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HELLO, WORLD OF
ASSEMBLY LANGUAGE

‘ This chapter is a “quick-start” chapter
that lets you start writing basic assembly
language programs as rapidly as possible.
ThlS chapter does the following:

e Presents the basic syntax of an HLA (High Level Assembly) program
e Introduces you to the Intel CPU architecture

e Provides a handful of data declarations, machine instructions, and high-
level control statements
e Describes some utility routines you can call in the HLA Standard Library

e  Shows you how to write some simple assembly language programs

By the conclusion of this chapter, you should understand the basic
syntax of an HLA program and should understand the prerequisites that are
needed to start learning new assembly language features in the chapters that
follow.



1.1 The Anatomy of an HLA Program

Chapter 1

A typical HLA program takes the form shown in Figure 1-1.

program pgmID ; The Declarations section is
where you declare constants,
These identifiers << Declarations >> types, vqriob!es, p.rocedures,
specify the name : and other objects in an HLA
begin pgmID ; program.

of the program.
They must all be

the same identifier. << Statements >> ™ The Statements section is

where you place the
end pgmID ; executable statements
for your main program.

program, begin, and end are HLA reserved words that delineate
the program. Note the placement of the semicolons in this program.

Figure 1-1: Basic HLA program

pgmID in the template above is a user-defined program identifier. You
must pick an appropriate descriptive name for your program. In particular,
pgmID would be a horrible choice for any real program. If you are writing
programs as part of a course assignment, your instructor will probably give
you the name to use for your main program. If you are writing your own HLA
program, you will have to choose an appropriate name for your project.

Identifiers in HLA are very similar to identifiers in most high-level
languages. HLA identifiers may begin with an underscore or an alphabetic
character and may be followed by zero or more alphanumeric or underscore
characters. HLA’s identifiers are case neutral. This means that the identifiers
are case sensitive insofar as you must always spell an identifier exactly the same
way in your program (even with respect to upper- and lowercase). However,
unlike in case-sensitive languages such as C/C++, you may not declare two
identifiers in the program whose name differs only by alphabetic case.

A traditional first program people write, popularized by Kernighan and
Ritchie’s The C Programming Language, is the “Hello, world!” program. This
program makes an excellent concrete example for someone who is learning
a new language. Listing 1-1 presents the HLA AelloWorld program.

program helloWorld;
#include( "stdlib.hhf" );

begin helloWorld;
stdout.put( "Hello, World of Assembly Language", nl );

end helloWorld;

Listing 1-1: The helloWorld program



The #include statement in this program tells the HLA compiler to
include a set of declarations from the stdlib.hhf (standard library, HLA
Header File). Among other things, this file contains the declaration of the
stdout.put code that this program uses.

The stdout.put statement is the print statement for the HLA language.
You use it to write data to the standard output device (generally the console).
To anyone familiar with I/O statements in a high-level language, it should
be obvious that this statement prints the phrase Hello, World of Assembly
Language. The nl appearing at the end of this statement is a constant, also
defined in stdlib.hhf, that corresponds to the newline sequence.

Note that semicolons follow the program, begin, stdout.put, and end
statements. Technically speaking, a semicolon does not follow the #include
statement. It is possible to create include files that generate an error if a
semicolon follows the #include statement, so you may want to get in the
habit of not putting a semicolon here.

The #include is your first introduction to HLA declarations. The #include
itself isn’t actually a declaration, but it does tell the HLA compiler to
substitute the file stdlib.hhfin place of the #include directive, thus inserting
several declarations at this point in your program. Most HLA programs you
will write will need to include one or more of the HLA Standard Library
header files (stdlib.hhfactually includes all the standard library definitions
into your program).

Compiling this program produces a console application. Running this
program in a command window prints the specified string, and then control
returns to the command-line interpreter (or shell in Unix terminology).

HLA is a free-format language. Therefore, you may split statements
across multiple lines if this helps to make your programs more readable. For
example, you could write the stdout.put statement in the helloWorld program
as follows:

stdout.put

(
"Hello, World of Assembly Language",
nl

);

Another construction you’ll see appearing in example code throughout
this text is that HLA automatically concatenates any adjacent string constants
it finds in your source file. Therefore, the statement above is also equivalent to

stdout.put

(
"Hello, "
"World of Assembly Language",
nl

)s

Hello, World of Assembly Language 3



Indeed, nl (the newline) is really nothing more than a string constant,
so (technically) the comma between the nl and the preceding string isn’t
necessary. You'll often see the above written as

stdout.put( "Hello, World of Assembly Language" nl );

Notice the lack of a comma between the string constant and nl; this turns
out to be legal in HLA, though it applies only to certain constants; you may
not, in general, drop the comma. Chapter 4 explains in detail how this
works. This discussion appears here because you’ll probably see this “trick”
employed by sample code prior to the formal explanation.

1.2 Running Your First HLA Program

Chapter 1

The whole purpose of the “Hello, world!” program is to provide a simple
example by which someone who is learning a new programming language
can figure out how to use the tools needed to compile and run programs in
that language. True, the AelloWorld program in Section 1.1 helps demonstrate
the format and syntax of a simple HLA program, but the real purpose behind
a program like ZelloWorld is to learn how to create and run a program from
beginning to end. Although the previous section presents the layout of an
HLA program, it did not discuss how to edit, compile, and run that program.
This section will briefly cover those details.

All of the software you need to compile and run HLA programs can be
found at http://www.artofasm.com/ or at http://webster.cs.ucr.edu/. Select High
Level Assembly from the Quick Navigation Panel and then the Download
HLA link from that page. HLA is currently available for Windows, Mac OS X,
Linux, and FreeBSD. Download the appropriate version of the HLA software
for your system. From the Download HLA web page, you will also be able
to download all the software associated with this book. If the HLA down-
load doesn’t include them, you will probably want to download the HLA
reference manual and the HLA Standard Library reference manual along
with HLA and the software for this book. This text does not describe the
entire HLA language, nor does it describe the entire HLA Standard Library.
You’ll want to have these reference manuals handy as you learn assembly
language using HLA.

This section will not describe how to install and set up the HLA system
because those instructions change over time. The HLA download page for
each of the operating systems describes how to install and use HLA. Please
consult those instructions for the exact installation procedure.

Creating, compiling, and running an HLA program is very similar to the
process you’d use when creating, compiling, or running a program in any
computer language. First, because HLA is not an integrated development
environment (IDE) that allows you to edit, compile, test and debug, and run
your application all from within the same program, you’ll create and edit
HLA programs using a text editor.!

'HIDE (HLA Integrated Development Environment) is an IDE available for Windows users.
See the High Level Assembly web page for details on downloading HIDE.


http://www.artofasm.com/
http://webster.cs.ucr.edu/

Windows, Mac OS X, Linux, and FreeBSD offer many text editor options.
You can even use the text editor provided with other IDEs to create and edit
HLA programs (such as those found in Visual C++, Borland’s Delphi, Apple’s
Xcode, and similar languages). The only restriction is that HLA expects
ASCII text files, so the editor you use must be capable of manipulating and
saving text files. Under Windows you can always use Notepad to create HLA
programs. If you’re working under Linux and FreeBSD you can use joe, vi, or
emacs. Under Mac OS X you can use XCode or Text Wrangler or another
editor of your preference.

The HLA compiler? is a traditional command-line compiler, which means
that you need to run it from a Windows command-line prompt or a Linux/
FreeBSD/Mac OS X shell. To do so, enter something like the following into
the command-line prompt or shell window:

hla hw.hla

This command tells HLA to compile the hw.hla (helloWorld) program to
an executable file. Assuming there are no errors, you can run the resulting
program by typing the following command into your command prompt
window (Windows):

hw

or into the shell interpreter window (Linux/FreeBSD/Mac OS X):

./hw

If you’re having problems getting the program to compile and run
properly, please see the HLA installation instructions on the HLA down-
load page. These instructions describe in great detail how to install, set up,
and use HLA.

1.3 Some Basic HLA Data Declarations

HILA provides a wide variety of constant, type, and data declaration state-
ments. Later chapters will cover the declaration sections in more detail,
but it’s important to know how to declare a few simple variables in an HLA
program.

HILA predefines several different signed integer types including int8,
intl6, and int32, corresponding to 8-bit (1-byte) signed integers, 16-bit
(2-byte) signed integers, and 32-bit (4-byte) signed integers, respectively.®
Typical variable declarations occur in the HLA static variable section. A
typical set of variable declarations takes the form shown in Figure 1-2.

2 Traditionally, programmers have always called translators for assembly languages assemblers
rather than compilers. However, because of HLA’s high-level features, it is more proper to call
HLA a compiler rather than an assembler.

% A discussion of bits and bytes will appear in Chapter 2 for those who are unfamiliar with these
terms.

Hello, World of Assembly Language 3
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i8, 116, and 132 static ——————— static is the keyword that begins

are the names of i8: int§; \ the variable declaration section.
the variables fo %16: }nt16; int8, int16, and int32 are the names
declare here. i32: int32;

of the data types for each declaration.

Figure 1-2: Static variable declarations

Those who are familiar with the Pascal language should be comfortable
with this declaration syntax. This example demonstrates how to declare
three separate integers: i8, 116, and i32. Of course, in a real program you
should use variable names that are more descriptive. While names like 8
and :32 describe the type of the object, they do not describe its purpose.
Variable names should describe the purpose of the object.

In the static declaration section, you can also give a variable an initial
value that the operating system will assign to the variable when it loads the
program into memory. Figure 1-3 provides the syntax for this.

The operand after the
constant assignment

The constant assignment b
operator, :=, tells HLA \ operator must be a
that you wish to initialize static constant whose type

the specified variable i8: int8 == §; is compatible with the
with an initial value i16: int16 := 1600; variable you are
' i32: int32 := -320000; initializing.

Figure 1-3: Static variable initialization

It is important to realize that the expression following the assignment
operator (:=) must be a constant expression. You cannot assign the values of
other variables within a static variable declaration.

Those familiar with other high-level languages (especially Pascal) should
note that you can declare only one variable per statement. That is, HLA does
not allow a comma-delimited list of variable names followed by a colon and a
type identifier. Each variable declaration consists of a single identifier, a
colon, a type ID, and a semicolon.

Listing 1-2 provides a simple HLA program that demonstrates the use of
variables within an HLA program.

Program DemoVars;
#include( "stdlib.hhf" )

static
InitDemo: int32 := 5;
NotInitialized: int32;
begin DemoVars;
// Display the value of the pre-initialized variable:

stdout.put( "InitDemo's value is ", InitDemo, nl );

// Input an integer value from the user and display that value:



stdout.put( "Enter an integer value: " );
stdin.get( NotInitialized );
stdout.put( "You entered: ", NotInitialized, nl );

end DemoVars;

Listing 1-2: Variable declaration and use

In addition to static variable declarations, this example introduces three
new concepts. First, the stdout.put statement allows multiple parameters. If
you specify an integer value, stdout.put will convert that value to its string
representation on output.

The second new feature introduced in Listing 1-2 is the stdin.get
statement. This statement reads a value from the standard input device
(usually the keyboard), converts the value to an integer, and stores the
integer value into the NotInitialized variable. Finally, Listing 1-2 also
introduces the syntax for (one form of) HLA comments. The HLA compiler
ignores all text from the // sequence to the end of the current line. (Those
familiar with Java, C++, and Delphi should recognize these comments.)

1.4 Boolean Values

HLA and the HLA Standard Library provide limited support for boolean
objects. You can declare boolean variables, use boolean literal constants,
use boolean variables in boolean expressions, and you can print the values
of boolean variables.

Boolean literal constants consist of the two predefined identifiers true
and false. Internally, HLA represents the value true using the numeric value 1;
HLA represents false using the value 0. Most programs treat 0 as false and
anything else as true, so HLA’s representations for true and false should
prove sufficient.

To declare a boolean variable, you use the boolean data type. HLA uses
a single byte (the least amount of memory it can allocate) to represent
boolean values. The following example demonstrates some typical

declarations:

static
BoolVar: boolean;
HasClass: boolean := false;
IsClear: boolean := true;

As this example demonstrates, you can initialize boolean variables if you
desire.

Because boolean variables are byte objects, you can manipulate them
using any instructions that operate directly on 8-bit values. Furthermore, as
long as you ensure that your boolean variables only contain 0 and 1 (for
false and true, respectively), you can use the 80x86 and, or, xor, and not
instructions to manipulate these boolean values (these instructions are
covered in Chapter 2).

Hello, World of Assembly Language T
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You can print boolean values by making a call to the stdout.put routine.
For example:

stdout.put( BoolvVar )

This routine prints the text true or false depending upon the value of
the boolean parameter (0 is false; anything else is true). Note that the HLA
Standard Library does not allow you to read boolean values via stdin.get.

1.5 Character Values

1.6 An

Chapter 1

HILA lets you declare 1-byte ASCII character objects using the char data type.
You may initialize character variables with a literal character value by
surrounding the character with a pair of apostrophes. The following example
demonstrates how to declare and initialize character variables in HLA:

static
c: char;
LetterA: char := 'A’;

You can print character variables use the stdout.put routine, and you can
read character variables using the stdin.get procedure call.

Introduction to the Intel 80x86 CPU Family

Thus far, you’ve seen a couple of HLA programs that will actually compile
and run. However, all the statements appearing in programs to this point
have been either data declarations or calls to HLA Standard Library routines.
There hasn’t been any real assembly language. Before we can progress any
further and learn some real assembly language, a detour is necessary; unless
you understand the basic structure of the Intel 80x86 CPU family, the
machine instructions will make little sense.

The Intel CPU family is generally classified as a Von Neumann Architecture
Machine. Von Neumann computer systems contain three main building blocks:
the central processing unit (CPU), memory, and input/output (1/0) devices. These
three components are interconnected using the system bus (consisting of the
address, data, and control buses). The block diagram in Figure 1-4 shows this
relationship.

The CPU communicates with memory and I/O devices by placing a
numeric value on the address bus to select one of the memory locations or
I/0O device port locations, each of which has a unique binary numeric address.
Then the CPU, memory, and I1/O devices pass data among themselves by
placing the data on the data bus. The control bus contains signals that
determine the direction of the data transfer (to/from memory and to/from
an I/O device).



Memory

CPU

|/O Devices

Figure 1-4: Von Neumann computer system block
diagram

The 80x86 CPU registers can be broken down into four categories:
general-purpose registers, special-purpose application-accessible registers,
segment registers, and special-purpose kernel-mode registers. Because
the segment registers aren’t used much in modern 32-bit operating systems
(such as Windows, Mac OS X, FreeBSD, and Linux) and because this text is
geared to writing programs written for 32-bit operating systems, there is little
need to discuss the segment registers. The special-purpose kernel-mode regis-
ters are intended for writing operating systems, debuggers, and other system-
level tools. Such software construction is well beyond the scope of this text.

The 80x86 (Intel family) CPUs provide several general-purpose registers
for application use. These include eight 32-bit registers that have the
following names: EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The E prefix on each name stands for extended. This prefix differ-
entiates the 32-bit registers from the eight 16-bit registers that have the
following names: AX, BX, CX, DX, SI, DI, BP, and SP.

Finally, the 80x86 CPUs provide eight 8-bit registers that have the
following names: AL, AH, BL, BH, CL, CH, DL, and DH.

Unfortunately, these are not all separate registers. That is, the 80x86
does not provide 24 independent registers. Instead, the 80x86 overlays the
32-bit registers with the 16-bit registers, and it overlays the 16-bit registers
with the 8-bit registers. Figure 1-5 shows this relationship.

The most important thing to note about the general-purpose registers is
that they are not independent. Modifying one register may modify as many as
three other registers. For example, modification of the EAX register may very
well modify the AL, AH, and AX registers. This fact cannot be overemphasized
here. A very common mistake in programs written by beginning assembly
language programmers is register value corruption because the programmer
did not completely understand the ramifications of the relationship shown in
Figure 1-5.

Hello, World of Assembly Language 9
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EAX o ESI
| I l
EBX o EDI
I | I l
ECX = EBP
] | I I
EDX ESP
DX
I | I l

Figure 1-5: 80x86 (Intel CPU) general-purpose registers

The EFLAGS register is a 32-bit register that encapsulates several single-
bit boolean (true/false) values. Most of the bits in the EFLAGS register are
either reserved for kernel mode (operating system) functions or are of little
interest to the application programmer. Eight of these bits (or flags) are
of interest to application programmers writing assembly language programs.
These are the overflow, direction, interrupt disable,* sign, zero, auxiliary
carry, parity, and carry flags. Figure 1-6 shows the layout of the flags within
the lower 16 bits of the EFLAGS register.

15 0

LI T PP T PPl P IT T[]

OverIIowJ

Direction

Interrupt Disable Not very

Sign interesting to

Zero application
programmers

Auxiliary Carry

Parity

Carry

Figure 1-6: Layout of the FLAGS register (lower 16 bits of EFLAGS)

Of the eight flags that are of interest to application programmers, four
flags in particular are extremely valuable: the overflow, carry, sign, and zero
flags. Collectively, we will call these four flags the condition codes.” The state of
these flags lets you test the result of previous computations. For example,
after comparing two values, the condition code flags will tell you whether
one value is less than, equal to, or greater than a second value.

* Application programs cannot modify the interrupt flag, but we’ll look at this flag in Chapter 2;
hence the discussion of this flag here.

® Technically the parity flag is also a condition code, but we will not use that flag in this text.



One important fact that comes as a surprise to those just learning assembly
language is that almost all calculations on the 80x86 CPU involve a register.
For example, to add two variables together, storing the sum into a third
variable, you must load one of the variables into a register, add the second
operand to the value in the register, and then store the register away in the
destination variable. Registers are a middleman in nearly every calculation.
Therefore, registers are very important in 80x86 assembly language programs.

Another thing you should be aware of is that although the registers have
the name “general purpose,” you should not infer that you can use any register
for any purpose. All the 80x86 registers have their own special purposes that
limit their use in certain contexts. The SP/ESP register pair, for example,
has a very special purpose that effectively prevents you from using it for
anything else (it’s the stack pointer). Likewise, the BP/EBP register has a
special purpose that limits its usefulness as a general-purpose register. For
the time being, you should avoid the use of the ESP and EBP registers for
generic calculations; also, keep in mind that the remaining registers are not
completely interchangeable in your programs.

1.7 The Memory Subsystem

A typical 80x86 processor running a modern 32-bit OS can access a maximum
of 2* different memory locations, or just over 4 billion bytes. A few years ago,
4 gigabytes of memory would have seemed like infinity; modern machines,
however, exceed this limit. Nevertheless, because the 80x86 architecture
supports a maximum 4GB address space when using a 32-bit operating
system like Windows, Mac OS X, FreeBSD, or Linux, the following discussion
will assume the 4GB limit.

Of course, the first question you should ask is, “What exactly is a memory
location?” The 80x86 supports byte-addressable memory. Therefore, the basic
memory unit is a byte, which is sufficient to hold a single character or a
(very) small integer value (we’ll talk more about that in Chapter 2).

Think of memory as a linear array of bytes. The address of the first byte
is 0 and the address of the last byte is 2°*~1. For an 80x86 processor, the
following pseudo-Pascal array declaration is a good approximation of
memory:

Memory: array [0..4294967295] of byte;

C/C++ and Java users might prefer the following syntax:

byte Memory[4294967296];

To execute the equivalent of the Pascal statement Memory [125] := 0;
the CPU places the value 0 on the data bus, places the address 125 on the
address bus, and asserts the write line (this generally involves setting that line
to 0), as shown in Figure 1-7.

Hello, World of Assembly Language 11



Address = 125 Memory

Data = 0 Location
CPU 125

Write = O /

-

Figure 1-7: Memory write operation

To execute the equivalent of CPU := Memory [125]; the CPU places the
address 125 on the address bus, asserts the read line (because the CPU is
reading data from memory), and then reads the resulting data from the data
bus (see Figure 1-8).

Address = 125 Memory
Data = Memory[125] Location
CPU 125
g
Read =0 /

=

Figure 1-8: Memory read operation

This discussion applies only when accessing a single byte in memory. So
what happens when the processor accesses a word or a double word? Because
memory consists of an array of bytes, how can we possibly deal with values
larger than a single byte? Easy—to store larger values, the 80x86 uses a
sequence of consecutive memory locations. Figure 1-9 shows how the 80x86
stores bytes, words (2 bytes), and double words (4 bytes) in memory. The
memory address of each of these objects is the address of the first byte of
each object (that is, the lowest address).

Modern 80x86 processors don’t actually connect directly to memory.
Instead, there is a special memory buffer on the CPU known as the cache
(pronounced “cash”) that acts as a high-speed intermediary between the
CPU and main memory. Although the cache handles the details auto-
matically for you, one fact you should know is that accessing data objects in
memory is sometimes more efficient if the address of the object is an even
multiple of the object’s size. Therefore, it’s a good idea to align 4-byte objects
(double words) on addresses that are multiples of 4. Likewise, it’s most
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efficient to align 2-byte objects on even addresses. You can efficiently access
single-byte objects at any address. You’ll see how to set the alignment of
memory objects in Section 3.4.

195 —
194
193

Double Word at

Address 192 192
191

Address

190
189

Word at

Address 188 188
187

Byte at

Address 186 186 —

Figure 1-9: Byte, word, and double-word storage in memory

Before leaving this discussion of memory objects, it’s important to
understand the correspondence between memory and HLA variables. One
of the nice things about using an assembler/compiler like HLA is that you
don’t have to worry about numeric memory addresses. All you need to do is
declare a variable in HLA, and HLA takes care of associating that variable
with some unique set of memory addresses. For example, if you have the
following declaration section:

static
i8 :int8;
i16 :int16;
i32 1int32;

HLA will find some unused 8-bit byte in memory and associate it with the i8
variable; it will find a pair of consecutive unused bytes and associate 116 with
them; finally, HLA will find 4 consecutive unused bytes and associate the
value of 132 with those 4 bytes (32 bits). You’ll always refer to these variables
by their name. You generally don’t have to concern yourself with their
numeric address. Still, you should be aware that HLA is doing this for you
behind your back.

Hello, World of Assembly Language 13



1.8 Some Basic Machine Instructions

The 80x86 CPU family provides from just over a hundred to many thousands
of different machine instructions, depending on how you define a machine
instruction. Even at the low end of the count (greater than 100), it appears as
though there are far too many machine instructions to learn in a short time.
Fortunately, you don’t need to know all the machine instructions. In fact,
most assembly language programs probably use around 30 different machine
instructions.® Indeed, you can certainly write several meaningful programs
with only a few machine instructions. The purpose of this section is to pro-
vide a small handful of machine instructions so you can start writing simple
HLA assembly language programs right away.

Without question, the mov instruction is the most oft-used assembly
language statement. In a typical program, anywhere from 25 percent to
40 percent of the instructions are mov instructions. As its name suggests, this
instruction moves data from one location to another.” The HLA syntax for
this instruction is:

mov( source operand, destination operand );

The source_operand can be a register, a memory variable, or a constant.
The destination_operand may be a register or a memory variable. Technically
the 80x86 instruction set does not allow both operands to be memory
variables. HLA, however, will automatically translate a mov instruction with
two-word or double-word memory operands into a pair of instructions that
will copy the data from one location to another. In a high-level language
like Pascal or C/C++, the mov instruction is roughly equivalent to the
following assignment statement:

destination_operand = source_operand ;

Perhaps the major restriction on the mov instruction’s operands is that
they must both be the same size. That is, you can move data between a pair of
byte (8-bit) objects, word (16-bit) objects, or double-word (32-bit) objects;
you may not, however, mix the sizes of the operands. Table 1-1 lists all the
legal combinations for the mov instruction.

You should study this table carefully because most of the general-purpose
80x86 instructions use this syntax.

% Different programs may use a different set of 30 instructions, but few programs use more than
30 distinct instructions.

" Technically, mov actually copies data from one location to another. It does not destroy the
original data in the source operand. Perhaps a better name for this instruction would have been
copy. Alas, it’s too late to change it now.
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Table 1-1: Legal 80x86 mov Instruction Operands

Source Destination
Regg” Regs
Regg Memg
Memg Regs
Constant’ Regg
Constant Memg
Regie Regis
Regie Mem
Mem 4 Regis
Constant Regiq
Constant Mem; ¢
Regs, Regs,
Regs, Mems,
Mem;; Regs»
Constant Regs,
Constant Memjs,

" The suffix denotes the size of the register or memory location.

T The constant must be small enough to fit in the specified destination operand.

The 80x86 add and sub instructions let you add and subtract two
operands. Their syntax is nearly identical to the mov instruction:

add( source_operand, destination operand );
sub( source operand, destination operand );

The add and sub operands take the same form as the mov instruction.® The
add instruction does the following:

destination operand = destination_operand + source_operand ;
destination operand += source_operand; // For those who prefer C syntax.

The sub instruction does the calculation:

destination operand = destination_operand - source_operand ;
destination operand -= source operand ; // For C fans.

With nothing more than these three instructions, plus the HLA control
structures that the next section discusses, you can actually write some
sophisticated programs. Listing 1-3 provides a sample HLA program that
demonstrates these three instructions.

8 Remember, though, that add and sub do not support memory-to-memory operations.

Hello, World of Assembly Language 15



16

Chapter 1

program DemoMOVaddSUB;

#includ

static
i8:

i16:
i32:

begin D

//
//

std
(

);

//
//
//
//
//
//
//
//

mov
sub
mov

mov
sub
mov

mov
sub
mov

//

std
(

e( "stdlib.hhf" )

int8 = -8;

int16 := -16;

int32 = -32;
emoMOVaddSUB;
First, print the initial values

of our variables.
out.put

nl,

"Initialized values: i8
", i16=", i16,

, i32=", i32,

nl

) 18,

Compute the absolute value of the
three different variables and

print the result.

Note: Because all the numbers are
negative, we have to negate them.
Using only the mov, add, and sub
instructions, we can negate a value
by subtracting it from zero.

(o0,al); // Compute i8 := -i8;
(18, al );
(al, i8 );

(0, ax); // Compute i16 := -i16;
( i16, ax );
(ax, i16 );

(0, eax ); // Compute i32 :
( 132, eax );
( eax, i32 );

-i32;

Display the absolute values:
out.put

nl,

"After negation: i8=", 1i8,
", i16=", ii6,

, i32=", i32,

nl



);

// Demonstrate add and constant-to-memory
// operations:

add( 32323200, i32 );
stdout.put( nl, "After add: i32=", i32, nl );

end DemoMOVaddSUB;

Listing 1-3: Demonstration of the mov, add, and sub instructions

1.9 Some Basic HLA Control Structures

The mov, add, and sub instructions, while valuable, aren’t sufficient to let you
write meaningful programs. You will need to complement these instructions
with the ability to make decisions and create loops in your HLA programs
before you can write anything other than a simple program. HLA provides
several high-level control structures that are very similar to control structures
found in high-level languages. These include if..then..elseif..else..endif,
while..endwhile, repeat..until, and so on. By learning these statements you
will be armed and ready to write some real programs.

Before discussing these high-level control structures, it’s important to
point out that these are not real 80x86 assembly language statements. HLA
compiles these statements into a sequence of one or more real assembly lan-
guage statements for you. In Chapter 7, you’ll learn how HLA compiles the
statements, and you’ll learn how to write pure assembly language code that
doesn’t use them. However, there is a lot to learn before you get to that
point, so we’ll stick with these high-level language statements for now.

Another important fact to mention is that HLA’s high-level control
structures are not as high level as they first appear. The purpose behind
HLA’s high-level control structures is to let you start writing assembly
language programs as quickly as possible, not to let you avoid the use of
assembly language altogether. You will soon discover that these statements
have some severe restrictions associated with them, and you will quickly
outgrow their capabilities. This is intentional. Once you reach a certain
level of comfort with HLA’s high-level control structures and decide you
need more power than they have to offer, it’s time to move on and learn
the real 80x86 instructions behind these statements.

Do not let the presence of high-level-like statements in HLA confuse
you. Many people, after learning about the presence of these statements in
the HLA language, erroneously come to the conclusion that HLA is just
some special high-level language and not a true assembly language. This
isn’t true. HLA is a full low-level assembly language. HLA supports all the
same machine instructions as any other 80x86 assembler. The difference is
that HLA has some extra statements that allow you to do more than is poss-
ible with those other 80x86 assemblers. Once you learn 80x86 assembly
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language with HLA, you may elect to ignore all these extra (high-level)
statements and write only low-level 80x86 assembly language code if this is
your desire.

The following sections assume that you’re familiar with at least one
high-level language. They present the HLA control statements from that
perspective without bothering to explain how you actually use these state-
ments to accomplish something in a program. One prerequisite this text
assumes is that you already know how to use these generic control statements
in a high-level language; you’ll use them in HLA programs in an identical
manner.

1.9.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to
control their execution. Examples include the if, while, and repeat..until
statements. The syntax for these boolean expressions represents the greatest
limitation of the HLA high-level control structures. This is one area where
your familiarity with a high-level language will work against you—you’ll want
to use the fancy expressions you use in a high-level language, yet HLA
supports only some basic forms.

HLA boolean expressions take the following forms:’

flag_specification
Iflag_specification

register

lregister

Boolean variable
!Boolean_variable

mem_reg relop mem_reg const
register in LowConst..HiConst
register not in LowConst..HiConst

A flag_specification may be one of the symbols that are described in
Table 1-2.

Table 1-2: Symbols for flag_specification

Symbol Meaning Explanation

@c Carry True if the carry is set (1); false if the carry is clear (0).
@nc No carry True if the carry is clear (0); false if the carry is set (1).
@z Zero True if the zero flag is set; false if it is clear.

@nz Not zero True if the zero flag is clear; false if it is set.

@0 Overflow True if the overflow flag is set; false if it is clear.

@no No overflow True if the overflow flag is clear; false if it is set.

@s Sign True if the sign flag is set; false if it is clear.

@ns No sign True if the sign flag is clear; false if it is set.

9 There are a few additional forms that we’ll cover in Chapter 6.



The use of the flag values in a boolean expression is somewhat advanced.
You will begin to see how to use these boolean expression operands in the
next chapter.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general-
purpose registers. The expression evaluates false if the register contains a
zero; it evaluates true if the register contains a nonzero value.

If you specify a boolean variable as the expression, the program tests it
for zero (false) or nonzero (true). Because HLA uses the values zero and one
to represent false and true, respectively, the test works in an intuitive fashion.
Note that HLA requires such variables be of type boolean. HLA rejects other
data types. If you want to test some other type against zero/not zero, then use
the general boolean expression discussed next.

The most general form of an HLA boolean expression has two operands
and a relational operator. Table 1-3 lists the legal combinations.

Table 1-3: Legal Boolean Expressions

Left Operand Relational Operator Right Operand
Memory variable or =or == Variable, register, or
regisrer <>orl= constant

Note that both operands cannot be memory operands. In fact, if you
think of the right operand as the source operand and the left operand as the
destination operand, then the two operands must be the same that add and
sub allow.

Also like the add and sub instructions, the two operands must be the
same size. That is, they must both be byte operands, they must both be word
operands, or they must both be double-word operands. If the right operand
is a constant, its value must be in the range that is compatible with the left
operand.

There is one other issue: if the left operand is a register and the right
operand is a positive constant or another register, HLA uses an unsigned
comparison. The next chapter will discuss the ramifications of this; for the
time being, do not compare negative values in a register against a constant
or another register. You may not get an intuitive result.

The in and not in operators let you test a register to see if it is within a
specified range. For example, the expression eax in 2000..2099 evaluates true
if the value in the EAX register is between 2,000 and 2,099 (inclusive). The
not in (two words) operator checks to see if the value in a register is outside
the specified range. For example, al not in 'a'..'z"' evaluates true if the
character in the AL register is not a lowercase alphabetic character.
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Here are some examples of legal boolean expressions in HLA:

@c

Bool var
al

esi

eax < ebx
ebx > 5
i32 < -2
i8 > 128
al < i8

eax in 1..100

ch not in 'a'..'z

1.9.2 The HLA if..then..elseif..else..endif Statement

The HLA if statement uses the syntax shown in Figure 1-10.

if( expression ) then

<< sequence of
one or more
statements >>

elseif( expression ) theV The elseif clause is optional. Zero or more

elseif clauses may appear in an if statement.
<< sequence of If more than one elseif clause appears, all the
one or more elseif clauses must appear before the else clause
statements >> (or before the endif if there is no else clause).

else

<< sequence of
one or more

statements >> The else clause is optional. At most one
else clause may appear within an if statement

endif; and it must be the last clause before the endif.

Figure 1-10: HLA if statement syntax

The expressions appearing in an if statement must take one of the forms
from the previous section. If the boolean expression is true, the code after
the then executes; otherwise control transfers to the next elseif or else clause
in the statement.

Because the elseif and else clauses are optional, an if statement could
take the form of a single if..then clause, followed by a sequence of state-
ments and a closing endif clause. The following is such a statement:

if( eax = 0 ) then
stdout.put( "error: NULL value", nl );

endif;




If, during program execution, the expression evaluates true, then the
code between the then and the endif executes. If the expression evaluates
false, then the program skips over the code between the then and the endif.

Another common form of the if statement has a single else clause. The
following is an example of an if statement with an optional else clause:

if( eax = 0 ) then

stdout.put( "error: NULL pointer encountered", nl );
else

stdout.put( "Pointer is valid", nl );

endif;

If the expression evaluates true, the code between the then and the else
executes; otherwise the code between the else and the endif clauses executes.

You can create sophisticated decision-making logic by incorporating the
elseif clause into an if statement. For example, if the CH register contains a
character value, you can select from a menu of items using code like the
following:

if( ch = 'a' ) then

stdout.put( "You selected the 'a' menu item", nl );
elseif( ch = 'b"' ) then

stdout.put( "You selected the 'b' menu item", nl );
elseif( ch = 'c' ) then

stdout.put( "You selected the 'c' menu item", nl );
else

stdout.put( "Error: illegal menu item selection”, nl );

endif;

Although this simple example doesn’t demonstrate it, HLA does not
require an else clause at the end of a sequence of elseif clauses. However,
when making multiway decisions, it’s always a good idea to provide an else
clause just in case an error arises. Even if you think it’s impossible for the
else clause to execute, just keep in mind that future modifications to the
code could void this assertion, so it’s a good idea to have error-reporting
statements in your code.
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1.9.3  Conjunction, Disjunction, and Negation in Boolean Expressions

Some obvious omissions in the list of operators in the previous sections are
the conjunction (logical and), disjunction (logical or), and negation (logical
not) operators. This section describes their use in boolean expressions (the
discussion had to wait until after describing the if statement in order to
present realistic examples).

HLA uses the 83 operator to denote logical and in a runtime boolean
expression. This is a dyadic (two-operand) operator, and the two operands
must be legal runtime boolean expressions. This operator evaluates to true if
both operands evaluate to true. For example:

if( eax > 0 & ch = 'a' ) then

mov( eax, ebx );
mov( ' ', ch);

endif;

The two mov statements above execute only if EAX is greater than zero
and CH is equal to the character a. If either of these conditions is false, then
program execution skips over these mov instructions.

Note that the expressions on either side of the & operator may be any
legal boolean expressions; these expressions don’t have to be comparisons
using the relational operators. For example, the following are all legal
expressions:

@z && al in 5..10
al in 'a'..'z"' && ebx
boolVar && !eax

HLA uses short-circuit evaluation when compiling the 8& operator. If the
leftmost operand evaluates false, then the code that HLA generates does not
bother evaluating the second operand (because the whole expression must
be false at that point). Therefore, in the last expression above, the code will
not check EAX against zero if boolvVar evaluates false.

Note that an expression like eax < 10 &3 ebx <> eax is itself a legal boolean
expression and, therefore, may appear as the left or right operand of the 88
operator. Therefore, expressions like the following are perfectly legal:

eax < 0 && ebx <> eax &8 lecx

The 8& operator is left associative, so the code that HLA generates
evaluates the expression above in a left-to-right fashion. If EAX is less than
zero, the CPU will not test either of the remaining expressions. Likewise, if
EAX is not less than zero but EBX is equal to EAX, this code will not evaluate
the third expression because the whole expression is false regardless of ECX’s
value.



HILA uses the || operator to denote disjunction (logical or) in a runtime
boolean expression. Like the && operator, this operator expects two legal
runtime boolean expressions as operands. This operator evaluates true if
either (or both) operands evaluate true. Like the &8 operator, the disjunction
operator uses short-circuit evaluation. If the left operand evaluates true, then
the code that HLA generates doesn’t bother to test the value of the second
operand. Instead, the code will transfer to the location that handles the
situation when the boolean expression evaluates true. Here are some examples
of legal expressions using the || operator:

@z || al = 10
al in 'a'.."'z"' || ebx
IboolVar || eax

Like the 8& operator, the disjunction operator is left associative, so mul-
tiple instances of the || operator may appear within the same expression.
Should this be the case, the code that HLA generates will evaluate the
expressions from left to right. For example:

eax < 0 || ebx <> eax [| lecx

The code above evaluates to true if EAX is less than zero, EBX does not
equal EAX, or ECX is zero. Note that if the first comparison is true, the code
doesn’t bother testing the other conditions. Likewise, if the first comparison
is false and the second is true, the code doesn’t bother checking to see if
ECX is zero. The check for ECX equal to zero occurs only if the first two
comparisons are false.

If both the conjunction and disjunction operators appear in the same
expression, then the 8% operator takes precedence over the || operator.
Consider the following expression:

eax < 0 || ebx <> eax & lecx

The machine code HLA generates evaluates this as

eax < 0 || (ebx <> eax && lecx)

If EAX is less than zero, then the code HLA generates does not bother to
check the remainder of the expression, and the entire expression evaluates
true. However, if EAX is not less than zero, then both of the following con-
ditions must evaluate true in order for the overall expression to evaluate true.

HLA allows you to use parentheses to surround subexpressions involving
8& and || if you need to adjust the precedence of the operators. Consider the
following expression:

(eax < 0 || ebx <> eax) && lecx
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For this expression to evaluate true, ECX must contain zero and either
EAX must be less than zero or EBX must not equal EAX. Contrast this to the
result the expression produces without the parentheses.

HLA uses the ! operator to denote logical negation. However, the !
operator may only prefix a register or boolean variable; you may not use it
as part of a larger expression (e.g., leax < 0). To achieve logical negative of
an existing boolean expression, you must surround that expression with
parentheses and prefix the parentheses with the ! operator. For example:

I(eax < 0)

This expression evaluates true if EAX is not less than zero.

The logical not operator is primarily useful for surrounding complex
expressions involving the conjunction and disjunction operators. While it is
occasionally useful for short expressions like the one above, it’s usually easier
(and more readable) to simply state the logic directly rather than convolute
it with the logical not operator.

Note that HLA also provides the | and & operators, but they are distinct
from || and &% and have completely different meanings. See the HLA
reference manual for more details on these (compile-time) operators.

1.9.4 The while..endwhile Statement

The while statement uses the basic syntax shown in Figure 1-11.

while( expression ) do

<< sequence of L .
one or more The expression in the while

SEETEIS 55 statement has the same

\ restrictions as the if statement.
endwhile;

Loop body

Figure 1-11: HLA while statement syntax

This statement evaluates the boolean expression. If it is false, control
immediately transfers to the first statement following the endwhile clause. If
the value of the expression is true, then the CPU executes the body of the
loop. After the loop body executes, control transfers back to the top of the
loop, where the while statement retests the loop control expression. This
process repeats until the expression evaluates false.

Note that the while loop, like its high-level-language counterpart, tests
for loop termination at the top of the loop. Therefore, it is quite possible
that the statements in the body of the loop will not execute (if the expression
is false when the code first executes the while statement). Also note that the
body of the while loop must, at some point, modify the value of the boolean
expression or an infinite loop will result.



Here’s an example of an HLA while loop:

mov( 0, i );
while( i < 10 ) do

stdout.put( "i=", i, nl );
add( 1, i );

endwhile;

1.9.5 The for..endfor Statement

The HLA for loop takes the following general form:

for( Initial Stmt; Termination Expression; Post Body Statement ) do
<< Loop body >>

endfor;

This is equivalent to the following while statement:

Initial Stmt;
while( Termination Expression ) do

<< Loop body >>
Post Body Statement;

endwhile;

Initial_Stmt can be any single HLA/80x86 instruction. Generally this
statement initializes a register or memory location (the loop counter) with
zero or some other initial value. Termination Expression is an HLA boolean
expression (same format that while allows). This expression determines
whether the loop body executes. Post_Body_Statement executes at the bottom
of the loop (as shown in the while example above). This is a single HLA
statement. Usually an instruction like add modifies the value of the loop
control variable.

The following gives a complete example:

for( mov( 0, i ); i < 10; add(1, i )) do
stdout.put( "i=", i, nl );

endfor;

Hello, World of Assembly Language
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The above, rewritten as a while loop, becomes:

mov( 0, i);
while( i < 10 ) do

stdout.put( "i=", i, nl );
add( 1, i );

endwhile;

1.9.6 The repeat..until Statement

The HLA repeat..until statement uses the syntax shown in Figure 1-12.
C/C++/C# and Java users should note that the repeat..until statement is
very similar to the do..while statement.

repeat Loop body

<< sequence of
one or more

The expression in the until
statements >>

statement has the same

until( expression ); restrictions as the if statement.

Figure 1-12: HLA repeat. .until statement syntax

The HLA repeat..until statement tests for loop termination at the
bottom of the loop. Therefore, the statements in the loop body always
execute at least once. Upon encountering the until clause, the program
will evaluate the expression and repeat the loop if the expression is false
(that is, it repeats while false). If the expression evaluates true, the control
transfers to the first statement following the until clause.

The following simple example demonstrates the repeat. .until statement:

mov( 10, ecx );
repeat

stdout.put( "ecx = "
sub( 1, ecx );

, ecx, nl );

until( ecx = 0 );

If the loop body will always execute at least once, then it is usually more
efficient to use a repeat..until loop rather than a while loop.



1.9.7 The break and breakif Statements

The break and breakif statements provide the ability to prematurely exit from
a loop. Figure 1-13 shows the syntax for these two statements.

The expression in the breakif
statement has the same
restrictions as the if statement.

break;
breakif( expression );

Figure 1-13: HLA break and breakif syntax

The break statement exits the loop that immediately contains the break.
The breakif statement evaluates the boolean expression and exits the
containing loop if the expression evaluates true.

Note that the break and breakif statements do not allow you to break out
of more than one nested loop. HLA does provide statements that do this, the
begin..end block and the exit/exitif statements. Please consult the HLA
reference manual for more details. HLA also provides the continue/continueif
pair that lets you repeat a loop body. Again, see the HLA reference manual
for more details.

1.9.8 The forever..endfor Statement

Figure 1-14 shows the syntax for the forever statement.

forever
<< sequence of

one or more
statements >>

end'FOI; \

Figure 1-14: HLA forever loop syntax

Loop body

This statement creates an infinite loop. You may also use the break and
breakif statements along with forever..endfor to create a loop that tests for
loop termination in the middle of the loop. Indeed, this is probably the most
common use of this loop, as the following example demonstrates:

forever

stdout.put( "Enter an integer less than 10: ");
stdin.get( i );

breakif( i < 10 );

stdout.put( "The value needs to be less than 10!", nl );

endfor;
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1.9.9 The try..exception..endtry Statement

The HLA try..exception..endtry statement provides very powerful exception
handling capabilities. The syntax for this statement appears in Figure 1-15.

try

<< sequence of ——— Statements to test
one or more
statements >>

At least one exception

handling block

exception( exceptionID )

<< sequence of
one or more
statements >>

exception( exceptionID )

<< sequence of
one or more

statements >> Zero or more (optional)

exception handling blocks
endtry;

Figure 1-15: HLA try..exception. .endtry statement syntax

The try..endtry statement protects a block of statements during
execution. If the statements between the try clause and the first exception
clause (the protected block), execute without incident, control transfers to the
first statement after the endtry immediately after executing the last statement
in the protected block. If an error (exception) occurs, then the program
interrupts control at the point of the exception (thatis, the program raises an
exception). Each exception has an unsigned integer constant associated with
it, known as the exception ID. The excepts. hhf header file in the HLA Standard
Library predefines several exception IDs, although you may create new ones
for your own purposes. When an exception occurs, the system compares the
exception ID against the values appearing in each of the exception clauses
following the protected code. If the current exception ID matches one of the
exception values, control continues with the block of statements immediately
following that exception. After the exception-handling code completes exe-
cution, control transfers to the first statement following the endtry.

If an exception occurs and there is no active try..endtry statement, or
the active try..endtry statements do not handle the specific exception, the
program will abort with an error message.

The following code fragment demonstrates how to use the try..endtry
statement to protect the program from bad user input:

repeat

mov( false, GoodInteger ); // Note: GoodInteger must be a boolean var.
try

stdout.put( "Enter an integer: " );
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stdin.get( i );
mov( true, GoodInteger );

exception( ex.ConversionError );

stdout.put( "Illegal numeric value, please re-enter"”, nl );
exception( ex.ValueOutOfRange );

stdout.put( "Value is out of range, please re-enter"”, nl );
endtry;

until( GoodInteger );

The repeat..until loop repeats this code as long as there is an error
during input. Should an exception occur because of bad input, control
transfers to the exception clauses to see if a conversion error (e.g., illegal
characters in the number) or a numeric overflow occurs. If either of these
exceptions occur, then they print the appropriate message, control falls out
of the try..endtry statement, and the repeat..until loop repeats because the
code will not have set GoodInteger to true. If a different exception occurs (one
that is not handled in this code), then the program aborts with the specified
error message.'’

Table 1-4 lists the exceptions provided in the excepts.hhfheader file at
the time this was being written. See the excepts.hhf header file provided with

HLA for the most current list of exceptions.

Table 1-4: Exceptions Provided in excepts.hhf

Exception Description

ex.StringOverflow Attempt to store a string that is too large into a string
variable.

ex.StringIndexError Attempt to access a character that is not present in a
string.

ex.StringOverlap Attempt to copy a string onto itself.

ex.StringMetaData Corrupted string value.

ex. StringAlignment Attempt to store a string an at unaligned address.

ex.StringUnderflow Attempt to extract “negative” characters from a string.

ex.IllegalStringOperation Operation not permitted on string data.

ex.ValueOutOfRange Value is too large for the current operation.

ex.IllegalChar Operation encountered a character code whose ASCII
code is not in the range 0..127.

ex.TooManyCmdLnParms Command line contains oo many program parameters.

ex.BadObjPtr Pointer to class object is illegal.

(continued)

1 An experienced programmer may wonder why this code uses a boolean variable rather than a
breakif statement to exit the repeat..until loop. There are some technical reasons for this that
you will learn about in Section 1.11.
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Table 1-4: Exceptions Provided in excepts.hhf (continued)

Exception Description

ex.InvalidAlignment Argument was not aligned on a proper memory address.

ex. InvalidArgument Function call (generally OS API call) contains an invalid
argument value.

ex.BufferOverflow Buffer or blob object exceeded declared size.

ex.BufferUnderflow Attempt to refrieve nonexistent data from a blob or buffer.

ex.IllegalSize Argument’s data size is incorrect.

ex.ConversionError String-fo-numeric conversion operation contains illegal
(nonnumeric) characters.

ex.BadFileHandle Program attempted a file access using an invalid file
handle value.

ex. FileNotFound Program attempted to access a nonexistent file.

ex.FileOpenFailure Operating system could not open the file (file not found).

ex.FileCloseError Operating system could not close the file.

ex.FileWriteError Error writing data to a file.

ex.FileReadError Error reading data from a file.

ex.FileSeekError Attempted to seek to a nonexistent position in a file.

ex.DiskFullError Attempted to write data to a full disk.

ex.AccessDenied User does not have sufficient priviledges to access file
data.

ex.EndOfFile Program attempted to read beyond the end of file.

ex.CannotCreateDir Attempt to create a directory failed.

ex.CannotRemoveDir Attempt to delete a directory failed.

ex.CannotRemoveFile Attempt to delete a file failed.

ex.(DFailed Attempt to change to a new directory failed.

ex.CannotRenameFile Attempt to rename a file failed.

ex.MemoryAllocationFailure Insufficient system memory for allocation request.

ex.MemoryFreeFailure Could not free the specified memory block (corrupted
memory management system).

ex.MemoryAllocationCorruption Corrupted memory management system.

ex.AttemptToFreeNULL Caller attempted to free a NULL pointer.

ex.AttemptToDerefNULL Program attempted to access data indirectly using a NULL
pointer.

ex.BlockAlreadyFree Caller attempted to free a block that was already freed.

ex. CannotFreeMemory Memory free operation failure.

ex.PointerNotInHeap Caller attempted to free a block of memory that was not
allocated on the heap.

ex.WidthTooBig Format width for numeric to string conversion was too
large.

ex.FractionTooBig Format size for fractional portion in floating-point-to-string
conversion was too large.

ex.ArrayShapeViolation Attempted operation on two arrays whose dimensions

don’t match.



Table 1-4: Exceptions Provided in excepts.hhf (continued)

Exception Description

ex.ArrayBounds Attempted to access an element of an array, but the index
was out of bounds.

ex.InvalidDate Attempted date operation with an illegal date.

ex.InvalidDateFormat Conversion from string to date contains illegal characters.

ex.TimeOverflow Overflow during time arithmetic.

ex.InvalidTime Attempted time operation with an illegal time.

ex.InvalidTimeFormat Conversion from string to time contains illegal characters.

ex.SocketError Network communication failure.

ex.ThreadError Generic thread (multitasking) error.

ex.AssertionFailed assert statement encountered a failed assertion.

ex. ExecutedAbstract Attempt to execute an abstract class method.

ex.AccessViolation Attempt to access an illegal memory location.

ex.InPageError OS memory access error.

ex.NoMemory OS memory failure.

ex.InvalidHandle Bad handle passed to OS AP call.

ex. ControlC CTR-C was pressed on system console (functionality is
OS specific).

ex.Breakpoint Program executed a breakpoint instruction (INT 3).

ex.SingleStep Program is operating with the trace flag set.

ex.Privinstr Program attempted to execute a kernel-only instruction.

ex.Illegallnstr Program attempted to execute an illegal machine
instruction.

ex.BoundInstr Bound instruction execution with “out of bounds” value.

ex.IntoInstr Into instruction execution with the overflow flag set.

ex.DivideError Program attempted division by zero or other divide error.

ex. fDenormal Floating point exception (see Chapter 6).

ex.fDivByZero Floating point exception (see Chapter 6).

ex.fInexactResult Floating point exception (see Chapter 6).

ex.fInvalidOperation Floating point exception (see Chapter 6).

ex. fOverflow Floating point exception (see Chapter 6).

ex. fStackCheck Floating point exception (see Chapter 6).

ex. fUnderflow Floating point exception (see Chapter 6).

ex.InvalidHandle OS reported an invalid handle for some operation.

Most of these exceptions occur in situations that are well beyond the
scope of this chapter. Their appearance here is strictly for completeness.
See the HLA reference manual, the HLA Standard Library documentation,
and the HLA Standard Library source code for more details concerning these
exceptions. The ex.ConversionError, ex.ValueOutOfRange, and ex.StringOverflow
exceptions are the ones you’ll most commonly use.

We’ll return to the discussion of the try..endtry statement in Section 1.11.
First, however, we need to cover a little more material.
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1.10 Introduction to the HLA Standard Library

Chapter 1

There are two reasons HLA is much easier to learn and use than standard
assembly language. The first reason is HLA’s high-level syntax for declarations
and control structures. This leverages your high-level language knowledge,
allowing you to learn assembly language more efficiently. The other half of
the equation is the HLA Standard Library. The HLA Standard Library
provides many common, easy-to-use, assembly language routines that you
can call without having to write this code yourself (and, more importantly,
having to learn how to write yourself). This eliminates one of the larger
stumbling blocks many people have when learning assembly language: the
need for sophisticated I/O and support code in order to write basic state-
ments. Prior to the advent of a standardized assembly language library, it
often took considerable study before a new assembly language programmer
could do as much as print a string to the display. With the HLA Standard
Library, this roadblock is removed, and you can concentrate on learning
assembly language concepts rather than learning low-level I/O details that
are specific to a given operating system.

A wide variety of library routines is only part of HLA’s support. After all,
assembly language libraries have been around for quite some time.!' HLA’s
Standard Library complements HLA by providing a high-level language
interface to these routines. Indeed, the HLA language itself was originally
designed specifically to allow the creation of a high-level set of library
routines. This high-level interface, combined with the high-level nature
of many of the routines in the library, packs a surprising amount of power
in an easy-to-use package.

The HLA Standard Library consists of several modules organized by
category. Table 1-5 lists many of the modules that are available.'?

Table 1-5: HLA Standard Library Modules

Name Description

args Command-line parameter-parsing support routines.

arrays Array declarations and operations.

bits Bitmanipulation functions.

blobs Binary large objects—operations on large blocks of binary data.

bsd OS API calls for FreeBSD (HLA FreeBSD version only).

chars Operations on character data.

console Portable console (text screen) operations (cursor movement, screen clears, efc.).
conv Various conversions between strings and other values.

coroutines  Support for coroutines (“cooperative multitasking”).
cset Character set functions.

DateTime Calendar, date, and time functions.

"' For example, see the UCR Standard Library for 80x86 Assembly Language Programmers.

"2 Because the HLA Standard Library is expanding, this list is probably out of date. See the HLA
documentation for a current list of Standard Library modules.



Table 1-5: HLA Standard Library Modules (continued)

Name Description
env Access to OS environment variables.
excepts Exception-handling routines.

fileclass  Obijectoriented file input and output.

fileio File input and output routines.

filesys Access to the OS file system.

hla Special HLA constants and other values.

Linux Linux system calls (HLA Linux version only).

lists An HLA class for manipulating linked lists.

mac OS API calls for Mac OS X (HLA Mac OS X version only).

math Extended-precision arithmetic, transcendental functions, and other mathematical
functions.

memmap Memory-mapped file operations.

memory Memory allocation, deallocation, and support code.

patterns The HLA pattern-matching library.

random Pseudo-random number generators and support code.

sockets A set of network communication functions and classes.

stderr Provides user output and several other support functions.

stdin User input routines.

stdio A support module for stderr, stdin, and stdout.

stdout Provides user output and several other support routines.
strings HLA's powerful string library.

tables Table (associative array) support routines.

threads Support for multithreaded applications and process synchronization.
timers Support for timing events in an application.

win32 Constants used in Windows calls (HLA Windows version only).
x86 Constants and other items specific to the 80x86 CPU.

Later sections of this text will explain many of these modules in greater
detail. This section will concentrate on the most important routines (at least
to beginning HLA programmers), the stdio library.

1.10.1 Predefined Constants in the stdio Module

Perhaps the first place to start is with a description of some common constants
that the stdio module defines for you. Consider the following (typical)
example:

stdout.put( "Hello World", nl );

The nl appearing at the end of this statement stands for newline. The nl
identifier is not a special HLA reserved word, nor is it specific to the stdout.put
statement. Instead, it’s simply a predefined constant that corresponds to the
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string containing the standard end-of-line sequence (a carriage return/line
feed pair under Windows or just a line feed under Linux, FreeBSD, and
Mac OS X).

In addition to the nl constant, the HLA standard I/O library module
defines several other useful character constants, as listed in Table 1-6.

Table 1-6: Character Constants Defined by the HLA Standard I/O Library

Character Definition

stdio.bell The ASCII bell character; beeps the speaker when printed
stdio.bs The ASCII backspace character

stdio.tab The ASCII tab character

stdio.1lf The ASCII linefeed character

stdio.cr The ASCII carriage return character

Except for nl, these characters appear in the stdio namespace'® (and
therefore require the stdio. prefix). The placement of these ASCII constants
within the stdio namespace helps avoid naming conflicts with your own
variables. The nl name does not appear within a namespace because you will
use it very often, and typing stdio.nl would get tiresome very quickly.

1.10.2 Standard In and Standard Ouvt

Many of the HLA I/O routines have a stdin or stdout prefix. Technically, this
means that the standard library defines these names in a namespace. In
practice, this prefix suggests where the input is coming from (the standard
input device) or going to (the standard output device). By default, the
standard input device is the system keyboard. Likewise, the default standard
output device is the console display. So, in general, statements that have
stdin or stdout prefixes will read and write data on the console device.

When you run a program from the command-line window (or shell),
you have the option of redirecting the standard input and/or standard output
devices. A command-line parameter of the form >outfile redirects the standard
output device to the specified file (outfile). A command-line parameter of
the form <infile redirects the standard input so that its data comes from the
specified input file (infile). The following examples demonstrate how to use
these parameters when running a program named festpgm in the command
window:'*

testpgm <input.data
testpgm >output.txt
testpgm <in.txt >output.txt

13 Namespaces are the subject of Chapter 5.

Y For Linux, FreeBSD, and Mac OS X users, depending on how your system is set up, you may
need to type ./ in front of the program’s name to actually execute the program (e.g., ./testpgm
<input.data).



1.10.3 The stdout.newln Routine

The stdout.newln procedure prints a newline sequence to the standard
output device. This is functionally equivalent to saying stdout.put( nl );.
The call to stdout.newln is sometimes a little more convenient. For example:

stdout.newln();

1.10.4 The stdout.putiX Routines

The stdout.puti8, stdout.putii6, and stdout.puti32 library routines print a
single parameter (one byte, two bytes, or four bytes, respectively) as a signed
integer value. The parameter may be a constant, a register, or a memory
variable, as long as the size of the actual parameter is the same as the size of
the formal parameter.

These routines print the value of their specified parameter to the standard
output device. These routines will print the value using the minimum number
of print positions possible. If the number is negative, these routines will print
a leading minus sign. Here are some examples of calls to these routines:

stdout.puti8( 123 );
stdout.puti16( dx );
stdout.puti32( i32var );

1.10.5 The stdout.putiX Size Routines

The stdout.puti8Size, stdout.puti16Size, and stdout.puti3z2Size routines output
signed integer values to the standard output, just like the stdout.putiX routines.
These routines, however, provide more control over the output; they let you
specify the (minimum) number of print positions the value will require on
output. These routines also let you specify a padding character should the
print field be larger than the minimum needed to display the value. These
routines require the following parameters:

stdout.puti8Size( Value8, width, padchar );
stdout.puti16Size( Value16, width, padchar );
stdout.puti32Size( Value32, width, padchar );

The Value* parameter can be a constant, a register, or a memory location
of the specified size. The width parameter can be any signed integer constant
that is between —256 and +256; this parameter may be a constant, register
(32-bit), or memory location (32-bit). The padchar parameter should be a
single-character value.

Like the stdout.putiX routines, these routines print the specified value
as a signed integer constant to the standard output device. These routines,
however, let you specify the field width for the value. The field width is the
minimum number of print positions these routines will use when printing
the value. The width parameter specifies the minimum field width. If the
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number would require more print positions (e.g., if you attempt to print
1234 with a field width of 2), then these routines will print however many
characters are necessary to properly display the value. On the other hand,
if the width parameter is greater than the number of character positions
required to display the value, then these routines will print some extra
padding characters to ensure that the output has at least width character
positions. If the width value is negative, the number is left justified in the
print field; if the width value is positive, the number is right justified in
the print field.

If the absolute value of the width parameter is greater than the mini-
mum number of print positions, then these stdout.putiXSize routines will
print a padding character before or after the number. The padchar param-
eter specifies which character these routines will print. Most of the time
you would specify a space as the pad character; for special cases, you might
specify some other character. Remember, the padchar parameter is a char-
acter value; in HLA character constants are surrounded by apostrophes, not
quotation marks. You may also specify an 8-bit register as this parameter.

Listing 1-4 provides a short HLA program that demonstrates the use of
the stdout.puti32Size routine to display a list of values in tabular form.

program NumsInColumns;
#include( "stdlib.hhf" )
var

i32: int32;

ColCnt: int8;
begin NumsInColumns;

mov( 96, i32 );

mov( 0, ColCnt );

while( i32 > 0 ) do

if( ColCnt = 8 ) then

stdout.newln();
mov( 0, ColCnt );

endif;

stdout.puti32Size( i32, 5, ' ' );
sub( 1, i32 );

add( 1, ColCnt );

endwhile;
stdout.newln();

end NumsInColumns;

Listing 1-4: Tabular output demonstration using stdio.Puti32Size
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1.10.6 The stdout.put Routine

The stdout.put routine'” is the one of the most flexible output routines in
the standard output library module. It combines most of the other output
routines into a single, easy-to-use procedure.

The generic form for the stdout.put routine is the following:

stdout.put( list of values to output );

The stdout.put parameter list consists of one or more constants, registers,
or memory variables, each separated by a comma. This routine displays the
value associated with each parameter appearing in the list. Because we’ve
already been using this routine throughout this chapter, you’ve already seen
many examples of this routine’s basic form. It is worth pointing out that
this routine has several additional features not apparent in the examples
appearing in this chapter. In particular, each parameter can take one of the
following two forms:

value
value:width

The value may be any legal constant, register, or memory variable
object. In this chapter, you’ve seen string constants and memory variables
appearing in the stdout.put parameter list. These parameters correspond to
the first form above. The second parameter form above lets you specify a
minimum field width, similar to the stdout.putixSize routines.'® The program
in Listing 1-b produces the same output as the program in Listing 1-4; how-
ever, Listing 1-b uses stdout.put rather than stdout.puti32Size.

program NumsInColumns2;
#include( "stdlib.hhf" )
var
i32: int32;
ColCnt: int8;
begin NumsInColumns2;
mov( 96, i32 );
mov( 0, ColCnt );
while( i32 > 0 ) do

if( ColCnt = 8 ) then

15 stdout.put is actually a macro, not a procedure. The distinction between the two is beyond the
scope of this chapter. Chapter 9 describes their differences.

18 Note that you cannot specify a padding character when using the stdout.put routine; the
padding character defaults to the space character. If you need to use a different padding
character, call the stdout.putiXSize routines.
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stdout.newln();
mov( 0, ColCnt );

endif;

stdout.put( i32:5 );
sub( 1, i32 );

add( 1, ColCnt );

endwhile;
stdout.put( nl );

end NumsInColumns2;

Listing 1-5: Demonstration of the stdout.put field width specification

The stdout.put routine is capable of much more than the few attributes
this section describes. This text will introduce those additional capabilities as
appropriate.

1.10.7 The stdin.getc Routine

The stdin.getc routine reads the next available character from the standard
input device’s input buffer.!” It returns this character in the CPU’s AL register.
The program in Listing 1-6 demonstrates a simple use of this routine.

program charInput;
#include( "stdlib.hhf" )

var
counter: int32;

begin charInput;

// The following repeats as long as the user
// confirms the repetition.

repeat
// Print out 14 values.

mov( 14, counter );
while( counter > 0 ) do

stdout.put( counter:3 );
sub( 1, counter );

endwhile;

// Wait until the user enters 'y' or 'n'.

17 Bufferis just a fancy term for an array.



stdout.put( nl, nl, "Do you wish to see it again? (y/n):" );
forever

stdin.readlLn();

stdin.getc();

breakif( al = 'n' );

breakif( al = 'y' );

stdout.put( "Error, please enter only 'y' or 'n': " );

endfor;
stdout.newln();

until( al = 'n' );

end charInput;

Listing 1-6: Demonstration of the stdin.getc() routine

This program uses the stdin.ReadLn routine to force a new line of input
from the user. A description of stdin.ReadLn appears in Section 1.10.9.

1.10.8 The stdin.getiX Routines

The stdin.geti8, stdin.geti16, and stdin.geti32 routines read 8-, 16-, and
32-bit signed integer values from the standard input device. These routines
return their values in the AL, AX, or EAX register, respectively. They provide
the standard mechanism for reading signed integer values from the user

in HLA.

Like the stdin.getc routine, these routines read a sequence of characters
from the standard input buffer. They begin by skipping over any whitespace
characters (spaces, tabs, and so on) and then convert the following stream
of decimal digits (with an optional leading minus sign) into the correspond-
ing integer. These routines raise an exception (that you can trap with the
try..endtry statement) if the input sequence is not a valid integer string or if
the user input is too large to fit in the specified integer size. Note that values
read by stdin.geti8 must be in the range —128..+127; values read by stdin.geti16
must be in the range —32,768..+32,767; and values read by stdin.geti32 must
be in the range —2,147,483,648..+2,147,483,647.

The sample program in Listing 1-7 demonstrates the use of these routines.

program intInput;

#include( "stdlib.hhf" )

var
i8: int8;
i16: int16;
i32: int32;

begin intInput;
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// Read integers of varying sizes from the user:

stdout.put( "Enter a small integer between -128 and +127: " );
stdin.geti8();
mov( al, i8 );

stdout.put( "Enter a small integer between -32768 and +32767: " );
stdin.geti16();
mov( ax, 116 );

stdout.put( "Enter an integer between +/- 2 billion: " );
stdin.geti32();
mov( eax, 132 );

// Display the input values.

stdout.put
(
nl,
"Here are the numbers you entered:", nl, nl,
"Eight-bit integer: ", i8:12, nl,
"16-bit integer: ", i16:12, nl,
"32-bit integer: ", i32:12, nl

);

end intInput;

Listing 1-7: stdin.getiX example code

You should compile and run this program and then test what happens
when you enter a value that is out of range or enter an illegal string of
characters.

1.10.9 The stdin.readLn and stdin.flushinput Routines

Whenever you call an input routine like stdin.getc or stdin.geti32, the
program does not necessarily read the value from the user at that moment.
Instead, the HLA Standard Library buffers the input by reading a whole line
of text from the user. Calls to input routines will fetch data from this input
buffer until the buffer is empty. While this buffering scheme is efficient and
convenient, sometimes it can be confusing. Consider the following code
sequence:

stdout.put( "Enter a small integer between -128 and +127: " );
stdin.geti8();
mov( al, i8 );

stdout.put( "Enter a small integer between -32768 and +32767: " );
stdin.geti16();
mov( ax, 116 );




NOTE

Intuitively, you would expect the program to print the first prompt
message, wait for user input, print the second prompt message, and wait for
the second user input. However, this isn’t exactly what happens. For example,
if you run this code (from the sample program in the previous section) and
enter the text 123 456 in response to the first prompt, the program will not
stop for additional user input at the second prompt. Instead, it will read the
second integer (456) from the input buffer read during the execution of the
stdin.getii6 call.

In general, the stdin routines read text from the user only when the input
buffer is empty. As long as the input buffer contains additional characters,
the input routines will attempt to read their data from the buffer. You can
take advantage of this behavior by writing code sequences such as the
following:

stdout.put( "Enter two integer values: " );
stdin.geti32();

mov( eax, intval );

stdin.geti32();

mov( eax, AnotherIntval );

This sequence allows the user to enter both values on the same line
(separated by one or more whitespace characters), thus preserving space
on the screen. So the input buffer behavior is desirable every now and then.
The buffered behavior of the input routines can be counterintuitive at other
times.

Fortunately, the HLA Standard Library provides two routines, stdin.readLn
and stdin.flushInput, that let you control the standard input buffer. The
stdin.readLn routine discards everything that is in the input buffer and
immediately requires the user to enter a new line of text. The stdin.flushInput
routine simply discards everything that is in the buffer. The next time an
input routine executes, the system will require a new line of input from the
user. You would typically call stdin.readLn immediately before some standard
input routine; you would normally call stdin.flushInput immediately after a
call to a standard input routine.

If you are calling stdin.readln and you find that you are having to input your data
twice, this is a good indication that you should be calling stdin. flushInput rather
than stdin.readln. In general, you should always be able to call stdin. flushInput
to flush the input buffer and read a new line of data on the next input call. The
stdin.readlLn routine is rarely necessary, so you should use stdin. flushInput unless
you really need to immediately force the input of a new line of text.

1.10.10 The stdin.get Routine

The stdin.get routine combines many of the standard input routines into

a single call, just as the stdout.put combines all of the output routines into a
single call. Actually, stdin.get is a bit easier to use than stdout.put because
the only parameters to this routine are a list of variable names.

Hello, World of Assembly language 41



Let’s rewrite the example given in the previous section:

stdout.put( "Enter two integer values: " );
stdin.geti32();

mov( eax, intval );

stdin.geti32();

mov( eax, AnotherIntval );

Using the stdin.get routine, we could rewrite this code as:

stdout.put( "Enter two integer values: " );
stdin.get( intval, AnotherIntval );

As you can see, the stdin.get routine is a little more convenient to use.
Note that stdin.get stores the input values directly into the memory
variables you specify in the parameter list; it does not return the values in a
register unless you actually specify a register as a parameter. The stdin.get

parameters must all be variables or registers.

1.11 Additional Details About try..endtry

As you may recall, the try..endtry statement surrounds a block of statements
in order to capture any exceptions that occur during the execution of those
statements. The system raises exceptions in one of three ways: through a hard-
ware fault (such as a divide-by-zero error), through an operating system—
generated exception, or through the execution of the HLA raise statement.
You can write an exception handler to intercept specific exceptions using the
exception clause. The program in Listing 1-8 provides a typical example of the
use of this statement.

program testBadInput;
#include( "stdlib.hhf" )

static
u: int32;
begin testBadInput;
try
stdout.put( "Enter a signed integer:" );

stdin.get( u );
stdout.put( "You entered:

> Uy nl);
exception( ex.ConversionError )
stdout.put( "Your input contained illegal characters"” nl );

exception( ex.ValueOutOfRange )
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stdout.put( "The value was too large" nl );

endtry;

end testBadInput;

Listing 1-8: try..endtry example

HLA refers to the statements between the try clause and the first exception
clause as the protected statements. If an exception occurs within the protected
statements, then the program will scan through each of the exceptions and
compare the value of the current exception against the value in the paren-
theses after each of the exception clauses.'® This exception value is simply a
32-bit value. The value in the parentheses after each exception clause, there-
fore, must be a 32-bit value. The HLA excepts. hhfheader file predefines several
exception constants. Although it would be an incredibly bad style violation,
you could substitute the numeric values for the two exception clauses above.

I.11.1 Nesting try..endtry Statements

If the program scans through all the exception clauses in a try..endtry state-
ment and does not match the current exception value, then the program
searches through the exception clauses of a dynamically nested try. .endtry
block in an attempt to find an appropriate exception handler. For example,
consider the code in Listing 1-9.

program testBadInput2;
#include( "stdlib.hhf" )

static
u: int32;

begin testBadInput2;

try
try
stdout.put( "Enter a signed integer: " );
stdin.get( u );
stdout.put( "You entered: ", u, nl );
exception( ex.ConversionError )
stdout.put( "Your input contained illegal characters" nl );
endtry;

¥ Note that HLA loads this value into the EAX register. So upon entry into an exception clause,
EAX contains the exception number.
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stdout.put( "Input did not fail due to a value out of range" nl );

exception( ex.ValueOutOfRange )
stdout.put( "The value was too large" nl );
endtry;

end testBadInput2;

Listing 1-9: Nested try..endtry statements

In Listing 1-9 one try statement is nested inside another. During the
execution of the stdin.get statement, if the user enters a value greater than
four billion and some change, then stdin.get will raise the ex.ValueOutOfRange
exception. When the HLA runtime system receives this exception, it first
searches through all the exception clauses in the try..endtry statement imme-
diately surrounding the statement that raised the exception (this would be
the nested try..endtry in the example above). If the HLA runtime system
fails to locate an exception handler for ex.ValueOutOfRange, then it checks
to see if the current try..endtry is nested inside another try..endtry (as is
the case in Listing 1-9). If so, the HLA runtime system searches for the
appropriate exception clause in the outer try..endtry statement. Within
the try..endtry block appearing in Listing 1-9 the program finds an appro-
priate exception handler, so control transfers to the statements after the
exception( ex.ValueOutOfRange ) clause.

After leaving a try..endtry block, the HLA runtime system no longer
considers that block active and will not search through its list of exceptions
when the program raises an exception.'? This allows you to handle the same
exception differently in other parts of the program.

If two try..endtry statements handle the same exception, and one of
the try..endtry blocks is nested inside the protected section of the other
try..endtry statement, and the program raises an exception while executing
in the innermost try..endtry sequence, then HLA transfers control directly
to the exception handler provided by the innermost try..endtry block. HLA
does not automatically transfer control to the exception handler provided by
the outer try..endtry sequence.

In the previous example (Listing 1-9) the second try..endtry statement
was statically nested inside the enclosing try. .endtry statement.?” As mentioned
without comment earlier, if the most recently activated try..endtry statement
does not handle a specific exception, the program will search through the
exception clauses of any dynamically nesting try..endtry blocks. Dynamic
nesting does not require the nested try..endtry block to physically appear
within the enclosing try..endtry statement. Instead, control could transfer

!9 Unless, of course, the program re-enters the try..endtry block via a loop or other control
structure.

20 Statically nested means that one statement is physically nested within another in the source
code. When we say one statement is nested within another, this typically means that the
statement is statically nested within the other statement.



from inside the enclosing try..endtry protected block to some other point in
the program. Execution of a try..endtry statement at that other point dynami-
cally nests the two try statements. Although there are many ways to dynamically
nest code, there is one method you are probably familiar with from your
high-level language experience: the procedure call. In Chapter 5, when you
learn how to write procedures (functions) in assembly language, you should
keep in mind that any call to a procedure within the protected section of a
try..endtry block can create a dynamically nested try..endtry if the program
executes a try..endtry within that procedure.

1.11.2  The unprotected Clause in a try..endtry Statement

Whenever a program executes the try clause, it preserves the current
exception environment and sets up the system to transfer control to the
exception clauses within that try..endtry statement should an exception
occur. If the program successfully completes the execution of a try..endtry
protected block, the program restores the original exception environment
and control transfers to the first statement beyond the endtry clause. This last
step, restoring the execution environment, is very important. If the program
skips this step, any future exceptions will transfer control to this try..endtry
statement even though the program has already left the try..endtry block.
Listing 1-10 demonstrates this problem.

program testBadInput3;
#include( "stdlib.hhf" )

static
input: int32;

begin testBadInput3;

// This forever loop repeats until the user enters

// a good integer and the break statement below

// exits the loop.

forever

try

stdout.put( "Enter an integer value: " );
stdin.get( input );

stdout.put( "The first input value was:
break;

, input, nl);

exception( ex.ValueOutOfRange )
stdout.put( "The value was too large, re-enter.” nl );
exception( ex.ConversionError )

stdout.put( "The input contained illegal characters, re-enter.” nl );
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endtry;
endfor;

// Note that the following code is outside the loop and there
// is no try..endtry statement protecting this code.

stdout.put( "Enter another number: " );
stdin.get( input );
stdout.put( "The new number is:

, input, nl);

end testBadInput3;

Listing 1-10: Improperly exiting a try..endtry statement

This example attempts to create a robust input system by putting a loop
around the try..endtry statement and forcing the user to reenter the data if
the stdin.get routine raises an exception (because of bad input data). While
this is a good idea, there is a big problem with this implementation: the break
statement immediately exits the forever. .endfor loop without first restoring
the exception environment. Therefore, when the program executes the
second stdin.get statement, at the bottom of the program, the HLA
exception-handling code still thinks that it’s inside the try..endtry block.
If an exception occurs, HLA transfers control back into the try..endtry
statement looking for an appropriate exception handler. Assuming the
exception was ex.ValueOutOfRange or ex.ConversionError, the program in
Listing 1-10 will print an appropriate error message and then force the user to
re-enter the first value. This isn’t desirable.

Transferring control to the wrong try..endtry exception handlers is only
part of the problem. Another big problem with the code in Listing 1-10 has
to do with the way HLA preserves and restores the exception environment:
specifically, HLA saves the old execution environment information in a special
region of memory known as the stack. If you exit a try. .endtry without restor-
ing the exception environment, this leaves the old execution environment
information on the stack, and this extra data on could cause your program to
malfunction.

Although this discussion makes it quite clear that a program should not
exit from a try..endtry statement in the manner that Listing 1-10 uses, it
would be nice if you could use a loop around a try..endtry block to force the
reentry of bad data as this program attempts to do. To allow for this, HLA’s
try..endtry statement provides an unprotected section. Consider the code in
Listing 1-11.

program testBadInput4;
#include( "stdlib.hhf" )

static
input: 1int32;

begin testBadInput4;



// This forever loop repeats until the user enters
// a good integer and the break statement below
// exits the loop. Note that the break statement
// appears in an unprotected section of the try..endtry
// statement.
forever

try

stdout.put( "Enter an integer value: " );

stdin.get( input );
stdout.put( "The first input value was:

, input, nl );
unprotected
break;
exception( ex.ValueOutOfRange )
stdout.put( "The value was too large, re-enter." nl );
exception( ex.ConversionError )
stdout.put( "The input contained illegal characters, re-enter." nl );
endtry;
endfor;

// Note that the following code is outside the loop and there
// is no try..endtry statement protecting this code.

stdout.put( "Enter another number: " );
stdin.get( input );

stdout.put( "The new number is: ", input, nl );

end testBadInputs;

Listing 1-11: The try..endtry unprotected section

Whenever the try..endtry statement hits the unprotected clause, it
immediately restores the exception environment. As the phrase suggests,
the execution of statements in the unprotected section is no longer protec-
ted by that try..endtry block (note, however, that any dynamically nesting
try..endtry statements will still be active; unprotected turns off only the
exception handling of the try..endtry statement containing the unprotected
clause). Because the break statement in Listing 1-11 appears inside the
unprotected section, it can safely transfer control out of the try..endtry
block without “executing” the endtry because the program has already
restored the former exception environment.
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Note that the unprotected keyword must appear in the try..endtry
statement immediately after the protected block. That is, it must precede
all exception keywords.

If an exception occurs during the execution of a try..endtry sequence,
HLA automatically restores the execution environment. Therefore, you may
execute a break statement (or any other instruction that transfers control out
of the try..endtry block) within an exception clause.

Because the program restores the exception environment upon encoun-
tering an unprotected block or an exception block, an exception that occurs
within one of these areas immediately transfers control to the previous
(dynamically nesting) active try..endtry sequence. If there is no nesting
try..endtry sequence, the program aborts with an appropriate error message.

1.11.3 The anyexception Clause in a iry..endtry Statement

In a typical situation, you will use a try..endtry statement with a set of excep-
tion clauses that will handle all possible exceptions that can occur in the pro-
tected section of the try..endtry sequence. Often, it is important to ensure
that a try..endtry statement handles all possible exceptions to prevent the
program from prematurely aborting due to an unhandled exception. If
you have written all the code in the protected section, you will know the
exceptions it can raise, so you can handle all possible exceptions. However,
if you are calling a library routine (especially a third-party library routine),
making a OS API call, or otherwise executing code that you have no control
over, it may not be possible for you to anticipate all possible exceptions this
code could raise (especially when considering past, present, and future
versions of the code). If that code raises an exception for which you do not
have an exception clause, this could cause your program to fail. Fortunately,
HLA’s try..endtry statement provides the anyexception clause that will auto-
matically trap any exception the existing exception clauses do not handle.

The anyexception clause is similar to the exception clause except it does
not require an exception number parameter (because it handles any excep-
tion). If the anyexception clause appears in a try..endtry statement with other
exception sections, the anyexception section must be the last exception handler
in the try..endtry statement. An anyexception section may be the only exception
handler in a try..endtry statement.

If an otherwise unhandled exception transfers control to an anyexception
section, the EAX register will contain the exception number. Your code in the
anyexception block can test this value to determine the cause of the exception.

1.11.4 Registers and the try..endiry Statement

The try..endtry statement preserves several bytes of data whenever you enter
a try..endtry statement. Upon leaving the try..endtry block (or hitting the
unprotected clause), the program restores the exception environment. As
long as no exception occurs, the try..endtry statement does not affect the



values of any registers upon entry to or upon exit from the try..endtry
statement. However, this claim is not true if an exception occurs during the
execution of the protected statements.

Upon entry into an exception clause, the EAX register contains the
exception number, but the values of all other general-purpose registers are
undefined. Because the operating system may have raised the exception in
response to a hardware error (and, therefore, has played around with the
registers), you can’t even assume that the general-purpose registers contain
whatever values they happened to contain at the point of the exception. The
underlying code that HLA generates for exceptions is subject to change in
different versions of the compiler, and certainly it changes across operating
systems, so it is never a good idea to experimentally determine what values
registers contain in an exception handler and depend on those values in
your code.

Because entry into an exception handler can scramble the register
values, you must ensure that you reload important registers if the code
following your endtry clause assumes that the registers contain certain values
(i.e., values set in the protected section or values set prior to executing the
try..endtry statement). Failure to do so will introduce some nasty defects into
your program (and these defects may be very intermittent and difficult to
detect because exceptions rarely occur and may not always destroy the value
in a particular register). The following code fragment provides a typical
example of this problem and its solution:

static
sum: int32;

.

mov( 0, sum );
for( mov( 0, ebx ); ebx < 8; inc( ebx )) do

push( ebx ); // Must preserve ebx in case there is an exception.
forever
try

stdin.geti32();
unprotected break;

exception( ex.ConversionError )
stdout.put( "Illegal input, please re-enter value: " );
endtry;
endfor;
pop( ebx ); // Restore ebx's value.
add( ebx, eax );

add( eax, sum );

endfor;
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Because the HLA exception-handling mechanism messes with the
registers, and because exception handling is a relatively inefficient process,
you should never use the try..endtry statement as a generic control structure
(e.g., using it to simulate a switch/case statement by raising an integer
exception value and using the exception clauses as the cases to process).
Doing so will have a very negative impact on the performance of your
program and may introduce subtle defects because exceptions scramble
the registers.

For proper operation, the try..endtry statement assumes that you use
the EBP register only to point at activation records (Chapter 5 discusses
activation records). By default, HLA programs automatically use EBP for
this purpose; as long as you do not modify the value in EBP, your programs
will automatically use EBP to maintain a pointer to the current activation
record. If you attempt to use the EBP register as a general-purpose register
to hold values and compute arithmetic results, HLA’s exception-handling
capabilities will no longer function properly (along with other possible
problems). Therefore, you should never use the EBP register as a general-
purpose register. Of course, this same discussion applies to the ESP register.

1.12 High-Level Assembly Language vs. Low-Level
Assembly Language

Chapter 1

Before concluding this chapter, it’s important to remind you that none

of the control statements appearing in this chapter are “real” assembly
language. The 80x86 CPU does not support machine instructions like if,
while, repeat, for, break, breakif, and try. Whenever HLA encounters these
statements, it compiles them into a sequence of one or more true machine
instructions that do the operation as the high-level statements you've used.
While these statements are convenient to use, and in many cases just as
efficient as the sequence of low-level machine instructions into which HLA
translates them, don’t lose sight of the fact that they are not true machine
instructions.

The purpose of this text is to teach you low-level assembly language
programming; these high-level control structures are simply a means to that
end. Remember, learning the HLA high-level control structures allows you to
leverage your high-level language knowledge early on in the educational
process so you don’t have to learn everything about assembly language all at
once. By using high-level control structures that you’re already comfortable
with, this text can put off the discussion of the actual machine instructions
you’d normally use for control flow until much later. By doing so, this text
can regulate how much material it presents, so, hopefully, you’ll find learn-
ing assembly language to be much more pleasant. However, you must always
remember that these high-level control statements are just a pedagogical tool
to help you learn assembly language. Though you’re free to use them in your
assembly programs once you master the real control-flow statements, you
really must learn the low-level control statements if you want to learn assembly
language programming. Since, presumably, that’s why you're reading this



book, don’t allow the high-level control structures to become a crutch. When
you get to the point where you learn how to really write low-level control
statements, embrace and use them (exclusively). As you gain experience with
the low-level control statements and learn their advantages and disadvantages,
you’ll be in a good position to decide whether a high-level or low-level code
sequence is most appropriate for a given application. However, until you gain
considerable experience with the low-level control structures, you’ll not be
able to make an educated decision. Remember, you can’t really call yourself
an assembly language programmer unless you’ve mastered the low-level
statements.

Another thing to keep in mind is that the HLA Standard Library func-
tions are not part of the assembly language. They're just some convenient
functions that have been prewritten for you. Although there is nothing
wrong with calling these functions, always remember that they are not
machine instructions and that there is nothing special about these routines; as
you gain experience writing assembly language code, you can write your own
versions of each of these routines (and even write them more efficiently).

If you’re learning assembly language because you want to write the most
efficient programs possible (either the fastest or the smallest code), you need
to understand that you won’t achieve this goal completely if you're using
high-level control statements and making a lot of calls to the HLA Standard
Library. HLA’s code generator and the HLA Standard Library aren’t sorribly
inefficient, but the only true way to write efficient programs in assembly
language is to think in assembly language. HLA’s high-level control statements
and many of the routines in the HLA Standard Library are great because
they let you avoid thinking in assembly language. While this is great while
you’re first learning assembly, if your ultimate goal is to write efficient code,
then you have to learn to think in assembly language. This text will get you
to that point (and will do so much more rapidly because it uses HLA’s high-
level features), but don’t forget that your ultimate goal is to give up these
high-level features in favor of low-level coding.

1.13 For More Information

This chapter has covered a lot of ground! While you still have a lot to learn
about assembly language programming, this chapter, combined with your
knowledge of high-level languages, provides just enough information to let
you start writing real assembly language programs.

Although this chapter has covered many different topics, the three
primary topics of interest are the 80x86 CPU architecture, the syntax for
simple HLA programs, and the HLA Standard Library. For additional topics
on this subject, please consult the (unabridged) electronic version of this
text, the HLA reference manual, and the HLA Standard Library manual. All
three are available at http://www.artofasm.com/ and hitp://webster.cs.ucr.edu/.
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DATA REPRESENTATION

A major stumbling block many beginners
encounter when attempting to learn
assembly language is the common use

of the binary and hexadecimal numbering
systems. Although hexadecimal numbers are a little

strange, their advantages outweigh their disadvantages
by a large margin. Understanding the binary and hexadecimal numbering
systems is important because their use simplifies the discussion of other
topics, including bit operations, signed numeric representation, character
codes, and packed data.

This chapter discusses several important concepts, including:

e The binary and hexadecimal numbering systems
e Binary data organization (bits, nibbles, bytes, words, and double words)

¢ Signed and unsigned numbering systems
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e Arithmetic, logical, shift, and rotate operations on binary values
e Bitfields and packed data

This is basic material, and the remainder of this text depends on your
understanding these concepts. If you are already familiar with these terms
from other courses or study, you should at least skim this material before
proceeding to the next chapter. If you are unfamiliar with this material, or
only vaguely familiar with it, you should study it carefully before proceeding.
All of the material in this chapter is important! Do not skip over any material.

Numbering Systems

Most modern computer systems do not represent numeric values using
the decimal (base-10) system. Instead, they typically use a binary or two’s
complement numbering system.

2.1.1 A Review of the Decimal System

You’ve been using the decimal numbering system for so long that you prob-
ably take it for granted. When you see a number like 123, you don’t think
about the value 123; rather, you generate a mental image of how many items
this value represents. In reality, however, the number 123 represents:

1#10% + 2%10! + 3*10°
or
100+20+ 3

In a decimal positional numbering system, each digit appearing to
the left of the decimal point represents a value between 0 and 9 times an
increasing power of 10. Digits appearing to the right of the decimal point
represent a value between 0 and 9 times an increasing negative power of 10.
For example, the value 123.456 means:

1#10% + 2%10' + 3%10° + 4%107! + 5%¥1072 + 6%107°
or

100 + 20 + 3 + 0.4 + 0.05 + 0.006

2.1.2  The Binary Numbering System

Most modern computer systems operate using binary logic. The computer
represents values using two voltage levels (usually Ov and +2.4..5v). Two such
levels can represent exactly two unique values. These could be any two
different values, but they typically represent the values 0 and 1. These values,
coincidentally, correspond to the two digits in the binary numbering system.



The binary numbering system works just like the decimal numbering
system, with two exceptions: Binary allows only the digits 0 and 1 (rather than
0..9), and binary uses powers of 2 rather than powers of 10. Therefore, it is
very easy to convert a binary number to decimal. For each 1 in the binary
string, add in 2n where n is the zero-based position of the binary digit. For
example, the binary value 11001010, represents:

197 4 1%96 4 %92 4 0%9% 4 1%93 4 %92 4 1%2! 4 %90

128 +64 +8 +2

202,,

To convert decimal to binary is slightly more difficult. You must find
those powers of 2 that, when added together, produce the decimal result.

A simple way to convert decimal to binary is the even/odd - divide by two
algorithm. This algorithm uses the following steps:

If the number is even, emit a 0. If the number is odd, emita 1.

2. Divide the number by 2 and throw away any fractional component or
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and is odd, insert a 1 before the current string; if
the number is even, prefix your binary string with 0.

5. Go back to step 2 and repeat.

Binary numbers, although they have little importance in high-level
languages, appear everywhere in assembly language programs. So you should
be somewhat comfortable with them.

2.1.3 Binary Formats

In the purest sense, every binary number contains an infinite number of
digits (or bits, which is short for binary digits). For example, we can represent
the number 5 by any of the following:

101 00000101 0000000000101 ...000000000000101

Any number of leading zero digits may precede the binary number
without changing its value.

We will adopt the convention of ignoring any leading zeros present in a
value. For example, 101, represents the number 5 but because the 80x86
typically works with groups of 8 bits, we’ll find it much easier to zero extend
all binary numbers to some multiple of 4 or 8 bits. Therefore, following this
convention, we’d represent the number 5 as 0101, or 00000101,.

In the United States, most people separate every three digits with a
comma to make larger numbers easier to read. For example, 1,023,435,208
is much easier to read and comprehend than 1023435208. We’ll adopt a
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similar convention in this text for binary numbers. We will separate each
group of four binary bits with an underscore. For example, we will write the
binary value 1010111110110010 as 1010_1111_1011_0010.

We’ll number each bit as follows:

The rightmost bit in a binary number is bit position 0.

2. Each bit to the left is given the next successive bit number.
An 8-bit binary value uses bits 0..7:
X7 X X5 Xy X3 X9 Xy X
A 16-bit binary value uses bit positions 0..15:
X5 X4 X3 Xig X1 X9 Xg Xg X7 X X5 Xy X3 X Xy Xy

A 32-bit binary value uses bit positions 0..31, and so on.

Bit 0 is the low-order (L.O.) bit (some refer to this as the least significant bit).
The leftmost bit is called the high-order (H.O.) bit (or the most significant bit).
We’ll refer to the intermediate bits by their respective bit numbers.

2.2 The Hexadecimal Numbering System

Chapter 2

Unfortunately, binary numbers are verbose. To represent the value 202,
requires eight binary digits. The decimal version requires only three decimal
digits and thus represents numbers much more compactly than in binary.
This fact is not lost on the engineers who design binary computer systems.
When dealing with large values, binary numbers quickly become unwieldy.
Unfortunately, the computer “thinks” in binary, so most of the time it is
convenient to use the binary numbering system. Although we can convert
between decimal and binary, the conversion is not a trivial task. The hexa-
decimal (base 16) numbering system solves many of the problems inherent
in the binary system. Hexadecimal numbers offer the two features we’re
looking for: They’re very compact, and it’s simple to convert them to binary
and vice versa. For this reason, most engineers use the hexadecimal num-
bering system.

Because the radix (base) of a hexadecimal number is 16, each hexa-
decimal digit to the left of the hexadecimal point represents some value
times a successive power of 16. For example, the number 1234, is equal to:

1%16% + 2%162 + 3*16! + 4*%16°
or

4096 + 512 + 48 + 4 = 4660,

Each hexadecimal digit can represent one of 16 values between 0 and
15,,. Because there are only 10 decimal digits, we need to invent 6 additional
digits to represent the values in the range 10,,..15,,. Rather than create new



symbols for these digits, we’ll use the letters A..F. The following are all
examples of valid hexadecimal numbers:

1234, DFAD,; BEEF,; OAFB,; FEED,, DEAF,

Because we’ll often need to enter hexadecimal numbers into the com-
puter system, we’ll need a different mechanism for representing hexadecimal
numbers. After all, on most computer systems you cannot enter a subscript
to denote the radix of the associated value. We’ll adopt the following
conventions:

e All hexadecimal values begin with a $ character; for example, $123A4.

e  All binary values begin with a percent sign (%).

e Decimal numbers do not have a prefix character.

e If the radix is clear from the context, this book may drop the leading $ or
% character.
Here are some examples of valid hexadecimal numbers:

$1234 $DEAD $BEEF $AFB $FEED $DEAF

As you can see, hexadecimal numbers are compact and easy to read. In
addition, you can easily convert between hexadecimal and binary. Consider
Table 2-1. This table provides all the information you’ll ever need to convert
any hexadecimal number into a binary number or vice versa.

Table 2-1: Binary/Hexadecimal Conversion

Binary Hexadecimal
%0000 $0
%0001 $1
%0010 $2
%0011 $3
%0100 $4
%0101 $5
%0110 $6
%0111 $7
%1000 $8
%1001 $9
%1010 $A
%1011 $B
%1100 $C
%1101 $D
%1110 $E
%1111 $F
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To convert a hexadecimal number into a binary number, simply sub-
stitute the corresponding 4 bits for each hexadecimal digit in the number.
For example, to convert $ABCD into a binary value, simply convert each
hexadecimal digit according to Table 2-1, as shown here:

A B C D Hexadecimal
1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy.
The first step is to pad the binary number with zeros to make sure that there
is a multiple of 4 bits in the number. For example, given the binary number
1011001010, the first step would be to add 2 bits to the left of the number so
that it contains 12 bits. The converted binary value is 001011001010. The
next step is to separate the binary value into groups of 4 bits, for example,
0010_1100_1010. Finally, look up these binary values in Table 2-1 and
substitute the appropriate hexadecimal digits, that is, $2CA. Contrast this
with the difficulty of conversion between decimal and binary or decimal and
hexadecimal!

Because converting between hexadecimal and binary is an operation you
will need to perform over and over again, you should take a few minutes and
memorize the conversion table. Even if you have a calculator that will do the
conversion for you, you’ll find manual conversion to be a lot faster and more
convenient when converting between binary and hex.

2.3 Data Organization

Chapter 2

In pure mathematics a value’s representation may take require an arbitrary
number of bits. Computers, on the other hand, generally work with some
specific number of bits. Common collections are single bits, groups of 4 bits
(called nibbles), groups of 8 bits (bytes), groups of 16 bits (words), groups of 32
bits (double words or dwords), groups of 64 bits (quad words or qwords) , groups
of 128 bits (long words or lwords), and more. The sizes are not arbitrary. There
is a good reason for these particular values. This section will describe the bit
groups commonly used on the Intel 80x86 chips.

2.3.1 Bits

The smallest unit of data on a binary computer is a single bit. With a single
bit, you can represent any two distinct items. Examples include 0 or 1, true
or false, on or off, male or female, and right or wrong. However, you are not
limited to representing binary data types (that is, those objects that have only
two distinct values). You could use a single bit to represent the numbers 723
and 1,245 or, perhaps, the values 6,254 and 5. You could also use a single bit
to represent the colors red and blue. You could even represent two unrelated
objects with a single bit. For example, you could represent the color red and
the number 3,256 with a single bit. You can represent any two different values
with a single bit. However, you can represent only two different values with a
single bit.


http://webster.cs.ucr.edu
http://webster.cs.ucr.edu

To confuse things even more, different bits can represent different
things. For example, you could use one bit to represent the values 0 and 1,
while a different bit could represent the values true and false. How can you
tell by looking at the bits? The answer, of course, is that you can’t. But this
illustrates the whole idea behind computer data structures: data is what you
define it to be. If you use a bit to represent a boolean (true/false) value, then
that bit (by your definition) represents true or false. For the bit to have
any real meaning, you must be consistent. If you’re using a bit to represent
true or false at one point in your program, you shouldn’t use that value to
represent red or blue later.

Because most items you’ll be trying to model require more than two
different values, single-bit values aren’t the most popular data type you’ll use.
However, because everything else consists of groups of bits, bits will play an
important role in your programs. Of course, there are several data types
that require two distinct values, so it would seem that bits are important by
themselves. However, you will soon see that individual bits are difficult to
manipulate, so we’ll often use other data types to represent two-state values.

2.3.2 Nibbles

A nibbleis a collection of 4 bits. It wouldn’t be a particularly interesting data
structure except for two facts: binary-coded decimal (BCD) numbers! and hexa-
decimal numbers. It takes 4 bits to represent a single BCD or hexadecimal
digit. With a nibble, we can represent up to 16 distinct values because there
are 16 unique combinations of a string of 4 bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

In the case of hexadecimal numbers, the values 0, 1, 2, 3,4,5,6,7,8, 9,
A, B, G, D, E, and F are represented with 4 bits. BCD uses 10 different digits
(0,1,2,3,4,5,6,7,8,9) and requires also 4 bits (because we can only repre-
sent 8 different values with 3 bits, the additional 6 values we can represent

! Binary-coded decimal is a numeric scheme used to represent decimal numbers using 4 bits for
each decimal digit.
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with 4 bits are never used in BCD representation). In fact, any 16 distinct
values can be represented with a nibble, though hexadecimal and BCD digits
are the primary items we can represent with a single nibble.

2.3.3 Bytes

Without question, the most important data structure used by the 80x86
microprocessor is the byte, which consists of 8 bits. Main memory and 1/0
addresses on the 80x86 are all byte addresses. This means that the smallest
item that can be individually accessed by an 80x86 program is an 8-bit value.
To access anything smaller requires that we read the byte containing the data
and eliminate the unwanted bits. The bits in a byte are normally numbered
from 0 to 7, as shown in Figure 2-1.

7 6 5 4 3 2 1 O

Figure 2-1: Bit numbering

Bit 0 is the low-order bit or least significant bit, and bit 7 is the high-order bil
or most significant bit of the byte. We’ll refer to all other bits by their number.
Note that a byte also contains exactly two nibbles (see Figure 2-2).

7 6 5 4 3 2 1 O

H.O. Nibble L.O. Nibble
Figure 2-2: The two nibbles in a byte

Bits 0..3 compose the low-order nibble, and bits 4..7 form the high-order
nibble. Because a byte contains exactly two nibbles, byte values require two
hexadecimal digits.

Because a byte contains 8 bits, it can represent 28 (256) different values.
Generally, we’ll use a byte to represent numeric values in the range 0..255,
signed numbers in the range —128..+127 (see Section 2.8), ASCII/IBM
character codes, and other special data types requiring no more than 256
different values. Many data types have fewer than 256 items, so 8 bits is
usually sufficient.

Because the 80x86 is a byte-addressable machine, it turns out to be more
efficient to manipulate a whole byte than an individual bit or nibble. For this
reason, most programmers use a whole byte to represent data types that
require no more than 256 items, even if fewer than 8 bits would suffice.

For example, we’ll often represent the boolean values true and false by
00000001, and 00000000y respectively.

Probably the most important use for a byte is holding a character value.
Characters typed at the keyboard, displayed on the screen, and printed on
the printer all have numeric values. To communicate with the rest of the



world, PCs typically use a variant of the ASCII character set. There are 128
defined codes in the ASCII character set.

Because bytes are the smallest unit of storage in the 80x86 memory
space, bytes also happen to be the smallest variable you can create in an
HLA program. As you saw in the last chapter, you can declare an 8-bit signed
integer variable using the int8 data type. Because int8 objects are signed, you
can represent values in the range —128..+127 using an int8 variable. You
should only store signed values into int8 variables; if you want to create an
arbitrary byte variable, you should use the byte data type, as follows:

static
byteVar: byte;

The byte data type is a partially untyped data type. The only type infor-
mation associated with a byte object is its size (1 byte). You may store any 8-bit
value (small signed integers, small unsigned integers, characters, and the
like) into a byte variable. It is up to you to keep track of the type of object
you’ve put into a byte variable.

2.3.4 Words

A word is a group of 16 bits. We’ll number the bits in a word from 0 to 15, as
Figure 2-3 shows. Like the byte, bit 0 is the low-order bit. For words, bit 15 is
the high-order bit. When referencing the other bits in a word, we’ll use their
bit position number.

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 O

Figure 2-3: Bit numbers in a word

Notice that a word contains exactly 2 bytes. Bits 0..7 form the low-order
byte, and bits 8..15 form the high-order byte (see Figure 2-4).

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 O

H.O. Byte L.O. Byte

Figure 2-4: The two bytes in a word

Of course, a word may be further broken down into four nibbles, as shown
in Figure 2-5. Nibble 0 is the low-order nibble in the word, and nibble 3 is the
high-order nibble of the word. We’ll simply refer to the other two nibbles as
nibble 1 or nibble 2.
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15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 O

Nibble 3 Nibble 2 Nibble 1 Nibble O
H.O. Nibble L.O. Nibble

Figure 2-5: Nibbles in a word

With 16 bits, you can represent 2'° (65,536) different values. These
could be the values in the range 0..65,535 or, as is usually the case, the
signed values —32,768..+32,767, or any other data type with no more than
65,536 values. The three major uses for words are short signed integer
values, short unsigned integer values, and Unicode characters.

Words can represent integer values in the range 0..65,535 or
-32,768..32,767. Unsigned numeric values are represented by the binary
value corresponding to the bits in the word. Signed numeric values use the
two’s complement form for numeric values (see Section 2.8). As Unicode
characters, words can represent up to 65,536 different characters, allowing
the use of non-Roman character sets in a computer program. Unicode is an
international standard, like ASCII, that allows computers to process non-
Roman characters such as Asian, Greek, and Russian characters.

As with bytes, you can also create word variables in an HLA program.
Of course, in the last chapter you saw how to create 16-bit signed integer
variables using the int16 data type. To create an arbitrary word variable, just
use the word data type, as follows:

static
w: word;

2.3.5 Double Words

A double word is exactly what its name implies, a pair of words. Therefore, a
double-word quantity is 32 bits long, as shown in Figure 2-6.

31 23 15 7 0
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 2-6: Bit numbers in a double word

Naturally, this double word can be divided into a high-order word and a
low-order word, four different bytes, or eight different nibbles (see Figure 2-7).
Double words (dwords) can represent all kinds of different things. A
common item you will represent with a double word is a 32-bit integer value

(that allows unsigned numbers in the range 0..4,294,967,295 or signed
numbers in the range —2,147,483,648..2,147,483,647). 32-bit floating-point
values also fit into a double word. Another common use for double-word
objects is to store pointer values.



31 23 15 7 0

H.O. Word L.O. Word
31 23 15 7 0
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEn
H.O. Byte Byte 2 Byte 1 L.O. Byte
31 23 15 7 0
LI TP T T TIPTPP P PTIP TP P P T ITTTTd
Nibble 7 6 5 4 3 2 1 0
H.O. L.O

Figure 2-7: Nibbles, bytes, and words in a double word

In Chapter 1, you saw how to create 32-bit signed integer variables using
the int32 data type. You can also create an arbitrary double-word variable
using the dword data type, as the following example demonstrates:

static
d: dword;

2.3.6 Quad Words and Long Words

Obviously, we can keep on defining larger and larger word sizes. However,
the 80x86 supports only certain native sizes, so there is little reason to keep
on defining terms for larger and larger objects. Although bytes, words, and
double words are the most common sizes you’ll find in 80x86 programs,
quad word (64-bit) values are also important because certain floating-point
data types require 64 bits. Likewise, the SSE/MMX instruction set of modern
80x86 processors can manipulate 64-bit values. In a similar vein, long-word
(128-bit) values are also important because the SSE instruction set on later
80x86 processors can manipulate 128-bit values. HLA allows the declaration
of 64- and 128-bit values using the gqword and lword types, as follows:

static
q :qword;
1 :lword;

Note that you may also define 64-bit and 128-bit integer values using
HLA declarations like the following:

static
i64 :int64;
128 :int128;
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However, you may not directly manipulate 64-bit and 128-bit integer
objects using standard instructions like mov, add, and sub because the standard
80x86 integer registers process only 32 bits at a time. In Chapter 8, you will
see how to manipulate these extended-precision values.

2.4 Arithmetic Operations on Binary and Hexadecimal
Numbers

Chapter 2

There are several operations we can perform on binary and hexadecimal
numbers. For example, we can add, subtract, multiply, divide, and perform
other arithmetic operations. Although you needn’t become an expert at it,
you should be able to, in a pinch, perform these operations manually using
a piece of paper and a pencil. Having just said that you should be able to
perform these operations manually, the correct way to perform such arith-
metic operations is to have a calculator that does them for you. There are
several such calculators on the market; the following list shows some of the
manufacturers of hexadecimal calculators (in 2010):

e Casio
e Hewlett-Packard
e Sharp

e Texas Instruments

This list is by no means exhaustive. Other calculator manufacturers
probably produce these devices as well. The Hewlett-Packard devices are
arguably the best of the bunch. However, they are more expensive than the
others. Sharp and Casio produce units that sell for well under fifty dollars. If
you plan on doing any assembly language programming at all, owning one of
these calculators is essential.

To understand why you should spend the money on a calculator, consider
the following arithmetic problem:

$9
+ $1

You’re probably tempted to write in the answer $10 as the solution to this
problem. But that is not correct! The correct answer is 10, which is $A, not 16,
which is $10. A similar problem exists with the following subtraction problem:

$10
- $1

You’'re probably tempted to answer $9 even though the correct answer is
$F. Remember, this problem is asking, “What is the difference between 16
and 1?” The answer, of course, is 15, which is $F.

Even if these two problems don’t bother you, in a stressful situation your
brain will switch back into decimal while you’re thinking about something



else and you’ll produce the incorrect result. Moral of the story—if you must
do an arithmetic computation using hexadecimal numbers by hand, take
your time and be careful about it. Either that, or convert the numbers to
decimal, perform the operation in decimal, and convert them back to
hexadecimal.

2.5 A Note About Numbers vs. Representation

Many people confuse numbers and their representation. A common question
beginning assembly language students ask is, “I have a binary number in the
EAX register; how do I convert that to a hexadecimal number in the EAX
register?” The answer is, “You don’t.” Although a strong argument could be
made that numbers in memory or in registers are represented in binary, it’s
best to view values in memory or in a register as abstract numeric quantities.
Strings of symbols like 128, $80, or %1000_0000 are not different numbers;
they are simply different representations for the same abstract quantity that
we refer to as “one hundred twenty-eight.” Inside the computer, a number is
a number regardless of representation; the only time representation matters
is when you input or output the value in a human-readable form.

Human-readable forms of numeric quantities are always strings of
characters. To print the value 128 in human-readable form, you must convert
the numeric value 128 to the three-character sequence 1 followed by 2
followed by 8. This would provide the decimal representation of the numeric
quantity. If you prefer, you could convert the numeric value 128 to the three-
character sequence $80. It’s the same number, but we’ve converted it to a
different sequence of characters because (presumably) we wanted to view the
number using hexadecimal representation rather than decimal. Likewise, if
we want to see the number in binary, then we must convert this numeric
value to a string containing a 1 followed by seven Os.

By default, HLA displays all byte, word, dword, qword, and lword variables
using the hexadecimal numbering system when using the stdout.put routine.
Likewise, HLA’s stdout.put routine will display all register values in hexa-
decimal form. Consider the program in Listing 2-1, which converts values
input as decimal numbers to their hexadecimal equivalents.

program ConvertToHex;
#include( "stdlib.hhf" )
static

value: int32;

begin ConvertToHex;

stdout.put( "Input a decimal value:" );
stdin.get( value );
mov( value, eax );
stdout.put( "The value ", value,

converted to hex is $", eax, nl );

end ConvertToHex;

Listing 2-1: Decimal-to-hexadecimal conversion program
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In a similar fashion, the default input base is also hexadecimal for
registers and byte, word, dword, qword, or lword variables. The program in
Listing 2-2 is the converse of the one in Listing 2-1; it inputs a hexadecimal
value and outputs it as decimal.

program ConvertToDecimal;
#include( "stdlib.hhf" )
static

value: int32;

begin ConvertToDecimal;

stdout.put( "Input a hexadecimal value: " );

stdin.get( ebx );

mov( ebx, value );

stdout.put( "The value $", ebx, " converted to decimal is

, value, nl );

end ConvertToDecimal;

Listing 2-2: Hexadecimal-to-decimal conversion program

Just because the HLA stdout.put routine chooses decimal as the default
output base for int8, int16, and int32 variables doesn’t mean that these
variables hold decimal numbers. Remember, memory and registers hold
numeric values, not hexadecimal or decimal values. The stdout.put routine
converts these numeric values to strings and prints the resulting strings. The
choice of hexadecimal versus decimal output was a design choice in the HLA
language, nothing more. You could very easily modify HLA so that it outputs
registers and byte, word, dword, qword, or lword variables as decimal values rather
than as hexadecimal. If you need to print the value of a register or byte, word,
or dword variable as a decimal value, simply call one of the putiX routines to do
this. The stdout.puti8 routine will output its parameter as an 8-bit signed
integer. Any 8-bit parameter will work. So you could pass an 8-bit register, an
int8 variable, or a byte variable as the parameter to stdout.puti8 and the result
will always be decimal. The stdout.puti16 and stdout.puti32 routines provide
the same capabilities for 16-bit and 32-bit objects. The program in Listing 2-3
demonstrates the decimal conversion program (Listing 2-2) using only the
EBX register (that is, it does not use the variable ivalue).

program ConvertToDecimal2;
#include( "stdlib.hhf" )
begin ConvertToDecimal2;

stdout.put( "Input a hexadecimal value: " );

stdin.get( ebx );

stdout.put( "The value $", ebx, " converted to decimal is " );
stdout.puti32( ebx );

stdout.newln();

end ConvertToDecimal2;

Listing 2-3: Variable-less hexadecimal-to-decimal converter



Note that HLA’s stdin.get routine uses the same default base for input
as stdout.put uses for output. That is, if you attempt to read an int8, int16,
or int32 variable, the default input base is decimal. If you attempt to read a
register or byte, word, dword, qword, or lword variable, the default input base is
hexadecimal. If you want to change the default input base to decimal when
reading a register or a byte, word, dword, qword, or lword variable, then you can
use stdin.geti8, stdin.geti16, stdin.geti32, stdin.geti64, or stdin.geti128.

If you want to go in the opposite direction, that is you want to input or
output an int8, int16, int32, int64, or int128 variable as a hexadecimal value,
you can call the stdout.puth8, stdout.puth16, stdout.puth32, stdout.puthé4,
stdout.puth128, stdin.geth8, stdin.geth16, stdin.geth32, stdin.geth64, or
stdin.geth128 routines. The stdout.puth8, stdout.puth16, stdout.puth32,
stdout.puth64, and stdout.puth128 routines write 8-bit, 16-bit, 32-bit, 64-bit,
or 128-bit objects as hexadecimal values. The stdin.geth8, stdin.geth16,
stdin.geth32, stdin.geth64, and stdin.geth128 routines read 8-, 16-, 32-, 64-,
and 128-bit values, respectively; they return their results in the AL, AX, or
EAX registers (or in a parameter location for 64-bit and 128-bit values). The
program in Listing 2-4 demonstrates the use of a few of these routines:

program HexIO;
#include( "stdlib.hhf" )

static
i32: int32;

begin HexIO;

stdout.put( "Enter a hexadecimal value: " );
stdin.geth32();

mov( eax, i32 );

stdout.put( "The value you entered was $" );
stdout.puth32( 132 );

stdout.newln();

end HexIO;

Listing 2-4: Demonstration of stdin.geth32 and stdout.puth32

2.6 Logical Operations on Bits

There are four primary logical operations we’ll do with hexadecimal and
binary numbers: and, or, xor (exclusive-or), and not. Unlike for the arithmetic
operations, a hexadecimal calculator isn’t necessary to perform these oper-
ations. It is often easier to do them by hand than to use an electronic device
to compute them. The logical and operation is a dyadic? operation (meaning

2Many texts call this a binary operation. The term dyadic means the same thing and avoids the
confusion with the binary numbering system.
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it accepts exactly two operands). These operands are individual binary bits.
The and operation is:

0 and 0
0 and 1
1 and 0
1 and 1

[}
» O O O

A compact way to represent the logical and operation is with a truth table.
A truth table takes the form shown in Table 2-2.

Table 2-2: and Truth Table

and 0 1
0 0 0
1 0 1

This is just like the multiplication tables you’ve encountered in school.
The values in the left column correspond to the leftmost operand of the and
operation. The values in the top row correspond to the rightmost operand of
the and operation. The value located at the intersection of the row and column
(for a particular pair of input values) is the result of logically anding those two
values together.

In English, the logical and operation is, “If the first operand is 1 and the
second operand is 1, the result is 1; otherwise the result is 0.” We could also
state this as, “If either or both operands are 0, the resultis 0.”

One important fact to note about the logical and operation is that you
can use it to force a 0 result. If one of the operands is 0, the result is always 0
regardless of the other operand. In the truth table above, for example, the
row labeled with a 0 input contains only 0s, and the column labeled with a 0
contains only 0 results. Conversely, if one operand contains a 1, the result is
exactly the value of the second operand. These results of the and operation
are very important, particularly when we want to force bits to 0. We will inves-
tigate these uses of the logical and operation in the next section.

The logical or operation is also a dyadic operation. Its definition is:

0or 0=
Oor 1=
lor 0=
lor1i-=

A = =)

The truth table for the or operation takes the form appearing in Table 2-3.

Table 2-3: or Truth Table

or 0 1
0 0 1
1 1 1




Colloquially, the logical or operation is, “If the first operand or the
second operand (or both) is 1, the result is 1; otherwise the resultis 0.”
This is also known as the ¢nclusive-or operation.

If one of the operands to the logical or operation is a 1, the result is
always 1 regardless of the second operand’s value. If one operand is 0, the
result is always the value of the second operand. Like the logical and oper-
ation, this is an important side effect of the logical or operation that will
prove quite useful.

Note that there is a difference between this form of the inclusive logical
or operation and the standard English meaning. Consider the phrase “I am
going to the store orI am going to the park.” Such a statement implies that
the speaker is going to the store or to the park but not to both places. There-
fore, the English version of logical or is slightly different from the inclusive-or
operation; indeed, this is the definition of the exclusive-or operation.

The logical xor (exclusive-or) operation is also a dyadic operation. Its
definition follows:

0 xor O
0 xor 1
1 xor O
1 xor 1

[} [} n
o r B O

The truth table for the xor operation takes the form shown in Table 2-4.

Table 2-4: xor Truth Table

Xor 0 1
0 0 1
1 1 0

In English, the logical xor operation is, “If the first operand or the
second operand, but not both, is 1, the result is 1; otherwise the result is 0.”
Note that the exclusive-or operation is closer to the English meaning of the
word or than is the logical or operation.

If one of the operands to the logical exclusive-or operation is a 1, the
result is always the inverse of the other operand; that is, if one operand is 1,
the result is 0 if the other operand is 1, and the result is 1 if the other operand
is 0. If the first operand contains a 0, then the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

The logical not operation is a monadic operation (meaning it accepts
only one operand):

not 0
not 1

n
o -

The truth table for the not operation appears in Table 2-5.
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Table 2-5: not Truth Table

not 0 1
1 0

2.7 Logical Operations on Binary Numbers and Bit Strings

Chapter 2

The previous section defines the logical functions for single-bit operands.
Because the 80x86 uses groups of 8, 16, or 32 bits, we need to extend the
definition of these functions to deal with more than 2 bits. Logical functions
on the 80x86 operate on a bit-by-bit (or bitwise) basis. Given two values, these
functions operate on bit 0, producing bit 0 of the result. They operate on
bit 1 of the input values, producing bit 1 of the result, and so on. For example,
if you want to compute the logical and of the following two 8-bit numbers, you
would perform the logical and operation on each column independently of
the others:

%1011_0101
%1110 1110

%1010_0100

You may apply this bit-by-bit calculation to the other logical functions
as well.

Because we’ve defined logical operations in terms of binary values, you’ll
find it much easier to perform logical operations on binary values than on
other representations. Therefore, if you want to perform a logical operation
on two hexadecimal numbers, you should convert them to binary first. This
applies to most of the basic logical operations on binary numbers (e.g., and,
or, xor, etc.).

The ability to force bits to 0 or 1 using the logical and/or operations and
the ability to invert bits using the logical xor operation are very important
when working with strings of bits (e.g., binary numbers). These operations
let you selectively manipulate certain bits within some bit string while leaving
other bits unaffected. For example, if you have an 8-bit binary value X and
you want to guarantee that bits 4..7 contain 0s, you could logically and the
value X with the binary value %0000_1111. This bitwise logical and operation
would force the H.O. 4 bits to 0 and pass the L.O. 4 bits of X unchanged.
Likewise, you could force the L.O. bit of X to 1 and invert bit 2 of X by
logically oring X with %0000_0001 and logically exclusive-oring X with
%0000_0100, respectively. Using the logical and, or, and xor operations to
manipulate bit strings in this fashion is known as masking bit strings. We use
the term masking because we can use certain values (1 for and, 0 for or/xor) to
mask out or mask in certain bits from the operation when forcing bits to 0, 1,
or their inverse.

The 80x86 CPUs support four instructions that apply these bitwise
logical operations to their operands. The instructions are and, or, xor, and not.



The and, or, and xor instructions use the same syntax as the add and sub
instructions:

and( source, dest );
or( source, dest );
xor( source, dest );

These operands have the same limitations as the add operands.
Specifically, the source operand has to be a constant, memory, or register
operand, and the dest operand must be a memory or register operand. Also,
the operands must be the same size and they cannot both be memory oper-
ands. These instructions compute the obvious bitwise logical operation via
the following equation:

dest = dest operator source

The 80x86 logical not instruction, because it has only a single operand,
uses a slightly different syntax. This instruction takes the following form:

not( dest );

This instruction computes the following result:

dest = not( dest )

The dest operand must be a register or memory operand. This instruction
inverts all the bits in the specified destination operand.

The program in Listing 2-5 inputs two hexadecimal values from the user
and calculates their logical and, or, xor, and not:

program LogicalOp;
#include( "stdlib.hhf" )
begin LogicalOp;

stdout.put( "Input left operand: " );
stdin.get( eax );
stdout.put( "Input right operand: " );
stdin.get( ebx );

mov( eax, ecx );
and( ebx, ecx );
stdout.put( "$", eax, " and $", ebx, " = $", ecx, nl );

mov( eax, ecx );
or( ebx, ecx );
stdout.put( "$", eax, " or $", ebx,

"= $", ecx, nl );

mov( eax, ecx );
xor( ebx, ecx );
stdout.put( "$", eax, " xor $", ebx,

"= $", ecx, nl );
mov( eax, ecx );
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not( ecx );
stdout.put( "not $", eax,

= $", ecx, nl );
mov( ebx, ecx );

not( ecx );

stdout.put( "not $", ebx, " = $", ecx, nl );

end LogicalOp;

Listing 2-5: and, oz, xor, and not example

2.8 Signed and Unsigned Numbers

Chapter 2

Thus far, we’ve treated binary numbers as unsigned values. The binary
number ...00000 represents 0, ...00001 represents 1, ...00010 represents 2,
and so on toward infinity. What about negative numbers? Signed values have
been tossed around in previous sections, and we’ve mentioned the two’s
complement numbering system, but we haven’t discussed how to represent
negative numbers using the binary numbering system. Now it is time to
describe the two’s complement numbering system.

To represent signed numbers using the binary numbering system, we
have to place a restriction on our numbers: They must have a finite and fixed
number of bits. For our purposes, we’re going to severely limit the number
of bits to 8, 16, 32, 64, 128, or some other small number of bits.

With a fixed number of bits we can represent only a certain number of
objects. For example, with 8 bits we can represent only 256 different values.
Negative values are objects in their own right, just like positive numbers and
0; therefore, we’ll have to use some of the 256 different 8-bit values to repre-
sent negative numbers. In other words, we have to use up some of the bit
combinations to represent negative numbers. To make things fair, we’ll
assign half of the possible combinations to the negative values and half to the
positive values and 0. So we can represent the negative values —128..—1 and the
nonnegative values 0..127 with a single 8-bit byte. With a 16-bit word we can
represent values in the range —32,768..+32,767. With a 32-bit double word we
can represent values in the range —2,147,483,648..+2,147,483,647. In general,
with 7 bits we can represent the signed values in the range —2"! to +2"7'-1.

Okay, so we can represent negative values. Exactly how do we do it?
Well, there are many possible ways, but the 80x86 microprocessor uses
the two’s complement notation, so it makes sense to study that method.

In the two’s complement system, the H.O. bit of a number is a sign bit. If
the H.O. bit is 0, the number is positive; if the H.O. bit is 1, the number is
negative. Following are some examples.

For 16-bit numbers:

$8000 is negative because the H.0. bit is 1.
$100 is positive because the H.0. bit is o.
$7FFF is positive.

$FFFF is negative.

$FFF ($OFFF) is positive.




If the H.O. bit is 0, then the number is positive and uses the standard
binary format. If the H.O. bit is 1, then the number is negative and uses the
two’s complement form. To convert a positive number to its negative, two’s
complement form, you use the following algorithm:

Invert all the bits in the number; that is, apply the logical not function.
2. Add 1 to the inverted result and ignore any overflow out of the H.O. bit.

For example, to compute the 8-bit equivalent of —5:

%0000 0101 5 (in binary).
%1111_1010 Invert all the bits.
%1111_1011 Add 1 to obtain result.

If we take =5 and perform the two’s complement operation on it, we get
our original value, %0000_0101, back again, just as we expect:

%1111_1011 Two's complement for -5.
%0000_0100 Invert all the bits.
%0000 0101 Add 1 to obtain result (+5).

The following examples provide some positive and negative 16-bit
signed values:

$7FFF: +32767, the largest 16-bit positive number.
$8000: -32768, the smallest 16-bit negative number.
$4000: +16384.

To convert the numbers above to their negative counterpart (that is, to
negate them), do the following:

$7FFF: %0111_1111 1111 1111  +32,767
%1000_0000_0000_0000 Invert all the bits (8000h)
%1000_0000_0000_0001 Add 1 (8001h or -32,767)

4000h: %0100_0000_0000_0000 16,384
%1011_1111 1111 1111  Invert all the bits ($BFFF)
%1100_0000_0000_0000 Add 1 ($C000 or -16,384)

$8000: %1000_0000_0000_0000  -32,768
%0111 1111 1111 1111  Invert all the bits ($7FFF)
%1000_0000_0000_0000  Add one (8000h or -32,768)

$8000 inverted becomes $7FFF. After adding 1 we obtain $8000! Wait,
what’s going on here? —(-32,768) is —=32,768? Of course not. But the value
+32,768 cannot be represented with a 16-bit signed number, so we cannot
negate the smallest negative value.

Why bother with such a miserable numbering system? Why not use the
H.O. bit as a sign flag, storing the positive equivalent of the number in the
remaining bits? (This, by the way, is known as the one’s complement numbering
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system.) The answer lies in the hardware. As it turns out, negating values is the
only tedious job. With the two’s complement system, most other operations
are as easy as the binary system. For example, suppose you were to perform
the addition 5 + (=5). The result is 0. Consider what happens when we add
these two values in the two’s complement system:

% 0000_0101
% 1111 1011

%1_0000_0000

We end up with a carry into the ninth bit, and all other bits are 0. As it
turns out, if we ignore the carry out of the H.O. bit, adding two signed values
always produces the correct result when using the two’s complement num-
bering system. This means we can use the same hardware for signed and
unsigned addition and subtraction. This wouldn’t be the case with other
numbering systems.

Usually, you will not need to perform the two’s complement operation
by hand. The 80x86 microprocessor provides an instruction, neg (negate),
that performs this operation for you. Furthermore, hexadecimal calculators
perform this operation by pressing the change sign key (+/— or CHS).
Nevertheless, manually computing the two’s complement is easy, and you
should know how to do it.

Remember that the data represented by a set of binary bits depends
entirely on the context. The 8-bit binary value %1100_0000 could represent
a character, it could represent the unsigned decimal value 192, or it could
represent the signed decimal value —64. As the programmer, it is your respon-
sibility to define the data’s format and then use the data consistently.

The 80x86 negate instruction, neg, uses the same syntax as the not
instruction; that is, it takes a single destination operand:

neg( dest );

This instruction computes dest = -dest; and the operand has the same
limitations as for not (it must be a memory location or a register). neg oper-
ates on byte-, word-, and dword-sized objects. Because this is a signed integer
operation, it only makes sense to operate on signed integer values. The
program in Listing 2-6 demonstrates the two’s complement operation by
using the neg instruction:

program twosComplement;
#include( "stdlib.hhf" )

static
PosValue: int8;

NegValue:  1int8;

begin twosComplement;



stdout.put( "Enter an integer between 0 and 127: " );
stdin.get( PosValue );

stdout.put( nl, "Value in hexadecimal: $" );
stdout.puth8( PosValue );

mov( PosValue, al );
not( al );
stdout.put( nl, "Invert all the bits: $", al, nl );
add( 1, al );

stdout.put( "Add one: $", al, nl );

mov( al, NegValue );
stdout.put( "Result in decimal:

, NegValue, nl );

stdout.put
(
nl,
"Now do the same thing with the NEG instruction: ",
nl
);
mov( PosValue, al );
neg( al );
mov( al, NegValue );
stdout.put( "Hex result = $", al, nl );
stdout.put( "Decimal result = ", NegValue, nl );

end twosComplement;

Listing 2-6: twosComplement example

As you’ve seen previously, you use the int8, int16, int32, int64, and int128
data types to reserve storage for signed integer variables. You've also seen
routines like stdout.puti8 and stdin.geti32 that read and write signed integer
values. Because this section has made it abundantly clear that you must differ-
entiate signed and unsigned calculations in your programs, you should
probably be asking yourself, “How do I declare and use unsigned integer
variables?”

The first part of the question, “How do I declare unsigned integer vari-
ables,” is the easiest to answer. You simply use the uns8, uns16, uns32, unsé64,
and uns128 data types when declaring the variables. For example:

static
ud: unsg;
ul6: unsi6;
u32: uns32;
u64: unsb64;
u128: uns128;

As for using these unsigned variables, the HLA Standard Library provides
a complementary set of input/output routines for reading and displaying
unsigned variables. As you can probably guess, these routines include
stdout.putu8, stdout.putu16, stdout.putu32, stdout.putub4, stdout.putu128,
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stdout.putu8Size, stdout.putu16Size, stdout.putu32Size, stdout.putub4Size,
stdout.putu128Size, stdin.getu8, stdin.getu16, stdin.getu32, stdin.getu64,

and stdin.getu128. You use these routines just as you would use their signed
integer counterparts except you get to use the full range of the unsigned
values with these routines. The source code in Listing 2-7 demonstrates
unsigned I/O as well as demonstrates what can happen if you mix signed
and unsigned operations in the same calculation.

program UnsExample;
#include( "stdlib.hhf" )

static
UnsValue:  unsi16;

begin UnsExample;

stdout.put( "Enter an integer between 32,768 and 65,535: " );
stdin.getu16();
mov( ax, UnsValue );

stdout.put
(
"You entered ",
UnsValue,
". If you treat this as a signed integer, it is "
);
stdout.puti16( UnsValue );
stdout.newln();

end UnsExample;

Listing 2-7: Unsigned I/O

2.9 Sign Extension, Zero Extension, Contraction, and
Saturation

Chapter 2

Because two’s complement format integers have a fixed length, a small
problem develops. What happens if you need to convert an 8-bit two’s
complement value to 16 bits? This problem and its converse (converting a
16-bit value to 8 bits) can be accomplished via sign extension and contraction
operations.

Consider the value —64. The 8-bit two’s complement value for this num-
ber is $CO0. The 16-bit equivalent of this number is $FFCO. Now consider the
value +64. The 8- and 16-bit versions of this value are $40 and $0040, respec-
tively. The difference between the 8- and 16-bit numbers can be described
by the rule, “If the number is negative, the H.O. byte of the 16-bit number
contains $FF; if the number is positive, the H.O. byte of the 16-bit quantity
is 0.7

To extend a signed value from some number of bits to a greater number
of bits is easy; just copy the sign bit into all the additional bits in the new



format. For example, to sign extend an 8-bit number to a 16-bit number,
simply copy bit 7 of the 8-bit number into bits 8..15 of the 16-bit number. To
sign extend a 16-bit number to a double word, simply copy bit 15 into bits
16..31 of the double word.

You must use sign extension when manipulating signed values of varying
lengths. Often you’ll need to add a byte quantity to a word quantity. You
must sign extend the byte quantity to a word before the operation takes
place. Other operations (multiplication and division, in particular) may
require a sign extension to 32 bits:

Sign Extension:

8 Bits 16 Bits 32 Bits
$80 $FF80 $FFFF_FF80
$28 $0028 $0000_0028
$9A $FF9A $FFFF_FF9A
$7F $007F $0000_007F
$1020 $0000_1020
$8086 $FFFF_8086

To extend an unsigned value to a larger one, you must zero extend the
value. Zero extension is very easy—just store a 0 into the H.O. byte(s) of the
larger operand. For example, to zero extend the 8-bit value $82 to 16 bits,
you simply add a 0 to the H.O. byte, yielding $0082.

Zero Extension:

8 Bits 16 Bits 32 Bits
$80 $0080 $0000_0080
$28 $0028 $0000_0028
$9A $009A $0000_009A
$7F $007F $0000_007F
$1020 $0000_1020
$8086 $0000_8086

The 80x86 provides several instructions that will let you sign or zero
extend a smaller number to a larger number. Table 2-6 lists a group of
instructions that will sign extend the AL, AX, or EAX register.

Table 2-6: Instructions for Extending AL, AX, and EAX

Instruction Explanation

cbw(); Converts the byte in AL to a word in AX via sign extension.

awd(); Converts the word in AX to a double word in DX:AX via sign extension.

cdq(); Converts the double word in EAX to the quad word in EDX:EAX via sign
extension.

cwde(); Converts the word in AX to a double word in EAX via sign extension.

Note that the cwd (convert word to double word) instruction does not
sign extend the word in AX to the double word in EAX. Instead, it stores the
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H.O. word of the sign extension into the DX register (the notation DX:AX
tells you that you have a double-word value with DX containing the upper
16 bits and AX containing the lower 16 bits of the value). If you want the
sign extension of AX to go into EAX, you should use the cwde (convert word
to double word, extended) instruction.

The four instructions above are unusual in the sense that these are the
first instructions you’ve seen that do not have any operands. These instruc-
tions’ operands are implied by the instructions themselves.

Within a few chapters you will discover just how important these instruc-
tions are and why the cwd and cdq instructions involve the DX and EDX
registers. However, for simple sign extension operations, these instructions
have a few major drawbacks—you do not get to specify the source and desti-
nation operands, and the operands must be registers.

For general sign extension operations, the 80x86 provides an extension
of the mov instruction, movsx (move with sign extension), that copies data and
sign extends the data while copying it. The movsx instruction’s syntax is very
similar to the mov instruction:

movsx( source, dest );

The big difference in syntax between this instruction and the mov
instruction is the fact that the destination operand must be larger than
the source operand. That is, if the source operand is a byte, the destination
operand must be a word or a double word. Likewise, if the source operand is
a word, the destination operand must be a double word. Another difference
is that the destination operand has to be a register; the source operand,
however, can be a memory location.” The movsx instruction does not allow
constant operands.

To zero extend a value, you can use the movzx instruction. It has the same
syntax and restrictions as the movsx instruction. Zero extending certain 8-bit
registers (AL, BL, CL, and DL) into their corresponding 16-bit registers is
easily accomplished without using movzx by loading the complementary H.O.
register (AH, BH, CH, or DH) with 0. Obviously, to zero extend AX into
DX:AX or EAX into EDX:EAX, all you need to do is load DX or EDX with 0.*

The sample program in Listing 2-8 demonstrates the use of the sign
extension instructions.

program signExtension;
#include( "stdlib.hhf" )

static
i8: int8;
i16: int16;
i32: int32;

% This doesn’t turn out to be much of a limitation because sign extension almost always precedes
an arithmetic operation that must take place in a register.

* Zero extending into DX:AX or EDX:EAX is just as necessary as the CWD and CDQ instructions,
as you will eventually see.



begin signExtension;

stdout.put( "Enter a small negative number: " );
stdin.get( i8 );

stdout.put( nl, "Sign extension using CBW and CWDE:", nl, nl );

mov( i8, al );
stdout.put( "You entered ", i8, " ($", al, ")", nl);

cbw();
mov( ax, i16 );
stdout.put( "16-bit sign extension: ", i16, " ($", ax, ")", nl );

cwde();
mov( eax, i32 );
stdout.put( "32-bit sign extension: ", i32, " ($", eax, ")", nl);

stdout.put( nl, "Sign extension using MOVSX:", nl, nl );

movsx( i8, ax );

mov( ax, 116 );

stdout.put( "16-bit sign extension: ", i16, " ($", ax, ")", nl );
movsx( i8, eax );

mov( eax, 132 );

stdout.put( "32-bit sign extension: ", i32, " ($", eax, ")", nl );

end signExtension;

Listing 2-8: Sign extension instructions

Sign contraction, converting a value with some number of bits to the
identical value with a fewer number of bits, is a little more troublesome. Sign
extension never fails. Given an m-bit signed value, you can always convert it
to an n-bit number (where n > m) using sign extension. Unfortunately, given
an n-bit number, you cannot always convert it to an m-bit number if m < n.
For example, consider the value —448. As a 16-bit signed number, its hexa-
decimal representation is $fE40. Unfortunately, the magnitude of this number
is too large for an 8-bit value, so you cannot sign contract it to 8 bits. This is
an example of an overflow condition that occurs upon conversion.

To properly sign contract a value, you must look at the H.O. byte(s) that
you want to discard. The H.O. bytes must all contain either 0 or $FF. If you
encounter any other values, you cannot contract it without overflow. Finally,
the H.O. bit of your resulting value must match every bit you’ve removed
from the number. Here are some examples (16 bits to 8 bits):

$FF80 can be sign contracted to $80.
$0040 can be sign contracted to $40.
$FE40 cannot be sign contracted to 8 bits.
$0100 cannot be sign contracted to 8 bits.
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Another way to reduce the size of an integer is by saluration. Saturation is
useful in situations where you must convert a larger object to a smaller object,
and you’re willing to live with possible loss of precision. To convert a value via
saturation you simply copy the larger value to the smaller value if it is not
outside the range of the smaller object. If the larger value is outside the
range of the smaller value, then you clip the value by setting it to the largest
(or smallest) value within the range of the smaller object.

For example, when converting a 16-bit signed integer to an 8-bit signed
integer, if the 16-bit value is in the range —128..+127, you simply copy the
L.O. byte of the 16-bit object to the 8-bit object. If the 16-bit signed value is
greater than +127, then you clip the value to +127 and store +127 into the
8-bit object. Likewise, if the value is less than —128, you clip the final 8-bit
object to —128. Saturation works the same way when clipping 32-bit values to
smaller values. If the larger value is outside the range of the smaller value,
then you simply set the smaller value to the value closest to the out-of-range
value that you can represent with the smaller value.

Obviously, if the larger value is outside the range of the smaller value,
then there will be a loss of precision during the conversion. While clipping
the value to the limits the smaller object imposes is never desirable, some-
times this is acceptable because the alternative is to raise an exception or
otherwise reject the calculation. For many applications, such as audio or
video processing, the clipped result is still recognizable, so this is a reason-
able conversion.

2.10 Shifts and Rotates

Chapter 2

Another set of logical operations that apply to bit strings is the shift and
rotate operations. These two categories can be further broken down into left
shifts, left rotates, right shifis, and right rotates. These operations turn out to be
extremely useful.

The left-shift operation moves each bit in a bit string one position to the
left (Figure 2-8 provides an example of an 8-bit shift).

7 6 5 4 3 2 1 0

- - - - - - -

Figure 2-8: Shiftleft operation

Bit 0 moves into bit position 1, the previous value in bit position 1 moves
into bit position 2, and so on. There are, of course, two questions that naturally
arise: “What goes into bit 0?” and “Where does the high-order bit go?” We’ll
shift a 0 into bit 0, and the previous value of the high-order bit will become
the carry out of this operation.

The 80x86 provides a shift-left instruction, shl, that performs this useful
operation. The syntax for the shl instruction is:

shl( count, dest );




The count operand is either CL or a constant in the range 0..n, where n
is one less than the number of bits in the destination operand (for example,
n = 7 for 8-bit operands, n = 15 for 16-bit operands, and » = 31 for 32-bit
operands). The dest operand is a typical destination operand. It can be
either a memory location or a register.

When the count operand is the constant 1, the shl instruction does the
operation shown in Figure 2-9.

H.O. Bit 4 3 2 1

0
C|l- - - . - < - < <l—+—0

Figure 2-9: Shiftleft operation

In Figure 2-9, the Crepresents the carry flag. That is, the H.O. bit shifted
out of the operand moves into the carry flag. Therefore, you can test for over-
flow after a sh1( 1, dest ); instruction by testing the carry flag immediately
after executing the instruction (e.g., by using if( @c ) then... or if( @nc )
then...).

Intel’s literature suggests that the state of the carry flag is undefined if
the shift count is a value other than 1. Usually, the carry flag contains the
last bit shifted out of the destination operand, but Intel doesn’t seem to
guarantee this.

Note that shifting a value to the left is the same thing as multiplying it by its
radix. For example, shifting a decimal number one position to the left (adding
a 0 to the right of the number) effectively multiplies it by 10 (the radix):

1234 shl 1 = 12340

(shl 1 means shift one digit position to the left.)

Because the radix of a binary number is 2, shifting it left multiplies it by 2.
If you shift a binary value to the left twice, you multiply it by 2 twice (that is,
you multiply it by 4). If you shift a binary value to the left three times, you
multiply it by 8 (2%2%2). In general, if you shift a value to the left n times,
you multiply that value by 2".

A right-shift operation works the same way, except we’re moving the data
in the opposite direction. For a byte value, bit 7 moves into bit 6, bit 6 moves
into bit 5, bit 5 moves into bit 4, and so on. During a right shift, we’ll move a
0 into bit 7, and bit 0 will be the carry out of the operation (see Figure 2-10).

7 6 5 2 1 0

4 3
o_.>_->_.>—->—+—l>—l>—l>—l> C

Figure 2-10: Shiftright operation

As you would probably expect, the 80x86 provides a shr instruction that
will shift the bits to the right in a destination operand. The syntax is the same
as the shl instruction except, of course, you specify shr rather than shl:

shr( count, dest );
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This instruction shifts a 0 into the H.O. bit of the destination operand, it
shifts the other bits one place to the right (that is, from a higher bit number to
a lower bit number). Finally, bit 0 is shifted into the carry flag. If you specify a
count of 1, the shr instruction does the operation shown in Figure 2-11.

H.O. Bit 5 4 3

2 1 0
0 -|>-|>-|>...—->—-»—-»—->—+—+—+ C

Figure 2-11: Shiftright operation

Once again, Intel’s documents suggest that shifts of more than 1 bit
leave the carry in an undefined state.

Because a left shift is equivalent to a multiplication by 2, it should come
as no surprise that a right shift is roughly comparable to a division by 2 (or,
in general, a division by the radix of the number). If you perform = right
shifts, you will divide that number by 2"

There is one problem with shift rights with respect to division: A shift
right is only equivalent to an unsigned division by 2. For example, if you shift
the unsigned representation of 254 ($FE) one place to the right, you get 127
($7F), exactly what you would expect. However, if you shift the binary repre-
sentation of —2 ($FE) to the right one position, you get 127 ($7F), which is
not correct. This problem occurs because we’re shifting a 0 into bit 7. If bit 7
previously contained a 1, we’re changing it from a negative to a positive
number. Not a good thing to do when dividing by 2.

To use the shift right as a division operator, we must define a third shift
operation: arithmetic shift right.”> An arithmetic shift right works just like the
normal shiftright operation (a logical shift right) with one exception: Instead
of shifting a 0 into the high-order bit, an arithmetic shift-right operation
copies the high-order bit back into itself; that is, during the shift operation
it does not modify the high-order bit, as Figure 2-12 shows.

7 6 5

4 3
[» l-.» - _.>_+—|> >

2 1 0

Figure 2-12: Arithmetic shiftright operation

An arithmetic shift right generally produces the result you expect. For
example, if you perform the arithmetic shift-right operation on -2 ($FE),
you get —1 ($FF). Keep one thing in mind about arithmetic shift right,
however. This operation always rounds the numbers to the closest integer
that is less than or equal to the actual resull. Based on experiences with high-
level programming languages and the standard rules of integer truncation,
most people assume this means that a division always truncates toward 0.
But this simply isn’t the case. For example, if you apply the arithmetic shift-
right operation on —1 ($FF), the resultis —1, not 0. Because —1 is less than 0,

% There is no need for an arithmetic shift left. The standard shift-left operation works for both
signed and unsigned numbers, assuming no overflow occurs.



the arithmetic shift-right operation rounds toward —1. This is not a bug in the
arithmetic shift-right operation; it just uses a different (though valid) defini-
tion of integer division.

The 80x86 provides an arithmetic shift-right instruction, sar (shift arith-
metic right). This instruction’s syntax is nearly identical to shl and shr. The
syntax is:

sar( count, dest );

The usual limitations on the count and destination operands apply. This
instruction operates as shown in Figure 2-13 if the count is 1.

H.O. Bit 5 4 3

2 1 0
m—»—-».u . —-»—-I»—-I»—-

Figure 2-13: sar( 1, dest ) operation

Y
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Once again, Intel’s documents suggest that shifts of more than 1 bit
leave the carry in an undefined state.

Another pair of useful operations are rotate left and rotate right. These
operations behave like the shift-left and shift-right operations with one major
difference: The bit shifted out from one end is shifted back in at the other
end. Figure 2-14 diagrams these operations.

7 6 5 4 3

2 1 0
|<l—<l—<l—<l—<l—+—+—+—‘

7 6
’_+_+—|>—|>—l>—l>—l>—l>|

Figure 2-14: Rotate-left and rotate-right operations

The 80x86 provides rol (rotate left) and ror (rotate right) instructions
that do these basic operations on their operands. The syntax for these two
instructions is similar to the shift instructions:

rol( count, dest );
ror( count, dest );

Once again, these instructions provide a special behavior if the shift
count is 1. Under this condition these two instructions also copy the bit
shifted out of the destination operand into the carry flag as Figures 2-15
and 2-16 show.
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H.O. Bit 5 4 3 2 1 0

- - - - - <l—+—<l—‘

C

Figure 2-15: rol( 1, dest ) operation

Note that Intel’s documents suggest that rotates of more than 1 bit leave
the carry in an undefined state.

H.O. Bit 5 4 3 2 1 0
r» > . B e —I>—+—+—+
C

Figure 2-16: ror( 1, dest ) operation

It is often more convenient for the rotate operation to shift the output
bit through the carry and shift the previous carry value back into the input bit
of the shift operation. The 80x86 rcl (rotate through carry left) and rcr
(rotate through carry right) instructions achieve this for you. These instruc-
tions use the following syntax:

rcl( count, dest );
rcr( count, dest );

As is true for the other shift and rotate instructions, the count operand is
either a constant or the CL register, and the dest operand is a memory location
or register. The count operand must be a value that is less than the number of
bits in the dest operand. For a count value of 1, these two instructions do the
rotation shown in Figure 2-17.

H.O. Bit 5 4 3 2 1 0
<l—<l—«~<l—<l—<l—<l—<l—+—+‘
C
H.O. Bit 5 4 3 2 1 0
>—|>—|>~-~—-»—-»—-»—-|>—+—+

C

Figure 2-17: rcl( 1, dest ) and rcr( 1, dest ) operations



Again, Intel’s documents suggest that rotates of more than 1 bit leave the
carry in an undefined state.

2.11 Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and dword data
types, occasionally you’ll need to work with a data type that uses some
number of bits other than 8, 16, or 32. For example, consider a date of the
form 04/02/01. It takes three numeric values to represent this date: month,
day, and year values. Months, of course, take on the values 1..12. It will
require at least 4 bits (maximum of 16 different values) to represent the
month. Days range between 1 and 31. So it will take 5 bits (maximum of 32
different values) to represent the day entry. The year value, assuming that
we’re working with values in the range 0..99, requires 7 bits (that can be used
to represent up to 128 different values). 4 + 5 + 7 = 16 bits, or 2 bytes. In
other words, we can pack our date data into 2 bytes rather than the 3 that
would be required if we used a separate byte for each of the month, day,
and year values. This saves 1 byte of memory for each date stored, which
could be a substantial saving if you need to store many dates. The bits could
be arranged as shown in Figure 2-18.

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

MM MM|[D|D|D|D[(D[Y[Y|Y|Y|[Y[Y]Y

Figure 2-18: Short packed date format (2 bytes)

MMMM represents the 4 bits making up the month value, DDDDD
represents the 5 bits making up the day, and YYYYYYY is the 7 bits com-
posing the year. Each collection of bits representing a data item is a bit field.
For example, April 2, 2001, would be represented as $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101
4 2 01

Although packed values are space efficient (that is, very efficient in terms
of memory usage), they are computationally inefficient (slow!). The reason? It
takes extra instructions to unpack the data packed into the various bit fields.
These extra instructions take additional time to execute (and additional
bytes to hold the instructions); hence, you must carefully consider whether
packed data fields will save you anything. The sample program in Listing 2-9
demonstrates the effort that must go into packing and unpacking this 16-bit
date format.

program dateDemo;
#include( "stdlib.hhf" )

static
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day: uns8;
month: uns8;
year: unsg;
packedDate: word;

begin dateDemo;

stdout.put( "Enter the current month, day, and year: " );
stdin.get( month, day, year );

// Pack the data into the following bits:
//
// 151413121110 9 8 7 6 5 4 3 2 1 O
// - mmmmdddddyyyyyyy
mov( 0, ax );
mov( ax, packedDate ); // Just in case there is an error.
if( month > 12 ) then

stdout.put( "Month value is too large", nl );
elseif( month = 0 ) then

stdout.put( "Month value must be in the range 1..12", nl );
elseif( day > 31 ) then

stdout.put( "Day value is too large", nl );
elseif( day = 0 ) then

stdout.put( "Day value must be in the range 1..31", nl );
elseif( year > 99 ) then

stdout.put( "Year value must be in the range 0..99", nl );
else

mov( month, al );

shl( 5, ax );

or( day, al );

shl( 7, ax );

or( year, al );

mov( ax, packedDate );
endif;

// Okay, display the packed value:

stdout.put( "Packed data = $", packedDate, nl );
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// Unpack the date:

mov( packedDate, ax );
and( $7f, al ); // Retrieve the year value.
mov( al, year );

mov( packedDate, ax ); // Retrieve the day value.
shr( 7, ax );

and( %1_1111, al );

mov( al, day );

mov( packedDate, ax ); // Retrieve the month value.
rol( 4, ax );

and( %1111, al );

mov( al, month );

stdout.put( "The date is ", month, "/", day, "/", year, nl );

end dateDemo;

Listing 2-9: Packing and unpacking date data

Of course, having gone through the problems with Y2K (Year 2000), you
know that using a date format that limits you to 100 years (or even 127 years)
would be quite foolish at this time. If you are concerned about your software
running 100 years from now, perhaps it would be wise to use a 3-byte date
format rather than a 2-byte format. As you will see in the chapter on arrays,
however, you should always try to create data objects whose length is an
even power of 2 (1 byte, 2 bytes, 4 bytes, 8 bytes, and so on) or you will pay
a performance penalty. Hence, it is probably wise to go ahead and use 4 bytes
and pack this data into a double-word variable. Figure 2-19 shows one possible
data organization for a 4-byte date.

31 16 15 8 7 0
Year (0-65535) | Month(-12) |  Day(-3) |

Figure 2-19: long packed date format (4 bytes)

In this long packed date format we made several changes beyond simply
extending the number of bits associated with the year. First, because there
are extra bits in a 32-bit double-word variable, this format allocates extra bits
to the month and day fields. Because these two fields now consist of 8 bits
each, they can be easily extracted as a byte object from the double word. This
leaves fewer bits for the year, but 65,536 years is probably sufficient; you can
probably assume without too much concern that your software will not still
be in use 63,000 years from now when this date format will no longer work.

Of course, you could argue that this is no longer a packed date format.
After all, we needed three numeric values, two of which fit just nicely into 1
byte each and one that should probably have at least 2 bytes. Because this
“packed” date format consumes the same 4 bytes as the unpacked version,
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what is so special about this format? Well, another difference you will note
between this long packed date format and the short date format appearing in
Figure 2-18 is the fact that this long date format rearranges the bits so the Year
field is in the H.O. bit positions, the Month field is in the middle bit positions,
and the Day field is in the L.O. bit positions. This is important because it allows
you to very easily compare two dates to see if one date is less than, equal to, or
greater than another date. Consider the following code:

mov( Datel, eax ); // Assume Datel and Date2 are dword variables
if( eax > Date2 ) then // using the Long Packed Date format.

<< Do something if Date1 > Date2 >>

endif;

Had you kept the different date fields in separate variables, or organized
the fields differently, you would not have been able to compare Date1 and
Date2 in such an easy fashion. Therefore, this example demonstrates another
reason for packing data even if you don’t realize any space savings—it can
make certain computations more convenient or even more efficient (contrary
to what normally happens when you pack data).

Examples of practical packed data types abound. You could pack eight
boolean values into a single byte, you could pack two BCD digits into a byte,
and so on. Of course, a classic example of packed data is the EFLAGS register
(see Figure 2-20). This register packs nine important boolean objects (along
with seven important system flags) into a single 16-bit register. You will
commonly need to access many of these flags. For this reason, the 80x86
instruction set provides many ways to manipulate the individual bits in the
EFLAGS register. Of course, you can test many of the condition code flags
using the HLA pseudo-boolean variables such as @c, @nc, @z, and @nz in an if
statement or other statement using a boolean expression.

In addition to the condition codes, the 80x86 provides instructions that
directly affect certain flags (Table 2-7).

Table 2-7: Instructions That Affect Certain Flags

Instruction Explanation

cld(); Clears (sets to O) the direction flag.

std(); Sets (to 1) the direction flag.

cli(); Clears the interrupt disable flag.

sti(); Sets the interrupt disable flag.

cle(); Clears the carry flag.

stc(); Sets the carry flag.

amc(); Complements (inverts) the carry flag.

sahf(); Stores the AH register into the L.O. 8 bits of the EFLAGS register.
lahf(); Loads AH from the L.O. 8 bits of the EFLAGS register.




There are other instructions that affect the EFLAGS register as well;
these instructions, however, demonstrate how to access several of the packed
boolean values in the EFLAGS register. The lahf and sahf instructions, in
particular, provide a convenient way to access the L.O. 8 bits of the EFLAGS
register as an 8-bit byte (rather than as eight separate 1-bit values). See
Figure 2-20 for a layout of the EFLAGS register.

Overflow

Direction d
Interrupt————| Reserve
Trace — | for system
Sign purposes
Zero

Auxiliary Carry

Parity

Carry
Figure 2-20: EFLAGS register as packed boolean data

The lahf (load AH with the L.O. 8 bits of the EFLAGS register) and the
sahf (store AH into the L.O. byte of the EFLAGS register) use the following
syntax:

lahf();
sahf();

2.12 An Introduction to Floating-Point Arithmetic

Integer arithmetic does not let you represent fractional numeric values. There-
fore, modern CPUs support an approximation of real arithmetic: floating-
point arithmetic. A big problem with floating-point arithmetic is that it does
not follow the standard rules of algebra. Nevertheless, many programmers
apply normal algebraic rules when using floating-point arithmetic. This is a
source of defects in many programs. One of the primary goals of this section
is to describe the limitations of floating-point arithmetic so you will understand
how to use it properly.

Normal algebraic rules apply only to infinite precision arithmetic.
Consider the simple statement x := x+ 1, where x is an integer. On any
modern computer this statement follows the normal rules of algebra as long
as overflow does not occur. That is, this statement is valid only for certain values
of x (minint <= x < maxint). Most programmers do not have a problem with
this because they are well aware of the fact that integers in a program do
not follow the standard algebraic rules (e.g., 5/2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any
of the (integer) values above the maximum integer or below the minimum
integer. Floating-point values suffer from this same problem, only worse. After
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all, the integers are a subset of the real numbers. Therefore, the floating-
point values must represent the same infinite set of integers. However, there
are an infinite number of real values between any two integer values, so this
problem is infinitely worse. Therefore, as well as having to limit your values
between a maximum and minimum range, you cannot represent all the
values between those two ranges either.

To represent real numbers, most floating-point formats employ scientific
notation and use some number of bits to represent a mantissa and a smaller
number of bits to represent an exponent. The end result is that floating-point
numbers can only represent numbers with a specific number of significant
digits. This has a big impact on how floating-point arithmetic operates. To
easily see the impact of limited precision arithmetic, we will adopt a sim-
plified decimal floating-point format for our examples. Our floating-point
format will provide a mantissa with three significant digits and a decimal
exponent with two digits. The mantissa and exponents are both signed
values, as shown in Figure 2-21.

+ ex

Figure 2-21: A floating-point format

When adding and subtracting two numbers in scientific notation, we must
adjust the two values so that their exponents are the same. For example,
when adding 1.23el and 4.56e0, we must adjust the values so they have the
same exponent. One way to do this is to convert 4.56e0 to 0.456el and then
add. This produces 1.686el. Unfortunately, the result does not fit into three
significant digits, so we must either round or truncate the result to three signi-
ficant digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69el. As you can see, the lack of precision (the
number of digits or bits we maintain in a computation) affects the accuracy
(the correctness of the computation).

In the previous example, we were able to round the result because we
maintained four significant digits during the calculation. If our floating-point
calculation had been limited to three significant digits during computation,
we would have had to truncate the last digit of the smaller number, obtaining
1.68e1, a value that is even less accurate. To improve the accuracy of floating-
point calculations, it is necessary to add extra digits for use during the calcu-
lation. Extra digits available during a computation are known as guard digits
(or guard bits in the case of a binary format). They greatly enhance accuracy
during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to
worry about unless you are greatly concerned about the accuracy of your
computations. However, if you compute a value that is the result of a sequence
of floating-point operations, the error can accumulate and greatly affect the
computation itself. For example, suppose we were to add 1.23e3 to 1.00e0.
Adjusting the numbers so their exponents are the same before the addition
produces 1.23e3 + 0.001e3. The sum of these two values, even after rounding,
is 1.23e3. This might seem perfectly reasonable to you; after all, we can



maintain only three significant digits, so adding in a small value shouldn’t
affect the result at all. However, suppose we were to add 1.00e0 to 1.23e3 ten
temes. The first time we add 1.00e0 to 1.23e3 we get 1.23e3. Likewise, we get
this same result the second, third, fourth . . . and tenth times we add 1.00e0
to 1.23e3. On the other hand, had we added 1.00e0 to itself 10 times, then
added the result (1.00el) to 1.23e3, we would have gotten a different result,
1.24e3. This is an important thing to know about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.
You will get more accurate results if the relative magnitudes (that is,
the exponents) are close to one another when adding and subtracting
floating-point values. If you are performing a chain calculation involv-
ing addition and subtraction, you should attempt to group the values
appropriately.

Another problem with addition and subtraction is that you can wind
up with false precision. Consider the computation 1.23e0 — 1.22e0. This
produces 0.01e0. Although this is mathematically equivalent to 1.00e — 2,
this latter form suggests that the last two digits are exactly 0. Unfortu-
nately, we have only a single significant digit at this time. Indeed, some
floating-point unit (FPU) software packages might actually insert ran-
dom digits (or bits) into the L.O. positions. This brings up a second
important rule concerning limited precision arithmetic:

When subtracting two numbers with the same signs or adding two numbers

with different signs, the accuracy of the result may be less than the precision

available in the floating-point format.
Multiplication and division do not suffer from the same problems as
addition and subtraction because you do not have to adjust the expo-
nents before the operation; all you need to do is add the exponents
and multiply the mantissas (or subtract the exponents and divide the
mantissas). By themselves, multiplication and division do not produce
particularly poor results. However, they tend to multiply any error that
already exists in a value. For example, if you multiply 1.23e0 by 2, when
you should be multiplying 1.24e0 by 2, the result is even less accurate.
This brings up a third important rule when working with limited-
precision arithmetic:

When performing a chain of calculations involving addition, subtraction,

multiplication, and division, try to perform the multiplication and division

operations first.
Often, by applying normal algebraic transformations, you can arrange a
calculation so the multiply and divide operations occur first. For example,
suppose you want to compute x* (y+ z). Normally you would add yand z
together and multiply their sum by x. However, you will get a little more
accuracy if you transform x * (y+ z) to get x * y + x * zand compute the
result by performing the multiplications first.®

5Of course, the drawback is that you must now perform two multiplications rather than one, so
the result may be slower.
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Multiplication and division are not without their own problems.
When multiplying two very large or very small numbers, it is quite
possible for overflow or underflow to occur. The same situation occurs
when dividing a small number by a large number or dividing a large
number by a small number. This brings up a fourth rule you should
attempt to follow when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange the
multiplications so that they multiply large and small numbers together;
likewise, try to divide numbers that have the same relative magnitudes.

Comparing floating-point numbers is very dangerous. Given the inaccu-
racies present in any computation (including converting an input string
to a floating-point value), you should never compare two floating-point
values to see if they are equal. In a binary floating-point format, different
computations that produce the same (mathematical) result may differ in
their least significant bits. For example, 1.31e0 + 1.69¢0 should produce
3.00e0. Likewise, 1.50e0 + 1.50e0 should produce 3.00e0. However, if
you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0), you
might find out that these sums are not equal to one another. The test for
equality succeeds if and only if all bits (or digits) in the two operands are
exactly the same. Because this is not necessarily true after two different
floating-point computations that should produce the same result, a
straight test for equality may not work.

The standard way to test for equality between floating-point numbers
is to determine how much error (or tolerance) you will allow in a com-
parison and check to see if one value is within this error range of the
other. The usual way to do this is to use a test like the following:

if Value1 >= (Value2-error) and Value1l <= (Value2+error) then .

Another common way to handle this same comparison is to use a
statement of the form

if abs(Value1i-Value2) <= error then ..

You must exercise care when choosing the value for error. This
should be a value slightly greater than the largest amount of error that
will creep into your computations. The exact value will depend upon the
particular floating-point format you use, but more on that a little later.
Here is the final rule we will state in this section:

When comparing two floating-point numbers, always compare one value to
see if it is in the range given by the second value plus or minus some small
error value.

There are many other little problems that can occur when using floating-
point values. This text can only point out some of the major problems
and make you aware of the fact that you cannot treat floating-point
arithmetic like real arithmetic—the inaccuracies present in limited-
precision arithmetic can get you into trouble if you are not careful. A



good text on numerical analysis or even scientific computing can help
fill in the details that are beyond the scope of this text. If you are going
to be working with floating-point arithmetic, in any language, you should
take the time to study the effects of limited-precision arithmetic on your
computations.

HLA’s if statement does not support boolean expressions involving
floating-point operands. Therefore, you cannot use statements like
if( x < 3.141) then... in your programs. Chapter 6 will teach you how to
do floating-point comparisons.

2.12.1 IEEE Floating-Point Formats

When Intel planned to introduce a floating-point unit for its new 8086
microprocessor, it was smart enough to realize that the electrical engineers
and solid-state physicists who design chips were probably not the best people
to pick the best possible binary representation for a floating-point format. So
Intel went out and hired the best numerical analyst it could find to design a
floating-point format for its 8087 FPU. That person then hired two other
experts in the field, and the three of them (Kahn, Coonan, and Stone)
designed Intel’s floating-point format. They did such a good job designing
the KCS Floating-Point Standard that the IEEE organization adopted this
format for the IEEE floating-point format.”

To handle a wide range of performance and accuracy requirements, Intel
actually introduced three floating-point formats: single-precision, double-
precision, and extended-precision. The single- and double-precision formats
corresponded to C’s float and double types or FORTRAN’s real and double-
precision types. Intel intended to use extended-precision for long chains of
computations. Extended-precision contains 16 extra bits that the calculations
could use as guard bits before rounding down to a double-precision value
when storing the result.

The single-precision format uses a one’s complement 24-bit mantissa and an
8-bit excess-127 exponent. The mantissa usually represents a value from 1.0 to
just under 2.0. The H.O. bit of the mantissa is always assumed to be 1 and
represents a value just to the left of the binary point.® The remaining 23
mantissa bits appear to the right of the binary point. Therefore, the mantissa
represents the value

1. mmmmmmm mmmmmmmm mmmmmmmm

The mmmm characters represent the 23 bits of the mantissa. Keep in mind
that we are working with binary numbers here. Therefore, each position to
the right of the binary point represents a value (0 or 1) times a successive
negative power of 2. The implied 1 bit is always multiplied by 2°, which is 1.
This is why the mantissa is always greater than or equal to 1. Even if the other

" There were some minor changes to the way certain degenerate operations were handled, but
the bit representation remained essentially unchanged.

8 The binary point is the same thing as the decimal point except it appears in binary numbers
rather than decimal numbers.
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mantissa bits are all 0, the implied 1 bit always gives us the value 1%, Of course,
even if we had an almost infinite number of 1 bits after the binary point, they
still would not add up to 2. This is why the mantissa can represent values in
the range 1 to just under 2.

Although there are an infinite number of values between 1 and 2, we can
only represent 8 million of them because we use a 23-bit mantissa (the 24th bit
is always 1). This is the reason for inaccuracy in floating-point arithmetic—we
are limited to 23 bits of precision in computations involving single-precision
floating-point values.

The mantissa uses a one’s complement format rather than two’s
complement. This means that the 24-bit value of the mantissa is simply an
unsigned binary number, and the sign bit determines whether that value is
positive or negative. One’s complement numbers have the unusual property
that there are two representations for 0 (with the sign bit set or clear).
Generally, this is important only to the person designing the floating-point
software or hardware system. We will assume that the value 0 always has the
sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the exponent
portion of the floating-point format comes into play. The floating-point
format raises 2 to the power specified by the exponent and then multiplies
the mantissa by this value. The exponent is 8 bits and is stored in an excess-127
format. In excess-127 format, the exponent 2" is represented by the value 127
($7F). Therefore, to convert an exponent to excess-127 format, simply add
127 to the exponent value. The use of excess-127 format makes it easier to
compare floating-point values. The single-precision floating-point format
takes the form shown in Figure 2-22.

31 23 15 7 0
N EESSSSSSESSEEEEEEEEEEEEEEEEEEEEE
Sign  Exponent  [1] Mantissa

Bit Bits Bits

The 24th mantissa bit is
implied and is always 1.

Figure 2-22: Single-precision (32-bit) floating-point format

With a 24-bit mantissa, you will get approximately 6 % digits of precision
(¥ digit of precision means that the first six digits can all be in the range 0..9,
but the seventh digit can only be in the range 0..x, where x <9 and is generally
close to 5). With an 8-bit excess-127 exponent, the dynamic range of single-
precision floating-point numbers is approximately 2 + 128 or about 10 + 38.

Although single-precision floating-point numbers are perfectly suitable for
many applications, the dynamic range is somewhat limited and is unsuitable
for many financial, scientific, and other applications. Furthermore, during
long chains of computations, the limited accuracy of the single-precision
format may introduce serious error.

9 Actually, this isn’t necessarily true. The IEEE floating-point format supports denormalized values
where the H.O. bit is not 0. However, we will ignore denormalized values in our discussion.



The double-precision format helps overcome the problems of single-
precision floating-point. Using twice the space, the double-precision format
has an 11-bit excess-1023 exponent and a 53-bit mantissa (with an implied
H.O. bit of 1) plus a sign bit. This provides a dynamic range of about 10*3%
and 14 % digits of precision, sufficient for most applications. Double-precision
floating-point values take the form shown in Figure 2-23.

63 52 7 0
BT OTTTITTTTI7T) - T T TTTTTTTT]
Sign  Exponent  [1] Mantissa

Bit Bits Bits

The 53rd mantissa bit is
implied and is always 1.

Figure 2-23: 64-bit double-precision floating-point format

In order to help ensure accuracy during long chains of computations
involving double-precision floating-point numbers, Intel designed the
extended-precision format. The extended-precision format uses 80 bits.
Twelve of the additional 16 bits are appended to the mantissa and four of the
additional bits are appended to the end of the exponent. Unlike the single-
and double-precision values, the extended-precision format’s mantissa does
not have an implied H.O. bit, which is always 1. Therefore, the extended-
precision format provides a 64-bit mantissa, a 15-bit excess-16383 exponent,
and a 1-bit sign. The format for the extended-precision floating-point value is
shown in Figure 2-24.

79 64 7 0
- T T T 1] - (I I TT]
Sign  Exponent Mantissa

Bit Bits Bits

Figure 2-24: 80-bit extended-precision floating-point format

On the FPUs all computations are done using the extended-precision
format. Whenever you load a single or double-precision value, the FPU auto-
matically converts it to an extended-precision value. Likewise, when you store
a single or double-precision value to memory, the FPU automatically rounds
the value down to the appropriate size before storing it. By always working
with the extended-precision format, Intel guarantees a large number of
guard bits are present to ensure the accuracy of your computations.

To maintain maximum precision during computation, most computations
use normalized values. A normalized floating-point value is one whose H.O.
mantissa bit contains 1. Almost any nonnormalized value can be normalized;
shift the mantissa bits to the left and decrement the exponent until a 1 appears
in the H.O. bit of the mantissa. Remember, the exponent is a binary exponent.
Each time you increment the exponent, you multiply the floating-point value
by 2. Likewise, whenever you decrement the exponent, you divide the floating-
point value by 2. By the same token, shifting the mantissa to the left one bit
position multiplies the floating-point value by 2; likewise, shifting the mantissa
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to the right divides the floating-point value by 2. Therefore, shifting the
mantissa to the left one position and decrementing the exponent does not
change the value of the floating-point number at all.

Keeping floating-point numbers normalized is beneficial because it
maintains the maximum number of bits of precision for a computation. If
the H.O. bits of the mantissa are all 0, the mantissa has that many fewer bits
of precision available for computation. Therefore, a floating-point computa-
tion will be more accurate if it involves only normalized values.

There are two important cases where a floating-point number cannot
be normalized. Zero is one of these special cases. Obviously it cannot be
normalized because the floating-point representation for 0 has no 1 bits in
the mantissa. This, however, is not a problem because we can exactly repre-
sent the value 0 with only a single bit.

The second case is when we have some H.O. bits in the mantissa that are 0
but the biased exponent is also 0 (and we cannot decrement it to normalize
the mantissa). Rather than disallow certain small values, whose H.O. mantissa
bits and biased exponent are 0 (the most negative exponent possible), the
IEEE standard allows special denormalized values to represent these smaller
values.'” Although the use of denormalized values allows IEEE floating-point
computations to produce better results than if underflow occurred, keep in
mind that denormalized values offer less bits of precision.

2.12.2  HLA Support for Floating-Point Values

HLA provides several data types and library routines to support the use of
floating-point data in your assembly language programs. These include
built-in types to declare floating-point variables as well as routines that
provide floating-point input, output, and conversion.

Perhaps the best place to start when discussing HLA’s floating-point
facilities is with a description of floating-point literal constants. HLA
floating-point constants allow the following syntax:

e An optional + or - symbol, denoting the sign of the mantissa (if this is not
present, HLA assumes that the mantissa is positive)

e Followed by one or more decimal digits
e Optionally followed by a decimal point and one or more decimal digits

e Optionally followed by an e or E, optionally followed by a sign (+ or -)
and one or more decimal digits

Note that the decimal point or the e/E must be present in order to differ-
entiate this value from an integer or unsigned literal constant. Here are some
examples of legal literal floating-point constants:

1.234 3.75e2 -1.0 1.1e-1 1le+4 0.1 -123.456e+789 +25e0

10 The alternative would be to underflow the values to 0.



Notice that a floating-point literal constant cannot begin with a decimal
point; it must begin with a decimal digit, so you must use 0.1 to represent .1
in your programs.

HILA also allows you to place an underscore character (_) between any
two consecutive decimal digits in a floating-point literal constant. You may
use the underscore character in place of a comma (or other language-
specific separator character) to help make your large floating-point numbers
easier to read. Here are some examples:

1234 837.25 1.000.00 789 934.99 9 999.99

To declare a floating-point variable you use the real32, real64, or real8o
data types. Like their integer and unsigned brethren, the number at the end
of these data type declarations specifies the number of bits used for each
type’s binary representation. Therefore, you use real32 to declare single-
precision real values, real64 to declare double-precision floating-point values,
and real80 to declare extended-precision floating-point values. Other than
the fact that you use these types to declare floating-point variables rather
than integers, their use is nearly identical to that for int8, int16, int32, and so
on. The following examples demonstrate these declarations and their syntax:

static
fltVari: real32;
fltVaria: real32 := 2.7;
pi: real32 := 3.14159;
DblVar: real64;
DblVar2: real64 := 1.23456789e+10;
XPVar: real8o;
XPVar2: real80 := -1.0e-104;

To output a floating-point variable in ASCII form, you would use one of
the stdout.putr32, stdout.putr64, or stdout.putr8o routines. These procedures
display a number in decimal notation, that is, a string of digits, an optional
decimal point, and a closing string of digits. Other than their names, these
three routines use exactly the same calling sequence. Here are the calls and
parameters for each of these routines:

stdout.putr80( r:real80; width:uns32; decpts:uns32 );
stdout.putr64( r:real64; width:uns32; decpts:uns32 );
stdout.putr32( r:real32; width:uns32; decpts:uns32 );

The first parameter to these procedures is the floating-point value you
wish to print. The size of this parameter must match the procedure’s name
(e.g., the r parameter must be an 80-bit extended-precision floating-point
variable when calling the stdout.putr8o routine). The second parameter
specifies the field width for the output text; this is the number of print
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positions the number will require when the procedure displays it. Note that
this width must include print positions for the sign of the number and the
decimal point. The third parameter specifies the number of print positions
after the decimal point. For example:

stdout.putr32( pi, 10, 4 );

displays the value

_ _ 3.1416

(underscores represent leading spaces in this example).

Of course, if the number is very large or very small, you will want to
use scientific notation rather than decimal notation for your floating-point
numeric output. The HLA Standard Library stdout.pute32, stdout.pute64, and
stdout.pute8o routines provide this facility. These routines use the following
procedure prototypes:

stdout.pute80( r:real80; width:uns32 );
stdout.puteb4( r:real6s; width:uns32 );
stdout.pute32( r:real32; width:uns32 );

Unlike the decimal output routines, these scientific notation output
routines do not require a third parameter specifying the number of digits
after the decimal point to display. The width parameter indirectly specifies
this value because all but one of the mantissa digits always appear to the right
of the decimal point. These routines output their values in decimal notation,
similar to the following:

1.23456789e+10 -1.0e-104 1e+2

You can also output floating-point values using the HLA Standard
Library stdout.put routine. If you specify the name of a floating-point variable
in the stdout.put parameter list, the stdout.put code will output the value
using scientific notation. The actual field width varies depending on the size
of the floating-point variable (the stdout.put routine attempts to output as
many significant digits as possible, in this case). Here’s an example:

stdout.put( "XPVar2 = ", XPVar2 );

If you specify a field width, by using a colon followed by a signed integer
value, then the stdout.put routine will use the appropriate stdout.puteXX
routine to display the value. That is, the number will still appear in scientific
notation, but you get to control the field width of the output value. Like the
field width for integer and unsigned values, a positive field width right justi-
fies the number in the specified field, and a negative number left justifies the
value.



WARNING

Here is an example that prints the XPVar2 variable using 10 print positions:

stdout.put( "XPVar2 = ", XPVar2:10 );

If you wish to use stdout.put to print a floating-point value in decimal
notation, you need to use the following syntax:

Variable Name : Width : DecPts

Note that the DecPts field must be a nonnegative integer value.

When stdout.put contains a parameter of this form, it calls the corre-
sponding stdout.putrXX routine to display the specified floating-point value.
As an example, consider the following call:

stdout.put( "Pi = ", pi:5:3 );

The corresponding output is:

3.142

The HLA Standard Library provides several other useful routines you
can use when outputting floating-point values. Consult the HLA Standard
Library reference manual for more information on these routines.

The HLA Standard Library provides several routines to let you display
floating-point values in a wide variety of formats. In contrast, the HLA
Standard Library provides only two routines to support floating-point input:
stdin.getf() and stdin.get(). The stdin.getf() routine requires the use
of the 80x86 FPU stack, a hardware component that this chapter doesn’t
cover. Therefore, we’ll defer the discussion of the stdin.getf() routine until
Chapter 6. Because the stdin.get() routine provides all the capabilities of
the stdin.getf() routine, this deferral will not be a problem.

You've already seen the syntax for the stdin.get() routine; its parameter
list simply contains a list of variable names. The stdin.get() function reads
appropriate values for the user for each of the variables appearing in the
parameter list. If you specify the name of a floating-point variable, the
stdin.get() routine automatically reads a floating-point value from the user
and stores the result into the specified variable. The following example
demonstrates the use of this routine:

stdout.put( "Input a double-precision floating-point value: " );
stdin.get( Dblvar );

This section discussed how you would declare floating-point variables and how you
would input and output them. It did not discuss arithmetic. Floating-point arithmetic
is different from integer arithmetic; you cannot use the 80x86 add and sub instructions
to operate on floating-point values. Floating-point arithmetic will be the subject of
Chapter 6.
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2.13 Binary-Coded Decimal Representation

Chapter 2

Although the integer and floating-point formats cover most of the numeric
needs of an average program, there are some special cases where other
numeric representations are convenient. In this section we’ll discuss the
binary-coded decimal format because the 80x86 CPU provides a small
amount of hardware support for this data representation.

BCD values are a sequence of nibbles, with each nibble representing a
value in the range 0..9. Of course you can represent values in the range 0..15
using a nibble; the BCD format, however, uses only 10 of the possible 16
different values for each nibble.

Each nibble in a BCD value represents a single decimal digit. Therefore,
with a single byte (i.e., two digits) we can represent values containing two
decimal digits, or values in the range 0..99 (see Figure 2-25). With a word,
we can represent values having four decimal digits, or values in the range
0..9,999. Likewise, with a double word we can represent values with up to eight
decimal digits (because there are eight nibbles in a double-word value).

7 6 5 4 3 2 1 0
H.O. Nibble L.O. Nibble
(H.O. Digit) (L.O. Digit)

0.9 0.9

Figure 2-25: CD data representation in
memory

As you can see, BCD storage isn’t particularly memory efficient. For
example, an 8-bit BCD variable can represent values in the range 0..99 while
that same 8 bits, when holding a binary value, can represent values in the
range 0..255. Likewise, a 16-bit binary value can represent values in the range
0..65,535, while a 16-bit BCD value can represent only about one-sixth of those
values (0..9,999). Inefficient storage isn’t the only problem. BCD calculations
tend to be slower than binary calculations.

At this point, you’re probably wondering why anyone would ever use the
BCD format. The BCD format does have two saving graces: It’s very easy to
convert BCD values between the internal numeric representation and their
string representation; also, it’s very easy to encode multidigit decimal values
in hardware (e.g., using a thumb wheel or dial) using BCD. For these two
reasons, you're likely to see people using BCD in embedded systems (such as
toaster ovens, alarm clocks, and nuclear reactors) but rarely in general-
purpose computer software.

A few decades ago people mistakenly thought that calculations involving
BCD (or just decimal) arithmetic were more accurate than binary calcula-
tions. Therefore, they would often perform important calculations, like
those involving dollars and cents (or other monetary units) using decimal-
based arithmetic. While it is true that certain calculations can produce more
accurate results in BCD, this statement is not true in general. Indeed, for
most calculations (even those involving fixed-point decimal arithmetic), the



binary representation is more accurate. For this reason, most modern com-
puter programs represent all values in a binary form. For example, the Intel
80x86 floating-point unit supports a pair of instructions for loading and
storing BCD values. Internally, however, the FPU converts these BCD
values to binary and performs all calculations in binary. It uses BCD only
as an external data format (external to the FPU, that is). This generally
produces more accurate results and requires far less silicon than having a
separate coprocessor that supports decimal arithmetic.

2.14 Characters

Perhaps the most important data type on a personal computer is the character
data type. The term character refers to a human or machine-readable symbol
that is typically a nonnumeric entity. In general, the term character refers to
any symbol that you can normally type on a keyboard (including some symbols
that may require multiple key presses to produce) or display on a video
display. Many beginners often confuse the terms character and alphabetic
character. These terms are not the same. Punctuation symbols, numeric digits,
spaces, tabs, carriage returns (enter), other control characters, and other
special symbols are also characters. When this text uses the term character it
refers to any of these characters, not just the alphabetic characters. When
this text refers to alphabetic characters, it will use phrases like “alphabetic
characters,” “uppercase characters,” or “lowercase characters.”

Another common problem beginners have when they first encounter the
character data type is differentiating between numeric characters and num-
bers. The character 1 is different from the value 1. The computer (generally)
uses two different internal representations for numeric characters (0, 1, ..., 9)
versus the numeric values 0..9. You must take care not to confuse the two.

Most computer systems use a 1- or 2-byte sequence to encode the various
characters in binary form. Windows, Mac OS X, FreeBSD, and Linux certainly
fall into this category, using either the ASCII or Unicode encodings for char-
acters. This section will discuss the ASCII character set and the character
declaration facilities that HLA provides.

2.14.1 The ASCII Character Encoding

The ASCII (American Standard Code for Information Interchange)
character set maps 128 textual characters to the unsigned integer values
0..127 ($0..$7F). Internally, of course, the computer represents everything
using binary numbers, so it should come as no surprise that the computer
also uses binary values to represent nonnumeric entities such as characters.
Although the exact mapping of characters to numeric values is arbitrary and
unimportant, it is important to use a standardized code for this mapping
because you will need to communicate with other programs and peripheral
devices and you need to talk the same “language” as these other programs
and devices. This is where the ASCII code comes into play; it is a standard-
ized code that nearly everyone has agreed on. Therefore, if you use the
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ASCII code 65 to represent the character 'A', then you know that some
peripheral device (such as a printer) will correctly interpret this value as
the character 'A' whenever you transmit data to that device.

You should not get the impression that ASCII is the only character set
in use on computer systems. IBM uses the EBCDIC character set family on
many of its mainframe computer systems. Another common character set in
use is the Unicode character set. Unicode is an extension to the ASCII char-
acter set that uses 16 bits rather than 7 bits to represent characters. This
allows the use of 65,536 different characters in the character set, allowing the
inclusion of most symbols in the world’s different languages into a single
unified character set.

Because the ASCII character set provides only 128 different characters
and a byte can represent 256 different values, an interesting question arises:
“What do we do with the values 128..255 that one could store into a byte?”
One answer is to ignore those extra values. That will be the primary approach
of this text. Another possibility is to extend the ASCII character set and add
an additional 128 characters to it. Of course, this would tend to defeat the
whole purpose of having a standardized character set unless you could get
everyone to agree on the extensions. That is a difficult task.

When IBM first created its IBM-PC, it defined these extra 128 character
codes to contain various non-English alphabetic characters, some line-
drawing graphics characters, some mathematical symbols, and several other
special characters. Because IBM’s PC was the foundation for what we typically
call a PC today, that character set has become a pseudo-standard on all IBM-
PC compatible machines. Even on modern machines, which are not IBM-PC
compatible and cannot run early PC software, the IBM extended character
set survives. Note, however, that this PC character set (an extension of the
ASCII character set) is not universal. Most printers will not print the extended
characters when using native fonts, and many programs (particularly in non-
English-speaking countries) do not use those characters for the upper 128
codes in an 8-bit value. For these reasons, this text will generally stick to the
standard 128-character ASCII character set.

Despite the fact that it is a standard, simply encoding your data using
standard ASCII characters does not guarantee compatibility across systems.
While it’s true that an 'A' on one machine is most likely an 'A' on another
machine, there is very little standardization across machines with respect to
the use of the control characters. Indeed, of the 32 control codes plus delete,
there are only four control codes commonly supported—backspace (BS),
tab, carriage return (CR), and line feed (LF). Worse still, different machines
often use these control codes in different ways. End of lineis a particularly
troublesome example. Windows, MS-DOS, CP/M, and other systems mark
end of line by the two-character sequence CR/LF. Older Apple Macintosh
computers (Mac OS 9 and earlier) and many other systems mark the end of
a line by a single CR character. Linux, Mac OS X, FreeBSD, and other Unix
systems mark the end of a line with a single LF character. Needless to say,
attempting to exchange simple text files between such systems can be an
experience in frustration. Even if you use standard ASCII characters in all



your files on these systems, you will still need to convert the data when
exchanging files between them. Fortunately, such conversions are rather
simple.

Despite some major shortcomings, ASCII data is the standard for data
interchange across computer systems and programs. Most programs can
accept ASCII data; likewise most programs can produce ASCII data. Because
you will be dealing with ASCII characters in assembly language, it would be
wise to study the layout of the character set and memorize a few key ASCII
codes (e.g., for '0', 'A', 'a’, etc.).

The ASCII character set is divided into four groups of 32 characters. The
first 32 characters, ASCII codes 0..$1F (31), form a special set of nonprinting
characters, the control characters. We call them control characters because
they perform various printer/display control operations rather than display
symbols. Examples include carriage return, which positions the cursor to the
left side of the current line of characters;!! line feed, which moves the cursor
down one line on the output device; and backspace, which moves the cursor
back one position to the left. Unfortunately, different control characters
perform different operations on different output devices. There is very little
standardization among output devices. To find out exactly how a control
character affects a particular device, you will need to consult its manual.

The second group of 32 ASCII character codes contains various punctu-
ation symbols, special characters, and the numeric digits. The most notable
characters in this group include the space character (ASCII code $20) and
the numeric digits (ASCII codes $30..$39).

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters 'A'..'Z" lie in the range
$41..$5A (65..90). Because there are only 26 different alphabetic characters,
the remaining 6 codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes represents the
lowercase alphabetic symbols, 5 additional special symbols, and another
control character (delete). Note that the lowercase character symbols use the
ASCII codes $61..$7A. If you convert the codes for the upper- and lowercase
characters to binary, you will notice that the uppercase symbols differ from
their lowercase equivalents in exactly one bit position. For example, consider
the character codes for 'E' and 'e' appearing in Figure 2-26.

7 6 5 4 3 2 1 0
Efofr]ofofofr]o]r]

7 6 5 4 3 2 1 0
elofrfrfofofr]ofr]

Figure 2-26: ASCIl codes for E and e

" Historically, carriage return refers to the paper carriage used on typewriters. A carriage return
consisted of physically moving the carriage all the way to the right so that the next character
typed would appear at the left-hand side of the paper.
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The only place these two codes differ is in bit 5. Uppercase characters
always contain a 0 in bit 5; lowercase alphabetic characters always contain a
1 in bit 5. You can use this fact to quickly convert between upper- and lower-
case. If you have an uppercase character, you can force it to lowercase by
setting bit 5 to 1. If you have a lowercase character and you wish to force it to
uppercase, you can do so by setting bit 5 to 0. You can toggle an alphabetic
character between upper- and lowercase by simply inverting bit 5.

Indeed, bits 5 and 6 determine which of the four groups in the ASCII
character set you’re in, as Table 2-8 shows.

Table 2-8: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation
1 0 Uppercase and special
1 1 Lowercase and special

So you could, for instance, convert any upper- or lowercase (or corre-
sponding special) character to its equivalent control character by setting
bits 5 and 6 to 0.

Consider, for a moment, the ASCII codes of the numeric digit characters
appearing in Table 2-9.

Table 2-9: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal
0 48 $30
1 49 $31
2 50 $32
3 51 $33
4 52 $34
5 53 $35
6 54 $36
7 55 $37
8 56 $38
9 57 $39

The decimal representations of these ASCII codes are not very enlight-
ening. However, the hexadecimal representation of these ASCII codes reveals
something very important—the L.O. nibble of the ASCII code is the binary
equivalent of the represented number. By stripping away (i.e., setting to 0)
the H.O. nibble of a numeric character, you can convert that character code
to the corresponding binary representation. Conversely, you can convert a
binary value in the range 0..9 to its ASCII character representation by simply
setting the H.O. nibble to 3. Note that you can use the logical and operation



to force the H.O. bits to 0; likewise, you can use the logical or operation to
force the H.O. bits to %0011 (3).

Note that you cannot convert a string of numeric characters to their
equivalent binary representation by simply stripping the H.O. nibble from
each digit in the string. Converting 123 ($31 $32 $33) in this fashion yields 3
bytes: $010203; the correct value for 123 is $7B. Converting a string of digits
to an integer requires more sophistication than this; the conversion above
works only for single digits.

2.14.2  HLA Support for ASCI Characters

Although you could easily store character values in byte variables and use
the corresponding numeric equivalent ASCII code when using a character
literal in your program, such agony is unnecessary. HLA provides support
for character variables and literals in your assembly language programs.

Character literal constants in HLA take one of two forms: a single
character surrounded by apostrophes or a hash mark (#) followed by a
numeric constant in the range 0..127 (specifying the ASCII code of the
character). Here are some examples:

"A" #65 #$41 #7%0100_0001

Note that these examples all represent the same character ('A') because
the ASCII code of 'A’" is 65.

With one exception, only a single character may appear between the
apostrophes in a literal character constant. That single exception is the apos-
trophe character itself. If you wish to create an apostrophe literal constant,
place four apostrophes in a row (i.e., double up the apostrophe inside the
surrounding apostrophes):

The hash mark operator (#) must precede a legal HLA numeric constant
(either decimal, hexadecimal, or binary, as the examples above indicate). In
particular, the hash mark is not a generic character conversion function; it
cannot precede registers or variable names, only constants.

As a general rule, you should always use the apostrophe form of the char-
acter literal constant for graphic characters (that is, those that are printable
or displayable). Use the hash mark form for control characters (that are
invisible or do funny things when you print them) or for extended ASCII
characters that may not display or print properly within your source code.

Notice the difference between a character literal constant and a string
literal constant in your programs. Strings are sequences of zero or more
characters surrounded by quotation marks; characters are surrounded by
apostrophes.

It is especially important to realize that

A £ A"
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The character constant 'A' and the string containing the single character
A have two completely different internal representations. If you attempt to
use a string containing a single character where HLA expects a character
constant, HLA will report an error. Strings and string constants are the
subject of Chapter 4.

To declare a character variable in an HLA program, you use the char
data type. For example, the following declaration demonstrates how to
declare a variable named UserInput:

static
UserInput: char;

This declaration reserves 1 byte of storage that you could use to store any
character value (including 8-bit extended ASCII characters). You can also
initialize character variables as the following example demonstrates:

static
TheCharA: char := 'A";
ExtendedChar: char := #128;

Because character variables are 8-bit objects, you can manipulate them
using 8-bit registers. You can move character variables into 8-bit registers,
and you can store the value of an 8-bit register into a character variable.

The HLA Standard Library provides a handful of routines that you
can use for character I/O and manipulation; these include stdout.putc,
stdout.putcSize, stdout.put, stdin.getc, and stdin.get.

The stdout.putc routine uses the following calling sequence:

stdout.putc( charvar );

This procedure outputs the single-character parameter passed to it as a
character to the standard output device. The parameter may be any char
constant or variable, or a byte variable or register.12

The stdout.putcSize routine provides output width control when
displaying character variables. The calling sequence for this procedure is

stdout.putcSize( charvar, widthInt32, fillchar );

This routine prints the specified character (parameter c) using at least
widthInt32 print positions.' If the absolute value of widthInt32 is greater than
1, then stdout.putcSize prints the fillchar character as padding. If the value
of widthInt32 is positive, then stdout.putcSize prints the character right justified

21f you specify a byte variable or a byte-sized register as the parameter, the stdout.putc routine
will output the character whose ASCII code appears in the variable or register.

' The only time stdout.putcSize uses more print positions than you specify is when you specify 0
as the width; then this routine uses exactly one print position.
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in the print field; if widthInt32 is negative, then stdout.putcSize prints the
character left justified in the print field. Because character output is usually
left justified in a field, the widthInt32 value will normally be negative for this
call. The space character is the most common fillchar value.

You can also print character values using the generic stdout.put routine. If
a character variable appears in the stdout.put parameter list, then stdout.put
will automatically print it as a character value. For example:

stdout.put( "Character c = '", c, "'", nl );

You can read characters from the standard input using the stdin.getc
and stdin.get routines. The stdin.getc routine does not have any parameters.
It reads a single character from the standard input buffer and returns this
character in the AL register. You may then store the character value away
or otherwise manipulate the character in the AL register. The program in
Listing 2-10 reads a single character from the user, converts it to uppercase if
itis a lowercase character, and then displays the character.

program charInputDemo;
#include( "stdlib.hhf" )
begin charInputDemo;

stdout.put( "Enter a character: " );
stdin.getc();
if( al >= 'a' ) then

if( al <= 'z"' ) then
and( $5f, al );
endif;

endif;

stdout.put

(
"The character you entered, possibly ", nl,
"converted to uppercase, was "

);

stdout.putc( al );

stdout.put( "'", nl );

end charInputDemo;

Listing 2-10: Character input sample

You can also use the generic stdin.get routine to read character variables
from the user. If a stdin.get parameter is a character variable, then the
stdin.get routine will read a character from the user and store the character
value into the specified variable. Listing 2-11 is a rewrite of Listing 2-10 using
the stdin.get routine.
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program charInputDemo2;
#include( "stdlib.hhf" )
static

c:char;

begin charInputDemo2;

stdout.put( "Enter a character: " );
stdin.get(c);
if( ¢ >= 'a' ) then

if( c <= 'z" ) then
and( $5f, c );
endif;

endif;
stdout.put
(

"The character you entered, possibly ", nl,
"converted to uppercase, was '",

C,

"ty onl

);

end charInputDemo2;

Listing 2-11: stdin.get character input sample

As you may recall from the last chapter, the HLA Standard Library
buffers its input. Whenever you read a character from the standard input
using stdin.getc or stdin.get, the library routines read the next available
character from the buffer; if the buffer is empty, then the program reads a
new line of text from the user and returns the first character from that line.
If you want to guarantee that the program reads a new line of text from the
user when you read a character variable, you should call the stdin.flushInput
routine before attempting to read the character. This will flush the current
input buffer and force the input of a new line of text on the next input
(probably a stdin.getc or stdin.get call).

The end of line is problematic. Different operating systems handle the
end of line differently on output versus input. From the console device,
pressing the ENTER key signals the end of a line; however, when reading data
from a file, you get an end-of-line sequence that is a linefeed or a carriage
return/line feed pair (under Windows) or just a line feed (under Linux/
Mac OS X/FreeBSD). To help solve this problem, HLA’s Standard Library
provides an “end of line” function. This procedure returns true (1) in the
AL register if all the current input characters have been exhausted; it returns
false (0) otherwise. The sample program in Listing 2-12 demonstrates the
stdin.eoln function.



program eolnDemo;
#include( "stdlib.hhf" )
begin eolnDemo;

stdout.put( "Enter a short line of text: " );
stdin.flushInput();
repeat

stdin.getc();

stdout.putc( al );

stdout.put( "=$", al, nl );
until( stdin.eoln() );

end eolnDemo;

Listing 2-12: Testing for end of line using stdin.eoln

The HLA language and the HLA Standard Library provide many other
procedures and additional support for character objects. Chapters 4 and 11,
as well as the HLA reference documentation, describe how to use these
features.

2.15 The Unicode Character Set

Although the ASCII character set is, unquestionably, the most popular char-
acter representation on computers, it is certainly not the only format around.
For example, IBM uses the EBCDIC code on many of its mainframe and mini-
computer lines. Because EBCDIC appears mainly on IBM’s big iron and you’ll
rarely encounter it on personal computer systems, we will not consider that
character set in this text. Another character representation that is becoming
popular on small computer systems (and large ones, for that matter) is the
Unicode character set. Unicode overcomes two of ASCII’s greatest limitations:
the limited character space (i.e., a maximum of 128/256 characters in an 8-bit
byte) and the lack of international (beyond the United States) characters.

Unicode uses a 16-bit word to represent a single character. Therefore,
Unicode supports up to 65,536 different character codes. This is obviously a
huge advance over the 256 possible codes we can represent with an 8-bit byte.
Unicode is upward compatible from ASCII. Specifically, if the H.O. 9 bits
of a Unicode character contain 0, then the L.O. 7 bits represent the same
character as the ASCII character with the same character code. If the H.O.
9 bits contain some nonzero value, then the character represents some
other value. If you’re wondering why so many different character codes are
necessary, simply note that certain Asian character sets contain 4,096 char-
acters (at least their Unicode subset does).

This text will stick to the ASCII character set except for a few brief
mentions of Unicode here and there. Eventually, this text may have to
eliminate the discussion of ASCII in favor of Unicode because many new
operating systems are using Unicode internally (and converting to ASCII as
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necessary). Unfortunately, many string algorithms are not as conveniently
written for Unicode as for ASCII (especially character set functions), so we’ll
stick with ASCII in this text as long as possible.

2.16 For More Information

Chapter 2

The electronic edition of this book (on Webster at http://webster. cs.ucr.edu/
or hitp://artofasm.com/) contains some additional information on data
representation you may find useful. For general information about data
representation, you should consider reading my book Write Great Code,
Volume 1 (No Starch Press, 2004), or a textbook on data structures and
algorithms (available at any bookstore).



MEMORY ACCESS AND
ORGANIZATION

Chapters 1 and 2 show you how to declare
and access simple variables in an assembly
language program. This chapter fully explains
80x86 memory access. You will learn how to

efficiently organize your variable declarations to speed
up access to their data. This chapter will teach you about the 80x86 stack and
how to manipulate data on the stack. Finally, this chapter will teach you about
dynamic memory allocation and the Zeap.

This chapter discusses several important concepts, including:

e 80x86 memory addressing modes

e Indexed and scaled-indexed addressing modes
e Memory organization

e Memory allocation by program

e Data type coercion
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e The 80x86 stack

e Dynamic memory allocation

This chapter will teach to you make efficient use of your computer’s
memory resources.

3.1 The 80x86 Addressing Modes

Chapter 3

The 80x86 processors let you access memory in many different ways.

Until now, you’ve seen only a single way to access a variable, the so-called
displacement-only addressing mode. In this section you’ll see some additional
ways your programs can access memory using 80x86 memory addressing modes.
The 80x86 memory addressing modes provide flexible access to memory,
allowing you to easily access variables, arrays, records, pointers, and other
complex data types. Mastery of the 80x86 addressing modes is the first step
toward mastering 80x86 assembly language.

When Intel designed the original 8086 processor, it provided the
processor with a flexible, though limited, set of memory addressing modes.
Intel added several new addressing modes when it introduced the 80386
microprocessor. However, in 32-bit environments like Windows, Mac OS X,
FreeBSD, and Linux, these earlier addressing modes are not very useful;
indeed, HLA doesn’t even support the use of these older, 16-bit-only address-
ing modes. Fortunately, anything you can do with the older addressing modes
can be done with the new addressing modes. Therefore, you won’t need to
bother learning the old 16-bit addressing modes when writing code for today’s
high-performance operating systems. Do keep in mind, however, that if you
intend to work under MS-DOS or some other 16-bit operating system, you
will need to study up on those old addressing modes (see the 16-bit edition
of this book at http://webster.cs.ucr.edu/ for details).

3.1.1 80x86 Register Addressing Modes

Most 80x86 instructions can operate on the 80x86’s general-purpose register
set. By specifying the name of the register as an operand to the instruction,
you can access the contents of that register. Consider the 80x86 mov (move)
instruction:

mov( source, destination );

This instruction copies the data from the source operand to the
destination operand. The 8-bit, 16-bit, and 32-bit registers are certainly valid
operands for this instruction. The only restriction is that both operands must
be the same size. Now let’s look at some actual 80x86 mov instructions:

mov( bx, ax ); // Copies the value from bx into ax
mov( al, dl ); // Copies the value from al into dl
mov( edx, esi ); // Copies the value from edx into esi
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mov( bp, sp ); // Copies the value from bp into sp
mov( cl, dh ); // Copies the value from cl into dh
mov( ax, ax ); // Yes, this is legal!

The registers are the best place to keep variables. Instructions using the
registers are shorter and faster than those that access memory. Of course,
most computations require at least one register operand, so the register
addressing mode is very popular in 80x86 assembly code.

3.1.2 80x86 32-Bit Memory Addressing Modes

The 80x86 provides hundreds of different ways to access memory. This may
seem like quite a lot at first, but fortunately most of the addressing modes are
simple variants of one another, so they’re very easy to learn. And learn them
you should! The key to good assembly language programming is the proper
use of memory addressing modes.

The addressing modes provided by the 80x86 family include displacement
only, base, displacement plus base, base plus indexed, and displacement plus
base plus indexed. Variations on these five forms provide all the different
addressing modes on the 80x86. See, from hundreds down to five. It’s not so
bad after all!

3.1.2.1 The Displacement-Only Addressing Mode

The most common addressing mode, and the one that’s easiest to understand,
is the displacement-only (or direct) addressing mode. The displacement-only
addressing mode consists of a 32-bit constant that specifies the address of
the target location. Assuming that variable j is an int8 variable appearing at
address $8088, the instruction mov( j, al ); loads the AL register with a copy
of the byte at memory location $8088. Likewise, if int8 variable k is at address
$1234 in memory, then the instruction mov( dl, k ); stores the value in the
DL register to memory location $1234 (see Figure 3-1).

P — $8088 (Address of j)

mov( 3, al );

T S == PP

mov( dl, k );

Figure 3-1: Displacement-only (direct] addressing mode

The displacement-only addressing mode is perfect for accessing simple
scalar variables. This is named the displacement-only addressing mode
because a 32-bit constant (displacement) follows the mov opcode in memory.
On the 80x86 processors, this displacement is an offset from the beginning
of memory (that is, address 0). The examples in this chapter often access

Memory Access and Organization 113



bytes in memory. Don’t forget, however, that you can also access words and
double words on the 80x86 processors by specifying the address of their first
byte (see Figure 3-2).

| $1235
4 | $1234 (Address of k)

mov( k, ax );

-1
-

$1003
$1002

EDX $1002
$1000 (Address of m)

mov( edx, m );

Figure 3-2: Accessing a word or dword using the displacement-only
addressing mode

3.1.2.2 The Register-Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using
the register-indirect addressing modes. The term indirect means that the
operand is not the actual address, but rather the operand’s value specifies
the memory address to use. In the case of the register-indirect addressing
modes, the value held in the register is the address of the memory location to
access. For example, the instruction mov( eax, [ebx] ); tells the CPU to store
EAX’s value at the location whose address is in EBX (the square brackets
around EBX tell HLA to use the register-indirect addressing mode).

There are eight forms of this addressing mode on the 80x86. The follow-
ing instructions are examples of these eight forms:

mov( [eax], al );
mov( [ebx], al );
mov( [ecx], al );
mov( [edx], al );
mov( [edi], al );
mov( [esi], al );
mov( [ebp], al );
mov( [esp], al );

These eight addressing modes reference the memory location at the
offset found in the register enclosed by brackets (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, or ESP, respectively).

Note that the register-indirect addressing modes require a 32-bit
register. You cannot specify a 16-bit or 8-bit register when using an indirect
addressing mode.! Technically, you could load a 32-bit register with an

! Actually, the 80x86 does support addressing modes involving certain 16-bit registers, as
mentioned earlier. However, HLA does not support these modes and they are not useful
under 32-bit operating systems.
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WARNING

arbitrary numeric value and access that location indirectly using the
register-indirect addressing mode:

mov( $1234_5678, ebx );
mov( [ebx], al ); // Attempts to access location $1234_5678.

Unfortunately (or fortunately, depending on how you look at it),
this will probably cause the operating system to generate a protection fault
because it’s not always legal to access arbitrary memory locations. As it turns
out, there are better ways to load the address of some object into a register;
you’ll see how to do this shortly.

The register-indirect addressing modes have many uses. You can use them
to access data referenced by a pointer, you can use them to step through
array data, and, in general, you can use them whenever you need to modify
the address of a variable while your program is running.

The register-indirect addressing mode provides an example of an anon-
ymous variable. When using a register-indirect addressing mode, you refer to
the value of a variable by its numeric memory address (e.g., the value you
load into a register) rather than by the name of the variable—hence the
phrase anonymous variable.

HLA provides a simple operator that you can use to take the address
of a static variable and put this address into a 32-bit register. This is the &
(address-of) operator (note that this is the same symbol that C/C++ uses for
the address-of operator). The following example loads the address of variable j
into EBX and then stores EAX’s current value into j using a register-indirect
addressing mode:

mov( &j, ebx ); // Load address of j into ebx.
mov( eax, [ebx] ); // Store eax into j.

Of course, it would have been easier to store EAX’s value directly into j
rather than using two instructions to do this indirectly. However, you can easily
imagine a code sequence where the program loads one of several different
addresses into EBX prior to the execution of the mov( eax, [ebx]); statement,
thus storing EAX into one of several different locations depending on the
execution path of the program.

The & (address-of ) operator is not a general address-of operator like the & operator in
C/C++. You may apply this operator only to static variables.” You cannot apply it to
generic address expressions or other types of variables. In Section 3.13, you will learn
about theload effective address instruction that provides a general solution for
obtaining the address of some variable in memory.

2 The term static here indicates a static, readonly, or storage object.
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3.1.2.3 Indexed Addressing Modes

The indexed addressing modes use the following syntax:

mov( VarName ,
mov( VarName[ ebx ], al );
mov( VarName[ ecx ], al );
mov( VarName[ edx ], al );

[ ]
[ ]
[ ]
[ ]
mov( VarName[ edi ], al );
[ ]
[ ]
[ ]

eax al );

mov( VarName[ esi al );
mov( VarName[ ebp ], al );
mov( VarName[ esp ], al );

. e e .

VarName is the name of some variable in your program.

The indexed addressing modes compute an effective address® by add-
ing the address of the variable to the value of the 32-bit register appearing
inside the square brackets. Their sum is the actual memory address the instruc-
tion accesses. So if VarName is at address $1100 in memory and EBX contains 8,
then mov(VarName[ ebx ], al); loads the byte at address $1108 into the AL
register (see Figure 3-3).

mov( VarName[ ebx ], al );

— $1108

EBX $08 + - =
$1100  This is the
address of
VarName.

Figure 3-3: Indexed addressing mode

The indexed addressing modes are really handy for accessing elements
of arrays. You will see how to use these addressing modes for that purpose in
Chapter 4.

3.1.2.4 Variations on the Indexed Addressing Mode

There are two important syntactical variations of the indexed addressing
mode. Both forms generate the same basic machine instructions, but their
syntax suggests other uses for these variants.

The first variant uses the following syntax:

mov( [ ebx + constant ], al );
mov( [ ebx - constant ], al );

These examples use only the EBX register. However, you can use any of
the other 32-bit general-purpose registers in place of EBX. This form com-
putes its effective address by adding the value in EBX to the specified constant
or subtracting the specified constant from EBX (see Figures 3-4 and 3-5).

3 The effective address is the ultimate address in memory that an instruction will access, once all
the address calculations are complete.



mov( [ ebx + constant ], al ); [ |

constant + -

EBX

\

Figure 3-4: Indexed addressing mode using a register plus a constant

L.

mov( [ ebx - constant ], al );

Figure 3-5: Indexed addressing mode using a register minus a constant

This particular variant of the addressing mode is useful if a 32-bit
register contains the base address of a multibyte object and you wish to
access a memory location some number of bytes before or after that location.
One important use of this addressing mode is accessing fields of a record (or
structure) when you have a pointer to the record data. This addressing mode
is also invaluable for accessing automatic (local) variables in procedures (see
Chapter 5 for more details).

The second variant of the indexed addressing mode is actually a combi-
nation of the previous two forms. The syntax for this version is the following:

mov( VarName[ ebx + constant ], al );
mov( VarName[ ebx - constant ], al );

Once again, this example uses only the EBX register. You may substi-
tute any of the 32-bit general-purpose registers in lieu of EBX in these two
examples. This particular form is useful when accessing elements of an array
of records (structures) in an assembly language program (more on that in
Chapter 4).

These instructions compute their effective address by adding or subtract-
ing the constant value from VarName’s address and then adding the value in
EBX to this result. Note that HLA, not the CPU, computes the sum or differ-
ence of VarName’s address and constant. The actual machine instructions above
contain a single constant value that the instructions add to the value in EBX
at runtime. Because HLA substitutes a constant for VarName, it can reduce an
instruction of the form

mov( VarName[ ebx + constant], al );
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to an instruction of the form

mov( constanti[ ebx + constant2], al );

Because of the way these addressing modes work, this is semantically
equivalent to

mov( [ebx + (constanti + constant2)], al );

HLA will add the two constants together at compile time, effectively
producing the following instruction:

mov( [ebx + constant _sum], al );

Of course, there is nothing special about subtraction. You can easily
convert the addressing mode involving subtraction to addition by simply
taking the two’s complement of the 32-bit constant and then adding this
complemented value (rather than subtracting the original value).

3.1.2.5 Scaled-Indexed Addressing Modes

The scaled-indexed addressing modes are similar to the indexed addressing
modes with two differences: (1) The scaled-indexed addressing modes allow
you to combine two registers plus a displacement, and (2) the scaled-indexed
addressing modes let you multiply the index register by a (scaling) factor of
1, 2, 4, or 8. The syntax for these addressing modes is

VarName[ IndexReg32*scale ]
VarName[ IndexReg32*scale + displacement ]
VarName[ IndexReg32*scale - displacement ]

[ BaseReg32 + IndexReg32*scale ]
[ BaseReg32 + IndexReg32*scale + displacement ]
[ BaseReg32 + IndexReg32*scale - displacement ]

VarName[ BaseReg32 + IndexReg32*scale ]
VarName[ BaseReg32 + IndexReg32*scale + displacement ]
VarName[ BaseReg32 + IndexReg32*scale - displacement ]

In these examples, BaseReg32 represents any general-purpose 32-bit
register, IndexReg32 represents any general-purpose 32-bit register except
ESP, and scale must be one of the constants 1, 2, 4, or 8.

The primary difference between the scaled-indexed addressing modes
and the indexed addressing modes is the inclusion of the IndexReg32*scale
component. These modes compute the effective address by adding in the
value of this new register multiplied by the specified scaling factor (see
Figure 3-6 for an example involving EBX as the base register and ESI as
the index register).



[ ]
-
ESI * scale +

| -~ 1

EBX + T 7

mov( VarName[ ebx + esi*scale ], al );

Figure 3-6: Scaled-indexed addressing mode

In Figure 3-6, suppose that EBX contains $100, ESI contains $20, and
VarName is at base address $2000 in memory; then the following instruction

mov( VarName[ ebx + esi*4 + 4 ], al );

will move the byte at address $2184 ($100 + $20*4 + 4) into the AL register.

The scaled-indexed addressing modes are useful for accessing elements
of arrays whose elements are 2, 4, or 8 bytes each. These addressing modes
are also useful for access elements of an array when you have a pointer to the
beginning of the array.

3.1.2.6 Addressing Mode Wrap-up

Well, believe it or not, you’ve just learned several hundred addressing modes!
That wasn’t hard now, was it? If you’re wondering where all these modes
came from, just note that the register-indirect addressing mode isn’t a single
addressing mode but eight different addressing modes (involving the eight
different registers). Combinations of registers, constant sizes, and other
factors multiply the number of possible addressing modes on the system. In
fact, you need only memorize about two dozen forms and you’ve got it made.
In practice, you’ll use less than half the available addressing modes in any
given program (and many addressing modes you may never use at all). So
learning all these addressing modes is actually much easier than it sounds.

3.2 Runtime Memory Organization

An operating system like Mac OS X, FreeBSD, Linux, or Windows tends to
put different types of data into different sections (or segments) of memory.
Although it is possible to reconfigure memory to your choice by running the
linker and specifying various parameters, by default Windows loads an HLA
program into memory using the organization appearing in Figure 3-7 (Linux,
Mac OS X, and FreeBSD are similar, though they rearrange some of the
sections).
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High A
igh Addresses Storage (Uninitialized) Variables

Static Variables
Read-Only Data
Constants (not user accessible)

- Code (program instructions)

Heap (default size = 16MB)

Stack (default size = 16MB)
Adrs = $O | Rescrved by OS (typically 128KB)

Figure 3-7: HLA typical runtime memory organization

The operating system reserves the lowest memory addresses. Generally,
your application cannot access data (or execute instructions) at these low
addresses. One reason the operating system reserves this space is to help trap
NULL pointer references. If you attempt to access memory location 0, the
operating system will generate a general protection fault, meaning you’ve
accessed a memory location that doesn’t contain valid data. Because program-
mers often initialize pointers to NULL (0) to indicate that the pointer is not
pointing anywhere, an access of location 0 typically means that the program-
mer has made a mistake and has not properly initialized a pointer to a legal
(non-NULL) value.

The remaining six areas in the memory map hold different types of
data associated with your program. These sections of memory include the
stack section, the heap section, the code section, the readonly section, the
static section, and the storage section. Each of these memory sections
correspond to some type of data you can create in your HLA programs.
Each section is discussed in detail below.

3.2.1 The code Section

The code section contains the machine instructions that appear in an HLA
program. HLA translates each machine instruction you write into a sequence
of one or more byte values. The CPU interprets these byte values as machine
instructions during program execution.

By default, when HLA links your program it tells the system that your
program can execute instructions in the code segment and you can read data
from the code segment. Note, specifically, that you cannot write data to the
code segment. The operating system will generate a general protection fault
if you attempt to store any data into the code segment.

Remember, machine instructions are nothing more than data bytes. In
theory, you could write a program that stores data values into memory and
then transfers control to the data it just wrote, thereby producing a program
that writes itself as it executes. This possibility produces romantic visions of
Artificial Intelligence programs that modify themselves to produce some desired



result. In real life, the effect is somewhat less glamorous. Generally, self-
modifying programs are very difficult to debug because the instructions are
constantly changing behind the programmer’s back. Because most modern
operating systems make it very difficult to write self-modifying programs, we
will not consider them any further in this text.

HLA automatically stores the data associated with your machine code
into the code section. In addition to machine instructions, you can also store
data into the code section by using the following pseudo-opcodes:*

byte int8
word int16
dword in32
uns8 boolean
uns16 char
uns32

The following byte statement exemplifies the syntax for each of these
pseudo-opcodes:

byte comma_separated list of byte constants ;

Here are some examples:

boolean true;

char "A';

byte 0, 1, 2;
byte "Hello", O
word 0, 2;

int8 -5;

uns32 356789, 0;

If more than one value appears in the list of values after the pseudo-
opcode, HLA emits each successive value to the code stream. So the first byte
statement above emits 3 bytes to the code stream, the values 0, 1, and 2. If a
string appears within a byte statement, HLA emits 1 byte of data for each
character in the string. Therefore, the second byte statement above emits 6
bytes: the characters H, e, 1, 1, and o, followed by a 0 byte.

Keep in mind that the CPU will attempt to treat data you emit to the
code stream as machine instructions unless you take special care not to allow
the execution of the data. For example, if you write something like the
following:

mov( 0, ax );
byte 0,1,2,3;
add( bx, cx );

*This isn’t a complete list. HLA generally allows you to use any scalar data type name as a
statement to reserve storage in the code section. You’ll learn more about the available data
types in Chapter 4.
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your program will attempt to execute the 0, 1, 2, and 3 byte values as machine
instructions after executing the mov. Unless you know the machine code for a
particular instruction sequence, sticking such data values into the middle of
your code will generally crash your program. Typically when you place such
data in your programs, you’ll execute some code that transfers control
around the data.

3.2.2 The static Section

The static section is where you will typically declare your variables. Although
the static section syntactically appears as part of a program or procedure,
keep in mind that HLLA moves all static variables to the static section in
memory. Therefore, HLA does not sandwich the variables you declare in
the static section between procedures in the code section.

In addition to declaring static variables, you can also embed lists of data
into the static declaration section. You use the same technique to embed
data into your static section that you use to embed data into the code section:
You use the byte, word, dword, uns32, and so on pseudo-opcodes. Consider the
following example:

static
b: byte := 0;
byte 1,2,3;

u: uns32 := 1;
uns32 5,2,10;

c: char;
char 'a', 'b', 'c', 'd', 'e', 'f';

bn: boolean;
boolean true;

Data that HLA writes to the static memory segment using these pseudo-
opcodes is written to the segment after the preceding variables. For example,
the byte values 1, 2, and 3 are emitted to the static section after b’s 0 byte.
Because there aren’t any labels associated with these values, you do not
have direct access to these values in your program. You can use the indexed
addressing modes to access these extra values (examples appear in Chapter 4).

In the examples above, note that the c and bn variables do not have an
(explicit) initial value. However, if you don’t provide an initial value, HLA
will initialize the variables in the static section to all 0 bits, so HLA assigns
the NUL character (ASCII code 0) to c as its initial value. Likewise, HLA
assigns false as the initial value for bn. In particular, you should note that your
variable declarations in the static section always consume memory, even if
you haven’t assigned them an initial value.



3.2.3  The readonly Data Section

The readonly data section holds constants, tables, and other data that your
program cannot change during execution. You create read-only objects by
declaring them in the readonly declaration section. The readonly section is

very similar to the static section with three primary differences:

e The readonly section begins with the reserved word readonly rather than
static.

e All declarations in the readonly section generally have an initializer.
e The system does not allow you to store data into a readonly object while

the program is running.

Here’s an example:

readonly
pi: real32 := 3.14159;
e: real32 := 2.71;
MaxU16: uns16 := 65 535;
MaxI16: int16 := 32_767;

All readonly object declarations must have an initializer because you
cannot initialize the value under program control.” For all intents and
purposes, you can think of readonly objects as constants. However, these
constants consume memory, and other than the fact that you cannot write
data to readonly objects, they behave like static variables. Because they
behave like static objects, you cannot use a readonly object everywhere a
constant is allowed; in particular, readonly objects are memory objects, so you
cannot supply a readonly object (which you are treating like a constant) and
some other memory object as the operands to an instruction.

As with the static section, you may embed data values in the readonly
section using the byte, word, dword, and so on data declarations. For example:

readonly
roArray: byte := 0;
byte 1, 2, 3, 4, 5;
gwVal: qgword := 1;
qword 0;

3.2.4 The storage Section

The readonly section requires that you initialize all objects you declare. The
static section lets you optionally initialize objects (or leave them uninitial-
ized, in which case they have the default initial value of 0). The storage
section completes the initialization coverage: you use it to declare variables

® There is one exception you'll see in Chapter 5.
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that are always uninitialized when the program begins running. The storage
section begins with the storage reserved word and contains variable declara-
tions without initializers. Here is an example:

storage
UninitUns32: uns32;
i: int32;
character: char;
b: byte;

Linux, FreeBSD, Mac OS X, and Windows will initialize all storage objects
to 0 when they load your program into memory. However, it’s probably not
a good idea to depend on this implicit initialization. If you need an object
initialized with 0, declare it in a static section and explicitly set it to 0.

Variables you declare in the storage section may consume less disk space
in the executable file for the program. This is because HLA writes out initial
values for readonly and static objects to the executable file, but it may use a
compact representation for uninitialized variables you declare in the storage
section; note, however, that this behavior is OS- and object-module-format
dependent.

Because the storage section does not allow initialized values, you cannot
put unlabeled values in the storage section using the byte, word, dword, and so
on pseudo-opcodes.

3.2.5 The @nostorage Attribute

The @nostorage attribute lets you declare variables in the static data declara-
tion sections (i.e., static, readonly, and storage) without actually allocating
memory for the variable. The @nostorage option tells HLA to assign the
current address in a declaration section to a variable but not to allocate any
storage for the object. That variable will share the same memory address as
the next object appearing in the variable declaration section. Here is the
syntax for the @nostorage option:

variableName: varType; @nostorage;

Note that you follow the type name with @nostorage; rather than some
initial value or just a semicolon. The following code sequence provides an
example of using the @nostorage option in the readonly section:

readonly
abcd: dword; nostorage;
byte 'a’, 'b', 'c', 'd';

In this example, abcd is a double word whose L.O. byte contains 97 ('a'),
byte 1 contains 98 ('b"), byte 2 contains 99 ('c'), and the H.O. byte contains
100 ('d"). HLA does not reserve storage for the abcd variable, so HLA associates
the following 4 bytes in memory (allocated by the byte directive) with abcd.



Note that the @nostorage attribute is legal only in the static, storage, and
readonly sections (the so-called static declarations sections). HLA does not
allow its use in the var section that you’ll read about next.

3.2.6 The var Section

HLA provides another variable declaration section, the var section, that
you can use to create automatic variables. Your program will allocate storage
for automatic variables whenever a program unit (i.e., main program or
procedure) begins execution, and it will deallocate storage for automatic
variables when that program unit returns to its caller. Of course, any auto-
matic variables you declare in your main program have the same lifetime® as all
the static, readonly, and storage objects, so the automatic allocation feature
of the var section is wasted in the main program. In general, you should use
automatic objects only in procedures (see Chapter 5 for details). HLA allows
them in your main program’s declaration section as a generalization.
Because variables you declare in the var section are created at runtime,
HILA does not allow initializers on variables you declare in this section. So the
syntax for the var section is nearly identical to that for the storage section;
the only real difference in the syntax between the two is the use of the var
reserved word rather than the storage reserved word.” The following example
illustrates this:

var
vInt: int32;
vChar: char;

HILA allocates variables you declare within the var section within the
stack memory section. HLA does not allocate var objects at fixed locations;
instead, it allocates these variables in an activation record associated with
the current program unit. Chapter 5 discusses activation records in greater
detail; for now it is important only to realize that HLA programs use the EBP
register as a pointer to the current activation record. Therefore, whenever
you access a var object, HLA automatically replaces the variable name with
[EBP+displacement]. Displacement is the offset of the object within the activa-
tion record. This means that you cannot use the full scaled-indexed addressing
mode (a base register plus a scaled index register) with var objects because
var objects already use the EBP register as their base register. Although you
will not directly use the two register addressing modes often, the fact that the
var section has this limitation is a good reason to avoid using the var section
in your main program.

% The lifetime of a variable is the point from which memory is first allocated to the point the
memory is deallocated for that variable.

7Actually, there are a few other, minor, differences, but we won’t deal with those differences in
this text. See the HLA language reference manual for more details.
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3.2.7 Organization of Declaration Sections Within Your Programs

The static, readonly, storage, and var sections may appear zero or more times
between the program header and the associated begin for the main program.
Between these two points in your program, the declaration sections may
appear in any order, as the following example demonstrates:

program demoDeclarations;

static
i_static:

var
i_auto:

storage
i uninit:

readonly

i readonly:

static
j:

var
readonly
i2:

storage
c:

storage
d:

int32;

int32;

int32;

int32 := 5;

uns32;

char;

uns8 := 9;

char;

dword;

begin demoDeclarations;

<< Code goes here. >>

end demoDeclarations;

In addition to demonstrating that the sections may appear in an arbi-
trary order, this section also demonstrates that a given declaration section
may appear more than once in your program. When multiple declaration
sections of the same type (for example, the three storage sections above)
appear in a declaration section of your program, HLA combines them into

a single group.



3.3 How HLA Allocates Memory for Variables

As you’ve seen, the 80x86 CPU doesn’t deal with variables that have names
like I, Profits, and LineCnt. The CPU deals strictly with numeric addresses it
can place on the address bus like $1234_5678, $0400_1000, and $8000_CCO00.
HLA, on the other hand, does not force to you refer to variable objects

by their addresses (which is nice, because names are so much easier to
remember). This is good, but it does obscure what is really going on. In this
section, we’ll take a look at how HLA associates numeric addresses with your
variables so you’ll understand (and appreciate) the process that is taking
place behind your back.

Take another look at Figure 3-7. As you can see, the various memory
sections tend to be adjacent to one another. Therefore, if the size of one
memory section changes, then this affects the starting address of all the
following sections in memory. For example, if you add a few additional
machine instructions to your program and increase the size of the code
section, this may affect the starting address of the static section in memory,
thus changing the addresses of all your static variables. Keeping track of
variables by their numeric address (rather than by their names) is difficult
enough; imagine how much worse it would be if the addresses are constantly
shifting around as you add and remove machine instructions in your program!
Fortunately, you don’t have to keep track of variable addresses; HLA does
that bookkeeping for you.

HLA associates a current location counter with each of the three static
declaration sections (static, readonly, and storage). These location counters
initially contain 0, and whenever you declare a variable in one of the static
sections, HLA associates the current value of that section’s location counter
with the variable; HLA also bumps up the value of that location counter by
the size of the object you're declaring. As an example, assume that the
following is the only static declaration section in a program:

static
b :byte; // Location counter = 0, size =1
w :word; // Location counter = 1, size = 2
d :dword; // Location counter = 3, size = 4
q 1qword; // Location counter = 7, size = 8
1 :1word; // Location counter = 15, size = 16

// Location counter is now 31.

Of course, the runtime address of each of these variables is not the value
of the location counter. First of all, HLA adds in the base address of the
static memory section to each of these location counter values (which we
call displacements or offsets). Second, there may be other static objects in
modules that you link with your program (e.g., from the HLA Standard
Library) or even additional static sections in the same source file, and the
linker has to merge the static sections together. Hence, these offsets may
have very little bearing on the final address of these variables in memory.
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Nevertheless, one important fact remains: HLA allocates variables you
declare in a single static declaration section in contiguous memory locations.
That is, given the declaration above, w will immediately follow b in memory, d
will immediately follow w in memory, q will immediately follow d, and so on.
Generally, it’s not good coding style to assume that the system allocates
variables this way, but sometimes it’s convenient to do so.

Note that HLA allocates memory objects you declare in readonly, static,
and storage sections in completely different regions of memory. Therefore,
you cannot assume that the following three memory objects appear in
adjacent memory locations (indeed, they probably will not):

static

b :byte;
readonly

w :word := $1234;
storage

d :dword;

In fact, HLA will not even guarantee that variables you declare in
separate static (or whatever) sections are adjacent in memory, even if there
is nothing between the declarations in your code (for example, you cannot
assume that b, w, and d are in adjacent memory locations in the following
declarations, nor can you assume that they won’t be adjacent in memory):

static

b :byte;
static

w :word := $1234;
static

d :dword;

If your code requires these variables to consume adjacent memory
locations, you must declare them in the same static section.

Note that HLA handles variables you declare in the var section a little
differently than the variables you declare in one of the static sections. We’ll
discuss the allocation of offsets to var objects in Chapter 5.

3.4 HLA Support for Data Alignment

Chapter 3

In order to write fast programs, you need to ensure that you properly align
data objects in memory. Proper alignment means that the starting address
for an object is a multiple of some size, usually the size of an object if the
object’s size is a power of 2 for values up to 16 bytes in length. For objects
greater than 16 bytes, aligning the object on an 8-byte or 16-byte address
boundary is probably sufficient. For objects less than 16 bytes, aligning the
object at an address that is the next power of 2 greater than the object’s size
is usually fine. Accessing data that is not aligned at an appropriate address
may require extra time; so if you want to ensure that your program runs as
rapidly as possible, you should try to align data objects according to their size.



Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare a
byte variable, it will consume 1 byte of storage, and the next variable you
declare in that declaration section will have the address of that byte object
plus 1. If the byte variable’s address happens to be an even address, then
the variable following that byte will start at an odd address. If that following
variable is a word or double-word object, then its starting address will not be
optimal. In this section, we’ll explore ways to ensure that a variable is aligned
at an appropriate starting address based on that object’s size.

Consider the following HLA variable declarations:

static
dw: dword;
b: byte;
w: word;
dw2:  dword;
w2: word;
b2: byte;
dw3:  dword;

The first static declaration in a program (running under Windows,
Mac OS X, FreeBSD, Linux, and most 32-bit operating systems) places its vari-
ables at an address that is an even multiple of 4,096 bytes. Whatever variable
first appears in the static declaration is guaranteed to be aligned on a
reasonable address. Each successive variable is allocated at an address that is
the sum of the sizes of all the preceding variables plus the starting address of
that static section. Therefore, assuming HLA allocates the variables in the
previous example at a starting address of 4096, HLA will allocate them at the
following addresses:

// Start Adrs Length
dw: dword; // 4096 4
b: byte; // 4100 1
'K word; // 4101 2
dw2:  dword; // 4103 4
w2: word; // 4107 2
b2: byte; // 4109 1
dw3:  dword; // 4110 4

With the exception of the first variable (which is aligned on a 4KB
boundary) and the byte variables (whose alignment doesn’t matter), all
of these variables are misaligned. The w, w2, and dw2 variables start at odd
addresses, and the dw3 variable is aligned on an even address that is not a
multiple of 4.

An easy way to guarantee that your variables are aligned properly is to
put all the double-word variables first, the word variables second, and the
byte variables last in the declaration, as shown here:

static
dw: dword;
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dw2:  dword;

dw3:  dword;
W: word;
w2: word;
b: byte;
b2: byte;

This organization produces the following addresses in memory:

// Start Adrs Length
dw: dword; // 4096 4
dw2:  dword; // 4100 4
dw3:  dword; // 4104 4
w: word; !/ 4108 2
w2: word; !/ 4110 2
b: byte; // 4112 1
b2: byte; // 4113 1

As you can see, these variables are all aligned at reasonable addresses.

Unfortunately, it is rarely possible for you to arrange your variables in
this manner. While there are many technical reasons that make this align-
ment impossible, a good practical reason for not doing this is that it doesn’t
let you organize your variable declarations by logical function (that is, you
probably want to keep related variables next to one another regardless of
their size).

To resolve this problem, HLA provides the align directive. The align
directive uses the following syntax:

align( integer constant );

The integer constant must be one of the following small unsigned
integer values: 1, 2, 4, 8, or 16. If HLA encounters the align directive in a
static section, it will align the very next variable on an address that is an
even multiple of the specified alignment constant. The previous example
could be rewritten, using the align directive, as follows:

static

align( 4 );
dw: dword;
b: byte;
align( 2 );

W: word;
align( 4 );
dw2: dword;
w2: word;
b2: byte;
align( 4 );

dw3: dword;

If you’re wondering how the align directive works, it’s really quite simple.
If HLA determines that the current address (location counter value) is not
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an even multiple of the specified value, HLA will quietly emit extra bytes of
padding after the previous variable declaration until the current address in
the static section is an even multiple of the specified value. This has the
effect of making your program slightly larger (by a few bytes) in exchange
for faster access to your data. Given that your program will grow by only a
few bytes when you use this feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, you should choose
an alignment value that is equal to the size of the object you want to align.
That is, you should align words to even boundaries using an align(2); state-
ment, double words to 4-byte boundaries using align(4);, quad words to
8-byte boundaries using align(8);, and so on. If the object’s size is not a
power of 2, align it to the next higher power of 2 (up to a maximum of
16 bytes). Note, however, that you need only align real8o (and tbyte)
objects on an 8-byte boundary.

Note that data alignment isn’t always necessary. The cache architecture
of modern 80x86 CPUs actually handles most misaligned data. Therefore,
you should use the alignment directives only with variables for which speedy
access is absolutely critical. This is a reasonable space/speed trade-off.

3.5 Address Expressions

Earlier, this chapter points out that addressing modes take a couple generic
forms, including the following:

VarName[ Reg32 ]

VarName[ Reg32 + offset ]

VarName[ RegNotESP32*scale ]

VarName[ Reg32 + RegNotESP32*scale ]

VarName[ RegNotESP32*scale + offset ]
VarName[ Reg32 + RegNotESP32*scale + offset ]

Another legal form, which isn’t actually a new addressing mode but
simply an extension of the displacement-only addressing mode, is:

VarName[ offset ]

This latter example computes its effective address by adding the constant
offset within the brackets to the variable’s address. For example, the instruc-
tion mov(Address[3], al); loads the AL register with the byte in memory that is
3 bytes beyond the Address object (see Figure 3-8).

Always remember that the offset value in these examples must be a
constant. If Index is an int32 variable, then Variable[Index] is not a legal
address expression. If you wish to specify an index that varies at runtime,
then you must use one of the indexed or scaled-indexed addressing modes.

Another important thing to remember is that the offset in Address[offset]
is a byte address. Despite the fact that this syntax is reminiscent of array
indexing in a high-level language like C/C++ or Pascal, this does not
properly index into an array of objects unless Address is an array of bytes.

Memory Access and Organization 131



132

Chapter 3

A\
\
A\

mov( i[3], al );
$1002
%]OO]

[ $1000 (Address of i)

Figure 3-8: Using an address expression to access data beyond a
variable

This text will consider an address expression to be any legal 80x86 address-
ing mode that includes a displacement (i.e., variable name) or an offset. In
addition to the above forms, the following are also address expressions:

[ Reg32 + offset ]
[ Reg32 + RegNotESP32*scale + offset ]

This book will not consider the following to be address expressions
because they do not involve a displacement or offset component:

[ Reg32 ]
[ Reg32 + RegNotESP32*scale ]

Address expressions are special because those instructions containing
an address expression always encode a displacement constant as part of the
machine instruction. That is, the machine instruction contains some number
of bits (usually 8 or 32) that hold a numeric constant. That constant is the
sum of the displacement (i.e., the address or offset of the variable) plus the
offset. Note that HLA automatically adds these two values together for you
(or subtracts the offset if you use the - rather than + operator in the address-
ing mode).

Until this point, the offset in all the addressing mode examples has
always been a single numeric constant. However, HLA also allows a constant
expression anywhere an offset is legal. A constant expression consists of one or
more constant terms manipulated by operators such as addition, subtraction,
multiplication, division, modulo, and a wide variety of others. Most address
expressions, however, will involve only addition, subtraction, multiplication,
and sometimes division. Consider the following example:

mov( X[ 2*4+1 ], al );

This instruction will move the byte at address X+9 into the AL register.
The value of an address expression is always computed at compile time,
never while the program is running. When HLA encounters the instruction



above, it calculates 2 * 4 + 1 on the spot and adds this result to the base
address of X in memory. HLA encodes this single sum (base address of X plus 9)
as part of the instruction; HLA does not emit extra instructions to compute
this sum for you at runtime (which is good, because doing so would be less
efficient). Because HLA computes the value of address expressions at
compile time, all components of the expression must be constants because
HLA cannot know the runtime value of a variable while it is compiling the
program.

Address expressions are useful for accessing the data in memory beyond
a variable, particularly when you’ve used the byte, word, dword, and so on
statements in a static or readonly section to tack on additional bytes after a
data declaration. For example, consider the program in Listing 3-1.

program adrsExpressions;
#include( "stdlib.hhf" )
static
i: int8; @nostorage;
byte 0, 1, 2, 3;

begin adrsExpressions;

stdout.put

(
"1[0]=") i[O], nl,
"1[1]=") i[l]) nl,
"i[2]=", i[2], nl,
"i[3]=", i[3], nl

)s

end adrsExpressions;

Listing 3-1: Demonstration of address expressions

The program in Listing 3-1 will display the four values 0, 1, 2, and 3 as
though they were array elements. This is because the value at the address of i
is 0 (this program declares i using the @nostorage option, so i is the address of
the next object in the static section, which just happens to be the value 0
appearing as part of the byte statement). The address expression i[1] tells
HILA to fetch the byte appearing at i’s address plus 1. This is the value 1,
because the byte statement in this program emits the value 1 to the static
segment immediately after the value 0. Likewise for i[2] and i[3], this
program displays the values 2 and 3.

3.6 Type Coercion

Although HLA is fairly loose when it comes to type checking, HLA does
ensure that you specify appropriate operand sizes to an instruction. For
example, consider the following (incorrect) program:

program hasErrors;
static
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i8: int8;
i16: int16;
i32: int32;
begin hasErrors;
mov( 18, eax );
mov( i16, al );

mov( i32, ax );

end hasErrors;

HILA will generate errors for these three mov instructions. This is because
the operand sizes are incompatible. The first instruction attempts to move a
byte into EAX, the second instruction attempts to move a word into AL,
and the third instruction attempts to move a double word into AX. The mov
instruction, of course, requires both operands to be the same size.

While this is a good feature in HLA,® there are times when it gets in the
way. Consider the following code fragments:

static
byte_values: byte; @nostorage;
byte o0, 1;

mov( byte values, ax );

In this example let’s assume that the programmer really wants to load
the word starting at the address of byte_values into the AX register because
she wants to load AL with 0 and AH with 1 using a single instruction (note
that 0 is held in the L.O. memory byte and 1 is held in the H.O. memory
byte). HLA will refuse, claiming there is a type mismatch error (because
byte_values is a byte object and AX is a word object). The programmer
could break this into two instructions, one to load AL with the byte at address
byte _values and the other to load AH with the byte at address byte_values[1].
Unfortunately, this decomposition makes the program slightly less efficient
(which was probably the reason for using the single mov instruction in the first
place). Somehow, it would be nice if we could tell HLA that we know what
we’re doing and we want to treat the byte_values variable as a word object.
HILA’s type coercion facilities provide this capability.

Type coercion® is the process of telling HLA that you want to treat an
object as an explicit type, regardless of its actual type. To coerce the type of
a variable, you use the following syntax:

(type newTypeName addressExpression)

8 After all, if the two operand sizes are different this usually indicates an error in the program.

9 This is also called type casting in some languages.



WARNING

The newTypeName item is the new type you wish to associate with the
memory location specified by addressExpression. You may use this coercion
operator anywhere a memory address is legal. To correct the previous
example, so HLA doesn’t complain about type mismatches, you would use
the following statement:

mov( (type word byte values), ax );

This instruction tells HLA to load the AX register with the word starting
at address byte_values in memory. Assuming byte_values still contains its
initial values, this instruction will load 0 into AL and 1 into AH.

Type coercion is necessary when you specify an anonymous variable as
the operand to an instruction that directly modifies memory (e.g., neg, shl,
not, and so on). Consider the following statement:

not( [ebx] );

HLA will generate an error on this instruction because it cannot deter-
mine the size of the memory operand. The instruction does not supply suffi-
cient information to determine whether the program should invert the bits
in the byte pointed at by EBX, the word pointed at by EBX, or the double
word pointed at by EBX. You must use type coercion to explicitly specify the
size of anonymous references with these types of instructions:

not( (type byte [ebx]) );
not( (type dword [ebx]) );

Do not use the type coercion operator unless you know exactly what you are doing and
Jully understand the effect it has on your program. Beginning assembly language pro-
grammers often use type coercion as a tool to quiet the compiler when it complains about
type mismatches without solving the underlying problem.

Consider the following statement (where byteVar is an 8-bit variable):

mov( eax, (type dword byteVar) );

Without the type coercion operator, HLA complains about this instruc-
tion because it attempts to store a 32-bit register in an 8-bit memory location.
A beginning programmer, wanting his program to compile, may take a
shortcut and use the type coercion operator, as shown in this instruction;
this certainly quiets the compiler—it will no longer complain about a type
mismatch—so the beginning programmer is happy. However, the program is
still incorrect; the only difference is that HLLA no longer warns you about
your error. The type coercion operator does not fix the problem of attempt-
ing to store a 32-bit value into an 8-bit memory location—it simply allows the
instruction to store a 32-bit value starting at the address specified by the 8-bit
variable. The program still stores 4 bytes, overwriting the 3 bytes following
bytevar in memory. This often produces unexpected results, including the
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phantom modification of variables in your program.!’ Another, rarer possi-
bility is for the program to abort with a general protection fault. This can
occur if the 3 bytes following byteVar are not allocated in real memory or if
those bytes just happen to fall in a read-only segment in memory. The impor-
tant thing to remember about the type coercion operator is this: If you cannot
exactly state the effect this operator has, don’t use it.

Also keep in mind that the type coercion operator does not perform any
translation of the data in memory. It simply tells the compiler to treat the bits
in memory as a different type. It will not automatically extend an 8-bit value
to 32 bits, nor will it convert an integer to a floating-point value. It simply
tells the compiler to treat the bit pattern of the memory operand as a
different type.

3.7 Register Type Coercion

Chapter 3

You can also cast a register to a specific type using the type coercion operator.
By default, the 8-bit registers are of type byte, the 16-bit registers are of type
word, and the 32-bit registers are of type dword. With type coercion, you can
cast a register as a different type as long as the size of the new type agrees with the
size of the register. This is an important restriction that does not exist when
applying type coercion to a memory variable.

Most of the time you do not need to coerce a register to a different type.
As byte, word, and dword objects, registers are already compatible with all 1-, 2-,
and 4-byte objects. However, there are a few instances where register type
coercion is handy, if not downright necessary. Two examples include boolean
expressions in HLA high-level language statements (e.g., if and while) and
register I/O in the stdout.put and stdin.get (and related) statements.

In boolean expressions, HLA always treats byte, word, and dword objects as
unsigned values. Therefore, without type coercion, the following if statement
always evaluates false (because there is no unsigned value less than 0):

if( eax < 0 ) then
stdout.put( "EAX is negative!", nl );

endif;

You can overcome this limitation by casting EAX as an int32 value:

if( (type int32 eax) < 0 ) then
stdout.put( "EAX is negative!", nl );

endif;

'1f you have a variable immediately following byteVar in this example, the mov instruction will
surely overwrite the value of that variable, whether or not you intend for this to happen.



In a similar vein, the HLA Standard Library stdout.put routine always
outputs byte, word, and dword values as hexadecimal numbers. Therefore, if
you attempt to print a register, the stdout.put routine will print it as a hex
value. If you would like to print the value as some other type, you can use
register type coercion to achieve this:

stdout.put( "AL printed as a char = '", (type char al), "'", nl );

The same is true for the stdin.get routine. It will always read a hexa-
decimal value for a register unless you coerce its type to something other
than byte, word, or dword.

3.8 The stack Segment and the push and pop Instructions

This chapter mentions that all variables you declare in the var section wind
up in the stack memory segment. However, var objects are not the only things
in the stack memory section; your programs manipulate data in the stack
segment in many different ways. This section describes the stack and intro-
duces the push and pop instructions that manipulate data in the stack section.

The stack segment in memory is where the 80x86 maintains the stack.
The stack is a dynamic data structure that grows and shrinks according to
certain needs of the program. The stack also stores important information
about the program including local variables, subroutine information, and
temporary data.

The 80x86 controls its stack via the ESP (stack pointer) register. When
your program begins execution, the operating system initializes ESP with the
address of the last memory location in the stack memory segment. Data is
written to the stack segment by “pushing” data onto the stack and “popping”
data off the stack.

3.8.1 The Basic push Instruction

Consider the syntax for the 80x86 push instruction:

push( regi6 );
push( reg32 );
push( memory16 );
push( memory32 );
pushw( constant );
pushd( constant );

These six forms allow you to push word or dword registers, memory
locations, and constants. You should specifically note that you cannot push
byte values onto the stack.

The push instruction does the following:

ESP := ESP - Size of Register or Memory Operand (2 or 4)
[ESP] := Operand's_Value
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The pushw and pushd operands are always 2- and 4-byte constants,
respectively.

Assuming that ESP contains $00FF_FFES, then the instruction push( eax );
will set ESP to $00FF_FFE4 and store the current value of EAX into memory
location $00FF_FFE4, as Figures 3-9 and 3-10 show.

OOFF_FFFF
$OOFF_FFFE
OOFF_FFFD
$OOFF_FFFC
OOFF_FFFB
$OOFF_FFFA

OOFF_FFE9
ESP ————— $OOFF_FFES
OOFFFFE6
EAX OOFF FFE5
SOOFF FFE4
OOFF FFE3
OOFF FFE2

A\
\
AN}

Figure 3-9: Stack segment before the push( eax ); operation

OOFF_FFFF
$OOFF_FFFE
OOFF_FFFD
$OOFF_FFFC
OOFF FFFB
$OOFF_FFFA

e
EAX B _| $OOFFFFE7
| Current | $OOFF_FFE6
[ EAX Value _| $OOFF_FFE5
ESP ——» $OOFF_FFE4
OOFF_FFE3
OOFF_FFE2

Figure 3-10: Stack segment after the push( eax ); operation

Note that the push( eax ); instruction does not affect the value of the
EAX register.

Although the 80x86 supports 16-bit push operations, their primary use
in is 16-bit environments such as MS-DOS. For maximum performance, the
stack pointer’s value should always be an even multiple of 4; indeed, your
program may malfunction under a 32-bit OS if ESP contains a value that is
not a multiple of 4. The only practical reason for pushing less than 4 bytes
at a time on the stack is to build up a double word via two successive word
pushes.

3.8.2 The Basic pop Instruction

To retrieve data you’ve pushed onto the stack, you use the pop instruction.
The basic pop instruction allows the following forms.

pop( reg16 );
pop( reg32 );
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pop( memory16 );
pop( memory32 );

Like the push instruction, the pop instruction supports only 16-bit and
32-bit operands; you cannot pop an 8-bit value from the stack. As with the
push instruction, you should avoid popping 16-bit values (unless you do two
16-bit pops in a row) because 16-bit pops may leave the ESP register contain-
ing a value that is not an even multiple of 4. One major difference between
push and pop is that you cannot pop a constant value (which makes sense,
because the operand for push is a source operand, while the operand for pop
is a destination operand).

Formally, here’s what the pop instruction does:

Operand := [ESP]
ESP := ESP + Size_of Operand (2 or 4)

As you can see, the pop operation is the converse of the push operation.
Note that the pop instruction copies the data from memory location [ESP]
before adjusting the value in ESP. See Figures 3-11 and 3-12 for details on
this operation.

OOFF_FFFF
OOFF_FFFE
OOFF_FFFD
OOFFFFFC
OOFF_FFFB
$OOFF_FFFA

OOFF_FFE9
OOFF_FFE8
B _| $OOFF_FFE7
[ EAX Value | $OOFF_FFE6
| on Stack _| $OOFF_FFE5
ESP ————— OOFF_FFE4
$OOFF_FFE3
OOFF_FFE2

EAX

Figure 3-11: Memory before a pop( eax ); operation

OOFF_FFFF
$OOFF_FFFE
OOFF_FFFD
$OOFF_FFFC
OOFF FFFB
OOFF_FFFA

= e
ESP ——— $OOFF_FFE8
L _| $OOFF_FFE7
[ EAX Value _| $00FF_FFE6
| on Stack _| $OOFF_FFE5
EAX: value from stack | 88;;—;;%

OOFF_FFE2

Figure 3-12: Memory after the pop( eax ); instruction

Note that the value popped from the stack is still present in memory.
Popping a value does not erase the value in memory; it just adjusts the stack
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pointer so that it points at the next value above the popped value. However,
you should never attempt to access a value you’ve popped off the stack. The
next time something is pushed onto the stack, the popped value will be
obliterated. Because your code isn’t the only thing that uses the stack (for
example, the operating system uses the stack as do subroutines), you cannot
rely on data remaining in stack memory once you’ve popped it off the stack.

3.8.3 Preserving Registers with the push and pop Instructions

Perhaps the most common use of the push and pop instructions is to save
register values during intermediate calculations. A problem with the 80x86
architecture is that it provides very few general-purpose registers. Because
registers are the best place to hold temporary values, and registers are also
needed for the various addressing modes, it is very easy to run out of registers
when writing code that performs complex calculations. The push and pop
instructions can come to your rescue when this happens.

Consider the following program outline:

<< Some sequence of instructions that use the eax register >>

<< Some sequence of instructions that need to use eax, for a
different purpose than the above instructions >>

<< Some sequence of instructions that need the original value in eax >>

The push and pop instructions are perfect for this situation. By inserting a
push instruction before the middle sequence and a pop instruction after the
middle sequence above, you can preserve the value in EAX across those
calculations:

<< Some sequence of instructions that use the eax register >>
push( eax );
<< Some sequence of instructions that need to use eax, for a
different purpose than the above instructions >>
pop( eax );
<< Some sequence of instructions that need the original value in eax >>

The push instruction above copies the data computed in the first sequence
of instructions onto the stack. Now the middle sequence of instructions can
use EAX for any purpose it chooses. After the middle sequence of instructions
finishes, the pop instruction restores the value in EAX so the last sequence of
instructions can use the original value in EAX.

3.9 The Stack Is a LIFO Data Structure

You can push more than one value onto the stack without first popping
previous values off the stack. However, the stack is a last-in, first-out (LIFO)
data structure, so you must be careful how you push and pop multiple values.
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For example, suppose you want to preserve EAX and EBX across some block
of instructions; the following code demonstrates the obvious way to handle
this:

push( eax );
push( ebx );
<< Code that uses eax and ebx goes here. >>
pop( eax );
pop( ebx );

Unfortunately, this code will not work properly! Figures 3-13 through 3-16
show the problem. Because this code pushes EAX first and EBX second, the
stack pointer is left pointing at EBX’s value on the stack. When the pop( eax );
instruction comes along, it removes the value that was originally in EBX from
the stack and places it in EAX! Likewise, the pop( ebx ); instruction pops the
value that was originally in EAX into the EBX register. The end result is that
this code manages to swap the values in the registers by popping them in the
same order that it pushes them.

OOFF_FFFF
$OOFF_FFFE
$OOFF_FFFD
$OOFF_FFFC
$OOFF_FFFB
OOFF_FFFA

L _| $OOFF_FFEQ
| EAX Value 7| $O00FF_FFE8
| on Stack _| $OOFF_FFE7
ESP —— $OOFF_FFE6
$OOFF_FFE5
$OOFF_FFE4
OOFF_FFE3
$OOFF_FFE2

Figure 3-13: Stack after pushing EAX

OOFF_FFFF
$OOFF_FFFE
$OOFF_FFFD

OOFF_FFFC
$OOFF_FFFB
$OOFF_FFFA

_| $OOFF_FFE9
| EAX Valve | $OOFF_FFES
| on Stack _| $OOFF_FFE7
$0OFF_FFE6
[ EBX Value 7 $00FFre4
| on Stack _| $OOFF_FFE3
ESP ——— OOFF_FFE2

Figure 3-14: Stack after pushing EBX
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OOFF_FFFF
$OOFF_FFFE
OOFF_FFFD
$OOFF_FFFC
OOFF_FFFB
$OOFF_FFFA

OOFF_FFE9

| EAX Value 7} $00FF_FFES
| on Stack _| $OOFF_FFE7
ESP —— OOFF_FFE6
o  cacyone ] T

[ on Stack _| $OOFF_FFE3
$OOFF_FFE2

Figure 3-15: Stack after popping EAX

OOFF_FFFF
$OOFF_FFFE
OOFF_FFFD
$OOFF_FFFC
OOFF FFFB
OOFF_FFFA

ESP —» [
OOFF FFE9

| EAX Value 7} $00FF_FFES
| on Stack _| $OOFF_FFE7
$OOFF_FFE6
" E8X Valve T 300FFFFE2
[ on Stack _| $OOFF_FFE3
$OOFF_FFE2

EBX

Figure 3-16: Stack after popping EBX

To rectify this problem, you must note that the stack is a last-in, first-out
data structure, so the first thing you must pop is the last thing you push onto
the stack. Therefore, you must always observe the following maxim:

Always pop values in the reverse order that you push them.
The correction to the previous code is:

push( eax );
push( ebx );
<< Code that uses eax and ebx goes here. >>
pop( ebx );
pop( eax );

Another important maxim to remember is:

Always pop exactly the same number of bytes that you push.
This generally means that the number of pushes and pops must exactly
agree. If you have too few pops, you will leave data on the stack, which
may confuse the running program. If you have too many pops, you will
accidentally remove previously pushed data, often with disastrous results.
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A corollary to the maxim above is, “Be careful when pushing and
popping data within a loop.” Often it is quite easy to put the pushes in
a loop and leave the pops outside the loop (or vice versa), creating an
inconsistent stack. Remember, it is the execution of the push and pop
instructions that matters, not the number of push and pop instructions
that appear in your program. At runtime, the number (and order) of
the push instructions the program executes must match the number (and
reverse order) of the pop instructions.

3.9.1 Other push and pop Instructions

The 80x86 provides several additional push and pop instructions in addition to
the basic push/pop instructions. These instructions include the following:

pusha popa
pushad popad
pushf popf

pushfd popfd

The pusha instruction pushes all the general-purpose 16-bit registers onto
the stack. This instruction exists primarily for older 16-bit operating systems
like MS-DOS. In general, you will have very little need for this instruction.
The pusha instruction pushes the registers onto the stack in the following
order:

ax
cx
dx
bx
sp
bp
si
di

The pushad instruction pushes all the 32-bit (double-word) registers onto
the stack. It pushes the registers onto the stack in the following order:

eax
ecx
edx
ebx
esp
ebp
esi
edi

Because the pusha and pushad instructions inherently modify the SP/ESP
register, you may wonder why Intel bothered to push this register at all. It was
probably easier in the hardware to go ahead and push SP/ESP rather than
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make a special case out of it. In any case, these instructions do push SP or
ESP, so don’t worry about it too much—there is nothing you can do about it.

The popa and popad instructions provide the corresponding “pop all”
operation to the pusha and pushad instructions. This will pop the registers
pushed by pusha or pushad in the appropriate order (that is, popa and popad
will properly restore the register values by popping them in the reverse order
that pusha or pushad pushed them).

Although the pusha/popa and pushad/popad sequences are short and con-
venient, they are actually slower than the corresponding sequence of push/pop
instructions, this is especially true when you consider that you rarely need
to push a majority, much less all, of the registers.!' So if you’re looking for
maximum speed, you should carefully consider whether to use the pusha(d) /
popa(d) instructions.

The pushf, pushfd, popf, and popfd instructions push and pop the EFLAGS
register. These instructions allow you to preserve condition code and other
flag settings across the execution of some sequence of instructions. Unfortu-
nately, unless you go to a lot of trouble, it is difficult to preserve individual
flags. When using the pushf(d) and popf(d) instructions, it’s an all-or-nothing
proposition—you preserve all the flags when you push them; you restore all
the flags when you pop them.

Like the pushad and popad instructions, you should really use the pushfd
and popfd instructions to push the full 32-bit version of the EFLAGS register.
Although the extra 16 bits you push and pop are essentially ignored when
writing applications, you still want to keep the stack aligned by pushing and
popping only double words.

3.9.2 Removing Data from the Stack Without Popping It

Once in a while you may discover that you’ve pushed data onto the stack that
you no longer need. Although you could pop the data into an unused register
or memory location, there is an easier way to remove unwanted data from the
stack—simply adjust the value in the ESP register to skip over the unwanted
data on the stack.

Consider the following dilemma:

push( eax );
push( ebx );

<< Some code that winds up computing some values we want to keep
into eax and ebx >>

if( Calculation was_performed ) then

// Whoops, we don't want to pop eax and ebx!
// What to do here?

else

"'For example, it is extremely rare for you to need to push and pop the ESP register with the
pushad/popad instruction sequence.



// No calculation, so restore eax, ebx.

pop( ebx );
pop( eax );

endif;

Within the then section of the if statement, this code wants to remove
the old values of EAX and EBX without otherwise affecting any registers or
memory locations. How can we do this?

Because the ESP register contains the memory address of the item on the
top of the stack, we can remove the item from the top of stack by adding the
size of that item to the ESP register. In the preceding example, we wanted to
remove two double-word items from the top of stack. We can easily accomplish
this by adding 8 to the stack pointer (see Figures 3-17 and 3-18 for the details):

push( eax );
push( ebx );

<< Some code that winds up computing some values we want to keep
into eax and ebx >>

if( Calculation was_performed ) then
add( 8, ESP ); // Remove unneeded eax/ebx values from the stack.
else

// No calculation, so restore eax, ebx.

pop( ebx );
pop( eax );
endif;
ESP + 8 ESP —— ESP + 8
ESP +7 ESP +7
ESP + 6 ESP + 6
ESP + 5 ESP + 5
ESP + 4 ESP + 4
E§P+% E§P+g
_| ESP + _ _| ESP +
EBX ESP + 1 l EBX ESP + 1
ESP —— ESP + 0 ESP + 0

Figure 3-17: Removing data from the

stack, before add( 8, esp );

Figure 3-18: Removing data from the

stack, after add( 8, esp );
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Effectively, this code pops the data off the stack without moving it
anywhere. Also note that this code is faster than two dummy pop instructions
because it can remove any number of bytes from the stack with a single add
instruction.

Remember to keep the stack aligned on a double-word boundary. Therefore, you should
always add a constant that is a multiple of 4 to ESP when removing data from the
stack.

3.10 Accessing Data You’ve Pushed onto the Stack Without
Popping It

Chapter 3

Once in a while you will push data onto the stack and you will want to geta
copy of that data’s value, or perhaps you will want to change that data’s value
without actually popping the data off the stack (that is, you wish to pop the
data off the stack at a later time). The 80x86 [reg32 + offset] addressing
mode provides the mechanism for this.

Consider the stack after the execution of the following two instructions
(see Figure 3-19):

push( eax );
push( ebx );

ESP + 8
ESP +7
ESP+6
ESP + 5
ESP + 4
L | ESP+3
- _| ESP+2
i E
ESP ———» ESP +0

Figure 3-19: Stack after pushing EAX and EBX

If you wanted to access the original EBX value without removing it from
the stack, you could cheat and pop the value and then immediately push it
again. Suppose, however, that you wish to access EAX’s old value or some
other value even farther up the stack. Popping all the intermediate values
and then pushing them back onto the stack is problematic at best, impossible
at worst. However, as you will notice from Figure 3-19, each of the values
pushed on the stack is at some offset from the ESP register in memory.
Therefore, we can use the [ESP + offset] addressing mode to gain direct



WARNING

access to the value we are interested in. In the example above, you can
reload EAX with its original value by using the single instruction

mov( [esp+4], eax );

This code copies the 4 bytes starting at memory address ESP+4 into the
EAX register. This value just happens to be the previous value of EAX that
was pushed onto the stack. You can use this same technique to access other
data values you’ve pushed onto the stack.

Don’t forget that the offsets of values from ESP into the stack change every time you
push or pop data. Abusing this feature can create code that is hard to modify; if you use
this feature throughout your code, it will make it difficult to push and pop other data
items between the point where you first push data onto the stack and the point where
you decide to access that data again using the [ESP + offset] memory addressing
mode.

The previous section pointed out how to remove data from the stack by
adding a constant to the ESP register. That code example could probably be
written more safely as this:

push( eax );
push( ebx );

<< Some code that winds up computing some values we want to keep
into eax and ebx >>

if( Calculation was_performed ) then

<< Overwrite saved values on stack with new eax/ebx values
(so the pops that follow won't change the values in eax/ebx). >>

mov( eax, [esp+4] );
mov( ebx, [esp] );

endif;
pop( ebx );
pop( eax );

In this code sequence, the calculated result was stored over the top of
the values saved on the stack. Later on, when the program pops the values,
it loads these calculated values into EAX and EBX.

3.11 Dynamic Memory Allocation and the Heap Segment

Although static and automatic variables are all that simple programs may need,
more sophisticated programs need the ability to allocate and deallocate
storage dynamically (at runtime) under program control. In the Clanguage,
you would use the malloc and free functions for this purpose. C++ provides
the new and delete operators. Pascal uses new and dispose. Other languages
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provide comparable facilities. These memory-allocation routines have a
couple of things in common: They let the programmer request how many
bytes of storage to allocate, they return a pointer to the newly allocated
storage, and they provide a facility for returning the storage to the system so
the system can reuse it in a future allocation call. As you’ve probably guessed,
HLA also provides a set of routines in the HLA Standard Library that handle
memory allocation and deallocation.

The HLA Standard Library mem.alloc and mem.free routines handle the
memory allocation and deallocation chores (respectively). The mem.alloc
routine uses the following calling sequence:

mem.alloc( Number of Bytes Requested );

The single parameter is a dword value specifying the number of bytes of
storage you need. This procedure allocates storage in the heap segment in
memory. The HLA mem.alloc function locates an unused block of memory of
the size you specify in the heap segment and marks the block as “in use” so
that future calls to mem.alloc will not allocate this same storage. After marking
the block as “in use,” the mem.alloc routine returns a pointer to the first byte
of this storage in the EAX register.

For many objects, you will know the number of bytes that you need in
order to represent that object in memory. For example, if you wish to allocate
storage for an uns32 variable, you could use the following call to the mem.alloc
routine:

mem.alloc( 4 );

Although you can specify a literal constant as this example suggests, it’s
generally a poor idea to do so when allocating storage for a specific data type.
Instead, use the HLA builtin compile-time function'* @size to compute the size
of some data type. The @size function uses the following syntax:

@size( variable or type name )

The @size function returns an unsigned integer constant that is the size
of its parameter in bytes. So you should rewrite the previous call to mem.alloc
as follows:

mem.alloc( @size( uns32 ));

This call will properly allocate a sufficient amount of storage for the
specified object, regardless of its type. While it is unlikely that the number
of bytes required by an uns32 object will ever change, this is not necessarily

'2 A compile-time function is one that HLA evaluates during the compilation of your program
rather than at runtime.



true for other data types; so you should always use @size rather than a literal
constant in these calls.

Upon return from the mem.alloc routine, the EAX register contains the
address of the storage you have requested (see Figure 3-20).

Heap Segment

A\

uns32 storage
allocated by
call to mem.alloc

EAX —»

Figure 3-20: A call to mem.alloc returns a pointer in
the EAX register.

To access the storage mem.alloc allocates, you must use a register-indirect
addressing mode. The following code sequence demonstrates how to assign
the value 1234 to the uns32 variable mem.alloc creates:

mem.alloc( @size( uns32 ));
mov( 1234, (type uns32 [eax]));

Note the use of the type coercion operator. This is necessary in this
example because anonymous variables don’t have a type associated with
them and the constant 1234 could be a word or dword value. The type coercion
operator eliminates the ambiguity.

The mem.alloc routine may not always succeed. If there isn’t a single contig-
uous block of free memory in the heap segment that is large enough to satisfy
the request, then the mem.alloc routine will raise an ex.MemoryAllocationFailure
exception. If you do not provide a try..exception. .endtry handler to deal with
this situation, a memory allocation failure will cause your program to stop.
Because most programs do not allocate massive amounts of dynamic storage
using mem.alloc, this exception rarely occurs. However, you should never
assume that the memory allocation will always occur without error.

When you have finished using a value that mem.alloc allocates on the heap,
you can release the storage (that is, mark it as “no longer in use”) by calling
the mem. free procedure. The mem.free routine requires a single parameter that
must be an address returned by a previous call to mem.alloc (that you have not
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already freed). The following code fragment demonstrates the nature of the
mem.alloc/mem.free pairing:

mem.alloc( @size( uns32));

<< Use the storage pointed at by eax. >>
<< Note: This code must not modify eax. >>

mem.free( eax );

This code demonstrates a very important point: In order to properly free
the storage that mem.alloc allocates, you must preserve the value that mem.alloc
returns. There are several ways to do this if you need to use EAX for some
other purpose; you could save the pointer value on the stack using push and
pop instructions or you could save EAX’s value in a variable until you need to
free it.

Storage you release is available for reuse by future calls to the mem.alloc
routine. The ability to allocate storage when you need it and then free the
storage for other use when you have finished with it improves the memory
efficiency of your program. By deallocating storage once you have finished
with it, your program can reuse that storage for other purposes, allowing
your program to operate with less memory than it would if you statically
allocated storage for the individual objects.

Several problems can occur when you use pointers. You should be aware
of a couple of common errors that beginning programmers make when
using dynamic storage allocation routines like mem.alloc and mem.free:

e Mistake 1: Continuing to refer to storage after you free it. Once you
return storage to the system via the call to mem.free, you should no longer
access that storage. Doing so may cause a protection fault or, worse yet,
corrupt other data in your program without indicating an error.

e  Mistake 2: Calling mem.free twice to release a single block of storage.
Doing so may accidentally free some other storage that you did not
intend to release or, worse yet, it may corrupt the system memory
management tables.

Chapter 4 discusses some additional problems you will typically
encounter when dealing with dynamically allocated storage.

The examples thus far in this section have all allocated storage for a
single unsigned 32-bit object. Obviously you can allocate storage for any
data type using a call to mem.alloc by simply specifying the size of that object
as mem.alloc’s parameter. It is also possible to allocate storage for a sequence
of contiguous objects in memory when calling mem.alloc. For example, the
following code will allocate storage for a sequence of eight characters:

mem.alloc( @size( char ) * 8 );




Note the use of the constant expression to compute the number of bytes
required by an eight-character sequence. Because @size(char) always returns
a constant value (1 in this case), the compiler can compute the value of the
expression @size(char) * 8 without generating any extra machine instructions.

Calls to mem.alloc always allocate multiple bytes of storage in contiguous
memory locations. Hence the former call to mem.alloc produces the sequence
appearing in Figure 3-21.

Heap Segment

Eight char values EAX + 7
allocated via a call to Eﬁ§ + g
. " +

mem.alloc( @size(char) *8) EAX + 4
EAX + 3

EAX + 2

EAX + 1

EAX —— EAX + O

Figure 3-21: Allocating a sequence of eight character
objects using mem.alloc

To access these extra character values you use an offset from the base
address (contained in EAX upon return from mem.alloc). For example,
mov( ch, [eax + 2] ); stores the character found in CH into the third byte
that mem.alloc allocates. You can also use an addressing mode like [eax + ebx]
to step through each of the allocated objects under program control. For
example, the following code will set all the characters in a block of 128 bytes
to the NUL character (#0):

mem.alloc( 128 );
for( mov( 0, ebx ); ebx < 128; add( 1, ebx ) ) do

mov( 0, (type byte [eax+ebx]) );

endfor;

Chapter 4 discusses composite data structures (including arrays) and
describes additional ways to deal with blocks of memory.

You should note that a call to mem.alloc actually allocates slightly more
memory than you request. For one thing, memory allocation requests are
generally of some minimum size (often a power of 2 between 4 and 16, though
this is OS dependent). Furthermore, mem.alloc requests also require a few
bytes of overhead for each request (generally around 16 to 32 bytes) to keep
track of allocated and free blocks. Therefore, it is not efficient to allocate a
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large number of small objects with individual calls to mem.alloc. The overhead
for each allocation may be greater than the storage you actually use. Typically,
you’ll use mem.alloc to allocate storage for arrays or large records (structures)
rather than small objects.

3.12 The inc and dec Instructions

As the example in the previous section indicates—indeed, as several examples

up to this point have indicated—adding or subtracting 1 from a register or

memory location is a very common operation. In fact, these operations are so

common that Intel’s engineers included a pair of instructions to perform these

specific operations: the inc (increment) and dec (decrement) instructions.
The inc and dec instructions use the following syntax:

inc( mem/reg );
dec( mem/reg );

The single operand can be any legal 8-bit, 16-bit, or 32-bit register or
memory operand. The inc instruction will add 1 to the specified operand,
and the dec instruction will subtract 1 from the specified operand.

These two instructions are slightly shorter than the corresponding add or
sub instructions (that is, their encoding uses fewer bytes). There is also one
slight difference between these two instructions and the corresponding add
or sub instructions: They do not affect the carry flag.

As an example of the inc instruction, consider the example from the
previous section, recoded to use inc rather than add:

mem.alloc( 128 );
for( mov( 0, ebx ); ebx < 128; inc( ebx ) ) do

mov( 0, (type byte [eax+ebx]) );

endfor;

3.13 Obtaining the Address of a Memory Object

Chapter 3

Section 3.1.2.2 discusses how to use the address-of operator, &, to take the
address of a static variable.!® Unfortunately, you cannot use the address-of
operator to take the address of an automatic variable (one you declare in the
var section), you cannot use it to compute the address of an anonymous
variable, and you cannot use it to take the address of a memory reference
that uses an indexed or scaled-indexed addressing mode (even if a static
variable is part of the address expression). You may use the address-of
operator only to take the address of a simple static object. Often, you will

'3 A static variable is one that you declare in the static, readonly, or storage section of your
program.



need to take the address of other memory objects as well; fortunately, the
80x86 provides the load effective address instruction, lea, to give you this
capability.

The lea instruction uses the following syntax:

lea( reg32, Memory operand );

The first operand must be a 32-bit register; the second operand can be
any legal memory reference using any valid memory addressing mode. This
instruction will load the address of the specified memory location into the
register. This instruction does not access or modify the value of the memory
operand in any way.

Once you load the effective address of a memory location into a 32-bit
general-purpose register, you can use the register-indirect, indexed, or scaled-
indexed addressing mode to access the data at the specified memory address.
Consider the following code fragment:

static
b:byte; @nostorage;
byte 7, 0, 6, 1, 5, 2, 4, 3;

lea( ebx, b );
for( mov( 0, ecx ); ecx < 8; inc( ecx )) do

stdout.put( "[ebx+ecx] = ", (type byte [ebx+ecx]), nl );

endfor;

This code steps through each of the 8 bytes following the b label in the
static section and prints their values. Note the use of the [ebx+ecx] address-
ing mode. The EBX register holds the base address of the list (that is, the
address of the first item in the list), and ECX contains the byte index into
the list.

3.14 For More Information

An older, 16-bit version of The Art of Assembly Language Programming can be
found at http://webster.cs.ucr.edu/. In that text you will find information about
the 80x86’s 16-bit addressing modes and segmentation. More information
about the HLA Standard Library mem.alloc and mem.free functions can be
found in the HLA Standard Library reference manual, also on Webster at
hitp://webster.cs.ucr.edu/ or at hitp://artofasm.com/. Of course, the Intel x86
documentation (found at http://www.intel.com/) provides complete informa-
tion on 80x86 address modes and machine instruction encoding.
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CONSTANTS, VARIABLES,
AND DATA TYPES

Chapter 2 discussed the basic format for
data in memory. Chapter 3 covered how a
computer system physically organizes that
data in memory. This chapter finishes the
discussion by connecting the concept of data represen-

tation to its actual physical representation. As the title
implies, this chapter concerns itself with three main topics: constants, vari-
ables, and data structures. This chapter does not assume that you’ve had a
formal course in data structures, though such experience would be useful.

This chapter discusses how to declare and use constants, scalar variables,
integers, data types, pointers, arrays, records/structures, unions, and name-
spaces. You must master these subjects before going on to the next chapter.
Declaring and accessing arrays, in particular, seems to present a multitude
of problems to beginning assembly language programmers. However, the
rest of this text depends on your understanding of these data structures and
their memory representation. Do not try to skim over this material with the
expectation that you will pick it up as you need it later. You will need it right
away, and trying to learn this material along with later material will only confuse
you more.
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4.1 Some Additional Instructions: intmul, bound, into

Chapter 4

This chapter introduces arrays and other concepts that will require the
expansion of your 80x86 instruction set knowledge. In particular, you will
need to learn how to multiply two values; hence the first instruction we will
look at is the intmul (integer multiply) instruction. Another common task
when accessing arrays is to check to see if an array index is within bounds.
The 80x86 bound instruction provides a convenient way to check a register’s
value to see if it is within some range. Finally, the into (interrupt on overflow)
instruction provides a quick check for signed arithmetic overflow. Although
into isn’t really necessary for array (or other data type) access, its function is
very similar to bound; hence the presentation of it at this point.

The intmul instruction takes one of the following forms:

// The following compute destreg = destreg * constant

intmul( constant, destreg16 );
intmul( constant, destreg32 );

// The following compute dest = src * constant

intmul( constant, srcregi6, destregi6 );
intmul( constant, srcmemi6, destregi6 );

intmul( constant, srcreg32, destreg32 );
intmul( constant, srcmem32, destreg32 );

// The following compute dest = src * constant

intmul( srcregi6, destregi6 );
intmul( srcmemi6, destregi6 );
intmul( srcreg32, destreg32 );
intmul( srcmem32, destreg32 );

Note that the syntax of the intmul instruction is different from that of the
add and sub instructions. In particular, the destination operand must be a register
(add and sub both allow a memory operand as a destination). Also note that
intmul allows three operands when the first operand is a constant. Another
important difference is that the intmul instruction allows only 16-bit and 32-bit
operands; it does not multiply 8-bit operands.

intmul computes the product of its specified operands and stores the result
into the destination register. If an overflow occurs (which is always a signed
overflow, because intmul multiplies only signed integer values), then this
instruction sets both the carry and overflow flags. intmul leaves the other
condition code flags undefined (so, for example, you cannot meaningfully
check the sign flag or the zero flag after executing intmul).



The bound instruction checks a 16-bit or 32-bit register to see if it is between
two values. If the value is outside this range, the program raises an exception
and aborts. This instruction is particularly useful for checking to see if an
array index is within a given range. The bound instruction takes one of the
following forms:

bound( reg16, LBconstant, UBconstant );
bound( reg32, LBconstant, UBconstant );

bound( reg16, Mem16[2] );
bound( reg32, Mem32[2] );

The bound instruction compares its register operand against an unsigned
lower bound value and an unsigned upper bound value to ensure that the
register is in the range:

lower _bound <= register <= upper bound

The form of the bound instruction with three operands compares the
register against the second and third parameters (the lower bound and upper
bound, respectively).' The bound instruction with two operands checks the
register against one of the following ranges:

Mem16[0] <= register16 <= Mem16[2]
Mem32[0] <= register32 <= Mem32[4]

If the specified register is not within the given range, then the 80x86
raises an exception. You can trap this exception using the HLA try..endtry
exception-handling statement. The excepts.hhfheader file defines an excep-
tion, ex.BoundInstr, specifically for this purpose. The program in Listing 4-1
demonstrates how to use the bound instruction to check some user input.

program BoundDemo;
#include( "stdlib.hhf" );

static
InputValue:int32;
GoodInput:boolean;
begin BoundDemo;
// Repeat until the user enters a good value:

repeat

// Assume the user enters a bad value.

! This form isn’t a true 80x86 instruction. HLA converts this form of the bound instruction to
the two-operand form by creating two readonly memory variables initialized with the specified
constants.
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mov( false, GoodInput );
// Catch bad numeric input via the try..endtry statement.
try
stdout.put( "Enter an integer between 1 and 10: " );
stdin.flushInput();
stdin.geti32();

mov( eax, InputValue );

// Use the BOUND instruction to verify that the
// value is in the range 1..10.

bound( eax, 1, 10 );
// If we get to this point, the value was in the
// range 1..10, so set the boolean GoodInput

// flag to true so we can exit the loop.

mov( true, GoodInput );

// Handle inputs that are not legal integers.
exception( ex.ConversionError )

stdout.put( "Illegal numeric format, re-enter", nl );

// Handle integer inputs that don't fit into an int32.
exception( ex.ValueOutOfRange )

stdout.put( "Value is *way* too big, re-enter", nl );

// Handle values outside the range 1..10 (BOUND instruction).

exception( ex.BoundInstr )

stdout.put

(
"Value was ",
InputValue,
", it must be between 1 and 10, re-enter",
nl

)5

endtry;
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until( GoodInput );
stdout.put( "The value you entered, ", InputValue,

is valid.", nl );

end BoundDemo;

Listing 4-1: Demonstration of the bound instruction

The into instruction, like bound, also generates an exception under certain
conditions. Specifically, into generates an exception if the overflow flag is set.
Normally, you would use into immediately after a signed arithmetic operation
(e.g., intmul) to see if an overflow occurs. If the overflow flag is not set, the
system ignores into; however, if the overflow flag is set, then the into instruction
raises the ex.IntoInstr exception. The program in Listing 4-2 demonstrates
the use of the into instruction.

program INTOdemo;
#include( "stdlib.hhf" );

static
LOperand: int8;
ResultOp:int8;
begin INTOdemo;

// The following try..endtry checks for bad numeric
// input and handles the integer overflow check:

try
// Get the first of two operands:
stdout.put( "Enter a small integer value (-128..+127):" );
stdin.geti8();
mov( al, LOperand );

// Get the second operand:

stdout.put( "Enter a second small integer value (-128..+127):" );
stdin.geti8();

// Produce their sum and check for overflow:

add( LOperand, al );
into();

// Display the sum:

stdout.put( "The eight-bit sum is ", (type int8 al), nl );

// Handle bad input here:

exception( ex.ConversionError )
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stdout.put( "You entered illegal characters in the number", nl );

// Handle values that don't fit in a byte here:
exception( ex.ValueOutOfRange )

stdout.put( "The value must be in the range -128..+127", nl );

// Handle integer overflow here:

exception( ex.IntoInstr )

stdout.put
(

"The sum of the two values is outside the range -128..+127",
nl

);

endtry;

end INTOdemo;

Listing 4-2: Demonstration of the into instruction

4.2 HLA Constant and Value Declarations

Chapter 4

HLA’s const and val sections let you declare symbolic constants. The const
section lets you declare identifiers whose value is constant throughout
compilation and runtime; the val section lets you declare symbolic constants
whose values can change at compile time but whose values are constant at
runtime (thatis, the same name can have a different value at several points in
the source code, but the value of a val symbol at a given point in the program
cannot change while the program is running).

The const section appears in the same area of your program as the static,
readonly, storage, and var sections. It begins with the const reserved word and
has a syntax that is nearly identical to the readonly section; that is, the const
section contains a list of identifiers followed by a type and a constant expression.
The following example will give you an idea of what the const section looks like:

const
pi: real32 := 3.14159;
MaxIndex: uns32 = 15;
Delimiter: char ='/"
BitMask: byte = $Fo;
DebugActive: boolean := true;



http://webster.cs.ucr.edu/

Once you declare these constants in this manner, you may use the sym-
bolic identifiers anywhere the corresponding literal constant is legal. These
constants are known as manifest constants. A manifest constant is a symbolic
representation of a constant that allows you to substitute the literal value for
the symbol anywhere in the program. Contrast this with readonly variables; a
readonly variable is certainly a constant value because you cannot change
such values at runtime. However, there is a memory location associated with
readonly variables, and the operating system, not the HLA compiler, enforces
the read-only attribute. Although it will certainly crash your program when it
runs, it is perfectly legal to write an instruction like mov( eax, ReadOnlyVar );.
On the other hand, it is no more legal to write mov( eax, MaxIndex ); (using
the declaration above) than it is to write mov( eax, 15 );. In fact, both of these
statements are equivalent because the compiler substitutes 15 for MaxIndex
whenever it encounters this manifest constant.

If there is absolutely no ambiguity about a constant’s type, then you may
declare a constant by specifying only the name and the constant’s value,
omitting the type specification. In the example earlier, the pi, Delimiter,
MaxIndex, and DebugActive constants could use the following declarations:

const
pi = 3.14159; // Default type is real80.
MaxIndex 1= 15; // Default type is uns32.
Delimiter ="/ // Default type is char.
DebugActive 1= true; // Default type is boolean.

Symbol constants that have an integer literal constant are always given
the smallest possible unsigned type if the constant is zero or positive, or the
smallest possible integer type (int8, int16, and so on) if the value is negative.

Constant declarations are great for defining “magic” numbers that might
possibly change during program modification. The program in Listing 4-3
provides an example of using constants to parameterize “magic” values in the
program. In this particular case, the program defines manifest constants
for the amount of memory to allocate for the test, the (mis)alignment, and
the number of loop and data repetitions. This program demonstrates the
performance reduction that occurs on misaligned data accesses. Adjust the
MainRepetitions constant if the program is too fast or too slow.

program ConstDemo;
#include( "stdlib.hhf" );

const
MemToAllocate  := 4_000_000;
NumDWoxrds = MemToAllocate div 4;
MisalignBy = 62;
MainRepetitions := 10000;

DataRepetitions := 999_900;

CachelineSize := 16;
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begin ConstDemo;

//console.cls();
stdout.put
(
"Memory Alignment Exercise",nl,
nl,
"Using a watch (preferably a stopwatch), time the execution of", nl
"the following code to determine how many seconds it takes to", nl
"execute.", nl
nl
"Press Enter to begin timing the code:"

);

// Allocate enough dynamic memory to ensure that it does not

// all fit inside the cache. Note: The machine had better have
// at least 4 megabytes mem.free or virtual memory will kick in
// and invalidate the timing.

mem.alloc( MemToAllocate );

// Zero out the memory (this loop really exists just to
// ensure that all memory is mapped in by the 0S).

mov( NumDWords, ecx );
repeat

dec( ecx );
mov( 0, (type dword [eax+ecx*4]));

until( l'ecx ); // Repeat until ecx = 0.

// Okay, wait for the user to press the Enter key.
stdin.readln();

// Note: As processors get faster and faster, you may
// want to increase the size of the following constant.
// Execution time for this loop should be approximately

// 10-30 seconds.

mov( MainRepetitions, edx );
add( MisalignBy, eax ); // Force misalignment of data.

repeat

mov( DataRepetitions, ecx );
align( CachelineSize );



repeat
sub( 4, ecx );
mov( [eax+ecx*4], ebx );
mov( [eax+ecx*4], ebx );
mov( [eax+ecx*4], ebx );
mov( [eax+ecx*4], ebx );

until( lecx );
dec( edx );

until( ledx ); // Repeat until eax is zero.

stdout.put( stdio.bell, "Stop timing and record time spent", nl, nl );

// Okay, time the aligned access.

stdout.put
(

);
stdin.readlLn();

"Press Enter again to begin timing access to aligned variable:"

// Note: If you change the constant above, be sure to change
// this one, too!

mov( MainRepetitions, edx );
sub( MisalignBy, eax ); // Realign the data.
repeat

mov( DataRepetitions, ecx );
align( CachelineSize );
repeat

sub( 4, ecx );

mov( [eax+ecx*4
mov( [eax+ecx*4
mov( [eax+ecx*4
mov( [eax+ecx*4

, ebx );
> ebx );
» ebx );
» ebx );

—_— e

until( lecx );
dec( edx );

until( ledx ); // Repeat until eax is zero.

stdout.put( stdio.bell, "Stop timing and record time spent”, nl, nl );
mem. free( eax );

end ConstDemo;

Listing 4-3: Data alignment program rewritten using const definitions
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4.2.1 Constant Types

Manifest constants can be any of the HLA primitive types plus a few of the
composite types this chapter discusses. Chapters 1, 2, and 3 discussed most
of the primitive types; the primitive types include the following:*

boolean constants (true or false)

uns8 constants (0..255)

uns16 constants (0..65,535)

uns32 constants (0..4,294,967,295)

int8 constants (—128..+127)

int16 constants (—32,768..+32,767)

int32 constants (—2,147,483,648..42,147,483,647)

char constants (any ASCII character with a character code in the
range 0..255)

byte constants (any 8-bit value including integers, booleans, and
characters)

word constants (any 16-bit value)

dword constants (any 32-bit value)
real32 constants (floating-point values)
real64 constants (floating-point values)

real80 constants (floating-point values)

In addition to the constant types appearing above, the const section

supports six additional constant types:

string constants

text constants

Enumerated constant values
Array constants
Record/Union constants

Character set constants

These data types are the subject of this chapter, and the discussion of

most of them appears a little later. However, the string and text constants
are sufficiently important to warrant an early discussion of these constant

types.

2 This is not a complete list. HLA also supports 64-bit and 128-bit data types. We’ll discuss
those in Chapter 8.



4.2.2 String and Character Literal Constants

HLA, like most programming languages, draws a distinction between a sequence
of characters, a string, and a single character. This distinction is present both
in the type declarations and in the syntax for literal character and string
constants. Until now, this text has not drawn a fine distinction between
character and string literal constants; now is the time to do so.

String literal constants consist of a sequence of zero or more characters
surrounded by ASCII quote characters. The following are examples of legal
literal string constants:

"This is a string" // String with 16 characters.

" // Zero length string.

"a" // String with a single character.
"123" // String of length 3.

A string of length 1 is not the same thing as a character constant. HLA
uses two completely different internal representations for character and string
values. Hence, "a" is not a character; it is a string that just happens to contain
a single character.

Character literal constants take a couple forms, but the most common

form consists of a single character surrounded by ASCII apostrophe characters:

// Character constant equivalent to ASCII code $32.
// Character constant for lowercase 'A'.

As this section notes earlier, "a" and 'a' are not equivalent.

Those who are familiar with C, C++, or Java probably recognize these
literal constant forms, because they are similar to the character and string
constants in C/C++/Java. In fact, this text has made a tacit assumption to this
point that you are somewhat familiar with C/C++ insofar as examples appearing
up to this point use character and string constants without an explicit definition
of them.

Another similarity between C/C++ strings and HLA’s is the automatic
concatenation of adjacent literal string constants within your program. For
example, HLA concatenates the two string constants

"First part of string, "second part of string"

to form the single-string constant

"First part of string, second part of string"
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Beyond these few similarities, however, HLA strings and C/C++ strings
differ. For example, C/C++ strings let you specify special character values
using the escape character sequence consisting of a backslash character
followed by one or more special characters; HLA does not use this escape
character mechanism. HLA does provide, however, several other ways to
insert special characters into a string or character constant.

Because HLA does not allow escape character sequences in literal string
and character constants, the first question you might ask is, “How does one
embed quote characters in string constants and apostrophe characters in
character constants?” To solve this problem, HLA uses the same technique as
Pascal and many other languages: You insert two quotes in a string constant to
represent a single quote, or you place two apostrophes in a character constant
to represent a single apostrophe character. For example:

"He wrote a "" Hello World"" program as an example."

The above is equivalent to:

He wrote a "Hello World" program as an example.

As Chapter 1 pointed out, to create a single apostrophe character constant,
you place two adjacent apostrophes within a pair of apostrophes:

HLA provides a couple of other features that eliminate the need for
escape characters. In addition to concatenating two adjacent string constants
to form a longer string constant, HLA will also concatenate any combination
of adjacent character and string constants to form a single string constant:

1" 2t '3t // Equivalent to "123"
"He wrote a " '"' "Hello World" '"' " program as an example."

Note that the two He wrote strings in the previous examples are identical
in HLA.

HLA provides a second way to specify character constants that handles all
the other C/C++ escape character sequences: the ASCII code literal character
constant. This literal character constant form uses the syntax:

#integer constant

This form creates a character constant whose value is the ASCII code
specified by integer_constant. The numeric constant can be a decimal,
hexadecimal, or binary value. For example:

#13 #$d #%1101 // All three are the same
// character, a carriage return.




Because you may concatenate character literals with strings, and the
#constant form is a character literal, the following are all legal strings:

"Hello World" #13 #10 // #13 #10 is the Windows newline sequence
// (carriage return followed by line feed).

"Error: Bad Value" #7 // #7 is the bell character.
"He wrote a " #$22 "Hello World" #$22 " program as an example."

Because $22 is the ASCII code for the quote character, this last example
is yet a third form of the He wrote string literal.

4.2.3 String and Text Constants in the const Section

String and text constants in the const section use the following declaration
syntax:

const
AStringConst: string := "123";
ATextConst: text = "123";

Other than the data type of these two constants, their declarations are
identical. However, their behavior in an HLA program is quite different.

Whenever HLA encounters a symbolic string constant within your program,
it substitutes the string literal constant in place of the string name. So a
statement like stdout.put( AStringConst ); prints the string 123 to the display.
No real surprise here.

Whenever HLA encounters a symbolic text constant within your program, it
substitutes the text of that string (rather than the string literal constant) for
the identifier. That is, HLA substitutes the characters between the delimiting
quotes in place of the symbolic text constant. Therefore, the following statement
is perfectly legal given the declarations above:

mov( ATextConst, al ); // Equivalent to mov( 123, al );

Note that substituting AStringConst for ATextConst in this example is illegal:

mov( AStringConst, al ); // Equivalent to mov( "123", al );

This latter example is illegal because you cannot move a string literal
constant into the AL register.

Whenever HLA encounters a symbolic text constant in your program,
it immediately substitutes the value of the text constant’s string for that
text constant and continues the compilation as though you had written the text
constant’s value rather than the symbolic identifier in your program. This
can save some typing and help make your programs a little more readable if
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you often enter some sequence of text in your program. For example, consider
the nl (newline) text constant declaration found in the HLA stdio. hhflibrary
header file:

const
nl: text := "#$d #$a"; // Windows version.

const
nl: text :=" """" #$a"; // Linux, FreeBSD, and Mac 0S X version.

Whenever HLA encounters the symbol nl, it immediately substitutes the
value of the string "#$d #$a" for the nl identifier. When HLA sees the #3$d
(carriage return) character constant followed by the #$a (line feed) character
constants, it concatenates the two to form the string containing the Windows
newline sequence (a carriage return followed by a line feed). Consider the
following two statements:

stdout.put( "Hello World", nl );
stdout.put( "Hello World" nl );

(Notice that the second statement above does not separate the string
literal and the nl symbol with a comma.) In the first example, HLA emits
code that prints the string Hello World and then emits some additional code
that prints a newline sequence. In the second example, HLA expands the nl
symbol as follows:

stdout.put( "Hello World" #$d #$a );

Now HLA sees a string literal constant (Hello World) followed by two
character constants. It concatenates the three of them together to form a
single string and then prints this string with a single call. Therefore, leaving
off the comma between the string literal and the nl symbol produces slightly
more efficient code. Keep in mind that this works only with string literal
constants. You cannot concatenate string variables, or a string variable with a
string literal, by using this technique.

Linux, FreeBSD, and Mac OS X users should note that the Unix end-of-
line sequence is just a single line-feed character. Therefore, the declaration
for nl is slightly different in those operating systems (to always guarantee that
nl expands to a string constant rather than a character constant).

In the constant section, if you specify only a constant identifier and a string
constant (that is, you do not supply a type), HLA defaults to type string. If
you want to declare a text constant, you must explicitly supply the type.

const
AStrConst := "String Constant";
ATextConst: text := "mov( 0, eax );";




4.2.4 Constant Expressions

Thus far, this chapter has given the impression that a symbolic constant
definition consists of an identifier, an optional type, and a literal constant.
Actually, HLA constant declarations can be a lot more sophisticated than this
because HLA allows the assignment of a constant expression, not just a literal
constant, to a symbolic constant. The generic constant declaration takes one
of the following two forms:

Identifier : typeName := constant_expression ;
Identifier := constant_expression ;

Constant expressions take the familiar form you’re used to in high-level
languages like C/C++ and Pascal. They may contain literal constant values,
previously declared symbolic constants, and various arithmetic operators.
Table 4-1 lists some of the operations possible in a constant expression.

The constant expression operators follow standard precedence rules;
you may use the parentheses to override the precedence if necessary. See
the HLA reference at hitp://webster.cs.ucr.edu/ or hitp://artofasm.com/ for the
exact precedence relationships. In general, if the precedence isn’t obvious,
use parentheses to exactly state the order of evaluation. HLA actually provides
a few more operators than these, though the ones above are the ones you will
most commonly use; the HLA documentation provides a complete list of
constant expression operators.

Table 4-1: Operations Allowed in Constant Expressions

Arithmetic Operators

- (unary negation) Negates the expression immediately following
* Multiplies the integer or real values around the asterisk.

div Divides the left integer operand by the right integer operand, producing
an integer (fruncated) result.

mod Divides the left integer operand by the right integer operand, producing
an integer remainder.

/ Divides the left numeric operand by the second numeric operand,
producing a floating point result.

+ Adds the left and right numeric operands.

- Subtracts the right numeric operand from the left numeric operand.

Comparison Operators

=, == Compares left operand with right operand. Returns true if equal.

SRE Compares left operand with right operand. Returns true if not equal.
< Returns true if left operand is less than right operand.

<= Returns true if left operand is <= right operand.

> Returns true if left operand is greater than right operand.

>= Returns true if left operand is >= right operand.

(continued)
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Table 4-1: Operations Allowed in Constant Expressions (continued)

Logical Operators’

& For boolean operands, returns the logical and of the two operands.
| For boolean operands, returns the logical or of the two operands.
" For boolean operands, returns the logical exclusive-or.

! Returns the logical not of the single operand following

Bitwise Logical Operators

& For integer numeric operands, returns bitwise and of the operands.
| For integer numeric operands, returns bitwise or of the operands.
n For integer numeric operands, returns bitwise xor of the operands.

! For an integer numeric operand, returns bitwise not of the operand.

String Operators

+ Returns the concatenation of the left and right string operands.

" Note to C/C++ and Java users: HLA's constant expressions use complete boolean evaluation rather than
short-circuit boolean evaluation. Hence, HLA constant expressions do not behave identically to C/C++/
Java expressions.

If an identifier appears in a constant expression, that identifier must be a
constant identifier that you have previously defined in your program in a const
or val section. You may not use variable identifiers in a constant expression;
their values are not defined at compile time when HLA evaluates the constant
expression. Also, don’t confuse compile-time and runtime operations:

// Constant expression, computed while HLA is compiling your program:

const
X =55
y i= 6;
Sum =X +Y;

// Runtime calculation, computed while your program is running, long after
// HLA has compiled it:

mov( x, al );
add( y, al );

HLA directly interprets the value of a constant expression during compil-
ation. It does not emit any machine instructions to compute x + y in the
constant expression above. Instead, it directly computes the sum of these
two constant values. From that point forward in the program, HLA associates
the value 11 with the constant Sum just as if the program had contained the
statement Sum := 11; rather than Sum := x + y;. On the other hand, HLA does



not precompute the value 11 in AL for the mov and add instructions above;

it faithfully emits the object code for these two instructions and the 80x86
computes their sum when the program is run (sometime after the compilation is
complete).

In general, constant expressions don’t get very sophisticated in assembly
language programs. Usually, you’re adding, subtracting, or multiplying two
integer values. For example, the following const section defines a set of constants
that have consecutive values:

const
TapeDAT = 0;
Tape8mm = TapeDAT + 1;
TapeQIC80 1= Tape8mm + 1;
TapeTravan 1= TapeQIC80 + 1;
TapeDLT = TapeTravan + 1;

The constants above have the following values: TapeDAT=0, Tape8mm=1,
TapeQIC80=2, TapeTravan=3, and TapeDLT=4.

4.2.5 Multiple const Sections and Their Order in an HLA Program

Although const sections must appear in the declaration section of an HLA
program (for example, between the program pgmname; header and the corre-
sponding begin pgmname; statement), they do not have to appear before or
after any other items in the declaration section. In fact, like the variable
declaration sections, you can place multiple const sections in a declaration
section. The only restriction on HLA constant declarations is that you must
declare any constant symbol before you use it in your program.

Some C/C++ programmers, for example, are more comfortable writing
their constant declarations as follows (because this is closer to C/C++’s syntax
for declaring constants):

const TapeDAT = 0;

const Tape8mm = TapeDAT + 1;
const TapeQIC80 1= Tape8mm + 1;
const TapeTravan = TapeQIC80 + 1;
const TapeDLT = TapeTravan + 1;

The placement of the const section in a program seems to be a personal
issue among programmers. Other than the requirement of defining all
constants before you use them, you may feel free to insert the const declaration
section anywhere in the declaration section.
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4.2.6 The HLA val Section

You cannot change the value of a constant you define in the const section.
While this seems perfectly reasonable (constants after all, are supposed to be,
well, constant), there are different ways we can define the term constant, and
const objects follow the rules of only one specific definition. HLA’s val section
lets you define constant objects that follow slightly different rules. This section
discusses the val section and the difference between val constants and const
constants.

The concept of “const-ness” can exist at two different times: while HLA is
compiling your program and later when your program executes (and HLA
is no longer running). All reasonable definitions of a constant require that a
value not change while the program is running. Whether or not the value of
a “constant” can change during compilation is a separate issue. The difference
between HLA const objects and HLA val objects is whether the value can
change during compilation.

Once you define a constant in the const section, the value of that constant is
immutable from that point forward both at runtime and while HLA is compiling
your program. Therefore, an instruction like mov( SymbolicCONST, eax ); always
moves the same value into EAX, regardless of where this instruction appears
in the HLA main program. Once you define the symbol SymbolicCONST in the
const section, this symbol has the same value from that point forward.

The HLA val section lets you declare symbolic constants, just like the const
section. However, HLA val constants can change their value throughout the
source code in your program. The following HLA declarations are perfectly
legal:

val Initialvalue = 0;

const SomeVal = Initialvalue + 1; // =1
const AnotherVal = Initialvalue + 2; /l =2
val Initialvalue = 100;

const AlargerVal = InitialValue; // = 100
const LargeValTwo := InitialValue*2; // = 200

All of the symbols appearing in the const sections use the symbolic value
Initialvalue as part of the definition. Note, however, that Initialvalue has
different values at various points in this code sequence; at the beginning of
the code sequence Initialvalue has the value 0, while later it has the value 100.

Remember, at runtime a val object is not a variable; it is still a manifest
constant and HLA will substitute the current value of a val identifier for that
identifier.® Statements like mov( 25, InitialValue ); are no more legal than
mov( 25, 0 ); ormov( 25, 100 );.

3In this context, current means the value last assigned to a val object looking backward in the
source code.



4.2.7 Modifying val Objects at Arbitrary Points in Your Programs

If you declare all your val objects in the declaration section, it would seem
that you would not be able to change the value of a val object between the
begin and end statements of your program. After all, the val section must
appear in the declaration section of the program, and the declaration
section ends before the begin statement. In Chapter 9, you will learn that
most val object modifications occur between the begin and end statements;
hence, HLA must provide some way to change the value of a val object
outside the declaration section. The mechanism to do this is the ? operator.
Not only does HLA allow you to change the value of a val object outside the
declaration section, but it also allows you to change the value of a val object
almost anywherein the program. Anywhere a space is allowed inside an HLA
program, you can insert a statement of the form

? Valldentifier := constant_expression;

This means that you could write a short program like the one appearing
in Listing 4-4.

program VALdemo;
#include( "stdlib.hhf" )

val
NotSoConstant := 0;

begin VALdemo;

mov( NotSoConstant, eax );
stdout.put( "EAX = ", (type uns32 eax ), nl );

?NotSoConstant := 10;
mov( NotSoConstant, eax );
stdout.put( "EAX = ", (type uns32 eax ), nl );

?NotSoConstant := 20;
mov( NotSoConstant, eax );
stdout.put( "EAX = ", (type uns32 eax ), nl );

?NotSoConstant := 30;
mov( NotSoConstant, eax );
stdout.put( "EAX = ", (type uns32 eax ), nl );

end VALdemo;

Listing 4-4: Demonstration of val redefinition using the ? operator

4.3 The HLA Type Section

Let’s say that you simply do not like the names that HLA uses for declaring
byte, word, dword, real, and other variables. Let’s say that you prefer Pascal’s
naming convention or perhaps C’s naming convention. You want to use terms
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like integer, float, double, or whatever. If HLA were Pascal, you could redefine
the names in the type section of the program. With C you could use a #define or
a typedef statement to accomplish the task. Well, HLA, like Pascal, has its own
type statement that also lets you create aliases of these names. The following
example demonstrates how to set up some C/C++/Pascal-compatible names
in your HLA programs:

type
integer: int32;
float: real32;
double: real64;
colors: byte;

Now you can declare your variables with more meaningful statements
like these:

static
i: integer;
X: float;
HouseColor: colors;

If you program in Ada, C/C++, or FORTRAN (or any other language,
for that matter), you can pick type names you’re more comfortable with. Of
course, this doesn’t change how the 80x86 or HLA reacts to these variables
one iota, but it does let you create programs that are easier to read and
understand because the type names are more indicative of the actual under-
lying types. One warning for C/C++ programmers: don’t get too excited and
go off and define an int data type. Unfortunately, int is an 80x86 machine
instruction (interrupt), and therefore this is a reserved word in HLA.

The type section is useful for much more than creating type isomorphism
(that is, giving a new name to an existing type). The following sections dem-
onstrate many of the possible things you can do in the type section.

4.4 enum and HLA Enumerated Data Types

Chapter 4

In a previous section discussing constants and constant expressions, you saw
the following example:

const TapeDAT = 0;

b
const Tape8mm 1= TapeDAT + 1;
const TapeQIC80 1= Tape8mm + 1;
const TapeTravan 1= TapeQIC80 + 1;
const TapeDLT = TapeTravan + 1;

This example demonstrates how to use constant expressions to develop a
set of constants that contain unique, consecutive values. There are, however,
a couple of problems with this approach. First, it involves a lot of typing (and
extra reading when reviewing this program). Second, it’s very easy to make a



mistake when creating long lists of unique constants and reuse or skip some
values. The HLA enum type provides a better way to create a list of constants
with unique values.

enum is an HLA type declaration that lets you associate a list of names with
a new type. HLA associates a unique value with each name (that s, it enumerates
the list). The enum keyword typically appears in the type section, and you use it
as follows:

type
enumTypeID: enum { comma_separated list of names };

The symbol enumTypeID becomes a new type whose values are specified by
a list of names. As a concrete example, consider the data type TapeDrives and
a corresponding variable declaration of type TapeDrives:

type

TapeDrives: enum{ TapeDAT, Tape8mm, TapeQIC80, TapeTravan, TapeDLT};
static

BackupUnit: TapeDrives := TapeDAT;

mov( BackupUnit, al );
if( al = Tape8mm ) then

endif;

// etc.

By default, HLA reserves 1 byte of storage for enumerated data types. So the
BackupUnit variable will consume 1 byte of memory, and you would typically use
an 8bit register to access it.* As for the constants, HLA associates consecutive
uns8 constant values starting at 0 with each of the enumerated identifiers.
In the TapeDrives example, the tape drive identifiers would have the values
TapeDAT=0, Tape8mm=1, TapeQIC80=2, TapeTravan=3, and TapeDLT=4. You may use
these constants exactly as though you had defined them with these values in
a const section.

4.5 Pointer Data Types

You’ve probably experienced pointers firsthand in the Pascal, C, or Ada
programming languages, and you're probably getting worried right now.
Almost everyone has a bad experience when they first encounter pointers in

*HLA provides a mechanism by which you can specify that enumerated data types consume 2
or 4 bytes of memory. See the HLA documentation for more details.
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a high-level language. Well, fear not! Pointers are actually easier to deal with
in assembly language than in high-level languages. Besides, most of the problems
you had with pointers probably had nothing to do with pointers but rather with
the linked list and tree data structures you were trying to implement with
them. Pointers, on the other hand, have many uses in assembly language that
have nothing to do with linked lists, trees, and other scary data structures.
Indeed, simple data structures like arrays and records often involve the use
of pointers. So if you have some deep-rooted fear about pointers, forget
everything you know about them. You’re going to learn how great pointers
really are.

Probably the best place to start is with the definition of a pointer. Just
exactly what is a pointer, anyway? Unfortunately, high-level languages like
Pascal tend to hide the simplicity of pointers behind a wall of abstraction.
This added complexity (which exists for good reason, by the way) tends to
frighten programmers because they don’t understand what’s going on.

If you’re afraid of pointers, let’s just ignore them for the time being and
work with an array. Consider the following array declaration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to understand.
Mis an array with 1,024 integers in it, indexed from M[0] to M[1023]. Each one
of these array elements can hold an integer value that is independent of all
the others. In other words, this array gives you 1,024 different integer variables,
each of which you refer to by number (the array index) rather than by name.

If you encounter a program that has the statement M[0]:=100;, you probably
won’t have to think at all about what is happening with this statement. It is
storing the value 100 into the first element of the array M. Now consider the
following two statements:

i :=0; (* Assume "i" is an integer variable. *)
M [i] := 100;

You should agree, without too much hesitation, that these two statements
perform the same operation as M[0]:=100;. Indeed, you’re probably willing to
agree that you can use any integer expression in the range 0..1,023 as an index
into this array. The following statements still perform the same operation as our
single assignment to index 0:

i:=5; (* Assume all variables are integers.*)
j := 10;

k := 50;

m [i*j-k] := 100;




“Okay, so what’s the point?” you’re probably thinking. “Anything that
produces an integer in the range 0..1,023 is legal. So what?” Okay, how about
the following:

M [1] := 0;
MI[MI[1] ] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it
slowly, it makes sense and you’ll discover that these two instructions perform
the exact same operation you’ve been doing all along. The first statement
stores 0 into array element M[1]. The second statement fetches the value of
M[1], which is an integer so you can use it as an array index into M, and uses
that value (0) to control where it stores the value 100.

If you're willing to accept the above as reasonable, perhaps bizarre, but
usable nonetheless, then you’ll have no problems with pointers. Because M[1]
is a pointer! Well, not really, but if you were to change M to “memory” and treat
this array as all of memory, this is the exact definition of a pointer. A pointer
is simply a memory location whose value is the address (or index, if you prefer)
of some other memory location. Pointers are very easy to declare and use in
an assembly language program. You don’t even have to worry about array
indices or anything like that.

4.5.1 Using Pointers in Assembly Language

An HLA pointer is a 32-bit value that may contain the address of some other
variable. If you have a dword variable p that contains $1000_0000, then p
“points” at memory location $1000_0000. To access the dword that p points at,
you could use code like the following:

mov( p, ebx ); // Load ebx with the value of pointer p.
mov( [ebx], eax ); // Fetch the data that p points at.

By loading the value of p into EBX, this code loads the value $1000_0000
into EBX (assuming p contains $1000_0000 and, therefore, points at memory
location $1000_0000). The second instruction above loads the EAX register
with the dword starting at the location whose offset appears in EBX. Because
EBX now contains $1000_0000, this will load EAX from locations $1000_0000
through $1000_0003.

Why not just load EAX directly from location $1000_0000 using an
instruction like mov( mem, eax ); (assuming mem is at address $1000_0000)?
Well, there are a lot of reasons. But the primary reason is that this mov instruction
always loads EAX from location mem. You cannot change the address from
where it loads EAX. The former instructions, however, always load EAX from
the location where p is pointing. This is very easy to change under program
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control. In fact, the simple instruction mov( &mem2, p ); will cause those same
two instructions above to load EAX from mem2 the next time they execute.
Consider the following instruction sequence:

mov( &i, p ); // Assume all variables are STATIC variables.

if( some_expression ) then

mov( &, p ); // Assume the code above skips this instruction
. // and you get to the next instruction by
// jumping to this point from somewhere else.

endif;
mov( p, ebx ); // Assume both of the above code paths wind up
mov( [ebx], eax ); // down here.

This short example demonstrates two execution paths through the
program. The first path loads the variable p with the address of the variable i.
The second path through the code loads p with the address of the variable j.
Both execution paths converge on the last two mov instructions that load EAX
with i or j depending upon which execution path was taken. In many respects,
this is like a parameter to a procedure in a high-level language like Pascal.
Executing the same instructions accesses different variables depending on
whose address (i or j) winds up in p.

4.5.2 Declaring Pointers in HLA

Because pointers are 32-bits long, you could simply use the dword type to
allocate storage for your pointers. However, there is a much better way to do
this: HLA provides the pointer to phrase specifically for declaring pointer
variables. Consider the following example:

static
b: byte;
d: dword;

pByteVar: pointer to byte := 8b;
pDWordVar: pointer to dword := &d;

This example demonstrates that it is possible to initialize as well as declare
pointer variables in HLA. Note that you may only take addresses of static
variables (static, readonly, and storage objects) with the address-of operator,
so you can only initialize pointer variables with the addresses of static objects.

You can also define your own pointer types in the type section of an HLA
program. For example, if you often use pointers to characters, you’ll probably
want to use a type declaration like the one in the following example.



type

ptrChar: pointer to char;
static
cString: ptrChar;

4.5.3 Pointer Constants and Pointer Constant Expressions

HLA allows two literal pointer constant forms: the address-of operator
followed by the name of a static variable or the constant NULL. In addition
to these two literal pointer constants, HLA also supports simple pointer
constant expressions.

The NULL pointer is the constant 0. Zero is an illegal address that will
raise an exception if you try to access it under modern operating systems.
Programs typically initialize pointers with NULL to indicate that a pointer has
explicitly not been initialized with a valid address.

In addition to simple address literals and the value 0, HLA allows very
simple constant expressions wherever a pointer constant is legal. Pointer
constant expressions take one of the three following forms:

&StaticVarName [ PureConstantExpression ]
&StaticVarName + PureConstantExpression
&StaticVarName - PureConstantExpression

The PureConstantExpression term is a numeric constant expression that
does not involve any pointer constants. This type of expression produces a
memory address that is the specified number of bytes before or after (- or +,
respectively) the StaticVarName variable in memory. Note that the first two
forms above are semantically equivalent; they both return a pointer constant
whose address is the sum of the static variable and the constant expression.

Because you can create pointer constant expressions, it should come as
no surprise to discover that HLA lets you define manifest pointer constants
in the const section. The program in Listing 4-5 demonstrates how you can
do this.

program PtrConstDemo;
#include( "stdlib.hhf" );

static
b: byte := 0;
byte 1, 2,3, 4, 5, 6, 7;
const
pb := & + 1;
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begin PtrConstDemo;
mov( pb, ebx );
mov( [ebx], al );
stdout.put( "Value at address pb = $", al, nl );

end PtrConstDemo;

Listing 4-5: Pointer constant expressions in an HLA program

Upon execution, this program prints the value of the byte just beyond b
in memory (which contains the value $01).

4.5.4 Pointer Variables and Dynamic Memory Allocation

Pointer variables are the perfect place to store the return result from the HLA
Standard Library mem.alloc function. The mem.alloc function returns the
address of the storage it allocates in the EAX register; therefore, you can
store the address directly into a pointer variable with a single mov instruction
immediately after a call to mem.alloc:

type
bytePtr: pointer to byte;

var
bPtr: bytePtr;

mem.alloc( 1024 ); // Allocate a block of 1,024 bytes.
mov( eax, bPtr ); // Store address of block in bPtr.

mem.free( bPtr ); // Free the allocated block when done using it.

4.5.5 Common Pointer Problems

Programmers encounter five common problems when using pointers. Some
of these errors will cause your programs to immediately stop with a diagnostic
message; other problems are more subtle, yielding incorrect results without
otherwise reporting an error or simply affecting the performance of your
program without displaying an error. These five problems are:

e Using an uninitialized pointer

e Using a pointer that contains an illegal value (e.g., NULL)



e Continuing to use mem.alloc’d storage after that storage has been freed
e Failing to mem.free storage once the program is finished using it

e Accessing indirect data using the wrong data type

The first problem above is using a pointer variable before you have
assigned a valid memory address to the pointer. Beginning programmers
often don’t realize that declaring a pointer variable reserves storage only for
the pointer itself; it does not reserve storage for the data that the pointer
references. The short program in Listing 4-6 demonstrates this problem.

// Program to demonstrate use of

// an uninitialized pointer. Note

// that this program should terminate

// with a Memory Access Violation exception.

program UninitPtrDemo;
#include( "stdlib.hhf" );

static

// Note: By default, variables in the

// static section are initialized with

// zero (NULL) hence the following

// is actually initialized with NULL,

// but that will still cause our program
// to fail because we haven't initialized
// the pointer with a valid memory address.

Uninitialized: pointer to byte;
begin UninitPtrDemo;
mov( Uninitialized, ebx );
mov( [ebx], al );
stdout.put( "Value at address Uninitialized: = $", al, nl );

end UninitPtrDemo;

Listing 4-6: Uninitialized pointer demonstration

Although variables you declare in the static section are, technically,
initialized, static initialization still doesn’t initialize the pointer in this program
with a valid address (it initializes them with 0, which is NULL).

Of course, there is no such thing as a truly uninitialized variable on the
80x86. What you really have are variables that you’ve explicitly given an initial
value and variables that just happen to inherit whatever bit pattern was in
memory when storage for the variable was allocated. Much of the time, these
garbage bit patterns lying around in memory don’t correspond to a valid
memory address. Attempting to dereference such a pointer (that is, access the
data in memory at which it points) typically raises a Memory Access Violation
exception.
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Sometimes, however, those random bits in memory just happen to corre-
spond to a valid memory location you can access. In this situation, the CPU
will access the specified memory location without aborting the program.
Although to a naive programmer this situation may seem preferable to stopping
the program, in reality this is far worse because your defective program
continues to run without alerting you to the problem. If you store data
through an uninitialized pointer, you may very well overwrite the values of
other important variables in memory. This defect can produce some very
difficult-to-locate problems in your program.

The second problem programmers have with pointers is storing invalid
address values into a pointer. The first problem above is actually a special
case of this second problem (with garbage bits in memory supplying the invalid
address rather than you producing it via a miscalculation). The effects are the
same; if you attempt to dereference a pointer containing an invalid address,
either you will get a Memory Access Violation exception or you will access an
unexpected memory location.

The third problem listed above is also known as the dangling pointer
problem. To understand this problem, consider the following code fragment:

mem.alloc( 256 ); // Allocate some storage.
mov( eax, ptr ); // Save address away in a pointer variable.

// Code that uses the pointer variable ptr.
mem.free( ptr ); // Free the storage associated with ptr.
// Code that does not change the value in ptr.

mov( ptr, ebx );
mov( al, [ebx] );

In this example you will note that the program allocates 256 bytes of
storage and saves the address of that storage in the ptr variable. Then the
code uses this block of 256 bytes for a while and frees the storage, returning
it to the system for other uses. Note that calling mem.free does not change the
value of ptr in any way; ptr still points at the block of memory allocated by
mem.alloc earlier. Indeed, mem.free does not change any data in this block, so
upon return from mem.free, ptr still points at the data stored into the block
by this code. However, note that the call to mem.free tells the system that the
program no longer needs this 256-byte block of memory and the system can
use this region of memory for other purposes. The mem.free function cannot
enforce the fact that you will never access this data again; you are simply
promising that you won’t. Of course, the code fragment above breaks this
promise; as you can see in the last two instructions above, the program
fetches the value in ptr and accesses the data it points at in memory.



The biggest problem with dangling pointers is that you can get away with
using them a good part of the time. As long as the system doesn’t reuse the
storage you’ve freed, using a dangling pointer produces no ill effects in your
program. However, with each new call to mem.alloc, the system may decide to
reuse the memory released by that previous call to mem.free. When this hap-
pens, any attempt to dereference the dangling pointer may produce some
unintended consequences. The problems range from reading data that has
been overwritten (by the new, legal use of the data storage), to overwriting
the new data, to (the worst case) overwriting system heap management pointers
(doing so will probably cause your program to crash). The solution is clear:
Never use a pointer value once you free the storage associated with that pointer.

Of all the problems, the fourth (failing to free allocated storage) will
probably have the least impact on the proper operation of your program.
The following code fragment demonstrates this problem:

mem.alloc( 256 );

mov( eax, ptr );

// Code that uses the data where ptr is pointing.
// This code does not free up the storage

. // associated with ptr.

mem.alloc( 512 );
mov( eax, ptr );

// At this point, there is no way to reference the original
// block of 256 bytes pointed at by ptr.

In this example the program allocates 256 bytes of storage and references
this storage using the ptr variable. At some later time the program allocates
another block of bytes and overwrites the value in ptr with the address of this
new block. Note that the former value in ptr is lost. Because the program no
longer has this address value, there is no way to call mem.free to return the
storage for later use. As a result, this memory is no longer available to your
program. While making 256 bytes of memory inaccessible to your program
may not seem like a big deal, imagine that this code is in a loop that repeats
over and over again. With each execution of the loop the program loses another
256 bytes of memory. After a sufficient number of loop iterations, the program
will exhaust the memory available on the heap. This problem is often called a
memory leak because the effect is the same as though the memory bits were
leaking out of your computer (yielding less and less available storage) during
program execution.

Memory leaks are far less damaging than dangling pointers. Indeed,
there are only two problems with memory leaks: the danger of running out
of heap space (which, ultimately, may cause the program to abort, though
this is rare) and performance problems due to virtual memory page swapping.
Nevertheless, you should get in the habit of always freeing all storage once
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you have finished using it. When your program quits, the operating system
reclaims all storage, including the data lost via memory leaks. Therefore,
memory lost via a leak is lost only to your program, not the whole system.

The last problem with pointers is the lack of type-safe access. This can
occur because HLA cannot and does not enforce pointer type checking. For
example, consider the program in Listing 4-7.

// Program to demonstrate use of
// lack of type checking in pointer
// accesses.

program BadTypePtrDemo;
#include("stdlib.hhf" );

static
ptr: pointer to char;
cnt: uns32;

begin BadTypePtrDemo;

// Allocate sufficient characters
// to hold a line of text input
// by the user:

mem.alloc( 256 );
mov( eax, ptr );

// Okay, read the text a character
// at a time by the user:

stdout.put( "Enter a line of text: " );
stdin.flushInput();

mov( 0, cnt );

mov( ptr, ebx );

repeat
stdin.getc(); // Read a character from the user.
mov( al, [ebx] ); // Store the character away.
inc( cnt ); // Bump up count of characters.
inc( ebx ); // Point at next position in memory.

until( stdin.eoln());
// Okay, we've read a line of text from the user,
// now display the data:

mov( ptr, ebx );
for( mov( cnt, ecx ); ecx > 0; dec( ecx )) do



mov( [ebx], eax );
stdout.put( "Current value is $", eax, nl );
inc( ebx );

endfor;
mem.free( ptr );

end BadTypePtrDemo;

Listing 4-7: Type-unsafe pointer access example

This program reads in data from the user as character values and then
displays the data as double-word hexadecimal values. While a powerful
feature of assembly language is that it lets you ignore data types at will and
automatically coerce the data without any effort, this power is a two-edged
sword. If you make a mistake and access indirect data using the wrong data
type, HLA and the 80x86 may not catch the mistake and your program may
produce inaccurate results. Therefore, you need to take care when using
pointers and indirection in your programs that you use the data consistently
with respect to data type.

4.6 Composite Data Types

Composite data types, also known as aggregate data types, are those that are
built up from other (generally scalar) data types. This chapter covers several
of the more important composite data types—character strings, character sets,
arrays, records, and unions. A string is a good example of a composite data type;
itis a data structure built up from a sequence of individual characters and some
other data.

4.7 Character Strings

After integer values, character strings are probably the most common data
type that modern programs use. The 80x86 does support a handful of string
instructions, but these instructions are really intended for block memory
operations, not a specific implementation of a character string. Therefore,
this section will concentrate mainly on the HLA definition of character
strings and will also discuss the string-handling routines available in the HLA
Standard Library.

In general, a character string is a sequence of ASCII characters that
possesses two main attributes: a length and some character data. Different
languages use different data structures to represent strings. To better under-
stand the reasoning behind the design of HLA strings, it is probably instructive
to look at two different string representations popularized by various high-
level languages.
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Without question, zero-terminated strings are probably the most common
string representation in use today because this is the native string format for
C, C++, C#, Java, and other languages. A zero-terminated string consists of a
sequence of zero or more ASCII characters ending with a 0 byte. For example,
in C/C++, the string "abc" requires 4 bytes: the three characters 'a’, 'b', and
'c' followed by a 0. As you’ll soon see, HLA character strings are upward
compatible with zero-terminated strings, but in the meantime you should
note that it is very easy to create zero-terminated strings in HLA. The easiest
place to do this is in the static section using code like the following:

static
zeroTerminatedString: char; @nostorage;
byte "This is the zero-terminated string", o;

Remember, when using the @nostorage option, HLA doesn’t reserve any
space for the variable, so the zeroTerminatedString variable’s address in memory
corresponds to the first character in the following byte directive. Whenever
a character string appears in the byte directive as it does here, HLA emits each
character in the string to successive memory locations. The 0 value at the end
of the string terminates this string.

HLA supports a zstring data type. However, those objects are double word
pointers that contain the address of a zstring, not the zero-terminated string
itself. Here is an example of a zstring declaration (and static initialization):

static
zeroTerminatedString: char; @nostorage;
byte "This is the zero-terminated string", o;
zstrVar: zstring := &zeroTerminatedString;

Zero-terminated strings have two principal attributes: They are very simple
to implement, and the strings can be any length. On the other hand, zero-
terminated strings have a few drawbacks. First, though not usually important,
zero-terminated strings cannot contain the NUL character (whose ASCII code
is 0). Generally, this isn’t a problem, but it does create havoc once in a while.
The second problem with zero-terminated strings is that many operations on
them are somewhat inefficient. For example, to compute the length of a
zero-terminated string, you must scan the entire string looking for that 0 byte
(counting characters up to the 0). The following program fragment demon-
strates how to compute the length of the string above:

mov( &zeroTerminatedString, ebx );

mov( 0, eax );

while( (type byte [ebx+eax]) <> 0 ) do
inc( eax );

endwhile;

// String length is now in eax.




As you can see from this code, the time it takes to compute the length of
the string is proportional to the length of the string; as the string gets longer,
it takes longer to compute its length.

A second string format, length-prefixed strings, overcomes some of the
problems with zero-terminated strings. Length-prefixed strings are common
in languages like Pascal; they generally consist of a length byte followed by
zero or more character values. The first byte specifies the string length, and
the following bytes (up to the specified length) are the character data. In a
length-prefixed scheme, the string abc would consist of the 4 bytes $03 (the
string length) followed by a, b, and c. You can create length-prefixed strings
in HLA using code like the following:

static
lengthPrefixedString:char; @nostorage;
byte 3, "abc";

Counting the characters ahead of time and inserting them into the byte
statement, as was done here, may seem like a major pain. Fortunately, there
are ways to have HLA automatically compute the string length for you.

Length-prefixed strings solve the two major problems associated with
zero-terminated strings. It is possible to include the NUL character in length-
prefixed strings, and those operations on zero-terminated strings that are
relatively inefficient (e.g., string length) are more efficient when using length-
prefixed strings. However, length-prefixed strings have their own drawbacks.
The principal drawback is that they are limited to a maximum of 255 characters
in length (assuming a 1-byte length prefix).

HLA uses an expanded scheme for strings that is upward compatible
with both zero-terminated and length-prefixed strings. HLA strings enjoy the
advantages of both zero-terminated and length-prefixed strings without the
disadvantages. In fact, the only drawback to HLA strings over these other
formats is that HLA strings consume a few additional bytes (the overhead for
an HLA string is 9 to 12 bytes compared to 1 byte for zero-terminated or
length-prefixed strings, the overhead being the number of bytes needed
above and beyond the actual characters in the string).

An HLA string value consists of four components. The first element is a
double-word value that specifies the maximum number of characters that the
string can hold. The second element is a double-word value specifying the
current length of the string. The third component is the sequence of characters
in the string. The final component is a zero-terminating byte. You could create
an HLA-compatible string in the static section using code like the following:®

static
align(4);
dword 11;
dword 11;

% Actually, there are some restrictions on the placement of HLA strings in memory. This text will
not cover those issues. See the HLA documentation for more details.
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TheString: char; @nostorage;
byte "Hello there";
byte 0;

Note that the address associated with the HLA string is the address of the
first character, not the maximum or current length values.

“So what is the difference between the current and maximum string
lengths?” you're probably wondering. In a literal string they are usually the
same. However, when you allocate storage for a string variable at runtime,
you will normally specify the maximum number of characters that can go
into the string. When you store actual string data into the string, the number
of characters you store must be less than or equal to this maximum value.
The HLA Standard Library string routines will raise an exception if you attempt
to exceed this maximum length (something the C/C++ and Pascal formats
can’t do).

The terminating 0 byte at the end of the HLA string lets you treat an
HLA string as a zero-terminated string if it is more efficient or more convenient
to do so. For example, most calls to Windows, Mac OS X, FreeBSD, and Linux
require zero-terminated strings for their string parameters. Placing a 0 at the
end of an HLA string ensures compatibility with the operating system and
other library modules that use zero-terminated strings.

4.8 HLA Strings

Chapter 4

As the previous section notes, HLA strings consist of four components: a
maximum length, a current string length, character data, and a zero-terminating
byte. However, HLA never requires you to create string data by manually
emitting these components yourself. HLA is smart enough to automatically
construct this data for you whenever it sees a string literal constant. So if you
use a string constant like the following, understand that somewhere HLA is
creating the four-component string in memory for you:

stdout.put( "This gets converted to a four-component string by HLA" );

HLA doesn’t actually work directly with the string data described in the
previous section. Instead, when HLA sees a string object, it always works with
a pointer to that object rather than working directly with the object. Without
question, this is the most important fact to know about HLA strings and is the
biggest source of problems beginning HLA programmers have with strings in
HLA: Strings are pointers! A string variable consumes exactly 4 bytes, the same
as a pointer (because it is a pointer!). Having said all that, let’s look at a simple
string variable declaration in HLA:

static
StrVariable: string;




Because a string variable is a pointer, you must initialize it before you can
use it. There are three general ways you may initialize a string variable with
a legal string address: using static initializers, using the str.alloc routine, or
calling some other HLA Standard Library function that initializes a string or
returns a pointer to a string.

In one of the static declaration sections that allow initialized variables
(static and readonly) you can initialize a string variable using the standard
initialization syntax. For example:

static
InitializedString: string := "This is my string";

Note that this does not initialize the string variable with the string data.
Instead, HLA creates the string data structure (see Section 4.7) in a special,
hidden, memory segment and initializes the InitializedString variable with
the address of the first character in this string (the T in This). Remember, strings
are pointers! The HLA compiler places the actual string data in a read-only
memory segment. Therefore, you cannot modify the characters of this string
literal at runtime. However, because the string variable (a pointer, remember)
is in the static section, you can change the string variable so that it points at
different string data.

Because string variables are pointers, you can load the value of a string
variable into a 32-bit register. The pointer itself points at the first character
position of the string. You can find the current string length in the double-
word 4 bytes prior to this address, and you can find the maximum string
length in the double-word 8 bytes prior to this address. The program in
Listing 4-8 demonstrates one way to access this data.’

// Program to demonstrate accessing Length and Maxlength fields of a string.

program StrDemo;
#include( "stdlib.hhf" );

static
theString:string := "String of length 19";

begin StrDemo;
mov( theString, ebx ); // Get pointer to the string.

mov( [ebx-4], eax ); // Get current length.
mov( [ebx-8], ecx ); // Get maximum length.

stdout.put
(

Note that this scheme is not recommended. If you need to extract the length information from
a string, use the routines provided in the HLA string library for this purpose.
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"theString = '", theString, "'", nl,

"length( theString )= ", (type uns32 eax ), nl,

"maxLength( theString )= ", (type uns32 ecx ), nl
);

end StrDemo;

Listing 4-8: Accessing the length and maximum length fields of a string

When accessing the various fields of a string variable, it is not wise to
access them using fixed numeric offsets as done in Listing 4-8. In the future,
the definition of an HLA string may change slightly. In particular, the offsets
to the maximum length and length fields are subject to change. A safer way to
access string data is to coerce your string pointer using the str.strRec data
type. The str.strRec data type is a record data type (see Section 4.25) that
defines symbolic names for the offsets of the length and maximum length
fields in the string data type. If the offsets to the length and maximum
length fields were to change in a future version of HLA, then the definitions
in str.strRec would also change. So if you use str.strRec, then recompiling
your program would automatically make any necessary changes to your
program.

To use the str.strRec data type properly, you must first load the string
pointer into a 32-bit register; for example, mov( SomeString, ebx );. Once
the pointer to the string data is in a register, you can coerce that register
to the str.strRec data type using the HLA construct (type str.strRec [ebx]).
Finally, to access the length or maximum length fields, you would use either
(type str.strRec [ebx]).length or (type str.strRec [ebx]).maxlen (respectively).
Although there is a little more typing involved (versus using simple offsets
like —4 or —8), these forms are far more descriptive and much safer than
straight numeric offsets. The program in Listing 4-9 corrects the example in
Listing 4-8 by using the str.strRec data type.

// Program to demonstrate accessing length and maxlen fields of a string

program LenMaxlenDemo;
#include( "stdlib.hhf" );

static
theString:string := "String of length 19";

begin LenMaxlenDemo;
mov( theString, ebx ); // Get pointer to the string.

mov( (type str.strRec [ebx]).length, eax ); // Get current length.
mov( (type str.strRec [ebx]).maxlen, ecx ); // Get maximum length.



stdout.put
(

"theString = ", theString, "'", nl,
"length( theString )= ", (type uns32 eax ), nl,
"maxLength( theString )= ", (type uns32 ecx ), nl

)s

end LenMaxlenDemo;

Listing 4-9: Correct way to access the length and maxlen fields of a string

A second way to manipulate strings in HLA is to allocate storage on the
heap to hold string data. Because strings can’t directly use pointers returned
by mem.alloc (string operations access the 8 bytes prior to the address), you
shouldn’t use mem.alloc to allocate storage for string data. Fortunately, the
HILA Standard Library memory module provides a memory allocation routine
specifically designed to allocate storage for strings: str.alloc. Like mem.alloc,
str.alloc expects a single double-word parameter. This value specifies the
maximum number of characters allowed in the string. The str.alloc routine
will allocate the specified number of bytes of memory, plus between 9 and 13
additional bytes to hold the extra string information.”

The str.alloc routine will allocate storage for a string, initialize the maxi-
mum length to the value passed as the str.alloc parameter, initialize the
current length to 0, and store a zero-terminating byte in the first character
position of the string. After this, str.alloc returns the address of the zero-
terminating byte (that is, the address of the first character element) in the
EAX register.

Once you’ve allocated storage for a string, you can call various string-
manipulation routines in the HLA Standard Library to manipulate the string.
The next section discusses a few of the HLA string routines in detail; this
section introduces a couple of string-related routines for the sake of example.
The first such routine is the stdin.gets( strvar );. This routine reads a string
from the user and stores the string data into the string storage pointed at by
the string parameter (strvar in this case). If the user attempts to enter more
characters than the maximum the string allows, then stdin.gets raises the
ex.StringOverflow exception. The program in Listing 4-10 demonstrates the
use of str.alloc.

// Program to demonstrate str.alloc and stdin.gets

program strallocDemo;
#include( "stdlib.hhf" );

static
theString:string;

begin strallocDemo;

7str.alloc may allocate more than 9 bytes for the overhead data because the memory allocated
to an HLA string must always be double-word aligned, and the total length of the data structure
must be a multiple of 4.
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str.alloc( 16 ); // Allocate storage for the string and store
mov( eax, theString ); // the pointer into the string variable.

// Prompt the user and read the string from the user:
stdout.put( "Enter a line of text (16 chars, max): " );
stdin.flushInput();

stdin.gets( theString );

// Echo the string back to the user:

stdout.put( "The string you entered was: ", theString, nl );

end strallocDemo;

Listing 4-10: Reading a string from the user

If you look closely, you’ll see a slight defect in the program above. It allo-
cates storage for the string by calling str.alloc, but it never frees the storage
allocated. Even though the program immediately exits after the last use of
the string variable, and the operating system will deallocate the storage, it’s
always a good idea to explicitly free up any storage you allocate. Doing so
keeps you in the habit of freeing allocated storage (so you don’t forget to do
it when it’s important); also, programs have a way of growing such that an
innocent defect that doesn’t affect anything in today’s program becomes a
show-stopping defect in tomorrow’s version.

To free storage you allocate via str.alloc, you must call the str.free routine,
passing the string pointer as the single parameter. The program in Listing 4-11 is
a correction of the program Listing 4-10 with this defect corrected.

// Program to demonstrate str.alloc, str.free, and stdin.gets

program strfreeDemo;
#include( "stdlib.hhf" );

static
theString:string;

begin strfreeDemo;

str.alloc( 16 ); // Allocate storage for the string and store
mov( eax, theString ); // the pointer into the string variable.

// Prompt the user and read the string from the user:
stdout.put( "Enter a line of text (16 chars, max): " );

stdin.flushInput();
stdin.gets( theString );



// Echo the string back to the user:

stdout.put( "The string you entered was: ", theString, nl );
// Free up the storage allocated by str.alloc:

str.free( theString );

end strfreeDemo;

Listing 4-11: Corrected program that reads a string from the user

When looking at this corrected program, please take note that the
stdin.gets routine expects you to pass it a string parameter that points at an
allocated string object. Without question, one of the most common mistakes
beginning HLA programmers make is to call stdin.gets and pass it a string
variable that they have not initialized. This may be getting old now, but keep
in mind that strings are pointers! Like pointers, if you do not initialize a string
with a valid address, your program will probably crash when you attempt to
manipulate that string object. The call to str.alloc and the following mov
instruction is how the programs above initialize the string pointer. If you are
going to use string variables in your programs, you must ensure that you
allocate storage for the string data prior to writing data to the string object.

Allocating storage for a string is such a common operation that many
HLA Standard Library routines will automatically allocate the storage for
you. Generally, such routines have an a_ prefix as part of their name. For
example, the stdin.a_gets combines a call to str.alloc and stdin.gets into the
same routine. This routine, which doesn’t have any parameters, reads a line
of text from the user, allocates a string object to hold the input data, and then
returns a pointer to the string in the EAX register. Listing 4-12 presents an
adaptation of the two programs in Listings 4-10 and 4-11 that uses stdin.a_gets.

// Program to demonstrate str.free and stdin.a_gets

program strfreeDemo2;
#include( "stdlib.hhf" );

static
theString:string;

begin strfreeDemo2;

// Prompt the user and read the string from the user:

stdout.put( "Enter a line of text: " );
stdin.flushInput();

stdin.a_gets();

mov( eax, theString );
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// Echo the string back to the user:

stdout.put( "The string you entered was: ", theString, nl );
// Free up the storage allocated by stdin.a_gets:

str.free( theString );

end strfreeDemo2;

Listing 4-12: Reading a string from the user with stdin.a_gets

Note that, as before, you must still free up the storage stdin.a_gets allocates
by calling the str.free routine. One big difference between this routine and
the previous two is the fact that HLA will automatically allocate exactly enough
space for the string read from the user. In the previous programs, the call to
str.alloc allocates only 16 bytes. If the user types more than 16 characters,
then the program raises an exception and quits. If the user types fewer
than 16 characters, then some space at the end of the string is wasted. The
stdin.a_gets routine, on the other hand, always allocates the minimum necessary
space for the string read from the user. Because it allocates the storage, there
is little chance of overflow.?

4.9 Accessing the Characters Within a String

Chapter 4

Extracting individual characters from a string is a very common task. It is so
easy that HLA doesn’t provide any specific procedure or language syntax to
accomplish this—you simply use machine instructions to accomplish this.
Once you have a pointer to the string data, a simple indexed addressing mode
will do the rest of the work for you.

Of course, the most important thing to keep in mind is that strings are
pointers. Therefore, you cannot apply an indexed addressing mode directly to
a string variable and expect to extract characters from the string. That is, if s
is a string variable, then mov( s[ebx], al ); does not fetch the character at
position EBX in string s and place it in the AL register. Remember, s is just a
pointer variable; an addressing mode like s[ebx] will simply fetch the byte at
offset EBX in memory starting at the address of s (see Figure 4-1).

Low Memory s[ebx] (if ebx = 3) High Memory
Addresses | * Addresses

T 1 T
Pointer to String Data
I I

* 1

S

Figure 4-1: Incorrectly indexing off a string variable

8 Actually, there are limits on the maximum number of characters that stdin.a_gets will allocate.
This is typically between 1,024 bytes and 4,096 bytes. See the HLA Standard Library source
listings and your operating system documentation for the exact value.



In Figure 4-1, assuming EBX contains 3, s[ebx] does not access the fourth
character in the string s; instead it fetches the fourth byte of the pointer to
the string data. It is very unlikely that this is what you would want. Figure 4-2
shows the operation that is necessary to fetch a character from the string,
assuming EBX contains the value of s.

[ebx+3]
T T T T T T
MaxLength Length A|lB[C|D
L1 Lo
3
Low Memory High Memory
Addresses Addresses

T T
Pointer to String Data
I 1 I

)

S

Figure 4-2: Correctly indexing off the value of a string variable

In Figure 4-2 EBX contains the value of string s. The value of's is a pointer to
the actual string data in memory. Therefore, EBX will point at the first character
of the string when you load the value of s into EBX. The following code
demonstrates how to access the fourth character of string s in this fashion:

mov( s, ebx ); // Get pointer to string data into ebx.
mov( [ebx+3], al ); // Fetch the fourth character of the string.

If you want to load the character at a variable, rather than fixed, offset
into the string, then you can use one of the 80x86’s scaled indexed addressing
modes to fetch the character. For example, if an uns32 variable index contains
the desired offset into the string, you could use the following code to access the
character at s[index]:

mov( s, ebx ); // Get address of string data into ebx.
mov( index, ecx ); // Get desired offset into string.
mov( [ebx+ecx], al ); // Get the desired character into al.

There is only one problem with the code above—it does not check to
ensure that the character at offset index actually exists. If index is greater than
the current length of the string, then this code will fetch a garbage byte from
memory. Unless you can a priori determine that index is always less than the
length of the string, code like this is dangerous to use. A better solution is to
check the index against the string’s current length before attempting to access
the character. The following code provides one way to do this:

mov( s, ebx );
mov( index, ecx );
if( ecx < (type str.strRec [ebx]).length ) then
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mov( [ebx+ecx], al );
else
<< Code that handles out-of-bounds string index >>

endif;

In the else portion of this if statement you could take corrective action,
print an error message, or raise an exception. If you want to explicitly raise
an exception, you can use the HLA raise statement to accomplish this. The
syntax for the raise statement is

raise( integer constant );
raise( reg32 );

The value of the integer_constant or 32-bit register must be an exception
number. Usually, this is one of the predefined constants in the excepts.hhf
header file. An appropriate exception to raise when a string index is greater
than the length of the string is ex.StringIndexError. The following code demon-
strates raising this exception if the string index is out of bounds:

mov( s, ebx );

mov( index, ecx );

if( ecx < (type str.strRec [ebx]).length ) then
mov( [ebx+ecx], al );

else

raise( ex.StringIndexError );

endif;

4.10 The HLA String Module and Other String-Related Routines

Although HLA provides a powerful definition for string data, the real power
behind HLA’s string capabilities lies in the HLA Standard Library, not in the
definition of HLA string data. HLA provides hundreds of string-manipulation
routines that far exceed the capabilities found in standard high-level languages
like C/C++, Java, or Pascal; indeed, HLA’s string-handling capabilities rival
those in string-processing languages like Icon or SNOBOLA4. This chapter
discusses several of the string functions that the HLA Standard Library provides.

Perhaps the most basic string operation you will need is to assign one
string to another. There are three different ways to assign strings in HLA:
by reference, by copying a string, and by duplicating a string. Of these,
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assignment by reference is the fastest and easiest. If you have two strings and
you wish to assign one string to the other, a simple and fast way to do this is
to copy the string pointer. The following code fragment demonstrates this:

static
stringi: string := "Some String Data";
string2: string;

mov( stringl, eax );
mov( eax, string2 );

String assignment by reference is very efficient because it involves only
two simple mov instructions regardless of the string length. Assignment by
reference works great if you never modify the string data after the assignment
operation. Do keep in mind, though, that both string variables (string1 and
string2 in the example above) wind up pointing at the same data. So if you make
a change to the data pointed at by one string variable, you will change the
string data pointed at by the second string object because both objects point
at the same data. Listing 4-13 provides a program that demonstrates this
problem.

// Program to demonstrate the problem with string assignment by reference

program strRefAssignDemo;
#include( "stdlib.hhf" );

static
string1: string;
string2: string;

begin strRefAssignDemo;
// Get a value into stringi.
forever
stdout.put( "Enter a string with at least three characters: " );
stdin.a_gets();
mov( eax, stringl );

breakif( (type str.strRec [eax]).length >= 3 );

stdout.put( "Please enter a string with at least three chars:" nl );
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endfor;

stdout.put( "You entered: '", stringi, "'" nl );

// Do the string assignment by copying the pointer.

mov( stringl, ebx );
mov( ebx, string2 );
stdout.put( "Stringi= '", string1, "'" nl );
stdout.put( “"String2= '", string2, "'" nl );

// Okay, modify the data in stringl by overwriting

// the first three characters of the string (note that
// a string pointer always points at the first character
// position in the string and we know we've got at least
// three characters here).

mov( 'a', (type char [ebx]) );
mov( 'b', (type char [ebx+1]) );
mov( 'c', (type char [ebx+2]) );

// Okay, demonstrate the problem with assignment via
// pointer copy.

stdout.put

(
"After assigning 'abc' to the first three characters in string1:"
nl
nl

)s

stdout.put( "Stringi= '", stringi, "'" nl );

stdout.put( "String2= '", string2, "'" nl );

str.free( stringl ); // Don't free string2 as well!

end strRefAssignDemo;

Listing 4-13: Problem with string assignment by copying pointers

Because both stringl and string2 point at the same string data in this
example, any change you make to one string is reflected in the other. While
this is sometimes acceptable, most programmers expect assignment to produce
a different copy of a string; that is, they expect the semantics of string assignment
to produce two unique copies of the string data.

An important point to remember when using copy by reference (this term
means copying a pointer) is that you have created an alias of the string data.
The term alias means that you have two names for the same object in memory
(for example, in the program above, stringl and string2 are two different
names for the same string data). When you read a program, it is reasonable
to expect that different variables refer to different memory objects. Aliases
violate this rule, thus making your program harder to read and understand
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because you have to remember that aliases do not refer to different objects in
memory. Failing to keep this in mind can lead to subtle bugs in your program.
For instance, in the example above you have to remember that stringl and
string2 are aliases so as not to free both objects at the end of the program.
Worse still, you have to remember that stringl and string2 are aliases so that
you don’t continue to use string2 after freeing stringl because string2 would
be a dangling reference at that point.

Because using copy by reference makes your programs harder to read
and increases the possibility that you might introduce subtle defects into
your programs, you might wonder why someone would use copy by reference
at all. There are two reasons for this: First, copy by reference is very efficient;
it involves only the execution of two mov instructions. Second, some algorithms
actually depend on copy-by-reference semantics. Nevertheless, before using
this technique you should carefully consider whether copying string pointers
is the appropriate way to do a string assignment in your program.

The second way to assign one string to another is to copy the string data.
The HLA Standard Library str.cpy routine provides this capability. A call to
the str.cpy procedure uses the following call syntax:’

str.cpy( source_string, destination string );

The source and destination strings must be string variables (pointers) or
32-bit registers containing the addresses of the string data in memory.

The str.cpy routine first checks the maximum length field of the desti-
nation string to ensure that it is at least as big as the source string’s current
length. If it is not, then str.cpy raises the ex.StringOverflow exception. If the
destination string’s maximum length is large enough, then str.cpy copies
the string length, the characters, and the zero-terminating byte from the
source string to the destination string. When this process is complete, the
two strings point at identical data, but they do not point at the same data
in memory.'’ The program in Listing 4-14 is a rework of the example in
Listing 4-13 using str.cpy rather than copy by reference.

// Program to demonstrate string assignment using str.cpy

program strcpyDemo;
#include( "stdlib.hhf" );

static
string1: string;
string2: string;

9 Warning to C/C++ users: note that the order of the operands is opposite that of the C Standard
Library strcpy function.

19 Unless, of course, both string pointers contained the same address to begin with, in which case
str.cpy copies the string data over itself.
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begin strcpyDemo;
// Allocate storage for string2:

str.alloc( 64 );
mov( eax, string2 );

// Get a value into stringi.
forever

stdout.put( "Enter a string with at least three characters: " );
stdin.a_gets();
mov( eax, stringl );

breakif( (type str.strRec [eax]).length >= 3 );
stdout.put( "Please enter a string with at least three chars:" nl );

endfor;

// Do the string assignment via str.cpy.

str.cpy( stringl, string2 );
stdout.put( "Stringi= '", stringi, "'" nl );
stdout.put( "String2= '", string2, "'" nl );

// Okay, modify the data in stringl by overwriting

// the first three characters of the string (note that
// a string pointer always points at the first character
// position in the string and we know we've got at least
// three characters here).

mov( stringl, ebx );
mov( 'a', (type char [ebx]) );
mov( 'b', (type char [ebx+1]
mov( 'c', (type char [ebx+2]

// Okay, demonstrate that we have two different strings
// because we used str.cpy to copy the data:

stdout.put

(
"After assigning 'abc' to the first three characters in string1:"
nl
nl

);

stdout.put( "Stringi= '", string1, "'" nl );

stdout.put( "String2= '", string2, "'" nl );
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// Note that we have to free the data associated with both
// strings because they are not aliases of one another.

str.free( stringl );
str.free( string2 );

end strcpyDemo;

Listing 4-14: Copying strings using str.cpy

There are two important things to note about the program in Listing 4-14.
First, note that this program begins by allocating storage for string2. Remember,
the str.cpy routine does not allocate storage for the destination string; it assumes
that the destination string already has storage allocated. Keep in mind that
str.cpy does not initialize string2; it only copies data to the location where
string2 is pointing. It is the program’s responsibility to initialize the string by
allocating sufficient memory before calling str.cpy. The second thing to notice
here is that the program calls str.free to free up the storage for both string1
and string2 before the program quits.

Allocating storage for a string variable prior to calling str.cpy is so common
that the HLA Standard Library provides a routine that allocates and copies
the string: str.a_cpy. This routine uses the following call syntax:

str.a_cpy( source string );

Note that there is no destination string. This routine looks at the length
of the source string, allocates sufficient storage, makes a copy of the string,
and then returns a pointer to the new string in the EAX register. The program
in Listing 4-15 demonstrates how to do the same thing as the program in
Listing 4-14 using the str.a_cpy procedure.

// Program to demonstrate string assignment using str.a_cpy

program stra_cpyDemo;
#include( "stdlib.hhf" );

static
string1: string;
string2: string;

begin stra_cpyDemo;

// Get a value into stringi.
forever
stdout.put( "Enter a string with at least three characters: " );

stdin.a_gets();
mov( eax, stringl );
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breakif( (type str.strRec [eax]).length >= 3 );
stdout.put( "Please enter a string with at least three chars:" nl );

endfor;

// Do the string assignment via str.a_cpy.

str.a_cpy( stringl );
mov( eax, string2 );

stdout.put( "Stringi= '"
stdout.put( "String2=

, string1, "'" nl);
", string2, "'" nl);

// Okay, modify the data in stringl by overwriting

// the first three characters of the string (note that
// a string pointer always points at the first character
// position in the string and we know we've got at least
// three characters here).

mov( stringl, ebx );

mov( 'a', (type char [ebx]) );
mov( 'b', (type char [ebx+1]) );
mov( 'c', (type char [ebx+2]) );

// Okay, demonstrate that we have two different strings
// because we used str.cpy to copy the data:

stdout.put

(
"After assigning 'abc' to the first three characters in string1:"
nl
nl

)s

stdout.put( "Stringi= '", stringi, "'" nl );

stdout.put( "String2= '", string2, "'" nl );

// Note that we have to free the data associated with both
// strings because they are not aliases of one another.

str.free( stringl );
str.free( string2 );

end stra_cpyDemo;

Listing 4-15: Copying strings using str.a_cpy
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WARNING

WARNING

Whenever you use copy by reference or str.a_cpy to assign a string, don’t forget to free
the storage associated with the string when you have (completely) finished with that
string’s data. Failure to do so may produce a memory leak if you do not have another
pointer to the previous string data lying around.

Obtaining the length of a character string is so common that the HLA
Standard Library provides a str.length routine specifically for this purpose.
Of course, you can fetch the length by using the str.strRec data type to access
the length field directly, but constant use of this mechanism can be tiring
because it involves a lot of typing. The str.length routine provides a more
compact and convenient way to fetch the length information. You call str.length
using one of the following two formats:

str.length( Reg32 );
str.length( string variable );

This routine returns the current string length in the EAX register.
Another pair of useful string routines is the str.cat and str.a_cat
procedures. They use the following syntax:

str.cat( srcRStr, destLStr );
str.a_cat( srclLStr, srcRStr );

These two routines concatenate two strings (that is, they create a new string
by joining the two strings together). The str.cat procedure concatenates the
source string to the end of the destination string. Before the concatenation
actually takes place, str.cat checks to make sure that the destination string is
large enough to hold the concatenated result, and it raises the ex.StringOverflow
exception if the destination string’s maximum length is too small.

The str.a_cat routine, as its name suggests, allocates storage for the
resulting string before doing the concatenation. This routine will allocate
sufficient storage to hold the concatenated result, then it will copy the
srcLStr to the allocated storage, next it will append the string data pointed at
by srcRStr to the end of this new string, and then it will return a pointer to
the new string in the EAX register.

Note a potential source of confusion. The str.cat procedure concatenates its first oper-
and to the end of the second operand. Therefore, str.cat follows the standard (src,
dest) operand format present in many HLA statements. The str.a_cat routine, on
the other hand, has two source operands rather than a source operand and a destination
operand. Thestr.a_cat routine concatenates its two operands in an intuitive lefi-to-right
Jashion. This is the opposite of str.cat. Keep this in mind when using these two routines.

Listing 4-16 demonstrates the use of the str.cat and str.a_cat routines.
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// Program to demonstrate str.cat and str.a_cat

program strcatDemo;
#include( "stdlib.hhf" );

static
UserName: string;
Hello: string;
a_Hello: string;

begin strcatDemo;
// Allocate storage for the concatenated result:

str.alloc( 1024 );
mov( eax, Hello );

// Get some user input to use in this example:
stdout.put( "Enter your name: " );
stdin.flushInput();

stdin.a_gets();

mov( eax, UserName );

// Use str.cat to combine the two strings:

str.cpy( "Hello ", Hello );
str.cat( UserName, Hello );

// Use str.a_cat to combine the string strings:

str.a_cat( "Hello ", UserName );
mov( eax, a_Hello );

stdout.put( "Concatenated string #1 is '", Hello, "'" nl );
stdout.put( "Concatenated string #2 is '", a_Hello, "'" nl );

str.free( UserName );
str.free( a_Hello );
str.free( Hello );

end strcatDemo;

Listing 4-16: Demonstration of str.cat and str.a_cat routines

The str.insert and str.a_insert routines are similar to the string-
concatenation procedures. However, the str.insert and str.a_insert routines
let you insert one string anywhere into another string, not just at the end of
the string. The calling sequences for these two routines are:

str.insert( src, dest, index );
str.a_insert( src, dest, index );
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WARNING

These two routines insert the source string (src) into the destination
string (dest) starting at character position index. The str.insert routine
inserts the source string directly into the destination string; if the destina-
tion string is not large enough to hold both strings, str.insert raises an
ex.StringOverflow exception. The str.a_insert routine first allocates storage
for a new string on the heap, copies the destination string (src) to the new
string, and then inserts the source string (dest) into this new string at the
specified offset; str.a_insert returns a pointer to the new string in the EAX
register.

Indexes into a string are zero based. This means that if you supply the
value 0 as the index in str.insert or str.a_insert, then these routines will
insert the source string before the first character of the destination string.
Likewise, if the index is equal to the length of the string, then these routines
will simply concatenate the source string to the end of the destination string.

If the index is greater than the length of the string, the str.insert and str.a insert
procedures will not raise an exception; instead, they will simply append the source
string lo the end of the destination string.

The str.delete and str.a_delete routines let you remove characters from
a string. They use the following calling sequence:

str.delete( strng, StartIndex, Length );
str.a_delete( strng, StartIndex, Length );

Both routines delete Length characters starting at character position
StartIndex in string strng. The difference between the two is that str.delete
deletes the characters directly from strng, whereas str.a_delete first allocates
storage and copies strng and then deletes the characters from the new string
(leaving strng untouched). The str.a_delete routine returns a pointer to the
new string in the EAX register.

The str.delete and str.a_delete routines are very forgiving with respect
to the values you pass in StartIndex and Length. If StartIndex is greater than
the current length of the string, these routines do not delete any characters
from the string. If StartIndex is less than the current length of the string,
but StartIndex+Length is greater than the length of the string, then these
routines will delete all characters from StartIndex to the end of the string.

Another very common string operation is the need to copy a portion of a
string to another string without otherwise affecting the source string. The
str.substr and str.a_substr routines provide this capability. These routines
use the following syntax:

str.substr( src, dest, StartIndex, Length );
str.a_substr( src, StartIndex, Length );

The str.substr routine copies Length characters, starting at position
StartIndex, from the src string to the dest string. The dest string must
have sufficient storage to hold the new string or str.substr will raise an
ex.StringOverflow exception. If the StartIndex value is greater than the length

Constants, Variables, and Data Types 205



206

Chapter 4

of the string, then str.substr will raise an ex.StringIndexError exception. If
StartIndex+Length is greater than the length of the source string, but StartIndex
is less than the length of the string, then str.substr will extract only those
characters from StartIndex to the end of the string.

The str.a_substr procedure behaves in a fashion nearly identical to
str.substr, except it allocates storage on the heap for the destination string.
str.a_substr handles exceptions identically to str.substr, except it never
raises a string overflow exception because this will never occur.!! As you can
probably guess by now, str.a_substr returns a pointer to the newly allocated
string in the EAX register.

After you have been working with string data for a little while, the need
will invariably arise to compare two strings. A first attempt at string comparison,
using the standard HLA relational operators, will compile but not necessarily
produce the desired result:

mov( si, eax );
if( eax = s2 ) then

<< Code to execute if the strings are equal >>
else
<< Code to execute if the strings are not equal >>

endif;

Remember, strings are pointers. This code compares the two pointers to
see if they are equal. If they are equal, clearly the two strings are equal (because
both s1 and s2 point at the exact same string data). However, the fact that the
two pointers are different doesn’t necessarily mean that the strings are not
equivalent. Both s1 and s2 could contain different values (that is, they point
at different addresses in memory), yet the string data at those two addresses
could be identical. Most programmers expect a string comparison for equality to
be true if the data for the two strings is the same. Clearly a pointer comparison
does not provide this type of comparison. To overcome this problem, the
HILA Standard Library provides a set of string-comparison routines that will
compare the string data, not just their pointers. These routines use the following
calling sequences:

str.eq( srci, src2 );
str.ne( srci, src2 );
str.1t( srci1, src2 );
str.le( srci, src2 );
str.gt( srci, src2 );
str.ge( src1, src2 );

u Technically, str.a_substr, like all routines that call mem.alloc to allocate storage, can raise an
ex.MemoryAllocationFailure exception, but this is very unlikely to occur.



Each of these routines compares the src1 string to the src2 string and
returns true (1) or false (0) in the EAX register depending on the comparison.
For example, str.eq( s1, s2); returns true in EAX if s1 is equal to s2. HLA
provides a small extension that allows you to use the string-comparison routines
within an if statement.!? The following code demonstrates the use of some
of these comparison routines within an if statement:

stdout.put( "Enter a single word: " );
stdin.a_gets();
if( str.eq( eax, "Hello" )) then

stdout.put( "You entered 'Hello'", nl );

endif;
str.free( eax );

Note that the string the user enters in this example must exactly match
Hello, including the use of an uppercase H at the beginning of the string.
When processing user input, it is best to ignore alphabetic case in string
comparisons because different users have different ideas about when they
should be pressing the SHIFT key on the keyboard. An easy solution is to use
the HLA case-insensitive string-comparison functions. These routines compare
two strings, ignoring any differences in alphabetic case. These routines use
the following calling sequences:

str.ieq( src1, src2 );
str.ine( src1, src2 );
str.ilt( src1, src2 );
str.ile( srci, src2 );
str.igt( srci, src2 );
str.ige( src1, src2 );

Other than they treat uppercase characters the same as their lowercase
equivalents, these routines behave exactly like the former routines, returning
true or false in EAX depending on the result of the comparison.

Like most high-level languages, HLA compares strings using lexicographical
ordering. This means that two strings are equal if and only if their lengths are
the same and the corresponding characters in the two strings are exactly the
same. For less-than or greater-than comparisons, lexicographical ordering
corresponds to the way words appear in a dictionary. That is, a is less than b
is less than ¢, and so on. Actually, HLA compares the strings using the ASCII
numeric codes for the characters, so if you are unsure whether a is less than a
period, simply consult the ASCII character chart (incidentally, a is greater
than a period in the ASCII character set, just in case you were wondering).

If two strings have different lengths, lexicographical ordering worries
about the length only if the two strings exactly match through the length of
the shorter string. If this is the case, then the longer string is greater than the

'2 This extension is actually a little more general than this section describes. Chapter 7 explains
it fully.
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shorter string (and, conversely, the shorter string is less than the longer string).
Note, however, that if the characters in the two strings do not match at all,
then HLA’s string-comparison routines ignore the length of the string; for
example, z is always greater than aaaaa, even though it is shorter.

The str.eq routine checks to see if two strings are equal. Sometimes,
however, you might want to know whether one string contains another string.
For example, you may want to know if some string contains the substring
north or south to determine some action to take in a game. The HLA str.index
routine lets you check to see if one string is contained as a substring of another.
The str.index routine uses the following calling sequence:

str.index( StrToSearch, SubstrToSearchFor );

This function returns, in EAX, the offset into StrToSearch where
SubstrToSearchFor appears. This routine returns —1 in EAX if SubstrToSearchFor
is not present in StrToSearch. Note that str.index will do a case-sensitive search.
Therefore, the strings must exactly match. There is no case-insensitive variant of
str.index you can use.”?

The HLA strings module contains hundreds of routines besides those
appearing in this section. Space limitations and prerequisite knowledge
prevent the presentation of all those functions here; however, this does not
mean that the remaining string functions are unimportant. You should
definitely take a look at the HLA Standard Library documentation to learn
everything you can about the powerful HLA string library routines.

In-Memory Conversions

The HLA Standard Library’s string module contains dozens of routines for
converting between strings and other data formats. Although it’s a little
premature in this text to present a complete description of those functions, it
would be rather criminal not to discuss at least one of the available functions:
the str.put routine. This routine encapsulates the capabilities of many of the
other string-conversion functions, so if you learn how to use this one, you’ll
have most of the capabilities of those other routines at your disposal.

You use the str.put routine in a manner very similar to the stdout.put
routine. The only difference is that the str.put routine “writes” its data to a
string instead of the standard output device. A call to str.put has the following
syntax:

str.put( destString, values_to_convert );

Here’s an example of a call to str.put:

str.put( destString, "I =", i:4, " J=", j, " s=", s );

1% However, HLA does provide routines that will convert all the characters in a string to one case
or another. So you can make copies of the strings, convert all the characters in both copies to
lowercase, and then search using these converted strings. This will achieve the same result.



WARNING

Generally, you would not put a newline character sequence at the end of the string as
you would if you were printing the string to the standard output device.

The destString parameter at the beginning of the str.put parameter list
must be a string variable, and it must already have storage associated with it.
If str.put attempts to store more characters than allowed into the destString
parameter, then this function raises the ex.StringOverflow exception.

Most of the time you won’t know the length of the string that str.put will
produce. In those instances, you should allocate storage for a very large string,
one that is much larger than you expect, and use this string object as the first
parameter of the str.put call. This will prevent an exception from crashing
your program. Generally, if you expect to produce about one screen line of
text, then you should probably allocate at least 256 characters for the destination
string. If you’re creating longer strings, you should probably use a default of
1,024 characters (or more, if you're going to produce really large strings).

Here’s an example:

static
s: string;

str.alloc( 256 );
mov( eax, s );

.

str.put( s, "R: ", r:16:4, " strval: '", strval:-10, "'" );

You can use the str.put routine to convert any data to a string that you
can print using stdout.put. You will probably find this routine invaluable for
common value-to-string conversions.

4.12 Character Sets

Character sets are another composite data type, like strings, built upon the
character data type. A character set is a mathematical set of characters with
the most important attribute being membership. That is, a character is either
a member of a set or it is not a member of a set. The concept of sequence
(for example, whether one character comes before another, as in a string)
doesn’t apply to character sets. Also, membership is a binary relation; a
character is either in the set or it is not in the set; you cannot have multiple
copies of the same character in a character set. Various operations are possible
on character sets, including the mathematical set operations of union, intersec-
tion, difference, and membership test.

HLA implements a restricted form of character sets that allows set members
to be any of the 128 standard ASCII characters (that is, HLA’s character set
facilities do not support extended character codes in the range 128..255).
Despite this restriction, HLA’s character set facilities are very powerful and
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are handy when writing programs that work with string data. The following
sections describe the implementation and use of HLA’s character set facilities so
you may take advantage of character sets in your own programs.

4.13 Character Set Implementation in HLA

Chapter 4

There are many different ways to represent character sets in an assembly
language program. HLA implements character sets using an array of 128
boolean values. Each boolean value determines whether the corresponding
character is a member of the character set; that is, a true boolean value indicates
that the corresponding character is a member of the set, whereas a false value
indicates that the character is not a member of the set. To conserve memory,
HLA allocates only a single bit for each character in the set; therefore, HLA
character sets consume 16 bytes of memory because there are 128 bits in 16
bytes. This array of 128 bits is organized in memory as shown in Figure 4-3.

127 126 125 124 123 122 121 121 7 6 5 4 3 2 1 O

Byte 15 Byte O

Figure 4-3: Bit layout of a character set object

Bit 0 of byte 0 corresponds to ASCII code 0 (the NUL character). If this
bitis 1, then the character set contains the NUL character; if this bit contains
false, then the character set does not contain the NUL character. Likewise,
bit 0 of byte 1 (the ninth bit in the 128-bit array) corresponds to the backspace
character (ASCII code is 8). Bit 1 of byte 8 corresponds to ASCII code 65, an
uppercase A. Bit 65 will contain a 1 if Ais a current member of the character
set; it will contain O if A is not a member of the set.

While there are other possible ways to implement character sets, with
this bit-vector implementation it is very easy to implement set operations
such as union, intersection, difference comparison, and membership tests.

HLA supports character set variables using the cset data type. To declare
a character set variable, you would use a declaration like the following:

static
CharSetVar: cset;

This declaration will reserve 16 bytes of storage to hold the 128 bits
needed to represent a set of ASCII characters.

Although it is possible to manipulate the bits in a character set using
instructions like and, or, xor, and so on, the 80x86 instruction set includes
several bit test, set, reset, and complement instructions that are nearly perfect
for manipulating character sets. The bt (bit test) instruction, for example,
will copy a single bit in memory to the carry flag. The bt instruction allows
the following syntactical forms.



bt( BitNumber, BitsToTest );

bt( regi6, regi6 );
bt( reg32, reg32 );
bt( constant, regi6 );
bt( constant, reg32 );

bt( reg16, memi6 );

bt( reg32, mem32 ); // HLA treats cset objects as dwords within bt.
bt( constant, memi6 );

bt( constant, mem32 ); // HLA treats cset objects as dwords within bt.

The first operand holds a bit number, and the second operand specifies
a register or memory location whose bit should be copied into the carry flag.
If the second operand is a register, the first operand must contain a value in
the range 0..n—1, where n is the number of bits in the second operand. If the
first operand is a constant and the second operand is a memory location,
the constant must be in the range 0..255. Here are some examples of these
instructions:

bt( 7, ax ); // Copies bit 7 of ax into the carry flag (CF).
mov( 20, eax );
bt( eax, ebx ); // Copies bit 20 of ebx into CF.

// Copies bit 0 of the byte at CharSetVar+3 into CF.
bt( 24, CharSetVar );
// Copies bit 4 of the byte at DWmem+2 into CF.

bt( eax, DWmem);

The bt instruction turns out to be quite useful for testing set membership.
For example, to see if the character A is a member of a character set, you
could use a code sequence like the following:

bt( 'A', CharSetVar );
if( @c ) then

<< Do something if 'A' is a member of the set. >>

endif;

The bts (bit test and set), btr (bit test and reset), and btc (bit test and
complement) instructions are also useful for manipulating character set
variables. Like the bt instruction, these instructions copy the specified bit
into the carry flag; after copying the specified bit, these instructions will set
(bts), reset/clear (btr), or complement/invert (btc) the specified bit. There-
fore, you can use the bts instruction to add a character to a character set via
set union (thatis, it adds a character to the set if the character was not already
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a member of the set; otherwise the set is unaffected). You can use the btr
instruction to remove a character from a character set via set intersection
(that is, it removes a character from the set if and only if it was previously in
the set; otherwise it has no effect on the set). The btc instruction lets you add
a character to the setif it wasn’t previously in the set; it removes the character
from the set if it was previously a member (that is, it toggles the membership
of that character in the set).

4.14 HLA Character Set Constants and Character
Set Expressions

Chapter 4

HLA supports literal character set constants. These cset constants make it
easy to initialize cset variables at compile time and allow you to easily pass
character set constants as procedure parameters. An HLA character set constant
takes the following form:

{ Comma_separated list of characters and character ranges }

The following is an example of a simple character set holding the numeric
digit characters:

{ ‘0‘, |1|, |2|, |3|, |4|, |5|, I6I, |7|, |8|’ |9| }

When specifying a character set literal that has several contiguous values,
HLA lets you concisely specify the values using only the starting and ending
values of the range thusly:

{'0'..'"9" }

You may combine characters and various ranges within the same character
set constant. For example, the following character set constant is all the
alphanumeric characters:

{ ‘0‘..‘9‘, Ial.‘lzl, ‘AI..IZ| }

You can use these cset literal constants as initializers in the const and val
sections. The following example demonstrates how to create the symbolic
constant AlphaNumeric using the character set above:

const
AlphaNumeric: cset := {'0'.."'9", 'a'..'z", 'A".."'Z" };

After the above declaration, you can use the identifier AlphaNumeric anywhere
the character set literal is legal.



You can also use character set literals (and, of course, character set symbolic
constants) as the initializer field for a static or readonly variable. The following
code fragment demonstrates this:

static
Alphabetic: cset := { 'a'..'z', "A".."'Z" };

Anywhere you can use a character set literal constant, a character set
constant expression is also legal. Table 4-2 shows the operators that HLA
supports in character set constant expressions.

Table 4-2: HLA Character Set Operators

Operator Description

CSetConst1 + CSetConst2 Computes the union of the two sets. The set union is the set of all
characters that are in either set.

CSetConst1 * CSetConst2 Computes the infersection of the two sets. The set intersection is
the set of all characters that appear in both operand sets.

CSetConst1 - CSetConst2 Computes the set difference of the two sets. The set difference is
the set of characters that appear in the first set but do not appear in
the second set.

-CSetConst Computes the set complement. The set complement is the set of
all characters not in the set.

Note that these operators produce only compile-time results. That is, the
expressions above are computed by the compiler during compilation; they
do not emit any machine code. If you want to perform these operations on
two different sets while your program is running, the HLA Standard Library
provides routines you can call to achieve the results you desire. HLA also pro-
vides other compile-time character set operators.

4.15 Character Set Support in the HLA Standard Library

The HLA Standard Library provides several character set routines you may
find useful. The character set support routines fall into four categories:
standard character set functions, character set tests, character set conversions,
and character set I/O. This section describes these routines in the HLA
Standard Library.

To begin with, let’s consider the Standard Library routines that help you
construct character sets. These routines include cs.empty, cs.cpy, cs.charToCset,
cs.unionChar, cs.removeChar, cs.rangeChar, cs.strToCset, and cs.unionStr. These
procedures let you build up character sets at runtime using character and
string objects.

The cs.empty procedure initializes a character set variable with the empty
set by setting all the bits in the character set to 0. This procedure call uses the
following syntax (CSvar is a character set variable):

cs.empty( CSvar );
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The cs.cpy procedure copies one character set to another, replacing any
data previously held by the destination character set. The syntax for cs.cpy is:

cs.cpy( srcCsetValue, destCsetVar );

The cs.cpy source character set can be either a character set constant or
a character set variable. The destination character set must be a character set
variable.

The cs.unionChar procedure adds a character to a character set. It uses
the following calling sequence:

cs.unionChar( CharVar, CSvar );

This call will add the first parameter, a character, to the set via set union.
Note that you could use the bts instruction to achieve this same result; however,
the cs.unionChar call is often more convenient. The character value must be
in the range #0..#127.

The cs.charToCset function creates a singleton set (a set containing a single
character). The calling format for this function is:

cs.charToCset( CharValue, CSvar );

The first operand, the character value CharValue, can be an 8-bit register,
a constant, or a character variable that holds a value in the range #0..#127.
The second operand (CSvar) must be a character set variable. This function
clears the destination character set to all zeros and then unions the specified
character into the character set.

The cs.removeChar procedure lets you remove a single character from a
character set without affecting the other characters in the set. This function
uses the same syntax as cs.charToCset, and the parameters have the same
attributes. The calling sequence is:

cs.removeChar( CharValue, CSvar );

Note that if the character was not in the CSVar set to begin with, cs.removeChar
will not affect the set. This function roughly corresponds to the btr instruction.

The cs.rangeChar constructs a character set containing all the characters
between two characters you pass as parameters. This function sets all bits
outside the range of these two characters to 0. The calling sequence is:

cs.rangeChar( LowerBoundChar, UpperBoundChar, CSVar );

The LowerBoundChar and UpperBoundChar parameters can be constants,
registers, or character variables. The values held in LowerBoundChar and
UpperBoundChar must be in the range #0..#127. CSVar, the destination
character set, must be a cset variable.



The cs.strToCset procedure creates a new character set containing the
union of all the characters in a character string. This procedure begins by
setting the destination character set to the empty set, and then it unions in
the characters in the string one by one until it exhausts all characters in the
string. The calling sequence is:

cs.strToCset( StringValue, CSVar );

Technically, the StringValue parameter can be a string constant as well as
a string variable; however, it doesn’t make any sense to call cs.strToCset this
way because cs.cpy is a much more efficient way to initialize a character set
with a constant set of characters. As usual, the destination character set must
be a cset variable. Typically, you’d use this function to create a character set
based on a string input by the user.

The cs.unionStr procedure will add the characters in a string to an existing
character set. Like cs.strToCset, you’d normally use this function to union
characters into a set based on a string input by the user. The calling sequence
for this is:

cs.unionStr( StringValue, CSVar );

Standard set operations include union, intersection, and set difference.
The HLA Standard Library routines cs.setunion, cs.intersection, and
cs.difference provide these operations, respectively.'* These routines all use
the same calling sequence:

cs.setunion( srcCset, destCset );
cs.intersection( srcCset, destCset );
cs.difference( srcCset, destCset );

The first parameter can be a character set constant or a character set
variable. The second parameter must be a character set variable. These
procedures compute destCset := destCset op srcCset where op represents set
union, intersection, or difference, depending on the function call.

The third category of character set routines test character sets in various
ways. They typically return a boolean value indicating the result of the test.
The HLA character set routines in this category include cs.IsEmpty, cs.member,
cs.subset, cs.psubset, cs.superset, cs.psuperset, cs.eq, and cs.ne.

The cs.IsEmpty function tests a character set to see if it is the empty set.
The function returns true or false in the EAX register. This function uses the
following calling sequence:

cs.Iskmpty( CSetValue );

4 ¢s.setunion was used rather than cs.union because union is an HLA reserved word.
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The single parameter may be a constant or a character set variable, although
it doesn’t make much sense to pass a character set constant to this procedure
(because you would know at compile time whether this set is empty).

The cs.member function tests to see if a character value is a member of a
set. This function returns true in the EAX register if the character is a member
of the set. Note that you can use the bt instruction to test this same condition.
However, the cs.member function is probably a little more convenient to use if
the character argument is not a constant. The calling sequence for cs.member is:

cs.member( CharValue, CsetValue );

The first parameter is an 8-bit register, character variable, or a constant.
The second parameter is either a character set constant or a character set
variable. It would be unusual for both parameters to be constants.

The cs.subset, cs.psubset (proper subset), cs.superset, and cs.psuperset
(proper superset) functions let you check to see if one character set is a subset or
superset of another. The calling sequence for these four routines is nearly
identical; it is one of the following:

cs.subset( CsetValue1l, CsetValue2 );
cs.psubset( CsetValue1, CsetValue2 );
cs.superset( CsetValue1, CsetValue2 );
cs.psuperset( CsetValuel, CsetValue2 );

These routines compare the first parameter against the second parameter
and return true or false in the EAX register depending upon the result. One
setis a subset of another if all the members of the first character set are present
in the second character set. Itis a proper subset if the second (right) character
set also contains characters not found in the first (left) character set. Likewise,
one character set is a superset of another if it contains all the characters in
the second set (and possibly more). A proper superset contains additional
characters beyond those found in the second set. The parameters can be
either character set variables or character set constants; however, it would be
unusual for both parameters to be character set constants (because you can
determine this at compile time, there would be no need to call a runtime
function to compute this).

The cs.eq and cs.ne functions check to see if two sets are equal or not
equal. These functions return true or false in EAX depending upon the set
comparison. The calling sequence is identical to the sub/superset functions
above:

cs.eq( CsetValue1, CsetValue2 );
cs.ne( CsetValue1, CsetValue2 );




Note that there are no functions that test for less than, less than or equal,
greater than, or greater than or equal. The subset and proper subset functions
are the equivalent of less than or equal and less than (respectively); likewise,
the superset and proper superset functions are equivalent to greater than or
equal and greater than (respectively).

The cs.extract routine removes an arbitrary character from a character
set and returns that character in the EAX register.'> The calling sequence is
the following:

cs.extract( CsetVar );

The single parameter must be a character set variable. Note that this
function will modify the character set variable by removing some character
from the character set. This function returns $FFFF_FFFF (-1) in EAX if the
character set was empty prior to the call.

In addition to the routines found in the cset.hhf (character set) library
module, the string and standard output modules also provide functions
that allow or expect character set parameters. For example, if you supply a
character set value as a parameter to stdout.put, the stdout.put routine will
print the characters currently in the set. See the HLA Standard Library
documentation for more details on character set-handling procedures.

4.16 Using Character Sets in Your HLA Programs

Character sets are valuable for many different purposes in your programs.
For example, one common use of character sets is to validate user input. This
section will also present a couple of other applications for character sets to
help you start thinking about how you could use them in your program.

Consider the following short code segment that gets a yes/no-type answer
from the user:

static
answer: char;

repeat

stdout.put( "Would you like to play again? " );
stdin.FlushInput();
stdin.get( answer );

until( answer = 'n' );

!5 This routine returns the character in AL and zeros out the H.O. 3 bytes of EAX.
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A major problem with this code sequence is that it will stop only if the
user types a lowercase n character. If the user types anything other than n
(including uppercase N), the program will treat this as an affirmative answer
and transfer back to the beginning of the repeat. .until loop. A better solution
would be to validate the user input before the until clause above to ensure
that the user has only typed 7, N, y, or Y. The following code sequence will
accomplish this:

repeat
repeat
stdout.put( "Would you like to play again? " );
stdin.FlushInput();

stdin.get( answer );

until( cs.member( answer, { 'n', 'N', 'Y', 'y' });
if( answer = 'N' ) then

mov( 'n', answer );
endif;

until( answer = 'n' );

4.17 Arrays

Chapter 4

Along with strings, arrays are probably the most commonly used composite
data. Yet most beginning programmers don’t understand how arrays operate
internally and their associated efficiency trade-offs. It’s surprising how many
novice (and even advanced!) programmers view arrays from a completely
different perspective once they learn how to deal with arrays at the machine
level.

Abstractly, an array is an aggregate data type whose members (elements)
are all the same type. Selection of a member from the array is by an integer
index.'® Different indices select unique elements of the array. This text assumes
that the integer indices are contiguous (though this is by no means required).
That is, if the number x is a valid index into the array and y is also a valid
index, with x <y, then all ¢ such that x < i < y are valid indices.

Whenever you apply the indexing operator to an array, the result is the
specific array element chosen by that index. For example, A[i] chooses the
ith element from array A. Note that there is no formal requirement that
element i be anywhere near element i+1 in memory. As long as A[1] always

% Or it could be some value whose underlying representation is integer, such as character,
enumerated, and boolean types.



refers to the same memory location and A[i+1] always refers to its corresponding
location (and the two are different), the definition of an array is satisfied.

In this text, we assume that array elements occupy contiguous locations
in memory. An array with five elements will appear in memory as Figure 4-4

shows.

A[0]  A[1]  A[2] A[3] A[4]
Low Memory w® High Memory
Addresses Base Address of A Addresses

Figure 4-4: Array layout in memory

The base address of an array is the address of the first element on the array
and always appears in the lowest memory location. The second array element
directly follows the first in memory, the third element follows the second,
and so on. Note that there is no requirement that the indices start at 0. They
may start with any number as long as they are contiguous. However, for the
purposes of discussion, this book will start all indexes at 0.

To access an element of an array, you need a function that translates an
array index to the address of the indexed element. For a single-dimensional
array, this function is very simple. It is:

Element Address = Base Address + ((Index - Initial Index) * Element Size)

where Initial_Index is the value of the first index in the array (which you can
ignore if 0) and the value Element_Size is the size, in bytes, of an individual
array element.

4.18 Declaring Arrays in Your HLA Programs

Before you can access elements of an array, you need to set aside storage for
that array. Fortunately, array declarations build on the declarations you've
already seen. To allocate n elements in an array, you would use a declaration
like the following in one of the variable declaration sections:

ArrayName: basetype[n];

ArrayName is the name of the array variable and basetype is the type of an
element of that array. This sets aside storage for the array. To obtain the base
address of the array, just use ArrayNanme.

The [n] suffix tells HLA to duplicate the object n times. Now let’s look at
some specific examples.
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static

CharArray: char[128]; // Character array with elements 0..127.
ByteArray: byte[10]; // Array of bytes with elements 0..9.
PtrArray: dword[4]; // Array of double words with elements 0..3.

These examples all allocate storage for uninitialized arrays. You may also
specify that the elements of the arrays be initialized using declarations like
the following in the static and readonly sections:

RealArray: real32[8] := [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ];
IntegerAry: int32[8] :=[ 1, 1, 1, 1, 1, 1, 1, 1 ];

These definitions both create arrays with eight elements. The first definition
initializes each 4-byte real value to 1.0, the second declaration initializes each
int32 element to 1. Note that the number of constants within the square brackets
must exactly match the size of the array.

This initialization mechanism is fine if you want each element of the array
to have the same value. What if you want to initialize each element of the
array with a (possibly) different value? No sweat, just specify a different set of
values in the list surrounded by the square brackets in the example above:

RealArray: real32[8] := [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ];
IntegerAry: int32[8] :=[ 1, 2, 3, 4, 5, 6, 7, 8 1;

4.19 HLA Array Constants
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The last few examples in the previous section demonstrate the use of HLA
array constants. An HLA array constant is nothing more than a list of values
surrounded by a pair of brackets. The following are all legal array constants:

[ 1) 2) 3) 4 ]

[ 2.0, 3.14159, 1.0, 0.5 ]

[ Ial’ Ibl, ICI, Idl ]

[ "Hello", "world", "of", "assembly" ]

(Note that this last array constant contains four double-word pointers to
the four HLA strings appearing elsewhere in memory.)

As you saw in the previous section, you can use array constants in the
static and readonly sections to provide initial values for array variables. The
number of comma-separated items in an array constant must exactly match
the number of array elements in the variable declaration. Likewise, the type
of each of the array constant’s elements must match the array variable’s
declared base type.

Using array constants to initialize small arrays is very convenient. Of course,
if your array has several thousand elements, entering them will be tedious.
Most arrays initialized this way have no more than a couple hundred entries
and generally far less than 100. It is reasonable to use an array constant to



initialize such variables. However, at some point initializing arrays in this
manner will become far too tedious and error prone. You probably would
not want to manually initialize an array with 1,000 different elements using
an array constant. However, if you want to initialize all the elements of an
array with the same value, HLA does provide a special array constant syntax
for doing so. Consider the following declaration:

BigArray: uns32[ 1000 ] := 1000 dup [ 1 ];

This declaration creates a 1,000-element integer array initializing each
element to one. The 1000 dup [ 1 ] expression tells HLA to create an array
constant by duplicating the single value [ 1 ] one thousand times. You can
even use the dup operator to duplicate a series of values (rather than a single
value), as the following example indicates:

SixteenInts: int32[16] := 4 dup [1,2,3,4];

This example initializes SixteenInts with four copies of the sequence
1,2,3,4, yielding a total of 16 different integers (i.e., 1,2,3,4,1,2,3,4, 1, 2,
3,4,1,2,3,4).

You will see some more possibilities with the dup operator when looking
at multidimensional arrays in Section 4.22.

4.20 Accessing Elements of a Single-Dimensional Array

To access an element of a zero-based array, you can use the simplified formula

Element Address = Base Address + index * Element Size

For the Base_Address entry you can use the name of the array (because
HLA associates the address of the first element of an array with the name of
that array). The Element_Size entry is the number of bytes for each array element.
If the object is an array of bytes, the Element_Size field is 1 (resulting in a very
simple computation). If each element of the array is a word (or other 2-byte
type), then Element_Size is 2, and so on. To access an element of the SixteenInts
array in the previous section, you’d use the following formula (the size is 4
because each element is an int32 object):

Element_Address = SixteenInts + index*4

The 80x86 code equivalent to the statement eax := SixteenInts[index] is

mov( index, ebx );
shl( 2, ebx ); // Sneaky way to compute 4*ebx
mov( SixteenInts[ ebx ], eax );

Constants, Variables, and Data Types 221



There are two important things to notice here. First of all, this code uses
the shl instruction rather than the intmul instruction to compute 4*index. The
main reason for choosing shl is that it was more efficient. It turns out that shl
is a lot faster than intmul on many processors.

The second thing to note about this instruction sequence is that it does
not explicitly compute the sum of the base address plus the index times 4.
Instead, it relies on the indexed addressing mode to implicitly compute this
sum. The instruction mov( SixteenInts[ ebx ], eax ); loads EAX from location
SixteenInts + ebx, which is the base address plus index*4 (because EBX contains
index*4). Sure, you could have used

lea( eax, SixteenInts );

mov( index, ebx );

shl( 2, ebx ); // Sneaky way to compute 4*ebx

add( eax, ebx ); // Compute base address plus index*4
mov( [ebx], eax );

in place of the previous sequence, but why use five instructions where three
will do the same job? This is a good example of why you should know your
addressing modes inside and out. Choosing the proper addressing mode can
reduce the size of your program, thereby speeding it up.

Of course, as long as we’re discussing efficiency improvements, it’s
worth pointing out that the 80x86 scaled indexed addressing modes let you
automatically multiply an index by 1, 2, 4, or 8. Because this current example
multiplies the index by 4, we can simplify the code even more by using the
scaled indexed addressing mode:

mov( index, ebx );
mov( SixteenInts[ ebx*4 ], eax );

Note, however, that if you need to multiply by some constant other than
1, 2,4 or 8, then you cannot use the scaled indexed addressing modes. Similarly,
if you need to multiply by some element size that is not a power of 2, you will
not be able to use the shl instruction to multiply the index by the element
size; instead, you will have to use intmul or some other instruction sequence
to do the multiplication.

The indexed addressing mode on the 80x86 is a natural for accessing
elements of a single-dimensional array. Indeed, its syntax even suggests an
array access. The important thing to keep in mind is that you must remember to
multiply the index by the size of an element. Failure to do so will produce
incorrect results.

4.21 Sorting an Array of Values

Almost every textbook on this planet gives an example of a sort when
introducing arrays. Because you’ve probably seen how to do a sort in high-
level languages already, it’s probably instructive to take a quick look at a sort
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in HLA. The example code in this section will use a variant of the bubble
sort, which is great for short lists of data and lists that are nearly sorted but
horrible for just about everything else.!”

const
NumElements := 16;

static
DataToSort: uns32[ NumElements ] :=

[
1, 2, 16, 14,
3, 9, 4, 10,
5, 7, 15, 12,
8, 6, 11, 13

IH

NoSwap: boolean;

// Bubble sort for the DataToSort array:
repeat

mov( true, NoSwap );
for( mov( 0, ebx ); ebx <= NumElements-2; inc( ebx )) do

mov( DataToSort[ ebx*4], eax );
if( eax > DataToSort[ ebx*4 + 4] ) then

mov( DataToSort[ ebx*4 + 4 ], ecx );

mov( ecx, DataToSort[ ebx*4 ] );

mov( eax, DataToSort[ ebx*4 + 4 ] ); // Note: eax contains

mov( false, NoSwap ); // DataToSort[ ebx*4 ]
endif;

endfor;

until( NoSwap );

The bubble sort works by comparing adjacent elements in an array. The
interesting thing to note in this code fragment is how it compares adjacent
elements. You will note that the if statement compares EAX (which contains
DataToSort[ebx*4]) against DataToSort[ebx*4 + 4]. Because each element of this
array is 4 bytes (uns32), the index [ebx*4 + 4] references the next element
beyond [ebx*4].

17 Fear not, you'll see some better sorting algorithms in Chapter 5.
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As is typical for a bubble sort, this algorithm terminates if the innermost
loop completes without swapping any data. If the data is already presorted,
then the bubble sort is very efficient, making only one pass over the data.
Unfortunately, if the data is not sorted (worst case, if the data is sorted in
reverse order), then this algorithm is extremely inefficient. Indeed, although
it is possible to modify the code above so that, on the average, it runs about
twice as fast, such optimizations are wasted on such a poor algorithm. However,
the bubble sort is very easy to implement and understand (which is why
introductory texts continue to use it in examples).

4.22 Multidimensional Arrays

Chapter 4

The 80x86 hardware can easily handle single-dimensional arrays. Unfortunately,
there is no magic addressing mode that lets you easily access elements of multidi-
mensional arrays. That’s going to take some work and several instructions.

Before discussing how to declare or access multidimensional arrays, it
would be a good idea to figure out how to implement them in memory. The
first problem is to figure out how to store a multidimensional object into a
one-dimensional memory space.

Consider for a moment a Pascal array of the form A:array[0..3,0..3] of
char;. This array contains 16 bytes organized as four rows of four characters.
Somehow you’ve got to draw a correspondence with each of the 16 bytes in
this array and 16 contiguous bytes in main memory. Figure 4-5 shows one way
to do this.

Memory

Figure 4-5: Mapping a 4x4 array to sequential
memory locations

The actual mapping is not important as long as two things occur: (1) Each
element maps to a unique memory location (that is, no two entries in the
array occupy the same memory locations), and (2) the mapping is consistent.
That is, a given element in the array always maps to the same memory location.
So what you really need is a function with two input parameters (row and
column) that produces an offset into a linear array of 16 memory locations.



Now any function that satisfies the above constraints will work fine. Indeed,
you could randomly choose a mapping as long as it was consistent. However,
what you really want is a mapping that is efficient to compute at runtime and
works for any size array (notjust 4x4 or even limited to two dimensions). While
alarge number of possible functions fit this bill, there are two functions in
particular that most programmers and high-level languages use: row-major
ordering and column-major ordering.

4.22.1 Row-Major Ordering

Row-major ordering assigns successive elements, moving across the rows and
then down the columns, to successive memory locations. This mapping is
demonstrated in Figure 4-6.

Memory

A:array [0..3,0..3] of char;
15 A[3,3
14 A[3,2
13 A[3,1
0 1 2 3 12 A[3,0
11 A[2,3
OO0 |1 213 10 A[2,2
9 A[2,1
114|567 8 A9
6 A[l,2
2181192 110]11 5 A1
4 A0
3|12(13]14]15 3 A3
1 A0
0 A[0,0

Figure 4-6: Row-major array element ordering

Row-major ordering is the method most high-level programming languages
employ. It is very easy to implement and use in machine language. You start
with the first row (row 0) and then concatenate the second row to its end.
You then concatenate the third row to the end of the list, then the fourth
row, and so on (see Figure 4-7).

Low Addresses High Addresses

Ol 112|134 |5|6|7 82 ([10[11)12[13]|14]15

0111213
415 6]|7
81 9 ([10]11
12113 14]15

Figure 4-7: Another view of row-major ordering for a 4x4 array
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The actual function that converts a list of index values into an offset is a
slight modification of the formula for computing the address of an element
of a single-dimensional array. The formula to compute the offset for a two-
dimensional row-major ordered array is:

Element_Address = Base_Address + (colindex*row size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array
(A[o][0] in this case), and Element_Size is the size of an individual element of
the array, in bytes. colindex is the leftmost index, and rowindex is the rightmost
index into the array. row size is the number of elements in one row of the
array (four, in this case, because each row has four elements). Assuming
Element_Size is 1, this formula computes the following offsets from the base

address:
Column Row Offset
Index Index into Array
0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional array, the formula to compute the offset into
memory is the following:

Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) * Element_Size

col sizeis the number of items in a column, and row_size is the number
of items in a row. In C/C++, if you’ve declared the array as type A[i] [j] [k];,
then row_size is equal to k and col_size is equal to j.

For a four-dimensional array, declared in C/C++ as type A[i] [j] [k]
[m];, the formula for computing the address of an array element is:

Address =
Base + (((LeftIndex*depth_size+depthindex)*col size+colindex) * row size + rowindex) * Element_Size
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depth_size is equal to j, col_size is equal to k, and row_size is equal to m.
LeftIndex represents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic
formula that will compute the offset into memory for an array with any number
of dimensions; however, you’ll rarely use more than four.

Another convenient way to think of row-major arrays is as arrays of arrays.
Consider the following single-dimensional Pascal array definition:

A: array [0..3] of sometype;

Assume that sometype is the type sometype = array [0..3] of char;.

A is a single-dimensional array. Its individual elements happen to be arrays,
but you can safely ignore that for the time being. The formula to compute
the address of an element of a single-dimensional array is:

Element_Address = Base + Index * Element_Size

In this case Element_Size happens to be 4 because each element of A is an
array of four characters. So what does this formula compute? It computes the
base address of each row in this 4x4 array of characters (see Figure 4-8).

(A[0]) [0]

(ALO) [1]
(AO) [2]
/ A0

Aol o 1|23

All 4 (56 |7
] Each element of A

is four bytes long.

A2 |8 |9 [10]1

A3 |12 131415

Figure 4-8: Viewing a 4x4 array as an array of
arrays

Of course, once you compute the base address of a row, you can reapply
the single-dimensional formula to get the address of a particular element.
While this doesn’t affect the computation, it’s probably a little easier to
deal with several single-dimensional computations rather than a complex
multidimensional array computation.

Consider a Pascal array defined as A:array [0..3] [0..3] [0..3] [0..3]
[0..3] of char;.You can view this five-dimensional array as a single-dimensional
array of arrays. The following HLA code provides such a definition:

type
OneD: char[4];
TwoD: OneD[4];
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ThreeD: TwoD[4];

FourD: ThreeD [4];
var

A : FourD [4];

The size of OneD is 4 bytes. Because TwoD contains four OneD arrays, its size is
16 bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is four
ThreeDs, so it is 256 bytes long. To compute the address of A [b, ¢, d, e, f],
you could use the following steps:

1. Compute the address of A [b] as Base + b * size. Here size is 256 bytes.
Use this result as the new base address in the next computation.

2. Compute the address of A [b, c] by the formula Base + ¢ * size, where
Base is the value obtained in the previous step and size is 64. Use the
result as the new base in the next computation.

3. Compute the base address of A [b, c, d] by Base + d * size, with Base
coming from the previous computation and size is 16. Use the result as
the new base in the next computation.

4. Compute the address of A [b, ¢, d, e] with the formula Base + e * size,
with Base from the previous step with a size of 4. Use this value as the base
for the next computation.

5. Finally, compute the address of A [b, c, d, e, f] using the formula Base +
f * size, where Base comes from the previous computation and size is 1
(obviously you can simply ignore this final multiplication). The result
you obtain at this point is the address of the desired element.

One of the main reasons you won’t find higher-dimensional arrays in
assembly language is that assembly language emphasizes the inefficiencies
associated with such access. It’s easy to enter something like A [b, c, d, e, f]
into a Pascal program, not realizing what the compiler is doing with the code.
Assembly language programmers are not so cavalier—they see the mess you
wind up with when you use higher-dimensional arrays. Indeed, good assembly
language programmers try to avoid two-dimensional arrays and often resort
to tricks in order to access data in such an array when its use becomes absolutely
mandatory.

4.22.2 Colvmn-Major Ordering

Column-major ordering is the other function high-level languages frequently
used to compute the address of an array element. FORTRAN and various
dialects of BASIC (e.g., older versions of Microsoft BASIC) use this method.

In row-major ordering the rightmost index increases the fastest as you
move through consecutive memory locations. In column-major ordering the
leftmost index increases the fastest. Pictorially, a column-major ordered array
is organized as shown in Figure 4-9.



Memory
A:array [0..3,0..3] of char;

15 A[3,3

14 A[2,3

13 A[1,3

o 1 2 3 12 A[0.3
11 A[3,2

010 1 2| 3 10 A[2,2
9 A[l.2

114|567 8 Aoz
6 A2

2189|101 5 Al
4 A[0,1

3 (12131415 A
1 A[1.0

0 A[0,0

Figure 4-9: Column-major array element ordering

The formula for computing the address of an array element when using
column-major ordering is very similar to that for row-major ordering. You
simply reverse the indexes and sizes in the computation:

For a two-dimension column-major array:
Element Address = Base Address + (rowindex * col size + colindex) *
Element_Size

For a three-dimension column-major array:
Address = Base + ((rowindex * col _size+colindex) * depth size + depthindex) *
Element_Size

For a four-dimension column-major array:
Address =
Base + (((rowindex * col_size + colindex)*depth_size + depthindex) *
Left size + Leftindex) * Element Size

4.23 Allocating Storage for Multidimensional Arrays

If you have an m x n array, it will have m * n elements and require m * n *
Element_Size bytes of storage. To allocate storage for an array you must reserve
this memory. As usual, there are several different ways of accomplishing this
task. Fortunately, HLA’s array-declaration syntax is very similar to high-level
language array-declaration syntax, so C/C++, Java, BASIC, and Pascal program-
mers will feel right at home. To declare a multidimensional array in HLA,
you use a declaration like the following:

ArrayName: elementType [ comma_separated 1list of dimension bounds ];

For example, here is a declaration for a 4x4 array of characters:

GameGrid: char[ 4, 4 ];
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Here is another example that shows how to declare a three-dimensional
array of strings:

NameItems: string[ 2, 3, 3 1;

Remember, string objects are really pointers, so this array declaration
reserves storage for 18 double-word pointers (2 * 3 * 3 = 18).

As was the case with single-dimensional arrays, you may initialize every
element of the array to a specific value by following the declaration with the
assignment operator and an array constant. Array constants ignore dimension
information; all that matters is that the number of elements in the array constant
corresponds to the number of elements in the actual array. The following
example shows the GameGrid declaration with an initializer:

GameGrid: char[ 4, 4 ] :=
[
lal) lbl) lcl) ldl)
lel) lfl) lgl) lhl)
1 ) ‘j‘) Ikl) ‘1IJ
m', 'n‘, 'o', 'p

1;

Note that HLA ignores the indentation and extra whitespace characters
(e.g., newlines) appearing in this declaration. It was laid out to enhance
readability (which is always a good idea). HLA does not interpret the four
separate lines as representing rows of data in the array. Humans do, which
is why it’s good to write the data in this manner. All that matters is that there
are 16 (4 * 4) characters in the array constant. You’ll probably agree that this
is much easier to read than

GameGrid: char[ 4,4 ] :=
[ lal’ lbl, lcl’ ldl, lel’ lfl, lgl’ lhl, lil’ ljl, lkl’ lll, lml’

n', ‘o', 'p' 1;

Of course, if you have a large array, an array with really large rows, or an
array with many dimensions, there is little hope for winding up with something
readable. That’s when comments that carefully explain everything come in
handy.

As for single-dimensional arrays, you can use the dup operator to initialize
each element of a large array with the same value. The following example
initializes a 256x64 array of bytes so that each byte contains the value $FF:

StateValue: byte[ 256, 64 ] := 256%64 dup [$ff];

Note the use of a constant expression to compute the number of array
elements rather than simply using the constant 16,384 (256 * 64). The use



of the constant expression more clearly suggests that this code is initializing
each element of a 256x64 element array than does the simple literal constant
16,384.

Another HLA trick you can use to improve the readability of your programs
is to use nested array constants. The following is an example of an HLA nested
array constant:

[ [0, 1, 2], [3, 4], [10, 11, 12, 13] ]

Whenever HLA encounters an array constant nested inside another
array constant, it simply removes the brackets surrounding the nested array
constant and treats the whole constant as a single-array constant. For example,
HLA converts this nested array constant to the following:

[ o, 1, 2,3, 4, 10, 12, 12, 13 ]

You can take advantage of this fact to help make your programs a little
more readable. For multidimensional array constants you can enclose each
row of the constant in square brackets to denote that the data in each row is
grouped and separate from the other rows. Consider the following declaration
for the GameGrid array that is identical (as far as HLA is concerned) to the
earlier declaration for GameGrid:

GameGrid: char[ 4, 4 ] :=
[
Ial, Ibl, IC‘, Idl ]’
lel l_Fl’ lgl, lhl ]’
lil, ljl’ lkl, lll ],
m, |nl) 0‘1 P' ]

— e —
-

1;

This declaration makes it clearer that the array constant is a 4x4 array
rather than just a 16-element one-dimensional array whose elements wouldn’t
fit all on one line of source code. Little aesthetic improvements like this are
what separate mediocre programmers from good programmers.

4.24 Accessing Multidimensional Array Elements in
Assembly Language

Well, you’ve seen the formulas for computing the address of a multidimen-
sional array element. Now it’s time to see how to access elements of those
arrays using assembly language.

The mov, shl, and intmul instructions make short work of the various
equations that compute offsets into multidimensional arrays. Let’s consider
a two-dimensional array first.
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static

i: int32;
j: int32;
TwoD: int32[ 4, 8 ;

// To perform the operation TwoD[i,j] := 5; you'd use code like the following.
// Note that the array index computation is (i*8 + j)*4.

mov( i, ebx );

shl( 3, ebx ); // Multiply by 8 (shl by 3 is a multiply by 8).
add( j, ebx );

mov( 5, TwoD[ ebx*4 ] );

Note that this code does not require the use of a two-register addressing
mode on the 80x86. Although an addressing mode like TwoD[ebx][esi] looks
like it should be a natural for accessing two-dimensional arrays, thatisn’t the
purpose of this addressing mode.

Now consider a second example that uses a three-dimensional array:

static
i: int32;
j: int32;
k: int32;
ThreeD: int32[ 3, 4, 5 1;

// To perform the operation ThreeD[i,j,k] := esi; you'd use the following code
// that computes ((i*4 + j)*5 + k )*4 as the address of ThreeD[i,j,k].

mov( i, ebx );

shl( 2, ebx ); // Four elements per column.
add( j, ebx );
intmul( 5, ebx ); // Five elements per row.

add( k, ebx );
mov( esi, ThreeD[ ebx*4 ] );

Note that this code uses the intmul instruction to multiply the value in
EBX by 5. Remember, the shl instruction can only multiply a register by a
power of 2. While there are ways to multiply the value in a register by a constant
other than a power of 2, the intmul instruction is more convenient.'®

'8 A full discussion of multiplication by constants other than a power of 2 appears in Chapter 4.



4.25 Records

Another major composite data structure is the Pascal record or C/C++/C#
structure.'? The Pascal terminology is probably better, because it tends to
avoid confusion with the more general term data structure. Because HLA uses
the term record, we’ll adopt that term here.

Whereas an array is homogeneous, whose elements are all the same type,
the elements in a record can have different types. Arrays let you select a
particular element via an integer index. With records, you must select an
element (known as a field) by name.

The whole purpose of a record is to let you encapsulate different, though
logically related, data into a single package. The Pascal record declaration
for a student is a typical example:

student =

record
Name: string[64];
Major: integer;
SSN: string[11];
Midtermi: integer;
Midterm2: integer;
Final: integer;
Homework: integer;
Projects: integer;

end;

Most Pascal compilers allocate each field in a record to contiguous
memory locations. This means that Pascal will reserve the first 65 bytes for
the name,”” the next 2 bytes hold the major code, the next 12 bytes hold the
Social Security number, and so on.

In HLA, you can also create record types using the record/endrecord
declaration. You would encode the above record in HLA as follows:

type

student: record
Name: char[65];
Major: int16;
SSN: char[12];
Midterm1i: int16;
Midterm2: int16;
Final: int16;
Homework: inti6;
Projects: inti16;

endrecord;

91t also goes by some other names in other languages, but most people recognize at least one of
these names.

20 Strings require an extra byte, in addition to all the characters in the string, to encode the
length.
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Asyou can see, the HLA declaration is very similar to the Pascal declaration.
Note that, to be true to the Pascal declaration, this example uses character
arrays rather than strings for the Name and SSN (US Social Security number)
fields. In a real HLA record declaration you’d probably use a string type for
at least the name (keeping in mind that a string variable is only a 4-byte pointer).

The field names within the record must be unique. That is, the same
name may not appear two or more times in the same record. However, all
field names are local to that record. Therefore, you may reuse those field
names elsewhere in the program or in different records.

The record/endrecord declaration may appear in a variable declaration
section (e.g., static or var) or in a type declaration section. In the previous
example the Student declaration appears in the type section, so this does not
actually allocate any storage for a Student variable. Instead, you have to explicitly
declare a variable of type Student. The following example demonstrates how
to do this:

var
John: Student;

This allocates 81 bytes of storage laid out in memory as shown in Figure 4-10.

Name SSN Midterm2 Homework
(65 bytes) (12 bytes) (2 bytes) (2 bytes)
T T |/I/I| T T T |//| T T T T T T
John | ! I 1 I 1
L1 I//I | | I//I |
Major Midtermi  Final Projects
(2 bytes) (2 bytes) (2 bytes) (2 bytes)

Figure 4-10: Student data structure storage in memory

If the label John corresponds to the base address of this record, then the
Name field is at offset John+0, the Major field is at offset John+65, the SSN field is at
offset John+67, and so on.

To access an element of a structure, you need to know the offset from
the beginning of the structure to the desired field. For example, the Major
field in the variable John is at offset 65 from the base address of John. Therefore,
you could store the value in AX into this field using the instruction

mov( ax, (type word John[65]) );

Unfortunately, memorizing all the offsets to fields in a record defeats the
whole purpose of using them in the first place. After all, if you have to deal
with these numeric offsets, why not just use an array of bytes instead of a record?

Fortunately, HLA lets you refer to field names in a record using the same
mechanism C/C++/C# and Pascal use: the dot operator. To store AX into
the Major field, you could use mov( ax, John.Major ); instead of the previous
instruction. This is much more readable and certainly easier to use.

Note that the use of the dot operator does not introduce a new addressing
mode. The instruction mov( ax, John.Major ); still uses the displacement-only



addressing mode. HLA simply adds the base address of John with the offset to
the Major field (65) to get the actual displacement to encode into the instruction.

Like any type declaration, HLA requires all record type declarations to
appear in the program before you use them. However, you don’t have to
define all records in the type section to create record variables. You can use
the record/endrecord declaration directly in a variable declaration section.
This is convenient if you have only one instance of a given record object in
your program. The following example demonstrates this:

storage
OriginPoint: record
X: uns8;
y: uns8;
z: uns8;
endrecord;

4.26 Record Constants

HLA lets you define record constants. In fact, HLA supports both manifest
(symbolic) record constants and literal record constants. Record constants
are useful as initializers for static record variables. They are also quite useful
as compile-time data structures when using the HLA compile-time language
(see the HLA reference manual for more details on the HLA compile-time
language). This section discusses how to create record constants.

A literal record constant takes the following form:

RecordTypeName: [ List_of comma_separated_constants ]

The RecordTypeName is the name of a record data type you've defined in an
HLA type section prior to using the constant.

The constant list appearing between the brackets is the data for each of
the fields in the specified record. The first item in the list corresponds to the
first field of the record, the second item in the list corresponds to the second
field, and so on. The data types of each of the constants appearing in this list
must match their respective field types. The following example demonstrates
how to use a literal record constant to initialize a record variable:

type
point: record
x:int32;
y:int32;
z:int32;
endrecord;

static
Vector: point := point:[ 1, -2, 3 ];

This declaration initializes Vector.x with 1, Vector.y with —2, and Vector.z
with 3.
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You can also create manifest record constants by declaring record objects in
the const or val sections of your program. You access fields of these symbolic
record constants just as you would access the field of a record variable, using
the dot operator. Because the objectis a constant, you can specify the field of
a record constant anywhere a constant of that field’s type is legal. You can
also employ symbolic record constants as variable initializers. The following
example demonstrates this:

type
point: record
x:int32;
y:int32;
z:int32;
endrecord;

const
PointInSpace: point := point:[ 1, 2, 3 ];

static
Vector: point := PointInSpace;
XCoord: int32 PointInSpace.x;

stdout.put( "Y Coordinate is ", PointInSpace.y, nl );

4.27 Arrays of Records

Chapter 4

It is a perfectly reasonable operation to create an array of records. To do so,
you simply create a record type and then use the standard array declaration
syntax. The following example demonstrates how you could do this:

type
recElement:
record
<< Fields for this record »>>
endrecord;
static

recArray: recElement[4];

To access an element of this array you use the standard array indexing
techniques. Because recArray is a single-dimensional array, you’d compute



the address of an element of this array using the formula baseAddress +
index*@size( recElement ). For example, to access an element of recArray
you’d use code like the following:

// Access element i of recArray:

intmul( @size( recElement ), i, ebx ); // ebx := i*@size( recElement )
mov( recArray.someField[ebx], eax );

Note that the index specification follows the entire variable name;
remember, this is assembly, not a high-level language (in a high-level language
you’d probably use recArray[i].someField).

Naturally, you can create multidimensional arrays of records as well. You
would use the row-major or column-major order functions to compute the
address of an element within such records. The only thing that really changes
(from the discussion of arrays) is that the size of each element is the size of
the record object.

static
rec2D: recElement[ 4, 6 |;

// Access element [i,j] of rec2D and load someField into eax:

intmul( 6, i, ebx );

add( j, ebx );

intmul( @size( recElement ), ebx );
mov( rec2D.someField[ ebx ], eax );

4.28 Arrays/Records as Record Fields

Records may contain other records or arrays as fields. Consider the following

definition:
type
Pixel:
record
Pt: point;
color: dword;
endrecord;

The definition above defines a single point with a 32-bit color component.
When initializing an object of type Pixel, the first initializer corresponds to
the Pt field, not the x-coordinate field. The following definition is incorrect:

static
ThisPt: Pixel := Pixel:[ 5, 10 ];  // Syntactically incorrect!
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The value of the first field (5) is not an object of type point. Therefore,
the assembler generates an error when encountering this statement. HLA will
allow you to initialize the fields of Pixel using declarations like the following:

static
ThisPt: Pixel := Pixel:[ point:[ 1, 2, 3 ], 10 ];
ThatPt: Pixel := Pixel:[ point:[ 0, 0, 0 ], 5 ];

Accessing Pixel fields is very easy. As in a high-level language, you use a
single period to reference the Pt field and a second period to access the x, y,
and z fields of point:

stdout.put( "ThisPt.Pt.x = ", ThisPt.Pt.x, nl );
stdout.put( "ThisPt.Pt.y = ", ThisPt.Pt.y, nl );
stdout.put( "ThisPt.Pt.z = ", ThisPt.Pt.z, nl );

mov( eax, ThisPt.Color );

You can also declare arrays as record fields. The following record creates
a data type capable of representing an object with eight points (for example, a
cube):

type
Object8:
record
Pts: point[8];
Color: dword;
endrecord;

This record allocates storage for eight different points. Accessing an
element of the Pts array requires that you know the size of an object of type
point (remember, you must multiply the index into the array by the size of
one element, 12 in this particular case). Suppose, for example, that you have
a variable Cube of type Object8. You could access elements of the Pts array as
follows:

// Cube.Pts[i].x := 0;

mov( i, ebx );
intmul( 12, ebx );
mov( 0, Cube.Pts.x[ebx] );

The one unfortunate aspect of all this is that you must know the size of
each element of the Pts array. Fortunately, you can rewrite the code above
using @size as follows:

// Cube.Pts[i].x := 0;

mov( i, ebx );



intmul( @size( point ), ebx );
mov( 0, Cube.Pts.x[ebx] );

Note in this example that the index specification ([ebx]) follows the
whole object name even though the array is Pts, not x. Remember, the [ebx]
specification is an indexed addressing mode, not an array index. Indexes always
follow the entire name, so you do not attach them to the array component
as you would in a high-level language like C/C++ or Pascal. This produces
the correct result because addition is commutative, and the dot operator
(as well as the index operator) corresponds to addition. In particular, the
expression Cube.Pts.x[ebx] tells HLA to compute the sum of Cube (the base
address of the object) plus the offset to the Pts field, plus the offset to the x
field, plus the value of EBX. Technically, we’re really computing offset(Cube)
+ offset(Pts) + EBX + offset(x), but we can rearrange this because addition is
commutative.

You can also define two-dimensional arrays within a record. Accessing
elements of such arrays is no different than accessing any other two-dimensional
array other than the fact that you must specify the array’s field name as the
base address for the array. For example:

type
RecW2DArray:
record
intField: int32;
aField:  int32[4,5];
endrecord;
static

recVar: RecW2DArray;

// Access element [i,j] of the aField field using row-major ordering:

mov( i, ebx );

intmul( 5, ebx );

add( j, ebx );

mov( recVar.aField[ ebx*4 ], eax );

The code above uses the standard row-major calculation to index into a
4x5 array of double words. The only difference between this example and a
standalone array access is the fact that the base address is recVar.aField.

There are two common ways to nest record definitions. As this section
notes, you can create a record type in a type section and then use that type
name as the data type of some field within a record (e.g., the Pt:point field in
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the Pixel data type above). It is also possible to declare a record directly
within another record without creating a separate data type for that record;
the following example demonstrates this:

type
NestedRecs:
record
iField: int32;
sField: string;
rField:
record
i:int32;
u:uns32;
endrecord;
cField:char;
endrecord;

Generally, it’s a better idea to create a separate type rather than embed
records directly in other records, but nesting them is perfectly legal.

If you have an array of records and one of the fields of that record type is
an array, you must compute the indexes into the arrays independently of one
another and then use the sum of these indexes as the ultimate index. The
following example demonstrates how to do this:

type
recType:
record
arrayField: dword[4,5];
<< Other fields >>
endrecord;
static

aryOfRecs: recType[3,3];

// Access aryOfRecs[i,j].arrayField[k,1]:

intmul( 5, i, ebx ); // Computes index into aryOfRecs
add( j, ebx ); // as (i*5 +j)*@size( recType ).
intmul( @size( recType ), ebx );

intmul( 3, k, eax ); // Computes index into aryOfRecs
add( 1, eax ); // as (k*3 + j) (*4 handled later).

mov( aryOfRecs.arrayField[ ebx + eax*4 ], eax );

Note the use of the base plus scaled indexed addressing mode to simplify
this operation.
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4.29 Aligning Fields Within a Record

To achieve maximum performance in your programs, or to ensure that HLA’s
records properly map to records or structures in some high-level language, you
will often need to be able to control the alignment of fields within a record.
For example, you might want to ensure that a double-word field’s offset is an
even multiple of 4. You use the align directive to do this. The following example
shows how to align some fields on important boundaries:

type
PaddedRecord:

record
c: char;
align(4);
d: dword;
b: boolean;
align(2);
w: word;

endrecord;

Whenever HLLA encounters the align directive within a record declaration,
it automatically adjusts the following field’s offset so that it is an even multiple
of the value the align directive specifies. It accomplishes this by increasing
the offset of that field, if necessary. In the example above, the fields would
have the following offsets: c:0, d:4, b:8, w:10. Note that HLA inserts 3 bytes of
padding between c and d, and it inserts 1 byte of padding between b and w. It
goes without saying that you should never assume that this padding is present.
If you want to use those extra bytes, then you must declare fields for them.

Note that specifying alignment within a record declaration does not
guarantee that the field will be aligned on that boundary in memory; it only
ensures that the field’s offset is a multiple of the value you specify. If a variable
of type PaddedRecord starts at an odd address in memory, then the d field will
also start at an odd address (because any odd address plus 4 is an odd address).
If you want to ensure that the fields are aligned on appropriate boundaries
in memory, you must also use the align directive before variable declarations
of that record type. For example:

static

align(4);
PRvar: PaddedRecord;

The value of the align operand should be an even value that is divisible
by the largest align expression within the record type (4 is the largest value in
this case, and it’s already divisible by 2).
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If you want to ensure that the record’s size is a multiple of some value,
then simply stick an align directive as the last item in the record declaration.
HLA will emit an appropriate number of bytes of padding at the end of the
record to fill it in to the appropriate size. The following example demonstrates
how to ensure that the record’s size is a multiple of 4 bytes:

type
PaddedRec:
record
<< Some field declarations >>

align(4);
endrecord;

HLA provides some additional alignment directives for records that let
you easily control the alignment of all fields within a record and the starting
offset of the fields in a record. If you're interested in more information,
please consult the HLA reference manual.

4.30 Pointers to Records

Chapter 4

During execution, your program may refer to record objects indirectly using
a pointer. When you use a pointer to access fields of a structure, you must
load one of the 80x86’s 32-bit registers with the address of the desired record.
Suppose you have the following variable declarations (assuming the Object8
structure from an earlier section):

static
Cube: Object8;
CubePtr: pointer to Object8 := &Cube;

CubePtr contains the address of (thatis, it is a pointer to) the Cube object.
To access the Color field of the Cube object, you could use an instruction like
mov( Cube.Color, eax );. When accessing a field via a pointer, you first need to
load the address of the object into a 32-bit register such as EBX. The instruction
mov( CubePtr, ebx ); will do the trick. After doing so, you can access fields of
the Cube object using the [ebx+offset] addressing mode. The only problem is,
“How do you specify which field to access?” Consider briefly the following
incorrect code:

mov( CubePtr, ebx );
mov( [ebx].Color, eax ); // This does not work!

Because field names are local to a structure and it’s possible to reuse
a field name in two or more structures, how does HLA determine which
offset Color represents? When accessing structure members directly (e.g.,
mov( Cube.Color, eax );), there is no ambiguity because Cube has a specific



type that the assembler can check. [ebx], on the other hand, can point at
anything. In particular, it can point at any structure that contains a Color field. So
the assembler cannot, on its own, decide which offset to use for the Color symbol.

HILA resolves this ambiguity by requiring that you explicitly supply a
type. To do this, you must coerce [ebx] to type Cube. Once you do this, you
can use the normal dot operator notation to access the Color field:

mov( CubePtr, ebx );
mov( (type Cube [ebx]).Color, eax );

If you have a pointer to a record and one of that record’s fields is an array,
the easiest way to access elements of that field is by using the base-plus-indexed
addressing mode. To do so, you just load the pointer’s value into one register
and compute the index into the array in a second register. Then you combine
these two registers in the address expression. In the example above, the Pts
field is an array of eight point objects. To access field x of the ith element of
the Cube.Pts field, you’d use code like the following:

mov( CubePtr, ebx );
intmul( @size( point ), i, esi ); // Compute index into point array.
mov( (type Object8 [ebx]).Pts.x[ esi*4 ], eax );

If you use a pointer to a particular record type frequently in your program,
typing a coercion operator like (type Object8 [ebx]) can get old very quickly.
One way to reduce the typing needed to coerce EBX is to use a text constant.
Consider the following statement:

const
08ptr: text := "(type Object8 [ebx])";

With this statement at the beginning of your program, you can use 08ptr
in place of the type coercion operator, and HLA will automatically substitute
the appropriate text. With a text constant like the above, the former example
becomes a little more readable and writable:

mov( CubePtr, ebx );
intmul( @size( point ), i, esi ); // Compute index into point array.
mov( O8Ptr.Pts.x[ esi*4 ], eax );

4.31 Unions

A record definition assigns different offsets to each field in the record according
to the size of those fields. This behavior is quite similar to the allocation of
memory offsets in a var or static section. HLA provides a second type of
structure declaration, the union, that does not assign different addresses to
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each object; instead, each field in a union declaration has the same offset—o0.
The following example demonstrates the syntax for a union declaration:

type
unionType:
union
<< Fields (syntactically identical to record declarations) >>
endunion;

You access the fields of a union exactly the same way you access the fields
of a record: using dot notation and field names. The following is a concrete
example of a union type declaration and a variable of the union type:

type
numeric:
union
i: int32;
u: uns32;
r: real6s;
endunion;
static

number: numeric;

.

.

mov( 55, number.u );

.

.

mov( -5, number.i );

.

stdout.put( "Real value = ", number.r, nl );

The important thing to note about union objects is that all the fields of a
union have the same offset in the structure. In the example above, the number.u,
number.i, and number.r fields all have the same offset: 0. Therefore, the fields
of a union overlap in memory; this is very similar to the way the 80x86 8-, 16-,
and 32-bit registers overlap one another. Usually, you may access only one
field of a union at a time; that is, you do not manipulate separate fields of a
particular union variable concurrently because writing to one field overwrites
the other fields. In the example above, any modification of number.u would
also change number.i and number.r.

Programmers typically use unions for two different reasons: to conserve
memory or to create aliases. Memory conservation is the intended use of this
data structure facility. To see how this works, let’s compare the numeric union
above with a corresponding record type.



type
numericRec:
record
i: int32;
u: uns32;
r: real6s;
endrecord;

If you declare a variable, say n, of type numericRec, you access the fields as
n.i, n.u, and n.r exactly as though you had declared the variable to be type
numeric. The difference between the two is that numericRec variables allocate
separate storage for each field of the record, whereas numeric (union) objects
allocate the same storage for all fields. Therefore, @size(numericRec) is 16
because the record contains two double-word fields and a quad word (real64)
field. @size(numeric), however, is 8. This is because all the fields of a union occupy
the same memory locations, and the size of a union object is the size of the
largest field of that object (see Figure 4-11).

i u r record Variable

Offset Zero Offset Four T Offset Eight

Ep—

union Variable

i, u
Figure 4-11: Layout of a union versus a record variable

In addition to conserving memory, programmers often use unions to
create aliases in their code. As you may recall, an alias is a different name for
the same memory object. Aliases are often a source of confusion in a program,
so you should use them sparingly; sometimes, however, using an alias can be
quite convenient. For example, in some section of your program you might
need to constantly use type coercion to refer to an object using a different
type. Although you can use an HLA text constant to simplify this process,
another way to do this is to use a union variable with the fields representing
the different types you want to use for the object. As an example, consider the
following code:

type
CharOrUns:
union
c:char;
u:uns32;
endrecord;
static

v:CharOrUns;
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With a declaration like the above, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the L.O. byte of this uns32
variable as a character, you can do so by simply accessing the v.c variable, for
example,

mov( eax, v.u );
stdout.put( "v, as a character, is '", v.c, "'" nl );

You can use unions exactly the same way you use records in an HLA
program. In particular, union declarations may appear as fields in records,
record declarations may appear as fields in unions, array declarations may
appear within unions, you can create arrays of unions, and so on.

4.32 Anonymous Unions

Within a record declaration you can place a union declaration without specifying a
fieldname for the union object. The following example demonstrates the syntax
for this:

type
HasAnonUnion:
record
r:1ealés;
union
u:uns32;
i:int32;
endunion;
s:string;
endrecord;

static
v: HasAnonUnion;

Whenever an anonymous union appears within a record you can access
the fields of the union as though they were direct fields of the record. In the
example above, for example, you would access v’s u and i fields using the
syntax v.u and v.1i, respectively. The u and 1i fields have the same offset in the
record (8, because they follow a real64 object). The fields of v have the following
offsets from v’s base address:

V.u

0 0 O

12

@size(v) is 16 because the u and 1i fields consume only 4 bytes.

HLA also allows anonymous records within unions. Please see the HLA
documentation for more details, though the syntax and usage are identical
to anonymous unions within records.
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4.33 Variant Types

One big use of unions in programs is to create variant types. A variant variable
can change its type dynamically while the program is running. A variant
object can be an integer at one point in the program, switch to a string at a
different part of the program, and then change to a real value at a later time.
Many very-high-level language (VHLL) systems use a dynamic type system
(that is, variant objects) to reduce the overall complexity of the program;
indeed, proponents of many VHLLSs insist that the use of a dynamic typing
system is one of the reasons you can write complex programs with so few lines
of code using those languages. Of course, if you can create variant objects in a
VHLL, you can certainly do it in assembly language. In this section we’ll look at
how we can use the union structure to create variant types.

At any one given instant during program execution, a variant object has
a specific type, but under program control the variable can switch to a different
type. Therefore, when the program processes a variant object, it must use an
if statement or switch statement (or something similar) to execute different
instructions based on the object’s current type. Very-high-level languages do
this transparently. In assembly language you will have to provide the code to
test the type yourself. To achieve this, the variant type needs some additional
information beyond the object’s value. Specifically, the variant object needs a
field that specifies the current type of the object. This field (often known as the
tag field) is an enumerated type or integer that specifies the object’s type atany
given instant. The following code demonstrates how to create a variant type:

type
VariantType:
record
tag:uns32; // 0-uns32, 1-int32, 2-real64
union
u:uns32;
i:int32;
r:real6s;
endunion;
endrecord;

static
v:VariantType;

The program would test the v.tag field to determine the current type of
the v object. Based on this test, the program would manipulate the v.i, v.u,
orv.r field.

Of course, when operating on variant objects, the program’s code must
constantly be testing the tag field and executing a separate sequence of
instructions for uns32, int32, or real64 values. If you use the variant fields
often, it makes a lot of sense to write procedures to handle these operations
for you (e.g., vadd, vsub, vmul, and vdiv).
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4.34 Namespaces

One really nice feature of records and unions is that the field names are local
to a given record or union declaration. That is, you can reuse field names in
different records or unions. This is an important feature of HLA because it
helps avoid namespace pollution. Namespace pollution occurs when you use
up all the “good” names within your program and you have to start creating
nondescriptive names for objects because you’ve already used the most
appropriate name for something else. We use the term namespace to describe
how HLA associates names with a particular object. The field names of a
record have a namespace that is limited to objects of that record type. HLA
provides a generalization of this namespace mechanism that lets you create
arbitrary namespaces. These namespace objects let you shield the names of
constants, types, variables, and other objects so their names do not interfere
with other declarations in your program.

An HLA namespace section encapsulates a set of generic declarations in
much the same way that a record encapsulates a set of variable declarations. A
namespace declaration takes the following form:

namespace name;
<< declarations »>>

end name;

The name identifier provides the name for the namespace. The identifier
after the end clause must exactly match the identifier after namespace. Note
that a namespace declaration section is a section unto itself. It does not have to
appear in a type or var section. A namespace may appear anywhere one of the
HLA declaration sections is legal. A program may contain any number of
namespace declarations; in fact, the namespace identifiers don’t even have to
be unique, as you will soon see.

The declarations that appear between the namespace and end clauses are
all the standard HLA declaration sections except that you cannot nest namespace
declarations. You may, however, put const, val, type, static, readonly, and
storage sections within a namespace.?! The following code provides an example
of a typical namespace declaration in an HLA program:

namespace myNames;

type
integer: int32;

static
i:integer;
j:uns32;

2 Procedure declarations, the subject of Chapter 5, are also legal within a namespace
declaration section.
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const
pi:real64 := 3.14159;

end myNames;

To access the fields of a namespace you use the same dot notation that
records and unions use. For example, to access the fields of myNames outside of
the namespace, you’d use the following identifiers:

myNames . integer A type declaration equivalent to int32
myNames . i An integer variable (int32)

myNames. j An uns32 variable

myNames . pi A real64 constant

This example also demonstrates an important point about namespace
declarations: Within a namespace you may reference other identifiers in
that same namespace declaration without using the dot notation. For example,
the i field above uses type integer from the myNames namespace without the
mynames . prefix.

What is not obvious from the example above is that namespace declarations
create a clean symbol table whenever you open up a namespace. The only
external symbols that HLA recognizes in a namespace declaration are the
predefined type identifiers (e.g., int32, uns32, and char). HLA does not recognize
any symbols you’ve declared outside the namespace while it is processing
your namespace declaration. This creates a problem if you want to use symbols
from outside the namespace when declaring other symbols inside the name-
space. For example, suppose the type integer had been defined outside
myNames as follows:

type
integer: int32;

namespace myNames;
static
i:integer;
j:uns32;

const
pi:real64 := 3.14159;

end myNames;

If you were to attempt to compile this code, HLA would complain that
the symbol integer is undefined. Clearly integer is defined in this program,
but HLA hides all external symbols when creating a namespace so that you
can reuse (and redefine) those symbols within the namespace. Of course,
this doesn’t help much if you actually want to use a name that you’ve defined
outside myNames within that namespace. HLA provides a solution to this
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problem: the @global: operator. If, within a namespace declaration section, you
prefix a name with @global:, then HLA will use the global definition of that
name rather than the local definition (if a local definition even exists). To

correct the problem in the previous example, you’d use the following code:

type
integer: int32;

namespace myNames;
static
i:@global:integer;
j:uns32;

const
pi:real64 := 3.14159;

end myNames;

With the @global: prefix, the i variable will be type int32 even if a different
declaration of integer appears within the myNames namespace.

You cannot nest namespace declarations. Logically, there doesn’t seem to
be any need for this, hence its omission from the HLA language.

You can have multiple namespace declarations in the same program that
use the same namespace identifier. For example:

namespace ns;
<< Declaration group #1 >>

end ns;

namespace ns;
<< Declaration group #2 >>

end ns;

When HLA encounters a second namespace declaration for a given identifier,
it simply appends the declarations in the second group to the end of the
symbol list it created for the first group. Therefore, after processing the two
namespace declarations, the ns namespace would contain the set of all symbols
you’ve declared in both namespace blocks.



Perhaps the most common use of namespaces is in library modules. If
you create a set of library routines to use in various projects or distribute to
others, you have to be careful about the names you choose for your functions
and other objects. If you use common names like get and put, the users of
your module will complain when your names collide with theirs. An easy
solution is to put all your code in a namespace block. Then the only name you
have to worry about is the namespace identifier itself. This is the only name
that will collide with other users’ identifiers. This can happen, but it’s much
less likely to happen than if you don’t use a namespace and your library module
introduces dozens, if not hundreds, of new names into the global namespace.??
The HLA Standard Library provides many good examples of namespaces in
use. The HLA Standard Library defines several namespaces like stdout, stdin,
str, cs, and chars. You refer to functions in these namespaces using names
like stdout.put, stdin.get, cs.intersection, str.eq, and chars.toUpper. The use
of namespaces in the HLA Standard Library prevents conflicts with similar
names in your own programs.

4.35 Dynamic Arrays in Assembly Language

One problem with arrays as this chapter describes them is that their size is
static. That is, the number of elements in all of the examples was chosen
when writing the program; it was not selected while the program runs (that
is, dynamically). Alas, sometimes you simply don’t know how big an array
needs to be when you’re writing the program; you can only determine the
size of the array while the program is running. This section describes how to
allocate storage for arrays dynamically so you can set their size at runtime.

Allocating storage for a single-dimensional array, and accessing elements
of that array, is a nearly trivial task at runtime. All you need to do is call the
HLA Standard Library mem.alloc routine, specifying the size of the array in
bytes. mem.alloc will return a pointer to the base address of the new array in
the EAX register. Typically, you would save this address in a pointer variable
and use that value as the base address of the array in all future array accesses.

To access an element of a single-dimensional dynamic array, you would
generally load the base address into a register and compute the index in a
second register. Then you could use the base-indexed addressing mode to
access elements of that array. This is not a whole lot more work than accessing
elements of a statically allocated array. The following code fragment demon-
strates how to allocate and access elements of a single-dimensional dynamic
array.

22 The global namespace is the global section of your program.
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static
ArySize: uns32;
BaseAdrs: pointer to uns32;

.

stdout.put( "How many elements do you want in your array? " );
stdin.getu32();

mov( eax, ArySize ); // Save away the upper bounds on this array.

shl( 2, eax ); // Multiply eax by 4 to compute the number of bytes.
mem.alloc( eax ); // Allocate storage for the array.

mov( eax, BaseAdrs ); // Save away the base address of the new array.

.

// Zero out each element of the array:

mov( BaseAdrs, ebx );

mov( 0, eax );

for( mov(0, esi); esi < ArySize; inc( esi )) do

mov( eax, [ebx + esi*4 ]);

endfor;

Dynamically allocating storage for a multidimensional array is fairly
straightforward. The number of elements in a multidimensional array is the
product of all the dimension values; for example, a 4x5 array has 20 elements. So
if you get the bounds for each dimension from the user, all you need to do is
compute the product of all of these bound values and multiply the result by
the size of a single element. This computes the total number of bytes in the
array, the value that mem.alloc expects.

Accessing elements of multidimensional arrays is a little more problem-
atic. The problem is that you need to keep the dimension information (that
is, the bounds on each dimension) around because these values are needed
when computing the row-major (or column-major) index into the array.*
The conventional solution is to store these bounds into a static array (gener-
ally you know the arity, or number of dimensions, at compile time, so it is
possible to statically allocate storage for this array of dimension bounds).
This array of dynamic array bounds is known as a dope vector. The following
code fragment shows how to allocate storage for a two-dimensional dynamic
array using a simple dope vector.

2 Technically, you don’t need the value of the leftmost dimension bound to compute an index
into the array; however, if you want to check the index bounds using the bound instruction (or
some other technique), you will need this value around at runtime as well.



var
ArrayPtr: pointer to uns32;
ArrayDims: wuns32[2]; // The dope vector

// Get the array bounds from the user:

stdout.put( "Enter the bounds for dimension #1: " );
stdin.get( ArrayDims[0] );

stdout.put( "Enter the bounds for dimension #2: " );
stdin.get( ArrayDims[1*4] );

// Allocate storage for the array:

mov( ArrayDims[0], eax );

intmul( ArrayDims[1*4], eax );

shl( 2, eax ); // Multiply by 4 because each element is 4 bytes.
mem.alloc( eax ); // Allocate storage for the array and

mov( eax, ArrayPtr ); // save away the pointer to the array.

// Initialize the array:

mov( 0, edx );

mov( ArrayPtr, edi );

for( mov( 0, ebx ); ebx < ArrayDims[0]; inc( ebx )) do

for( mov( 0, ecx ); ecx < ArrayDims[1*4]; inc( ecx )) do

// Compute the index into the array
// as esi := ( ebx * ArrayDims[1*4] + ecx ) * 4
// (Note that the final multiplication by 4 is
//  handled by the scaled indexed addressing mode below.)
mov( ebx, esi );
intmul( ArrayDims[1*4], esi );
add( ecx, esi );

// Initialize the current array element with edx.

mov( edx, [edi+esi*4] );
inc( edx );

endfor;

endfor;
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In the electronic edition of this book, which you’ll find at Attp://webster.cs.ucr.edu/
or http://www.artofasm.com/, you will find additional information about data
types. The HLA Standard Library documentation describes the HLA arrays
package that provides support for dynamically allocated (and statically
allocated) arrays, indexing into arrays, and many other array options. You
should consult the HLA stdlib documentation for more details about this
array package. For additional information about data structure representation
in memory, you should consider reading my book Write Great Code, Volume 1
(No Starch Press, 2004). For an in-depth discussion of data types, you should
consult a textbook on data structures and algorithms.



PROCEDURES AND UNITS

In a procedural programming language,
the basic unit of code is the procedure. A
procedure is a set of instructions that compute
some value or take some action (such as printing

or reading a character value). This chapter discusses
how HLA implements procedures. It begins by discussing HLA’s high-level
syntax for procedure declarations and invocations, but it also describes the
low-level implementation of procedures at the machine level. At this point,
you should be getting comfortable with assembly language programming, so
it’s time to start presenting “pure” assembly language rather than continuing
to rely on HLA’s high-level syntax as a crutch.

5.1 Procedures

Most procedural programming languages implement procedures using the
call/return mechanism. That is, some code calls a procedure, the procedure
does its thing, and then the procedure returns to the caller. The call and
return instructions provide the 80x86’s procedure invocation mechanism. The



calling code calls a procedure with the call instruction and the procedure
returns to the caller with the ret instruction. For example, the following
80x86 instruction calls the HLA Standard Library stdout.newln routine:!

call stdout.newln;

The stdout.newln procedure prints a newline sequence to the console
device and returns control to the instruction immediately following the call
stdout.newln; instruction.

Alas, the HLA Standard Library does not supply all the routines you will
ever need. Most of the time you’ll have to write your own procedures. To
do this, you will use HLA’s procedure-declaration facilities. A basic HLA
procedure declaration takes the following form:

procedure ProcName;

<< Local declarations »>>
begin ProcName;

<< Procedure statements >>
end ProcName;

Procedure declarations appear in the declaration section of your program.
That is, anywhere you can put a static, const, type, or other declaration section,
you may place a procedure declaration. In the syntax example above, ProcName
represents the name of the procedure you wish to define. This can be any
valid (and unique) HLA identifier. Whatever identifier follows the procedure
reserved word must also follow the begin and end reserved words in the pro-
cedure. As you’ve probably noticed, a procedure declaration looks a whole lot
like an HLA program. In fact, the only difference (so far) is the use of the
procedure reserved word rather than the program reserved word.

Here is a concrete example of an HLA procedure declaration. This
procedure stores zeros into the 256 double words that EBX points at upon
entry into the procedure:

procedure zeroBytes;
begin zeroBytes;

mov( 0, eax );

mov( 256, ecx );

repeat
mov( eax, [ebx] );
add( 4, ebx );
dec( ecx );

until( @z ); // That is, until ecx=0.

end zeroBytes;

! Normally you would call newln using the high-level newln(); syntax, but the call instruction
works as well.
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You can use the 80x86 call instruction to call this procedure. When,
during program execution, the code falls into the end zeroBytes; statement,
the procedure returns to whoever called it and begins executing the first
instruction beyond the call instruction. The program in Listing 5-1 provides
an example of a call to the zeroBytes routine.

program zeroBytesDemo;
#include( "stdlib.hhf" )

procedure zeroBytes;

begin zeroBytes;
mov( 0, eax );
mov( 256, ecx );

repeat

mov( eax, [ebx] ); // Zero out current dword.

add( 4, ebx ); // Point ebx at next dword.
dec( ecx ); // Count off 256 dwords.
until( ecx = 0 ); // Repeat for 256 dwords.

end zeroBytes;

static
dwArray: dword[256];

begin zeroBytesDemo;

lea( ebx, dwArray );
call zeroBytes;

end zeroBytesDemo;

Listing 5-1: Example of a simple procedure

As you may have noticed when calling HLA Standard Library procedures,
you don’t have to use the call instruction to call HLA procedures. There is
nothing special about the HLA Standard Library procedures versus your own
procedures. Although the formal 80x86 mechanism for calling procedures is
to use the call instruction, HLA provides a high-level extension that lets you
call a procedure by snnply specifying the procedure’s name followed by an
empty set of parentheses.” For example, either of the following statements
will call the HLA Standard Library stdout.newln procedure:

call stdout.newln;
stdout.newln();

2 This assumes that the procedure does not have any parameters.
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Likewise, either of the following statements will call the zeroBytes procedure
in Listing 5-1:

call zeroBytes;
zeroBytes();

The choice of calling mechanism is strictly up to you. Most people,
however, find the high-level syntax easier to read.

5.2 Saving the State of the Machine

Take a look at the program in Listing 5-2. This section of code attempts to
print 20 lines of 40 spaces and an asterisk. Unfortunately, there is a subtle
bug that creates an infinite loop. The main program uses the repeat..until
loop to call PrintSpaces 20 times. PrintSpaces uses ECX to count off the 40 spaces
it prints. PrintSpaces returns with ECX containing 0. The main program then
prints an asterisk and a newline, decrements ECX, and then repeats because
ECX isn’t 0 (it will always contain $FFFF_FFFF at this point).

The problem here is that the PrintSpaces subroutine doesn’t preserve the
ECX register. Preserving a register means you save it upon entry into the
subroutine and restore it before leaving. Had the PrintSpaces subroutine
preserved the contents of the ECX register, the program in Listing 5-2 would
have functioned properly.

program nonhWorkingProgram;
#include( "stdlib.hhf" );

procedure PrintSpaces;
begin PrintSpaces;

mov( 40, ecx );

repeat
mov( ' ', al );
stdout.putc( al ); // Print 1 of 40 spaces.
dec( ecx ); // Count off 40 spaces.

until( ecx = 0 );
end PrintSpaces;
begin nonWorkingProgram;

mov( 20, ecx );

repeat
PrintSpaces();
stdout.put( '*', nl );
dec( ecx );



until( ecx = 0 );

end nonWorkingProgram;

Listing 5-2: Program with an unintended infinite loop

You can use the 80x86’s push and pop instructions to preserve register values
while you need to use them for something else. Consider the following code
for PrintSpaces:

procedure PrintSpaces;
begin PrintSpaces;

push( eax );
push( ecx );
mov( 40, ecx );

repeat
mov( ' ', al );
stdout.putc( al ); // Print 1 of 40 spaces.
dec( ecx ); // Count off 40 spaces.

until( ecx = 0 );
pop( ecx );
pop( eax );

end PrintSpaces;

Note that PrintSpaces saves and restores EAX and ECX (because this
procedure modifies these registers). Also, note that this code pops the registers
off the stack in the reverse order that it pushed them. The last-in, first-out
operation of the stack imposes this ordering.

Either the caller (the code containing the call instruction) or the callee
(the subroutine) can take responsibility for preserving the registers. In the
example above, the callee preserved the registers. The example in Listing 5-3
shows what this code might look like if the caller preserves the registers:

program callerPreservation;
#include( "stdlib.hhf" );

procedure PrintSpaces;
begin PrintSpaces;

mov( 40, ecx );

repeat
mov( ' ', al );
stdout.putc( al ); // Print 1 of 40 spaces.
dec( ecx ); // Count off 40 spaces.

until( ecx = 0 );

end PrintSpaces;
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begin callerPreservation;

mov( 20, ecx );
repeat

push( eax );
push( ecx );

PrintSpaces();

pop( ecx );

pop( eax );
stdout.put( '*', nl );
dec( ecx );

until( ecx = 0 );

end callerPreservation;

Listing 5-3: Demonstration of caller register preservation

There are two advantages to callee preservation: space and maintainability.
If the callee (the procedure) preserves all affected registers, then there is
only one copy of the push and pop instructions, those the procedure contains.
If the caller saves the values in the registers, the program needs a set of push
and pop instructions around every call. Not only does this make your programs
longer, it also makes them harder to maintain. Remembering which registers
to push and pop on each procedure call is not easily done.

On the other hand, a subroutine may unnecessarily preserve some registers
if it preserves all the registers it modifies. In the examples above, the code
needn’t save EAX. Although PrintSpaces changes AL, this won’t affect the
program’s operation. If the caller is preserving the registers, it doesn’t have
to save registers it doesn’t care about (see the program in Listing 5-4).

program callerPreservation2;
#include( "stdlib.hhf" );

procedure PrintSpaces;
begin PrintSpaces;

mov( 40, ecx );

repeat
mov( ' ', al );
stdout.putc( al ); // Print 1 of 40 spaces.
dec( ecx ); // Count off 40 spaces.

until( ecx = 0 );
end PrintSpaces;

begin callerPreservation2;
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mov( 10, ecx );
repeat

push( ecx );

PrintSpaces();

pop( ecx );
stdout.put( '*', nl );
dec( ecx );

until( ecx = 0 );

mov( 5, ebx );

while( ebx > 0 ) do
PrintSpaces();

stdout.put( ebx, nl );
dec( ebx );

endwhile;

mov( 110, ecx );
for( mov( 0, eax ); eax < 7; inc( eax )) do

PrintSpaces();

stdout.put( eax,
dec( ecx );

, ecx, nl );

endfor;

end callerPreservation2;

Listing 5-4: Demonstrating that caller preservation need not save all registers

This example in Listing 5-4 provides three different cases. The first loop
(repeat..until) preserves only the ECX register. Modifying the AL register
won’t affect the operation of this loop. Immediately after the first loop, this
code calls PrintSpaces again in the while loop. However, this code doesn’t save
EAX or ECX because it doesn’t care if PrintSpaces changes them.

One big problem with having the caller preserve registers is that your
program may change over time. You may modify the calling code or the
procedure to use additional registers. Such changes, of course, may change
the set of registers that you must preserve. Worse still, if the modification is
in the subroutine itself, you will need to locate every call to the routine and
verify that the subroutine does not change any registers the calling code uses.

Preserving registers isn’t all there is to preserving the environment. You
can also push and pop variables and other values that a subroutine might
change. Because the 80x86 allows you to push and pop memory locations,
you can easily preserve these values as well.
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5.3 Prematurely Returning from a Procedure

The HLA exit and exitif statements let you return from a procedure without

having to fall into the corresponding end statement in the procedure. These

statements behave a whole lot like the break and breakif statements for loops,

except that they transfer control to the bottom of the procedure rather than

out of the current loop. These statements are quite useful in many cases.
The syntax for these two statements is the following:

exit procedurename;
exitif( boolean_expression ) procedurenanme;

The procedurename operand is the name of the procedure you wish to exit.
If you specify the name of your main program, the exit and exitif statements
will terminate program execution (even if you're currently inside a procedure
rather than the body of the main program).

The exit statement immediately transfers control out of the specified
procedure or program. The conditional exitif statement first tests the boolean
expression and exits if the result is true. It is semantically equivalent to the
following:

if( boolean expression ) then
exit procedurename;

endif;

Although the exit and exitif statements are invaluable in many cases,
you should avoid using them without careful consideration. If a simple if
statement will let you skip the rest of the code in your procedure, then by all
means use the if statement. Procedures that contain a lot of exit and exitif
statements will be harder to read, understand, and maintain than procedures
without these statements (after all, the exit and exitif statements are really
nothing more than goto statements, and you’ve probably heard already about
the problems with gotos). exit and exitif are convenient when you have to
return from a procedure inside a sequence of nested control structures,
and slapping an if..endif around the remaining code in the procedure is
impractical.

5.4 Local Variables

Chapter 5

HLA procedures, like procedures and functions in most high-level languages, let
you declare local variables. Local variables are generally accessible only within
the procedure; they are not accessible by the code that calls the procedure.

Local variable declarations are identical to variable declarations in your main
program except, of course, you declare the variables in the procedure’s dec-
laration section rather than the main program’s declaration section. Actually,
you may declare anything in the procedure’s declaration section that is legal
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in the main program’s declaration section, including constants, types, and
even other procedures.3 In this section, however, we’ll concentrate on local
variables.

Local variables have two important attributes that differentiate them
from the variables in your main program (thatis, globalvariables): lexical scope
and lifetime. Lexical scope, or just scope, determines where an identifier is usable
in your program. Lifetime determines when a variable has memory associated
with it and is capable of storing data. Because these two concepts differentiate
local and global variables, it is wise to spend some time discussing them.

Perhaps the best place to start when discussing the scope and lifetimes of
local variables is with the scope and lifetimes of global variables—those variables
you declare in your main program. Until now, the only rule you’ve had to
follow concerning the declaration of your variables has been “you must declare
all variables that you use in your programs.” The position of the HLA declaration
section with respect to the program statements automatically enforces the
other major rule, which is “you must declare all variables before their first
use.” With the introduction of procedures, it is now possible to violate this
rule because (1) procedures may access global variables, and (2) procedure
declarations may appear anywhere in a declaration section, even before some
variable declarations. The program in Listing 5-5 demonstrates this source
code organization.

program demoGlobalScope;
#include( "stdlib.hhf" );

static
AccessibleInProc: char;
procedure aProc;
begin aProc;
mov( 'a', AccessibleInProc );
end aProc;

static
InaccessibleInProc: char;

begin demoGlobalScope;

mov( 'b', InaccessibleInProc );
aProc();
stdout.put

3 Strictly speaking, this is not true. You may not declare external objects within a procedure.
External objects are the subject of Section 5.24.
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"AccessibleInProc
"InaccessibleInProc

||', ACCESSibleInPIOC’ weno 01
'", InaccessibleInProc, "'" nl

);

end demoGlobalScope;

Listing 5-5: Demonstration of global scope

This example demonstrates that a procedure can access global variables
in the main program as long as you declare those global variables before
the procedure. In this example, the aProc procedure cannot access the
InaccessibleInProc variable because its declaration appears after the pro-
cedure declaration. However, aProc may reference AccessibleInProc because
its declaration appears before the aProc procedure.

A procedure can access any static, storage, or readonly object exactly the
same way the main program accesses such variables—by referencing the
name. Although a procedure may access global var objects, a different syntax
is necessary, and you need to learn a little more before you will understand
the purpose of the additional syntax (for more details, please consult the
HLA reference manual).

Accessing global objects is convenient and easy. Unfortunately, as you’ve
probably learned when studying high-level language programming, accessing
global objects makes your programs harder to read, understand, and maintain.
Like most introductory programming texts, this book discourages the use
of global variables within procedures. Accessing global variables within a
procedure is sometimes the best solution to a given problem. However, such
(legitimate) access typically occurs only in advanced programs involving
multiple threads of execution or in other complex systems. Because it is
unlikely you would be writing such code at this point, it is equally unlikely
that you will absolutely need to access global variables in your procedures, so
you should carefully consider your options before doing so.*

Declaring local variables in your procedures is very easy; you use the
same declaration sections as the main program: static, readonly, storage, and
var. The same rules and syntax for the declaration sections and the access of
variables you declare in these sections apply in your procedure. The example
code in Listing 5-6 demonstrates the declaration of a local variable.

program demoLocalVars;
#include( "stdlib.hhf" );

// Simple procedure that displays 0..9 using
// a local variable as a loop control variable.

*Note that this argument against accessing global variables does not apply to other global
symbols. It is perfectly reasonable to access global constants, types, procedures, and other
objects in your programs.



procedure CntTo10;
var
i: int32;
begin CntTo10;
for( mov( 0, i ); i < 10; inc( i )) do
stdout.put( "i=" , i, nl );

endfor;

end CntTo10;

begin demolLocalVars;
CntTo10();

end demolocalVars;

Listing 5-6: Example of a local variable in a procedure

Local variables in a procedure are accessible only within that procedure.’
Therefore, the variable i in procedure CntTo10 in Listing 5-6 is not accessible
in the main program.

For local variables, HLA relaxes the rule that identifiers must be unique in
a program. In an HLA program, all identifiers must be unique within a given
scope. Therefore, all global names must be unique with respect to one another.
Similarly, all local variables within a given procedure must have unique names
but only with respect to other local symbols in that same procedure. In particular, a local
name may be the same as a global name. When this occurs, HLA creates two
separate variables. Within the scope of the procedure, any reference to the
common name accesses the local variable; outside that procedure, any
reference to the common name references the global identifier. Although
the quality of the resultant code is questionable, it is perfectly legal to have
a global identifier named MyVar with the same local name in two or more
different procedures. The procedures each have their own local variant of
the object, which is independent of MyVar in the main program. Listing 5-7
provides an example of an HLA program that demonstrates this feature.

program demoLocalVars2;
#include( "stdlib.hhf" );

static
i: uns32 := 10;
j: uns32 := 20;

% Strictly speaking, this is not true. However, accessing nonlocal var objects is beyond the scope
of this text. See the HLA documentation for more details.
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// The following procedure declares i and j
// as local variables, so it does not have access
// to the global variables by the same name.

procedure First;
var
i:int32;
j:uns32;

begin First;

mov( 10, § );
for( mov( 0, i ); i < 120; inc( i )) do

stdout.put( "i=", i," j=", j, nl);
dec( j );

endfor;
end First;

// This procedure declares only an i variable.
// 1t cannot access the value of the global i
// variable but it can access the value of the
// global j object because it does not provide
// a local variant of j.

procedure Second;
var
i:uns32;

begin Second;

mov( 10, j );
for( mov( 0, i ); i < 10; inc( i )) do

stdout.put( "i=", i," j=", j, nl);
dec( j );

endfor;

end Second;

begin demolocalVars2;

First();
Second();

// Because the calls to First and Second have not
// modified variable i, the following statement

// should print "i=10". However, because the Second
// procedure manipulated global variable j, this

// code will print "j=0" rather than "j=20".
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stdout.put( "i=", i, " j=", j, nl);

end demolocalVars2;

Listing 5-7: Local variables need not have globally unique names.

There are good and bad points to be made about reusing global names
within a procedure. On the one hand, there is the potential for confusion. If
you use a name like ProfitsThisYear as a global symbol and you reuse that name
within a procedure, someone reading the procedure might think that the
procedure refers to the global symbol rather than the local symbol. On the
other hand, simple names like i, j, and k are nearly meaningless (almost
everyone expects the program to use them as loop-control variables or for
other local uses), so reusing these names as local objects is probably a good
idea. From a software engineering perspective, it is probably a good idea to
keep all variables names that have a very specific meaning (like ProfitsThisYear)
unique throughout your program. General names that have a nebulous
meaning (like index and counter and names like i, j, or k) will probably be
okay to reuse as global variables.

There is one last point to make about the scope of identifiers in an HLA
program: variables in separate procedures are separate, even if they have the
same name. The First and Second procedures in Listing 5-7, for example, share
the same name (i) for alocal variable. However, the i in First is a completely
different variable from the i in Second.

The second major attribute that differentiates local variables from global
variables is lifetime. The lifetime of a variable spans from the point when the
program first allocates storage for a variable to the point when the program
deallocates the storage for that variable. Note that lifetime is a dynamic
attribute (controlled at runtime), whereas scope is a static attribute (controlled
at compile time). In particular, a variable can actually have several lifetimes if
the program repeatedly allocates and then deallocates the storage for that
variable.

Global variables always have a single lifetime that spans from the moment
when the main program first begins execution to the point when the main
program terminates. Likewise, all static objects have a single lifetime that
spans the execution of the program (remember, static objects are those you
declare in the static, readonly, or storage sections). This is true even within
procedures. So there is no difference between the lifetime of a local static
object and the lifetime of a global static object. Variables you declare in the
var section, however, are a different matter. HLA’s var objects use automatic
storage allocation. Automatic storage allocation means that the procedure
automatically allocates storage for a local variable upon entry into a procedure.
Similarly, the program deallocates storage for automatic objects when the
procedure returns to its caller. Therefore, the lifetime of an automatic object
is from the point of the execution of the first statement in a procedure to the
point when it returns to its caller.

Perhaps the most important thing to note about automatic variables is
that you cannot expect them to maintain their values between calls to the
procedure. Once the procedure returns to its caller, the storage for the
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automatic variable is lost and, therefore, the value is lost as well. Thus, you
must always assume that a local var object is uninitialized upon entry into a procedure,
even if you know you’ve called the procedure before and the previous
procedure invocation initialized that variable. Whatever value the last call
stored into the variable was lost when the procedure returned to its caller.
If you need to maintain the value of a variable between calls to a procedure,
you should use one of the static variable declaration types.

Given that automatic variables cannot maintain their values across pro-
cedure calls, you might wonder why you would want to use them at all. How-
ever, there are several benefits to automatic variables that static variables do
not have. The biggest disadvantage to static variables is that they consume
memory even when the (only) procedure that references them is not running.
Automatic variables, on the other hand, consume storage only while their
associated procedure is executing. Upon return, the procedure returns any
automatic storage it allocated back to the system for reuse by other proce-
dures. You'll see some additional advantages to automatic variables later in
this chapter.

5.5 Other Local and Global Symbol Types

As the previous section notes, HLA procedures let you declare constants,
values, types, and almost everything else legal in the main program’s declara-
tion section. The same rules for scope apply to these identifiers. Therefore,
you can reuse constant names, procedure names, type names, and the like in
local declarations.

Referencing global constants, values, and types does not present the
same software engineering problems that occur when you reference global
variables. The problem with referencing global variables is that a procedure
can change the value of a global variable in a nonobvious way. This makes
programs more difficult to read, understand, and maintain because you
can’t often tell that a procedure is modifying memory by looking only at the
call to that procedure. Constants, values, types, and other nonvariable objects
don’t suffer from this problem because you cannot change them at runtime.
Therefore, the pressure to avoid global objects at nearly all costs doesn’t apply to
nonvariable objects.

Having said that it’s okay to access global constants, types, and so on, it’s
also worth pointing out that you should declare these objects locally within
a procedure if the only place your program references such objects is within
that procedure. Doing so will make your programs a little easier to read
because the person reading your code won’t have to search all over the place
for the symbol’s definition.

5.6 Parameters

Chapter 5

Although many procedures are totally self-contained, most procedures
require some input data and return some data to the caller. Parameters are
values that you pass to and from a procedure. In straight assembly language,



passing parameters can be a real chore. Fortunately, HLA provides a high-
level-language-like syntax for procedure declarations and for procedure calls
involving parameters. This section presents HLA’s high-level parameter syntax.
Later sections in this chapter deal with the low-level mechanisms for passing
parameters in pure assembly code.

The first thing to consider when discussing parameters is ow we pass them
to a procedure. If you are familiar with Pascal or C/C++, you’ve probably
seen two ways to pass parameters: pass by value and pass by reference. HLA
certainly supports these two parameter-passing mechanisms. However, HLA
also supports pass by value/result, pass by result, pass by name, and pass by
lazy evaluation. Of course, HLA is assembly language, so it is possible to pass
parameters in HLA using any scheme you can dream up (atleast, any scheme
that is possible at all on the CPU). However, HLA provides special high-
level syntax for pass by value, reference, value/result, result, name, and lazy
evaluation.

Because pass by value/result, result, name, and lazy evaluation are
somewhat advanced, this book will not deal with those parameter-passing
mechanisms. If you’re interested in learning more about these parameter-
passing schemes, see the HLA reference manual or check out the electronic
versions of this text at http://webster.cs.ucr.edu/ or hitp://www.artofasm.com/.

Another concern you will face when dealing with parameters is whereyou
pass them. There are many different places to pass parameters; in this section
we’ll pass procedure parameters on the stack. You don’t really need to concern
yourself with the details because HLLA abstracts them away for you; however,
do keep in mind that procedure calls and procedure parameters make use of
the stack. Therefore, whatever you push on the stack immediately before a
procedure call is not going to be on the top of the stack upon entry into the
procedure.

5.6.1 Pass by Valve

A parameter passed by value is just that—the caller passes a value to the pro-
cedure. Pass-by-value parameters are input-only parameters. That is, you can
pass them to a procedure, but the procedure cannot return values through
them. Given the HLA procedure call

CallProc(I);

if you pass I by value, then CallProc does not change the value of I, regardless
of what happens to the parameter inside CallProc.

Because you must pass a copy of the data to the procedure, you should
use this method only for passing small objects like bytes, words, and double
words. Passing large arrays and records by value is very inefficient (because
you must create and pass a copy of the object to the procedure).

HLA, like Pascal and C/C++, passes parameters by value unless you specify
otherwise. The following is what a typical function looks like with a single
pass-by-value parameter.
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procedure PrintNSpaces( N:uns32 );
begin PrintNSpaces;

push( ecx );
mov( N, ecx );

repeat

stdout.put( ' ' ); // Print 1 of N spaces.
dec( ecx ); // Count off N spaces.

until( ecx = 0 );
pop( ecx );

end PrintNSpaces;

The parameter N in PrintNSpaces is known as a formal parameter. Anywhere
the name N appears in the body of the procedure, the program references the
value passed through N by the caller.

The calling sequence for PrintNSpaces can be any of the following:

PrintNSpaces( constant );
PrintNSpaces( reg32 );
PrintNSpaces( uns32_variable );

Here are some concrete examples of calls to PrintNSpaces:

PrintNSpaces( 40 );
PrintNSpaces( eax );
PrintNSpaces( SpacesToPrint );

The parameter in the calls to PrintNSpaces is known as an actual parameter.
In the examples above, 40, eax, and SpacesToPrint are the actual parameters.

Note that pass-by-value parameters behave exactly like local variables you
declare in the var section with the single exception that the procedure’s
caller initializes these local variables before it passes control to the procedure.

HLA uses positional parameter notation just as most high-level languages
do. Therefore, if you need to pass more than one parameter, HLA will
associate the actual parameters with the formal parameters by their position
in the parameter list. The following PrintNChars procedure demonstrates a
simple procedure that has two parameters:

procedure PrintNChars( N:uns32; c:char );
begin PrintNChars;

push( ecx );
mov( N, ecx );
repeat



stdout.put( c ); // Print 1 of N characters.
dec( ecx ); // Count off N characters.

until( ecx = 0 );
pop( ecx );

end PrintNChars;

The following is an invocation of the PrintNChars procedure that will
print 20 asterisk characters:

PrintNChars( 20, '*' );

Note that HLA uses semicolons to separate the formal parameters in the
procedure declaration, and it uses commas to separate the actual parameters
in the procedure invocation (Pascal programmers should be comfortable
with this notation). Also note that each HLA formal parameter declaration
takes the following form:

parameter_identifier : type identifier

In particular, note that the parameter type has to be an identifier. None
of the following are legal parameter declarations because the data type is not
a single identifier:

PtrVar: pointer to uns32

ArrayVar: uns32[10]

recordVar: record i:int32; u:uns32; endrecord
DynArray: array.dArray( uns32, 2 )

However, don’t get the impression that you cannot pass pointer, array,
record, or dynamic array variables as parameters. The trick is to declare a
data type for each of these types in the type section. Then you can use a
single identifier as the type in the parameter declaration. The following code
fragment demonstrates how to do this with the four data types above:

type
uPtr: pointer to uns32;
uArray10: uns32[10];
recType: record i:int32; u:uns32; endrecord
dType: array.dArray( uns32, 2 );

procedure FancyParms

(
Ptrvar: uPtr;
ArrayVar: uArrayio;
recordVar:recType;
DynArray: dType

)5

Procedures and Units 271



272

Chapter 5

begin FancyParms;

.

end FancyParms;

By default, HLA assumes that you intend to pass a parameter by value.
HLA also lets you explicitly state that a parameter is a value parameter by
prefacing the formal parameter declaration with the val keyword. The
following is a version of the PrintNSpaces procedure that explicitly states
that N is a pass-by-value parameter:

procedure PrintNSpaces( val N:uns32 );
begin PrintNSpaces;

push( ecx );
mov( N, ecx );

repeat

stdout.put( ' ' ); // Print 1 of N spaces.
dec( ecx ); // Count off N spaces.

until( ecx = 0 );
pop( ecx );

end PrintNSpaces;

Explicitly stating that a parameter is a pass-by-value parameter is a good
idea if you have multiple parameters in the same procedure declaration that
use different passing mechanisms.

When you pass a parameter by value and call the procedure using the
HLA high-level language syntax, HLA will automatically generate code that
will make a copy of the actual parameter’s value and copy this data into the
local storage for that parameter (that is, the formal parameter). For small
objects, pass by value is probably the most efficient way to pass a parameter.
For large objects, however, HLA must generate code that copies each and
every byte of the actual parameter into the formal parameter. For large
arrays and records, this can be a very expensive operation.® Unless you have
specific semantic concerns that require you to pass a large array or record by
value, you should use pass by reference or some other parameter-passing
mechanism for arrays and records.

When passing parameters to a procedure, HLA checks the type of each
actual parameter and compares this type to the corresponding formal param-
eter. If the types do not agree, HLA then checks to see if either the actual or
the formal parameter is a byte, word, or double-word object and the other
parameter is 1, 2, or 4 bytes in length (respectively). If the actual parameter
does not satisfy either of these conditions, HLA reports a parameter-type

%Note to C/C++ programmers: HLA does not automatically pass arrays by reference. If you
specify an array type as a formal parameter, HLA will emit code that makes a copy of each and
every byte of that array when you call the associated procedure.



mismatch error. If, for some reason, you need to pass a parameter to a proce-
dure using a different type than the procedure calls for, you can always use
the HLA type-coercion operator to override the type of the actual parameter.

5.6.2 Pass by Reference

To pass a parameter by reference, you must pass the address of a variable
rather than its value. In other words, you must pass a pointer to the data. The
procedure must dereference this pointer to access the data. Passing param-
eters by reference is useful when you must modify the actual parameter or
when you pass large data structures between procedures.

To declare a pass-by-reference parameter, you must preface the formal
parameter declaration with the var keyword. The following code fragment
demonstrates this:

procedure UsePassByReference( var PBRvar: int32 );
begin UsePassByReference;

end UsePassByReference;

Calling a procedure with a pass-by-reference parameter uses the same
syntax as pass by value except that the parameter has to be a memory location;
it cannot be a constant or a register. Furthermore, the type of the memory
location must exactly match the type of the formal parameter. The following
are legal calls to the procedure above (assuming i32 is an int32 variable):

UsePassByReference( i32 );
UsePassByReference( (type int32 [ebx] ) );

The following are all illegal UsePassbyReference invocations (assuming
charVar is of type char):

UsePassByReference( 40 ); // Constants are illegal.
UsePassByReference( EAX ); // Bare registers are illegal.
UsePassByReference( charVar ); // Actual parameter type must match

// the formal parameter type.

Unlike the high-level languages Pascal and C++, HLA does not completely
hide the fact that you are passing a pointer rather than a value. In a procedure
invocation, HLA will automatically compute the address of a variable and
pass that address to the procedure. Within the procedure itself, however, you
cannot treat the variable like a value parameter (as you could in most high-
level languages). Instead, you treat the parameter as a double-word variable
containing a pointer to the specified data. You must explicitly dereference
this pointer when accessing the parameter’s value. The example appearing
in Listing 5-8 provides a simple demonstration of this.
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program PassByRefDemo;
#include( "stdlib.hhf" );

var
i: int32;
j:  int32;

procedure pbr( var a:int32; var b:int32 );
const
aa: text := "(type int32 [ebx])";

bb: text := "(type int32 [ebx])";
begin pbr;
push( eax );
push( ebx ); // Need to use ebx to dereference a and b.
// a = -1;
mov( a, ebx ); // Get ptr to the "a" variable.
mov( -1, aa ); // Store -1 into the "a" parameter.
// b= -2;
mov( b, ebx ); // Get ptr to the "b" variable.
mov( -2, bb ); // Store -2 into the "b" parameter.

// Print the sum of a+b.
// Note that ebx currently contains a pointer to "b".

mov( bb, eax );
mov( a, ebx ); // Get ptr to "a" variable.
add( aa, eax );
stdout.put( "a+b=", (type int32 eax), nl );

end pbr;

begin PassByRefDemo;
// Give i and j some initial values so
// we can see that pass by reference will

// overwrite these values.

mov( 50, i );
mov( 25, j );

// Call pbr passing i and j by reference
pbr( i, j );

// Display the results returned by pbr.
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stdout.put
(

"= u’ i, nl,
ns

= gl
);

end PassByRefDemo;

Listing 5-8: Accessing pass-by-reference parameters

Passing parameters by reference can produce some peculiar results in
some rare circumstances. Consider the pbr procedure in Listing 5-8. Were you
to modify the call in the main program to be pbr(i,i) rather than pbr(i,j);,
the program would produce the following nonintuitive output:

a+b=-4
i= -2;
j= 25;

The reason this code displays a+b=-4 rather than the expected a+b=-3 is
because the pbr(i,i); call passes the same actual parameter for a and b. As a
result, the a and b reference parameters both contain a pointer to the same
memory location—that of the variable i. In this case, a and b are aliases of
one another. Therefore, when the code stores —2 at the location pointed at
by b, it overwrites the —1 stored earlier at the location pointed at by a. When
the program fetches the value pointed at by a and b to compute their sum,
both a and b point at the same value, which is —2. Summing -2 + -2 produces
the —4 result that the program displays. This nonintuitive behavior is possible
anytime you encounter aliases in a program. Passing the same variable as two
different reference parameters probably isn’t very common. But you could
also create an alias if a procedure references a global variable and you pass
that same global variable by reference to the procedure (this is a good example
of yet one more reason why you should avoid referencing global variables in
a procedure).

Pass by reference is usually less efficient than pass by value. You must
dereference all pass-by-reference parameters on each access; this is slower
than simply using a value because it typically requires at least two instructions.
However, when passing a large data structure, pass by reference is faster
because you do not have to copy the large data structure before calling the
procedure. Of course, you’d probably need to access elements of that large
data structure (for example, an array) using a pointer, so very little efficiency
is lost when you pass large arrays by reference.

5.7 Functions and Function Results

Functions are procedures that return some result to the caller. In assembly
language, there are very few syntactical differences between a procedure and
a function, which is why HLA doesn’t provide a specific declaration for a
function. Nevertheless, although there is very little syntactical difference
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between assembly procedures and functions, there are some semantic differ-
ences. That is, although you can declare them the same way in HLA, you use
them differently.

Procedures are a sequence of machine instructions that fulfill some task.
The end result of the execution of a procedure is the accomplishment of
that activity. Functions, on the other hand, execute a sequence of machine
instructions specifically to compute some value to return to the caller. Of
course, a function can perform some activity as well and procedures can
undoubtedly compute some values, but the main difference is that the purpose
of a function is to return some computed result; procedures don’t have this
requirement.

A good example of a procedure is the stdout.puti32 procedure. This
procedure requires a single int32 parameter. The purpose of this procedure
is to print the decimal conversion of this integer value to the standard output
device. Note that stdout.puti32 doesn’t return any kind of value that is usable
by the calling program.

A good example of a function is the cs.member function. This function
expects two parameters: The first is a character value and the second is a
character set value. This function returns true (1) in EAX if the character is
a member of the specified character set. It returns false if the character param-
eter is not a member of the character set.

Logically, the fact that cs.member returns a usable value to the calling
code (in EAX) while stdout.puti32 does not is a good example of the main
difference between a function and a procedure. So, in general, a procedure
becomes a function by virtue of the fact that you explicitly decide to return
a value somewhere upon procedure return. No special syntax is needed to
declare and use a function. You still write the code as a procedure.

5.7.1 Returning Function Results

The 80x86’s registers are the most common place to return function
results. The cs.member routine in the HLA Standard Library is a good example
of a function that returns a value in one of the CPU’s registers. It returns
true (1) or false (0) in the EAX register. By convention, programmers try to
return 8-, 16-, and 32-bit (nonreal) results in the AL, AX, and EAX registers,
respectively.” This is where most high-level languages return these types of
results.

Of course, there is nothing particularly sacred about the AL/AX/EAX
register. You could return function results in any register if it is more conve-
nient to do so. However, if you don’t have a good reason for not using AL/
AX/EAX, then you should follow the convention. Doing so will help others
understand your code better because they will generally assume that your
functions return small results in the AL/AX/EAX register set.

If you need to return a function result that is larger than 32 bits, you
obviously must return it somewhere other than in EAX (which can hold only
32-bit values). For values slightly larger than 32 bits (e.g., 64 bits or maybe even

"In Chapter 6 you'll see where most programmers return real results.



as many as 128 bits), you can split the result into pieces and return those parts
in two or more registers. It is common to see programs returning 64-bit
values in the EDX:EAX register pair (for example, the HLA Standard Library
stdin.geti64 function returns a 64-bit integer in the EDX:EAX register pair).

If you need to return a large object as a function result, say an array of
1,000 elements, you obviously are not going to be able to return the function
result in the registers. There are two common ways to deal with large function
return results: Either pass the return value as a reference parameter or allocate
storage on the heap (using mem.alloc) for the object and return a pointer to
it in a 32-bit register. Of course, if you return a pointer to storage you’'ve
allocated on the heap, the calling program must free this storage when it has
finished with it.

5.7.2 Instruction Composition in HLA

Several HLA Standard Library functions allow you to call them as operands
of other instructions. For example, consider the following code fragment:

if( cs.member( al, {'a'..'z'}) ) then

endif;

As your high-level language experience (and HLA experience) should
suggest, this code calls the cs.member function to check to see if the character
in AL is a lowercase alphabetic character. If the cs.member function returns
true, then this code fragment executes the then section of the if statement;
however, if cs.member returns false, this code fragment skips the if..then body.
There is nothing spectacular here except for the fact that HLA doesn’t sup-
port function calls as boolean expressions in the if statement (look back at
Chapter 1 to see the complete set of allowable expressions). How then, does
this program compile and run, producing the intuitive results?

The next section describes how you can tell HLA that you want to use a
function call in a boolean expression. However, to understand how this works,
you need to first learn about instruction composition in HLA.

Instruction composition lets you use one instruction as the operand of
another. For example, consider the mov instruction. It has two operands: a
source operand and a destination operand. Instruction composition lets you
substitute a valid 80x86 machine instruction for either (or both) operands.
The following is a simple example:

mov( mov( 0, eax ), ebx );

Of course, the immediate question is, “What does this mean?” To under-
stand what is going on, you must first realize that most instructions “return” a
value to the compiler while they are being compiled. For most instructions,
the value they “return” is their destination operand. Therefore, mov( 0, eax );
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returns the string eax to the compiler during compilation because EAX is
the destination operand. Most of the time, specifically when an instruction
appears on a line by itself, the compiler ignores the returned string result.
However, HLA uses this string result whenever you supply an instruction
in place of some operand; specifically, HLA uses that string as the operand in
place of the instruction. Therefore, the mov instruction above is equivalent to
the following two-instruction sequence:

mov( 0, eax ); // HLA compiles interior instructions first.
mov( eax, ebx );  // HLA substituted "eax" for "mov( 0, eax )"

When processing composed instructions (that is, instruction sequences
that have other instructions as operands), HLA always works in a “left-to-right
then depth-first (inside-out)” manner. To make sense of this, consider the
following instructions:

add( sub( mov( i, eax ), mov( j, ebx )), mov( k, ecx ));

To interpret what is happening here, begin with the source operand. It
consists of the following:

sub( mov( i, eax ), mov( j, ebx ))

The source operand for this instruction is mov( i, eax ) and this instruc-
tion does not have any composition, so HLA emits this instruction and returns
its destination operand (eax) for use as the source to the sub instruction. This
effectively gives us the following:

sub( eax, mov( j, ebx ))

Now HLA compiles the instruction that appears as the destination oper-
and (mov( j, ebx )) and returns its destination operand (ebx) to substitute for
this mov in the sub instruction. This yields the following:

sub( eax, ebx )

This is a complete instruction, without composition, that HLA can
compile. So it compiles this instruction and returns its destination operand
(ebx) as the string result to substitute for the sub in the original add instruction.
So the original add instruction now becomes

add( ebx, mov( k, ecx ));

HLA next compiles the mov instruction appearing in the destination
operand. It returns its destination operand as a string that HLA substitutes
for the mov, finally yielding the simple instruction

add( ebx, ecx );




The compilation of the original add instruction, therefore, yields the
following instruction sequence:

mov( i, eax );
mov( j, ebx );
sub( eax, ebx );
mov( k, ecx );
add( ebx, ecx );

Whew! It’s rather difficult to look at the original instruction and easily
see that this sequence is the result. As you can see in this example, overzealous
use of instruction composition can produce nearly unreadable programs. You should
be very careful about using instruction composition in your programs. With
only a few exceptions, writing a composed instruction sequence makes your
program harder to read.

Note that the excessive use of instruction composition may make errors
in your program difficult to decipher. Consider the following HLA statement:

add( mov( eax, i ), mov( ebx, j ) );

This instruction composition yields the following 80x86 instruction
sequence:

mov( eax, i );
mov( ebx, j );
add( i, j );

Of course, the compiler will complain that you’re attempting to add one
memory location to another. However, the instruction composition effectively
masks this fact and makes it difficult to comprehend the cause of the error
message. Moral of the story: Avoid using instruction composition unless it
really makes your program easier to read. The few examples in this section
demonstrate how not to use instruction composition.

There are two main areas where using instruction composition can help
make your programs more readable. The first is in HLA’s high-level language
control structures. The other is in procedure parameters. Although instruction
composition is useful in these two cases (and probably a few others as well),
this doesn’t give you a license to use extremely convoluted instructions like
the add instruction in the previous example. Instead, most of the time you will
use a single instruction or a function call in place of a single operand in a high-
level language boolean expression or in a procedure/function parameter.

While we’re on the subject, exactly what does a procedure call return as
the string that HLA substitutes for the call in an instruction composition?
For that matter, what do statements like if..endif return? How about instruc-
tions that don’t have a destination operand? Well, function return results are
the subject of the next section, so you’ll read about that in a few moments. As for
all the other statements and instructions, you should check out the HLA refer-
ence manual. Itlists each instruction and its returns value. The returns value is
the string that HLA will substitute for the instruction when it appears as the
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operand to another instruction. Note that many HLA statements and instruc-
tions return the empty string as their returns value (by default, so do proce-
dure calls). If an instruction returns the empty string as its composition
value, then HLA will report an error if you attempt to use it as the operand of
another instruction. For example, the if..then..endif statement returns the
empty string as its returns value, so you may not bury an if..then..endif
inside another instruction.

5.7.3 The HLA @returns Option in Procedures

HILA procedure declarations allow a special option that specifies the string to
use when a procedure invocation appears as the operand of another instruc-
tion: the @returns option. The syntax for a procedure declaration with the
@returns option is as follows:

procedure ProcName ( optional parameters ); @returns( string constant );
<< Local declarations >>

begin ProcName;
<< Procedure statements >>

end ProcName;

If the @returns option is not present, HLA assigns the empty string to the
@returns value for the procedure. This effectively makes it illegal to use that
procedure invocation as the operand to another instruction.

The @returns option requires a single-string expression surrounded by
parentheses. HLA will substitute this string constant for the procedure call if
it ever appears as the operand of another instruction. Typically this string
constant is a register name; however, any text that would be legal as an
instruction operand is okay here. For example, you could specify memory
addresses or constants. For purposes of clarity, you should always specify the
location of a function’s return value in the @returns parameter.

As an example, consider the following boolean function that returns true
or false in the EAX register if the single-character parameter is an alphabetic
character:®

procedure IsAlphabeticChar( c:char ); @returns( "EAX" );
begin IsAlphabeticChar;

// Note that cs.member returns true/false in eax.
cs.member( ¢, {'a'..'z", 'A'..'Z'} );

end IsAlphabeticChar;

8 Before you run off and actually use this function in your own programs, note that the HLA
Standard Library provides the char.isAlpha function that provides this test. See the HLA
documentation for more details.



Once you tack the @returns option on the end of this procedure decla-
ration, you can legally use a call to IsAlphabeticChar as an operand to other
HILA statements and instructions:

mov( IsAlphabeticChar( al ), ebx );
if( IsAlphabeticChar( ch ) ) then

endif;

The last example above demonstrates that, via the @returns option, you
can embed calls to your own functions in the boolean expression field of
various HLA statements. Note that the code above is equivalent to:

IsAlphabeticChar( ch );
if( eax ) then

endif;

Not all HLA high-level language statements expand composed instructions
before the statement. For example, consider the following while statement:

while( IsAlphabeticChar( ch ) ) do

endwhile;

This code does not expand to the following:

IsAlphabeticChar( ch );
while( eax ) do

endwhile;

Instead, the call to IsAlphabeticChar expands inside the while’s boolean
expression so that the program calls this function on each iteration of
the loop.
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You should exercise caution when entering the @returns parameter. HLA
does not check the syntax of the string parameter when it is compiling the
procedure declaration (other than to verify that it is a string constant).
Instead, HLA checks the syntax when it replaces the function call with the
@returns string. So if you had specified eaz instead of eax as the @returns
parameter for IsAlphabeticChar in the previous examples, HLA would not
have reported an error until you actually used IsAlphabeticChar as an operand.
Then of course, HLA would complain about the illegal operand, and it’s not
at all clear what the problem is by looking at the IsAlphabeticChar invoca-
tion. So take special care not to introduce typographical errors into the
@returns string; figuring out such errors later can be very difficult.

5.8 Recursion

Chapter 5

Recursion occurs when a procedure calls itself. The following, for example, is
a recursive procedure:

procedure Recursive;
begin Recursive;

Recursive();

end Recursive;

Of course, the CPU will never return from this procedure. Upon entry
into Recursive, this procedure will immediately call itself again, and control
will never pass to the end of the procedure. In this particular case, runaway
recursion results in an infinite loop.”

Like a looping structure, recursion requires a termination condition in
order to stop infinite recursion. Recursive could be rewritten with a termina-
tion condition as follows:

procedure Recursive;
begin Recursive;

dec( eax );
if( @nz ) then

Recursive();
endif;

end Recursive;

9Well, not really infinite. The stack will overflow and Windows, Mac OS X, FreeBSD, or Linux
will raise an exception at that point.



This modification to the routine causes Recursive to call itself the number
of times appearing in the EAX register. On each call, Recursive decrements
the EAX register by 1 and then calls itself again. Eventually, Recursive decre-
ments EAX to 0 and returns from each call until it returns to the original
caller.

So far, however, there hasn’t been a real need for recursion. After all,
you could efficiently code this procedure as follows:

procedure Recursive;
begin Recursive;

repeat
dec( eax );
until( @z );

end Recursive;

Both examples would repeat the body of the procedure the number of
times passed in the EAX register.'” As it turns out, there are only a few recur-
sive algorithms that you cannot implement in an iterative fashion. However,
many recursively implemented algorithms are more efficient than their itera-
tive counterparts, and most of the time the recursive form of the algorithm is
much easier to understand.

The quicksort algorithm is probably the most famous algorithm that
usually appears in recursive form. An HLA implementation of this algorithm
appears in Listing 5-9.

program QSDemo;
#include( "stdlib.hhf" );

type
ArrayType: uns32[ 10 ];

static
theArray:  ArrayType := [1,10,2,9,3,8,4,7,5,6];

procedure quicksort( var a:ArrayType; Low:int32; High:int32 );

const
i: text := "(type int32 edi)";
j: text := "(type int32 esi)";

Middle: text := "(type uns32 edx)";
ary: text := "[ebx]";

begin quicksort;

19 The latter version will do it considerably faster because it doesn’t have the overhead of the
call/ret instructions.
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push( eax );
push( ebx );
push( ecx );
push( edx );
push( esi );
push( edi );

mov( a, ebx ); // Load BASE address of "a" into ebx.

mov( Low, edi); // i := Low;
mov( High, esi ); // j := High;

// Compute a pivotal element by selecting the
// physical middle element of the array.

mov( i, eax );
add( j, eax );
shr( 1, eax );
mov( ary[eax*4], Middle ); // Put middle value in edx.

// Repeat until the edi and esi indexes cross one
// another (edi works from the start towards the end
// of the array, esi works from the end towards the
// start of the array).
repeat
// Scan from the start of the array forward
// looking for the first element greater or equal
// to the middle element).
while( Middle > ary[i*4] ) do
inc( i );
endwhile;
// Scan from the end of the array backwards looking
// for the first element that is less than or equal
// to the middle element.
while( Middle < ary[j*4] ) do
dec( j );
endwhile;
// If we've stopped before the two pointers have
// passed over one another, then we've got two
// elements that are out of order with respect

// to the middle element, so swap these two elements.

if( i <= j ) then



mov( ary[i*4], eax );
mov( ary[j*4], ecx );
mov( eax, ary[§*4] );
mov( ecx, ary[i*4] );
inc( i );
dec( j );

endif;

until( i > j );

//
//
//
//
//
//
//
//
//
//
//
//

We have just placed all elements in the array in

their correct positions with respect to the middle
element of the array. So all elements at indexes
greater than the middle element are also numerically
greater than this element. Likewise, elements at
indexes less than the middle (pivotal) element are

now less than that element. Unfortunately, the

two halves of the array on either side of the pivotal
element are not yet sorted. Call quicksort recursively
to sort these two halves if they have more than one
element in them (if they have zero or one elements, then
they are already sorted).

if( Low < j ) then

quicksort( a, Low, j );

endif;
if( i < High ) then

quicksort(

a, i, High );

endif;

pop( edi );
pop( esi );
pop( edx );
pop( ecx );
pop( ebx );
pop( eax );

end quicksort;

begin QSDemo;

stdout.

put( "Data before sorting: " nl );

for( mov( 0, ebx ); ebx < 10; inc( ebx )) do

stdout.put( theArray[ebx*4]:5 );

endfor;
stdout.

newln();
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quicksort( theArray, 0, 9 );

stdout.put( "Data after sorting: " nl );
for( mov( 0, ebx ); ebx < 10; inc( ebx )) do

stdout.put( theArray[ebx*4]:5 );

endfor;
stdout.newln();

end QSDemo;

Listing 5-9: Recursive quicksort program

Note that this quicksort procedure uses registers for all nonparameter
local variables. Also note how quicksort uses text constant definitions to
provide more readable names for the registers. This technique can often
make an algorithm easier to read; however, one must take care when using
this trick not to forget that those registers are being used.

5.9 Forward Procedures

Chapter 5

As a general rule, HLA requires that you declare all symbols before their first
use in a program.'! Therefore, you must define all procedures before their
first call. There are two reasons this isn’t always practical: mutual recursion
(two procedures call each other) and source code organization (you prefer
to place a procedure in your code after the point where you’ve first called it).
Fortunately, HLA lets you use a forward procedure definition to declare a proce-
dure prototype. Forward declarations let you define a procedure before you
actually supply the code for that procedure.

A forward procedure declaration is a familiar procedure declaration that
uses the reserved word forward in place of the procedure’s declaration section
and body. The following is a forward declaration for the quicksort procedure
appearing in the last section:

procedure quicksort( var a:ArrayType; Low:int32; High:int32 ); forward;

A forward declaration in an HLA program is a promise to the compiler
that the actual procedure declaration will appear, exactly as stated in the for-
ward declaration, at a later point in the source code.'* The forward declara-
tion must have the same parameters, they must be passed the same way, and
they must all have the same types as the formal parameters in the procedure.

Routines that are mutually recursive (that is, procedure A calls procedure B
and procedure B calls procedure A) require at least one forward declaration,
because you may declare only one of procedure A or B before the other. In
practice, however, mutual recursion (direct or indirect) doesn’t occur very
frequently, so you'll rarely forward declarations for this purpose.

"I There are a few minor exceptions to this rule, but it is certainly true for procedure calls.

'2 Actually, exactly is too strong a word. You will see some exceptions in 2 moment.



In the absence of mutual recursion, it is always possible to organize your
source code so that each procedure declaration appears before its first invoca-
tion. What'’s possible and what’s desired are two different things, however. You
might want to group a related set of procedures at the beginning of your
source code and a different set of procedures toward the end of your source
code. This logical grouping, by function rather than by invocation, may make
your programs much easier to read and understand. However, this organiza-
tion may also yield code that attempts to call a procedure before its declaration.
No sweat; just use a forward procedure definition to resolve the problem.

One major difference between the forward definition and the actual pro-
cedure declaration has to do with the procedure options. Some options, like
@returns, may appear only in the forward declaration (if a forward declaration
is present). Other options may appear only in the actual procedure declara-
tion (we haven’t covered any of the other procedure options, so don’t worry
about them just yet). If your procedure requires an @returns option, the
@returns option must appear before the forward reserved word. For example:

procedure IsItReady( valueToTest: dword ); @returns( "eax" ); forward;

The @returns option must not also appear in the actual procedure
declaration later in your source file.

5.10 HLA v2.0 Procedure Declarations

HLA v2.0 and later support an alternate procedure declaration syntax that is
similar to constant, type, and variable declarations. Though this book tends
to prefer the original procedure declaration syntax (which HLA v2.0 and
later still support), you will see examples of the new syntax in code that exists
out in the real world; therefore, this section provides a brief discussion of the
new procedure declaration syntax.

The new HLA v2.0 procedure declaration syntax uses the proc keyword to
begin a procedure declaration section (similar to var or static beginning a
variable declaration section). Within a proc section, procedure declarations
take one of these forms:

procname:procedure( parameters );
begin procname;
<< body >>
end procname;
procname :procedure( parameters ) {options};
begin procname;
<< body >>
end procname;
procname :procedure( parameters ); external;
procname :procedure( parameters ) { options }; external;
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Please see the HLLA v2.0 (or later) reference manual for more details
concerning this alternate procedure declaration syntax. Just be aware of its
existence in case you come across it while reading example HLA code you've
gotten from some other source.

Low-Level Procedures and the call Instruction

The 80x86 call instruction does two things. First, it pushes the address of the
instruction immediately following the call onto the stack; then it transfers
control to the address of the specified procedure. The value that call pushes
onto the stack is known as the return address. When the procedure wants to
return to the caller and continue execution with the first statement following
the call instruction, the procedure simply pops the return address off the
stack and jumps (indirectly) to that address. Most procedures return to their
caller by executing a ret (return) instruction. The ret instruction pops a
return address off the stack and transfers control indirectly to the address it
pops off the stack.

By default, the HLA compiler automatically places a ret instruction
(along with a few other instructions) at the end of each HLA procedure you
write. This is why you haven’t had to explicitly use the ret instruction up to
this point. To disable the default code generation in an HLA procedure,
specify the following options when declaring your procedures:

procedure ProcName; @noframe; @nodisplay;
begin ProcName;

end ProcName;

The @noframe and @nodisplay clauses are examples of procedure options.
HLA procedures support several such options, including @returns, @oframe,
@nodisplay, and @noalignstack. You’ll see the purpose of @noalignstack and a
couple of other procedure options in Section 5.14. These procedure options
may appear in any order following the procedure name (and parameters, if
any). Note that @noframe and @nodisplay (as well as @noalignstack) may appear
only in an actual procedure declaration. You cannot specify these options in
a forward declaration.

The @noframe option tells HLA that you don’t want the compiler to
automatically generate entry and exit code for the procedure. This tells HLA
not to automatically generate the ret instruction (along with several other
instructions).



The @nodisplay option tells HLA that it should not allocate storage in
procedure’s local variable area for a display. The display is a mechanism
you use to access nonlocal var objects in a procedure. Therefore, a display
is necessary only if you nest procedures in your programs. This book will not
consider the display or nested procedures; for more details on the display
and nested procedures see the appropriate chapter in the electronic edition
appearing at http://www.artofasm.com/ or hitp://webster.cs.ucr.edu/, or check
out the HLA reference manual. Until then, you can safely specify the
@nodisplay option on all your procedures. Indeed, for all of the procedures
appearing in this chapter up to this point, specifying the @nodisplay option
makes a lot of sense because none of those procedures actually use the display.
Procedures that have the @nodisplay option are a tiny bit faster and a tiny bit
shorter than those procedures that do not specify this option.

The following is an example of the minimal procedure:

procedure minimal; @nodisplay; @noframe; @noalignstack;
begin minimal;

ret();

end minimal;

If you call this procedure with the call instruction, minimal will simply
pop the return address off the stack and return back to the caller. You should
note that a ret instruction is absolutely necessary when you specify the @noframe
procedure option.'® If you fail to put the ret instruction in the procedure,
the program will not return to the caller upon encountering the end minimal;
statement. Instead, the program will fall through to whatever code happens
to follow the procedure in memory. The example program in Listing 5-10
demonstrates this problem.

program missingRET;
#include( "stdlib.hhf" );

// This first procedure has the @noframe
// option but does not have a ret instruction.

procedure firstProc; @noframe; @nodisplay;
begin firstProc;

stdout.put( "Inside firstProc" nl );

end firstProc;

'3 Strictly speaking, this isn’t true. But some mechanism that pops the return address off the
stack and jumps to the return address is necessary in the procedure’s body.
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// Because the procedure above does not have a
// ret instruction, it will "fall through" to
// the following instruction. Note that there
// is no call to this procedure anywhere in
// this program.

procedure secondProc; @noframe; @nodisplay;
begin secondProc;

stdout.put( "Inside secondProc" nl );
ret();

end secondProc;

begin missingRET;

// Call the procedure that doesn't have
// a ret instruction.

call firstProc;

end missingRET;

Listing 5-10: Effect of a missing ret instruction in a procedure

Although this behavior might be desirable in certain rare circumstances,
it usually represents a defect in most programs. Therefore, if you specify the
@noframe option, always remember to explicitly return from the procedure
using the ret instruction.

5.12 Procedures and the Stack

Chapter 5

Because procedures use the stack to hold the return address, you must exer-
cise caution when pushing and popping data within a procedure. Consider
the following simple (and defective) procedure:

procedure MessedUp; @noframe; @nodisplay;
begin MessedUp;

push( eax );
ret();

end MessedUp;

At the point the program encounters the ret instruction, the 80x86 stack
takes the form shown in Figure 5-1.



NOTE

Previous
— Stack —
Contents

Return Address

Saved EAX

Valuve ESP

Figure 5-1: Stack contents before ret in
MessedUp procedure

The ret instruction isn’t aware that the value on the top of stack is not a
valid address. It simply pops whatever value is on the top of the stack and
jumps to that location. In this example, the top of stack contains the saved
EAX value. Because it is very unlikely that EAX contains the proper return
address (indeed, there is about a one in four billion chance it is correct),
this program will probably crash or exhibit some other undefined behavior.
Therefore, you must take care when pushing data onto the stack within a pro-
cedure that you properly pop that data prior to returning from the procedure.

If you do not specify the @noframe option when writing a procedure, HLA automatically
generates code at the beginning of the procedure that pushes some data onto the stack.
Therefore, unless you understand exactly what is going on and you've taken care of this
data HLA pushes on the stack, you should never execute the bare ret instruction inside
a procedure that does not have the @noframe option. Doing so will attempt to return to
the location specified by this data (which is not a return address) rather than properly
returning to the caller. In procedures that do not have the @noframe option, use the exit
orexitif statement to return from the procedure.

Popping extra data off the stack prior to executing the ret statement
can also create havoc in your programs. Consider the following defective
procedure:

procedure messedUpToo; @noframe; @nodisplay;
begin messedUpToo;

pop( eax );
ret();

end messedUpToo;
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Upon reaching the ret instruction in this procedure, the 80x86 stack looks
something like that shown in Figure 5-2.

Previous
——  Stack —
Contents ESP
EAX
Return Address » Return Address

Figure 5-2: Stack contents before ret in messedUpToo

Once again, the ret instruction blindly pops whatever data happens to be
on the top of the stack and attempts to return to that address. Unlike the
previous example, where it was very unlikely that the top of stack contained a
valid return address (because it contained the value in EAX), there is a small
possibility that the top of stack in this example actually does contain a return
address. However, this will not be the proper return address for the messedUpToo
procedure; instead, it will be the return address for the procedure that called
messedUpToo. To understand the effect of this code, consider the program in
Listing 5-11.

program extraPop;
#include( "stdlib.hhf" );

// Note that the following procedure pops
// excess data off the stack (in this case,
// it pops messedUpToo's return address).

procedure messedUpToo; @noframe; @nodisplay;
begin messedUpToo;

stdout.put( "Entered messedUpToo" nl );
pop( eax );
ret();

end messedUpToo;

procedure callsMU2; @noframe; @nodisplay;
begin callsMu2;

stdout.put( "calling messedUpToo" nl );
messedUpToo();



// Because messedUpToo pops extra data

// off the stack, the following code

// never executes (because the data popped
// off the stack is the return address that
// points at the following code).

stdout.put( "Returned from messedUpToo" nl );
ret();

end callsMU2;

begin extraPop;
stdout.put( "Calling callsMu2" nl );
callsMuz();
stdout.put( "Returned from callsMu2" nl );

end extraPop;

Listing 5-11: Effect of popping too much data off the stack

Because a valid return address is sitting on the top of the stack, you might
think that this program will actually work (properly). However, note that
when returning from the messedUpToo procedure, this code returns directly to
the main program rather than to the proper return address in the callsMu2
procedure. Therefore, all code in the callsMu2 procedure that follows the call
to messedUpToo does not execute. When reading the source code, it may be
very difficult to figure out why those statements are not executing because
they immediately follow the call to the messedUpToo procedure. It isn’t clear,
unless you look very closely, that the program is popping an extra return
address off the stack and therefore doesn’t return to callsMu2 but rather
returns directly to whoever calls callsMu2. Of course, in this example it’s fairly
easy to see what is going on (because this example is a demonstration of this
problem). In real programs, however, determining that a procedure has
accidentally popped too much data off the stack can be much more difficult.
Therefore, you should always be careful about pushing and popping data in
a procedure. You should always verify that there is a one-to-one relationship
between the pushes in your procedures and the corresponding pops.

5.13 Activation Records

Whenever you call a procedure, there is certain information the program
associates with that procedure call. The return address is a good example
of some information the program maintains for a specific procedure call.
Parameters and automatic local variables (that is, those you declare in the var
section) are additional examples of information the program maintains for
each procedure call. Activation record is the term we’ll use to describe the
information the program associates with a specific call to a procedure.'*

' Stack frameis another term many people use to describe the activation record.
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Activation record is an appropriate name for this data structure. The
program creates an activation record when calling (activating) a procedure
and the data in the structure is organized in a manner identical to records.
Perhaps the only thing unusual about an activation record (when comparing
it to a standard record) is that the base address of the record is in the middle
of the data structure, so you must access fields of the record at positive and
negative offsets.

Construction of an activation record begins in the code that calls a
procedure. The caller pushes the parameter data (if any) onto the stack.
Then the execution of the call instruction pushes the return address onto the
stack. At this point, construction of the activation record continues within the
procedure itself. The procedure pushes registers and other important state
information and then makes room in the activation record for local variables.
The procedure must also update the EBP register so that it points at the base
address of the activation record.

To see what a typical activation record looks like, consider the following
HLA procedure declaration:

procedure ARDemo( i:uns32; j:int32; k:dword ); @nodisplay;
var

a:int32;
r:real32;
c:char;
b:boolean;
w:word;
begin ARDemo;

end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it begins by
pushing the data for the parameters onto the stack. The calling code will
push the parameters onto the stack in the order they appear in the parameter
list, from left to right. Therefore, the calling code first pushes the value
for the i parameter, then it pushes the value for the j parameter, and it
finally pushes the data for the k parameter. After pushing the parameters,
the program calls the ARDemo procedure. Immediately upon entry into the
ARDemo procedure, the stack contains these four items arranged as shown in
Figure 5-3.

The first few instructions in ARDemo (note that it does not have the @noframe
option) will push the current value of EBP onto the stack and then copy the
value of ESP into EBP. Next, the code drops the stack pointer down in memory
to make room for the local variables. This produces the stack organization
shown in Figure 5-4.



Previous
Stack Contents

i’s Value

j's Value

k’s Value

Return Address l«—— ESP

Figure 5-3: Stack organization immediately
upon entry into ARDemo

Previous
Stack Contents

i’s Value

j's Value

k’s Value

Return Address

Old EBP Value |-—— EBP

= onNn H

ESP

Figure 5-4: Activation record for ARDemo

To access objects in the activation record you must use offsets from the
EBP register to the desired object. The two items of immediate interest to
you are the parameters and the local variables. You can access the parameters
at positive offsets from the EBP register; you can access the local variables at
negative offsets from the EBP register, as Figure 5-5 shows.

Intel specifically reserves the EBP (Extended Base Pointer) register for
use as a pointer to the base of the activation record. This is why you should
never use the EBP register for general calculations. If you arbitrarily change
the value in the EBP register, you will lose access to the current procedure’s
parameters and local variables.
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) Offset
Previous from
Stack Contents EBP
i’s Value +16
j's Value +12
k’s Value +8
Return Address +4
Old EBP Value +0 ~—EBP
a -4
r -8
c -9
b -10
W -12

Figure 5-5: Offsets of objects in the ARDemo
activation record

5.14 The Standard Entry Sequence

WARNING

Chapter 5

The caller of a procedure is responsible for pushing the parameters onto the
stack. Of course, the call instruction pushes the return address onto the stack. It
is the procedure’s responsibility to construct the rest of the activation record.
You can accomplish this by using the following “standard entry sequence” code:

push( ebp ); // Save a copy of the old ebp value.
mov( esp, ebp ); // Get pointer to base of activation record into ebp.
sub( NumVars, esp ); // Allocate storage for local variables.

If the procedure doesn’t have any local variables, the third instruction
above, sub( NumVars, esp );, isn’t necessary. NumVars represents the number of
bytes of local variables needed by the procedure. This is a constant that should
be a multiple of 4 (so the ESP register remains aligned on a double-word
boundary). If the number of bytes of local variables in the procedure is not a
multiple of 4, you should round the value up to the next higher multiple of 4
before subtracting this constant from ESP. Doing so will slightly increase the
amount of storage the procedure uses for local variables but will not otherwise
affect the operation of the procedure.

If the NumVars constant is not a multiple of 4, subtracting this value from ESP (which,
presumably, contains a double-word-aligned pointer) will virtually guarantee that all
Juture stack accesses are misaligned because the program almost always pushes and
pops double-word values. This will have a very negative performance impact on the
program. Worse still, many OS API calls will fail if the stack is not double-word aligned
upon entry into the operating system. Therefore, you must always ensure that your local
variable allocation value is a multiple of 4.



Because of the problems with a misaligned stack, by default HLA will also
emit a fourth instruction as part of the standard entry sequence. The HLA
compiler actually emits the following standard entry sequence for the ARDemo
procedure defined earlier:

push( ebp );

mov( esp, ebp );

sub( 12, esp ); // Make room for ARDemo's local variables.
and( $FFFF_FFFC, esp ); // Force dword stack alignment.

The and instruction at the end of this sequence forces the stack to be
aligned on a 4-byte boundary (it reduces the value in the stack pointer by 1, 2, or
3 if the value in ESP is not a multiple of 4). Although the ARDemo entry code
correctly subtracts 12 from ESP for the local variables (12 is both a multiple
of 4 and the number of bytes of local variables), this leaves ESP double-word
aligned only if it was double-word aligned immediately upon entry into the
procedure. Had the caller messed with the stack and left ESP containing a
value that was not a multiple of 4, subtracting 12 from ESP would leave ESP
containing an unaligned value. The and instruction in the sequence above,
however, guarantees that ESP is dword aligned regardless of ESP’s value upon
entry into the procedure. The few bytes and CPU cycles needed to execute
this instruction would pay off handsomely if ESP was not double-word aligned.

Although it is always safe to execute the and instruction in the standard
entry sequence, it might not be necessary. If you always ensure that ESP
contains a double-word-aligned value, the and instruction in the standard
entry sequence above is unnecessary. Therefore, if you’ve specified the
@noframe procedure option, you don’t have to include that instruction as
part of the entry sequence.

If you haven’t specified the @noframe option (that is, you're letting HLA
emit the instructions to construct the standard entry sequence for you), you
can still tell HLA not to emit the extra and instruction if you’re sure the stack
will be double-word aligned whenever someone calls the procedure. To do
this, use the @noalignstack procedure option. For example:

procedure NASDemo( i:uns32; j:int32; k:dword ); @noalignstack;
var

LocalVar:int32;
begin NASDemo;

end NASDemo;

HLA emits the following entry sequence for the procedure above:

push( ebp );
mov( esp, ebp );
sub( 4, esp );
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5.15 The Standard Exit Sequence
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Before a procedure returns to its caller, it needs to clean up the activation
record. Although it is possible to share the cleanup duties between the pro-
cedure and the procedure’s caller, Intel has included some features in the
instruction set that allows the procedure to efficiently handle all the cleanup
chores itself. Standard HLA procedures and procedure calls, therefore,
assume that it is the procedure’s responsibility to clean up the activation
record (including the parameters) when the procedure returns to its caller.

If a procedure does not have any parameters, the exit sequence is very
simple. It requires only three instructions:

mov( ebp, esp ); // Deallocate locals and clean up stack.
pop( ebp ); // Restore pointer to caller's activation record.
ret(); // Return to the caller.

If the procedure has some parameters, then a slight modification to the
standard exit sequence is necessary in order to remove the parameter data
from the stack. Procedures with parameters use the following standard exit
sequence:

mov( ebp, esp ); // Deallocate locals and clean up stack.
pop( ebp ); // Restore pointer to caller's activation record.
ret( ParmBytes ); // Return to the caller and pop the parameters.

The ParmBytes operand of the ret instruction is a constant that specifies
the number of bytes of parameter data to remove from the stack after the
return instruction pops the return address. For example, the ARDemo example
code in the previous sections has three double-word parameters. Therefore,
the standard exit sequence would take the following form:

mov( ebp, esp );

pop( ebp );
ret( 12 );

If you’ve declared your parameters using HLA syntax (thatis, a parameter
list follows the procedure declaration), then HLA automatically creates a local
constant in the procedure, _parms_, that is equal to the number of bytes of
parameters in that procedure. Therefore, rather than counting the number
of parameter bytes yourself, you can use the following standard exit sequence
for any procedure that has parameters:

mov( ebp, esp );

pop( ebp );
ret( _parms_ );

Note that if you do not specify a byte constant operand to the ret
instruction, the 80x86 will not pop the parameters off the stack upon return.
Those parameters will still be sitting on the stack when you execute the first



instruction following the call to the procedure. Similarly, if you specify a
value that is too small, some of the parameters will be left on the stack upon
return from the procedure. If the ret operand you specify is too large, the ret
instruction will actually pop some of the caller’s data off the stack, usually
with disastrous consequences.

If you wish to return early from a procedure that doesn’t have the @noframe
option, and you don’t particularly want to use the exit or exitif statement,
you must execute the standard exit sequence to return to the caller. A simple
ret instruction is insufficient because local variables and the old EBP value
are probably sitting on the top of the stack.

5.16 Low-Level Implementation of Automatic (Local)
Variables

Your program accesses local variables in a procedure using negative offsets
from the activation record base address (EBP). Consider the following HLA
procedure (which admittedly doesn’t do much other than demonstrate the
use of local variables):

procedure LocalVars; @nodisplay;
var

a:int32;

b:int32;
begin LocalVars;

mov( 0, a );
mov( a, eax );

mov( eax, b );

end LocalVars;

The activation record for LocalVars appears in Figure 5-6.

Offset
from
EBP
Previous +8
Stack Contents
Return Address +4
Old EBP Value +0 -«——FBP

Figure 5-6: Activation record for the LocalVars
procedure
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The HLA compiler emits code that is roughly equivalent to the following
for the body of this procedure:'

mov( 0, (type dword [ebp-4]));
mov( [ebp-4], eax );
mov( eax, [ebp-8] );

You could actually type these statements into the procedure yourself and
they would work. Of course, using memory references like [ebp-4] and [ebp-8]
rather than a or b makes your programs very difficult to read and understand.
Therefore, you should always declare and use HLA symbolic names rather
than offsets from EBP.

The standard entry sequence for this Localvars procedure will be:'®

push( ebp );
mov( esp, ebp );
sub( 8, esp );

This code subtracts 8 from the stack pointer because there are 8 bytes of
local variables (two double-word objects) in this procedure. Unfortunately,
as the number of local variables increases, especially if those variables have
different types, computing the number of bytes of local variables becomes
rather tedious. Fortunately, for those who wish to write the standard entry
sequence themselves, HLA automatically computes this value for you and
creates a constant, _vars_, that specifies the number of bytes of local variables.'”
Therefore, if you intend to write the standard entry sequence yourself, you
should use the _vars_ constant in the sub instruction when allocating storage
for the local variables:

push( ebp );
mov( esp, ebp );
sub( _vars_, esp );

Now that you’ve seen how assembly language allocates and deallocates
storage for local variables, it’s easy to understand why automatic (var) variables
do not maintain their values between two calls to the same procedure. Because
the memory associated with these automatic variables is on the stack, when a
procedure returns to its caller the caller can push other data onto the stack,
obliterating the values previously held on the stack. Furthermore, intervening
calls to other procedures (with their own local variables) may wipe out the
values on the stack. Also, upon reentry into a procedure, the procedure’s
local variables may correspond to different physical memory locations; hence
the values of the local variables would not be in their proper locations.

15 This ignores the code associated with the standard entry and exit sequences.

6 This code assumes that ESP is dword aligned upon entry so the and( $FFFF_FFFC, esp );
instruction is unnecessary.

"7 HLA even rounds this constant up to the next even multiple of 4 so you don’t have to worry
about stack alignment.



One big advantage to automatic storage is that it efficiently shares a fixed
pool of memory among several procedures. For example, if you call three
procedures in a row, like so:

ProcA();
ProcB();
ProcC();

the first procedure (ProcA in the code above) allocates its local variables
on the stack. Upon return, ProcA deallocates that stack storage. Upon entry
into ProcB, the program allocates storage for ProcB’s local variables using the
same memory locations just freed by ProcA. Likewise, when ProcB returns and the
program calls ProcC, ProcC uses the same stack space for its local variables that
ProcB recently freed up. This memory reuse makes efficient use of the system
resources and is probably the greatest advantage to using automatic (var)
variables.

5.17 Low-Level Parameter Implementation

Earlier, when discussing HLLA’s high-level parameter passing mechanism,
there were several questions concerning parameters. Some important ques-
tions are:

e  Where is the data coming from?
e What mechanism do you use to pass and return data?

e How much data are you passing?

In this section we will take another look at the two most common
parameter-passing mechanisms: pass by value and pass by reference. We will
discuss three popular places to pass parameters by reference or by value: in
the registers, on the stack, and in the code stream. The amount of parameter
data has a direct bearing on where and how to pass it. The following sections
take up these issues.

5.17.1 Passing Parameters in Registers

Having touched on how to pass parameters to a procedure in Section 5.6, the
next thing to discuss is where to pass parameters. Where you pass parameters
depends on the size and number of those parameters. If you are passing a
small number of bytes to a procedure, then the registers are an excellent
place to pass parameters to a procedure. If you are passing a single parame-
ter to a procedure, you should use the following registers for the accompa-
nying data types.
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Data Size Pass in this Register

Byte: al
Word: ax
Double Word: eax
Quad Word: edx:eax

This is not a hard-and-fast rule. If you find it more convenient to pass
16-bit values in the SI or BX register, then do so. However, most programmers
use the registers above to pass parameters.

If you are passing several parameters to a procedure in the 80x86’s
registers, you should probably use up the registers in the following order:

First Last
eax, edx, ecx, esi, edi, ebx

In general, you should avoid using the EBP register. If you need more
than six double words, perhaps you should pass your values elsewhere. This
choice of priorities is not completely arbitrary. Many high-level languages will
attempt to pass parameters in the EAX, EDX, and ECX registers (generally in
that order). Furthermore, the Intel ABI (application binary interface) allows
high-level language procedures to use EAX, EDX, and ECX without preserving
their values. Hence, these three registers are a great place to pass parameters
because a lot of code assumes their values are modified across procedure calls.

As an example, consider the following strfill( s,c ); procedure that copies
the character ¢ (passed by value in AL) to each character position in s (passed
by reference in EDI) up to a zero-terminating byte:

// strfill- Overwrites the data in a string with a character.

/!
// EDI- Pointer to zero-terminated string (e.g., an HLA string)
// AL- Character to store into the string

procedure strfill; @nodisplay;
begin strfill;

push( edi ); // Preserve this because it will be modified.
while( (type char [edi] ) <> #0 ) do

mov( al, [edi] );

inc( edi );
endwhile;
pop( edi );

end strfill;

To call the strfill procedure you would load the address of the string
data into EDI and the character value into AL prior to the call. The following
code fragment demonstrates a typical call to strfill.
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mov( s, edi ); // Get ptr to string data into edi (assumes s:string).
mov( ' ', al );
strfill();

Don’t forget that HLA string variables are pointers. This example assumes
that s is an HLA string variable and therefore contains a pointer to a zero-
terminated string. Thus, the mov( s, edi ); instruction loads the address of
the zero-terminated string into the EDI register (hence this code passes the
address of the string data to strfill, that is, it passes the string by reference).

One way to pass parameters in the registers is to simply load them with
the appropriate values prior to a call and then reference those registers
within the procedure. This is the traditional mechanism for passing parameters
in registers in an assembly language program. HLA, being somewhat more
high-level than traditional assembly language, provides a formal parameter
declaration syntax that lets you tell HLA you’re passing certain parameters
in the general-purpose registers. This declaration syntax is the following:

parmName: parmType in reg

Where parmName is the parameter’s name, parmType is the type of the object,
and reg is one of the 80x86’s general-purpose 8-, 16-, or 32-bit registers. The
size of the parameter’s type must be equal to the size of the register or HLA
will report an error. Here is a concrete example:

procedure HasRegParms( count: uns32 in ecx; charVal:char in al );

One nice feature to this syntax is that you can call a procedure that has
register parameters exactly like any other procedure in HLA using the high-
level syntax. For example:

HasRegParms( ecx, bl );

If you specify the same register as an actual parameter that you’ve declared
for the formal parameter, HLA does not emit any extra code; it assumes that
the parameter’s value is already in the appropriate register. For example,
in the call above, the first actual parameter is the value in ECX; because the
procedure’s declaration specifies that first parameter is in ECX, HLA will not
emit any code. On the other hand, the second actual parameter is in BL, but
the procedure will expect this parameter value in AL. Therefore, HLA will
emitamov( bl, al ); instruction prior to calling the procedure so that the
value is in the proper register upon entry to the procedure.

You can also pass parameters by reference in a register. Consider the
following declaration:

procedure HasRefRegParm( var myPtr:uns32 in edi );
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A call to this procedure always requires some memory operand as the
actual parameter. HLA will emit the code to load the address of that memory
object into the parameter’s register (EDI in this case). Note that when passing
reference parameters, the register must be a 32-bit general-purpose register
because addresses are 32 bits long. Here’s an example of a call to HasRefRegParm:

HasRefRegParm( x );

HLA will emit either a mov( 8x, edi); or lea( edi, x); instruction to load
the address of x into the EDI registers prior to the call instruction.'®

If you pass an anonymous memory object (for example, [edi] or [ecx])
as a parameter to HasRefRegParm, HLA will not emit any code if the memory
reference uses the same register that you declare for the parameter (i.e.,
[edi]). It will use a simple mov instruction to copy the actual address into EDI
if you specify an indirect addressing mode using a register other than EDI
(e.g., [ecx]). It will use a lea instruction to compute the effective address of
the anonymous memory operand if you use a more complex addressing
mode like [edi+ecx*4+2].

Within the procedure’s code, HLA creates text equates for those register
parameters that map their names to the appropriate register. In the HasRegParms
example, any time you reference the count parameter, HLA substitutes ecx for
count. Likewise, HLA substitutes al for charval throughout the procedure’s
body. Because these names are aliases for the registers, you should take care
to always remember that you cannot use ECX and AL independently of these
parameters. It would be a good idea to place a comment next to each use of
these parameters to remind the reader that count is equivalent to ECX and
charVal is equivalent to AL.

5.17.2 Passing Parameters in the Code Stream

Another place where you can pass parameters is in the code stream immedi-
ately after the call instruction. Consider the following print routine that prints
a literal string constant to the standard output device:

call print;
byte "This parameter is in the code stream.",0;

Normally, a subroutine returns control to the first instruction immedi-
ately following the call instruction. Were that to happen here, the 80x86
would attempt to interpret the ASCII codes for “This . . ..” as an instruction.
This would produce undesirable results. Fortunately, you can skip over this
string when returning from the subroutine.

So how do you gain access to these parameters? Easy. The return address
on the stack points at them. Consider the implementation of print appearing
in Listing 5-12.

¥ The choice of instructions is dictated by whether x is a static variable (mov for static objects, lea
for other objects).



program printDemo;
#include( "stdlib.hhf" );

//
//
//
//
//
//
//
//

print-

This procedure writes the literal string
immediately following the call to the
standard output device. The literal string
must be a sequence of characters ending with
a zero byte (i.e., a C string, not an HLA
string).

procedure print; @noframe; @nodisplay;
const

// RtnAdrs is the offset of this procedure's
// return address in the activation record.

RtnAdrs:text := "(type dword [ebp+4])";

begin print;

// Build the activation record (note the
// @noframe option above).

push( ebp );
mov( esp, ebp );

// Preserve the registers this function uses.

push( eax );
push( ebx );

// Copy the return address into the ebx

// register. Because the return address points
// at the start of the string to print, this
// instruction loads ebx with the address of
// the string to print.

mov( RtnAdrs, ebx );

// Until we encounter a zero byte, print the
// characters in the string.

forever

mov( [ebx], al ); // Get the next character.

breakif( !al ); // Quit if it's zero.

stdout.putc( al ); // Print it.

inc( ebx ); // Move on to the next char.
endfor;
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// Skip past the zero byte and store the resulting
// address over the top of the return address so
// we'll return to the location that is one byte
// beyond the zero-terminating byte of the string.

inc( ebx );
mov( ebx, RtnAdrs );

// Restore eax and ebx.

pop( ebx );
pop( eax );

// Clean up the activation record and return.

pop( ebp );
ret();

end print;

begin printDemo;
// Simple test of the print procedure

call print;
byte "Hello World!", 13, 10, 0 ;

end printDemo;

Listing 5-12: Print procedure implementation (using code stream parameters)

Besides showing how to pass parameters in the code stream, the print
routine also exhibits another concept: variable-length parameters. The string
following the call can be any practical length. The zero terminating byte
marks the end of the parameter list. There are two easy ways to handle
variable-length parameters: Either use some special terminating value (like 0)
or pass a special length value that tells the subroutine how many parameters
you are passing. Both methods have their advantages and disadvantages. Using
a special value to terminate a parameter list requires that you choose a value
that never appears in the list. For example, print uses 0 as the terminating
value, so it cannot print the NUL character (whose ASCII code is 0). Sometimes
this isn’t a limitation. Specifying a special-length parameter is another
mechanism you can use to pass a variable-length parameter list. While this
doesn’t require any special codes or limit the range of possible values that can
be passed to a subroutine, setting up the length parameter and maintaining
the resulting code can be a real nightmare. '

Despite the convenience afforded by passing parameters in the code
stream, there are some disadvantages to passing parameters there. First, if
you fail to provide the exact number of parameters the procedure requires,

!9 This is especially true if the parameter list changes frequently.



the subroutine will get confused. Consider the print example. It prints a
string of characters up to a zero-terminating byte and then returns control to
the first instruction following the zero-terminating byte. If you leave off the
zero-terminating byte, the print routine happily prints the following opcode
bytes as ASCII characters until it finds a zero byte. Because zero bytes often
appear in the middle of an instruction, the print routine might return control
into the middle of some other instruction. This will probably crash the
machine. Inserting an extra 0, which occurs more often than you might
think, is another problem programmers have with the print routine. In such
a case, the print routine would return upon encountering the first zero byte
and attempt to execute the following ASCII characters as machine code. Once
again, this usually crashes the machine. These are the some of the reasons
why the HLA stdout.put code does not pass its parameters in the code stream.
Problems notwithstanding, however, the code stream is an efficient place to
pass parameters whose values do not change.

5.17.3 Passing Parameters on the Stack

Most high-level languages use the stack to pass parameters because this
method is fairly efficient. By default, HLA also passes parameters on the
stack. Although passing parameters on the stack is slightly less efficient than
passing those parameters in registers, the register set is very limited and you
can pass only a few value or reference parameters through registers. The
stack, on the other hand, allows you to pass a large amount of parameter data
without any difficulty. This is the principal reason that most programs pass
their parameters on the stack.

HILA typically passes parameters you specify using the high-level proce-
dure call syntax on the stack. For example, suppose you define strfill from
earlier as follows:

procedure strfill( s:string; chr:char );

Calls of the form strfill( s, ' ' ); will pass the value of s (which is an
address) and a space character on the 80x86 stack. When you specify a call to
strfill in this manner, HLA automatically pushes the parameters for you, so
you don’t have to push them onto the stack yourself. Of course, if you choose
to do so, HLA will let you manually push the parameters onto the stack prior to
the call.

To manually pass parameters on the stack, push them immediately
before calling the subroutine. The subroutine then reads this data from the
stack memory and operates on it appropriately. Consider the following HLA
procedure call:

CallProc(i,j,k);
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HILA pushes parameters onto the stack in the order that they appear in
the parameter list.2” Therefore, the 80x86 code that HLA emits for this sub-
routine call (assuming you’re passing the parameters by value) is:

push( 1 );
push( j );
push( k );
call CallProc;

Upon entry into CallProc, the 80x86’s stack looks like that shown in
Figure 5-7.

Previous Stack Contents

i’s Current Value

j's Current Value

k’s Current Value

Return Address l—— ESP

Figure 5-7: Stack layout upon entry into
CallProc

You could gain access to the parameters passed on the stack by removing
the data from the stack, as the following code fragment demonstrates:

// Note: To extract parameters off the stack by popping, it is very important
// to specify both the @nodisplay and @noframe procedure options.

static
RtnAdrs: dword;
p1Parm: dword;
p2Parm: dword;
p3Parm: dword;

procedure CallProc( pil:dword; p2:dword; p3:dword ); @nodisplay; @noframe;
begin CallProc;

pop( RtnAdrs );
pop( p3Parm );
pop( p2Parm );

pop( p1Parm );
push( RtnAdrs );

ret();

end CallProc;

20 This assumes, of course, that you don’t instruct HLA otherwise. It is possible to tell HLA to
reverse the order of the parameters on the stack. See the electronic edition for more details.
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As you can see from this code, it first pops the return address off the
stack and into the RtnAdrs variable; then it pops (in reverse order) the values
of the p1, p2, and p3 parameters; finally, it pushes the return address back
onto the stack (so the ret instruction will operate properly). Within the
CallProc procedure, you may access the piParm, p2Parm, and p3Parm variables to
use the p1, p2, and p3 parameter values.

There is, however, a better way to access procedure parameters. If your
procedure includes the standard entry and exit sequences, then you may
directly access the parameter values in the activation record by indexing off
the EBP register. Consider the layout of the activation record for CallProc
that uses the following declaration:

procedure CallProc( pi:dword; p2:dword; p3:dword ); @nodisplay; @noframe;
begin CallProc;

push( ebp ); // This is the standard entry sequence.
mov( esp, ebp ); // Get base address of A.R. into ebp.

Take alook at the stack immediately after the execution of mov( esp, ebp );
in CallProc. Assuming you’ve pushed three double-word parameters onto the
stack, it should look something like that shown in Figure 5-8.

Previous Stack Contents | EBP+20

i’s Current Value EBP+16

j's Current Value EBP+12

k’s Current Value EBP+8
Return Address EBP+4

Old EBP Value -«—— ESP/EBP

Figure 5-8: Activation record for CallProc
after standard entry sequence execution

Now you can access the parameters by indexing off the EBP register:

mov( [ebp+16], eax ); // Accesses the first parameter.
mov( [ebp+12], ebx );  // Accesses the second parameter.
mov( [ebp+8], ecx ); // Accesses the third parameter.

Of course, as with local variables, you’d never really access the parameters
in this way. You can use the formal parameter names (p1, p2, and p3), and HLA
will substitute a suitable [ebp+displacement] memory address. Even though you
shouldn’t actually access parameters using address expressions like [ebp+12],
it’s important to understand their relationship to the parameters in your
procedures.
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Other items that often appear in the activation record are register values
that your procedure preserves. The most rational place to preserve registers
in a procedure is in the code immediately following the standard entry
sequence. In a standard HLA procedure (one where you do not specify the
@noframe option), this simply means that the code that preserves the registers
should appear first in the procedure’s body. Likewise, the code to restore
those register values should appear immediately before the end clause for the
procedure.?!

5.17.3.1 Accessing Value Parameters on the Stack

Accessing parameters passed by value is no different from accessing a local
var object. As long as you’ve declared the parameter in a formal parameter
list and the procedure executes the standard entry sequence upon entry into
the program, all you need do is specify the parameter’s name to reference the
value of that parameter. Listing 5-13 provides an example program whose
procedure accesses a parameter the main program passes to it by value.

program AccessingValueParameters;
#include( "stdlib.hhf" )

procedure ValueParm( theParameter: uns32 ); @nodisplay;
begin ValueParm;

mov( theParameter, eax );
add( 2, eax );

stdout.put

(
"theParameter + 2 = ",
(type uns32 eax),
nl

);

end ValueParm;

begin AccessingValueParameters;

ValueParm( 10 );
ValueParm( 135 );

end AccessingValueParameters;

Listing 5-13: Demonstration of value parameters

2 Note that if you use the exit statement to exit a procedure, you must duplicate the code to
pop the register values and place this code immediately before the exit clause. This is a good
example of a maintenance nightmare and is also a good reason why you should have only one exit
point in your program.



Although you could access the value of theParameter using the anonymous
address [EBP+8] within your code, there is absolutely no good reason for
doing so. If you declare the parameter list using the HLA high-level language
syntax, you can access the value parameter by specifying its name within the
procedure.

5.17.3.2 Passing Value Parameters on the Stack

As Listing 5-13 demonstrates, passing a value parameter to a procedure is
very easy. Just specify the value in the actual parameter list as you would for
a high-level language call. Actually, the situation is a little more complicated
than this. Passing value parameters is easy if you’re passing constant, register,
or variable values. It gets a little more complex if you need to pass the result
of some expression. This section deals with the different ways you can pass a
parameter by value to a procedure.

Of course, you do not have to use the HLA high-level syntax to pass value
parameters to a procedure. You can push these values on the stack yourself.
Because many times it is more convenient or more efficient to manually pass
the parameters, describing how to do this is a good place to start.

As noted earlier in this chapter, when passing parameters on the stack
you push the objects in the order they appear in the formal parameter list
(from left to right). When passing parameters by value, you should push the
values of the actual parameters onto the stack. The program in Listing 5-14
demonstrates how to do this.

program ManuallyPassingValueParameters;
#include( "stdlib.hhf" )

procedure ThreeValueParms( pl:uns32; p2:uns32; p3:uns32 ); @nodisplay;
begin ThreeValueParms;

mov( pl, eax );

add( p2, eax );

add( p3, eax );

stdout.put

(
"p1 + p2 +p3 =",
(type uns32 eax),
nl

)s

end ThreeValueParms;

static
SecondParmValue:uns32 := 25;
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begin ManuallyPassingValueParameters;

pushd( 10 ); // Value associated with p1
pushd( SecondParmValue); // Value associated with p2
pushd( 15 ); // Value associated with p3

call ThreeValueParms;

end ManuallyPassingValueParameters;

Listing 5-14: Manually passing parameters on the stack

Note that if you manually push the parameters onto the stack as this
example does, you must use the call instruction to call the procedure. If you
attempt to use a procedure invocation of the form ThreeValueParms();, then
HLA will complain about a mismatched parameter list. HLA won’t realize
that you've manually pushed the parameters (as far as HLA is concerned,
those pushes appear to preserve some other data).

Generally, there is little reason to manually push a parameter onto the
stack if the actual parameter is a constant, a register value, or a variable.
HLA'’s high-level syntax handles most such parameters for you. There are
several instances, however, where HLA’s high-level syntax won’t work. The
first such example is passing the result of an arithmetic expression as a value
parameter. Because runtime arithmetic expressions don’t exist in HLA, you
will have to manually compute the result of the expression and pass that
value yourself. There are two possible ways to do this: calculate the result of
the expression and manually push that result onto the stack, or compute the
result of the expression into a register and pass the register as a parameter
to the procedure. The program in Listing 5-15 demonstrates these two
mechanisms.

program PassingExpressions;
#include( "stdlib.hhf" )

procedure ExprParm( exprValue:uns32 ); @nodisplay;
begin ExprParm;

stdout.put( "exprValue = ", exprValue, nl );

end ExprParm;

static
Operand1l: uns32 := 5;
Operand2: uns32 := 20;



begin PassingExpressions;

// ExprParm( Operandl + Operand2 );

//

// Method one: Compute the sum and manually
// push the sum onto the stack.

mov( Operandl, eax );
add( Operand2, eax );
push( eax );

call ExprParm;

// Method two: Compute the sum in a register and
// pass the register using the HLA high-level
//  language syntax.

mov( Operandl, eax );
add( Operand2, eax );

ExprParm( eax );

end PassingExpressions;

Listing 5-15: Passing the result of some arithmetic expression as a parameter

The examples up to this point in this section have made an important
assumption: that the parameter you are passing is a double-word value. The
calling sequence changes somewhat if you're passing parameters that are not
4-byte objects. Because HLA can generate relatively inefficient code when
passing objects that are not 4 bytes long, manually passing such objects is a
good idea if you want to have the fastest possible code.

HLA requires that all value parameters be a multiple of 4 bytes long.** If
you pass an object that is less than 4 bytes long, HLA requires that you pad
the parameter data with extra bytes so that you always pass an object that is at
least 4 bytes in length. For parameters that are larger than 4 bytes, you must
ensure that you pass a multiple of 4 bytes as the parameter value, adding
extra bytes at the high-order end of the object to pad it, as necessary.

Consider the following procedure prototype:

procedure OneByteParm( b:byte );

The activation record for this procedure appears in Figure 5-9.

22 This applies only if you use the HLA high-level-language syntax to declare and access parameters
in your procedures. Of course, if you manually push the parameters yourself and you access the
parameters inside the procedure using an addressing mode like [ebp+8], then you can pass any size
object you choose. Of course, keep in mind that most operating systems expect the stack to be
dword aligned, so parameters you push should be a multiple of 4 bytes long.
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Previous Stack Contents

EBP+11
Unused Bytes ___ | EBP+10

EBP+9
b’s Current Value EBP+8

Return Address

Old EBP Value

-«— EBP

Local Variables

-«—— ESP

Figure 5-9: OneByteParm activation record

As you can see, there are 4 bytes on the stack associated with the b
parameter, but only 1 of the 4 bytes contains valid data (the L.O. byte). The
remaining 3 bytes are just padding, and the procedure should ignore these
bytes. In particular, you should never assume that these extra bytes contain
0Os or some other consistent value. Depending on the type of parameter you
pass, HLA’s automatic code generation may or may not push 0 bytes as the
extra data on the stack.

When passing a byte parameter to a procedure, HLA will automatically
emit code that pushes 4 bytes onto the stack. Because HLA’s parameter-
passing mechanism guarantees not to disturb any register or other values,
HLA sometimes generates more code than is actually needed to pass a byte
parameter. For example, if you decide to pass the AL register as the byte
parameter, HLA will emit code that pushes the EAX register onto the stack.
This single push instruction is a very efficient way to pass AL as a 4-byte
parameter object. On the other hand, if you decide to pass the AH register as
the byte parameter, pushing EAX won’t work because this would leave the
value in AH at offset EBP+9 in the activation record shown in Figure 5-9.
Unfortunately, the procedure expects this value at offset EBP+8, so simply
pushing EAX won’t do the job. If you pass AH, BH, CH, or DH as a byte
parameter, HLA emits code like the following:

sub( 4, esp ); // Make room for the parameter on the stack.
mov( ah, [esp] ); // Store ah into the L.0. byte of the parameter.

As you can clearly see, passing one of the H registers as a byte parameter
is less efficient than passing one of the L registers. So you should attempt to
use the L registers whenever possible if passing an 8-bit register as a parameter.**
Note, by the way, that there is very little you can do about the efficiency issue,
even if you manually pass the parameters.

2 Or better yet, pass the parameter directly in the register if you are writing the procedure
yourself.



If the byte parameter you decide to pass is a variable rather than a
register, HLA generates decidedly worse code. For example, suppose you
call OneByteParm as follows:

OneByteParm( uns8Var );

For this call, HLA will emit code similar to the following to push this
single-byte parameter:

push( eax );
push( eax );
mov( uns8Var, al );
mov( al, [esp+4] );
pop( eax );

As you can plainly see, this is a lot of code to pass a single byte onto the
stack! HLA emits this much code because (1) it guarantees not to disturb
any registers, and (2) it doesn’t know whether uns8var is the last variable in
allocated memory. You can generate much better code if you don’t have to
enforce either of these two constraints.

If you have a spare 32-bit register lying around (especially one of EAX,
EBX, ECX, or EDX), then you can pass a byte parameter onto the stack using
only two instructions. Move (or move with zero/sign extension) the byte
value into the register and then push the register onto the stack. For the
current call to OneByteParm, the calling sequence would look like the following
if EAX is available:

mov( uns8Var, al );
push( eax );
call OneByteParm;

If only ESI or EDI is available, you could use code like this:

movzx( uns8Var, esi );
push( esi );
call OneByteParm;

Another trick you can use to pass the parameter with only a single push
instruction is to coerce the byte variable to a double-word object. For example:

push( (type dword uns8Var));
call OneByteParm;

This last example is very efficient. Note that it pushes the first 3 bytes of
whatever value happens to follow uns8Var in memory as the padding bytes.
HLA doesn’t use this technique because there is a (very tiny) chance that
using this scheme will cause the program to fail. If it turns out that the uns8var
object is the last byte of a given page in memory and the next page of memory
is unreadable, the push instruction will cause a memory access exception. To
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be on the safe side, the HLA compiler does not use this scheme. However, if
you always ensure that the actual parameter you pass in this fashion is not the
last variable you declare in a static section, then you can get away with code
that uses this technique. Because it is nearly impossible for the byte object to
appear at the last accessible address on the stack, it is probably safe to use this
technique with var objects.

When passing word parameters on the stack, you must also ensure that you
include padding bytes so that each parameter consumes a multiple of 4 bytes.
You can use the same techniques we use to pass bytes, except, of course,
there are two valid bytes of data to pass instead of one. For example, you
could use either of the following two schemes to pass a word object w to a
OneWordParm procedure:

mov( w, ax );
push( eax );
call OneWordParm;

push( (type dword w) );
call OneWordParm;

When passing large objects by value on the stack (e.g., records and arrays),
you do not have to ensure that each element or field of the object consumes
a multiple of 4 bytes; all you need to do is ensure that the entire data structure
consumes a multiple of 4 bytes on the stack. For example, if you have an
array of ten 3-byte elements, the entire array will need 2 bytes of padding
(10 * 3 is 30 bytes, which is not divisible by 4, but 10 * 3 + 2 is 32, which is
divisible by 4). HLA does a fairly good job of passing large data objects by
value to a procedure. For larger objects, you should use the HLA high-level
language procedure invocation syntax unless you have some special require-
ments. Of course, if you want efficient operation, you should try to avoid
passing large data structures by value.

By default, HLA guarantees that it won’t disturb the values of any registers
when it emits code to pass parameters to a procedure. Sometimes this guarantee
isn’t necessary. For example, if you are returning a function result in EAX
and you are not passing a parameter to a procedure in EAX, there really is
no reason to preserve EAX upon entry into the procedure. Rather than
generating some crazy code like the following to pass a byte parameter,

push( eax );
push( eax );
mov( uns8Var, al );
mov( al, [esp+4] );
pop( eax );

HLA could generate much better code if it knows that it can use EAX (or
some other register) as follows.



mov( uns8Var, al );
push( eax );

You can use the @use procedure option to tell HLA that it can modify a
register’s value if doing so would improve the code it generates when passing
parameters. The syntax for this option is:

@use reg32;

The reg32 operand can be EAX, EBX, ECX, EDX, ESI, or EDI. You’ll
obtain the best results if this register is one of EAX, EBX, ECX, or EDX. You
should note that you cannot specify EBP or ESP here (because the procedure
already uses those registers).

The @use procedure option tells HLA that it’s okay to modify the value of
the register you specify as an operand. Therefore, if HLA can generate better
code by not preserving that register’s value, it will do so. For example, when
the @use eax; option is provided for the OneByteParm procedure given earlier,
HLA will only emit the two instructions immediately above rather than the
five-instruction sequence that preserves EAX.

You must exercise care when specifying the @use procedure option. In
particular, you should not be passing any parameters in the same register you
specify in the @use option (because HLA may inadvertently scramble the
parameter’s value if you do this). Likewise, you must ensure that it’s really
okay for the procedure to change the register’s value. As noted above, the
best choice for an @use register is EAX when the procedure is returning a
function result in EAX (because, clearly, the caller will not expect the proce-
dure to preserve EAX).

If your procedure has a forward or external declaration (see Section 5.24),
the @use option must appear only in the forward or external definition, not
in the actual procedure declaration. If no such procedure prototype appears,
then you must attach the @use option to the procedure declaration.

Here’s an example:

procedure OneByteParm( b:byte ); @nodisplay; @use EAX;
begin OneByteParm;

<< Do something with b. >>

end OneByteParm;

static
byteVar:byte;

OneByteParm( byteVar );
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This call to OneByteParm emits the following instructions:

mov( uns8Var, al );
push( eax );
call OneByteParm;

5.17.3.3 Accessing Reference Parameters on the Stack

Because HLA passes the address for reference parameters, accessing the
reference parameters within a procedure is slightly more difficult than
accessing value parameters because you have to dereference the pointers to
the reference parameters. Unfortunately, HLA’s high-level syntax for pro-
cedure declarations and invocations does not (and cannot) abstract this
detail away for you. You will have to manually dereference these pointers
yourself. This section reviews how you do this.

In Listing 5-16 the RefParm procedure has a single pass-by-reference
parameter. A pass-by-reference parameter is always a pointer to an object of
the type specified by the parameter’s declaration. Therefore, theParameter is
actually an object of type pointer to uns32 rather than an uns32 value. In order
to access the value associated with theParameter, this code has to load that
double-word address into a 32-bit register and access the data indirectly. The
mov( theParameter, eax ); instruction in Listing 5-16 fetches this pointer into
the EAX register, and then procedure RefParm uses the [eax] addressing mode
to access the actual value of theParameter.

program AccessingReferenceParameters;
#include( "stdlib.hhf" )

procedure RefParm( var theParameter: uns32 ); @nodisplay;
begin RefParm;

// Add 2 directly to the parameter passed by
// reference to this procedure.

mov( theParameter, eax );
add( 2, (type uns32 [eax]) );

// Fetch the value of the reference parameter
// and print its value.

mov( [eax], eax );
stdout.put

(

"theParameter now equals ",
(type uns32 eax),
nl

);

end RefParm;



static
pl: uns32 :
p2: uns32 :

10;
15;

begin AccessingReferenceParameters;

RefParm( p1 );
RefParm( p2 );

stdout.put( "On return, p1=", p1, " and p2=", p2, nl );

end AccessingReferenceParameters;

Listing 5-16: Accessing a reference parameter

Because this procedure accesses the data of the actual parameter, adding 2
to this data affects the values of the variables passed to the RefParm procedure
from the main program. Of course, this should come as no surprise because
these are the standard semantics for pass-by-reference parameters.

As you can see, accessing (small) pass-by-reference parameters is a little
less efficient than accessing value parameters because you need an extra
instruction to load the address into a 32-bit pointer register (not to mention
you have to reserve a 32-bit register for this purpose). If you access reference
parameters frequently, these extra instructions can really begin to add up,
reducing the efficiency of your program. Furthermore, it’s easy to forget to
dereference a reference parameter and use the address of the value in your
calculations (this is especially true when passing double-word parameters,
like the uns32 parameter in the example above, to your procedures). Therefore,
unless you really need to affect the value of the actual parameter, you should
use pass by value to pass small objects to a procedure.

Passing large objects, like arrays and records, is where using reference
parameters becomes efficient. When passing these objects by value, the calling
code has to make a copy of the actual parameter; if the actual parameter is a
large object, the copy process can be very inefficient. Because computing the
address of a large object is just as efficient as computing the address of a
small scalar object, there is no efficiency loss when passing large objects by
reference. Within the procedure, you must still dereference the pointer to
access the object, but the efficiency loss due to indirection is minimal when
you contrast this with the cost of copying that large object. The program in
Listing 5-17 demonstrates how to use pass by reference to initialize an array
of records.

program accessingRefArrayParameters;
#include( "stdlib.hhf" )

const
NumElements := 64;

type
Pt: record
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x:uns8;
y:uns8;

endrecord;
Pts: Pt[NumElements];
procedure RefArrayParm( var ptArray: Pts ); @nodisplay;
begin RefArrayParm;
push( eax );
push( ecx );
push( edx );
mov( ptArray, edx ); // Get address of parameter into edx.

for( mov( 0, ecx ); ecx < NumElements; inc( ecx )) do

// For each element of the array, set the x field
// to (ecx div 8) and set the y field to (ecx mod 8).

mov( cl, al );
shr( 3, al ); // ecx div 8.
mov( al, (type Pt [edx+ecx*2]).x );
mov( cl, al );
and( %111, al ); // ecx mod 8.
mov( al, (type Pt [edx+ecx*2]).y );
endfor;
pop( edx );
pop( ecx );
pop( eax );
end RefArrayParm;
static
MyPts: Pts;
begin accessingRefArrayParameters;

// Initialize the elements of the array.

RefArrayParm( MyPts );

// Display the elements of the array.

for( mov( 0, ebx ); ebx < NumElements; inc( ebx )) do
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stdout.put

( "RefArrayParm[",
(type uns32 ebx):2,
"1x=",
MyPts.x[ ebx*2 ],
" RefArrayParm[",
(type uns32 ebx):2,
"1.y=",
MyPts.y[ ebx*2 ],
nl

)s

endfor;

end accessingRefArrayParameters;

Listing 5-17: Passing an array of records by referencing

As you can see from this example, passing large objects by reference is
relatively efficient. Other than tying up the EDX register throughout the
RefArrayParm procedure, plus a single instruction to load EDX with the address
of the reference parameter, the RefArrayParm procedure doesn’t require many
more instructions than the same procedure where you would pass the parame-
ter by value.

5.17.3.4 Passing Reference Parameters on the Stack

HLA’s high-level syntax often makes passing reference parameters a breeze.
All you need to do is specify the name of the actual parameter you wish to
pass in the procedure’s parameter list. HLA will automatically emit some code
that will compute the address of the specified actual parameter and push this
address onto the stack. However, like the code HLA emits for value parame-
ters, the code HLA generates to pass the address of the actual parameter on
the stack may not be the most efficient possible. Therefore, if you want to
write fast code, you may want to manually write the code to pass reference
parameters to a procedure. This section discusses how to do exactly that.

Whenever you pass a static object as a reference parameter, HLA gener-
ates very efficient code to pass the address of that parameter to the procedure.
As an example, consider the following code fragment:

procedure HasRefParm( var d:dword );

static
FourBytes:dword;
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var
v: dword[2];

HasRefParm( FourBytes );

For the call to the HasRefParm procedure, HLA emits the following
instruction sequence:

pushd( &FourBytes );
call HasRefParm;

You really aren’t going to be able to do substantially better than this if
you are passing your reference parameters on the stack. So if you’re passing
static objects as reference parameters, HLA generates fairly good code, and
you should stick with the high-level syntax for the procedure call.

Unfortunately, when passing automatic (var) objects or indexed variables
as reference parameters, HLA needs to compute the address of the object at
runtime. This may require the use of the lea instruction. Unfortunately, the
lea instruction requires a 32-bit register, and HLA promises not to disturb
the values in any registers when it automatically generates code for you.**
Therefore, HLA needs to preserve the value in whatever register it uses when
it computes an address via lea to pass a parameter by reference. The following
example shows you the code that HLA actually emits:

// Call to the HasRefParm procedure:
HasRefParm( v[ebx*4] );
// HLA actually emits the following code for the above call:

push( eax );

push( eax );

lea( eax, v[ebx*4] );
mov( eax, [esp+4] );
pop( eax );

call HasRefParm;

As you can see, this is quite a bit of code, especially if you have a 32-bit
register available and you don’t need to preserve that register’s value. The
following is a better code sequence given the availability of EAX.

24 This isn’t entirely true. You'll see the exception in Chapter 12. Also, using the @use procedure
option tells HLA that it’s okay to modify the value in one of the registers.



lea( eax, v[ebx*4] );
push( eax );
call HasRefParm;

Remember, when passing an actual parameter by reference, you must
compute the address of that object and push the address onto the stack. For
simple static objects you can use the address-of operator (&) to easily compute
the address of the object and push it onto the stack; however, for indexed
and automatic objects, you will probably need to use the lea instruction to
compute the address of the object. Here are some examples that demonstrate
this using the HasRefParm procedure from the previous examples:

static
i: int32;
Ary: 1int32[16];
iptr: pointer to int32 := &i;

var
v: int32;

AV:  int32[10];
vptr: pointer to int32;

lea( eax, v );
mov( eax, vptr );

// HasRefParm( i );

push( &i ); // Simple static object, so just use &.
call HasRefParm;

// HasRefParm( Ary[ebx] ); // Pass element of Ary by reference.
lea( eax, Ary[ ebx*4 ]1); // Must use lea for indexed addresses.
push( eax );
call HasRefParm;

// HasRefParm( *iptr ); -- Pass object pointed at by iptr

push( iptr ); // Pass address (iptr's value) on stack.
call HasRefParm;

// HasRefParm( v );
lea( eax, v ); // Must use lea to compute the address

push( eax ); // of automatic vars passed on stack.
call HasRefParm;
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// HasRefParm( AV[ esi ] ); -- Pass element of AV by reference.

lea( eax, AV[ esi*4] ); // Must use lea to compute address of the
push( eax ); // desired element.
call HasRefParm;

// HasRefParm( *vptr ); -- Pass address held by vptr...
push( vptr ); // Just pass vptr's value as the specified
call HasRefParm; // address.

If you have an extra register to spare, you can tell HLA to use that register
when computing the address-of reference parameters (without emitting the
code to preserve that register’s value). The @use option will tell HLA that it’s
okay to use the specified register without preserving its value. As noted in the
section on value parameters, the syntax for this procedure option is:

@use reg32;

where reg32 may be any of EAX, EBX, ECX, EDX, ESI, or EDI. Because refer-
ence parameters always pass a 32-bit value, all of these registers are equivalent
as far as HLA is concerned (unlike value parameters that may prefer the
EAX, EBX, ECX, or EDX register). Your best choice would be EAX if the
procedure is not passing a parameter in the EAX register and the procedure
is returning a function result in EAX; otherwise, any currently unused register
will work fine.

With the @use eax; option, HLA emits the shorter code given in the
previous examples. It does not emit all the extra instructions needed to
preserve EAX’s value. This makes your code much more efficient, especially
when passing several parameters by reference or when calling procedures
with reference parameters several times.

5.17.3.5 Passing Formal Parameters as Actual Parameters

The examples in the previous two sections show how to pass static and auto-
matic variables as parameters to a procedure, either by value or by reference.
There is one situation that these examples don’t handle properly: the case
when you are passing a formal parameter in one procedure as an actual
parameter to another procedure. The following simple example demon-
strates the different cases that can occur for pass-by-value and pass-by-reference
parameters:

procedure pi( val v:dword; var r:dword );
begin p1;

end p1;



procedure p2( val v2:dword; var r2:dword );
begin p2;

p1( v2, 12 ); // (1) First call to p1
p1( r2, v2 ); // (2) Second call to p1

end p2;

In the statement labeled (1) above, procedure p2 calls procedure p1 and
passes its two formal parameters as parameters to pl. Note that this code passes
the first parameter of both procedures by value, and it passes the second
parameter of both procedures by reference. Therefore, in statement (1), the
program passes the v2 parameter into p2 by value and passes it on to p1 by
value; likewise, the program passes r2 in by reference and it passes the value
onto p1 by reference.

Because p2’s caller passes v2 in by value and p2 passes this parameter to p1
by value, all the code needs to do is make a copy of v2’s value and pass this on
to p1. The code to do this is nothing more than a single push instruction. For
example:

push( v2 );
<< Code to handle r2 >>
call p1;

As you can see, this code is identical to passing an automatic variable by
value. Indeed, it turns out that the code you need to write to pass a value
parameter to another procedure is identical to the code you would write to
pass a local automatic variable to that other procedure.

Passing r2 in statement (1) above requires a little more thought. You do
not take the address of r2 using the lea instruction as you would a value
parameter or an automatic variable. When passing r2 on through to p1, the
author of this code probably expects the r formal parameter to contain the
address of the variable whose address p2’s caller passed into p2. In plain
English, this means that p2 must pass the address of r2’s actual parameter on
through to p1. Because the r2 parameter is a double-word value containing
the address of the corresponding actual parameter, this means that the code
must pass the double-word value of r2 on to p1. The complete code for
statement (1) above looks like the following:

push( v2 ); // Pass the value passed in through v2 to pi.
push( r2 ); // Pass the address passed in through r2 to p1.
call p1;

The important thing to note in this example is that passing a formal refer-
ence parameter (r2) as an actual reference parameter (r) does not involve
taking the address of the formal parameter (r2). p2’s caller has already done
this; p2 simply passes this address on through to p1.
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In the second call to p1 in the example above (2), the code swaps the
actual parameters so that the call to p1 passes r2 by value and v2 by reference.
Specifically, p1 expects p2 to pass it the value of the double-word object associ-
ated with r2; likewise, it expects p2 to pass it the address of the value associated
with va.

To pass the value of the object associated with r2, your code must deref-
erence the pointer associated with r2 and directly pass the value. Here is the
code HLA automatically generates to pass r2 as the first parameter to p1 in
statement (2):

sub( 4, esp ); // Make room on stack for parameter.
push( eax ); // Preserve eax's value.
mov( 12, eax ); // Get address-of object passed in to p2.

mov( [eax], eax ); // Dereference to get the value of this object.
mov( eax, [esp+4]); // Put value-of parameter into its location on stack.
pop( eax ); // Restore original eax value.

As usual, HLA generates a little more code than may be necessary because
it won’t destroy the value in the EAX register (you may use the @use procedure
option to tell HLA that it’s okay to use EAX’s value, thereby reducing the
code it generates). You can write more efficient code if a register is available
to use in this sequence. If EAX is unused, you could trim this down to the
following:

mov( 12, eax ); // Get the pointer to the actual object.
pushd( [eax] ); // Push the value of the object onto the stack.

Because you can treat value parameters exactly like local (automatic)
variables, you use the same code to pass v2 by reference to p1 as you would
to pass a local variable in p2 to p1. Specifically, you use the lea instruction to
compute the address of the value in the v2. The code HLA automatically
emits for statement (2) above preserves all registers and takes the following
form (same as passing an automatic variable by reference):

push( eax ); // Make room for the parameter.

push( eax ); // Preserve eax's value.

lea( eax, v2 ); // Compute address of v2's value.

mov( eax, [esp+4]); // Store away address as parameter value.
pop( eax ); // Restore eax's value.

Of course, if you have a register available, you can improve on this code.
Here’s the complete code that corresponds to statement (2) above:

mov( 12, eax ); // Get the pointer to the actual object.

pushd( [eax] ); // Push the value of the object onto the stack.
lea( eax, v2 ); // Push the address of v2 onto the stack.

push( eax );

call p1;




5.17.3.6  HLA Hybrid Parameter-Passing Facilities

Like control structures, HLA provides a high-level language syntax for proce-
dure calls that is convenient to use and easy to read. However, this high-level
language syntax is sometimes inefficient and may not provide the capabilities
you need (for example, you cannot specify an arithmetic expression as a value
parameter as you can in high-level languages). HLA lets you overcome these
limitations by writing low-level (“pure”) assembly language code. Unfortu-
nately, low-level code is harder to read and maintain than procedure calls
that use high-level syntax. Furthermore, it’s quite possible that HLA gener-
ates perfectly fine code for certain parameters, while only one or two param-
eters present a problem. Fortunately, HLA provides a hybrid syntax for
procedure calls that allows you to use both high-level and low-level syntax as
appropriate for a given actual parameter. This lets you use high-level syntax
where appropriate and then drop down into pure assembly language to pass
those special parameters that HLA’s high-level language syntax cannot han-
dle efficiently (if at all).

Within an actual parameter list (using the high-level language syntax),
if HLA encounters #{ followed by a sequence of statements and a closing }#,
HILA will substitute the instructions between the braces in place of the code
it would normally generate for that parameter. For example, consider the
following code fragment:

procedure HybridCall( i:uns32; j:uns32 );
begin HybridCall;

end HybridCall;

// Equivalent to HybridCall( 5, i+j );

HybridCall
(
5,
#{
mov( i, eax );
add( j, eax );
push( eax );
H
)s

The call to HybridCall immediately above is equivalent to the following
“pure” assembly language code.
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pushd( 5 );
mov( i, eax );
add( j, eax );
push( eax );
call HybridCall;

As a second example, consider the example from the previous section:

procedure p2( val v2:dword; var r2:dword );
begin p2;

p1( v2, 12 ); // (1) First call to p1
p1( r2, v2 ); // (2) Second call to p1

end p2;

HILA generates exceedingly mediocre code for the second call to p1 in
this example. If efficiency is important in the context of this procedure call,
and you have a free register available, you might want to rewrite this code as

follows:®

procedure p2( val v2:dword; var r2:dword );

begin p2;
p1( v2, 12 ); // (1) First call to p1
p1 // (2) Second call to p1
( // This code assumes eax is free.
#

mov( 12, eax );
pushd( [eax] );
H,

#{
lea( eax, v2 );
push( eax );
Ht
);

end p2;

Note that specifying the @use reg; option tells HLA that the register is
always available for use wherever you call a procedure. If there is one case
where the procedure’s invocation must preserve the specified register, then
you cannot use the @use option to generate better code. However, you may
use the hybrid parameter-passing mechanism on a case-by-base basis to
improve the performance of those particular calls.

% Of course, you could also use the @use eax; procedure option to achieve the same effect in this
example.
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5.17.3.7 Mixing Register and Stack-Based Parameters

You can mix register parameters and standard (stack-based) parameters in
the same high-level procedure declaration. For example:

procedure HasBothRegAndStack( var dest:dword in edi; count:un32 );

When constructing the activation record, HLA ignores the parameters
you pass in registers and processes only those parameters you pass on the
stack. Therefore, a call to the HasBothRegAndStack procedure will push only a
single parameter onto the stack (count). It will pass the dest parameter in the
EDI register. When this procedure returns to its caller, it will remove only 4 bytes
of parameter data from the stack.

Note that when you pass a parameter in a register, you should avoid
specifying that same register in the @use procedure option. In the example
above, HLA might not generate any code whatsoever at all for the dest
parameter (because the value is already in EDI). Had you specified @use edi;
and HLA decided it was okay to disturb EDI’s value, this would destroy the
parameter value in EDI; that won’t actually happen in this particular example
(because HLA never uses a register to pass a double-word value parameter
like count), but keep this issue in mind.

5.18 Procedure Pointers

The 80x86 call instruction allows three basic forms: direct calls (via a procedure
name), indirect calls through a 32-bit general-purpose register, and indirect
calls through a double-word pointer variable. The call instruction supports
the following (low-level) syntax:

call Procname; // Direct call to procedure Procname (or Stmt label).
call( Reg32 ); // Indirect call to procedure whose address appears
// in the Reg32 general-purpose 32-bit register.
call( dwordvar ); // Indirect call to the procedure whose address
// appears in the dwordVar double word variable.

The first form we’ve been using throughout this chapter, so there is little
need to discuss it here. The second form, the register indirect call, calls the
procedure whose address is held in the specified 32-bit register. The address
of a procedure is the byte address of the first instruction to execute within
that procedure. Remember, on a Von Neumann architecture machine (like
the 80x86), the system stores machine instructions in memory along with
other data. The CPU fetches the instruction opcode values from memory
prior to executing them. When you execute the register indirect call instruc-
tion, the 80x86 first pushes the return address onto the stack and then begins
fetching the next opcode byte (instruction) from the address specified by the
register’s value.

The third form of the call instruction above fetches the address of some
procedure’s first instruction from a double-word variable in memory.
Although this instruction suggests that the call uses the displacement-only
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addressing mode, you should realize that any legal memory addressing mode
is legal here; for example, call( procPtrTable[ebx*4] ); is perfectly legitimate;
this statement fetches the double word from the array of double words
(procPtrTable) and calls the procedure whose address is the value contained
within that double word.

HLA treats procedure names like static objects. Therefore, you can
compute the address of a procedure by using the address-of (&) operator
along with the procedure’s name or by using the lea instruction. For example,
&Procname is the address of the very first instruction of the Procname procedure.
So all three of the following code sequences wind up calling the Procname
procedure:

call Procname;

mov( &Procname, eax );
call( eax );

lea( eax, Procname );
call( eax );

Because the address of a procedure fits in a 32-bit object