat( ) . In this section, we illustrate how the VFS
performs a pathname lookup , that is, how it derives an inode from the corresponding file
pathname.

The standard procedure for performing this task consists of analyzing the pathname and
breaking it into a sequence of filenames . All filenames except the last must identify
directories.

If the first character of the pathname is /, the pathname is absolute, and the search starts
from the directory identified by current->fs->root (the process root directory). Otherwise, the
pathname is relative, and the search starts from the directory identified by current->fs->pwd
(the process-current directory).

Having in hand the dentry, and thus the inode, of the initial directory, the code examines the
entry matching the first name to derive the corresponding inode. Then the directory file that
has that inode is read from disk and the entry matching the second name is examined to
derive the corresponding inode. This procedure is repeated for each name included in the
path.

The dentry cache considerably speeds up the procedure, because it keeps the most recently
used dentry objects in memory. As we saw before, each such object associates a filename in
a specific directory to its corresponding inode. In many cases, therefore, the analysis of the
pathname can avoid reading the intermediate directories from disk.

However, things are not as simple as they look, because the following Unix and VFS filesystem
features must be taken into consideration:

 The access rights of each directory must be checked to verify whether the process is
allowed to read the directory's content.

 A filename can be a symbolic link that corresponds to an arbitrary pathname; in this
case, the analysis must be extended to all components of that pathname.

 Symbolic links may induce circular references; the kernel must take this possibility into
account and break endless loops when they occur.

 A filename can be the mount point of a mounted filesystem. This situation must be
detected, and the lookup operation must continue into the new filesystem.

 Pathname lookup has to be done inside the namespace of the process that issued the
system call. The same pathname used by two processes with different namespaces
may specify different files.

Pathname lookup is performed by the path_lookup( ) function, which receives three
parameters:

name

A pointer to the file pathname to be resolved.

flags

The value of flags that represent how the looked-up file is going to be accessed. The
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allowed values are included later in Table 12-16.

nd

The address of a nameidata data structure, which stores the results of the lookup
operation and whose fields are shown in Table 12-15.

When path_lookup( ) returns, the nameidata structure pointed to by nd is filled with data
pertaining to the pathname lookup operation.

Table 12-15. The fields of the nameidata data structure

Type Field Description

struct dentry * dentry Address of the dentry object

struct vfs_mount

*
mnt Address of the mounted filesystem object

struct qstr last Last component of the pathname (used when the 
LOOKUP_PARENT flag is set)

unsigned int flags Lookup flags

int last_type Type of last component of the pathname (used when the 
LOOKUP_PARENT flag is set)

unsigned int depth Current level of symbolic link nesting (see below); it must
be smaller than 6

char[ ] * saved_names Array of pathnames associated with nested symbolic links

union intent One-member union specifying how the file will be accessed

The dentry and mnt fields point respectively to the dentry object and the mounted filesystem
object of the last resolved component in the pathname. These two fields "describe" the file
that is identified by the given pathname.

Because the dentry object and the mounted filesystem object returned by the path_lookup( )
function in the nameidata structure represent the result of a lookup operation, both objects
should not be freed until the caller of path_lookup( ) finishes using them. Therefore,
path_lookup( ) increases the usage counters of both objects. If the caller wants to release
these objects, it invokes the path_release( ) function passing as parameter the address of a
nameidata structure.

The flags field stores the value of some flags used in the lookup operation; they are listed in
Table 12-16. Most of these flags can be set by the caller in the flags parameter of
path_lookup( ).

Table 12-16. The flags of the lookup operation

Macro Description

LOOKUP_FOLLOW If the last component is a symbolic link, interpret (follow) it
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Table 12-16. The flags of the lookup operation

Macro Description

LOOKUP_DIRECTORY The last component must be a directory

LOOKUP_CONTINUE There are still filenames to be examined in the pathname

LOOKUP_PARENT Look up the directory that includes the last component of the pathname

LOOKUP_NOALT Do not consider the emulated root directory (useless in the 80x86
architecture)

LOOKUP_OPEN Intent is to open a file

LOOKUP_CREATE Intent is to create a file (if it doesn't exist)

LOOKUP_ACCESS Intent is to check user's permission for a file

The path_lookup( ) function executes the following steps:

1. Initializes some fields of the nd parameter as follows:

a. Sets the last_type field to LAST_ROOT (this is needed if the pathname is a slash
or a sequence of slashes; see the later section "Parent Pathname Lookup").

b. Sets the flags field to the value of the flags parameter

c. Sets the depth field to 0.

2. Acquires for reading the current->fs->lock read/write semaphore of the current
process.

3. If the first character in the pathname is a slash (/ ), the lookup operation must start
from the root directory of current: the function gets the addresses of the
corresponding mounted filesystem object (current->fs->rootmnt) and dentry object (
current->fs->root), increases their usage counters, and stores the addresses in
nd->mnt and nd->dentry, respectively.

4. Otherwise, if the first character in the pathname is not a slash, the lookup operation
must start from the current working directory of current: the function gets the
addresses of the corresponding mounted filesystem object (current->fs->pwdmnt) and
dentry object (current->fs->pwd), increases their usage counters, and stores the
addresses in nd->mnt and nd->dentry, respectively.

5. Releases the current->fs->lock read/write semaphore of the current process.

6. Sets the total_link_count field in the descriptor of the current process to 0 (see the
later section "Lookup of Symbolic Links").

7. Invokes the link_path_walk( ) function to take care of the undergoing lookup
operation:

8.
    return link_path_walk(name, nd);

We are now ready to describe the core of the pathname lookup operation, namely the 
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link_path_walk( ) function. It receives as its parameters a pointer name to the pathname to
be resolved and the address nd of a nameidata data structure.

To make things a bit easier, we first describe what link_path_walk( ) does when
LOOKUP_PARENT is not set and the pathname does not contain symbolic links (standard
pathname lookup). Next, we discuss the case in which LOOKUP_PARENT is set: this type of
lookup is required when creating, deleting, or renaming a directory entry, that is, during a
parent pathname lookup. Finally, we explain how the function resolves symbolic links.

12.5.1. Standard Pathname Lookup

When the LOOKUP_PARENT flag is cleared, link_path_walk( ) performs the following steps.

1. Initializes the lookup_flags local variable with nd->flags.

2. Skips all leading slashes (/) before the first component of the pathname.

3. If the remaining pathname is empty, it returns the value 0. In the nameidata data
structure, the dentry and mnt fields point to the objects relative to the last resolved
component of the original pathname.

4. If the depth field of the nd descriptor is positive, it sets the LOOKUP_FOLLOW flag in the
lookup_flags local variable (see the section "Lookup of Symbolic Links").

5. Executes a cycle that breaks the pathname passed in the name parameter into
components (the intermediate slashes are treated as filename separators); for each
component found, the function:

a. Retrieves the address of the inode object of the last resolved component from 
nd->dentry->d_inode. (In the first iteration, the inode refers to the directory
from where to start the pathname lookup.)

b. Checks that the permissions of the last resolved component stored into the
inode allow execution (in Unix, a directory can be traversed only if it is
executable). If the inode has a custom permission method, the function
executes it; otherwise, it executes the exec_permission_lite( ) function, which
examines the access mode stored in the i_mode inode field and the privileges of
the running process. In both cases, if the last resolved component does not
allow execution, link_path_walk( ) breaks out of the cycle and returns an error
code.

c. Considers the next component to be resolved. From its name, the function
computes a 32-bit hash value to be used when looking in the dentry cache
hash table.

d. Skips any trailing slash (/) after the slash that terminates the name of the
component to be resolved.

e. If the component to be resolved is the last one in the original pathname, it
jumps to step 6.

f. If the name of the component is "." (a single dot), it continues with the next
component ( "." refers to the current directory, so it has no effect inside a
pathname).

g. If the name of the component is ".." (two dots), it tries to climb to the parent
directory:

1. If the last resolved directory is the process's root directory (nd->dentry
is equal to current->fs->root and nd->mnt is equal to
current->fs->rootmnt), then climbing is not allowed: it invokes
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follow_mount( ) on the last resolved component (see below) and
continues with the next component.

2. If the last resolved directory is the root directory of the nd->mnt
filesystem (nd->dentry is equal to nd->mnt->mnt_root) and the nd->mnt
filesystem is not mounted on top of another filesystem (nd->mnt is equal
to nd->mnt->mnt_parent), then the nd->mnt filesystem is usually[*] the
namespace's root filesystem: in this case, climbing is impossible, thus
invokes follow_mount( ) on the last resolved component (see below) and
continues with the next component.

[*] This case can also occur for network filesystems disconnected from the
namespace's directory tree.

3. If the last resolved directory is the root directory of the nd->mnt
filesystem and the nd->mnt filesystem is mounted on top of another
filesystem, a filesystem switch is required. So, the function sets 
nd->dentry to nd->mnt->mnt_mountpoint, and nd->mnt to
nd->mnt->mnt_parent, then restarts step 5g (recall that several
filesystems can be mounted on the same mount point).

4. If the last resolved directory is not the root directory of a mounted
filesystem, then the function must simply climb to the parent directory:
it sets nd->dentry to nd->dentry->d_parent, invokes follow_mount( ) on
the parent directory, and continues with the next component.

The follow_mount( ) function checks whether nd->dentry is a mount point for
some filesystem (nd->dentry->d_mounted is greater than zero); in this case, it
invokes lookup_mnt( ) to search the root directory of the mounted filesystem in
the dentry cache , and updates nd->dentry and nd->mnt with the object
addresses corresponding to the mounted filesystem; then, it repeats the whole
operation (there can be several filesystems mounted on the same mount point).
Essentially, invoking the follow_mount( ) function when climbing to the parent
directory is required because the process could start the pathname lookup from
a directory included in a filesystem hidden by another filesystem mounted over
the parent directory.

h. The component name is neither "." nor "..", so the function must look it up in
the dentry cache. If the low-level filesystem has a custom d_hash dentry
method, the function invokes it to modify the hash value already computed in
step 5c.

i. Sets the LOOKUP_CONTINUE flag in nd->flags to denote that there is a next
component to be analyzed.

j. Invokes do_lookup( ) to derive the dentry object associated with a given
parent directory (nd->dentry) and filename (the pathname component being
resolved). The function essentially invokes _ _d_lookup( ) first to search the
dentry object of the component in the dentry cache. If no such object exists, 
do_lookup( ) invokes real_lookup( ). This latter function reads the directory
from disk by executing the lookup method of the inode, creates a new dentry
object and inserts it in the dentry cache, then creates a new inode object and
inserts it into the inode cache .[*] At the end of this step, the dentry and mnt
fields of the next local variable will point, respectively, to the dentry object and
the mounted filesystem object of the component name to be resolved in this
cycle.

[*] In a few cases, the function might find the required inode already in the inode cache. This
happens when the pathname component is the last one and it does not refer to a directory,
the corresponding file has several hard links, and finally the file has been recently accessed
through a hard link different from the one used in this pathname.

Page 499

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


k. Invokes the follow_mount( ) function to check whether the component just
resolved (next.dentry) refers to a directory that is a mount point for some
filesystem (next.dentry->d_mounted is greater than zero). follow_mount( )
updates next.dentry and next.mnt so that they point to the dentry object and
mounted filesystem object of the upmost filesystem mounted on the directory
specified by this pathname component (see step 5g).

l. Checks whether the component just resolved refers to a symbolic link (
next.dentry->d_inode has a custom follow_link method). We'll deal with this
case in the later section "Lookup of Symbolic Links."

m. Checks whether the component just resolved refers to a directory (
next.dentry->d_inode has a custom lookup method). If not, returns the error
-ENOTDIR, because the component is in the middle of the original pathname.

n. Sets nd->dentry to next.dentry and nd->mnt to next.mnt, then continues with
the next component of the pathname.

6. Now all components of the original pathname are resolved except the last one. Clears
the LOOKUP_CONTINUE flag in nd->flags.

7. If the pathname has a trailing slash, it sets the LOOKUP_FOLLOW and LOOKUP_DIRECTORY
flags in the lookup_flags local variable to force the last component to be interpreted
by later functions as a directory name.

8. Checks the value of the LOOKUP_PARENT flag in the lookup_flags variable. In the
following, we assume that the flag is set to 0, and we postpone the opposite case to
the next section.

9. If the name of the last component is "." (a single dot), terminates the execution and
returns the value 0 (no error). In the nameidata structure that nd points to, the dentry
and mnt fields refer to the objects relative to the next-to-last component of the
pathname (each component "." has no effect inside a pathname).

10. If the name of the last component is ".." (two dots), it tries to climb to the parent
directory:

a. If the last resolved directory is the process's root directory (nd->dentry is equal
to current->fs->root and nd->mnt is equal to current->fs->rootmnt), it invokes
follow_mount( ) on the next-to-last component and terminates the execution
and returns the value 0 (no error). nd->dentry and nd->mnt refer to the objects
relative to the next-to-last component of the pathnamethat is, to the root
directory of the process.

b. If the last resolved directory is the root directory of the nd->mnt filesystem (
nd->dentry is equal to nd->mnt->mnt_root) and the nd->mnt filesystem is not
mounted on top of another filesystem (nd->mnt is equal to nd->mnt->mnt_parent),
then climbing is impossible, thus invokes follow_mount( ) on the next-to-last
component and terminates the execution and returns the value 0 (no error).

c. If the last resolved directory is the root directory of the nd->mnt filesystem and
the nd->mnt filesystem is mounted on top of another filesystem, it sets
nd->dentry to nd->mnt->mnt_mountpoint and nd->mnt to nd->mnt->mnt_parent, then
restarts step 10.

d. If the last resolved directory is not the root directory of a mounted filesystem,
it sets nd->dentry to nd->dentry->d_parent, invokes follow_mount( ) on the
parent directory, and terminates the execution and returns the value 0 (no
error). nd->dentry and nd->mnt refer to the objects relative to the component
preceding the next-to-last component of the pathname.
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11. The name of the last component is neither "." nor "..", so the function must look it up
in the dentry cache. If the low-level filesystem has a custom d_hash dentry method,
the function invokes it to modify the hash value already computed in step 5c.

12. Invokes do_lookup( ) to derive the dentry object associated with the parent directory
and the filename (see step 5j). At the end of this step, the next local variable contains
the pointers to both the dentry and the mounted filesystem descriptor relative to the
last component name.

13. Invokes follow_mount( ) to check whether the last component is a mount point for
some filesystem and, if this is the case, to update the next local variable with the
addresses of the dentry object and mounted filesystem object relative to the root
directory of the upmost mounted filesystem.

14. Checks whether the LOOKUP_FOLLOW flag is set in lookup_flags and the inode object
next.dentry->d_inode has a custom follow_link method. If this is the case, the
component is a symbolic link that must be interpreted, as described in the later section
"Lookup of Symbolic Links."

15. The component is not a symbolic link or the symbolic link should not be interpreted.
Sets the nd->mnt and nd->dentry fields with the value stored in next.mnt and
next.dentry, respectively. The final dentry object is the result of the whole lookup
operation.

16. Checks whether nd->dentry->d_inode is NULL. This happens when there is no inode
associated with the dentry object, usually because the pathname refers to a
nonexistent file. In this case, the function returns the error code -ENOENT.

17. There is an inode associated with the last component of the pathname. If the 
LOOKUP_DIRECTORY flag is set in lookup_flags, it checks that the inode has a custom
lookup methodthat is, it is a directory. If not, the function returns the error code
-ENOTDIR.

18. Returns the value 0 (no error). nd->dentry and nd->mnt refer to the last component of
the pathname.

12.5.2. Parent Pathname Lookup

In many cases, the real target of a lookup operation is not the last component of the
pathname, but the next-to-last one. For example, when a file is created, the last component
denotes the filename of the not yet existing file, and the rest of the pathname specifies the
directory in which the new link must be inserted. Therefore, the lookup operation should fetch
the dentry object of the next-to-last component. For another example, unlinking a file
identified by the pathname /foo/bar consists of removing bar from the directory foo. Thus, the
kernel is really interested in accessing the directory foo rather than bar.

The LOOKUP_PARENT flag is used whenever the lookup operation must resolve the directory
containing the last component of the pathname, rather than the last component itself.

When the LOOKUP_PARENT flag is set, the link_path_walk( ) function also sets up the last and
last_type fields of the nameidata data structure. The last field stores the name of the last
component in the pathname. The last_type field identifies the type of the last component; it
may be set to one of the values shown in Table 12-17.
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Table 12-17. The values of the last_type field in the nameidata data
structure

Value Description

LAST_NORM Last component is a regular filename

LAST_ROOT Last component is "/ " (that is, the entire pathname is "/ ")

LAST_DOT Last component is "."

LAST_DOTDOT Last component is ".."

LAST_BIND Last component is a symbolic link into a special filesystem

The LAST_ROOT flag is the default value set by path_lookup( ) when the whole pathname
lookup operation starts (see the description at the beginning of the section "Pathname Lookup
"). If the pathname turns out to be simply "/ ", the kernel does not change the initial value of
the last_type field.

The remaining values of the last_type field are set by link_path_walk( ) when the
LOOKUP_PARENT flag is set; in this case, the function performs the same steps described in the
previous section up to step 8. From step 8 onward, however, the lookup operation for the last
component of the pathname is different:

1. Sets nd->last to the name of the last component.

2. Initializes nd->last_type to LAST_NORM.

3. If the name of the last component is "." (a single dot), it sets nd->last_type to
LAST_DOT.

4. If the name of the last component is ".." (two dots), it sets nd->last_type to
LAST_DOTDOT.

5. Returns the value 0 (no error).

As you can see, the last component is not interpreted at all. Thus, when the function
terminates, the dentry and mnt fields of the nameidata data structure point to the objects
relative to the directory that includes the last component.

12.5.3. Lookup of Symbolic Links

Recall that a symbolic link is a regular file that stores a pathname of another file. A pathname
may include symbolic links, and they must be resolved by the kernel.

For example, if /foo/bar is a symbolic link pointing to (containing the pathname) ../dir, the
pathname /foo/bar/file must be resolved by the kernel as a reference to the file /dir/file. In
this example, the kernel must perform two different lookup operations. The first one resolves 
/foo/bar: when the kernel discovers that bar is the name of a symbolic link, it must retrieve
its content and interpret it as another pathname. The second pathname operation starts from
the directory reached by the first operation and continues until the last component of the
symbolic link pathname has been resolved. Next, the original lookup operation resumes from
the dentry reached in the second one and with the component following the symbolic link in
the original pathname.

To further complicate the scenario, the pathname included in a symbolic link may include other
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symbolic links. You might think that the kernel code that resolves the symbolic links is hard to
understand, but this is not true; the code is actually quite simple because it is recursive.

However, untamed recursion is intrinsically dangerous. For instance, suppose that a symbolic
link points to itself. Of course, resolving a pathname including such a symbolic link may induce
an endless stream of recursive invocations, which in turn quickly leads to a kernel stack
overflow. The link_count field in the descriptor of the current process is used to avoid the
problem: the field is increased before each recursive execution and decreased right after. If a
sixth nested lookup operation is attempted, the whole lookup operation terminates with an
error code. Therefore, the level of nesting of symbolic links can be at most 5.

Furthermore, the total_link_count field in the descriptor of the current process keeps track of
how many symbolic links (even nonnested) were followed in the original lookup operation. If
this counter reaches the value 40, the lookup operation aborts. Without this counter, a
malicious user could create a pathological pathname including many consecutive symbolic links
that freeze the kernel in a very long lookup operation.

This is how the code basically works: once the link_path_walk( ) function retrieves the
dentry object associated with a component of the pathname, it checks whether the
corresponding inode object has a custom follow_link method (see step 5l and step 14 in the
section "Standard Pathname Lookup"). If so, the inode is a symbolic link that must be
interpreted before proceeding with the lookup operation of the original pathname.

In this case, the link_path_walk( ) function invokes do_follow_link( ), passing to it the
address dentry of the dentry object of the symbolic link and the address nd of the nameidata
data structure. In turn, do_follow_link( ) performs the following steps:

1. Checks that current->link_count is less than 5; otherwise, it returns the error code
-ELOOP.

2. Checks that current->total_link_count is less than 40; otherwise, it returns the error
code -ELOOP.

3. Invokes cond_resched( ) to perform a process switch if required by the current process
(flag TIF_NEED_RESCHED in the tHRead_info descriptor of the current process set).

4. Increases current->link_count, current->total_link_count, and nd->depth.

5. Updates the access time of the inode object associated with the symbolic link to be
resolved.

6. Invokes the filesystem-dependent function that implements the follow_link method
passing to it the dentry and nd parameters. This function extracts the pathname stored
in the symbolic link's inode, and saves this pathname in the proper entry of the 
nd->saved_names array.

7. Invokes the _ _vfs_follow_link( ) function passing to it the address nd and the
address of the pathname in the nd->saved_names array (see below).

8. If defined, executes the put_link method of the inode object, thus releasing the
temporary data structures allocated by the follow_link method.

9. Decreases the current->link_count and nd->depth fields.

10. Returns the error code returned by the _ _vfs_follow_link( ) function (0 for no error).

In turn, the _ _vfs_follow_link( ) does essentially the following:

1. Checks whether the first character of the pathname stored in the symbolic link is a
slash: in this case an absolute pathname has been found, so there is no need to keep
in memory any information about the previous path. If so, invokes path_release( ) on
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the nameidata structure, thus releasing the objects resulting from the previous lookup
steps; then, the function sets the dentry and mnt fields of the nameidata data structure
to the current process root directory.

2. Invokes link_path_walk( ) to resolve the symbolic link pathname, passing to it as
parameters the pathname and nd.

3. Returns the value taken from link_path_walk( ).

When do_follow_link( ) finally terminates, it has set the dentry field of the next local variable
with the address of the dentry object referred to by the symbolic link to the original execution
of link_path_walk( ). The link_path_walk( ) function can then proceed with the next step.
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12.6. Implementations of VFS System Calls
For the sake of brevity, we cannot discuss the implementation of all the VFS system calls
listed in Table 12-1. However, it could be useful to sketch out the implementation of a few
system calls, in order to show how VFS's data structures interact.

Let's reconsider the example proposed at the beginning of this chapter: a user issues a shell
command that copies the MS-DOS file /floppy/TEST to the Ext2 file /tmp/test. The command
shell invokes an external program such as cp, which we assume executes the following code
fragment:

    inf = open("/floppy/TEST", O_RDONLY, 0);

    outf = open("/tmp/test", O_WRONLY | O_CREAT | O_TRUNC, 0600);

    do {

        len = read(inf, buf, 4096);

        write(outf, buf, len);

    } while (len);

    close(outf);

    close(inf);

Actually, the code of the real cp program is more complicated, because it must also check for
possible error codes returned by each system call. In our example, we focus our attention on
the "normal" behavior of a copy operation.

12.6.1. The open( ) System Call

The open( ) system call is serviced by the sys_open( ) function, which receives as its
parameters the pathname filename of the file to be opened, some access mode flags flags,
and a permission bit mask mode if the file must be created. If the system call succeeds, it
returns a file descriptorthat is, the index assigned to the new file in the current->files->fd
array of pointers to file objects; otherwise, it returns -1.

In our example, open( ) is invoked twice; the first time to open /floppy/TEST for reading (
O_RDONLY flag) and the second time to open /tmp/test for writing (O_WRONLY flag). If /tmp/test
does not already exist, it is created (O_CREAT flag) with exclusive read and write access for
the owner (octal 0600 number in the third parameter).

Conversely, if the file already exists, it is rewritten from scratch (O_TRUNC flag). Table 12-18
lists all flags of the open( ) system call.

Table 12-18. The flags of the open( ) system call

Flag name Description

O_RDONLY Open for reading

O_WRONLY Open for writing

O_RDWR Open for both reading and writing

O_CREAT Create the file if it does not exist

O_EXCL With O_CREAT, fail if the file already exists
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Table 12-18. The flags of the open( ) system call

Flag name Description

O_NOCTTY Never consider the file as a controlling terminal

O_TRUNC Truncate the file (remove all existing contents)

O_APPEND Always write at end of the file

O_NONBLOCK No system calls will block on the file

O_NDELAY Same as O_NONBLOCK

O_SYNC Synchronous write (block until physical write terminates)

FASYNC I/O event notification via signals

O_DIRECT Direct I/O transfer (no kernel buffering)

O_LARGEFILE Large file (size greater than 2 GB)

O_DIRECTORY Fail if file is not a directory

O_NOFOLLOW Do not follow a trailing symbolic link in pathname

O_NOATIME Do not update the inode's last access time

Let's describe the operation of the sys_open( ) function. It performs the following steps:

1. Invokes getname( ) to read the file pathname from the process address space.

2. Invokes get_unused_fd( ) to find an empty slot in current->files->fd. The
corresponding index (the new file descriptor) is stored in the fd local variable.

3. Invokes the filp_open( ) function, passing as parameters the pathname, the access
mode flags, and the permission bit mask. This function, in turn, executes the following
steps:

a. Copies the access mode flags into namei_flags, but encodes the access mode
flags O_RDONLY, O_WRONLY, and O_RDWR with a special format: the bit at index 0
(lowest-order) of namei_flags is set only if the file access requires read
privileges; similarly, the bit at index 1 is set only if the file access requires write
privileges. Notice that it is not possible to specify in the open( ) system call
that a file access does not require either read or write privileges; this makes
sense, however, in a pathname lookup operation involving symbolic links.

b. Invokes open_namei( ), passing to it the pathname, the modified access mode
flags, and the address of a local nameidata data structure. The function
performs the lookup operation in the following manner:

 If O_CREAT is not set in the access mode flags, starts the lookup
operation with the LOOKUP_PARENT flag not set and the LOOKUP_OPEN flag
set. Moreover, the LOOKUP_FOLLOW flag is set only if O_NOFOLLOW is cleared,
while the LOOKUP_DIRECTORY flag is set only if the O_DIRECTORY flag is set.
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 If O_CREAT is set in the access mode flags, starts the lookup operation
with the LOOKUP_PARENT, LOOKUP_OPEN, and LOOKUP_CREATE flags set. Once
the path_lookup( ) function successfully returns, checks whether the
requested file already exists. If not, allocates a new disk inode by
invoking the create method of the parent inode.

The open_namei( ) function also executes several security checks on the file
located by the lookup operation. For instance, the function checks whether the
inode associated with the dentry object found really exists, whether it is a
regular file, and whether the current process is allowed to access it according
to the access mode flags. Also, if the file is opened for writing, the function
checks that the file is not locked by other processes.

c. Invokes the dentry_open( ) function, passing to it the addresses of the dentry
object and the mounted filesystem object located by the lookup operation, and
the access mode flags. In turn, this function:

 Allocates a new file object.

 Initializes the f_flags and f_mode fields of the file object according to
the access mode flags passed to the open( ) system call.

 Initializes the f_dentry and f_vfsmnt fields of the file object according to
the addresses of the dentry object and the mounted filesystem object
passed as parameters.

 Sets the f_op field to the contents of the i_fop field of the
corresponding inode object. This sets up all the methods for future file
operations.

 Inserts the file object into the list of opened files pointed to by the 
s_files field of the filesystem's superblock.

 If the open method of the file operations is defined, the function invokes
it.

 Invokes file_ra_state_init( ) to initialize the read-ahead data
structures (see Chapter 16).

 If the O_DIRECT flag is set, it checks whether direct I/O operations can
be performed on the file (see Chapter 16).

 Returns the address of the file object.

d. Returns the address of the file object.

4. Sets current->files->fd[fd] to the address of the file object returned by dentry_open(
).

5. Returns fd.

12.6.2. The read( ) and write( ) System Calls

Let's return to the code in our cp example. The open( ) system calls return two file
descriptors, which are stored in the inf and outf variables. Then the program starts a loop: at
each iteration, a portion of the /floppy/TEST file is copied into a local buffer (read( ) system
call), and then the data in the local buffer is written into the /tmp/test file (write( ) system
call).

The read( ) and write( ) system calls are quite similar. Both require three parameters: a file
descriptor fd, the address buf of a memory area (the buffer containing the data to be
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transferred), and a number count that specifies how many bytes should be transferred. Of
course, read( ) transfers the data from the file into the buffer, while write( ) does the
opposite. Both system calls return either the number of bytes that were successfully
transferred or -1 to signal an error condition.

A return value less than count does not mean that an error occurred. The kernel is always
allowed to terminate the system call even if not all requested bytes were transferred, and the
user application must accordingly check the return value and reissue, if necessary, the system
call. Typically, a small value is returned when reading from a pipe or a terminal device, when
reading past the end of the file, or when the system call is interrupted by a signal. The
end-of-file condition (EOF) can easily be recognized by a zero return value from read( ). This
condition will not be confused with an abnormal termination due to a signal, because if read( )
is interrupted by a signal before a data is read, an error occurs.

The read or write operation always takes place at the file offset specified by the current file
pointer (field f_pos of the file object). Both system calls update the file pointer by adding the
number of transferred bytes to it.

In short, both sys_read( ) (the read( )'s service routine) and sys_write( ) (the write( )'s
service routine) perform almost the same steps:

1. Invokes fget_light( ) to derive from fd the address file of the corresponding file
object (see the earlier section "Files Associated with a Process").

2. If the flags in file->f_mode do not allow the requested access (read or write
operation), it returns the error code -EBADF.

3. If the file object does not have a read( ) or aio_read( ) (write( ) or aio_write( ))
file operation, it returns the error code -EINVAL.

4. Invokes access_ok() to perform a coarse check on the buf and count parameters (see
the section "Verifying the Parameters" in Chapter 10).

5. Invokes rw_verify_area( ) to check whether there are conflicting mandatory locks for
the file portion to be accessed. If so, it returns an error code, or puts the current
process to sleep if the lock has been requested with a F_SETLKW command (see the
section "File Locking" later in this chapter).

6. If defined, it invokes either the file->f_op->read or file->f_op->write method to
transfer the data; otherwise, invokes either the file->f_op->aio_read or
file->f_op->aio_write method. All these methods, which are discussed in Chapter 16,
return the number of bytes that were actually transferred. As a side effect, the file
pointer is properly updated.

7. Invokes fput_light( ) to release the file object.

8. Returns the number of bytes actually transferred.

12.6.3. The close( ) System Call

The loop in our example code terminates when the read( ) system call returns the value 0that
is, when all bytes of /floppy/TEST have been copied into /tmp/test. The program can then
close the open files, because the copy operation has completed.

The close( ) system call receives as its parameter fd, which is the file descriptor of the file to
be closed. The sys_close( ) service routine performs the following operations:

1. Gets the file object address stored in current->files->fd[fd]; if it is NULL, returns an
error code.

2. Sets current->files->fd[fd] to NULL. Releases the file descriptor fd by clearing the
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corresponding bits in the open_fds and close_on_exec fields of current->files (see
Chapter 20 for the Close on Execution flag).

3. Invokes filp_close( ), which performs the following operations:

a. Invokes the flush method of the file operations, if defined.

b. Releases all mandatory locks on the file, if any (see next section).

c. Invokes fput( ) to release the file object.

4. Returns 0 or an error code. An error code can be raised by the flush method or by an
error in a previous write operation on the file.
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12.7. File Locking
When a file can be accessed by more than one process, a synchronization problem occurs.
What happens if two processes try to write in the same file location? Or again, what happens
if a process reads from a file location while another process is writing into it?

In traditional Unix systems, concurrent accesses to the same file location produce
unpredictable results. However, Unix systems provide a mechanism that allows the processes
to lock a file region so that concurrent accesses may be easily avoided.

The POSIX standard requires a file-locking mechanism based on the fcntl( ) system call. It is
possible to lock an arbitrary region of a file (even a single byte) or to lock the whole file
(including data appended in the future). Because a process can choose to lock only a part of
a file, it can also hold multiple locks on different parts of the file.

This kind of lock does not keep out another process that is ignorant of locking. Like a
semaphore used to protect a critical region in code, the lock is considered "advisory" because
it doesn't work unless other processes cooperate in checking the existence of a lock before
accessing the file. Therefore, POSIX's locks are known as advisory locks .

Traditional BSD variants implement advisory locking through the flock( ) system call. This call
does not allow a process to lock a file region, only the whole file. Traditional System V
variants provide the lockf( ) library function, which is simply an interface to fcntl( ).

More importantly, System V Release 3 introduced mandatory locking: the kernel checks that
every invocation of the open( ) , read( ) , and write( ) system calls does not violate a
mandatory lock on the file being accessed. Therefore, mandatory locks are enforced even
between noncooperative processes.[*]

[*] Oddly enough, a process may still unlink (delete) a file even if some other process ow ns a mandatory lock on it! This perplexing
situation is possible because w hen a process deletes a file hard link, it does not modify its contents, but only the contents of its
parent directory.

Whether processes use advisory or mandatory locks, they can use both shared read locks and
exclusive write locks . Several processes may have read locks on some file region, but only
one process can have a write lock on it at the same time. Moreover, it is not possible to get a
write lock when another process owns a read lock for the same file region, and vice versa.

12.7.1. Linux File Locking

Linux supports all types of file locking: advisory and mandatory locks, plus the fcntl( ) and
flock( ) system calls (lockf( ) is implemented as a standard library function).

The expected behavior of the flock( ) system call in every Unix-like operating system is to
produce advisory locks only, without regard for the MS_MANDLOCK mount flag. In Linux, however,
a special kind of flock( )'s mandatory lock is used to support some proprietary network
filesystems . It is the so-called share-mode mandatory lock; when set, no other process may
open a file that would conflict with the access mode of the lock. Use of this feature for native
Unix applications is discouraged, because the resulting source code will be nonportable.

Another kind of fcntl( )-based mandatory lock called lease has been introduced in Linux.
When a process tries to open a file protected by a lease, it is blocked as usual. However, the
process that owns the lock receives a signal. Once informed, it should first update the file so
that its content is consistent, and then release the lock. If the owner does not do this in a
well-defined time interval (tunable by writing a number of seconds into /proc
/sys/fs/lease-break-time, usually 45 seconds), the lease is automatically removed by the
kernel and the blocked process is allowed to continue.
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A process can get or release an advisory file lock on a file in two possible ways:

 By issuing the flock( ) system call. The two parameters of the system call are the fd
file descriptor, and a command to specify the lock operation. The lock applies to the
whole file.

 By using the fcntl( ) system call. The three parameters of the system call are the fd
file descriptor, a command to specify the lock operation, and a pointer to a flock
structure (see Table 12-20). A couple of fields in this structure allow the process to
specify the portion of the file to be locked. Processes can thus hold several locks on
different portions of the same file.

Both the fcntl( ) and the flock( ) system call may be used on the same file at the same
time, but a file locked through fcntl( ) does not appear locked to flock( ), and vice versa.
This has been done on purpose in order to avoid the deadlocks occurring when an application
using a type of lock relies on a library that uses the other type.

Handling mandatory file locks is a bit more complex. Here are the steps to follow:

1. Mount the filesystem where mandatory locking is required using the -o mand option in
the mount command, which sets the MS_MANDLOCK flag in the mount( ) system call. The
default is to disable mandatory locking.

2. Mark the files as candidates for mandatory locking by setting their set-group bit (SGID)
and clearing the group-execute permission bit. Because the set-group bit makes no
sense when the group-execute bit is off, the kernel interprets that combination as a
hint to use mandatory locks instead of advisory ones.

3. Uses the fcntl( ) system call (see below) to get or release a file lock.

Handling leases is much simpler than handling mandatory locks: it is sufficient to invoke a 
fcntl( ) system call with a F_SETLEASE or F_GETLEASE command. Another fcntl( ) invocation
with the F_SETSIG command may be used to change the type of signal to be sent to the lease
process holder.

Besides the checks in the read( ) and write( ) system calls, the kernel takes into
consideration the existence of mandatory locks when servicing all system calls that could
modify the contents of a file. For instance, an open( ) system call with the O_TRUNC flag set
fails if any mandatory lock exists for the file.

The following section describes the main data structure used by the kernel to handle file locks
issued by means of the flock( ) system call (FL_FLOCK locks) and of the fcntl( ) system call (
FL_POSIX locks).

12.7.2. File-Locking Data Structures

All type of Linux locks are represented by the same file_lock data structure whose fields are
shown in Table 12-19.

Table 12-19. The fields of the file_lock data structure

Type Field Description

struct file_lock * fl_next Next element in list of locks associated
with the inode

struct list_head fl_link Pointers for active or blocked list

struct list_head fl_block Pointers for the lock's waiters list
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Table 12-19. The fields of the file_lock data structure

Type Field Description

struct files_struct * fl_owner Owner's files_struct

unsigned int fl_pid PID of the process owner

wait_queue_head_t fl_wait Wait queue of blocked processes

struct file * fl_file Pointer to file object

unsigned char fl_flags Lock flags

unsigned char fl_type Lock type

loff_t fl_start Starting offset of locked region

loff_t fl_end Ending offset of locked region

struct fasync_struct * fl_fasync Used for lease break notifications

unsigned long fl_break_time Remaining time before end of lease

struct file_lock_operations * fl_ops Pointer to file lock operations

struct lock_manager_operations * fl_mops Pointer to lock manager operations

union fl_u Filesystem-specific information

All lock_file structures that refer to the same file on disk are collected in a singly linked list,
whose first element is pointed to by the i_flock field of the inode object. The fl_next field of
the lock_file structure specifies the next element in the list.

When a process issues a blocking system call to require an exclusive lock while there are
shared locks on the same file, the lock request cannot be satisfied immediately and the
process must be suspended. The process is thus inserted into a wait queue pointed to by the 
fl_wait field of the blocked lock's file_lock structure. Two lists are used to distinguish lock
requests that have been satisfied (active locks ) from those that cannot be satisfied right
away (blocked locks ).

All active locks are linked together in the "global file lock list" whose head element is stored in
the file_lock_list variable. Similarly, all blocked locks are linked together in the "blocked list"
whose head element is stored in the blocked_list variable. The fl_link field is used to insert
a lock_file structure in either one of these two lists.

Last but not least, the kernel must keep track of all blocked locks (the "waiters") associated
with a given active lock (the "blocker"): this is the purpose of a list that links together all
waiters with respect to a given blocker. The fl_block field of the blocker is the dummy head
of the list, while the fl_block fields of the waiters store the pointers to the adjacent elements
in the list.

12.7.3. FL_FLOCK Locks
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An FL_FLOCK lock is always associated with a file object and is thus owned by the process that
opened the file (or by all clone processes sharing the same opened file). When a lock is
requested and granted, the kernel replaces every other lock that the process is holding on the
same file object with the new lock. This happens only when a process wants to change an
already owned read lock into a write one, or vice versa. Moreover, when a file object is being
freed by the fput( ) function, all FL_FLOCK locks that refer to the file object are destroyed.
However, there could be other FL_FLOCK read locks set by other processes for the same file
(inode), and they still remain active.

The flock( ) system call allows a process to apply or remove an advisory lock on an open file.
It acts on two parameters: the fd file descriptor of the file to be acted upon and a cmd
parameter that specifies the lock operation. A cmd parameter of LOCK_SH requires a shared lock
for reading, LOCK_EX requires an exclusive lock for writing, and LOCK_UN releases the lock.[*]

[*] Actually, the flock( ) system call can also establish share-mode mandatory locks by specifying the command LOCK_MAND.
How ever, w e'll not further discuss this case.

Usually this system call blocks the current process if the request cannot be immediately
satisfied, for instance if the process requires an exclusive lock while some other process has
already acquired the same lock. However, if the LOCK_NB flag is passed together with the
LOCK_SH or LOCK_EX operation, the system call does not block; in other words, if the lock
cannot be immediately obtained, the system call returns an error code.

When the sys_flock( ) service routine is invoked, it performs the following steps:

1. Checks whether fd is a valid file descriptor; if not, returns an error code. Gets the
address filp of the corresponding file object.

2. Checks that the process has read and/or write permission on the open file; if not,
returns an error code.

3. Gets a new file_lock object lock and initializes it in the appropriate way: the fl_type
field is set according to the value of the parameter cmd, the fl_file field is set to the
address filp of the file object, the fl_flags field is set to FL_FLOCK, the fl_pid field is
set to current->tgid, and the fl_end field is set to -1 to denote the fact that locking
refers to the whole file (and not to a portion of it).

4. If the cmd parameter does not include the LOCK_NB bit, it adds to the fl_flags field the
FL_SLEEP flag.

5. If the file has a flock file operation, the routine invokes it, passing as its parameters
the file object pointer filp, a flag (F_SETLKW or F_SETLK depending on the value of the
LOCK_NB bit), and the address of the new file_lock object lock.

6. Otherwise, if the flock file operation is not defined (the common case), invokes
flock_lock_file_wait( ) to try to perform the required lock operation. Two parameters
are passed: filp, a file object pointer, and lock, the address of the new file_lock
object created in step 3.

7. If the file_lock descriptor has not been inserted in the active or blocked lists in the
previous step, the routine releases it.

8. Returns 0 in case of success.

The flock_lock_file_wait( ) function executes a cycle consisting of the following steps:

1. Invokes flock_lock_file( ) passing as parameters the file object pointer filp and the
address of the new file_lock object lock. This function performs, in turn, the following
operations:

a. Searches the list that filp->f_dentry->d_inode->i_flock points to. If an
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FL_FLOCK lock for the same file object is found, checks its type (LOCK_SH or
LOCK_EX): if it is equal to the type of the new lock, returns 0 (nothing has to be
done). Otherwise, the function removes the old element from the list of locks on
the inode and the global file lock list, wakes up all processes sleeping in the
wait queues of the locks in the fl_block list, and frees the file_lock structure.

b. If the process is performing an unlock (LOCK_UN), nothing else needs to be done:
the lock was nonexisting or it has already been released, thus returns 0.

c. If an FL_FLOCK lock for the same file object has been foundthus the process is
changing an already owned read lock into a write one (or vice versa)gives some
other higher-priority process, in particular every process previously blocked on
the old file lock, a chance to run by invoking cond_resched( ).

d. Searches the list of locks on the inode again to verify that no existing FL_FLOCK
lock conflicts with the requested one. There must be no FL_FLOCK write lock in
the list, and moreover, there must be no FL_FLOCK lock at all if the process is
requesting a write lock.

e. If no conflicting lock exists, it inserts the new file_lock structure into the
inode's lock list and into the global file lock list, then returns 0 (success).

f. A conflicting lock has been found: if the FL_SLEEP flag in the fl_flags field is
set, it inserts the new lock (the waiter lock) in the circular list of the blocker
lock and in the global blocked list.

g. Returns the error code -EAGAIN.

2. Checks the return code of flock_lock_file( ):

a. If the return code is 0 (no conflicting looks), it returns 0 (success).

b. There are incompatibilities. If the FL_SLEEP flag in the fl_flags field is cleared, it
releases the lock file_lock descriptor and returns -EAGAIN.

c. Otherwise, there are incompatibilities but the process can sleep: invokes 
wait_event_interruptible( ) to insert the current process in the lock->fl_wait
wait queue and to suspend it. When the process is awakened (right after the
blocker lock has been released), it jumps to step 1 to retry the operation.

12.7.4. FL_POSIX Locks

An FL_POSIX lock is always associated with a process and with an inode; the lock is
automatically released either when the process dies or when a file descriptor is closed (even if
the process opened the same file twice or duplicated a file descriptor). Moreover, FL_POSIX
locks are never inherited by a child across a fork( ).

When used to lock files, the fcntl( ) system call acts on three parameters: the fd file
descriptor of the file to be acted upon, a cmd parameter that specifies the lock operation, and
an fl pointer to a flock data structure[*] stored in the User Mode process address space; its
fields are described in Table 12-20.

[*] Linux also defines a flock64 structure, w hich uses 64-bit long integers for the offset and length fields. In the follow ing, w e
focus on the flock data structure, but the description is valid for flock64 too.

Table 12-20. The fields of the flock data structure

Type Field Description

short l_type F_RDLOCK (requests a shared lock), F_WRLOCK (requests an exclusive lock),

Page 514

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Table 12-20. The fields of the flock data structure

Type Field Description

F_UNLOCK (releases the lock)

short l_whence
SEEK_SET (from beginning of file), SEEK_CURRENT (from current file pointer),
SEEK_END (from end of file)

off_t l_start Initial offset of the locked region relative to the value of l_whence

off_t l_len Length of locked region (0 means that the region includes all potential
writes past the current end of the file)

pid_t l_pid PID of the owner

The sys_fcntl( ) service routine behaves differently, depending on the value of the flag set in
the cmd parameter:

F_GETLK

Determines whether the lock described by the flock structure conflicts with some
FL_POSIX lock already obtained by another process. In this case, the flock structure is
overwritten with the information about the existing lock.

F_SETLK

Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call returns an error code.

F_SETLKW

Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call blocks; that is, the calling process is put to sleep until the lock is available.

F_GETLK64, F_SETLK64, F_SETLKW64

Identical to the previous ones, but the flock64 data structure is used rather than
flock.

The sys_fcntl( ) service routine gets first a file object corresponding to the fd parameter and
invokes then fcntl_getlk( ) or fcntl_setlk( ), depending on the command passed as its
parameter (F_GETBLK for the former function, F_SETLK or F_SETLKW for the latter one). We'll
consider the second case only.

The fcntl_setlk( ) function acts on three parameters: a filp pointer to the file object, a cmd
command (F_SETLK or F_SETLKW), and a pointer to a flock data structure. The steps performed
are the following:

1. Reads the structure pointed to by the fl parameter in a local variable of type flock.

2. Checks whether the lock should be a mandatory one and the file has a shared memory
mapping (see the section "Memory Mapping" in Chapter 16). In this case, the function
refuses to create the lock and returns the -EAGAIN error code, because the file is
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already being accessed by another process.

3. Initializes a new file_lock structure according to the contents of the user's flock
structure and to the file size stored in the file's inode.

4. If the command is F_SETLKW, the function sets the FL_SLEEP flag in the fl_flags field of
the file_lock structure.

5. If the l_type field in the flock structure is equal to F_RDLCK, it checks whether the
process is allowed to read from the file; similarly, if l_type is equal to F_WRLCK, checks
whether the process is allowed to write into the file. If not, it returns an error code.

6. Invokes the lock method of the file operations, if defined. Usually for disk-based
filesystems , this method is not defined.

7. Invokes _ _posix_lock_file( ) passing as parameters the address of the file's inode
object and the address of the file_lock object. This function performs, in turn, the
following operations:

a. Invokes posix_locks_conflict( ) for each FL_POSIX lock in the inode's lock list.
The function checks whether the lock conflicts with the requested one.
Essentially, there must be no FL_POSIX write lock for the same region in the
inode list, and there may be no FL_POSIX lock at all for the same region if the
process is requesting a write lock. However, locks owned by the same process
never conflict; this allows a process to change the characteristics of a lock it
already owns.

b. If a conflicting lock is found, the function checks whether fcntl( ) was invoked
with the F_SETLKW command. If so, the current process must be suspended:
invokes posix_locks_deadlock( ) to check that no deadlock condition is being
created among processes waiting for FL_POSIX locks, then inserts the new lock
(waiter lock) both in the blocker list of the conflicting lock (blocker lock) and in
the blocked list, and finally returns an error code. Otherwise, if fcntl( ) was
invoked with the F_SETLK command, returns an error code.

c. As soon as the inode's lock list includes no conflicting lock, the function checks
all the FL_POSIX locks of the current process that overlap the file region that
the current process wants to lock, and combines and splits adjacent areas as
required. For example, if the process requested a write lock for a file region that
falls inside a read-locked wider region, the previous read lock is split into two
parts covering the nonoverlapping areas, while the central region is protected
by the new write lock. In case of overlaps, newer locks always replace older
ones.

d. Inserts the new file_lock structure in the global file lock list and in the inode
list.

e. Returns the value 0 (success).

8. Checks the return code of _ _posix_lock_file( ):

a. If the return code is 0 (no conflicting locks), it returns 0 (success).

b. There are incompatibilities. If the FL_SLEEP flag in the fl_flags field is cleared, it
releases the new file_lock descriptor and returns -EAGAIN.

c. Otherwise, if there are incompatibilities but the process can sleep, it invokes 
wait_event_interruptible( ) to insert the current process in the lock->fl_wait
wait queue and to suspend it. When the process is awakened (right after the
blocker lock has been released), it jumps to step 7 to retry the operation.
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Chapter 13. I/O Architecture and Device
Drivers
The Virtual File System in the last chapter depends on lower-level functions to carry out each
read, write, or other operation in a manner suited to each device. The previous chapter
included a brief discussion of how operations are handled by different filesystems. In this
chapter, we look at how the kernel invokes the operations on actual devices.

In the section "I/O Architecture," we give a brief survey of the 80 x 86 I/O architecture. In
the section "The Device Driver Model," we introduce the Linux device driver model. Next, in
the section "Device Files," we show how the VFS associates a special file called "device file"
with each different hardware device, so that application programs can use all kinds of devices
in the same way. We then introduce in the section "Device Drivers" some common
characteristics of device drivers. Finally, in the section "Character Device Drivers," we
illustrate the overall organization of character device drivers in Linux. We'll defer the
discussion of block device drivers to the next chapters.

Readers interested in developing device drivers on their own may want to refer to Jonathan
Corbet, Alessandro Rubini, and Greg Kroah-Hartman's Linux Device Drivers, Third Edition
(O'Reilly).
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13.1. I/O Architecture
To make a computer work properly, data paths must be provided that let information flow
between CPU(s), RAM, and the score of I/O devices that can be connected to a personal
computer. These data paths, which are denoted as the buses , act as the primary
communication channels inside the computer.

Any computer has a system bus that connects most of the internal hardware devices. A
typical system bus is the PCI (Peripheral Component Interconnect) bus. Several other types
of buses, such as ISA, EISA, MCA, SCSI, and USB, are currently in use. Typically, the same
computer includes several buses of different types, linked together by hardware devices
called bridges . Two high-speed buses are dedicated to the data transfers to and from the
memory chips: the frontside bus connects the CPUs to the RAM controller, while the backside
bus connects the CPUs directly to the external hardware cache. The host bridge links
together the system bus and the frontside bus.

Any I/O device is hosted by one, and only one, bus. The bus type affects the internal design
of the I/O device, as well as how the device has to be handled by the kernel. In this section,
we discuss the functional characteristics common to all PC architectures, without giving
details about a specific bus type.

The data path that connects a CPU to an I/O device is generically called an I/O bus. The 80 x
86 microprocessors use 16 of their address pins to address I/O devices and 8, 16, or 32 of
their data pins to transfer data. The I/O bus, in turn, is connected to each I/O device by
means of a hierarchy of hardware components including up to three elements: I/O ports ,
interfaces, and device controllers. Figure 13-1 shows the components of the I/O architecture.

Figure 13-1. PC's I/O architecture

13.1.1. I/O Ports

Each device connected to the I/O bus has its own set of I/O addresses, which are usually
called I/O ports. In the IBM PC architecture, the I/O address space provides up to 65,536
8-bit I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port, which
must start on an even address. Similarly, two consecutive 16-bit ports may be regarded as a
single 32-bit port, which must start on an address that is a multiple of 4. Four special
assembly language instructions called in, ins , out , and outs allow the CPU to read from and
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write into an I/O port. While executing one of these instructions, the CPU selects the required
I/O port and transfers the data between a CPU register and the port.

I/O ports may also be mapped into addresses of the physical address space. The processor is
then able to communicate with an I/O device by issuing assembly language instructions that
operate directly on memory (for instance, mov, and, or, and so on). Modern hardware devices
are more suited to mapped I/O, because it is faster and can be combined with DMA.

An important objective for system designers is to offer a unified approach to I/O programming
without sacrificing performance. Toward that end, the I/O ports of each device are structured
into a set of specialized registers, as shown in Figure 13-2. The CPU writes the commands to
be sent to the device into the device control register and reads a value that represents the
internal state of the device from the device status register. The CPU also fetches data from
the device by reading bytes from the device input register and pushes data to the device by
writing bytes into the device output register.

Figure 13-2. Specialized I/O ports

To lower costs, the same I/O port is often used for different purposes. For instance, some bits
describe the device state, while others specify the command to be issued to the device.
Similarly, the same I/O port may be used as an input register or an output register.

13.1.1.1. Accessing I/O ports

The in, out, ins, and outs assembly language instructions access I/O ports. The following
auxiliary functions are included in the kernel to simplify such accesses:

inb( ), inw( ), inl( )

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port. The suffix "b," "w,"
or "l" refers, respectively, to a byte (8 bits), a word (16 bits), and a long (32 bits).

inb_p( ), inw_p( ), inl_p( )

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port, and then execute a
"dummy" instruction to introduce a pause.

outb( ), outw( ), outl( )

Write 1, 2, or 4 consecutive bytes, respectively, to an I/O port.

outb_p( ), outw_p( ), outl_p( )

Write 1, 2, and 4 consecutive bytes, respectively, to an I/O port, and then execute a
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"dummy" instruction to introduce a pause.

insb( ), insw( ), insl( )

Read sequences of consecutive bytes in groups of 1, 2, or 4, respectively, from an I/O
port. The length of the sequence is specified as a parameter of the functions.

outsb( ), outsw( ), outsl( )

Write sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, to an I/O
port.

While accessing I/O ports is simple, detecting which I/O ports have been assigned to I/O
devices may not be easy, in particular, for systems based on an ISA bus. Often a device
driver must blindly write into some I/O port to probe the hardware device; if, however, this
I/O port is already used by some other hardware device, a system crash could occur. To
prevent such situations, the kernel keeps track of I/O ports assigned to each hardware device
by means of "resources ."

A resource represents a portion of some entity that can be exclusively assigned to a device
driver. In our case, a resource represents a range of I/O port addresses. The information
relative to each resource is stored in a resource data structure, whose fields are shown in
Table 13-1. All resources of the same kind are inserted in a tree-like data structure; for
instance, all resources representing I/O port address ranges are included in a tree rooted at
the node ioport_resource.

Table 13-1. The fields of the resource data structure

Type Field Description

const char * name Description of owner of the resource

unsigned long start Start of the resource range

unsigned long end End of the resource range

unsigned long flags Various flags

struct resource * parent Pointer to parent in the resource tree

struct resource * sibling Pointer to a sibling in the resource tree

struct resource * child Pointer to first child in the resource tree

The children of a node are collected in a list whose first element is pointed to by the child
field. The sibling field points to the next node in the list.

Why use a tree? Well, consider, for instance, the I/O port addresses used by an IDE hard disk
interfacelet's say from 0xf000 to 0xf00f. A resource with the start field set to 0xf000 and the
end field set to 0xf00f is then included in the tree, and the conventional name of the controller
is stored in the name field. However, the IDE device driver needs to remember another bit of
information, namely that the subrange from 0xf000 to 0xf007 is used for the master disk of the
IDE chain, while the subrange from 0xf008 to 0xf00f is used for the slave disk. To do this, the
device driver inserts two children below the resource corresponding to the whole range from 
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0xf000 to 0xf00f, one child for each subrange of I/O ports. As a general rule, each node of the
tree must correspond to a subrange of the range associated with the parent. The root of the
I/O port resource tree (ioport_resource) spans the whole I/O address space (from port
number 0 to 65535).

Each device driver may use the following three functions, passing to them the root node of
the resource tree and the address of a resource data structure of interest:

request_resource( )

Assigns a given range to an I/O device.

allocate_resource( )

Finds an available range having a given size and alignment in the resource tree; if it
exists, assigns the range to an I/O device (mainly used by drivers of PCI devices,
which can be configured to use arbitrary port numbers and on-board memory
addresses).

release_resource( )

Releases a given range previously assigned to an I/O device.

The kernel also defines some shortcuts to the above functions that apply to I/O ports: 
request_region( ) assigns a given interval of I/O ports and release_region( ) releases a
previously assigned interval of I/O ports. The tree of all I/O addresses currently assigned to
I/O devices can be obtained from the /proc/ioports file.

13.1.2. I/O Interfaces

An I/O interface is a hardware circuit inserted between a group of I/O ports and the
corresponding device controller. It acts as an interpreter that translates the values in the I/O
ports into commands and data for the device. In the opposite direction, it detects changes in
the device state and correspondingly updates the I/O port that plays the role of status
register. This circuit can also be connected through an IRQ line to a Programmable Interrupt
Controller, so that it issues interrupt requests on behalf of the device.

There are two types of interfaces:

Custom I/O interfaces

Devoted to one specific hardware device. In some cases, the device controller is
located in the same card[*] that contains the I/O interface. The devices attached to a
custom I/O interface can be either internal devices (devices located inside the PC's
cabinet) or external devices (devices located outside the PC's cabinet).

[*] Each card must be inserted in one of the available free bus slots of the PC. If the card can be
connected to an external device through an external cable, the card sports a suitable connector in the
rear panel of the PC .

General-purpose I/O interfaces

Used to connect several different hardware devices. Devices attached to a
general-purpose I/O interface are usually external devices.

13.1.2.1. Custom I/O interfaces
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Just to give an idea of how much variety is encompassed by custom I/O interfacesthus by the
devices currently installed in a PCwe'll list some of the most commonly found:

Keyboard interface

Connected to a keyboard controller that includes a dedicated microprocessor. This
microprocessor decodes the combination of pressed keys, generates an interrupt, and
puts the corresponding scan code in an input register.

Graphic interface

Packed together with the corresponding controller in a graphic card that has its own 
frame buffer, as well as a specialized processor and some code stored in a Read-Only
Memory chip (ROM). The frame buffer is an on-board memory containing a description
of the current screen contents.

Disk interface

Connected by a cable to the disk controller, which is usually integrated with the disk.
For instance, the IDE interface is connected by a 40-wire flat conductor cable to an
intelligent disk controller that can be found on the disk itself.

Bus mouse interface

Connected by a cable to the corresponding controller, which is included in the mouse.

Network interface

Packed together with the corresponding controller in a network card used to receive or
transmit network packets. Although there are several widely adopted network
standards, Ethernet (IEEE 802.3) is the most common.

13.1.2.2. General-purpose I/O interfaces

Modern PCs include several general-purpose I/O interfaces , which connect a wide range of
external devices. The most common interfaces are:

Parallel port

Traditionally used to connect printers, it can also be used to connect removable disks,
scanners, backup units, and other computers. The data is transferred 1 byte (8 bits)
at a time.

Serial port

Like the parallel port, but the data is transferred 1 bit at a time. It includes a Universal
Asynchronous Receiver and Transmitter (UART) chip to string out the bytes to be sent
into a sequence of bits and to reassemble the received bits into bytes. Because it is
intrinsically slower than the parallel port, this interface is mainly used to connect
external devices that do not operate at a high speed, such as modems, mouses, and
printers.

PCMCIA interface
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Included mostly on portable computers. The external device, which has the shape of a
credit card, can be inserted into and removed from a slot without rebooting the
system. The most common PCMCIA devices are hard disks, modems, network cards,
and RAM expansions.

SCSI (Small Computer System Interface) interface

A circuit that connects the main PC bus to a secondary bus called the SCSI bus. The
SCSI-2 bus allows up to eight PCs and external deviceshard disks, scanners, CD-ROM
writers, and so onto be connected. Wide SCSI-2 and the SCSI-3 interfaces allow you
to connect 16 devices or more if additional interfaces are present. The SCSI standard
is the communication protocol used to connect devices via the SCSI bus.

Universal serial bus (USB)

A general-purpose I/O interface that operates at a high speed and may be used for the
external devices traditionally connected to the parallel port, the serial port, and the
SCSI interface.

13.1.3. Device Controllers

A complex device may require a device controller to drive it. Essentially, the controller plays
two important roles:

 It interprets the high-level commands received from the I/O interface and forces the
device to execute specific actions by sending proper sequences of electrical signals to
it.

 It converts and properly interprets the electrical signals received from the device and
modifies (through the I/O interface) the value of the status register.

A typical device controller is the disk controller, which receives high-level commands such as
a "write this block of data" from the microprocessor (through the I/O interface) and converts
them into low-level disk operations such as "position the disk head on the right track" and
"write the data inside the track." Modern disk controllers are very sophisticated, because they
can keep the disk data in on-board fast disk caches and can reorder the CPU high-level
requests optimized for the actual disk geometry.

Simpler devices do not have a device controller; examples include the Programmable Interrupt
Controller (see the section "Interrupts and Exceptions" in Chapter 4) and the Programmable
Interval Timer (see the section "Programmable Interval Timer (PIT)" in Chapter 6).

Several hardware devices include their own memory, which is often called I/O shared memory
. For instance, all recent graphic cards include tens of megabytes of RAM in the frame buffer,
which is used to store the screen image to be displayed on the monitor. We will discuss I/O
shared memory in the section "Accessing the I/O Shared Memory" later in this chapter.
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13.2. The Device Driver Model
Earlier versions of the Linux kernel offered few basic functionalities to the device driver
developers: allocating dynamic memory, reserving a range of I/O addresses or an IRQ line,
activating an interrupt service routine in response to a device's interrupt. Older hardware
devices, in fact, were cumbersome and difficult to program, and two different hardware
devices had little in common even if they were hosted on the same bus. Thus, there was no
point in trying to offer a unifying model to the device driver developers.

Things are different now. Bus types such as PCI put strong demands on the internal design of
the hardware devices; as a consequence, recent hardware devices, even of different classes,
sport similar functionalities. Drivers for such devices should typically take care of:

 Power management (handling of different voltage levels on the device's power line)

 Plug and play (transparent allocation of resources when configuring the device)

 Hot-plugging (support for insertion and removal of the device while the system is
running)

Power management is performed globally by the kernel on every hardware device in the
system. For instance, when a battery-powered computer enters the "standby" state, the
kernel must force every hardware device (hard disks, graphics card, sound card, network
card, bus controllers, and so on) in a low-power state. Thus, each driver of a device that can
be put in the "standby" state must include a callback function that puts the hardware device
in the low-power state. Moreover, the hardware devices must be put in the "standby" state in
a precise order, otherwise some devices could be left in the wrong power state. For instance,
the kernel must put in "standby" first the hard disks and then their disk controller, because in
the opposite case it would be impossible to send commands to the hard disks.

To implement these kinds of operations, Linux 2.6 provides some data structures and helper
functions that offer a unifying view of all buses, devices, and device drivers in the system;
this framework is called the device driver model .

13.2.1. The sysfs Filesystem

The sysfs filesystem is a special filesystem similar to /proc that is usually mounted on the /sys
directory. The /proc filesystem was the first special filesystem designed to allow User Mode
applications to access kernel internal data structures. The /sysfs filesystem has essentially
the same objective, but it provides additional information on kernel data structures;
furthermore, /sysfs is organized in a more structured way than /proc. Likely, both /proc and
/sysfs will continue to coexist in the near future.

A goal of the sysfs filesystem is to expose the hierarchical relationships among the
components of the device driver model. The related top-level directories of this filesystem
are:

block

The block devices, independently from the bus to which they are connected.

devices

All hardware devices recognized by the kernel, organized according to the bus in which
they are connected.
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bus

The buses in the system, which host the devices.

drivers

The device drivers registered in the kernel.

class

The types of devices in the system (audio cards, network cards, graphics cards, and
so on); the same class may include devices hosted by different buses and driven by
different drivers.

power

Files to handle the power states of some hardware devices.

firmware

Files to handle the firmware of some hardware devices.

Relationships between components of the device driver models are expressed in the sysfs
filesystem as symbolic links between directories and files. For example, the 
/sys/block/sda/device file can be a symbolic link to a subdirectory nested in
/sys/devices/pci0000:00 representing the SCSI controller connected to the PCI bus.
Moreover, the /sys/block/sda/device/block file is a symbolic link to /sys/block/sda, stating
that this PCI device is the controller of the SCSI disk.

The main role of regular files in the sysfs filesystem is to represent attributes of drivers and
devices. For instance, the dev file in the /sys/block/hda directory contains the major and
minor numbers of the master disk in the first IDE chain.

13.2.2. Kobjects

The core data structure of the device driver model is a generic data structure named kobject,
which is inherently tied to the sysfs filesystem: each kobject corresponds to a directory in
that filesystem.

Kobjects are embedded inside larger objectsthe so-called "containers"that describe the
components of the device driver model.[*] The descriptors of buses, devices, and drivers are
typical examples of containers; for instance, the descriptor of the first partition in the first IDE
disk corresponds to the /sys/block/hda/hda1 directory.

[*] Kobjects are mainly used to implement the device driver model; how ever, there is an ongoing effort to change some other kernel
componentssuch as the module subsystemso as to use them.

Embedding a kobject inside a container allows the kernel to:

 Keep a reference counter for the container

 Maintain hierarchical lists or sets of containers (for instance, a sysfs directory
associated with a block device includes a different subdirectory for each disk partition)

 Provide a User Mode view for the attributes of the container

13.2.2.1. Kobjects, ksets, and subsystems
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A kobject is represented by a kobject data structure, whose fields are listed in Table 13-2.

Table 13-2. The fields of the kobject data structure

Type Field Description

char * k_name Pointer to a string holding the name of the container

char [] name String holding the name of the container, if it fits in 20 bytes

struct k_ref kref The reference counter for the container

struct list_head entry Pointers for the list in which the kobject is inserted

struct kobject * parent Pointer to the parent kobject, if any

struct kset * kset Pointer to the containing kset

struct kobj_type * ktype Pointer to the kobject type descriptor

struct dentry * dentry Pointer to the dentry of the sysfs file associated with the
kobject

The ktype field points to a kobj_type object representing the "type" of the kobjectessentially,
the type of the container that includes the kobject. The kobj_type data structure includes
three fields: a release method (executed when the kobject is being freed), a sysfs_ops pointer
to a table of sysfs operations, and a list of default attributes for the sysfs filesystem.

The kref field is a structure of type k_ref consisting of a single refcount field. As the name
implies, this field is the reference counter for the kobject, but it may act also as the reference
counter for the container of the kobject. The kobject_get( ) and kobject_put( ) functions
increase and decrease, respectively, the reference counter; if the counter reaches the value
zero, the resources used by the kobject are released and the release method of the kobj_type
object of the kobject is executed. This method, which is usually defined only if the container
of the kobject was allocated dynamically, frees the container itself.

The kobjects can be organized in a hierarchical tree by means of ksets . A kset is a collection
of kobjects of the same typethat is, included in the same type of container. The fields of the 
kset data structure are listed in Table 13-3.

Table 13-3. The fields of the kset data structure

Type Field Description

struct subsystem * subsys Pointer to the subsystem descriptor

struct kobj_type * ktype Pointer to the kobject type descriptor of the kset

struct list_head list Head of the list of kobjects included in the kset

struct kobject kobj Embedded kobject (see text)

struct kset_hotplug_ops hotplug_ops Pointer to a table of callback functions for kobject
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Table 13-3. The fields of the kset data structure

Type Field Description

* filtering and hot-plugging

The list field is the head of the doubly linked circular list of kobjects included in the kset;
the ktype field points to the same kobj_type descriptor shared by all kobjects in the kset.

The kobj field is a kobject embedded in the kset data structure; the parent field of the
kobjects contained in the kset points to this embedded kobject. Thus, a kset is a collection of
kobjects, but it relies on a kobject of higher level for reference counting and linking in the
hierarchical tree. This design choice is code-efficient and allows the greatest flexibility. For
instance, the kset_get( ) and kset_put( ) functions, which increase and decrease
respectively the reference counter of the kset, simply invoke kobject_get( ) and kobject_put(
) on the embedded kobject; because the reference counter of a kset is merely the reference
counter of the kobj kobject embedded in the kset. Moreover, thanks to the embedded
kobject, the kset data structure can be embedded in a "container" object, exactly as for the
kobject data structure. Finally, a kset can be made a member of another kset: it suffices to
insert the embedded kobject in the higher-level kset.

Collections of ksets called subsystems also exist. A subsystem may include ksets of different
types, and it is represented by a subsystem data structure having just two fields:

kset

An embedded kset that stores the ksets included in the subsystem

rwsem

A read-write semaphore that protects all ksets and kobjects recursively included in the
subsystem

Even the subsystem data structure can be embedded in a larger "container" object; the
reference counter of the container is thus the reference counter of the embedded
subsystemthat is, the reference counter of the kobject embedded in the kset embedded in the
subsystem. The subsys_get( ) and subsys_put( ) functions respectively increase and decrease
this reference counter.

Figure 13-3 illustrates an example of the device driver model hierarchy. The bus subsystem
includes a pci subsystem, which, in turn, includes a drivers kset. This kset contains a serial
kobjectcorresponding to the device driver for the serial porthaving a single new-id attribute.

Figure 13-3. An example of device driver model hierarchy
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13.2.2.2. Registering kobjects, ksets, and subsystems

As a general rule, if you want a kobject, kset, or subsystem to appear in the sysfs subtree,
you must first register it. The directory associated with a kobject always appears in the
directory of the parent kobject. For instance, the directories of kobjects included in the same
kset appear in the directory of the kset itself. Therefore, the structure of the sysfs subtree
represents the hierarchical relationships between the various registered kobjects and,
consequently, between the various container objects. Usually, the top-level directories of the 
sysfs filesystem are associated with the registered subsystems.

The kobject_register( ) function initializes a kobject and adds the corresponding directory to
the sysfs filesystem. Before invoking it, the caller should set the kset field in the kobject so
that it points to the parent kset, if any. The kobject_unregister( ) function removes a
kobject's directory from the sysfs filesystem. To make life easier for kernel developers, Linux
also offers the kset_register( ) and kset_unregister( ) functions, and the
subsystem_register( ) and subsystem_unregister( ) functions, but they are essentially
wrapper functions around kobject_register( ) and kobject_unregister( ).

As stated before, many kobject directories include regular files called attributes . The
sysfs_create_file( ) function receives as its parameters the addresses of a kobject and an
attribute descriptor, and creates the special file in the proper directory. Other relationships
between the objects represented in the sysfs filesystem are established by means of symbolic
links: the sysfs_create_link() function creates a symbolic link for a given kobject in a
directory associated with another kobject.

13.2.3. Components of the Device Driver Model

The device driver model is built upon a handful of basic data structures, which represent
buses, devices, device drivers, etc. Let us examine them.

13.2.3.1. Devices

Each device in the device driver model is represented by a device object, whose fields are
shown in Table 13-4.
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Table 13-4. The fields of the device object

Type Field Description

struct list_head node Pointers for the list of sibling devices

struct list_head bus_list Pointers for the list of devices on the same
bus type

struct list_head driver_list Pointers for the driver's list of devices

struct list_head children Head of the list of children devices

struct device * parent Pointer to the parent device

struct kobject kobj Embedded kobject

char [] bus_id Device position on the hosting bus

struct bus_type * bus Pointer to the hosting bus

struct device_driver * driver Pointer to the controlling device driver

void * driver_data Pointer to private data for the driver

void * platform_data Pointer to private data for legacy device
drivers

struct dev_pm_info power Power management information

unsigned long detach_state Power state to be entered when unloading
the device driver

unsigned long long * dma_mask
Pointer to the DMA mask of the device
(see the later section "Direct Memory
Access (DMA)")

unsigned long long coherent_dma_mask Mask for coherent DMA of the device

struct list_head dma_pools Head of a list of aggregate DMA buffers

struct
dma_coherent_mem * dma_mem

Pointer to a descriptor of the coherent
DMA memory used by the device (see the
later section "Direct Memory Access (DMA)
")

void (*)(struct device *) release Callback function for releasing the device
descriptor

The device objects are globally collected in the devices_subsys subsystem, which is associated
with the /sys/devices directory (see the earlier section "Kobjects"). The devices are organized
hierarchically: a device is the "parent" of some "children" devices if the children devices
cannot work properly without the parent device. For instance, in a PCI-based computer, a
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bridge between the PCI bus and the USB bus is the parent device of every device hosted on
the USB bus. The parent field of the device object points to the descriptor of the parent
device, the children field is the head of the list of children devices, and the node field stores
the pointers to the adjacent elements in the children list. The parenthood relationships
between the kobjects embedded in the device objects reflect also the device hierarchy; thus,
the structure of the directories below /sys/devices matches the physical organization of the
hardware devices.

Each driver keeps a list of device objects including all managed devices; the driver_list field
of the device object stores the pointers to the adjacent elements, while the driver field
points to the descriptor of the device driver. For each bus type, moreover, there is a list
including all devices that are hosted on the buses of the given type; the bus_list field of the
device object stores the pointers to the adjacent elements, while the bus field points to the
bus type descriptor.

A reference counter keeps track of the usage of the device object; it is included in the kobj
kobject embedded in the descriptor. The counter is increased by invoking get_device( ), and
it is decreased by invoking put_device( ).

The device_register( ) function inserts a new device object in the device driver model, and
automatically creates a new directory for it under /sys/devices . Conversely, the
device_unregister( ) function removes a device from the device driver model.

Usually, the device object is statically embedded in a larger descriptor. For instance, PCI
devices are described by pci_dev data structures; the dev field of this structure is a device
object, while the other fields are specific to the PCI bus. The device_register( ) and
device_unregister( ) functions are executed when the device is being registered or
de-registered in the PCI kernel layer.

13.2.3.2. Drivers

Each driver in the device driver model is described by a device_driver object, whose fields are
listed in Table 13-5.

Table 13-5. The fields of the device_driver object

Type Field Description

char * name Name of the device driver

struct bus_type * bus Pointer to descriptor of the bus that hosts the
supported devices

struct semaphore unload_sem

Semaphore to forbid device driver unloading; it is
released when the reference counter reaches
zero

struct kobject kobj Embedded kobject

struct list_head devices Head of the list including all devices supported
by the driver

struct module * owner Identifies the module that implements the device
driver, if any (see Appendix B)

int (*)(struct device *) probe Method for probing a device (checking that it
can be handled by the device driver)
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Table 13-5. The fields of the device_driver object

Type Field Description

int (*)(struct device *) remove Method invoked on a device when it is removed

void (*)(struct device *) shutdown Method invoked on a device when it is powered
off (shut down)

int (*)(struct device *,

unsigned long, unsigned long)
suspend Method invoked on a device when it is put in

low-power state

int (*)(struct device *,

unsigned long)
resume Method invoked on a device when it is put back

in the normal state (full power)

The device_driver object includes four methods for handling hot-plugging, plug and play, and
power management. The probe method is invoked whenever a bus device driver discovers a
device that could possibly be handled by the driver; the corresponding function should probe
the hardware to perform further checks on the device. The remove method is invoked on a
hot-pluggable device whenever it is removed; it is also invoked on every device handled by
the driver when the driver itself is unloaded. The shutdown, suspend, and resume methods are
invoked on a device when the kernel must change its power state.

The reference counter included in the kobj kobject embedded in the descriptor keeps track of
the usage of the device_driver object. The counter is increased by invoking get_driver( ),
and it is decreased by invoking put_driver( ).

The driver_register( ) function inserts a new device_driver object in the device driver
model, and automatically creates a new directory for it in the sysfs filesystem. Conversely,
the driver_unregister( ) function removes a driver from the device driver model.

Usually, the device_driver object is statically embedded in a larger descriptor. For instance,
PCI device drivers are described by pci_driver data structures; the driver field of this
structure is a device_driver object, while the other fields are specific to the PCI bus.

13.2.3.3. Buses

Each bus type supported by the kernel is described by a bus_type object, whose fields are
listed in Table 13-6.

Table 13-6. The fields of the bus_type object

Type Field Description

char * name Name of the bus type

struct subsystem subsys Kobject subsystem associated with this bus type

struct kset drivers The set of kobjects of the drivers

struct kset devices The set of kobjects of the devices

struct bus_attribute * bus_attrs
Pointer to the object including the bus attributes
and the methods for exporting them to the sysfs
filesystem
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Table 13-6. The fields of the bus_type object

Type Field Description

struct device_attribute * dev_attrs
Pointer to the object including the device
attributes and the methods for exporting them to
the sysfs filesystem

struct driver_attribute * drv_attrs
Pointer to the object including the device driver
attributes and the methods for exporting them to
the sysfs filesystem

int (*)(struct device *,

struct device_driver *)
match Method for checking whether a given driver

supports a given device

int (*)(struct device *, char

**, int, char *, int)
hotplug Method invoked when a device is being registered

int (*)(struct device *,

unsigned long)
suspend Method for saving the hardware context state

and changing the power level of a device

int (*)(struct device *) resume Method for changing the power level and
restoring the hardware context of a device

Each bus_type object includes an embedded subsystem; the subsystem stored in the
bus_subsys variable collects all subsystems embedded in the bus_type objects. The bus_subsys
subsystem is associated with the /sys/bus directory; thus, for example, there exists a
/sys/bus/pci directory associated with the PCI bus type. The per-bus subsystem typically
includes only two ksets named drivers and devices (corresponding to the drivers and devices
fields of the bus_type object, respectively).

The drivers kset contains the device_driver descriptors of all device drivers pertaining to the
bus type, while the devices kset contains the device descriptors of all devices of the given
bus type. Because the directories of the devices' kobjects already appear in the sysfs
filesystem under /sys/devices, the devices directory of the per-bus subsystem stores symbolic
links pointing to directories under /sys/devices. The bus_for_each_drv( ) and
bus_for_each_dev( ) functions iterate over the elements of the lists of drivers and devices,
respectively.

The match method is executed when the kernel must check whether a given device can be
handled by a given driver. Even if each device's identifier has a format specific to the bus that
hosts the device, the function that implements the method is usually simple, because it
searches the device's identifier in the driver's table of supported identifiers. The hotplug
method is executed when a device is being registered in the device driver model; the
implementing function should add bus-specific information to be passed as environment
variables to a User Mode program that is notified about the new available device (see the
later section "Device Driver Registration"). Finally, the suspend and resume methods are
executed when a device on a bus of the given type must change its power state.

13.2.3.4. Classes

Each class is described by a class object. All class objects belong to the class_subsys
subsystem associated with the /sys/class directory. Each class object, moreover, includes an
embedded subsystem; thus, for example, there exists a /sys/class/input directory associated
with the input class of the device driver model.

Each class object includes a list of class_device descriptors, each of which represents a
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single logical device belonging to the class. The class_device structure includes a dev field
that points to a device descriptor, thus a logical device always refers to a given device in the
device driver model. However, there can be several class_device descriptors that refer to the
same device. In fact, a hardware device might include several different sub-devices, each of
which requires a different User Mode interface. For example, the sound card is a hardware
device that usually includes a DSP, a mixer, a game port interface, and so on; each
sub-device requires its own User Mode interface, thus it is associated with its own directory in
the sysfs filesystem.

Device drivers in the same class are expected to offer the same functionalities to the User
Mode applications; for instance, all device drivers of sound cards should offer a way to write
sound samples to the DSP.

The classes of the device driver model are essentially aimed to provide a standard method for
exporting to User Mode applications the interfaces of the logical devices . Each class_device
descriptor embeds a kobject having an attribute (special file) named dev. Such attribute
stores the major and minor numbers of the device file that is needed to access to the
corresponding logical device (see the next section).
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13.3. Device Files
As mentioned in Chapter 1, Unix-like operating systems are based on the notion of a file,
which is just an information container structured as a sequence of bytes. According to this
approach, I/O devices are treated as special files called device files ; thus, the same system
calls used to interact with regular files on disk can be used to directly interact with I/O
devices. For example, the same write( ) system call may be used to write data into a regular
file or to send it to a printer by writing to the /dev/lp0 device file.

According to the characteristics of the underlying device drivers, device files can be of two
types: block or character. The difference between the two classes of hardware devices is not
so clear-cut. At least we can assume the following:

 The data of a block device can be addressed randomly, and the time needed to
transfer a data block is small and roughly the same, at least from the point of view of
the human user. Typical examples of block devices are hard disks, floppy disks ,
CD-ROM drives, and DVD players.

 The data of a character device either cannot be addressed randomly (consider, for
instance, a sound card), or they can be addressed randomly, but the time required to
access a random datum largely depends on its position inside the device (consider, for
instance, a magnetic tape driver).

Network cards are a notable exception to this schema, because they are hardware devices
that are not directly associated with device files.

Device files have been in use since the early versions of the Unix operating system. A device
file is usually a real file stored in a filesystem. Its inode, however, doesn't need to include
pointers to blocks of data on the disk (the file's data) because there are none. Instead, the
inode must include an identifier of the hardware device corresponding to the character or
block device file.

Traditionally, this identifier consists of the type of device file (character or block) and a pair
of numbers. The first number, called the major number, identifies the device type.
Traditionally, all device files that have the same major number and the same type share the
same set of file operations, because they are handled by the same device driver. The second
number, called the minor number, identifies a specific device among a group of devices that
share the same major number. For instance, a group of disks managed by the same disk
controller have the same major number and different minor numbers .

The mknod( ) system call is used to create device files. It receives the name of the device
file, its type, and the major and minor numbers as its parameters. Device files are usually
included in the /dev directory. Table 13-7 illustrates the attributes of some device files.
Notice that character and block devices have independent numbering, so block device (3,0) is
different from character device (3,0).

Table 13-7. Examples of device files

Name Type Major Minor Description

/dev/fd0 block 2 0 Floppy disk

/dev/hda block 3 0 First IDE disk

/dev/hda2 block 3 2 Second primary partition of first IDE disk
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Table 13-7. Examples of device files

Name Type Major Minor Description

/dev/hdb block 3 64 Second IDE disk

/dev/hdb3 block 3 67 Third primary partition of second IDE disk

/dev/ttyp0 char 3 0 Terminal

/dev/console char 5 1 Console

/dev/lp1 char 6 1 Parallel printer

/dev/ttyS0 char 4 64 First serial port

/dev/rtc char 10 135 Real-time clock

/dev/null char 1 3 Null device (black hole)

Usually, a device file is associated with a hardware device (such as a hard diskfor instance, 
/dev/hda) or with some physical or logical portion of a hardware device (such as a disk
partitionfor instance, /dev/hda2). In some cases, however, a device file is not associated with
any real hardware device, but represents a fictitious logical device. For instance, /dev/null is a
device file corresponding to a "black hole;" all data written into it is simply discarded, and the
file always appears empty.

As far as the kernel is concerned, the name of the device file is irrelevant. If you create a
device file named /tmp/disk of type "block" with the major number 3 and minor number 0, it
would be equivalent to the /dev/hda device file shown in the table. On the other hand, device
filenames may be significant for some application programs. For example, a communication
program might assume that the first serial port is associated with the /dev/ttyS0 device file.
But most application programs can be configured to interact with arbitrarily named device
files.

13.3.1. User Mode Handling of Device Files

In traditional Unix systems (and in earlier versions of Linux), the major and minor numbers of
the device files are 8 bits long. Thus, there could be at most 65,536 block device files and
65,536 character device files. You might expect they will suffice, but unfortunately they
don't.

The real problem is that device files are traditionally allocated once and forever in the /dev
directory; therefore, each logical device in the system should have an associated device file
with a well-defined device number. The official registry of allocated device numbers and /dev
directory nodes is stored in the Documentation/devices.txt file; the macros corresponding to
the major numbers of the devices may also be found in the include/linux/major.h file.

Unfortunately, the number of different hardware devices is so large nowadays that almost all
device numbers have already been allocated. The official registry of device numbers works
well for the average Linux system; however, it may not be well suited for large-scale systems.
Furthermore, high-end systems may use hundreds or thousands of disks of the same type, and
an 8-bit minor number is not sufficient. For instance, the registry reserves device numbers for
16 SCSI disks having 15 partitions each; if a high-end system has more than 16 SCSI disks,
the standard assignment of major and minor numbers has to be changeda non trivial task that
requires modifying the kernel source code and makes the system hard to maintain.
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In order to solve this kind of problem, the size of the device numbers has been increased in
Linux 2.6: the major number is now encoded in 12 bits, while the minor number is encoded in
20 bits. Both numbers are usually kept in a single 32-bit variable of type dev_t; the MAJOR and
MINOR macros extract the major and minor numbers, respectively, from a dev_t value, while
the MKDEV macro encodes the two device numbers in a dev_t value. For backward
compatibility, the kernel handles properly old device files encoded with 16-bit device numbers.

The additional available device numbers are not being statically allocated in the official
registry, because they should be used only when dealing with unusual demands for device
numbers. Actually, today's preferred way to deal with device files is highly dynamic, both in
the device number assignment and in the device file creation.

13.3.1.1. Dynamic device number assignment

Each device driver specifies in the registration phase the range of device numbers that it is
going to handle (see the later section "Device Driver Registration"). The driver can, however,
require the allocation of an interval of device numbers without specifying the exact values: in
this case, the kernel allocates a suitable range of numbers and assigns them to the driver.

Therefore, device drivers of new hardware devices no longer require an assignment in the
official registry of device numbers; they can simply use whatever numbers are currently
available in the system.

In this case, however, the device file cannot be created once and forever; it must be created
right after the device driver initialization with the proper major and minor numbers. Thus, there
must be a standard way to export the device numbers used by each driver to the User Mode
applications. As we have seen in the earlier section "Components of the Device Driver Model,"
the device driver model provides an elegant solution: the major and minor numbers are stored
in the dev attributes contained in the subdirectories of /sys/class.

13.3.1.2. Dynamic device file creation

The Linux kernel can create the device files dynamically: there is no need to fill the /dev
directory with the device files of every conceivable hardware device, because the device files
can be created "on demand." Thanks to the device driver model, the kernel 2.6 offers a very
simple way to do so. A set of User Mode programs, collectively known as the udev toolset,
must be installed in the system. At the system startup the /dev directory is emptied, then a
udev program scans the subdirectories of /sys/class looking for the dev files. For each such
file, which represents a combination of major and minor number for a logical device supported
by the kernel, the program creates a corresponding device file in /dev. It also assigns device
filenames and creates symbolic links according to a configuration file, in such a way to
resemble the traditional naming scheme for Unix device files. Eventually, /dev is filled with the
device files of all devices supported by the kernel on this system, and nothing else.

Often a device file is created after the system has been initialized. This happens either when
a module containing a device driver for a still unsupported device is loaded, or when a
hot-pluggable devicesuch as a USB peripheralis plugged in the system. The udev toolset can
automatically create the corresponding device file, because the device driver model supports 
device hotplugging . Whenever a new device is discovered, the kernel spawns a new process
that executes the User Mode /sbin/hotplug shell script,[*] passing to it any useful information
on the discovered device as environment variables. The User Mode scripts usually reads a
configuration file and takes care of any operation required to complete the initialization of the
new device. If udev is installed, the script also creates the proper device file in the /dev
directory.

[*] The pathname of the User Mode program invoked on hot-plugging events can be changed by w riting into the
/proc/sys/kernel/hotplug file.

13.3.2. VFS Handling of Device Files

Device files live in the system directory tree but are intrinsically different from regular files and
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directories. When a process accesses a regular file, it is accessing some data blocks in a disk
partition through a filesystem; when a process accesses a device file, it is just driving a
hardware device. For instance, a process might access a device file to read the room
temperature from a digital thermometer connected to the computer. It is the VFS's
responsibility to hide the differences between device files and regular files from application
programs.

To do this, the VFS changes the default file operations of a device file when it is opened; as a
result, each system call on the device file is translated to an invocation of a device-related
function instead of the corresponding function of the hosting filesystem. The device-related
function acts on the hardware device to perform the operation requested by the process.[ ]

[ ] Notice that, thanks to the name-resolving mechanism explained in the section "Pathname Lookup" in Chapter 12, symbolic links
to device files w ork just like device files.

Let's suppose that a process executes an open( ) system call on a device file (either of type
block or character). The operations performed by the system call have already been described
in the section "The open( ) System Call" in Chapter 12. Essentially, the corresponding service
routine resolves the pathname to the device file and sets up the corresponding inode object,
dentry object, and file object.

The inode object is initialized by reading the corresponding inode on disk through a suitable
function of the filesystem (usually ext2_read_inode( ) or ext3_read_inode( ); see Chapter 18).
When this function determines that the disk inode is relative to a device file, it invokes 
init_special_inode( ), which initializes the i_rdev field of the inode object to the major and
minor numbers of the device file, and sets the i_fop field of the inode object to the address of
either the def_blk_fops or the def_chr_fops file operation table, according to the type of
device file. The service routine of the open( ) system call also invokes the dentry_open( )
function, which allocates a new file object and sets its f_op field to the address stored in
i_fopthat is, to the address of def_blk_fops or def_chr_fops once again. Thanks to these two
tables, every system call issued on a device file will activate a device driver's function rather
than a function of the underlying filesystem.
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13.4. Device Drivers
A device driver is the set of kernel routines that makes a hardware device respond to the
programming interface defined by the canonical set of VFS functions (open, read, lseek, ioctl,
and so forth) that control a device. The actual implementation of all these functions is
delegated to the device driver. Because each device has a different I/O controller, and thus
different commands and different state information, most I/O devices have their own drivers.

There are many types of device drivers . They mainly differ in the level of support that they
offer to the User Mode applications, as well as in their buffering strategies for the data
collected from the hardware devices. Because these choices greatly influence the internal
structure of a device driver, we discuss them in the sections "Direct Memory Access (DMA)"
and "Buffering Strategies for Character Devices."

A device driver does not consist only of the functions that implement the device file
operations. Before using a device driver, several activities must have taken place. We'll
examine them in the following sections.

13.4.1. Device Driver Registration

We know that each system call issued on a device file is translated by the kernel into an
invocation of a suitable function of a corresponding device driver. To achieve this, a device
driver must register itself. In other words, registering a device driver means allocating a new
device_driver descriptor, inserting it in the data structures of the device driver model (see
the earlier section "Components of the Device Driver Model"), and linking it to the
corresponding device file(s). Accesses to device files whose corresponding drivers have not
been previously registered return the error code -ENODEV.

If a device driver is statically compiled in the kernel, its registration is performed during the
kernel initialization phase. Conversely, if a device driver is compiled as a kernel module (see 
Appendix B), its registration is performed when the module is loaded. In the latter case, the
device driver can also unregister itself when the module is unloaded.

Let us consider, for instance, a generic PCI device. To properly handle it, its device driver
must allocate a descriptor of type pci_driver, which is used by the PCI kernel layer to handle
the device. After having initialized some fields of this descriptor, the device driver invokes the 
pci_register_driver( ) function. Actually, the pci_driver descriptor includes an embedded
device_driver descriptor (see the earlier section "Components of the Device Driver Model");
the pci_register_function( ) simply initializes the fields of the embedded driver descriptor and
invokes driver_register( ) to insert the driver in the data structures of the device driver
model.

When a device driver is being registered, the kernel looks for unsupported hardware devices
that could be possibly handled by the driver. To do this, it relies on the match method of the
relevant bus_type bus type descriptor, and on the probe method of the device_driver object.
If a hardware device that can be handled by the driver is discovered, the kernel allocates a 
device object and invokes device_register( ) to insert the device in the device driver model.

13.4.2. Device Driver Initialization

Registering a device driver and initializing it are two different things. A device driver is
registered as soon as possible, so User Mode applications can use it through the
corresponding device files. In contrast, a device driver is initialized at the last possible
moment. In fact, initializing a driver means allocating precious resources of the system, which
are therefore not available to other drivers.

We already have seen an example in the section "I/O Interrupt Handling" in Chapter 4: the

Page 539

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


assignment of IRQs to devices is usually made dynamically, right before using them, because
several devices may share the same IRQ line. Other resources that can be allocated at the
last possible moment are page frames for DMA transfer buffers and the DMA channel itself (for
old non-PCI devices such as the floppy disk driver).

To make sure the resources are obtained when needed but are not requested in a redundant
manner when they have already been granted, device drivers usually adopt the following
schema:

 A usage counter keeps track of the number of processes that are currently accessing
the device file. The counter is increased in the open method of the device file and
decreased in the release method.[*]

[*] More precisely, the usage counter keeps track of the number of file objects referring to the device file, because clone
processes could share the same file object.

 The open method checks the value of the usage counter before the increment. If the
counter is zero, the device driver must allocate the resources and enable interrupts
and DMA on the hardware device.

 The release method checks the value of the usage counter after the decrement. If the
counter is zero, no more processes are using the hardware device. If so, the method
disables interrupts and DMA on the I/O controller, and then releases the allocated
resources.

13.4.3. Monitoring I/O Operations

The duration of an I/O operation is often unpredictable. It can depend on mechanical
considerations (the current position of a disk head with respect to the block to be
transferred), on truly random events (when a data packet arrives on the network card), or on
human factors (when a user presses a key on the keyboard or when she notices that a paper
jam occurred in the printer). In any case, the device driver that started an I/O operation must
rely on a monitoring technique that signals either the termination of the I/O operation or a
time-out.

In the case of a terminated operation, the device driver reads the status register of the I/O
interface to determine whether the I/O operation was carried out successfully. In the case of
a time-out, the driver knows that something went wrong, because the maximum time interval
allowed to complete the operation elapsed and nothing happened.

The two techniques available to monitor the end of an I/O operation are called the polling
mode and the interrupt mode.

13.4.3.1. Polling mode

According to this technique, the CPU checks (polls) the device's status register repeatedly
until its value signals that the I/O operation has been completed. We have already
encountered a technique based on polling in the section "Spin Locks" in Chapter 5: when a
processor tries to acquire a busy spin lock, it repeatedly polls the variable until its value
becomes 0. However, polling applied to I/O operations is usually more elaborate, because the
driver must also remember to check for possible time-outs. A simple example of polling looks
like the following:

    for (;;) {

        if (read_status(device) & DEVICE_END_OPERATION) break;

        if (--count == 0) break;

    }

The count variable, which was initialized before entering the loop, is decreased at each
iteration, and thus can be used to implement a rough time-out mechanism. Alternatively, a
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more precise time-out mechanism could be implemented by reading the value of the tick
counter jiffies at each iteration (see the section "Updating the Time and Date" in Chapter 6)
and comparing it with the old value read before starting the wait loop.

If the time required to complete the I/O operation is relatively high, say in the order of
milliseconds, this schema becomes inefficient because the CPU wastes precious machine
cycles while waiting for the I/O operation to complete. In such cases, it is preferable to
voluntarily relinquish the CPU after each polling operation by inserting an invocation of the 
schedule( ) function inside the loop.

13.4.3.2. Interrupt mode

Interrupt mode can be used only if the I/O controller is capable of signaling, via an IRQ line,
the end of an I/O operation.

We'll show how interrupt mode works on a simple case. Let's suppose we want to implement a
driver for a simple input character device. When the user issues a read( ) system call on the
corresponding device file, an input command is sent to the device's control register. After an
unpredictably long time interval, the device puts a single byte of data in its input register. The
device driver then returns this byte as the result of the read( ) system call.

This is a typical case in which it is preferable to implement the driver using the interrupt mode.
Essentially, the driver includes two functions:

1. The foo_read( ) function that implements the read method of the file object.

2. The foo_interrupt( ) function that handles the interrupt.

The foo_read( ) function is triggered whenever the user reads the device file:

    ssize_t foo_read(struct file *filp, char *buf, size_t count,

                     loff_t *ppos)

    {

        foo_dev_t * foo_dev = filp->private_data;

        if (down_interruptible(&foo_dev->sem)

            return -ERESTARTSYS;

        foo_dev->intr = 0;

        outb(DEV_FOO_READ, DEV_FOO_CONTROL_PORT);

        wait_event_interruptible(foo_dev->wait, (foo_dev->intr=  =1));

        if (put_user(foo_dev->data, buf))

            return -EFAULT;

        up(&foo_dev->sem);

        return 1;

    }

The device driver relies on a custom descriptor of type foo_dev_t; it includes a semaphore sem
that protects the hardware device from concurrent accesses, a wait queue wait, a flag intr
that is set when the device issues an interrupt, and a single-byte buffer data that is written
by the interrupt handler and read by the read method. In general, all I/O drivers that use
interrupts rely on data structures accessed by both the interrupt handler and the read and
write methods. The address of the foo_dev_t descriptor is usually stored in the private_data
field of the device file's file object or in a global variable.

The main operations of the foo_read( ) function are the following:

1. Acquires the foo_dev->sem semaphore, thus ensuring that no other process is accessing
the device.

2. Clears the intr flag.
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3. Issues the read command to the I/O device.

4. Executes wait_event_interruptible to suspend the process until the intr flag becomes
1. This macro is described in the section "Wait queues" in Chapter 3.

After some time, our device issues an interrupt to signal that the I/O operation is completed
and that the data is ready in the proper DEV_FOO_DATA_PORT data port. The interrupt handler
sets the intr flag and wakes the process. When the scheduler decides to reexecute the
process, the second part of foo_read( ) is executed and does the following:

1. Copies the character ready in the foo_dev->data variable into the user address space.

2. Terminates after releasing the foo_dev->sem semaphore.

For simplicity, we didn't include any time-out control. In general, time-out control is
implemented through static or dynamic timers (see Chapter 6); the timer must be set to the
right time before starting the I/O operation and removed when the operation terminates.

Let's now look at the code of the foo_interrupt( ) function:

    irqreturn_t foo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

    {

        foo->data = inb(DEV_FOO_DATA_PORT);

        foo->intr = 1;

        wake_up_interruptible(&foo->wait);

        return 1;

    }

The interrupt handler reads the character from the input register of the device and stores it in
the data field of the foo_dev_t descriptor of the device driver pointed to by the foo global
variable. It then sets the intr flag and invokes wake_up_interruptible( ) to wake the process
blocked in the foo->wait wait queue.

Notice that none of the three parameters are used by our interrupt handler. This is a rather
common case.

13.4.4. Accessing the I/O Shared Memory

Depending on the device and on the bus type, I/O shared memory in the PC's architecture
may be mapped within different physical address ranges. Typically:

For most devices connected to the ISA bus

The I/O shared memory is usually mapped into the 16-bit physical addresses ranging
from 0xa0000 to 0xfffff; this gives rise to the "hole" between 640 KB and 1 MB
mentioned in the section "Physical Memory Layout" in Chapter 2.

For devices connected to the PCI bus

The I/O shared memory is mapped into 32-bit physical addresses near the 4 GB
boundary. This kind of device is much simpler to handle.

A few years ago, Intel introduced the Accelerated Graphics Port (AGP) standard, which is an
enhancement of PCI for high-performance graphic cards. Beside having its own I/O shared
memory, this kind of card is capable of directly addressing portions of the motherboard's RAM
by means of a special hardware circuit named Graphics Address Remapping Table (GART ).
The GART circuitry enables AGP cards to sustain much higher data transfer rates than older
PCI cards. From the kernel's point of view, however, it doesn't really matter where the
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physical memory is located, and GART-mapped memory is handled like the other kinds of I/O
shared memory.

How does a device driver access an I/O shared memory location? Let's start with the PC's
architecture, which is relatively simple to handle, and then extend the discussion to other
architectures.

Remember that kernel programs act on linear addresses, so the I/O shared memory locations
must be expressed as addresses greater than PAGE_OFFSET. In the following discussion, we
assume that PAGE_OFFSET is equal to 0xc0000000that is, that the kernel linear addresses are in
the fourth gigabyte.

Device drivers must translate I/O physical addresses of I/O shared memory locations into
linear addresses in kernel space. In the PC architecture, this can be achieved simply by ORing
the 32-bit physical address with the 0xc0000000 constant. For instance, suppose the kernel
needs to store the value in the I/O location at physical address 0x000b0fe4 in t1 and the value
in the I/O location at physical address 0xfc000000 in t2. One might think that the following
statements could do the job:

    t1 = *((unsigned char *)(0xc00b0fe4));

    t2 = *((unsigned char *)(0xfc000000));

During the initialization phase, the kernel maps the available RAM's physical addresses into the
initial portion of the fourth gigabyte of the linear address space. Therefore, the Paging Unit
maps the 0xc00b0fe4 linear address appearing in the first statement back to the original I/O
physical address 0x000b0fe4, which falls inside the "ISA hole" between 640 KB and 1 MB (see
the section "Paging in Linux" in Chapter 2). This works fine.

There is a problem, however, for the second statement, because the I/O physical address is
greater than the last physical address of the system RAM. Therefore, the 0xfc000000 linear
address does not correspond to the 0xfc000000 physical address. In such cases, the kernel
Page Tables must be modified to include a linear address that maps the I/O physical address.
This can be done by invoking the ioremap( ) or ioremap_nocache( ) functions. The first
function, which is similar to vmalloc( ), invokes get_vm_area( ) to create a new vm_struct
descriptor (see the section "Descriptors of Noncontiguous Memory Areas" in Chapter 8) for a
linear address interval that has the size of the required I/O shared memory area. The
functions then update the corresponding Page Table entries of the canonical kernel Page
Tables appropriately. The ioremap_nocache( ) function differs from ioremap( ) in that it also
disables the hardware cache when referencing the remapped linear addresses properly.

The correct form for the second statement might therefore look like:

    io_mem = ioremap(0xfb000000, 0x200000);

    t2 = *((unsigned char *)(io_mem + 0x100000));

The first statement creates a new 2 MB linear address interval, which maps physical
addresses starting from 0xfb000000; the second one reads the memory location that has the
0xfc000000 address. To remove the mapping later, the device driver must use the iounmap( )
function.

On some architectures other than the PC, I/O shared memory cannot be accessed by simply
dereferencing the linear address pointing to the physical memory location. Therefore, Linux
defines the following architecture-dependent functions, which should be used when accessing
I/O shared memory:

readb( ), readw( ), readl( )
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Reads 1, 2, or 4 bytes, respectively, from an I/O shared memory location

writeb( ), writew( ), writel( )

Writes 1, 2, or 4 bytes, respectively, into an I/O shared memory location

memcpy_fromio( ), memcpy_toio( )

Copies a block of data from an I/O shared memory location to dynamic memory and
vice versa

memset_io( )

Fills an I/O shared memory area with a fixed value

The recommended way to access the 0xfc000000 I/O location is thus:

    io_mem = ioremap(0xfb000000, 0x200000);

    t2 = readb(io_mem + 0x100000);

Thanks to these functions, all dependencies on platform-specific ways of accessing the I/O
shared memory can be hidden.

13.4.5. Direct Memory Access (DMA)

In the original PC architecture, the CPU is the only bus master of the system, that is, the only
hardware device that drives the address/data bus in order to fetch and store values in the
RAM's locations. With more modern bus architectures such as PCI, each peripheral can act as
bus master, if provided with the proper circuitry. Thus, nowadays all PCs include auxiliary DMA
circuits , which can transfer data between the RAM and an I/O device. Once activated by the
CPU, the DMA is able to continue the data transfer on its own; when the data transfer is
completed, the DMA issues an interrupt request. The conflicts that occur when CPUs and DMA
circuits need to access the same memory location at the same time are resolved by a
hardware circuit called a memory arbiter (see the section "Atomic Operations" in Chapter 5).

The DMA is mostly used by disk drivers and other devices that transfer a large number of
bytes at once. Because setup time for the DMA is relatively high, it is more efficient to
directly use the CPU for the data transfer when the number of bytes is small.

The first DMA circuits for the old ISA buses were complex, hard to program, and limited to the
lower 16 MB of physical memory. More recent DMA circuits for the PCI and SCSI buses rely on
dedicated hardware circuits in the buses and make life easier for device driver developers.

13.4.5.1. Synchronous and asynchronous DMA

A device driver can use the DMA in two different ways called synchronous DMA and
asynchronous DMA. In the first case, the data transfers are triggered by processes; in the
second case the data transfers are triggered by hardware devices.

An example of synchronous DMA is a sound card that is playing a sound track. A User Mode
application writes the sound data (called samples) on a device file associated with the digital
signal processor (DSP) of the sound card. The device driver of the sound card accumulates
these samples in a kernel buffer. At the same time, the device driver instructs the sound card
to copy the samples from the kernel buffer to the DSP with a well-defined timing. When the
sound card finishes the data transfer, it raises an interrupt, and the device driver checks
whether the kernel buffer still contains samples yet to be played; if so, the driver activates
another DMA data transfer.
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An example of asynchronous DMA is a network card that is receiving a frame (data packet)
from a LAN. The peripheral stores the frame in its I/O shared memory, then raises an interrupt.
The device driver of the network card acknowledges the interrupt, then instructs the
peripheral to copy the frame from the I/O shared memory into a kernel buffer. When the data
transfer completes, the network card raises another interrupt, and the device driver notifies
the upper kernel layer about the new frame.

13.4.5.2. Helper functions for DMA transfers

When designing a driver for a device that makes use of DMA, the developer should write code
that is both architecture-independent and, as far as DMA is concerned, bus-independent. This
goal is now feasible thanks to the rich set of DMA helper functions provided by the kernel.
These helper functions hide the differences in the DMA mechanisms of the various hardware
architectures.

There are two subsets of DMA helper functions: an older subset provides
architecture-independent functions for PCI devices; a more recent subset ensures both bus
and architecture independence. We'll now examine some of these functions while pointing out
some hardware peculiarities of DMAs.

13.4.5.3. Bus addresses

Every DMA transfer involves (at least) one memory buffer, which contains the data to be read
or written by the hardware device. In general, before activating the transfer, the device
driver must ensure that the DMA circuit can directly access the RAM locations.

Until now we have distinguished three kinds of memory addresses: logical and linear
addresses, which are used internally by the CPU, and physical addresses, which are the
memory addresses used by the CPU to physically drive the data bus. However, there is a
fourth kind of memory address: the so-called bus address. It corresponds to the memory
addresses used by all hardware devices except the CPU to drive the data bus.

Why should the kernel be concerned at all about bus addresses ? Well, in a DMA operation,
the data transfer takes place without CPU intervention; the data bus is driven directly by the
I/O device and the DMA circuit. Therefore, when the kernel sets up a DMA operation, it must
write the bus address of the memory buffer involved in the proper I/O ports of the DMA or I/O
device.

In the 80 x 86 architecture, bus addresses coincide with physical addresses. However, other
architectures such as Sun's SPARC and Hewlett-Packard's Alpha include a hardware circuit
called the I/O Memory Management Unit (IO-MMU), analog to the paging unit of the
microprocessor, which maps physical addresses into bus addresses. All I/O drivers that make
use of DMAs must set up properly the IO-MMU before starting the data transfer.

Different buses have different bus address sizes. For instance, bus addresses for ISA are
24-bits long, thus in the 80 x 86 architecture DMA transfers can be done only on the lower 16
MB of physical memorythat's why the memory for the buffer used by such DMA has to be
allocated in the ZONE_DMA memory zone with the GFP_DMA flag. The original PCI standard defines
bus addresses of 32 bits; however, some PCI hardware devices have been originally designed
for the ISA bus, thus they still cannot access RAM locations above physical address 
0x00ffffff. The recent PCI-X standard uses 64-bit bus addresses and allows DMA circuits to
address directly the high memory.

In Linux, the dma_addr_t type represents a generic bus address. In the 80 x 86 architecture
dma_addr_t corresponds to a 32-bit integer, unless the kernel supports PAE (see the section "
The Physical Address Extension (PAE) Paging Mechanism" in Chapter 2), in which case
dma_addr_t corresponds to a 64-bit integer.

The pci_set_dma_mask( ) and dma_set_mask( ) helper functions check whether the bus accepts
a given size for the bus addresses (mask) and, if so, notify the bus layer that the given
peripheral will use that size for its bus addresses.
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13.4.5.4. Cache coherency

The system architecture does not necessarily offer a coherency protocol between the
hardware cache and the DMA circuits at the hardware level, so the DMA helper functions must
take into consideration the hardware cache when implementing DMA mapping operations. To
see why, suppose that the device driver fills the memory buffer with some data, then
immediately instructs the hardware device to read that data with a DMA transfer. If the DMA
accesses the physical RAM locations but the corresponding hardware cache lines have not yet
been written to RAM, then the hardware device fetches the old values of the memory buffer.

Device driver developers may handle DMA buffers in two different ways by making use of two
different classes of helper functions. Using Linux terminology, the developer chooses between
two different DMA mapping types :

Coherent DMA mapping

When using this mapping, the kernel ensures that there will be no cache coherency
problems between the memory and the hardware device; this means that every write
operation performed by the CPU on a RAM location is immediately visible to the
hardware device, and vice versa. This type of mapping is also called "synchronous" or
"consistent."

Streaming DMA mapping

When using this mapping, the device driver must take care of cache coherency
problems by using the proper synchronization helper functions. This type of mapping is
also called "asynchronous" or "non-coherent."

In the 80 x 86 architecture there are never cache coherency problems when using the DMA,
because the hardware devices themselves take care of "snooping" the accesses to the
hardware caches. Therefore, a driver for a hardware device designed specifically for the 80 x
86 architecture may choose either one of the two DMA mapping types: they are essentially
equivalent. On the other hand, in many architecturessuch as MIPS, SPARC, and some models
of PowerPChardware devices do not always snoop in the hardware caches, so cache
coherency problems arise. In general, choosing the proper DMA mapping type for an
architecture-independent driver is not trivial.

As a general rule, if the buffer is accessed in unpredictable ways by the CPU and the DMA
processor, coherent DMA mapping is mandatory (for instance, buffers for SCSI adapters'
command data structures). In other cases, streaming DMA mapping is preferable, because in
some architectures handling the coherent DMA mapping is cumbersome and may lead to lower
system performance.

13.4.5.5. Helper functions for coherent DMA mappings

Usually, the device driver allocates the memory buffer and establishes the coherent DMA
mapping in the initialization phase; it releases the mapping and the buffer when it is unloaded.
To allocate a memory buffer and to establish a coherent DMA mapping, the kernel provides the
architecture-dependent pci_alloc_consistent( ) and dma_alloc_coherent( ) functions. They
both return the linear address and the bus address of the new buffer. In the 80 x 86
architecture, they return the linear address and the physical address of the new buffer. To
release the mapping and the buffer, the kernel provides the pci_free_consistent( ) and the
dma_free_coherent( ) functions.

13.4.5.6. Helper functions for streaming DMA mappings

Memory buffers for streaming DMA mappings are usually mapped just before the transfer and
unmapped thereafter. It is also possible to keep the same mapping among several DMA
transfers, but in this case the device driver developer must be aware of the hardware cache
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lying between the memory and the peripheral.

To set up a streaming DMA transfer, the driver must first dynamically allocate the memory
buffer by means of the zoned page frame allocator (see the section "The Zoned Page Frame
Allocator" in Chapter 8) or the generic memory allocator (see the section "General Purpose
Objects" in Chapter 8). Then, the drivers must establish the streaming DMA mapping by
invoking either the pci_map_single( ) or the dma_map_single( ) function, which receives as its
parameter the linear address of the buffer and returns its bus address. To release the
mapping, the driver invokes the corresponding pci_unmap_single( ) or dma_unmap_single( )
functions.

To avoid cache coherency problems, right before starting a DMA transfer from the RAM to the
device, the driver should invoke pci_dma_sync_single_for_device( ) or
dma_sync_single_for_device( ), which flush, if necessary, the cache lines corresponding to the
DMA buffer. Similarly, a device driver should not access a memory buffer right after the end of
a DMA transfer from the device to the RAM: instead, before reading the buffer, the driver
should invoke pci_dma_sync_single_for_cpu( ) or dma_sync_single_for_cpu( ), which invalidate,
if necessary, the corresponding hardware cache lines. In the 80 x 86 architecture, these
functions do almost nothing, because the coherency between hardware caches and DMAs is
maintained by the hardware.

Even buffers in high memory (see the section "Kernel Mappings of High-Memory Page Frames"
in Chapter 8) can be used for DMA transfers; the developer uses pci_map_page( )or
dma_map_page( )passing to it the descriptor address of the page including the buffer and the
offset of the buffer inside the page. Correspondingly, to release the mapping of the high
memory buffer, the developer uses pci_unmap_page( ) or dma_unmap_page( ).

13.4.6. Levels of Kernel Support

The Linux kernel does not fully support all possible existing I/O devices. Generally speaking, in
fact, there are three possible kinds of support for a hardware device:

No support at all

The application program interacts directly with the device's I/O ports by issuing
suitable in and out assembly language instructions.

Minimal support

The kernel does not recognize the hardware device, but does recognize its I/O
interface. User programs are able to treat the interface as a sequential device capable
of reading and/or writing sequences of characters.

Extended support

The kernel recognizes the hardware device and handles the I/O interface itself. In fact,
there might not even be a device file for the device.

The most common example of the first approach, which does not rely on any kernel device
driver, is how the X Window System traditionally handles the graphic display. This is quite
efficient, although it constrains the X server from using the hardware interrupts issued by the
I/O device. This approach also requires some additional effort to allow the X server to access
the required I/O ports. As mentioned in the section "Task State Segment" in Chapter 3, the
iopl( ) and ioperm( ) system calls grant a process the privilege to access I/O ports. They
can be invoked only by programs having root privileges. But such programs can be made
available to users by setting the setuid flag of the executable file (see the section "Process
Credentials and Capabilities" in Chapter 20).
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Recent Linux versions support several widely used graphic cards. The /dev/fb device file
provides an abstraction for the frame buffer of the graphic card and allows application
software to access it without needing to know anything about the I/O ports of the graphics
interface. Furthermore, the kernel supports the Direct Rendering Infrastructure (DRI) that
allows application software to exploit the hardware of accelerated 3D graphics cards. In any
case, the traditional do-it-yourself X Window System server is still widely adopted.

The minimal support approach is used to handle external hardware devices connected to a
general-purpose I/O interface. The kernel takes care of the I/O interface by offering a device
file (and thus a device driver); the application program handles the external hardware device
by reading and writing the device file.

Minimal support is preferable to extended support because it keeps the kernel size small.
However, among the general-purpose I/O interfaces commonly found on a PC, only the serial
port and the parallel port can be handled with this approach. Thus, a serial mouse is directly
controlled by an application program, such as the X server, and a serial modem always
requires a communication program, such as Minicom, Seyon, or a Point-to-Point Protocol (PPP)
daemon.

Minimal support has a limited range of applications, because it cannot be used when the
external device must interact heavily with internal kernel data structures. For example,
consider a removable hard disk that is connected to a general-purpose I/O interface. An
application program cannot interact with all kernel data structures and functions needed to
recognize the disk and to mount its filesystem, so extended support is mandatory in this case.

In general, every hardware device directly connected to the I/O bus, such as the internal
hard disk, is handled according to the extended support approach: the kernel must provide a
device driver for each such device. External devices attached to the Universal Serial Bus
(USB), the PCMCIA port found in many laptops, or the SCSI interfacein short, every
general-purpose I/O interface except the serial and the parallel portsalso require extended
support.

It is worth noting that the standard file-related system calls such as open( ) , read( ) , and
write( ) do not always give the application full control of the underlying hardware device. In
fact, the lowest-common-denominator approach of the VFS does not include room for special
commands that some devices need or let an application check whether the device is in a
specific internal state.

The ioctl( ) system call was introduced to satisfy such needs. Besides the file descriptor of
the device file and a second 32-bit parameter specifying the request, the system call can
accept an arbitrary number of additional parameters. For example, specific ioctl( ) requests
exist to get the CD-ROM sound volume or to eject the CD-ROM media. Application programs
may provide the user interface of a CD player using these kinds of ioctl( ) requests.
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13.5. Character Device Drivers
Handling a character device is relatively easy, because usually sophisticated buffering
strategies are not needed and disk caches are not involved. Of course, character devices
differ in their requirements: some of them must implement a sophisticated communication
protocol to drive the hardware device, while others just have to read a few values from a
couple of I/O ports of the hardware devices. For instance, the device driver of a multiport
serial card device (a hardware device offering many serial ports) is much more complicated
than the device driver of a bus mouse.

Block device drivers, on the other hand, are inherently more complex than character device
drivers . In fact, applications are entitled to ask repeatedly to read or write the same block of
data. Furthermore, accesses to these devices are usually very slow. These peculiarities have
a profound impact on the structure of the disk drivers. As we 'll see in the next chapters,
however, the kernel provides sophisticated componentssuch as the page cache and the block
I/O subsystemto handle them. In the rest of this chapter we focus our attention on the
character device drivers.

A character device driver is described by a cdev structure, whose fields are listed in Table
13-8.

Table 13-8. The fields of the cdev structure

Type Field Description

struct kobject kobj Embedded kobject

struct module * owner Pointer to the module implementing the driver, if any

struct file_operations * ops Pointer to the file operations table of the device driver

struct list_head list Head of the list of inodes relative to device files for this
character device

dev_t dev Initial major and minor numbers assigned to the device
driver

unsigned int count Size of the range of device numbers assigned to the device
driver

The list field is the head of a doubly linked circular list collecting inodes of character device
files that refer to the same character device driver. There could be many device files having
the same device number, and all of them refer to the same character device. Moreover, a
device driver can be associated with a range of device numbers, not just a single one; all
device files whose numbers fall in the range are handled by the same character device driver.
The size of the range is stored in the count field.

The cdev_alloc( ) function allocates dynamically a cdev descriptor and initializes the
embedded kobject so that the descriptor is automatically freed when the reference counter
becomes zero.

The cdev_add( ) function registers a cdev descriptor in the device driver model. The function
initializes the dev and count fields of the cdev descriptor, then invokes the kobj_map( )
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function. This function, in turn, sets up the device driver model's data structures that glue
the interval of device numbers to the device driver descriptor.

The device driver model defines a kobject mapping domain for the character devices, which is
represented by a descriptor of type kobj_map and is referenced by the cdev_map global variable.
The kobj_map descriptor includes a hash table of 255 entries indexed by the major number of
the intervals. The hash table stores objects of type probe, one for each registered range of
major and minor numbers, whose fields are listed in Table 13-9.

Table 13-9. The fields of the probe object

Type Field Description

struct probe * next Next element in hash collision list

dev_t dev Initial device number (major and minor) of the interval

unsigned long range Size of the interval

struct module * owner Pointer to the module that implements the device driver, if any

struct kobject *(*)

(dev_t, int *, void

*)

get Method for probing the owner of the interval

int (*)(dev_t, void

*)
lock Method for increasing the reference counter of the owner of

the interval

void * data Private data for the owner of the interval

When the kobj_map( ) function is invoked, the specified interval of device numbers is added to
the hash table. The data field of the corresponding probe object points to the cdev descriptor
of the device driver. The value of this field is passed to the get and lock methods when they
are executed. In this case, the get method is implemented by a short function that returns
the address of the kobject embedded in the cdev descriptor; the lock method, instead,
essentially increases the reference counter in the embedded kobject.

The kobj_lookup( ) function receives as input parameters a kobject mapping domain and a
device number; it searches the hash table and returns the address of the kobject of the
owner of the interval including the number, if it was found. When applied to the mapping
domain of the character devices, the function returns the address of the kobject embedded in
the cdev descriptor of the device driver that owns the interval of device numbers.

13.5.1. Assigning Device Numbers

To keep track of which character device numbers are currently assigned, the kernel uses a
hash table chrdevs, which contains intervals of device numbers. Two intervals may share the
same major number, but they cannot overlap, thus their minor numbers should be all different.
The table includes 255 entries, and the hash function masks out the four higher-order bits of
the major numbertherefore, major numbers less than 255 are hashed in different entries. Each
entry points to the first element of a collision list ordered by increasing major and minor
numbers.

Each list element is a char_device_struct structure, whose fields are shown in Table 13-10.
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Table 13-10. The fields of the char_device_struct descriptor

Type Field Description

unsigned char_device_struct * next The pointer to next element in hash collision list

unsigned int major The major number of the interval

unsigned int baseminor The initial minor number of the interval

int minorct The interval size

const char * name The name of the device driver that handles the
interval

struct file_operations * fops Not used

struct cdev * cdev Pointer to the character device driver descriptor

There are essentially two methods for assigning a range of device numbers to a character
device driver. The first method, which should be used for all new device drivers, relies on the 
register_chrdev_region( ) and alloc_chrdev_region( ) functions, and assigns an arbitrary
range of device numbers. For instance, to get an interval of numbers starting from the dev_t
value dev and of size size:

    register_chrdev_region(dev, size, "foo");

These functions do not execute cdev_add( ), so the device driver must execute cdev_add( )
after the requested interval has been successfully assigned.

The second method makes use of the register_chrdev( ) function and assigns a fixed interval
of device numbers including a single major number and minor numbers from 0 to 255. In this
case, the device driver must not invoke cdev_add( ).

13.5.1.1. The register_chrdev_region( ) and alloc_chrdev_region( ) functions

The register_chrdev_region( ) function receives three parameters: the initial device number
(major and minor numbers), the size of the requested range of device numbers (as the number
of minor numbers), and the name of the device driver that is requesting the device numbers.
The function checks whether the requested range spans several major numbers and, if so,
determines the major numbers and the corresponding intervals that cover the whole range;
then, the function invokes _ _register_chrdev_region( ) (described below) on each of these
intervals.

The alloc_chrdev_region( ) function is similar, but it is used to allocate dynamically a major
number; thus, it receives as its parameters the initial minor number of the interval, the size of
the interval, and the name of the device driver. This function also ends up invoking _
_register_chrdev_region( ).

The _ _register_chrdev_region( ) function executes the following steps:

1. Allocates a new char_device_struct structure, and fills it with zeros.

2. If the major number of the interval is zero, then the device driver has requested the
dynamic allocation of the major number. Starting from the last hash table entry and
proceeding backward, the function looks for an empty collision list (NULL pointer), which
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corresponds to a yet unused major number. If no empty entry is found, the function
returns an error code.[*]

[*] Notice that the kernel can dynamically allocate only major numbers less than 255, and that in
some cases allocation can fail even if there is a unused major number less than 255. We might
expect that these constraints will be removed in the future.

3. Initializes the fields of the char_device_struct structure with the initial device number
of the interval, the interval size, and the name of the device driver.

4. Executes the hash function to compute the hash table index corresponding to the
major number.

5. Walks the collision list, looking for the correct position of the new char_device_struct
structure. Meanwhile, if an interval overlapping with the requested one is found, it
returns an error code.

6. Inserts the new char_device_struct descriptor in the collision list.

7. Returns the address of the new char_device_struct descriptor.

13.5.1.2. The register_chrdev( ) function

The register_chrdev( ) function is used by drivers that require an old-style interval of device
numbers: a single major number and minor numbers ranging from 0 to 255. The function
receives as its parameters the requested major number major (zero for dynamic allocation),
the name of the device driver name, and a pointer fops to a table of file operations specific to
the character device files in the interval. It executes the following operations:

1. Invokes the _ _register_chrdev_region( ) function to allocate the requested interval.
If the function returns an error code (the interval cannot be assigned), it terminates.

2. Allocates a new cdev structure for the device driver.

3. Initializes the cdev structure:

a. Sets the type of the embedded kobject to the ktype_cdev_dynamic type
descriptor (see the earlier section "Kobjects").

b. Sets the owner field with the contents of fops->owner.

c. Sets the ops field with the address fops of the table of file operations.

d. Copies the characters of the device driver name into the name field of the
embedded kobject.

4. Invokes the cdev_add( ) function (explained previously).

5. Sets the cdev field of the char_device_struct descriptor _ _register_chrdev_region( )
returned in step 1 with the address of the cdev descriptor of the device driver.

6. Returns the major number of the assigned interval.

13.5.2. Accessing a Character Device Driver

We mentioned in the earlier section "VFS Handling of Device Files" that the dentry_open( )
function triggered by the open( ) system call service routine customizes the f_op field in the
file object of the character device file so that it points to the def_chr_fops table. This table is
almost empty; it only defines the chrdev_open( ) function as the open method of the device
file. This method is immediately invoked by dentry_open( ).

The chrdev_open( ) function receives as its parameters the addresses inode and filp of the
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inode and file objects relative to the device file being opened. It executes essentially the
following operations:

1. Checks the inode->i_cdev pointer to the device driver's cdev descriptor. If this field is
not NULL, then the inode has already been accessed: increases the reference counter
of the cdev descriptor and jumps to step 6.

2. Invokes the kobj_lookup( ) function to search the interval including the number. If
such interval does not exists, it returns an error code; otherwise, it computes the
address of the cdev descriptor associated with the interval.

3. Sets the inode->i_cdev field of the inode object to the address of the cdev descriptor.

4. Sets the inode->i_cindex field to the relative index of the device number inside the
interval of the device driver (index zero for the first minor number in the interval, one
for the second, and so on).

5. Adds the inode object into the list pointed to by the list field of the cdev descriptor.

6. Initializes the filp->f_ops file operations pointer with the contents of the ops field of
the cdev descriptor.

7. If the filp->f_ops->open method is defined, the function executes it. If the device
driver handles more than one device number, typically this function sets the file
operations of the file object once again, so as to install the file operations suitable for
the accessed device file.

8. Terminates by returning zero (success).

13.5.3. Buffering Strategies for Character Devices

Traditionally, Unix-like operating systems divide hardware devices into block and character
devices. However, this classification does not tell the whole story. Some devices are capable
of transferring sizeable amounts of data in a single I/O operation, while others transfer only a
few characters.

For instance, a PS/2 mouse driver gets a few bytes in each read operation corresponding to
the status of the mouse button and to the position of the mouse pointer on the screen. This
kind of device is the easiest to handle. Input data is first read one character at a time from
the device input register and stored in a proper kernel data structure; the data is then copied
at leisure into the process address space. Similarly, output data is first copied from the
process address space to a proper kernel data structure and then written one at a time into
the I/O device output register. Clearly, I/O drivers for such devices do not use the DMA,
because the CPU time spent to set up a DMA I/O operation is comparable to the time spent to
move the data to or from the I/O ports.

On the other hand, the kernel must also be ready to deal with devices that yield a large
number of bytes in each I/O operation, either sequential devices such as sound cards or
network cards, or random access devices such as disks of all kinds (floppy, CD-ROM, SCSI
disk, etc.).

Suppose, for instance, that you have set up the sound card of your computer so that you are
able to record sounds coming from a microphone. The sound card samples the electrical signal
coming from the microphone at a fixed rate, say 44.14 kHz, and produces a stream of 16-bit
numbers divided into blocks of input data. The sound card driver must be able to cope with
this avalanche of data in all possible situations, even when the CPU is temporarily busy
running some other process.

This can be done by combining two different techniques:

 Use of DMA to transfer blocks of data.
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 Use of a circular buffer of two or more elements, each element having the size of a
block of data. When an interrupt occurs signaling that a new block of data has been
read, the interrupt handler advances a pointer to the elements of the circular buffer so
that further data will be stored in an empty element. Conversely, whenever the driver
succeeds in copying a block of data into user address space, it releases an element of
the circular buffer so that it is available for saving new data from the hardware device.

The role of the circular buffer is to smooth out the peaks of CPU load; even if the User Mode
application receiving the data is slowed down because of other higher-priority tasks, the DMA
is able to continue filling elements of the circular buffer because the interrupt handler
executes on behalf of the currently running process.

A similar situation occurs when receiving packets from a network card, except that in this
case, the flow of incoming data is asynchronous. Packets are received independently from
each other and the time interval that occurs between two consecutive packet arrivals is
unpredictable.

All considered, buffer handling for sequential devices is easy because the same buffer is never
reused: an audio application cannot ask the microphone to retransmit the same block of data.

We'll see in Chapter 15 that buffering for random access devices (all kinds of disks) is much
more complicated.
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Chapter 14. Block Device Drivers
This chapter deals with I/O drivers for block devices, i.e., for disks of every kind. The key
aspect of a block device is the disparity between the time taken by the CPU and buses to
read or write data and the speed of the disk hardware. Block devices have very high average
access times. Each operation requires several milliseconds to complete, mainly because the
disk controller must move the heads on the disk surface to reach the exact position where the
data is recorded. However, when the heads are correctly placed, data transfer can be
sustained at rates of tens of megabytes per second.

The organization of Linux block device handlers is quite involved. We won't be able to discuss
in detail all the functions that are included in the block I/O subsystem of the kernel; however,
we'll outline the general software architecture. As in the previous chapter, our objective is to
explain how Linux supports the implementation of block device drivers , rather than showing
how to implement one of them.

We start in the first section "Block Devices Handling" to explain the general architecture of the
Linux block I/O subsystem. In the sections "The Generic Block Layer," "The I/O Scheduler,"
and "Block Device Drivers," we will describe the main components of the block I/O subsystem.
Finally, in the last section, "Opening a Block Device File," we will outline the steps performed
by the kernel when opening a block device file.
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14.1. Block Devices Handling
Each operation on a block device driver involves a large number of kernel components; the
most important ones are shown in Figure 14-1.

Let us suppose, for instance, that a process issued a read( ) system call on some disk filewe'll
see that write requests are handled essentially in the same way. Here is what the kernel
typically does to service the process request:

1. The service routine of the read( ) system call activates a suitable VFS function,
passing to it a file descriptor and an offset inside the file. The Virtual Filesystem

Figure 14-1. Kernel components affected by a block device
operation

is the upper layer of the block device handling architecture, and it provides a common
file model adopted by all filesystems supported by Linux. We have described at length
the VFS layer in Chapter 12.

2. The VFS function determines if the requested data is already available and, if
necessary, how to perform the read operation. Sometimes there is no need to access
the data on disk, because the kernel keeps in RAM the data most recently read fromor
written toa block device. The disk cache mechanism is explained in Chapter 15, while
details on how the VFS handles the disk operations and how it interfaces with the disk
cache and the filesystems are given in Chapter 16.

3. Let's assume that the kernel must read the data from the block device, thus it must
determine the physical location of that data. To do this, the kernel relies on the 
mapping layer , which typically executes two steps:

a. It determines the block size of the filesystem including the file and computes
the extent of the requested data in terms of file block numbers . Essentially,
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the file is seen as split in many blocks, and the kernel determines the numbers
(indices relative to the beginning of file) of the blocks containing the requested
data.

b. Next, the mapping layer invokes a filesystem-specific function that accesses
the file's disk inode and determines the position of the requested data on disk in
terms of logical block numbers. Essentially, the disk is seen as split in blocks,
and the kernel determines the numbers (indices relative to the beginning of the
disk or partition) corresponding to the blocks storing the requested data.
Because a file may be stored in nonadjacent blocks on disk, a data structure
stored in the disk inode maps each file block number to a logical block number.[*]

[*] However, if the read access was done on a raw block device file, the mapping layer does
not invoke a filesystem-specific method; rather, it translates the offset in the block device
file to a position inside the diskor disk partitioncorresponding to the device file.

4. We will see the mapping layer in action in Chapter 16, while we will present some
typical disk-based filesystems in Chapter 18.

5. The kernel can now issue the read operation on the block device. It makes use
of the generic block layer , which starts the I/O operations that transfer the
requested data. In general, each I/O operation involves a group of blocks that
are adjacent on disk. Because the requested data is not necessarily adjacent on
disk, the generic block layer might start several I/O operations. Each I/O
operation is represented by a "block I/O" (in short, "bio") structure, which
collects all information needed by the lower components to satisfy the request.

The generic block layer hides the peculiarities of each hardware block device, thus
offering an abstract view of the block devices. Because almost all block devices are
disks, the generic block layer also provides some general data structures that describe
"disks" and "disk partitions." We will discuss the generic block layer and the bio
structure in the section "The Generic Block Layer" later in this chapter.

6. Below the generic block layer, the "I/O scheduler " sorts the pending I/O data transfer
requests according to predefined kernel policies. The purpose of the scheduler is to
group requests of data that lie near each other on the physical medium. We will
describe this component in the section "The I/O Scheduler" later in this chapter.

7. Finally, the block device drivers take care of the actual data transfer by sending
suitable commands to the hardware interfaces of the disk controllers. We will explain
the overall organization of a generic block device driver in the section "Block Device
Drivers" later in this chapter.

As you can see, there are many kernel components that are concerned with data stored in
block devices; each of them manages the disk data using chunks of different length:

 The controllers of the hardware block devices transfer data in chunks of fixed length
called "sectors." Therefore, the I/O scheduler and the block device drivers must
manage sectors of data.

 The Virtual Filesystem, the mapping layer, and the filesystems group the disk data in
logical units called "blocks." A block corresponds to the minimal disk storage unit inside
a filesystem.

 As we will see shortly, block device drivers should be able to cope with "segments" of
data: each segment is a memory pageor a portion of a memory pageincluding chunks of
data that are physically adjacent on disk.

 The disk caches work on "pages" of disk data, each of which fits in a page frame.

 The generic block layer glues together all the upper and lower components, thus it
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knows about sectors , blocks, segments, and pages of data.

Even if there are many different chunks of data, they usually share the same physical RAM
cells. For instance, Figure 14-2 shows the layout of a 4,096-byte page. The upper kernel
components see the page as composed of four block buffers of 1,024 bytes each. The last
three blocks of the page are being transferred by the block device driver, thus they are
inserted in a segment covering the last 3,072 bytes of the page. The hard disk controller
considers the segment as composed of six 512-byte sectors.

Figure 14-2. Typical layout of a page including disk data

In this chapter we describe the lower kernel components that handle the block devicesgeneric
block layer, I/O scheduler, and block device driversthus we focus our attention on sectors,
blocks, and segments.

14.1.1. Sectors

To achieve acceptable performance, hard disks and similar devices transfer several adjacent
bytes at once. Each data transfer operation for a block device acts on a group of adjacent
bytes called a sector. In the following discussion, we say that groups of bytes are adjacent
when they are recorded on the disk surface in such a manner that a single seek operation can
access them. Although the physical geometry of a disk is usually very complicated, the hard
disk controller accepts commands that refer to the disk as a large array of sectors.

In most disk devices, the size of a sector is 512 bytes, although there are devices that use
larger sectors (1,024 and 2,048 bytes). Notice that the sector should be considered as the
basic unit of data transfer; it is never possible to transfer less than one sector, although most
disk devices are capable of transferring several adjacent sectors at once.

In Linux, the size of a sector is conventionally set to 512 bytes; if a block device uses larger
sectors, the corresponding low-level block device driver will do the necessary conversions.
Thus, a group of data stored in a block device is identified on disk by its positionthe index of
the first 512-byte sectorand its length as number of 512-byte sectors. Sector indices are
stored in 32- or 64-bit variables of type sector_t.

14.1.2. Blocks

While the sector is the basic unit of data transfer for the hardware devices, the block is the
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basic unit of data transfer for the VFS and, consequently, for the filesystems. For example,
when the kernel accesses the contents of a file, it must first read from disk a block containing
the disk inode of the file (see the section "Inode Objects" in Chapter 12). This block on disk
corresponds to one or more adjacent sectors, which are looked at by the VFS as a single data
unit.

In Linux, the block size must be a power of 2 and cannot be larger than a page frame.
Moreover, it must be a multiple of the sector size, because each block must include an
integral number of sectors. Therefore, on 80 x 86 architecture, the permitted block sizes are
512, 1,024, 2,048, and 4,096 bytes.

The block size is not specific to a block device. When creating a disk-based filesystem, the
administrator may select the proper block size. Thus, several partitions on the same disk might
make use of different block sizes. Furthermore, each read or write operation issued on a block
device file is a "raw" access that bypasses the disk-based filesystem; the kernel executes it
by using blocks of largest size (4,096 bytes).

Each block requires its own block buffer, which is a RAM memory area used by the kernel to
store the block's content. When the kernel reads a block from disk, it fills the corresponding
block buffer with the values obtained from the hardware device; similarly, when the kernel
writes a block on disk, it updates the corresponding group of adjacent bytes on the hardware
device with the actual values of the associated block buffer. The size of a block buffer always
matches the size of the corresponding block.

Each buffer has a "buffer head" descriptor of type buffer_head. This descriptor contains all the
information needed by the kernel to know how to handle the buffer; thus, before operating on
each buffer, the kernel checks its buffer head. We will give a detailed explanation of all fields
of the buffer head in Chapter 15; in the present chapter, however, we will only consider a few
fields: b_page, b_data, b_blocknr, and b_bdev.

The b_page field stores the page descriptor address of the page frame that includes the block
buffer. If the page frame is in high memory, the b_data field stores the offset of the block
buffer inside the page; otherwise, it stores the starting linear address of the block buffer
itself. The b_blocknr field stores the logical block number (i.e., the index of the block inside
the disk partition). Finally, the b_bdev field identifies the block device that is using the buffer
head (see the section "Block Devices" later in this chapter).

14.1.3. Segments

We know that each disk I/O operation consists of transferring the contents of some adjacent
sectors fromor tosome RAM locations. In almost all cases, the data transfer is directly
performed by the disk controller with a DMA operation (see the section "Direct Memory Access
(DMA)" in Chapter 13). The block device driver simply triggers the data transfer by sending
suitable commands to the disk controller; once the data transfer is finished, the controller
raises an interrupt to notify the block device driver.

The data transferred by a single DMA operation must belong to sectors that are adjacent on
disk. This is a physical constraint: a disk controller that allows DMA transfers to non-adjacent
sectors would have a poor transfer rate, because moving a read/write head on the disk
surface is quite a slow operation.

Older disk controllers support "simple" DMA operations only: in each such operation, data is
transferred from or to memory cells that are physically contiguous in RAM. Recent disk
controllers, however, may also support the so-called scatter-gather DMA transfers : in each
such operation, the data can be transferred from or to several noncontiguous memory areas.

For each scatter-gather DMA transfer, the block device driver must send to the disk
controller:

 The initial disk sector number and the total number of sectors to be transferred
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 A list of descriptors of memory areas, each of which consists of an address and a
length.

The disk controller takes care of the whole data transfer; for instance, in a read operation the
controller fetches the data from the adjacent disk sectors and scatters it into the various
memory areas.

To make use of scatter-gather DMA operations, block device drivers must handle the data in
units called segments . A segment is simply a memory pageor a portion of a memory pagethat
includes the data of some adjacent disk sectors. Thus, a scatter-gather DMA operation may
involve several segments at once.

Notice that a block device driver does not need to know about blocks, block sizes, and block
buffers. Thus, even if a segment is seen by the higher levels as a page composed of several
block buffers, the block device driver does not care about it.

As we'll see, the generic block layer can merge different segments if the corresponding page
frames happen to be contiguous in RAM and the corresponding chunks of disk data are
adjacent on disk. The larger memory area resulting from this merge operation is called physical
segment.

Yet another merge operation is allowed on architectures that handle the mapping between bus
addresses and physical addresses through a dedicated bus circuitry (the IO-MMU; see the
section "Direct Memory Access (DMA)" in Chapter 13). The memory area resulting from this
kind of merge operation is called hardware segment . Because we will focus on the 80 x 86
architecture, which has no such dynamic mapping between bus addresses and physical
addresses, we will assume in the rest of this chapter that hardware segments always coincide
with physical segments .
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14.2. The Generic Block Layer
The generic block layer is a kernel component that handles the requests for all block devices
in the system. Thanks to its functions, the kernel may easily:

 Put data buffers in high memorythe page frame(s) will be mapped in the kernel linear
address space only when the CPU must access the data, and will be unmapped right
after.

 Implementwith some additional efforta "zero-copy" schema, where disk data is directly
put in the User Mode address space without being copied to kernel memory first;
essentially, the buffer used by the kernel for the I/O transfer lies in a page frame
mapped in the User Mode linear address space of a process.

 Manage logical volumessuch as those used by LVM (the Logical Volume Manager) and
RAID (Redundant Array of Inexpensive Disks): several disk partitions, even on different
block devices, can be seen as a single partition.

 Exploit the advanced features of the most recent disk controllers, such as large
onboard disk caches , enhanced DMA capabilities, onboard scheduling of the I/O
transfer requests, and so on.

14.2.1. The Bio Structure

The core data structure of the generic block layer is a descriptor of an ongoing I/O block
device operation called bio. Each bio essentially includes an identifier for a disk storage
areathe initial sector number and the number of sectors included in the storage areaand one
or more segments describing the memory areas involved in the I/O operation. A bio is
implemented by the bio data structure, whose fields are listed in Table 14-1.

Table 14-1. The fields of the bio structure

Type Field Description

sector_t bi_sector First sector on disk of block I/O operation

struct bio * bi_next Link to the next bio in the request queue

struct

block_device *

bi_bdev Pointer to block device descriptor

unsigned long bi_flags Bio status flags

unsigned long bi_rw I/O operation flags

unsigned short bi_vcnt Number of segments in the bio's bio_vec array

unsigned short bi_idx Current index in the bio's bio_vec array of segments

unsigned short bi_phys_segments Number of physical segments of the bio after
merging

unsigned short bi_hw_segments Number of hardware segments after merging
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Table 14-1. The fields of the bio structure

Type Field Description

unsigned int bi_size Bytes (yet) to be transferred

unsigned int bi_hw_front_size Used by the hardware segment merge algorithm

unsigned int bi_hw_back_size Used by the hardware segment merge algorithm

unsigned int bi_max_vecs Maximum allowed number of segments in the bio's 
bio_vec array

struct bio_vec * bi_io_vec Pointer to the bio's bio_vec array of segments

bio_end_io_t * bi_end_io Method invoked at the end of bio's I/O operation

atomic_t bi_cnt Reference counter for the bio

void * bi_private Pointer used by the generic block layer and the I/O
completion method of the block device driver

bio_destructor_t * bi_destructor Destructor method (usually bio_destructor())
invoked when the bio is being freed

Each segment in a bio is represented by a bio_vec data structure, whose fields are listed in
Table 14-2. The bi_io_vec field of the bio points to the first element of an array of bio_vec
data structures, while the bi_vcnt field stores the current number of elements in the array.

Table 14-2. The fields of the bio_vec structure

Type Field Description

struct page * bv_page Pointer to the page descriptor of the segment's page frame

unsigned int bv_len Length of the segment in bytes

unsigned int bv_offset Offset of the segment's data in the page frame

The contents of a bio descriptor keep changing during the block I/O operation. For instance, if
the block device driver cannot perform the whole data transfer with one scatter-gather DMA
operation, the bi_idx field is updated to keep track of the first segment in the bio that is yet
to be transferred. To iterate over the segments of a biostarting from the current segment at
index bi_idxa device driver can execute the bio_for_each_segment macro.

When the generic block layer starts a new I/O operation, it allocates a new bio structure by
invoking the bio_alloc( ) function. Usually, bios are allocated through the slab allocator, but
the kernel also keeps a small memory pool of bios to be used when memory is scarce (see the
section "Memory Pools" in Chapter 8). The kernel also keeps a memory pool for the bio_vec
structuresafter all, it would not make sense to allocate a bio without being able to allocate
the segment descriptors to be included in the bio. Correspondingly, the bio_put( ) function
decrements the reference counter (bi_cnt) of a bio and, if the counter becomes zero, it
releases the bio structure and the related bio_vec structures.
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14.2.2. Representing Disks and Disk Partitions

A disk is a logical block device that is handled by the generic block layer. Usually a disk
corresponds to a hardware block device such as a hard disk, a floppy disk, or a CD-ROM disk.
However, a disk can be a virtual device built upon several physical disk partitions, or a storage
area living in some dedicated pages of RAM. In any case, the upper kernel components
operate on all disks in the same way thanks to the services offered by the generic block layer.

A disk is represented by the gendisk object, whose fields are shown in Table 14-3.

Table 14-3. The fields of the gendisk object

Type Field Description

int major Major number of the disk

int first_minor First minor number associated with the disk

int minors Range of minor numbers associated with the disk

char [32] disk_name Conventional name of the disk (usually, the
canonical name of the corresponding device file)

struct hd_struct ** part Array of partition descriptors for the disk

struct

block_device_operations *

fops Pointer to a table of block device methods

struct request_queue * queue Pointer to the request queue of the disk (see "
Request Queue Descriptors" later in this chapter)

void * private_data Private data of the block device driver

sector_t capacity Size of the storage area of the disk (in number
of sectors)

int flags Flags describing the kind of disk (see below)

char [64] devfs_name Device filename in the (nowadays deprecated) 
devfs special filesystem

int number No longer used

struct device * driverfs_dev

Pointer to the device object of the disk's
hardware device (see the section "Components
of the Device Driver Model" in Chapter 13)

struct kobject kobj Embedded kobject (see the section "Kobjects"
in Chapter 13)

struct timer_rand_state * random

Pointer to a data structure that records the
timing of the disk's interrupts; used by the kernel
built-in random number generator
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Table 14-3. The fields of the gendisk object

Type Field Description

int policy Set to 1 if the disk is read-only (write operations
forbidden), 0 otherwise

atomic_t sync_io Counter of sectors written to disk, used only for
RAID

unsigned long stamp Timestamp used to determine disk queue usage
statistics

unsigned long stamp_idle Same as above

int in_flight Number of ongoing I/O operations

struct disk_stats * dkstats Statistics about per-CPU disk usage

The flags field stores information about the disk. The most important flag is GENHD_FL_UP: if it
is set, the disk is initialized and working. Another relevant flag is GENHD_FL_REMOVABLE, which is
set if the disk is a removable support, such as a floppy disk or a CD-ROM.

The fops field of the gendisk object points to a block_device_operations table, which stores a
few custom methods for crucial operations of the block device (see Table 14-4).

Table 14-4. The methods of the block devices

Method Triggers

open Opening the block device file

release Closing the last reference to a block device file

ioctl Issuing an ioctl( ) system call on the block device file (uses the big
kernel lock )

compat_ioctl Issuing an ioctl( ) system call on the block device file (does not use the
big kernel lock)

media_changed Checking whether the removable media has been changed (e.g., floppy
disk)

revalidate_disk Checking whether the block device holds valid data

Hard disks are commonly split into logical partitions . Each block device file may represent
either a whole disk or a partition inside the disk. For instance, a master EIDE disk might be
represented by a device file /dev/hda having major number 3 and minor number 0; the first
two partitions inside the disk might be represented by device files /dev/hda1 and /dev/hda2
having major number 3 and minor numbers 1 and 2, respectively. In general, the partitions
inside a disk are characterized by consecutive minor numbers.
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If a disk is split in partitions, their layout is kept in an array of hd_struct structures whose
address is stored in the part field of the gendisk object. The array is indexed by the relative
index of the partition inside the disk. The fields of the hd_struct descriptor are listed in Table
14-5.

Table 14-5. The fields of the hd_struct descriptor

Type Field Description

sector_t start_sect Starting sector of the partition inside the disk

sector_t nr_sects Length of the partition (number of sectors)

struct kobject kobj Embedded kobject (see the section "Kobjects" in Chapter 13
)

unsigned int reads Number of read operations issued on the partition

unsigned int read_sectors Number of sectors read from the partition

unsigned int writes Number of write operations issued on the partition

unsigned int write_sectors Number of sectors written into the partition

int policy Set to 1 if the partition is read-only, 0 otherwise

int partno The relative index of the partition inside the disk

When the kernel discovers a new disk in the system (in the boot phase, or when a removable
media is inserted in a drive, or when an external disk is attached at run-time), it invokes the 
alloc_disk( ) function, which allocates and initializes a new gendisk object and, if the new
disk is split in several partitions, a suitable array of hd_struct descriptors. Then, it invokes
the add_disk( ) function to insert the new gendisk descriptor into the data structures of the
generic block layer (see the section "Device Driver Registration and Initialization" later in this
chapter).

14.2.3. Submitting a Request

Let us describe the common sequence of steps executed by the kernel when submitting an
I/O operation request to the generic block layer. We'll assume that the requested chunks of
data are adjacent on disk and that the kernel has already determined their physical location.

The first step consists in executing the bio_alloc( ) function to allocate a new bio descriptor.
Then, the kernel initializes the bio descriptor by setting a few fields:

 The bi_sector field is set to the initial sector number of the data (if the block device is
split in several partitions, the sector number is relative to the start of the partition).

 The bi_size field is set to the number of sectors covering the data.

 The bi_bdev field is set to the address of the block device descriptor (see the section "
Block Devices" later in this chapter).

 The bi_io_vec field is set to the initial address of an array of bio_vec data structures,
each of which describes a segment (memory buffer) involved in the I/O operation;
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moreover, the bi_vcnt field is set to the total number of segments in the bio.

 The bi_rw field is set with the flags of the requested operation. The most important
flag specifies the data transfer direction: READ (0) or WRITE (1).

 The bi_end_io field is set to the address of a completion procedure that is executed
whenever the I/O operation on the bio is completed.

Once the bio descriptor has been properly initialized, the kernel invokes the
generic_make_request( ) function, which is the main entry point of the generic block layer.
The function essentially executes the following steps:

1. Checks that bio->bi_sector does not exceed the number of sectors of the block
device. If it does, the function sets the BIO_EOF flag of bio->bi_flags, prints a kernel
error message, invokes the bio_endio() function, and terminates. bio_endio( ) updates
the bi_size and bi_sector fields of the bio descriptor, and it invokes the bi_end_io bio's
method. The implementation of the latter function essentially depends on the kernel
component that has triggered the I/O data transfer; we will see some examples of 
bi_end_io methods in the following chapters.

2. Gets the request queue q associated with the block device (see the section "Request
Queue Descriptors" later in this chapter); its address can be found in the bd_disk field
of the block device descriptor, which in turn is pointed to by the bio->bi_bdev field.

3. Invokes block_wait_queue_running( ) to check whether the I/O scheduler currently in
use is being dynamically replaced; in this case, the function puts the process to sleep
until the new I/O scheduler is started (see the next section "The I/O Scheduler").

4. Invokes blk_partition_remap( ) to check whether the block device refers to a disk
partition (bio->bi_bdev not equal to bio->bi_dev->bd_contains; see the section "Block
Devices" later in this chapter). In this case, the function gets the hd_struct descriptor
of the partition from the bio->bi_bdev field to perform the following substeps:

a. Updates the read_sectors and reads fields, or the write_sectors and writes
fields, of the hd_struct descriptor, according to the direction of data transfer.

b. Adjusts the bio->bi_sector field so as to transform the sector number relative
to the start of the partition to a sector number relative to the whole disk.

c. Sets the bio->bi_bdev field to the block device descriptor of the whole disk (
bio->bd_contains).

From now on, the generic block layer, the I/O scheduler, and the device driver forget
about disk partitioning, and work directly with the whole disk.

5. Invokes the q->make_request_fn method to insert the bio request in the request queue
q.

6. Returns.

We will discuss a typical implementation of the make_request_fn method in the section "Issuing
a Request to the I/O Scheduler" later in this chapter.
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14.3. The I/O Scheduler
Although block device drivers are able to transfer a single sector at a time, the block I/O layer
does not perform an individual I/O operation for each sector to be accessed on disk; this
would lead to poor disk performance, because locating the physical position of a sector on the
disk surface is quite time-consuming. Instead, the kernel tries, whenever possible, to cluster
several sectors and handle them as a whole, thus reducing the average number of head
movements.

When a kernel component wishes to read or write some disk data, it actually creates a block
device request. That request essentially describes the requested sectors and the kind of
operation to be performed on them (read or write). However, the kernel does not satisfy a
request as soon as it is createdthe I/O operation is just scheduled and will be performed at a
later time. This artificial delay is paradoxically the crucial mechanism for boosting the
performance of block devices. When a new block data transfer is requested, the kernel checks
whether it can be satisfied by slightly enlarging a previous request that is still waiting (i.e.,
whether the new request can be satisfied without further seek operations). Because disks
tend to be accessed sequentially, this simple mechanism is very effective.

Deferring requests complicates block device handling. For instance, suppose a process opens
a regular file and, consequently, a filesystem driver wants to read the corresponding inode
from disk. The block device driver puts the request on a queue, and the process is suspended
until the block storing the inode is transferred. However, the block device driver itself cannot
be blocked, because any other process trying to access the same disk would be blocked as
well.

To keep the block device driver from being suspended, each I/O operation is processed
asynchronously. In particular, block device drivers are interrupt-driven (see the section "
Monitoring I/O Operations" in the previous chapter): the generic block layer invokes the I/O
scheduler to create a new block device request or to enlarge an already existing one and then
terminates. The block device driver, which is activated at a later time, invokes the strategy
routine to select a pending request and satisfy it by issuing suitable commands to the disk
controller. When the I/O operation terminates, the disk controller raises an interrupt and the
corresponding handler invokes the strategy routine again, if necessary, to process another
pending request.

Each block device driver maintains its own request queue, which contains the list of pending
requests for the device. If the disk controller is handling several disks, there is usually one
request queue for each physical block device. I/O scheduling is performed separately on each
request queue, thus increasing disk performance.

14.3.1. Request Queue Descriptors

Each request queue is represented by means of a large request_queue data structure whose
fields are listed in Table 14-6.

Table 14-6. The fields of the request queue descriptor

Type Field Description

struct list_head queue_head List of pending requests

struct request * last_merge
Pointer to descriptor of the request in the
queue to be considered first for possible
merging
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Table 14-6. The fields of the request queue descriptor

Type Field Description

elevator_t * elevator Pointer to the elevator object (see the later
section "I/O Scheduling Algorithms")

struct request_list rq Data structure used for allocation of request
descriptors

request_fn_proc * request_fn Method that implements the entry point of the
strategy routine of the driver

merge_request_fn * back_merge_fn Method to check whether it is possible to
merge a bio to the last request in the queue

merge_request_fn * front_merge_fn Method to check whether it is possible to
merge a bio to the first request in the queue

merge_requests_fn * merge_requests_fn Method to attempt merging two adjacent
requests in the queue

make_request_fn * make_request_fn Method invoked when a new request has to be
inserted in the queue

prep_rq_fn * prep_rq_fn Method to build the commands to be sent to
the hardware device to process this request

unplug_fn * unplug_fn

Method to unplug the block device (see the
section "Activating the Block Device Driver"
later in the chapter)

merge_bvec_fn * merge_bvec_fn

Method that returns the number of bytes that
can be inserted into an existing bio when
adding a new segment (usually undefined)

activity_fn * activity_fn Method invoked when a request is added to a
queue (usually undefined)

issue_flush_fn * issue_flush_fn

Method invoked when a request queue is
flushed (the queue is emptied by processing all
requests in a row)

struct timer_list unplug_timer

Dynamic timer used to perform device plugging
(see the later section "Activating the Block
Device Driver")

int unplug_thresh

If the number of pending requests in the queue
exceeds this value, the device is immediately
unplugged (default is 4)

unsigned long unplug_delay Time delay before device unplugging (default is
3 milliseconds)
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Table 14-6. The fields of the request queue descriptor

Type Field Description

struct work_struct unplug_work

Work queue used to unplug the device (see
the later section "Activating the Block Device
Driver")

struct

backing_dev_info
backing_dev_info See the text following this table

void * queuedata Pointer to private data of the block device
driver

void * activity_data Private data used by the activity_fn method

unsigned long bounce_pfn
Page frame number above which buffer
bouncing must be used (see the section "
Submitting a Request" later in this chapter)

int bounce_gfp Memory allocation flags for bounce buffers

unsigned long queue_flags Set of flags describing the queue status

spinlock_t * queue_lock Pointer to request queue lock

struct kobject kobj Embedded kobject for the request queue

unsigned long nr_requests Maximum number of requests in the queue

unsigned int nr_congestion_on Queue is considered congested if the number
of pending requests rises above this threshold

unsigned int nr_congestion_off
Queue is considered not congested if the
number of pending requests falls below this
threshold

unsigned int nr_batching
Maximum number (usually 32) of pending
requests that can be submitted even when the
queue is full by a special "batcher" process

unsigned short max_sectors Maximum number of sectors handled by a
single request (tunable)

unsigned short max_hw_sectors Maximum number of sectors handled by a
single request (hardware constraint)

unsigned short max_phys_segments Maximum number of physical segments handled
by a single request

unsigned short max_hw_segments
Maximum number of hardware segments
handled by a single request (the maximum
number of distinct memory areas in a
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Table 14-6. The fields of the request queue descriptor

Type Field Description

scatter-gather DMA operation)

unsigned short hardsect_size Size in bytes of a sector

unsigned int max_segment_size Maximum size of a physical segment (in bytes)

unsigned long seg_boundary_mask Memory boundary mask for segment merging

unsigned int dma_alignment Alignment bitmap for initial address and length
of DMA buffers (default 511)

struct

blk_queue_tag *
queue_tags Bitmap of free/busy tags (used for tagged

requests)

atomic_t refcnt Reference counter of the queue

unsigned int in_flight Number of pending requests in the queue

unsigned int sg_timeout User-defined command time-out (used only by
SCSI generic devices)

unsigned int sg_reserved_size Essentially unused

struct list_head drain_list Head of a list of requests temporarily delayed
until the I/O scheduler is dynamically replaced

Essentially, a request queue is a doubly linked list whose elements are request descriptors
(that is, request data structures; see the next section). The queue_head field of the request
queue descriptor stores the head (the first dummy element) of the list, while the pointers in
the queuelist field of the request descriptor link each request to the previous and next
elements in the list. The ordering of the elements in the queue list is specific to each block
device driver; the I/O scheduler offers, however, several predefined ways of ordering
elements, which are discussed in the later section "The I/O Scheduler."

The backing_dev_info field is a small object of type backing_dev_info, which stores information
about the I/O data flow traffic for the underlying hardware block device. For instance, it holds
information about read-ahead and about request queue congestion state.

14.3.2. Request Descriptors

Each pending request for a block device is represented by a request descriptor, which is
stored in the request data structure illustrated in Table 14-7.

Table 14-7. The fields of the request descriptor

Type Field Description

struct list_head queuelist Pointers for request queue list

Page 570

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Table 14-7. The fields of the request descriptor

Type Field Description

unsigned long flags Flags of the request (see below)

sector_t sector Number of the next sector to be transferred

unsigned long nr_sectors Number of sectors yet to be transferred in the
whole request

unsigned int current_nr_sectors Number of sectors in the current segment of the
current bio yet to be transferred

sector_t hard_sector Number of the next sector to be transferred

unsigned long hard_nr_sectors

Number of sectors yet to be transferred in the
whole request (updated by the generic block
layer)

unsigned int hard_cur_sectors

Number of sectors in the current segment of the
current bio yet to be transferred (updated by
the generic block layer)

struct bio * bio First bio in the request that has not been
completely transferred

struct bio * biotail Last bio in the request list

void * elevator_private Pointer to private data for the I/O scheduler

int rq_status Request status: essentially, either RQ_ACTIVE or
RQ_INACTIVE

struct gendisk * rq_disk The descriptor of the disk referenced by the
request

int errors Counter for the number of I/O errors that
occurred on the current transfer

unsigned long start_time Request's starting time (in jiffies)

unsigned short nr_phys_segments Number of physical segments of the request

unsigned short nr_hw_segments Number of hardware segments of the request

int tag
Tag associated with the request (only for
hardware devices supporting multiple outstanding
data transfers)

char * buffer Pointer to the memory buffer of the current data
transfer (NULL if the buffer is in high-memory)

int ref_count Reference counter for the request
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Table 14-7. The fields of the request descriptor

Type Field Description

request_queue_t * q Pointer to the descriptor of the request queue
containing the request

struct request_list * rl Pointer to request_list data structure

struct completion * waiting
Completion for waiting for the end of the data
transfers (see the section "Completions" in
Chapter 5)

void * special Pointer to data used when the request includes a
"special" command to the hardware device

unsigned int cmd_len Length of the commands in the cmd field

unsigned char [] cmd
Buffer containing the pre-built commands
prepared by the request queue's prep_rq_fn
method

unsigned int data_len Usually, the length of data in the buffer pointed
to by the data field

void * data Pointer used by the device driver to keep track
of the data to be transferred

unsigned int sense_len Length of buffer pointed to by the sense field (0
if the sense field is NULL)

void * sense Pointer to buffer used for output of sense
commands

unsigned int timeout Request's time-out

struct

request_pm_state *
pm Pointer to a data structure used for

power-management commands

Each request consists of one or more bio structures. Initially, the generic block layer creates a
request including just one bio. Later, the I/O scheduler may "extend" the request either by
adding a new segment to the original bio, or by linking another bio structure into the request.
This is possible when the new data is physically adjacent to the data already in the request.
The bio field of the request descriptor points to the first bio structure in the request, while
the biotail field points to the last bio. The rq_for_each_bio macro implements a loop that
iterates over all bios included in a request.

Several fields of the request descriptor may dynamically change. For instance, as soon as the
chunks of data referenced in a bio have all been transferred, the bio field is updated so that it
points to the next bio in the request list. Meanwhile, new bios can be added to the tail of the
request list, so the biotail field may also change.

Several other fields of the request descriptor are modified either by the I/O scheduler or the
device driver while the disk sectors are being transferred. For instance, the nr_sectors field
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stores the number of sectors yet to be transferred in the whole request, while the 
current_nr_sectors field stores the number of sectors yet to be transferred in the current bio.

The flags field stores a large number of flags, which are listed in Table 14-8. The most
important one is, by far, REQ_RW, which determines the direction of the data transfer.

Table 14-8. The flags of the request descriptor

Flag Description

REQ_RW Direction of data transfer: READ (0) or WRITE (1)

REQ_FAILFAST Requests says to not retry the I/O operation in case of error

REQ_SOFTBARRIER Request acts as a barrier for the I/O scheduler

REQ_HARDBARRIER Request acts as a barrier for the I/O scheduler and the device driverit
should be processed after older requests and before newer ones

REQ_CMD Request includes a normal read or write I/O data transfer

REQ_NOMERGE Request should not be extended or merged with other requests

REQ_STARTED Request is being processed

REQ_DONTPREP Do not invoke the prep_rq_fn request queue's method to prepare in
advance the commands to be sent to the hardware device

REQ_QUEUED Request is taggedthat is, it refers to a hardware device that can
manage many outstanding data transfers at the same time

REQ_PC Request includes a direct command to be sent to the hardware device

REQ_BLOCK_PC Same as previous flag, but the command is included in a bio

REQ_SENSE Request includes a "sense" request command (for SCSI and ATAPI
devices)

REQ_FAILED Set when a sense or direct command in the request did not work as
expected

REQ_QUIET Request says to not generate kernel messages in case of I/O errors

REQ_SPECIAL Request includes a special command for the hardware device (e.g.,
drive reset)

REQ_DRIVE_CMD Request includes a special command for IDE disks

REQ_DRIVE_TASK Request includes a special command for IDE disks

REQ_DRIVE_TASKFILE Request includes a special command for IDE disks

REQ_PREEMPT Request replaces the current request in front of the queue (only for
IDE disks)
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Table 14-8. The flags of the request descriptor

Flag Description

REQ_PM_SUSPEND Request includes a power-management command to suspend the
hardware device

REQ_PM_RESUME Request includes a power-management command to awaken the
hardware device

REQ_PM_SHUTDOWN Request includes a power-management command to switch off the
hardware device

REQ_BAR_PREFLUSH Request includes a "flush queue" command to be sent to the disk
controller

REQ_BAR_POSTFLUSH Request includes a "flush queue" command, which has been sent to
the disk controller

14.3.2.1. Managing the allocation of request descriptors

The limited amount of free dynamic memory may become, under very heavy loads and high
disk activity, a bottleneck for processes that want to add a new request into a request
queue q. To cope with this kind of situation, each request_queue descriptor includes a
request_list data structure, which consists of:

 A pointer to a memory pool of request descriptors (see the section "Memory Pools" in
Chapter 8).

 Two counters for the number of requests descriptors allocated for READ and WRITE
requests, respectively.

 Two flags indicating whether a recent allocation for a READ or WRITE request,
respectively, failed.

 Two wait queues storing the processes sleeping for available READ and WRITE request
descriptors, respectively.

 A wait queue for the processes waiting for a request queue to be flushed (emptied).

The blk_get_request( ) function tries to get a free request descriptor from the memory pool
of a given request queue; if memory is scarce and the memory pool is exhausted, the function
either puts the current process to sleep orif the kernel control path cannot blockreturns NULL.
If the allocation succeeds, the function stores in the rl field of the request descriptor the
address of the request_list data structure of the request queue. The blk_put_request( )
function releases a request descriptor; if its reference counter becomes zero, the descriptor is
given back to the memory pool from which it was taken.

14.3.2.2. Avoiding request queue congestion

Each request queue has a maximum number of allowed pending requests. The nr_requests field
of the request descriptor stores the maximum number of allowed pending requests for each
data transfer direction. By default, a queue has at most 128 pending read requests and 128
pending write requests. If the number of pending read (write) requests exceeds nr_requests,
the queue is marked as full by setting the QUEUE_FLAG_READFULL (QUEUE_FLAG_WRITEFULL) flag in
the queue_flags field of the request queue descriptor, and blockable processes trying to add
requests for that data transfer direction are put to sleep in the corresponding wait queue of
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the request_list data structure.

A filled-up request queue impacts negatively on the system's performance, because it forces
many processes to sleep while waiting for the completion of I/O data transfers. Thus, if the
number of pending requests for a given direction exceeds the value stored in the 
nr_congestion_on field of the request descriptor (by default, 113), the kernel regards the
queue as congested and tries to slow down the creation rate of the new requests. A
congested request queue becomes uncongested when the number of pending requests falls
below the value of the nr_congestion_off field (by default, 111). The blk_congestion_wait( )
function puts the current process to sleep until any request queue becomes uncongested or a
time-out elapses.

14.3.3. Activating the Block Device Driver

As we saw earlier, it's expedient to delay activation of the block device driver in order to
increase the chances of clustering requests for adjacent blocks. The delay is accomplished
through a technique known as device plugging and unplugging.[*] As long as a block device
driver is plugged, the device driver is not activated even if there are requests to be processed
in the driver's queues.

[*] If you are confused by the terms "plugging" and "unplugging," you might consider them equivalent to "de-activating" and
"activating," respectively.

The blk_plug_device( ) function plugs a block deviceor more precisely, a request queue
serviced by some block device driver. Essentially, the function receives as an argument the
address q of a request queue descriptor. It sets the QUEUE_FLAG_PLUGGED bit in the
q->queue_flags field; then, it restarts the dynamic timer embedded in the q->unplug_timer
field.

The blk_remove_plug( ) function unplugs a request queue q: it clears the QUEUE_FLAG_PLUGGED
flag and cancels the execution of the q->unplug_timer dynamic timer. This function can be
explicitly invoked by the kernel when all mergeable requests "in sight" have been added to the
queue. Moreover, the I/O scheduler unplugs a request queue if the number of pending
requests in the queue exceeds the value stored in the unplug_thres field of the request queue
descriptor (by default, 4).

If a device remains plugged for a time interval of length q->unplug_delay (usually 3
milliseconds), the dynamic timer activated by blk_plug_device( ) elapses, thus the
blk_unplug_timeout( ) function is executed. As a consequence, the kblockd kernel thread
servicing the kblockd_workqueue work queue is awakened (see the section "Work Queues" in
Chapter 4). This kernel thread executes the function whose address is stored in the
q->unplug_work data structurethat is, the blk_unplug_work( ) function. In turn, this function
invokes the q->unplug_fn method of the request queue, which is usually implemented by the
generic_unplug_device( ) function. The generic_unplug_device( ) function takes care of
unplugging the block device: first, it checks whether the queue is still active; then, it invokes 
blk_remove_plug( ); and finally, it executes the strategy routinerequest_fn methodto start
processing the next request in the queue (see the section "Device Driver Registration and
Initialization" later in this chapter).

14.3.4. I/O Scheduling Algorithms

When a new request is added to a request queue, the generic block layer invokes the I/O
scheduler to determine that exact position of the new element in the queue. The I/O
scheduler tries to keep the request queue sorted sector by sector. If the requests to be
processed are taken sequentially from the list, the amount of disk seeking is significantly
reduced because the disk head moves in a linear way from the inner track to the outer one (or
vice versa) instead of jumping randomly from one track to another. This heuristic is
reminiscent of the algorithm used by elevators when dealing with requests coming from
different floors to go up or down. The elevator moves in one direction; when the last booked
floor is reached in one direction, the elevator changes direction and starts moving in the other
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direction. For this reason, I/O schedulers are also called elevators.

Under heavy load, an I/O scheduling algorithm that strictly follows the order of the sector
numbers is not going to work well. In this case, indeed, the completion time of a data transfer
strongly depends on the physical position of the data on the disk. Thus, if a device driver is
processing requests near the top of the queue (lower sector numbers), and new requests with
low sector numbers are continuously added to the queue, then the requests in the tail of the
queue can easily starve. I/O scheduling algorithms are thus quite sophisticated.

Currently, Linux 2.6 offers four different types of I/O schedulersor elevatorscalled
"Anticipatory," "Deadline," "CFQ (Complete Fairness Queueing)," and "Noop (No Operation)."
The default elevator used by the kernel for most block devices is specified at boot time with
the kernel parameter elevator=<name>, where <name> is one of the following: as, deadline,
cfq, and noop. If no boot time argument is given, the kernel uses the "Anticipatory" I/O
scheduler. Anyway, a device driver can replace the default elevator with another one; a
device driver can also define its custom I/O scheduling algorithm, but this is very seldom done.

Furthermore, the system administrator can change at runtime the I/O scheduler for a specific
block device. For instance, to change the I/O scheduler used in the master disk of the first
IDE channel, the administrator can write an elevator name into the 
/sys/block/hda/queue/scheduler file of the sysfs special filesystem (see the section "The sysfs
Filesystem" in Chapter 13).

The I/O scheduler algorithm used in a request queue is represented by an elevator object of
type elevator_t; its address is stored in the elevator field of the request queue descriptor.
The elevator object includes several methods covering all possible operations of the elevator:
linking and unlinking the elevator to a request queue, adding and merging requests to the
queue, removing requests from the queue, getting the next request to be processed from the
queue, and so on. The elevator object also stores the address of a table including all
information required to handle the request queue. Furthermore, each request descriptor
includes an elevator_private field that points to an additional data structure used by the I/O
scheduler to handle the request.

Let us now briefly describe the four I/O scheduling algorithms, from the simplest one to the
most sophisticated one. Be warned that designing an I/O scheduler is much like designing a
CPU scheduler (see Chapter 7): the heuristics and the values of the adopted constants are
the result of an extensive amount of testing and benchmarking.

Generally speaking, all algorithms make use of a dispatch queue, which includes all requests
sorted according to the order in which the requests should be processed by the device
driverthe next request to be serviced by the device driver is always the first element in the
dispatch queue. The dispatch queue is actually the request queue rooted at the queue_head
field of the request queue descriptor. Almost all algorithms also make use of additional queues
to classify and sort requests. All of them allow the device driver to add bios to existing
requests and, if necessary, to merge two "adjacent" requests.

14.3.4.1. The "Noop" elevator

This is the simplest I/O scheduling algorithm. There is no ordered queue: new requests are
always added either at the front or at the tail of the dispatch queue, and the next request to
be processed is always the first request in the queue.

14.3.4.2. The "CFQ" elevator

The main goal of the "Complete Fairness Queueing" elevator is ensuring a fair allocation of the
disk I/O bandwidth among all the processes that trigger the I/O requests. To achieve this
result, the elevator makes use of a large number of sorted queuesby default, 64that store the
requests coming from the different processes. Whenever a requested is handed to the
elevator, the kernel invokes a hash function that converts the thread group identifier of the
current process (usually it corresponds to the PID, see the section "Identifying a Process" in
Chapter 3) into the index of a queue; then, the elevator inserts the new request at the tail of
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this queue. Therefore, requests coming from the same process are always inserted in the
same queue.

To refill the dispatch queue, the elevator essentially scans the I/O input queues in a
round-robin fashion, selects the first nonempty queue, and moves a batch of requests from
that queue into the tail of the dispatch queue.

14.3.4.3. The "Deadline" elevator

Besides the dispatch queue, the "Deadline" elevator makes use of four queues. Two of
themthe sorted queues include the read and write requests, respectively, ordered according
to their initial sector numbers. The other twothe deadline queues include the same read and
write requests sorted according to their "deadlines." These queues are introduced to avoid 
request starvation , which occurs when the elevator policy ignores for a very long time a
request because it prefers to handle other requests that are closer to the last served one. A
request deadline is essentially an expire timer that starts ticking when the request is passed
to the elevator. By default, the expire time of read requests is 500 milliseconds, while the
expire time for write requests is 5 secondsread requests are privileged over write requests
because they usually block the processes that issued them. The deadline ensures that the
scheduler looks at a request if it's been waiting a long time, even if it is low in the sort.

When the elevator must replenish the dispatch queue, it first determines the data direction of
the next request. If there are both read and write requests to be dispatched, the elevator
chooses the "read" direction, unless the "write" direction has been discarded too many times
(to avoid write requests starvation).

Next, the elevator checks the deadline queue relative to the chosen direction: if the deadline
of the first request in the queue is elapsed, the elevator moves that request to the tail of the
dispatch queue; it also moves a batch of requests taken from the sorted queue, starting from
the request following the expired one. The length of this batch is longer if the requests
happen to be physically adjacent on disks, shorter otherwise.

Finally, if no request is expired, the elevator dispatches a batch of requests starting with the
request following the last one taken from the sorted queue. When the cursor reaches the tail
of the sorted queue, the search starts again from the top ("one-way elevator").

14.3.4.4. The "Anticipatory" elevator

The "Anticipatory" elevator is the most sophisticated I/O scheduler algorithm offered by Linux.
Basically, it is an evolution of the "Deadline" elevator, from which it borrows the fundamental
mechanism: there are two deadline queues and two sorted queues; the I/O scheduler keeps
scanning the sorted queues, alternating between read and write requests, but giving
preference to the read ones. The scanning is basically sequential, unless a request expires.
The default expire time for read requests is 125 milliseconds, while the default expire time for
write requests is 250 milliseconds. The elevator, however, follows some additional heuristics:

 In some cases, the elevator might choose a request behind the current position in the
sorted queue, thus forcing a backward seek of the disk head. This happens, typically,
when the seek distance for the request behind is less than half the seek distance of
the request after the current position in the sorted queue.

 The elevator collects statistics about the patterns of I/O operations triggered by every
process in the system. Right after dispatching a read request that comes from some
process P, the elevator checks whether the next request in the sorted queue comes
from the same process P. If so, the next request is dispatched immediately. Otherwise,
the elevator looks at the collected statistics about process P: if it decides that
process P will likely issue another read request soon, then it stalls for a short period of
time (by default, roughly 7 milliseconds). Thus, the elevator might anticipate a read
request coming from process P that is "close" on disk to the request just dispatched.
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14.3.5. Issuing a Request to the I/O Scheduler

As seen in the section "Submitting a Request" earlier in this chapter, the
generic_make_request( ) function invokes the make_request_fn method of the request queue
descriptor to transmit a request to the I/O scheduler. This method is usually implemented by
the _ _make_request( ) function; it receives as its parameters a request_queue descriptor q
and a bio descriptor bio, and it performs the following operations:

1. Invokes the blk_queue_bounce( ) function to set up a bounce buffer, if required (see
later). If a bounce buffer was created, the _ _make_request( ) function operates on it
rather than on the original bio.

2. Invokes the I/O scheduler function elv_queue_empty( ) to check whether there are
pending requests in the request queuenotice that the dispatch queue might be empty,
but other queues of the I/O scheduler might contain pending requests. If there are no
pending requests, it invokes the blk_plug_device( ) function to plug the request queue
(see the section "Activating the Block Device Driver" earlier in this chapter), and jumps
to step 5.

3. Here the request queue includes pending requests. Invokes the elv_merge( ) I/O
scheduler function to check whether the new bio can be merged inside an existing
request. The function may return three possible values:

o ELEVATOR_NO_MERGE: the bio cannot be included in an already existing request: in
that case, the function jumps to step 5.

o ELEVATOR_BACK_MERGE: the bio might be added as the last bio of some request req
: in that case, the function invokes the q->back_merge_fn method to check
whether the request can be extended. If not, the function jumps to step 5.
Otherwise it inserts the bio descriptor at the tail of the req's list and updates
the req's fields. Then, it tries to merge the request with a following request (the
new bio might fill a hole between the two requests).

o ELEVATOR_FRONT_MERGE: the bio can be added as the first bio of some request req
: in that case, the function invokes the q->front_merge_fn method to check
whether the request can be extended. If not, it jumps to step 5. Otherwise, it
inserts the bio descriptor at the head of the req's list and updates the req's
fields. Then, the function tries to merge the request with the preceding
request.

4. The bio has been merged inside an already existing request. Jumps to step 7 to
terminate the function.

5. Here the bio must be inserted in a new request. Allocates a new request descriptor. If
there is no free memory, the function suspends the current process, unless the 
BIO_RW_AHEAD flag in bio->bi_rw is set, which means that the I/O operation is a
read-ahead (see Chapter 16); in this case, the function invokes bio_endio( ) and
terminates: the data transfer will not be executed. For a description of bio_endio( ),
see step 1 of generic_make_request( ) in the earlier section "Submitting a Request."

6. Initializes the fields of the request descriptor. In particular:

o Initializes the various fields that store the sector numbers, the current bio, and
the current segment according to the contents of the bio descriptor.

o Sets the REQ_CMD flag in the flags field (this is a normal read or write operation).

o If the page frame of the first bio segment is in low memory, it sets the buffer
field to the linear address of that buffer.
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o Sets the rq_disk field with the bio->bi_bdev->bd_disk address.

o Inserts the bio in the request list.

o Sets the start_time field to the value of jiffies.

7. All done. Before terminating, however, it checks whether the BIO_RW_SYNC flag in
bio->bi_rw is set. If so, it invokes generic_unplug_device( ) on the request queue to
unplug the driver (see the section "Activating the Block Device Driver" earlier in this
chapter).

8. Terminates.

If the request queue was not empty before invoking _ _make_request( ), either the request
queue is already unplugged, or it will be unplugged soonbecause each plugged request queue q
with pending requests has a running q->unplug_timer dynamic timer. On the other hand, if the
request queue was empty, the _ _make_request( ) function plugs it. Sooner (on exiting from _
_make_request( ), if the BIO_RW_SYNC bio flag is set) or later (in the worst case, when the
unplug timer decays), the request queue will be unplugged. In any case, eventually the
strategy routine of the block device driver will take care of the requests in the dispatch queue
(see the section "Device Driver Registration and Initialization" earlier in this chapter).

14.3.5.1. The blk_queue_bounce( ) function

The blk_queue_bounce( ) function looks at the flags in q->bounce_gfp and at the threshold in
q->bounce_pfn to determine whether buffer bouncing might be required. This happens when
some of the buffers in the request are located in high memory and the hardware device is not
able to address them.

Older DMA for ISA buses only handled 24-bit physical addresses. In this case, the buffer
bouncing threshold is set to 16 MB, that is, to page frame number 4096. Block device drivers,
however, do not usually rely on buffer bouncing when dealing with older devices; rather, they
prefer to directly allocate the DMA buffers in the ZONE_DMA memory zone.

If the hardware device cannot cope with buffers in high memory, the function checks whether
some of the buffers in the bio must really be bounced. In this case, it makes a copy of the bio
descriptor, thus creating a bounce bio; then, for each segment's page frame having number
equal to or greater than q->bounce_pfn, it performs the following steps:

1. Allocates a page frame in the ZONE_NORMAL or ZONE_DMA memory zone, according to the
allocation flags.

2. Updates the bv_page field of the segment in the bounce bio so that it points to the
descriptor of the new page frame.

3. If bio->bio_rw specifies a write operation, it invokes kmap( ) to temporarily map the
high memory page in the kernel address space, copies the high memory page onto the
low memory page, and invokes kunmap( ) to release the mapping.

The blk_queue_bounce( ) function then sets the BIO_BOUNCED flag in the bounce bio, initializes a
specific bi_end_io method for the bounce bio, and finally stores in the bi_private field of the
bounce bio the pointer to the original bio. When the I/O data transfer on the bounce bio
terminates, the function that implements the bi_end_io method copies the data to the high
memory buffer (only for a read operation) and releases the bounce bio.
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14.4. Block Device Drivers
Block device drivers are the lowest component of the Linux block subsystem. They get
requests from I/O scheduler, and do whatever is required to process them.

Block device drivers are, of course, integrated within the device driver model described in the
section "The Device Driver Model" in Chapter 13. Therefore, each of them refers to a
device_driver descriptor; moreover, each disk handled by the driver is associated with a
device descriptor. These descriptors, however, are rather generic: the block I/O subsystem
must store additional information for each block device in the system.

14.4.1. Block Devices

A block device driver may handle several block devices. For instance, the IDE device driver
can handle several IDE disks, each of which is a separate block device. Furthermore, each disk
is usually partitioned, and each partition can be seen as a logical block device. Clearly, the
block device driver must take care of all VFS system calls issued on the block device files
associated with the corresponding block devices.

Each block device is represented by a block_device descriptor, whose fields are listed in Table
14-9.

Table 14-9. The fields of the block device descriptor

Type Field Description

dev_t bd_dev Major and minor numbers of the block device

struct inode * bd_inode Pointer to the inode of the file associated with the
block device in the bdev filesystem

int bd_openers Counter of how many times the block device has been
opened

struct semaphore bd_sem Semaphore protecting the opening and closing of the
block device

struct semaphore bd_mount_sem Semaphore used to forbid new mounts on the block
device

struct list_head bd_inodes Head of a list of inodes of opened block device files for
this block device

void * bd_holder Current holder of block device descriptor

int bd_holders Counter for multiple settings of the bd_holder field

struct

block_device *

bd_contains

If block device is a partition, it points to the block
device descriptor of the whole disk; otherwise, it
points to this block device descriptor

unsigned bd_block_size Block size
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Table 14-9. The fields of the block device descriptor

Type Field Description

struct hd_struct * bd_part Pointer to partition descriptor (NULL if this block device
is not a partition)

unsigned bd_part_count Counter of how many times partitions included in this
block device have been opened

int bd_invalidated Flag set when the partition table on this block device
needs to be read

struct gendisk * bd_disk Pointer to gendisk structure of the disk underlying this
block device

struct list_head * bd_list Pointers for the block device descriptor list

struct

backing_dev_info *

bd_inode_back

ing_dev_info

Pointer to a specialized backing_dev_info descriptor for
this block device (usually NULL)

unsigned long bd_private Pointer to private data of the block device holder

All block device descriptors are inserted in a global list, whose head is represented by the 
all_bdevs variable; the pointers for list linkage are in the bd_list field of the block device
descriptor.

If the block device descriptor refers to a disk partition, the bd_contains field points to the
descriptor of the block device associated with the whole disk, while the bd_part field points to
the hd_struct partition descriptor (see the section "Representing Disks and Disk Partitions"
earlier in this chapter). Otherwise, if the block device descriptor refers to a whole disk, the 
bd_contains field points to the block device descriptor itself, and the bd_part_count field
records how many times the partitions on the disk have been opened.

The bd_holder field stores a linear address representing the holder of the block device. The
holder is not the block device driver that services the I/O data transfers of the device; rather,
it is a kernel component that makes use of the device and has exclusive, special privileges (for
instance, it can freely use the bd_private field of the block device descriptor). Typically, the
holder of a block device is the filesystem mounted over it. Another common case occurs when
a block device file is opened for exclusive access: the holder is the corresponding file object.

The bd_claim( ) function sets the bd_holder field with a specified address; conversely, the
bd_release( ) function resets the field to NULL. Be aware, however, that the same kernel
component can invoke bd_claim( ) many times; each invocation increases the bd_holders
field. To release the block device, the kernel component must invoke bd_release( ) a
corresponding number of times.

Figure 14-3 refers to a whole disk and illustrates how the block device descriptors are linked
to the other main data structures of the block I/O subsystem.

Figure 14-3. Linking the block device descriptors with the other
structures of the block subsystem
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14.4.1.1. Accessing a block device

When the kernel receives a request for opening a block device file, it must first determine
whether the device file is already open. In fact, if the file is already open, the kernel must not
create and initialize a new block device descriptor; rather, it should update the already
existing block device descriptor. To complicate life, block device files that have the same
major and minor numbers but different pathnames are viewed by the VFS as different files,
although they really refer to the same block device. Therefore, the kernel cannot determine
whether a block device is already in use by simply checking for the existence in the inode
cache of an object for a block device file.

The relationship between a major and minor number and the corresponding block device
descriptor is maintained through the bdev special filesystem (see the section "Special
Filesystems" in Chapter 12). Each block device descriptor is coupled with a bdev special file:
the bd_inode field of the block device descriptor points to the corresponding bdev inode;
conversely, such an inode encodes both the major and minor numbers of the block device and
the address of the corresponding descriptor.

The bdget( ) function receives as its parameter the major and minor numbers of a block
device: It looks up in the bdev filesystem the associated inode; if such inode does not exist,
the function allocates a new inode and new block device descriptor. In any case, the function
returns the address of the block device descriptor corresponding to given major and minor
numbers.

Once the block device descriptor for a block device has been found, the kernel can determine
whether the block device is currently in use by checking the value of the bd_openers field: if it
is positive, the block device is already in use (possibly by means of a different device file).
The kernel also maintains a list of inode objects relative to opened block device files. This list
is rooted at the bd_inodes field of the block device descriptor; the i_devices field of the inode
object stores the pointers for the previous and next element in this list.

14.4.2. Device Driver Registration and Initialization

Let's now explain the essential steps involved in setting up a new device driver for a block
device. Clearly, the description that follows is very succinct, nevertheless it could be useful to
understand how and when the main data structures used by the block I/O subsystem are
initialized.

We silently omit many steps required for all kinds of device drivers and already mentioned in 
Chapter 13. For example, we skip all steps required for registering the driver itself (see the
section "The Device Driver Model" in Chapter 13). Usually, the block device belongs to a
standard bus architecture such as PCI or SCSI, and the kernel offers helper functions that, as
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a side effect, register the driver in the device driver model.

14.4.2.1. Defining a custom driver descriptor

First of all, the device driver needs a custom descriptor foo of type foo_dev_t holding the data
required to drive the hardware device. For every device, the descriptor will store information
such as the I/O ports used to program the device, the IRQ line of the interrupts raised by the
device, the internal status of the device, and so on. The descriptor must also include a few
fields required by the block I/O subsystem:

struct foo_dev_t {

    [...]

    spinlock_t lock;

    struct gendisk *gd;

    [...]

} foo;

The lock field is a spin lock used to protect the fields of the foo descriptor; its address is
often passed to kernel helper functions, which can thus protect the data structures of the
block I/O subsystem specific to the driver. The gd field is a pointer to the gendisk descriptor
that represents the whole block device (disk) handled by this driver.

Reserving the major number

The device driver must reserve a major number for its own purposes. Traditionally, this is done
by invoking the register_blkdev( ) function:

err = register_blkdev(FOO_MAJOR, "foo");

if (err) goto error_major_is_busy;

This function is very similar to register_chrdev( ) presented in the section "Assigning Device
Numbers" in Chapter 13: it reserves the major number FOO_MAJOR and associates the name foo
to it. Notice that there is no way to allocate a subrange of minor numbers, because there is
no analog of register_chrdev_region( ); moreover, no link is established between the reserved
major number and the data structures of the driver. The only visible effect of 
register_blkdev( ) is to include a new item in the list of registered major numbers in the
/proc/devices special file.

14.4.2.2. Initializing the custom descriptor

All the fields of the foo descriptor must be initialized properly before making use of the driver.
To initialize the fields related to the block I/O subsystem, the device driver could execute the
following instructions:

spin_lock_init(&foo.lock);

foo.gd = alloc_disk(16);

if (!foo.gd) goto error_no_gendisk;

The driver initializes the spin lock, then allocates the disk descriptor. As shown earlier in Figure
14-3, the gendisk structure is crucial for the block I/O subsystem, because it references many
other data structures. The alloc_disk( ) function allocates also the array that stores the
partition descriptors of the disk. The argument of the function is the number of hd_struct
elements in the array; the value 16 means that the driver can support disks containing up to
15 partitions (partition 0 is not used).

14.4.2.3. Initializing the gendisk descriptor
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Next, the driver initializes some fields of the gendisk descriptor:

foo.gd->private_data = &foo;

foo.gd->major = FOO_MAJOR;

foo.gd->first_minor = 0;

foo.gd->minors = 16;

set_capacity(foo.gd, foo_disk_capacity_in_sectors);

strcpy(foo.gd->disk_name, "foo");

foo.gd->fops = &foo_ops;

The address of the foo descriptor is saved in the private_data of the gendisk structure, so
that low-level driver functions invoked as methods by the block I/O subsystem can quickly
find the driver descriptorthis improves efficiency if the driver can handle more than one disk at
a time. The set_capacity( ) function initializes the capacity field with the size of the disk in
512-byte sectorsthis value is likely determined by probing the hardware and asking about the
disk parameters.

14.4.2.4. Initializing the table of block device methods

The fops field of the gendisk descriptor is initialized with the address of a custom table of
block device methods (see Table 14-4 earlier in this chapter).[*] Quite likely, the foo_ops table
of the device driver includes functions specific to the device driver. As an example, if the
hardware device supports removable disks, the generic block layer may invoke the 
media_changed method to check whether the disk is changed since the last mount or open
operation on the block device. This check is usually done by sending some low-level
commands to the hardware controller, thus the implementation of the media_changed method is
always specific to the device driver.

[*] The block device methods should not be confused w ith the block device file operations; see the section "Opening a Block Device
File" later in this chapter.

Similarly, the ioctl method is only invoked when the generic block layer does not know how to
handle some ioctl command. For instance, the method is typically invoked when an ioctl( )
system call asks about the disk geometry , that is, the number of cylinders, tracks, sectors,
and heads used by the disk. Thus, the implementation of this method is specific to the device
driver.

14.4.2.5. Allocating and initializing a request queue

Our brave device driver designer might now set up a request queue that will collect the
requests waiting to be serviced. This can be easily done as follows:

foo.gd->rq = blk_init_queue(foo_strategy, &foo.lock);

if (!foo.gd->rq) goto error_no_request_queue;

blk_queue_hardsect_size(foo.gd->rd, foo_hard_sector_size);

blk_queue_max_sectors(foo.gd->rd, foo_max_sectors);

blk_queue_max_hw_segments(foo.gd->rd, foo_max_hw_segments);

blk_queue_max_phys_segments(foo.gd->rd, foo_max_phys_segments);

The blk_init_queue( ) function allocates a request queue descriptor and initializes many of its
fields with default values. It receives as its parameters the address of the device descriptor's
spin lockfor the foo.gd->rq->queue_lock fieldand the address of the strategy routine of the
device driverfor the foo.gd->rq->request_fn field; see the next section; "The Strategy Routine
." The blk_init_queue( ) function also initializes the foo.gd->rq->elevator field, forcing the
driver to use the default I/O scheduler algorithm. If the device driver wants to use a different
elevator, it may later override the address in the elevator field.

Next, some helper functions set various fields of the request queue descriptor with the proper
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values for the device driver (look at Table 14-6 for the similarly named fields).

14.4.2.6. Setting up the interrupt handler

As described in the section "I/O Interrupt Handling" in Chapter 4, the driver needs to register
the IRQ line for the device. This can be done as follows:

request_irq(foo_irq, foo_interrupt,

            SA_INTERRUPT|SA_SHIRQ, "foo", NULL);

The foo_interrupt() function is the interrupt handler for the device; we discuss some of its
peculiarities in the section "The Interrupt Handler" later in this chapter).

14.4.2.7. Registering the disk

Finally, all the device driver's data structures are ready: the last step of the initialization
phase consists of "registering" and activating the disk. This can be achieved simply by
executing:

add_disk(foo.gd);

The add_disk( ) function receives as its parameter the address of the gendisk descriptor, and
essentially executes the following operations:

1. Sets the GENHD_FL_UP flag of gd->flags.

2. Invokes kobj_map() to establish the link between the device driver and the device's
major number with its associated range of minor numbers (see the section "Character
Device Drivers" in Chapter 13; be warned that in this case the kobject mapping domain
is represented by the bdev_map variable).

3. Registers the kobject included in the gendisk descriptor in the device driver model as a
new device serviced by the device driver (e.g., /sys/block/foo).

4. Scans the partition table included in the disk, if any; for each partition found, properly
initializes the corresponding hd_struct descriptor in the foo.gd->part array. Also
registers the partitions in the device driver model (e.g., /sys/block/foo/foo1).

5. Registers the kobject embedded in the request queue descriptor in the device driver
model (e.g., /sys/block/foo/queue).

Once add_disk( ) returns, the device driver is actively working. The function that carried on
the initialization phase terminates; the strategy routine and the interrupt handler take care of
each request passed to the device driver by the I/O scheduler.

14.4.3. The Strategy Routine

The strategy routine is a functionor a group of functionsof the block device driver that
interacts with the hardware block device to satisfy the requests collected in the dispatch
queue. The strategy routine is invoked by means of the request_fn method of the request
queue descriptorthe foo_strategy( ) function in the example carried on in the previous
section. The I/O scheduler layer passes to this function the address q of the request queue
descriptor.

As we'll see, the strategy routine is usually started after inserting a new request in an empty
request queue. Once activated, the block device driver should handle all requests in the
queue and terminate when the queue is empty.

A naïve implementation of the strategy routine could be the following: for each element in the
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dispatch queue, remove it from the queue, interact with the block device controller to service
the request, and wait until the data transfer completes. Then proceed with the next request
in the dispatch queue.

Such an implementation is not very efficient. Even assuming that the data can be transferred
using DMA, the strategy routine must suspend itself while waiting for I/O completion. This
means that the strategy routine should execute on a dedicated kernel thread (we don't want
to penalize an unrelated user process, do we?). Moreover, such a driver would not be able to
support modern disk controllers that can process multiple I/O data transfers at a time.

Therefore, most block device drivers adopt the following strategy:

 The strategy routine starts a data transfer for the first request in the queue and sets
up the block device controller so that it raises an interrupt when the data transfer
completes. Then the strategy routine terminates.

 When the disk controller raises the interrupt, the interrupt handler invokes the strategy
routine again (often directly, sometimes by activating a work queue). The strategy
routine either starts another data transfer for the current request or, if all the chunks
of data of the request have been transferred, removes the request from the dispatch
queue and starts processing the next request.

Requests can be composed of several bios, which in turn can be composed of several
segments. Basically, block device drivers make use of DMA in two ways:

 The driver sets up a different DMA transfer to service each segment in each bio of the
request

 The driver sets up a single scatter-gather DMA transfer to service all segments in all
bios of the request

Ultimately, the design of the strategy routine of the device drivers depends on the
characteristics of the block controller. Each physical block device is inherently different from
all others (for example, a floppy driver groups blocks in disk tracks and transfers a whole track
in a single I/O operation), so making general assumptions on how a device driver should
service a request is meaningless.

In our example, the foo_strategy( ) strategy routine could execute the following actions:

1. Gets the current request from the dispatch queue by invoking the elv_next_request( )
I/O scheduler helper function. If the dispatch queue is empty, the strategy routine
returns:

2.
3. req = elv_next_request(q);

if (!req) return;

4. Executes the blk_fs_request macro to check whether the REQ_CMD flag of the request is
set, that is, whether the request contains a normal read or write operation:

5.
6. if (!blk_fs_request(req))

    goto handle_special_request;

7. If the block device controller supports scatter-gather DMA, it programs the disk
controller so as to perform the data transfer for the whole request and to raise an
interrupt when the transfer completes. The blk_rq_map_sg( ) helper function returns a
scatter-gather list that can be immediately used to start the transfer.

8. Otherwise, the device driver must transfer the data segment by segment. In this case,
the strategy routine executes the rq_for_each_bio and bio_for_each_segment macros,
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which walk the list of bios and the list of segments inside each bio, respectively:
9.
10. rq_for_each_bio(bio, rq)

11.     bio_for_each_segment(bvec, bio, i) {

12.         /* transfer the i-th segment bvec */

13.         local_irq_save(flags);

14.         addr = kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);

15.         foo_start_dma_transfer(addr+bvec->bv_offset, bvec->bv_len);

16.         kunmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);

17.         local_irq_restore(flags);

    }

The kmap_atomic( ) and kunmap_atomic( ) functions are required if the data to be
transferred can be in high memory. The foo_start_dma_transfer( ) function programs
the hardware device so as to start the DMA transfer and to raise an interrupt when
the I/O operation completes.

18. Returns.

14.4.4. The Interrupt Handler

The interrupt handler of a block device driver is activated when a DMA transfer terminates. It
should check whether all chunks of data in the request have been transferred. If so, the
interrupt handler invokes the strategy routine to process the next request in the dispatch
queue. Otherwise, the interrupt handler updates the field of the request descriptor and
invokes the strategy routine to process the data transfer yet to be performed.

A typical fragment of the interrupt handler of our foo device driver is the following:

irqreturn_t foo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    struct foo_dev_t *p = (struct foo_dev_t *) dev_id;

    struct request_queue *rq = p->gd->rq;

       [...]

    if (!end_that_request_first(rq, uptodate, nr_sectors)) {

        blkdev_dequeue_request(rq);

        end_that_request_last(rq);

    }

    rq->request_fn(rq);

       [...]

    return IRQ_HANDLED;

}

The job of ending a request is split in two functions called end_that_request_first( ) and
end_that_request_last( ).

The end_that_request_first( ) function receives as arguments a request descriptor, a flag
indicating if the DMA data transfer completed successfully, and the number of sectors
transferred in the DMA transfer (the end_that_request_chunk( ) function is similar, but it
receives the number of bytes transferred instead of the number of sectors). Essentially, the
function scans the bios in the request and the segments inside each bio, then updates the
fields of the request descriptor in such a way to:

 Set the bio field so that it points to the first unfinished bio in the request.

 Set the bi_idx of the unfinished bio so that it points to the first unfinished segment.

 Set the bv_offset and bv_len fields of the unfinished segment so that they specify the
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data yet to be transferred.

The function also invokes bio_endio( ) on each bio that has been completely transferred.

The end_that_request_first( ) function returns 0 if all chunks of data in the request have
been transferred; otherwise, it returns 1. If the returned value is 1, the interrupt handler
restarts the strategy routine, which thus continues processing the same request. Otherwise,
the interrupt handler removes the request from the request queue (typically by using 
blkdev_dequeue_request( )), invokes the end_that_request_last( ) helper function, and
restarts the strategy routine to process the next request in the dispatch queue.

The end_that_request_last( ) function updates some disk usage statistics, removes the
request descriptor from the dispatch queue of the rq->elevator I/O scheduler, wakes up any
process sleeping in the waiting completion of the request descriptor, and releases that
descriptor.
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14.5. Opening a Block Device File
We conclude this chapter by describing the steps performed by the VFS when opening a block
device file.

The kernel opens a block device file every time that a filesystem is mounted over a disk or
partition, every time that a swap partition is activated, and every time that a User Mode
process issues an open( ) system call on a block device file. In all cases, the kernel executes
essentially the same operations: it looks for the block device descriptor (possibly allocating a
new descriptor if the block device is not already in use), and sets up the file operation
methods for the forthcoming data transfers.

In the section "VFS Handling of Device Files" in Chapter 13, we described how the
dentry_open( ) function customizes the methods of the file object when a device file is
opened. In this case, the f_op field of the file object is set to the address of the def_blk_fops
table, whose content is shown in Table 14-10.

Table 14-10. The default block device file operations (def_blk_fops
table)

Method Function

open blkdev_open( )

release blkdev_close( )

llseek block_llseek( )

read generic_file_read( )

write blkdev_file_write( )

aio_read generic_file_aio_read( )

aio_write blkdev_file_aio_write( )

mmap generic_file_mmap( )

fsync block_fsync( )

ioctl block_ioctl( )

compat-ioctl compat_blkdev_ioctl( )

readv generic_file_readv( )

writev generic_file_write_nolock( )

sendfile generic_file_sendfile( )

Here we are only concerned with the open method, which is invoked by the dentry_open( )
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function. The blkdev_open( ) function receives as its parameters inode and filp, which store
the addresses of the inode and file objects respectively; the function essentially executes the
following steps:

1. Executes bd_acquire(inode ) to get the address bdev of the block device descriptor. In
turn, this function receives the inode object address and performs the following steps:

a. Checks whether the inode->i_bdev field of the inode object is not NULL; if it is,
the block device file has been opened already, and this field stores the address
of the corresponding block descriptor. In this case, the function increases the
usage counter of the inode->i_bdev->bd_inode inode of the bdev special
filesystem associated with the block device, and returns the address 
inode->i_bdev of the descriptor.

b. Here the block device file has not been opened yet. Executes 
bdget(inode->i_rdev) to get the address of the block device descriptor
corresponding to the major and minor number of the block device file (see the
section "Block Devices" earlier in this chapter). If the descriptor does not
already exist, bdget( ) allocates it; notice however that the descriptor might
already exist, for instance because the block device is already being accessed
by means of another block device file.

c. Stores the block device descriptor address in inode->i_bdev, so as to speed up
future opening operations on the same block device file.

d. Sets the inode->i_mapping field with the value of the corresponding field in the
bdev inode. This is the pointer to the address space object, which will be
explained in the section "The address_space Object" in Chapter 15.

e. Inserts inode into the list of opened inodes of the block device descriptor
rooted at bdev->bd_inodes.

f. Returns the address bdev of the descriptor.

2. Sets the filp->i_mapping field with the value of inode->i_mapping (see step 1(d)
above).

3. Gets the address of the gendisk descriptor relative to this block device:
4.
5. disk = get_gendisk(bdev->bd_dev, &part);

If the block device being opened is a partition, the function also returns its index in
the part local variable; otherwise, part is set to zero. The get_gendisk( ) function
simply invokes kobj_lookup( ) on the bdev_map kobject mapping domain passing the
major and minor number of the device (see also the section "Device Driver Registration
and Initialization" earlier in this chapter).

6. If bdev->bd_openers is not equal to zero, the block device has already been opened.
Checks the bdev->bd_contains field:

a. If it is equal to bdev, the block device is a whole disk: invokes the
bdev->bd_disk->fops->open block device method, if defined, then checks the
bdev->bd_invalidated field and invokes, if necessary, the rescan_partitions( )
functions (see comments on steps 6a and 6c later).

b. If it not equal to bdev, the block device is a partition: increases the
bdev->bd_contains->bd_part_count counter.

Then, jumps to step 8.
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7. Here the block device is being accessed for the first time. Initializes bdev->bd_disk with
the address disk of the gendisk descriptor.

8. If the block device is a whole disk (part is zero), it executes the following substeps:

a. If defined, it executes the disk->fops->open block device method: it is a custom
function defined by the block device driver to perform any specific last-minute
initialization.

b. Gets from the hardsect_size field of the disk->queue request queue the sector
size in bytes, and uses this value to set properly the bdev->bd_block_size and
bdev->bd_inode->i_blkbits fields. Sets also the bdev->bd_inode->i_size field
with the size of the disk computed from disk->capacity.

c. If the bdev->bd_invalidated flag is set, it invokes rescan_partitions( ) to scan
the partition table and update the partition descriptors. The flag is set by the 
check_disk_change block device method, which applies only to removable
devices.

9. Otherwise if the block device is a partition (part is not zero), it executes the following
substeps:

a. Invokes bdget( ) againthis time passing the disk->first_minor minor numberto
get the address whole of the block descriptor for the whole disk.

b. Repeats steps from 3 to 6 for the block device descriptor of the whole disk,
thus initializing it if necessary.

c. Sets bdev->bd_contains to the address of the descriptor of the whole disk.

d. Increases whole->bd_part_count to account for the new open operation on the
partition of the disk.

e. Sets bdev->bd_part with the value in disk->part[part-1]; it is the address of
the hd_struct descriptor of the partition. Also, executes
kobject_get(&bdev->bd_part->kobj) to increase the reference counter of the
partition.

f. As in step 6b, sets the inode fields that specify size and sector size of the
partition.

10. Increases the bdev->bd_openers counter.

11. If the block device file is being opened in exclusive mode (O_EXCL flag in filp->f_flags
set), it invokes bd_claim(bdev, filp) to set the holder of the block device (see the
section "Block Devices" earlier in this chapter). In case of errorblock device has already
an holderit releases the block device descriptor and returns the error code -EBUSY.

12. Terminates by returning 0 (success).

Once the blkdev_open( ) function terminates, the open( ) system call proceeds as usual.
Every future system call issued on the opened file will trigger one of the default block device
file operations. As we will see in Chapter 16, each data transfer to or from the block device is
effectively implemented by submitting requests to the generic block layer.
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Chapter 15. The Page Cache
As already mentioned in the section "The Common File Model" in Chapter 12, a disk cache is a
software mechanism that allows the system to keep in RAM some data that is normally stored
on a disk, so that further accesses to that data can be satisfied quickly without accessing
the disk.

Disk caches are crucial for system performance, because repeated accesses to the same disk
data are quite common. A User Mode process that interacts with a disk is entitled to ask
repeatedly to read or write the same disk data. Moreover, different processes may also need
to address the same disk data at different times. As an example, you may use the cp
command to copy a text file and then invoke your favorite editor to modify it. To satisfy your
requests, the command shell will create two different processes that access the same file at
different times.

We have already encountered other disk caches in Chapter 12: the dentry cache , which
stores dentry objects representing filesystem pathnames, and the inode cache , which stores
inode objects representing disk inodes. Notice, however, that dentry objects and inode
objects are not mere buffers storing the contents of some disk blocks; thus, the dentry cache
and the inode cache are rather peculiar as disk caches.

This chapter deals with the page cache , which is a disk cache working on whole pages of
data. We introduce the page cache in the first section. Then, we discuss in the section "
Storing Blocks in the Page Cache" how the page cache can be used to retrieve single blocks
of data (for instance, superblocks and inodes); this feature is crucial to speed up the VFS and
the disk-based filesystems. Next, we describe in the section "Writing Dirty Pages to Disk" how
the dirty pages in the page cache are written back to disk. Finally, we mention in the last
section "The sync( ), fsync( ), and fdatasync( ) System Calls" some system calls that allow a
user to flush the contents of the page cache so as to update the disk contents.
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15.1. The Page Cache
The page cache is the main disk cache used by the Linux kernel. In most cases, the kernel
refers to the page cache when reading from or writing to disk. New pages are added to the
page cache to satisfy User Mode processes's read requests. If the page is not already in the
cache, a new entry is added to the cache and filled with the data read from the disk. If there
is enough free memory, the page is kept in the cache for an indefinite period of time and can
then be reused by other processes without accessing the disk.

Similarly, before writing a page of data to a block device, the kernel verifies whether the
corresponding page is already included in the cache; if not, a new entry is added to the cache
and filled with the data to be written on disk. The I/O data transfer does not start
immediately: the disk update is delayed for a few seconds, thus giving a chance to the
processes to further modify the data to be written (in other words, the kernel implements
deferred write operations).

Kernel code and kernel data structures don't need to be read from or written to disk.[*] Thus,
the pages included in the page cache can be of the following types:

[*] Well, almost never: if you w ant to resume the w hole state of the system after a shutdow n, you can perform a "suspend to disk"
operation (hibernation ), w hich saves the content of the w hole RAM on a sw ap partition. We w on't further discuss this case.

 Pages containing data of regular files; in Chapter 16, we describe how the kernel
handles read, write, and memory mapping operations on them.

 Pages containing directories; as we'll see in Chapter 18, Linux handles the directories
much like regular files.

 Pages containing data directly read from block device files (skipping the filesystem
layer); as discussed in Chapter 16, the kernel handles them using the same set of
functions as for pages containing data of regular files.

 Pages containing data of User Mode processes that have been swapped out on disk.
As we'll see in Chapter 17, the kernel could be forced to keep in the page cache some
pages whose contents have been already written on a swap area (either a regular file
or a disk partition).

 Pages belonging to files of special filesystems, such as the shm special filesystem used
for Interprocess Communication (IPC) shared memory region (see Chapter 19).

As you can see, each page included in the page cache contains data belonging to some file.
This fileor more precisely the file's inodeis called the page's owner. (As we will see in Chapter
17, pages containing swapped-out data have the same owner even if they refer to different
swap areas.)

Practically all read( ) and write( ) file operations rely on the page cache. The only exception
occurs when a process opens a file with the O_DIRECT flag set: in this case, the page cache is
bypassed and the I/O data transfers make use of buffers in the User Mode address space of
the process (see the section "Direct I/O Transfers" in Chapter 16); several database
applications make use of the O_DIRECT flag so that they can use their own disk caching
algorithm.

Kernel designers have implemented the page cache to fulfill two main requirements:

 Quickly locate a specific page containing data relative to a given owner. To take the
maximum advantage from the page cache, searching it should be a very fast operation.

 Keep track of how every page in the cache should be handled when reading or writing
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its content. For instance, reading a page from a regular file, a block device file, or a
swap area must be performed in different ways, thus the kernel must select the proper
operation depending on the page's owner.

The unit of information kept in the page cache is, of course, a whole page of data. As we'll
see in Chapter 18, a page does not necessarily contain physically adjacent disk blocks, so it
cannot be identified by a device number and a block number. Instead, a page in the page
cache is identified by an owner and by an index within the owner's datausually, an inode and
an offset inside the corresponding file.

15.1.1. The address_space Object

The core data structure of the page cache is the address_space object, a data structure
embedded in the inode object that owns the page.[*] Many pages in the cache may refer to
the same owner, thus they may be linked to the same address_space object. This object also
establishes a link between the owner's pages and a set of methods that operate on these
pages.

[*] An exception occurs for pages that have been sw apped out. As w e w ill see in Chapter 17, these pages have a common
address_space object not included in any inode.

Each page descriptor includes two fields called mapping and index, which link the page to the
page cache (see the section "Page Descriptors" in Chapter 8). The first field points to the
address_space object of the inode that owns the page. The second field specifies the offset in
page-size units within the owner's "address space," that is, the position of the page's data
inside the owner's disk image. These two fields are used when looking for a page in the page
cache.

Quite surprisingly, the page cache may happily contain multiple copies of the same disk data.
For instance, the same 4-KB block of data of a regular file can be accessed in the following
ways:

 Reading the file; hence, the data is included in a page owned by the regular file's
inode.

 Reading the block from the device file (disk partition) that hosts the file; hence, the
data is included in a page owned by the master inode of the block device file.

Thus, the same disk data appears in two different pages referenced by two different 
address_space objects.

The fields of the address_space object are shown in Table 15-1.

Table 15-1. The fields of the address_space object

Type Field Description

struct inode * host Pointer to the inode hosting this object,
if any

struct

radix_tree_root

page_tree Root of radix tree identifying the
owner's pages

spinlock_t tree_lock Spin lock protecting the radix tree

unsigned int i_mmap_writable Number of shared memory mappings in
the address space
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Table 15-1. The fields of the address_space object

Type Field Description

struct

prio_tree_root

i_mmap Root of the radix priority search tree
(see Chapter 17)

struct list_head i_mmap_nonlinear List of non-linear memory regions in the
address space

spinlock_t i_mmap_lock Spin lock protecting the radix priority
search tree

unsigned int TRuncate_count Sequence counter used when truncating
the file

unsigned long nrpages Total number of owner's pages

unsigned long writeback_index Page index of the last write-back
operation on the owner's pages

struct

address_space_operations *
a_ops Methods that operate on the owner's

pages

unsigned long flags Error bits and memory allocator flags

struct backing_dev_info * backing_dev_info
Pointer to the backing_dev_info of the
block device holding the data of this
owner

spinlock_t private_lock Usually, spin lock used when managing
the private_list list

struct list head private_list Usually, a list of dirty buffers of indirect
blocks associated with the inode

struct address_space * assoc_mapping Usually, pointer to the address_space
object of the block device including the
indirect blocks

If the owner of a page in the page cache is a file, the address_space object is embedded in
the i_data field of a VFS inode object. The i_mapping field of the inode always points to the
address_space object of the owner of the pages containing the inode's data. The host field of
the address_space object points to the inode object in which the descriptor is embedded.

Thus, if a page belongs to a file that is stored in an Ext3 filesystem , the owner of the page is
the inode of the file and the corresponding address_space object is stored in the i_data field of
the VFS inode object. The i_mapping field of the inode points to the i_data field of the same
inode, and the host field of the address_space object points to the same inode.

Sometimes, however, things are more complicated. If a page contains data read from a block
device filethat is, it stores "raw" data of a block devicethe address_space object is embedded
in the "master" inode of the file in the bdev special filesystem associated with the block device
(this inode is referenced by the bd_inode field of the block device descriptor, see the section "
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Block Devices" in Chapter 14). Therefore, the i_mapping field of an inode of a block device file
points to the address_space object embedded in the master inode; correspondingly, the host
field of the address_space object points to the master inode. In this way, all pages containing
data read from a block device have the same address_space object, even if they have been
accessed by referring to different block device files.

The i_mmap, i_mmap_writable, i_mmap_nonlinear, and i_mmap_lock fields refer to memory
mapping and reverse mapping. We'll discuss these topics in Chapter 16 and Chapter 17.

The backing_dev_info field points the backing_dev_info descriptor associated with the block
device storing the data of the owner. As explained in the section "Request Queue Descriptors"
in Chapter 14, the backing_dev_info structure is usually embedded in the request queue
descriptor of the block device.

The private_list field is the head of a generic list that can be freely used by the filesystem
for its specific purposes. For example, the Ext2 filesystem makes use of this list to collect the
dirty buffers of "indirect" blocks associated with the inode (see the section "Data Blocks
Addressing" in Chapter 18). When a flush operation forces the inode to be written to disk, the
kernel flushes also all the buffers in this list. Moreover, the Ext2 filesystem stores in the 
assoc_mapping field a pointer to the address_space object of the block device containing the
indirect blocks; it also uses the assoc_mapping->private_lock spin lock to protect the lists of
indirect blocks in multiprocessor systems.

A crucial field of the address_space object is a_ops, which points to a table of type
address_space_operations containing the methods that define how the owner's pages are
handled. These methods are shown in Table 15-2.

Table 15-2. The methods of the address_space object

Method Description

writepage Write operation (from the page to the owner's disk image)

readpage Read operation (from the owner's disk image to the page)

sync_page Start the I/O data transfer of already scheduled operations on owner's
pages

writepages Write back to disk a given number of dirty owner's pages

set_page_dirty Set an owner's page as dirty

readpages Read a list of owner's pages from disk

prepare_write Prepare a write operation (used by disk-based filesystems)

commit_write Complete a write operation (used by disk-based filesystems)

bmap Get a logical block number from a file block index

invalidatepage Invalidate owner's pages (used when truncating the file)

releasepage Used by journaling filesystems to prepare the release of a page

direct_IO Direct I/O transfer of the owner's pages (bypassing the page cache)
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The most important methods are readpage, writepage, prepare_write, and commit_write. We
discuss them in Chapter 16. In most cases, the methods link the owner inode objects with the
low-level drivers that access the physical devices. For instance, the function that implements
the readpage method for an inode of a regular file knows how to locate the positions on the
physical disk device of the blocks corresponding to each page of the file. In this chapter,
however, we don't have to discuss the address_space methods further.

15.1.2. The Radix Tree

In Linux, files can have large sizes, even a few terabytes. When accessing a large file, the
page cache may become filled with so many of the file's pages that sequentially scanning all
of them would be too time-consuming. In order to perform page cache lookup efficiently, Linux
2.6 makes use of a large set of search trees, one for each address_space object.

The page_tree field of an address_space object is the root of a radix tree, which contains
pointers to the descriptors of the owner's pages. Given a page index denoting the position of
the page inside the owner's disk image, the kernel can perform a very fast lookup operation in
order to determine whether the required page is already included in the page cache. When
looking up the page, the kernel interprets the index as a path inside the radix tree and quickly
reaches the position where the page descriptor isor should bestored. If found, the kernel can
retrieve from the radix tree the descriptor of the page; it can also quickly determine whether
the page is dirty (i.e., to be flushed to disk) and whether an I/O transfer for its data is
currently on-going.

Each node of the radix tree can have up to 64 pointers to other nodes or to page descriptors.
Nodes at the bottom level store pointers to page descriptors (the leaves), while nodes at
higher levels store pointers to other nodes (the children). Each node is represented by the 
radix_tree_node data structure, which includes three fields: slots is an array of 64 pointers,
count is a counter of how many pointers in the node are not NULL, and tags is a
two-component array of flags that will be discussed in the section "The Tags of the Radix
Tree" later in this chapter. The root of the tree is represented by a radix_tree_root data
structure, having three fields: height denotes the current tree's height (number of levels
excluding the leaves), gfp_mask specifies the flags used when requesting memory for a new
node, and rnode points to the radix_tree_node data structure corresponding to the node at
level 1 of the tree (if any).

Let us consider a simple example. If none of the indices stored in the tree is greater than 63,
the tree height is equal to one, because the 64 potential leaves can all be stored in the node
at level 1 (see Figure 15-1 (a)). If, however, a new page descriptor corresponding to index
131 must be stored in the page cache, the tree height is increased to two, so that the radix
tree can pinpoint indices up to 4095 (see Figure 15-1(b)).

Figure 15-1. Two examples of a radix tree
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Table 15-3 shows the highest page index and the corresponding maximum file size for each
given height of the radix tree on a 32-bit architecture. In this case, the maximum height of a
radix tree is six, although it is quite unlikely that the page cache of your system will make use
of a radix tree that huge. Because the page index is stored in a 32-bit variable, when the tree
has height equal to six, the node at the highest level can have at most four children.

Table 15-3. Highest index and maximum file size for each radix tree
height

Radix tree height Highest index Maximum file size

0 none 0 bytes

1 26 -1 = 63 256 kilobytes

2 212 -1 = 4 095 16 megabytes

3 218 -1 = 262 143 1 gigabyte

4 224-1 = 16 777 215 64 gigabytes

5 230 -1 = 1 073 741 823 4 terabytes

6 232 -1 = 4 294 967 295 16 terabytes

The best way to understand how page lookup is performed is to recall how the paging system
makes use of the page tables to translate linear addresses into physical addresses. As
discussed in the section "Regular Paging" in Chapter 2, the 20 most significant bits of a linear
address are split into two 10-bit long fields: the first field is an offset in the Page Directory,
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while the second one is an offset in the Page Table pointed to by the proper Page Directory
entry.

A similar approach is used in the radix tree. The equivalent of the linear address is the page's
index. However, the number of fields to be considered in the page's index depends on the
height of the radix tree. If the radix tree has height 1, only indices ranging from 0 to 63 can
be represented, thus the 6 less significant bits of the page's index are interpreted as the 
slots array index for the single node at level 1. If the radix tree has height 2, the indices that
can be represented range from 0 to 4095; the 12 less significant bits of the page's index are
thus split in 2 fields of 6 bits each; the most significant field is used as an array index for the
node at level 1, while the less significant field is used as an array index for the node at level
2. The procedure is similar for every other radix tree's height. If the height is equal to 6, the 2
most significant bits of the page's index are the array index for the node at level 1, the
following 6 bits are the array index for the node at level 2, and so on up to the 6 less
significant bits, which are the array index for the node at level 6.

If the highest index of a radix tree is smaller than the index of a page that should be added,
then the kernel increases the tree height correspondingly; the intermediate nodes of the radix
tree depend on the value of the page index (see Figure 15-1 for an example).

15.1.3. Page Cache Handling Functions

The basic high-level functions that use the page cache involve finding, adding, and removing
a page. Another function based on the previous ones ensures that the cache includes an
up-to-date version of a given page.

15.1.3.1. Finding a page

The find_get_page( ) function receives as its parameters a pointer to an address_space object
and an offset value. It acquires the address space's spin lock and invokes the 
radix_tree_lookup( ) function to search for a leaf node of the radix tree having the required
offset. This function, in turn, starts from the root node of the tree and goes down according
to the bits of the offset value, as explained in the previous section. If a NULL pointer is
encountered, the function returns NULL; otherwise, it returns the address of a leaf node, that
is, the pointer of the required page descriptor. If the requested page is found, find_get_page(
) increases its usage counter, releases the spin lock, and returns its address; otherwise, the
function releases the spin lock and returns NULL.

The find_get_pages( ) function is similar to find_get_page( ), but it performs a page cache
lookup for a group of pages having contiguous indices. It receives as its parameters a pointer
to an address_space object, the offset in the address space from where to start searching,
the maximum number of pages to be retrieved, and a pointer to an array of pages descriptors
to be filled by the function. To perform the lookup operation, find_get_pages( ) relies on the
radix_tree_gang_lookup( ) function, which fills the array of pointers and returns the number of
pages found. The returned pages have ascending indices, although there may be holes in the
indices because some pages may not be in the page cache.

There are several other functions that perform search operations on the page cache. For
example, the find_lock_page( ) function is similar to find_get_page( ), but it increases the
usage counter of the returned page and invokes lock_page( ) to set the PG_locked flagthus,
when the function returns, the page can be accessed exclusively by the caller. The 
lock_page( ) function, in turn, blocks the current process if the page is already locked. To
that end, it invokes the _ _wait_on_bit_lock( ) function on the PG_locked bit. The latter
function puts the current process in the TASK_UNINTERRUPTIBLE state, stores the process
descriptor in a wait queue, executes the sync_page method of the address_space object to
unplug the request queue of the block device containing the file, and finally invokes schedule(
) to suspend the process until the PG_locked flag of the page is cleared. To unlock a page and
wake up the processes sleeping in the wait queue, the kernel makes use of the unlock_page( )
function.
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The find_trylock_page( ) function is similar to find_lock_page( ), except that it never blocks:
if the requested page is already locked, the function returns an error code. Finally, the 
find_or_create_page( ) function executes find_lock_page( ); however, if the page is not
found, a new page is allocated and inserted in the page cache.

15.1.3.2. Adding a page

The add_to_page_cache( ) function inserts a new page descriptor in the page cache. It
receives as its parameters the address page of the page descriptor, the address mapping of an
address_space object, the value offset representing the page index inside the address space,
and the memory allocation flags gfp_mask to be used when allocating the new nodes of the
radix tree. The function performs the following operations:

1. Invokes radix_tree_preload( ), which disables kernel preemption and fills the per-CPU
variable radix_tree_preloads with a few free radix_tree_node structures. Allocation of
radix_tree_node structures is done by means of the radix_tree_node_cachep slab
allocator cache. If radix_tree_preload( ) fails in preallocating the radix_tree_node
structures, the add_to_page_cache( ) function terminates by returning the error code
-ENOMEM. Otherwise, if radix_tree_preload( ) succeeds, add_to_page_cache( ) can be
sure that the insertion of the new page descriptor will not fail for lack of free memory,
at least for files of size up to 64 GB.

2. Acquires the mapping->tree_lock spin locknotice that kernel preemption has already
been disabled by radix_tree_preload( ).

3. Invokes radix_tree_insert( ) to insert the new node in the tree. This function
performs the following steps:

a. Invokes radix_tree_maxindex( ) to get the maximum index that can be inserted
in the radix tree with its current height; if the index of the new page cannot be
represented with the current height, it invokes radix_tree_extend( ) to increase
the height of the tree by adding the proper number of nodes (for instance,
when applied to the radix tree shown in Figure 15-1 (a), radix_tree_extend( )
would add a single node on top of it). New nodes are allocated by executing
the radix_tree_node_alloc( ) function, which tries to get a radix_tree_node
structure from the slab allocator cache or, if this allocation fails, from the pool
of preallocated structures stored in radix_tree_preloads.

b. Starting from the root (mapping->page_tree), it traverses the tree according to
the offset page's index until the leaf is reached, as described in the previous
section. If required, it allocates new intermediate nodes by invoking 
radix_tree_node_alloc( ).

c. Stores the page descriptor address in the proper slot of the last traversed node
of the radix tree, and returns 0.

4. Increases the usage counter page->_count of the page descriptor.

5. Because the page is new, its content is invalid: the function sets the PG_locked flag of
the page frame to protect the page against concurrent accesses from other kernel
control paths.

6. Initializes page->mapping and page->index with the parameters mapping and offset.

7. Increases the counter of cached pages in the address space (mapping->nrpages).

8. Releases the address space's spin lock.

9. Invokes radix_tree_preload_end( ) to reenable kernel preemption.

10. Returns 0 (success).
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15.1.3.3. Removing a page

The remove_from_page_cache( ) function removes a page descriptor from the page cache. This
is achieved in the following way:

1. Acquires the page->mapping->tree_lock spin lock and disables interrupts.

2. Invokes radix_tree_delete( ) to delete the node from the tree. This function receives
as its parameters the address of the tree's root (page->mapping->page_tree) and the
index of the page to be removed and performs the following steps:

a. Starting from the root, it traverses the tree according to the page's index until
the leaf is reached, as described in the previous section. While doing so, it
builds up an array of radix_tree_path structures that describe the components
of the path from the root to the leaf corresponding to the page to be deleted.

b. Starts a cycle on the nodes collected in the path array, starting with the last
node, which contains the pointer to the page descriptor. For each node, it sets
to NULL the element of the slots array pointing to the next node (or to the page
descriptor) and decreases the count field. If count becomes zero, it removes the
node from the tree and releases the radix_tree_node structure to the slab
allocator cache, then continues the cycle with the preceding node in the path
array; otherwise, if count does not become zero, it continues with the next
step.

c. Returns the pointer to the page descriptor that has been removed from the
tree.

3. Sets the page->mapping field to NULL.

4. Decreases by one the page->mapping->nrpages counter of cached pages.

5. Releases the page->mapping->tree_lock spin lock, enables the interrupts, and
terminates.

15.1.3.4. Updating a page

The read_cache_page( ) function ensures that the cache includes an up-to-date version of a
given page. Its parameters are a pointer mapping to an address_space object, an offset value
index that specifies the requested page, a pointer filler to a function that reads the page's
data from disk (usually it is the function that implements the address space's readpage
method), and a pointer data that is passed to the filler function (usually, it is NULL). Here is
a simplified description of what the function does:

1. Invokes find_get_page( ) to check whether the page is already in the page cache.

2. If the page is not in the page cache, it performs the following substeps:

a. Invokes alloc_pages( ) to allocate a new page frame.

b. Invokes add_to_page_cache( ) to insert the corresponding page descriptor into
the page cache.

c. Invokes lru_cache_add( ) to insert the page in the zone's inactive LRU list (see
the section "The Least Recently Used (LRU) Lists" in Chapter 17).

3. Here the page is in the page cache. Invokes mark_page_accessed( ) to record the fact
that the page has been accessed (see the section "The Least Recently Used (LRU)
Lists" in Chapter 17).

4. If the page is not up-to-date (PG_uptodate flag clear), it invokes the filler function to
read from disk the page.
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5. Returns the address of the page descriptor.

15.1.4. The Tags of the Radix Tree

As stated previously, the page cache not only allows the kernel to quickly retrieve a page
containing specified data of a block device; the cache also allows the kernel to quickly
retrieve pages in the cache that are in a given state.

For instance, let us suppose that the kernel must retrieve all pages in the cache that belong
to a given owner and that are dirty, that is, the pages whose contents have not yet been
written to disk. The PG_dirty flag stored in the page descriptor specifies whether a page is
dirty or not; however, traversing the whole radix tree to sequentially access all the leavesthat
is, the page descriptorswould be an unduly slow operation if most pages are not dirty.

Instead, to allow a quick search of dirty pages, each intermediate node in the radix tree
contains a dirty tag for each child node (or leaf); this flag is set if and only if at least one of
the dirty tags of the child node is set. The dirty tags of the nodes at the bottom level are
usually copies of the PG_dirty flags of the page descriptors. In this way, when the kernel
traverses a radix tree looking for dirty pages, it can skip each subtree rooted at an
intermediate node whose dirty tag is clear: it knows for sure that all page descriptors stored
in the subtree are not dirty.

The same idea applies to the PG_writeback flag, which denotes that a page is currently being
written back to disk. Thus, each node of the radix tree propagates two flags of the page
descriptor: PG_dirty and PG_writeback (see the section "Page Descriptors" in Chapter 8). To
store them, each node includes two arrays of 64 bits in the tags field. The tags[0] array (
PAGECACHE_TAG_DIRTY) is the dirty tag, while the tags[1] (PAGECACHE_TAG_WRITEBACK) array is the
writeback tag.

The radix_tree_tag_set( ) function is invoked when setting the PG_dirty or the PG_writeback
flag of a cached page; it acts on three parameters: the root of the radix tree, the page's
index, and the type of tag to be set (PAGECACHE_TAG_DIRTY or PAGECACHE_TAG_WRITEBACK). The
function starts from the root of the tree and goes down to the leaf corresponding to the given
index; for each node of the path leading from the root to the leaf, the function sets the tag
associated with the pointer to the next node in the path. The function then returns the
address of the page descriptor. As a result, each in node in the path that goes down from the
root to the leaf is tagged in the appropriate way.

The radix_tree_tag_clear( ) function is invoked when clearing the PG_dirty or the
PG_writeback flag of a cached page; it acts on the same parameters as radix_tree_tag_set( ).
The function starts from the root of the tree and goes down to the leaf, building an array of 
radix_tree_path structures describing the path. Then, the function proceeds backward from
the leaf to the root: it clears the tag of the node at the bottom level, then it checks whether
all tags in the node's array are now cleared; if so, the function clears the proper tag in the
parent node at the upper level, checks whether all tags in that node are cleared, and so on.
The function then returns the address of the page descriptor.

When a page descriptor is removed from a radix tree, the proper tags in the nodes belonging
to the path from the root to the leaf must be updated. The radix_tree_delete( ) function
does this properly (even if we omitted mentioning this fact in the previous section). The 
radix_tree_insert( ) function, however, doesn't update the tags, because each page
descriptor inserted in the radix tree is supposed to have the PG_dirty and PG_writeback flags
cleared. If necessary, the kernel may later invoke the radix_tree_tag_set( ) function.

The radix_tree_tagged( ) function takes advantage of the arrays of flags included in all nodes
of the tree to test whether a radix tree includes at least one page in a given state. The
function performs this task quite simply by executing the following code (root is a pointer to
the radix_tree_root structure of the radix tree, and tag is the flag to be tested):

    for (idx = 0; idx < 2; idx++) {
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        if (root->rnode->tags[tag][idx])

            return 1;

    }

    return 0;

Because the tags of all nodes of the radix tree can be assumed to be properly updated, 
radix_tree_tagged( ) needs only to check the tags of the node at level 1. An example of use
of such function occurs when determining whether an inode contains dirty pages to be written
to disk. Notice that in each iteration the function tests whether any of the 32 flags stored in
an unsigned long is set.

The find_get_pages_tag( ) function is similar to find_get_pages( ) except that it returns only
pages that are tagged with the tag parameter. As we'll see in the section "Writing Dirty Pages
to Disk," this function is crucial to quickly identify all the dirty pages of an inode.
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15.2. Storing Blocks in the Page Cache
We have seen in the section "Block Devices Handling" in Chapter 14 that the VFS, the mapping
layer, and the various filesystems group the disk data in logical units called "blocks."

In old versions of the Linux kernel, there were two different main disk caches: the page
cache, which stored whole pages of disk data resulting from accesses to the contents of the
disk files, and the buffer cache , which was used to keep in memory the contents of the
blocks accessed by the VFS to manage the disk-based filesystems.

Starting from stable version 2.4.10, the buffer cache does not really exist anymore. In fact,
for reasons of efficiency, block buffers are no longer allocated individually; instead, they are
stored in dedicated pages called "buffer pages ," which are kept in the page cache.

Formally, a buffer page is a page of data associated with additional descriptors called "buffer
heads ," whose main purpose is to quickly locate the disk address of each individual block in
the page. In fact, the chunks of data stored in a page belonging to the page cache are not
necessarily adjacent on disk.

15.2.1. Block Buffers and Buffer Heads

Each block buffer has a buffer head descriptor of type buffer_head. This descriptor contains
all the information needed by the kernel to know how to handle the block; thus, before
operating on each block, the kernel checks its buffer head. The fields of a buffer head are
listed in Table 15-4.

Table 15-4. The fields of a buffer head

Type Field Description

unsigned long b_state Buffer status flags

struct

buffer_head *

b_this_page Pointer to the next element in the buffer page's list

struct page * b_page Pointer to the descriptor of the buffer page holding this
block

atomic_t b_count Block usage counter

u32 b_size Block size

sector_t b_blocknr Block number relative to the block device (logical block
number)

char * b_data Position of the block inside the buffer page

struct

block_device *

b_bdev Pointer to block device descriptor

bh_end_io_t * b_end_io I/O completion method

void * b_private Pointer to data for the I/O completion method
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Table 15-4. The fields of a buffer head

Type Field Description

struct list_head b_assoc_buffers Pointers for the list of indirect blocks associated with
an inode (see the section "The address_space Object"
earlier in this chapter)

Two fields of the buffer head encode the disk address of the block: the b_bdev field identifies
the block deviceusually, a disk or a partitionthat contains the block (see the section "Block
Devices" in Chapter 14), while the b_blocknr field stores the logical block number, that is, the
index of the block inside its disk or partition.

The b_data field specifies the position of the block buffer inside the buffer page. Actually, the
encoding of this position depends on whether the page is in high memory or not. If the page is
in high memory, the b_data field contains the offset of the block buffer with respect to the
beginning of the page; otherwise, b_data contains the linear address of the block buffer.

The b_state field may store several flags. Some of them are of general use and are listed in
Table 15-5. Each filesystem may also define its own private buffer head flags.

Table 15-5. The buffer head's general flags

Flag Description

BH_Uptodate Set if the buffer contains valid data

BH_Dirty Set if the buffer is dirtythat is, it contains data that must be written to the
block device

BH_Lock Set if the buffer is locked, which usually happens when the buffer is
involved in a disk transfer

BH_Req Set if data transfer for initializing the buffer has already been requested

BH_Mapped Set if the buffer is mapped to diskthat is, if the b_bdev and b_blocknr fields
of the corresponding buffer head are significant

BH_New Set if the corresponding block has just been allocated and has never been
accessed

BH_Async_Read Set if the buffer is being read asynchronously

BH_Async_Write Set if the buffer is being written asynchronously

BH_Delay Set if the buffer is not yet allocated on disk

BH_Boundary Set if the block to be submitted after this one will not be adjacent to this
one

BH_Write_EIO Set if there was an I/O error when writing this block

BH_Ordered Set if the block should be written strictly after the blocks submitted before
it (used by journaling filesystems )
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Table 15-5. The buffer head's general flags

Flag Description

BH_Eopnotsupp Set if the block device driver does not support the operation requested

15.2.2. Managing the Buffer Heads

The buffer heads have their own slab allocator cache, whose kmem_cache_s descriptor is stored
in the bh_cachep variable. The alloc_buffer_head( ) and free_buffer_head( ) functions are
used to get and release a buffer head, respectively.

The b_count field of the buffer head is a usage counter for the corresponding block buffer. The
counter is increased right before each operation on the block buffer and decreased right after.
The block buffers kept in the page cache are examined both periodically and when free
memory becomes scarce, and only the block buffers having null usage counters may be
reclaimed (see Chapter 17).

When a kernel control path wishes to access a block buffer, it should first increase the usage
counter. The function that locates a block inside the page cache (_ _getblk( ); see the
section "Searching Blocks in the Page Cache" later in this chapter) does this automatically,
hence the higher-level functions do not usually increase the block buffer's usage counter.

When a kernel control path stops accessing a block buffer, it should invoke either _ _brelse(
) or _ _bforget( ) to decrease the corresponding usage counter. The difference between
these two functions is that _ _bforget( ) also removes the block from any list of indirect
blocks (b_assoc_buffers buffer head field; see the previous section "Block Buffers and Buffer
Heads") and marks the buffer as clean, thus forcing the kernel to forget any change in the
buffer that has yet to be written on disk.

15.2.3. Buffer Pages

Whenever the kernel must individually address a block, it refers to the buffer page that holds
the block buffer and checks the corresponding buffer head.

Here are two common cases in which the kernel creates buffer pages:

 When reading or writing pages of a file that are not stored in contiguous disk blocks.
This happens either because the filesystem has allocated noncontiguous blocks to the
file, or because the file contains "holes" (see the section "File Holes" in Chapter 18).

 When accessing a single disk block (for instance, when reading a superblock or an
inode block).

In the first case, the buffer page's descriptor is inserted in the radix tree of a regular file. The
buffer heads are preserved because they store precious information: the block device and the
logical block number that specify the position of the data in the disk. We will see how the
kernel makes use of this type of buffer page in Chapter 16.

In the second case, the buffer page's descriptor is inserted in the radix tree rooted at the 
address_space object of the inode in the bdev special filesystem associated with the block
device (see the section "The address_space Object" earlier in this chapter). This kind of buffer
pages must satisfy a strong constraint: all the block buffers must refer to adjacent blocks of
the underlying block device.

An instance of where this is useful is when the VFS wants to read the 1,024-byte inode block
containing the inode of a given file. Instead of allocating a single buffer, the kernel must
allocate a whole page storing four buffers; these buffers will contain the data of a group of
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four adjacent blocks on the block device, including the requested inode block.

In this chapter we will focus our attention on the second type of buffer pages, the so-called 
block device buffer pages (sometimes shortened to blockdev's pages).

All the block buffers within a single buffer page must have the same size; hence, on the 80 x
86 architecture, a buffer page can include from one to eight buffers, depending on the block
size.

When a page acts as a buffer page, all buffer heads associated with its block buffers are
collected in a singly linked circular list. The private field of the descriptor of the buffer page
points to the buffer head of the first block in the page;[*] every buffer head stores in the
b_this_page field a pointer to the next buffer head in the list. Moreover, every buffer head
stores the address of the buffer page's descriptor in the b_page field. Figure 15-2 shows a
buffer page containing four block buffers and the corresponding buffer heads.

[*] Because the private field contains valid data, the PG_private flag of the page is also set; hence, if the page contains disk data
and the PG_private flag is set, then the page is a buffer page. Notice, how ever, that other kernel components not related to the
block I/O subsystem use the private and PG_private fields for other purposes.

Figure 15-2. A buffer page including four buffers and their buffer heads

15.2.4. Allocating Block Device Buffer Pages

The kernel allocates a new block device buffer page when it discovers that the page cache
does not include a page containing the buffer for a given block (see the section "Searching
Blocks in the Page Cache" later in this chapter). In particular, the lookup operation for the
block might fail for the following reasons:

1. The radix tree of the block device does not include a page containing the data of the
block: in this case a new page descriptor must be added to the radix tree.

2. The radix tree of the block device includes a page containing the data of the block,
but this page is not a buffer page: in this case new buffer heads must be allocated and
linked to the page, thus transforming it into a block device buffer page.

3. The radix tree of the block device includes a buffer page containing the data of the
block, but the page has been split in blocks of size different from the size of the
requested block: in this case the old buffer heads must be released, and a new set of
buffer heads must be allocated and linked to the page.

In order to add a block device buffer page to the page cache, the kernel invokes the 
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grow_buffers( ) function, which receives three parameters that identify the block:

 The address bdev of the block_device descriptor

 The logical block number block the position of the block inside the block device

 The block size size

The function essentially performs the following actions:

1. Computes the offset index of the page of data within the block device that includes
the requested block.

2. Invokes grow_dev_page( ) to create a new block device buffer page, if necessary. In
turn, this function performs the following substeps:

a. Invokes find_or_create_page( ), passing to it the address_space object of the
block device (bdev->bd_inode->i_mapping), the page offset index, and the
GFP_NOFS flag. As described in the earlier section "Page Cache Handling
Functions," find_or_create_page( ) looks for the page in the page cache and, if
necessary, inserts a new page in the cache.

b. Now the required page is in the page cache, and the function has the address
of its descriptor. The function checks its PG_private flag; if it is NULL, the page
is not yet a buffer page (it has no associated buffer heads): it jumps to step
2e.

c. The page is already a buffer page. Gets from the private field of its descriptor
the address bh of the first buffer head, and checks whether the block size
bh->size is equal to the size of the requested block; if so, the page found in the
page cache is a valid buffer page: it jumps to step 2g.

d. The page has blocks of the wrong size: it invokes try_to_free_buffers( ) (see
the next section) to release the previous buffer heads of the buffer page.

e. Invokes the alloc_page_buffers( ) function to allocate the buffer heads for the
blocks of the requested size within the page and insert them into the singly
linked circular list implemented by the b_this_page fields. Moreover, the function
initializes the b_page fields of the buffer heads with the address of the page
descriptor, and the b_data fields with the offset or linear address of the block
buffer inside the page.

f. Stores the address of the first buffer head in the private field, sets the
PG_private field, and increases the usage counter of the page (the block buffers
inside the page counts as a page user).

g. Invokes the init_page_buffers( ) function to initialize the b_bdev, b_blocknr,
and b_bstate fields of the buffer heads linked to the page. All blocks are
adjacent on disk, hence the logical block numbers are consecutive and can be
easily derived from block.

h. Returns the page descriptor address.

3. Unlocks the page (the page was locked by find_or_create_page( )).

4. Decreases the page's usage counter (again, the counter was increased by 
find_or_create_page( )).

5. Returns 1 (success).

15.2.5. Releasing Block Device Buffer Pages
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As we will see in Chapter 17, block device buffer pages are released when the kernel tries to
get additional free memory. Clearly a buffer page cannot be freed if it contains dirty or locked
buffers. To release buffer pages, the kernel invokes the TRy_to_release_page( ) function,
which receives the address page of a page descriptor and performs the following actions:[*]

[*] The TRy_to_release_page( ) function can also be invoked on buffer pages ow ned by regular files.

1. If the PG_writeback flag of the page is set, it returns 0 (no release is possible because
the page is being written back to disk).

2. If defined, it invokes the releasepage method of the block device's address_space
object. (The method is usually not defined for block devices.)

3. Invokes the try_to_free_buffers( ) function, and returns its error code.

In turn, the try_to_free_buffers( ) function scans the buffer heads linked to the buffer page;
it performs essentially the following actions:

1. Checks the flags of all the buffer heads of buffers included in the page. If some buffer
head has the BH_Dirty or BH_Locked flag set, the function terminates by returning 0
(failure): it is not possible to release the buffers.

2. If a buffer head is inserted in a list of indirect buffers (see the section "Block Buffers
and Buffer Heads" earlier in this chapter), the function removes it from the list.

3. Clears the PG_private flag of the page descriptor, sets the private field to NULL, and
decreases the page's usage counter.

4. Clears the PG_dirty flag of the page.

5. Invokes repeatedly free_buffer_head( ) on the buffer heads of the page to free all of
them.

6. Returns 1 (success).

15.2.6. Searching Blocks in the Page Cache

When the kernel needs to read or write a single block of a physical device (for instance, a
superblock), it must check whether the required block buffer is already included in the page
cache. Searching the page cache for a given block bufferspecified by the address bdev of a
block device descriptor and by a logical block number nris a three stage process:

1. Get a pointer to the address_space object of the block device containing the block (
bdev->bd_inode->i_mapping).

2. Get the block size of the device (bdev->bd_block_size), and compute the index of the
page that contains the block. This is always a bit shift operation on the logical block
number. For instance, if the block size is 1,024 bytes, each buffer page contains four
block buffers, thus the page's index is nr/4.

3. Searches for the buffer page in the radix tree of the block device. After obtaining the
page descriptor, the kernel has access to the buffer heads that describe the status of
the block buffers inside the page.

Details are slightly more complicated than this, however. In order to enhance system
performance, the kernel manages a bh_lrus array of small disk caches , one for each CPU,
called the Least Recently Used (LRU) block cache. Each disk cache contains eight pointers to
buffer heads that have been recently accessed by a given CPU. The elements in each CPU
array are sorted so that the pointer to the most recently used buffer head has index 0. The
same buffer head might appear on several CPU arrays (but never twice in the same CPU
array); for each occurrence of a buffer head in the LRU block cache , the buffer head's
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b_count usage counter is increased by one.

15.2.6.1. The _ _find_get_block( ) function

The _ _find_get_block( ) function receives as its parameters the address bdev of a
block_device descriptor, the block number block, and the block size size, and returns the
address of the buffer head associated with the block buffer inside the page cache, or NULL if
no such block buffer exists. The function performs essentially the following actions:

1. Checks whether the LRU block cache array of the executing CPU includes a buffer head
whose b_bdev, b_blocknr, and b_size fields are equal to bdev, block, and size,
respectively.

2. If the buffer head is in the LRU block cache, it reshuffles the elements in the array so
as to put the pointer to the just discovered buffer head in the first position (index 0),
increases its b_count field, and jumps to step 8.

3. Here the buffer head is not in the LRU block cache: it derives from the block number
and the block size the page index relative to the block device as:

4.
 index = block >> (PAGE_SHIFT - bdev->bd_inode->i_blkbits);

5. Invokes find_get_page( ) to locate, in the page cache, the descriptor of the buffer
page containing the required block buffer. The function passes as parameters a pointer
to the address_space object of the block device (bdev->bd_inode->i_mapping) and the
page index to locate in the page cache the descriptor of the buffer page containing
the required block buffer. If there is no such page in the cache, returns NULL (failure).

6. At this point, the function has the address of a descriptor for the buffer page: it scans
the list of buffer heads linked to the buffer page, looking for the block having logical
block number equal to block.

7. Decreases the count field of the page descriptor (it was increased by find_get_page( )
).

8. Moves all elements in the LRU block cache one position down, and inserts the pointer
to the buffer head of the requested block in the first position. If a buffer head has
been dropped out of the LRU block cache, it decreases its b_count usage counter.

9. Invokes mark_page_accessed( ) to move the buffer page in the proper LRU list, if
necessary (see the section "The Least Recently Used (LRU) Lists" in Chapter 17).

10. Returns the buffer head pointer.

15.2.6.2. The _ _getblk( ) function

The _ _getblk( ) function receives the same parameters as _ _find_get_block( ), namely the
address bdev of a block_device descriptor, the block number block, and the block size size,
and returns the address of a buffer head associated with the buffer. The function never fails:
even if the block does not exist at all, the _ _getblk( ) obligingly allocates a block device
buffer page and returns a pointer to the buffer head that should describe the block. Notice
that the block buffer returned by _ _getblk( ) does not necessarily contain valid datathe
BH_Uptodate flag of the buffer head might be cleared.

The _ _getblk( ) function essentially performs the following steps:

1. Invokes _ _find_get_block( ) to check whether the block is already in the page cache.
If the block is found, the function returns the address of its buffer head.

2. Otherwise, it invokes grow_buffers( ) to allocate a new buffer page for the requested
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block (see the section "Allocating Block Device Buffer Pages" earlier in this chapter).

3. If grow_buffers( ) fails in allocating such a page, _ _getblk( ) tries to reclaim some
memory by invoking free_more_memory( ) (see Chapter 17).

4. Jumps back to step 1.

15.2.6.3. The _ _bread( ) function

The _ _bread( ) function receives the same parameters as _ _getblk( ), namely the address
bdev of a block_device descriptor, the block number block, and the block size size, and
returns the address of a buffer head associated with the buffer. Contrary to _ _getblk( ), the
function reads the block from disk, if necessary, before returning the buffer head. The _
_bread( ) function performs the following steps:

1. Invokes _ _getblk( ) to find in the page cache the buffer page associated with the
required block and to get a pointer to the corresponding buffer head.

2. If the block is already in the page cache and the buffer contains valid data (flag 
BH_Uptodate set), it returns the address of the buffer head.

3. Otherwise, it increases the usage counter of the buffer head.

4. Sets the b_end_io field to the address of end_buffer_read_sync( ) (see the next
section).

5. Invokes submit_bh( ) to transmit the buffer head to the generic block layer (see next
section).

6. Invokes wait_on_buffer( ) to put the current process in a wait queue until the read
I/O operation is completed, that is, until the BH_Lock flag of the buffer head is cleared.

7. Returns the address of the buffer head.

15.2.7. Submitting Buffer Heads to the Generic Block Layer

A couple of functions, submit_bh( ) and ll_rw_block( ), allow the kernel to start an I/O data
transfer on one or more buffers described by their buffer heads.

15.2.7.1. The submit_bh( ) function

To transmit a single buffer head to the generic block layer, and thus to require the transfer of
a single block of data, the kernel makes use of the submit_bh( ) function. Its parameters are
the direction of data transfer (essentially READ or WRITE) and a pointer bh to the buffer head
describing the block buffer.

The submit_bh( ) function assumes that the buffer head is fully initialized; in particular, the
b_bdev, b_blocknr, and b_size fields must be properly set to identify the block on disk
containing the requested data. If the block buffer belongs to a block device buffer page, the
initialization of the buffer head is done by _ _find_get_block( ), as described in the previous
section. However, as we will see in the next chapter, submit_bh( ) can also be invoked on
blocks belonging to buffer pages owned by regular files.

The submit_bh( ) function is little else than a glue function that creates a bio request from
the contents of the buffer head and then invokes generic_make_request( ) (see the section "
Submitting a Request" in Chapter 14). The main steps performed by it are the following:

1. Sets the BH_Req flag of the buffer head to record that the block has been submitted at
least one time; moreover, if the direction of the data transfer is WRITE, clears the
BH_Write_EIO flag.
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2. Invokes bio_alloc( ) to allocate a new bio descriptor (see the section "The Bio
Structure" in Chapter 14).

3. Initializes the fields of the bio descriptor according to the contents of the buffer head:

a. Sets the bi_sector field to the number of the first sector in the block
(bh->b_blocknr * bh->b_size / 512);

b. Sets the bi_bdev field with the address of the block device descriptor (
bh->b_bdev);

c. Sets the bi_size field with the block size (bh->b_size);

d. Initializes the first element of the bi_io_vec array so that the segment
corresponds to the block buffer: bi_io_vec[0].bv_page is set to bh->b_page,
bi_io_vec[0].bv_len is set to bh->b_size, and bi_io_vec[0].bv_offset is set to
the offset of the block buffer in the page as specified by bh->b_data;

e. Sets bi_vcnt to 1 (just one segment on the bio), and bi_idx to 0 (the current
segment to be transferred);

f. Sets the bi_end_io field to the address of end_bio_bh_io_sync( ), and sets the
bi_private field to the address of the buffer head; the function will be invoked
when the data transfer terminates (see below).

4. Increases the reference counter of the bio (it becomes equal to 2).

5. Invokes submit_bio( ), which sets the bi_rw flag with the direction of the data
transfer, updates the page_states per-CPU variable to keep track of the number of
sectors read and written, and invokes the generic_make_request( ) function on the bio
descriptor.

6. Decreases the usage counter of the bio; the bio descriptor is not freed, because it is
now inserted in a queue of the I/O scheduler.

7. Returns 0 (success).

When the I/O data transfer on the bio terminates, the kernel executes the bi_end_io method,
in this particular case the end_bio_bh_io_sync( ) function. The latter function essentially gets
the address of the buffer head from the bi_private field of the bio, then invokes the b_end_io
method of the buffer headit was properly set before invoking submit_bh( )and finally invokes
bio_put( ) to destroy the bio structure.

15.2.7.2. The ll_rw_block( ) function

Sometimes the kernel must trigger the data transfer of several data blocks at once, which are
not necessarily physically adjacent. The ll_rw_block( ) function receives as its parameters
the direction of data transfer (essentially READ or WRITE), the number of blocks to be
transferred, and an array of pointers to buffer heads describing the corresponding block
buffers. The function iterates over all buffer heads; for each of them, it executes the
following actions:

1. Tests and sets the BH_Lock flag of the buffer head; if the buffer was already locked,
the data transfer has been activated by another kernel control path, so just skips the
buffer by jumping to step 9.

2. Increases by one the usage counter b_count of the buffer head.

3. If the data transfer direction is WRITE, it sets the b_end_io method of the buffer head
to point to the address of the end_buffer_write_sync( ) function; otherwise, it sets
the b_end_io method to point to the address of the end_buffer_read_sync( ) function.
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4. If the data transfer direction is WRITE, it tests and clears the BH_Dirty flag of the buffer
head. If the flag was not set, there is no need to write the block on disk, so it jumps
to step 7.

5. If the data transfer direction is READ or READA (read-ahead), it checks whether the
BH_Uptodate flag of the buffer head is set; if so, there is no need to read the block from
disk, so it jumps to step 7.

6. Here the block has to be read or written: it invokes the submit_bh( ) function to pass
the buffer head to the generic block layer, then jumps to step 9.

7. Unlocks the buffer head by clearing the BH_Lock flag, and awakens every process that
was waiting for the block being unlocked.

8. Decreases the b_count field of the buffer head.

9. If there are other buffer heads in the array to be processed, it selects the next one
and jumps back to step 1; otherwise, it terminates.

Notice that if the ll_rw_block( ) function passes a buffer head to the generic block layer, it
leaves the buffer locked and its reference counter increased, so that the buffer cannot be
accessed and cannot be freed until the data transfer completes. The kernel executes the 
b_end_io completion method of the buffer head when the data transfer for the block
terminates. Assuming that there was no I/O error, the end_buffer_write_sync( ) and
end_buffer_read_sync( ) functions simply set the BH_Uptodate field of the buffer head, unlock
the buffer, and decrease its usage counter.
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15.3. Writing Dirty Pages to Disk
As we have seen, the kernel keeps filling the page cache with pages containing data of block
devices. Whenever a process modifies some data, the corresponding page is marked as
dirtythat is, its PG_dirty flag is set.

Unix systems allow the deferred writes of dirty pages into block devices, because this
noticeably improves system performance. Several write operations on a page in cache could
be satisfied by just one slow physical update of the corresponding disk sectors. Moreover,
write operations are less critical than read operations, because a process is usually not
suspended due to delayed writings, while it is most often suspended because of delayed
reads. Thanks to deferred writes, each physical block device will service, on the average,
many more read requests than write ones.

A dirty page might stay in main memory until the last possible moment that is, until system
shutdown. However, pushing the delayed-write strategy to its limits has two major
drawbacks:

 If a hardware or power supply failure occurs, the contents of RAM can no longer be
retrieved, so many file updates that were made since the system was booted are lost.

 The size of the page cache, and hence of the RAM required to contain it, would have
to be hugeat least as big as the size of the accessed block devices.

Therefore, dirty pages are flushed (written) to disk under the following conditions:

 The page cache gets too full and more pages are needed, or the number of dirty pages
becomes too large.

 Too much time has elapsed since a page has stayed dirty.

 A process requests all pending changes of a block device or of a particular file to be
flushed; it does this by invoking a sync( ), fsync( ), or fdatasync( ) system call (see
the section "The sync( ), fsync( ), and fdatasync( ) System Calls" later in this
chapter).

Buffer pages introduce a further complication. The buffer heads associated with each buffer
page allow the kernel to keep track of the status of each individual block buffer. The PG_dirty
flag of the buffer page should be set if at least one of the associated buffer heads has the 
BH_Dirty flag set. When the kernel selects a dirty buffer page for flushing, it scans the
associated buffer heads and effectively writes to disk only the contents of the dirty blocks.
As soon as the kernel flushes all dirty blocks in a buffer page to disk, it clears the PG_dirty
flag of the page.

15.3.1. The pdflush Kernel Threads

Earlier versions of Linux used a kernel thread called bdflush to systematically scan the page
cache looking for dirty pages to flush, and they used a second kernel thread called kupdate to
ensure that no page remains dirty for too long. Linux 2.6 has replaced both of them with a
group of general purpose kernel threads called pdflush.

These kernel threads have a flexible structure. They act on two parameters: a pointer to a
function to be executed by the thread and a parameter for the function. The number of 
pdflush kernel threads in the system is dynamically adjusted: new threads are created when
they are too few and existing threads are killed when they are too many. Because the
functions executed by these kernel threads can block, creating several pdflush kernel threads
instead of a single one, leads to better system performance.
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Births and deaths are governed by the following rules:

 There must be at least two pdflush kernel threads and at most eight.

 If there were no idle pdflush during the last second, a new pdflush should be created.

 If more than one second elapsed since the last pdflush became idle, a pdflush should
be removed.

Each pdflush kernel thread has a pdflush_work descriptor (see Table 15-6). The descriptors of
idle pdflush kernel threads are collected in the pdflush_list list; the pdflush_lock spin lock
protects that list from concurrent accesses in multiprocessor systems. The nr_pdflush_threads
variable[*] stores the total number of pdflush kernel threads (idle and busy). Finally, the
last_empty_jifs variable stores the last time (in jiffies) since the pdflush_list list of pdflush
threads became empty.

[*] The value of this variable can be read from the /proc/sys/vm/nr_pdflush_threads file.

Table 15-6. The fields of the pdflush_work descriptor

Type Field Description

struct task_struct * who Pointer to kernel thread descriptor

void(*)(unsigned long) fn Callback function to be executed by the
kernel thread

unsigned long arg0 Argument to callback function

struct list head list Links for the pdflush_list list

unsigned long when_i_went_to_sleep Time in jiffies when kernel thread became
available

Each pdflush kernel thread executes the _ _pdflush( ) function, which essentially loops in an
endless cycle until the kernel thread dies. Let's suppose that the pdflush kernel thread is idle;
then, the process is sleeping in TASK_INTERRUPTIBLE state. As soon as the kernel thread is
woken up, _ _pdflush( ) accesses its pdflush_work descriptor and executes the callback
function stored in the fn field, passing to it the argument stored in the arg0 field. When the
callback function terminates, _ _pdflush( ) checks the value of the last_empty_jifs variable:
if there was no idle pdflush kernel thread for more than one second and if there are less than
eight pdflush kernel threads, _ _pdflush( ) starts another kernel thread. Otherwise, if the last
entry in the pdflush_list list is idle for more than one second, and there are more than two
pdflush kernel threads, _ _pdflush( ) terminates: as explained in the section "Kernel Threads"
in Chapter 3, the corresponding kernel thread executes the _exit( ) system call and it is thus
destroyed. Otherwise, _ _pdflush( ) reinserts the pdflush_work descriptor of the kernel thread
in the pdflush_list list and puts the kernel thread to sleep.

The pdflush_operation( ) function is used to activate an idle pdflush kernel thread. This
function acts on two parameters: a pointer fn to the function that must be executed and an
argument arg0; it performs the following steps:

1. Extracts from the pdflush_list list a pointer pdf to the pdflush_work descriptor of an
idle pdflush kernel thread. If the list is empty, it returns -1. If the list contained just
one element, it sets the value of the last_empty_jifs variable to jiffies.

2. Stores in pdf->fn and in pdf->arg0 the parameters fn and arg0.
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3. Invokes wake_up_process( ) to wake up the idle pdflush kernel thread, that is, pdf->who.

What kinds of jobs are delegated to the pdflush kernel threads? There are a few of them, all
related to flushing of dirty data. In particular, pdflush usually executes one of the following
callback functions:

 background_writeout( ): systematically walks the page cache looking for dirty pages to
be flushed (see the next section "Looking for Dirty Pages To Be Flushed").

 wb_kupdate( ): checks that no page in the page cache remains dirty for too long (see
the section "Retrieving Old Dirty Pages" later in this chapter).

15.3.2. Looking for Dirty Pages To Be Flushed

Every radix tree could include dirty pages to be flushed. Retrieving all of them thus involves an
exhaustive search among all address_space objects associated with inodes having an image on
disk. Because the page cache might include a large number of pages, scanning the whole
cache in a single run might keep the CPU and the disks busy for a long time. Therefore, Linux
adopts a sophisticated mechanism that splits the page cache scanning in several runs of
execution.

The wakeup_bdflush( ) function receives as argument the number of dirty pages in the page
cache that should be flushed; the value zero means that all dirty pages in the cache should
be written back to disk. The function invokes pdflush_operation( ) to wake up a pdflush
kernel thread (see the previous section) and delegate to it the execution of the 
background_writeout( ) callback function. The latter function effectively retrieves the
specified number of dirty pages from the page cache and writes them back to disk.

The wakeup_bdflush( ) function is executed when either memory is scarce or a user makes an
explicit request for a flush operation. In particular, the function is invoked when:

 The User Mode process issues a sync( ) system call (see the section "The sync( ),
fsync( ), and fdatasync( ) System Calls" later in this chapter).

 The grow_buffers( ) function fails to allocate a new buffer page (see the earlier
section "Allocating Block Device Buffer Pages").

 The page frame reclaiming algorithm invokes free_more_memory( ) or TRy_to_free_pages(
) (see Chapter 17).

 The mempool_alloc( ) function fails to allocate a new memory pool element (see the
section "Memory Pools" in Chapter 8).

Moreover, a pdflush kernel thread executing the background_writeout( ) callback function is
woken up by every process that modifies the contents of pages in the page cache and causes
the fraction of dirty pages to rise above some dirty background threshold. The background
threshold is typically set to 10% of all pages in the system, but its value can be adjusted by
writing in the /proc/sys/vm/dirty_background_ratio file.

The background_writeout( ) function relies on a writeback_control structure, which acts as a
two-way communication device: on one hand, it tells an auxiliary function called 
writeback_inodes( ) what to do; on the other hand, it stores some statistics about the
number of pages written to disk. The most important fields of this structure are the following:

sync_mode

Specifies the synchronization mode: WB_SYNC_ALL means that if a locked inode is
encountered, it must be waited upon and not just skipped over; WB_SYNC_HOLD means
that locked inodes are put in a list for later consideration; and WB_SYNC_NONE means that
locked inodes are simply skipped.
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bdi

If not NULL, it points to a backing_dev_info structure; in this case, only dirty pages
belonging to the underlying block device will be flushed.

older_than_this

If not null, it means that inodes younger than the specified value should be skipped.

nr_to_write

Number of dirty pages yet to be written in this run of execution.

nonblocking

If this flag is set, the process cannot be blocked.

The background_writeout( ) function acts on a single parameter: nr_pages, the minimum
number of pages that should be flushed to disk. It essentially executes the following steps:

1. Reads from the page_state per-CPU variable the number of pages and dirty pages
currently stored in the page cache. If the fraction of dirty pages is below a given
threshold and at least nr_pages have been flushed to disk, the function terminates. The
value of this threshold is typically set to about 40% of the number of pages in the
system; it could be adjusted by writing into the /proc/sys/vm/dirty_ratio file.

2. Invokes writeback_inodes( ) to try to write 1, 024 dirty pages (see below).

3. Checks the number of pages effectively written and decreases the number of pages
yet to be written.

4. If less than 1,024 pages have been written or if pages have been skipped, probably the
request queue of the block device is congested: the function puts the current process
to sleep in a special wait queue for 100 milliseconds or until the queue becomes
uncongested.

5. Goes back to step 1.

The writeback_inodes( ) function acts on a single parameter, namely a pointer wbc to a
writeback_control descriptor. The nr_to_write field of this descriptor contains the number of
pages to be flushed to disk. When the function returns, the same field contains the number of
pages remaining to be flushed; if everything went smoothly, this field will be set to 0.

Let us suppose that writeback_inodes( ) is called with the wbc->bdi and wbc->older_than_this
pointers set to NULL, the WB_SYNC_NONE synchronization mode, and the wbc->nonblocking flag
setthese are the values set by background_writeout( ). The function scans the list of
superblocks rooted at the super_blocks variable (see the section "Superblock Objects" in
Chapter 12). The scanning ends when either the whole list has been traversed, or the target
number of pages to be flushed has been reached. For each superblock sb, the function
executes the following steps:

1. Checks whether the sb->s_dirty or sb->s_io lists are empty: the first list collects the
dirty inodes of the superblock, while the second list collects the inodes waiting to be
transferred to disk (see below). If both lists are empty, the inodes on this filesystem
have no dirty pages, so the function considers the next superblock in the list.

2. Here the superblock has dirty inodes. Invokes sync_sb_inodes( ) on the sb superblock.
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This function:

a. Puts all the inodes of sb->s_dirty into the list pointed to by sb->s_io and clears
the list of dirty inodes.

b. Gets the next inode pointer from sb->s_io. If this list is empty, it returns.

c. If the inode was dirtied after sync_sb_inodes( ) started, it skips the inode's
dirty pages and returns. Notice that some dirty inodes might remain in the 
sb->s_io list.

d. If the current process is a pdflush kernel thread, it checks whether another
pdflush kernel thread running on another CPU is already trying to flush dirty
pages for files belonging to this block device. This can be done by an atomic
test and set operation on the BDI_pdflush flag of the inode's backing_dev_info.
Essentially, it is pointless to have more than one pdflush kernel thread on the
same request queue (see the section "The pdflush Kernel Threads" earlier in this
chapter).

e. Increases by one the inode's usage counter.

f. Invokes _ _writeback_single_inode( ) to write back the dirty buffers associated
with the selected inode:

1. If the inode is locked, it moves inode into the list of dirty inodes (
inode->i_sb->s_dirty) and returns 0. (Since we are assuming that the
wbc->sync_mode field is not WB_SYNC_ALL, the function does not block
waiting for the inode to unlock.)

2. Uses the writepages method of the inode's address space, or the
mpage_writepages( ) function if no such method exists, to write up to
wbc->nr_to_write dirty pages. This function uses the find_get_pages_tag(
) function to retrieve quickly all dirty pages in the inode's address space
(see the section "The Tags of the Radix Tree" earlier in this chapter).
Details will be given in the next chapter.

3. If the inode is dirty, it uses the superblock's write_inode method to write
the inode to disk. The functions that implement this method usually rely
on submit_bh( ) to transfer a single block of data (see the section "
Submitting Buffer Heads to the Generic Block Layer" earlier in this
chapter).

4. Checks the status of the inode; accordingly, moves the inode back into
the sb->s_dirty list if some page of the inode is still dirty, or in the
inode_unused list if the inode's reference counter is zero, or in the
inode_in_use list otherwise (see the section "Inode Objects" in Chapter
12).

5. Returns the error code of the function invoked in step 2f2.

g. Back into the sync_sb_inodes( ) function. If the current process is the pdflush
kernel thread, it clears the BDI_pdflush flag set in step 2d.

h. If some pages were skipped in the inode just processed, then the inode includes
locked buffers: moves all inodes remaining in the sb->s_io list back into the
sb->s_dirty list: they will be reconsidered at a later time.

i. Decreases by one the usage counter of the inode.

j. If wbc->nr_to_write is greater than 0, goes back to step 2b to look for other
dirty inodes of the same superblock. Otherwise, the sync_sb_inodes( ) function
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terminates.

3. Back into the writeback_inodes( ) function. If wbc->nr_to_write is greater than zero, it
jumps to step 1 and continues with the next superblock in the global list. Otherwise, it
returns.

15.3.3. Retrieving Old Dirty Pages

As stated earlier, the kernel tries to avoid the risk of starvation that occurs when some pages
are not flushed for a long period of time. Hence, if a page remains dirty for a predefined
amount of time, the kernel explicitly starts an I/O data transfer that writes its contents to
disk.

The job of retrieving old dirty pages is delegated to a pdflush kernel thread that is periodically
woken up. During the kernel initialization, the page_writeback_init( ) function sets up the
wb_timer dynamic timer so that it decays after dirty_writeback_centisecs hundreds of a
second (usually 500, but this value can be adjusted by writing in the 
/proc/sys/vm/dirty_writeback_centisecs file). The timer function, which is called wb_timer_fn(
), essentially invokes the pdflush_operation( ) function passing to it the address of the
wb_kupdate( ) callback function.

The wb_kupdate( ) function walks the page cache looking for "old" dirty inodes; it executes the
following steps:

1. Invokes the sync_supers( ) function to write the dirty superblocks to disk (see the
next section). Although not strictly related to the flushing of the pages in the page
cache, this invocation ensures that no superblock remains dirty for more than, usually,
five seconds.

2. Stores in the older_than_this field of a writeback_control descriptor a pointer to a
value in jiffies corresponding to the current time minus 30 seconds. Thirty seconds is
the longest time for which a page is allowed to remain dirty.

3. Determines from the per-CPU page_state variable the rough number of dirty pages
currently in the page cache.

4. Invokes repeatedly writeback_inodes( ) until either the number of pages written to disk
reaches the value determined in the previous step, or all pages older than 30 seconds
have been written. During this cycle the function might sleep if some request queue
becomes congested.

5. Uses mod_timer( ) to restart the wb_timer dynamic timer: it will decay once again
dirty_writeback_centisecs hundreds of seconds since the invocation of this function
(or one second since now if this execution lasted too long).
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15.4. The sync( ), fsync( ), and fdatasync( ) System
Calls
In this section, we examine briefly the three system calls available to user applications to
flush dirty buffers to disk:

sync( )

Allows a process to flush all dirty buffers to disk

fsync( )

Allows a process to flush all blocks that belong to a specific open file to disk

fdatasync( )

Very similar to fsync( ), but doesn't flush the inode block of the file

15.4.1. The sync ( ) System Call

The service routine sys_sync( ) of the sync( ) system call invokes a series of auxiliary
functions:

    wakeup_bdflush(0);

    sync_inodes(0);

    sync_supers( );

    sync_filesystems(0);

    sync_filesystems(1);

    sync_inodes(1);

As described in the previous section, wakeup_bdflush( ) starts a pdflush kernel thread, which
flushes to disk all dirty pages contained in the page cache.

The sync_inodes( ) function scans the list of superblocks looking for dirty inodes to be
flushed; it acts on a wait parameter that specifies whether it must wait until flushing has been
performed or not. The function scans the superblocks of all currently mounted filesystems; for
each superblock containing dirty inodes, sync_inodes( ) first invokes sync_sb_inodes( ) to
flush the corresponding dirty pages (we described this function earlier in the section "Looking
for Dirty Pages To Be Flushed"), then invokes sync_blockdev( ) to explicitly flush the dirty
buffer pages owned by the block device that includes the superblock. This is done because
the write_inode superblock method of many disk-based filesystems simply marks the block
buffer corresponding to the disk inode as dirty; the sync_blockdev( ) function makes sure that
the updates made by sync_sb_inodes( ) are effectively written to disk.

The sync_supers( ) function writes the dirty superblocks to disk, if necessary, by using the
proper write_super superblock operations. Finally, the sync_filesystems( ) executes the
sync_fs superblock method for all writable filesystems. This method is simply a hook offered to
a filesystem in case it needs to perform some peculiar operation at each sync; this method is
only used by journaling filesystems such as Ext3 (see Chapter 18).

Notice that sync_inodes( ) and sync_filesystems( ) are invoked twice, once with the wait
parameter equal to 0 and the second time with the parameter equal to 1. This is done on
purpose: first, they quickly flush to disk the unlocked inodes; next, they wait for each locked
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inode to become unlocked and finish writing them one by one.

15.4.2. The fsync ( ) and fdatasync ( ) System Calls

The fsync( ) system call forces the kernel to write to disk all dirty buffers that belong to the
file specified by the fd file descriptor parameter (including the buffer containing its inode, if
necessary). The corresponding service routine derives the address of the file object and then
invokes the fsync method. Usually, this method ends up invoking the _
_writeback_single_inode( ) function to write back both the dirty pages associated with the
selected inode and the inode itself (see the section "Looking for Dirty Pages To Be Flushed"
earlier in this chapter).

The fdatasync( ) system call is very similar to fsync( ), but writes to disk only the buffers
that contain the file's data, not those that contain inode information. Because Linux 2.6 does
not have a specific file method for fdatasync( ), this system call uses the fsync method and is
thus identical to fsync( ).
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Chapter 16. Accessing Files
Accessing a disk-based file is a complex activity that involves the VFS abstraction layer (
Chapter 12), handling block devices (Chapter 14), and the use of the page cache (Chapter 15
). This chapter shows how the kernel builds on all those facilities to carry out file reads and
writes. The topics covered in this chapter apply both to regular files stored in disk-based
filesystems and to block device files; these two kinds of files will be referred to simply as
"files."

The stage we are working at in this chapter starts after the proper read or write method of a
particular file has been called (as described in Chapter 12). We show here how each read ends
with the desired data delivered to a User Mode process and how each write ends with data
marked ready for transfer to disk. The rest of the transfer is handled by the facilities
described in Chapter 14 and Chapter 15.

There are many different ways to access a file. In this chapter we will consider the following
cases:

Canonical mode

The file is opened with the O_SYNC and O_DIRECT flags cleared, and its content is
accessed by means of the read( ) and write( ) system calls. In this case, the read( )
system call blocks the calling process until the data is copied into the User Mode
address space (however, the kernel is always allowed to return fewer bytes than
requested!). The write( ) system call is different, because it terminates as soon as
the data is copied into the page cache (deferred write). This case is covered in the
section "Reading and Writing a File."

Synchronous mode

The file is opened with the O_SYNC flag setor the flag is set at a later time by the
fcntl( ) system call. This flag affects only the write operation (read operations are
always blocking), which blocks the calling process until the data is effectively written
to disk. The section "Reading and Writing a File" covers this case, too.

Memory mapping mode

After opening the file, the application issues an mmap( ) system call to map the file into
memory. As a result, the file appears as an array of bytes in RAM, and the application
accesses directly the array elements instead of using read( ) , write( ), or lseek( ).
This case is discussed in the section "Memory Mapping."

Direct I/O mode

The file is opened with the O_DIRECT flag set. Any read or write operation transfers
data directly from the User Mode address space to disk, or vice versa, bypassing the
page cache. We discuss this case in the section "Direct I/O Transfers." (The values of
the O_SYNC and O_DIRECT flags can be combined in four meaningful ways.)

Asynchronous mode

The file is accessedeither through a group of POSIX APIs or by means of Linux-specific
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system callsin such a way to perform "asynchronous I/O:" this means the requests for
data transfers never block the calling process; rather, they are carried on "in the
background" while the application continues its normal execution. We discuss this case
in the section "Asynchronous I/O."
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16.1. Reading and Writing a File
The section "The read( ) and write( ) System Calls" in Chapter 12 described how the read( )
and write( ) system calls are implemented. The corresponding service routines end up
invoking the file object's read and write methods, which may be filesystem-dependent. For
disk-based filesystems, these methods locate the physical blocks that contain the data being
accessed and activate the block device driver to start the data transfer.

Reading a file is page-based: the kernel always transfers whole pages of data at once. If a
process issues a read( ) system call to get a few bytes, and that data is not already in RAM,
the kernel allocates a new page frame, fills the page with the suitable portion of the file, adds
the page to the page cache, and finally copies the requested bytes into the process address
space. For most filesystems, reading a page of data from a file is just a matter of finding what
blocks on disk contain the requested data. Once this is done, the kernel fills the pages by
submitting the proper I/O operations to the generic block layer. In practice, the read method
of all disk-based filesystems is implemented by a common function named generic_file_read(
).

Write operations on disk-based files are slightly more complicated to handle, because the file
size could increase, and therefore the kernel might allocate some physical blocks on the disk.
Of course, how this is precisely done depends on the filesystem type. However, many
disk-based filesystems implement their write methods by means of a common function named
generic_file_write( ). Examples of such filesystems are Ext2, System V /Coherent /Xenix ,
and MINIX . On the other hand, several other filesystems, such as journaling and network
filesystems , implement the write method by means of custom functions.

16.1.1. Reading from a File

The generic_file_read( ) function is used to implement the read method for block device files
and for regular files of almost all disk-based filesystems. This function acts on the following
parameters:

filp

Address of the file object

buf

Linear address of the User Mode memory area where the characters read from the file
must be stored

count

Number of characters to be read

ppos

Pointer to a variable that stores the offset from which reading must start (usually the 
f_pos field of the filp file object)

As a first step, the function initializes two descriptors. The first descriptor is stored in the
local variable local_iov of type iovec; it contains the address (buf) and the length (count) of
the User Mode buffer that shall receive the data read from the file. The second descriptor is
stored in the local variable kiocb of type kiocb; it is used to keep track of the completion
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status of an ongoing synchronous or asynchronous I/O operation. The main fields of the kiocb
descriptor are shown in Table 16-1.

Table 16-1. The main fields of the kiocb descriptor

Type Field Description

struct

list_head
ki_run_list Pointers for the list of I/O operations to be retried later

long ki_flags Flags of the kiocb descriptor

int ki_users Usage counter of the kiocb descriptor

unsigned int ki_key Identifier of the asynchronous I/O operation, or 
KIOCB_SYNC_KEY (0xffffffff) for synchronous I/O operations

struct file * ki_filp Pointer to the file object associated with the ongoing I/O
operation

struct kioctx * ki_ctx
Pointer to the asynchronous I/O context descriptor for this
operation (see the section "Asynchronous I/O" later in this
chapter)

int (*)

(struct kiocb

*,

struct io_event

*)

ki_cancel Method invoked when canceling an asynchronous I/O
operation

ssize_t (*)

(struct kiocb

*)

ki_retry Method invoked when retrying an asynchronous I/O
operation

void (*)

(struct kiocb

*)

ki_dtor Method invoked when destroying the kiocb descriptor

struct list_head ki_list Pointers for the list of active ongoing I/O operation on an
asynchronous I/O context

union ki_obj
For synchronous operations, pointer to the process
descriptor that issued the I/O operation; for asynchronous
operations, pointer to the iocb User Mode data structure

_ _ u64 ki_user_data Value to be returned to the User Mode process

loff_t ki_pos Current file position of the ongoing I/O operation

unsigned short ki_opcode Type of operation (read, write, or sync)

size_t ki_nbytes Number of bytes to be transferred
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Table 16-1. The main fields of the kiocb descriptor

Type Field Description

char * ki_buf Current position in the User Mode buffer

size_t ki_left Number of bytes yet to be transferred

wait_queue_t ki_wait Wait queue used for asynchronous I/O operations

void * private Freely usable by the filesystem layer

The generic_file_read( ) function initializes the kiocb descriptor by executing the
init_sync_kiocb macro, which sets the fields of the object for a synchronous operation. In
particular, the macro sets the ki_key field to KIOCB_SYNC_KEY, the ki_filp field to filp, and
the ki_obj field to current.

Then, generic_file_read( ) invokes _ _generic_file_aio_read( ) passing to it the addresses
of the iovec and kiocb descriptors just filled. The latter function returns a value, which is
usually the number of bytes effectively read from the file; generic_file_read( ) terminates by
returning this value.

The _ _generic_file_aio_read( ) function is a general-purpose routine used by all filesystems
to implement both synchronous and asynchronous read operations. The function receives four
parameters: the address iocb of a kiocb descriptor, the address iov of an array of iovec
descriptors, the length of this array, and the address ppos of a variable that stores the file's
current pointer. When invoked by generic_file_read( ), the array of iovec descriptors is
composed of just one element describing the User Mode buffer that will receive the data.[*]

[*] A variant of the read( ) system callnamed readv( ) allow s an application to define multiple User Mode buffers in w hich the kernel
scatters the data read from the file; the _ _generic_file_aio_read( ) function handles this case, too. In the follow ing, w e w ill
assume that the data read from the file w ill be copied into just one User Mode buffer; how ever, guessing the additional steps to be
performed w hen using multiple buffers is straightforw ard.

We now explain the actions of the _ _generic_file_aio_read( ) function; for the sake of
simplicity, we restrict the description to the most common case: a synchronous operation
raised by a read( ) system call on a page-cached file. Later in this chapter we describe how
this function behaves in other cases. As usual, we do not discuss how errors and anomalous
conditions are handled.

Here are the steps performed by the function:

1. Invokes access_ok( ) to verify that the User Mode buffer described by the iovec
descriptor is valid. Because the starting address and length have been received from
the sys_read( ) service routine, they must be checked before using them (see the
section "Verifying the Parameters" in Chapter 10). If the parameters are not valid,
returns the -EFAULT error code.

2. Sets up a read operation descriptor namely, a data structure of type
read_descriptor_t that stores the current status of the ongoing file read operation
relative to a single User Mode buffer. The fields of this descriptor are shown in Table
16-2.

3. Invokes do_generic_file_read( ), passing to it the file object pointer filp, the pointer
to the file offset ppos, the address of the just allocated read operation descriptor, and
the address of the file_read_actor( ) function (see later).

4. Returns the number of bytes copied into the User Mode buffer; that is, the value found
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in the written field of the read_descriptor_t data structure.

Table 16-2. The fields of the read operation descriptor

Type Field Description

size_t written How many bytes have been copied into the User Mode buffer

size_t count How many bytes are yet to be transferred

char * arg.buf Current position in the User Mode buffer

int error Error code of the read operation (0 for no error)

The do_generic_file_read( ) function reads the requested pages from disk and copies them
into the User Mode buffer. In particular, the function performs the following actions:

1. Gets the address_space object corresponding to the file being read; its address is
stored in filp->f_mapping.

2. Gets the owner of the address_space object, that is, the inode object that will own the
pages to be filled with file's data; its address is stored in the host field of the
address_space object. If the file being read is a block device file, the owner is an inode
in the bdev special filesystem rather than the inode pointed to by
filp->f_dentry->d_inode (see "The address_space Object" in Chapter 15).

3. Considers the file as subdivided in pages of data (4,096 bytes per page). The function
derives from the file pointer *ppos the logical number of the page that includes the first
requested bytethat is, the page's index in the address spaceand stores it in the index
local variable. The function also stores in the offset local variable the displacement
inside the page of the first requested byte.

4. Starts a cycle to read all pages that include the requested bytes; the number of bytes
to be read is stored in the count field of the read_descriptor_t descriptor. During a
single iteration, the function transfers a page of data by performing the following
substeps:

a. If index*4096+offset exceeds the file size stored in the i_size field of the inode
object, it exits from the cycle and goes to step 5.

b. Invokes cond_resched( ) to check the TIF_NEED_RESCHED flag of the current
process and, if the flag is set, to invoke the schedule( ) function.

c. If additional pages must be read in advance, it invokes page_cache_readahead( )
to read them. We defer discussing read-ahead until the later section "
Read-Ahead of Files."

d. Invokes find_get_page( ) passing as parameters a pointer to the address_space
object and the value of index; the function looks up the page cache to find the
descriptor of the page that stores the requested data, if any.

e. If find_get_page( ) returned a NULL pointer, the page requested is not in the
page cache. In that case, it performs the following actions:

1. Invokes handle_ra_miss( ) to tune the parameters used by the
read-ahead system.

2. Allocates a new page.
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3. Inserts the descriptor of the new page into the page cache by invoking 
add_to_page_cache( ). Remember that this function sets the PG_locked
flag of the new page.

4. Inserts the descriptor of the new page into the LRU list by invoking 
lru_cache_add( ) (see Chapter 17).

5. Jumps to step 4j to start reading the file's data.

f. If the function has reached this point, the page is in the page cache. Checks
the PG_uptodate flag; if it is set, the data stored in the page is up-to-date,
hence there is no need to read it from disk: jumps to step 4m.

g. The data on the page is not valid, so it must be read from disk. The function
gains exclusive access to the page by invoking the lock_page( ) function. As
described in the section "Page Cache Handling Functions" in Chapter 15,
lock_page( ) suspends the current process if the PG_locked flag is already set,
until that bit is cleared.

h. Now the page is locked by the current process. However, another process
might have removed the page from the page cache right before the previous
step; hence, it checks whether the mapping field of the page descriptor is NULL;
in this case, it unlocks the page by invoking unlock_page( ), decreases its
usage counter (it was increased by find_get_page( )), and jumps back to step
4a starting over with the same page.

i. If the function has reached this point, the page is locked and still present in the
page cache. Checks the PG_uptodate flag again, because another kernel control
path could have completed the necessary read between steps 4f and 4g. If the
flag is set, it invokes unlock_page( ) and jumps to step 4m to skip the read
operation.

j. Now the actual I/O operation can be started. Invokes the readpage method of
the address_space object of the file. The corresponding function takes care of
activating the I/O data transfer from the disk to the page. We discuss later
what this function does for regular files and block device files.

k. If the PG_uptodate flag is still cleared, it waits until the page has been
effectively read by invoking the lock_page( ) function. The page, which was
locked in step 4g, will be unlocked as soon as the read operation finishes.
Therefore, the current process sleeps until the I/O data transfer terminates.

l. If index exceeds the file size in pages (this number is obtained by dividing the
value of the i_size field of the inode object by 4,096), it decreases the page's
usage counter, and exits from the cycle jumping to step 5. This case occurs
when the file being read is concurrently truncated by another process.

m. Stores in the nr local variable the number of bytes in the page that should be
copied into the User Mode buffer. This value is equal to the page size (4,096
bytes) unless either offset is not zerothis can happen only for the first or last
page of requested dataor the file does not contain all requested bytes.

n. Invokes mark_page_accessed( ) to set the PG_referenced or the PG_active flag,
hence denoting the fact that the page is being used and should not be
swapped out (see Chapter 17). If the same page (or part thereof) is read
several times in successive executions of do_generic_file_read( ), this step is
executed only during the first read.

o. Now it is time to copy the data on the page into the User Mode buffer. To do
this, do_generic_file_read( ) invokes the file_read_actor( ) function, whose
address has been passed as a parameter. In turn, file_read_actor( )
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essentially executes the following steps:

1. Invokes kmap( ), which establishes a permanent kernel mapping for the
page if it is in high memory (see the section "Kernel Mappings of
High-Memory Page Frames" in Chapter 8).

2. Invokes _ _copy_to_user( ), which copies the data on the page in the
User Mode address space (see the section "Accessing the Process
Address Space" in Chapter 10). Notice that this operation might block
the process because of page faults while accessing the User Mode
address space.

3. Invokes kunmap( ) to release any permanent kernel mapping of the page.

4. Updates the count, written, and buf fields of the read_descriptor_t
descriptor.

p. Updates the index and offset local variables according to the number of bytes
effectively transferred in the User Mode buffer. Typically, if the last byte in the
page has been copied into the User Mode buffer, index is increased by one and
offset is set to zero; otherwise, index is not increased and offset is set to the
number of bytes in the page that have been copied into the User Mode buffer.

q. Decreases the page descriptor usage counter.

r. If the count field of the read_descriptor_t descriptor is not zero, there is other
data to be read from the file: jumps to step 4a to continue the loop with the
next page of data in the file.

5. All requestedor availablebytes have been read. The function updates the filp->f_ra
read-ahead data structure to record the fact that data is being read sequentially from
the file (see the later section "Read-Ahead of Files").

6. Assigns to *ppos the value index*4096+offset, thus storing the next position where a
sequential access is to occur for a future invocation of the read( ) and write( )
system calls.

7. Invokes update_atime( ) to store the current time in the i_atime field of the file's inode
and to mark the inode as dirty, and returns.

16.1.1.1. The readpage method for regular files

As we saw, the readpage method is used repeatedly by do_generic_file_read( ) to read
individual pages from disk into memory.

The readpage method of the address_space object stores the address of the function that
effectively activates the I/O data transfer from the physical disk to the page cache. For
regular files, this field typically points to a wrapper that invokes the mpage_readpage( )
function. For instance, the readpage method of the Ext3 filesystem is implemented by the
following function:

int ext3_readpage(struct file *file, struct page *page)

{

    return mpage_readpage(page, ext3_get_block);

}

The wrapper is needed because the mpage_readpage( ) function receives as its parameters the
descriptor page of the page to be filled and the address get_block of a function that helps
mpage_readpage( ) find the right block. The wrapper is filesystem-specific and can therefore
supply the proper function to get a block. This function translates the block numbers relative
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to the beginning of the file into logical block numbers relative to positions of the block in the
disk partition (for an example, see Chapter 18). Of course, the latter parameter depends on
the type of filesystem to which the regular file belongs; in the previous example, the
parameter is the address of the ext3_get_block( ) function. The function passed as get_block
always uses a buffer head to store precious information about the block device (b_dev field),
the position of the requested data on the device (b_blocknr field), and the block status (
b_state field).

The mpage_readpage( ) function chooses between two different strategies when reading a
page from disk. If the blocks that contain the requested data are contiguously located on
disk, then the function submits the read I/O operation to the generic block layer by using a
single bio descriptor. In the opposite case, each block in the page is read by using a different
bio descriptor. The filesystem-dependent get_block function plays the crucial role of
determining whether the next block in the file is also the next block on the disk.

Specifically, mpage_readpage( ) performs the following steps:

1. Checks the PG_private field of the page descriptor: if it is set, the page is a buffer
page, that is, the page is associated with a list of buffer heads describing the blocks
that compose the page (see the section "Storing Blocks in the Page Cache" in Chapter
15). This means that the page has already been read from disk in the past, and that
the blocks in the page are not adjacent on disk: jumps to step 11 to read the page
one block at a time.

2. Retrieves the block size (stored in the page->mapping->host->i_blkbits inode field), and
computes two values required to access all blocks on that page: the number of blocks
stored in the page and the file block number of the first block in the pagethat is, the
index of the first block in the page relative to the beginning of the file.

3. For each block in the page, invokes the filesystem-dependent get_block function
passed as a parameter to get the logical block number, that is, the index of the block
relative to the beginning of the disk or partition. The logical block numbers of all blocks
in the page are stored in a local array.

4. Checks for any anomalous condition that could occur while executing the previous
step. In particular, if some blocks are not adjacent on disk, or some block falls inside a
"file hole" (see the section "File Holes" in Chapter 18), or a block buffer has been
already filled by the get_block function, then jumps to step 11 to read the page one
block at a time.

5. If the function has reached this point, all blocks on the page are adjacent on disk.
However, the page could be the last page of data in the file, hence some of the blocks
in the page might not have an image on disk. If so, it fills the corresponding block
buffers in the page with zeros; otherwise, it sets the PG_mappedtodisk flag of the page
descriptor.

6. Invokes bio_alloc( ) to allocate a new bio descriptor consisting of a single segment
and to initialize its bi_bdev and bi_sector fields with the address of the block device
descriptor and the logical block number of the first block in the page, respectively.
Both pieces of information have been determined in step 3 above.

7. Sets the bio_vec descriptor of the bio's segment with the initial address of the page,
the offset of the first byte to be read (zero), and the total number of bytes to be
read.

8. Stores the address of the mpage_end_io_read( ) function in the bio->bi_end_io field
(see below).

9. Invokes submit_bio( ), which sets the bi_rw flag with the direction of the data
transfer, updates the page_states per-CPU variable to keep track of the number of read
sectors, and invokes the generic_make_request( ) function on the bio descriptor (see
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the section "Issuing a Request to the I/O Scheduler" in Chapter 14).

10. Returns the value zero (success).

11. If the function jumps here, the page contains blocks that are not adjacent on disk. If
the page is up-to-date (PG_uptodate flag set), the function invokes unlock_page( ) to
unlock the page; otherwise, it invokes block_read_full_page( ) to start reading the
page one block at a time (see below).

12. Returns the value zero (success).

The mpage_end_io_read( ) function is the completion method of the bio; it is executed as soon
as the I/O data transfer terminates. Assuming that there was no I/O error, the function
essentially sets the PG_uptodate flag of the page descriptor, invokes unlock_page( ) to unlock
the page and to wake up any process sleeping for this event, and invokes bio_put( ) to
destroy the bio descriptor.

16.1.1.2. The readpage method for block device files

In the sections "VFS Handling of Device Files" in Chapter 13 and "Opening a Block Device File"
in Chapter 14, we discussed how the kernel handles requests to open a block device file. We
saw how the init_special_inode( ) function sets up the device inode and how the
blkdev_open( ) function completes the opening phase.

Block devices use an address_space object that is stored in the i_data field of the
corresponding block device inode in the bdev special filesystem. Unlike regular files whose
readpage method in the address_space object depends on the filesystem type to which the file
belongs the readpage method of block device files is always the same. It is implemented by
the blkdev_readpage( ) function, which calls block_read_full_page( ):

int blkdev_readpage(struct file * file, struct * page page)

{

    return block_read_full_page(page, blkdev_get_block);

}

As you can see, the function is once again a wrapper, this time for the block_read_full_page(
) function. This time the second parameter points to a function that translates the file block
number relative to the beginning of the file into a logical block number relative to the
beginning of the block device. For block device files, however, the two numbers coincide;
therefore, the blkdev_get_block( ) function performs the following steps:

1. Checks whether the number of the first block in the page exceeds the index of the last
block in the block device (this index is obtained by dividing the size of the block device
stored in bdev->bd_inode->i_size by the block size stored in bdev->bd_block_size; bdev
points to the descriptor of the block device). If so, it returns -EIO for a write
operation, or zero for a read operation. (Reading beyond the end of a block device is
not allowed, either, but the error code should not be returned here: the kernel could
just be trying to dispatch a read request for the last data of a block device, and the
corresponding buffer page is only partially mapped.)

2. Sets the b_dev field of the buffer head to bdev.

3. Sets the b_blocknr field of the buffer head to the file block number, which was passed
as a parameter of the function.

4. Sets the BH_Mapped flag of the buffer head to state that the b_dev and b_blocknr fields
of the buffer head are significant.

The block_read_full_page( ) function reads a page of data one block at a time. As we have
seen, it is used both when reading block device files and when reading pages of regular files
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whose blocks are not adjacent on disk. It performs the following steps:

1. Checks the PG_private flag of the page descriptor; if it is set, the page is associated
with a list of buffer heads describing the blocks that compose the page (see the
section "Storing Blocks in the Page Cache" in Chapter 15). Otherwise, the function
invokes create_empty_buffers( ) to allocate buffer heads for all block buffers included
in the page. The address of the buffer head for the first buffer in the page is stored in
the page->private field. The b_this_page field of each buffer head points to the buffer
head of the next buffer in the page.

2. Derives from the file offset relative to the page (page->index field) the file block number
of the first block in the page.

3. For each buffer head of the buffers in the page, it performs the following substeps:

a. If the BH_Uptodate flag is set, it skips the buffer and continues with the next
buffer in the page.

b. If the BH_Mapped flag is not set and the block is not beyond the end of the file,
it invokes the filesystem-dependent get_block function whose address has been
passed as a parameter. For a regular file, the function looks in the on-disk data
structures of the filesystem and finds the logical block number of the buffer
relative to the beginning of the disk or partition. Conversely, for a block device
file, the function regards the file block number as the logical block number. In
both cases the function stores the logical block number in the b_blocknr field of
the corresponding buffer head and sets the BH_Mapped flag.[*]

[*] When accessing a regular file, the get_block function might not find the block if it falls in a
"file hole" (see the section "File Holes" in Chapter 18). In this case, the function fills the block
buffer with zeros and sets the BH_Uptodate flag of the buffer head.

c. Tests again the BH_Uptodate flag because the filesystem-dependent get_block
function could have triggered a block I/O operation that updated the buffer. If 
BH_Uptodate is set, it continues with the next buffer in the page.

d. Stores the address of the buffer head in arr local array, and continues with the
next buffer in the page.

4. If no file hole has been encountered in the previous step, the function sets the 
PG_mappedtodisk flag of the page.

5. Now the arr local array stores the addresses of the buffer heads that correspond to
the buffers whose content is not up-to-date. If this array is empty, all buffers in the
page are valid. So the function sets the PG_uptodate flag of the page descriptor,
unlocks the page by invoking unlock_page( ), and returns.

6. The arr local array is not empty. For each buffer head in the array,
block_read_full_page( ) performs the following substeps:

a. Sets the BH_Lock flag. If the flag was already set, the function waits until the
buffer is released.

b. Sets the b_end_io field of the buffer head to the address of the
end_buffer_async_read( ) function (see below) and sets the BH_Async_Read flag
of the buffer head.

7. For each buffer head in the arr local array, it invokes the submit_bh( ) function on it,
specifying the operation type READ. As we saw earlier, this function triggers the I/O
data transfer of the corresponding block.

8. Returns 0.
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The end_buffer_async_read( ) function is the completion method of the buffer head; it is
executed as soon as the I/O data transfer on the block buffer terminates. Assuming that
there was no I/O error, the function sets the BH_Uptodate flag of the buffer head and clears
the BH_Async_Read flag. Then, the function gets the descriptor of the buffer page containing
the block buffer (its address is stored in the b_page field of the buffer head) and checks
whether all blocks in the page are up-to-date; if so, the function sets the PG_uptodate flag of
the page and invokes unlock_page( ).

16.1.2. Read-Ahead of Files

Many disk accesses are sequential. As we will see in Chapter 18, regular files are stored on
disk in large groups of adjacent sectors, so that they can be retrieved quickly with few moves
of the disk heads. When a program reads or copies a file, it often accesses it sequentially,
from the first byte to the last one. Therefore, many adjacent sectors on disk are likely to be
fetched when handling a series of a process's read requests on the same file.

Read-ahead consists of reading several adjacent pages of data of a regular file or block device
file before they are actually requested. In most cases, read-ahead significantly enhances disk
performance, because it lets the disk controller handle fewer commands, each of which refers
to a larger chunk of adjacent sectors. Moreover, it improves system responsiveness. A
process that is sequentially reading a file does not usually have to wait for the requested data
because it is already available in RAM.

However, read-ahead is of no use when an application performs random accesses to files; in
this case, it is actually detrimental because it tends to waste space in the page cache with
useless information. Therefore, the kernel reducesor stopsread-ahead when it determines that
the most recently issued I/O access is not sequential to the previous one.

Read-ahead of files requires a sophisticated algorithm for several reasons:

 Because data is read page by page, the read-ahead algorithm does not have to
consider the offsets inside the page, but only the positions of the accessed pages
inside the file.

 Read-ahead may be gradually increased as long as the process keeps accessing the file
sequentially.

 Read-ahead must be scaled down or even disabled when the current access is not
sequential with respect to the previous one (random access).

 Read-ahead should be stopped when a process keeps accessing the same pages over
and over again (only a small portion of the file is being used), or when almost all pages
of the file are already in the page cache.

 The low-level I/O device driver should be activated at the proper time, so that the
future pages will have been transferred when the process needs them.

The kernel considers a file access as sequential with respect to the previous file access if the
first page requested is the page following the last page requested in the previous access.

While accessing a given file, the read-ahead algorithm makes use of two sets of pages, each
of which corresponds to a contiguous portion of the file. These two sets are called the 
current window and the ahead window .

The current window consists of pages requested by the process or read in advance by the
kernel and included in the page cache. (A page in the current window is not necessarily
up-to-date, because its I/O data transfer could be still in progress.) The current window
contains both the last pages sequentially accessed by the process and possibly some of the
pages that have been read in advance by the kernel but that have not yet been requested by
the process.
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The ahead window consists of pagesfollowing the ones in the current windowthat are being
currently being read in advance by the kernel. No page in the ahead window has yet been
requested by the process, but the kernel assumes that sooner or later the process will
request them.

When the kernel recognizes a sequential access and the initial page belongs to the current
window, it checks whether the ahead window has already been set up. If not, the kernel
creates a new ahead window and triggers the read operations for the corresponding pages. In
the ideal case, the process still requests pages from the current window while the pages in
the ahead window are being transferred. When the process requests a page included in the
ahead window, the ahead window becomes the new current window.

The main data structure used by the read-ahead algorithm is the file_ra_state descriptor
whose fields are listed in Table 16-3. Each file object includes such a descriptor in its f_ra
field.

Table 16-3. The fields of the file_ra_state descriptor

Type Field Description

unsigned

long
start Index of first page in the current window

unsigned

long
size Number of pages included in the current window (-1 for

read-ahead temporarily disabled, 0 for empty current window)

unsigned

long
flags Flags used to control the read-ahead

unsigned
long cache_hit Number of consecutive cache hits (pages requested by the

process and found in the page cache)

unsigned

long
prev_page Index of the last page requested by the process

unsigned

long ahead_start Index of the first page in the ahead window

unsigned

long ahead_size Number of pages in the ahead window (0 for an empty ahead
window)

unsigned

long ra_pages Maximum size in pages of a read-ahead window (0 for read-ahead
permanently disabled)

unsigned

long mmap_hit Read-ahead hit counter (used for memory mapped files)

unsigned

long mmap_miss Read-ahead miss counter (used for memory mapped files)

When a file is opened, all the fields of its file_ra_state descriptor are set to zero except the
prev_page and ra_pages fields.

The prev_page field stores the index of the last page requested by the process in the previous
read operation; initially, the field contains the value -1.
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The ra_pages field represents the maximum size in pages for the current window, that is, the
maximum read-ahead allowed for the file. The initial (default) value for this field is stored in
the backing_dev_info descriptor of the block device that includes the file (see the section "
Request Queue Descriptors" in Chapter 14). An application can tune the read-ahead algorithm
for a given opened file by modifying the ra_pages field; this can be done by invoking the
posix_fadvise( ) system call, passing to it the commands POSIX_FADV_NORMAL (set read-ahead
maximum size to default, usually 32 pages), POSIX_FADV_SEQUENTIAL (set read-ahead maximum
size to two times the default), and POSIX_FADV_RANDOM (set read-ahead maximum size to zero,
thus permanently disabling read-ahead).

The flags field contains two flags called RA_FLAG_MISS and RA_FLAG_INCACHE that play an
important role. The first flag is set when a page that has been read in advance is not found in
the page cache (likely because it has been reclaimed by the kernel in order to free memory;
see Chapter 17): in this case, the size of the next ahead window to be created is somewhat
reduced. The second flag is set when the kernel determines that the last 256 pages requested
by the process have all been found in the page cache (the value of consecutive cache hits is
stored in the ra->cache_hit field). In this case, read-ahead is turned off because the kernel
assumes that all the pages required by the process are already in the cache.

When is the read-ahead algorithm executed? This happens in the following cases:

 When the kernel handles a User Mode request to read pages of file data; this event
triggers the invocation of the page_cache_readahead( ) function (see step 4c in the
description of the do_generic_file_read( ) function in the section "Reading from a File"
earlier in this chapter).

 When the kernel allocates a page for a file memory mapping (see the filemap_nopage( )
function in the section "Demand Paging for Memory Mapping" later in this chapter,
which again invokes the page_cache_readahead( ) function).

 When a User Mode application executes the readahead( ) system call, which explicitly
triggers some read-ahead activity on a file descriptor.

 When a User Mode application executes the posix_fadvise( ) system call with the
POSIX_FADV_NOREUSE or POSIX_FADV_WILLNEED commands, which inform the kernel that a
given range of file pages will be accessed in the near future.

 When a User Mode application executes the madvise( ) system call with the
MADV_WILLNEED command, which informs the kernel that a given range of pages in a file
memory mapping region will be accessed in the near future.

16.1.2.1. The page_cache_readahead( ) function

The page_cache_readahead( ) function takes care of all read-ahead operations that are not
explicitly triggered by ad-hoc system calls. It replenishes the current and ahead windows,
updating their sizes according to the number of read-ahead hits, that is, according to how
successful the read-ahead strategy was in the past accesses to the file.

The function is invoked when the kernel must satisfy a read request for one or more pages of
a file, and acts on five parameters:

mapping

Pointer to the address_space object that describes the owner of the page

ra

Pointer to the file_ra_state descriptor of the file containing the page
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filp

Address of the file object

offset

Offset of the page within the file

req_size

Number of pages yet to be read to complete the current read operation[*]

[*] Actually, if the read operation involves a number of pages larger than the maximum size of the
read-ahead window, the page_cache_readahead( ) function is invoked several times. Thus, the req_size
parameter might be smaller than the number of pages yet to be read to complete the read operation.

Figure 16-1 shows the flow diagram of page_cache_readahead( ). The function essentially acts
on the fields of the file_ra_state descriptor; thus, although the description of the actions in
the flow diagram is quite informal, you can easily determine the actual steps performed by the
function. For instance, in order to check whether the requested page is the same as the page
previously read, the function checks whether the values of the ra->prev_page field and of the
offset parameter coincide (see Table 16-3 earlier).

When the process accesses the file for the first time and the first requested page is the page
at offset zero in the file, the function assumes that the process will perform sequential
accesses. Thus, the function creates a new current window starting from the first page. The
length of the initial current windowalways a power of twois somewhat related to the number
of pages requested by the process in the first read operation: the higher the number of
requested pages, the larger the current window, up to the maximum value stored in the 
ra->ra_pages field. Conversely, when the process accesses the file for the first time but the
first requested page is not at offset zero, the function assumes that the process will not
perform sequential accesses. Thus, the function temporarily disables read-ahead (ra->size
field is set to -1). However, a new current window is created when the function recognizes a
sequential access while read-ahead is temporarily disabled.

If the ahead window does not already exist, it is created as soon as the function recognizes
that the process has performed a sequential access in the current window. The ahead window
always starts from the page following the last page of the current window. Its length,
however, is related to the length of the current window as follows: if the RA_FLAG_MISS flag is
set, the length of the ahead window is the length of the current window minus 2, or four
pages if the result is less than four; otherwise, the length of the ahead window is either four
times or two times the length of the current window. If the process continues to access the
file in a sequential way, eventually the ahead window becomes the new current window, and
a new ahead window is created. Thus, read-ahead is aggressively enhanced if the process
reads the file sequentially.

As soon as the function recognizes a file access that is not sequential with respect to the
previous one, the current and ahead windows are cleared (emptied) and the read-ahead is
temporarily disabled. Read-ahead is restarted from scratch as soon as the process performs a
read operation that is sequential with respect to the previous file access.

Figure 16-1. The flow diagram of the page_cache_readahead( )
function

Page 636

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Every time page_cache_readahead( ) creates a new window, it starts the read operations for
the included pages. In order to read a chunk of pages, page_cache_readahead( ) invokes the
blockable_page_cache_readahead( ) function. To reduce kernel overhead, the latter function
adopts the following clever features:

 No reading is performed if the request queue that services the block device is
read-congested (it does not make sense to increase congestion and block
read-ahead).
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 The page cache is checked against each page to be read; if the page is already in the
page cache, it is simply skipped over.

 All the page frames needed by the read request are allocated at once before
performing the read from disk. If not all page frames can be obtained, the read-ahead
operation is performed only on the available pages. Again, there is little sense in
deferring read-ahead until all page frames become available.

 Whenever possible, the read operations are submitted to the generic block layer by
using multi-segment bio descriptors (see the section "Segments" in Chapter 14). This is
done by the specialized readpages method of the address_space object, if defined;
otherwise, it is done by repeatedly invoking the readpage method. The readpage method
is described in the earlier section "Reading from a File" for the single-segment case
only, but it is easy to adapt the description for the multi-segment case.

16.1.2.2. The handle_ra_miss( ) function

In some cases, the kernel must correct the read-ahead parameters, because the read-ahead
strategy does not seem very effective. Let us consider the do_generic_file_read( ) function
described in the section "Reading from a File" earlier in this chapter. The
page_cache_readahead( ) function is invoked in step 4c. The flow diagram in Figure 16-1
depicts two cases: either the requested page is in the current window or in the ahead
window, hence it should have been read in advance, or it is not, and the function invokes 
blockable_page_cache_readahead( ) to read it. In both cases, do_generic_file_read( ) should
find the page in the page cache in step 4d. If it is not found, this means that the page frame
reclaiming algorithm has removed the page from the cache. In this case, 
do_generic_file_read( ) invokes the handle_ra_miss( ) function, which tunes the read-ahead
algorithm by setting the RA_FLAG_MISS flag and by clearing the RA_FLAG_INCACHE flag.

16.1.3. Writing to a File

Recall that the write( ) system call involves moving data from the User Mode address space
of the calling process into the kernel data structures, and then to disk. The write method of
the file object permits each filesystem type to define a specialized write operation. In Linux
2.6, the write method of each disk-based filesystem is a procedure that basically identifies
the disk blocks involved in the write operation, copies the data from the User Mode address
space into some pages belonging to the page cache, and marks the buffers in those pages as
dirty.

Many filesystems (including Ext2 or JFS ) implement the write method of the file object by
means of the generic_file_write( ) function, which acts on the following parameters:

file

File object pointer

buf

Address in the User Mode address space where the characters to be written into the
file must be fetched

count

Number of characters to be written

ppos
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Address of a variable storing the file offset from which writing must start

The function performs the following steps:

1. Initializes a local variable of type iovec containing the address and length of the User
Mode buffer (see also the description of the generic_file_read( ) function in the
section "Reading from a File" earlier in this chapter).

2. Determines the address inode of the inode object that corresponds to the file to be
written (file->f_mapping->host) and acquires the semaphore inode->i_sem. Thanks to
this semaphore, only one process at a time can issue a write( ) system call on the
file.

3. Invokes the init_sync_kiocb macro to initialize a local variable of type kiocb. As
explained in the section "Reading from a File" earlier in this chapter, the macro sets
the ki_key field to KIOCB_SYNC_KEY (synchronous I/O operation), the ki_filp field to
file, and the ki_obj field to current.

4. Invokes _ _generic_file_aio_write_nolock( ) (see below) to mark the affected pages
as dirty, passing the address of the local variables of type iovec and kiocb, the number
of segments for the User Mode bufferonly one in this caseand the parameter ppos.

5. Releases the inode->i_sem semaphore.

6. Checks the O_SYNC flag of the file, the S_SYNC flag of the inode, and the MS_SYNCHRONOUS
flag of the superblock; if at least one of them is set, it invokes the sync_page_range( )
function to force the kernel to flush all pages in the page cache that have been
touched in step 4, blocking the current process until the I/O data transfers terminate.
In turn, sync_page_range( ) executes either the writepages method of the
address_space object, if defined, or the mpage_writepages( ) function (see the section "
Writing Dirty Pages to Disk" later in this chapter) to start the I/O transfers for the dirty
pages; then, it invokes generic_osync_inode( ) to flush to disk the inode and the
associated buffers, and finally invokes wait_on_page_bit( ) to suspend the current
process until all PG_writeback bits of the flushed pages are cleared.

7. Returns the code returned by _ _generic_file_aio_write_nolock( ), usually the number
of bytes effectively written.

The _ _generic_file_aio_write_nolock( ) function receives four parameters: the address iocb
of a kiocb descriptor, the address iov of an array of iovec descriptors, the length of this
array, and the address ppos of a variable that stores the file's current pointer. When invoked
by generic_file_write( ), the array of iovec descriptors is composed of just one element
describing the User Mode buffer that contains the data to be written.[*]

[*] A variant of the write( ) system callnamed writev( ) allow s an application to define multiple User Mode buffers from w hich the
kernel fetches the data to be w ritten on the file; the generic_file_aio_write_nolock( ) function handles this case too. In the
follow ing pages, w e w ill assume that the data w ill be fetched from just one User Mode buffer; how ever, guessing the additional
steps to be performed w hen using multiple buffers is straightforw ard.

We now explain the actions of the _ _generic_file_aio_write_nolock( ) function; for the sake
of simplicity, we restrict the description to the most common case: a common mode operation
raised by a write( ) system call on a page-cached file. Later in this chapter we describe how
this function behaves in other cases. As usual, we do not discuss how errors and anomalous
conditions are handled.

The function executes the following steps:

1. Invokes access_ok( ) to verify that the User Mode buffer described by the iovec
descriptor is valid (the starting address and length have been received from the 
sys_write( ) service routine, thus they must be checked before using them; see the
section "Verifying the Parameters" in Chapter 10). If the parameters are not valid, it
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returns the -EFAULT error code.

2. Determines the address inode of the inode object that corresponds to the file to be
written (file->f_mapping->host). Remember that if the file is a block device file, this is
an inode in the bdev special filesystem (see Chapter 14).

3. Sets current->backing_dev_info to the address of the backing_dev_info descriptor of
the file (file->f_mapping->backing_dev_info). Essentially, this setting allows the current
process to write back the dirty pages owned by file->f_mapping even if the
corresponding request queue is congested; see Chapter 17.

4. If the O_APPEND flag of file->flags is on and the file is regular (not a block device file),
it sets *ppos to the end of the file so that all new data is appended to it.

5. Performs several checks on the size of the file. For instance, the write operation must
not enlarge a regular file so much as to exceed the per-user limit stored in 
current->signal->rlim[RLIMIT_FSIZE] (see the section "Process Resource Limits" in
Chapter 3) and the filesystem limit stored in inode->i_sb->s_maxbytes. Moreover, if the
file is not a "large file" (flag O_LARGEFILE of file->f_flags cleared), its size cannot
exceed 2 GB. If any of these constraints is not enforced, it reduces the number of
bytes to be written.

6. If set, it clears the suid flag of the file; also clears the sgid flag if the file is executable
(see the section "Access Rights and File Mode" in Chapter 1). We don't want users to
be able to modify setuid files.

7. Stores the current time of day in the inode->mtime field (the time of last file write
operation) and in the inode->ctime field (the time of last inode change), and marks the
inode object as dirty.

8. Starts a cycle to update all the pages of the file involved in the write operation. During
each iteration, it performs the following substeps:

a. Invokes find_lock_page( ) to search the page in the page cache (see the
section "Page Cache Handling Functions" in Chapter 15). If this function finds
the page, it increases its usage counter and sets its PG_locked flag.

b. If the page is not in the page cache, it allocates a new page frame and
invokes add_to_page_cache( ) to insert the page into the page cache; as
explained in the section "Page Cache Handling Functions" in Chapter 15, this
function also increases the usage counter and sets the PG_locked flag.
Moreover, the function inserts the new page into the inactive list of the
memory zone (see Chapter 17).

c. Invokes the prepare_write method of the address_space object of the inode (
file->f_mapping). The corresponding function takes care of allocating and
initializing buffer heads for the page. We'll discuss in subsequent sections what
this function does for regular files and block device files.

d. If the buffer is in high memory, it establishes a kernel mapping of the User Mode
buffer (see the section "Kernel Mappings of High-Memory Page Frames" in
Chapter 8). Then, it invokes _ _copy_from_user( ) to copy the characters from
the User Mode buffer to the page, and releases the kernel mapping.

e. Invokes the commit_write method of the address_space object of the inode (
file->f_mapping). The corresponding function marks the underlying buffers as
dirty so they are written to disk later. We discuss what this function does for
regular files and block device files in the next two sections.

f. Invokes unlock_page( ) to clear the PG_locked flag and wake up any process
that is waiting for the page.
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g. Invokes mark_page_accessed( ) to update the page status for the memory
reclaiming algorithm (see the section "The Least Recently Used (LRU) Lists" in
Chapter 17).

h. Decreases the page usage counter to undo the increment in step 8a or 8b.

i. In this iteration, yet another page has been dirtied: it checks whether the ratio
of dirty pages in the page cache has risen above a fixed threshold (usually,
40% of the pages in the system); if so, it invokes writeback_inodes( ) to start
flushing a few tens of pages to disk (see the section "Looking for Dirty Pages To
Be Flushed" in Chapter 15).

j. Invokes cond_resched( ) to check the TIF_NEED_RESCHED flag of the current
process and, if the flag is set, to invoke the schedule( ) function.

9. Now all pages of the file involved in the write operation have been handled.Updates the
value of *ppos to point right after the last character written.

10. Sets current->backing_dev_info to NULL (see step 3).

11. Terminates by returning the number of bytes effectively written.

16.1.3.1. The prepare_write and commit_write methods for regular files

The prepare_write and commit_write methods of the address_space object specialize the
generic write operation implemented by generic_file_write( ) for regular files and block
device files. Both of them are invoked once for every page of the file that is affected by the
write operation.

Each disk-based filesystem defines its own prepare_write method. As with read operations,
this method is simply a wrapper for a common function. For instance, the Ext2 filesystem
usually implements the prepare_write method by means of the following function:

int ext2_prepare_write(struct file *file, struct page *page,

                       unsigned from, unsigned to)

{

    return block_prepare_write(page, from, to, ext2_get_block);

}

The ext2_get_block( ) function was already mentioned in the earlier section "Reading from a
File"; it translates the block number relative to the file into a logical block number, which
represents the position of the data on the physical block device.

The block_prepare_write( ) function takes care of preparing the buffers and the buffer heads
of the file's page by performing essentially the following steps:

1. Checks if the page is a buffer page (flag PG_Private set); if this flag is cleared,
invokes create_empty_buffers( ) to allocate buffer heads for all buffers included in the
page (see the section "Buffer Pages" in Chapter 15).

2. For each buffer head relative to a buffer included in the page and affected by the
write operation, the following is performed:

a. Resets the BH_New flag, if it is set (see below).

b. If the BH_Mapped flag is not set, the function performs the following substeps:

1. Invokes the filesystem-dependent function whose address get_block was
passed as a parameter. This function looks in the on-disk data
structures of the filesystem and finds the logical block number of the
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buffer (relative to the beginning of the disk partition rather than the
beginning of the regular file). The filesystem-dependent function stores
this number in the b_blocknr field of the corresponding buffer head and
sets its BH_Mapped flag. The get_block function could allocate a new
physical block for the file (for instance, if the accessed block falls inside
a "hole" of the regular file; see the section "File Holes" in Chapter 18). In
this case, it sets the BH_New flag.

2. Checks the value of the BH_New flag; if it is set, invokes
unmap_underlying_metadata( ) to check whether some block device
buffer page in the page cache includes a buffer referencing the same
block on disk.[*] This function essentially invokes _ _find_get_block( ) to
look up the old block in the page cache (see the section "Searching
Blocks in the Page Cache" in Chapter 15). If such a block is found, the
function clears its BH_Dirty flag and waits until any I/O data transfer on
that buffer completes. Moreover, if the write operation does not rewrite
the whole buffer in the page, it fills the unwritten portion with zero's.
Then it considers the next buffer in the page.

[*] Although unlikely, this case might happen if a user writes blocks directly on the
block device file, thus bypassing the filesystem.

c. If the write operation does not rewrite the whole buffer and its BH_Delay and
BH_Uptodate flags are not set (that is, the block has been allocated in the
on-disk filesystem data structures and the buffer in RAM does not contain a
valid image of the data), the function invokes ll_rw_block( ) on the block to
read its content from disk (see the section "Submitting Buffer Heads to the
Generic Block Layer" in Chapter 15).

3. Blocks the current process until all read operations triggered in step 2c have been
completed.

4. Returns 0.

Once the prepare_write method returns, the generic_file_write( ) function updates the page
with the data stored in the User Mode address space. Next, it invokes the commit_write
method of the address_space object. This method is implemented by the generic_commit_write(
) function for almost all disk-based non-journaling filesystems.

The generic_commit_write( ) function performs essentially the following steps:

1. Invokes the _ _block_commit_write( ) function. In turn, this function does the
following:

a. Considers all buffers in the page that are affected by the write operation; for
each of them, sets the BH_Uptodate and BH_Dirty flags of the corresponding
buffer head.

b. Marks the corresponding inode as dirty. As seen in the section "Looking for Dirty
Pages To Be Flushed" in Chapter 15, this activity may require adding the inode
to the list of dirty inodes of the superblock.

c. If all buffers in the buffer page are now up-to-date, it sets the PG_uptodate flag
of the page.

d. Sets the PG_dirty flag of the page, and tags the page as dirty in its radix tree
(see the section "The Radix Tree" in Chapter 15).

2. Checks whether the write operation enlarged the file. In this case, the function
updates the i_size field of the file's inode.
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3. Returns 0.

16.1.3.2. The prepare_write and commit_write methods for block device files

Write operations into block device files are very similar to the corresponding operations on
regular files. In fact, the prepare_write method of the address_space object of block device
files is usually implemented by the following function:

int blkdev_prepare_write(struct file *file, struct page *page,

                         unsigned from, unsigned to)

{

    return block_prepare_write(page, from, to, blkdev_get_block);

}

As you can see, the function is simply a wrapper to the block_prepare_write( ) function
already discussed in the previous section. The only difference, of course, is in the second
parameter, which points to the function that must translate the file block number relative to
the beginning of the file to a logical block number relative to the beginning of the block
device. Remember that for block device files, the two numbers coincide. (See the earlier
section "Reading from a File" for a discussion of the blkdev_get_block( ) function.)

The commit_write method for block device files is implemented by the following simple wrapper
function:

int blkdev_commit_write(struct file *file, struct page *page,

                        unsigned from, unsigned to)

{

    return block_commit_write(page, from, to);

}

As you can see, the commit_write method for block device files does essentially the same
things as the commit_write method for regular files (we described the block_commit_write( )
function in the previous section). The only difference is that the method does not check
whether the write operation has enlarged the file; you simply cannot enlarge a block device
file by appending characters to its last position.

16.1.4. Writing Dirty Pages to Disk

The net effect of the write( ) system call consists of modifying the contents of some pages
in the page cacheoptionally allocating the pages and adding them to the page cache if they
were not already present. In some cases (for instance, if the file has been opened with the 
O_SYNC flag), the I/O data transfers start immediately (see step 6 of generic_file_write( ) in
the section "Writing to a File" earlier in this chapter). Usually, however, the I/O data transfer
is delayed, as explained in the section "Writing Dirty Pages to Disk" in Chapter 15.

When the kernel wants to effectively start the I/O data transfer, it ends up invoking the 
writepages method of the file's address_space object, which searches for dirty pages in the
radix-tree and flushes them to disk. For instance, the Ext2 filesystem implements the
writepages method by means of the following function:

int ext2_writepages(struct address_space *mapping,

                    struct writeback_control *wbc)

{

    return mpage_writepages(mapping, wbc, ext2_get_block);

}

As you can see, this function is a simple wrapper for the general-purpose mpage_writepages( )

Page 643

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


function; as a matter of fact, if a filesystem does not define the writepages method, the
kernel invokes directly mpage_writepages( ) passing NULL as third argument. The
ext2_get_block( ) function was already mentioned in the earlier section "Reading from a File;"
it is the filesystem-dependent function that translates a file block number into a logical block
number.

The writeback_control data structure is a descriptor that controls how the writeback
operation has to be performed; we have already described it in the section "Looking for Dirty
Pages To Be Flushed" in Chapter 15.

The mpage_writepages( ) function essentially performs the following actions:

1. If the request queue is write-congested and the process does not want to block, it
returns without writing any page to disk.

2. Determines the file's initial page to be considered. If the writeback_control descriptor
specifies the initial position in the file, the function translates it into a page index.
Otherwise, if the writeback_control descriptor specifies that the process does not
want to wait for the I/O data transfer to complete, it sets the initial page index to the
value stored in mapping->writeback_index (that is, scanning begins from the last page
considered in the previous writeback operation). Finally, if the process must wait until
I/O data transfers complete, scanning starts from the first page of the file.

3. Invokes find_get_pages_tag( ) to look up the descriptor of the dirty pages in the page
cache (see the section "The Tags of the Radix Tree" in Chapter 15).

4. For each page descriptor retrieved in the previous step, the function performs the
following steps:

a. Invokes lock_page( ) to lock up the page.

b. Checks that the page is still valid and in the page cache (because another
kernel control path could have acted upon the page between steps 3 and 4a).

c. Checks the PG_writeback flag of the page. If it is set, the page is already being
flushed to disk. If the process must wait for the I/O data transfer to complete,
it invokes wait_on_page_bit( ) to block the current process until the
PG_writeback flag is cleared; when this function terminates, any previously
ongoing writeback operation is terminated. Otherwise, if the process does not
want to wait, it checks the PG_dirty flag: if it is now cleared, the on-going
writeback will take care of the page, thus unlocks it and jumps back to step 4a
to continue with the next page.

d. If the get_block parameter is NULL (no writepages method defined), it invokes
the mapping->writepage method of the address_space object of the file to flush
the page to disk. Otherwise, if the get_block parameter is not NULL, it invokes
the mpage_writepage( ) function. See step 8 for details.

5. Invokes cond_resched( ) to check the TIF_NEED_RESCHED flag of the current process
and, if the flag is set, to invoke the schedule( ) function.

6. If the function has not scanned all pages in the given range, or if the number of pages
effectively written to disk is smaller than the value originally specified in the 
writeback_control descriptor, it jumps back to step 3.

7. If the writeback_control descriptor does not specify the initial position in the file, it
sets the mapping->writeback_index field with the index of the last scanned page.

8. If the mpage_writepage( ) function has been invoked in step 4d, and if that function
returned the address of a bio descriptor, it invokes mpage_bio_submit( ) (see below).
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A typical filesystem such as Ext2 implements the writepage method as a wrapper for the
general-purpose block_write_full_page( ) function, passing to it the address of the
filesystem-dependent get_block function. In turn, the block_write_full_page( ) function is
similar to block_read_full_page( ) described in the section "Reading from a File" earlier in this
chapter: it allocates buffer heads for the page (if the page was not already a buffer page),
and invokes the submit_bh( ) function on each of them, specifying the WRITE operation. As far
as block device files are concerned, they implement the writepage method by using
blkdev_writepage( ), which is a wrapper for block_write_full_page( ).

Many non-journaling filesystems rely on the mpage_writepage( ) function rather than on the
custom writepage method. This can improve performance because the mpage_writepage( )
function tries to submit the I/O transfers by collecting as many pages as possible in the same
bio descriptor; in turn, this allows the block device drivers to exploit the scatter-gather DMA
capabilities of the modern hard disk controllers.

To make a long story short, the mpage_writepage( ) function checks whether the page to be
written contains blocks that are not adjacent to disk, or whether the page includes a file hole,
or whether some block on the page is not dirty or not up-to-date. If at least one of these
conditions holds, the function falls back on the filesystem-dependent writepage method, as
above. Otherwise, the function adds the page as a segment of a bio descriptor. The address
of the bio descriptor is passed as parameter to the function; if it is NULL, mpage_writepage( )
initializes a new bio descriptor and returns its address to the calling function, which in turn
passes it back in the future invocations of mpage_writepage( ). In this way, several pages can
be added to the same bio. If a page is not adjacent to the last added page in the bio, 
mpage_writepage( ) invokes mpage_bio_submit( ) to start the I/O data transfer on the bio, and
allocates a new bio for the page.

The mpage_bio_submit( ) function sets the bi_end_io method of the bio to the address of
mpage_end_io_write( ), then invokes submit_bio( ) to start the transfer (see the section "
Submitting Buffer Heads to the Generic Block Layer" in Chapter 15). Once the data transfer
successfully terminates, the completion function mpage_end_io_write( ) wakes up any process
waiting for the page transfer to complete, and destroys the bio descriptor.
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16.2. Memory Mapping
As already mentioned in the section "Memory Regions" in Chapter 9, a memory region can be
associated with some portion of either a regular file in a disk-based filesystem or a block
device file. This means that an access to a byte within a page of the memory region is
translated by the kernel into an operation on the corresponding byte of the file. This
technique is called memory mapping.

Two kinds of memory mapping exist:

Shared

Each write operation on the pages of the memory region changes the file on disk;
moreover, if a process writes into a page of a shared memory mapping, the changes
are visible to all other processes that map the same file.

Private

Meant to be used when the process creates the mapping just to read the file, not to
write it. For this purpose, private mapping is more efficient than shared mapping. But
each write operation on a privately mapped page will cause it to stop mapping the
page in the file. Thus, a write does not change the file on disk, nor is the change
visible to any other processes that access the same file. However, pages of a private
memory mapping that have not been modified by the process are affected by file
updates performed by other processes.

A process can create a new memory mapping by issuing an mmap( ) system call (see the
section "Creating a Memory Mapping" later in this chapter). Programmers must specify either
the MAP_SHARED flag or the MAP_PRIVATE flag as a parameter of the system call; as you can
easily guess, in the former case the mapping is shared, while in the latter it is private. Once
the mapping is created, the process can read the data stored in the file by simply reading
from the memory locations of the new memory region. If the memory mapping is shared, the
process can also modify the corresponding file by simply writing into the same memory
locations. To destroy or shrink a memory mapping, the process may use the munmap( ) system
call (see the later section "Destroying a Memory Mapping").

As a general rule, if a memory mapping is shared, the corresponding memory region has the 
VM_SHARED flag set; if it is private, the VM_SHARED flag is cleared. As we'll see later, an exception
to this rule exists for read-only shared memory mappings.

16.2.1. Memory Mapping Data Structures

A memory mapping is represented by a combination of the following data structures :

 The inode object associated with the mapped file

 The address_space object of the mapped file

 A file object for each different mapping performed on the file by different processes

 A vm_area_struct descriptor for each different mapping on the file

 A page descriptor for each page frame assigned to a memory region that maps the file

Figure 16-2 illustrates how the data structures are linked. On the left side of the image we
show the inode, which identifies the file. The i_mapping field of each inode object points to
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the address_space object of the file. In turn, the page_tree field of each address_space object
points to the radix tree of pages belonging to the address space (see the section "The Radix
Tree" in Chapter 15), while the i_mmap field points to a second tree called the radix priority
search tree (PST) of memory regions belonging to the address space. The main use of PST is
for performing "reverse mapping," that is, for identifying quickly all processes that share a
given page. We'll cover in detail PSTs in the next chapter, because they are used for page
frame reclaiming. The link between file objects relative to the same file and the inode is
established by means of the f_mapping field.

Each memory region descriptor has a vm_file field that links it to the file object of the mapped
file (if that field is null, the memory region is not used in a memory mapping). The position of
the first mapped location is stored into the vm_pgoff field of the memory region descriptor; it
represents the file offset as a number of page-size units. The length of the mapped file
portion is simply the length of the memory region, which can be computed from the vm_start
and vm_end fields.

Figure 16-2. Data structures for file memory mapping

Pages of shared memory mappings are always included in the page cache; pages of private
memory mappings are included in the page cache as long as they are unmodified. When a
process tries to modify a page of a private memory mapping, the kernel duplicates the page
frame and replaces the original page frame with the duplicate in the process Page Table; this
is one of the applications of the Copy On Write mechanism that we discussed in Chapter 8.
The original page frame still remains in the page cache, although it no longer belongs to the
memory mapping since it is replaced by the duplicate. In turn, the duplicate is not inserted
into the page cache because it no longer contains valid data representing the file on disk.

Figure 16-2 also shows a few page descriptors of pages included in the page cache that refer
to the memory-mapped file. Notice that the first memory region in the figure is three pages
long, but only two page frames are allocated for it; presumably, the process owning the
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memory region has never accessed the third page.

The kernel offers several hooks to customize the memory mapping mechanism for every
different filesystem. The core of memory mapping implementation is delegated to a file object's
method named mmap. For most disk-based filesystems and for block device files, this method is
implemented by a general function called generic_file_mmap( ), which is described in the next
section.

File memory mapping depends on the demand paging mechanism described in the section "
Demand Paging" in Chapter 9. In fact, a newly established memory mapping is a memory region
that doesn't include any page; as the process references an address inside the region, a Page
Fault occurs and the Page Fault handler checks whether the nopage method of the memory
region is defined. If nopage is not defined, the memory region doesn't map a file on disk;
otherwise, it does, and the method takes care of reading the page by accessing the block
device. Almost all disk-based filesystems and block device files implement the nopage method
by means of the filemap_nopage( ) function.

16.2.2. Creating a Memory Mapping

To create a new memory mapping, a process issues an mmap( ) system call, passing the
following parameters to it:

 A file descriptor identifying the file to be mapped.

 An offset inside the file specifying the first character of the file portion to be mapped.

 The length of the file portion to be mapped.

 A set of flags. The process must explicitly set either the MAP_SHARED flag or the
MAP_PRIVATE flag to specify the kind of memory mapping requested.[*]

[*] The process could also set the MAP_ANONYMOUS flag to specify that the new  memory region is anonymous that is, not
associated w ith any disk-based file (see the section "Demand Paging" in Chapter 9). A process can also create a
memory region that is both MAP_SHARED and MAP_ANONYMOUS: in this case, the region maps a special file in the tmpfs
filesystem (see the section "IPC Shared Memory" in Chapter 19), w hich can be accessed by all the process's
descendants.

 A set of permissions specifying one or more types of access to the memory region:
read access (PROT_READ), write access (PROT_WRITE), or execution access (PROT_EXEC).

 An optional linear address, which is taken by the kernel as a hint of where the new
memory region should start. If the MAP_FIXED flag is specified and the kernel cannot
allocate the new memory region starting from the specified linear address, the system
call fails.

The mmap( ) system call returns the linear address of the first location in the new memory
region. For compatibility reasons, in the 80 x 86 architecture, the kernel reserves two entries
in the system call table for mmap( ) : one at index 90 and the other at index 192. The former
entry corresponds to the old_mmap( ) service routine (used by older C libraries), while the
latter one corresponds to the sys_mmap2( ) service routine (used by recent C libraries). The
two service routines differ only in how the six parameters of the system call are passed. Both
of them end up invoking the do_mmap_pgoff( ) function described in the section "Allocating a
Linear Address Interval" in Chapter 9. We now complete that description by detailing the steps
performed only when creating a memory region that maps a file. We thus describe the case
where the file parameter (pointer to a file object) of do_mmap_pgoff( ) is non-null. For the
sake of clarity, we refer to the enumeration used to describe do_mmap_pgoff( ) and point out
the additional steps performed under the new condition.

Step 1
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Checks whether the mmap file operation for the file to be mapped is defined; if not, it
returns an error code. A NULL value for mmap in the file operation table indicates that
the corresponding file cannot be mapped (for instance, because it is a directory).

Step 2

The get_unmapped_area( ) function invokes the get_unmapped_area method of the file
object, if it is defined, so as to allocate an interval of linear addresses suitable for the
memory mapping of the file. The disk-based filesystems do not define this method; in
this case, as explained in the section "Memory Region Handling" in Chapter 9, the
get_unmapped_area( ) function ends up invoking the get_unmapped_area method of the
memory descriptor.

Step 3

In addition to the usual consistency checks, it compares the kind of memory mapping
requested (stored in the flags parameter of the mmap( ) system call) and the flags
specified when the file was opened (stored in the file->f_mode field). In particular:

 If a shared writable memory mapping is required, it checks that the file was
opened for writing and that it was not opened in append mode (O_APPEND flag of
the open( ) system call).

 If a shared memory mapping is required, it checks that there is no mandatory
lock on the file (see the section "File Locking" in Chapter 12).

 For every kind of memory mapping, it checks that the file was opened for
reading.

If any of these conditions is not fulfilled, an error code is returned.

Moreover, when initializing the value of the vm_flags field of the new memory region
descriptor, it sets the VM_READ, VM_WRITE, VM_EXEC, VM_SHARED, VM_MAYREAD, VM_MAYWRITE,
VM_MAYEXEC, and VM_MAYSHARE flags according to the access rights of the file and the
kind of requested memory mapping (see the section "Memory Region Access Rights" in
Chapter 9). As an optimization, the VM_SHARED and VM_MAYWRITE flags are cleared for
nonwritable shared memory mapping. This can be done because the process is not
allowed to write into the pages of the memory region, so the mapping is treated the
same as a private mapping; however, the kernel actually allows other processes that
share the file to read the pages in this memory region.

Step 10

Initializes the vm_file field of the memory region descriptor with the address of the file
object and increases the file's usage counter. Invokes the mmap method for the file
being mapped, passing as parameters the address of the file object and the address of
the memory region descriptor. For most filesystems, this method is implemented by the 
generic_file_mmap( ) function, which performs the following operations:

a. Stores the current time in the i_atime field of the file's inode and marks the
inode as dirty.

b. Initializes the vm_ops field of the memory region descriptor with the address of
the generic_file_vm_ops table. All methods in this table are null, except the
nopage method, which is implemented by the filemap_nopage( ) function, and
the populate method, which is implemented by the filemap_populate( ) function
(see "Non-Linear Memory Mappings" later in this chapter).
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Step 11

Increases the i_writecount field of the file's inode, that is, the usage counter for
writing processes.

16.2.3. Destroying a Memory Mapping

When a process is ready to destroy a memory mapping, it invokes munmap( ); this system call
can also be used to reduce the size of each kind of memory region. The parameters used are:

 The address of the first location in the linear address interval to be removed.

 The length of the linear address interval to be removed.

The sys_munmap( ) service routine of the system call essentially invokes the do_munmap( )
function already described in the section "Releasing a Linear Address Interval" in Chapter 9.
Notice that there is no need to flush to disk the contents of the pages included in a writable
shared memory mapping to be destroyed. In fact, these pages continue to act as a disk
cache because they are still included in the page cache.

16.2.4. Demand Paging for Memory Mapping

For reasons of efficiency, page frames are not assigned to a memory mapping right after it has
been created, but at the last possible momentthat is, when the process attempts to address
one of its pages, thus causing a Page Fault exception.

We saw in the section "Page Fault Exception Handler" in Chapter 9 how the kernel verifies
whether the faulty address is included in some memory region of the process; if so, the kernel
checks the Page Table entry corresponding to the faulty address and invokes the do_no_page(
) function if the entry is null (see the section "Demand Paging" in Chapter 9).

The do_no_page( ) function performs all the operations that are common to all types of
demand paging, such as allocating a page frame and updating the Page Tables. It also checks
whether the nopage method of the memory region involved is defined. In the section "Demand
Paging" in Chapter 9, we described the case in which the method is undefined (anonymous
memory region); now we complete the description by discussing the main actions performed
by the function when the method is defined:

1. Invokes the nopage method, which returns the address of a page frame that contains
the requested page.

2. If the process is trying to write into the page and the memory mapping is private, it
avoids a future Copy On Write fault by making a copy of the page just read and
inserting it into the inactive list of pages (see Chapter 17). If the private memory
mapping region does not already have a slave anonymous memory region that includes
the new page, it either adds a new slave anonymous memory region or extends an
existing one (see the section "Memory Regions" in Chapter 9). In the following steps,
the function uses the new page instead of the page returned by the nopage method, so
that the latter is not modified by the User Mode process.

3. If some other process has truncated or invalidated the page (the truncate_count field
of the address_space descriptor is used for this kind of check), the function retries
getting the page by jumping back to step 1.

4. Increases the rss field of the process memory descriptor to indicate that a new page
frame has been assigned to the process.

5. Sets up the Page Table entry corresponding to the faulty address with the address of
the page frame and the page access rights included in the memory region vm_page_prot
field.
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6. If the process is trying to write into the page, it forces the Read/Write and Dirty bits
of the Page Table entry to 1. In this case, either the page frame is exclusively
assigned to the process, or the page is shared; in both cases, writing to it should be
allowed.

The core of the demand paging algorithm consists of the memory region's nopage method.
Generally speaking, it must return the address of a page frame that contains the page
accessed by the process. Its implementation depends on the kind of memory region in which
the page is included.

When handling memory regions that map files on disk, the nopage method must first search for
the requested page in the page cache. If the page is not found, the method must read it from
disk. Most filesystems implement the nopage method by means of the filemap_nopage( )
function, which receives three parameters:

area

Descriptor address of the memory region, including the required page

address

Linear address of the required page

type

Pointer to a variable in which the function writes the type of page fault detected by
the function (VM_FAULT_MAJOR or VM_FAULT_MINOR)

The filemap_nopage( ) function executes the following steps:

1. Gets the file object address file from the area->vm_file field. Derives the
address_space object address from file->f_mapping. Derives the inode object address
from the host field of the address_space object.

2. Uses the vm_start and vm_pgoff fields of area to determine the offset within the file of
the data corresponding to the page starting from address.

3. Checks whether the file offset exceeds the file size. When this happens, it returns NULL
, which means failure in allocating the new page, unless the Page Fault was caused by
a debugger tracing another process through the ptrace( ) system call. We are not
going to discuss this special case.

4. If the VM_RAND_READ flag of the memory region is set (see below), we may assume that
the process is reading the pages of the memory mapping in a random way. In this
case, it ignores read-ahead by jumping to step 10.

5. If the VM_SEQ_READ flag of the memory region is set (see below), we may assume that
the process is reading the pages of the memory mapping in a strictly sequential way.
In this case, it invokes page_cache_readahead( ) to perform read-ahead starting from
the faulty page (see the section "Read-Ahead of Files" earlier in this chapter).

6. Invokes find_get_page( ) to look in the page cache for the page identified by the
address_space object and the file offset. If the page is found, it jumps to step 11.

7. If the function has reached this point, the page has not been found in the page cache.
Checks the VM_SEQ_READ flag of the memory region:

o If the flag is set, the kernel is aggressively reading in advance the pages of the
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memory region, hence the read-ahead algorithm has failed: it invokes 
handle_ra_miss( ) to tune up the read-ahead parameters (see the section "
Read-Ahead of Files" earlier in this chapter), then jumps to step 10.

o Otherwise, if the flag is clear, it increases by one the mmap_miss counter in the
file_ra_state descriptor of the file. If the number of misses is much larger than
the number of hits (stored in the mmap_hit counter), it ignores read-ahead by
jumping to step 10.

8. If read-ahead is not permanently disabled (ra_pages field in the file_ra_state
descriptor greater than zero), it invokes do_page_cache_readahead( ) to read a set of
pages surrounding the requested page.

9. Invokes find_get_page( ) to check whether the requested page is in the page cache;
if it is there, jumps to step 11.

10. Invokes page_cache_read( ). This function checks whether the requested page is
already in the page cache and, if it is not there, allocates a new page frame, adds it to
the page cache, and executes the mapping->a_ops->readpage method to schedule an
I/O operation that reads the page's contents from disk.

11. Invokes the grab_swap_token( ) function to possibly assign the swap token to the
current process (see the section "The Swap Token" in Chapter 17).

12. The requested page is now in the page cache. Increases by one the mmap_hit counter
of the file_ra_state descriptor of the file.

13. If the page is not up-to-date (PG_uptodate flag clear), it invokes lock_page( ) to lock
up the page, executes the mapping->a_ops->readpage method to trigger the I/O data
transfer, and invokes wait_on_page_bit( ) to sleep until the page is unlockedthat is,
until the data transfer completes.

14. Invokes mark_page_accessed( ) to mark the requested page as accessed (see next
chapter).

15. If an up-to-date version of the page was found in the page cache, it sets *type to
VM_FAULT_MINOR; otherwise sets it to VM_FAULT_MAJOR.

16. Returns the address of the requested page.

A User Mode process can tailor the read-ahead behavior of the filemap_nopage( ) function by
using the madvise( ) system call. The MADV_RANDOM command sets the VM_RAND_READ flag of the
memory region to specify that the pages of the memory region will be accessed in random
order; the MADV_SEQUENTIAL command sets the VM_SEQ_READ flag to specify that the pages will
be accessed in strictly sequential order; finally, the MADV_NORMAL command resets both the
VM_RAND_READ and VM_SEQ_READ flags to specify that the pages will be accessed in a unspecified
order.

16.2.5. Flushing Dirty Memory Mapping Pages to Disk

The msync( ) system call can be used by a process to flush to disk dirty pages belonging to a
shared memory mapping. It receives as its parameters the starting address of an interval of
linear addresses, the length of the interval, and a set of flags that have the following
meanings:

MS_SYNC

Asks the system call to suspend the process until the I/O operation completes. In this
way, the calling process can assume that when the system call terminates, all pages
of its memory mapping have been flushed to disk.
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MS_ASYNC (complement of MS_SYNC)

Asks the system call to return immediately without suspending the calling process.

MS_INVALIDATE

Asks the system call to invalidate other memory mappings of the same file (not really
implemented, because useless in Linux).

The sys_msync( ) service routine invokes msync_interval( ) on each memory region included in
the interval of linear addresses. In turn, the latter function performs the following operations:

1. If the vm_file field of the memory region descriptor is NULL, or if the VM_SHARED flag is
clear, it returns 0 (the memory region is not a writable shared memory mapping of a
file).

2. Invokes the filemap_sync( ) function, which scans the Page Table entries
corresponding to the linear address intervals included in the memory region. For each
page found, it resets the Dirty flag in the corresponding page table entry and invokes
flush_tlb_page( ) to flush the corresponding translation lookaside buffers; then, it sets
the PG_dirty flag in the page descriptor to mark the page as dirty.

3. If the MS_ASYNC flag is set, it returns. Therefore, the practical effect of the MS_ASYNC
flag consists of setting the PG_dirty flags of the pages in the memory region; the
system call does not actually start the I/O data transfers.

4. If the function has reached this point, the MS_SYNC flag is set, hence the function must
flush the pages in the memory region to disk and put the current process to sleep until
all I/O data transfers terminate. In order to do this, the function acquires the i_sem
semaphore of the file's inode.

5. Invokes the filemap_fdatawrite( ) function, which receives the address of the file's
address_space object. This function essentially sets up a writeback_control descriptor
with the WB_SYNC_ALL synchronization mode, and checks whether the address space
has a built-in writepages method. If so, it invokes the corresponding function and
returns. In the opposite case, it executes the mpage_writepages( ) function. (See the
section "Writing Dirty Pages to Disk" earlier in this chapter.)

6. Checks whether the fsync method of the file object is defined; if so, executes it. For
regular files, this method usually limits itself to flushing the inode object of the file to
disk. For block device files, however, the method invokes sync_blockdev( ), which
activates the I/O data transfer of all dirty buffers of the device.

7. Executes the filemap_fdatawait( ) function. We recall from the section "The Tags of
the Radix Tree" in Chapter 15 that a radix tree in the page cache identifies all pages
that are currently being written to disk by means of the PAGECACHE_TAG_WRITEBACK tag.
The function quickly scans the portion of the radix tree that covers the given interval
of linear addresses looking for pages having the PG_writeback flag set; for each such
page, the function invokes wait_on_page_bit( ) to sleep until the PG_writeback flag is
cleared that is, until the ongoing I/O data transfer on the page terminates.

8. Releases the i_sem semaphore of the file and returns.

16.2.6. Non-Linear Memory Mappings

The Linux 2.6 kernel offers yet another kind of access method for regular files: the non-linear
memory mappings. Basically, a non-linear memory mapping is a file memory mapping as
described previously, but its memory pages are not mapped to sequential pages on the file;
rather, each memory page maps a random (arbitrary) page of file's data.
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Of course, a User Mode application might achieve the same result by invoking the mmap( )
system call repeatedly, each time on a different 4096-byte-long portion of the file. However,
this approach is not very efficient for non-linear mapping of large files, because each mapping
page requires its own memory region.

In order to support non-linear memory mapping, the kernel makes use of a few additional data
structures. First of all, the VM_NONLINEAR flag of the memory region descriptor specifies that
the memory region contains a non-linear mapping. All descriptors of non-linear mapping
memory regions for a given file are collected in a doubly linked circular list rooted at the 
i_mmap_nonlinear field of the address_space object.

To create a non-linear memory mapping, the User Mode application first creates a normal
shared memory mapping with the mmap( ) system call. Then, the application remaps some of
the pages in the memory mapping region by invoking remap_file_pages( ). The
sys_remap_file_pages( ) service routine of the system call receives four parameters:

start

A linear address inside a shared file memory mapping region of the calling process

size

Size of the remapped portion of the file in bytes

prot

Unused (must be zero)

pgoff

Page index of the initial file's page to be remapped

flags

Flags controlling the non-linear memory mapping

The service routine remaps the portion of the file's data identified by the pgoff and size
parameters starting from the start linear address. If either the memory region is not shared or
it is not large enough to include all the pages requested for the mapping, the system call fails
and an error code is returned. Essentially, the service routine inserts the memory region in
the i_mmap_nonlinear list of the file and invokes the populate method of the memory region.

For all regular files, the populate method is implemented by the filemap_populate( ) function,
which executes the following steps:

1. Checks whether the MAP_NONBLOCK flag in the flags parameter of the remap_file_pages(
) system call is clear; if so, it invokes do_page_cache_readahead( ) to read in advance
the pages of the file to be remapped.

2. For each page to be remapped, performs the following substeps:

a. Checks whether the page descriptor is already included in the page cache; if it
is not there and the MAP_NONBLOCK flag is cleared, it reads the page from disk.

b. If the page descriptor is in the page cache, it updates the Page Table entry of
the corresponding linear address so that it points to the page frame, and
updates the counter of pages in the memory region descriptor.
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c. Otherwise, if the page descriptor has not been found in the page cache, it
stores the offset of the file's page in the 32 highest-order bits of the Page
Table entry for the corresponding linear address; also, clears the Present bit of
the Page Table entry and sets the Dirty bit.

As explained in the section "Demand Paging" in Chapter 9, when handling a demand-paging
fault the handle_ pte_fault( ) function checks the Present and Dirty bits in the Page Table
entry; if they have the values corresponding to a non-linear memory mapping, 
handle_pte_fault( ) invokes the do_file_page( ) function, which extracts the index of the
requested file's page from the high-order bits of the Page Table entry; then, do_file_page( )
invokes the populate method of the memory region to read the page from disk and update the
Page Table entry itself.

Because the memory pages of a non-linear memory mapping are included in the page cache
according to the page index relative to the beginning of the filerather than the index relative
to the beginning of the memory regionnon-linear memory mappings are flushed to disk exactly
like linear memory mappings (see the section "Flushing Dirty Memory Mapping Pages to Disk"
earlier in this chapter).
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16.3. Direct I/O Transfers
As we have seen, in Version 2.6 of Linux, there is no substantial difference between accessing
a regular file through the filesystem, accessing it by referencing its blocks on the underlying
block device file, or even establishing a file memory mapping. There are, however, some highly
sophisticated programs (self-caching applications ) that would like to have full control of the
whole I/O data transfer mechanism. Consider, for example, high-performance database
servers: most of them implement their own caching mechanisms that exploit the peculiar
nature of the queries to the database. For these kinds of programs, the kernel page cache
doesn't help; on the contrary, it is detrimental for the following reasons:

 Lots of page frames are wasted to duplicate disk data already in RAM (in the user-level
disk cache).

 The read( ) and write( ) system calls are slowed down by the redundant instructions
that handle the page cache and the read-ahead; ditto for the paging operations
related to the file memory mappings.

 Rather than transferring the data directly between the disk and the user memory, the 
read( ) and write( ) system calls make two transfers: between the disk and a kernel
buffer and between the kernel buffer and the user memory.

Because block hardware devices must be handled through interrupts and Direct Memory
Access (DMA), and this can be done only in Kernel Mode, some sort of kernel support is
definitely required to implement self-caching applications.

Linux offers a simple way to bypass the page cache: direct I/O transfers. In each I/O direct
transfer, the kernel programs the disk controller to transfer the data directly from/to pages
belonging to the User Mode address space of a self-caching application.

As we know, each data transfer proceeds asynchronously. While it is in progress, the kernel
may switch the current process, the CPU may return to User Mode, the pages of the process
that raised the data transfer might be swapped out, and so on. This works just fine for
ordinary I/O data transfers because they involve pages of the disk caches . Disk caches are
owned by the kernel, cannot be swapped out, and are visible to all processes in Kernel Mode.

On the other hand, direct I/O transfers should move data within pages that belong to the User
Mode address space of a given process. The kernel must take care that these pages are
accessible by every process in Kernel Mode and that they are not swapped out while the data
transfer is in progress. Let us see how this is achieved.

When a self-caching application wishes to directly access a file, it opens the file specifying
the O_DIRECT flag (see the section "The open( ) System Call" in Chapter 12). While servicing
the open( ) system call, the dentry_open( ) function checks whether the direct_IO method is
implemented for the address_space object of the file being opened, and returns an error code
in the opposite case. The O_DIRECT flag can also be set for a file already opened by using the
F_SETFL command of the fcntl( ) system call.

Let us consider first the case where the self-caching application issues a read( ) system call
on a file with O_DIRECT. As mentioned in the section "Reading from a File" earlier in this
chapter, the read file method is usually implemented by the generic_file_read( ) function,
which initializes the iovec and kiocb descriptors and invokes _ _generic_file_aio_read( ). The
latter function verifies that the User Mode buffer described by the iovec descriptor is valid,
then checks whether the O_DIRECT flag of the file is set. When invoked by a read( ) system
call, the function executes a code fragment essentially equivalent to the following:

if (filp->f_flags & O_DIRECT) {

    if (count == 0 || *ppos > filp->f_mapping->host->i_size)
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        return 0;

    retval = generic_file_direct_IO(READ, iocb, iov, *ppos, 1);

    if (retval > 0)

        *ppos += retval;

    file_accessed(filp);

    return retval;

}

The function checks the current values of the file pointer, the file size, and the number of
requested characters, and then invokes the generic_file_direct_IO( ) function, passing to it
the READ operation type, the iocb descriptor, the iovec descriptor, the current value of the file
pointer, and the number of User Mode buffers specified in the io_vec descriptor (one). When
generic_file_direct_IO( ) terminates, _ _generic_file_aio_read( ) updates the file pointer,
sets the access timestamp on the file's inode, and returns.

Something similar happens when a write( ) system call is issued on a file having the O_DIRECT
flag set. As mentioned in the section "Writing to a File" earlier in this chapter, the write
method of the file ends up invoking generic_file_aio_write_nolock( ): this function checks
whether the O_DIRECT flag is set and, if so, invokes the generic_file_direct_IO( ) function,
this time specifying the WRITE operation type.

The generic_file_direct_IO( ) function acts on the following parameters:

rw

Type of operation: READ or WRITE

iocb

Pointer to a kiocb descriptor (see Table 16-1)

iov

Pointer to an array of iovec descriptors (see the section "Reading from a File" earlier in
this chapter)

offset

File offset

nr_segs

Number of iovec descriptors in the iov array

The steps performed by generic_file_direct_IO( ) are the following:

1. Gets the address file of the file object from the ki_filp field of the kiocb descriptor,
and the address mapping of the address_space object from the file->f_mapping field.

2. If the type of operation is WRITE and if one or more processes have created a memory
mapping associated with a portion of the file, it invokes unmap_mapping_range( ) to
unmap all pages of the file. This function also ensures that if any Page Table entry
corresponding to a page to be unmapped has the Dirty bit set, then the corresponding
page is marked as dirty in the page cache.

3. If the radix tree rooted at mapping is not empty (mapping->nrpages greater than zero), it
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invokes the filemap_fdatawrite( ) and filemap_fdatawait( ) functions to flush all dirty
pages to disk and to wait until the I/O operations complete (see the section "Flushing
Dirty Memory Mapping Pages to Disk" earlier in this chapter). (Even if the self-caching
application is accessing the file directly, there could be other applications in the
system that access the file through the page cache. To avoid data loss, the disk
image is synchronized with the page cache before starting the direct I/O transfer.)

4. Invokes the direct_IO method of the mapping address space (see the following
paragraphs).

5. If the operation type was WRITE, it invokes invalidate_inode_pages2( ) to scan all
pages in the radix tree of mapping and to release them. The function also clears the
User Mode Page Table entries that refer to those pages.

In most cases, the direct_IO method is a wrapper for the _ _blockdev_direct_IO( ) function.
This function is quite complex and invokes a large number of auxiliary data structures and
functions; however, it executes essentially the same kind of operations already described in
this chapter: it splits the data to be read or written in suitable blocks, locates the data on
disk, and fills up one or more bio descriptors that describe the I/O operations to be performed.
Of course, the data will be read or written directly in the User Mode buffers specified by the 
iovec descriptors in the iov array. The bio descriptors are submitted to the generic block layer
by invoking the submit_bio( ) function (see the section "Submitting Buffer Heads to the
Generic Block Layer" in Chapter 15). Usually, the _ _blockdev_direct_IO( ) function does not
return until all direct I/O transfers have been completed; thus, once the read( ) or write( )
system call returns, the self-caching application can safely access the buffers containing the
file data.
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16.4. Asynchronous I/O
The POSIX 1003.1 standard defines a set of library functionslisted in Table 16-4for accessing
the files in an asynchronous way. "Asynchronous" essentially means that when a User Mode
process invokes a library function to read or write a file, the function terminates as soon as
the read or write operation has been enqueued, possibly even before the actual I/O data
transfer takes place. The calling process can thus continue its execution while the data is
being transferred.

Table 16-4. The POSIX library functions for asynchronous I/O

Function Description

aio_read( ) Asynchronously reads some data from a file

aio_write( ) Asynchronously writes some data into a file

aio_fsync( ) Requests a flush operation for all outstanding asynchronous I/O operations
(does not block)

aio_error( ) Gets the error code for an outstanding asynchronous I/O operation

aio_return( ) Gets the return code for a completed asynchronous I/O operation

aio_cancel( ) Cancels an outstanding asynchronous I/O operation

aio_suspend( ) Suspends the process until at least one of several outstanding I/O
operations completes

Using asynchronous I/O is quite simple. The application opens the file by means of the usual 
open( ) system call. Then, it fills up a control block of type struct aiocb with the information
describing the requested operation. The most commonly used fields of the struct aiocb
control block are:

aio_fildes

The file descriptor of the file (as returned by the open( ) system call)

aio_buf

The User Mode buffer for the file's data

aio_nbytes

How many bytes should be transferred

aio_offset

Position in the file where the read or write operation will start (it is independent of the
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"synchronous" file pointer)

Finally, the application passes the address of the control block to either aio_read( ) or
aio_write( ) ; both functions terminate as soon as the requested I/O data transfer has been
enqueued by the system library or kernel. The application can later check the status of the
outstanding I/O operation by invoking aio_error( ), which returns EINPROGRESS if the data
transfer is still in progress, 0 if it is successfully completed, or an error code in case of failure.
The aio_return( ) function returns the number of bytes effectively read or written by a
completed asynchronous I/O operation, or -1 in case of failure.

16.4.1. Asynchronous I/O in Linux 2.6

Asynchronous I/O can be implemented by a system library without any kernel support at all.
Essentially, the aio_read( ) or aio_write( ) library function clones the current process and
lets the child invoke the synchronous read( ) or write( ) system calls; then, the parent
terminates the aio_read( ) or aio_write( ) function and continues the execution of the
program, hence it does not wait for the synchronous operation started by the child to finish.
However, this "poor man's" version of the POSIX functions is significantly slower than a version
that uses a kernel-level implementation of asynchronous I/O.

The Linux 2.6 kernel version sports a set of system calls for asynchronous I/O. However, in
Linux 2.6.11 this feature is a work in progress, and asyncronous I/O works properly only for
files opened with the O_DIRECT flag set (see the previous section). The system calls for
asynchronous I/O are listed in Table 16-5.

Table 16-5. Linux system calls for asynchronous I/O

System call Description

io_setup( ) Initializes an asynchronous context for the current process

io_submit( ) Submits one or more asynchronous I/O operations

io_getevents( ) Gets the completion status of some outstanding asynchronous I/O
operations

io_cancel( ) Cancels an outstanding I/O operation

io_destroy( ) Removes an asynchronous context for the current process

16.4.1.1. The asynchronous I/O context

If a User Mode process wants to make use of the io_submit( ) system call to start an
asynchronous I/O operation, it must create beforehand an asynchronous I/O context.

Basically, an asynchronous I/O context (in short, AIO context) is a set of data structures that
keep track of the on-going progresses of the asynchronous I/O operations requested by the
process. Each AIO context is associated with a kioctx object, which stores all information
relevant for the context. An application might create several AIO contexts; all kioctx
descriptors of a given process are collected in a singly linked list rooted at the ioctx_list field
of the memory descriptor (see Table 9-2 in Chapter 9).

We are not going to discuss in detail the kioctx object; however, we should pinpoint an
important data structure referenced by the kioctx object: the AIO ring.

The AIO ring is a memory buffer in the address space of the User Mode process that is also
accessible by all processes in Kernel Mode. The User Mode starting address and length of the
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AIO ring are stored in the ring_info.mmap_base and ring_info.mmap_size fields of the kioctx
object, respectively. The descriptors of all page frames composing the AIO ring are stored in
an array pointed to by the ring_info.ring_pages field.

The AIO ring is essentially a circular buffer where the kernel writes the completion reports of
the outstanding asynchronous I/O operations. The first bytes of the AIO ring contain an
header (a struct aio_ring data structure); the remaining bytes store io_event data
structures, each of which describes a completed asynchronous I/O operation. Because the
pages of the AIO ring are mapped in the User Mode address space of the process, the
application can check directly the progress of the outstanding asynchronous I/O operations,
thus avoiding using a relatively slow system call.

The io_setup( ) system call creates a new AIO context for the calling process. It expects two
parameters: the maximum number of outstanding asynchronous I/O operations, which
ultimately determines the size of the AIO ring, and a pointer to a variable that will store a
handle to the context; this handle is also the base address of the AIO ring. The sys_io_setup(
) service routine essentially invokes do_mmap( ) to allocate a new anonymous memory region
for the process that will contain the AIO ring (see the section "Allocating a Linear Address
Interval" in Chapter 9), and creates and initializes a kioctx object describing the AIO context.

Conversely, the io_destroy( ) system call removes an AIO context; it also destroys the
anonymous memory region containing the corresponding AIO ring. The system call blocks the
current process until all outstanding asynchronous I/O operations are complete.

16.4.1.2. Submitting the asynchronous I/O operations

To start some asynchronous I/O operations, the application invokes the io_submit( ) system
call. The system call has three parameters:

ctx_id

The handle returned by io_setup( ), which identifies the AIO context

iocbpp

The address of an array of pointers to descriptors of type iocb, each of which
describes one asynchronous I/O operation

nr

The length of the array pointed to by iocbpp

The iocb data structure includes the same fields as the POSIX aiocb descriptor (aio_fildes,
aio_buf, aio_nbytes, aio_offset) plus the aio_lio_opcode field that stores the type of the
requested operation (typically read, write, or sync).

The service routine sys_io_submit( ) performs essentially the following steps:

1. Verifies that the array of iocb descriptors is valid.

2. Searches the kioctx object corresponding to the ctx_id handle in the list rooted at
the ioctx_list field of the memory descriptor.

3. For each iocb descriptor in the array, it executes the following substeps:

a. Gets the address of the file object corresponding to the file descriptor stored in
the aio_fildes field.

b. Allocates and initializes a new kiocb descriptor for the I/O operation.
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c. Checks that there is a free slot in the AIO ring to store the completion result of
the operation.

d. Sets the ki_retry method of the kiocb descriptor according to the type of the
operation (see below).

e. Executes the aio_run_iocb( ) function, which essentially invokes the ki_retry
method to start the I/O data transfer for the corresponding asynchronous I/O
operation. If the ki_retry method returns the value -EIOCBRETRY, the
asynchronous I/O operation has been submitted but not yet fully satisfied: the 
aio_run_iocb( ) function will be invoked again on this kiocb at a later time (see
below). Otherwise, it invokes aio_complete( ) to add a completion event for the
asynchronous I/O operation in the ring of the AIO context.

If the asynchronous I/O operation is a read request, the ki_retry method of the
corresponding kiocb descriptor is implemented by aio_pread( ). This function essentially
executes the aio_read method of the file object, then updates the ki_buf and ki_left fields of
the kiocb descriptor (see Table 16-1 earlier in this chapter) according to the value returned
by the aio_read method. Finally, aio_pread( ) returns the number of bytes effectively read
from the file, or the value -EIOCBRETRY if the function determines that not all requested bytes
have been transferred. For most filesystems, the aio_read method of the file object ends up
invoking the _ _generic_file_aio_read( ) function. Assuming that the O_DIRECT flag of the file
is set, this function ends up invoking the generic_file_direct_IO( ) function, as described in
the previous section. In this case, however, the _ _blockdev_direct_IO( ) function does not
block the current process waiting for the I/O data transfer to complete; instead, the function
returns immediately. Because the asynchronous I/O operation is still outstanding, the 
aio_run_iocb( ) will be invoked again, this time by the aio kernel thread of the aio_wq work
queue. The kiocb descriptor keeps track of the progress of the I/O data transfer; eventually
all requested data will be transferred and the completion result will be added to the AIO ring.

Similarly, if the asynchronous I/O operation is a write request, the ki_retry method of the
kiocb descriptor is implemented by aio_pwrite( ). This function essentially executes the
aio_write method of the file object, then updates the ki_buf and ki_left fields of the kiocb
descriptor (see Table 16-1 earlier in this chapter) according to the value returned by the
aio_write method. Finally, aio_pwrite( ) returns the number of bytes effectively written to
the file, or the value -EIOCBRETRY if the function determines that not all requested bytes have
been transferred. For most filesystems, the aio_write method of the file object ends up
invoking the generic_file_aio_write_nolock( ) function. Assuming that the O_DIRECT flag of
the file is set, this function ends up invoking the generic_file_direct_IO( ) function, as
above.
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Chapter 17. Page Frame Reclaiming
In previous chapters, we explained how the kernel handles dynamic memory by keeping track
of free and busy page frames. We have also discussed how every process in User Mode has
its own address space and has its requests for memory satisfied by the kernel one page at a
time, so that page frames can be assigned to the process at the very last possible moment.
Last but not least, we have shown how the kernel makes use of dynamic memory to
implement both memory and disk caches .

In this chapter, we complete our description of the virtual memory subsystem by discussing
page frame reclaiming. We'll start in the first section, "The Page Frame Reclaiming Algorithm,"
explaining why the kernel needs to reclaim page frames and what strategy it uses to achieve
this. We then make a technical digression in the section "Reverse Mapping" to discuss the
data structures used by the kernel to locate quickly all the Page Table entries that point to
the same page frame. The section "Implementing the PFRA" is devoted to the page frame
reclaiming algorithm used by Linux. The last main section, "Swapping," is almost a chapter by
itself: it covers the swap subsystem, a kernel component used to save anonymous (not
mapping data of files) pages on disk.
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17.1. The Page Frame Reclaiming Algorithm
One of the fascinating aspects of Linux is that the checks performed before allocating
dynamic memory to User Mode processes or to the kernel are somewhat perfunctory.

No rigorous check is made, for instance, on the total amount of RAM assigned to the
processes created by a single user (the limits mentioned in the section "Process Resource
Limits" in Chapter 3 mostly affect single processes). Similarly, no limit is placed on the size of
the many disk caches and memory caches used by the kernel.

This lack of controls is a design choice that allows the kernel to use the available RAM in the
best possible way. When the system load is low, the RAM is filled mostly by the disk caches
and the few running processes can benefit from the information stored in them. However,
when the system load increases, the RAM is filled mostly by pages of the processes and the
caches are shrunken to make room for additional processes.

As we saw in previous chapters, both memory and disk caches grab more and more page
frames but never release any of them. This is reasonable because cache systems don't know
if and when processes will reuse some of the cached data and are therefore unable to identify
the portions of cache that should be released. Moreover, thanks to the demand paging
mechanism described in Chapter 9, User Mode processes get page frames as long as they
proceed with their execution; however, demand paging has no way to force processes to
release the page frames whenever they are no longer used.

Thus, sooner or later all the free memory will be assigned to processes and caches. The page
frame reclaiming algorithm of the Linux kernel refills the lists of free blocks of the buddy
system by "stealing" page frames from both User Mode processes and kernel caches.

Actually, page frame reclaiming must be performed before all the free memory has been used
up. Otherwise, the kernel might be easily trapped in a deadly chain of memory requests that
leads to a system crash. Essentially, to free a page frame the kernel must write its data to
disk; however, to accomplish this operation, the kernel requires another page frame (for
instance, to allocate the buffer heads for the I/O data transfer). If no free page frame exists,
no page frame can be freed.

One of the goals of page frame reclaiming is thus to conserve a minimal pool of free page
frames so that the kernel may safely recover from "low on memory" conditions.

17.1.1. Selecting a Target Page

The objective of the page frame reclaiming algorithm (PFRA ) is to pick up page frames and
make them free. Clearly the page frames selected by the PFRA must be non-free , that is,
they must not be already included in one of the free_area arrays used by the buddy system
(see the section "The Buddy System Algorithm" in Chapter 8).

The PFRA handles the page frames in different ways, according to their contents. We can
distinguish between unreclaimable pages, swappable pages, syncable pages, and discardable
pages. These types are explained in Table 17-1.

Table 17-1. The types of pages considered by the PFRA

Type of pages Description Reclaim action

Unreclaimable Free pages (included in buddy system
lists) (No reclaiming allowed or needed)
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Table 17-1. The types of pages considered by the PFRA

Type of pages Description Reclaim action

Reserved pages (with PG_reserved flag
set)

Pages dynamically allocated by the
kernel

Pages in the Kernel Mode stacks of the
processes

Temporarily locked pages (with 
PG_locked flag set)

Memory locked pages (in memory
regions with VM_LOCKED flag set)

Swappable

Anonymous pages in User Mode address
spaces 

Mapped pages of tmpfs filesystem (e.g.,
pages of IPC shared memory)

Save the page contents in a swap
area

Syncable

Mapped pages in User Mode address
spaces

Pages included in the page cache and
containing data of disk files

Block device buffer pages

Pages of some disk caches (e.g., the
inode cache )

Synchronize the page with its
image on disk, if necessary

Discardable

Unused pages included in memory
caches (e.g., slab allocator caches)

Unused pages of the dentry cache 

Nothing to be done

In the above table, a page is said to be mapped if it maps a portion of a file. For instance, all
pages in the User Mode address spaces belonging to file memory mappings are mapped, as
well as any other page included in the page cache. In almost all cases, mapped pages are
syncable: in order to reclaim the page frame, the kernel must check whether the page is dirty
and, if necessary, write the page contents in the corresponding disk file.

Conversely, a page is said to be anonymous if it belongs to an anonymous memory region of a
process (for instance, all pages in the User Mode heap or stack of a process are anonymous).
In order to reclaim the page frame, the kernel must save the page contents in a dedicated
disk partition or disk file called "swap area" (see the later section "Swapping"); therefore, all
anonymous pages are swappable.

Usually, the pages of special filesystems are not reclaimable. The only exceptions are the
pages of the tmpfs special filesystem, which can be reclaimed by saving them in a swap area.
As we'll see in Chapter 19, the tmpfs special filesystem is used by the IPC shared memory
mechanism.
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When the PFRA must reclaim a page frame belonging to the User Mode address space of a
process, it must take into consideration whether the page frame is shared or non-shared . A
shared page frame belongs to multiple User Mode address spaces, while a non-shared page
frame belongs to just one. Notice that a non-shared page frame might belong to several
lightweight processes referring to the same memory descriptor.

Shared page frames are typically created when a process spawns a child; as explained in the
section "Copy On Write" in Chapter 9, the page tables of the child are copied from those of
the parent, thus parent and child share the same page frames. Another common case occurs
when two or more processes access the same file by means of a shared memory mapping (see
the section "Memory Mapping" in Chapter 16).[*]

[*] It should be noted, how ever, that w hen a single process accesses a file through a shared memory mapping, the corresponding
pages are non-shared as far as the PFRA is concerned. Similarly, a page belonging to a private memory mapping may be treated
as shared by the PFRA (for instance, because tw o processes read the same file portion and none of them modified the data in the
page).

17.1.2. Design of the PFRA

While it is easy to identify the page candidates for memory reclaimingroughly speaking, any
page belonging to a disk or memory cache, or to the User Mode address space of a
processselecting the proper target pages is perhaps the most sensitive issue in kernel design.

As a matter of fact, the hardest job of a developer working on the virtual memory subsystem
consists of finding an algorithm that ensures acceptable performance both for desktop
machines (on which memory requests are quite limited but system responsiveness is crucial)
and for high-level machines such as large database servers (on which memory requests tend
to be huge).

Unfortunately, finding a good page frame reclaiming algorithm is a rather empirical job, with
very little support from theory. The situation is somewhat similar to evaluating the factors
that determine the dynamic priority of a process: the main objective is to tune the parameters
in such a way to achieve good system performance, without asking too many questions about
why it works well. Often, it's just a matter of "let's try this approach and see what happens."
An unpleasant side effect of this empirical design is that the code changes quickly. For that
reason, we cannot ensure that the memory reclaiming algorithm we are going to describethe
one used in Linux 2.6.11will be exactly the same, by the time you'll read this chapter, as the
one adopted by the most up-to-date version of the Linux 2.6 kernel. However, the general
ideas and the main heuristic rules described here should continue to hold.

Looking too close to the trees' leaves might lead us to miss the whole forest. Therefore, let us
present a few general rules adopted by the PFRA. These rules are embedded in the functions
that will be described later in this chapter.

Free the "harmless" pages first

Pages included in disk and memory caches not referenced by any process should be
reclaimed before pages belonging to the User Mode address spaces of the processes;
in the former case, in fact, the page frame reclaiming can be done without modifying
any Page Table entry. As we will see in the section "The Least Recently Used (LRU)
Lists" later in this chapter, this rule is somewhat mitigated by introducing a "swap
tendency factor."

Make all pages of a User Mode process reclaimable

With the exception of locked pages, the PFRA must be able to steal any page of a User
Mode process, including the anonymous pages. In this way, processes that have been
sleeping for a long period of time will progressively lose all their page frames.

Page 666

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Reclaim a shared page frame by unmapping at once all page table entries that reference it

When the PFRA wants to free a page frame shared by several processes, it clears all
page table entries that refer to the shared page frame, and then reclaims the page
frame.

Reclaim "unused" pages only

The PFRA uses a simplified Least Recently Used (LRU) replacement algorithm to
classify pages as in-use and unused.[*] If a page has not been accessed for a long
time, the probability that it will be accessed in the near future is low and it can be
considered "unused;" on the other hand, if a page has been accessed recently, the
probability that it will continue to be accessed is high and it must be considered as
"in-use." The PFRA reclaims only unused pages. This is just another application of the
locality principle mentioned in the section "Hardware Cache" in Chapter 2.

[*] The PFRA could also be considered as a "used-once" algorithm, which has its roots in the 2Q buffer
management replacement algorithm proposed by T. Johnson and D. Shasha in 1994.

The main idea behind the LRU algorithm is to associate a counter storing the age of the
page with each page in RAMthat is, the interval of time elapsed since the last access
to the page. This counter allows the PFRA to reclaim only the oldest page of any
process. Some computer platforms provide sophisticated support for LRU algorithms;[ ]

unfortunately, 80 x 86 processors do not offer such a hardware feature, thus the Linux
kernel cannot rely on a page counter that keeps track of the age of every page. To
cope with this restriction, Linux takes advantage of the Accessed bit included in each
Page Table entry, which is automatically set by the hardware when the page is
accessed; moreover, the age of a page is represented by the position of the page
descriptor in one of two different lists (see the section "The Least Recently Used (LRU)
Lists" later in this chapter).

[ ] For instance, the CPUs of some mainframes automatically update the value of a counter included
in each page table entry to specify the age of the corresponding page.

Therefore, the page frame reclaiming algorithm is a blend of several heuristics:

 Careful selection of the order in which caches are examined.

 Ordering of pages based on aging (least recently used pages should be freed before
pages accessed recently).

 Distinction of pages based on the page state (for example, non-dirty pages are better
candidates than dirty pages because they don't have to be written to disk).
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17.2. Reverse Mapping
As stated in the previous section, one of the objectives of the PFRA is to be able to free a
shared page frame. To that end, the Linux 2.6 kernel is able to locate quickly all the Page
Table entries that point to the same page frame. This activity is called reverse mapping .

A trivial solution for reverse mapping would be to include in each page descriptor additional
fields to link together all the Page Table entries that point to the page frame associated with
the page descriptor. However, keeping such lists up-to-date would increase significantly the
kernel overhead; for that reason, more sophisticated solutions have been devised. The
technique used in Linux 2.6 is named object-based reverse mapping. Essentially, for any
reclaimable User Mode page, the kernel stores the backward links to all memory regions in the
system (the "objects") that include the page itself. Each memory region descriptor stores a
pointer to a memory descriptor, which in turn includes a pointer to a Page Global Directory.
Therefore, the backward links enable the PFRA to retrieve all Page Table entries referencing a
given a page. Because there are fewer memory region descriptors than page descriptors,
updating the backward links of a shared page is less time consuming. Let's see how this
scheme is worked out.

First of all, the PFRA must have a way to determine whether the page to be reclaimed is
shared or non-shared, and whether it is mapped or anonymous. In order to do this, the kernel
looks at two fields of the page descriptor: _mapcount and mapping.

The _mapcount field stores the number of Page Table entries that refer to the page frame. The
counter starts from -1: this value means that no Page Table entry references the page frame.
Thus, if the counter is zero, the page is non-shared, while if it is greater than zero the page is
shared. The page_mapcount( ) function receives the address of a page descriptor and returns
the value of its _mapcount plus one (thus, for instance, it returns one for a non-shared page
included in the User Mode address space of some process).

The mapping field of the page descriptor determines whether the page is mapped or
anonymous, as follows:

 If the mapping field is NULL, the page belongs to the swap cache (see the section "The
Swap Cache" later in this chapter).

 If the mapping field is not NULL and its least significant bit is 1, it means the page is
anonymous and the mapping field encodes the pointer to an anon_vma descriptor (see
the next section, "Reverse Mapping for Anonymous Pages").

 If the mapping field is non-NULL and its least significant bit is 0, the page is mapped;
the mapping field points to the address_space object of the corresponding file (see the
section "The address_space Object" in Chapter 15).

Every address_space object used by Linux is aligned in RAM so that its starting linear address is
a multiple of four. Therefore, the least significant bit of the mapping field can be used as a flag
denoting whether the field contains a pointer to an address_space object or to an anon_vma
descriptor. This is a dirty programming trick, but the kernel uses a lot of page descriptors,
thus these data structures should be as small as possible. The PageAnon( ) function receives
as its parameter the address of a page descriptor and returns 1 if the least significant bit of
the mapping field is set, 0 otherwise.

The TRy_to_unmap( ) function, which receives as its parameter a pointer to a page descriptor,
tries to clear all the Page Table entries that point to the page frame associated with that
page descriptor. The function returns SWAP_SUCCESS (zero) if the function succeeded in
removing any reference to the page frame from all Page Table entries, it returns SWAP_AGAIN
(one) if some reference could not be removed, and returns SWAP_FAIL (two) in case of errors.
The function is quite short:
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int try_to_unmap(struct page *page)

{

    int ret;

    if (PageAnon(page))

        ret = try_to_unmap_anon(page);

    else

        ret = try_to_unmap_file(page);

    if (!page_mapped(page))

        ret = SWAP_SUCCESS;

    return ret;

}

The TRy_to_unmap_anon( ) and try_to_unmap_file( ) functions take care of anonymous pages
and mapped pages, respectively. These functions will be described in the forthcoming
sections.

17.2.1. Reverse Mapping for Anonymous Pages

Anonymous pages are often shared among several processes. The most common case occurs
when forking a new process: as explained in the section "Copy On Write" in Chapter 9, all page
frames owned by the parentincluding the anonymous pagesare assigned also to the child.
Another (quite unusual) case occurs when a process creates a memory region specifying both
the MAP_ANONYMOUS and MAP_SHARED flag: the pages of such a region will be shared among the
future descendants of the process.

The strategy to link together all the anonymous pages that refer to the same page frame is
simple: the anonymous memory regions that include the page frame are collected in a doubly
linked circular list. Be warned that, even if an anonymous memory region includes different
pages, there always is just one reverse mapping list for all the page frames in the region.

When the kernel assigns the first page frame to an anonymous region, it creates a new 
anon_vma data structure, which includes just two fields: lock, a spin lock for protecting the list
against race conditions, and head, the head of the doubly linked circular list of memory region
descriptors. Then, the kernel inserts the vm_area_struct descriptor of the anonymous memory
region in the anon_vma's list; to that end, the vm_area_struct data structure includes two fields
related to this list: anon_vma_node stores the pointers to the next and previous elements in the
list, while anon_vma points to the anon_vma data structure. Finally, the kernel stores the
address of the anon_vma data structure in the mapping field of the descriptor of the anonymous
page, as described previously. See Figure 17-1.

When a page frame already referenced by one process is inserted into a Page Table entry of
another process (for instance, as a consequence of a fork( ) system call, see

Figure 17-1. Object-based reverse mapping for anonymous pages
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the section "The clone( ), fork( ), and vfork( ) System Calls" in Chapter 3); the kernel simply
inserts the anonymous memory region of the second process in the doubly linked circular list
of the anon_vma data structure pointed to by the anon_vma field of the first process's memory
region. Therefore, any anon_vma's list typically includes memory regions owned by different
processes.[*]

[*] An anon_vma's list may also include several adjacent anonymous memory regions ow ned by the same process. Usually this
occurs w hen an anonymous memory region is split in tw o or more regions by the mprotect( ) system call.

As shown in Figure 17-1, the anon_vma's list allows the kernel to quickly locate all Page Table
entries that refer to the same anonymous page frame. In fact, each region descriptor stores
in the vm_mm field the address of the memory descriptor, which in turn includes a field pgd
containing the address of the Page Global Directory of the process. The Page Table entry can
then be determined by considering the starting linear address of the anonymous page, which
is easily obtained from the memory region descriptor and the index field of the page
descriptor.

17.2.1.1. The try_to_unmap_anon( ) function

When reclaiming an anonymous page frame, the PFRA must scan all memory regions in the 
anon_vma's list and carefully check whether each region actually includes an anonymous page
whose underlying page frame is the target page frame. This job is done by the 
try_to_unmap_anon( ) function, which receives as its parameter the descriptor of the target
page frame and performs essentially the following steps:

1. Acquires the lock spin lock of the anon_vma data structure pointed to by the mapping
field of the page descriptor.

2. Scans the anon_vma's list of memory region descriptors; for each vma memory region
descriptor found in that list, it invokes the try_to_unmap_one( ) function passing as
parameters vma and the page descriptor (see below). If for some reason this function
returns a SWAP_FAIL value, or if the _mapcount field of the page descriptor indicates that
all Page Table entries referencing the page frame have been found, the scanning
terminates before reaching the end of the list.
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3. Releases the spin lock obtained in step 1.

4. Returns the value computed by the last invocation of TRy_to_unmap_one( ): SWAP_AGAIN
(partial success) or SWAP_FAIL (failure).

17.2.1.2. The try_to_unmap_one( ) function

The TRy_to_unmap_one( ) function is called repeatedly both from try_to_unmap_anon( ) and
from TRy_to_unmap_file( ). It acts on two parameters: a pointer page to a target page
descriptor and a pointer vma to a memory region descriptor. The function essentially performs
the following actions:

1. Computes the linear address of the page to be reclaimed from the starting linear
address of the memory region (vma->vm_start), the offset of the memory region in the
mapped file (vma->vm_pgoff), and the offset of the page inside the mapped file (
page->index). For anonymous pages, the vma->vm_pgoff field is either zero or equal to
vm_start/PAGE_SIZE; correspondingly, the page->index field is either the index of the
page inside the region or the linear address of the page divided by PAGE_SIZE.

2. If the target page is anonymous, it checks whether its linear address falls inside the
memory region; if not, it terminates by returning SWAP_AGAIN. (As explained when
introducing reverse mapping for anonymous pages, the anon_vma's list may include
memory regions that do not contain the target page.)

3. Gets the address of the memory descriptor from vma->vm_mm, and acquires the
vma->vm_mm->page_table_lock spin lock that protects the page tables.

4. Invokes successively pgd_offset( ), pud_offset( ), pmd_offset( ), and pte_offset_map(
) to get the address of the Page Table entry that corresponds to the linear address of
the target page.

5. Performs a few checks to verify that the target page is effectively reclaimable. If any
of the following checks fails, the function jumps to step 12 to terminate by returning a
proper error number, either SWAP_AGAIN or SWAP_FAIL:

a. Checks that the Page Table entry points to the target page; if not, the
function returns SWAP_AGAIN. This can happen in the following cases:

 The Page Table entry refers to a page frame assigned with COW , but
the anonymous memory region identified by vma still belongs to the
anon_vma list of the original page frame.

 The mremap( ) system call may remap memory regions and move the
pages into the User Mode address space by directly modifying the page
table entries. In this particular case, object-based reverse mapping does
not work, because the index field of the page descriptor cannot be used
to determine the actual linear address of the page.

 The file memory mapping is non-linear (see the section "Non-Linear
Memory Mappings" in Chapter 16).

b. Checks that the memory region is not locked (VM_LOCKED) or reserved (
VM_RESERVED); if one of these restrictions is in place, the function returns
SWAP_FAIL.

c. Checks that the Accessed bit inside the Page Table entry is cleared; if not, the
function clears the bit and returns SWAP_FAIL. If the Accessed bit is set, the
page is considered in-use, thus it should not be reclaimed.

d. Checks whether the page belongs to the swap cache (see the section "The
Swap Cache" later in this chapter) and it is currently being handled by
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get_user_pages( ) (see the section "Allocating a Linear Address Interval" in
Chapter 9); in this case, to avoid a nasty race condition, the function returns
SWAP_FAIL.

6. The page can be reclaimed: if the Dirty bit in the Page Table entry is set, sets the
PG_dirty flag of the page.

7. Clears the Page Table entry and flushes the corresponding TLBs.

8. If the page is anonymous, the function inserts a swapped-out page identifier in the
Page Table entry so that further accesses to this page will swap in the page (see the
section "Swapping" later in this chapter). Moreover, it decreases the counter of
anonymous pages stored in the anon_rss field of the memory descriptor.

9. Decreases the counter of page frames allocated to the process stored in the rss field
of the memory descriptor.

10. Decreases the _mapcount field of the page descriptor, because a reference to this page
frame in the User Mode Page Table entries has been deleted.

11. Decreases the usage counter of the page frame, which is stored in the _count field of
the page descriptor. If the counter becomes negative, it removes the page descriptor
from the active or inactive list (see the section "The Least Recently Used (LRU) Lists"
later in this chapter), and invokes free_hot_page( ) to release the page frame (see the
section "The Per-CPU Page Frame Cache" in Chapter 8).

12. Invokes pte_unmap( ) to release the temporary kernel mapping that could have been
allocated by pte_offset_map( ) in step 4 (see the section "Kernel Mappings of
High-Memory Page Frames" in Chapter 8).

13. Releases the vma->vm_mm->page_table_lock spin lock acquired in step 3.

14. Returns the proper error code (SWAP_AGAIN in case of success).

17.2.2. Reverse Mapping for Mapped Pages

As with anonymous pages, object-based reverse mapping for mapped pages is based on a
simple idea: it is always possible to retrieve the Page Table entries that refer to a given page
frame by accessing the descriptors of the memory regions that include the corresponding
mapped pages. Thus, the core of reverse mapping is a clever data structure that collects all
memory region descriptors relative to a given page frame.

We have seen in the previous section that descriptors for anonymous memory regions are
collected in doubly linked circular lists; retrieving all page table entries referencing a given
page frame involves a linear scanning of the elements in the list. The number of shared
anonymous page frames is never very large, hence this approach works well.

Contrary to anonymous pages, mapped pages are frequently shared, because many different
processes may share the same pages of code. For instance, consider that nearly all processes
in the system share the pages containing the code of the standard C library (see the section "
Libraries" in Chapter 20). For this reason, Linux 2.6 relies on special search trees, called
"priority search trees ," to quickly locate all the memory regions that refer to the same page
frame.

There is a priority search tree for every file; its root is stored in the i_mmap field of the
address_space object embedded in the file's inode object. It is always possible to quickly
retrieve the root of the search tree, because the mapping field in the descriptor of a mapped
page points to the address_space object.

17.2.2.1. The priority search tree

Page 672

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


The priority search tree (PST) used by Linux 2.6 is based on a data structure introduced by
Edward McCreight in 1985 to represent a set of overlapping intervals. McCreight's tree is a
hybrid of a heap and a balanced search tree, and it is used to perform queries on the set of
intervalse.g., "what intervals are contained in a given interval?" and "what intervals intersect
a given interval?"in an amount of time directly proportional to the height of the tree and the
number of intervals in the answer.

Each interval in a PST corresponds to a node of the tree, and it is characterized by two
indices: the radix index, which corresponds to the starting point of the interval, and the heap
index, which corresponds to the final point. The PST is essentially a search tree on the radix
index, with the additional heap-like property that the heap index of a node is never smaller
than the heap indices of its children.

The Linux priority search tree differs from McCreight's data structure in two important
aspects: first, the Linux tree is not always kept balanced (the balancing algorithm is costly
both in memory space and in execution time); second, the Linux tree is adapted so as to store
memory regions instead of linear intervals.

Each memory region can be considered as an interval of file pages identified by the initial
position in the file (the radix index) and the final position (the heap index). However, memory
regions tend to start from the same pages (typically, from page index 0). Unfortunately,
McCreight's original data structure cannot store intervals having the very same starting point.
As a partial solution, each node of a PST carries an additional size indexother than the radix
and heap indicescorresponding to the size of the memory region in pages minus one. The size
index allows the search program to distinguish different memory regions that start at the same
file position.

The size index, however, increases significantly the number of different nodes that may end
up in a PST. In particular, if there are too many nodes having the same radix index but
different heap indices, the PST could not contain all of them. To solve this problem, the PST
may include overflow subtrees rooted at the leaves of the PST and containing nodes having a
common radix tree.

Furthermore, different processes may own memory regions that map exactly the same portion
of the same file (just consider the example of the standard C library mentioned above). In that
case, all nodes corresponding to these memory regions have the same radix, heap, and size
indices . When the kernel must insert in a PST a memory region having the same indices as
the ones of a node already existing, it inserts the memory region descriptor in a doubly linked
circular list rooted at the older PST node.

Figure 17-2 shows a simple example of priority search tree. In the left side of the figure, we
show seven memory regions covering the first six pages of a file; each interval is labeled with
the radix index, size index, and heap index. In the right side of the figure, we draw the
corresponding PST. Notice that no child node has a heap index greater than the heap index of
the parent. Also observe that the radix index of the left child of any node is never greater
than the radix index of the right child; in case of tie between the radix indices, the ordering is
given by the size index. Let us suppose that the PFRA must retrieve all memory regions that
include the page at index five. The search algorithm starts at the root (0,5,5): because the
corresponding interval includes the page, this is the first retrieved memory region. Then the
algorithm visits the left child (0,4,4) of the root and compares the heap index (four) with the
page index: because the heap index is smaller, the interval does not include the page;
moreover, thanks to the heap-like property of the PST, none of the children of this node can
include the page. Thus the algorithm directly jumps to the right child (2,3,5) of the root. The
corresponding interval includes the page, hence it is retrieved. Then the algorithm visits the
children (1,2,3) and (2,0,2), but it discovers that neither of them include the page.

Figure 17-2. A simple example of priority search tree
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We won't be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We'll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the
shared.prio_tree_node field of each memory region descriptor. The shared.vm_set data
structure is usedas an alternative to shared.prio_tree_nodeto insert the memory region
descriptor in a duplicate list of a PST node. PST nodes can be inserted and removed by
executing the vma_prio_tree_insert( ) and vma_prio_tree_remove( ) functions; both of them
receive as their parameters the address of a memory region descriptor and the address of a
PST root. Queries on the PST can be performed by executing the vma_prio_tree_foreach
macro, which implements a loop over all memory region descriptors that includes at least one
page in a specified range of linear addresses.

17.2.2.2. The try_to_unmap_file( ) function

The try_to_unmap_file( ) function is invoked by TRy_to_unmap( ) to perform the reverse
mapping of mapped pages. This function is quite simple to describe when the memory mapping
is linear (see the section "Memory Mapping" in Chapter 16). In this case, it performs the
following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach( ) macro to the priority search tree whose root is
stored in the page->mapping->i_mmap field. For each vm_area_struct descriptor found by
the macro, the function invokes try_to_unmap_one( ) to try to clear the Page Table
entry of the memory region that contains the page (see the earlier section "Reverse
Mapping for Anonymous Pages"). If for some reason this function returns a SWAP_FAIL
value, or if the _mapcount field of the page descriptor indicates that all Page Table
entries referencing the page frame have been found, the scanning terminates
immediately.

3. Releases the page->mapping->i_mmap_lock spin lock.

4. Returns either SWAP_AGAIN or SWAP_FAIL according to whether all page table entries have
been cleared.

If the mapping is non-linear (see the section "Non-Linear Memory Mappings" in Chapter 16),
the try_to_unmap_one( ) function may fail to clear some Page Table entries, because the index
field of the page descriptor, which as usual stores the position of the page in the file, is no
longer related to the position of the page in the memory region. Therefore, try_to_unmap_one(
) cannot determine the linear address of the page, hence it cannot get the Page Table entry
address.

The only solution is an exhaustive search in all the non-linear memory regions of the file. The
doubly linked list rooted at the i_mmap_nonlinear field of the page->mapping file's address_space
object includes the descriptors of all non-linear memory regions of the file. For each such
memory region, try_to_unmap_file( ) invokes the TRy_to_unmap_cluster( ) function, which
scans all Page Table entries corresponding to the linear addresses of the memory region and
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tries to clear them.

Because the search might be quite time-consuming, a limited scan is performed and a heuristic
rule determines the portion of the memory region to be scanned: the vm_private_data field of
the vma_area_struct descriptor holds the current cursor in the current scan. This means that
try_to_unmap_file( ) might in some cases end up missing the page to be unmapped. When
this occurs, try_to_unmap( ) discovers that the page is still mapped and return SWAP_AGAIN
instead of SWAP_SUCCESS.
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17.3. Implementing the PFRA
The page frame reclaiming algorithm must take care of many kinds of pages owned by User
Mode processes, disk caches and memory caches; moreover, it has to obey several heuristic
rules. Thus, it is not surprising that the PFRA is composed of a large number of functions. 
Figure 17-3 shows the main PFRA functions; an arrow denotes a function invocation, thus for
instance try_to_free_pages( ) invokes shrink_caches( ), shrink_slab( ), and out_of_memory( )
.

As you can see, there are several "entry points" for the PFRA. Actually, page frame reclaiming
is performed on essentially three occasions:

Low on memory reclaiming

The kernel detects a "low on memory" condition.

Hibernation reclaiming

The kernel must free memory because it is entering in the suspend-to-disk state (we
don't further discuss this case).

Periodic reclaiming

A kernel thread is activated periodically to perform memory reclaiming, if necessary.

Figure 17-3. The main functions of the PFRA
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Low on memory reclaiming is activated in the following cases:

 The grow_buffers( ) function, invoked by _ _getblk( ), fails to allocate a new buffer
page (see the section "Searching Blocks in the Page Cache" in Chapter 15).

 The alloc_page_buffers( ) function, invoked by create_empty_buffers( ), fails to
allocate the temporary buffer heads for a page (see the section "Reading and Writing a
File" in Chapter 16).

 The _ _alloc_pages( ) function fails in allocating a group of contiguous page frames in
a given list of memory zones (see the section "The Buddy System Algorithm" in Chapter
8).

Periodic reclaiming is activated by two different types of kernel threads:

 The kswapd kernel threads, which check whether the number of free page frames in
some memory zone has fallen below the pages_high watermark (see the later section "
Periodic Reclaiming").

 The events kernel threads, which are the worker threads of the predefined work queue
(see the section "Work Queues" in Chapter 4); the PFRA periodically schedules the
execution of a task in the predefined work queue to reclaim all free slabs included in
the memory caches handled by the slab allocator (see the section "The Slab Allocator"
in Chapter 8).

We are now going to discuss in detail the various components of the page frame reclaiming
algorithm, including all functions shown in Figure 17-3.

17.3.1. The Least Recently Used (LRU) Lists

All pages belonging to the User Mode address space of processes or to the page cache are
grouped into two lists called the active list and the inactive list ; they are also collectively
denoted as LRU lists . The former list tends to include the pages that have been accessed
recently, while the latter tends to include the pages that have not been accessed for some
time. Clearly, pages should be stolen from the inactive list.

The active list and the inactive list of pages are the core data structures of the page frame
reclaiming algorithm. The heads of these two doubly linked lists are stored, respectively, in
the active_list and inactive_list fields of each zone descriptor (see the section "Memory
Zones" in Chapter 8). The nr_active and nr_inactive fields in the same descriptor store the
number of pages in the two lists. Finally, the lru_lock field is a spin lock that protects the two
lists against concurrent accesses in SMP systems.

If a page belongs to an LRU list, its PG_lru flag in the page descriptor is set. Moreover, if the
page belongs to the active list, the PG_active flag is set, while if it belongs to the inactive list,
the PG_active flag is cleared. The lru field of the page descriptor stores the pointers to the
next and previous elements in the LRU list.

Several auxiliary functions are available to handle the LRU lists:

add_page_to_active_list( )

Adds the page to the head of the zone's active list and increases the nr_active field of
the zone descriptor.

add_page_to_inactive_list( )

Adds the page to the head of the zone's inactive list and increases the nr_inactive
field of the zone descriptor.
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del_page_from_active_list( )

Removes the page from the zone's active list and decreases the nr_active field of the
zone descriptor.

del_page_from_inactive_list( )

Removes the page from the zone's inactive list and decreases the nr_inactive field of
the zone descriptor.

del_page_from_lru( )

Checks the PG_active flag of a page; according to the result, removes the page from
the active or inactive list, decreases the nr_active or nr_inactive field of the zone
descriptor, and clears, if necessary, the PG_active flag.

activate_page( )

Checks the PG_active flag; if it is clear (the page is in the inactive list), it moves the
page into the active list: invokes del_page_from_inactive_list( ), then invokes
add_page_to_active_list( ), and finally sets the PG_active flag. The zone's lru_lock
spin lock is acquired before moving the page.

lru_cache_add( )

If the page is not included in an LRU list, it sets the PG_lru flag, acquires the zone's
lru_lock spin lock, and invokes add_page_to_inactive_list( ) to insert the page in the
zone's inactive list.

lru_cache_add_active( )

If the page is not included in an LRU list, it sets the PG_lru and PG_active flags,
acquires the zone's lru_lock spin lock, and invokes add_page_to_active_list( ) to
insert the page in the zone's active list.

Actually, the last two functions, lru_cache_add( ) and lru_cache_add_active( ), are slightly
more complicated. In fact, the two functions do not immediately move the page into an LRU;
instead, they accumulate the pages in temporary data structures of type pagevec, each of
which may contain up to 14 page descriptor pointers. The pages will be effectively moved in
an LRU list only when a pagevec structure is completely filled. This mechanism enhances the
system performance, because the LRU spin lock is acquired only when the LRU lists are
effectively modified.

17.3.1.1. Moving pages across the LRU lists

The PFRA collects the pages that were recently accessed in the active list so that it will not
scan them when looking for a page frame to reclaim. Conversely, the PFRA collects the pages
that have not been accessed for a long time in the inactive list. Of course, pages should move
from the inactive list to the active list and back, according to whether they are being
accessed.

Clearly, two page states ("active" and "inactive") are not sufficient to describe all possible
access patterns. For instance, suppose a logger process writes some data in a page once
every hour. Although the page is "inactive" for most of the time, the access makes it "active,"
thus denying the reclaiming of the corresponding page frame, even if it is not going to be
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accessed for an entire hour. Of course, there is no general solution to this problem, because
the PFRA has no way to predict the behavior of User Mode processes; however, it seems
reasonable that pages should not change their status on every single access.

The PG_referenced flag in the page descriptor is used to double the number of accesses
required to move a page from the inactive list to the active list; it is also used to double the
number of "missing accesses" required to move a page from the active list to the inactive list
(see below). For instance, suppose that a page in the inactive list has the PG_referenced flag
set to 0. The first page access sets the value of the flag to 1, but the page remains in the
inactive list. The second page access finds the flag set and causes the page to be moved in
the active list. If, however, the second access does not occur within a given time interval
after the first one, the page frame reclaiming algorithm may reset the PG_referenced flag.

As shown in Figure 17-4, the PFRA uses the mark_page_accessed( ), page_referenced( ), and
refill_inactive_zone( ) functions to move the pages across the LRU lists. In the figure, the
LRU list including the page is specified by the status of the PG_active flag.

Figure 17-4. Moving pages across the LRU lists

17.3.1.2. The mark_page_accessed( ) function

Whenever the kernel must mark a page as accessed, it invokes the mark_page_accessed( )
function. This happens every time the kernel determines that a page is being referenced by a
User Mode process, a filesystem layer, or a device driver. For instance, mark_page_accessed( )
is invoked in the following cases:

 When loading on demand an anonymous page of a process (performed by the 
do_anonymous_page( ) function; see the section "Demand Paging" in Chapter 9).

 When loading on demand a page of a memory mapped file (performed by the 
filemap_nopage( ) function; see the section "Demand Paging for Memory Mapping" in
Chapter 16).

 When loading on demand a page of an IPC shared memory region (performed by the 
shmem_nopage( ) function; see the section "IPC Shared Memory" in Chapter 19).

 When reading a page of data from a file (performed by the do_generic_file_read( )
function; see the section "Reading from a File" in Chapter 16).

 When swapping in a page (performed by the do_swap_page( ) function; see the section
"Swapping in Pages" later in this chapter).

 When looking up a buffer page in the page cache (see the _ _find_get_block( )
function in the section "Searching Blocks in the Page Cache" in Chapter 15).

The mark_page_accessed( ) function executes the following code fragment:
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if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {

    activate_page(page);

    ClearPageReferenced(page);

} else if (!PageReferenced(page))

    SetPageReferenced(page);

As shown in Figure 17-4, the function moves the page from the inactive list to the active list
only if the PG_referenced flag is set before the invocation.

17.3.1.3. The page_referenced( ) function

The page_referenced( ) function, which is invoked once for every page scanned by the PFRA,
returns 1 if either the PG_referenced flag or some of the Accessed bits in the Page Table entries
was set; it returns 0 otherwise. This function first checks the PG_referenced flag of the page
descriptor; if the flag is set, it clears it. Next, it makes use of the object-based reverse
mapping mechanism to check and clear the Accessed bits in all User Mode Page Table entries
that refer to the page frame. To do this, the function makes use of three ancillary functions; 
page_referenced_anon( ), page_referenced_file( ), and page_referenced_one( ), which are
analogous to the try_to_unmap_xxx( ) functions described in the section "Reverse Mapping"
earlier in this chapter. The page_referenced( ) function also honors the swap token; see the
section "The Swap Token" later in this chapter.

The page_referenced( ) function never moves a page from the active list to the inactive list;
this job is done by refill_inactive_zone( ). In practice, this function does a lot more than
move pages from the active to the inactive list, so we are going to describe it in greater
detail.

17.3.1.4. The refill_inactive_zone( ) function

As illustrated in Figure 17-3, the refill_inactive_zone( ) function is invoked by shrink_zone(
), which performs the reclaiming of pages in the page cache and in the User Mode address
spaces (see the section "Low On Memory Reclaiming" later in this chapter). The function
receives two parameters: a pointer zone to a memory zone descriptor, and a pointer sc to a
scan_control structure. The latter data structure is widely used by the PFRA and contains
information about the ongoing reclaiming operation; its fields are shown in Table 17-2.

Table 17-2. The fields of the scan_control descriptor

Type Field Description

unsigned

long
nr_to_scan Target number of pages to be scanned in the active list.

unsigned

long
nr_scanned Number of inactive pages scanned in the current iteration.

unsigned

long
nr_reclaimed Number of pages reclaimed in the current iteration.

unsigned

long
nr_mapped Number of pages referenced in the User Mode address spaces.

int nr_to_reclaim Target number of pages to be reclaimed.

unsigned int priority Priority of the scanning, ranging between 12 and 0. Lower
priority implies scanning more pages.
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Table 17-2. The fields of the scan_control descriptor

Type Field Description

unsigned int gfp_mask GFP mask passed from calling function.

int may_writepage If set, writing a dirty page to disk is allowed (only for laptop
mode).

The role of refill_inactive_zone( ) is critical because moving a page from an active list to an
inactive list means making the page eligible to fall prey, sooner or later, to the PFRA. If the
function is too aggressive, it will move a lot of pages from the active list to the inactive list;
as a consequence, the PFRA will reclaim a large number of page frames, and the system
performance will be hit. On the other hand, if the function is too lazy, the inactive list will not
be replenished with a large enough number of unused pages, and the PFRA will fail in
reclaiming memory. Thus, the function implements an adaptive behavior: it starts by scanning,
at every invocation, a small number of pages in the active list; however, if the PFRA is having
trouble in reclaiming page frames, refill_inactive_zone( ) keeps increasing the number of
active pages scanned at every invocation. This behavior is controlled by the value of the 
priority field in the scan_control data structure (a lower value means a more urgent priority).

Another heuristic rule regulates the behavior of the refill_inactive_zone( ) function. The LRU
lists include two kinds of pages: those belonging to the User Mode address spaces, and those
included in the page cache that do not belong to any User Mode process. As stated earlier,
the PFRA should tend to shrink the page cache while leaving in RAM the pages owned by the
User Mode processes. However, no fixed "golden rule" may yield good performance in every
scenario, thus the refill_inactive_zone( ) function relies on a swap tendency heuristic
value: it determines whether the function will move all kinds of pages, or just the pages that
do not belong to the User Mode address spaces.[*] The swap tendency value is computed by
the function as follows:

[*] The name "sw ap tendency" is a bit misleading, because the pages in User Mode address spaces can be sw appable, syncable,
or discardable. How ever, the sw ap tendency value certainly controls the amount of sw apping performed by the PFRA, because
almost all sw appable pages belong to the User Mode address spaces.

swap tendency = mapped ratio / 2 + distress + swappiness

The mapped ratio value is the percentage of pages in all memory zones that belong to User
Mode address spaces (sc->nr_mapped) with respect to the total number of allocatable page
frames. A high value of mapped_ratio means that the dynamic memory is mostly used by User
Mode processes, while a low value means that it is mostly used by the page cache.

The distress value is a measure of how effectively the PFRA is reclaiming page frames in this
zone; it is based on the scanning priority of the zone in the previous run of the PFRA, which is
stored in the prev_priority field of the zone descriptor. The distress value depends on the
zone's previous priority as follows:

Zone prev. priority 12...7 6 5 4 3 2 1 0

Distress value 0 1 3 6 12 25 50 100

Finally, the swappiness value is a user-defined constant, which is usually set to 60. The
system administrator may tune this value by writing in the /proc/sys/vm/swappiness file or by
issuing the proper sysctl( ) system call.

Pages will be reclaimed from the address spaces of processes only if the zone's swap
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tendency is greater than or equal to 100. Thus, if the system administrator sets swappiness
to 0, then the PFRA never reclaims pages in the User Mode address spaces unless the zone's
previous priority is zero (an unlikely event); if the administrator sets swappiness to 100, then
the PFRA reclaims pages in the User Mode address spaces at every invocation.

Here is a succinct description of what the refill_inactive_zone( ) function does:

1. Invokes lru_add_drain( ) to move into the active and inactive lists any page still
contained in the pagevec data structures.

2. Gets the zone->lru_lock spin lock.

3. Performs a first cycle scanning the pages in zone->active_list, starting from the tail of
the list and moving backwards. Continues until the list is empty or until sc->nr_to_scan
pages have been scanned. For each page scanned in this cycle, the function increases
by one its reference counter, removes the page descriptor from zone->active_list, and
puts it in a temporary l_hold local list. However, if the reference counter of the page
frame was zero, it puts back the page in the active list. In fact, page frames having a
reference counter equal to zero should belong to the zone's Buddy system; however,
to free a page frame, first its usage counter is decreased and then the page frame is
removed from the LRU lists and inserted in the buddy system's list. Therefore, there is
a small time window in which the PFRA may see a free page in an LRU list.

4. Adds to zone->pages_scanned the number of active pages that have been scanned.

5. Subtracts from zone->nr_active the number of pages that have been moved into the
l_hold local list.

6. Releases the zone->lru_lock spin lock.

7. Computes the swap tendency value (see above).

8. Performs a second cycle on the pages in the l_hold local list. The objective of this
cycle is to split the pages of l_hold into two local sublists called l_active and
l_inactive. A page belonging to the User Mode address space of some processthat is,
a page whose page->_mapcount is nonnegativeis added to l_active if the swap
tendency value is smaller than 100, or if the page is anonymous but no swap area is
active, or finally if the page_referenced( ) function applied to the page returns a
positive value, which means that the page has been recently accessed. In all other
cases, the page is added to the l_inactive list.[*]

[*] Notice that a page that does not belong to any User Mode process address space is moved into the
inactive list; however, since its PG_referenced flag is not cleared, the first access to the page causes the
mark_page_accessed( ) function to move the page back into the active list (see Figure 17-4).

9. Gets the zone->lru_lock spin lock.

10. Performs a third cycle on the pages in the l_inactive local list to move them in the
zone->inactive_list list and updates the zone->nr_inactive field. In doing so, it
decreases the usage counters of the moved page frames to undo the increments done
in step 3.

11. Performs a fourth and last cycle on the pages in the l_active local list to move them
into the zone->active_list list and updates the zone->nr_active field. In doing so, it
decreases the usage counters of the moved page frames to undo the increments done
in step 3.

12. Releases the zone->lru_lock spin lock and returns.

It should be noted that refill_inactive_zone( ) checks the PG_referenced flag only for pages
that belong to the User Mode address spaces (see step 8); in the opposite case, the pages
are in the tail of the active listhence they were accessed some time agoand it is unlikely that
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they will be accessed in the near future. On the other hand, the function does not evict a
page from the active list if it is owned by some User Mode process and has been recently
used.

17.3.2. Low On Memory Reclaiming

Low on memory reclaiming is activated when a memory allocation fails. As shown in Figure
17-3, the kernel invokes free_more_memory( ) while allocating a VFS buffer or a buffer head,
and it invokes try_to_free_pages( ) while allocating one or more page frames from the buddy
system.

17.3.2.1. The free_more_memory( ) function

The free_more_memory( ) function performs the following actions:

1. Invokes wakeup_bdflush( ) to wake a pdflush kernel thread and trigger write operations
for 1024 dirty pages in the page cache (see the section "The pdflush Kernel Threads"
in Chapter 15). Writing dirty pages to disk may eventually make freeable the page
frames containing buffers, buffers heads, and other VFS data structures.

2. Invokes the service routine of the sched_yield( ) system call to give the pdflush kernel
thread a chance to run.

3. Starts a loop over all memory nodes in the system (see the section "Non-Uniform
Memory Access (NUMA)" in Chapter 8). For each node, invokes the try_to_free_pages(
) function passing to it a list of the "low" memory zones (in the 80 x 86 architecture,
ZONE_DMA and ZONE_NORMAL; see the section "Memory Zones" in Chapter 8).

17.3.2.2. The try_to_free_pages( ) function

The TRy_to_free_pages( ) function receives three parameters:

zones

A list of memory zones in which pages should be reclaimed (see the section "Memory
Zones" in Chapter 8)

gfp_mask

The set of allocation flags that were used by the failed memory allocation (see the
section "The Zoned Page Frame Allocator" in Chapter 8)

order

Not used

The goal of the function is to free at least 32 page frames by repeatedly invoking the 
shrink_caches( ) and shrink_slab( ) functions, each time with a higher priority than the
previous invocation. The ancillary functions get the priority levelas well as other parameters of
the ongoing scan operationin a descriptor of type scan_control (see Table 17-2 earlier in this
chapter). The lowest, initial priority level is 12, while the highest, final priority level is 0. If 
TRy_to_free_pages( ) does not succeed in reclaiming at least 32 page frames in one of the 13
repeated invocations of shrink_caches( ) and shrink_slab( ), the PFRA is in serious trouble,
and it has just one last resort: killing a process to free all its page frames. This operation is
performed by the out_of_memory( ) function (see the section "The Out of Memory Killer" later
in this chapter).

The function performs the following main steps:
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1. Allocates and initializes a scan_control descriptor. In particular, stores the gfp_mask
allocation mask in the gfp_mask field.

2. For each zone in the zones lists, it sets the temp_priority field of the zone descriptor
to the initial priority (12). Moreover, it computes the total number of pages contained
in the LRU lists of the zones.

3. Performs a loop of at most 13 iterations, from priority 12 down to 0; in each iteration
performs the following substeps:

a. Updates some field of the scan_control descriptor. In particular, it stores in the
nr_mapped field the total number of pages owned by User Mode processes, and
in the priority field the current priority of this iteration. Also, it sets to zero
the nr_scanned and nr_reclaimed fields.

b. Invokes shrink_caches( ) passing as arguments the zones list and the address
of the scan_control descriptor. This function scans the inactive pages of the
zones (see below).

c. Invokes shrink_slab( ) to reclaim pages from the shrinkable kernel caches (see
the section "Reclaiming Pages of Shrinkable Disk Caches" later in this chapter).

d. If the current->reclaim_state field is not NULL, it adds to the nr_reclaimed field
of the scan_control descriptor the number of pages reclaimed from the slab
allocator caches; this number is stored in a small data structure pointed to by
the process descriptor field. The _ _alloc_pages( ) function sets up the
current->reclaim_state field before invoking the TRy_to_free_pages( ) function,
and clears the field right after its termination. (Oddly, the free_more_memory( )
function does not set this field.)

e. If the target has been reached (the nr_reclaimed field of the scan_control
descriptor is greater than or equal to 32), it breaks the loop and jumps to step
4.

f. The target has not yet been reached. If at least 49 pages have been scanned
so far, the function invokes wakeup_bdflush( ) to activate a pdflush kernel
thread and write some dirty pages in the page cache to disk (see the section "
Looking for Dirty Pages To Be Flushed" in Chapter 15).

g. If the function has already performed four iterations without reaching the
target, it invokes blk_congestion_wait( ) to suspend the current process until
any WRITE request queue becomes uncongested or until a 100 ms time-out
elapses (see the section "Request Descriptors" in Chapter 14).

4. Sets the prev_priority field of each zone descriptor to the priority level used in the
last invocation of shrink_caches( ); it is stored in the temp_priority field of the zone
descriptor.

5. Returns 1 if the reclaiming was successful, 0 otherwise.

17.3.2.3. The shrink_caches( ) function

The shrink_caches( ) function is invoked by TRy_to_free_pages( ). It acts on two parameters:
the zones list of memory zones, and the address sc of a scan_control descriptor.

The purpose of this function is simply to invoke the shrink_zone( ) function on each zone in
the zones list. However, before invoking shrink_zone( ) on a given zone, shrink_caches( )
updates the temp_priority field of the zone's descriptor by using the value stored in the
sc->priority field; this is the current priority level of the scanning operation. Moreover, if the
priority value of the previous invocation of the PFRA is higher than the current priority
valuethat is, page frame reclaiming in this zone is now harder to doshrink_caches( ) copies
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the current priority level into the prev_priority field of the zone descriptor. Finally,
shrink_caches( ) does not invoke shrink_zone( ) on a given zone if the all_unreclaimable flag
in the zone descriptor is set and the current priority level is less than 12that is, 
shrink_caches( ) is not being invoked in the very first iteration of try_to_free_pages( ). The
PFRA sets the all_unreclaimable flag when it decides that a zone is so full of unreclaimable
pages that scanning the zone's pages is just a waste of time.

17.3.2.4. The shrink_zone( ) function

The shrink_zone( ) function acts on two parameters: zone, a pointer to a struct_zone
descriptor, and sc, a pointer to a scan_control descriptor. The goal of this function is to
reclaim 32 pages from the zone's inactive list; the function tries to reach this goal by invoking
repeatedly an auxiliary function called shrink_cache( ), each time on larger portion of the
zone's inactive list. Moreover, shrink_zone( ) replenishes the zone's inactive list by repeatedly
invoking the refill_inactive_zone( ) function described in the earlier section "The Least
Recently Used (LRU) Lists."

The nr_scan_active and nr_scan_inactive fields of the zone descriptor play a special role here.
To be efficient, the function works on batches of 32 pages. Thus, if the function is running at
a low privilege level (high value of sc->priority) and one of the LRU lists does not contain
enough pages, the function skips the scanning on that list. However, the number of active or
inactive pages thus skipped is recorded in nr_scan_active or nr_scan_inactive, so that the
skipped pages will be considered in the next invocation of the function.

Specifically, the shrink_zone( ) function performs the following steps:

1. Increases the zone->nr_scan_active by a fraction of the total number of elements in
the active list (zone->nr_active). The actual increment is determined by the current
priority level and ranges from zone->nr_active/212 to zone->nr_active/20 (i.e., the whole
number of active pages in the zone).

2. Increases the zone->nr_scan_inactive by a fraction of the total number of elements in
the active list (zone->nr_inactive). The actual increment is determined by the current
priority level and ranges from zone->nr_inactive/212 to zone->nr_inactive.

3. If the zone->nr_scan_active field is greater than or equal to 32, the function copies its
value in the nr_active local variable and sets the field to zero; otherwise, it sets
nr_active to zero.

4. If the zone->nr_scan_inactive field is greater than or equal to 32, the function copies
its value in the nr_inactive local variable and sets the field to zero; otherwise, it sets
nr_inactive to zero.

5. Sets the sc->nr_to_reclaim field of the scan_control descriptor to 32.

6. If both nr_active and nr_inactive are 0, there is nothing to be done: the function
terminates. This is an unlikely situation where User Mode processes have no page
frames allocated to them.

7. If nr_active is positive, it replenishes the zone's inactive list:
8.
9. sc->nr_to_scan = min(nr_active, 32);

10. nr_active -= sc->nr_to_scan;

11. refill_inactive_zone(zone, sc);

12. If nr_inactive is positive, it tries to reclaim at most 32 pages from the inactive list:
13.
14. sc->nr_to_scan = min(nr_inactive, 32);

15. nr_inactive -= sc->nr_to_scan;

16. shrink_cache(zone, sc);
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17. If shrink_zone( ) succeeds in reclaiming 32 pages (sc->nr_to_reclaim is now zero or
negative), it terminates. Otherwise, it jumps back to step 6.

17.3.2.5. The shrink_cache( ) function

The shrink_cache( ) function is yet another auxiliary function whose main purpose is to
extract from the zone's inactive list a group of pages, put them in a temporary list, and invoke
the shrink_list( ) function to effectively perform page frame reclaiming on every page in that
list. The shrink_cache( ) function acts on the same parameters as shrink_zones( ), namely
zone and sc, and performs the following main steps:

1. Invokes lru_add_drain( ) to move into the active and inactive lists any page still
contained in the pagevec data structures (see the section "The Least Recently Used
(LRU) Lists" earlier in this chapter).

2. Gets the zone->lru_lock spin lock.

3. Considers at most 32 pages in the inactive list; for each page, the function increases
its usage counter, checks whether the page is not being freed to the buddy system
(see the discussion at step 3 of refill_inactive_zone( )), and moves the page from
the zone's inactive list to a local list.

4. Decreases the counter zone->nr_inactive by the number of pages removed from the
inactive list.

5. Increases the counter zone->pages_scanned by the number of pages effectively
examined in the inactive list.

6. Releases the zone->lru_lock spin lock.

7. Invokes the shrink_list( ) function passing to it the (local list of) pages collected in
step 3 above. This function is discussed below (as you were no doubt expecting).

8. Decreases the sc->nr_to_reclaim field by the number of pages actually reclaimed by
shrink_list( ).

9. Gets again the zone->lru_lock spin lock.

10. Puts back in the inactive or active list all pages of the local list that shrink_list( ) did
not succeed in freeing. Notice that shrink_list( ) might mark a page as active by
setting its PG_active flag. This operation is performed in a batch of pages using a
pagevec data structure (see the section "The Least Recently Used (LRU) Lists" earlier in
this chapter).

11. If the function scanned at least sc->nr_to_scan pages, and if it didn't succeed in
reclaiming the target number of pages (i.e., sc->nr_to_reclaim is still positive), it jumps
back to step 3.

12. Releases the zone->lru_lock spin lock and terminates.

17.3.2.6. The shrink_list( ) function

We have now reached the heart of page frame reclaiming. While the purpose of the functions
illustrated so far, from try_to_free_pages( ) to shrink_cache( ), was to select the proper set
of pages candidates for reclaiming, the shrink_list( ) function effectively tries to reclaim the
pages passed as a parameter in the page_list list. The second parameter, namely sc, is the
usual pointer to a scan_control descriptor. When shrink_list( ) returns, page_list contains
the pages that couldn't be freed.

The function performs the following actions:
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1. If the need_resched field of the current process is set, it invokes schedule( ).

2. Starts a cycle on every page descriptor included in the page_list list. For each list
item, it removes the page descriptor from the list and tries to reclaim the page frame;
if for some reason the page frame could not be freed, it inserts the page descriptor in
a local list.

3. Now the page_list list is empty: the function moves back the page descriptors from
the local list to the page_list list.

4. Increases the sc->nr_reclaimed field by the number of page frames reclaimed in step 2,
and returns that number.

Of course, what is really interesting in shrink_list( ) is the code that tries to reclaim a page
frame. The flow diagram of this code is shown in Figure 17-5.

There are only three possible outcomes for each page frame handled by shrink_list( ):

 The page is released to the zone's buddy system by invoking the free_cold_page( )
function (see the section "The Per-CPU Page Frame Cache" in Chapter 8); hence, the
page is effectively reclaimed.

 The page is not reclaimed, thus it will be reinserted in the page_list list; however,
shrink_list( ) assumes that it will be possible to reclaim the page in the near future.
Thus, the function leaves the PG_active flag in the page descriptor cleared, so that the
page will be put back in the inactive list of the memory zone (see step 9 in the
descriptor of shrink_cache( ) above). This event corresponds to the small boxes
labeled as "INACTIVE" in Figure 17-5.

 The page is not reclaimed, thus it will be reinserted in the page_list list; however,
either the page is in active use, or shrink_list( ) assumes that it will be impossible to
reclaim the page in the foreseeable future. Thus, the function sets the PG_active flag
in the page descriptor, so that the page will be put in the active list of the memory
zone. This event corresponds to the small boxes labeled as "ACTIVE" in Figure 17-5.

The shrink_list( ) function never tries to reclaim a page that is locked (PG_locked flag set) or
under writeback (PG_writeback flag set). In order to test whether the page was recently
referenced, shrink_list( ) invokes page_referenced( ), which was described in the section "
The Least Recently Used (LRU) Lists" earlier in this chapter.

Figure 17-5. The page reclaiming logic of the shrink_list( ) function
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To reclaim an anonymous page, the page must be added to the swap cache, and a new slot in
a swap area must be reserved for it; see the section "Swapping" later in this chapter for
details.

If the page is in the User Mode address space of some process (the _mapcount field in the
page descriptor is greater than or equal to zero), shrink_list( ) invokes the try_to_unmap( )
function to locate all User Mode Page Table entries that refer to the page frame (see the
section "Reverse Mapping" earlier in this chapter). Of course, reclaiming may proceed only if
this function returns SWAP_SUCCESS.

If the page is dirty, it cannot be reclaimed unless it is written to disk. To do this, shrink_list(
) relies on the pageout( ) function, which is described next. The reclaiming of the page frame
may proceed only if either pageout( ) does not have to issue a write operation, or if the write
operation finishes soon.

If the page contains VFS buffers, shrink_list( ) invokes TRy_to_release_page( ) to release
the associated buffer heads (see the section "Releasing Block Device Buffer Pages" in Chapter
15).

Finally, if everything went smoothly, shrink_list( ) checks the reference counter of the
page: if it is equal to two, the page has just two owners: the page cache (or the swap
cache, in case of anonymous pages), and the PFRA itself (the reference counter was
increased in step 3 of shrink_cache( ); see earlier). In this case, the page can be reclaimed,
provided it is still not dirty. To do this, first the page is removed from the page cache or the
swap cache, according to the value of the PG_swapcache flag of the page descriptor; then,
the free_cold_page( ) function is executed.

17.3.2.7. The pageout( ) function
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The pageout( ) function is invoked by shrink_list( ) when a dirty page must be written to
disk. Essentially, the function performs the following operations:

1. Checks that the page is included in the page cache or in the swap cache (see the
section "The Swap Cache" later in this chapter). Moreover, checks that the page is
owned only by the page cacheor the swap cacheand the PFRA. Returns PAGE_KEEP if a
check has failed (it does not make sense to write the page to disk if it is not
reclaimable by shrink_list( )).

2. Checks that the writepage method of the address_space object is defined; returns
PAGE_ACTIVATE otherwise.

3. Checks that the current process can issue write requests to the request queue of the
block device associated with the address_space object. Essentially, the kswapd and
pdflush kernel threads may always issue the write request; normal processes can issue
the write request only if the request queue is not congested, unless the 
current->backing_dev_info field points to the backing_dev_info data structure of the
block device (see step 3 of the description of the generic_file_aio_write_nolock( )
function in the section "Writing to a File" in Chapter 16).

4. Checks that the page is still dirty; if not, returns PAGE_CLEAN.

5. Sets up a writeback_control descriptor and invokes the writepage method of the
address_space object to start a write back operation (see the section "Writing Dirty
Pages to Disk" in Chapter 16).

6. If the writepage method returned an error code, the function returns PAGE_ACTIVATE.

7. Returns PAGE_SUCCESS.

17.3.3. Reclaiming Pages of Shrinkable Disk Caches

We know from the previous chapters that the kernel uses other disk caches beside the page
cache, for instance the dentry cache and the inode cache (see the section "The dentry
Cache" in Chapter 12). When the PFRA tries to reclaim page frames, it should also check
whether some of these disk caches can be shrunk.

Every disk cache that is considered by the PFRA must have a shrinker function registered at
initialization time. The shrinker function expects two parameters: the target number of page
frames to be reclaimed, and a set of GFP allocation flags; the function does what is required
to reclaim the pages from the disk cache, then it returns the number of reclaimable pages
remaining in the cache.

The set_shrinker( ) function registers a shrinker function with the PFRA. This function
allocates a descriptor of type shrinker, stores the address of the shrinker function in the
descriptor, and then inserts the descriptor in a global list rooted at the shrinker_list global
variable. The set_shrinker( ) function also initializes the seeks field of the shrinker
descriptor: informally, it is a parameter that indicates how much it costs to re-create one item
of the cache once it is removed.

In Linux 2.6.11 there are few disk caches registered with the PFRA: besides the dentry cache
and the inode cache, only the disk quota layer, the filesystem meta information block cache
(mainly used for filesystems' extended attributes), and the XFS journaling filesystem register
shrinker functions .

The PFRA's function that reclaims pages from the shrinkable disk caches is called shrink_slab(
) (the name is a bit misleading, because the function has little to do with the slab allocator
caches). This function is invoked by TRy_to_free_pages( ), as explained in the earlier section "
Low On Memory Reclaiming," and by balance_pgdat( ), which is described in the later section "
Periodic Reclaiming."
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The shrink_slab( ) function tries to balance the cost of reclaiming from the shrinkable disk
cache with the cost of reclaiming from the LRU lists (performed by shrink_list( )).
Essentially, the function walks the list in the shrinker descriptors to invoke the shrinker
functions and get the total number of reclaimable pages in the disk caches. Then, the
function scans again the list of the shrinker descriptor; for each shrinkable disk cache, the
function heuristically computes a target number of page frames to be reclaimedbased on the
number of reclaimable pages in the disk caches, on the relative cost of re-creating a page in
the disk cache, and on the number of pages in the LRU listsand invokes the shrinker function
to try to reclaim batches of at least 128 pages.

For lack of space, we'll limit ourselves to describe briefly the shrinker functions of the dentry
cache and of the inode cache.

17.3.3.1. Reclaiming page frames from the dentry cache

The shrink_dcache_memory( ) function is the shrinker function for the dentry cache; it
searches the cache for unused dentry objectsthat is, objects not referenced by any process,
see the section "dentry Objects" in Chapter 12and releases them.

Because the dentry cache objects are allocated through the slab allocator, the 
shrink_dcache_memory( ) function may lead some slabs to become free, causing some page
frames to be consequently reclaimed by cache_reap( ) (see the section "Periodic Reclaiming"
later in this chapter). Moreover, the dentry cache acts as a controller of the inode cache.
Therefore, when a dentry object is released, the pages storing the corresponding inode may
become unused, and thus eventually released.

The shrink_dcache_memory( ) function receives as its parameters the number of page frames
to reclaim and a GFP mask. It starts by checking whether the _ _GFP_FS bit in the GFP mask is
clear; if so, the function returns -1, because releasing a dentry may trigger an operation on a
disk-based filesystem. Page frame reclaiming is effectively done by invoking prune_dcache( ).
This function scans the list of unused dentrieswhose head is stored in the dentry_unused
variableuntil it reaches the requested number of freed objects or until the whole list is
scanned. On each object that wasn't recently referenced, the function:

1. Removes the dentry object from the dentry hash table, from the list of dentry objects
in its parent directory, and from the list of dentry objects of the owner inode.

2. Decreases the usage counter of the dentry's inode by invoking the d_iput dentry
method, if defined, or the iput( ) function.

3. Invokes the d_release method of the dentry object, if defined.

4. Invokes the call_rcu( ) function to register a callback function that will remove the
dentry object (see the section "Read-Copy Update (RCU)" in Chapter 5). The callback
function, in turn, will invoke kmem_cache_free( ) to release the object to the slab
allocator (see the section "Freeing a Slab Object" in Chapter 8).

5. Decreases the usage counter of the parent directory.

Finally, shrink_dcache_memory( ) returns a value based on the number of unused dentries still
contained in the dentry cache. More precisely, the returned value is the number of unused
dentries multiplied by 100 and divided by the content of the sysctl_vfs_cache_pressure global
variable. By default, this variable is equal to 100, thus the returned value is essentially the
number of unused dentries. However, the system administrator may modify the variable by
writing in the /proc/sys/vm/vfs_cache_pressure or by issuing a suitable sysctl( ) system
call. Setting this variable to a value smaller than 100 causes shrink_slab( ) to reclaim fewer
pages from the dentry cache (and the inode cache; see the next section) with respect to the
pages reclaimed from the LRU lists; conversely, setting the variable to a value greater than
100 causes shrink_slab( ) to reclaim more pages from the dentry and inode caches with
respect to the pages reclaimed from the LRU lists.
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17.3.3.2. Reclaiming page frames from the inode cache

The shrink_icache_memory( ) function is invoked to remove unused inode objects from the
inode cache; here, "unused" means that the inode no longer has a controlling dentry object.
The function is similar to the shrink_dcache_memory( ) described previously. It checks the _
_GFP_FS bit in the gfp_mask parameter, then it invokes the prune_icache( ) function, and finally
it returns a value based both on the number of unused inodes still included in the inode cache
and the value of the sysctl_vfs_cache_pressure variable, as previously.

The prune_icache( ) function, in turn, scans the inode_unused list (see the section "Inode
Objects" in Chapter 12); to free an inode, the function releases any private buffer associated
with the inode, it invalidates the clean page frames in the page cache that refer to the inode
and are not longer in use, and then it makes use of the clear_inode( ) and destroy_inode( )
functions to destroy the inode object.

17.3.4. Periodic Reclaiming

The PFRA performs periodic reclaiming by using two different mechanisms: the kswapd kernel
threads, which invoke shrink_zone( ) and shrink_slab( ) to reclaim pages from the LRU lists,
and the cache_reap function, which is invoked periodically to reclaim unused slabs from the
slab allocator.

17.3.4.1. The kswapd kernel threads

The kswapd kernel threads are another kernel mechanism that activates page frame
reclaiming. Why is it necessary? Is it not sufficient to invoke TRy_to_free_pages( ) when free
memory becomes really scarce and another memory allocation request is issued?

Unfortunately, this is not the case. Some memory allocation requests are performed by
interrupt and exception handlers, which cannot block the current process waiting for a page
frame to be freed; moreover, some memory allocation requests are done by kernel control
paths that have already acquired exclusive access to critical resources and that, therefore,
cannot activate I/O data transfers. In the infrequent case in which all memory allocation
requests are done by such sorts of kernel control paths, the kernel is never able to free
memory.

The kswapd kernel threads also have a beneficial effect on system performance by keeping
memory free in what would otherwise be idle time for the machine; processes can thus get
their pages much faster.

There is a different kswapd kernel thread for each memory node (see the section "Non-Uniform
Memory Access (NUMA)" in Chapter 8). Each such thread is usually sleeping in the wait queue
headed at the kswapd_wait field of the node descriptor. However, if _ _alloc_pages( )
discovers that all memory zones suitable for a memory allocation have a number of free page
frames below a "warning" thresholdessentially, a value based on the pages_low and protection
fields of the memory zone descriptorthen the function wakes up the kswapd kernel threads of
the corresponding memory nodes (see the section "The Zone Allocator" in Chapter 8.)
Essentially, the kernel starts to reclaim some page frames in order to avoid much more
dramatic "low on memory" conditions.

As explained in the section "The Pool of Reserved Page Frames" in Chapter 8, every zone
descriptor also includes a pages_min fielda threshold that specifies the minimum number of free
page frames that should always be preservedand a pages_high fielda threshold that specifies
the "safe" number of free page frames above which page frame reclaiming should be stopped.

The kswapd kernel thread executes the kswapd( ) function. It initializes the kernel thread by
binding the kernel thread to the CPUs that may access the memory node, by storing in the 
current->reclaim_state field of the process descriptor the address of a reclaim_state
descriptor (see step 3d in the description of TRy_to_free_pages( ) earlier in this chapter), and
by setting the PF_MEMALLOC and PF_KSWAP flags in the current->flags fieldthese flags indicate
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that the process is reclaiming memory and that it is allowed to use all the free memory
available when doing its job. Every time the kswapd kernel thread is awakened, the kswapd( )
function performs essentially the following steps:

1. Invokes finish_wait( ) to remove the kernel thread from the node's kswapd_wait wait
queue (see the section "How Processes Are Organized" in Chapter 3).

2. Invokes balance_pgdat( ) to perform the memory reclaiming on the kswapd's memory
node (see below).

3. Invokes prepare_to_wait( ) to set the process in the TASK_INTERRUPTIBLE state and to
put it to sleep in the node's kswapd_wait wait queue.

4. Invokes schedule( ) to yield the CPU to some other runnable process.

The balance_pgdat( ) function performs, in turn, the following basic steps:

1. Sets up a scan_control descriptor (see Table 17-2 earlier in this chapter).

2. Sets the temp_priority field of each zone descriptor in the memory node to 12 (lowest
priority).

3. Performs a loop of at most 13 iterations, from priority 12 down to 0; in each iteration
performs the following substeps:

a. Scans the memory zones to find the highest zone (from ZONE_DMA to
ZONE_HIGHMEM) having an insufficient number of free page frames. Each test is
done by executing the zone_watermark_ok( ) function described in the section "
The Zone Allocator" in Chapter 8. If all zones have a large number of free page
frames, it jumps to step 4.

b. Scans again the memory zones proceeding from ZONE_DMA to the zone found in
step 3a. For each zone, it updates, if necessary, the prev_priority field of the
zone descriptor with the current priority level, and invokes successively 
shrink_zone( ) to reclaim pages from the zone (see the earlier section "Low On
Memory Reclaiming"). Next, it invokes shrink_slab( ) to reclaim pages from the
shrinkable disk caches (see the earlier section "Reclaiming Pages of Shrinkable
Disk Caches").

c. If at least 32 pages have been reclaimed, it breaks the loop and jumps to step
4.

4. Updates the prev_priority field of each zone descriptor with the value stored in the
corresponding temp_priority field.

5. If some "low on memory" zone still exists, it invokes schedule( ) if the need_resched
field of the process is set; when in execution again, it jumps back to step 1.

6. Returns the number of pages reclaimed.

17.3.4.2. The cache_reap( ) function

The PFRA must also reclaim the pages owned by the slab allocator caches (see the section "
Memory Area Management " in Chapter 8). To do this, it relies on the cache_reap( ) function,
which is periodically scheduledapproximately once every two secondsin the predefined events
work queue (see the section "Work Queues" in Chapter 4). The address of the cache_reap( )
function is stored in the func field of the reap_work per-CPU variable of type work_struct.

The cache_reap( ) function essentially performs the following steps:

1. Tries to acquire the cache_chain_sem semaphore, which protects the list of slab cache
descriptors; if the semaphore is already taken, it invokes schedule_delayed_work( ) to
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schedule the next invocation of the function, and terminates.

2. Otherwise, scans the kmem_cache_t descriptors collected in the cache_chain list. For
each cache descriptor found, the function performs the following steps:

a. If the SLAB_NO_REAP flag in the cache descriptor is set, page frame reclaiming
has been disabled, hence it continues with the next cache in the list.

b. Drains the slab local cache (see the section "Local Caches of Free Slab Objects"
in Chapter 8); this operation could cause new slabs to become free.

c. Each cache has a "reap time" stored in the next_reap field of the kmem_list3
structure inside the cache descriptor (see the section "Cache Descriptor" in
Chapter 8); if jiffies is still smaller than next_reap, it continues with the next
cache in the list.

d. Sets the next "reap time" in the next_reap field to a value four seconds from the
current time.

e. In multiprocessor systems, the function drains the slab shared cache (see the
section "Local Caches of Free Slab Objects" in Chapter 8); this operation could
cause new slabs to become free.

f. If a new slab has been recently added to the cachethat is, if the free_touched
flag of the kmem_list3 structure inside the cache descriptor is setit skips this
cache and continues with the next cache in the list.

g. Computes according to a heuristic formula the number of slabs to be freed.
Basically, this number depends on the upper limit of free objects in the cache
and on the number of objects packed into a single slab.

h. Repeatedly invokes slab_destroy( ) on the slabs included in the list of free
slabs of the cache, until the list is empty or the target number of free slab has
been reached.

i. Invokes cond_resched( ) to check the TIF_NEED_RESCHED flag of the current
process and to invoke schedule( ), if the flag is set.

3. Releases the cache_chain_sem semaphore.

4. Invokes schedule_delayed_work( ) to schedule the next invocation of the function, and
terminates.

17.3.5. The Out of Memory Killer

Despite the PFRA effort to keep a reserve of free page frames, it is possible for the pressure
on the virtual memory subsystem to become so high that all available memory becomes
exhausted. This situation could quickly induce a freeze of every activity in the system: the
kernel keeps trying to free memory in order to satisfy some urgent request, but it does not
succeed because the swap areas are full and all disk caches have already been shrunken. As
a consequence, no process can proceed with its execution, thus no process will eventually
free up the page frames that it owns.

To cope with this dramatic situation, the PFRA makes use of a so-called out of memory
(OOM) killer, which selects a process in the system and abruptly kills it to free its page
frames. The OOM killer is like a surgeon that amputates the limb of a man to save his life:
losing a limb is not a nice thing, but sometimes there is nothing better to do.

The out_of_memory( ) function is invoked by _ _alloc_pages( ) when the free memory is very
low and the PFRA has not succeeded in reclaiming any page frames (see the section "The
Zone Allocator" in Chapter 8). The function invokes select_bad_process( ) to select a victim
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among the existing processes, then invokes oom_kill_process( ) to perform the sacrifice.

Of course, select_bad_process( ) does not simply pick a process at random. The selected
process should satisfy several requisites:

 The victim should own a large number of page frames, so that the amount of memory
that can be freed is significant. (As a countermeasure against the "fork-bomb"
processes, the function considers the amount of memory eaten by all children owned
by the parent, too.)

 Killing the victim should lose a small amount of workit is not a good idea to kill a batch
process that has been working for hours or days.

 The victim should be a low static priority processthe users tend to assign lower
priorities to less important processes.

 The victim should not be a process with root privilegesthey usually perform important
tasks.

 The victim should not directly access hardware devices (such as the X Window
server), because the hardware could be left in an unpredictable state.

 The victim cannot be swapper (process 0), init (process 1), or any other kernel thread.

The select_bad_process( ) function scans every process in the system, uses an empirical
formula to compute from the above rules a value that denotes how good selecting that
process is, and returns the process descriptor address of the "best" candidate for eviction.
Then, the out_of_memory( ) function invokes oom_kill_process( ) to send a deadly
signalusually SIGKILL; see Chapter 11either to a child of that process or, if this is not possible,
to the process itself. The oom_kill_process( ) function also kills all clones that share the same
memory descriptor with the selected victim.

17.3.6. The Swap Token

As you might have realized while reading this chapter, the Linux VM subsystemand particularly
the PFRAis so complex a piece of code that is quite hard to predict its behavior with an
arbitrary workload. There are cases, moreover, in which the VM subsystem exhibits
pathological behaviors. An example is the so-called swap thrashing phenomenon: essentially,
when the system is short of free memory, the PFRA tries hard to free memory by writing pages
to disk and stealing the underlying page frames from some processes; at the same time,
however, these processes want to proceed with their executions, hence they try hard to
access their pages. As a consequence, the kernel assigns to the processes the page frames
just freed by the PFRA and reads their contents from disk. The net result is that pages are
continuously written to and read back from the disk; most of the time is spent accessing the
disk, hence no process makes substantial progress towards its termination.

To mitigate the likelihood of swap thrashing, a technique proposed by Jiang and Zhang in 2004
has been implemented in the kernel version 2.6.9: essentially, a so-called swap token is
assigned to a single process in the system; the token exempts the process from the page
frame reclaiming, so the process can make substantial progress and, hopefully, terminate even
when memory is scarce.

The swap token is implemented as a swap_token_mm memory descriptor pointer. When a process
owns the swap token, swap_token_mm is set to the address of the process's memory descriptor.

Immunity from page frame reclaiming is granted in an elegant and simple way. As we have
seen in the section "The Least Recently Used (LRU) Lists," a page is moved from the active to
the inactive list only if it was not recently referenced. The check is done by the 
page_referenced( ) function, which honors the swap token and returns 1 (referenced) if the
page belongs to a memory region of the process that owns the swap token. Actually, in a
couple of cases the swap token is not considered: when the PFRA is executing on behalf of
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the process that owns the swap token, and when the PFRA has reached the hardest priority
level in page frame reclaiming (level 0).

The grab_swap_token( ) function determines whether the swap token should be assigned to
the current process. It is invoked on each major page fault, namely on just two occasions:

 When the filemap_nopage( ) function discovers that the required page is not in the
page cache (see the section "Demand Paging for Memory Mapping" in Chapter 16).

 When the do_swap_page( ) function has read a new page from a swap area (see the
section "Swapping in Pages" later in this chapter).

The grab_swap_token( ) function makes some checks before assigning the token. In particular,
the token is granted if all of the following conditions hold:

 At least two seconds have elapsed since the last invocation of grab_swap_token( ).

 The current token-holding process has not raised a major page fault since the last
execution of grab_swap_token( ), or has been holding the token since at least
swap_token_default_timeout ticks.

 The swap token has not been recently assigned to the current process.

The token holding time should ideally be rather long, even in the order of minutes, because
the goal is to allow a process to finish its execution. In Linux 2.6.11 the token holding time is
set by default to a very low value, namely one tick. However, the system administrator can
tune the value of the swap_token_default_timeout variable by writing in the
/proc/sys/vm/swap_token_default_timeout file or by issuing a proper sysctl( ) system call.

When a process is killed, the kernel checks whether that process was holding the swap token
and, if so, releases it; this is done by the mmput( ) function (see the section "The Memory
Descriptor" in Chapter 9).

Page 695

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


17.4. Swapping
Swapping has been introduced to offer a backup on disk for unmapped pages. We know from
the previous discussion that there are three kinds of pages that must be handled by the
swapping subsystem:

 Pages that belong to an anonymous memory region of a process (User Mode stack or
heap)

 Dirty pages that belong to a private memory mapping of a process

 Pages that belong to an IPC shared memory region (see the section "IPC Shared
Memory" in Chapter 19)

Like demand paging, swapping must be transparent to programs. In other words, no special
instruction related to swapping needs to be inserted into the code. To understand how this
can be done, recall from the section "Regular Paging" in Chapter 2 that each Page Table entry
includes a Present flag. The kernel exploits this flag to signal that a page belonging to a
process address space has been swapped out. Besides that flag, Linux also takes advantage
of the remaining bits of the Page Table entry to store into them a "swapped-out page
identifier" that encodes the location of the swapped-out page on disk. When a Page Fault
exception occurs, the corresponding exception handler can detect that the page is not
present in RAM and invoke the function that swaps in the missing page from disk.

The main features of the swapping subsystem can be summarized as follows:

 Set up "swap areas" on disk to store pages that do not have a disk image.

 Manage the space on swap areas allocating and freeing "page slots" as the need
occurs.

 Provide functions both to "swap out" pages from RAM into a swap area and to "swap
in" pages from a swap area into RAM.

 Make use of "swapped-out page identifiers" in the Page Table entries of pages that are
currently swapped out to keep track of the positions of data in the swap areas.

To sum up, swapping is the crowning feature of page frame reclaiming. If we want to be sure
that all the page frames obtained by a process, and not only those containing pages that
have an image on disk, can be reclaimed at will by the PFRA, then swapping has to be used.
Of course, you might turn off swapping by using the swapoff command; in this case, however,
disk thrashing is likely to occur sooner when the system load increases.

We should also mention that swapping can be used to expand the memory address space that
is effectively usable by the User Mode processes. In fact, large swap areas allow the kernel to
launch several demanding applications whose total memory requests exceed the amount of
physical RAM installed in the system. However, simulation of RAM is not like RAM in terms of
performance. Every access by a process to a page that is currently swapped out is of several
orders of magnitude longer than an access to a page in RAM. In short, if performance is of
great importance, swapping should be used only as a last resort; adding RAM chips still
remains the best solution to cope with increasing computing needs.

17.4.1. Swap Area

The pages swapped out from memory are stored in a swap area, which may be implemented
either as a disk partition of its own or as a file included in a larger partition. Several different
swap areas may be defined, up to a maximum number specified by the MAX_SWAPFILES macro
(usually set to 32).
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Having multiple swap areas allows a system administrator to spread a lot of swap space
among several disks so that the hardware can act on them concurrently; it also lets swap
space be increased at runtime without rebooting the system.

Each swap area consists of a sequence of page slots : 4,096-byte blocks used to contain a
swapped-out page. The first page slot of a swap area is used to persistently store some
information about the swap area; its format is described by the swap_header union composed
of two structures, info and magic. The magic structure provides a string that marks part of
the disk unambiguously as a swap area; it consists of just one field, magic.magic, which
contains a 10-character "magic" string. The magic structure essentially allows the kernel to
unambiguously identify a file or a partition as a swap area; the text of the string, namely
"SWAPSPACE2," is always located at the end of the first page slot.

The info structure includes the following fields:

bootbits

Not used by the swapping algorithm; this field corresponds to the first 1,024 bytes of
the swap area, which may store partition data, disk labels, and so on.

version

Swapping algorithm version.

last_page

Last page slot that is effectively usable.

nr_badpages

Number of defective page slots.

padding[125]

Padding bytes.

badpages[1]

Up to 637 numbers specifying the location of defective page slots.

17.4.1.1. Creating and activating a swap area

The data stored in a swap area is meaningful as long as the system is on. When the system is
switched off, all processes are killed, so the data stored by processes in swap areas is
discarded. For this reason, swap areas contain very little control information: essentially, the
swap area type and the list of defective page slots. This control information easily fits in a
single 4 KB page.

Usually, the system administrator creates a swap partition when creating the other partitions
on the Linux system, and then uses the mkswap command to set up the disk area as a new
swap area. That command initializes the fields just described within the first page slot.
Because the disk may include some bad blocks, the program also examines all other page slots
to locate the defective ones. But executing the mkswap command leaves the swap area in an
inactive state. Each swap area can be activated in a script file at system boot or dynamically
after the system is running.

Page 697

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Each swap area consists of one or more swap extents , each of which is represented by a
swap_extent descriptor. Each extent corresponds to a group of pagesor more accurately, page
slotsthat are physically adjacent on disk. Hence, the swap_extent descriptor includes the index
of the first page of the extent in the swap area, the length in pages of the extent, and the
starting disk sector number of the extent. An ordered list of the extents that compose a swap
area is created when activating the swap area itself. A swap area stored in a disk partition is
composed of just one extent; conversely, a swap area stored in a regular file can be
composed of several extents, because the filesystem may not have allocated the whole file in
contiguous blocks on disk.

17.4.1.2. How to distribute pages in the swap areas

When swapping out, the kernel tries to store pages in contiguous page slots to minimize disk
seek time when accessing the swap area; this is an important element of an efficient
swapping algorithm.

However, if more than one swap area is used, things become more complicated. Faster swap
areasswap areas stored in faster disksget a higher priority. When looking for a free slot, the
search starts in the swap area that has the highest priority. If there are several of them,
swap areas of the same priority are cyclically selected to avoid overloading one of them. If no
free slot is found in the swap areas that have the highest priority, the search continues in the
swap areas that have a priority next to the highest one, and so on.

17.4.2. Swap Area Descriptor

Each active swap area has its own swap_info_struct descriptor in memory. The fields of the
descriptor are illustrated in Table 17-3.

Table 17-3. Fields of a swap area descriptor

Type Field Description

unsigned int flags Swap area flags

spinlock_t sdev_lock Spin lock protecting the swap area

struct file * swap_file Pointer to the file object of the regular file or device
file that stores the swap area

struct

block_device *

bdev
Descriptor of the block device containing the swap
area

struct list head extent_list Head of the list of extents that compose the swap
area

int nr_extents Number of extents composing the swap area

struct

swap_extent *
curr_swap_extent Pointer to the most recently used extent descriptor

unsigned int old_block_size Natural block size of the partition containing the swap
area

unsigned short * swap_map Pointer to an array of counters, one for each swap
area page slot
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Table 17-3. Fields of a swap area descriptor

Type Field Description

unsigned int lowest_bit First page slot to be scanned when searching for a
free one

unsigned int highest_bit Last page slot to be scanned when searching for a
free one

unsigned int cluster_next Next page slot to be scanned when searching for a
free one

unsigned int cluster_nr Number of free page slot allocations before restarting
from the beginning

int prio Swap area priority

int pages Number of usable page slots

unsigned long max Size of swap area in pages

unsigned long inuse_pages Number of used page slots in the swap area

int next Pointer to next swap area descriptor

The flags field includes three overlapping subfields:

SWP_USED

1 if the swap area is active; 0 if it is inactive.

SWP_WRITEOK

1 if it is possible to write into the swap area; 0 if the swap area is read-only (it is
being activated or inactivated).

SWP_ACTIVE

This 2-bit field is actually the combination of SWP_USED and SWP_WRITEOK; the flag is set
when both the previous flags are set.

The swap_map field points to an array of counters, one for each swap area page slot. If the
counter is equal to 0, the page slot is free; if it is positive, the page slot is filled with a
swapped-out page. Essentially, the page slot counter denotes the number of processes that
share the swapped-out page. If the counter has the value SWAP_MAP_MAX (equal to 32, 767),
the page stored in the page slot is "permanent" and cannot be removed from the
corresponding slot. If the counter has the value SWAP_MAP_BAD (equal to 32,768), the page slot
is considered defective, and thus unusable.[*]

[*] "Permanent" page slots protect against overflow s of swap_map counters. Without them, valid page slots could become "defective"
if they are referenced too many times, thus leading to data losses. How ever, no one really expects that a page slot counter could
reach the value 32,768. It's just a "belt and suspenders" approach.
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The prio field is a signed integer that denotes the order in which the swap subsystem should
consider each swap area.

The sdev_lock field is a spin lock that protects the swap area's data structureschiefly, the
swap descriptoragainst concurrent accesses in SMP systems.

The swap_info array includes MAX_SWAPFILES swap area descriptors. Only the areas whose
SWP_USED flags are set are used, because they are the activated areas. Figure 17-6 illustrates
the swap_info array, one swap area, and the corresponding array of counters.

Figure 17-6. Swap area data structures

The nr_swapfiles variable stores the index of the last array element that contains, or that has
contained, a used swap area descriptor. Despite its name, the variable does not contain the
number of active swap areas.

Descriptors of active swap areas are also inserted into a list sorted by the swap area priority.
The list is implemented through the next field of the swap area descriptor, which stores the
index of the next descriptor in the swap_info array. This use of the field as an index is
different from most fields with the name next, which are usually pointers.

The swap_list variable, of type swap_list_t, includes the following fields:

head

Index in the swap_info array of the first list element.

next

Index in the swap_info array of the descriptor of the next swap area to be selected for
swapping out pages. This field is used to implement a Round Robin algorithm among
maximum-priority swap areas with free slots.

The swaplock spin lock protects the list against concurrent accesses in multiprocessor
systems.

The max field of the swap area descriptor stores the size of the swap area in pages, while the
pages field stores the number of usable page slots. These numbers differ because pages does
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not take the first page slot and the defective page slots into consideration.

Finally, the nr_swap_pages variable contains the number of available (free and nondefective)
page slots in all active swap areas, while the total_swap_pages variable contains the total
number of nondefective page slots.

17.4.3. Swapped-Out Page Identifier

A swapped-out page is uniquely identified quite simply by specifying the index of the swap
area in the swap_info array and the page slot index inside the swap area. Because the first
page (with index 0) of the swap area is reserved for the swap_header union discussed earlier,
the first useful page slot has index 1. The format of a swapped-out page identifier is
illustrated in Figure 17-7.

Figure 17-7. Swapped-out page identifier

The swp_entry(type,offset) function constructs a swapped-out page identifier from the swap
area index type and the page slot index offset. Conversely, the swp_type and swp_offset
functions extract from a swapped-out page identifier the swap area index and the page slot
index, respectively.

When a page is swapped out, its identifier is inserted as the page's entry into the Page Table
so the page can be found again when needed. Notice that the least-significant bit of such an
identifier, which corresponds to the Present flag, is always cleared to denote the fact that the
page is not currently in RAM. However, at least one of the remaining 31 bits has to be set
because no page is ever stored in slot 0 of swap area 0. It is therefore possible to identify
three different cases from the value of a Page Table entry:

Null entry

The page does not belong to the process address space, or the underlying page frame
has not yet been assigned to the process (demand paging ).

First 31 most-significant bits not all equal to 0, last bit equal to 0

The page is currently swapped out.

Least-significant bit equal to 1

The page is contained in RAM.

The maximum size of a swap area is determined by the number of bits available to identify a
slot. On the 80 x 86 architecture, the 24 bits available limit the size of a swap area to 224

slots (that is, to 64 GB).

Because a page may belong to the address spaces of several processes (see the earlier
section "Reverse Mapping"), it may be swapped out from the address space of one process
and still remain in main memory; therefore, it is possible to swap out the same page several
times. A page is physically swapped out and stored just once, of course, but each subsequent
attempt to swap it out increases the swap_map counter.

The swap_duplicate( ) function is usually invoked while trying to swap out an already
swapped-out page. It simply verifies that the swapped-out page identifier passed as its
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parameter is valid and increases the corresponding swap_map counter. More precisely, it
performs the following actions:

1. Uses the swp_type and swp_offset functions to extract the swap area number and the
page slot index from the parameter.

2. Checks whether the swap area number identified is active; if not, it returns 0 (invalid
identifier).

3. Checks whether the page slot is valid and not free (its swap_map counter is greater than
0 and less than SWAP_MAP_BAD); if not, it returns 0 (invalid identifier).

4. Otherwise, the swapped-out page identifier locates a valid page. Increases the 
swap_map counter of the page slot if it has not already reached the value SWAP_MAP_MAX.

5. Returns 1 (valid identifier).

17.4.4. Activating and Deactivating a Swap Area

Once a swap area is initialized, the superuser (or, more precisely, every user having the 
CAP_SYS_ADMIN capability, as described in the section "Process Credentials and Capabilities" in
Chapter 20) may use the swapon and swapoff programs to activate and deactivate the swap
area, respectively. These programs use the swapon( ) and swapoff( ) system calls; we'll briefly
sketch out the corresponding service routines.

17.4.4.1. The sys_swapon( ) service routine

The sys_swapon( ) service routine receives the following as its parameters:

specialfile

This parameter points to the pathname (in the User Mode address space) of the device
file (partition) or plain file used to implement the swap area.

swap_flags

This parameter consists of a single SWAP_FLAG_PREFER bit plus 31 bits of priority of the
swap area (these bits are significant only if the SWAP_FLAG_PREFER bit is on).

The function checks the fields of the swap_header union that was put in the first slot when the
swap area was created. The function performs these main steps:

1. Checks that the current process has the CAP_SYS_ADMIN capability.

2. Looks in the first nr_swapfiles components of the swap_info array of swap area
descriptors for the first descriptor having the SWP_USED flag cleared, meaning that the
corresponding swap area is inactive. If an inactive swap area is found, it goes to step
4.

3. The new swap area array index is equal to nr_swapfiles: it checks that the number of
bits reserved for the swap area index is sufficiently large to encode the new index; if
not, returns an error code; otherwise, it increases by one the value of nr_swapfiles.

4. An index of an unused swap area has been found: it initializes the descriptor's fields; in
particular, it sets flags to SWP_USED, and sets lowest_bit and highest_bit to 0.

5. If the swap_flags parameter specifies a priority for the new swap area, the function
sets the prio field of the descriptor. Otherwise, it initializes the field to one less than
the lowest priority among all active swap areas (thus assuming that the last activated
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swap area is on the slowest block device). If no other swap areas are already active,
the function assigns the value -1.

6. Copies the string pointed to by the specialfile parameter from the User Mode address
space.

7. Invokes filp_open( ) to open the file specified by the specialfile parameter (see the
section "The open( ) System Call" in Chapter 12).

8. Stores the addresses of the file object returned by filp_open( ) in the swap_file field
of the swap area descriptor.

9. Makes sure that the swap area is not already activated by looking at the other active
swap areas in swap_info. This is done by checking the addresses of the address_space
objects stored in the swap_file->f_mapping field of the swap area descriptors. If the
swap area is already active, it returns an error code.

10. If the specialfile parameter identifies a block device file, it performs the following
substeps:

a. Invokes bd_claim( ) to set the swapping subsystem as the holder of the block
device (see the section "Block Devices" in Chapter 14). If the block device
already has a holder, it returns an error code.

b. Stores the address of the block_device descriptor in the bdev field of the swap
area descriptor.

c. Stores the current block size of the device in the old_block_size field of the
swap area descriptor, then sets the block size of the device to 4,096 bytes
(the page size).

11. If the specialfile parameter identifies a regular file, it performs the following substeps:

a. Checks the S_SWAPFILE field of the i_flags field of the file's inode. If this flag is
set, it returns an error code because the file is already being used as a swap
area.

b. Stores the descriptor address of the block device containing the file in the bdev
field of the swap area descriptor.

12. Reads the swap_header descriptor stored in slot 0 of the swap area. To that end, it
invokes read_cache_page( ) passing as parameters the address_space object pointed to
by swap_file->f_mapping, the page index 0, the address of the file's readpage method
(stored in swap_file->f_mapping->a_ops->readpage), and the pointer to the file object
swap_file. Waits until the page has been read into memory.

13. Checks that the magic string in the last 10 characters of the first page is equal to
"SWAPSPACE2." If not, it returns an error code.

14. Initializes the lowest_bit and highest_bit fields of the swap area descriptor according
to the size of the swap area stored in the info.last_page field of the swap_header
union.

15. Invokes vmalloc( ) to create the array of counters associated with the new swap area
and stores its address in the swap_map field of the swap descriptor. Initializes the
elements of the array to 0 or to SWAP_MAP_BAD, according to the list of defective page
slots stored in the info.bad_pages field of the swap_header union.

16. Computes the number of useful page slots by accessing the info.last_page and
info.nr_badpages fields in the first page slot, and stores it in the pages field of the
swap area descriptor. Also sets the max field with the total number of pages in the
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swap area.

17. Builds the extent_list list of swap extents for the new swap area (only one if the swap
area is a disk partition), and sets properly the nr_extents and curr_swap_extent fields in
the swap area descriptor.

18. Sets the flags field of the swap area descriptor to SWP_ACTIVE.

19. Updates the nr_good_pages, nr_swap_pages, and total_swap_pages global variables.

20. Inserts the swap area descriptor in the list to which the swap_list variable points.

21. Returns 0 (success).

17.4.4.2. The sys_swapoff( ) service routine

The sys_swapoff( ) service routine deactivates a swap area identified by the parameter
specialfile. It is much more complex and time-consuming than sys_swapon( ), since the
partition to be deactivated might still contain pages that belong to several processes. The
function is thus forced to scan the swap area and to swap in all existing pages. Because each
swap-in requires a new page frame, it might fail if there are no free page frames left. In this
case, the function returns an error code. All this is achieved by performing the following major
steps:

1. Checks that the current process has the CAP_SYS_ADMIN capability.

2. Copies the string pointed to by the specialfile parameter in kernel space.

3. Invokes filp_open( ) to open the file referenced by the specialfile parameter; as
usual, this function returns the address of a file object.

4. Scans the swap_list list of the swap area descriptor, and compares the address of the
file object returned by filp_open( ) with the addresses stored in the swap_file fields of
the active swap area descriptors. If no match is found, an invalid parameter was
passed to the function, so it returns an error code.

5. Invokes cap_vm_enough_memory( ) to check whether there are enough free page frames
to swap in all pages stored in the swap area. If not, the swap area cannot be
deactivated; it releases the file object and returns an error code. This is only a rough
check, but it could save the kernel from a lot of useless disk activity. While performing
this check, cap_vm_enough_memory( ) takes into account the page frames allocated
through slab caches having the SLAB_RECLAIM_ACCOUNT flag set (see the section "
Interfacing the Slab Allocator with the Zoned Page Frame Allocator" in Chapter 8). The
number of such pages, which are considered as reclaimable, is stored in the 
slab_reclaim_pages variable.

6. Removes the swap area descriptor from the swap_list list.

7. Updates the nr_swap_pages and total_swap_pages variables by subtracting the value in
the pages field of the swap area descriptor.

8. Clears the SWP_WRITEOK flag in the flags field of the swap area descriptor; this forbids
the PFRA from swapping out more pages in the swap area.

9. Invokes try_to_unuse( ) (see below) to successively force all pages left in the swap
area into RAM and to correspondingly update the Page Tables of the processes that
use these pages. While executing this function, the current process, which is
executing the swapoff command, has the PF_SWAPOFF flag set. Setting this flag has just
one consequence: in case of a dramatic shortage of page frames, the 
select_bad_process( ) function will be forced to select and kill this process! (See the
section "The Out of Memory Killer" earlier in this chapter.)
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10. Waits until the block device driver that contains the swap area is unplugged (see the
section "Activating the Block Device Driver" in Chapter 14). In this way, the reading
requests submitted by TRy_to_unuse( ) will be handled by the driver before the swap
area is deactivated.

11. If TRy_to_unuse( ) fails in allocating all requested page frames, the swap area cannot
be deactivated. Therefore, the function executes the following substeps:

a. Reinserts the swap area descriptor in the swap_list list and sets its flags field
to SWP_WRITEOK.

b. Restores the original contents of the nr_swap_pages and total_swap_pages
variables by adding the value in the pages field of the swap area descriptor.

c. Invokes filp_close( ) to close the file opened in step 3 (see the section "The
close( ) System Call" in Chapter 12), and returns an error code.

12. Otherwise, all used page slots have been successfully transferred to RAM. Therefore,
the function executes the following substeps:

a. Releases the memory areas used to store the swap_map array and the extent
descriptors.

b. If the swap area is stored in a disk partition, it restores the block size to its
original value, which is stored in the old_block_size field of the swap area
descriptor; moreover, it invokes the bd_release( ) function so that the swap
subsystem no longer holds the block device (see step 10a in the description of 
sys_swapon( )).

c. If the swap area is stored in a regular file, it clears the S_SWAPFILE flag of the
file's inode.

d. Invokes filp_close( ) twice, the first time on the swap_file file object, the
second time on the object returned by filp_open( ) in step 3.

e. Returns 0 (success).

17.4.4.3. The try_to_unuse( ) function

The TRy_to_unuse( ) function acts on an index parameter that identifies the swap area to be
emptied; it swaps in pages and updates all the Page Tables of processes that have swapped
out pages in this swap area. To that end, the function visits the address spaces of all kernel
threads and processes, starting with the init_mm memory descriptor that is used as a marker.
It is a time-consuming function that runs mostly with the interrupts enabled. Synchronization
with other processes is therefore critical.

The TRy_to_unuse( ) function scans the swap_map array of the swap area. When the function
finds a in-use page slot, it first swaps in the page, and then starts looking for the processes
that reference the page. The ordering of these two operations is crucial to avoid race
conditions. While the I/O data transfer is ongoing, the page is locked, so no process can
access it. Once the I/O data transfer completes, the page is locked again by try_to_unuse( ),
so it cannot be swapped out again by another kernel control path. Race conditions are also
avoided because each process looks up the page cache before starting a swap-in or swap-out
operation (see the later section "The Swap Cache"). Finally, the swap area considered by
try_to_unuse( ) is marked as nonwritable (SWP_WRITEOK flag is not set), so no process can
perform a swap-out on a page slot of this area.

However, try_to_unuse( ) might be forced to scan the swap_map array of usage counters of
the swap area several times. This is because memory regions that contain references to
swapped-out pages might disappear during one scan and later reappear in the process lists.
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For instance, recall the description of the do_munmap( ) function (in the section "Releasing a
Linear Address Interval" in Chapter 9): whenever a process releases an interval of linear
addresses, do_munmap( ) removes from the process list all memory regions that include the
affected linear addresses; later, the function reinserts the memory regions that have been
only partially unmapped in the process list. do_munmap( ) takes care of freeing the
swapped-out pages that belong to the interval of released linear addresses. It commendably
doesn't free the swapped-out pages that belong to the memory regions that have to be
reinserted in the process list.

Hence, TRy_to_unuse( ) might fail in finding a process that references a given page slot
because the corresponding memory region is temporarily not included in the process list. To
cope with this fact, try_to_unuse( ) keeps scanning the swap_map array until all reference
counters are null. Eventually, the ghost memory regions referencing the swapped-out pages
will reappear in the process lists, so TRy_to_unuse( ) will succeed in freeing all page slots.

Let's describe now the major operations executed by TRy_to_unuse( ). It executes a
continuous loop on the reference counters in the swap_map array of the swap area passed as
its parameter. This loop is interrupted and the function returns an error code if the current
process receives a signal. For each reference counter, the function performs the following
steps:

1. If the counter is equal to 0 (no page is stored there) or to SWAP_MAP_BAD, it continues
with the next page slot.

2. Otherwise, it invokes the read_swap_cache_async( ) function (see the section "
Swapping in Pages" later in this chapter) to swap in the page. This consists of
allocating, if necessary, a new page frame, filling it with the data stored in the page
slot, and putting the page in the swap cache.

3. Waits until the new page has been properly updated from disk and locks it.

4. While the function was executing the previous step, the process could have been
suspended. Therefore, it checks again whether the reference counter of the page slot
is null; if so, this swap page has been freed by another kernel control path, so the
function continues with the next page slot.

5. Invokes unuse_process( ) on every memory descriptor in the doubly linked list whose
head is init_mm (see the section "The Memory Descriptor" in Chapter 9). This
time-consuming function scans all Page Table entries of the process that owns the
memory descriptor, and replaces each occurrence of the swapped-out page identifier
with the physical address of the page frame. To reflect this move, the function also
decreases the page slot counter in the swap_map array (unless it is equal to
SWAP_MAP_MAX) and increases the usage counter of the page frame.

6. Invokes shmem_unuse( ) to check whether the swapped-out page is used as an IPC
shared memory resource and to properly handle that case (see the section "IPC Shared
Memory" in Chapter 19).

7. Checks the value of the reference counter of the page. If it is equal to SWAP_MAP_MAX,
the page slot is "permanent." To free it, it forces the value 1 into the reference
counter.

8. The swap cache might own the page as well (it contributes to the value of the
reference counter). If the page belongs to the swap cache, it invokes the 
swap_writepage( ) function to flush its contents to disk (if the page is dirty) and
invokes delete_from_swap_cache( ) to remove the page from the swap cache and to
decrease its reference counter.

9. Sets the PG_dirty flag of the page descriptor, unlocks the page frame, and decreases
its reference counter (to undo the increment done in step 5).
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10. Checks the need_resched field of the current process; if it is set, it invokes schedule( )
to relinquish the CPU. Deactivating a swap area is a long job, and the kernel must
ensure that the other processes in the system still continue to execute. The 
try_to_unuse( ) function continues from this step whenever the process is selected
again by the scheduler.

11. Proceeds with the next page slot, starting at step 1.

The function continues until every reference counter in the swap_map array is null. Recall that
even if the function starts examining the next page slot, the reference counter of the
previous page slot could still be positive. In fact, a "ghost" process could still reference the
page, typically because some memory regions have been temporarily removed from the
process list scanned in step 5. Eventually, try_to_unuse( ) catches every reference. In the
meantime, however, the page is no longer in the swap cache, it is unlocked, and a copy is still
included in the page slot of the swap area being deactivated.

One might expect that this situation could lead to data loss. For instance, suppose that some
"ghost" process accesses the page slot and starts swapping the page in. Because the page is
no longer in the swap cache, the process fills a new page frame with the data read from disk.
However, this page frame would be different from the page frames owned by the processes
that are supposed to share the page with the "ghost" process.

This problem does not arise when deactivating a swap area, because interference from a
ghost process could happen only if a swapped-out page belongs to a private anonymous
memory mapping.[*] In this case, the page frame is handled by means of the Copy On Write
mechanism described in Chapter 9, so it is perfectly legal to assign different page frames to
the processes that reference the page. However, the try_to_unuse( ) function marks the
page as "dirty" (step 9); otherwise, the shrink_list( ) function might later drop the page
from the Page Table of some process without saving it in an another swap area (see the later
section "Swapping Out Pages").

[*] Actually, the page might also belong to an IPC shared memory region; Chapter 19 has a discussion of this case.

17.4.5. Allocating and Releasing a Page Slot

As we will see later, when freeing memory, the kernel swaps out many pages in a short period
of time. It is therefore important to try to store these pages in contiguous slots to minimize
disk seek time when accessing the swap area.

A first approach to an algorithm that searches for a free slot could choose one of two
simplistic, rather extreme strategies:

 Always start from the beginning of the swap area. This approach may increase the
average seek time during swap-out operations, because free page slots may be
scattered far away from one another.

 Always start from the last allocated page slot. This approach increases the average
seek time during swap-in operations if the swap area is mostly free (as is usually the
case), because the handful of occupied page slots may be scattered far away from
one another.

Linux adopts a hybrid approach. It always starts from the last allocated page slot unless one
of these conditions occurs:

 The end of the swap area is reached.

 SWAPFILE_CLUSTER (usually 256) free page slots were allocated after the last restart
from the beginning of the swap area.

The cluster_nr field in the swap_info_struct descriptor stores the number of free page slots
allocated. This field is reset to 0 when the function restarts allocation from the beginning of
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the swap area. The cluster_next field stores the index of the first page slot to be examined in
the next allocation.[*]

[*] As you may have noticed, the names of Linux data structures are not alw ays appropriate. In this case, the kernel does not really
"cluster" page slots of a sw ap area.

To speed up the search for free page slots, the kernel keeps the lowest_bit and highest_bit
fields of each swap area descriptor up-to-date. These fields specify the first and the last
page slots that could be free; in other words, every page slot below lowest_bit and above
highest_bit is known to be occupied.

17.4.5.1. The scan_swap_map( ) function

The scan_swap_map( ) function is used to find a free page slot in a given swap area. It acts on
a single parameter, which points to a swap area descriptor and returns the index of a free
page slot. It returns 0 if the swap area does not contain any free slots. The function performs
the following steps:

1. It tries first to use the current cluster. If the cluster_nr field of the swap area
descriptor is positive, it scans the swap_map array of counters starting from the element
at index cluster_next and looks for a null entry. If a null entry is found, it decreases
the cluster_nr field and goes to step 4.

2. If this point is reached, either the cluster_nr field is null or the search starting from
cluster_next didn't find a null entry in the swap_map array. It is time to try the second
stage of the hybrid search. The function reinitializes cluster_nr to SWAPFILE_CLUSTER
and restarts scanning the array from the lowest_bit index trying to find a group of
SWAPFILE_CLUSTER free page slots. If such a group is found, it goes to step 4.

3. No group of SWAPFILE_CLUSTER free page slots exists. The function restarts scanning the
array from the lowest_bit index trying to find a single free page slot. If no null entry is
found, it sets the lowest_bit field to the maximum index in the array, the highest_bit
field to 0, and returns 0 (the swap area is full).

4. A null entry is found. Puts the value 1 in the entry, decreases nr_swap_pages, updates
the lowest_bit and highest_bit fields if necessary, increases the inuse_pages field by
one, and sets the cluster_next field to the index of the page slot just allocated plus 1.

5. Returns the index of the allocated page slot.

17.4.5.2. The get_swap_page( ) function

The get_swap_page( ) function is used to find a free page slot by searching all the active swap
areas. The function, which returns the swapped-out page identifier of a newly allocated page
slot or 0 if all swap areas are filled, takes into consideration the different priorities of the
active swap areas.

Two passes are done in order to minimize runtime when it's easy to find a page slot. The first
pass is partial and applies only to areas that have a single priority; the function searches such
areas in a Round Robin fashion for a free slot. If no free page slot is found, a second pass is
made starting from the beginning of the swap area list; during this second pass, all swap
areas are examined. More precisely, the function performs the following steps:

1. If nr_swap_pages is null or if there are no active swap areas, it returns 0.

2. Starts by considering the swap area pointed to by swap_list.next (recall that the swap
area list is sorted by decreasing priorities).

3. If the swap area is active, it invokes scan_swap_map( ) to allocate a free page slot. If
scan_swap_map( ) returns a page slot index, the function's job is essentially done, but it
must prepare for its next invocation. Thus, it updates swap_list.next to point to the

Page 708

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


next swap area in the swap area list, if the latter has the same priority (thus
continuing the round-robin use of these swap areas). If the next swap area does not
have the same priority as the current one, the function sets swap_list.next to the first
swap area in the list (so that the next search will start with the swap areas that have
the highest priority). The function finishes by returning the swapped-out page identifier
corresponding to the page slot just allocated.

4. Either the swap area is not writable, or it does not have free page slots. If the next
swap area in the swap area list has the same priority as the current one, the function
makes it the current one and goes to step 3.

5. At this point, the next swap area in the swap area list has a lower priority than the
previous one. The next step depends on which of the two passes the function is
performing.

a. If this is the first (partial) pass, it considers the first swap area in the list and
goes to step 3, thus starting the second pass.

b. Otherwise, it checks if there is a next element in the list; if so, it considers it
and goes to step 3.

6. At this point the list is completely scanned by the second pass and no free page slot
has been found; it returns 0.

17.4.5.3. The swap_free( ) function

The swap_free( ) function is invoked when swapping in a page to decrease the corresponding
swap_map counter (see Table 17-3). When the counter reaches 0, the page slot becomes free
since its identifier is no longer included in any Page Table entry. We'll see in the later section "
The Swap Cache," however, that the swap cache counts as an owner of the page slot.

The function acts on a single entry parameter that specifies a swapped-out page identifier
and performs the following steps:

1. Derives the swap area index and the offset page slot index from the entry parameter
and gets the address of the swap area descriptor.

2. Checks whether the swap area is active and returns right away if it is not.

3. If the swap_map counter corresponding to the page slot being freed is smaller than
SWAP_MAP_MAX, the function decreases it. Recall that entries that have the SWAP_MAP_MAX
value are considered persistent (undeletable).

4. If the swap_map counter becomes 0, the function increases the value of nr_swap_pages,
decreases the inuse_pages field, and updates, if necessary, the lowest_bit and
highest_bit fields of the swap area descriptor.

17.4.6. The Swap Cache

Transferring pages to and from a swap area is an activity that can induce many race
conditions. In particular, the swapping subsystem must handle carefully the following cases:

Multiple swap-ins

Two processes may concurrently try to swap in the same shared anonymous page.

Concurrent swap-ins and swap-outs

A process may swap-in a page that is being swapped out by the PFRA.
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The swap cache has been introduced to solve these kinds of synchronization problems. The
key rule is that nobody can start a swap-in or swap-out without checking whether the swap
cache already includes the affected page. Thanks to the swap cache, concurrent swap
operations affecting the same page always act on the same page frame; therefore, the kernel
may safely rely on the PG_locked flag of the page descriptor to avoid any race condition.

For example, consider two processes that share the same swapped-out page. When the first
process tries to access the page, the kernel starts the swap-in operation. The very first step
consists of checking whether the page frame is already included in the swap cache. Let's
suppose it isn't: then, the kernel allocates a new page frame and inserts it into the swap
cache; next, it starts the I/O operation to read the page's contents from the swap area.
Meanwhile, the second process accesses the shared anonymous page. As above, the kernel
starts a swap-in operation and checks whether the affected page frame is already included in
the swap cache. Now, it is included, thus the kernel simply accesses the page frame
descriptor and puts the current process to sleep until the PG_locked flag is cleared, that is,
until the I/O data transfer completes.

The swap cache plays a crucial role also when concurrent swap-in and swap-out operations
mix up. As explained in the section "Low On Memory Reclaiming" earlier in this chapter, the
shrink_list( ) function starts swapping out an anonymous page only if TRy_to_unmap( )
succeeds in removing the page frame from the User Mode Page Tables of all processes that
own the page. However, one of these processes may access the page and cause a swap-in
while the swap-out write operation is still in progress.

Before being written to disk, each page to be swapped out is stored in the swap cache by 
shrink_list( ). Consider a page P that is shared among two processes, A and B. Initially, the
Page Table entries of both processes contain a reference to the page frame, and the page
has two owners; this case is illustrated in Figure 17-8(a). When the PFRA selects the page for
reclaiming, shrink_list( ) inserts the page frame in the swap cache. As illustrated in Figure
17-8(b), now the page frame has three owners, while the page slot in the swap area is
referenced only by the swap cache. Next, the PFRA invokes try_to_unmap( ) to remove the
references to the page frame from the Page Table of the processes; once this function
terminates, the page frame is referenced only by the swap cache, while the page slot is
referenced by the two processes and the swap cache, as illustrated in Figure 17-8(c). Let's
suppose that, while the page's contents are being written to disk, process B accesses the
pagethat is, it tries to access a memory cell using a linear address inside the page. Then, the
page fault handler finds the page frame in the swap cache and puts back its physical address
in the Page Table entry of process B, as illustrated in Figure 17-8(d). Conversely, if the
swap-out operation terminates without concurrent swap-in operations, the shrink_list( )
function removes the page frame from the swap cache and releases the page frame to the
Buddy system, as illustrated in Figure 17-8(e).

Figure 17-8. The role of the swap cache
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You might consider the swap cache as a transit area containing the page descriptors of
anonymous pages that are being currently swapped-in or swapped out. When the swap-in or
swap-out terminates (in the case of shared anonymous pages, the swap-in or swap-out must
have been performed on all the processes that share the page), the page descriptor of the
anonymous page may be removed from the swap cache.[*]

[*] In some cases, the sw ap cache improves also the system performance: consider a server daemon that services requests by
creating child processes. Under heavy system load, a page can get sw apped out from the parent process, and it w ill never be
paged in for the parent process. Without the sw ap cache, every child process that gets forked off needs to fault that page in from
the sw ap area.

17.4.6.1. Swap cache implementation

The swap cache is implemented by the page cache data structures and procedures, which are
described in the section "The Page Cache" in Chapter 15. Recall that the core of the page
cache is a set of radix trees that allows the algorithm to quickly derive the address of a page
descriptor from the address of an address_space object identifying the owner of the page as
well as from an offset value.

Pages in the swap cache are stored as every other page in the page cache, with the following
special treatment:

 The mapping field of the page descriptor is set to NULL.

 The PG_swapcache flag of the page descriptor is set.

 The private field stores the swapped-out page identifier associated with the page.

Moreover, when the page is put in the swap cache, both the count field of the page descriptor
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and the page slot usage counters are increased, because the swap cache uses both the page
frame and the page slot.

Finally, a single swapper_space address space is used for all pages in the swap cache, so a
single radix tree pointed to by swapper_space.page_tree addresses the pages in the swap
cache. The nrpages field of the swapper_space address space stores the number of pages
contained in the swap cache.

17.4.6.2. Swap cache helper functions

The kernel uses several functions to handle the swap cache; they are based mainly on those
discussed in the section "The Page Cache" in Chapter 15. We show later how these relatively
low-level functions are invoked by higher-level functions to swap pages in and out as needed.

The main functions that handle the swap cache are:

lookup_swap_cache( )

Finds a page in the swap cache through its swapped-out page identifier passed as a
parameter and returns the page descriptor address. It returns 0 if the page is not
present in the cache. To find the required page, it invokes radix_tree_lookup( ),
passing as parameters a pointer to swapper_space.page_treethe radix tree used for
pages in the swap cacheand the swapped-out page identifier.

add_to_swap_cache( )

Inserts a page into the swap cache. It essentially invokes swap_duplicate( ) to check
whether the page slot passed as a parameter is valid and to increase the page slot
usage counter; then, it invokes radix_tree_insert( ) to insert the page into the
cache; finally, it increases the page's reference counter and sets the PG_swapcache
and PG_locked flags.

_ _add_to_swap_cache( )

Similar to add_to_swap_cache( ), except that the function does not invoke
swap_duplicate( ) before inserting the page frame in the swap cache.

delete_from_swap_cache( )

Removes a page from the swap cache by invoking radix_tree_delete( ), decreases the
corresponding usage counter in swap_map, and decreases the page reference counter.

free_page_and_swap_cache( )

Removes a page from the swap cache if no User Mode process besides current is
referencing the corresponding page slot, and decreases the page's usage counter.

free_pages_and_swap_cache( )

Analogous to free_page_and_swap_cache( ), but operates on a set of pages.

free_swap_and_cache( )

Frees a swap entry, and checks whether the page referenced by the entry is in the
swap cache. If either no User Mode process, besides current, is referencing the page
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or more than 50% of the swap entries are busy, the function removes the page from
the swap cache.

17.4.7. Swapping Out Pages

We have seen in the section "Low On Memory Reclaiming" earlier in this chapter how the PFRA
determines whether a given anonymous page should be swapped out. In this section we show
how the kernel performs a swap-out.

17.4.7.1. Inserting the page frame in the swap cache

The first step of a swap-out operation consists of preparing the swap cache. If the 
shrink_list( ) function determines that a page is anonymous (the PageAnon( ) function
returns 1) and that the swap cache does not include the corresponding page frame (the 
PG_swapcache flag in the page descriptor is clear), the kernel invokes the add_to_swap( )
function.

The add_to_swap( ) function allocates a new page slot in a swap area and inserts a page
framewhose page descriptor address is passed as its parameterin the swap cache. Essentially,
the function performs the following steps:

1. Invokes get_swap_page( ) to allocate a new page slot; see the section "Allocating and
Releasing a Page Slot" earlier in this chapter. Returns 0 in case of failure (for example,
no free page slot found).

2. Invokes _ _add_to_page_cache( ), passing to it the page slot index, the page descriptor
address, and some allocation flags.

3. Sets the PG_uptodate and PG_dirty flags in the page descriptor, so that the
shrink_list( ) function will be forced to write the page to disk (see the next section).

4. Returns 1 (success).

17.4.7.2. Updating the Page Table entries

Once add_to_swap( ) terminates, shrink_list( ) invokes try_to_unmap( ), which determines
the address of every User Mode page table entry referring to the anonymous page and writes
into it a swapped-out page identifier; this is described in the section "Reverse Mapping for
Anonymous Pages" earlier in this chapter.

17.4.7.3. Writing the page into the swap area

The next action to be performed to complete the swap-out consists of writing the page's
contents into the swap area. This I/O transfer is activated by the shrink_list( ) function,
which checks whether the PG_dirty flag of the page frame is set and consequently executes
the pageout( ) function (see Figure 17-5 earlier in this chapter).

As explained in the section "Low On Memory Reclaiming" earlier in this chapter, the pageout( )
function sets up a writeback_control descriptor and invokes the writepage method of the
page's address_space object. The writepage method of the swapper_state object is
implemented by the swap_writepage( ) function.

The swap_writepage( ) function, in turn, performs essentially the following steps:

1. Checks whether at least one User Mode process is referencing the page. If not, it
removes the page from the swap cache and returns 0. This check is necessary
because a process might race with the PRFA and release a page after the check
performed by shrink_list( ).

2. Invokes get_swap_bio( ) to allocate and initialize a bio descriptor (see the section "The
Bio Structure" in Chapter 14). The function derives the address of the swap area
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descriptor from the swapped-out page identifier; then, it walks the swap extent lists to
determine the initial disk sector of the page slot. The bio descriptor will include a
request for a single page of data (the page slot); the completion method is set to the 
end_swap_bio_write( ) function.

3. Sets the PG_writeback flag in the page descriptor and the writeback tags in the swap
cache's radix tree (see the section "The Tags of the Radix Tree" in Chapter 15).
Moreover, the function resets the PG_locked flag.

4. Invokes submit_bio( ), passing to it the WRITE command and the bio descriptor
address.

5. Returns 0.

Once the I/O data transfer terminates, the end_swap_bio_write( ) function is executed.
Essentially, this function wakes up any process waiting until the PG_writeback flag of the page
is cleared, clears the PG_writeback flag and the corresponding tags in the radix tree, and
releases the bio descriptor used for the I/O transfer.

17.4.7.4. Removing the page frame from the swap cache

The last step of the swap-out operation is performed once more by shrink_list( ): if it
verifies that no process has tried to access the page frame while doing the I/O data transfer,
it essentially invokes delete_from_swap_cache( ) to remove the page frame from the swap
cache. Because the swap cache was the only owner of the page, the page frame is released
to the buddy system.

17.4.8. Swapping in Pages

Swap-in takes place when a process attempts to address a page that has been swapped out
to disk. The Page Fault exception handler triggers a swap-in operation when the following
conditions occur (see the section "Handling a Faulty Address Inside the Address Space" in
Chapter 9):

 The page including the address that caused the exception is a valid onethat is, it
belongs to a memory region of the current process.

 The page is not present in memorythat is, the Present flag in the Page Table entry is
cleared.

 The Page Table entry associated with the page is not null, but the Dirty bit is clear;
this means that the entry contains a swapped-out page identifier (see the section "
Demand Paging" in Chapter 9).

If all the above conditions are satisfied, handle_pte_fault( ) invokes a quite handy
do_swap_page( ) function to swap in the page required.

17.4.8.1. The do_swap_page( ) function

The do_swap_page( ) function acts on the following parameters:

mm

Memory descriptor address of the process that caused the Page Fault exception

vma

Memory region descriptor address of the region that includes address
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address

Linear address that causes the exception

page_table

Address of the Page Table entry that maps address

pmd

Address of the Page Middle Directory that maps address

orig_pte

Content of the Page Table entry that maps address

write_access

Flag denoting whether the attempted access was a read or a write

Contrary to other functions, do_swap_page( ) never returns 0. It returns 1 if the page is
already in the swap cache (minor fault), 2 if the page was read from the swap area (major
fault), and -1 if an error occurred while performing the swap-in. It essentially executes the
following steps:

1. Gets the swapped-out page identifier from orig_pte.

2. Invokes pte_unmap( ) to release any temporary kernel mapping for the Page Table
created by the handle_mm_fault( ) function (see the section "Handling a Faulty
Address Inside the Address Space" in Chapter 9). As explained in the section "Kernel
Mappings of High-Memory Page Frames" in Chapter 8, a kernel mapping is required to
access a page table in high memory.

3. Releases the page_table_lock spin lock of the memory descriptor (it was acquired by
the caller function handle_pte_fault( )).

4. Invokes lookup_swap_cache( ) to check whether the swap cache already contains a
page corresponding to the swapped-out page identifier; if the page is already in the
swap cache, it jumps to step 6.

5. Invokes the swapin_readahead( ) function to read from the swap area a group of at
most 2n pages, including the requested one. The value n is stored in the page_cluster
variable, and is usually equal to 3.[*] Each page is read by invoking the
read_swap_cache_async( ) function (see below).

[*] The system administrator may tune this value by writing into the /proc/sys/vm/page-cluster file.
Swap-in read-ahead can be disabled by setting page_cluster to 0.

6. Invokes read_swap_cache_async( ) once more to swap in precisely the page accessed
by the process that caused the Page Fault. This step might appear redundant, but it
isn't really. The swapin_readahead( ) function might fail in reading the requested
pagefor instance, because page_cluster is set to 0 or the function tried to read a
group of pages including a free page slot or a defective page slot (SWAP_MAP_BAD). On
the other hand, if swapin_readahead( ) succeeded, this invocation of
read_swap_cache_async( ) terminates quickly because it finds the page in the swap
cache.

7. If, despite all efforts, the requested page was not added to the swap cache, another

Page 715

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


kernel control path might have already swapped in the requested page on behalf of a
clone of this process. This case is checked by temporarily acquiring the 
page_table_lock spin lock and comparing the entry to which page_table points with
orig_pte. If they differ, the page has already been swapped in by some other kernel
control path, so the function returns 1 (minor fault); otherwise, it returns -1 (failure).

8. At this point, we know that the page is in the swap cache. If the page has been
effectively swapped in (major fault), the function invokes grab_swap_token( ) to try to
grab the swap token (see the section "The Swap Token" earlier in this chapter).

9. Invokes mark_page_accessed( ) (see the earlier section "The Least Recently Used (LRU)
Lists") and locks the page.

10. Acquires the page_table_lock spin lock.

11. Checks whether another kernel control path has swapped in the requested page on
behalf of a clone of this process. In this case, it releases the page_table_lock spin
lock, unlocks the page, and returns 1 (minor fault).

12. Invokes swap_free( ) to decrease the usage counter of the page slot corresponding to
enTRy.

13. Checks whether the swap cache is at least 50 percent full (nr_swap_pages is smaller
than half of total_swap_pages). If so, it checks whether the page is owned only by the
process that caused the fault (or one of its clones); if this is the case, removes the
page from the swap cache.

14. Increases the rss field of the process's memory descriptor.

15. Updates the Page Table entry so the process can find the page. The function
accomplishes this by writing the physical address of the requested page and the
protection bits found in the vm_page_prot field of the memory region into the Page
Table entry addressed by page_table. Moreover, if the access that caused the fault
was a write and the faulting process is the unique owner of the page, the function also
sets the Dirty flag and the Read/Write flag to prevent a useless Copy On Write fault.

16. Unlocks the page.

17. Invokes page_add_anon_rmap( ) to insert the anonymous page in the object-based
reverse mapping data structures (see the section "Reverse Mapping for Anonymous
Pages" earlier in this chapter.)

18. If the write_access parameter is equal to 1, the function invokes do_wp_page( ) to
make a copy of the page frame (see the section "Copy On Write" in Chapter 9).

19. Releases the mm->page_table_lock spin lock and returns the ret return code: 1 (minor
fault) or 2 (major fault).

17.4.8.2. The read_swap_cache_async( ) function

The read_swap_cache_async( ) function is invoked whenever the kernel must swap in a page. It
acts on three parameters:

entry

A swapped-out page identifier

vma

A pointer to the memory region that should contain the page
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addr

The linear address of the page

As we know, before accessing the swap partition, the function must check whether the swap
cache already includes the desired page frame. Therefore, the function essentially executes
the following operations:

1. Invokes radix_tree_lookup( ) to locate in the radix tree of the swapper_space object a
page frame at the position given by the swapped-out page identifier enTRy. If the page
is found, it increases its reference counter and returns the address of its descriptor.

2. The page is not included in the swap cache. Invokes alloc_pages( ) to allocate a new
page frame. If no free page frame is available, it returns 0 (indicating the system is out
of memory).

3. Invokes add_to_swap_cache( ) to insert the page descriptor of the new page frame into
the swap cache. As mentioned in the earlier section "Swap cache helper functions,"
this function also locks the page.

4. The previous step might fail if add_to_swap_cache( ) finds a duplicate of the page in the
swap cache. For instance, the process could block in step 2, thus allowing another
process to start a swap-in operation on the same page slot. In this case, it releases
the page frame allocated in step 2 and restarts from step 1.

5. Invokes lru_cache_add_active( ) to insert the page in the LRU active list (see the
section "The Least Recently Used (LRU) Lists" earlier in this chapter).

6. The page descriptor of the new page frame is now in the swap cache. Invokes 
swap_readpage( ) to read the page's contents from the swap area. This function is
quite similar to swap_writepage( ) described in the earlier section "Swapping Out Pages
:" it clears the PG_uptodate flag of the page descriptor, invokes get_swap_bio( ) to
allocate and initialize a bio descriptor for the I/O transfer, and invokes submit_bio( )
to submit the I/O request to the block subsystem layer.

7. Returns the address of the page descriptor.
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Chapter 18. The Ext2 and Ext3
Filesystems
In this chapter, we finish our extensive discussion of I/O and filesystems by taking a look at
the details the kernel has to take care of when interacting with a specific filesystem. Because
the Second Extended Filesystem (Ext2) is native to Linux and is used on virtually every Linux
system, it is a natural choice for this discussion. Furthermore, Ext2 illustrates a lot of good
practices in its support for modern filesystem features with fast performance. To be sure,
other filesystems supported by Linux include many interesting features, but we have no room
to examine all of them.

After introducing Ext2 in the section "General Characteristics of Ext2," we describe the data
structures needed, just as in other chapters. Because we are looking at a specific way to
store data on disk, we have to consider two versions of the same data structures. The
section "Ext2 Disk Data Structures" shows the data structures stored by Ext2 on disk, while
"Ext2 Memory Data Structures" shows the corresponding versions in memory.

Then we get to the operations performed on the filesystem. In the section "Creating the Ext2
Filesystem," we discuss how Ext2 is created in a disk partition. The next sections describe the
kernel activities performed whenever the disk is used. Most of these are relatively low-level
activities dealing with the allocation of disk space to inodes and data blocks.

In the last section, we give a short description of the Ext3 filesystem, which is the next step
in the evolution of the Ext2 filesystem .
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18.1. General Characteristics of Ext2
Unix-like operating systems use several types of filesystems. Although the files of all such
filesystems have a common subset of attributes required by a few POSIX APIs such as stat( )
, each filesystem is implemented in a different way.

The first versions of Linux were based on the MINIX filesystem. As Linux matured, the
Extended Filesystem (Ext FS) was introduced; it included several significant extensions, but
offered unsatisfactory performance. The Second Extended Filesystem (Ext2) was introduced
in 1994; besides including several new features , it is quite efficient and robust and is,
together with its offspring Ext3, the most widely used Linux filesystem.

The following features contribute to the efficiency of Ext2:

 When creating an Ext2 filesystem, the system administrator may choose the optimal
block size (from 1,024 to 4,096 bytes), depending on the expected average file length.
For instance, a 1,024-block size is preferable when the average file length is smaller
than a few thousand bytes because this leads to less internal fragmentationthat is,
less of a mismatch between the file length and the portion of the disk that stores it
(see the section "Memory Area Management" in Chapter 8, where internal
fragmentation for dynamic memory was discussed). On the other hand, larger block
sizes are usually preferable for files greater than a few thousand bytes because this
leads to fewer disk transfers, thus reducing system overhead.

 When creating an Ext2 filesystem, the system administrator may choose how many
inodes to allow for a partition of a given size, depending on the expected number of
files to be stored on it. This maximizes the effectively usable disk space.

 The filesystem partitions disk blocks into groups. Each group includes data blocks and
inodes stored in adjacent tracks. Thanks to this structure, files stored in a single block
group can be accessed with a lower average disk seek time.

 The filesystem preallocates disk data blocks to regular files before they are actually
used. Thus, when the file increases in size, several blocks are already reserved at
physically adjacent positions, reducing file fragmentation.

 Fast symbolic links (see the section "Hard and Soft Links" in Chapter 1) are supported.
If the symbolic link represents a short pathname (at most 60 characters), it can be
stored in the inode and can thus be translated without reading a data block.

Moreover, the Second Extended Filesystem includes other features that make it both robust
and flexible:

 A careful implementation of file-updating that minimizes the impact of system crashes.
For instance, when creating a new hard link for a file, the counter of hard links in the
disk inode is increased first, and the new name is added into the proper directory next.
In this way, if a hardware failure occurs after the inode update but before the
directory can be changed, the directory is consistent, even if the inode's hard link
counter is wrong. Deleting the file does not lead to catastrophic results, although the
file's data blocks cannot be automatically reclaimed. If the reverse were done
(changing the directory before updating the inode), the same hardware failure would
produce a dangerous inconsistency: deleting the original hard link would remove its
data blocks from disk, yet the new directory entry would refer to an inode that no
longer exists. If that inode number were used later for another file, writing into the
stale directory entry would corrupt the new file.

 Support for automatic consistency checks on the filesystem status at boot time. The
checks are performed by the e2fsck external program, which may be activated not only
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after a system crash, but also after a predefined number of filesystem mounts (a
counter is increased after each mount operation) or after a predefined amount of time
has elapsed since the most recent check.

 Support for immutable files (they cannot be modified, deleted, or renamed) and for
append-only files (data can be added only to the end of them).

 Compatibility with both the Unix System V Release 4 and the BSD semantics of the user
group ID for a new file. In SVR4, the new file assumes the user group ID of the process
that creates it; in BSD, the new file inherits the user group ID of the directory
containing it. Ext2 includes a mount option that specifies which semantic to use.

Even if the Ext2 filesystem is a mature, stable program, several additional features have been
considered for inclusion. Some of them have already been coded and are available as external
patches. Others are just planned, but in some cases, fields have already been introduced in
the Ext2 inode for them. The most significant features being considered are:

Block fragmentation

System administrators usually choose large block sizes for accessing disks, because
computer applications often deal with large files. As a result, small files stored in large
blocks waste a lot of disk space. This problem can be solved by allowing several files to
be stored in different fragments of the same block.

Handling of transparently compressed and encrypted files

These new options, which must be specified when creating a file, allow users to
transparently store compressed and/or encrypted versions of their files on disk.

Logical deletion

An undelete option allows users to easily recover, if needed, the contents of a
previously removed file.

Journaling

Journaling avoids the time-consuming check that is automatically performed on a
filesystem when it is abruptly unmounted for instance, as a consequence of a system
crash.

In practice, none of these features has been officially included in the Ext2 filesystem. One
might say that Ext2 is victim of its success; it has been the preferred filesystem adopted by
most Linux distribution companies until a few years ago, and the millions of users who relied on
it every day would have looked suspiciously at any attempt to replace Ext2 with some other
filesystem.

The most compelling feature missing from Ext2 is journaling, which is required by
high-availability servers. To provide for a smooth transition, journaling has not been
introduced in the Ext2 filesystem; rather, as we'll discuss in the later section "The Ext3
Filesystem," a more recent filesystem that is fully compatible with Ext2 has been created,
which also offers journaling. Users who do not really require journaling may continue to use
the good old Ext2 filesystem, while the others will likely adopt the new filesystem. Nowadays,
most distributions adopt Ext3 as the standard filesystem.
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18.2. Ext2 Disk Data Structures
The first block in each Ext2 partition is never managed by the Ext2 filesystem, because it is
reserved for the partition boot sector (see Appendix A). The rest of the Ext2 partition is split
into block groups , each of which has the layout shown in Figure 18-1. As you will notice from
the figure, some data structures must fit in exactly one block, while others may require more
than one block. All the block groups in the filesystem have the same size and are stored
sequentially, thus the kernel can derive the location of a block group in a disk simply from its
integer index.

Figure 18-1. Layouts of an Ext2 partition and of an Ext2 block group

Block groups reduce file fragmentation, because the kernel tries to keep the data blocks
belonging to a file in the same block group, if possible. Each block in a block group contains
one of the following pieces of information:

 A copy of the filesystem's superblock

 A copy of the group of block group descriptors

 A data block bitmap

 An inode bitmap

 A table of inodes

 A chunk of data that belongs to a file; i.e., data blocks

If a block does not contain any meaningful information, it is said to be free.

As you can see from Figure 18-1, both the superblock and the group descriptors are
duplicated in each block group. Only the superblock and the group descriptors included in
block group 0 are used by the kernel, while the remaining superblocks and group descriptors
are left unchanged; in fact, the kernel doesn't even look at them. When the e2fsck program
executes a consistency check on the filesystem status, it refers to the superblock and the
group descriptors stored in block group 0, and then copies them into all other block groups. If
data corruption occurs and the main superblock or the main group descriptors in block group 0
become invalid, the system administrator can instruct e2fsck to refer to the old copies of the
superblock and the group descriptors stored in a block groups other than the first. Usually, the
redundant copies store enough information to allow e2fsck to bring the Ext2 partition back to
a consistent state.

How many block groups are there? Well, that depends both on the partition size and the block
size. The main constraint is that the block bitmap, which is used to identify the blocks that
are used and free inside a group, must be stored in a single block. Therefore, in each block
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group, there can be at most 8xb blocks, where b is the block size in bytes. Thus, the total
number of block groups is roughly s/(8xb), where s is the partition size in blocks.

For example, let's consider a 32-GB Ext2 partition with a 4-KB block size. In this case, each
4-KB block bitmap describes 32K data blocks that is, 128 MB. Therefore, at most 256 block
groups are needed. Clearly, the smaller the block size, the larger the number of block groups.

18.2.1. Superblock

An Ext2 disk superblock is stored in an ext2_super_block structure, whose fields are listed in
Table 18-1.[*] The _ _u8, _ _u16, and _ _u32 data types denote unsigned numbers of length 8,
16, and 32 bits respectively, while the _ _s8, _ _s16, _ _s32 data types denote signed
numbers of length 8, 16, and 32 bits. To explicitly specify the order in which the bytes of a
word or double-word are stored on disk, the kernel also makes use of the _ _le16, _ _le32, _
_be16, and _ _be32 data types; the former two types denote the little-endian ordering for
words and double-words (the least significant byte is stored at the highest address),
respectively, while the latter two types denote the big-endian ordering (the most significant
byte is stored at the highest address).

[*] To ensure compatibility betw een the Ext2 and Ext3 filesystems, the ext2_super_block data structure includes some Ext3-specific
fields, w hich are not show n in Table 18-1.

Table 18-1. The fields of the Ext2 superblock

Type Field Description

_ _le32 s_inodes_count Total number of inodes

_ _le32 s_blocks_count Filesystem size in blocks

_ _le32 s_r_blocks_count Number of reserved blocks

_ _le32 s_free_blocks_count Free blocks counter

_ _le32 s_free_inodes_count Free inodes counter

_ _le32 s_first_data_block Number of first useful block (always 1)

_ _le32 s_log_block_size Block size

_ _le32 s_log_frag_size Fragment size

_ _le32 s_blocks_per_group Number of blocks per group

_ _le32 s_frags_per_group Number of fragments per group

_ _le32 s_inodes_per_group Number of inodes per group

_ _le32 s_mtime Time of last mount operation

_ _le32 s_wtime Time of last write operation

_ _le16 s_mnt_count Mount operations counter

_ _le16 s_max_mnt_count Number of mount operations before check
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Table 18-1. The fields of the Ext2 superblock

Type Field Description

_ _le16 s_magic Magic signature

_ _le16 s_state Status flag

_ _le16 s_errors Behavior when detecting errors

_ _le16 s_minor_rev_level Minor revision level

_ _le32 s_lastcheck Time of last check

_ _le32 s_checkinterval Time between checks

_ _le32 s_creator_os OS where filesystem was created

_ _le32 s_rev_level Revision level of the filesystem

_ _le16 s_def_resuid Default UID for reserved blocks

_ _le16 s_def_resgid Default user group ID for reserved blocks

_ _le32 s_first_ino Number of first nonreserved inode

_ _le16 s_inode_size Size of on-disk inode structure

_ _le16 s_block_group_nr Block group number of this superblock

_ _le32 s_feature_compat Compatible features bitmap

_ _le32 s_feature_incompat Incompatible features bitmap

_ _le32 s_feature_ro_compat Read-only compatible features bitmap

_ _u8 [16] s_uuid 128-bit filesystem identifier

char [16] s_volume_name Volume name

char [64] s_last_mounted Pathname of last mount point

_ _le32 s_algorithm_usage_bitmap Used for compression

_ _u8 s_prealloc_blocks Number of blocks to preallocate

_ _u8 s_prealloc_dir_blocks Number of blocks to preallocate for directories

_ _u16 s_padding1 Alignment to word

_ _u32 [204] s_reserved Nulls to pad out 1,024 bytes
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The s_inodes_count field stores the number of inodes, while the s_blocks_count field stores the
number of blocks in the Ext2 filesystem.

The s_log_block_size field expresses the block size as a power of 2, using 1,024 bytes as the
unit. Thus, 0 denotes 1,024-byte blocks, 1 denotes 2,048-byte blocks, and so on. The 
s_log_frag_size field is currently equal to s_log_block_size, because block fragmentation is
not yet implemented.

The s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the number of
blocks, fragments, and inodes in each block group, respectively.

Some disk blocks are reserved to the superuser (or to some other user or group of users
selected by the s_def_resuid and s_def_resgid fields). These blocks allow the system
administrator to continue to use the filesystem even when no more free blocks are available
for normal users.

The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set up the Ext2
filesystem to be checked automatically at boot time. These fields cause e2fsck to run after a
predefined number of mount operations has been performed, or when a predefined amount of
time has elapsed since the last consistency check. (Both kinds of checks can be used
together.) The consistency check is also enforced at boot time if the filesystem has not been
cleanly unmounted (for instance, after a system crash) or when the kernel discovers some
errors in it. The s_state field stores the value 0 if the filesystem is mounted or was not cleanly
unmounted, 1 if it was cleanly unmounted, and 2 if it contains errors.

18.2.2. Group Descriptor and Bitmap

Each block group has its own group descriptor, an ext2_group_desc structure whose fields are
illustrated in Table 18-2.

Table 18-2. The fields of the Ext2 group descriptor

Type Field Description

_ _le32 bg_block_bitmap Block number of block bitmap 

_ _le32 bg_inode_bitmap Block number of inode bitmap

_ _le32 bg_inode_table Block number of first inode table block

_ _le16 bg_free_blocks_count Number of free blocks in the group

_ _le16 bg_free_inodes_count Number of free inodes in the group

_ _le16 bg_used_dirs_count Number of directories in the group

_ _le16 bg_pad Alignment to word

_ _le32 [3] bg_reserved Nulls to pad out 24 bytes

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are used when
allocating new inodes and data blocks. These fields determine the most suitable block in which
to allocate each data structure. The bitmaps are sequences of bits, where the value 0
specifies that the corresponding inode or data block is free and the value 1 specifies that it is
used. Because each bitmap must be stored inside a single block and because the block size
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can be 1,024, 2,048, or 4,096 bytes, a single bitmap describes the state of 8,192, 16,384, or
32,768 blocks.

18.2.3. Inode Table

The inode table consists of a series of consecutive blocks, each of which contains a
predefined number of inodes. The block number of the first block of the inode table is stored in
the bg_inode_table field of the group descriptor.

All inodes have the same size: 128 bytes. A 1,024-byte block contains 8 inodes, while a
4,096-byte block contains 32 inodes. To figure out how many blocks are occupied by the
inode table, divide the total number of inodes in a group (stored in the s_inodes_per_group
field of the superblock) by the number of inodes per block.

Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 18-3.

Table 18-3. The fields of an Ext2 disk inode

Type Field Description

_ _le16 i_mode File type and access rights

_ _le16 i_uid Owner identifier

_ _le32 i_size File length in bytes

_ _le32 i_atime Time of last file access

_ _le32 i_ctime Time that inode last changed

_ _le32 i_mtime Time that file contents last changed

_ _le32 i_dtime Time of file deletion

_ _le16 i_gid User group identifier

_ _le16 i_links_count Hard links counter

_ _le32 i_blocks Number of data blocks of the file

_ _le32 i_flags File flags

union osd1 Specific operating system information

_ _le32 [EXT2_N_BLOCKS] i_block Pointers to data blocks

_ _le32 i_generation
File version (used when the file is accessed by a

network filesystem)

_ _le32 i_file_acl File access control list

_ _le32 i_dir_acl Directory access control list
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Table 18-3. The fields of an Ext2 disk inode

Type Field Description

_ _le32 i_faddr Fragment address

union osd2 Specific operating system information

Many fields related to POSIX specifications are similar to the corresponding fields of the VFS's
inode object and have already been discussed in the section "Inode Objects" in Chapter 12.
The remaining ones refer to the Ext2-specific implementation and deal mostly with block
allocation.

In particular, the i_size field stores the effective length of the file in bytes, while the
i_blocks field stores the number of data blocks (in units of 512 bytes) that have been
allocated to the file.

The values of i_size and i_blocks are not necessarily related. Because a file is always stored
in an integer number of blocks, a nonempty file receives at least one data block (since
fragmentation is not yet implemented) and i_size may be smaller than 512 xi_blocks. On the
other hand, as we'll see in the section "File Holes" later in this chapter, a file may contain
holes. In that case, i_size may be greater than 512 xi_blocks.

The i_block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to identify
the data blocks allocated to the file (see the section "Data Blocks Addressing" later in this
chapter).

The 32 bits reserved for the i_size field limit the file size to 4 GB. Actually, the highest-order
bit of the i_size field is not used, so the maximum file size is limited to 2 GB. However, the
Ext2 filesystem includes a "dirty trick" that allows larger files on systems that sport a 64-bit
processor such as AMD's Opteron or IBM's PowerPC G5. Essentially, the i_dir_acl field of the
inode, which is not used for regular files, represents a 32-bit extension of the i_size field.
Therefore, the file size is stored in the inode as a 64-bit integer. The 64-bit version of the
Ext2 filesystem is somewhat compatible with the 32-bit version because an Ext2 filesystem
created on a 64-bit architecture may be mounted on a 32-bit architecture, and vice versa. On
a 32-bit architecture, a large file cannot be accessed, unless opening the file with the 
O_LARGEFILE flag set (see the section "The open( ) System Call" in Chapter 12).

Recall that the VFS model requires each file to have a different inode number. In Ext2, there is
no need to store on disk a mapping between an inode number and the corresponding block
number because the latter value can be derived from the block group number and the relative
position inside the inode table. For example, suppose that each block group contains 4,096
inodes and that we want to know the address on disk of inode 13,021. In this case, the inode
belongs to the third block group and its disk address is stored in the 733rd entry of the
corresponding inode table. As you can see, the inode number is just a key used by the Ext2
routines to retrieve the proper inode descriptor on disk quickly.

18.2.4. Extended Attributes of an Inode

The Ext2 inode format is a kind of straitjacket for filesystem designers. The length of an inode
must be a power of 2 to avoid internal fragmentation in the blocks that store the inode table.
Actually, most of the 128 characters of an Ext2 inode are currently packed with information,
and there is little room left for additional fields. On the other hand, expanding the inode length
to 256 would be quite wasteful, besides introducing compatibility problems between Ext2
filesystems that use different inode lengths.

Extended attributes have been introduced to overcome the above limitation. These attributes
are stored on a disk block allocated outside of any inode. The i_file_acl field of an inode

Page 726

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


points to the block containing the extended attributes . Different inodes that have the same
set of extended attributes may share the same block.

Each extended attribute has a name and a value. Both of them are encoded as variable length
arrays of characters, as specified by the ext2_xattr_entry descriptor. Figure 18-2 shows the
layout in Ext2 of the extended attributes inside a block. Each attribute is split in two parts:
the ext2_xattr_entry descriptor together with the name of the attribute are placed at the
beginning of the block, while the value of the attribute is placed at the end of the block. The
entries at the beginning of the block are ordered according to the attribute names, while the
positions of the values are fixed, because they are determined by the allocation order of the
attributes.

Figure 18-2. Layout of a block containing extended attributes

There are many system calls used to set, retrieve, list, and remove the extended attributes of
a file. The setxattr( ) , lsetxattr( ) , and fsetxattr( ) system calls set an extended
attribute of a file; essentially, they differ in how symbolic links are handled, and in how the file
is specified (either passing a pathname or a file descriptor). Similarly, the getxattr( ) ,
lgetxattr( ) , and fgetxattr( ) system calls return the value of an extended attribute. The
listxattr( ), llistxattr( ) , and flistxattr( ) list all extended attributes of a file. Finally,
the removexattr( ) , lremovexattr( ) , and fremovexattr( ) system calls remove an extended
attribute from a file.

18.2.5. Access Control Lists

Access control lists were proposed a long time ago to improve the file protection mechanism in
Unix filesystems. Instead of classifying the users of a file under three classesowner, group,
and othersan access control list (ACL) can be associated with each file. Thanks to this kind of
list, a user may specify for each of his files the names of specific users (or groups of users)
and the privileges to be given to these users.

Linux 2.6 fully supports ACLs by making use of inode extended attributes. As a matter of fact,
extended attributes have been introduced mainly to support ACLs. Therefore, the chacl( ) ,
setfacl( ) , and getfacl( ) library functions, which allow you to manipulate the ACLs of a file,
rely essentially upon the setxattr( ) and getxattr( ) system calls introduced in the previous
section.

Unfortunately, the outcome of a working group that defined security extensions within the
POSIX 1003.1 family of standards has never been formalized as a new POSIX standard. As a
result, ACLs are supported nowadays on different filesystem types on many UNIX-like
systems, albeit with a number of subtle differences among the different implementations.

18.2.6. How Various File Types Use Disk Blocks

The different types of files recognized by Ext2 (regular files, pipes, etc.) use data blocks in
different ways. Some files store no data and therefore need no data blocks at all. This section
discusses the storage requirements for each type, which are listed in Table 18-4.
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Table 18-4. Ext2 file types

File_type Description

0 Unknown

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe

6 Socket

7 Symbolic link

18.2.6.1. Regular file

Regular files are the most common case and receive almost all the attention in this chapter.
But a regular file needs data blocks only when it starts to have data. When first created, a
regular file is empty and needs no data blocks; it can also be emptied by the truncate( ) or
open( ) system calls. Both situations are common; for instance, when you issue a shell
command that includes the string >filename, the shell creates an empty file or truncates an
existing one.

18.2.6.2. Directory

Ext2 implements directories as a special kind of file whose data blocks store filenames
together with the corresponding inode numbers. In particular, such data blocks contain
structures of type ext2_dir_entry_2. The fields of that structure are shown in Table 18-5. The
structure has a variable length, because the last name field is a variable length array of up to
EXT2_NAME_LEN characters (usually 255). Moreover, for reasons of efficiency, the length of a
directory entry is always a multiple of 4 and, therefore, null characters (\0) are added for
padding at the end of the filename, if necessary. The name_len field stores the actual filename
length (see Figure 18-3).

Table 18-5. The fields of an Ext2 directory entry

Type Field Description

_ _le32 inode Inode number

_ _le16 rec_len Directory entry length

_ _u8 name_len Filename length

_ _u8 file_type File type

char [EXT2_NAME_LEN] name Filename
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The file_type field stores a value that specifies the file type (see Table 18-4). The rec_len
field may be interpreted as a pointer to the next valid directory entry: it is the offset to be
added to the starting address of the directory entry to get the starting address of the next
valid directory entry. To delete a directory entry, it is sufficient to set its inode field to 0 and
suitably increment the value of the rec_len field of the previous valid entry. Read the rec_len
field of Figure 18-3 carefully; you'll see that the oldfile entry was deleted because the rec_len
field of usr is set to 12+16 (the lengths of the usr and oldfile entries).

Figure 18-3. An example of the Ext2 directory

18.2.6.3. Symbolic link

As stated before, if the pathname of a symbolic link has up to 60 characters, it is stored in
the i_block field of the inode, which consists of an array of 15 4-byte integers; no data block
is therefore required. If the pathname is longer than 60 characters, however, a single data
block is required.

18.2.6.4. Device file, pipe, and socket

No data blocks are required for these kinds of files. All the necessary information is stored in
the inode.
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18.3. Ext2 Memory Data Structures
For the sake of efficiency, most information stored in the disk data structures of an Ext2
partition are copied into RAM when the filesystem is mounted, thus allowing the kernel to
avoid many subsequent disk read operations. To get an idea of how often some data
structures change, consider some fundamental operations:

 When a new file is created, the values of the s_free_inodes_count field in the Ext2
superblock and of the bg_free_inodes_count field in the proper group descriptor must be
decreased.

 If the kernel appends some data to an existing file so that the number of data blocks
allocated for it increases, the values of the s_free_blocks_count field in the Ext2
superblock and of the bg_free_blocks_count field in the group descriptor must be
modified.

 Even just rewriting a portion of an existing file involves an update of the s_wtime field
of the Ext2 superblock.

Because all Ext2 disk data structures are stored in blocks of the Ext2 partition, the kernel uses
the page cache to keep them up-to-date (see the section "Writing Dirty Pages to Disk" in
Chapter 15).

Table 18-6 specifies, for each type of data related to Ext2 filesystems and files, the data
structure used on the disk to represent its data, the data structure used by the kernel in
memory, and a rule of thumb used to determine how much caching is used. Data that is
updated very frequently is always cached; that is, the data is permanently stored in memory
and included in the page cache until the corresponding Ext2 partition is unmounted. The kernel
gets this result by keeping the page's usage counter greater than 0 at all times.

Table 18-6. VFS images of Ext2 data structures

Type Disk data structure Memory data structure Caching mode

Superblock ext2_super_block ext2_sb_info Always cached

Group descriptor ext2_group_desc ext2_group_desc Always cached

Block bitmap Bit array in block Bit array in buffer Dynamic

inode bitmap Bit array in block Bit array in buffer Dynamic

inode ext2_inode ext2_inode_info Dynamic

Data block Array of bytes VFS buffer Dynamic

Free inode ext2_inode None Never

Free block Array of bytes None Never

The never-cached data is not kept in any cache because it does not represent meaningful
information. Conversely, the always-cached data is always present in RAM, thus it is never
necessary to read the data from disk (periodically, however, the data must be written back to

Page 730

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


disk). In between these extremes lies the dynamic mode. In this mode, the data is kept in a
cache as long as the associated object (inode, data block, or bitmap) is in use; when the file
is closed or the data block is deleted, the page frame reclaiming algorithm may remove the
associated data from the cache.

It is interesting to observe that inode and block bitmaps are not kept permanently in memory;
rather, they are read from disk when needed. Actually, many disk reads are avoided thanks to
the page cache, which keeps in memory the most recently used disk blocks (see the section "
Storing Blocks in the Page Cache" in Chapter 15).[*]

[*] In Linux 2.4 and earlier versions, the most recently used inode and block bitmaps w ere stored in ad-hoc caches of bounded
size.

18.3.1. The Ext2 Superblock Object

As stated in the section "Superblock Objects" in Chapter 12, the s_fs_info field of the VFS
superblock points to a structure containing filesystem-specific data. In the case of Ext2, this
field points to a structure of type ext2_sb_info, which includes the following information:

 Most of the disk superblock fields

 An s_sbh pointer to the buffer head of the buffer containing the disk superblock

 An s_es pointer to the buffer containing the disk superblock

 The number of group descriptors, s_desc_ per_block, that can be packed in a block

 An s_group_desc pointer to an array of buffer heads of buffers containing the group
descriptors (usually, a single entry is sufficient)

 Other data related to mount state, mount options, and so on

Figure 18-4 shows the links between the ext2_sb_info data structures and the buffers and
buffer heads relative to the Ext2 superblock and to the group descriptors.

When the kernel mounts an Ext2 filesystem, it invokes the ext2_fill_super( ) function to
allocate space for the data structures and to fill them with data read from disk (see the
section "Mounting a Generic Filesystem" in Chapter 12). This is a simplified description of the
function, which emphasizes the memory allocations for buffers and descriptors:

1. Allocates an ext2_sb_info descriptor and stores its address in the s_fs_info field of the
superblock object passed as the parameter.

Figure 18-4. The ext2_sb_info data structure
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2. Invokes _ _bread( ) to allocate a buffer in a buffer page together with the
corresponding buffer head, and to read the superblock from disk into the buffer; as
discussed in the section "Searching Blocks in the Page Cache" in Chapter 15, no
allocation is performed if the block is already stored in a buffer page in the page cache
and it is up-to-date. Stores the buffer head address in the s_sbh field of the Ext2
superblock object.

3. Allocates an array of bytesone byte for each groupand stores its address in the 
s_debts field of the ext2_sb_info descriptor (see the section "Creating inodes" later in
this chapter).

4. Allocates an array of pointers to buffer heads, one for each group descriptor, and
stores the address of the array in the s_group_desc field of the ext2_sb_info descriptor.

5. Invokes repeatedly _ _bread( ) to allocate buffers and to read from disk the blocks
containing the Ext2 group descriptors; stores the addresses of the buffer heads in the 
s_group_desc array allocated in the previous step.

6. Allocates an inode and a dentry object for the root directory, and sets up a few fields
of the superblock object so that it will be possible to read the root inode from disk.

Clearly, all the data structures allocated by ext2_fill_super( ) are kept in memory after the
function returns; they will be released only when the Ext2 filesystem will be unmounted. When
the kernel must modify a field in the Ext2 superblock, it simply writes the new value in the
proper position of the corresponding buffer and then marks the buffer as dirty.

18.3.2. The Ext2 inode Object

When opening a file, a pathname lookup is performed. For each component of the pathname
that is not already in the dentry cache , a new dentry object and a new inode object are
created (see the section "Standard Pathname Lookup" in Chapter 12). When the VFS
accesses an Ext2 disk inode, it creates a corresponding inode descriptor of type
ext2_inode_info. This descriptor includes the following information:

 The whole VFS inode object (see Table 12-3 in Chapter 12) stored in the field
vfs_inode

 Most of the fields found in the disk's inode structure that are not kept in the VFS inode

 The i_block_group block group index at which the inode belongs (see the section "Ext2
Disk Data Structures" earlier in this chapter)

 The i_next_alloc_block and i_next_alloc_goal fields, which store the logical block
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number and the physical block number of the disk block that was most recently
allocated to the file, respectively

 The i_prealloc_block and i_prealloc_count fields, which are used for data block
preallocation (see the section "Allocating a Data Block" later in this chapter)

 The xattr_sem field, a read/write semaphore that allows extended attributes to be read
concurrently with the file data

 The i_acl and i_default_acl fields, which point to the ACLs of the file

When dealing with Ext2 files, the alloc_inode superblock method is implemented by means of
the ext2_alloc_inode( ) function. It gets first an ext2_inode_info descriptor from the
ext2_inode_cachep slab allocator cache, then it returns the address of the inode object
embedded in the new ext2_inode_info descriptor.
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18.4. Creating the Ext2 Filesystem
There are generally two stages to creating a filesystem on a disk. The first step is to format it
so that the disk driver can read and write blocks on it. Modern hard disks come preformatted
from the factory and need not be reformatted; floppy disks may be formatted on Linux using a
utility program such as superformat or fdformat. The second step involves creating a
filesystem, which means setting up the structures described in detail earlier in this chapter.

Ext2 filesystems are created by the mke2fs utility program; it assumes the following default
options, which may be modified by the user with flags on the command line:

 Block size: 1,024 bytes (default value for a small filesystem)

 Fragment size: block size (block fragmentation is not implemented)

 Number of allocated inodes: 1 inode for each 8,192 bytes

 Percentage of reserved blocks: 5 percent

The program performs the following actions:

1. Initializes the superblock and the group descriptors.

2. Optionally, checks whether the partition contains defective blocks; if so, it creates a
list of defective blocks.

3. For each block group, reserves all the disk blocks needed to store the superblock, the
group descriptors, the inode table, and the two bitmaps.

4. Initializes the inode bitmap and the data map bitmap of each block group to 0.

5. Initializes the inode table of each block group.

6. Creates the /root directory.

7. Creates the lost+found directory, which is used by e2fsck to link the lost and found
defective blocks.

8. Updates the inode bitmap and the data block bitmap of the block group in which the
two previous directories have been created.

9. Groups the defective blocks (if any) in the lost+found directory.

Let's consider how an Ext2 1.44 MB floppy disk is initialized by mke2fs with the default
options.

Once mounted, it appears to the VFS as a volume consisting of 1,412 blocks; each one is
1,024 bytes in length. To examine the disk's contents, we can execute the Unix command:

$ dd if=/dev/fd0 bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex

to get a file containing the hexadecimal dump of the floppy disk contents in the /tmp
directory.[*]

[*] Most information on an Ext2 filesystem could also be obtained by using the dumpe2fs and debugfs utility programs.

By looking at that file, we can see that, due to the limited capacity of the disk, a single group
descriptor is sufficient. We also notice that the number of reserved blocks is set to 72 (5
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percent of 1,440) and, according to the default option, the inode table must include 1 inode
for each 8,192 bytes that is, 184 inodes stored in 23 blocks.

Table 18-7 summarizes how the Ext2 filesystem is created on a floppy disk when the default
options are selected.

Table 18-7. Ext2 block allocation for a floppy disk

Block Content

0 Boot block

1 Superblock

2 Block containing a single block group descriptor

3 Data block bitmap

4 inode bitmap

5-27 inode table: inodes up to 10: reserved (inode 2 is the root); inode 11: lost+found;
inodes 12-184: free

28 Root directory (includes ., .., and lost+found)

29 lost+found directory (includes . and ..)

30-40 Reserved blocks preallocated for lost+found directory

41-1439 Free blocks
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18.5. Ext2 Methods
Many of the VFS methods described in Chapter 12 have a corresponding Ext2 implementation.
Because it would take a whole book to describe all of them, we limit ourselves to briefly
reviewing the methods implemented in Ext2. Once the disk and the memory data structures
are clearly understood, the reader should be able to follow the code of the Ext2 functions that
implement them.

18.5.1. Ext2 Superblock Operations

Many VFS superblock operations have a specific implementation in Ext2, namely alloc_inode,
destroy_inode, read_inode, write_inode, delete_inode, put_super, write_super, statfs,
remount_fs, and clear_inode. The addresses of the superblock methods are stored in the
ext2_sops array of pointers.

18.5.2. Ext2 inode Operations

Some of the VFS inode operations have a specific implementation in Ext2, which depends on
the type of the file to which the inode refers.

The inode operations for Ext2 regular files and Ext2 directories are shown in Table 18-8; the
purpose of each method is described in the section "Inode Objects" in Chapter 12. The table
does not show the methods that are undefined (a NULL pointer) for both regular files and
directories; recall that if a method is undefined, the VFS either invokes a generic function or
does nothing at all. The addresses of the Ext2 methods for regular files and directories are
stored in the ext2_file_inode_operations and ext2_dir_inode_operations tables, respectively.

Table 18-8. Ext2 inode operations for regular files and directories

VFS inode operation Regular file Directory

create NULL ext2_create( )

lookup NULL ext2_lookup( )

link NULL ext2_link( )

unlink NULL ext2_unlink( )

symlink NULL ext2_symlink( )

mkdir NULL ext2_mkdir( )

rmdir NULL ext2_rmdir( )

mknod NULL ext2_mknod( )

rename NULL ext2_rename( )

truncate ext2_TRuncate( ) NULL

permission ext2_permission( ) ext2_permission( )
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Table 18-8. Ext2 inode operations for regular files and directories

VFS inode operation Regular file Directory

setattr ext2_setattr( ) ext2_setattr( )

setxattr generic_setxattr( ) generic_setxattr( )

getxattr generic_getxattr( ) generic_getxattr( )

listxattr ext2_listxattr( ) ext2_listxattr( )

removexattr generic_removexattr( ) generic_removexattr( )

The inode operations for Ext2 symbolic links are shown in Table 18-9 (undefined methods have
been omitted). Actually, there are two types of symbolic links: the fast symbolic links
represent pathnames that can be fully stored inside the inodes, while the regular symbolic
links represent longer pathnames. Accordingly, there are two sets of inode operations, which
are stored in the ext2_fast_symlink_inode_operations and ext2_symlink_inode_operations
tables, respectively.

Table 18-9. Ext2 inode operations for fast and regular symbolic links

VFS inode operation Fast symbolic link Regular symbolic link

readlink generic_readlink( ) generic_readlink( )

follow_link ext2_follow_link( ) page_follow_link_light( )

put_link NULL page_put_link( )

setxattr generic_setxattr( ) generic_setxattr( )

getxattr generic_getxattr( ) generic_getxattr( )

listxattr ext2_listxattr( ) ext2_listxattr( )

removexattr generic_removexattr( ) generic_removexattr( )

If the inode refers to a character device file, to a block device file, or to a named pipe (see "
FIFOs" in Chapter 19), the inode operations do not depend on the filesystem. They are
specified in the chrdev_inode_operations, blkdev_inode_operations, and fifo_inode_operations
tables, respectively.

18.5.3. Ext2 File Operations

The file operations specific to the Ext2 filesystem are listed in Table 18-10. As you can see,
several VFS methods are implemented by generic functions that are common to many
filesystems. The addresses of these methods are stored in the ext2_file_operations table.
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Table 18-10. Ext2 file operations

VFS file operation Ext2 method

llseek generic_file_llseek( )

read generic_file_read( )

write generic_file_write( )

aio_read generic_file_aio_read( )

aio_write generic_file_aio_write( )

ioctl ext2_ioctl( )

mmap generic_file_mmap( )

open generic_file_open( )

release ext2_release_file( )

fsync ext2_sync_file( )

readv generic_file_readv( )

writev generic_file_writev( )

sendfile generic_file_sendfile( )

Notice that the Ext2's read and write methods are implemented by the generic_file_read( )
and generic_file_write( ) functions, respectively. These are described in the sections "
Reading from a File" and "Writing to a File" in Chapter 16.
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18.6. Managing Ext2 Disk Space
The storage of a file on disk differs from the view the programmer has of the file in two ways:
blocks can be scattered around the disk (although the filesystem tries hard to keep blocks
sequential to improve access time), and files may appear to a programmer to be bigger than
they really are because a program can introduce holes into them (through the lseek( )
system call).

In this section, we explain how the Ext2 filesystem manages the disk space how it allocates
and deallocates inodes and data blocks. Two main problems must be addressed:

 Space management must make every effort to avoid file fragmentation the physical
storage of a file in several, small pieces located in non-adjacent disk blocks. File
fragmentation increases the average time of sequential read operations on the files,
because the disk heads must be frequently repositioned during the read operation.[*]

This problem is similar to the external fragmentation of RAM discussed in the section "
The Buddy System Algorithm" in Chapter 8.

[*] Please note that fragmenting a file across block groups (A Bad Thing) is quite different from the not-yet-implemented
fragmentation of blocks to store many files in one block (A Good Thing).

 Space management must be time-efficient; that is, the kernel should be able to quickly
derive from a file offset the corresponding logical block number in the Ext2 partition. In
doing so, the kernel should limit as much as possible the number of accesses to
addressing tables stored on disk, because each such intermediate access considerably
increases the average file access time.

18.6.1. Creating inodes

The ext2_new_inode( ) function creates an Ext2 disk inode, returning the address of the
corresponding inode object (or NULL, in case of failure). The function carefully selects the
block group that contains the new inode; this is done to spread unrelated directories among
different groups and, at the same time, to put files into the same group as their parent
directories. To balance the number of regular files and directories in a block group, Ext2
introduces a "debt" parameter for every block group.

The function acts on two parameters: the address dir of the inode object that refers to the
directory into which the new inode must be inserted and a mode that indicates the type of
inode being created. The latter argument also includes the MS_SYNCHRONOUS mount flag (see the
section "Mounting a Generic Filesystem" in Chapter 12) that requires the current process to be
suspended until the inode is allocated. The function performs the following actions:

1. Invokes new_inode( ) to allocate a new VFS inode object; initializes its i_sb field to the
superblock address stored in dir->i_sb, and adds it to the in-use inode list and to the
superblock's list (see the section "Inode Objects" in Chapter 12).

2. If the new inode is a directory, the function invokes find_group_orlov( ) to find a
suitable block group for the directory.[*] This function implements the following
heuristics:

[*] The Ext2 filesystem may also be mounted with an option flag that forces the kernel to make use of
a simpler, older allocation strategy, which is implemented by the find_group_dir( ) function.

a. Directories having as parent the filesystem root should be spread among all
block groups. Thus, the function searches the block groups looking for a group
having a number of free inodes and a number of free blocks above the average.
If there is no such group, it jumps to step 2c.
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b. Nested directoriesnot having the filesystem root as parentshould be put in the
group of the parent if it satisfies the following rules:

 The group does not contain too many directories

 The group has a sufficient number of free inodes left

 The group has a small "debt" (the debt of a block group is stored in the
array of counters pointed to by the s_debts field of the ext2_sb_info
descriptor; the debt is increased each time a new directory is added and
decreased each time another type of file is added)

If the parent's group does not satisfy these rules, it picks the first group that
satisfies them. If no such group exists, it jumps to step 2c.

c. This is the "fallback" rule, to be used if no good group has been found. The
function starts with the block group containing the parent directory and selects
the first block group that has more free inodes than the average number of free
inodes per block group.

3. If the new inode is not a directory, it invokes find_group_other( ) to allocate it in a
block group having a free inode. This function selects the group by starting from the
one that contains the parent directory and moving farther away from it; to be precise:

a. Performs a quick logarithmic search starting from the block group that includes
the parent directory dir. The algorithm searches log(n) block groups, where n is
the total number of block groups. The algorithm jumps further ahead until it
finds an available block group for example, if we call the number of the starting
block group i, the algorithm considers block groups i mod(n), i+1 mod(n), i+1+2
mod(n), i+1+2+4 mod(n), etc.

b. If the logarithmic search failed in finding a block group with a free inode, the
function performs an exhaustive linear search starting from the block group that
includes the parent directory dir.

4. Invokes read_inode_bitmap( ) to get the inode bitmap of the selected block group and
searches for the first null bit into it, thus obtaining the number of the first free disk
inode.

5. Allocates the disk inode: sets the corresponding bit in the inode bitmap and marks the
buffer containing the bitmap as dirty. Moreover, if the filesystem has been mounted
specifying the MS_SYNCHRONOUS flag (see the section "Mounting a Generic Filesystem" in
Chapter 12), the function invokes sync_dirty_buffer( ) to start the I/O write operation
and waits until the operation terminates.

6. Decreases the bg_free_inodes_count field of the group descriptor. If the new inode is a
directory, the function increases the bg_used_dirs_count field and marks the buffer
containing the group descriptor as dirty.

7. Increases or decreases the group's counter in the s_debts array of the superblock,
according to whether the inode refers to a regular file or a directory.

8. Decreases the s_freeinodes_counter field of the ext2_sb_info data structure;
moreover, if the new inode is a directory, it increases the s_dirs_counter field in the
ext2_sb_info data structure.

9. Sets the s_dirt flag of the superblock to 1, and marks the buffer that contains it to as
dirty.

10. Sets the s_dirt field of the VFS's superblock object to 1.
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11. Initializes the fields of the inode object. In particular, it sets the inode number i_no and
copies the value of xtime.tv_sec into i_atime, i_mtime, and i_ctime. Also loads the
i_block_group field in the ext2_inode_info structure with the block group index. Refer
to Table 18-3 for the meaning of these fields.

12. Initializes the ACLs of the inode.

13. Inserts the new inode object into the hash table inode_hashtable and invokes
mark_inode_dirty( ) to move the inode object into the superblock's dirty inode list (see
the section "Inode Objects" in Chapter 12).

14. Invokes ext2_preread_inode( ) to read from disk the block containing the inode and to
put the block in the page cache. This type of read-ahead is done because it is likely
that a recently created inode will be written back soon.

15. Returns the address of the new inode object.

18.6.2. Deleting inodes

The ext2_free_inode( ) function deletes a disk inode, which is identified by an inode object
whose address inode is passed as the parameter. The kernel should invoke the function after
a series of cleanup operations involving internal data structures and the data in the file itself.
It should come after the inode object has been removed from the inode hash table, after the
last hard link referring to that inode has been deleted from the proper directory and after the
file is truncated to 0 length to reclaim all its data blocks (see the section "Releasing a Data
Block" later in this chapter). It performs the following actions:

1. Invokes clear_inode( ), which in turn executes the following operations:

a. Removes any dirty "indirect" buffer associated with the inode (see the later
section "Data Blocks Addressing"); they are collected in the list headed at the
private_list field of the address_space object inode->i_data (see the section "
The address_space Object" in Chapter 15).

b. If the I_LOCK flag of the inode is set, some of the inode's buffers are involved in
I/O data transfers; the function suspends the current process until these I/O
data transfers terminate.

c. Invokes the clear_inode method of the superblock object, if defined; the Ext2
filesystem does not define it.

d. If the inode refers to a device file, it removes the inode object from the
device's list of inodes; this list is rooted either in the list field of the cdev
character device descriptor (see the section "Character Device Drivers" in
Chapter 13) or in the bd_inodes field of the block_device block device descriptor
(see the section "Block Devices" in Chapter 14).

e. Sets the state of the inode to I_CLEAR (the inode object contents are no longer
meaningful).

2. Computes the index of the block group containing the disk inode from the inode number
and the number of inodes in each block group.

3. Invokes read_inode_bitmap( ) to get the inode bitmap.

4. Increases the bg_free_inodes_count( ) field of the group descriptor. If the deleted
inode is a directory, it decreases the bg_used_dirs_count field. Marks the buffer that
contains the group descriptor as dirty.

5. If the deleted inode is a directory, it decreases the s_dirs_counter field in the
ext2_sb_info data structure, sets the s_dirt flag of the superblock to 1, and marks the
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buffer that contains it as dirty.

6. Clears the bit corresponding to the disk inode in the inode bitmap and marks the buffer
that contains the bitmap as dirty. Moreover, if the filesystem has been mounted with
the MS_SYNCHRONIZE flag, it invokes sync_dirty_buffer( ) to wait until the write
operation on the bitmap's buffer terminates.

18.6.3. Data Blocks Addressing

Each nonempty regular file consists of a group of data blocks . Such blocks may be referred to
either by their relative position inside the file their file block numberor by their position inside
the disk partitiontheir logical block number (see the section "Block Devices Handling" in
Chapter 14).

Deriving the logical block number of the corresponding data block from an offset f inside a file
is a two-step process:

1. Derive from the offset f the file block number the index of the block that contains the
character at offset f.

2. Translate the file block number to the corresponding logical block number.

Because Unix files do not include any control characters, it is quite easy to derive the file
block number containing the f th character of a file: simply take the quotient of f and the
filesystem's block size and round down to the nearest integer.

For instance, let's assume a block size of 4 KB. If f is smaller than 4,096, the character is
contained in the first data block of the file, which has file block number 0. If f is equal to or
greater than 4,096 and less than 8,192, the character is contained in the data block that has
file block number 1, and so on.

This is fine as far as file block numbers are concerned. However, translating a file block
number into the corresponding logical block number is not nearly as straightforward, because
the data blocks of an Ext2 file are not necessarily adjacent on disk.

The Ext2 filesystem must therefore provide a method to store the connection between each
file block number and the corresponding logical block number on disk. This mapping, which
goes back to early versions of Unix from AT&T, is implemented partly inside the inode. It also
involves some specialized blocks that contain extra pointers, which are an inode extension
used to handle large files.

The i_block field in the disk inode is an array of EXT2_N_BLOCKS components that contain logical
block numbers. In the following discussion, we assume that EXT2_N_BLOCKS has the default
value, namely 15. The array represents the initial part of a larger data structure, which is
illustrated in Figure 18-5. As can be seen in the figure, the 15 components of the array are of
4 different types:

 The first 12 components yield the logical block numbers corresponding to the first 12
blocks of the fileto the blocks that have file block numbers from 0 to 11.

 The component at index 12 contains the logical block number of a block, called indirect
block, that represents a second-order array of logical block numbers. They correspond
to the file block numbers ranging from 12 to b/4+11, where b is the filesystem's block
size (each logical block number is stored in 4 bytes, so we divide by 4 in the formula).
Therefore, the kernel must look in this component for a pointer to a block, and then
look in that block for another pointer to the ultimate block that contains the file
contents.

 The component at index 13 contains the logical block number of an indirect block
containing a second-order array of logical block numbers; in turn, the entries of this
second-order array point to third-order arrays, which store the logical block numbers
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that correspond to the file block numbers ranging from b/4+12 to (b/4)2+(b/4)+11.

 Finally, the component at index 14 uses triple indirection: the fourth-order arrays store
the logical block numbers corresponding to the file block numbers ranging from (b/4)2+(
b/4)+12 to (b/4)3+(b/4)2+(b/4)+11.

Figure 18-5. Data structures used to address the file's data blocks

In Figure 18-5, the number inside a block represents the corresponding file block number. The
arrows, which represent logical block numbers stored in array components, show how the
kernel finds its way through indirect blocks to reach the block that contains the actual
contents of the file.

Notice how this mechanism favors small files. If the file does not require more than 12 data
blocks, every data can be retrieved in two disk accesses: one to read a component in the 
i_block array of the disk inode and the other to read the requested data block. For larger
files, however, three or even four consecutive disk accesses may be needed to access the
required block. In practice, this is a worst-case estimate, because dentry, inode, and page
caches contribute significantly to reduce the number of real disk accesses.

Notice also how the block size of the filesystem affects the addressing mechanism, because a
larger block size allows the Ext2 to store more logical block numbers inside a single block. 
Table 18-11 shows the upper limit placed on a file's size for each block size and each
addressing mode. For instance, if the block size is 1,024 bytes and the file contains up to 268
kilobytes of data, the first 12 KB of a file can be accessed through direct mapping and the
remaining 13-268 KB can be addressed through simple indirection. Files larger than 2 GB must
be opened on 32-bit architectures by specifying the O_LARGEFILE opening flag.

Table 18-11. File-size upper limits for data block addressing

Block size Direct 1-Indirect 2-Indirect 3-Indirect

1,024 12 KB 268 KB 64.26 MB 16.06 GB

2,048 24 KB 1.02 MB 513.02 MB 256.5 GB
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Table 18-11. File-size upper limits for data block addressing

Block size Direct 1-Indirect 2-Indirect 3-Indirect

4,096 48 KB 4.04 MB 4 GB ~ 4 TB

18.6.4. File Holes

A file hole is a portion of a regular file that contains null characters and is not stored in any
data block on disk. Holes are a long-standing feature of Unix files. For instance, the following
Unix command creates a file in which the first bytes are a hole:

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6

Now /tmp/hole has 6,145 characters (6,144 null characters plus an X character), yet the file
occupies just one data block on disk.

File holes were introduced to avoid wasting disk space. They are used extensively by
database applications and, more generally, by all applications that perform hashing on files.

The Ext2 implementation of file holes is based on dynamic data block allocation: a block is
actually assigned to a file only when the process needs to write data into it. The i_size field
of each inode defines the size of the file as seen by the program, including the holes, while
the i_blocks field stores the number of data blocks effectively assigned to the file (in units of
512 bytes).

In our earlier example of the dd command, suppose the /tmp/hole file was created on an Ext2
partition that has blocks of size 4,096. The i_size field of the corresponding disk inode stores
the number 6,145, while the i_blocks field stores the number 8 (because each 4,096-byte
block includes eight 512-byte blocks). The second element of the i_block array
(corresponding to the block having file block number 1) stores the logical block number of the
allocated block, while all other elements in the array are null (see Figure 18-6).

Figure 18-6. A file with an initial hole

18.6.5. Allocating a Data Block

When the kernel has to locate a block holding data for an Ext2 regular file, it invokes the 
ext2_get_block( ) function. If the block does not exist, the function automatically allocates
the block to the file. Remember that this function may be invoked every time the kernel issues
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a read or write operation on an Ext2 regular file (see the sections "Reading from a File" and
"Writing to a File" in Chapter 16); clearly, this function is invoked only if the affected block is
not included in the page cache.

The ext2_get_block( ) function handles the data structures already described in the section "
Data Blocks Addressing," and when necessary, invokes the ext2_alloc_block( ) function to
actually search for a free block in the Ext2 partition. If necessary, the function also allocates
the blocks used for indirect addressing (see Figure 18-5).

To reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file near the
last block already allocated for the file. Failing that, the filesystem searches for a new block in
the block group that includes the file's inode. As a last resort, the free block is taken from one
of the other block groups.

The Ext2 filesystem uses preallocation of data blocks. The file does not get only the
requested block, but rather a group of up to eight adjacent blocks. The i_prealloc_count field
in the ext2_inode_info structure stores the number of data blocks preallocated to a file that
are still unused, and the i_prealloc_block field stores the logical block number of the next
preallocated block to be used. All preallocated blocks that remain unused are freed when the
file is closed, when it is truncated, or when a write operation is not sequential with respect to
the write operation that triggered the block preallocation.

The ext2_alloc_block( ) function receives as its parameters a pointer to an inode object, a
goal , and the address of a variable that will store an error code. The goal is a logical block
number that represents the preferred position of the new block. The ext2_get_block( )
function sets the goal parameter according to the following heuristic:

1. If the block that is being allocated and the previously allocated block have consecutive
file block numbers, the goal is the logical block number of the previous block plus 1; it
makes sense that consecutive blocks as seen by a program should be adjacent on disk.

2. If the first rule does not apply and at least one block has been previously allocated to
the file, the goal is one of these blocks' logical block numbers. More precisely, it is the
logical block number of the already allocated block that precedes the block to be
allocated in the file.

3. If the preceding rules do not apply, the goal is the logical block number of the first
block (not necessarily free) in the block group that contains the file's inode.

The ext2_alloc_block( ) function checks whether the goal refers to one of the preallocated
blocks of the file. If so, it allocates the corresponding block and returns its logical block
number; otherwise, the function discards all remaining preallocated blocks and invokes 
ext2_new_block( ).

This latter function searches for a free block inside the Ext2 partition with the following
strategy:

1. If the preferred block passed to ext2_alloc_block( )the block that is the goalis free,
the function allocates the block.

2. If the goal is busy, the function checks whether one of the next blocks after the
preferred block is free.

3. If no free block is found in the near vicinity of the preferred block, the function
considers all block groups, starting from the one including the goal. For each block
group, the function does the following:

a. Looks for a group of at least eight adjacent free blocks.

b. If no such group is found, looks for a single free block.
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The search ends as soon as a free block is found. Before terminating, the ext2_new_block( )
function also tries to preallocate up to eight free blocks adjacent to the free block found and
sets the i_prealloc_block and i_prealloc_count fields of the disk inode to the proper block
location and number of blocks.

18.6.6. Releasing a Data Block

When a process deletes a file or truncates it to 0 length, all its data blocks must be reclaimed.
This is done by ext2_truncate( ), which receives the address of the file's inode object as its
parameter. The function essentially scans the disk inode's i_block array to locate all data
blocks and all blocks used for the indirect addressing. These blocks are then released by
repeatedly invoking ext2_free_blocks( ).

The ext2_free_blocks( ) function releases a group of one or more adjacent data blocks.
Besides its use by ext2_truncate( ), the function is invoked mainly when discarding the
preallocated blocks of a file (see the earlier section "Allocating a Data Block"). Its parameters
are:

inode

The address of the inode object that describes the file

block

The logical block number of the first block to be released

count

The number of adjacent blocks to be released

The function performs the following actions for each block to be released:

1. Gets the block bitmap of the block group that includes the block to be released

2. Clears the bit in the block bitmap that corresponds to the block to be released and
marks the buffer that contains the bitmap as dirty.

3. Increases the bg_free_blocks_count field in the block group descriptor and marks the
corresponding buffer as dirty.

4. Increases the s_free_blocks_count field of the disk superblock, marks the corresponding
buffer as dirty, and sets the s_dirt flag of the superblock object.

5. If the filesystem has been mounted with the MS_SYNCHRONOUS flag set, it invokes
sync_dirty_buffer( ) and waits until the write operation on the bitmap's buffer
terminates.
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18.7. The Ext3 Filesystem
In this section we'll briefly describe the enhanced filesystem that has evolved from Ext2,
named Ext3. The new filesystem has been designed with two simple concepts in mind:

 To be a journaling filesystem (see the next section)

 To be, as much as possible, compatible with the old Ext2 filesystem

Ext3 achieves both the goals very well. In particular, it is largely based on Ext2, so its data
structures on disk are essentially identical to those of an Ext2 filesystem. As a matter of fact,
if an Ext3 filesystem has been cleanly unmounted, it can be remounted as an Ext2 filesystem;
conversely, creating a journal of an Ext2 filesystem and remounting it as an Ext3 filesystem is
a simple, fast operation.

Thanks to the compatibility between Ext3 and Ext2, most descriptions in the previous sections
of this chapter apply to Ext3 as well. Therefore, in this section, we focus on the new feature
offered by Ext3 "the journal."

18.7.1. Journaling Filesystems

As disks became larger, one design choice of traditional Unix filesystems (such as Ext2) turns
out to be inappropriate. As we know from Chapter 14, updates to filesystem blocks might be
kept in dynamic memory for long period of time before being flushed to disk. A dramatic event
such as a power-down failure or a system crash might thus leave the filesystem in an
inconsistent state. To overcome this problem, each traditional Unix filesystem is checked
before being mounted; if it has not been properly unmounted, then a specific program
executes an exhaustive, time-consuming check and fixes all the filesystem's data structures
on disk.

For instance, the Ext2 filesystem status is stored in the s_mount_state field of the superblock
on disk. The e2fsck utility program is invoked by the boot script to check the value stored in
this field; if it is not equal to EXT2_VALID_FS, the filesystem was not properly unmounted, and
therefore e2fsck starts checking all disk data structures of the filesystem.

Clearly, the time spent checking the consistency of a filesystem depends mainly on the
number of files and directories to be examined; therefore, it also depends on the disk size.
Nowadays, with filesystems reaching hundreds of gigabytes, a single consistency check may
take hours. The involved downtime is unacceptable for every production environment or
high-availability server.

The goal of a journaling filesystem is to avoid running time-consuming consistency checks on
the whole filesystem by looking instead in a special disk area that contains the most recent
disk write operations named journal. Remounting a journaling filesystem after a system failure
is a matter of a few seconds.

18.7.2. The Ext3 Journaling Filesystem

The idea behind Ext3 journaling is to perform each high-level change to the filesystem in two
steps. First, a copy of the blocks to be written is stored in the journal; then, when the I/O
data transfer to the journal is completed (in short, data is committed to the journal), the
blocks are written in the filesystem. When the I/O data transfer to the filesystem terminates
(data is committed to the filesystem), the copies of the blocks in the journal are discarded.

While recovering after a system failure, the e2fsck program distinguishes the following two
cases:
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The system failure occurred before a commit to the journal

Either the copies of the blocks relative to the high-level change are missing from the
journal or they are incomplete; in both cases, e2fsck ignores them.

The system failure occurred after a commit to the journal

The copies of the blocks are valid, and e2fsck writes them into the filesystem.

In the first case, the high-level change to the filesystem is lost, but the filesystem state is
still consistent. In the second case, e2fsck applies the whole high-level change, thus fixing
every inconsistency due to unfinished I/O data transfers into the filesystem.

Don't expect too much from a journaling filesystem; it ensures consistency only at the system
call level. For instance, a system failure that occurs while you are copying a large file by
issuing several write( ) system calls will interrupt the copy operation, thus the duplicated file
will be shorter than the original one.

Furthermore, journaling filesystems do not usually copy all blocks into the journal. In fact,
each filesystem consists of two kinds of blocks: those containing the so-called metadata and
those containing regular data. In the case of Ext2 and Ext3, there are six kinds of metadata:
superblocks, group block descriptors, inodes, blocks used for indirect addressing (indirection
blocks), data bitmap blocks, and inode bitmap blocks. Other filesystems may use different
metadata.

Several journaling filesystems, such as SGI's XFS and IBM's JFS , limit themselves to logging
the operations affecting metadata. In fact, metadata's log records are sufficient to restore
the consistency of the on-disk filesystem data structures. However, since operations on
blocks of file data are not logged, nothing prevents a system failure from corrupting the
contents of the files.

The Ext3 filesystem, however, can be configured to log the operations affecting both the
filesystem metadata and the data blocks of the files. Because logging every kind of write
operation leads to a significant performance penalty, Ext3 lets the system administrator
decide what has to be logged; in particular, it offers three different journaling modes :

Journal

All filesystem data and metadata changes are logged into the journal. This mode
minimizes the chance of losing the updates made to each file, but it requires many
additional disk accesses. For example, when a new file is created, all its data blocks
must be duplicated as log records. This is the safest and slowest Ext3 journaling mode.

Ordered

Only changes to filesystem metadata are logged into the journal. However, the Ext3
filesystem groups metadata and relative data blocks so that data blocks are written to
disk before the metadata. This way, the chance to have data corruption inside the
files is reduced; for instance, each write access that enlarges a file is guaranteed to
be fully protected by the journal. This is the default Ext3 journaling mode.

Writeback

Only changes to filesystem metadata are logged; this is the method found on the other
journaling filesystems and is the fastest mode.

The journaling mode of the Ext3 filesystem is specified by an option of the mount system
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command. For instance, to mount an Ext3 filesystem stored in the /dev/sda2 partition on the
/jdisk mount point with the "writeback" mode, the system administrator can type the
command:

# mount -t ext3 -o data=writeback /dev/sda2 /jdisk

18.7.3. The Journaling Block Device Layer

The Ext3 journal is usually stored in a hidden file named .journal located in the root directory
of the filesystem.

The Ext3 filesystem does not handle the journal on its own; rather, it uses a general kernel
layer named Journaling Block Device, or JBD. Right now, only Ext3 uses the JBD layer, but
other filesystems might use it in the future.

The JBD layer is a rather complex piece of software. The Ext3 filesystem invokes the JBD
routines to ensure that its subsequent operations don't corrupt the disk data structures in
case of system failure. However, JBD typically uses the same disk to log the changes
performed by the Ext3 filesystem, and it is therefore vulnerable to system failures as much as
Ext3. In other words, JBD must also protect itself from system failures that could corrupt the
journal.

Therefore, the interaction between Ext3 and JBD is essentially based on three fundamental
units:

Log record

Describes a single update of a disk block of the journaling filesystem.

Atomic operation handle

Includes log records relative to a single high-level change of the filesystem; typically,
each system call modifying the filesystem gives rise to a single atomic operation
handle.

Transaction

Includes several atomic operation handles whose log records are marked valid for 
e2fsck at the same time.

18.7.3.1. Log records

A log record is essentially the description of a low-level operation that is going to be issued
by the filesystem. In some journaling filesystems, the log record consists of exactly the span
of bytes modified by the operation, together with the starting position of the bytes inside the
filesystem. The JBD layer, however, uses log records consisting of the whole buffer modified
by the low-level operation. This approach may waste a lot of journal space (for instance,
when the low-level operation just changes the value of a bit in a bitmap), but it is also much
faster because the JBD layer can work directly with buffers and their buffer heads.

Log records are thus represented inside the journal as normal blocks of data (or metadata).
Each such block, however, is associated with a small tag of type journal_block_tag_t, which
stores the logical block number of the block inside the filesystem and a few status flags.

Later, whenever a buffer is being considered by the JBD, either because it belongs to a log
record or because it is a data block that should be flushed to disk before the corresponding
metadata block (in the "ordered" journaling mode), the kernel attaches a journal_head data
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structure to the buffer head. In this case, the b_private field of the buffer head stores the
address of the journal_head data structure and the BH_JBD flag is set (see the section "Block
Buffers and Buffer Heads" in Chapter 15).

18.7.3.2. Atomic operation handles

Every system call modifying the filesystem is usually split into a series of low-level operations
that manipulate disk data structures.

For instance, suppose that Ext3 must satisfy a user request to append a block of data to a
regular file. The filesystem layer must determine the last block of the file, locate a free block
in the filesystem, update the data block bitmap inside the proper block group, store the logical
number of the new block either in the file's inode or in an indirect addressing block, write the
contents of the new block, and finally, update several fields of the inode. As you see, the
append operation translates into many lower-level operations on the data and metadata
blocks of the filesystem.

Now, just imagine what could happen if a system failure occurred in the middle of an append
operation, when some of the lower-level manipulations have already been executed while
others have not. Of course, the scenario could be even worse, with high-level operations
affecting two or more files (for example, moving a file from one directory to another).

To prevent data corruption, the Ext3 filesystem must ensure that each system call is handled
in an atomic way. An atomic operation handle is a set of low-level operations on the disk data
structures that correspond to a single high-level operation. When recovering from a system
failure, the filesystem ensures that either the whole high-level operation is applied or none of
its low-level operations is.

Each atomic operation handle is represented by a descriptor of type handle_t. To start an
atomic operation, the Ext3 filesystem invokes the journal_start( ) JBD function, which
allocates, if necessary, a new atomic operation handle and inserts it into the current
transactions (see the next section). Because every low-level operation on the disk might
suspend the process, the address of the active handle is stored in the journal_info field of
the process descriptor. To notify that an atomic operation is completed, the Ext3 filesystem
invokes the journal_stop( ) function.

18.7.3.3. Transactions

For reasons of efficiency, the JBD layer manages the journal by grouping the log records that
belong to several atomic operation handles into a single transaction. Furthermore, all log
records relative to a handle must be included in the same transaction.

All log records of a transaction are stored in consecutive blocks of the journal. The JBD layer
handles each transaction as a whole. For instance, it reclaims the blocks used by a
transaction only after all data included in its log records is committed to the filesystem.

As soon as it is created, a transaction may accept log records of new handles. The
transaction stops accepting new handles when either of the following occurs:

 A fixed amount of time has elapsed, typically 5 seconds.

 There are no free blocks in the journal left for a new handle.

A transaction is represented by a descriptor of type TRansaction_t. The most important field
is t_state, which describes the current status of the transaction.

Essentially, a transaction can be:

Complete
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All log records included in the transaction have been physically written onto the
journal. When recovering from a system failure, e2fsck considers every complete
transaction of the journal and writes the corresponding blocks into the filesystem. In
this case, the t_state field stores the value T_FINISHED.

Incomplete

At least one log record included in the transaction has not yet been physically written
to the journal, or new log records are still being added to the transaction. In case of
system failure, the image of the transaction stored in the journal is likely not
up-to-date. Therefore, when recovering from a system failure, e2fsck does not trust
the incomplete transactions in the journal and skips them. In this case, the t_state
field stores one of the following values:

T_RUNNING

Still accepting new atomic operation handles.

T_LOCKED

Not accepting new atomic operation handles, but some of them are still unfinished.

T_FLUSH

All atomic operation handles have finished, but some log records are still being written
to the journal.

T_COMMIT

All log records of the atomic operation handles have been written to disk, but the
transaction has yet to be marked as completed on the journal.

At any time the journal may include several transactions, but only one of them is in the 
T_RUNNING state it is the active transaction that is accepting the new atomic operation handle
requests issued by the Ext3 filesystem.

Several transactions in the journal might be incomplete, because the buffers containing the
relative log records have not yet been written to the journal.

If a transaction is complete, all its log records have been written to the journal but some of
the corresponding buffers have yet to be written onto the filesystem. A complete transaction
is deleted from the journal when the JBD layer verifies that all buffers described by the log
records have been successfully written onto the Ext3 filesystem.

18.7.4. How Journaling Works

Let's try to explain how journaling works with an example: the Ext3 filesystem layer receives a
request to write some data blocks of a regular file.

As you might easily guess, we are not going to describe in detail every single operation of the
Ext3 filesystem layer and of the JBD layer. There would be far too many issues to be covered!
However, we describe the essential actions:

1. The service routine of the write( ) system call triggers the write method of the file
object associated with the Ext3 regular file. For Ext3, this method is implemented by
the generic_file_write( ) function, already described in the section "Writing to a File"

Page 751

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


in Chapter 16.

2. The generic_file_write( ) function invokes the prepare_write method of the
address_space object several times, once for every page of data involved by the write
operation. For Ext3, this method is implemented by the ext3_prepare_write( ) function.

3. The ext3_prepare_write( ) function starts a new atomic operation by invoking the
journal_start( ) JBD function. The handle is added to the active transaction. Actually,
the atomic operation handle is created only when executing the first invocation of the 
journal_start( ) function. Following invocations verify that the journal_info field of
the process descriptor is already set and use the referenced handle.

4. The ext3_prepare_write( ) function invokes the block_prepare_write( ) function
already described in Chapter 16, passing to it the address of the ext3_get_block( )
function. Remember that block_prepare_write( ) takes care of preparing the buffers
and the buffer heads of the file's page.

5. When the kernel must determine the logical number of a block of the Ext3 filesystem, it
executes the ext3_get_block( ) function. This function is actually similar to
ext2_get_block( ), which is described in the earlier section "Allocating a Data Block." A
crucial difference, however, is that the Ext3 filesystem invokes functions of the JBD
layer to ensure that the low-level operations are logged:

o Before issuing a low-level write operation on a metadata block of the
filesystem, the function invokes journal_get_write_access( ). Basically, this
latter function adds the metadata buffer to a list of the active transaction.
However, it must also check whether the metadata is included in an older
incomplete transaction of the journal; in this case, it duplicates the buffer to
make sure that the older transactions are committed with the old content.

o After updating the buffer containing the metadata block, the Ext3 filesystem
invokes journal_dirty_metadata( ) to move the metadata buffer to the proper
dirty list of the active transaction and to log the operation in the journal.

Notice that metadata buffers handled by the JBD layer are not usually included in the
dirty lists of buffers of the inode, so they are not written to disk by the normal disk
cache flushing mechanisms described in Chapter 15.

6. If the Ext3 filesystem has been mounted in "journal" mode, the ext3_prepare_write( )
function also invokes journal_get_write_access( ) on every buffer touched by the
write operation.

7. Control returns to the generic_file_write( ) function, which updates the page with
the data stored in the User Mode address space and then invokes the commit_write
method of the address_space object. For Ext3, the function that implements this
method depends on how the Ext3 filesystem has been mounted:

o If the Ext3 filesystem has been mounted in "journal" mode, the commit_write
method is implemented by the ext3_journalled_commit_write( ) function, which
invokes journal_dirty_metadata( ) on every buffer of data (not metadata) in
the page. This way, the buffer is included in the proper dirty list of the active
transaction and not in the dirty list of the owner inode; moreover, the
corresponding log records are written to the journal. Finally, 
ext3_journalled_commit_write( ) invokes journal_stop( ) to notify the JBD layer
that the atomic operation handle is closed.

o If the Ext3 filesystem has been mounted in "ordered" mode, the commit_write
method is implemented by the ext3_ordered_commit_write( ) function, which
invokes the journal_dirty_data( ) function on every buffer of data in the page
to insert the buffer in a proper list of the active transactions. The JBD layer
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ensures that all buffers in this list are written to disk before the metadata
buffers of the transaction. No log record is written onto the journal. Next, 
ext3_ordered_commit_write( ) executes the normal generic_commit_write( )
function described in Chapter 15, which inserts the data buffers in the list of
the dirty buffers of the owner inode. Finally, ext3_ordered_commit_write( )
invokes journal_stop( ) to notify the JBD layer that the atomic operation
handle is closed.

o If the Ext3 filesystem has been mounted in "writeback" mode, the commit_write
method is implemented by the ext3_writeback_commit_write( ) function, which
executes the normal generic_commit_write( ) function described in Chapter 15,
which inserts the data buffers in the list of the dirty buffers of the owner inode.
Then, ext3_writeback_commit_write( ) invokes journal_stop( ) to notify the JBD
layer that the atomic operation handle is closed.

8. The service routine of the write( ) system call terminates here. However, the JBD
layer has not finished its work. Eventually, our transaction becomes complete when all
its log records have been physically written to the journal. Then 
journal_commit_transaction( ) is executed.

9. If the Ext3 filesystem has been mounted in "ordered" mode, the 
journal_commit_transaction( ) function activates the I/O data transfers for all data
buffers included in the list of the transaction and waits until all data transfers
terminate.

10. The journal_commit_transaction( ) function activates the I/O data transfers for all
metadata buffers included in the transaction (and also for all data buffers, if Ext3 was
mounted in "journal" mode).

11. Periodically, the kernel activates a checkpoint activity for every complete transaction
in the journal. The checkpoint basically involves verifying whether the I/O data
transfers triggered by journal_commit_transaction( ) have successfully terminated. If
so, the transaction can be deleted from the journal.

Of course, the log records in the journal never play an active role until a system failure
occurs. Only during system reboot does the e2fsck utility program scan the journal stored in
the filesystem and reschedule all write operations described by the log records of the
complete transactions.
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Chapter 19. Process Communication
This chapter explains how User Mode processes can synchronize their actions and exchange
data. We already covered several synchronization topics in Chapter 5, but the actors there
were kernel control paths, not User Mode programs. We are now ready, after having discussed
I/O management and filesystems at length, to extend the discussion to User Mode processes.
These processes must rely on the kernel to facilitate interprocess synchronization and
communication.

As we saw in the section "Linux File Locking" in Chapter 12, a form of synchronization among
User Mode processes can be achieved by creating a (possibly empty) file and using suitable
VFS system calls to lock and unlock it. While processes can similarly share data via temporary
files protected by locks, this approach is costly because it requires accesses to the filesystem
on disk. For this reason, all Unix kernels include a set of system calls that supports process
communication without interacting with the filesystem; furthermore, several wrapper functions
were developed and inserted in suitable libraries to expedite how processes issue their
synchronization requests to the kernel.

As usual, application programmers have a variety of needs that call for different
communication mechanisms. Here are the basic mechanisms that Unix systems offer to allow
interprocess communication:

Pipes and FIFOs (named pipes)

Best suited to implement producer/consumer interactions among processes. Some
processes fill the pipe with data, while others extract data from the pipe. They are
covered in the sections "Pipes" and "FIFOs."

Semaphores

Represent, as the name implies, the User Mode version of the kernel semaphores
discussed in the section "Semaphores" in Chapter 5. They are described in the section
"System V IPC."

Messages

Allow processes to exchange messages (short blocks of data) by reading and writing
them in predefined message queues. The Linux kernel offers two different versions of
messages: System V IPC messages (covered in the section "System V IPC") and POSIX
messages (described in the section "POSIX Message Queues").

Shared memory regions

Allow processes to exchange information via a shared block of memory. In applications
that must share large amounts of data, this can be the most efficient form of process
communication. They are described in the section "System V IPC."

Sockets

Allow processes on different computers to exchange data through a network. Sockets
can also be used as a communication tool for processes located on the same host
computer; the X Window System graphic interface, for instance, uses a socket to
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allow client programs to exchange data with the X server.
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19.1. Pipes
Pipes are an interprocess communication mechanism that is provided in all flavors of Unix. A 
pipe is a one-way flow of data between processes: all data written by a process to the pipe is
routed by the kernel to another process, which can thus read it.

In Unix command shells, pipes can be created by means of the | operator. For instance, the
following statement instructs the shell to create two processes connected by a pipe:

$ ls | more

The standard output of the first process, which executes the ls program, is redirected to the
pipe; the second process, which executes the more program, reads its input from the pipe.

Note that the same results can also be obtained by issuing two commands such as the
following:

$ ls > temp

$ more < temp

The first command redirects the output of ls into a regular file; then the second command
forces more to read its input from the same file. Of course, using pipes instead of temporary
files is usually more convenient due to the following reasons:

 The shell statement is much shorter and simpler.

 There is no need to create temporary regular files, which must be deleted later.

19.1.1. Using a Pipe

Pipes may be considered open files that have no corresponding image in the mounted
filesystems. A process creates a new pipe by means of the pipe( ) system call, which returns
a pair of file descriptors ; the process may then pass these descriptors to its descendants
through fork( ) , thus sharing the pipe with them. The processes can read from the pipe by
using the read( ) system call with the first file descriptor; likewise, they can write into the
pipe by using the write( ) system call with the second file descriptor.

POSIX defines only half-duplex pipes , so even though the pipe( ) system call returns two file
descriptors, each process must close one before using the other. If a two-way flow of data is
required, the processes must use two different pipes by invoking pipe( ) twice.

Several Unix systems, such as System V Release 4, implement full-duplex pipes . In a
full-duplex pipe, both descriptors can be written into and read from, thus there are two
bidirectional channels of information. Linux adopts yet another approach: each pipe's file
descriptors are still one-way, but it is not necessary to close one of them before using the
other.

Let's resume the previous example. When the command shell interprets the ls|more statement,
it essentially performs the following actions:

1. Invokes the pipe( ) system call; let's assume that pipe( ) returns the file descriptors
3 (the pipe's read channel) and 4 (the write channel).

2. Invokes the fork( ) system call twice.

3. Invokes the close( ) system call twice to release file descriptors 3 and 4.
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The first child process, which must execute the ls program, performs the following operations:

1. Invokes dup2(4,1) to copy file descriptor 4 to file descriptor 1. From now on, file
descriptor 1 refers to the pipe's write channel.

2. Invokes the close( ) system call twice to release file descriptors 3 and 4.

3. Invokes the execve( ) system call to execute the ls program (see the section "The
exec Functions" in Chapter 20). The program writes its output to the file that has file
descriptor 1 (the standard output); i.e., it writes into the pipe.

The second child process must execute the more program; therefore, it performs the following
operations:

1. Invokes dup2(3,0) to copy file descriptor 3 to file descriptor 0. From now on, file
descriptor 0 refers to the pipe's read channel.

2. Invokes the close( ) system call twice to release file descriptors 3 and 4.

3. Invokes the execve( ) system call to execute more. By default, that program reads its
input from the file that has file descriptor 0 (the standard input); i.e., it reads from the
pipe.

In this simple example, the pipe is used by exactly two processes. Because of its
implementation, though, a pipe can be used by an arbitrary number of processes.[*] Clearly, if
two or more processes read or write the same pipe, they must explicitly synchronize their
accesses by using file locking (see the section "Linux File Locking" in Chapter 12) or IPC
semaphores (see the section "IPC Semaphores" later in this chapter).

[*] Because most shells offer pipes that connect only tw o processes, applications requiring pipes used by more than tw o
processes must be coded in a programming language such as C.

Many Unix systems provide, besides the pipe( ) system call, two wrapper functions named
popen( ) and pclose( ) that handle all the dirty work usually done when using pipes. Once a
pipe has been created by means of the popen( ) function, it can be used with the high-level
I/O functions included in the C library (fprintf( ), fscanf( ), and so on.

In Linux, popen( ) and pclose( ) are included in the C library. The popen( ) function receives
two parameters: the filename pathname of an executable file and a type string specifying the
direction of the data transfer. It returns the pointer to a FILE data structure. The popen( )
function essentially performs the following operations:

1. Creates a new pipe by using the pipe( ) system call.

2. Forks a new process, which in turn executes the following operations:

a. If type is r, it duplicates the file descriptor associated with the pipe's write
channel as file descriptor 1 (standard output); otherwise, if type is w, it
duplicates the file descriptor associated with the pipe's read channel as file
descriptor 0 (standard input).

b. Closes the file descriptors returned by pipe( ).

c. Invokes the execve( ) system call to execute the program specified by
filename.

3. If type is r, it closes the file descriptor associated with the pipe's write channel;
otherwise, if type is w, it closes the file descriptor associated with the pipe's read
channel.

4. Returns the address of the FILE file pointer that refers to whichever file descriptor for
the pipe is still open.
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After the popen( ) invocation, parent and child can exchange information through the pipe:
the parent can read (if type is r) or write (if type is w) data by using the FILE pointer returned
by the function. The data is written to the standard output or read from the standard input,
respectively, by the program executed by the child process.

The pclose( ) function (which receives the file pointer returned by popen( ) as its parameter)
simply invokes the wait4( ) system call and waits for the termination of the process created
by popen( ).

19.1.2. Pipe Data Structures

We now have to start thinking again at the system call level. Once a pipe is created, a
process uses the read( ) and write( ) VFS system calls to access it. Therefore, for each
pipe, the kernel creates an inode object plus two file objectsone for reading and the other for
writing. When a process wants to read from or write to the pipe, it must use the proper file
descriptor.

When the inode object refers to a pipe, its i_pipe field points to a pipe_inode_info structure
shown in Table 19-1.

Table 19-1. The pipe_inode_info structure

Type Field Description

struct wait_queue * wait Pipe/FIFO wait queue

unsigned int nrbufs Number of buffers containing data to be read

unsigned int curbuf Index of first buffer containing data to be read

struct pipe_buffer
[16]

bufs Array of pipe's buffer descriptors

struct page * tmp_page Pointer to a cached page frame

unsigned int start Read position in current pipe buffer

unsigned int readers Flag for (or number of) reading processes

unsigned int writers Flag for (or number of) writing processes

unsigned int waiting_writers Number of writing processes sleeping in the wait
queue

unsigned int r_counter Like readers, but used when waiting for a process
that reads from the FIFO

unsigned int w_counter Like writers, but used when waiting for a process
that writes into the FIFO

struct

fasync_struct *
fasync_readers Used for asynchronous I/O notification via signals

struct fasync_writers Used for asynchronous I/O notification via signals

Page 758

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Table 19-1. The pipe_inode_info structure

Type Field Description

fasync_struct *

Besides one inode and two file objects, each pipe has its own set of pipe buffers . Essentially,
a pipe buffer is a page frame that contains data written into the pipe and yet to be read. Up
to Linux 2.6.10, each pipe had just one pipe buffer. In the 2.6.11 kernel, however, data
buffering for pipes (and FIFOs) has been heavily revised, and now each pipe makes use of 16
pipe buffers. This change greatly enhances the performance of User Mode applications that
write large chunks of data in a pipe.

The bufs field of the pipe_inode_info data structure stores an array of 16 pipe_buffer
objects, each of which describes a pipe buffer. The fields of this object are shown in Table
19-2.

Table 19-2. The fields of the pipe_buffer object

Type Field Description

struct page * page Address of the descriptor of the page frame for the pipe
buffer

unsigned int offset Current position of the significant data inside the page
frame

unsigned int len Length of the significant data in the pipe buffer

struct

pipe_buf_operations *

ops Address of a table of methods relative to the pipe buffer (
NULL if the pipe buffer is empty)

The ops field points to the anon_pipe_buf_ops table of the pipe buffer's methods, which is a
data structure of type pipe_buf_operations. Essentially, the table includes three methods:

map

Invoked before accessing data in the pipe buffer. It simply invokes kmap( ) on the pipe
buffer's page frame, just in case the pipe buffer is stored in high memory (see the
section "Kernel Mappings of High-Memory Page Frames" in Chapter 8).

unmap

Invoked when no longer accessing data in the pipe buffer. It invokes kunmap( ) on the
pipe buffer's page frame.

release

Invoked when a pipe buffer is being released. The method implements a one-page
memory cache: the page frame released is not the one storing the buffer, but a
cached page frame pointed to by the tmp_page field of the pipe_inode_info data
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structure (if not NULL). The page frame that stored the buffer becomes the new
cached page frame.

The 16 pipe buffers can be seen as a global, circular buffer: writing processes keep adding
data to this large buffer, while reading process keep removing them. The number of bytes
currently written in all pipe buffers and yet to be read is the so-called pipe size. For reasons
of efficiency, the data yet to be read can be spread among several partially filled pipe buffers:
in fact, each write operation may copy the data in a fresh, empty pipe buffer if the previous
pipe buffer has not enough free space to store the new data. Hence, the kernel must keep
track of:

 The pipe buffer that includes the next byte to be read, and the corresponding offset
inside the page frame. The index of this pipe buffer is stored in the curbuf field of the
pipe_inode_info data structure, while the offset is stored in the offset field of the
corresponding pipe_buffer object.

 The first empty pipe buffer. Its index can be computed by adding (modulo 16) the
index of the current pipe buffer, which is stored in the curbuf field of the
pipe_inode_info data structure, and the number of pipe buffers with significant data,
which is stored in the nrbufs field.

To avoid race conditions on the pipe's data structures, the kernel makes use of the i_sem
semaphore included in the inode object.

19.1.2.1. The pipefs special filesystem

A pipe is implemented as a set of VFS objects, which have no corresponding disk images. In
Linux 2.6, these VFS objects are organized into the pipefs special filesystem to expedite their
handling (see the section "Special Filesystems" in Chapter 12). Because this filesystem has no
mount point in the system directory tree, users never see it. However, thanks to pipefs, the
pipes are fully integrated in the VFS layer, and the kernel can handle them in the same way as
named pipes or FIFOs, which truly exist as files recognizable to end users (see the later
section "FIFOs").

The init_pipe_fs( ) function, typically executed during kernel initialization, registers the
pipefs filesystem and mounts it (refer to the discussion in the section "Mounting a Generic
Filesystem" in Chapter 12):

struct file_system_type pipe_fs_type;

pipe_fs_type.name = "pipefs";

pipe_fs_type.get_sb = pipefs_get_sb;

pipe_fs.kill_sb = kill_anon_super;

register_filesystem(&pipe_fs_type);

pipe_mnt = do_kern_mount("pipefs", 0, "pipefs", NULL);

The mounted filesystem object that represents the root directory of pipefs is stored in the
pipe_mnt variable.

19.1.3. Creating and Destroying a Pipe

The pipe( ) system call is serviced by the sys_pipe( ) function, which in turn invokes the
do_pipe( ) function. To create a new pipe, do_pipe( ) performs the following operations:

1. Invokes the get_pipe_inode( ) function, which allocates and initializes an inode object
for the pipe in the pipefs filesystem. In particular, this function executes the following
actions:

a. Allocates a new inode in the pipefs filesystem.
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b. Allocates a pipe_inode_info data structure and stores its address in the i_pipe
field of the inode.

c. Sets the curbuf and nrbufs fields of the pipe_inode_info structure to 0; also,
fills with zeros all fields of the pipe buffer objects in the bufs array.

d. Initializes the r_counter and w_counter fields of the pipe_inode_info structure to
1.

e. Sets the readers and writers fields of the pipe_inode_info structure to 1.

2. Allocates a file object and a file descriptor for the read channel of the pipe, sets the 
f_flag field of the file object to O_RDONLY, and initializes the f_op field with the address
of the read_ pipe_fops table.

3. Allocates a file object and a file descriptor for the write channel of the pipe, sets the 
flag field of the file object to O_WRONLY, and initializes the f_op field with the address of
the write_ pipe_fops table.

4. Allocates a dentry object and uses it to link the two file objects and the inode object
(see the section "The Common File Model" in Chapter 12); then inserts the new inode
in the pipefs special filesystem.

5. Returns the two file descriptors to the User Mode process.

The process that issues a pipe( ) system call is initially the only process that can access the
new pipe, both for reading and writing. To represent that the pipe has both a reader and a
writer, the readers and writers fields of the pipe_inode_info data structure are initialized to 1.
In general, each of these two fields is set to 1 only if the corresponding pipe's file object is
still opened by a process; the field is set to 0 if the corresponding file object has been
released, because it is no longer accessed by any process.

Forking a new process does not increase the value of the readers and writers fields, so they
never rise above 1;[*] however, it does increase the value of the usage counters of all file
objects still used by the parent process (see the section "The clone( ), fork( ), and vfork( )
System Calls" in Chapter 3). Thus, the objects are not released even when the parent dies,
and the pipe stays open for use by the children.

[*] As w e'll see, the readers and writers fields act as counters instead of flags w hen associated w ith FIFOs.

Whenever a process invokes the close( ) system call on a file descriptor associated with a
pipe, the kernel executes the fput( ) function on the corresponding file object, which
decreases the usage counter. If the counter becomes 0, the function invokes the release
method of the file operations (see the sections "The close( ) System Call" and "Files
Associated with a Process" in Chapter 12).

Depending on whether the file is associated with the read or write channel, the release
method is implemented by either pipe_read_release( ) or pipe_write_release( ); both
functions invoke pipe_release( ), which sets either the readers field or the writers field of
the pipe_inode_info structure to 0. The function checks whether both the readers and
writers fields are equal to 0; in this case, it invokes the pipe buffer's release method of all
pipe buffers, thus releasing to the buddy system all pipe's page frames; moreover, the
function releases the cached page frame pointed to by the tmp_page field. Otherwise, if either
the readers field or the writers field is not zero, the function wakes up the processes sleeping
in the pipe's wait queue so they can recognize the change in the pipe state.

19.1.4. Reading from a Pipe

A process wishing to get data from a pipe issues a read( ) system call, specifying the file
descriptor associated with the pipe's reading end. As described in the section "The read( ) and
write( ) System Calls" in Chapter 12, the kernel ends up invoking the read method found in the
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file operation table associated with the proper file object. In the case of a pipe, the entry for
the read method in the read_pipe_fops table points to the pipe_read( ) function.

The pipe_read( ) function is quite involved, because the POSIX standard specifies several
requirements for the pipe's read operations. Table 19-3 summarizes the expected behavior of
a read( ) system call that requests n bytes from a pipe that has a pipe size (number of bytes
in the pipe buffers yet to be read) equal to p.

The system call might block the current process in two cases:

 The pipe buffer is empty when the system call starts.

 The pipe buffer does not include all requested bytes, and a writing process was
previously put to sleep while waiting for space in the buffer.

Notice that the read operation can be nonblocking: in this case, it completes as soon as all
available bytes (even none) are copied into the user address space.[*]

[*] Nonblocking operations are usually requested by specifying the O_NONBLOCK flag in the open( ) system call. This method does not
w ork for pipes, because they cannot be opened. A process can, how ever, require a nonblocking operation on a pipe by issuing a 
fcntl( ) system call on the corresponding file descriptor.

Notice also that the value 0 is returned by the read( ) system call only if the pipe is empty
and no process is currently using the file object associated with the pipe's write channel.

Table 19-3. Reading n bytes from a pipe

 At least one writing process No writing
process

 Blocking read Nonblocking
read

 

Pipe
Size p Sleeping writer No sleeping writer   

p = 0
Copy n bytes and return n,
waiting for data when the
pipe buffer is empty.

Wait for some data,
copy it, and return
its size.

Return

-EAGAIN.
Return 0.

0 < p
< n  Copy p bytes and return p: 0 bytes are left in the

pipe buffer.

p n Copy n bytes and return n: p-n bytes are left in the pipe buffer.

The function performs the following operations:

1. Acquires the i_sem semaphore of the inode.

2. Determines whether the pipe size is 0 by reading the nrbufs field of the
pipe_inode_info structure; if the field is equal to zero, all pipe buffers are empty. In
this case, it determines whether the function must return or whether the process must
be blocked while waiting until another process writes some data in the pipe (see Table
19-3). The type of I/O operation (blocking or nonblocking) is specified by the
O_NONBLOCK flag in the f_flags field of the file object. If the current process must be
blocked, the function performs the following actions:
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a. Invokes prepare_to_wait( ) to add current to the wait queue of the pipe (the
wait field of the pipe_inode_info structure).

b. Releases the inode semaphore.

c. Invokes schedule( ).

d. Once awake, invokes finish_wait( ) to remove current from the wait queue,
acquires again the i_sem inode semaphore, and then jumps back to step 2.

3. Gets the index of the current pipe buffer from the curbuf field of the pipe_inode_info
data structure.

4. Executes the map method of the pipe buffer.

5. Copies the requested number of bytesor the number of available bytes in the pipe
buffer, if it is smallerfrom the pipe's buffer to the user address space.

6. Executes the unmap method of the pipe buffer.

7. Updates the offset and len fields of the corresponding pipe_buffer object.

8. If the pipe buffer has been emptied (len fields of the pipe_buffer object now equal to
zero), it invokes the pipe buffer's release method to free the corresponding page
frame, sets the ops field in the pipe_buffer object to NULL, advances the index of the
current pipe buffer stored in the curbuf field of the pipe_inode_info data structure, and
decreases the counter of nonempty pipe buffers in the nrbufs field.

9. If all requested bytes have been copied, it jumps to step 12.

10. Here not all requested bytes have been copied to the User Mode address space. If the
pipe size is greater than zero (nrbufs field of the pipe_inode_info data structure not
null), it goes back to step 3.

11. There are no more bytes left in the pipe buffers. If there is at least one writing process
currently sleeping (that is, the waiting_writers field of the pipe_inode_info data
structure is greater than 0), and the read operation is blocking, it invokes 
wake_up_interruptible_sync( ) to wake up all processes sleeping on the pipe's wait
queue, and jumps back to step 2.

12. Releases the i_sem semaphore of the inode.

13. Invokes wake_up_interruptible_sync( ) to wake up all writer processes sleeping on the
pipe's wait queue.

14. Returns the number of bytes copied into the user address space.

19.1.5. Writing into a Pipe

A process wishing to put data into a pipe issues a write( ) system call, specifying the file
descriptor for the writing end of the pipe. The kernel satisfies this request by invoking the 
write method of the proper file object; the corresponding entry in the write_pipe_fops table
points to the pipe_write( ) function.

Table 19-4 summarizes the behavior, specified by the POSIX standard, of a write( ) system
call that requested to write n bytes into a pipe having u unused bytes in its buffer. In
particular, the standard requires that write operations involving a small number of bytes must
be atomically executed. More precisely, if two or more processes are concurrently writing into
a pipe, each write operation involving fewer than 4,096 bytes (the pipe buffer size) must finish
without being interleaved with write operations of other processes to the same pipe. However,
write operations involving more than 4,096 bytes may be nonatomic and may also force the
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calling process to sleep.

Table 19-4. Writing n bytes to a pipe

 At least one reading process  

Available
buffer space u Blocking write Nonblocking write No reading

process

u<n  4,096
Wait until n-u bytes are
freed, copy n bytes, and
return n.

Return -EAGAIN.
Send SIGPIPE
signal and return 
-EPIPE.

n>4,096
Copy n bytes (waiting
when necessary) and
return n.

If u>0, copy u bytes and
return u; return -EAGAIN.  

u  n Copy n bytes and return n.   

Moreover, each write operation to a pipe must fail if the pipe does not have a reading process
(that is, if the readers field of the pipe's inode object has the value 0). In this case, the
kernel sends a SIGPIPE signal to the writing process and terminates the write( ) system call
with the -EPIPE error code, which usually leads to the familiar "Broken pipe" message.

The pipe_write( ) function performs the following operations:

1. Acquires the i_sem semaphore of the inode.

2. Checks whether the pipe has at least one reading process. If not, it sends a SIGPIPE
signal to the current process, releases the inode semaphore, and returns an -EPIPE
value.

3. Determines the index of the last written pipe buffers by adding the curbuf and nrbufs
fields of the pipe_inode_info data structure and subtracting 1. If this pipe buffer has
enough free space to store all the bytes to be written, then it copies the data into it:

a. Executes the map method of the pipe buffer.

b. Copies all the bytes in the pipe buffer.

c. Executes the unmap method of the pipe buffer.

d. Updates the len field of the corresponding pipe_buffer object.

e. Jumps to step 11.

4. If the nrbufs field of the pipe_inode_info data structure is equal to 16, there is no
empty pipe buffer to store the bytes (yet) to be written. In this case:

a. If the write operation is nonblocking, it jumps to step 11 to terminate by
returning the -EAGAIN error code.

b. If the write operation is blocking, it adds 1 to the waiting_writers field of the
pipe_inode_info structure, invokes prepare_to_wait( ) to add current to the
wait queue of the pipe (the wait field of the pipe_inode_info structure),
releases the inode semaphore, and invokes schedule( ). Once awake, it
invokes finish_wait( ) to remove current from the wait queue, again acquires
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the inode semaphore, decreases the waiting_writers field, and then jumps back
to step 4.

5. Now there is at least one empty pipe buffer. Determines the index of the first empty
pipe buffer by adding the curbuf and nrbufs fields of the pipe_inode_info data
structure.

6. Allocates a new page frame from the buddy system, unless the tmp_page field of the
pipe_inode_info data structure is not NULL.

7. Copies up to 4,096 bytes from the User Mode address space into the page frame
(temporarily mapping it in the Kernel Mode linear address space, if necessary).

8. Updates the fields of the pipe_buffer object associated with the pipe buffer by setting
the page field to the address of the page frame descriptor, the ops field to the address
of the anon_pipe_buf_ops table, the offset field to 0, and the len field to the number of
written bytes.

9. Increases the counter of nonempty pipe buffers stored in the nrbufs field of the
pipe_inode_info data structure.

10. If not all requested bytes were written, it jumps back to step 4.

11. Releases the inode semaphore.

12. Wakes up all reader processes sleeping on the pipe's wait queue.

13. Returns the number of bytes written into the pipe's buffer (or an error code if writing
was not possible).
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19.2. FIFOs
Although pipes are a simple, flexible, and efficient communication mechanism, they have one
main drawbacknamely, that there is no way to open an already existing pipe. This makes it
impossible for two arbitrary processes to share the same pipe, unless the pipe was created by
a common ancestor process.

This drawback is substantial for many application programs. Consider, for instance, a database
engine server, which continuously polls client processes wishing to issue some queries and
which sends the results of the database lookups back to them. Each interaction between the
server and a given client might be handled by a pipe. However, client processes are usually
created on demand by a command shell when a user explicitly queries the database; server
and client processes thus cannot easily share a pipe.

To address such limitations, Unix systems introduce a special file type called a named pipe or
FIFO (which stands for "first in, first out;" the first byte written into the special file is also the
first byte that is read). Each FIFO is much like a pipe: rather than owning disk blocks in the
filesystems, an opened FIFO is associated with a kernel buffer that temporarily stores the
data exchanged by two or more processes.

Thanks to the disk inode, however, a FIFO can be accessed by every process, because the
FIFO filename is included in the system's directory tree. Thus, in our example, the
communication between server and clients may be easily established by using FIFOs instead of
pipes. The server creates, at startup, a FIFO used by client programs to make their requests.
Each client program creates, before establishing the connection, another FIFO to which the
server program can write the answer to the query and includes the FIFO's name in the initial
request to the server.

In Linux 2.6, FIFOs and pipes are almost identical and use the same pipe_inode_info
structures. As a matter of fact, the read and write file operation methods of a FIFO are
implemented by the same pipe_read( ) and pipe_write( ) functions described in the earlier
sections "Reading from a Pipe" and "Writing into a Pipe." Actually, there are only two
significant differences:

 FIFO inodes appear on the system directory tree rather than on the pipefs special
filesystem.

 FIFOs are a bidirectional communication channel; that is, it is possible to open a FIFO
in read/write mode.

To complete our description, therefore, we just have to explain how FIFOs are created and
opened.

19.2.1. Creating and Opening a FIFO

A process creates a FIFO by issuing a mknod( )[*] system call (see the section "Device Files"
in Chapter 13), passing to it as parameters the pathname of the new FIFO and the value
S_IFIFO (0x10000) logically ORed with the permission bit mask of the new file. POSIX introduces
a function named mkfifo( ) specifically to create a FIFO. This call is implemented in Linux, as
in System V Release 4, as a C library function that invokes mknod( ).

[*] In fact, mknod( ) can be used to create nearly every kind of file, such as block and character device files, FIFOs, and even
regular files (it cannot create directories or sockets, though).

Once created, a FIFO can be accessed through the usual open( ), read( ), write( ), and
close( ) system calls, but the VFS handles it in a special way, because the FIFO inode and
file operations are customized and do not depend on the filesystems in which the FIFO is
stored.
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The POSIX standard specifies the behavior of the open( ) system call on FIFOs; the behavior
depends essentially on the requested access type, the kind of I/O operation (blocking or
nonblocking), and the presence of other processes accessing the FIFO.

A process may open a FIFO for reading, for writing, or for reading and writing. The file
operations associated with the corresponding file object are set to special methods for these
three cases.

When a process opens a FIFO, the VFS performs the same operations as it does for device
files (see the section "VFS Handling of Device Files" in Chapter 13). The inode object
associated with the opened FIFO is initialized by a filesystem-dependent read_inode
superblock method; this method always checks whether the inode on disk represents a special
file, and invokes, if necessary, the init_special_inode( ) function. It turn, this function sets
the i_fop field of the inode object to the address of the def_fifo_fops table. Later, the kernel
sets the file operation table of the file object to def_fifo_fops, and executes its open method,
which is implemented by fifo_open( ).

The fifo_open( ) function initializes the data structures specific to the FIFO; in particular, it
performs the following operations:

1. Acquires the i_sem inode semaphore.

2. Checks the i_pipe field of the inode object; if it is NULL, it allocates and it initializes a
new pipe_inode_info structure, as in steps 1b-1e in the earlier section "Creating and
Destroying a Pipe."

3. Depending on the access mode specified as the parameter of the open( ) system call,
it initializes the f_op field of the file object with the address of the proper file operation
table (see Table 19-5).

Table 19-5. FIFO's file operations

Access type File operations Read method Write method

Read-only read_fifo_fops pipe_read( ) bad_pipe_w( )

Write-only write_fifo_fops bad_pipe_r( ) pipe_write( )

Read/write rdwr_fifo_fops pipe_read( ) pipe_write( )

4.

5. If the access mode is either read-only or read/write, it adds one to the readers and
r_counter fields of the pipe_inode_info structure. Moreover, if the access mode is
read-only and there is no other reading process, it wakes up any writing process
sleeping in the wait queue.

6. If the access mode is either write-only or read/write, it adds one to the writers and
w_counter fields of the pipe_inode_info structure. Moreover, if the access mode is
write-only and there is no other writing process, it wakes up any reading process
sleeping in the wait queue.

7. If there are no readers or no writers, it decides whether the function should block or
terminate returning an error code (see Table 19-6).
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Table 19-6. Behavior of the fifo_open( ) function

Access type Blocking Nonblocking

Read-only, with writers Successfully return Successfully return

Read-only, no writer Wait for a writer Successfully return

Write-only, with readers Successfully return Successfully return

Write-only, no reader Wait for a reader Return -ENXIO

Read/write Successfully return Successfully return

8.

9. Releases the inode semaphore, and terminates, returning 0 (success).

The FIFO's three specialized file operation tables differ mainly in the implementation of the 
read and write methods. If the access type allows read operations, the read method is
implemented by the pipe_read( ) function. Otherwise, it is implemented by bad_pipe_r( ),
which only returns an error code. Similarly, if the access type allows write operations, the 
write method is implemented by the pipe_write( ) function; otherwise, it is implemented by
bad_pipe_w( ), which also returns an error code.
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19.3. System V IPC
IPC is an abbreviation for Interprocess Communication and commonly refers to a set of
mechanisms that allow a User Mode process to do the following:

 Synchronize itself with other processes by means of semaphores

 Send messages to other processes or receive messages from them

 Share a memory area with other processes

System V IPC first appeared in a development Unix variant called "Columbus Unix " and later
was adopted by AT&T's System III . It is now found in most Unix systems, including Linux.

IPC data structures are created dynamically when a process requests an IPC resource (a
semaphore, a message queue, or a shared memory region). An IPC resource is persistent:
unless explicitly removed by a process, it is kept in memory and remains available until the
system is shut down. An IPC resource may be used by every process, including those that do
not share the ancestor that created the resource.

Because a process may require several IPC resources of the same type, each new resource is
identified by a 32-bit IPC key, which is similar to the file pathname in the system's directory
tree. Each IPC resource also has a 32-bit IPC identifier, which is somewhat similar to the file
descriptor associated with an open file. IPC identifiers are assigned to IPC resources by the
kernel and are unique within the system, while IPC keys can be freely chosen by programmers.

When two or more processes wish to communicate through an IPC resource, they all refer to
the IPC identifier of the resource.

19.3.1. Using an IPC Resource

IPC resources are created by invoking the semget( ), msgget( ), or shmget( ) functions,
depending on whether the new resource is a semaphore, a message queue, or a shared
memory region.

The main objective of each of these three functions is to derive from the IPC key (passed as
the first parameter) the corresponding IPC identifier, which is then used by the process for
accessing the resource. If there is no IPC resource already associated with the IPC key, a
new resource is created. If everything goes right, the function returns a positive IPC
identifier; otherwise, it returns one of the error codes listed in Table 19-7.

Table 19-7. Error codes returned while requesting an IPC identifier

Error code Description

EACCESS Process does not have proper access rights

EEXIST Process tried to create an IPC resource with the same key as one that already
exists

EINVAL Invalid argument in a parameter of semget( ), msgget( ), or shmget( )

ENOENT No IPC resource with the requested key exists and the process did not ask to
create it
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Table 19-7. Error codes returned while requesting an IPC identifier

Error code Description

ENOMEM No more storage is left for an additional IPC resource

ENOSPC Maximum limit on the number of IPC resources has been exceeded

Assume that two independent processes want to share a common IPC resource. This can be
achieved in two possible ways:

 The processes agree on some fixed, predefined IPC key. This is the simplest case, and
it works quite well for every complex application implemented by many processes.
However, there's a chance that the same IPC key is chosen by another unrelated
program. In this case, the IPC functions might be successfully invoked and still return
the IPC identifier of the wrong resource.[*]

[*] The ftok( ) function attempts to create a new  key from a file pathname and an 8-bit project identifier passed as its
parameters. It does not guarantee, how ever, a unique key number, because there is a small chance that it w ill return the
same IPC key to tw o different applications using different pathnames and project identifiers.

 One process issues a semget( ), msgget( ), or shmget( ) function by specifying
IPC_PRIVATE as its IPC key. A new IPC resource is thus allocated, and the process can
either communicate its IPC identifier to the other process in the application[ ] or fork
the other process itself. This method ensures that the IPC resource cannot be used
accidentally by other applications.

[ ] This implies, of course, the existence of another communication channel betw een the processes not based on IPC.

The last parameter of the semget( ), msgget( ), and shmget( ) functions can include three
flags. IPC_CREAT specifies that the IPC resource must be created, if it does not already exist;
IPC_EXCL specifies that the function must fail if the resource already exists and the IPC_CREAT
flag is set; IPC_NOWAIT specifies that the process should never block when accessing the IPC
resource (typically, when fetching a message or when acquiring a semaphore).

Even if the process uses the IPC_CREAT and IPC_EXCL flags, there is no way to ensure exclusive
access to an IPC resource, because other processes may always refer to the resource by
using its IPC identifier.

To minimize the risk of incorrectly referencing the wrong resource, the kernel does not recycle
IPC identifiers as soon as they become free. Instead, the IPC identifier assigned to a resource
is almost always larger than the identifier assigned to the previously allocated resource of the
same type. (The only exception occurs when the 32-bit IPC identifier overflows.) Each IPC
identifier is computed by combining a slot usage sequence number relative to the resource
type, an arbitrary slot index for the allocated resource, and an arbitrary value chosen in the
kernel that is greater than the maximum number of allocatable resources. If we choose s to
represent the slot usage sequence number, M to represent the upper bound on the number of
allocatable resources, and i to represent the slot index, where 0 i<M, each IPC resource's ID
is computed as follows:

IPC identifier = s x M + i

In Linux 2.6, the value of M is set to 32,768 (IPCMNI macro). The slot usage sequence number
s is initialized to 0 and is increased by 1 at every resource allocation. When s reaches a
predefined threshold, which depends on the type of IPC resource, it restarts from 0.

Every type of IPC resource (semaphores, message queues, and shared memory areas) owns
an ipc_ids data structure, which includes the fields shown in Table 19-8.
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Table 19-8. The fields of the ipc_ids data structure

Type Field Description

int in_use Number of allocated IPC resources

int max_id Maximum slot index in use

unsigned short seq Slot usage sequence number for the next allocation

unsigned short seq_max Maximum slot usage sequence number

struct

semaphore
sem Semaphore protecting the ipc_ids data structure

struct

ipc_id_ary
nullentry Fake data structure pointed to by the entries field if this IPC

resource cannot be initialized (normally not used)

struct

ipc_id_ary *
enTRies Pointer to the ipc_id_ary data structure for this resource

The ipc_id_ary data structure consists of two fields: p and size. The p field is an array of
pointers to kern_ipc_perm data structures, one for every allocatable resource. The size field is
the size of this array. Initially, the array stores 1, 16, or 128 pointers, respectively for shared
memory regions, message queues, and semaphores. The kernel dynamically increases the size
of the array when it becomes too small. However, there is an upper bound on the number of
resources for each given type. The system administrator may change these bounds by writing
into the /proc/sys/kernel/sem, /proc/sys/kernel/msgmni, and /proc/sys/kernel/shmmni files,
respectively.

Each kern_ipc_perm data structure is associated with an IPC resource and contains the fields
shown in Table 19-9. The uid, gid, cuid, and cgid fields store the user and group identifiers of
the resource's creator and the user and group identifiers of the current resource's owner,
respectively. The mode bit mask includes six flags, which store the read and write access
permissions for the resource's owner, the resource's group, and all other users. IPC access
permissions are similar to file access permissions described in the section "Access Rights and
File Mode" in Chapter 1, except that the Execute permission flag is not used.

Table 19-9. The fields in the kern_ipc_ perm structure

Type Field Description

spinlock_t lock Spin lock protecting the IPC resource descriptor

int deleted Flag set if the resource has been released

int key IPC key

unsigned int uid Owner user ID

unsigned int gid Owner group ID

unsigned int cuid Creator user ID
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Table 19-9. The fields in the kern_ipc_ perm structure

Type Field Description

unsigned int cgid Creator group ID

unsigned short mode Permission bit mask

unsigned long seq Slot usage sequence number

void * security Pointer to a security structure (used by SELinux)

The kern_ipc_perm data structure also includes a key field (which contains the IPC key of the
corresponding resource) and a seq field (which stores the slot usage sequence number s used
to compute the IPC identifier of the resource).

The semctl( ), msgctl( ), and shmctl( ) functions may be used to handle IPC resources. The
IPC_SET subcommand allows a process to change the owner's user and group identifiers and
the permission bit mask in the ipc_perm data structure. The IPC_STAT and IPC_INFO
subcommands retrieve some information concerning a resource. Finally, the IPC_RMID
subcommand releases an IPC resource. Depending on the type of IPC resource, other
specialized subcommands are also available.[*]

[*] An IPC design flaw  is that a User Mode process cannot atomically create and initialize an IPC semaphore, because these tw o
operations are performed by tw o different IPC functions.

Once an IPC resource is created, a process may act on the resource by means of a few
specialized functions. A process may acquire or release an IPC semaphore by issuing the 
semop( ) function. When a process wants to send or receive an IPC message, it uses the
msgsnd( ) and msgrcv( ) functions, respectively. Finally, a process attaches and detaches an
IPC shared memory region in its address space by means of the shmat( ) and shmdt( )
functions, respectively.

19.3.2. The ipc( ) System Call

All IPC functions must be implemented through suitable Linux system calls. Actually, in the 80
x 86 architecture, there is just one IPC system call named ipc( ). When a process invokes an
IPC function, let's say msgget( ), it really invokes a wrapper function in the C library. This in
turn invokes the ipc( ) system call by passing to it all the parameters of msgget( ) plus a
proper subcommand codein this case, MSGGET. The sys_ipc( ) service routine examines the
subcommand code and invokes the kernel function that implements the requested service.

The ipc( ) "multiplexer" system call is a legacy from older Linux versions, which included the
IPC code in a dynamic module (see Appendix B). It did not make much sense to reserve
several system call entries in the system_call table for a kernel component that could be
missing, so the kernel designers adopted the multiplexer approach.

Nowadays, System V IPC can no longer be compiled as a dynamic module, and there is no
justification for using a single IPC system call. As a matter of fact, Linux provides one system
call for each IPC function on Hewlett-Packard's Alpha architecture and on Intel's IA-64.

19.3.3. IPC Semaphores

IPC semaphores are quite similar to the kernel semaphores introduced in Chapter 5; they are
counters used to provide controlled access to shared data structures for multiple processes.

The semaphore value is positive if the protected resource is available, and 0 if the protected
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resource is currently not available. A process that wants to access the resource tries to
decrease the semaphore value; the kernel, however, blocks the process until the operation on
the semaphore yields a positive value. When a process relinquishes a protected resource, it
increases its semaphore value; in doing so, any other process waiting for the semaphore is
woken up.

Actually, IPC semaphores are more complicated to handle than kernel semaphores for two
main reasons:

 Each IPC semaphore is a set of one or more semaphore values, not just a single value
like a kernel semaphore. This means that the same IPC resource can protect several
independent shared data structures. The number of semaphore values in each IPC
semaphore must be specified as a parameter of the semget( ) function when the
resource is being allocated. From now on, we'll refer to the counters inside an IPC
semaphore as primitive semaphores . There are bounds both on the number of IPC
semaphore resources (by default, 128) and on the number of primitive semaphores
inside a single IPC semaphore resource (by default, 250); however, the system
administrator can easily modify these bounds by writing into the /proc /sys/kernel/sem
file.

 System V IPC semaphores provide a fail-safe mechanism for situations in which a
process dies without being able to undo the operations that it previously issued on a
semaphore. When a process chooses to use this mechanism, the resulting operations
are called undoable semaphore operations. When the process dies, all of its IPC
semaphores can revert to the values they would have had if the process had never
started its operations. This can help prevent other processes that use the same
semaphores from remaining blocked indefinitely as a consequence of the terminating
process failing to manually undo its semaphore operations.

First, we'll briefly sketch the typical steps performed by a process wishing to access one or
more resources protected by an IPC semaphore:

1. Invokes the semget( ) wrapper function to get the IPC semaphore identifier, specifying
as the parameter the IPC key of the IPC semaphore that protects the shared
resources. If the process wants to create a new IPC semaphore, it also specifies the 
IPC_CREATE or IPC_PRIVATE flag and the number of primitive semaphores required (see
the section "Using an IPC Resource" earlier in this chapter).

2. Invokes the semop( ) wrapper function to test and decrease all primitive semaphore
values involved. If all the tests succeed, the decrements are performed, the function
terminates, and the process is allowed to access the protected resources. If some
semaphores are in use, the process is usually suspended until some other process
releases the resources. The function receives as its parameters the IPC semaphore
identifier, an array of integers specifying the operations to be atomically performed on
the primitive semaphores, and the number of such operations. Optionally, the process
may specify the SEM_UNDO flag, which instructs the kernel to reverse the operations,
should the process exit without releasing the primitive semaphores.

3. When relinquishing the protected resources, it invokes the semop( ) function again to
atomically increase all primitive semaphores involved.

4. Optionally, it invokes the semctl( ) wrapper function, specifying the IPC_RMID command
to remove the IPC semaphore from the system.

Now we can discuss how the kernel implements IPC semaphores. The data structures involved
are shown in Figure 19-1. The sem_ids variable stores the ipc_ids data structure of the IPC
semaphore resource type; the corresponding ipc_id_ary data structure contains an array of
pointers to sem_array data structures, one item for every IPC semaphore resource.

Figure 19-1. IPC semaphore data structures
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Formally, the array stores pointers to kern_ipc_perm data structures, but each structure is
simply the first field of the sem_array data structure. All fields of the sem_array data structure
are shown in Table 19-10.

Table 19-10. The fields in the sem_array data structure

Type Field Description

struct kern_ipc_perm sem_perm kern_ipc_perm data structure

long sem_otime Timestamp of last semop( )

long sem_ctime Timestamp of last change

struct sem * sem_base Pointer to first sem structure

struct sem_queue * sem_pending Pending operations

struct sem_queue ** sem_pending_last Last pending operation

struct sem_undo * undo Undo requests

unsigned long sem_nsems Number of semaphores in array

The sem_base field points to an array of sem data structures, one for every IPC primitive
semaphore. The latter data structure includes only two fields:

semval

The value of the semaphore's counter.
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sempid

The PID of the last process that accessed the semaphore. This value can be queried
by a process through the semctl( ) wrapper function.

19.3.3.1. Undoable semaphore operations

If a process aborts suddenly, it cannot undo the operations that it started (for instance,
release the semaphores it reserved); so by declaring them undoable, the process lets the
kernel return the semaphores to a consistent state and allow other processes to proceed.
Processes can request undoable operations by specifying the SEM_UNDO flag in the semop( )
function.

Information to help the kernel reverse the undoable operations performed by a given process
on a given IPC semaphore resource is stored in a sem_undo data structure. It essentially
contains the IPC identifier of the semaphore and an array of integers representing the
changes to the primitive semaphore's values caused by all undoable operations performed by
the process.

A simple example can illustrate how such sem_undo elements are used. Consider a process that
uses an IPC semaphore resource containing four primitive semaphores. Suppose that it invokes
the semop( ) function to increase the first counter by 1 and decrease the second by 2. If it
specifies the SEM_UNDO flag, the integer in the first array element in the sem_undo data
structure is decreased by 1, the integer in the second element is increased by 2, and the
other two integers are left unchanged. Further undoable operations on the IPC semaphore
performed by the same process change the integers stored in the sem_undo structure
accordingly. When the process exits, any nonzero value in that array corresponds to one or
more unbalanced operations on the corresponding primitive semaphore; the kernel reverses
these operations, simply adding the nonzero value to the corresponding semaphore's counter.
In other words, the changes made by the aborted process are backed out while the changes
made by other processes are still reflected in the state of the semaphores.

For each process, the kernel keeps track of all semaphore resources handled with undoable
operations so that it can roll them back if the process unexpectedly exits. Furthermore, for
each semaphore, the kernel has to keep track of all its sem_undo structures so it can quickly
access them whenever a process uses semctl( ) to force an explicit value into a primitive
semaphore's counter or to destroy an IPC semaphore resource.

The kernel is able to handle these tasks efficiently, thanks to two lists, which we denote as
the per-process and the per-semaphore lists. The first list keeps track of all semaphores
operated upon by a given process with undoable operations. The second list keeps track of all
processes that are acting on a given semaphore with undoable operations. More precisely:

 The per-process list includes all sem_undo data structures corresponding to IPC
semaphores on which the process has performed undoable operations. The 
sysvsem.undo_list field of the process descriptor points to a data structure, of type
sem_undo_list, which in turn contains a pointer to the first element of the list; the
proc_next field of each sem_undo data structure points to the next element in the list.
(As mentioned in the section "The clone( ), fork( ), and vfork( ) System Calls" in
Chapter 3, clone processes created by passing the CLONE_SYSVSEM flag to the clone( )
system call share the same list of undoable semaphore operations, because they share
the same sem_undo_list descriptor.)

 The per-semaphore list includes all sem_undo data structures corresponding to the
processes that performed undoable operations on the semaphore. The undo field of the
sem_array data structure points to the first element of the list, while the id_next field
of each sem_undo data structure points to the next element in the list.

The per-process list is used when a process terminates. The exit_sem( ) function, which is
invoked by do_exit( ), walks through the list and reverses the effect of any unbalanced
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operation for every IPC semaphore touched by the process. By contrast, the per-semaphore
list is mainly used when a process invokes the semctl( ) function to force an explicit value
into a primitive semaphore. The kernel sets the corresponding element to 0 in the arrays of all 
sem_undo data structures referring to that IPC semaphore resource, because it would no longer
make any sense to reverse the effect of previous undoable operations performed on that
primitive semaphore. Moreover, the per-semaphore list is also used when an IPC semaphore is
destroyed; all related sem_undo data structures are invalidated by setting the semid field to -1.
[*]

[*] Notice that they are just invalidated and not freed, because it w ould be too costly to remove the data structures from the
per-process lists of all processes.

19.3.3.2. The queue of pending requests

The kernel associates a queue of pending requests with each IPC semaphore to identify
processes that are waiting on one (or more) of the semaphores in the array. The queue is a
doubly linked list of sem_queue data structures whose fields are shown in Table 19-11. The first
and last pending requests in the queue are referenced, respectively, by the sem_pending and
sem_pending_last fields of the sem_array structure. This last field allows the list to be handled
as easily as a FIFO; new pending requests are added to the end of the list so they will be
serviced later. The most important fields of a pending request are nsops (which stores the
number of primitive semaphores involved in the pending operation) and sops (which points to
an array of integer values describing each semaphore operation). The sleeper field stores the
descriptor address of the sleeping process that requested the operation.

Table 19-11. The fields in the sem_queue data structure

Type Field Description

struct sem_queue * next Pointer to next queue element

struct sem_queue ** prev Pointer to previous queue element

struct task_struct * sleeper Pointer to the sleeping process that requested the semaphore
operation

struct sem_undo * undo Pointer to sem_undo structure

int pid Process identifier

int status Completion status of operation

struct sem_array * sma Pointer to IPC semaphore descriptor

int id Slot index of the IPC semaphore resource

struct sembuf * sops Pointer to array of pending operations

int nsops Number of pending operations

int alter Flag denoting whether the operation modifies the semaphore
array

Figure 19-1 illustrates an IPC semaphore that has three pending requests. The second and
third requests refer to undoable operations, so the undo field of the sem_queue data structure
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points to the corresponding sem_undo structure; the first pending request has a NULL undo field
because the corresponding operation is not undoable.

19.3.4. IPC Messages

Processes can communicate with one another by means of IPC messages . Each message
generated by a process is sent to an IPC message queue, where it stays until another process
reads it.

A message is composed of a fixed-size header and a variable-length text; it can be labeled
with an integer value (the message type), which allows a process to selectively retrieve
messages from its message queue.[*] Once a process has read a message from an IPC message
queue, the kernel destroys the message; therefore, only one process can receive a given
message.

[*] As w e'll see, the message queue is implemented by means of a linked list. Because messages can be retrieved in an order
different from "first in, first out," the name "message queue" is not appropriate. How ever, new  messages are alw ays put at the
end of the linked list.

To send a message, a process invokes the msgsnd( ) function, passing the following as
parameters:

 The IPC identifier of the destination message queue

 The size of the message text

 The address of a User Mode buffer that contains the message type immediately
followed by the message text

To retrieve a message, a process invokes the msgrcv( ) function, passing to it:

 The IPC identifier of the IPC message queue resource

 The pointer to a User Mode buffer to which the message type and message text should
be copied

 The size of this buffer

 A value t that specifies what message should be retrieved

If the value t is 0, the first message in the queue is returned. If t is positive, the first
message in the queue with its type equal to t is returned. Finally, if t is negative, the function
returns the first message whose message type is the lowest value less than or equal to the
absolute value of t.

To avoid resource exhaustion, there are some limits on the number of IPC message queue
resources allowed (by default, 16), on the size of each message (by default, 8,192 bytes),
and on the maximum total size of the messages in a queue (by default, 16,384 bytes). As
usual, however, the system administrator can tune these values by writing into the /proc
/sys/kernel/msgmni, /proc/sys/kernel/msgmnb, and /proc/sys/kernel/msgmax files,
respectively.

The data structures associated with IPC message queues are shown in Figure 19-2. The
msg_ids variable stores the ipc_ids data structure of the IPC message queue resource type;
the corresponding ipc_id_ary data structure contains an array of pointers to shmid_kernel
data structuresone item for every IPC message queue resource. Formally, the array stores
pointers to kern_ipc_perm data structures, but each such structure is simply the first field of
the msg_queue data structure. All fields of the msg_queue data structure are shown in Table
19-12.

Figure 19-2. IPC message queue data structures
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Table 19-12. The msg_queue data structure

Type Field Description

struct kern_ipc_perm q_perm kern_ipc_perm data structure

long q_stime Time of last msgsnd( )

long q_rtime Time of last msgrcv( )

long q_ctime Last change time

unsigned long q_qcbytes Number of bytes in queue

unsigned long q_qnum Number of messages in queue

unsigned long q_qbytes Maximum number of bytes in queue

int q_lspid PID of last msgsnd( )

int q_lrpid PID of last msgrcv( )

struct list_head q_messages List of messages in queue

struct list_head q_receivers List of processes receiving messages

struct list_head q_senders List of processes sending messages

The most important field is q_messages, which represents the head (i.e., the first dummy
element) of a doubly linked circular list containing all messages currently in the queue.

Each message is broken into one or more pages, which are dynamically allocated. The
beginning of the first page stores the message header, which is a data structure of type 
msg_msg; its fields are listed in Table 19-13. The m_list field stores the pointers to the
previous and next messages in the queue. The message text starts right after the msg_msg
descriptor; if the message is longer than 4,072 bytes (the page size minus the size of the 
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msg_msg descriptor), it continues on another page, whose address is stored in the next field of
the msg_msg descriptor. The second page frame starts with a descriptor of type msg_msgseg,
which simply includes a next pointer storing the address of an optional third page, and so on.

Table 19-13. The msg_msg data structure

Type Field Description

struct list_head m_list Pointers for message list

long m_type Message type

int m_ts Message text size

struct msg_msgseg * next Next portion of the message

void * security Pointer to a security data structure (used by SELinux)

When the message queue is full (either the maximum number of messages or the maximum
total size has been reached), processes that try to enqueue new messages may be blocked.
The q_senders field of the msg_queue data structure is the head of a list that includes the
pointers to the descriptors of all blocked sending processes.

Even receiving processes may be blocked when the message queue is empty (or the process
specified a type of message not present in the queue). The q_receivers field of the msg_queue
data structure is the head of a list of msg_receiver data structures, one for every blocked
receiving process. Each of these structures essentially includes a pointer to the process
descriptor, a pointer to the msg_msg structure of the message, and the type of the requested
message.

19.3.5. IPC Shared Memory

The most useful IPC mechanism is shared memory , which allows two or more processes to
access some common data structures by placing them in an IPC shared memory region. Each
process that wants to access the data structures included in an IPC shared memory region
must add to its address space a new memory region (see the section "Memory Regions" in
Chapter 9), which maps the page frames associated with the IPC shared memory region. Such
page frames can then be easily handled by the kernel through demand paging (see the section
"Demand Paging" in Chapter 9).

As with semaphores and message queues, the shmget( ) function is invoked to get the IPC
identifier of a shared memory region, optionally creating it if it does not already exist.

The shmat( ) function is invoked to "attach" an IPC shared memory region to a process. It
receives as its parameter the identifier of the IPC shared memory resource and tries to add a
shared memory region to the address space of the calling process. The calling process can
require a specific starting linear address for the memory region, but the address is usually
unimportant, and each process accessing the shared memory region can use a different
address in its own address space. The process's Page Tables are left unchanged by shmat( ).
We describe later what the kernel does when the process tries to access a page that belongs
to the new memory region.

The shmdt( ) function is invoked to "detach" an IPC shared memory region specified by its IPC
identifierthat is, to remove the corresponding memory region from the process's address
space. Recall that an IPC shared memory resource is persistent: even if no process is using it,
the corresponding pages cannot be discarded, although they can be swapped out.
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As for the other types of IPC resources, in order to avoid overuse of memory by User Mode
processes, there are some limits on the allowed number of IPC shared memory regions (by
default, 4,096), on the size of each segment (by default, 32 megabytes), and on the maximum
total size of all segments (by default, 8 gigabytes). As usual, however, the system
administrator can tune these values by writing into the /proc/sys/kernel/shmmni,
/proc/sys/kernel/shmmax, and /proc/sys/kernel/shmall files, respectively.

Figure 19-3. IPC shared memory data structures

The data structures associated with IPC shared memory regions are shown in Figure 19-3.
The shm_ids variable stores the ipc_ids data structure of the IPC shared memory resource
type; the corresponding ipc_id_ary data structure contains an array of pointers to
shmid_kernel data structures, one item for every IPC shared memory resource. Formally, the
array stores pointers to kern_ipc_perm data structures, but each such structure is simply the
first field of the msg_queue data structure. All fields of the shmid_kernel data structure are
shown in Table 19-14.

Table 19-14. The fields in the shmid_kernel data structure

Type Field Description

struct

kern_ipc_perm
shm_perm kern_ipc_perm data structure

struct file * shm_file Special file of the segment

int id Slot index of the segment

unsigned long shm_nattch Number of current attaches
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Table 19-14. The fields in the shmid_kernel data structure

Type Field Description

unsigned long shm_segsz Segment size in bytes

long shm_atim Last access time

long shm_dtim Last detach time

long shm_ctim Last change time

int shm_cprid PID of creator

int shm_lprid PID of last accessing process

struct
user_struct * mlock_user

Pointer to the user_struct descriptor of the user that locked
in RAM the shared memory resource (see the section "The
clone( ), fork( ), and vfork( ) System Calls" in Chapter 3)

The most important field is shm_file, which stores the address of a file object. This reflects
the tight integration of IPC shared memory with the VFS layer in Linux 2.6. In particular, each
IPC shared memory region is associated with a file belonging to the shm special filesystem
(see the section "Special Filesystems" in Chapter 12).

Because the shm filesystem has no mount point in the system directory tree, no user can
open and access its files by means of regular VFS system calls. However, when a process
"attaches" a segment, the kernel invokes do_mmap( ) and creates a new shared memory
mapping of the file in the address space of the process. Therefore, files that belong to the 
shm special filesystem have just one file object method, mmap, which is implemented by the
shm_mmap( ) function.

As shown in Figure 19-3, a memory region that corresponds to an IPC shared memory region is
described by a vm_area_struct object (see the section "Memory Mapping" in Chapter 16); its
vm_file field points back to the file object of the file in the special filesystem, which in turn
references a dentry object and an inode object. The inode number, stored in the i_ino field of
the inode, is actually the slot index of the IPC shared memory region, so the inode object
indirectly references the shmid_kernel descriptor.

As usual for every shared memory mapping, page frames are included in the page cache
through an address_space object, which is embedded in the inode and referenced by the
i_mapping field of the inode (you might also refer to Figure 16-2); in case of page frames
belonging to an IPC shared memory region, the methods of the address_space object are
stored in the shmem_aops global variable.

19.3.5.1. Swapping out pages of IPC shared memory regions

The kernel has to be careful when swapping out pages included in shared memory regions, and
the role of the swap cache is crucial (this topic was already discussed in the section "The
Swap Cache" in Chapter 17).

Pages of an IPC shared memory region are swappableand not syncable (see Table 17-1 in
Chapter 17)because they map a special inode that has no image on disk. Thus, in order to
reclaim a page of an IPC shared memory region, the kernel must write it into a swap area.
Because an IPC shared memory region is persistentthat is, its pages must be preserved even
when the segment is not attached to any processthe kernel cannot simply discard these
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pages even when they are no longer used by any process.

Let us see how the PFRA performs the reclaiming of a page frame used by an IPC shared
memory region. Everything is done as described in the section "Low On Memory Reclaiming" in
Chapter 17, until the page is considered by shrink_list( ). Because this function does not
include any special check for pages of IPC shared memory regions, it ends up invoking the 
try_to_unmap( ) function to remove every reference to the page frame from the User Mode
address spaces; as explained in the section "Reverse Mapping" in Chapter 17, the
corresponding page table entries are simply cleared.

Next, the shrink_list( ) function checks the PG_dirty flag of the page and invokes pageout(
)page frames of IPC shared memory regions are marked dirty when they are allocated, thus
pageout( ) is always invoked. In turn, the pageout( ) function invokes the writepage method
of the address_space object of the mapped file.

The shmem_writepage( ) function, which implements the writepage method for IPC shared
memory regions' pages, essentially allocates a new page slot in a swap area, and moves the
page from the page cache to the swap cache (it's just a matter of changing the owner 
address_space object of the page). The function also stores the swapped-out page identifier in
a shmem_inode_info structure that embodies the IPC memory region's inode object, and it sets
again the PG_dirty flag of the page. As shown in Figure 17-5 in Chapter 17, the shrink_list(
) function checks the PG_dirty flag and breaks the reclaiming procedure by leaving the page in
the inactive list.

Sooner or later, the page frame will be processed again by the PFRA. Once again, the 
shrink_list( ) function will try to flush the page to disk by invoking pageout( ). This time,
however, the page is included in the swap cache, thus it is "owned" by the address_space
object of the swapping subsystem, swapper_space. The corresponding writepage method,
swap_writepage( ), effectively starts the write operation into the swap area (see the section "
Swapping Out Pages" in Chapter 17). Once pageout( ) terminates, shrink_list( ) verifies that
the page is now clean, removes it from the swap cache, and releases it to the buddy system.

19.3.5.2. Demand paging for IPC shared memory regions

The pages added to a process by shmat( ) are dummy pages; the function adds a new
memory region into a process's address space, but it doesn't modify the process's Page
Tables. Moreover, as we have seen, pages of an IPC shared memory region can be swapped
out. Therefore, these pages are handled through the demand paging mechanism.

As we know, a Page Fault occurs when a process tries to access a location of an IPC shared
memory region whose underlying page frame has not been assigned. The corresponding
exception handler determines that the faulty address is inside the process address space and
that the corresponding Page Table entry is null; therefore, it invokes the do_no_page( )
function (see the section "Demand Paging" in Chapter 9). In turn, this function checks
whether the nopage method for the memory region is defined. That method is invoked, and the
Page Table entry is set to the address returned from it (see also the section "Demand Paging
for Memory Mapping" in Chapter 16).

Memory regions used for IPC shared memory always define the nopage method. It is
implemented by the shmem_nopage( ) function, which performs the following operations:

1. Walks the chain of pointers in the VFS objects and derives the address of the inode
object of the IPC shared memory resource (see Figure 19-3).

2. Computes the logical page number inside the segment from the vm_start field of the
memory region descriptor and the requested address.

3. Checks whether the page is already included in the page cache; if so, terminates by
returning the address of its descriptor.

4. Checks whether the page is included in the swap cache and is up-to-date; if so,
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terminates by returning the address of its descriptor.

5. Checks whether the shmem_inode_info that embodies the inode object stores a
swapped-out page identifier for the logical page number. If so, it performs a swap-in
operation by invoking read_swap_cache_async( ) (see the section "Swapping in Pages"
in Chapter 17), waits until the data transfer completes, and terminates by returning
the address of the page descriptor.

6. Otherwise, the page is not stored in a swap area; therefore, the function allocates a
new page from the buddy system, inserts it into the page cache, and returns its
address.

The do_no_page( ) function sets the entry that corresponds to the faulty address in the
process's Page Table so that it points to the page frame returned by the method.
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19.4. POSIX Message Queues
The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on message
queues, which is usually known as POSIX message queues . They are much like the System V
IPC's message queues already examined in the section "IPC Messages" earlier in this chapter.
However, POSIX message queues sport a number of advantages over the older queues:

 A much simpler file-based interface to the applications

 Native support for message priorities (the priority ultimately determines the position of
the message in the queue)

 Native support for asynchronous notification of message arrivals, either by means of
signals or thread creation

 Timeouts for blocking send and receive operations

POSIX message queues are handled by means of a set of library functions, which are shown
in Table 19-15.

Table 19-15. Library functions for POSIX message queues

Function names Description

mq_open( ) Open (optionally creating) a POSIX message queue

mq_close( ) Close a POSIX message queue (without destroying it)

mq_unlink( ) Destroy a POSIX message queue

mq_send( ) ,

mq_timedsend( ) 

Send a message to a POSIX message queue; the latter function defines
a time limit for the operation

mq_receive( ) ,

mq_timedreceive( ) 

Fetch a message from a POSIX message queue; the latter function
defines a time limit for the operation

mq_notify( ) Establish an asynchronous notification mechanism for the arrival of
messages in an empty POSIX message queue

mq_getattr( ) ,

mq_setattr( ) 

Respectively get and set attributes of a POSIX message queue
(essentially, whether the send and receive operations should be
blocking or nonblocking)

Let's see how an application typically makes use of these functions. As a first step, the
application invokes the mq_open( ) library function to open a POSIX message queue. The first
argument of the function is a string specifying the name of the queue; it is similar to a
filename, and indeed it must start with a slash (/). The library function accepts a subset of
the flags of the open( ) system call: O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_EXCL, and
O_NONBLOCK (for nonblocking send and receive operations). Notice that the application may
create a new POSIX message queue by specifying the O_CREAT flag. The mq_open( ) function
returns a descriptor for the queuemuch like the file descriptor returned by the open( ) system
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call.

Once a POSIX message queue has been opened, the application may send and receive
messages by using the library functions mq_send( ) and mq_receive( ), passing to them the
queue descriptor returned by mq_open( ) . The application may also make use of mq_timedsend(
) and mq_timedreceive( ) to specify the maximum time that the application will spend waiting
for the send or receive operation to complete.

Rather than blocking in mq_receive( )or continuously polling the message queue if the
O_NONBLOCK flag was specifiedthe application might also establish an asynchronous notification
mechanism by executing the mq_notify( ) library function. Essentially, the application may
require that when a message is inserted in an empty queue, either a signal is sent to a
selected process, or a new thread is created.

Finally, when the application has finished using the message queue, it invokes the mq_close( )
library function; passing to it the queue descriptor. Notice that this function does not destroy
the queue, exactly as the close( ) system call does not remove a file. To destroy a queue,
the application makes use of the mq_unlink( ) function.

The implementation of POSIX message queues in Linux 2.6 is simple and straightforward. A
special filesystem named mqueue (see the section "Special Filesystems" in Chapter 12) has
been introduced, which contains an inode for each existing queue. The kernel offers a few
system calls, which roughly correspond to the library functions listed in Table 19-15 earlier:
mq_open( ), mq_unlink( ), mq_timedsend( ), mq_timedreceive( ), mq_notify( ), and
mq_getsetattr( ) . These system calls act transparently on the files of the mqueue filesystem,
thus much of the job is done by the VFS layer. For example, notice that the kernel does not
offer a mq_close( ) function: in fact, the queue descriptor returned to the application is
effectively a file descriptor, therefore the mq_close( ) library function can simply execute the
close( ) system call to do its job.

The mqueue special filesystem must not necessarily be mounted over the system directory
tree. However, if it is mounted, a user can create a POSIX message queue by touching a file
in the root directory of the filesystem; she can also get information about the queue by
reading the corresponding file. Finally, an application can use select( ) and poll( ) to be
notified about changes in the queue state.

Each queue is described by an mqueue_inode_info descriptor, which embodies the inode object
associated with the file in the mqueue special filesystem. When a POSIX message queue
system call receives a queue descriptor as parameter, it invokes the VFS's fget( ) function to
derive the address of the corresponding file object; next, the system call gets the inode
object of the file in the mqueue filesystem, and finally the address of the mqueue_inode_info
descriptor that contains the inode object.

The pending messages in a queue are collected in a singly linked list rooted at the 
mqueue_inode_info descriptor; each message is represented by a descriptor of type msg_msg
exactly the same descriptor used for the System V IPC's messages described in the section "
IPC Messages" earlier in this chapter.
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Chapter 20. Program ExZecution
The concept of a "process," described in Chapter 3, was used in Unix from the beginning to
represent the behavior of groups of running programs that compete for system resources. This
final chapter focuses on the relationship between program and process. We specifically
describe how the kernel sets up the execution context for a process according to the
contents of the program file. While it may not seem like a big problem to load a bunch of
instructions into memory and point the CPU to them, the kernel has to deal with flexibility in
several areas:

Different executable formats

Linux is distinguished by its ability to run binaries that were compiled for other
operating systems. In particular, Linux is able to run an executable created for a 32-bit
machine on the 64-bit version of the same machine. For instance, an executable
created on a Pentium can run on a 64-bit AMD Opteron .

Shared libraries

Many executable files don't contain all the code required to run the program but expect
the kernel to load in functions from a library at runtime.

Other information in the execution context

This includes the command-line arguments and environment variables familiar to
programmers.

A program is stored on disk as an executable file, which includes both the object code of the
functions to be executed and the data on which these functions will act. Many functions of
the program are service routines available to all programmers; their object code is included in
special files called "libraries." Actually, the code of a library function may either be statically
copied into the executable file (static libraries) or linked to the process at runtime (shared
libraries, because their code can be shared by several independent processes).

When launching a program, the user may supply two kinds of information that affect the way
it is executed: command-line arguments and environment variables. Command-line arguments
are typed in by the user following the executable filename at the shell prompt. Environment
variables, such as HOME and PATH, are inherited from the shell, but the users may modify the
values of such variables before they launch the program.

In the section "Executable Files," we explain what a program execution context is. In the
section "Executable Formats," we mention some of the executable formats supported by Linux
and show how Linux can change its "personality" to execute programs compiled for other
operating systems. Finally, in the section "The exec Functions," we describe the system call
that allows a process to start executing a new program.
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20.1. Executable Files
Chapter 1 defined a process as an "execution context." By this we mean the collection of
information needed to carry on a specific computation; it includes the pages accessed, the
open files, the hardware register contents, and so on. An executable file is a regular file that
describes how to initialize a new execution context (i.e., how to start a new computation).

Suppose a user wants to list the files in the current directory; he knows that this result can
be simply achieved by typing the filename of the /bin/ls[*] external command at the shell
prompt. The command shell forks a new process, which in turn invokes an execve( ) system
call (see the section "The exec Functions" later in this chapter), passing as one of its
parameters a string that includes the full pathname for the ls executable file/bin/ls, in this
case. The sys_execve( ) service routine finds the corresponding file, checks the executable
format, and modifies the execution context of the current process according to the
information stored in it. As a result, when the system call terminates, the process starts
executing the code stored in the executable file, which performs the directory listing.

[*] The pathnames of executable files are not fixed in Linux; they depend on the distribution used. Several standard naming
schemes, such as Filesystem Hierarchy Standard (FHS), have been proposed for all Unix systems.

When a process starts running a new program, its execution context changes drastically
because most of the resources obtained during the process's previous computations are
discarded. In the preceding example, when the process starts executing /bin/ls, it replaces
the shell's arguments with new ones passed as parameters in the execve( ) system call and
acquires a new shell environment (see the later section "Command-Line Arguments and Shell
Environment"). All pages inherited from the parent (and shared with the Copy On Write
mechanism) are released so that the new computation starts with a fresh User Mode address
space; even the privileges of the process could change (see the later section "Process
Credentials and Capabilities"). However, the process PID doesn't change, and the new
computation inherits from the previous one all open file descriptors that were not closed
automatically while executing the execve( ) system call.[*]

[*] By default, a file already opened by a process stays open after issuing an execve( ) system call. How ever, the file is
automatically closed if the process has set the corresponding bit in the close_on_exec field of the files_struct structure (see Table
12-7 in Chapter 12); this is done by means of the fcntl( ) system call.

20.1.1. Process Credentials and Capabilities

Traditionally, Unix systems associate with each process some credentials, which bind the
process to a specific user and a specific user group. Credentials are important on multiuser
systems because they determine what each process can or cannot do, thus preserving both
the integrity of each user's personal data and the stability of the system as a whole.

The use of credentials requires support both in the process data structure and in the
resources being protected. One obvious resource is a file. Thus, in the Ext2 filesystem , each
file is owned by a specific user and is bound to a group of users. The owner of a file may
decide what kind of operations are allowed on that file, distinguishing among herself, the file's
user group, and all other users. When a process tries to access a file, the VFS always checks
whether the access is legal, according to the permissions established by the file owner and
the process credentials .

The process's credentials are stored in several fields of the process descriptor, listed in Table
20-1. These fields contain identifiers of users and user groups in the system, which are usually
compared with the corresponding identifiers stored in the inodes of the files being accessed.
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Table 20-1. Traditional process credentials

Name Description

uid, gid User and group real identifiers

euid, egid User and group effective identifiers

fsuid, fsgid User and group effective identifiers for file access

groups Supplementary group identifiers

suid, sgid User and group saved identifiers

A UID of 0 specifies the superuser (root), while a user group ID of 0 specifies the root group.
If a process credential stores a value of 0, the kernel bypasses the permission checks and
allows the privileged process to perform various actions, such as those referring to system
administration or hardware manipulation, that are not possible to unprivileged processes.

When a process is created, it always inherits the credentials of its parent. However, these
credentials can be modified later, either when the process starts executing a new program or
when it issues suitable system calls. Usually, the uid, euid, fsuid, and suid fields of a process
contain the same value. When the process executes a setuid programthat is, an executable
file whose setuid flag is onthe euid and fsuid fields are set to the identifier of the file's owner.
Almost all checks involve one of these two fields: fsuid is used for file-related operations,
while euid is used for all other operations. Similar considerations apply to the gid, egid, fsgid,
and sgid fields that refer to group identifiers.

As an illustration of how the fsuid field is used, consider the typical situation when a user
wants to change his password. All passwords are stored in a common file, but he cannot
directly edit this file because it is protected. Therefore, he invokes a system program named 
/usr/bin/passwd, which has the setuid flag set and whose owner is the superuser. When the
process forked by the shell executes such a program, its euid and fsuid fields are set to 0to
the PID of the superuser. Now the process can access the file, because, when the kernel
performs the access control, it finds a 0 value in fsuid. Of course, the /usr/bin/passwd
program does not allow the user to do anything but change his own password.

Unix's long history teaches the lesson that setuid programs programs that have the setuid
flag setare quite dangerous: malicious users could trigger some programming errors (bugs) in
the code to force setuid programs to perform operations that were never planned by the
program's original designers. In the worst case, the entire system's security can be
compromised. To minimize such risks, Linux, like all modern Unix systems, allows processes to
acquire setuid privileges only when necessary and drop them when they are no longer needed.
This feature may turn out to be useful when implementing user applications with several
protection levels. The process descriptor includes an suid field, which stores the values of the
effective identifiers (euid and fsuid) at the setuid program startup. The process can change
the effective identifiers by means of the setuid( ), setresuid( ), setfsuid( ), and setreuid(
) system calls.[*]

[*] A group's effective credentials can be changed by issuing the corresponding setgid( ), setresgid( ), setfsgid( ), and setregid(
) system calls.

Table 20-2 shows how these system calls affect the process's credentials. Be warned that if
the calling process does not already have superuser privilegesthat is, if its euid field is not
nullthese system calls can be used only to set values already included in the process's
credential fields. For instance, an average user process can store the value 500 into its fsuid
field by invoking the setfsuid( ) system call, but only if one of the other credential fields
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already holds the same value.

Table 20-2. Semantics of the system calls that set process credentials

Field setuid (e) setresuid (u,e,s) setreuid (u,e) setfsuid (f)

 euid=0 euid 0    

uid Set to e Unchanged Set to u Set to u Unchanged

euid Set to e Set to e Set to e Set to e Unchanged

fsuid Set to e Set to e Set to e Set to e Set to f

suid Set to e Unchanged Set to s Set to e Unchanged

To understand the sometimes complex relationships among the four user ID fields, consider for
a moment the effects of the setuid( ) system call. The actions are different, depending on
whether the calling process's euid field is set to 0 (that is, the process has superuser
privileges) or to a normal UID .

If the euid field is 0, the system call sets all credential fields of the calling process (uid, euid,
fsuid, and suid) to the value of the parameter e. A superuser process can thus drop its
privileges and become a process owned by a normal user. This happens, for instance, when a
user logs in: the system forks a new process with superuser privileges, but the process drops
its privileges by invoking the setuid( ) system call and then starts executing the user's login
shell program.

If the euid field is not 0, the setuid( ) system call modifies only the value stored in euid and
fsuid, leaving the other two fields unchanged. This behavior of the system call is useful when
implementing a setuid program that scales up and down the effective process's privileges
stored in the euid and fsuid fields.

20.1.1.1. Process capabilities

The POSIX.1e draftnow withdrawnintroduced another model of process credentials based on
the notion of "capabilities." The Linux kernel supports POSIX capabilities, although most Linux
distributions do not make use of them.

A capability is simply a flag that asserts whether the process is allowed to perform a specific
operation or a specific class of operations. This model is different from the traditional
"superuser versus normal user" model in which a process can either do everything or do
nothing, depending on its effective UID. As illustrated in Table 20-3, several capabilities have
been included in the Linux kernel.

Table 20-3. Linux capabilities

Name Description

CAP_AUDIT_WRITE Allow to generate audit messages by writing in netlink sockets

CAP_AUDIT_CONTROL Allow to control kernel auditing activities by means of netlink
sockets

CAP_CHOWN Ignore restrictions on file user and group ownership changes
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Table 20-3. Linux capabilities

Name Description

CAP_DAC_OVERRIDE Ignore file access permissions

CAP_DAC_READ_SEARCH Ignore file/directory read and search permissions

CAP_FOWNER Generally ignore permission checks on file ownership

CAP_FSETID Ignore restrictions on setting the setuid and setgid flags for files

CAP_KILL Bypass permission checks when generating signals

CAP_LINUX_IMMUTABLE Allow modification of append-only and immutable Ext2/Ext3 files

CAP_IPC_LOCK Allow locking of pages and of shared memory segments

CAP_IPC_OWNER Skip IPC ownership checks

CAP_LEASE Allow taking of leases on files (see "Linux File Locking" in Chapter 12)

CAP_MKNOD Allow privileged mknod( ) operations

CAP_NET_ADMIN Allow general networking administration

CAP_NET_BIND_SERVICE Allow binding to TCP/UDP sockets below 1,024

CAP_NET_BROADCAST Allow broadcasting and multicasting

CAP_NET_RAW Allow use of RAW and PACKET sockets

CAP_SETGID Ignore restrictions on group's process credentials manipulations

CAP_SETPCAP Allow capability manipulations on other processes

CAP_SETUID Ignore restrictions on user's process credentials manipulations

CAP_SYS_ADMIN Allow general system administration

CAP_SYS_BOOT Allow use of reboot( )

CAP_SYS_CHROOT Allow use of chroot( )

CAP_SYS_MODULE Allow inserting and removing of kernel modules

CAP_SYS_NICE Skip permission checks of the nice( ) and setpriority( ) system
calls, and allow creation of real-time processes

CAP_SYS_PACCT Allow configuration of process accounting

CAP_SYS_PTRACE Allow use of ptrace( ) on every process
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Table 20-3. Linux capabilities

Name Description

CAP_SYS_RAWIO Allow access to I/O ports through ioperm( ) and iopl( )

CAP_SYS_RESOURCE Allow resource limits to be increased

CAP_SYS_TIME Allow manipulation of system clock and real-time clock

CAP_SYS_TTY_CONFIG Allow to configure the terminal and to execute the vhangup( )
system call

The main advantage of capabilities is that, at any time, each program needs a limited number
of them. Consequently, even if a malicious user discovers a way to exploit a buggy program,
she can illegally perform only a limited set of operations.

Assume, for instance, that a buggy program has only the CAP_SYS_TIME capability. In this case,
the malicious user who discovers an exploitation of the bug can succeed only in illegally
changing the real-time clock and the system clock. She won't be able to perform any other
kind of privileged operations.

Neither the VFS nor the Ext2 filesystem currently supports the capability model, so there is no
way to associate an executable file with the set of capabilities that should be enforced when
a process executes that file. Nevertheless, a process can explicitly get and lower its
capabilities by using, respectively, the capget( ) and capset( ) system calls. For instance, it
is possible to modify the login program to retain a subset of the capabilities and drop the
others.

The Linux kernel already takes capabilities into account. Let's consider, for instance, the nice(
) system call, which allows users to change the static priority of a process. In the traditional
model, only the superuser can raise a priority; the kernel should therefore check whether the 
euid field in the descriptor of the calling process is set to 0. However, the Linux kernel defines
a capability called CAP_SYS_NICE, which corresponds exactly to this kind of operation. The
kernel checks the value of this flag by invoking the capable( ) function and passing the
CAP_SYS_NICE value to it.

This approach works, thanks to some "compatibility hacks" that have been added to the kernel
code: each time a process sets the euid and fsuid fields to 0 (either by invoking one of the
system calls listed in Table 20-2 or by executing a setuid program owned by the superuser),
the kernel sets all process capabilities so that all checks will succeed. When the process
resets the euid and fsuid fields to the real UID of the process owner, the kernel checks the
keep_capabilities flag in the process descriptor and drops all capabilities of the process if the
flag is set. A process can set and reset the keep_capabilities flag by means of the
Linux-specific prctl( ) system call.

20.1.1.2. The Linux Security Modules framework

In Linux 2.6, capabilities are tightly integrated with the Linux Security Modules framework (
LSM). In short, the LSM framework allows developers to define several alternative models for
kernel security.

Each security model is implemented by a set of security hooks . A security hook is a function
that is invoked by the kernel when it is about to perform an important, security-related
operation. The hook function determines whether the operation should be carried on or
rejected.
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The security hooks are stored in a table of type security_operations. The address of the hook
table for the security model currently in use is stored in the security_ops variable. By default,
the kernel makes use of a minimal security model implemented by the dummy_security_ops
table; each hook in this table essentially checks the corresponding capability, if any, or
unconditionally returns 0 (operation allowed).

For instance, the service routines of the stime( ) and settimeofday( ) functions invoke the
settime security hook before changing the system date and time. The corresponding function
pointed to by the dummy_security_ops table limits itself in checking whether the CAP_SYS_TIME
capability of the current process is set, and returns either 0 or -EPERM accordingly.

Sophisticated security models for the Linux kernel have been devised. A widely known example
is Security-Enhanced Linux (SELinux), developed by the United State's National Security
Agency.

20.1.2. Command-Line Arguments and Shell Environment

When a user types a command, the program that is loaded to satisfy the request may receive
some command-line arguments from the shell. For example, when a user types the command:

    $ ls -l /usr/bin

to get a full listing of the files in the /usr/bin directory, the shell process creates a new
process to execute the command. This new process loads the /bin/ls executable file. In doing
so, most of the execution context inherited from the shell is lost, but the three separate
arguments ls, -l, and /usr/bin are kept. Generally, the new process may receive any number
of arguments.

The conventions for passing the command-line arguments depend on the high-level language
used. In the C language, the main( ) function of a program may receive as its parameters an
integer specifying how many arguments have been passed to the program and the address of
an array of pointers to strings. The following prototype formalizes this standard:

    int main(int argc, char *argv[])

Going back to the previous example, when the /bin/ls program is invoked, argc has the value
3, argv[0] points to the ls string, argv[1] points to the -l string, and argv[2] points to the
/usr/bin string. The end of the argv array is always marked by a null pointer, so argv[3]
contains NULL.

A third optional parameter that may be passed in the C language to the main( ) function is
the parameter containing environment variables . They are used to customize the execution
context of a process, to provide general information to a user or other processes, or to allow
a process to keep some information across an execve( ) system call.

To use the environment variables, main( ) can be declared as follows:

    int main(int argc, char *argv[], char *envp[])

The envp parameter points to an array of pointers to environment strings of the form:

    VAR_NAME=something

where VAR_NAME represents the name of an environment variable, while the substring following
the = delimiter represents the actual value assigned to the variable. The end of the envp array
is marked by a null pointer, like the argv array. The address of the envp array is also stored in
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the environ global variable of the C library.

Command-line arguments and environment strings are placed on the User Mode stack, right
before the return address (see the section "Parameter Passing" in Chapter 10). The bottom
locations of the User Mode stack are illustrated in Figure 20-1. Notice that the environment
variables are located near the bottom of the stack, right after a 0 long integer.

Figure 20-1. The bottom locations of the User Mode stack

20.1.3. Libraries

Each high-level source code file is transformed through several steps into an object file, which
contains the machine code of the assembly language instructions corresponding to the
high-level instructions. An object file cannot be executed, because it does not contain the
linear address that corresponds to each reference to a name of a global symbol external to
the source code file, such as functions in libraries or other source code files of the same
program. The assigning, or resolution, of such addresses is performed by the linker, which
collects all the object files of the program and constructs the executable file. The linker also
analyzes the library's functions used by the program and glues them into the executable file in
a manner described later in this chapter.

Most programs, even the most trivial ones, use libraries. Consider, for instance, the following
one-line C program:

    void main(void) { }

Although this program does not compute anything, a lot of work is needed to set up the
execution environment (see the section "The exec Functions" later in this chapter) and to kill
the process when the program terminates (see the section "Destroying Processes" in Chapter
3). In particular, when the main( ) function terminates, the C compiler inserts an exit_group(
) function call in the object code.

We know from Chapter 10 that programs usually invoke system calls through wrapper routines
in the C library. This holds for the C compiler, too. Besides including the code directly
generated by compiling the program's statements, each executable file also includes some
"glue" code to handle the interactions of the User Mode process with the kernel. Portions of
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such glue code are stored in the C library.

Many other libraries of functions, besides the C library, are included in Unix systems. A generic
Linux system typically uses several hundreds of libraries. Just to mention a couple of them:
the math library libm includes advanced functions for floating point operations, while the X11
library libX11 collects together the basic low-level functions for the X11 Window System
graphics interface.

All executable files in traditional Unix systems were based on static libraries . This means that
the executable file produced by the linker includes not only the code of the original program
but also the code of the library functions that the program refers to. One big disadvantage of
statically linked programs is that they eat lots of space on disk. Indeed, each statically linked
executable file duplicates some portion of library code.

Modern Unix systems use shared libraries . The executable file does not contain the library
object code, but only a reference to the library name. When the program is loaded in memory
for execution, a suitable program called dynamic linker (also named ld.so ) takes care of
analyzing the library names in the executable file, locating the library in the system's directory
tree and making the requested code available to the executing process. A process can also
load additional shared libraries at runtime by using the dlopen( ) library function.

Shared libraries are especially convenient on systems that provide file memory mapping,
because they reduce the amount of main memory requested for executing a program. When
the dynamic linker must link a shared library to a process, it does not copy the object code,
but performs only a memory mapping of the relevant portion of the library file into the
process's address space. This allows the page frames containing the machine code of the
library to be shared among all processes that are using the same code. Clearly, sharing is not
possible if the program has been linked statically.

Shared libraries also have some disadvantages. The startup time of a dynamically linked
program is usually longer than that of a statically linked one. Moreover, dynamically linked
programs are not as portable as statically linked ones, because they may not execute properly
in systems that include a different version of the same library.

A user may always require a program to be linked statically. For example, the GCC compiler
offers the -static option, which tells the linker to use the static libraries instead of the shared
ones.

20.1.4. Program Segments and Process Memory Regions

The linear address space of a Unix program is traditionally partitioned, from a logical point of
view, in several linear address intervals called segments :[*]

[*] The w ord "segment" has historical roots, because the first Unix systems implemented each linear address interval w ith a
different segment register. Linux, how ever, does not rely on the segmentation mechanism of the 80 x 86 microprocessors to
implement program segments.

Text segment

Includes the program's executable code.

Initialized data segment

Contains the initialized datathat is, the static variables and the global variables whose
initial values are stored in the executable file (because the program must know their
values at startup).

Uninitialized data segment (bss)
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Contains the uninitialized datathat is, all global variables whose initial values are not
stored in the executable file (because the program sets the values before referencing
them); it is historically called a bss segment.

Stack segment

Contains the program stack, which includes the return addresses, parameters, and
local variables of the functions being executed.

Each mm_struct memory descriptor (see the section "The Memory Descriptor" in Chapter 9)
includes some fields that identify the role of a few crucial memory regions of the
corresponding process:

start_code, end_code

Store the initial and final linear addresses of the memory region that includes the
native code of the programthe code in the executable file.

start_data, end_data

Store the initial and final linear addresses of the memory region that includes the
native initialized data of the program, as specified in the executable file. The fields
identify a memory region that roughly corresponds to the data segment.

start_brk, brk

Store the initial and final linear addresses of the memory region that includes the
dynamically allocated memory areas of the process (see the section "Managing the
Heap" in Chapter 9). This memory region is sometimes called the heap.

start_stack

Stores the address right above that of main( )'s return address; as illustrated in Figure
20-1, higher addresses are reserved (recall that stacks grow toward lower addresses).

arg_start, arg_end

Store the initial and final addresses of the stack portion containing the command-line
arguments.

env_start, env_end

Store the initial and final addresses of the stack portion containing the environment
strings.

Notice that shared libraries and file memory mapping have made the classification of the
process's address space based on program segments obsolete, because each of the shared
libraries is mapped into a different memory region from those discussed in the preceding list.

20.1.4.1. Flexible memory region layout

The flexible memory region layout has been introduced in the kernel version 2.6.9: essentially,
each process gets a memory layout that depends on how much the User Mode stack is
expected to grow. However, the old, classical layout can still be used (mainly when the kernel
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cannot put a limit on the size of the User Mode stack of a process). Both layouts are
described in Table 20-4, assuming the 80 x 86 architecture with the default User Mode
address space spanning up to 3 GB.

Table 20-4. The memory region layouts in the 80 x 86 architecture

Type of memory
region Classical layout Flexible layout

Text segment (ELF) Starts from 0x08048000

Data and bss
segments Starts right after the text segment

Heap Starts right after the data and bss segments

File memory
mappings and
anonymous memory
regions

Starts from 0x40000000 (this address
corresponds to 1/3 of the whole User
Mode address space); libraries added
at successively higher addresses

Starts near the end (lowest
address) of the User Mode
stack; libraries added at
successively lower addresses

User Mode stack Starts at 0xc0000000 and grows towards lower addresses

As you can see, the layouts differ only on the position of the memory regions for file memory
mappings and anonymous mappings. In the classical layout, these regions are placed starting
at one-third of the whole User Mode address space, usually at 0x40000000; newer regions are
added at higher linear addresses, thus the regions expand towards the User Mode stack.

Conversely, in the flexible layout the memory regions for file memory mapping and anonymous
mappings are placed near the end of the User Mode stack; newer regions are added at lower
linear addresses, thus the regions expand towards the heap. Remember that the stack grows
towards lower addresses, too.

The kernel typically uses the flexible layout when it can get a limit on the size of the User
Mode stack by means of the RLIMIT_STACK resource limit (see the section "Process Resource
Limits" in Chapter 3). This limit determines the size of the linear address space reserved for
the stack; however, this size cannot be smaller than 128 MB or larger than 2.5 GB.

On the other hand, if either the RLIMIT_STACK resource limit is set to "infinity" or the system
administrator has set to 1 the sysctl_legacy_va_layout variable (by writing in the /proc
/sys/vm/legacy_va_layout file or by issuing the proper sysctl( ) system call), the kernel
cannot determine an upper bound on the size of the User Mode stack, thus it sticks to the
classical memory region layout.

Why has the flexible layout been introduced? Its main advantage is that it allows a process to
make better use of the User Mode linear address space. In the classical layout the heap is
limited to less than 1 GB, while the other memory regions can fill up to about 2 GB (minus the
stack size). In the flexible layout, these constraints are gone: both the heap and the other
memory regions can freely expand until all the linear addresses left unused by the User Mode
stack and the program's fixed-size segments are taken.

At this point, a small, practical experiment can be quite enlightening. Let's write and compile
the following C program:

    #include <stdio.h>

    #include <stdlib.h>

    #include <unistd.h>
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    int main( )

    {

        char cmd[32];

        brk((void *)0x8051000);

        sprintf(cmd, "cat /proc/self/maps");

        system(cmd);

        return 0;

    }

Essentially, the program enlarges the heap of the process (see the section "Managing the
Heap" in Chapter 9), then it reads the maps file in the /proc special filesystem that produces
the list of memory regions of the process itself.

Let's run the program without putting any limit on the stack size:

    # ulimit -s unlimited; /tmp/memorylayout

    08048000-08049000 r-xp 00000000 03:03 5042408    /tmp/memorylayout

    08049000-0804a000 rwxp 00000000 03:03 5042408    /tmp/memorylayout

    0804a000-08051000 rwxp 0804a000 00:00 0

    40000000-40014000 r-xp 00000000 03:03 620801     /lib/ld-2.3.2.so

    40014000-40015000 rwxp 00013000 03:03 620801     /lib/ld-2.3.2.so

    40015000-40016000 rwxp 40015000 00:00 0

    4002f000-40157000 r-xp 00000000 03:03 620804     /lib/libc-2.3.2.so

    40157000-4015b000 rwxp 00128000 03:03 620804     /lib/libc-2.3.2.so

    4015b000-4015e000 rwxp 4015b000 00:00 0

    bffeb000-c0000000 rwxp bffeb000 00:00 0

    ffffe000-fffff000 ---p 00000000 00:00 0

(You might see a slightly different table, depending on the version of the C compiler suite and
on how the program has been linked.) The first two hexadecimal numbers represent the extent
of the memory region; they are followed by the permission flags; finally, there is some
information about the file mapped by the memory region, if any: the starting offset inside the
file, the block device number and the inode number, and the filename.

Notice that all regions listed are implemented by means of private memory mappings (the
letter p in the permission column). This is not surprising because these memory regions exist
only to provide data to a process. While executing instructions, a process may modify the
contents of these memory regions; however, the files on disk associated with them stay
unchanged. This is precisely how private memory mappings act.

The memory region starting from 0x8048000 is a memory mapping associated with the portion
of the /tmp/memorylayout file ranging from byte 0 to byte 4,095. The permissions specify
that the region is executable (it contains object code), read-only (it's not writable because
the instructions don't change during a run), and private. That's correct, because the region
maps the text segment of the program.

The memory region starting from 0x8049000 is another memory mapping associated with the
same portion of /tmp/memorylayout ranging from byte 0 to byte 4,095. This program is so
small that the text, data, and bss segments of the program are included in the same file's
page. Thus, the memory region containing the data and bss segments overlaps with the
previous memory region in the linear address space.

The third memory region contains the heap of the process. Notice that it terminates at the
linear address 0x8051000 that was passed to the brk( ) system call.

The next two memory regions starting from 0x40000000 and 0x40014000 correspond to the text
segment and to the data and bss segments, respectively, of the dynamic linker for the ELF
shared libraries/lib/ld-2.3.2.so on this system. The dynamic linker is never executed alone: it is
always memory-mapped inside the address space of a process executing another program.
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The anonymous memory region starting from 0x40015000 has been allocated by the dynamic
linker.

On this system, the C library happens to be stored in the /lib/libc-2.3.2.so file. The text
segment and the data and bss segments of the C library are mapped into the next two
memory regions, starting from address 0x4002f000. Remember that page frames included in
private regions can be shared among several processes with the Copy On Write mechanism, as
long as they are not modified. Thus, because the text segment is read-only, the page frames
containing the executable code of the C library are shared among almost all currently
executing processes (all except the statically linked ones). The anonymous memory region
starting from 0x4015b000 has been allocated by the C library.

The anonymous memory region from 0xbffeb000 to 0xc0000000 is associated with the User
Mode stack. We already explained in the section "Page Fault Exception Handler" in Chapter 9
how the stack is automatically expanded toward lower addresses whenever necessary.

Finally, the one-page anonymous memory region from 0xffffe000 contains the vsyscall page of
the process, which is accessed when issuing a system call and returning from a signal handler
(see the section "Issuing a System Call via the sysenter Instruction" in Chapter 10 and the
section "Catching the Signal" in Chapter 11).

Now let's run the same program by enforcing a limit on the size of the User Mode stack:

    # ulimit -s 100; /tmp/memorylayout

    08048000-08049000 r-xp 00000000 03:03 5042408    /tmp/memorylayout

    08049000-0804a000 rwxp 00000000 03:03 5042408    /tmp/memorylayout

    0804a000-08051000 rwxp 0804a000 00:00 0

    b7ea3000-b7fcb000 r-xp 00000000 03:03 620804     /lib/libc-2.3.2.so

    b7fcb000-b7fcf000 rwxp 00128000 03:03 620804     /lib/libc-2.3.2.so

    b7fcf000-b7fd2000 rwxp b7fcf000 00:00 0

    b7feb000-b7fec000 rwxp b7feb000 00:00 0

    b7fec000-b8000000 r-xp 00000000 03:03 620801     /lib/ld-2.3.2.so

    b8000000-b8001000 rwxp 00013000 03:03 620801     /lib/ld-2.3.2.so

    bffeb000-c0000000 rwxp bffeb000 00:00 0

    ffffe000-fffff000 ---p 00000000 00:00 0

Notice how the layout has changed: the dynamic linker has been mapped about 128 MB above
the highest stack address. Furthermore, because the memory regions of the C library have
been created later, they get lower linear addresses.

20.1.5. Execution Tracing

Execution tracing is a technique that allows a program to monitor the execution of another
program. The traced program can be executed step by step, until a signal is received, or until
a system call is invoked. Execution tracing is widely used by debuggers, together with other
techniques such as the insertion of breakpoints in the debugged program and runtime access
to its variables. We focus on how the kernel supports execution tracing rather than discussing
how debuggers work.

In Linux, execution tracing is performed through the ptrace( ) system call, which can handle
the commands listed in Table 20-5. Processes having the CAP_SYS_PTRACE capability flag set
are allowed to trace every process in the system except init. Conversely, a process P with no
CAP_SYS_PTRACE capability is allowed to trace only processes having the same owner as P.
Moreover, a process cannot be traced by two processes at the same time.
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Table 20-5. The ptrace commands in the 80 x 86 architecture

Command Description

PTRACE_ATTACH Start execution tracing for another process

PTRACE_CONT Resume execution

PTRACE_DETACH Terminate execution tracing

PTRACE_GET_THREAD_AREA Get the Thread Local Storage (TLS) area on behalf of the
traced process

PTRACE_GETEVENTMSG Get additional data from the traced process (e.g., the PID
of a newly forked process)

PTRACE_GETFPREGS Read floating point registers

PTRACE_GETFPXREGS Read MMX and XMM registers 

PTRACE_GETREGS Read privileged CPU's registers

PTRACE_GETSIGINFO Get information on the last signal delivered to the traced
process

PTRACE_KILL Kill the traced process

PTRACE_OLDSETOPTIONS Architecture-dependent command equivalent to 
PTRACE_SETOPTIONS

PTRACE_PEEKDATA Read a 32-bit value from the data segment

PTRACE_PEEKTEXT Read a 32-bit value from the text segment

PTRACE_PEEKUSR Read the CPU's normal and debug registers 

PTRACE_POKEDATA Write a 32-bit value into the data segment

PTRACE_POKETEXT Write a 32-bit value into the text segment

PTRACE_POKEUSR Write the CPU's normal and debug registers

PTRACE_SET_THREAD_AREA Set the Thread Local Storage (TLS) area on behalf of the
traced process

PTRACE_SETFPREGS Write floating point registers

PTRACE_SETFPXREGS Write MMX and XMM registers

PTRACE_SETOPTIONS Modify ptrace( ) behavior

PTRACE_SETREGS Write privileged CPU's registers
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Table 20-5. The ptrace commands in the 80 x 86 architecture

Command Description

PTRACE_SETSIGINFO Forge the information on the last signal delivered to the
traced process

PTRACE_SINGLESTEP Resume execution for a single assembly language instruction

PTRACE_SYSCALL Resume execution until the next system call boundary

PTRACE_TRACEME Start execution tracing for the current process

The ptrace( ) system call modifies the parent field in the descriptor of the traced process so
that it points to the tracing process; therefore, the tracing process becomes the effective
parent of the traced one. When execution tracing terminatesi.e., when ptrace( ) is invoked
with the PTRACE_DETACH commandthe system call sets p_pptr to the value of real_parent, thus
restoring the original parent of the traced process (see the section "Relationships Among
Processes" in Chapter 3).

Several monitored events can be associated with a traced program:

 End of execution of a single assembly language instruction

 Entering a system call

 Exiting from a system call

 Receiving a signal

When a monitored event occurs, the traced program is stopped and a SIGCHLD signal is sent to
its parent. When the parent wishes to resume the child's execution, it can use one of the 
PTRACE_CONT, PTRACE_SINGLESTEP, and PTRACE_SYSCALL commands, depending on the kind of
event it wants to monitor.

The PTRACE_CONT command simply resumes execution; the child executes until it receives
another signal. This kind of tracing is implemented by means of the PT_PTRACED flag in the
ptrace field of the process descriptor, which is checked by the do_signal( ) function (see the
section "Delivering a Signal" in Chapter 11).

The PTRACE_SINGLESTEP command forces the child process to execute the next assembly
language instruction, and then stops it again. This kind of tracing is implemented on 80 x
86-based machines by means of the TF trap flag in the eflags register: when it is on, a "Debug
" exception is raised right after every assembly language instruction. The corresponding
exception handler just clears the flag, forces the current process to stop, and sends a SIGCHLD
signal to its parent. Notice that setting the TF flag is not a privileged operation, so User Mode
processes can force single-step execution even without the ptrace( ) system call. The kernel
checks the PT_DTRACE flag in the process descriptor to keep track of whether the child process
is being single-stepped through ptrace( ).

The PTRACE_SYSCALL command causes the traced process to resume execution until a system
call is invoked. The process is stopped twice: the first time when the system call starts and
the second time when the system call terminates. This kind of tracing is implemented by
means of the TIF_SYSCALL_TRACE flag included in the flags field of the thread_info structure of
the process, which is checked in the system_call( ) assembly language function (see the
section "Issuing a System Call via the int $0x80 Instruction" in Chapter 10).

A process can also be traced using some debugging features of the Intel Pentium processors.
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For example, the parent could set the values of the dr0,..., dr7 debug registers for the child
by using the PTRACE_POKEUSR command. When an event monitored by a debug register occurs,
the CPU raises the "Debug" exception; the exception handler can then suspend the traced
process and send the SIGCHLD signal to the parent.
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20.2. Executable Formats
The standard Linux executable format is named Executable and Linking Format (ELF). It was
developed by Unix System Laboratories and is now the most widely used format in the Unix
world. Several well-known Unix operating systems, such as System V Release 4 and Sun's
Solaris 2, have adopted ELF as their main executable format.

Older Linux versions supported another format named Assembler OUTput Format(a.out);
actually, there were several versions of that format floating around the Unix world. It is
seldom used now, because ELF is much more practical.

Linux supports many other different formats for executable files; in this way, it can run
programs compiled for other operating systems, such as MS-DOS EXE programs or BSD Unix's
COFF executables. A few executable formats, such as Java or bash scripts, are
platform-independent.

An executable format is described by an object of type linux_binfmt, which essentially
provides three methods:

load_binary

Sets up a new execution environment for the current process by reading the
information stored in an executable file.

load_shlib

Dynamically binds a shared library to an already running process; it is activated by the 
uselib( ) system call.

core_dump

Stores the execution context of the current process in a file named core. This file,
whose format depends on the type of executable of the program being executed, is
usually created when a process receives a signal whose default action is "dump" (see
the section "Actions Performed upon Delivering a Signal" in Chapter 11).

All linux_binfmt objects are included in a singly linked list, and the address of the first element
is stored in the formats variable. Elements can be inserted and removed in the list by invoking
the register_binfmt( ) and unregister_binfmt( ) functions. The register_binfmt( ) function
is executed during system startup for each executable format compiled into the kernel. This
function is also executed when a module implementing a new executable format is being
loaded, while the unregister_binfmt( ) function is invoked when the module is unloaded.

The last element in the formats list is always an object describing the executable format for
interpreted scripts . This format defines only the load_binary method. The corresponding
load_script( ) function checks whether the executable file starts with the #! pair of
characters. If so, it interprets the rest of the first line as the pathname of another executable
file and tries to execute it by passing the name of the script file as a parameter.[*]

[*] It is possible to execute a script file even if it doesn't start w ith the #! characters, as long as the file is w ritten in the language
recognized by a command shell. In this case, how ever, the script is interpreted either by the shell on w hich the user types the
command or by the default Bourne shell sh; therefore, the kernel is not directly involved.

Linux allows users to register their own custom executable formats. Each such format may be
recognized either by means of a magic number stored in the first 128 bytes of the file, or by a
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filename extension that identifies the file type. For example, MS-DOS extensions consist of
three characters separated from the filename by a dot: the .exe extension identifies
executable programs, while the .bat extension identifies shell scripts.

When the kernel determines that the executable file has a custom format, it starts the proper
interpreter program . The interpreter program runs in User Mode, receives as its parameter
the pathname of the executable file, and carries on the computation. As an example, an
executable file containing a Java program is dealt by a java virtual machine such as 
/usr/lib/java/bin/java.

The mechanism is similar to the script's format, but it's more powerful because it doesn't
impose any restrictions on the custom format. To register a new format, the user writes into
the register file of the binfmt_misc special filesystem (usually mounted on
/proc/sys/fs/binfmt_misc) a string with the following format:

    :name:type:offset:string:mask:interpreter:flags

where each field has the following meaning:

name

An identifier for the new format

type

The type of recognition (M for magic number, E for extension)

offset

The starting offset of the magic number inside the file

string

The byte sequence to be matched either in the magic number or in the extension

mask

The string to mask out some bits in string

interpreter

The full pathname of the interpreter program

flags

Some optional flags that control how the interpreter program has to be invoked

For example, the following command performed by the superuser enables the kernel to
recognize the Microsoft Windows executable format:

    $ echo ':DOSWin:M:0:MZ:0xff:/usr/bin/wine:'

                                        > /proc/sys/fs/binfmt_misc/register
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A Windows executable file has the MZ magic number in the first two bytes, and it is executed
by the /usr/bin/wine interpreter program.
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20.3. Execution Domains
As mentioned in Chapter 1, a neat feature of Linux is its ability to execute files compiled for
other operating systems. Of course, this is possible only if the files include machine code for
the same computer architecture on which the kernel is running. Two kinds of support are
offered for these "foreign" programs:

 Emulated execution: necessary to execute programs that include system calls that are
not POSIX-compliant

 Native execution: valid for programs whose system calls are totally POSIX-compliant

Microsoft MS-DOS and Windows programs are emulated: they cannot be natively executed,
because they include APIs that are not recognized by Linux. An emulator such as DOSemu or
Wine (which appeared in the example at the end of the previous section) is invoked to
translate each API call into an emulating wrapper function call, which in turn uses the existing
Linux system calls. Because emulators are mostly implemented as User Mode applications, we
don't discuss them further.

On the other hand, POSIX-compliant programs compiled on operating systems other than Linux
can be executed without too much trouble, because POSIX operating systems offer similar
APIs. (Actually, the APIs should be identical, although this is not always the case.) Minor
differences that the kernel must iron out usually refer to how system calls are invoked or how
the various signals are numbered. This information is stored in execution domain descriptors of
type exec_domain.

A process specifies its execution domain by setting the personality field of its descriptor and
storing the address of the corresponding exec_domain data structure in the exec_domain field of
the tHRead_info structure. A process can change its personality by issuing a suitable system
call named personality( ) ; typical values assumed by the system call's parameter are listed
in Table 20-6. Programmers are not expected to directly change the personality of their
programs; instead, the personality( ) system call should be issued by the glue code that sets
up the execution context of the process (see the next section).

Table 20-6. Personalities supported by the Linux kernel

Personality Operating system

PER_LINUX Standard execution domain

PER_LINUX_32BIT Linux with 32-bit physical addresses in 64-bit architectures

PER_LINUX_FDPIC Linux program in ELF FDPIC format

PER_SVR4 System V Release 4

PER_SVR3 System V Release 3

PER_SCOSVR3 SCO Unix Version 3.2

PER_OSR5 SCO OpenServer Release 5

PER_WYSEV386 Unix System V/386 Release 3.2.1
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Table 20-6. Personalities supported by the Linux kernel

Personality Operating system

PER_ISCR4 Interactive Unix 

PER_BSD BSD Unix

PER_SUNOS SunOS 

PER_XENIX Xenix 

PER_LINUX32 Emulation of Linux 32-bit programs in 64-bit architectures (using a 4 GB
User Mode address space)

PER_LINUX32_3GB Emulation of Linux 32-bit programs in 64-bit architectures (using a 3 GB
User Mode address space)

PER_IRIX32 SGI IRIX -5 32 bit

PER_IRIXN32 SGI IRIX-6 32 bit

PER_IRIX64 SGI IRIX-6 64 bit

PER_RISCOS RISC OS 

PER_SOLARIS Sun's Solaris 

PER_UW7 SCO's (formerly Caldera's) UnixWare 7

PER_OSF4 Digital UNIX (Compaq Tru64 UNIX)

PER_HPUX Hewlett-Packard's HP-UX 
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20.4. The exec Functions
Unix systems provide a family of functions that replace the execution context of a process
with a new context described by an executable file. The names of these functions start with
the prefix exec, followed by one or two letters; therefore, a generic function in the family is
usually referred to as an exec function.

The exec functions are listed in Table 20-7; they differ in how the parameters are interpreted.

Table 20-7. The exec functions

Function name PATH search Command-line arguments Environment array

execl( ) No List No

execlp( ) Yes List No

execle( ) No List Yes

execv( ) No Array No

execvp( ) Yes Array No

execve( ) No Array Yes

The first parameter of each function denotes the pathname of the file to be executed. The
pathname can be absolute or relative to the process's current directory. Moreover, if the
name does not include any / characters, the execlp( ) and execvp( ) functions search for the
executable file in all directories specified by the PATH environment variable.

Besides the first parameter, the execl( ), execlp( ), and execle( ) functions include a
variable number of additional parameters. Each points to a string describing a command-line
argument for the new program; as the "l" character in the function names suggests, the
parameters are organized in a list terminated by a NULL value. Usually, the first command-line
argument duplicates the executable filename. Conversely, the execv( ), execvp( ), and
execve( ) functions specify the command-line arguments with a single parameter; as the v
character in the function names suggests, the parameter is the address of a vector of
pointers to command-line argument strings. The last component of the array must be NULL.

The execle( ) and execve( ) functions receive as their last parameter the address of an array
of pointers to environment strings; as usual, the last component of the array must be NULL.
The other functions may access the environment for the new program from the external 
environ global variable, which is defined in the C library.

All exec functions, with the exception of execve( ), are wrapper routines defined in the C
library and use execve( ), which is the only system call offered by Linux to deal with program
execution.

The sys_execve( ) service routine receives the following parameters:

 The address of the executable file pathname (in the User Mode address space).

 The address of a NULL-terminated array (in the User Mode address space) of pointers
to strings (again in the User Mode address space); each string represents a
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command-line argument.

 The address of a NULL-terminated array (in the User Mode address space) of pointers
to strings (again in the User Mode address space); each string represents an
environment variable in the NAME=value format.

The function copies the executable file pathname into a newly allocated page frame. It then
invokes the do_execve( ) function, passing to it the pointers to the page frame, to the
pointer's arrays, and to the location of the Kernel Mode stack where the User Mode register
contents are saved. In turn, do_execve( ) performs the following operations:

1. Dynamically allocates a linux_binprm data structure, which will be filled with data
concerning the new executable file.

2. Invokes path_lookup( ), dentry_open( ), and path_release( ) to get the dentry object,
the file object, and the inode object associated with the executable file. On failure, it
returns the proper error code.

3. Verifies that the file is executable by the current process; also, checks that the file is
not being written by looking at the i_writecount field of the inode; stores -1 in that
field to forbid further write accesses.

4. In multiprocessor systems, it invokes the sched_exec( ) function to determine the least
loaded CPU that can execute the new program and to migrate the current process to it
(see Chapter 7).

5. Invokes init_new_context( ) to check whether the current process was using a custom
Local Descriptor Table (see the section "The Linux LDTs" in Chapter 2); in this case,
the function allocates and fills a new LDT to be used by the new program.

6. Invokes the prepare_binprm( ) function to fill the linux_binprm data structure. This
function, in turn, performs the following operations:

a. Checks again whether the file is executable (at least one execute access right
is set); if not, returns an error code. (The previous check in step 3 is not
sufficient because a process with the CAP_DAC_OVERRIDE capability set always
satisfies the check; see the section "Process Credentials and Capabilities"
earlier in this chapter).

b. Initializes the e_uid and e_gid fields of the linux_binprm structure, taking into
account the values of the setuid and setgid flags of the executable file. These
fields represent the effective user and group IDs, respectively. Also checks
process capabilities (a compatibility hack explained in the earlier section "
Process Credentials and Capabilities").

c. Fills the buf field of the linux_binprm structure with the first 128 bytes of the
executable file. These bytes include the magic number of the executable format
and other information suitable for recognizing the executable file.

7. Copies the file pathname, command-line arguments, and environment strings into one
or more newly allocated page frames. (Eventually, they are assigned to the User Mode
address space.)

8. Invokes the search_binary_handler( ) function, which scans the formats list and tries
to apply the load_binary method of each element, passing to it the linux_binprm data
structure. The scan of the formats list terminates as soon as a load_binary method
succeeds in acknowledging the executable format of the file.

9. If the executable file format is not present in the formats list, it releases all allocated
page frames and returns the error code -ENOEXEC. Linux cannot recognize the
executable file format.
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10. Otherwise, the function releases the linux_binprm data structure and returns the code
obtained from the load_binary method associated with the executable format of the
file.

The load_binary method corresponding to an executable file format performs the following
operations (we assume that the executable file is stored on a filesystem that allows file
memory mapping and that it requires one or more shared libraries):

1. Checks some magic numbers stored in the first 128 bytes of the file to identify the
executable format. If the magic numbers don't match, it returns the error code 
-ENOEXEC.

2. Reads the header of the executable file. This header describes the program's segments
and the shared libraries requested.

3. Gets from the executable file the pathname of the dynamic linker, which is used to
locate the shared libraries and map them into memory.

4. Gets the dentry object (as well as the inode object and the file object) of the dynamic
linker.

5. Checks the execution permissions of the dynamic linker.

6. Copies the first 128 bytes of the dynamic linker into a buffer.

7. Performs some consistency checks on the dynamic linker type.

8. Invokes the flush_old_exec( ) function to release almost all resources used by the
previous computation; in turn, this function performs the following operations:

a. If the table of signal handlers is shared with other processes, it allocates a new
table and decrements the usage counter of the old one; moreover, it detaches
the process from the old thread group (see the section "Identifying a Process"
in Chapter 3). All of this is done by invoking the de_thread( ) function.

b. Invokes unshare_files( ) to make a copy of the files_struct structure
containing the open files of the process, if it is shared with other processes
(see the section "Files Associated with a Process" in Chapter 12).

c. Invokes the exec_mmap( ) function to release the memory descriptor, all memory
regions , and all page frames assigned to the process and to clean up the
process's Page Tables.

d. Sets the comm field of the process descriptor with the executable file pathname.

e. Invokes the flush_thread( ) function to clear the values of the floating point
registers and debug registers saved in the TSS segment.

f. Updates the table of signal handlers by resetting each signal to its default
action. This is done by invoking the flush_signal_handlers( ) function.

g. Invokes the flush_old_files( ) function to close all open files having the
corresponding flag in the files->close_on_exec field of the process descriptor
set (see the section "Files Associated with a Process" in Chapter 12).[*]

[*] These flags can be read and modified by means of the fcntl( ) system call.

9. Now we have reached the point of no return: the function cannot restore the previous
computation if something goes wrong.

10. Clears the PF_FORKNOEXEC flag in the process descriptor. This flag, which is set when a
process is forked and cleared when it executes a new program, is required for process
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accounting.

11. Sets up the new personality of the processthat is, the personality field in the process
descriptor.

12. Invokes arch_pick_mmap_layout( ) to select the layout of the memory regions of the
process (see the section "Program Segments and Process Memory Regions" earlier in
this chapter).

13. Invokes the setup_arg_pages( ) function to allocate a new memory region descriptor
for the process's User Mode stack and to insert that memory region into the process's
address space. setup_arg_pages( ) also assigns the page frames containing the
command-line arguments and the environment variable strings to the new memory
region.

14. Invokes the do_mmap( ) function to create a new memory region that maps the text
segment (that is, the code) of the executable file. The initial linear address of the
memory region depends on the executable format, because the program's executable
code is usually not relocatable. Therefore, the function assumes that the text segment
is loaded starting from some specific logical address offset (and thus from some
specified linear address). ELF programs are loaded starting from linear address 
0x08048000.

15. Invokes the do_mmap( ) function to create a new memory region that maps the data
segment of the executable file. Again, the initial linear address of the memory region
depends on the executable format, because the executable code expects to find its
variables at specified offsets (that is, at specified linear addresses). In an ELF
program, the data segment is loaded right after the text segment.

16. Allocates additional memory regions for every other specialized segments of the
executable file. Usually, there are none.

17. Invokes a function that loads the dynamic linker. If the dynamic linker is an ELF
executable, the function is named load_elf_interp( ). In general, the function
performs the operations in steps 12 through 14, but for the dynamic linker instead of
the file to be executed. The initial addresses of the memory regions that will include
the text and data of the dynamic linker are specified by the dynamic linker itself;
however, they are very high (usually above 0x40000000) to avoid collisions with the
memory regions that map the text and data of the file to be executed (see the earlier
section "Program Segments and Process Memory Regions").

18. Stores in the binfmt field of the process descriptor the address of the linux_binfmt
object of the executable format.

19. Determines the new capabilities of the process.

20. Creates specific dynamic linker tables and stores them on the User Mode stack
between the command-line arguments and the array of pointers to environment strings
(see Figure 20-1).

21. Sets the values of the start_code, end_code, start_data, end_data, start_brk, brk, and
start_stack fields of the process's memory descriptor.

22. Invokes the do_brk( ) function to create a new anonymous memory region mapping the
bss segment of the program. (When the process writes into a variable, it triggers
demand paging , and thus the allocation of a page frame.) The size of this memory
region was computed when the executable program was linked. The initial linear
address of the memory region must be specified, because the program's executable
code is usually not relocatable. In an ELF program, the bss segment is loaded right
after the data segment.
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23. Invokes the start_thread( ) macro to modify the values of the User Mode registers eip
and esp saved on the Kernel Mode stack, so that they point to the entry point of the
dynamic linker and to the top of the new User Mode stack, respectively.

24. If the process is being traced, it notifies the debugger about the completion of the 
execve( ) system call.

25. Returns the value 0 (success).

When the execve( ) system call terminates and the calling process resumes its execution in
User Mode, the execution context is dramatically changed: the code that invoked the system
call no longer exists. In this sense, we could say that execve( ) never returns on success.
Instead, a new program to be executed is mapped in the address space of the process.

However, the new program cannot yet be executed, because the dynamic linker must still
take care of loading the shared libraries.[*]

[*] Things are much simpler if the executable file is statically linkedthat is, if no shared library is requested. The load_binary method
simply maps the text, data, bss, and stack segments of the program into the process memory regions, and then sets the User
Mode eip register to the entry point of the new  program.

Although the dynamic linker runs in User Mode, we briefly sketch out here how it operates. Its
first job is to set up a basic execution context for itself, starting from the information stored
by the kernel in the User Mode stack between the array of pointers to environment strings
and arg_start. Then the dynamic linker must examine the program to be executed to identify
which shared libraries must be loaded and which functions in each shared library are
effectively requested. Next, the interpreter issues several mmap( ) system calls to create
memory regions mapping the pages that will hold the library functions (text and data) actually
used by the program. Then the interpreter updates all references to the symbols of the shared
library, according to the linear addresses of the library's memory regions. Finally, the dynamic
linker terminates its execution by jumping to the main entry point of the program to be
executed. From now on, the process will execute the code of the executable file and of the
shared libraries.

As you may have noticed, executing a program is a complex activity that involves many
facets of kernel design, such as process abstraction, memory management, system calls, and
filesystems. It is the kind of topic that makes you realize what a marvelous piece of work
Linux is!
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Appendix A. System Startup
This appendix explains what happens right after users switch on their computersthat is, how a
Linux kernel image is copied into memory and executed. In short, we discuss how the kernel,
and thus the whole system, is "bootstrapped."

Traditionally, the term bootstrap refers to a person who tries to stand up by pulling his own
boots. In operating systems, the term denotes bringing at least a portion of the operating
system into main memory and having the processor execute it. It also denotes the
initialization of kernel data structures, the creation of some user processes, and the transfer
of control to one of them.

Computer bootstrapping is a tedious, long task, because initially, nearly every hardware
device, including the RAM, is in a random, unpredictable state. Moreover, the bootstrap
process is highly dependent on the computer architecture; as usual in this book, we refer to
the 80 x 86 architecture.
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A.1. Prehistoric Age: the BIOS
The moment after a computer is powered on, it is practically useless because the RAM chips
contain random data and no operating system is running. To begin the boot, a special
hardware circuit raises the logical value of the RESET pin of the CPU. After RESET is asserted,
some registers of the processor (including cs and eip) are set to fixed values, and the code
found at physical address 0xfffffff0 is executed. This address is mapped by the hardware to
a certain read-only, persistent memory chip that is often called Read-Only Memory (ROM).
The set of programs stored in ROM is traditionally called the Basic Input/Output System (BIOS
) in the 80 x 86 architecture, because it includes several interrupt-driven low-level procedures
used by all operating systems in the booting phase to handle the hardware devices that make
up the computer. Some operating systems, such as Microsoft's MS-DOS , rely on BIOS to
implement most system calls.

Once in protected mode (see the section "Segmentation in Hardware" in Chapter 2), Linux
does not use BIOS any longer, but it provides its own device driver for every hardware device
on the computer. In fact, the BIOS procedures must be executed in real mode, so they
cannot share functions even if that would be beneficial.

The BIOS uses Real Mode addresses because they are the only ones available when the
computer is turned on. A Real Mode address is composed of a seg segment and an off offset;
the corresponding physical address is given by seg*16+off. As a result, no Global Descriptor
Table, Local Descriptor Table, or paging table is needed by the CPU addressing circuit to
translate a logical address into a physical one. Clearly, the code that initializes the GDT, LDT,
and paging tables must run in Real Mode.

Linux is forced to use BIOS in the bootstrapping phase, when it must retrieve the kernel image
from disk or from some other external device. The BIOS bootstrap procedure essentially
performs the following four operations:

1. Executes a series of tests on the computer hardware to establish which devices are
present and whether they are working properly. This phase is often called Power-On
Self-Test (POST). During this phase, several messages, such as the BIOS version
banner, are displayed.

Recent 80 x 86, AMD64, and Itanium computers make use of the Advanced
Configuration and Power Interface(ACPI ) standard. The bootstrap code in an
ACPI-compliant BIOS builds several tables that describe the hardware devices present
in the system. These tables have a vendor-independent format and can be read by the
operating system kernel to learn how to handle the devices.

2. Initializes the hardware devices. This phase is crucial in modern PCI-based
architectures, because it guarantees that all hardware devices operate without
conflicts on the IRQ lines and I/O ports. At the end of this phase, a table of installed
PCI devices is displayed.

3. Searches for an operating system to boot. Actually, depending on the BIOS setting,
the procedure may try to access (in a predefined, customizable order) the first sector
(boot sector) of every floppy disk, hard disk, and CD-ROM in the system.

4. As soon as a valid device is found, it copies the contents of its first sector into RAM,
starting from physical address 0x00007c00, and then jumps into that address and
executes the code just loaded.

The rest of this appendix takes you from the most primitive starting state to the full glory of a
running Linux system.
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A.2. Ancient Age: the Boot Loader
The boot loader is the program invoked by the BIOS to load the image of an operating system
kernel into RAM. Let's briefly sketch how boot loaders work in IBM's PC architecture.

To boot from a floppy disk, the instructions stored in its first sector are loaded in RAM and
executed; these instructions copy all the remaining sectors containing the kernel image into
RAM.

Booting from a hard disk is done differently. The first sector of the hard disk, named the 
Master Boot Record (MBR), includes the partition table[*] and a small program, which loads the
first sector of the partition containing the operating system to be started. Some operating
systems, such as Microsoft Windows 98, identify this partition by means of an active flag
included in the partition table;[ ] following this approach, only the operating system whose
kernel image is stored in the active partition can be booted. As we will see later, Linux is more
flexible because it replaces the rudimentary program included in the MBR with a sophisticated
programthe "boot loader"that allows users to select the operating system to be booted.

[*] Each partition table entry typically includes the starting and ending sectors of a partition and the kind of operating system that
handles it.

[ ] The active flag may be set through programs such as fdisk.

Kernel images of earlier Linux versionsup to the 2.4 seriesincluded a minimal "boot loader"
program in the first 512 bytes; thus, copying a kernel image starting from the first sector
made the floppy bootable. On the other hand, kernel images of Linux 2.6 no longer include
such boot loader; thus, in order to boot from floppy disk, a suitable boot loader has to be
stored in the first disk sector. Nowadays, booting from a floppy is very similar to booting from
a hard disk or from a CD-ROM.

A.2.1. Booting Linux from a Disk

A two-stage boot loader is required to boot a Linux kernel from disk. A well-known Linux boot
loader on 80 x 86 systems is named LInux LOader (LILO). Other boot loaders for 80 x 86
systems do exist; for instance, the GRand Unified Bootloader (GRUB) is also widely used. GRUB
is more advanced than LILO, because it recognizes several disk-based filesystems and is thus
capable of reading portions of the boot program from files. Of course, specific boot loader
programs exist for all architectures supported by Linux.

LILO may be installed either on the MBR (replacing the small program that loads the boot
sector of the active partition) or in the boot sector of every disk partition. In both cases, the
final result is the same: when the loader is executed at boot time, the user may choose which
operating system to load.

Actually, the LILO boot loader is too large to fit into a single sector, thus it is broken into two
parts. The MBR or the partition boot sector includes a small boot loader, which is loaded into
RAM starting from address 0x00007c00 by the BIOS. This small program moves itself to the
address 0x00096a00, sets up the Real Mode stack (ranging from 0x00098000 to 0x000969ff),
loads the second part of the LILO boot loader into RAM starting from address 0x00096c00, and
jumps into it.

In turn, this latter program reads a map of bootable operating systems from disk and offers
the user a prompt so she can choose one of them. Finally, after the user has chosen the
kernel to be loaded (or let a time-out elapse so that LILO chooses a default), the boot loader
may either copy the boot sector of the corresponding partition into RAM and execute it or
directly copy the kernel image into RAM.
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Assuming that a Linux kernel image must be booted, the LILO boot loader, which relies on
BIOS routines, performs essentially the following operations:

1. Invokes a BIOS procedure to display a "Loading" message.

2. Invokes a BIOS procedure to load an initial portion of the kernel image from disk: the
first 512 bytes of the kernel image are put in RAM at address 0x00090000, while the
code of the setup( ) function (see below) is put in RAM starting from address
0x00090200.

3. Invokes a BIOS procedure to load the rest of the kernel image from disk and puts the
image in RAM starting from either low address 0x00010000 (for small kernel images
compiled with make zImage) or high address 0x00100000 (for big kernel images compiled
with make bzImage). In the following discussion, we say that the kernel image is "loaded
low" or "loaded high" in RAM, respectively. Support for big kernel images uses
essentially the same booting scheme as the other one, but it places data in different
physical memory addresses to avoid problems with the ISA hole mentioned in the
section "Physical Memory Layout" in Chapter 2.

4. Jumps to the setup( ) code.
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A.3. Middle Ages: the setup( ) Function
The code of the setup( ) assembly language function has been placed by the linker at offset
0x200 of the kernel image file. The boot loader can therefore easily locate the code and copy
it into RAM, starting from physical address 0x00090200.

The setup( ) function must initialize the hardware devices in the computer and set up the
environment for the execution of the kernel program. Although the BIOS already initialized
most hardware devices, Linux does not rely on it, but reinitializes the devices in its own
manner to enhance portability and robustness. setup( ) performs essentially the following
operations:

1. In ACPI -compliant systems, it invokes a BIOS routine that builds a table in RAM
describing the layout of the system's physical memory (the table can be seen in the
boot kernel messages by looking for the "BIOS-e820" label). In older systems, it invokes
a BIOS routine that just returns the amount of RAM available in the system.

2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past a
certain amount of time, the keyboard device sends the corresponding keycode over
and over to the CPU.)

3. Initializes the video adapter card.

4. Reinitializes the disk controller and determines the hard disk parameters.

5. Checks for an IBM Micro Channel bus (MCA).

6. Checks for a PS/2 pointing device (bus mouse).

7. Checks for Advanced Power Management (APM ) BIOS support.

8. If the BIOS supports the Enhanced Disk Drive Services (EDD ), it invokes the proper
BIOS procedure to build a table in RAM describing the hard disks available in the
system. (The information included in the table can be seen by reading the files in the 
firmware/edd directory of the sysfs special filesystem.)

9. If the kernel image was loaded low in RAM (at physical address 0x00010000), the
function moves it to physical address 0x00001000. Conversely, if the kernel image was
loaded high in RAM, the function does not move it. This step is necessary because to
be able to store the kernel image on a floppy disk and to reduce the booting time, the
kernel image stored on disk is compressed, and the decompression routine needs some
free space to use as a temporary buffer following the kernel image in RAM.

10. Sets the A20 pin located on the 8042 keyboard controller. The A20 pin is a hack
introduced in the 80286 -based systems to make physical addresses compatible with
those of the ancient 8088 microprocessors. Unfortunately, the A20 pin must be
properly set before switching to Protected Mode, otherwise the 21st bit of every
physical address will always be regarded as zero by the CPU. Setting the A20 pin is a
messy operation.

11. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global
Descriptor Table (GDT).

12. Resets the floating-point unit (FPU ), if any.

13. Reprograms the Programmable Interrupt Controllers (PIC) to mask all interrupts, except
IRQ2 which is the cascading interrupt between the two PICs.
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14. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in the cr0
status register. The PG bit in the cr0 register is cleared, so paging is still disabled.

15. Jumps to the startup_32( ) assembly language function.
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A.4. Renaissance: the startup_32( ) Functions
There are two different startup_32( ) functions; the one we refer to here is coded in the
arch/i386/boot/compressed/head.S file. After setup( ) terminates, the function has been
moved either to physical address 0x00100000 or to physical address 0x00001000, depending on
whether the kernel image was loaded high or low in RAM.

This function performs the following operations:

1. Initializes the segmentation registers and a provisional stack.

2. Clears all bits in the eflags register.

3. Fills the area of uninitialized data of the kernel identified by the _edata and _end
symbols with zeros (see the section "Physical Memory Layout" in Chapter 2).

4. Invokes the decompress_kernel( ) function to decompress the kernel image. The
"Uncompressing Linux..." message is displayed first. After the kernel image is
decompressed, the "O K, booting the kernel." message is shown. If the kernel image
was loaded low, the decompressed kernel is placed at physical address 0x00100000.
Otherwise, if the kernel image was loaded high, the decompressed kernel is placed in a
temporary buffer located after the compressed image. The decompressed image is then
moved into its final position, which starts at physical address 0x00100000.

5. Jumps to physical address 0x00100000.

The decompressed kernel image begins with another startup_32( ) function included in the
arch/i386/kernel/head.S file. Using the same name for both the functions does not create any
problems (besides confusing our readers), because both functions are executed by jumping to
their initial physical addresses.

The second startup_32( ) function sets up the execution environment for the first Linux
process (process 0). The function performs the following operations:

1. Initializes the segmentation registers with their final values.

2. Fills the bss segment of the kernel (see the section "Program Segments and Process
Memory Regions" in Chapter 20) with zeros.

3. Initializes the provisional kernel Page Tables contained in swapper_pg_dir and pg0 to
identically map the linear addresses to the same physical addresses, as explained in
the section "Kernel Page Tables" in Chapter 2.

4. Stores the address of the Page Global Directory in the cr3 register, and enables paging
by setting the PG bit in the cr0 register.

5. Sets up the Kernel Mode stack for process 0 (see the section "Kernel Threads" in
Chapter 3).

6. Once again, the function clears all bits in the eflags register.

7. Invokes setup_idt( ) to fill the IDT with null interrupt handlers (see the section "
Preliminary Initialization of the IDT" in Chapter 4).

8. Puts the system parameters obtained from the BIOS and the parameters passed to the
operating system into the first page frame (see the section "Physical Memory Layout"
in Chapter 2).

9. Identifies the model of the processor.
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10. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.

11. Jumps to the start_kernel( ) function.
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A.5. Modern Age: the start_kernel( ) Function
The start_kernel( ) function completes the initialization of the Linux kernel. Nearly every
kernel component is initialized by this function; we mention just a few of them:

 The scheduler is initialized by invoking the sched_init( ) function (see Chapter 7).

 The memory zones are initialized by invoking the build_all_zonelists( ) function (see
the section "Memory Zones" in Chapter 8).

 The Buddy system allocators are initialized by invoking the page_alloc_init( ) and
mem_init( ) functions (see the section "The Buddy System Algorithm" in Chapter 8).

 The final initialization of the IDT is performed by invoking trap_init( ) (see the section
"Exception Handling" in Chapter 4) and init_IRQ( ) (see the section "IRQ data
structures" in Chapter 4).

 The TASKLET_SOFTIRQ and HI_SOFTIRQ are initialized by invoking the softirq_init( )
function (see the section "Softirqs" in Chapter 4).

 The system date and time are initialized by the time_init( ) function (see the section
"The Linux Timekeeping Architecture" in Chapter 6).

 The slab allocator is initialized by the kmem_cache_init( ) function (see the section "
General and Specific Caches" in Chapter 8).

 The speed of the CPU clock is determined by invoking the calibrate_delay( ) function
(see the section "Delay Functions" in Chapter 6).

 The kernel thread for process 1 is created by invoking the kernel_thread( ) function.
In turn, this kernel thread creates the other kernel threads and executes the /sbin/init
program, as described in the section "Kernel Threads" in Chapter 3.

Besides the "Linux version 2.6.11..." message, which is displayed right after the beginning of 
start_kernel( ), many other messages are displayed in this last phase, both by the init
program and by the kernel threads. At the end, the familiar login prompt appears on the
console (or in the graphical screen, if the X Window System is launched at startup), telling
the user that the Linux kernel is up and running.
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Appendix B. Modules
As stated in Chapter 1, modules are Linux's recipe for effectively achieving many of the
theoretical advantages of microkernels without introducing performance penalties.
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B.1. To Be (a Module) or Not to Be?
When system programmers want to add new functionality to the Linux kernel, they are faced
with a basic decision: should they write the new code so that it will be compiled as a module,
or should they statically link the new code to the kernel?

As a general rule, system programmers tend to implement new code as a module. Because
modules can be linked on demand (as we see later), the kernel does not have to be bloated
with hundreds of seldom-used programs. Nearly every higher-level component of the Linux
kernelfilesystems, device drivers, executable formats, network layers, and so oncan be
compiled as a module. Linux distributions use modules extensively in order to support in a
seamless way a wide range of hardware devices. For instance, the distribution puts tens of
sound card driver modules in a proper directory, although only one of these modules will be
effectively loaded on a specific machine.

However, some Linux code must necessarily be linked statically, which means that either the
corresponding component is included in the kernel or it is not compiled at all. This happens
typically when the component requires a modification to some data structure or function
statically linked in the kernel.

For example, suppose the component has to introduce new fields into the process descriptor.
Linking a module cannot change an already defined data structure such as task_struct
because, even if the module uses its modified version of the data structure, all statically
linked code continues to see the old version. Data corruption easily occurs. A partial solution
to the problem consists of "statically" adding the new fields to the process descriptor, thus
making them available to the kernel component no matter how it has been linked. However, if
the kernel component is never used, such extra fields replicated in every process descriptor
are a waste of memory. If the new kernel component increases the size of the process
descriptor a lot, one would get better system performance by adding the required fields in the
data structure only if the component is statically linked to the kernel.

As a second example, consider a kernel component that has to replace statically linked code.
It's pretty clear that no such component can be compiled as a module, because the kernel
cannot change the machine code already in RAM when linking the module. For instance, it is
not possible to link a module that changes the way page frames are allocated, because the
Buddy system functions are always statically linked to the kernel.[*]

[*] You might w onder w hy your favorite kernel component has not been modularized. In most cases, there is no strong technical
reason because it is essentially a softw are license issue. Kernel developers w ant to make sure that core components w ill never
be replaced by proprietary code released through binary-only "black-box" modules.

The kernel has two key tasks to perform in managing modules. The first task is making sure
the rest of the kernel can reach the module's global symbols, such as the entry point to its
main function. A module must also know the addresses of symbols in the kernel and in other
modules. Thus, references are resolved once and for all when a module is linked. The second
task consists of keeping track of the use of modules, so that no module is unloaded while
another module or another part of the kernel is using it. A simple reference count keeps track
of each module's usage.

B.1.1. Module Licenses

The license of the Linux kernel (GPL, version 2) is liberal in what users and industries can do
with the source code; however, it strictly forbids the release of source code derived fromor
heavily depending onthe Linux code under a non-GPL license. Essentially, the kernel
developers want to be sure that their codeand all the code derived from itwill remain freely
usable by all users.
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Modules, however, pose a threat to this model. Someone might release a module for the Linux
kernel in binary form only; for instance, a vendor might distribute the driver for its hardware
device in a binary-only module. Nowadays, there are quite a few examples of these practices.
Theoretically, characteristics and behavior of the Linux kernel might be significantly changed
by binary-only modules, thus effectively turning a Linux-derived kernel in a commercial
product.

Thus, binary-only modules are not well received by the Linux kernel developer community. The
implementation of Linux modules reflect this fact. Basically, each module developer should
specify in the module source code the type of license, by using the MODULE_LICENSE macro. If
the license is not GPL-compatible (or it is not specified at all), the module will not be able to
make use of many core functions and data structures of the kernel. Moreover, using a module
with a non-GPL license will "taint" the kernel, which means that any supposed bug in the
kernel will not be taken in consideration by the kernel developers.
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B.2. Module Implementation
Modules are stored in the filesystem as ELF object files and are linked to the kernel by
executing the insmod program (see the later section, "Linking and Unlinking Modules"). For
each module, the kernel allocates a memory area containing the following data:

 A module object

 A null-terminated string that represents the name of the module (all modules must
have unique names)

 The code that implements the functions of the module

The module object describes a module; its fields are shown in Table B-1. A doubly linked
circular list collects all module objects; the list head is stored in the modules variable, while the
pointers to the adjacent elements are stored in the list field of each module object.

Table B-1. The module object

Type Name Description

enum module_state state The internal state of the module

struct list_head list Pointers for the list of modules

char [60] name The module name

struct

module_kobject

mkobj
Includes a kobject data structure and a
pointer to this module object

struct

module_param_attrs *

param_attrs
Pointer to an array of module parameter
descriptors

const struct

kernel_symbol *

syms Pointer to an array of exported symbols

unsigned int num_syms Number of exported symbols

const unsigned long * crcs Pointer to an array of CRC values for the
exported symbols

const struct

kernel_symbol *

gpl_syms
Pointer to an array of GPL-exported
symbols

unsigned int num_gpl_syms Number of GPL-exported symbols

const unsigned long * gpl_crcs Pointer to an array of CRC values for the
GPL-exported symbols

unsigned int num_exenTRies Number of entries in the module's

Page 825

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


Table B-1. The module object

Type Name Description

exception table

const struct

exception_table_entry *

extable Pointer to the module's exception table

int (*)(void) init The initialization method of the module

void * module_init Pointer to the dynamic memory area
allocated for module's initialization

void * module_core

Pointer to the dynamic memory area
allocated for module's core functions and
data structures

unsigned long init_size Size of the dynamic memory area required
for module's initialization

unsigned long core_size

Size of the dynamic memory area required
for module's core functions and data
structures

unsigned long init_text_size

Size of the executable code used for
module's initialization; used only when
linking the module

unsigned long core_text_size

Size of the core executable code of the
module; used only when linking the
module

struct

mod_arch_specific

arch

Architecture-dependent fields (none in
the

80 x 86 architecture)

int unsafe Flag set if the module cannot be safely
unloaded

int license_gplok Flag set if the module license is
GPL-compatible

struct

module_ref [NR_CPUS]

ref Per-CPU usage counters

struct list_head modules_which_use_me List of modules that rely on this module

struct task_struct * waiter The process that is trying to unload the
module

void (*)(void) exit Exit method of the module
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Table B-1. The module object

Type Name Description

Elf_Sym * symtab Pointer to an array of module's ELF
symbols for the /proc/kallsyms file

unsigned long num_symtab Number of module's ELF symbols shown
in /proc/kallsyms

char * strtab The string table for the module's ELF
symbols shown in /proc/kallsyms

struct

module_sect_attrs *

sect_attrs

Pointer to an array of module's section
attribute descriptors (displayed in the 
sysfs filesystem)

void * percpu Pointer to CPU-specific memory areas

char * args Command line arguments used when
linking the module

The state field encodes the internal state of the module: it can be MODULE_STATE_LIVE (the
module is active), MODULE_STATE_COMING (the module is being initialized), and MODULE_STATE_GOING
(the module is being removed).

As already mentioned in the section "Dynamic Address Checking: The Fix-up Code" in Chapter
10, each module has its own exception table. The table includes the addresses of the fixup
code of the module, if any. The table is copied into RAM when the module is linked, and its
starting address is stored in the extable field of the module object.

B.2.1. Module Usage Counters

Each module has a set of usage counters, one for each CPU, stored in the ref field of the
corresponding module object. The counter is increased when an operation involving the
module's functions is started and decreased when the operation terminates. A module can be
unlinked only if the sum of all usage counters is 0.

For example, suppose that the MS-DOS filesystem layer is compiled as a module and the
module is linked at runtime. Initially, the module usage counters are set to 0. If the user
mounts an MS-DOS floppy disk, one of the module usage counters is increased by 1.
Conversely, when the user unmounts the floppy disk, one of the counterseven different from
the one that was increasedis decreased by 1. The total usage counter of the module is the
sum of all CPU counters.

B.2.2. Exporting Symbols

When linking a module, all references to global kernel symbols (variables and functions) in the
module's object code must be replaced with suitable addresses. This operation, which is very
similar to that performed by the linker while compiling a User Mode program (see the section "
Libraries" in Chapter 20), is delegated to the insmod external program (described later in the
section "Linking and Unlinking Modules").

Some special kernel symbol tables are used by the kernel to store the symbols that can be
accessed by modules together with their corresponding addresses. They are contained in
three sections of the kernel code segment: the _ _kstrtab section includes the names of the
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symbols, the _ _ksymtab section includes the addresses of the symbols that can be used by all
kind of modules, and the _ _ksymtab_gpl section includes the addresses of the symbols that
can be used by the modules released under a GPL-compatible license. The EXPORT_SYMBOL
macro and the EXPORT_SYMBOL_GPL macro, when used inside the statically linked kernel code,
force the C compiler to add a specified symbol to the _ _ksymtab and _ _ksymtab_gpl sections,
respectively.

Only the kernel symbols actually used by some existing module are included in the table.
Should a system programmer need, within some module, to access a kernel symbol that is not
already exported, he can simply add the corresponding EXPORT_SYMBOL_GPL macro into the Linux
source code. Of course, he cannot legally export a new symbol for a module whose license is
not GPL-compatible.

Linked modules can also export their own symbols so that other modules can access them.
The module symbol tables are contained in the _ _ksymtab, _ _ksymtab_gpl, and _ _kstrtab
sections of the module code segment. To export a subset of symbols from the module, the
programmer can use the EXPORT_SYMBOL and EXPORT_SYMBOL_GPL macros described above. The
exported symbols of the module are copied into two memory arrays when the module is linked,
and their addresses are stored in the syms and gpl_syms fields of the module object.

B.2.3. Module Dependency

A module (B) can refer to the symbols exported by another module (A); in this case, we say
that B is loaded on top of A, or equivalently that A is used by B. To link module B, module A
must have already been linked; otherwise, the references to the symbols exported by A
cannot be properly linked in B. In short, there is a dependency between modules.

The modules_which_use_me field of the module object of A is the head of a dependency list
containing all modules that are used by A; each element of the list is a small module_use
descriptor containing the pointers to the adjacent elements in the list and a pointer to the
corresponding module object; in our example, a module_use descriptor pointing to the B's module
object would appear in the modules_which_use_me list of A. The modules_which_use_me list must
be updated dynamically whenever a module is loaded on top of A. The module A cannot be
unloaded if its dependency list is not empty.

Beside A and B there could be, of course, another module (C) loaded on top of B, and so on.
Stacking modules is an effective way to modularize the kernel source code, thus speeding up
its development.
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B.3. Linking and Unlinking Modules
A user can link a module into the running kernel by executing the insmod external program.
This program performs the following operations:

1. Reads from the command line the name of the module to be linked.

2. Locates the file containing the module's object code in the system directory tree. The
file is usually placed in some subdirectory below /lib/modules.

3. Reads from disk the file containing the module's object code.

4. Invokes the init_module( ) system call, passing to it the address of the User Mode
buffer containing the module's object code, the length of the object code, and the
User Mode memory area containing the parameters of the insmod program.

5. Terminates.

The sys_init_module( ) service routine does all the real work; it performs the following main
operations:

1. Checks whether the user is allowed to link the module (the current process must have
the CAP_SYS_MODULE capability). In every situation where one is adding functionality to a
kernel, which has access to all data and processes on the system, security is a
paramount concern.

2. Allocates a temporary memory area for the module's object code; then, copies into this
memory area the data in the User Mode buffer passed as first parameter of the system
call.

3. Checks that the data in the memory area effectively represents a module's ELF object;
otherwise, returns an error code.

4. Allocates a memory area for the parameters passed to the insmod program, and fills it
with the data in the User Mode buffer whose address was passed as third parameter of
the system call.

5. Walks the modules list to verify that the module is not already linked. The check is done
by comparing the names of the modules (name field in the module objects).

6. Allocates a memory area for the core executable code of the module, and fills it with
the contents of the relevant sections of the module.

7. Allocates a memory area for the initialization code of the module, and fills it with the
contents of the relevant sections of the module.

8. Determines the address of the module object for the new module. An image of this
object is included in the gnu.linkonce.this_module section of the text segment of the
module's ELF file. The module object is thus included in the memory area filled in step 6.

9. Stores in the module_code and module_init fields of the module object the addresses of
the memory areas allocated in steps 6 and 7.

10. Initializes the modules_which_use_me list in the module object, and sets to zero all
module's reference counters except the counter of the executing CPU, which is set to
one.

11. Sets the license_gplok flag in the module object according to the type of license
specified in the module object.
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12. Using the kernel symbol tables and the module symbol tables, relocates the module's
object code. This means replacing all occurrences of external and global symbols with
the corresponding logical address offsets.

13. Initializes the syms and gpl_syms fields of the module object so that they point to the
in-memory tables of symbols exported by the module.

14. The exception table of the module (see the section "The Exception Tables" in Chapter
10) is contained in the _ _ex_table section of the module's ELF file, thus it was copied
into the memory area allocated in step 6: stores its address in the extable field of the
module object.

15. Parses the arguments of the insmod program, and sets the value of the corresponding
module variables accordingly.

16. Registers the kobject included in the mkobj field of the module object so that a new
sub-directory for the module appears in the module directory of the sysfs special
filesystem (see the section "Kobjects" in Chapter 13).

17. Frees the temporary memory area allocated in step 2.

18. Adds the module object in the modules list.

19. Sets the state of the module to MODULE_STATE_COMING.

20. If defined, executes the init method of the module object.

21. Sets the state of the module to MODULE_STATE_LIVE.

22. Terminates by returning zero (success).

To unlink a module, a user invokes the rmmod external program, which performs the following
operations:

1. Reads from the command line the name of the module to be unlinked.

2. Opens the /proc/modules file, which lists all modules linked into the kernel, and checks
that the module to be removed is effectively linked.

3. Invokes the delete_module( ) system call passing to it the name of the module.

4. Terminates.

In turn, the sys_delete_module( ) service routine performs the following main operations:

1. Checks whether the user is allowed to unlink the module (the current process must
have the CAP_SYS_MODULE capability).

2. Copies the module's name in a kernel buffer.

3. Walks the modules list to find the module object of the module.

4. Checks the modules_which_use_me dependency list of the module; if it is not empty, the
function returns an error code.

5. Checks the state of the module; if it is not MODULE_STATE_LIVE, returns an error code.

6. If the module has a custom init method, the function checks that it has also a
custom exit method; if no exit method is defined, the module should not be unloaded,
thus returns an exit code.

7. To avoid race conditions, stops the activities of all CPUs in the system, except the
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CPU executing the sys_delete_module( ) service routine.

8. Sets the state of the module to MODULE_STATE_GOING.

9. If the sum of all reference counters of the module is greater than zero, returns an error
code.

10. If defined, executes the exit method of the module.

11. Removes the module object from the modules list, and de-registers the module from the
sysfs special filesystem.

12. Removes the module object from the dependency lists of the modules that it was using.

13. Frees the memory areas that contain the module's executable code, the module object,
and the various symbol and exception tables.

14. Returns zero (success).
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B.4. Linking Modules on Demand
A module can be automatically linked when the functionality it provides is requested and
automatically removed afterward.

For instance, suppose that the MS-DOS filesystem has not been linked, either statically or
dynamically. If a user tries to mount an MS-DOS filesystem, the mount( ) system call normally
fails by returning an error code, because MS-DOS is not included in the file_systems list of
registered filesystems. However, if support for automatic linking of modules has been specified
when configuring the kernel, Linux makes an attempt to link the MS-DOS module, and then
scans the list of registered filesystems again. If the module is successfully linked, the mount( )
system call can continue its execution as if the MS-DOS filesystem were present from the
beginning.

B.4.1. The modprobe Program

To automatically link a module, the kernel creates a kernel thread to execute the modprobe
external program,[*] which takes care of possible complications due to module dependencies.
The dependencies were discussed earlier: a module may require one or more other modules,
and these in turn may require still other modules. For instance, the MS-DOS module requires
another module named fat containing some code common to all filesystems based on a File
Allocation Table (FAT). Thus, if it is not already present, the fat module must also be
automatically linked into the running kernel when the MS-DOS module is requested. Resolving
dependencies and finding modules is a type of activity that's best done in User Mode, because
it requires locating and accessing module object files in the filesystem.

[*] This is one of the few  examples in w hich the kernel relies on an external program.

The modprobe external program is similar to insmod, since it links in a module specified on the
command line. However, modprobe also recursively links in all modules used by the module
specified on the command line. For instance, if a user invokes modprobe to link the MS-DOS
module, the program links the fat module, if necessary, followed by the MS-DOS module.
Actually, modprobe simply checks for module dependencies; the actual linking of each module
is done by forking a new process and executing insmod.

How does modprobe know about module dependencies? Another external program named
depmod is executed at system startup. It looks at all the modules compiled for the running
kernel, which are usually stored inside the /lib/modules directory. Then it writes all module
dependencies to a file named modules.dep. The modprobe program can thus simply compare
the information stored in the file with the list of linked modules yielded by the /proc /modules
file.

B.4.2. The request_module( ) Function

In some cases, the kernel may invoke the request_module( ) function to attempt automatic
linking for a module.

Consider again the case of a user trying to mount an MS-DOS filesystem. If the get_fs_type(
) function discovers that the filesystem is not registered, it invokes the request_module( )
function in the hope that MS-DOS has been compiled as a module.

If the request_module( ) function succeeds in linking the requested module, get_fs_type( )
can continue as if the module were always present. Of course, this does not always happen;
in our example, the MS-DOS module might not have been compiled at all. In this case, 
get_fs_type( ) returns an error code.

The request_module( ) function receives the name of the module to be linked as its parameter.
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It executes kernel_thread( ) to create a new kernel thread and waits until that kernel thread
terminates.

The kernel thread, in turn, receives the name of the module to be linked as its parameter and
invokes the execve( ) system call to execute the modprobe external program,[*] passing the
module name to it. In turn, the modprobe program actually links the requested module, along
with any that it depends on.

[*] The name and path of the program executed by exec_modprobe( ) can be customized by w riting into the
/proc/sys/kernel/modprobe file.
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Bibliography
This bibliography is broken down by subject area and lists some of the most common and, in
our opinion, useful books and online documentation on the topic of kernels.
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Books on Unix Kernels
Bach, M. J. The Design of the Unix Operating System. Prentice Hall International, Inc., 1986.
A classic book describing the SVR2 kernel.

Goodheart, B. and J. Cox. The Magic Garden Explained: The Internals of the Unix System V
Release 4. Prentice Hall International, Inc., 1994. An excellent book on the SVR4 kernel.

Mauro, J. and R. McDougall. Solaris Internals: Core Kernel Architecture. Prentice Hall, 2000. A
good introduction to the Solaris kernel.

McKusick, M. K., M. J. Karels, and K. Bostic. The Design and Implementation of the 4.4 BSD
Operating System. Addison Wesley, 1986. Perhaps the most authoritative book on the 4.4
BSD kernel.

Schimmel, Curt. UNIX Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers. Addison-Wesley, 1994. An interesting book that deals
mostly with the problem of cache implementation in multiprocessor systems.

Vahalia, U. Unix Internals: The New Frontiers. Prentice Hall, Inc., 1996. A valuable book that
provides plenty of insight on modern Unix kernel design issues. It includes a rich bibliography.
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Books on the Linux Kernel
Beck, M., H. Boehme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner, and C. Schroter. Linux
Kernel Programming (3rd ed.). Addison Wesley, 2002. A hardware-independent book covering
the Linux 2.4 kernel.

Benvenuti, Christian. Understanding Linux Network Internals. O'Reilly Media, Inc., 2006. Covers
standard networking protocols and the details of Linux implementation, with a focus on layer 2
and 3 activities.

Corbet, J., A. Rubini, and G. Kroah-Hartman. Linux Device Drivers (3rd ed.). O'Reilly &
Associates, Inc., 2005. A valuable book that is somewhat complementary to this one. It gives
plenty of information on how to develop drivers for Linux.

Gorman, M. Understanding the Linux Virtual Memory Manager. Prentice Hall PTR, 2004.
Focuses on a subset of the chapters included in this book, namely those related to the Virtual
Memory Manager.

Herbert, T. F. The Linux TCP/IP Stack: Networking for Embedded Systems (Networking Series)
. Charles River Media, 2004. Describes in great details the TCP/IP Linux implementation in the
2.6 kernel.

Love, R. Linux Kernel Development (2nd ed.). Novell Press, 2005. A hardware-independent
book covering the Linux 2.6 kernel. Some readers suggest to read it before attacking this
book.

Mosberger, D., S. Eranian, and B. Perens. IA-64 Linux Kernel: Design and Implementation.
Prentice Hall, Inc., 2002. An excellent description of the hardware-dependent Linux kernel for
the Itanium IA-64 microprocessor.
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Books on PC Architecture and Technical Manuals on
Intel Microprocessors
Intel. Intel Architecture Software Developer's Manual, vol. 3: System Programming Guide.
2005. Describes the Intel Pentium microprocessor architecture. It can be downloaded from: 
http://developer.intel.com/design/processors/pentium4/manuals/25366816.pdf.

Intel. MultiProcessor Specification, Version 1.4. 1997. Describes the Intel multiprocessor
architecture specifications. It can be downloaded from 
http://www.intel.com/design/pentium/datashts/24201606.pdf.

Messmer, H. P. The Indispensable PC Hardware Book (4th ed.). Addison Wesley Professional,
2001. A valuable reference that exhaustively describes the many components of a PC.

Page 837

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://developer.intel.com/design/processors/pentium4/manuals/25366816.pdf
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://developer.intel.com/design/processors/pentium4/manuals/25366816.pdf
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://www.processtext.com/abcchm.html


Other Online Documentation Sources

Linux source code

The official site for getting kernel source can be found at http://www.kernel.org.Many
mirror sites are also available all over the world.

A valuable search engine for the Linux 2.6 source code is available at http://lxr.linux.no
.

GCC manuals

All distributions of the GNU C compiler should include full documentation for all its
features, stored in several info files that can be read with the Emacs program or an
info reader. By the way, the information on Extended Inline Assembly is quite hard to
follow, because it does not refer to any specific architecture. Some pertinent
information about 80 x 86 GCC's Inline Assembly and gas, the GNU assembler invoked
by GCC, can be found at:

http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.ibm.com/developerworks/linux/library/l-ia.html
http://www.gnu.org/manual/gas-2.9.1/as.html

The Linux Documentation Project

The web site (http://www.tldp.org) contains the home page of the Linux
Documentation Project, which, in turn, includes several interesting references to
guides, FAQs, and HOWTOs.

Linux kernel development forum

The newsgroup comp.os.linux.development.system is dedicated to discussions about
development of the Linux system.

The linux-kernel mailing list

This fascinating mailing list contains much noise as well as a few pertinent comments
about the current development version of Linux and about the rationale for including or
not including in the kernel some proposals for changes. It is a living laboratory of new
ideas that are taking shape. The name of the mailing list is linux-kernel@vger.kernel.org
.

The Linux Kernel online book

Authored by David A. Rusling, this 200-page book can be viewed at 
http://www.tldp.org/LDP/tlk/tlk.html, and describes some fundamental aspects of the
Linux 2.0 kernel.

Linux Virtual File System

The page at http://www.safe-mbox.com/~rgooch/linux/docs/vfs.txt is an introduction
to the Linux Virtual File System. The author is Richard Gooch.
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Research Papers Related to Linux Development
We list here a few papers that we have mentioned in this book. Needless to say, there are
many other articles that have a great impact on the development of Linux.

McCreight, E. "Priority Search Tree," SIAM J. Comput., Vol. 14, No 2, pp. 257276, May 1985

Johnson, T. and D. Shasha. "2Q: A Low Overhead High Performance Buffer Management
Replacement Algorithm," Proceedings of the 20th IEEE VLDB Conf., Santiago, Chile, 1994, pp.
439450.

Bonwick, J. "The Slab Allocator: An Object-Caching Kernel Memory Allocator," Proceedings of
Summer 1994 USENIX Conference, pp. 8798.
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a.out executable format
aborts
access control lists
access rights
access_ok
     include/asm-i386/uaccess.h
account_it_prof
     kernel/sched.c
account_it_virt
     kernel/sched.c
account_system_time
     kernel/sched.c
account_user_time
     kernel/sched.c
ACPI 2nd 3rd 4th
     Pow er Management Timer 2nd 3rd
activate_page
     mm/sw ap.c
add_disk
     drivers/block/genhd.c
add_page_to_active_list
     include/linux/mm_inline.h
add_page_to_inactive_list
     include/linux/mm_inline.h
add_timer
     include/linux/timer.h
add_to_page_cache
     mm/filemap.c
add_to_sw ap
     mm/sw ap_state.c
add_to_sw ap_cache
     mm/sw ap_state.c
__add_to_sw ap_cache
     mm/sw ap_state.c
add_w ait_queue
     kernel/w ait.c
add_w ait_queue_exclusive
     kernel/w ait.c
address spaces 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd
     creating
     deleting
     IPC shared memory regions
address_space
     include/linux/fs.h
address_space_operations
     include/linux/fs.h
AGPs
AIO rings
aio_complete
     fs/aio.c
aio_pread
     fs/aio.c
aio_pw rite
     fs/aio.c
aio_ring
     include/linux/aio.h
aio_run_iocb
     fs/aio.c
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aio_w q
     fs/aio.c
alignment_check
     arch/i386/kernel/entry.S
alloc_bootmem_low _pages
     include/linux/bootmem.h
alloc_buffer_head
     fs/buffer.c
alloc_chrdev_region
     fs/char_dev.c
alloc_disk
     drivers/block/genhd.c
alloc_page
     include/linux/gfp.h
alloc_page_buffers
     fs/buffer.c
alloc_pages
     include/linux/gfp.h
__alloc_pages
     mm/page_alloc.c
alloc_percpu
     include/linux/percpu.h
alloc_slabmgmt
     mm/slab.c
alloc_task_struct()
     kernel/fork.c
alloc_thread_info
     include/asm-i386/thread_info.h
alloc_vfsmnt
     fs/namespace.c
allocate_resource
     kernel/resource.c
anon_pipe_buf_ops
     fs/pipe.c
anon_vma
     include/linux/rmap.h
anonymous mapping
apic_intr_init
     arch/i386/kernel/apic.c
apic_timer_interrupt
     include/asm-i386/mach-default/
APICs
     CPU local timer
     I/O APICs
     local APICs
         arbitration
         interrupts
         time interrupt handlers
     timers, synchronization of
APM 2nd
arch_get_unmapped_area
     mm/mmap.c
arch_get_unmapped_area_topdow n
     mm/mmap.c
arch_pick_mmap_layout
     arch/i386/mm/mmap.c
array_cache
     mm/slab.c
assembly language fragments
     asm statements
     embedded in the C code
     extended inline assembly language
assembly language instructions
     bound 2nd 3rd
     bsfl
     call
     cld
     cli 2nd 3rd 4th 5th 6th
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     clts
     ESCAPE instructions 2nd
     far jmp
     fnsave
     FPU instructions
     frstor
     fxrstor
     fxsave
     hlt
     in 2nd 3rd
     ins
     int 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     int3 2nd 3rd
     into 2nd 3rd
     invlpg
     iret 2nd 3rd 4th 5th 6th 7th
     lfence
     lidt 2nd
     lock byte 2nd 3rd
     mfence
     MMX instructions 2nd
     movsb
     movzw l
     out 2nd 3rd
     outb
     outs
     pause
     rdtsc
     rep bytes 2nd
     ret
     scasb
     sfence
     SSE/SSE2 instructions 2nd
     sti 2nd 3rd 4th
     string instructions 2nd
     sysenter 2nd 3rd 4th 5th 6th
     sysexit 2nd
     xchg
asynchronous DMA mappings
     see streaming DMA mappings
asynchronous I/O contexts
asynchronous interrupts
asynchronous notifications
atomic memory allocation requests
atomic operations 2nd
atomic_add
     include/asm-i386/atomic.h
atomic_add_negative
     include/asm-i386/atomic.h
atomic_add_return
     include/asm-i386/atomic.h
atomic_clear_mask
     include/asm-i386/atomic.h
atomic_dec
     include/asm-i386/atomic.h
atomic_dec_and_test
     include/asm-i386/atomic.h
atomic_dec_return
     include/asm-i386/atomic.h
atomic_inc
     include/asm-i386/atomic.h
atomic_inc_and_test
     include/asm-i386/atomic.h
atomic_inc_return
     include/asm-i386/atomic.h
atomic_read
     include/asm-i386/atomic.h
atomic_set
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     include/asm-i386/atomic.h
atomic_set_mask
     include/asm-i386/atomic.h
atomic_sub
     include/asm-i386/atomic.h
atomic_sub_and_test
     include/asm-i386/atomic.h
atomic_sub_return
     include/asm-i386/atomic.h
atomic_t
     include/asm-i386/atomic.h
attach_pid
     kernel/pid.c
autoremove_w ake_function
     kernel/w ait.c
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__b_read
     fs/buffer.c
background_w riteout
     mm/page-w riteback.c
backing_dev_info
     include/linux/backing-dev.h
backside buses
bad_pipe_r
     fs/pipe.c
bad_pipe_w
     fs/pipe.c
balance_pgdat
     mm/vmscan.c
barrier( )
     include/linux/compiler-gcc.h
base time quantum
bd_acquire
     fs/block_dev.c
bdev_map
     drivers/block/genhd.c
bdget
     fs/block_dev.c
BDI_pdflush
     include/linux/backing-dev.h
__be16
     include/linux/types.h
__be32
     include/linux/types.h
bforget
     fs/buffer.c
BH_Async_Read
     include/linux/buffer_head.h
BH_Async_Write
     include/linux/buffer_head.h
BH_Boundary
     include/linux/buffer_head.h
bh_cachep
     fs/buffer.c
BH_Delay
     include/linux/buffer_head.h
BH_Dirty
     include/linux/buffer_head.h
BH_Eopnotsupp
     include/linux/buffer_head.h
BH_JBD
     include/linux/jbd.h
BH_Lock
     include/linux/buffer_head.h
bh_lrus
     fs/buffer.c
BH_Mapped
     include/linux/buffer_head.h
BH_New
     include/linux/buffer_head.h
BH_Ordered
     include/linux/buffer_head.h
BH_Req
     include/linux/buffer_head.h
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BH_Uptodate
     include/linux/buffer_head.h
BH_Write_EIO
     include/linux/buffer_head.h
big kernel lock 2nd 3rd 4th 5th 6th 7th 8th
big-endian ordering
bio
     include/linux/bio.h
bio_alloc
     fs/bio.c
bio_destructor
     fs/bio.c
bio_endio
     fs/bio.c
BIO_EOF
     include/linux/bio.h
bio_for_each_segment
     include/linux/bio.h
bio_put
     fs/bio.c
bio_vec
     include/linux/bio.h
BIOS 2nd
     bootstrap procedure
     Enhanced Disk Drive Services
     real mode addressing, usage of
bios
     bounce bios
blk_congestion_w ait
     drivers/block/ll_rw _blk.c
blk_fs_request
     include/linux/blkdev.h
blk_get_request
     drivers/block/ll_rw _blk.c
blk_init_queue
     drivers/block/ll_rw _blk.c
blk_partition_remap
     drivers/block/ll_rw _blk.c
blk_plug_device
     drivers/block/ll_rw _blk.c
blk_put_request
     drivers/block/ll_rw _blk.c
blk_queue_bounce
     mm/highmem.c
blk_queue_hardsect_size
     drivers/block/ll_rw _blk.c
blk_queue_max_hw _segments
     drivers/block/ll_rw _blk.c
blk_queue_max_phys_segments
     drivers/block/ll_rw _blk.c
blk_queue_max_sectors
     drivers/block/ll_rw _blk.c
blk_remove_plug
     drivers/block/ll_rw _blk.c
blk_rq_map_sg
     drivers/block/ll_rw _blk.c
blk_unplug_timeout
     drivers/block/ll_rw _blk.c
blk_unplug_w ork
     drivers/block/ll_rw _blk.c
blkdev_close
     fs/block_dev.c
blkdev_commit_w rite
     fs/block_dev.c
blkdev_dequeue_request
     include/linux/blkdev.h
blkdev_file_aio_w rite
     fs/block_dev.c
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blkdev_file_w rite
     fs/block_dev.c
blkdev_get_block
     fs/block_dev.c
blkdev_open
     fs/block_dev.c
blkdev_prepare_w rite
     fs/block_dev.c
blkdev_readpage
     fs/block_dev.c
blkdev_w ritepage
     fs/block_dev.c
block buffers
block device buffer pages
block device drivers
block device files
block device requests
block devices
     plugging and unplugging
__block_commit_w rite
     fs/buffer.c
block_device
     include/linux/fs.h
block_device_operations
     include/linux/fs.h
block_fsync
     fs/block_dev.c
block_ioctl
     fs/block_dev.c
block_llseek
     fs/block_dev.c
block_prepare_w rite
     fs/buffer.c
block_read_full_page
     fs/buffer.c
block_w ait_queue_running
     drivers/block/ll_rw _blk.c
block_w rite_full_page
     fs/buffer.c
blockable_page_cache_readahead
     mm/readahead.c
__blockdev_direct_IO
     fs/direct-io.c
blocked_list
     fs/locks.c
blocks
boot loaders
boot sectors
bootstrapping
bounds
     arch/i386/kernel/entry.S
brelse
     fs/buffer.c
bridges
bss segments
buddy system 2nd
     allocating a block of page frames
     data structures
     freeing of a block of page frames
     slab allocator and
BUFCTL_END
     mm/slab.c
buffer bouncing
buffer cache
buffer heads 2nd
buffer pages
buffer_head
     include/linux/buffer_head.h
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buffered_rmqueue
     mm/page_alloc.c
buffers
build_all_zonelists
     mm/page_alloc.c
BUILD_INTERRUPT
     arch/i386/kernel/entry.S
bus addresses
bus masters
bus mouse interfaces
bus_for_each_dev
     drivers/base/bus.c
bus_for_each_drv
     drivers/base/bus.c
bus_subsys
     drivers/base/bus.c
bus_type
     include/linux/device.h
buses
BYTES_PER_WORD
     mm/slab.c
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cache lines
cache_alloc_refill
     mm/slab.c
cache_cache
     mm/slab.c
cache_chain
     mm/slab.c
cache_chain_sem
     mm/slab.c
cache_flusharray
     mm/slab.c
cache_grow
     mm/slab.c
cache_init_objs
     mm/slab.c
cache_reap
     mm/slab.c
cache_sizes
     include/linux/slab.h
caches
     types of
calc_load
     kernel/timer.c
calc_vm_flag_bits
     include/linux/mman.h
calc_vm_prot_bits
     include/linux/mman.h
calibrate_APIC_clock
     arch/i386/kernel/apic.c
calibrate_delay
     init/calibrate.c
calibrate_tsc
     arch/i386/kernel/timers/common.c
call gates
call_data
     arch/i386/kernel/smp.c
call_function_interrupt
     include/asm-i386/mach-default/
CALL_FUNCTION_VECTOR
     include/asm-i386/mach-default/
call_rcu
     kernel/rcupdate.c
can_migrate_task
     kernel/sched.c
cancel_delayed_w ork
     include/linux/w orkqueue.h
CAP_AUDIT_CONTROL
     include/linux/capability.h
CAP_AUDIT_WRITE
     include/linux/capability.h
CAP_CHOWN
     include/linux/capability.h
CAP_DAC_OVERRIDE
     include/linux/capability.h
CAP_DAC_READ_SEARCH
     include/linux/capability.h
CAP_FOWNER
     include/linux/capability.h
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CAP_FSETID
     include/linux/capability.h
CAP_IPC_LOCK
     include/linux/capability.h
CAP_IPC_OWNER
     include/linux/capability.h
CAP_KILL
     include/linux/capability.h
CAP_LEASE
     include/linux/capability.h
CAP_LINUX_IMMUTABLE
     include/linux/capability.h
CAP_MKNOD
     include/linux/capability.h
CAP_NET_ADMIN
     include/linux/capability.h
CAP_NET_BIND_SERVICE
     include/linux/capability.h
CAP_NET_BROADCAST
     include/linux/capability.h
CAP_NET_RAW
     include/linux/capability.h
CAP_SETGID
     include/linux/capability.h
CAP_SETPCAP
     include/linux/capability.h
CAP_SETUID
     include/linux/capability.h
CAP_SYS_ADMIN
     include/linux/capability.h
CAP_SYS_BOOT
     include/linux/capability.h
CAP_SYS_CHROOT
     include/linux/capability.h
CAP_SYS_MODULE
     include/linux/capability.h
CAP_SYS_NICE
     include/linux/capability.h
CAP_SYS_PACCT
     include/linux/capability.h
CAP_SYS_PTRACE
     include/linux/capability.h
CAP_SYS_RAWIO
     include/linux/capability.h
CAP_SYS_RESOURCE
     include/linux/capability.h
CAP_SYS_TIME
     include/linux/capability.h
CAP_SYS_TTY_CONFIG
     include/linux/capability.h
cap_vm_enough_memory
     security/commoncap.c
capable
     include/linux/sched.h
cascade
     kernel/timer.c
cdev
     include/linux/cdev.h
cdev_add
     fs/char_dev.c
cdev_alloc
     fs/char_dev.c
cdev_map
     fs/char_dev.c
CFLGS_OFF_SLAB
     mm/slab.c
chained lists
change_bit

Page 853

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html


     include/asm-i386/bitops.h
char_device_struct
     fs/char_dev.c
character device drivers
character device files
character devices
child filesystems
child processes
chrdev_open
     fs/char_dev.c
chrdevs
     fs/char_dev.c
class
     include/linux/device.h
class_device
     include/linux/device.h
clear_bit
     include/asm-i386/bitops.h
clear_fixmap
     include/asm-i386/fixmap.h
clear_inode
     fs/inode.c
clear_page_range
     mm/memory.c
clear_user
     arch/i386/lib/usercopy.c
__clear_user
     arch/i386/lib/usercopy.c
ClearPageActive
     include/linux/page-flags.h
ClearPageChecked
     include/linux/page-flags.h
ClearPageCompound
     include/linux/page-flags.h
ClearPageDirty
     include/linux/page-flags.h
ClearPageError
     include/linux/page-flags.h
ClearPageLocked
     include/linux/page-flags.h
ClearPageMappedToDisk
     include/linux/page-flags.h
ClearPageNosave
     include/linux/page-flags.h
ClearPageNosaveFree
     include/linux/page-flags.h
ClearPagePrivate
     include/linux/page-flags.h
ClearPageReclaim
     include/linux/page-flags.h
ClearPageReferenced
     include/linux/page-flags.h
ClearPageReserved
     include/linux/page-flags.h
ClearPageSlab
     include/linux/page-flags.h
ClearPageSw apCache
     include/linux/page-flags.h
ClearPageUptodate
     include/linux/page-flags.h
ClearPageWriteback
     include/linux/page-flags.h
CLOCK_MONOTONIC
     include/linux/time.h
CLOCK_REALTIME
     include/linux/time.h
CLOCK_TICK_RATE
     include/asm-i386/timex.h
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clocks
CLONE_CHILD_CLEARTID
     include/linux/sched.h
CLONE_CHILD_SETTID
     include/linux/sched.h
CLONE_DETACHED
     include/linux/sched.h
CLONE_FILES
     include/linux/sched.h
CLONE_FS
     include/linux/sched.h
CLONE_NEWNS
     include/linux/sched.h
CLONE_PARENT
     include/linux/sched.h
CLONE_PARENT_SETTID
     include/linux/sched.h
CLONE_PTRACE
     include/linux/sched.h
CLONE_SETTLS
     include/linux/sched.h
CLONE_SIGHAND
     include/linux/sched.h
CLONE_STOPPED
     include/linux/sched.h
CLONE_SYSVSEM
     include/linux/sched.h
CLONE_THREAD
     include/linux/sched.h
CLONE_UNTRACED
     include/linux/sched.h
CLONE_VFORK
     include/linux/sched.h
CLONE_VM
     include/linux/sched.h
Code Segment Descriptors
code segment registers
COFF executable format
coherent DMA mappings
command-line arguments 2nd
common file model
compat_blkdev_ioctl
     drivers/block/ioctl.c
complete
     kernel/sched.c
completion
     include/linux/completion.h
completions
concurrency level
cond_resched
     kernel/sched.c
consistent DMA mappings
     see coherent DMA mappings
context_sw itch
     kernel/sched.c
contig_page_data
     mm/page_alloc.c
conventional processes
coprocessor_error
     arch/i386/kernel/entry.S
coprocessor_segment_overrun
     arch/i386/kernel/entry.S
copy_files
     kernel/fork.c
copy_from_user
     arch/i386/lib/usercopy.c
__copy_from_user
     include/asm-i386/uaccess.h
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copy_fs
     kernel/fork.c
copy_mm
     kernel/fork.c
copy_namespace
     fs/namespace.c
copy_page
     include/asm-i386/page.h
copy_page_range
     mm/memory.c
copy_process
     kernel/fork.c
copy_semundo
     ipc/sem.c
copy_sighand
     kernel/fork.c
copy_siginfo
     include/asm-generic/siginfo.h
copy_signal
     kernel/fork.c
copy_thread
     arch/i386/kernel/process.c
copy_to_user
     arch/i386/lib/usercopy.c
__copy_to_user
     include/asm-i386/uaccess.h
core dumps
COW 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
cp program 2nd 3rd
CPL (Current Privilege Level) 2nd
CPU control registers (80x86)
     cr0 2nd 3rd 4th 5th 6th 7th 8th
     cr2 2nd
     cr3 2nd 3rd 4th 5th 6th 7th 8th 9th
     cr4
     debug registers 2nd 3rd 4th 5th
     eflags 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
     gdtr 2nd 3rd 4th
     idtr 2nd 3rd
     ldtr 2nd
     MSR registers
     MTRR registers
     tr 2nd
CPU execution modes
CPU local timer
cpu_domains
     kernel/sched.c
cpu_gdt_descr
     arch/i386/kernel/head.S
cpu_gdt_table
     arch/i386/kernel/head.S
cpu_idle
     arch/i386/kernel/process.c
cpu_relax( )
     include/asm-i386/processor.h
cpu_rq
     kernel/sched.c
cpu_tlbstate
     arch/i386/kernel/smp.c
cpu_w orkqueue_struct
     kernel/w orkqueue.c
create_empty_buffers
     fs/buffer.c
create_singlethread_w orkqueue
     include/linux/w orkqueue.h
create_w orkqueue
     include/linux/w orkqueue.h
critical regions 2nd
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cur_timer
     arch/i386/kernel/time.c
current
     include/asm-i386/current.h
current w orking directory
CURRENT_BONUS
     kernel/sched.c
current_thread_info
     include/asm-i386/thread_info.h
custom I/O interfaces
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d_lookup
     fs/dcache.c
__d_lookup
     fs/dcache.c
Data Segment Descriptors
data segment registers
dcache_lock
     fs/dcache.c
de_thread
     fs/exec.c
deactivate_task
     kernel/sched.c
deadlocks
debug
     arch/i386/kernel/entry.S
debugfs program
DECLARE_MUTEX
     include/asm-i386/semaphore.h
DECLARE_MUTEX_LOCKED
     include/asm-i386/semaphore.h
DECLARE_WAIT_QUEUE_HEAD
     include/linux/w ait.h
decompress_kernel
     arch/i386/boot/compressed/misc.c
def_blk_fops
     fs/block_dev.c
def_chr_fops
     fs/char_dev.c
def_fifo_fops
     fs/fifo.c
default_ldt
     arch/i386/kernel/traps.c
default_w ake_function
     kernel/sched.c
deferrable functions
     activation of
     disabling
     execution of
     initialization of
     protecting data structures accessed by
     protecting data structures accessed by exceptions and
     protecting data structures accessed by interrupts and
     protecting data structures accessed by interrupts, exceptions, and
DEFINE_PER_CPU
     include/asm-generic/percpu.h
DEFINE_WAIT
     include/linux/w ait.h
del_page_from_active_list
     include/linux/mm_inline.h
del_page_from_inactive_list
     include/linux/mm_inline.h
del_page_from_lru
     include/linux/mm_inline.h
del_singleshot_timer_sync
     kernel/timer.c
del_timer
     kernel/timer.c
del_timer_sync
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     kernel/timer.c
delay functions
delete_from_sw ap_cache
     mm/sw ap_state.c
demand paging 2nd 3rd 4th 5th 6th 7th 8th
     for IPC shared memory
     for memory mapping
dentry
     include/linux/dcache.h
dentry cache 2nd 3rd 4th 5th 6th 7th
     reclaiming page frames from
dentry_cache
     fs/dcache.c
dentry_hashtable
     fs/dcache.c
dentry_open
     fs/open.c
dentry_operations
     include/linux/dcache.h
dentry_unused
     fs/dcache.c
dependent_sleeper
     kernel/sched.c
dequeue_signal
     kernel/signal.c
dequeue_task
     kernel/sched.c
destroy_w orkqueue
     kernel/w orkqueue.c
detach_pid
     kernel/pid.c
detach_vmas_to_be_unmapped
     mm/mmap.c
dev_t
     include/linux/types.h
device
     include/linux/device.h
device control registers
device controllers
device driver model
device drivers 2nd
     buffering strategies
     IRQ-configuration 2nd
     registering
     resources
device files
     examples
     VFS, handling by
device hotplugging
device input registers
device output registers
device status registers
device_driver
     include/linux/device.h
device_not_available
     arch/i386/kernel/entry.S
device_register
     drivers/base/core.c
device_unregister
     drivers/base/core.c
devices_subsys
     drivers/base/core.c
die
     arch/i386/kernel/traps.c
digital signal processors (DSP)
direct I/O transfers
dirty background threshold
dirty_w riteback_centisecs
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     mm/page-w riteback.c
disable_8259A_irq
     arch/i386/kernel/i8259.c
disable_irq
     kernel/irq/manage.c
disable_irq_nosync
     kernel/irq/manage.c
disk block fragmentation
disk caches 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
disk controllers
disk geometry
disk interfaces
disk superblocks
disks
dispatch latency
distress value
divide_error
     arch/i386/kernel/entry.S
DMA
     circuits
     controllers
     hardw are segment
     mapping types
     physical segments
     segments
dma_addr_t
     include/asm-i386/types.h
dma_alloc_coherent
     arch/i386/kernel/pci-dma.c
dma_free_coherent
     arch/i386/kernel/pci-dma.c
dma_map_page
     include/asm-i386/dma-mapping.h
dma_map_single
     include/asm-i386/dma-mapping.h
dma_set_mask
     include/asm-i386/dma-mapping.h
dma_sync_single_for_cpu
     include/asm-i386/dma-mapping.h
dma_sync_single_for_device
     include/asm-i386/dma-mapping.h
dma_unmap_page
     include/asm-i386/dma-mapping.h
dma_unmap_single
     include/asm-i386/dma-mapping.h
do_add_mount
     fs/namespace.c
do_anonymous_page
     mm/memory.c
do_brk
     mm/mmap.c
do_each_task_pid
     include/linux/pid.h
do_execve
     fs/exec.c
do_exit
     kernel/exit.c
do_file_page
     mm/memory.c
do_follow _link
     fs/namei.c
do_fork
     kernel/fork.c
do_general_protection
     arch/i386/kernel/traps.c
do_generic_file_read
     include/linux/fs.h
do_gettimeofday
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     arch/i386/kernel/time.c
do_group_exit
     kernel/exit.c
do_IRQ
     arch/i386/kernel/irq.c
__do_IRQ
     kernel/irq/handle.c
do_irq_balance
     arch/i386/kernel/io_apic.c
do_kern_mount
     fs/super.c
do_lookup
     fs/namei.c
do_mmap
     include/linux/mm.h
do_mmap_pgoff
     mm/mmap.c
do_mount
     fs/namespace.c
do_move_mount
     fs/namespace.c
do_munmap
     mm/mmap.c
do_new _mount
     fs/namespace.c
do_nmi
     arch/i386/kernel/traps.c
do_no_page
     mm/memory.c
do_notify_parent_cldstop
     kernel/signal.c
do_notify_resume
     arch/i386/kernel/signal.c
do_page_fault
     arch/i386/mm/fault.c
do_pipe
     fs/pipe.c
do_remount
     fs/namespace.c
do_remount_sb
     fs/super.c
do_sched_setscheduler
     kernel/sched.c
do_settimeofday
     arch/i386/kernel/time.c
do_shmat
     ipc/shm.c
do_sigaction
     kernel/signal.c
do_signal
     arch/i386/kernel/signal.c
do_signal_stop
     kernel/signal.c
do_softirq
     kernel/softirq.c
__do_softirq
     kernel/softirq.c
do_sw ap_page
     mm/memory.c
do_syscall_trace
     arch/i386/kernel/ptrace.c
do_timer_interrupt
     arch/i386/kernel/time.c
do_trap
     arch/i386/kernel/traps.c
do_umount
     fs/namespace.c
do_w p_page
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     mm/memory.c
doublefault_fn
     arch/i386/kernel/doublefault.c
__dow n
     arch/i386/kernel/semaphore.c
dow n
     include/asm-i386/semaphore.h
dow n_interruptible
     include/asm-i386/semaphore.h
dow n_read
     include/linux/rw sem.h
dow n_read_trylock
     include/linux/rw sem.h
dow n_trylock
     include/asm-i386/semaphore.h
dow n_w rite
     include/linux/rw sem.h
dow n_w rite_trylock
     include/linux/rw sem.h
dow ngrade_w rite
     include/asm-i386/rw sem.h
DPL 2nd
driver_register
     drivers/base/driver.c
driver_unregister
     drivers/base/driver.c
dummy_security_ops
     security/dummy.c
dumpe2fs program
dup_mmap
     kernel/fork.c
dup_task_struct
     kernel/fork.c
dynamic address checking
dynamic distribution of IRQs
dynamic linker
dynamic memory
dynamic timers
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     arch/i386/kernel/signal.c
sget
     fs/super.c
sgid flags
share-mode mandatory locks
shared libraries
shared linked lists, insertion of elements into
shm_ids
     ipc/shm.c
shm_mmap
     ipc/shm.c
shmem_aops
     mm/shmem.c
shmem_inode_info
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     include/linux/shmem_fs.h
shmem_nopage
     mm/shmem.c
shmem_unuse
     mm/shmem.c
shmem_w ritepage
     mm/shmem.c
shmid_kernel
     include/linux/shm.h
shrink_cache
     mm/vmscan.c
shrink_caches
     mm/vmscan.c
shrink_dcache_memory
     fs/dcache.c
shrink_icache_memory
     fs/inode.c
shrink_list
     mm/vmscan.c
shrink_zone
     mm/vmscan.c
shrinker functions
shutdow n_8259A_irq
     arch/i386/kernel/i8259.c
SI_ASYNCIO
     include/asm-generic/siginfo.h
SI_KERNEL
     include/asm-generic/siginfo.h
SI_QUEUE
     include/asm-generic/siginfo.h
SI_TIMER
     include/asm-generic/siginfo.h
SI_TKILL
     include/asm-generic/siginfo.h
SI_USER
     include/asm-generic/siginfo.h
SIG_BLOCK
     include/asm-i386/signal.h
SIG_DFL
     include/asm-i386/signal.h
SIG_IGN
     include/asm-i386/signal.h
SIG_SETMASK
     include/asm-i386/signal.h
SIG_UNBLOCK
     include/asm-i386/signal.h
SIGABRT
     include/asm-i386/signal.h
sigaction
     include/asm-i386/signal.h
sigaddset
     include/linux/signal.h
sigaddsetmask
     include/linux/signal.h
SIGALRM
     include/asm-i386/signal.h
sigandsets
     include/linux/signal.h
SIGBUS
     include/asm-i386/signal.h
SIGCHLD
     include/asm-i386/signal.h
SIGCONT
     include/asm-i386/signal.h
sigcontext
     include/asm-i386/sigcontext.h
sigdelset
     include/linux/signal.h
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sigdelsetmask
     include/linux/signal.h
sigemptyset
     include/linux/signal.h
sigfillset
     include/linux/signal.h
SIGFPE
     include/asm-i386/signal.h
sigframe
     arch/i386/kernel/sigframe.h
sighand_struct
     include/linux/sched.h
SIGHUP
     include/asm-i386/signal.h
SIGILL
     include/asm-i386/signal.h
siginfo_t
     include/asm-generic/siginfo.h
siginitset
     include/linux/signal.h
siginitsetinv
     include/linux/signal.h
SIGINT
     include/asm-i386/signal.h
SIGIO
     include/asm-i386/signal.h
SIGIOT
     include/asm-i386/signal.h
sigismeber
     include/linux/signal.h
SIGKILL
     include/asm-i386/signal.h
sigmask
     include/linux/signal.h
SIGNAL_GROUP_EXIT
     include/linux/sched.h
signal_pending
     include/linux/sched.h
signal_struct
     include/linux/sched.h
signals 2nd 3rd 4th 5th 6th 7th
     blocking of 2nd
     catching
     changing the action of
     data structures
         operations on
     default actions 2nd
         executing
     delivering 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     exception handlers, used by
     fatal signals 2nd
     generating 2nd 3rd 4th 5th 6th 7th
     ignoring
     masking of
     pending signals 2nd 3rd 4th
         queues of
     process descriptor fields for handling
     real-time signals
         system calls for
     regular signals
     sender codes 2nd
     sent by interval timers
     SIG prefix
     signal descriptors 2nd
     signal handlers 2nd 3rd 4th
         descriptors of
     stack extended frames
     stack frames
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    system calls
         for handling of
         reexecuting
signandsets
     include/linux/signal.h
sigorsets
     include/linux/signal.h
sigpending
     include/linux/signal.h
SIGPIPE
     include/asm-i386/signal.h
SIGPOLL
     include/asm-i386/signal.h
SIGPROF
     include/asm-i386/signal.h
SIGPWR
     include/asm-i386/signal.h
sigqueue
     include/linux/signal.h
SIGQUIT
     include/asm-i386/signal.h
SIGSEGV
     include/asm-i386/signal.h
sigset_t
     include/asm-i386/signal.h
SIGSTKFLT
     include/asm-i386/signal.h
SIGSTOP
     include/asm-i386/signal.h
SIGSYS
     include/asm-i386/signal.h
SIGTERM
     include/asm-i386/signal.h
sigtestsetmask
     include/linux/signal.h
SIGTRAP
     include/asm-i386/signal.h
SIGTSTP
     include/asm-i386/signal.h
SIGTTIN
     include/asm-i386/signal.h
SIGTTOU
     include/asm-i386/signal.h
SIGUNUSED
     include/asm-i386/signal.h
SIGURG
     include/asm-i386/signal.h
SIGUSR1
     include/asm-i386/signal.h
SIGUSR2
     include/asm-i386/signal.h
SIGVTALRM
     include/asm-i386/signal.h
SIGWINCH
     include/asm-i386/signal.h
SIGXCPU
     include/asm-i386/signal.h
SIGXFSZ
     include/asm-i386/signal.h
simd_coprocessor_error
     arch/i386/kernel/entry.S
single-step execution
slab
     mm/slab.c
slab allocator
     buddy system, interfacing w ith
     cache descriptors
     caches
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     caches for general purpose memory areas
     coloring
     general caches
     kmem_cache cache
     shared local cache
     slab allocation
     slab cache descriptors
     slab descriptors
         external
         internal
     slab local cache
     slab objects
         aligning objects in memory
         alignment factors
         caches, allocating in
         caches, releasing from
         constructors
         descriptors
         destructors
         external descriptors
         general purpose
         internal descriptors
     slabs
     specific caches
slab_destroy
     mm/slab.c
SLAB_DESTROY_BY_RCU
     include/linux/slab.h
SLAB_HWCACHE_ALIGN
     include/linux/slab.h
SLAB_NO_REAP
     include/linux/slab.h
SLAB_RECLAIM_ACCOUNT
     include/linux/slab.h
slab_reclaim_pages
     mm/slab.c
sleep_on
     kernel/sched.c
sleep_on_timeout
     kernel/sched.c
sleeping processes
SMP 2nd 3rd 4th 5th 6th
smp_apic_timer_interrupt
     arch/i386/kernel/apic.c
smp_call_function
     arch/i386/kernel/smp.c
smp_call_function_interrupt
     arch/i386/kernel/smp.c
smp_invalidate_interrupt
     arch/i386/kernel/smp.c
smp_local_timer_interrupt
     arch/i386/kernel/apic.c
smp_mb( )
     include/asm-i386/system.h
smp_processor_id
     include/asm-i386/smp.h
smp_reschedule_interrupt
     arch/i386/kernel/smp.c
smp_rmb( )
     include/asm-i386/system.h
smp_w mb( )
     include/asm-i386/system.h
soft IRQ stack
soft links 2nd
softirq_action
     include/linux/interrupt.h
softirq_ctx
     arch/i386/kernel/irq.c
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softirq_init
     kernel/softirq.c
softirq_stack
     arch/i386/kernel/irq.c
softirq_vec
     kernel/softirq.c
softirqs 2nd
softw are interrupts 2nd
softw are timers
sound samples
special
special filesystems 2nd 3rd 4th
     bdev 2nd 3rd 4th 5th 6th 7th 8th 9th
     binfmt_misc 2nd
     devfs
     devpts
     eventpollfs
     futexfs
     mqueue 2nd
     pipefs 2nd 3rd 4th
     proc 2nd 3rd 4th 5th 6th 7th 8th 9th
     rootfs 2nd
     shm 2nd 3rd
     sockfs
     sysfs 2nd 3rd 4th 5th 6th 7th
     tmpfs 2nd 3rd 4th
     usbfs
specific_send_sig_info
     kernel/signal.c
spin locks 2nd
spin_is_locked
     include/asm-i386/spinlock.h
spin_lock
     include/linux/spinlock.h
spin_lock_bh
     include/linux/spinlock.h
spin_lock_init
     include/asm-i386/spinlock.h
spin_lock_irq
     include/linux/spinlock.h
spin_lock_irqsave
     include/linux/spinlock.h
spin_trylock
     include/linux/spinlock.h
spin_unlock
     include/linux/spinlock.h
spin_unlock_bh
     include/linux/spinlock.h
spin_unlock_irq
     include/linux/spinlock.h
spin_unlock_irqrestore
     include/linux/spinlock.h
spin_unlock_w ait
     include/asm-i386/spinlock.h
spinlock_t
     include/asm-i386/spinlock.h
split_vma
     mm/mmap.c
SSE/SSE2 extensions (Streaming SIMD Extensions)
stack segment registers
stack segments
stack_segment
     arch/i386/kernel/entry.S
start_kernel
     init/main.c
start_thread
     include/asm-i386/processor.h
startup_32
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     arch/i386/boot/compressed/head.S
     arch/i386/kernel/head.S
startup_8259A_irq
     arch/i386/kernel/i8259.c
static distribution of IRQs
static libraries
sticky flags
stopped processes
strategy routines
streaming DMA mappings
strlen_user
     include/asm-i386/uaccess.h
strncpy_from_user
     arch/i386/lib/usercopy.c
__strncpy_from_user
     arch/i386/lib/usercopy.c
strnlen_user
     arch/i386/lib/usercopy.c
stts()
     include/asm-i386/system.h
submit_bh
     fs/buffer.c
submit_bio
     drivers/block/ll_rw _blk.c
subsys_get
     include/linux/kobject.h
subsys_put
     include/linux/kobject.h
subsystem
     include/linux/kobject.h
subsystem_register
     lib/kobject.c
subsystem_unregister
     lib/kobject.c
suid flags
super_block
     include/linux/fs.h
super_blocks
     fs/super.c
super_operations
     include/linux/fs.h
superformat program
superuser
sw ap areas
     active
     descriptors
     multiple areas, advantages
     page slots
         allocating and releasing
         defective page slots
     sw ap extents
sw ap cache
     helper functions
sw ap tendency
sw ap thrashing
sw ap token
SWAP_AGAIN
     include/linux/rmap.h
sw ap_duplicate
     mm/sw apfile.c
sw ap_extent
     include/linux/sw ap.h
SWAP_FAIL
     include/linux/rmap.h
SWAP_FLAG_PREFER
     include/linux/sw ap.h
sw ap_free
     mm/sw apfile.c
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sw ap_header
     include/linux/sw ap.h
sw ap_info
     mm/sw apfile.c
sw ap_info_struct
     include/linux/sw ap.h
sw ap_list
     mm/sw apfile.c
sw ap_list_t
     include/linux/sw ap.h
SWAP_MAP_BAD
     include/linux/sw ap.h
SWAP_MAP_MAX
     include/linux/sw ap.h
sw ap_readpage
     mm/page_io.c
SWAP_SUCCESS
     include/linux/rmap.h
sw ap_token_default_timeout
     mm/thrash.c
sw ap_token_mm
     mm/thrash.c
sw ap_w ritepage
     mm/page_io.c
SWAPFILE_CLUSTER
     mm/sw apfile.c
sw apin_readahead
     mm/memory.c
sw aplock
     mm/sw apfile.c
sw apoff program
sw apon program
sw apped-out page identifiers
sw apper processes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
sw apper_pg_dir
     arch/i386/kernel/head.S
sw apper_space
     mm/sw ap_state.c
sw appiness
__sw itch_to
     arch/i386/kernel/process.c
sw itch_to
     include/asm-i386/system.h
SWP_ACTIVE
     include/linux/sw ap.h
sw p_entry
     include/linux/sw apops.h
sw p_offset
     include/linux/sw apops.h
sw p_type
     include/linux/sw apops.h
SWP_USED
     include/linux/sw ap.h
SWP_WRITEOK
     include/linux/sw ap.h
sync_blockdev
     fs/buffer.c
sync_dirty_buffer
     fs/buffer.c
sync_filesystems
     fs/super.c
sync_inodes
     fs/fs-w riteback.c
sync_page_range
     mm/filemap.c
sync_sb_inodes
     fs/fs-w riteback.c
sync_supers
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     fs/super.c
synchronization primitives
     atomic operations
     choosing among
     completions
     kernel data structures, access using
     memory barriers
     read-copy update
     semaphores
     seqlocks
     spin locks
synchronous DMA mappings
     see coherent DMA mappings
synchronous interrupts
synchronous notifications
sys_brk
     mm/mmap.c
sys_call_table
     arch/i386/kernel/entry.S
sys_clone
     arch/i386/kernel/process.c
sys_close
     fs/open.c
sys_delete_module
     kernel/module.c
sys_execve
     arch/i386/kernel/process.c
sys_exit
     kernel/exit.c
sys_exit_group
     kernel/exit.c
sys_fcntl
     fs/fcntl.c
sys_fdatasync
     fs/buffer.c
sys_flock
     fs/locks.c
sys_fork
     arch/i386/kernel/process.c
sys_fsync
     fs/buffer.c
sys_getpriority
     kernel/sys.c
sys_gettimeofday
     kernel/time.c
sys_init_module
     kernel/module.c
sys_io_destroy
     fs/aio.c
sys_io_setup
     fs/aio.c
sys_io_submit
     fs/aio.c
sys_ipc
     arch/i386/kernel/sys_i386.c
sys_kill
     kernel/signal.c
sys_listxattr
     fs/xattr.c
sys_mmap2
     arch/i386/kernel/sys_i386.c
sys_mount
     fs/namespace.c
sys_msgctl
     ipc/msg.c
sys_msgget
     ipc/msg.c
sys_msgrcv
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     ipc/msg.c
sys_msgsnd
     ipc/msg.c
sys_munmap
     mm/mmap.c
sys_nanosleep
     kernel/timer.c
sys_ni_syscall
     kernel/sys_ni.c
sys_nice
     kernel/sched.c
sys_open
     fs/open.c
sys_pipe
     arch/i386/kernel/sys_i386.c
sys_ptrace
     arch/i386/kernel/ptrace.c
sys_read
     fs/read_w rite.c
sys_remap_file_pages
     mm/fremap.c
sys_restart_syscall
     kernel/signal.c
sys_rt_sigaction
     arch/i386/kernel/signal.c
sys_rt_sigreturn
     arch/i386/kernel/signal.c
sys_sched_get_priority_max
     kernel/sched.c
sys_sched_get_priority_min
     kernel/sched.c
sys_sched_getaffinity
     kernel/sched.c
sys_sched_getparam
     kernel/sched.c
sys_sched_getscheduler
     kernel/sched.c
sys_sched_rr_get_interval
     kernel/sched.c
sys_sched_setaffinity
     kernel/sched.c
sys_sched_setparam
     kernel/sched.c
sys_sched_setscheduler
     kernel/sched.c
sys_sched_yield
     kernel/sched.c
sys_semctl
     ipc/sem.c
sys_semget
     ipc/sem.c
sys_semop
     ipc/sem.c
sys_setitimer
     kernel/itimer.c
sys_setpriority
     kernel/sys.c
sys_settimeofday
     kernel/time.c
sys_shmctl
     ipc/shm.c
sys_shmdt
     ipc/shm.c
sys_shmget
     ipc/shm.c
sys_sigaction
     arch/i386/kernel/signal.c
sys_signal
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     kernel/signal.c
sys_sigpending
     kernel/signal.c
sys_sigprocmask
     kernel/signal.c
sys_sigreturn
     arch/i386/kernel/signal.c
sys_sigsuspend
     arch/i386/kernel/signal.c
sys_sw apoff
     mm/sw apfile.c
sys_sw apon
     mm/sw apfile.c
sys_sync
     fs/buffer.c
sys_tgkill
     kernel/signal.c
sys_tkill
     kernel/signal.c
sys_umount
     fs/namespace.c
sys_vfork
     arch/i386/kernel/process.c
sys_w rite
     fs/read_w rite.c
_syscall0
     include/asm-i386/unistd.h
sysctl_legacy_va_layout
     kernel/sysctl.c
sysctl_vfs_cache_pressure
     fs/dcache.c
SYSENTER_CS_MSR register
SYSENTER_EIP_MSR register
sysenter_entry
     arch/i386/kernel/entry.S
SYSENTER_ESP_MSR register
sysenter_setup
     arch/i386/kernel/sysenter.c
sysfs_create_file
     fs/sysfs/file.c
sysfs_create_link
     fs/sysfs/symlink.c
system administrators
system buses
system call dispatch tables
system call handlers
     similar to exception handlers
system call numbers
system call service routines 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
system calls 2nd 3rd 4th
     _exit( ) 2nd 3rd 4th 5th 6th
     _llseek( )
     access( )
     adjtimex( ) 2nd
     adtimex( )
     alarm( )
     bind( )
     brk( ) 2nd 3rd 4th 5th
     capget( )
     capset( )
     chdir( )
     chmod( )
     chow n( )
     chow n16( )
     chroot( ) 2nd
     clock_getres( )
     clock_gettime( )
     clock_nanosleep( )
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     clock_settime( )
     clone( ) 2nd 3rd 4th 5th 6th
     close( ) 2nd 3rd 4th 5th 6th 7th
     connect( )
     creat( )
     delete_module( )
     dup( ) 2nd 3rd
     dup2( ) 2nd 3rd
     exec-like 2nd 3rd
     execve( ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     exit_group( )
     fchdir( )
     fchmod( )
     fchow n( )
     fchow n16( )
     fcntl( ) 2nd 3rd 4th 5th 6th 7th 8th 9th
     fcntl64( )
     fdatasync( ) 2nd 3rd
     fgetxattr( ) 2nd
     flistxattr( ) 2nd
     flock( ) 2nd 3rd
     fork( ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     fremovexattr( ) 2nd
     fsetxattr( ) 2nd
     fstat( )
     fstat64( )
     fstatfs64( )
     fsync( ) 2nd 3rd
     ftatfs( )
     ftruncate( )
     ftruncate64( )
     get_thread_area( )
     getcw d( )
     getdents( )
     getdents64( )
     getpid( ) 2nd
     getpriority( ) 2nd
     getrlimit( )
     gettimeofday( )
     getxattr( ) 2nd
     init_module( )
     io_cancel( ) 2nd
     io_destroy( ) 2nd
     io_getevents( ) 2nd
     io_setup( ) 2nd
     io_submit( ) 2nd 3rd
     ioctl( ) 2nd 3rd 4th 5th 6th
     ioperm( ) 2nd 3rd
     iopl( ) 2nd
     ipc( )
     kill( ) 2nd 3rd 4th 5th 6th 7th 8th 9th
     lchow n( )
     lchow n16( )
     lgetxattr( ) 2nd
     link( )
     listxattr( )
     llistxattr( ) 2nd
     lookup_dcookie( )
     lremovexattr( ) 2nd
     lseek( ) 2nd 3rd 4th
     lsetxattr( ) 2nd
     lstat( )
     lstat64( )
     madvise( ) 2nd 3rd
     mincore( )
     mkdir( )
     mknod( ) 2nd 3rd 4th
     mlock( )
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     mlockall( ) 2nd
     mmap( ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
     mmap2( ) 2nd
     modify_ldt( )
     mount( ) 2nd 3rd 4th
     mprotect( )
     mq_getsetattr( )
     mq_notify( )
     mq_open( )
     mq_timedreceive( )
     mq_timedsend( )
     mq_unlink( )
     mremap( ) 2nd 3rd
     msgget( )
     msgrcv( )
     msgsnd( )
     msync( ) 2nd
     munmap( ) 2nd 3rd 4th
     nanosleep( ) 2nd
     nice( ) 2nd 3rd 4th 5th 6th
     oldfstat( )
     oldlstat( )
     oldstat( )
     open( ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
     personality( )
     pipe( ) 2nd
     pivot_root( ) 2nd
     poll( ) 2nd
     posix_fadvise( )
     prctl( )
     pread64( )
     ptrace( ) 2nd 3rd 4th 5th
     pw rite64( )
     quotactl( )
     read( ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
     readahead( ) 2nd
     readdir( )
     readlink( )
     readv( ) 2nd
     reexecuting
     remap_file_pages( ) 2nd 3rd
     removexattr( ) 2nd
     rename( ) 2nd 3rd 4th
     restart_syscall( )
     rmdir( )
     rt_sigaction( ) 2nd 3rd 4th
     rt_sigpending( ) 2nd
     rt_sigprocmask( ) 2nd
     rt_sigqueueinfo( ) 2nd 3rd 4th 5th 6th
     rt_sigreturn( ) 2nd
     rt_sigsuspend( ) 2nd
     rt_sigtimedw ait( ) 2nd 3rd
     sched_get_priority_max( ) 2nd
     sched_get_priority_min( ) 2nd
     sched_getaffinity( ) 2nd
     sched_getparam( ) 2nd
     sched_getscheduler( ) 2nd
     sched_rr_get_interval( ) 2nd
     sched_setaffinity( ) 2nd
     sched_setparam( ) 2nd 3rd
     sched_setscheduler( ) 2nd 3rd 4th
     sched_yield( ) 2nd 3rd 4th
     select( ) 2nd
     semget( )
     sendfile( ) 2nd
     sendfile64( )
     set_thread_area( )
     setfsgid( )
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     setfsuid( )
     setgid( )
     setitimer( )
     setpriority( ) 2nd 3rd 4th 5th
     setregid( )
     setresgid( )
     setresuid( )
     setreuid( )
     setrlimit( )
     settimeofday( )
     setuid( )
     setxattr( ) 2nd
     shmat( ) 2nd
     shmdt( ) 2nd
     shmget( )
     sigaction( ) 2nd 3rd 4th
     sigaltstack( )
     signal( ) 2nd 3rd
     sigpending( ) 2nd
     sigprocmask( ) 2nd 3rd
     sigreturn( ) 2nd 3rd 4th
     sigsuspend( ) 2nd
     socket( )
     stat( ) 2nd
     stat64( )
     statfs( )
     statfs64( )
     stime( )
     sw apoff( )
     sw apon( )
     symlink( )
     sync( ) 2nd 3rd 4th 5th
     sysctl( ) 2nd 3rd 4th 5th
     sysfs( )
     tgkill( ) 2nd 3rd 4th 5th
     time( )
     timer_create( )
     timer_delete )
     timer_getoverrun( )
     timer_gettime( )
     timer_settime( )
     tkill( ) 2nd 3rd 4th 5th
     truncate( ) 2nd
     truncate64( )
     umask( )
     umount( ) 2nd
     umount2( )
     unlink( ) 2nd
     uselib( )
     ustat( )
     utime( )
     vfork( ) 2nd 3rd
     vhangup( )
     w ait-like
     w ait4( ) 2nd 3rd 4th 5th
     w aitpid( ) 2nd 3rd
     w rite( ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
     w ritev( ) 2nd
system concurrency level
system gates
system interrupt gates
system segments
system startup
system statistics, updating by kernel
system's root filesystem
system_call
     arch/i386/kernel/entry.S
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Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z] 

T_FINISHED
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